Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.107
      1 /*	$NetBSD: if_bnx.c,v 1.107 2021/02/13 16:33:30 jakllsch Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.101 2013/03/28 17:21:44 brad Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2006-2010 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.107 2021/02/13 16:33:30 jakllsch Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, B0, B1, B2 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/pci/if_bnxvar.h>
     64 
     65 #include <dev/microcode/bnx/bnxfw.h>
     66 
     67 /****************************************************************************/
     68 /* BNX Driver Version                                                       */
     69 /****************************************************************************/
     70 #define BNX_DRIVER_VERSION	"v0.9.6"
     71 
     72 /****************************************************************************/
     73 /* BNX Debug Options                                                        */
     74 /****************************************************************************/
     75 #ifdef BNX_DEBUG
     76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     77 
     78 	/*          0 = Never              */
     79 	/*          1 = 1 in 2,147,483,648 */
     80 	/*        256 = 1 in     8,388,608 */
     81 	/*       2048 = 1 in     1,048,576 */
     82 	/*      65536 = 1 in        32,768 */
     83 	/*    1048576 = 1 in         2,048 */
     84 	/*  268435456 =	1 in             8 */
     85 	/*  536870912 = 1 in             4 */
     86 	/* 1073741824 = 1 in             2 */
     87 
     88 	/* Controls how often the l2_fhdr frame error check will fail. */
     89 	int bnx_debug_l2fhdr_status_check = 0;
     90 
     91 	/* Controls how often the unexpected attention check will fail. */
     92 	int bnx_debug_unexpected_attention = 0;
     93 
     94 	/* Controls how often to simulate an mbuf allocation failure. */
     95 	int bnx_debug_mbuf_allocation_failure = 0;
     96 
     97 	/* Controls how often to simulate a DMA mapping failure. */
     98 	int bnx_debug_dma_map_addr_failure = 0;
     99 
    100 	/* Controls how often to simulate a bootcode failure. */
    101 	int bnx_debug_bootcode_running_failure = 0;
    102 #endif
    103 
    104 /****************************************************************************/
    105 /* PCI Device ID Table                                                      */
    106 /*                                                                          */
    107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    108 /****************************************************************************/
    109 static const struct bnx_product {
    110 	pci_vendor_id_t		bp_vendor;
    111 	pci_product_id_t	bp_product;
    112 	pci_vendor_id_t		bp_subvendor;
    113 	pci_product_id_t	bp_subproduct;
    114 	const char		*bp_name;
    115 } bnx_devices[] = {
    116 #ifdef PCI_SUBPRODUCT_HP_NC370T
    117 	{
    118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    120 	  "HP NC370T Multifunction Gigabit Server Adapter"
    121 	},
    122 #endif
    123 #ifdef PCI_SUBPRODUCT_HP_NC370i
    124 	{
    125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    127 	  "HP NC370i Multifunction Gigabit Server Adapter"
    128 	},
    129 #endif
    130 	{
    131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    132 	  0, 0,
    133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    134 	},
    135 #ifdef PCI_SUBPRODUCT_HP_NC370F
    136 	{
    137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    139 	  "HP NC370F Multifunction Gigabit Server Adapter"
    140 	},
    141 #endif
    142 	{
    143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    144 	  0, 0,
    145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    146 	},
    147 	{
    148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    149 	  0, 0,
    150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    151 	},
    152 	{
    153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    154 	  0, 0,
    155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    156 	},
    157 	{
    158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    159 	  0, 0,
    160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    161 	},
    162 	{
    163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    164 	  0, 0,
    165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    166 	},
    167 	{
    168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    169 	  0, 0,
    170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    171 	},
    172 	{
    173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    174 	  0, 0,
    175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    176 	},
    177 };
    178 
    179 
    180 /****************************************************************************/
    181 /* Supported Flash NVRAM device data.                                       */
    182 /****************************************************************************/
    183 static struct flash_spec flash_table[] =
    184 {
    185 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    186 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    187 
    188 	/* Slow EEPROM */
    189 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    190 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    191 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    192 	 "EEPROM - slow"},
    193 	/* Expansion entry 0001 */
    194 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    195 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    196 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    197 	 "Entry 0001"},
    198 	/* Saifun SA25F010 (non-buffered flash) */
    199 	/* strap, cfg1, & write1 need updates */
    200 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    201 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    202 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    203 	 "Non-buffered flash (128kB)"},
    204 	/* Saifun SA25F020 (non-buffered flash) */
    205 	/* strap, cfg1, & write1 need updates */
    206 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    207 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    208 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    209 	 "Non-buffered flash (256kB)"},
    210 	/* Expansion entry 0100 */
    211 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    212 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    213 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    214 	 "Entry 0100"},
    215 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    216 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    217 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    218 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    219 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    220 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    221 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    222 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    223 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    224 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    225 	/* Saifun SA25F005 (non-buffered flash) */
    226 	/* strap, cfg1, & write1 need updates */
    227 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    228 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    229 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    230 	 "Non-buffered flash (64kB)"},
    231 	/* Fast EEPROM */
    232 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    233 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    234 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    235 	 "EEPROM - fast"},
    236 	/* Expansion entry 1001 */
    237 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    238 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    239 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    240 	 "Entry 1001"},
    241 	/* Expansion entry 1010 */
    242 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    243 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    244 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    245 	 "Entry 1010"},
    246 	/* ATMEL AT45DB011B (buffered flash) */
    247 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    248 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    249 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    250 	 "Buffered flash (128kB)"},
    251 	/* Expansion entry 1100 */
    252 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    253 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    254 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    255 	 "Entry 1100"},
    256 	/* Expansion entry 1101 */
    257 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    258 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    259 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    260 	 "Entry 1101"},
    261 	/* Ateml Expansion entry 1110 */
    262 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    263 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    264 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    265 	 "Entry 1110 (Atmel)"},
    266 	/* ATMEL AT45DB021B (buffered flash) */
    267 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    268 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    269 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    270 	 "Buffered flash (256kB)"},
    271 };
    272 
    273 /*
    274  * The BCM5709 controllers transparently handle the
    275  * differences between Atmel 264 byte pages and all
    276  * flash devices which use 256 byte pages, so no
    277  * logical-to-physical mapping is required in the
    278  * driver.
    279  */
    280 static struct flash_spec flash_5709 = {
    281 	.flags		= BNX_NV_BUFFERED,
    282 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    283 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    284 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    285 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    286 	.name		= "5709 buffered flash (256kB)",
    287 };
    288 
    289 /****************************************************************************/
    290 /* OpenBSD device entry points.                                             */
    291 /****************************************************************************/
    292 static int	bnx_probe(device_t, cfdata_t, void *);
    293 void	bnx_attach(device_t, device_t, void *);
    294 int	bnx_detach(device_t, int);
    295 
    296 /****************************************************************************/
    297 /* BNX Debug Data Structure Dump Routines                                   */
    298 /****************************************************************************/
    299 #ifdef BNX_DEBUG
    300 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    301 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    302 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    303 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    304 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    305 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    306 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    307 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    308 void	bnx_dump_status_block(struct bnx_softc *);
    309 void	bnx_dump_stats_block(struct bnx_softc *);
    310 void	bnx_dump_driver_state(struct bnx_softc *);
    311 void	bnx_dump_hw_state(struct bnx_softc *);
    312 void	bnx_breakpoint(struct bnx_softc *);
    313 #endif
    314 
    315 /****************************************************************************/
    316 /* BNX Register/Memory Access Routines                                      */
    317 /****************************************************************************/
    318 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
    319 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
    320 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
    321 int	bnx_miibus_read_reg(device_t, int, int, uint16_t *);
    322 int	bnx_miibus_write_reg(device_t, int, int, uint16_t);
    323 void	bnx_miibus_statchg(struct ifnet *);
    324 
    325 /****************************************************************************/
    326 /* BNX NVRAM Access Routines                                                */
    327 /****************************************************************************/
    328 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    329 int	bnx_release_nvram_lock(struct bnx_softc *);
    330 void	bnx_enable_nvram_access(struct bnx_softc *);
    331 void	bnx_disable_nvram_access(struct bnx_softc *);
    332 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
    333 	    uint32_t);
    334 int	bnx_init_nvram(struct bnx_softc *);
    335 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
    336 int	bnx_nvram_test(struct bnx_softc *);
    337 #ifdef BNX_NVRAM_WRITE_SUPPORT
    338 int	bnx_enable_nvram_write(struct bnx_softc *);
    339 void	bnx_disable_nvram_write(struct bnx_softc *);
    340 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
    341 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
    342 	    uint32_t);
    343 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
    344 #endif
    345 
    346 /****************************************************************************/
    347 /*                                                                          */
    348 /****************************************************************************/
    349 void	bnx_get_media(struct bnx_softc *);
    350 void	bnx_init_media(struct bnx_softc *);
    351 int	bnx_dma_alloc(struct bnx_softc *);
    352 void	bnx_dma_free(struct bnx_softc *);
    353 void	bnx_release_resources(struct bnx_softc *);
    354 
    355 /****************************************************************************/
    356 /* BNX Firmware Synchronization and Load                                    */
    357 /****************************************************************************/
    358 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
    359 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
    360 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    361 	    struct fw_info *);
    362 void	bnx_init_cpus(struct bnx_softc *);
    363 
    364 static void bnx_print_adapter_info(struct bnx_softc *);
    365 static void bnx_probe_pci_caps(struct bnx_softc *);
    366 void	bnx_stop(struct ifnet *, int);
    367 int	bnx_reset(struct bnx_softc *, uint32_t);
    368 int	bnx_chipinit(struct bnx_softc *);
    369 int	bnx_blockinit(struct bnx_softc *);
    370 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
    371 	    uint16_t *, uint32_t *);
    372 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
    373 
    374 int	bnx_init_tx_chain(struct bnx_softc *);
    375 void	bnx_init_tx_context(struct bnx_softc *);
    376 int	bnx_init_rx_chain(struct bnx_softc *);
    377 void	bnx_init_rx_context(struct bnx_softc *);
    378 void	bnx_free_rx_chain(struct bnx_softc *);
    379 void	bnx_free_tx_chain(struct bnx_softc *);
    380 
    381 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    382 void	bnx_start(struct ifnet *);
    383 int	bnx_ioctl(struct ifnet *, u_long, void *);
    384 void	bnx_watchdog(struct ifnet *);
    385 int	bnx_ifmedia_upd(struct ifnet *);
    386 void	bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    387 int	bnx_init(struct ifnet *);
    388 static void bnx_mgmt_init(struct bnx_softc *);
    389 
    390 void	bnx_init_context(struct bnx_softc *);
    391 void	bnx_get_mac_addr(struct bnx_softc *);
    392 void	bnx_set_mac_addr(struct bnx_softc *);
    393 void	bnx_phy_intr(struct bnx_softc *);
    394 void	bnx_rx_intr(struct bnx_softc *);
    395 void	bnx_tx_intr(struct bnx_softc *);
    396 void	bnx_disable_intr(struct bnx_softc *);
    397 void	bnx_enable_intr(struct bnx_softc *);
    398 
    399 int	bnx_intr(void *);
    400 void	bnx_iff(struct bnx_softc *);
    401 void	bnx_stats_update(struct bnx_softc *);
    402 void	bnx_tick(void *);
    403 
    404 struct pool *bnx_tx_pool = NULL;
    405 void	bnx_alloc_pkts(struct work *, void *);
    406 
    407 /****************************************************************************/
    408 /* OpenBSD device dispatch table.                                           */
    409 /****************************************************************************/
    410 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    411     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    412 
    413 /****************************************************************************/
    414 /* Device probe function.                                                   */
    415 /*                                                                          */
    416 /* Compares the device to the driver's list of supported devices and        */
    417 /* reports back to the OS whether this is the right driver for the device.  */
    418 /*                                                                          */
    419 /* Returns:                                                                 */
    420 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    421 /****************************************************************************/
    422 static const struct bnx_product *
    423 bnx_lookup(const struct pci_attach_args *pa)
    424 {
    425 	int i;
    426 	pcireg_t subid;
    427 
    428 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    429 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    430 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    431 			continue;
    432 		if (!bnx_devices[i].bp_subvendor)
    433 			return &bnx_devices[i];
    434 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    435 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    436 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    437 			return &bnx_devices[i];
    438 	}
    439 
    440 	return NULL;
    441 }
    442 static int
    443 bnx_probe(device_t parent, cfdata_t match, void *aux)
    444 {
    445 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    446 
    447 	if (bnx_lookup(pa) != NULL)
    448 		return 1;
    449 
    450 	return 0;
    451 }
    452 
    453 /****************************************************************************/
    454 /* PCI Capabilities Probe Function.                                         */
    455 /*                                                                          */
    456 /* Walks the PCI capabiites list for the device to find what features are   */
    457 /* supported.                                                               */
    458 /*                                                                          */
    459 /* Returns:                                                                 */
    460 /*   None.                                                                  */
    461 /****************************************************************************/
    462 static void
    463 bnx_print_adapter_info(struct bnx_softc *sc)
    464 {
    465 	device_t dev = sc->bnx_dev;
    466 	int i = 0;
    467 
    468 	aprint_normal_dev(dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
    469 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
    470 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
    471 	    ? "Serdes " : "", sc->bnx_chipid);
    472 
    473 	/* Bus info. */
    474 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
    475 		aprint_normal_dev(dev, "PCIe x%d ", sc->link_width);
    476 		switch (sc->link_speed) {
    477 		case 1: aprint_normal("2.5GT/s\n"); break;
    478 		case 2:	aprint_normal("5GT/s\n"); break;
    479 		default: aprint_normal("Unknown link speed\n");
    480 		}
    481 	} else {
    482 		aprint_normal_dev(dev, "PCI%s %dbit %dMHz\n",
    483 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
    484 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
    485 		    sc->bus_speed_mhz);
    486 	}
    487 
    488 	/* Firmware version and device features. */
    489 	aprint_normal_dev(dev, "B/C (%s); Bufs (RX:%d;TX:%d); Flags (",
    490 	    sc->bnx_bc_ver, RX_PAGES, TX_PAGES);
    491 
    492 	if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG) {
    493 		if (i > 0) aprint_normal("|");
    494 		aprint_normal("2.5G"); i++;
    495 	}
    496 
    497 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
    498 		if (i > 0) aprint_normal("|");
    499 		aprint_normal("MFW); MFW (%s)\n", sc->bnx_mfw_ver);
    500 	} else {
    501 		aprint_normal(")\n");
    502 	}
    503 
    504 	aprint_normal_dev(dev, "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
    505 	    sc->bnx_rx_quick_cons_trip_int,
    506 	    sc->bnx_rx_quick_cons_trip,
    507 	    sc->bnx_rx_ticks_int,
    508 	    sc->bnx_rx_ticks,
    509 	    sc->bnx_tx_quick_cons_trip_int,
    510 	    sc->bnx_tx_quick_cons_trip,
    511 	    sc->bnx_tx_ticks_int,
    512 	    sc->bnx_tx_ticks);
    513 }
    514 
    515 
    516 /****************************************************************************/
    517 /* PCI Capabilities Probe Function.                                         */
    518 /*                                                                          */
    519 /* Walks the PCI capabiites list for the device to find what features are   */
    520 /* supported.                                                               */
    521 /*                                                                          */
    522 /* Returns:                                                                 */
    523 /*   None.                                                                  */
    524 /****************************************************************************/
    525 static void
    526 bnx_probe_pci_caps(struct bnx_softc *sc)
    527 {
    528 	struct pci_attach_args *pa = &(sc->bnx_pa);
    529 	pcireg_t reg;
    530 
    531 	/* Check if PCI-X capability is enabled. */
    532 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
    533 		NULL) != 0) {
    534 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
    535 	}
    536 
    537 	/* Check if PCIe capability is enabled. */
    538 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
    539 		NULL) != 0) {
    540 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
    541 		    reg + PCIE_LCSR);
    542 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
    543 		    "0x%08X\n",	link_status);
    544 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
    545 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
    546 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
    547 		sc->bnx_flags |= BNX_PCIE_FLAG;
    548 	}
    549 
    550 	/* Check if MSI capability is enabled. */
    551 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
    552 		NULL) != 0)
    553 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
    554 
    555 	/* Check if MSI-X capability is enabled. */
    556 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
    557 		NULL) != 0)
    558 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
    559 }
    560 
    561 
    562 /****************************************************************************/
    563 /* Device attach function.                                                  */
    564 /*                                                                          */
    565 /* Allocates device resources, performs secondary chip identification,      */
    566 /* resets and initializes the hardware, and initializes driver instance     */
    567 /* variables.                                                               */
    568 /*                                                                          */
    569 /* Returns:                                                                 */
    570 /*   0 on success, positive value on failure.                               */
    571 /****************************************************************************/
    572 void
    573 bnx_attach(device_t parent, device_t self, void *aux)
    574 {
    575 	const struct bnx_product *bp;
    576 	struct bnx_softc	*sc = device_private(self);
    577 	prop_dictionary_t	dict;
    578 	struct pci_attach_args	*pa = aux;
    579 	pci_chipset_tag_t	pc = pa->pa_pc;
    580 	const char		*intrstr = NULL;
    581 	uint32_t		command;
    582 	struct ifnet		*ifp;
    583 	struct mii_data * const mii = &sc->bnx_mii;
    584 	uint32_t		val;
    585 	int			mii_flags = MIIF_FORCEANEG;
    586 	pcireg_t		memtype;
    587 	char intrbuf[PCI_INTRSTR_LEN];
    588 	int i, j;
    589 
    590 	if (bnx_tx_pool == NULL) {
    591 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_WAITOK);
    592 		pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    593 		    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    594 	}
    595 
    596 	bp = bnx_lookup(pa);
    597 	if (bp == NULL)
    598 		panic("unknown device");
    599 
    600 	sc->bnx_dev = self;
    601 
    602 	aprint_naive("\n");
    603 	aprint_normal(": %s\n", bp->bp_name);
    604 
    605 	sc->bnx_pa = *pa;
    606 
    607 	/*
    608 	 * Map control/status registers.
    609 	*/
    610 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    611 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    612 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    613 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    614 
    615 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    616 		aprint_error_dev(sc->bnx_dev,
    617 		    "failed to enable memory mapping!\n");
    618 		return;
    619 	}
    620 
    621 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    622 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    623 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    624 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    625 		return;
    626 	}
    627 
    628 	/* XXX driver needs more work before MSI or MSI-X can be enabled */
    629 	int counts[PCI_INTR_TYPE_SIZE] = {
    630 		[PCI_INTR_TYPE_INTX] = 1,
    631 		[PCI_INTR_TYPE_MSI] = 0,
    632 		[PCI_INTR_TYPE_MSIX] = 0,
    633 	};
    634 	if (pci_intr_alloc(pa, &sc->bnx_ih, counts, PCI_INTR_TYPE_INTX)) {
    635 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    636 		goto bnx_attach_fail;
    637 	}
    638 	intrstr = pci_intr_string(pc, sc->bnx_ih[0], intrbuf, sizeof(intrbuf));
    639 
    640 	/*
    641 	 * Configure byte swap and enable indirect register access.
    642 	 * Rely on CPU to do target byte swapping on big endian systems.
    643 	 * Access to registers outside of PCI configurtion space are not
    644 	 * valid until this is done.
    645 	 */
    646 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    647 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    648 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    649 
    650 	/* Save ASIC revision info. */
    651 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    652 
    653 	/*
    654 	 * Find the base address for shared memory access.
    655 	 * Newer versions of bootcode use a signature and offset
    656 	 * while older versions use a fixed address.
    657 	 */
    658 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    659 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    660 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    661 		    (sc->bnx_pa.pa_function << 2));
    662 	else
    663 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    664 
    665 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    666 
    667 	/* Set initial device and PHY flags */
    668 	sc->bnx_flags = 0;
    669 	sc->bnx_phy_flags = 0;
    670 
    671 	/* Fetch the bootcode revision. */
    672 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
    673 	for (i = 0, j = 0; i < 3; i++) {
    674 		uint8_t num;
    675 		int k, skip0;
    676 
    677 		num = (uint8_t)(val >> (24 - (i * 8)));
    678 		for (k = 100, skip0 = 1; k >= 1; num %= k, k /= 10) {
    679 			if (num >= k || !skip0 || k == 1) {
    680 				sc->bnx_bc_ver[j++] = (num / k) + '0';
    681 				skip0 = 0;
    682 			}
    683 		}
    684 		if (i != 2)
    685 			sc->bnx_bc_ver[j++] = '.';
    686 	}
    687 
    688 	/* Check if any management firmware is enabled. */
    689 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
    690 	if (val & BNX_PORT_FEATURE_ASF_ENABLED) {
    691 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
    692 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
    693 
    694 		/* Allow time for firmware to enter the running state. */
    695 		for (i = 0; i < 30; i++) {
    696 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
    697 			    BNX_BC_STATE_CONDITION);
    698 			if (val & BNX_CONDITION_MFW_RUN_MASK)
    699 				break;
    700 			DELAY(10000);
    701 		}
    702 
    703 		/* Check if management firmware is running. */
    704 		val = REG_RD_IND(sc, sc->bnx_shmem_base +
    705 		    BNX_BC_STATE_CONDITION);
    706 		val &= BNX_CONDITION_MFW_RUN_MASK;
    707 		if ((val != BNX_CONDITION_MFW_RUN_UNKNOWN) &&
    708 		    (val != BNX_CONDITION_MFW_RUN_NONE)) {
    709 			uint32_t addr = REG_RD_IND(sc, sc->bnx_shmem_base +
    710 			    BNX_MFW_VER_PTR);
    711 
    712 			/* Read the management firmware version string. */
    713 			for (j = 0; j < 3; j++) {
    714 				val = bnx_reg_rd_ind(sc, addr + j * 4);
    715 				val = bswap32(val);
    716 				memcpy(&sc->bnx_mfw_ver[i], &val, 4);
    717 				i += 4;
    718 			}
    719 		} else {
    720 			/* May cause firmware synchronization timeouts. */
    721 			BNX_PRINTF(sc, "%s(%d): Management firmware enabled "
    722 			    "but not running!\n", __FILE__, __LINE__);
    723 			strcpy(sc->bnx_mfw_ver, "NOT RUNNING!");
    724 
    725 			/* ToDo: Any action the driver should take? */
    726 		}
    727 	}
    728 
    729 	bnx_probe_pci_caps(sc);
    730 
    731 	/* Get PCI bus information (speed and type). */
    732 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    733 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    734 		uint32_t clkreg;
    735 
    736 		sc->bnx_flags |= BNX_PCIX_FLAG;
    737 
    738 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    739 
    740 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    741 		switch (clkreg) {
    742 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    743 			sc->bus_speed_mhz = 133;
    744 			break;
    745 
    746 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    747 			sc->bus_speed_mhz = 100;
    748 			break;
    749 
    750 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    751 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    752 			sc->bus_speed_mhz = 66;
    753 			break;
    754 
    755 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    756 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    757 			sc->bus_speed_mhz = 50;
    758 			break;
    759 
    760 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    761 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    762 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    763 			sc->bus_speed_mhz = 33;
    764 			break;
    765 		}
    766 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    767 			sc->bus_speed_mhz = 66;
    768 		else
    769 			sc->bus_speed_mhz = 33;
    770 
    771 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    772 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    773 
    774 	/* Reset the controller. */
    775 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    776 		goto bnx_attach_fail;
    777 
    778 	/* Initialize the controller. */
    779 	if (bnx_chipinit(sc)) {
    780 		aprint_error_dev(sc->bnx_dev,
    781 		    "Controller initialization failed!\n");
    782 		goto bnx_attach_fail;
    783 	}
    784 
    785 	/* Perform NVRAM test. */
    786 	if (bnx_nvram_test(sc)) {
    787 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    788 		goto bnx_attach_fail;
    789 	}
    790 
    791 	/* Fetch the permanent Ethernet MAC address. */
    792 	bnx_get_mac_addr(sc);
    793 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    794 	    ether_sprintf(sc->eaddr));
    795 
    796 	/*
    797 	 * Trip points control how many BDs
    798 	 * should be ready before generating an
    799 	 * interrupt while ticks control how long
    800 	 * a BD can sit in the chain before
    801 	 * generating an interrupt.  Set the default
    802 	 * values for the RX and TX rings.
    803 	 */
    804 
    805 #ifdef BNX_DEBUG
    806 	/* Force more frequent interrupts. */
    807 	sc->bnx_tx_quick_cons_trip_int = 1;
    808 	sc->bnx_tx_quick_cons_trip     = 1;
    809 	sc->bnx_tx_ticks_int	       = 0;
    810 	sc->bnx_tx_ticks	       = 0;
    811 
    812 	sc->bnx_rx_quick_cons_trip_int = 1;
    813 	sc->bnx_rx_quick_cons_trip     = 1;
    814 	sc->bnx_rx_ticks_int	       = 0;
    815 	sc->bnx_rx_ticks	       = 0;
    816 #else
    817 	sc->bnx_tx_quick_cons_trip_int = 20;
    818 	sc->bnx_tx_quick_cons_trip     = 20;
    819 	sc->bnx_tx_ticks_int	       = 80;
    820 	sc->bnx_tx_ticks	       = 80;
    821 
    822 	sc->bnx_rx_quick_cons_trip_int = 6;
    823 	sc->bnx_rx_quick_cons_trip     = 6;
    824 	sc->bnx_rx_ticks_int	       = 18;
    825 	sc->bnx_rx_ticks	       = 18;
    826 #endif
    827 
    828 	/* Update statistics once every second. */
    829 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    830 
    831 	/* Find the media type for the adapter. */
    832 	bnx_get_media(sc);
    833 
    834 	/*
    835 	 * Store config data needed by the PHY driver for
    836 	 * backplane applications
    837 	 */
    838 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    839 	    BNX_SHARED_HW_CFG_CONFIG);
    840 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    841 	    BNX_PORT_HW_CFG_CONFIG);
    842 
    843 	/* Allocate DMA memory resources. */
    844 	sc->bnx_dmatag = pa->pa_dmat;
    845 	if (bnx_dma_alloc(sc)) {
    846 		aprint_error_dev(sc->bnx_dev,
    847 		    "DMA resource allocation failed!\n");
    848 		goto bnx_attach_fail;
    849 	}
    850 
    851 	/* Initialize the ifnet interface. */
    852 	ifp = &sc->bnx_ec.ec_if;
    853 	ifp->if_softc = sc;
    854 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    855 	ifp->if_ioctl = bnx_ioctl;
    856 	ifp->if_stop = bnx_stop;
    857 	ifp->if_start = bnx_start;
    858 	ifp->if_init = bnx_init;
    859 	ifp->if_watchdog = bnx_watchdog;
    860 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    861 	IFQ_SET_READY(&ifp->if_snd);
    862 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    863 
    864 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    865 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    866 	sc->bnx_ec.ec_capenable |= ETHERCAP_VLAN_HWTAGGING;
    867 
    868 	ifp->if_capabilities |=
    869 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    870 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    871 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    872 
    873 	/* create workqueue to handle packet allocations */
    874 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    875 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    876 		aprint_error_dev(self, "failed to create workqueue\n");
    877 		goto bnx_attach_fail;
    878 	}
    879 
    880 	mii->mii_ifp = ifp;
    881 	mii->mii_readreg = bnx_miibus_read_reg;
    882 	mii->mii_writereg = bnx_miibus_write_reg;
    883 	mii->mii_statchg = bnx_miibus_statchg;
    884 
    885 	/* Handle any special PHY initialization for SerDes PHYs. */
    886 	bnx_init_media(sc);
    887 
    888 	sc->bnx_ec.ec_mii = mii;
    889 	ifmedia_init(&mii->mii_media, 0, bnx_ifmedia_upd, bnx_ifmedia_sts);
    890 
    891 	/* set phyflags and chipid before mii_attach() */
    892 	dict = device_properties(self);
    893 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    894 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    895 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
    896 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
    897 
    898 	/* Print some useful adapter info */
    899 	bnx_print_adapter_info(sc);
    900 
    901 	mii_flags |= MIIF_DOPAUSE;
    902 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    903 		mii_flags |= MIIF_HAVEFIBER;
    904 	mii_attach(self, mii, 0xffffffff,
    905 	    sc->bnx_phy_addr, MII_OFFSET_ANY, mii_flags);
    906 
    907 	if (LIST_EMPTY(&mii->mii_phys)) {
    908 		aprint_error_dev(self, "no PHY found!\n");
    909 		ifmedia_add(&mii->mii_media, IFM_ETHER | IFM_MANUAL, 0, NULL);
    910 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_MANUAL);
    911 	} else
    912 		ifmedia_set(&mii->mii_media, IFM_ETHER | IFM_AUTO);
    913 
    914 	/* Attach to the Ethernet interface list. */
    915 	if_attach(ifp);
    916 	if_deferred_start_init(ifp, NULL);
    917 	ether_ifattach(ifp, sc->eaddr);
    918 
    919 	callout_init(&sc->bnx_timeout, 0);
    920 	callout_setfunc(&sc->bnx_timeout, bnx_tick, sc);
    921 
    922 	/* Hookup IRQ last. */
    923 	sc->bnx_intrhand = pci_intr_establish_xname(pc, sc->bnx_ih[0], IPL_NET,
    924 	    bnx_intr, sc, device_xname(self));
    925 	if (sc->bnx_intrhand == NULL) {
    926 		aprint_error_dev(self, "couldn't establish interrupt%s%s\n",
    927 		    intrstr ? " at " : "", intrstr ? intrstr : "");
    928 		goto bnx_attach_fail;
    929 	}
    930 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    931 
    932 	if (pmf_device_register(self, NULL, NULL))
    933 		pmf_class_network_register(self, ifp);
    934 	else
    935 		aprint_error_dev(self, "couldn't establish power handler\n");
    936 
    937 	/* Print some important debugging info. */
    938 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    939 
    940 	/* Get the firmware running so ASF still works. */
    941 	bnx_mgmt_init(sc);
    942 
    943 	goto bnx_attach_exit;
    944 
    945 bnx_attach_fail:
    946 	bnx_release_resources(sc);
    947 
    948 bnx_attach_exit:
    949 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    950 }
    951 
    952 /****************************************************************************/
    953 /* Device detach function.                                                  */
    954 /*                                                                          */
    955 /* Stops the controller, resets the controller, and releases resources.     */
    956 /*                                                                          */
    957 /* Returns:                                                                 */
    958 /*   0 on success, positive value on failure.                               */
    959 /****************************************************************************/
    960 int
    961 bnx_detach(device_t dev, int flags)
    962 {
    963 	int s;
    964 	struct bnx_softc *sc;
    965 	struct ifnet *ifp;
    966 
    967 	sc = device_private(dev);
    968 	ifp = &sc->bnx_ec.ec_if;
    969 
    970 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    971 
    972 	/* Stop and reset the controller. */
    973 	s = splnet();
    974 	bnx_stop(ifp, 1);
    975 	splx(s);
    976 
    977 	pmf_device_deregister(dev);
    978 	callout_destroy(&sc->bnx_timeout);
    979 	ether_ifdetach(ifp);
    980 	workqueue_destroy(sc->bnx_wq);
    981 
    982 	if_detach(ifp);
    983 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    984 
    985 	/* Delete all remaining media. */
    986 	ifmedia_fini(&sc->bnx_mii.mii_media);
    987 
    988 	/* Release all remaining resources. */
    989 	bnx_release_resources(sc);
    990 
    991 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    992 
    993 	return 0;
    994 }
    995 
    996 /****************************************************************************/
    997 /* Indirect register read.                                                  */
    998 /*                                                                          */
    999 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
   1000 /* configuration space.  Using this mechanism avoids issues with posted     */
   1001 /* reads but is much slower than memory-mapped I/O.                         */
   1002 /*                                                                          */
   1003 /* Returns:                                                                 */
   1004 /*   The value of the register.                                             */
   1005 /****************************************************************************/
   1006 uint32_t
   1007 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
   1008 {
   1009 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   1010 
   1011 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
   1012 	    offset);
   1013 #ifdef BNX_DEBUG
   1014 	{
   1015 		uint32_t val;
   1016 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
   1017 		    BNX_PCICFG_REG_WINDOW);
   1018 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
   1019 		    "val = 0x%08X\n", __func__, offset, val);
   1020 		return val;
   1021 	}
   1022 #else
   1023 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
   1024 #endif
   1025 }
   1026 
   1027 /****************************************************************************/
   1028 /* Indirect register write.                                                 */
   1029 /*                                                                          */
   1030 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
   1031 /* configuration space.  Using this mechanism avoids issues with posted     */
   1032 /* writes but is muchh slower than memory-mapped I/O.                       */
   1033 /*                                                                          */
   1034 /* Returns:                                                                 */
   1035 /*   Nothing.                                                               */
   1036 /****************************************************************************/
   1037 void
   1038 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
   1039 {
   1040 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   1041 
   1042 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
   1043 		__func__, offset, val);
   1044 
   1045 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
   1046 	    offset);
   1047 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
   1048 }
   1049 
   1050 /****************************************************************************/
   1051 /* Context memory write.                                                    */
   1052 /*                                                                          */
   1053 /* The NetXtreme II controller uses context memory to track connection      */
   1054 /* information for L2 and higher network protocols.                         */
   1055 /*                                                                          */
   1056 /* Returns:                                                                 */
   1057 /*   Nothing.                                                               */
   1058 /****************************************************************************/
   1059 void
   1060 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
   1061     uint32_t ctx_val)
   1062 {
   1063 	uint32_t idx, offset = ctx_offset + cid_addr;
   1064 	uint32_t val, retry_cnt = 5;
   1065 
   1066 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1067 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
   1068 		REG_WR(sc, BNX_CTX_CTX_CTRL,
   1069 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
   1070 
   1071 		for (idx = 0; idx < retry_cnt; idx++) {
   1072 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
   1073 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
   1074 				break;
   1075 			DELAY(5);
   1076 		}
   1077 
   1078 #if 0
   1079 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
   1080 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
   1081 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
   1082 				__FILE__, __LINE__, cid_addr, ctx_offset);
   1083 #endif
   1084 
   1085 	} else {
   1086 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
   1087 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
   1088 	}
   1089 }
   1090 
   1091 /****************************************************************************/
   1092 /* PHY register read.                                                       */
   1093 /*                                                                          */
   1094 /* Implements register reads on the MII bus.                                */
   1095 /*                                                                          */
   1096 /* Returns:                                                                 */
   1097 /*   The value of the register.                                             */
   1098 /****************************************************************************/
   1099 int
   1100 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
   1101 {
   1102 	struct bnx_softc	*sc = device_private(dev);
   1103 	uint32_t		data;
   1104 	int			i, rv = 0;
   1105 
   1106 	/*
   1107 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1108 	 * with special mappings to work with IEEE
   1109 	 * Clause 22 register accesses.
   1110 	 */
   1111 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1112 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1113 			reg += 0x10;
   1114 	}
   1115 
   1116 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1117 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1118 		data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1119 
   1120 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1121 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1122 
   1123 		DELAY(40);
   1124 	}
   1125 
   1126 	data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
   1127 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
   1128 	    BNX_EMAC_MDIO_COMM_START_BUSY;
   1129 	REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
   1130 
   1131 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1132 		DELAY(10);
   1133 
   1134 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1135 		if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1136 			DELAY(5);
   1137 
   1138 			data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1139 			data &= BNX_EMAC_MDIO_COMM_DATA;
   1140 
   1141 			break;
   1142 		}
   1143 	}
   1144 
   1145 	if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1146 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
   1147 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
   1148 		rv = ETIMEDOUT;
   1149 	} else {
   1150 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1151 		*val = data & 0xffff;
   1152 
   1153 		DBPRINT(sc, BNX_EXCESSIVE,
   1154 		    "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
   1155 		    phy, (uint16_t) reg & 0xffff, *val);
   1156 	}
   1157 
   1158 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1159 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1160 		data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1161 
   1162 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1163 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1164 
   1165 		DELAY(40);
   1166 	}
   1167 
   1168 	return rv;
   1169 }
   1170 
   1171 /****************************************************************************/
   1172 /* PHY register write.                                                      */
   1173 /*                                                                          */
   1174 /* Implements register writes on the MII bus.                               */
   1175 /*                                                                          */
   1176 /* Returns:                                                                 */
   1177 /*   The value of the register.                                             */
   1178 /****************************************************************************/
   1179 int
   1180 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
   1181 {
   1182 	struct bnx_softc	*sc = device_private(dev);
   1183 	uint32_t		val1;
   1184 	int			i, rv = 0;
   1185 
   1186 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1187 	    "val = 0x%04hX\n", __func__,
   1188 	    phy, (uint16_t) reg & 0xffff, val);
   1189 
   1190 	/*
   1191 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1192 	 * with special mappings to work with IEEE
   1193 	 * Clause 22 register accesses.
   1194 	 */
   1195 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1196 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1197 			reg += 0x10;
   1198 	}
   1199 
   1200 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1201 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1202 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1203 
   1204 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1205 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1206 
   1207 		DELAY(40);
   1208 	}
   1209 
   1210 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1211 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1212 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1213 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1214 
   1215 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1216 		DELAY(10);
   1217 
   1218 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1219 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1220 			DELAY(5);
   1221 			break;
   1222 		}
   1223 	}
   1224 
   1225 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1226 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1227 		    __LINE__);
   1228 		rv = ETIMEDOUT;
   1229 	}
   1230 
   1231 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1232 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1233 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1234 
   1235 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1236 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1237 
   1238 		DELAY(40);
   1239 	}
   1240 
   1241 	return rv;
   1242 }
   1243 
   1244 /****************************************************************************/
   1245 /* MII bus status change.                                                   */
   1246 /*                                                                          */
   1247 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1248 /* MAC interface registers.                                                 */
   1249 /*                                                                          */
   1250 /* Returns:                                                                 */
   1251 /*   Nothing.                                                               */
   1252 /****************************************************************************/
   1253 void
   1254 bnx_miibus_statchg(struct ifnet *ifp)
   1255 {
   1256 	struct bnx_softc	*sc = ifp->if_softc;
   1257 	struct mii_data		*mii = &sc->bnx_mii;
   1258 	uint32_t		rx_mode = sc->rx_mode;
   1259 	int			val;
   1260 
   1261 	val = REG_RD(sc, BNX_EMAC_MODE);
   1262 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1263 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1264 	    BNX_EMAC_MODE_25G);
   1265 
   1266 	/*
   1267 	 * Get flow control negotiation result.
   1268 	 */
   1269 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1270 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
   1271 		sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1272 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1273 	}
   1274 
   1275 	/* Set MII or GMII interface based on the speed
   1276 	 * negotiated by the PHY.
   1277 	 */
   1278 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1279 	case IFM_10_T:
   1280 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1281 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1282 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1283 			break;
   1284 		}
   1285 		/* FALLTHROUGH */
   1286 	case IFM_100_TX:
   1287 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1288 		val |= BNX_EMAC_MODE_PORT_MII;
   1289 		break;
   1290 	case IFM_2500_SX:
   1291 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1292 		val |= BNX_EMAC_MODE_25G;
   1293 		/* FALLTHROUGH */
   1294 	case IFM_1000_T:
   1295 	case IFM_1000_SX:
   1296 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1297 		val |= BNX_EMAC_MODE_PORT_GMII;
   1298 		break;
   1299 	default:
   1300 		val |= BNX_EMAC_MODE_PORT_GMII;
   1301 		break;
   1302 	}
   1303 
   1304 	/* Set half or full duplex based on the duplicity
   1305 	 * negotiated by the PHY.
   1306 	 */
   1307 	if ((mii->mii_media_active & IFM_HDX) != 0) {
   1308 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1309 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1310 	} else
   1311 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1312 
   1313 	REG_WR(sc, BNX_EMAC_MODE, val);
   1314 
   1315 	/*
   1316 	 * 802.3x flow control
   1317 	 */
   1318 	if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
   1319 		DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
   1320 		rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
   1321 	} else {
   1322 		DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
   1323 		rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
   1324 	}
   1325 
   1326 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
   1327 		DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
   1328 		BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
   1329 	} else {
   1330 		DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
   1331 		BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
   1332 	}
   1333 
   1334 	/* Only make changes if the receive mode has actually changed. */
   1335 	if (rx_mode != sc->rx_mode) {
   1336 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   1337 		    rx_mode);
   1338 
   1339 		sc->rx_mode = rx_mode;
   1340 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   1341 
   1342 		bnx_init_rx_context(sc);
   1343 	}
   1344 }
   1345 
   1346 /****************************************************************************/
   1347 /* Acquire NVRAM lock.                                                      */
   1348 /*                                                                          */
   1349 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1350 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1351 /* for use by the driver.                                                   */
   1352 /*                                                                          */
   1353 /* Returns:                                                                 */
   1354 /*   0 on success, positive value on failure.                               */
   1355 /****************************************************************************/
   1356 int
   1357 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1358 {
   1359 	uint32_t		val;
   1360 	int			j;
   1361 
   1362 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1363 
   1364 	/* Request access to the flash interface. */
   1365 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1366 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1367 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1368 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1369 			break;
   1370 
   1371 		DELAY(5);
   1372 	}
   1373 
   1374 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1375 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1376 		return EBUSY;
   1377 	}
   1378 
   1379 	return 0;
   1380 }
   1381 
   1382 /****************************************************************************/
   1383 /* Release NVRAM lock.                                                      */
   1384 /*                                                                          */
   1385 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1386 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1387 /* for use by the driver.                                                   */
   1388 /*                                                                          */
   1389 /* Returns:                                                                 */
   1390 /*   0 on success, positive value on failure.                               */
   1391 /****************************************************************************/
   1392 int
   1393 bnx_release_nvram_lock(struct bnx_softc *sc)
   1394 {
   1395 	int			j;
   1396 	uint32_t		val;
   1397 
   1398 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1399 
   1400 	/* Relinquish nvram interface. */
   1401 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1402 
   1403 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1404 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1405 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1406 			break;
   1407 
   1408 		DELAY(5);
   1409 	}
   1410 
   1411 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1412 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1413 		return EBUSY;
   1414 	}
   1415 
   1416 	return 0;
   1417 }
   1418 
   1419 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1420 /****************************************************************************/
   1421 /* Enable NVRAM write access.                                               */
   1422 /*                                                                          */
   1423 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1424 /*                                                                          */
   1425 /* Returns:                                                                 */
   1426 /*   0 on success, positive value on failure.                               */
   1427 /****************************************************************************/
   1428 int
   1429 bnx_enable_nvram_write(struct bnx_softc *sc)
   1430 {
   1431 	uint32_t		val;
   1432 
   1433 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1434 
   1435 	val = REG_RD(sc, BNX_MISC_CFG);
   1436 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1437 
   1438 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1439 		int j;
   1440 
   1441 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1442 		REG_WR(sc, BNX_NVM_COMMAND,
   1443 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1444 
   1445 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1446 			DELAY(5);
   1447 
   1448 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1449 			if (val & BNX_NVM_COMMAND_DONE)
   1450 				break;
   1451 		}
   1452 
   1453 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1454 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1455 			return EBUSY;
   1456 		}
   1457 	}
   1458 
   1459 	return 0;
   1460 }
   1461 
   1462 /****************************************************************************/
   1463 /* Disable NVRAM write access.                                              */
   1464 /*                                                                          */
   1465 /* When the caller is finished writing to NVRAM write access must be        */
   1466 /* disabled.                                                                */
   1467 /*                                                                          */
   1468 /* Returns:                                                                 */
   1469 /*   Nothing.                                                               */
   1470 /****************************************************************************/
   1471 void
   1472 bnx_disable_nvram_write(struct bnx_softc *sc)
   1473 {
   1474 	uint32_t		val;
   1475 
   1476 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1477 
   1478 	val = REG_RD(sc, BNX_MISC_CFG);
   1479 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1480 }
   1481 #endif
   1482 
   1483 /****************************************************************************/
   1484 /* Enable NVRAM access.                                                     */
   1485 /*                                                                          */
   1486 /* Before accessing NVRAM for read or write operations the caller must      */
   1487 /* enabled NVRAM access.                                                    */
   1488 /*                                                                          */
   1489 /* Returns:                                                                 */
   1490 /*   Nothing.                                                               */
   1491 /****************************************************************************/
   1492 void
   1493 bnx_enable_nvram_access(struct bnx_softc *sc)
   1494 {
   1495 	uint32_t		val;
   1496 
   1497 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1498 
   1499 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1500 	/* Enable both bits, even on read. */
   1501 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1502 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1503 }
   1504 
   1505 /****************************************************************************/
   1506 /* Disable NVRAM access.                                                    */
   1507 /*                                                                          */
   1508 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1509 /*                                                                          */
   1510 /* Returns:                                                                 */
   1511 /*   Nothing.                                                               */
   1512 /****************************************************************************/
   1513 void
   1514 bnx_disable_nvram_access(struct bnx_softc *sc)
   1515 {
   1516 	uint32_t		val;
   1517 
   1518 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1519 
   1520 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1521 
   1522 	/* Disable both bits, even after read. */
   1523 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1524 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1525 }
   1526 
   1527 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1528 /****************************************************************************/
   1529 /* Erase NVRAM page before writing.                                         */
   1530 /*                                                                          */
   1531 /* Non-buffered flash parts require that a page be erased before it is      */
   1532 /* written.                                                                 */
   1533 /*                                                                          */
   1534 /* Returns:                                                                 */
   1535 /*   0 on success, positive value on failure.                               */
   1536 /****************************************************************************/
   1537 int
   1538 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
   1539 {
   1540 	uint32_t		cmd;
   1541 	int			j;
   1542 
   1543 	/* Buffered flash doesn't require an erase. */
   1544 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1545 		return 0;
   1546 
   1547 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1548 
   1549 	/* Build an erase command. */
   1550 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1551 	    BNX_NVM_COMMAND_DOIT;
   1552 
   1553 	/*
   1554 	 * Clear the DONE bit separately, set the NVRAM address to erase,
   1555 	 * and issue the erase command.
   1556 	 */
   1557 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1558 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1559 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1560 
   1561 	/* Wait for completion. */
   1562 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1563 		uint32_t val;
   1564 
   1565 		DELAY(5);
   1566 
   1567 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1568 		if (val & BNX_NVM_COMMAND_DONE)
   1569 			break;
   1570 	}
   1571 
   1572 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1573 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1574 		return EBUSY;
   1575 	}
   1576 
   1577 	return 0;
   1578 }
   1579 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1580 
   1581 /****************************************************************************/
   1582 /* Read a dword (32 bits) from NVRAM.                                       */
   1583 /*                                                                          */
   1584 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1585 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1586 /*                                                                          */
   1587 /* Returns:                                                                 */
   1588 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1589 /****************************************************************************/
   1590 int
   1591 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
   1592     uint8_t *ret_val, uint32_t cmd_flags)
   1593 {
   1594 	uint32_t		cmd;
   1595 	int			i, rc = 0;
   1596 
   1597 	/* Build the command word. */
   1598 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1599 
   1600 	/* Calculate the offset for buffered flash if translation is used. */
   1601 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1602 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1603 		    sc->bnx_flash_info->page_bits) +
   1604 		    (offset % sc->bnx_flash_info->page_size);
   1605 	}
   1606 
   1607 	/*
   1608 	 * Clear the DONE bit separately, set the address to read,
   1609 	 * and issue the read.
   1610 	 */
   1611 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1612 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1613 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1614 
   1615 	/* Wait for completion. */
   1616 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1617 		uint32_t val;
   1618 
   1619 		DELAY(5);
   1620 
   1621 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1622 		if (val & BNX_NVM_COMMAND_DONE) {
   1623 			val = REG_RD(sc, BNX_NVM_READ);
   1624 
   1625 			val = be32toh(val);
   1626 			memcpy(ret_val, &val, 4);
   1627 			break;
   1628 		}
   1629 	}
   1630 
   1631 	/* Check for errors. */
   1632 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1633 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1634 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1635 		rc = EBUSY;
   1636 	}
   1637 
   1638 	return rc;
   1639 }
   1640 
   1641 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1642 /****************************************************************************/
   1643 /* Write a dword (32 bits) to NVRAM.                                        */
   1644 /*                                                                          */
   1645 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1646 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1647 /* enabled NVRAM write access.                                              */
   1648 /*                                                                          */
   1649 /* Returns:                                                                 */
   1650 /*   0 on success, positive value on failure.                               */
   1651 /****************************************************************************/
   1652 int
   1653 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
   1654     uint32_t cmd_flags)
   1655 {
   1656 	uint32_t		cmd, val32;
   1657 	int			j;
   1658 
   1659 	/* Build the command word. */
   1660 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1661 
   1662 	/* Calculate the offset for buffered flash if translation is used. */
   1663 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1664 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1665 		    sc->bnx_flash_info->page_bits) +
   1666 		    (offset % sc->bnx_flash_info->page_size);
   1667 	}
   1668 
   1669 	/*
   1670 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1671 	 * set the NVRAM address to write, and issue the write command
   1672 	 */
   1673 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1674 	memcpy(&val32, val, 4);
   1675 	val32 = htobe32(val32);
   1676 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1677 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1678 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1679 
   1680 	/* Wait for completion. */
   1681 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1682 		DELAY(5);
   1683 
   1684 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1685 			break;
   1686 	}
   1687 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1688 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1689 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1690 		return EBUSY;
   1691 	}
   1692 
   1693 	return 0;
   1694 }
   1695 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1696 
   1697 /****************************************************************************/
   1698 /* Initialize NVRAM access.                                                 */
   1699 /*                                                                          */
   1700 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1701 /* access that device.                                                      */
   1702 /*                                                                          */
   1703 /* Returns:                                                                 */
   1704 /*   0 on success, positive value on failure.                               */
   1705 /****************************************************************************/
   1706 int
   1707 bnx_init_nvram(struct bnx_softc *sc)
   1708 {
   1709 	uint32_t		val;
   1710 	int			j, entry_count, rc = 0;
   1711 	struct flash_spec	*flash;
   1712 
   1713 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1714 
   1715 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1716 		sc->bnx_flash_info = &flash_5709;
   1717 		goto bnx_init_nvram_get_flash_size;
   1718 	}
   1719 
   1720 	/* Determine the selected interface. */
   1721 	val = REG_RD(sc, BNX_NVM_CFG1);
   1722 
   1723 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1724 
   1725 	/*
   1726 	 * Flash reconfiguration is required to support additional
   1727 	 * NVRAM devices not directly supported in hardware.
   1728 	 * Check if the flash interface was reconfigured
   1729 	 * by the bootcode.
   1730 	 */
   1731 
   1732 	if (val & 0x40000000) {
   1733 		/* Flash interface reconfigured by bootcode. */
   1734 
   1735 		DBPRINT(sc, BNX_INFO_LOAD,
   1736 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1737 
   1738 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1739 		     j++, flash++) {
   1740 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1741 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1742 				sc->bnx_flash_info = flash;
   1743 				break;
   1744 			}
   1745 		}
   1746 	} else {
   1747 		/* Flash interface not yet reconfigured. */
   1748 		uint32_t mask;
   1749 
   1750 		DBPRINT(sc, BNX_INFO_LOAD,
   1751 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1752 
   1753 		if (val & (1 << 23))
   1754 			mask = FLASH_BACKUP_STRAP_MASK;
   1755 		else
   1756 			mask = FLASH_STRAP_MASK;
   1757 
   1758 		/* Look for the matching NVRAM device configuration data. */
   1759 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1760 		    j++, flash++) {
   1761 			/* Check if the dev matches any of the known devices. */
   1762 			if ((val & mask) == (flash->strapping & mask)) {
   1763 				/* Found a device match. */
   1764 				sc->bnx_flash_info = flash;
   1765 
   1766 				/* Request access to the flash interface. */
   1767 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1768 					return rc;
   1769 
   1770 				/* Reconfigure the flash interface. */
   1771 				bnx_enable_nvram_access(sc);
   1772 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1773 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1774 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1775 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1776 				bnx_disable_nvram_access(sc);
   1777 				bnx_release_nvram_lock(sc);
   1778 
   1779 				break;
   1780 			}
   1781 		}
   1782 	}
   1783 
   1784 	/* Check if a matching device was found. */
   1785 	if (j == entry_count) {
   1786 		sc->bnx_flash_info = NULL;
   1787 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1788 			__FILE__, __LINE__);
   1789 		rc = ENODEV;
   1790 	}
   1791 
   1792 bnx_init_nvram_get_flash_size:
   1793 	/* Write the flash config data to the shared memory interface. */
   1794 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1795 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1796 	if (val)
   1797 		sc->bnx_flash_size = val;
   1798 	else
   1799 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1800 
   1801 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1802 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1803 
   1804 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1805 
   1806 	return rc;
   1807 }
   1808 
   1809 /****************************************************************************/
   1810 /* Read an arbitrary range of data from NVRAM.                              */
   1811 /*                                                                          */
   1812 /* Prepares the NVRAM interface for access and reads the requested data     */
   1813 /* into the supplied buffer.                                                */
   1814 /*                                                                          */
   1815 /* Returns:                                                                 */
   1816 /*   0 on success and the data read, positive value on failure.             */
   1817 /****************************************************************************/
   1818 int
   1819 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
   1820     int buf_size)
   1821 {
   1822 	int			rc = 0;
   1823 	uint32_t		cmd_flags, offset32, len32, extra;
   1824 
   1825 	if (buf_size == 0)
   1826 		return 0;
   1827 
   1828 	/* Request access to the flash interface. */
   1829 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1830 		return rc;
   1831 
   1832 	/* Enable access to flash interface */
   1833 	bnx_enable_nvram_access(sc);
   1834 
   1835 	len32 = buf_size;
   1836 	offset32 = offset;
   1837 	extra = 0;
   1838 
   1839 	cmd_flags = 0;
   1840 
   1841 	if (offset32 & 3) {
   1842 		uint8_t buf[4];
   1843 		uint32_t pre_len;
   1844 
   1845 		offset32 &= ~3;
   1846 		pre_len = 4 - (offset & 3);
   1847 
   1848 		if (pre_len >= len32) {
   1849 			pre_len = len32;
   1850 			cmd_flags =
   1851 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1852 		} else
   1853 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1854 
   1855 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1856 
   1857 		if (rc)
   1858 			return rc;
   1859 
   1860 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1861 
   1862 		offset32 += 4;
   1863 		ret_buf += pre_len;
   1864 		len32 -= pre_len;
   1865 	}
   1866 
   1867 	if (len32 & 3) {
   1868 		extra = 4 - (len32 & 3);
   1869 		len32 = (len32 + 4) & ~3;
   1870 	}
   1871 
   1872 	if (len32 == 4) {
   1873 		uint8_t buf[4];
   1874 
   1875 		if (cmd_flags)
   1876 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1877 		else
   1878 			cmd_flags =
   1879 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1880 
   1881 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1882 
   1883 		memcpy(ret_buf, buf, 4 - extra);
   1884 	} else if (len32 > 0) {
   1885 		uint8_t buf[4];
   1886 
   1887 		/* Read the first word. */
   1888 		if (cmd_flags)
   1889 			cmd_flags = 0;
   1890 		else
   1891 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1892 
   1893 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1894 
   1895 		/* Advance to the next dword. */
   1896 		offset32 += 4;
   1897 		ret_buf += 4;
   1898 		len32 -= 4;
   1899 
   1900 		while (len32 > 4 && rc == 0) {
   1901 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1902 
   1903 			/* Advance to the next dword. */
   1904 			offset32 += 4;
   1905 			ret_buf += 4;
   1906 			len32 -= 4;
   1907 		}
   1908 
   1909 		if (rc)
   1910 			return rc;
   1911 
   1912 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1913 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1914 
   1915 		memcpy(ret_buf, buf, 4 - extra);
   1916 	}
   1917 
   1918 	/* Disable access to flash interface and release the lock. */
   1919 	bnx_disable_nvram_access(sc);
   1920 	bnx_release_nvram_lock(sc);
   1921 
   1922 	return rc;
   1923 }
   1924 
   1925 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1926 /****************************************************************************/
   1927 /* Write an arbitrary range of data from NVRAM.                             */
   1928 /*                                                                          */
   1929 /* Prepares the NVRAM interface for write access and writes the requested   */
   1930 /* data from the supplied buffer.  The caller is responsible for            */
   1931 /* calculating any appropriate CRCs.                                        */
   1932 /*                                                                          */
   1933 /* Returns:                                                                 */
   1934 /*   0 on success, positive value on failure.                               */
   1935 /****************************************************************************/
   1936 int
   1937 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
   1938     int buf_size)
   1939 {
   1940 	uint32_t		written, offset32, len32;
   1941 	uint8_t		*buf, start[4], end[4];
   1942 	int			rc = 0;
   1943 	int			align_start, align_end;
   1944 
   1945 	buf = data_buf;
   1946 	offset32 = offset;
   1947 	len32 = buf_size;
   1948 	align_start = align_end = 0;
   1949 
   1950 	if ((align_start = (offset32 & 3))) {
   1951 		offset32 &= ~3;
   1952 		len32 += align_start;
   1953 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1954 			return rc;
   1955 	}
   1956 
   1957 	if (len32 & 3) {
   1958 		if ((len32 > 4) || !align_start) {
   1959 			align_end = 4 - (len32 & 3);
   1960 			len32 += align_end;
   1961 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1962 			    end, 4)))
   1963 				return rc;
   1964 		}
   1965 	}
   1966 
   1967 	if (align_start || align_end) {
   1968 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1969 		if (buf == NULL)
   1970 			return ENOMEM;
   1971 
   1972 		if (align_start)
   1973 			memcpy(buf, start, 4);
   1974 
   1975 		if (align_end)
   1976 			memcpy(buf + len32 - 4, end, 4);
   1977 
   1978 		memcpy(buf + align_start, data_buf, buf_size);
   1979 	}
   1980 
   1981 	written = 0;
   1982 	while ((written < len32) && (rc == 0)) {
   1983 		uint32_t page_start, page_end, data_start, data_end;
   1984 		uint32_t addr, cmd_flags;
   1985 		int i;
   1986 		uint8_t flash_buffer[264];
   1987 
   1988 	    /* Find the page_start addr */
   1989 		page_start = offset32 + written;
   1990 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1991 		/* Find the page_end addr */
   1992 		page_end = page_start + sc->bnx_flash_info->page_size;
   1993 		/* Find the data_start addr */
   1994 		data_start = (written == 0) ? offset32 : page_start;
   1995 		/* Find the data_end addr */
   1996 		data_end = (page_end > offset32 + len32) ?
   1997 		    (offset32 + len32) : page_end;
   1998 
   1999 		/* Request access to the flash interface. */
   2000 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   2001 			goto nvram_write_end;
   2002 
   2003 		/* Enable access to flash interface */
   2004 		bnx_enable_nvram_access(sc);
   2005 
   2006 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   2007 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2008 			int j;
   2009 
   2010 			/* Read the whole page into the buffer
   2011 			 * (non-buffer flash only) */
   2012 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   2013 				if (j == (sc->bnx_flash_info->page_size - 4))
   2014 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   2015 
   2016 				rc = bnx_nvram_read_dword(sc,
   2017 					page_start + j,
   2018 					&flash_buffer[j],
   2019 					cmd_flags);
   2020 
   2021 				if (rc)
   2022 					goto nvram_write_end;
   2023 
   2024 				cmd_flags = 0;
   2025 			}
   2026 		}
   2027 
   2028 		/* Enable writes to flash interface (unlock write-protect) */
   2029 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   2030 			goto nvram_write_end;
   2031 
   2032 		/* Erase the page */
   2033 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   2034 			goto nvram_write_end;
   2035 
   2036 		/* Re-enable the write again for the actual write */
   2037 		bnx_enable_nvram_write(sc);
   2038 
   2039 		/* Loop to write back the buffer data from page_start to
   2040 		 * data_start */
   2041 		i = 0;
   2042 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2043 			for (addr = page_start; addr < data_start;
   2044 				addr += 4, i += 4) {
   2045 
   2046 				rc = bnx_nvram_write_dword(sc, addr,
   2047 				    &flash_buffer[i], cmd_flags);
   2048 
   2049 				if (rc != 0)
   2050 					goto nvram_write_end;
   2051 
   2052 				cmd_flags = 0;
   2053 			}
   2054 		}
   2055 
   2056 		/* Loop to write the new data from data_start to data_end */
   2057 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   2058 			if ((addr == page_end - 4) ||
   2059 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   2060 			    && (addr == data_end - 4))) {
   2061 
   2062 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   2063 			}
   2064 
   2065 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   2066 
   2067 			if (rc != 0)
   2068 				goto nvram_write_end;
   2069 
   2070 			cmd_flags = 0;
   2071 			buf += 4;
   2072 		}
   2073 
   2074 		/* Loop to write back the buffer data from data_end
   2075 		 * to page_end */
   2076 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2077 			for (addr = data_end; addr < page_end;
   2078 			    addr += 4, i += 4) {
   2079 
   2080 				if (addr == page_end-4)
   2081 					cmd_flags = BNX_NVM_COMMAND_LAST;
   2082 
   2083 				rc = bnx_nvram_write_dword(sc, addr,
   2084 				    &flash_buffer[i], cmd_flags);
   2085 
   2086 				if (rc != 0)
   2087 					goto nvram_write_end;
   2088 
   2089 				cmd_flags = 0;
   2090 			}
   2091 		}
   2092 
   2093 		/* Disable writes to flash interface (lock write-protect) */
   2094 		bnx_disable_nvram_write(sc);
   2095 
   2096 		/* Disable access to flash interface */
   2097 		bnx_disable_nvram_access(sc);
   2098 		bnx_release_nvram_lock(sc);
   2099 
   2100 		/* Increment written */
   2101 		written += data_end - data_start;
   2102 	}
   2103 
   2104 nvram_write_end:
   2105 	if (align_start || align_end)
   2106 		free(buf, M_DEVBUF);
   2107 
   2108 	return rc;
   2109 }
   2110 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   2111 
   2112 /****************************************************************************/
   2113 /* Verifies that NVRAM is accessible and contains valid data.               */
   2114 /*                                                                          */
   2115 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   2116 /* correct.                                                                 */
   2117 /*                                                                          */
   2118 /* Returns:                                                                 */
   2119 /*   0 on success, positive value on failure.                               */
   2120 /****************************************************************************/
   2121 int
   2122 bnx_nvram_test(struct bnx_softc *sc)
   2123 {
   2124 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
   2125 	uint8_t		*data = (uint8_t *) buf;
   2126 	int			rc = 0;
   2127 	uint32_t		magic, csum;
   2128 
   2129 	/*
   2130 	 * Check that the device NVRAM is valid by reading
   2131 	 * the magic value at offset 0.
   2132 	 */
   2133 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   2134 		goto bnx_nvram_test_done;
   2135 
   2136 	magic = be32toh(buf[0]);
   2137 	if (magic != BNX_NVRAM_MAGIC) {
   2138 		rc = ENODEV;
   2139 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   2140 		    "Expected: 0x%08X, Found: 0x%08X\n",
   2141 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   2142 		goto bnx_nvram_test_done;
   2143 	}
   2144 
   2145 	/*
   2146 	 * Verify that the device NVRAM includes valid
   2147 	 * configuration data.
   2148 	 */
   2149 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   2150 		goto bnx_nvram_test_done;
   2151 
   2152 	csum = ether_crc32_le(data, 0x100);
   2153 	if (csum != BNX_CRC32_RESIDUAL) {
   2154 		rc = ENODEV;
   2155 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   2156 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   2157 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2158 		goto bnx_nvram_test_done;
   2159 	}
   2160 
   2161 	csum = ether_crc32_le(data + 0x100, 0x100);
   2162 	if (csum != BNX_CRC32_RESIDUAL) {
   2163 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   2164 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   2165 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2166 		rc = ENODEV;
   2167 	}
   2168 
   2169 bnx_nvram_test_done:
   2170 	return rc;
   2171 }
   2172 
   2173 /****************************************************************************/
   2174 /* Identifies the current media type of the controller and sets the PHY     */
   2175 /* address.                                                                 */
   2176 /*                                                                          */
   2177 /* Returns:                                                                 */
   2178 /*   Nothing.                                                               */
   2179 /****************************************************************************/
   2180 void
   2181 bnx_get_media(struct bnx_softc *sc)
   2182 {
   2183 	sc->bnx_phy_addr = 1;
   2184 
   2185 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2186 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   2187 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   2188 		uint32_t strap;
   2189 
   2190 		/*
   2191 		 * The BCM5709S is software configurable
   2192 		 * for Copper or SerDes operation.
   2193 		 */
   2194 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   2195 			DBPRINT(sc, BNX_INFO_LOAD,
   2196 			    "5709 bonded for copper.\n");
   2197 			goto bnx_get_media_exit;
   2198 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   2199 			DBPRINT(sc, BNX_INFO_LOAD,
   2200 			    "5709 bonded for dual media.\n");
   2201 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2202 			goto bnx_get_media_exit;
   2203 		}
   2204 
   2205 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2206 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2207 		else {
   2208 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2209 			    >> 8;
   2210 		}
   2211 
   2212 		if (sc->bnx_pa.pa_function == 0) {
   2213 			switch (strap) {
   2214 			case 0x4:
   2215 			case 0x5:
   2216 			case 0x6:
   2217 				DBPRINT(sc, BNX_INFO_LOAD,
   2218 					"BCM5709 s/w configured for SerDes.\n");
   2219 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2220 				break;
   2221 			default:
   2222 				DBPRINT(sc, BNX_INFO_LOAD,
   2223 					"BCM5709 s/w configured for Copper.\n");
   2224 			}
   2225 		} else {
   2226 			switch (strap) {
   2227 			case 0x1:
   2228 			case 0x2:
   2229 			case 0x4:
   2230 				DBPRINT(sc, BNX_INFO_LOAD,
   2231 					"BCM5709 s/w configured for SerDes.\n");
   2232 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2233 				break;
   2234 			default:
   2235 				DBPRINT(sc, BNX_INFO_LOAD,
   2236 					"BCM5709 s/w configured for Copper.\n");
   2237 			}
   2238 		}
   2239 
   2240 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2241 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2242 
   2243 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2244 		uint32_t val;
   2245 
   2246 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2247 
   2248 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2249 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2250 
   2251 		/*
   2252 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2253 		 * separate PHY for SerDes.
   2254 		 */
   2255 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2256 			sc->bnx_phy_addr = 2;
   2257 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2258 				 BNX_SHARED_HW_CFG_CONFIG);
   2259 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2260 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2261 				DBPRINT(sc, BNX_INFO_LOAD,
   2262 				    "Found 2.5Gb capable adapter\n");
   2263 			}
   2264 		}
   2265 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2266 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2267 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2268 
   2269 bnx_get_media_exit:
   2270 	DBPRINT(sc, (BNX_INFO_LOAD | BNX_INFO_PHY),
   2271 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2272 }
   2273 
   2274 /****************************************************************************/
   2275 /* Performs PHY initialization required before MII drivers access the       */
   2276 /* device.                                                                  */
   2277 /*                                                                          */
   2278 /* Returns:                                                                 */
   2279 /*   Nothing.                                                               */
   2280 /****************************************************************************/
   2281 void
   2282 bnx_init_media(struct bnx_softc *sc)
   2283 {
   2284 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2285 		/*
   2286 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2287 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2288 		 * the PHY to the mii(4) layer. PHY specific configuration
   2289 		 * is done by the mii(4) layer.
   2290 		 */
   2291 
   2292 		/* Select auto-negotiation MMD of the PHY. */
   2293 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2294 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2295 
   2296 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2297 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2298 
   2299 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2300 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2301 	}
   2302 }
   2303 
   2304 /****************************************************************************/
   2305 /* Free any DMA memory owned by the driver.                                 */
   2306 /*                                                                          */
   2307 /* Scans through each data structre that requires DMA memory and frees      */
   2308 /* the memory if allocated.                                                 */
   2309 /*                                                                          */
   2310 /* Returns:                                                                 */
   2311 /*   Nothing.                                                               */
   2312 /****************************************************************************/
   2313 void
   2314 bnx_dma_free(struct bnx_softc *sc)
   2315 {
   2316 	int			i;
   2317 
   2318 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2319 
   2320 	/* Destroy the status block. */
   2321 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2322 		bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   2323 		    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2324 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2325 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2326 		    BNX_STATUS_BLK_SZ);
   2327 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2328 		    sc->status_rseg);
   2329 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2330 		sc->status_block = NULL;
   2331 		sc->status_map = NULL;
   2332 	}
   2333 
   2334 	/* Destroy the statistics block. */
   2335 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2336 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2337 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2338 		    BNX_STATS_BLK_SZ);
   2339 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2340 		    sc->stats_rseg);
   2341 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2342 		sc->stats_block = NULL;
   2343 		sc->stats_map = NULL;
   2344 	}
   2345 
   2346 	/* Free, unmap and destroy all context memory pages. */
   2347 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2348 		for (i = 0; i < sc->ctx_pages; i++) {
   2349 			if (sc->ctx_block[i] != NULL) {
   2350 				bus_dmamap_unload(sc->bnx_dmatag,
   2351 				    sc->ctx_map[i]);
   2352 				bus_dmamem_unmap(sc->bnx_dmatag,
   2353 				    (void *)sc->ctx_block[i],
   2354 				    BCM_PAGE_SIZE);
   2355 				bus_dmamem_free(sc->bnx_dmatag,
   2356 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2357 				bus_dmamap_destroy(sc->bnx_dmatag,
   2358 				    sc->ctx_map[i]);
   2359 				sc->ctx_block[i] = NULL;
   2360 			}
   2361 		}
   2362 	}
   2363 
   2364 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2365 	for (i = 0; i < TX_PAGES; i++ ) {
   2366 		if (sc->tx_bd_chain[i] != NULL &&
   2367 		    sc->tx_bd_chain_map[i] != NULL) {
   2368 			bus_dmamap_unload(sc->bnx_dmatag,
   2369 			    sc->tx_bd_chain_map[i]);
   2370 			bus_dmamem_unmap(sc->bnx_dmatag,
   2371 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2372 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2373 			    sc->tx_bd_chain_rseg[i]);
   2374 			bus_dmamap_destroy(sc->bnx_dmatag,
   2375 			    sc->tx_bd_chain_map[i]);
   2376 			sc->tx_bd_chain[i] = NULL;
   2377 			sc->tx_bd_chain_map[i] = NULL;
   2378 		}
   2379 	}
   2380 
   2381 	/* Destroy the TX dmamaps. */
   2382 	struct bnx_pkt *pkt;
   2383 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   2384 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   2385 		sc->tx_pkt_count--;
   2386 
   2387 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   2388 		pool_put(bnx_tx_pool, pkt);
   2389 	}
   2390 
   2391 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2392 	for (i = 0; i < RX_PAGES; i++ ) {
   2393 		if (sc->rx_bd_chain[i] != NULL &&
   2394 		    sc->rx_bd_chain_map[i] != NULL) {
   2395 			bus_dmamap_unload(sc->bnx_dmatag,
   2396 			    sc->rx_bd_chain_map[i]);
   2397 			bus_dmamem_unmap(sc->bnx_dmatag,
   2398 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2399 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2400 			    sc->rx_bd_chain_rseg[i]);
   2401 
   2402 			bus_dmamap_destroy(sc->bnx_dmatag,
   2403 			    sc->rx_bd_chain_map[i]);
   2404 			sc->rx_bd_chain[i] = NULL;
   2405 			sc->rx_bd_chain_map[i] = NULL;
   2406 		}
   2407 	}
   2408 
   2409 	/* Unload and destroy the RX mbuf maps. */
   2410 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2411 		if (sc->rx_mbuf_map[i] != NULL) {
   2412 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2413 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2414 		}
   2415 	}
   2416 
   2417 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2418 }
   2419 
   2420 /****************************************************************************/
   2421 /* Allocate any DMA memory needed by the driver.                            */
   2422 /*                                                                          */
   2423 /* Allocates DMA memory needed for the various global structures needed by  */
   2424 /* hardware.                                                                */
   2425 /*                                                                          */
   2426 /* Returns:                                                                 */
   2427 /*   0 for success, positive value for failure.                             */
   2428 /****************************************************************************/
   2429 int
   2430 bnx_dma_alloc(struct bnx_softc *sc)
   2431 {
   2432 	int			i, rc = 0;
   2433 
   2434 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2435 
   2436 	/*
   2437 	 * Allocate DMA memory for the status block, map the memory into DMA
   2438 	 * space, and fetch the physical address of the block.
   2439 	 */
   2440 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2441 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2442 		aprint_error_dev(sc->bnx_dev,
   2443 		    "Could not create status block DMA map!\n");
   2444 		rc = ENOMEM;
   2445 		goto bnx_dma_alloc_exit;
   2446 	}
   2447 
   2448 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2449 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2450 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2451 		aprint_error_dev(sc->bnx_dev,
   2452 		    "Could not allocate status block DMA memory!\n");
   2453 		rc = ENOMEM;
   2454 		goto bnx_dma_alloc_exit;
   2455 	}
   2456 
   2457 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2458 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2459 		aprint_error_dev(sc->bnx_dev,
   2460 		    "Could not map status block DMA memory!\n");
   2461 		rc = ENOMEM;
   2462 		goto bnx_dma_alloc_exit;
   2463 	}
   2464 
   2465 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2466 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2467 		aprint_error_dev(sc->bnx_dev,
   2468 		    "Could not load status block DMA memory!\n");
   2469 		rc = ENOMEM;
   2470 		goto bnx_dma_alloc_exit;
   2471 	}
   2472 
   2473 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   2474 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2475 
   2476 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2477 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2478 
   2479 	/* DRC - Fix for 64 bit addresses. */
   2480 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2481 		(uint32_t) sc->status_block_paddr);
   2482 
   2483 	/* BCM5709 uses host memory as cache for context memory. */
   2484 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2485 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2486 		if (sc->ctx_pages == 0)
   2487 			sc->ctx_pages = 1;
   2488 		if (sc->ctx_pages > 4) /* XXX */
   2489 			sc->ctx_pages = 4;
   2490 
   2491 		DBRUNIF((sc->ctx_pages > 512),
   2492 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2493 				__FILE__, __LINE__, sc->ctx_pages));
   2494 
   2495 
   2496 		for (i = 0; i < sc->ctx_pages; i++) {
   2497 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2498 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2499 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2500 			    &sc->ctx_map[i]) != 0) {
   2501 				rc = ENOMEM;
   2502 				goto bnx_dma_alloc_exit;
   2503 			}
   2504 
   2505 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2506 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2507 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2508 				rc = ENOMEM;
   2509 				goto bnx_dma_alloc_exit;
   2510 			}
   2511 
   2512 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2513 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2514 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2515 				rc = ENOMEM;
   2516 				goto bnx_dma_alloc_exit;
   2517 			}
   2518 
   2519 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2520 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2521 			    BUS_DMA_NOWAIT) != 0) {
   2522 				rc = ENOMEM;
   2523 				goto bnx_dma_alloc_exit;
   2524 			}
   2525 
   2526 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2527 		}
   2528 	}
   2529 
   2530 	/*
   2531 	 * Allocate DMA memory for the statistics block, map the memory into
   2532 	 * DMA space, and fetch the physical address of the block.
   2533 	 */
   2534 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2535 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2536 		aprint_error_dev(sc->bnx_dev,
   2537 		    "Could not create stats block DMA map!\n");
   2538 		rc = ENOMEM;
   2539 		goto bnx_dma_alloc_exit;
   2540 	}
   2541 
   2542 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2543 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2544 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2545 		aprint_error_dev(sc->bnx_dev,
   2546 		    "Could not allocate stats block DMA memory!\n");
   2547 		rc = ENOMEM;
   2548 		goto bnx_dma_alloc_exit;
   2549 	}
   2550 
   2551 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2552 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2553 		aprint_error_dev(sc->bnx_dev,
   2554 		    "Could not map stats block DMA memory!\n");
   2555 		rc = ENOMEM;
   2556 		goto bnx_dma_alloc_exit;
   2557 	}
   2558 
   2559 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2560 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2561 		aprint_error_dev(sc->bnx_dev,
   2562 		    "Could not load status block DMA memory!\n");
   2563 		rc = ENOMEM;
   2564 		goto bnx_dma_alloc_exit;
   2565 	}
   2566 
   2567 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2568 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2569 
   2570 	/* DRC - Fix for 64 bit address. */
   2571 	DBPRINT(sc, BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2572 	    (uint32_t) sc->stats_block_paddr);
   2573 
   2574 	/*
   2575 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2576 	 * and fetch the physical address of the block.
   2577 	 */
   2578 	for (i = 0; i < TX_PAGES; i++) {
   2579 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2580 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2581 		    &sc->tx_bd_chain_map[i])) {
   2582 			aprint_error_dev(sc->bnx_dev,
   2583 			    "Could not create Tx desc %d DMA map!\n", i);
   2584 			rc = ENOMEM;
   2585 			goto bnx_dma_alloc_exit;
   2586 		}
   2587 
   2588 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2589 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2590 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2591 			aprint_error_dev(sc->bnx_dev,
   2592 			    "Could not allocate TX desc %d DMA memory!\n",
   2593 			    i);
   2594 			rc = ENOMEM;
   2595 			goto bnx_dma_alloc_exit;
   2596 		}
   2597 
   2598 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2599 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2600 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2601 			aprint_error_dev(sc->bnx_dev,
   2602 			    "Could not map TX desc %d DMA memory!\n", i);
   2603 			rc = ENOMEM;
   2604 			goto bnx_dma_alloc_exit;
   2605 		}
   2606 
   2607 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2608 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2609 		    BUS_DMA_NOWAIT)) {
   2610 			aprint_error_dev(sc->bnx_dev,
   2611 			    "Could not load TX desc %d DMA memory!\n", i);
   2612 			rc = ENOMEM;
   2613 			goto bnx_dma_alloc_exit;
   2614 		}
   2615 
   2616 		sc->tx_bd_chain_paddr[i] =
   2617 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2618 
   2619 		/* DRC - Fix for 64 bit systems. */
   2620 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2621 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
   2622 	}
   2623 
   2624 	/*
   2625 	 * Create lists to hold TX mbufs.
   2626 	 */
   2627 	TAILQ_INIT(&sc->tx_free_pkts);
   2628 	TAILQ_INIT(&sc->tx_used_pkts);
   2629 	sc->tx_pkt_count = 0;
   2630 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2631 
   2632 	/*
   2633 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2634 	 * and fetch the physical address of the block.
   2635 	 */
   2636 	for (i = 0; i < RX_PAGES; i++) {
   2637 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2638 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2639 		    &sc->rx_bd_chain_map[i])) {
   2640 			aprint_error_dev(sc->bnx_dev,
   2641 			    "Could not create Rx desc %d DMA map!\n", i);
   2642 			rc = ENOMEM;
   2643 			goto bnx_dma_alloc_exit;
   2644 		}
   2645 
   2646 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2647 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2648 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2649 			aprint_error_dev(sc->bnx_dev,
   2650 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2651 			rc = ENOMEM;
   2652 			goto bnx_dma_alloc_exit;
   2653 		}
   2654 
   2655 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2656 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2657 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2658 			aprint_error_dev(sc->bnx_dev,
   2659 			    "Could not map Rx desc %d DMA memory!\n", i);
   2660 			rc = ENOMEM;
   2661 			goto bnx_dma_alloc_exit;
   2662 		}
   2663 
   2664 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2665 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2666 		    BUS_DMA_NOWAIT)) {
   2667 			aprint_error_dev(sc->bnx_dev,
   2668 			    "Could not load Rx desc %d DMA memory!\n", i);
   2669 			rc = ENOMEM;
   2670 			goto bnx_dma_alloc_exit;
   2671 		}
   2672 
   2673 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2674 		sc->rx_bd_chain_paddr[i] =
   2675 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2676 
   2677 		/* DRC - Fix for 64 bit systems. */
   2678 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2679 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
   2680 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2681 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2682 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2683 	}
   2684 
   2685 	/*
   2686 	 * Create DMA maps for the Rx buffer mbufs.
   2687 	 */
   2688 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2689 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2690 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2691 		    &sc->rx_mbuf_map[i])) {
   2692 			aprint_error_dev(sc->bnx_dev,
   2693 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2694 			rc = ENOMEM;
   2695 			goto bnx_dma_alloc_exit;
   2696 		}
   2697 	}
   2698 
   2699  bnx_dma_alloc_exit:
   2700 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2701 
   2702 	return rc;
   2703 }
   2704 
   2705 /****************************************************************************/
   2706 /* Release all resources used by the driver.                                */
   2707 /*                                                                          */
   2708 /* Releases all resources acquired by the driver including interrupts,      */
   2709 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2710 /*                                                                          */
   2711 /* Returns:                                                                 */
   2712 /*   Nothing.                                                               */
   2713 /****************************************************************************/
   2714 void
   2715 bnx_release_resources(struct bnx_softc *sc)
   2716 {
   2717 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2718 
   2719 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2720 
   2721 	bnx_dma_free(sc);
   2722 
   2723 	if (sc->bnx_intrhand != NULL)
   2724 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2725 
   2726 	if (sc->bnx_ih != NULL)
   2727 		pci_intr_release(pa->pa_pc, sc->bnx_ih, 1);
   2728 
   2729 	if (sc->bnx_size)
   2730 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2731 
   2732 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2733 }
   2734 
   2735 /****************************************************************************/
   2736 /* Firmware synchronization.                                                */
   2737 /*                                                                          */
   2738 /* Before performing certain events such as a chip reset, synchronize with  */
   2739 /* the firmware first.                                                      */
   2740 /*                                                                          */
   2741 /* Returns:                                                                 */
   2742 /*   0 for success, positive value for failure.                             */
   2743 /****************************************************************************/
   2744 int
   2745 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
   2746 {
   2747 	int			i, rc = 0;
   2748 	uint32_t		val;
   2749 
   2750 	/* Don't waste any time if we've timed out before. */
   2751 	if (sc->bnx_fw_timed_out) {
   2752 		rc = EBUSY;
   2753 		goto bnx_fw_sync_exit;
   2754 	}
   2755 
   2756 	/* Increment the message sequence number. */
   2757 	sc->bnx_fw_wr_seq++;
   2758 	msg_data |= sc->bnx_fw_wr_seq;
   2759 
   2760 	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2761 	    msg_data);
   2762 
   2763 	/* Send the message to the bootcode driver mailbox. */
   2764 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2765 
   2766 	/* Wait for the bootcode to acknowledge the message. */
   2767 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2768 		/* Check for a response in the bootcode firmware mailbox. */
   2769 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2770 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2771 			break;
   2772 		DELAY(1000);
   2773 	}
   2774 
   2775 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2776 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2777 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2778 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2779 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2780 
   2781 		msg_data &= ~BNX_DRV_MSG_CODE;
   2782 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2783 
   2784 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2785 
   2786 		sc->bnx_fw_timed_out = 1;
   2787 		rc = EBUSY;
   2788 	}
   2789 
   2790 bnx_fw_sync_exit:
   2791 	return rc;
   2792 }
   2793 
   2794 /****************************************************************************/
   2795 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2796 /*                                                                          */
   2797 /* Returns:                                                                 */
   2798 /*   Nothing.                                                               */
   2799 /****************************************************************************/
   2800 void
   2801 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
   2802     uint32_t rv2p_code_len, uint32_t rv2p_proc)
   2803 {
   2804 	int			i;
   2805 	uint32_t		val;
   2806 
   2807 	/* Set the page size used by RV2P. */
   2808 	if (rv2p_proc == RV2P_PROC2) {
   2809 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2810 		    USABLE_RX_BD_PER_PAGE);
   2811 	}
   2812 
   2813 	for (i = 0; i < rv2p_code_len; i += 8) {
   2814 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2815 		rv2p_code++;
   2816 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2817 		rv2p_code++;
   2818 
   2819 		if (rv2p_proc == RV2P_PROC1) {
   2820 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2821 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2822 		} else {
   2823 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2824 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2825 		}
   2826 	}
   2827 
   2828 	/* Reset the processor, un-stall is done later. */
   2829 	if (rv2p_proc == RV2P_PROC1)
   2830 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2831 	else
   2832 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2833 }
   2834 
   2835 /****************************************************************************/
   2836 /* Load RISC processor firmware.                                            */
   2837 /*                                                                          */
   2838 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2839 /* associated with a particular processor.                                  */
   2840 /*                                                                          */
   2841 /* Returns:                                                                 */
   2842 /*   Nothing.                                                               */
   2843 /****************************************************************************/
   2844 void
   2845 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2846     struct fw_info *fw)
   2847 {
   2848 	uint32_t		offset;
   2849 	uint32_t		val;
   2850 
   2851 	/* Halt the CPU. */
   2852 	val = REG_RD_IND(sc, cpu_reg->mode);
   2853 	val |= cpu_reg->mode_value_halt;
   2854 	REG_WR_IND(sc, cpu_reg->mode, val);
   2855 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2856 
   2857 	/* Load the Text area. */
   2858 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2859 	if (fw->text) {
   2860 		int j;
   2861 
   2862 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2863 			REG_WR_IND(sc, offset, fw->text[j]);
   2864 	}
   2865 
   2866 	/* Load the Data area. */
   2867 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2868 	if (fw->data) {
   2869 		int j;
   2870 
   2871 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2872 			REG_WR_IND(sc, offset, fw->data[j]);
   2873 	}
   2874 
   2875 	/* Load the SBSS area. */
   2876 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2877 	if (fw->sbss) {
   2878 		int j;
   2879 
   2880 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2881 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2882 	}
   2883 
   2884 	/* Load the BSS area. */
   2885 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2886 	if (fw->bss) {
   2887 		int j;
   2888 
   2889 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2890 			REG_WR_IND(sc, offset, fw->bss[j]);
   2891 	}
   2892 
   2893 	/* Load the Read-Only area. */
   2894 	offset = cpu_reg->spad_base +
   2895 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2896 	if (fw->rodata) {
   2897 		int j;
   2898 
   2899 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2900 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2901 	}
   2902 
   2903 	/* Clear the pre-fetch instruction. */
   2904 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2905 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2906 
   2907 	/* Start the CPU. */
   2908 	val = REG_RD_IND(sc, cpu_reg->mode);
   2909 	val &= ~cpu_reg->mode_value_halt;
   2910 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2911 	REG_WR_IND(sc, cpu_reg->mode, val);
   2912 }
   2913 
   2914 /****************************************************************************/
   2915 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2916 /*                                                                          */
   2917 /* Loads the firmware for each CPU and starts the CPU.                      */
   2918 /*                                                                          */
   2919 /* Returns:                                                                 */
   2920 /*   Nothing.                                                               */
   2921 /****************************************************************************/
   2922 void
   2923 bnx_init_cpus(struct bnx_softc *sc)
   2924 {
   2925 	struct cpu_reg cpu_reg;
   2926 	struct fw_info fw;
   2927 
   2928 	switch (BNX_CHIP_NUM(sc)) {
   2929 	case BNX_CHIP_NUM_5709:
   2930 		/* Initialize the RV2P processor. */
   2931 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2932 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2933 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2934 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2935 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2936 		} else {
   2937 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2938 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2939 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2940 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2941 		}
   2942 
   2943 		/* Initialize the RX Processor. */
   2944 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2945 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2946 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2947 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2948 		cpu_reg.state_value_clear = 0xffffff;
   2949 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2950 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2951 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2952 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2953 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2954 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2955 		cpu_reg.mips_view_base = 0x8000000;
   2956 
   2957 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2958 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2959 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2960 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2961 
   2962 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2963 		fw.text_len = bnx_RXP_b09FwTextLen;
   2964 		fw.text_index = 0;
   2965 		fw.text = bnx_RXP_b09FwText;
   2966 
   2967 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2968 		fw.data_len = bnx_RXP_b09FwDataLen;
   2969 		fw.data_index = 0;
   2970 		fw.data = bnx_RXP_b09FwData;
   2971 
   2972 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2973 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2974 		fw.sbss_index = 0;
   2975 		fw.sbss = bnx_RXP_b09FwSbss;
   2976 
   2977 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2978 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2979 		fw.bss_index = 0;
   2980 		fw.bss = bnx_RXP_b09FwBss;
   2981 
   2982 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2983 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2984 		fw.rodata_index = 0;
   2985 		fw.rodata = bnx_RXP_b09FwRodata;
   2986 
   2987 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2988 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2989 
   2990 		/* Initialize the TX Processor. */
   2991 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2992 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2993 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2994 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2995 		cpu_reg.state_value_clear = 0xffffff;
   2996 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2997 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2998 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2999 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   3000 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   3001 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   3002 		cpu_reg.mips_view_base = 0x8000000;
   3003 
   3004 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   3005 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   3006 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   3007 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   3008 
   3009 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   3010 		fw.text_len = bnx_TXP_b09FwTextLen;
   3011 		fw.text_index = 0;
   3012 		fw.text = bnx_TXP_b09FwText;
   3013 
   3014 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   3015 		fw.data_len = bnx_TXP_b09FwDataLen;
   3016 		fw.data_index = 0;
   3017 		fw.data = bnx_TXP_b09FwData;
   3018 
   3019 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   3020 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   3021 		fw.sbss_index = 0;
   3022 		fw.sbss = bnx_TXP_b09FwSbss;
   3023 
   3024 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   3025 		fw.bss_len = bnx_TXP_b09FwBssLen;
   3026 		fw.bss_index = 0;
   3027 		fw.bss = bnx_TXP_b09FwBss;
   3028 
   3029 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   3030 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   3031 		fw.rodata_index = 0;
   3032 		fw.rodata = bnx_TXP_b09FwRodata;
   3033 
   3034 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3035 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3036 
   3037 		/* Initialize the TX Patch-up Processor. */
   3038 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3039 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3040 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3041 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3042 		cpu_reg.state_value_clear = 0xffffff;
   3043 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3044 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3045 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3046 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3047 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3048 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3049 		cpu_reg.mips_view_base = 0x8000000;
   3050 
   3051 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   3052 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   3053 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   3054 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   3055 
   3056 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   3057 		fw.text_len = bnx_TPAT_b09FwTextLen;
   3058 		fw.text_index = 0;
   3059 		fw.text = bnx_TPAT_b09FwText;
   3060 
   3061 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   3062 		fw.data_len = bnx_TPAT_b09FwDataLen;
   3063 		fw.data_index = 0;
   3064 		fw.data = bnx_TPAT_b09FwData;
   3065 
   3066 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   3067 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   3068 		fw.sbss_index = 0;
   3069 		fw.sbss = bnx_TPAT_b09FwSbss;
   3070 
   3071 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   3072 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   3073 		fw.bss_index = 0;
   3074 		fw.bss = bnx_TPAT_b09FwBss;
   3075 
   3076 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   3077 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   3078 		fw.rodata_index = 0;
   3079 		fw.rodata = bnx_TPAT_b09FwRodata;
   3080 
   3081 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3082 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3083 
   3084 		/* Initialize the Completion Processor. */
   3085 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3086 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3087 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3088 		cpu_reg.state = BNX_COM_CPU_STATE;
   3089 		cpu_reg.state_value_clear = 0xffffff;
   3090 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3091 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3092 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3093 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3094 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3095 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3096 		cpu_reg.mips_view_base = 0x8000000;
   3097 
   3098 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   3099 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   3100 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   3101 		fw.start_addr = bnx_COM_b09FwStartAddr;
   3102 
   3103 		fw.text_addr = bnx_COM_b09FwTextAddr;
   3104 		fw.text_len = bnx_COM_b09FwTextLen;
   3105 		fw.text_index = 0;
   3106 		fw.text = bnx_COM_b09FwText;
   3107 
   3108 		fw.data_addr = bnx_COM_b09FwDataAddr;
   3109 		fw.data_len = bnx_COM_b09FwDataLen;
   3110 		fw.data_index = 0;
   3111 		fw.data = bnx_COM_b09FwData;
   3112 
   3113 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   3114 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   3115 		fw.sbss_index = 0;
   3116 		fw.sbss = bnx_COM_b09FwSbss;
   3117 
   3118 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   3119 		fw.bss_len = bnx_COM_b09FwBssLen;
   3120 		fw.bss_index = 0;
   3121 		fw.bss = bnx_COM_b09FwBss;
   3122 
   3123 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   3124 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   3125 		fw.rodata_index = 0;
   3126 		fw.rodata = bnx_COM_b09FwRodata;
   3127 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3128 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3129 		break;
   3130 	default:
   3131 		/* Initialize the RV2P processor. */
   3132 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   3133 		    RV2P_PROC1);
   3134 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   3135 		    RV2P_PROC2);
   3136 
   3137 		/* Initialize the RX Processor. */
   3138 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   3139 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   3140 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   3141 		cpu_reg.state = BNX_RXP_CPU_STATE;
   3142 		cpu_reg.state_value_clear = 0xffffff;
   3143 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   3144 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   3145 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   3146 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   3147 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   3148 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   3149 		cpu_reg.mips_view_base = 0x8000000;
   3150 
   3151 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   3152 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   3153 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   3154 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   3155 
   3156 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   3157 		fw.text_len = bnx_RXP_b06FwTextLen;
   3158 		fw.text_index = 0;
   3159 		fw.text = bnx_RXP_b06FwText;
   3160 
   3161 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   3162 		fw.data_len = bnx_RXP_b06FwDataLen;
   3163 		fw.data_index = 0;
   3164 		fw.data = bnx_RXP_b06FwData;
   3165 
   3166 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   3167 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   3168 		fw.sbss_index = 0;
   3169 		fw.sbss = bnx_RXP_b06FwSbss;
   3170 
   3171 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   3172 		fw.bss_len = bnx_RXP_b06FwBssLen;
   3173 		fw.bss_index = 0;
   3174 		fw.bss = bnx_RXP_b06FwBss;
   3175 
   3176 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   3177 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   3178 		fw.rodata_index = 0;
   3179 		fw.rodata = bnx_RXP_b06FwRodata;
   3180 
   3181 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   3182 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3183 
   3184 		/* Initialize the TX Processor. */
   3185 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   3186 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   3187 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   3188 		cpu_reg.state = BNX_TXP_CPU_STATE;
   3189 		cpu_reg.state_value_clear = 0xffffff;
   3190 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   3191 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   3192 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   3193 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   3194 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   3195 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   3196 		cpu_reg.mips_view_base = 0x8000000;
   3197 
   3198 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   3199 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   3200 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   3201 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   3202 
   3203 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   3204 		fw.text_len = bnx_TXP_b06FwTextLen;
   3205 		fw.text_index = 0;
   3206 		fw.text = bnx_TXP_b06FwText;
   3207 
   3208 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   3209 		fw.data_len = bnx_TXP_b06FwDataLen;
   3210 		fw.data_index = 0;
   3211 		fw.data = bnx_TXP_b06FwData;
   3212 
   3213 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   3214 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   3215 		fw.sbss_index = 0;
   3216 		fw.sbss = bnx_TXP_b06FwSbss;
   3217 
   3218 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3219 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3220 		fw.bss_index = 0;
   3221 		fw.bss = bnx_TXP_b06FwBss;
   3222 
   3223 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3224 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3225 		fw.rodata_index = 0;
   3226 		fw.rodata = bnx_TXP_b06FwRodata;
   3227 
   3228 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3229 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3230 
   3231 		/* Initialize the TX Patch-up Processor. */
   3232 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3233 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3234 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3235 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3236 		cpu_reg.state_value_clear = 0xffffff;
   3237 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3238 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3239 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3240 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3241 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3242 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3243 		cpu_reg.mips_view_base = 0x8000000;
   3244 
   3245 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3246 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3247 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3248 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3249 
   3250 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3251 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3252 		fw.text_index = 0;
   3253 		fw.text = bnx_TPAT_b06FwText;
   3254 
   3255 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3256 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3257 		fw.data_index = 0;
   3258 		fw.data = bnx_TPAT_b06FwData;
   3259 
   3260 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3261 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3262 		fw.sbss_index = 0;
   3263 		fw.sbss = bnx_TPAT_b06FwSbss;
   3264 
   3265 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3266 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3267 		fw.bss_index = 0;
   3268 		fw.bss = bnx_TPAT_b06FwBss;
   3269 
   3270 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3271 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3272 		fw.rodata_index = 0;
   3273 		fw.rodata = bnx_TPAT_b06FwRodata;
   3274 
   3275 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3276 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3277 
   3278 		/* Initialize the Completion Processor. */
   3279 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3280 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3281 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3282 		cpu_reg.state = BNX_COM_CPU_STATE;
   3283 		cpu_reg.state_value_clear = 0xffffff;
   3284 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3285 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3286 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3287 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3288 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3289 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3290 		cpu_reg.mips_view_base = 0x8000000;
   3291 
   3292 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3293 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3294 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3295 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3296 
   3297 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3298 		fw.text_len = bnx_COM_b06FwTextLen;
   3299 		fw.text_index = 0;
   3300 		fw.text = bnx_COM_b06FwText;
   3301 
   3302 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3303 		fw.data_len = bnx_COM_b06FwDataLen;
   3304 		fw.data_index = 0;
   3305 		fw.data = bnx_COM_b06FwData;
   3306 
   3307 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3308 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3309 		fw.sbss_index = 0;
   3310 		fw.sbss = bnx_COM_b06FwSbss;
   3311 
   3312 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3313 		fw.bss_len = bnx_COM_b06FwBssLen;
   3314 		fw.bss_index = 0;
   3315 		fw.bss = bnx_COM_b06FwBss;
   3316 
   3317 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3318 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3319 		fw.rodata_index = 0;
   3320 		fw.rodata = bnx_COM_b06FwRodata;
   3321 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3322 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3323 		break;
   3324 	}
   3325 }
   3326 
   3327 /****************************************************************************/
   3328 /* Initialize context memory.                                               */
   3329 /*                                                                          */
   3330 /* Clears the memory associated with each Context ID (CID).                 */
   3331 /*                                                                          */
   3332 /* Returns:                                                                 */
   3333 /*   Nothing.                                                               */
   3334 /****************************************************************************/
   3335 void
   3336 bnx_init_context(struct bnx_softc *sc)
   3337 {
   3338 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3339 		/* DRC: Replace this constant value with a #define. */
   3340 		int i, retry_cnt = 10;
   3341 		uint32_t val;
   3342 
   3343 		/*
   3344 		 * BCM5709 context memory may be cached
   3345 		 * in host memory so prepare the host memory
   3346 		 * for access.
   3347 		 */
   3348 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3349 		    | (1 << 12);
   3350 		val |= (BCM_PAGE_BITS - 8) << 16;
   3351 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3352 
   3353 		/* Wait for mem init command to complete. */
   3354 		for (i = 0; i < retry_cnt; i++) {
   3355 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3356 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3357 				break;
   3358 			DELAY(2);
   3359 		}
   3360 
   3361 		/* ToDo: Consider returning an error here. */
   3362 
   3363 		for (i = 0; i < sc->ctx_pages; i++) {
   3364 			int j;
   3365 
   3366 			/* Set the physaddr of the context memory cache. */
   3367 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
   3368 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3369 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3370 			val = (uint32_t)
   3371 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
   3372 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3373 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3374 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3375 
   3376 			/* Verify that the context memory write was successful. */
   3377 			for (j = 0; j < retry_cnt; j++) {
   3378 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3379 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3380 					break;
   3381 				DELAY(5);
   3382 			}
   3383 
   3384 			/* ToDo: Consider returning an error here. */
   3385 		}
   3386 	} else {
   3387 		uint32_t vcid_addr, offset;
   3388 
   3389 		/*
   3390 		 * For the 5706/5708, context memory is local to the
   3391 		 * controller, so initialize the controller context memory.
   3392 		 */
   3393 
   3394 		vcid_addr = GET_CID_ADDR(96);
   3395 		while (vcid_addr) {
   3396 
   3397 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3398 
   3399 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3400 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3401 
   3402 			for (offset = 0; offset < BNX_PHY_CTX_SIZE;
   3403 			     offset += 4)
   3404 				CTX_WR(sc, 0x00, offset, 0);
   3405 
   3406 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3407 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3408 		}
   3409 	}
   3410 }
   3411 
   3412 /****************************************************************************/
   3413 /* Fetch the permanent MAC address of the controller.                       */
   3414 /*                                                                          */
   3415 /* Returns:                                                                 */
   3416 /*   Nothing.                                                               */
   3417 /****************************************************************************/
   3418 void
   3419 bnx_get_mac_addr(struct bnx_softc *sc)
   3420 {
   3421 	uint32_t		mac_lo = 0, mac_hi = 0;
   3422 
   3423 	/*
   3424 	 * The NetXtreme II bootcode populates various NIC
   3425 	 * power-on and runtime configuration items in a
   3426 	 * shared memory area.  The factory configured MAC
   3427 	 * address is available from both NVRAM and the
   3428 	 * shared memory area so we'll read the value from
   3429 	 * shared memory for speed.
   3430 	 */
   3431 
   3432 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3433 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3434 
   3435 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3436 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3437 		    __FILE__, __LINE__);
   3438 	} else {
   3439 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3440 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3441 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3442 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3443 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3444 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3445 	}
   3446 
   3447 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3448 	    "%s\n", ether_sprintf(sc->eaddr));
   3449 }
   3450 
   3451 /****************************************************************************/
   3452 /* Program the MAC address.                                                 */
   3453 /*                                                                          */
   3454 /* Returns:                                                                 */
   3455 /*   Nothing.                                                               */
   3456 /****************************************************************************/
   3457 void
   3458 bnx_set_mac_addr(struct bnx_softc *sc)
   3459 {
   3460 	uint32_t		val;
   3461 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3462 
   3463 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3464 	    "%s\n", ether_sprintf(sc->eaddr));
   3465 
   3466 	val = (mac_addr[0] << 8) | mac_addr[1];
   3467 
   3468 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3469 
   3470 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3471 		(mac_addr[4] << 8) | mac_addr[5];
   3472 
   3473 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3474 }
   3475 
   3476 /****************************************************************************/
   3477 /* Stop the controller.                                                     */
   3478 /*                                                                          */
   3479 /* Returns:                                                                 */
   3480 /*   Nothing.                                                               */
   3481 /****************************************************************************/
   3482 void
   3483 bnx_stop(struct ifnet *ifp, int disable)
   3484 {
   3485 	struct bnx_softc *sc = ifp->if_softc;
   3486 
   3487 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3488 
   3489 	if (disable) {
   3490 		sc->bnx_detaching = 1;
   3491 		callout_halt(&sc->bnx_timeout, NULL);
   3492 	} else
   3493 		callout_stop(&sc->bnx_timeout);
   3494 
   3495 	mii_down(&sc->bnx_mii);
   3496 
   3497 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3498 
   3499 	/* Disable the transmit/receive blocks. */
   3500 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3501 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3502 	DELAY(20);
   3503 
   3504 	bnx_disable_intr(sc);
   3505 
   3506 	/* Tell firmware that the driver is going away. */
   3507 	if (disable)
   3508 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3509 	else
   3510 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3511 
   3512 	/* Free RX buffers. */
   3513 	bnx_free_rx_chain(sc);
   3514 
   3515 	/* Free TX buffers. */
   3516 	bnx_free_tx_chain(sc);
   3517 
   3518 	ifp->if_timer = 0;
   3519 
   3520 	sc->bnx_link = 0;
   3521 
   3522 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3523 
   3524 	bnx_mgmt_init(sc);
   3525 }
   3526 
   3527 int
   3528 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
   3529 {
   3530 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3531 	uint32_t		val;
   3532 	int			i, rc = 0;
   3533 
   3534 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3535 
   3536 	/* Wait for pending PCI transactions to complete. */
   3537 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   3538 	    (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708)) {
   3539 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3540 		    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3541 		    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3542 		    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3543 		    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3544 		val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3545 		DELAY(5);
   3546 	} else {
   3547 		/* Disable DMA */
   3548 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3549 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3550 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3551 		REG_RD(sc, BNX_MISC_NEW_CORE_CTL); /* barrier */
   3552 
   3553 		for (i = 0; i < 100; i++) {
   3554 			delay(1 * 1000);
   3555 			val = REG_RD(sc, BNX_PCICFG_DEVICE_CONTROL);
   3556 			if ((val & PCIE_DCSR_TRANSACTION_PND) == 0)
   3557 				break;
   3558 		}
   3559 	}
   3560 
   3561 	/* Assume bootcode is running. */
   3562 	sc->bnx_fw_timed_out = 0;
   3563 
   3564 	/* Give the firmware a chance to prepare for the reset. */
   3565 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3566 	if (rc)
   3567 		goto bnx_reset_exit;
   3568 
   3569 	/* Set a firmware reminder that this is a soft reset. */
   3570 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3571 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3572 
   3573 	/* Dummy read to force the chip to complete all current transactions. */
   3574 	val = REG_RD(sc, BNX_MISC_ID);
   3575 
   3576 	/* Chip reset. */
   3577 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3578 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3579 		REG_RD(sc, BNX_MISC_COMMAND);
   3580 		DELAY(5);
   3581 
   3582 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3583 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3584 
   3585 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3586 		    val);
   3587 	} else {
   3588 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3589 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3590 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3591 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3592 
   3593 		/* Allow up to 30us for reset to complete. */
   3594 		for (i = 0; i < 10; i++) {
   3595 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3596 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3597 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3598 				break;
   3599 			}
   3600 			DELAY(10);
   3601 		}
   3602 
   3603 		/* Check that reset completed successfully. */
   3604 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3605 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3606 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3607 			    __FILE__, __LINE__);
   3608 			rc = EBUSY;
   3609 			goto bnx_reset_exit;
   3610 		}
   3611 	}
   3612 
   3613 	/* Make sure byte swapping is properly configured. */
   3614 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3615 	if (val != 0x01020304) {
   3616 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3617 		    __FILE__, __LINE__);
   3618 		rc = ENODEV;
   3619 		goto bnx_reset_exit;
   3620 	}
   3621 
   3622 	/* Just completed a reset, assume that firmware is running again. */
   3623 	sc->bnx_fw_timed_out = 0;
   3624 
   3625 	/* Wait for the firmware to finish its initialization. */
   3626 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3627 	if (rc)
   3628 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3629 		    "initialization!\n", __FILE__, __LINE__);
   3630 
   3631 bnx_reset_exit:
   3632 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3633 
   3634 	return rc;
   3635 }
   3636 
   3637 int
   3638 bnx_chipinit(struct bnx_softc *sc)
   3639 {
   3640 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3641 	uint32_t		val;
   3642 	int			rc = 0;
   3643 
   3644 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3645 
   3646 	/* Make sure the interrupt is not active. */
   3647 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3648 
   3649 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3650 	/* channels and PCI clock compensation delay.                      */
   3651 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3652 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3653 #if BYTE_ORDER == BIG_ENDIAN
   3654 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3655 #endif
   3656 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3657 	    DMA_READ_CHANS << 12 |
   3658 	    DMA_WRITE_CHANS << 16;
   3659 
   3660 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3661 
   3662 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3663 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3664 
   3665 	/*
   3666 	 * This setting resolves a problem observed on certain Intel PCI
   3667 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3668 	 * See errata E9_5706A1_65.
   3669 	 */
   3670 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3671 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3672 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3673 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3674 
   3675 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3676 
   3677 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3678 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3679 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3680 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3681 		    val & ~0x20000);
   3682 	}
   3683 
   3684 	/* Enable the RX_V2P and Context state machines before access. */
   3685 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3686 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3687 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3688 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3689 
   3690 	/* Initialize context mapping and zero out the quick contexts. */
   3691 	bnx_init_context(sc);
   3692 
   3693 	/* Initialize the on-boards CPUs */
   3694 	bnx_init_cpus(sc);
   3695 
   3696 	/* Enable management frames (NC-SI) to flow to the MCP. */
   3697 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
   3698 		val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) |
   3699 		    BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
   3700 		REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
   3701 	}
   3702 
   3703 	/* Prepare NVRAM for access. */
   3704 	if (bnx_init_nvram(sc)) {
   3705 		rc = ENODEV;
   3706 		goto bnx_chipinit_exit;
   3707 	}
   3708 
   3709 	/* Set the kernel bypass block size */
   3710 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3711 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3712 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3713 
   3714 	/* Enable bins used on the 5709. */
   3715 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3716 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3717 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3718 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3719 	}
   3720 
   3721 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3722 
   3723 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3724 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3725 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3726 
   3727 	val = (BCM_PAGE_BITS - 8) << 24;
   3728 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3729 
   3730 	/* Configure page size. */
   3731 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3732 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3733 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3734 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3735 
   3736 #if 0
   3737 	/* Set the perfect match control register to default. */
   3738 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3739 #endif
   3740 
   3741 bnx_chipinit_exit:
   3742 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3743 
   3744 	return rc;
   3745 }
   3746 
   3747 /****************************************************************************/
   3748 /* Initialize the controller in preparation to send/receive traffic.        */
   3749 /*                                                                          */
   3750 /* Returns:                                                                 */
   3751 /*   0 for success, positive value for failure.                             */
   3752 /****************************************************************************/
   3753 int
   3754 bnx_blockinit(struct bnx_softc *sc)
   3755 {
   3756 	uint32_t		reg, val;
   3757 	int			rc = 0;
   3758 
   3759 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3760 
   3761 	/* Load the hardware default MAC address. */
   3762 	bnx_set_mac_addr(sc);
   3763 
   3764 	/* Set the Ethernet backoff seed value */
   3765 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3766 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3767 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3768 
   3769 	sc->last_status_idx = 0;
   3770 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3771 
   3772 	/* Set up link change interrupt generation. */
   3773 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3774 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3775 
   3776 	/* Program the physical address of the status block. */
   3777 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
   3778 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3779 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
   3780 
   3781 	/* Program the physical address of the statistics block. */
   3782 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3783 	    (uint32_t)(sc->stats_block_paddr));
   3784 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3785 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
   3786 
   3787 	/* Program various host coalescing parameters. */
   3788 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3789 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3790 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3791 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3792 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3793 	    sc->bnx_comp_prod_trip);
   3794 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3795 	    sc->bnx_tx_ticks);
   3796 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3797 	    sc->bnx_rx_ticks);
   3798 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3799 	    sc->bnx_com_ticks);
   3800 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3801 	    sc->bnx_cmd_ticks);
   3802 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3803 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3804 	REG_WR(sc, BNX_HC_CONFIG,
   3805 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3806 	    BNX_HC_CONFIG_COLLECT_STATS));
   3807 
   3808 	/* Clear the internal statistics counters. */
   3809 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3810 
   3811 	/* Verify that bootcode is running. */
   3812 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3813 
   3814 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3815 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3816 	    __FILE__, __LINE__); reg = 0);
   3817 
   3818 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3819 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3820 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3821 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3822 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3823 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3824 		rc = ENODEV;
   3825 		goto bnx_blockinit_exit;
   3826 	}
   3827 
   3828 	/* Enable DMA */
   3829 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3830 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3831 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3832 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3833 	}
   3834 
   3835 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3836 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3837 
   3838 	/* Disable management frames (NC-SI) from flowing to the MCP. */
   3839 	if (sc->bnx_flags & BNX_MFW_ENABLE_FLAG) {
   3840 		val = REG_RD(sc, BNX_RPM_MGMT_PKT_CTRL) &
   3841 		    ~BNX_RPM_MGMT_PKT_CTRL_MGMT_EN;
   3842 		REG_WR(sc, BNX_RPM_MGMT_PKT_CTRL, val);
   3843 	}
   3844 
   3845 	/* Enable all remaining blocks in the MAC. */
   3846 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3847 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3848 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3849 	} else
   3850 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3851 
   3852 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3853 	DELAY(20);
   3854 
   3855 bnx_blockinit_exit:
   3856 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3857 
   3858 	return rc;
   3859 }
   3860 
   3861 static int
   3862 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
   3863     uint16_t *chain_prod, uint32_t *prod_bseq)
   3864 {
   3865 	bus_dmamap_t		map;
   3866 	struct rx_bd		*rxbd;
   3867 	uint32_t		addr;
   3868 	int i;
   3869 #ifdef BNX_DEBUG
   3870 	uint16_t debug_chain_prod =	*chain_prod;
   3871 #endif
   3872 	uint16_t first_chain_prod;
   3873 
   3874 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3875 
   3876 	/* Map the mbuf cluster into device memory. */
   3877 	map = sc->rx_mbuf_map[*chain_prod];
   3878 	first_chain_prod = *chain_prod;
   3879 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3880 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3881 		    __FILE__, __LINE__);
   3882 
   3883 		m_freem(m_new);
   3884 
   3885 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3886 
   3887 		return ENOBUFS;
   3888 	}
   3889 	/* Make sure there is room in the receive chain. */
   3890 	if (map->dm_nsegs > sc->free_rx_bd) {
   3891 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3892 		m_freem(m_new);
   3893 		return EFBIG;
   3894 	}
   3895 #ifdef BNX_DEBUG
   3896 	/* Track the distribution of buffer segments. */
   3897 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3898 #endif
   3899 
   3900 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3901 	    BUS_DMASYNC_PREREAD);
   3902 
   3903 	/* Update some debug statistics counters */
   3904 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3905 	    sc->rx_low_watermark = sc->free_rx_bd);
   3906 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3907 
   3908 	/*
   3909 	 * Setup the rx_bd for the first segment
   3910 	 */
   3911 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3912 
   3913 	addr = (uint32_t)map->dm_segs[0].ds_addr;
   3914 	rxbd->rx_bd_haddr_lo = addr;
   3915 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
   3916 	rxbd->rx_bd_haddr_hi = addr;
   3917 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3918 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3919 	*prod_bseq += map->dm_segs[0].ds_len;
   3920 	bus_dmamap_sync(sc->bnx_dmatag,
   3921 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3922 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3923 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3924 
   3925 	for (i = 1; i < map->dm_nsegs; i++) {
   3926 		*prod = NEXT_RX_BD(*prod);
   3927 		*chain_prod = RX_CHAIN_IDX(*prod);
   3928 
   3929 		rxbd =
   3930 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3931 
   3932 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   3933 		rxbd->rx_bd_haddr_lo = addr;
   3934 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   3935 		rxbd->rx_bd_haddr_hi = addr;
   3936 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3937 		rxbd->rx_bd_flags = 0;
   3938 		*prod_bseq += map->dm_segs[i].ds_len;
   3939 		bus_dmamap_sync(sc->bnx_dmatag,
   3940 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3941 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3942 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3943 	}
   3944 
   3945 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3946 	bus_dmamap_sync(sc->bnx_dmatag,
   3947 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3948 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3949 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3950 
   3951 	/*
   3952 	 * Save the mbuf, adjust the map pointer (swap map for first and
   3953 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
   3954 	 * and update our counter.
   3955 	 */
   3956 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3957 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3958 	sc->rx_mbuf_map[*chain_prod] = map;
   3959 	sc->free_rx_bd -= map->dm_nsegs;
   3960 
   3961 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3962 	    map->dm_nsegs));
   3963 	*prod = NEXT_RX_BD(*prod);
   3964 	*chain_prod = RX_CHAIN_IDX(*prod);
   3965 
   3966 	return 0;
   3967 }
   3968 
   3969 /****************************************************************************/
   3970 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3971 /*                                                                          */
   3972 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3973 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3974 /* necessary.                                                               */
   3975 /*                                                                          */
   3976 /* Returns:                                                                 */
   3977 /*   0 for success, positive value for failure.                             */
   3978 /****************************************************************************/
   3979 int
   3980 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
   3981     uint16_t *chain_prod, uint32_t *prod_bseq)
   3982 {
   3983 	struct mbuf		*m_new = NULL;
   3984 	int			rc = 0;
   3985 	uint16_t min_free_bd;
   3986 
   3987 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3988 	    __func__);
   3989 
   3990 	/* Make sure the inputs are valid. */
   3991 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3992 	    device_printf(sc->bnx_dev,
   3993 		"RX producer out of range: 0x%04X > 0x%04X\n",
   3994 		*chain_prod, (uint16_t)MAX_RX_BD));
   3995 
   3996 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3997 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3998 	    *prod_bseq);
   3999 
   4000 	/* try to get in as many mbufs as possible */
   4001 	if (sc->mbuf_alloc_size == MCLBYTES)
   4002 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   4003 	else
   4004 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   4005 	while (sc->free_rx_bd >= min_free_bd) {
   4006 		/* Simulate an mbuf allocation failure. */
   4007 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   4008 		    device_printf(sc->bnx_dev,
   4009 		    "Simulating mbuf allocation failure.\n");
   4010 			sc->mbuf_sim_alloc_failed++;
   4011 			rc = ENOBUFS;
   4012 			goto bnx_get_buf_exit);
   4013 
   4014 		/* This is a new mbuf allocation. */
   4015 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   4016 		if (m_new == NULL) {
   4017 			DBPRINT(sc, BNX_WARN,
   4018 			    "%s(%d): RX mbuf header allocation failed!\n",
   4019 			    __FILE__, __LINE__);
   4020 
   4021 			sc->mbuf_alloc_failed++;
   4022 
   4023 			rc = ENOBUFS;
   4024 			goto bnx_get_buf_exit;
   4025 		}
   4026 
   4027 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   4028 
   4029 		/* Simulate an mbuf cluster allocation failure. */
   4030 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   4031 			m_freem(m_new);
   4032 			sc->rx_mbuf_alloc--;
   4033 			sc->mbuf_alloc_failed++;
   4034 			sc->mbuf_sim_alloc_failed++;
   4035 			rc = ENOBUFS;
   4036 			goto bnx_get_buf_exit);
   4037 
   4038 		if (sc->mbuf_alloc_size == MCLBYTES)
   4039 			MCLGET(m_new, M_DONTWAIT);
   4040 		else
   4041 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   4042 			    M_DONTWAIT);
   4043 		if (!(m_new->m_flags & M_EXT)) {
   4044 			DBPRINT(sc, BNX_WARN,
   4045 			    "%s(%d): RX mbuf chain allocation failed!\n",
   4046 			    __FILE__, __LINE__);
   4047 
   4048 			m_freem(m_new);
   4049 
   4050 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4051 			sc->mbuf_alloc_failed++;
   4052 
   4053 			rc = ENOBUFS;
   4054 			goto bnx_get_buf_exit;
   4055 		}
   4056 
   4057 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   4058 		if (rc != 0)
   4059 			goto bnx_get_buf_exit;
   4060 	}
   4061 
   4062 bnx_get_buf_exit:
   4063 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   4064 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   4065 	    *chain_prod, *prod_bseq);
   4066 
   4067 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   4068 	    __func__);
   4069 
   4070 	return rc;
   4071 }
   4072 
   4073 void
   4074 bnx_alloc_pkts(struct work * unused, void * arg)
   4075 {
   4076 	struct bnx_softc *sc = arg;
   4077 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   4078 	struct bnx_pkt *pkt;
   4079 	int i, s;
   4080 
   4081 	for (i = 0; i < 4; i++) { /* magic! */
   4082 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   4083 		if (pkt == NULL)
   4084 			break;
   4085 
   4086 		if (bus_dmamap_create(sc->bnx_dmatag,
   4087 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   4088 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   4089 		    &pkt->pkt_dmamap) != 0) {
   4090 			pool_put(bnx_tx_pool, pkt);
   4091 			break;
   4092 		}
   4093 
   4094 		mutex_enter(&sc->tx_pkt_mtx);
   4095 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4096 		sc->tx_pkt_count++;
   4097 		mutex_exit(&sc->tx_pkt_mtx);
   4098 	}
   4099 
   4100 	mutex_enter(&sc->tx_pkt_mtx);
   4101 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4102 	mutex_exit(&sc->tx_pkt_mtx);
   4103 
   4104 	/* fire-up TX now that allocations have been done */
   4105 	s = splnet();
   4106 	CLR(ifp->if_flags, IFF_OACTIVE);
   4107 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   4108 		bnx_start(ifp);
   4109 	splx(s);
   4110 }
   4111 
   4112 /****************************************************************************/
   4113 /* Initialize the TX context memory.                                        */
   4114 /*                                                                          */
   4115 /* Returns:                                                                 */
   4116 /*   Nothing                                                                */
   4117 /****************************************************************************/
   4118 void
   4119 bnx_init_tx_context(struct bnx_softc *sc)
   4120 {
   4121 	uint32_t val;
   4122 
   4123 	/* Initialize the context ID for an L2 TX chain. */
   4124 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4125 		/* Set the CID type to support an L2 connection. */
   4126 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4127 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   4128 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4129 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   4130 
   4131 		/* Point the hardware to the first page in the chain. */
   4132 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4133 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4134 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   4135 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4136 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4137 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   4138 	} else {
   4139 		/* Set the CID type to support an L2 connection. */
   4140 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4141 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   4142 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4143 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   4144 
   4145 		/* Point the hardware to the first page in the chain. */
   4146 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4147 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   4148 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4149 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   4150 	}
   4151 }
   4152 
   4153 
   4154 /****************************************************************************/
   4155 /* Allocate memory and initialize the TX data structures.                   */
   4156 /*                                                                          */
   4157 /* Returns:                                                                 */
   4158 /*   0 for success, positive value for failure.                             */
   4159 /****************************************************************************/
   4160 int
   4161 bnx_init_tx_chain(struct bnx_softc *sc)
   4162 {
   4163 	struct tx_bd		*txbd;
   4164 	uint32_t		addr;
   4165 	int			i, rc = 0;
   4166 
   4167 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4168 
   4169 	/* Set the initial TX producer/consumer indices. */
   4170 	sc->tx_prod = 0;
   4171 	sc->tx_cons = 0;
   4172 	sc->tx_prod_bseq = 0;
   4173 	sc->used_tx_bd = 0;
   4174 	sc->max_tx_bd = USABLE_TX_BD;
   4175 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   4176 	DBRUNIF(1, sc->tx_full_count = 0);
   4177 
   4178 	/*
   4179 	 * The NetXtreme II supports a linked-list structure called
   4180 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   4181 	 * consists of a series of 1 or more chain pages, each of which
   4182 	 * consists of a fixed number of BD entries.
   4183 	 * The last BD entry on each page is a pointer to the next page
   4184 	 * in the chain, and the last pointer in the BD chain
   4185 	 * points back to the beginning of the chain.
   4186 	 */
   4187 
   4188 	/* Set the TX next pointer chain entries. */
   4189 	for (i = 0; i < TX_PAGES; i++) {
   4190 		int j;
   4191 
   4192 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   4193 
   4194 		/* Check if we've reached the last page. */
   4195 		if (i == (TX_PAGES - 1))
   4196 			j = 0;
   4197 		else
   4198 			j = i + 1;
   4199 
   4200 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
   4201 		txbd->tx_bd_haddr_lo = addr;
   4202 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
   4203 		txbd->tx_bd_haddr_hi = addr;
   4204 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4205 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4206 	}
   4207 
   4208 	/*
   4209 	 * Initialize the context ID for an L2 TX chain.
   4210 	 */
   4211 	bnx_init_tx_context(sc);
   4212 
   4213 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4214 
   4215 	return rc;
   4216 }
   4217 
   4218 /****************************************************************************/
   4219 /* Free memory and clear the TX data structures.                            */
   4220 /*                                                                          */
   4221 /* Returns:                                                                 */
   4222 /*   Nothing.                                                               */
   4223 /****************************************************************************/
   4224 void
   4225 bnx_free_tx_chain(struct bnx_softc *sc)
   4226 {
   4227 	struct bnx_pkt		*pkt;
   4228 	int			i;
   4229 
   4230 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4231 
   4232 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4233 	mutex_enter(&sc->tx_pkt_mtx);
   4234 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4235 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4236 		mutex_exit(&sc->tx_pkt_mtx);
   4237 
   4238 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4239 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4240 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4241 
   4242 		m_freem(pkt->pkt_mbuf);
   4243 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4244 
   4245 		mutex_enter(&sc->tx_pkt_mtx);
   4246 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4247 	}
   4248 	mutex_exit(&sc->tx_pkt_mtx);
   4249 
   4250 	/* Clear each TX chain page. */
   4251 	for (i = 0; i < TX_PAGES; i++) {
   4252 		memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4253 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4254 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4255 	}
   4256 
   4257 	sc->used_tx_bd = 0;
   4258 
   4259 	/* Check if we lost any mbufs in the process. */
   4260 	DBRUNIF((sc->tx_mbuf_alloc),
   4261 	    device_printf(sc->bnx_dev,
   4262 		"Memory leak! Lost %d mbufs from tx chain!\n",
   4263 		sc->tx_mbuf_alloc));
   4264 
   4265 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4266 }
   4267 
   4268 /****************************************************************************/
   4269 /* Initialize the RX context memory.                                        */
   4270 /*                                                                          */
   4271 /* Returns:                                                                 */
   4272 /*   Nothing                                                                */
   4273 /****************************************************************************/
   4274 void
   4275 bnx_init_rx_context(struct bnx_softc *sc)
   4276 {
   4277 	uint32_t val;
   4278 
   4279 	/* Initialize the context ID for an L2 RX chain. */
   4280 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4281 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4282 
   4283 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
   4284 		val |= 0x000000ff;
   4285 
   4286 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4287 
   4288 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4289 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4290 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4291 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4292 	}
   4293 
   4294 	/* Point the hardware to the first page in the chain. */
   4295 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4296 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4297 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
   4298 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4299 }
   4300 
   4301 /****************************************************************************/
   4302 /* Allocate memory and initialize the RX data structures.                   */
   4303 /*                                                                          */
   4304 /* Returns:                                                                 */
   4305 /*   0 for success, positive value for failure.                             */
   4306 /****************************************************************************/
   4307 int
   4308 bnx_init_rx_chain(struct bnx_softc *sc)
   4309 {
   4310 	struct rx_bd		*rxbd;
   4311 	int			i, rc = 0;
   4312 	uint16_t		prod, chain_prod;
   4313 	uint32_t		prod_bseq, addr;
   4314 
   4315 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4316 
   4317 	/* Initialize the RX producer and consumer indices. */
   4318 	sc->rx_prod = 0;
   4319 	sc->rx_cons = 0;
   4320 	sc->rx_prod_bseq = 0;
   4321 	sc->free_rx_bd = USABLE_RX_BD;
   4322 	sc->max_rx_bd = USABLE_RX_BD;
   4323 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4324 	DBRUNIF(1, sc->rx_empty_count = 0);
   4325 
   4326 	/* Initialize the RX next pointer chain entries. */
   4327 	for (i = 0; i < RX_PAGES; i++) {
   4328 		int j;
   4329 
   4330 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4331 
   4332 		/* Check if we've reached the last page. */
   4333 		if (i == (RX_PAGES - 1))
   4334 			j = 0;
   4335 		else
   4336 			j = i + 1;
   4337 
   4338 		/* Setup the chain page pointers. */
   4339 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4340 		rxbd->rx_bd_haddr_hi = addr;
   4341 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
   4342 		rxbd->rx_bd_haddr_lo = addr;
   4343 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4344 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4345 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4346 	}
   4347 
   4348 	/* Allocate mbuf clusters for the rx_bd chain. */
   4349 	prod = prod_bseq = 0;
   4350 	chain_prod = RX_CHAIN_IDX(prod);
   4351 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4352 		BNX_PRINTF(sc,
   4353 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4354 	}
   4355 
   4356 	/* Save the RX chain producer index. */
   4357 	sc->rx_prod = prod;
   4358 	sc->rx_prod_bseq = prod_bseq;
   4359 
   4360 	for (i = 0; i < RX_PAGES; i++)
   4361 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4362 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4363 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4364 
   4365 	/* Tell the chip about the waiting rx_bd's. */
   4366 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4367 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4368 
   4369 	bnx_init_rx_context(sc);
   4370 
   4371 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4372 
   4373 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4374 
   4375 	return rc;
   4376 }
   4377 
   4378 /****************************************************************************/
   4379 /* Free memory and clear the RX data structures.                            */
   4380 /*                                                                          */
   4381 /* Returns:                                                                 */
   4382 /*   Nothing.                                                               */
   4383 /****************************************************************************/
   4384 void
   4385 bnx_free_rx_chain(struct bnx_softc *sc)
   4386 {
   4387 	int			i;
   4388 
   4389 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4390 
   4391 	/* Free any mbufs still in the RX mbuf chain. */
   4392 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4393 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4394 			if (sc->rx_mbuf_map[i] != NULL) {
   4395 				bus_dmamap_sync(sc->bnx_dmatag,
   4396 				    sc->rx_mbuf_map[i],	0,
   4397 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4398 				    BUS_DMASYNC_POSTREAD);
   4399 				bus_dmamap_unload(sc->bnx_dmatag,
   4400 				    sc->rx_mbuf_map[i]);
   4401 			}
   4402 			m_freem(sc->rx_mbuf_ptr[i]);
   4403 			sc->rx_mbuf_ptr[i] = NULL;
   4404 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4405 		}
   4406 	}
   4407 
   4408 	/* Clear each RX chain page. */
   4409 	for (i = 0; i < RX_PAGES; i++)
   4410 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4411 
   4412 	sc->free_rx_bd = sc->max_rx_bd;
   4413 
   4414 	/* Check if we lost any mbufs in the process. */
   4415 	DBRUNIF((sc->rx_mbuf_alloc),
   4416 	    device_printf(sc->bnx_dev,
   4417 		"Memory leak! Lost %d mbufs from rx chain!\n",
   4418 		sc->rx_mbuf_alloc));
   4419 
   4420 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4421 }
   4422 
   4423 /****************************************************************************/
   4424 /* Set media options.                                                       */
   4425 /*                                                                          */
   4426 /* Returns:                                                                 */
   4427 /*   0 for success, positive value for failure.                             */
   4428 /****************************************************************************/
   4429 int
   4430 bnx_ifmedia_upd(struct ifnet *ifp)
   4431 {
   4432 	struct bnx_softc	*sc;
   4433 	struct mii_data		*mii;
   4434 	int			rc = 0;
   4435 
   4436 	sc = ifp->if_softc;
   4437 
   4438 	mii = &sc->bnx_mii;
   4439 	sc->bnx_link = 0;
   4440 	if (mii->mii_instance) {
   4441 		struct mii_softc *miisc;
   4442 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
   4443 			mii_phy_reset(miisc);
   4444 	}
   4445 	mii_mediachg(mii);
   4446 
   4447 	return rc;
   4448 }
   4449 
   4450 /****************************************************************************/
   4451 /* Reports current media status.                                            */
   4452 /*                                                                          */
   4453 /* Returns:                                                                 */
   4454 /*   Nothing.                                                               */
   4455 /****************************************************************************/
   4456 void
   4457 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4458 {
   4459 	struct bnx_softc	*sc;
   4460 	struct mii_data		*mii;
   4461 	int			s;
   4462 
   4463 	sc = ifp->if_softc;
   4464 
   4465 	s = splnet();
   4466 
   4467 	mii = &sc->bnx_mii;
   4468 
   4469 	mii_pollstat(mii);
   4470 	ifmr->ifm_status = mii->mii_media_status;
   4471 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4472 	    sc->bnx_flowflags;
   4473 
   4474 	splx(s);
   4475 }
   4476 
   4477 /****************************************************************************/
   4478 /* Handles PHY generated interrupt events.                                  */
   4479 /*                                                                          */
   4480 /* Returns:                                                                 */
   4481 /*   Nothing.                                                               */
   4482 /****************************************************************************/
   4483 void
   4484 bnx_phy_intr(struct bnx_softc *sc)
   4485 {
   4486 	uint32_t		new_link_state, old_link_state;
   4487 
   4488 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4489 	    BUS_DMASYNC_POSTREAD);
   4490 	new_link_state = sc->status_block->status_attn_bits &
   4491 	    STATUS_ATTN_BITS_LINK_STATE;
   4492 	old_link_state = sc->status_block->status_attn_bits_ack &
   4493 	    STATUS_ATTN_BITS_LINK_STATE;
   4494 
   4495 	/* Handle any changes if the link state has changed. */
   4496 	if (new_link_state != old_link_state) {
   4497 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4498 
   4499 		sc->bnx_link = 0;
   4500 		callout_stop(&sc->bnx_timeout);
   4501 		bnx_tick(sc);
   4502 
   4503 		/* Update the status_attn_bits_ack field in the status block. */
   4504 		if (new_link_state) {
   4505 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4506 			    STATUS_ATTN_BITS_LINK_STATE);
   4507 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4508 		} else {
   4509 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4510 			    STATUS_ATTN_BITS_LINK_STATE);
   4511 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4512 		}
   4513 	}
   4514 
   4515 	/* Acknowledge the link change interrupt. */
   4516 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4517 }
   4518 
   4519 /****************************************************************************/
   4520 /* Handles received frame interrupt events.                                 */
   4521 /*                                                                          */
   4522 /* Returns:                                                                 */
   4523 /*   Nothing.                                                               */
   4524 /****************************************************************************/
   4525 void
   4526 bnx_rx_intr(struct bnx_softc *sc)
   4527 {
   4528 	struct status_block	*sblk = sc->status_block;
   4529 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4530 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
   4531 	uint16_t		sw_prod, sw_chain_prod;
   4532 	uint32_t		sw_prod_bseq;
   4533 	struct l2_fhdr		*l2fhdr;
   4534 	int			i;
   4535 
   4536 	DBRUNIF(1, sc->rx_interrupts++);
   4537 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4538 	    BUS_DMASYNC_POSTREAD);
   4539 
   4540 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4541 	for (i = 0; i < RX_PAGES; i++)
   4542 		bus_dmamap_sync(sc->bnx_dmatag,
   4543 		    sc->rx_bd_chain_map[i], 0,
   4544 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4545 		    BUS_DMASYNC_POSTWRITE);
   4546 
   4547 	/* Get the hardware's view of the RX consumer index. */
   4548 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4549 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4550 		hw_cons++;
   4551 
   4552 	/* Get working copies of the driver's view of the RX indices. */
   4553 	sw_cons = sc->rx_cons;
   4554 	sw_prod = sc->rx_prod;
   4555 	sw_prod_bseq = sc->rx_prod_bseq;
   4556 
   4557 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4558 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4559 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4560 
   4561 	/* Prevent speculative reads from getting ahead of the status block. */
   4562 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4563 	    BUS_SPACE_BARRIER_READ);
   4564 
   4565 	/* Update some debug statistics counters */
   4566 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4567 	    sc->rx_low_watermark = sc->free_rx_bd);
   4568 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4569 
   4570 	/*
   4571 	 * Scan through the receive chain as long
   4572 	 * as there is work to do.
   4573 	 */
   4574 	while (sw_cons != hw_cons) {
   4575 		struct mbuf *m;
   4576 		struct rx_bd *rxbd __diagused;
   4577 		unsigned int len;
   4578 		uint32_t status;
   4579 
   4580 		/* Convert the producer/consumer indices to an actual
   4581 		 * rx_bd index.
   4582 		 */
   4583 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4584 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4585 
   4586 		/* Get the used rx_bd. */
   4587 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4588 		sc->free_rx_bd++;
   4589 
   4590 		DBRUN(BNX_VERBOSE_RECV, printf("%s(): ", __func__);
   4591 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4592 
   4593 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4594 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4595 #ifdef DIAGNOSTIC
   4596 			/* Validate that this is the last rx_bd. */
   4597 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4598 			    printf("%s: Unexpected mbuf found in "
   4599 				"rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4600 				sw_chain_cons);
   4601 			}
   4602 #endif
   4603 
   4604 			/* DRC - ToDo: If the received packet is small, say
   4605 			 *             less than 128 bytes, allocate a new mbuf
   4606 			 *             here, copy the data to that mbuf, and
   4607 			 *             recycle the mapped jumbo frame.
   4608 			 */
   4609 
   4610 			/* Unmap the mbuf from DMA space. */
   4611 #ifdef DIAGNOSTIC
   4612 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4613 				printf("invalid map sw_cons 0x%x "
   4614 				"sw_prod 0x%x "
   4615 				"sw_chain_cons 0x%x "
   4616 				"sw_chain_prod 0x%x "
   4617 				"hw_cons 0x%x "
   4618 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4619 				"TOTAL_RX_BD 0x%x\n",
   4620 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4621 				hw_cons,
   4622 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4623 			}
   4624 #endif
   4625 			bus_dmamap_sync(sc->bnx_dmatag,
   4626 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4627 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4628 			    BUS_DMASYNC_POSTREAD);
   4629 			bus_dmamap_unload(sc->bnx_dmatag,
   4630 			    sc->rx_mbuf_map[sw_chain_cons]);
   4631 
   4632 			/* Remove the mbuf from the driver's chain. */
   4633 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4634 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4635 
   4636 			/*
   4637 			 * Frames received on the NetXteme II are prepended
   4638 			 * with the l2_fhdr structure which provides status
   4639 			 * information about the received frame (including
   4640 			 * VLAN tags and checksum info) and are also
   4641 			 * automatically adjusted to align the IP header
   4642 			 * (i.e. two null bytes are inserted before the
   4643 			 * Ethernet header).
   4644 			 */
   4645 			l2fhdr = mtod(m, struct l2_fhdr *);
   4646 
   4647 			len    = l2fhdr->l2_fhdr_pkt_len;
   4648 			status = l2fhdr->l2_fhdr_status;
   4649 
   4650 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4651 			    printf("Simulating l2_fhdr status error.\n");
   4652 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4653 
   4654 			/* Watch for unusual sized frames. */
   4655 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4656 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4657 			    device_printf(sc->bnx_dev,
   4658 				"Unusual frame size found. "
   4659 				"Min(%d), Actual(%d), Max(%d)\n",
   4660 				(int)BNX_MIN_MTU, len,
   4661 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4662 
   4663 			bnx_dump_mbuf(sc, m);
   4664 			bnx_breakpoint(sc));
   4665 
   4666 			len -= ETHER_CRC_LEN;
   4667 
   4668 			/* Check the received frame for errors. */
   4669 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4670 			    L2_FHDR_ERRORS_PHY_DECODE |
   4671 			    L2_FHDR_ERRORS_ALIGNMENT |
   4672 			    L2_FHDR_ERRORS_TOO_SHORT |
   4673 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4674 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4675 			    len >
   4676 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4677 				if_statinc(ifp, if_ierrors);
   4678 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4679 
   4680 				/* Reuse the mbuf for a new frame. */
   4681 				if (bnx_add_buf(sc, m, &sw_prod,
   4682 				    &sw_chain_prod, &sw_prod_bseq)) {
   4683 					DBRUNIF(1, bnx_breakpoint(sc));
   4684 					panic("%s: Can't reuse RX mbuf!\n",
   4685 					    device_xname(sc->bnx_dev));
   4686 				}
   4687 				continue;
   4688 			}
   4689 
   4690 			/*
   4691 			 * Get a new mbuf for the rx_bd.   If no new
   4692 			 * mbufs are available then reuse the current mbuf,
   4693 			 * log an ierror on the interface, and generate
   4694 			 * an error in the system log.
   4695 			 */
   4696 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4697 			    &sw_prod_bseq)) {
   4698 				DBRUN(BNX_WARN, device_printf(sc->bnx_dev,
   4699 				    "Failed to allocate "
   4700 				    "new mbuf, incoming frame dropped!\n"));
   4701 
   4702 				if_statinc(ifp, if_ierrors);
   4703 
   4704 				/* Try and reuse the exisitng mbuf. */
   4705 				if (bnx_add_buf(sc, m, &sw_prod,
   4706 				    &sw_chain_prod, &sw_prod_bseq)) {
   4707 					DBRUNIF(1, bnx_breakpoint(sc));
   4708 					panic("%s: Double mbuf allocation "
   4709 					    "failure!",
   4710 					    device_xname(sc->bnx_dev));
   4711 				}
   4712 				continue;
   4713 			}
   4714 
   4715 			/* Skip over the l2_fhdr when passing the data up
   4716 			 * the stack.
   4717 			 */
   4718 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4719 
   4720 			/* Adjust the pckt length to match the received data. */
   4721 			m->m_pkthdr.len = m->m_len = len;
   4722 
   4723 			/* Send the packet to the appropriate interface. */
   4724 			m_set_rcvif(m, ifp);
   4725 
   4726 			DBRUN(BNX_VERBOSE_RECV,
   4727 			    struct ether_header *eh;
   4728 			    eh = mtod(m, struct ether_header *);
   4729 			    printf("%s: to: %s, from: %s, type: 0x%04X\n",
   4730 			    __func__, ether_sprintf(eh->ether_dhost),
   4731 			    ether_sprintf(eh->ether_shost),
   4732 			    htons(eh->ether_type)));
   4733 
   4734 			/* Validate the checksum. */
   4735 
   4736 			/* Check for an IP datagram. */
   4737 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4738 				/* Check if the IP checksum is valid. */
   4739 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
   4740 					m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   4741 #ifdef BNX_DEBUG
   4742 				else
   4743 					DBPRINT(sc, BNX_WARN_SEND,
   4744 					    "%s(): Invalid IP checksum "
   4745 						"= 0x%04X!\n",
   4746 						__func__,
   4747 						l2fhdr->l2_fhdr_ip_xsum
   4748 						);
   4749 #endif
   4750 			}
   4751 
   4752 			/* Check for a valid TCP/UDP frame. */
   4753 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4754 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4755 				/* Check for a good TCP/UDP checksum. */
   4756 				if ((status &
   4757 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4758 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4759 					m->m_pkthdr.csum_flags |=
   4760 					    M_CSUM_TCPv4 |
   4761 					    M_CSUM_UDPv4;
   4762 				} else {
   4763 					DBPRINT(sc, BNX_WARN_SEND,
   4764 					    "%s(): Invalid TCP/UDP "
   4765 					    "checksum = 0x%04X!\n",
   4766 					    __func__,
   4767 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4768 				}
   4769 			}
   4770 
   4771 			/*
   4772 			 * If we received a packet with a vlan tag,
   4773 			 * attach that information to the packet.
   4774 			 */
   4775 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4776 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4777 				vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
   4778 			}
   4779 
   4780 			/* Pass the mbuf off to the upper layers. */
   4781 
   4782 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4783 			    "%s(): Passing received frame up.\n", __func__);
   4784 			if_percpuq_enqueue(ifp->if_percpuq, m);
   4785 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4786 
   4787 		}
   4788 
   4789 		sw_cons = NEXT_RX_BD(sw_cons);
   4790 
   4791 		/* Refresh hw_cons to see if there's new work */
   4792 		if (sw_cons == hw_cons) {
   4793 			hw_cons = sc->hw_rx_cons =
   4794 			    sblk->status_rx_quick_consumer_index0;
   4795 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4796 			    USABLE_RX_BD_PER_PAGE)
   4797 				hw_cons++;
   4798 		}
   4799 
   4800 		/* Prevent speculative reads from getting ahead of
   4801 		 * the status block.
   4802 		 */
   4803 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4804 		    BUS_SPACE_BARRIER_READ);
   4805 	}
   4806 
   4807 	for (i = 0; i < RX_PAGES; i++)
   4808 		bus_dmamap_sync(sc->bnx_dmatag,
   4809 		    sc->rx_bd_chain_map[i], 0,
   4810 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4811 		    BUS_DMASYNC_PREWRITE);
   4812 
   4813 	sc->rx_cons = sw_cons;
   4814 	sc->rx_prod = sw_prod;
   4815 	sc->rx_prod_bseq = sw_prod_bseq;
   4816 
   4817 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4818 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4819 
   4820 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4821 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4822 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4823 }
   4824 
   4825 /****************************************************************************/
   4826 /* Handles transmit completion interrupt events.                            */
   4827 /*                                                                          */
   4828 /* Returns:                                                                 */
   4829 /*   Nothing.                                                               */
   4830 /****************************************************************************/
   4831 void
   4832 bnx_tx_intr(struct bnx_softc *sc)
   4833 {
   4834 	struct status_block	*sblk = sc->status_block;
   4835 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4836 	struct bnx_pkt		*pkt;
   4837 	bus_dmamap_t		map;
   4838 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4839 
   4840 	DBRUNIF(1, sc->tx_interrupts++);
   4841 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4842 	    BUS_DMASYNC_POSTREAD);
   4843 
   4844 	/* Get the hardware's view of the TX consumer index. */
   4845 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4846 
   4847 	/* Skip to the next entry if this is a chain page pointer. */
   4848 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4849 		hw_tx_cons++;
   4850 
   4851 	sw_tx_cons = sc->tx_cons;
   4852 
   4853 	/* Prevent speculative reads from getting ahead of the status block. */
   4854 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4855 	    BUS_SPACE_BARRIER_READ);
   4856 
   4857 	/* Cycle through any completed TX chain page entries. */
   4858 	while (sw_tx_cons != hw_tx_cons) {
   4859 #ifdef BNX_DEBUG
   4860 		struct tx_bd *txbd = NULL;
   4861 #endif
   4862 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4863 
   4864 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4865 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4866 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4867 
   4868 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4869 		    device_printf(sc->bnx_dev,
   4870 			"TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4871 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4872 
   4873 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4874 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4875 
   4876 		DBRUNIF((txbd == NULL),
   4877 		    device_printf(sc->bnx_dev,
   4878 			"Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4879 		    bnx_breakpoint(sc));
   4880 
   4881 		DBRUN(BNX_INFO_SEND, printf("%s: ", __func__);
   4882 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4883 
   4884 
   4885 		mutex_enter(&sc->tx_pkt_mtx);
   4886 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4887 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4888 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4889 			mutex_exit(&sc->tx_pkt_mtx);
   4890 			/*
   4891 			 * Free the associated mbuf. Remember
   4892 			 * that only the last tx_bd of a packet
   4893 			 * has an mbuf pointer and DMA map.
   4894 			 */
   4895 			map = pkt->pkt_dmamap;
   4896 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4897 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4898 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4899 
   4900 			m_freem(pkt->pkt_mbuf);
   4901 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4902 
   4903 			if_statinc(ifp, if_opackets);
   4904 
   4905 			mutex_enter(&sc->tx_pkt_mtx);
   4906 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4907 		}
   4908 		mutex_exit(&sc->tx_pkt_mtx);
   4909 
   4910 		sc->used_tx_bd--;
   4911 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4912 			__FILE__, __LINE__, sc->used_tx_bd);
   4913 
   4914 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4915 
   4916 		/* Refresh hw_cons to see if there's new work. */
   4917 		hw_tx_cons = sc->hw_tx_cons =
   4918 		    sblk->status_tx_quick_consumer_index0;
   4919 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4920 		    USABLE_TX_BD_PER_PAGE)
   4921 			hw_tx_cons++;
   4922 
   4923 		/* Prevent speculative reads from getting ahead of
   4924 		 * the status block.
   4925 		 */
   4926 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4927 		    BUS_SPACE_BARRIER_READ);
   4928 	}
   4929 
   4930 	/* Clear the TX timeout timer. */
   4931 	ifp->if_timer = 0;
   4932 
   4933 	/* Clear the tx hardware queue full flag. */
   4934 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4935 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4936 		    device_printf(sc->bnx_dev,
   4937 			"Open TX chain! %d/%d (used/total)\n",
   4938 			sc->used_tx_bd, sc->max_tx_bd));
   4939 		ifp->if_flags &= ~IFF_OACTIVE;
   4940 	}
   4941 
   4942 	sc->tx_cons = sw_tx_cons;
   4943 }
   4944 
   4945 /****************************************************************************/
   4946 /* Disables interrupt generation.                                           */
   4947 /*                                                                          */
   4948 /* Returns:                                                                 */
   4949 /*   Nothing.                                                               */
   4950 /****************************************************************************/
   4951 void
   4952 bnx_disable_intr(struct bnx_softc *sc)
   4953 {
   4954 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4955 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4956 }
   4957 
   4958 /****************************************************************************/
   4959 /* Enables interrupt generation.                                            */
   4960 /*                                                                          */
   4961 /* Returns:                                                                 */
   4962 /*   Nothing.                                                               */
   4963 /****************************************************************************/
   4964 void
   4965 bnx_enable_intr(struct bnx_softc *sc)
   4966 {
   4967 	uint32_t		val;
   4968 
   4969 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4970 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4971 
   4972 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4973 	    sc->last_status_idx);
   4974 
   4975 	val = REG_RD(sc, BNX_HC_COMMAND);
   4976 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4977 }
   4978 
   4979 /****************************************************************************/
   4980 /* Handles controller initialization.                                       */
   4981 /*                                                                          */
   4982 /****************************************************************************/
   4983 int
   4984 bnx_init(struct ifnet *ifp)
   4985 {
   4986 	struct bnx_softc	*sc = ifp->if_softc;
   4987 	uint32_t		ether_mtu;
   4988 	int			s, error = 0;
   4989 
   4990 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4991 
   4992 	s = splnet();
   4993 
   4994 	bnx_stop(ifp, 0);
   4995 
   4996 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4997 		device_printf(sc->bnx_dev,
   4998 		    "Controller reset failed!\n");
   4999 		goto bnx_init_exit;
   5000 	}
   5001 
   5002 	if ((error = bnx_chipinit(sc)) != 0) {
   5003 		device_printf(sc->bnx_dev,
   5004 		    "Controller initialization failed!\n");
   5005 		goto bnx_init_exit;
   5006 	}
   5007 
   5008 	if ((error = bnx_blockinit(sc)) != 0) {
   5009 		device_printf(sc->bnx_dev,
   5010 		    "Block initialization failed!\n");
   5011 		goto bnx_init_exit;
   5012 	}
   5013 
   5014 	/* Calculate and program the Ethernet MRU size. */
   5015 	if (ifp->if_mtu <= ETHERMTU) {
   5016 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   5017 		sc->mbuf_alloc_size = MCLBYTES;
   5018 	} else {
   5019 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   5020 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   5021 	}
   5022 
   5023 
   5024 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
   5025 
   5026 	/*
   5027 	 * Program the MRU and enable Jumbo frame
   5028 	 * support.
   5029 	 */
   5030 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   5031 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   5032 
   5033 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   5034 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   5035 
   5036 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   5037 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   5038 	    sc->mbuf_alloc_size, sc->max_frame_size);
   5039 
   5040 	/* Program appropriate promiscuous/multicast filtering. */
   5041 	bnx_iff(sc);
   5042 
   5043 	/* Init RX buffer descriptor chain. */
   5044 	bnx_init_rx_chain(sc);
   5045 
   5046 	/* Init TX buffer descriptor chain. */
   5047 	bnx_init_tx_chain(sc);
   5048 
   5049 	/* Enable host interrupts. */
   5050 	bnx_enable_intr(sc);
   5051 
   5052 	mii_ifmedia_change(&sc->bnx_mii);
   5053 
   5054 	SET(ifp->if_flags, IFF_RUNNING);
   5055 	CLR(ifp->if_flags, IFF_OACTIVE);
   5056 
   5057 	callout_schedule(&sc->bnx_timeout, hz);
   5058 
   5059 bnx_init_exit:
   5060 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   5061 
   5062 	splx(s);
   5063 
   5064 	return error;
   5065 }
   5066 
   5067 void
   5068 bnx_mgmt_init(struct bnx_softc *sc)
   5069 {
   5070 	struct ifnet	*ifp = &sc->bnx_ec.ec_if;
   5071 	uint32_t	val;
   5072 
   5073 	/* Check if the driver is still running and bail out if it is. */
   5074 	if (ifp->if_flags & IFF_RUNNING)
   5075 		goto bnx_mgmt_init_exit;
   5076 
   5077 	/* Initialize the on-boards CPUs */
   5078 	bnx_init_cpus(sc);
   5079 
   5080 	val = (BCM_PAGE_BITS - 8) << 24;
   5081 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   5082 
   5083 	/* Enable all critical blocks in the MAC. */
   5084 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   5085 	    BNX_MISC_ENABLE_SET_BITS_RX_V2P_ENABLE |
   5086 	    BNX_MISC_ENABLE_SET_BITS_RX_DMA_ENABLE |
   5087 	    BNX_MISC_ENABLE_SET_BITS_COMPLETION_ENABLE);
   5088 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   5089 	DELAY(20);
   5090 
   5091 	mii_ifmedia_change(&sc->bnx_mii);
   5092 
   5093 bnx_mgmt_init_exit:
   5094 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   5095 }
   5096 
   5097 /****************************************************************************/
   5098 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   5099 /* memory visible to the controller.                                        */
   5100 /*                                                                          */
   5101 /* Returns:                                                                 */
   5102 /*   0 for success, positive value for failure.                             */
   5103 /****************************************************************************/
   5104 int
   5105 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   5106 {
   5107 	struct bnx_pkt		*pkt;
   5108 	bus_dmamap_t		map;
   5109 	struct tx_bd		*txbd = NULL;
   5110 	uint16_t		vlan_tag = 0, flags = 0;
   5111 	uint16_t		chain_prod, prod;
   5112 #ifdef BNX_DEBUG
   5113 	uint16_t		debug_prod;
   5114 #endif
   5115 	uint32_t		addr, prod_bseq;
   5116 	int			i, error;
   5117 	bool			remap = true;
   5118 
   5119 	mutex_enter(&sc->tx_pkt_mtx);
   5120 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   5121 	if (pkt == NULL) {
   5122 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   5123 			mutex_exit(&sc->tx_pkt_mtx);
   5124 			return ENETDOWN;
   5125 		}
   5126 
   5127 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   5128 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   5129 			workqueue_enqueue(sc->bnx_wq, &sc->bnx_wk, NULL);
   5130 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   5131 		}
   5132 
   5133 		mutex_exit(&sc->tx_pkt_mtx);
   5134 		return ENOMEM;
   5135 	}
   5136 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   5137 	mutex_exit(&sc->tx_pkt_mtx);
   5138 
   5139 	/* Transfer any checksum offload flags to the bd. */
   5140 	if (m->m_pkthdr.csum_flags) {
   5141 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5142 			flags |= TX_BD_FLAGS_IP_CKSUM;
   5143 		if (m->m_pkthdr.csum_flags &
   5144 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   5145 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   5146 	}
   5147 
   5148 	/* Transfer any VLAN tags to the bd. */
   5149 	if (vlan_has_tag(m)) {
   5150 		flags |= TX_BD_FLAGS_VLAN_TAG;
   5151 		vlan_tag = vlan_get_tag(m);
   5152 	}
   5153 
   5154 	/* Map the mbuf into DMAable memory. */
   5155 	prod = sc->tx_prod;
   5156 	chain_prod = TX_CHAIN_IDX(prod);
   5157 	map = pkt->pkt_dmamap;
   5158 
   5159 	/* Map the mbuf into our DMA address space. */
   5160 retry:
   5161 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   5162 	if (__predict_false(error)) {
   5163 		if (error == EFBIG) {
   5164 			if (remap == true) {
   5165 				struct mbuf *newm;
   5166 
   5167 				remap = false;
   5168 				newm = m_defrag(m, M_NOWAIT);
   5169 				if (newm != NULL) {
   5170 					m = newm;
   5171 					goto retry;
   5172 				}
   5173 			}
   5174 		}
   5175 		sc->tx_dma_map_failures++;
   5176 		goto maperr;
   5177 	}
   5178 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   5179 	    BUS_DMASYNC_PREWRITE);
   5180 	/* Make sure there's room in the chain */
   5181 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd)) {
   5182 		error = ENOMEM;
   5183 		goto nospace;
   5184 	}
   5185 
   5186 	/* prod points to an empty tx_bd at this point. */
   5187 	prod_bseq = sc->tx_prod_bseq;
   5188 #ifdef BNX_DEBUG
   5189 	debug_prod = chain_prod;
   5190 #endif
   5191 	DBPRINT(sc, BNX_INFO_SEND,
   5192 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   5193 		"prod_bseq = 0x%08X\n",
   5194 		__func__, prod, chain_prod, prod_bseq);
   5195 
   5196 	/*
   5197 	 * Cycle through each mbuf segment that makes up
   5198 	 * the outgoing frame, gathering the mapping info
   5199 	 * for that segment and creating a tx_bd for the
   5200 	 * mbuf.
   5201 	 */
   5202 	for (i = 0; i < map->dm_nsegs ; i++) {
   5203 		chain_prod = TX_CHAIN_IDX(prod);
   5204 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   5205 
   5206 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   5207 		txbd->tx_bd_haddr_lo = addr;
   5208 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   5209 		txbd->tx_bd_haddr_hi = addr;
   5210 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   5211 		txbd->tx_bd_vlan_tag = vlan_tag;
   5212 		txbd->tx_bd_flags = flags;
   5213 		prod_bseq += map->dm_segs[i].ds_len;
   5214 		if (i == 0)
   5215 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   5216 		prod = NEXT_TX_BD(prod);
   5217 	}
   5218 
   5219 	/* Set the END flag on the last TX buffer descriptor. */
   5220 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   5221 
   5222 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   5223 
   5224 	DBPRINT(sc, BNX_INFO_SEND,
   5225 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   5226 		"prod_bseq = 0x%08X\n",
   5227 		__func__, prod, chain_prod, prod_bseq);
   5228 
   5229 	pkt->pkt_mbuf = m;
   5230 	pkt->pkt_end_desc = chain_prod;
   5231 
   5232 	mutex_enter(&sc->tx_pkt_mtx);
   5233 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   5234 	mutex_exit(&sc->tx_pkt_mtx);
   5235 
   5236 	sc->used_tx_bd += map->dm_nsegs;
   5237 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   5238 		__FILE__, __LINE__, sc->used_tx_bd);
   5239 
   5240 	/* Update some debug statistics counters */
   5241 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   5242 	    sc->tx_hi_watermark = sc->used_tx_bd);
   5243 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   5244 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   5245 
   5246 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   5247 	    map->dm_nsegs));
   5248 
   5249 	/* prod points to the next free tx_bd at this point. */
   5250 	sc->tx_prod = prod;
   5251 	sc->tx_prod_bseq = prod_bseq;
   5252 
   5253 	return 0;
   5254 
   5255 
   5256 nospace:
   5257 	bus_dmamap_unload(sc->bnx_dmatag, map);
   5258 maperr:
   5259 	mutex_enter(&sc->tx_pkt_mtx);
   5260 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   5261 	mutex_exit(&sc->tx_pkt_mtx);
   5262 
   5263 	return error;
   5264 }
   5265 
   5266 /****************************************************************************/
   5267 /* Main transmit routine.                                                   */
   5268 /*                                                                          */
   5269 /* Returns:                                                                 */
   5270 /*   Nothing.                                                               */
   5271 /****************************************************************************/
   5272 void
   5273 bnx_start(struct ifnet *ifp)
   5274 {
   5275 	struct bnx_softc	*sc = ifp->if_softc;
   5276 	struct mbuf		*m_head = NULL;
   5277 	int			count = 0, error;
   5278 #ifdef BNX_DEBUG
   5279 	uint16_t		tx_chain_prod;
   5280 #endif
   5281 
   5282 	/* If there's no link or the transmit queue is empty then just exit. */
   5283 	if (!sc->bnx_link
   5284 	    ||(ifp->if_flags & (IFF_OACTIVE | IFF_RUNNING)) != IFF_RUNNING) {
   5285 		DBPRINT(sc, BNX_INFO_SEND,
   5286 		    "%s(): output active or device not running.\n", __func__);
   5287 		goto bnx_start_exit;
   5288 	}
   5289 
   5290 	/* prod points to the next free tx_bd. */
   5291 #ifdef BNX_DEBUG
   5292 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5293 #endif
   5294 
   5295 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5296 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5297 	    "used_tx %d max_tx %d\n",
   5298 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5299 	    sc->used_tx_bd, sc->max_tx_bd);
   5300 
   5301 	/*
   5302 	 * Keep adding entries while there is space in the ring.
   5303 	 */
   5304 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5305 		/* Check for any frames to send. */
   5306 		IFQ_POLL(&ifp->if_snd, m_head);
   5307 		if (m_head == NULL)
   5308 			break;
   5309 
   5310 		/*
   5311 		 * Pack the data into the transmit ring. If we
   5312 		 * don't have room, set the OACTIVE flag to wait
   5313 		 * for the NIC to drain the chain.
   5314 		 */
   5315 		if ((error = bnx_tx_encap(sc, m_head))) {
   5316 			if (error == ENOMEM) {
   5317 				ifp->if_flags |= IFF_OACTIVE;
   5318 				DBPRINT(sc, BNX_INFO_SEND,
   5319 				    "TX chain is closed for "
   5320 				    "business! Total tx_bd used = %d\n",
   5321 				    sc->used_tx_bd);
   5322 				break;
   5323 			} else {
   5324 				/* Permanent error for the mbuf, drop it */
   5325 				IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5326 				m_freem(m_head);
   5327 				DBPRINT(sc, BNX_INFO_SEND,
   5328 				    "mbuf load error %d, dropped\n", error);
   5329 				continue;
   5330 			}
   5331 		}
   5332 
   5333 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5334 		count++;
   5335 
   5336 		/* Send a copy of the frame to any BPF listeners. */
   5337 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5338 	}
   5339 
   5340 	if (count == 0) {
   5341 		/* no packets were dequeued */
   5342 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5343 		    "%s(): No packets were dequeued\n", __func__);
   5344 		goto bnx_start_exit;
   5345 	}
   5346 
   5347 	/* Update the driver's counters. */
   5348 #ifdef BNX_DEBUG
   5349 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5350 #endif
   5351 
   5352 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
   5353 	    "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
   5354 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   5355 
   5356 	/* Start the transmit. */
   5357 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5358 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5359 
   5360 	/* Set the tx timeout. */
   5361 	ifp->if_timer = BNX_TX_TIMEOUT;
   5362 
   5363 bnx_start_exit:
   5364 	return;
   5365 }
   5366 
   5367 /****************************************************************************/
   5368 /* Handles any IOCTL calls from the operating system.                       */
   5369 /*                                                                          */
   5370 /* Returns:                                                                 */
   5371 /*   0 for success, positive value for failure.                             */
   5372 /****************************************************************************/
   5373 int
   5374 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5375 {
   5376 	struct bnx_softc	*sc = ifp->if_softc;
   5377 	struct ifreq		*ifr = (struct ifreq *) data;
   5378 	struct mii_data		*mii = &sc->bnx_mii;
   5379 	int			s, error = 0;
   5380 
   5381 	s = splnet();
   5382 
   5383 	switch (command) {
   5384 	case SIOCSIFFLAGS:
   5385 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5386 			break;
   5387 		/* XXX set an ifflags callback and let ether_ioctl
   5388 		 * handle all of this.
   5389 		 */
   5390 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5391 			if (ifp->if_flags & IFF_RUNNING)
   5392 				error = ENETRESET;
   5393 			else
   5394 				bnx_init(ifp);
   5395 		} else if (ifp->if_flags & IFF_RUNNING)
   5396 			bnx_stop(ifp, 1);
   5397 		break;
   5398 
   5399 	case SIOCSIFMEDIA:
   5400 		/* Flow control requires full-duplex mode. */
   5401 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5402 		    (ifr->ifr_media & IFM_FDX) == 0)
   5403 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5404 
   5405 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5406 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5407 				/* We can do both TXPAUSE and RXPAUSE. */
   5408 				ifr->ifr_media |=
   5409 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5410 			}
   5411 			sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5412 		}
   5413 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5414 		    sc->bnx_phy_flags);
   5415 
   5416 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5417 		break;
   5418 
   5419 	default:
   5420 		error = ether_ioctl(ifp, command, data);
   5421 	}
   5422 
   5423 	if (error == ENETRESET) {
   5424 		if (ifp->if_flags & IFF_RUNNING)
   5425 			bnx_iff(sc);
   5426 		error = 0;
   5427 	}
   5428 
   5429 	splx(s);
   5430 	return error;
   5431 }
   5432 
   5433 /****************************************************************************/
   5434 /* Transmit timeout handler.                                                */
   5435 /*                                                                          */
   5436 /* Returns:                                                                 */
   5437 /*   Nothing.                                                               */
   5438 /****************************************************************************/
   5439 void
   5440 bnx_watchdog(struct ifnet *ifp)
   5441 {
   5442 	struct bnx_softc	*sc = ifp->if_softc;
   5443 
   5444 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5445 	    bnx_dump_status_block(sc));
   5446 	/*
   5447 	 * If we are in this routine because of pause frames, then
   5448 	 * don't reset the hardware.
   5449 	 */
   5450 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5451 		return;
   5452 
   5453 	device_printf(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5454 
   5455 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5456 
   5457 	bnx_init(ifp);
   5458 
   5459 	if_statinc(ifp, if_oerrors);
   5460 }
   5461 
   5462 /*
   5463  * Interrupt handler.
   5464  */
   5465 /****************************************************************************/
   5466 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5467 /* interrupt and then calls a separate routine for handle the various       */
   5468 /* interrupt causes (PHY, TX, RX).                                          */
   5469 /*                                                                          */
   5470 /* Returns:                                                                 */
   5471 /*   0 for success, positive value for failure.                             */
   5472 /****************************************************************************/
   5473 int
   5474 bnx_intr(void *xsc)
   5475 {
   5476 	struct bnx_softc	*sc = xsc;
   5477 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5478 	uint32_t		status_attn_bits;
   5479 	uint16_t		status_idx;
   5480 	const struct status_block *sblk;
   5481 	int			rv = 0;
   5482 
   5483 	if (!device_is_active(sc->bnx_dev) ||
   5484 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5485 		return 0;
   5486 
   5487 	DBRUNIF(1, sc->interrupts_generated++);
   5488 
   5489 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5490 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   5491 
   5492 	sblk = sc->status_block;
   5493 	/*
   5494 	 * If the hardware status block index
   5495 	 * matches the last value read by the
   5496 	 * driver and we haven't asserted our
   5497 	 * interrupt then there's nothing to do.
   5498 	 */
   5499 	status_idx = sblk->status_idx;
   5500 	if ((status_idx != sc->last_status_idx) ||
   5501 	    !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
   5502 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
   5503 		rv = 1;
   5504 
   5505 		/* Ack the interrupt */
   5506 		REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5507 		    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
   5508 
   5509 		status_attn_bits = sblk->status_attn_bits;
   5510 
   5511 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5512 		    printf("Simulating unexpected status attention bit set.");
   5513 		    status_attn_bits = status_attn_bits |
   5514 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5515 
   5516 		/* Was it a link change interrupt? */
   5517 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5518 		    (sblk->status_attn_bits_ack &
   5519 		    STATUS_ATTN_BITS_LINK_STATE))
   5520 			bnx_phy_intr(sc);
   5521 
   5522 		/* If any other attention is asserted then the chip is toast. */
   5523 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5524 		    (sblk->status_attn_bits_ack &
   5525 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5526 			DBRUN(sc->unexpected_attentions++);
   5527 
   5528 			BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
   5529 			    sblk->status_attn_bits);
   5530 
   5531 			DBRUNIF((bnx_debug_unexpected_attention == 0),
   5532 				    bnx_breakpoint(sc));
   5533 
   5534 			bnx_init(ifp);
   5535 			goto out;
   5536 		}
   5537 
   5538 		/* Check for any completed RX frames. */
   5539 		if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
   5540 			bnx_rx_intr(sc);
   5541 
   5542 		/* Check for any completed TX frames. */
   5543 		if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
   5544 			bnx_tx_intr(sc);
   5545 
   5546 		/*
   5547 		 * Save the status block index value for use during the
   5548 		 * next interrupt.
   5549 		 */
   5550 		sc->last_status_idx = status_idx;
   5551 
   5552 		/* Start moving packets again */
   5553 		if (ifp->if_flags & IFF_RUNNING)
   5554 			if_schedule_deferred_start(ifp);
   5555 	}
   5556 
   5557 out:
   5558 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5559 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   5560 
   5561 	return rv;
   5562 }
   5563 
   5564 /****************************************************************************/
   5565 /* Programs the various packet receive modes (broadcast and multicast).     */
   5566 /*                                                                          */
   5567 /* Returns:                                                                 */
   5568 /*   Nothing.                                                               */
   5569 /****************************************************************************/
   5570 void
   5571 bnx_iff(struct bnx_softc *sc)
   5572 {
   5573 	struct ethercom		*ec = &sc->bnx_ec;
   5574 	struct ifnet		*ifp = &ec->ec_if;
   5575 	struct ether_multi	*enm;
   5576 	struct ether_multistep	step;
   5577 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5578 	uint32_t		rx_mode, sort_mode;
   5579 	int			h, i;
   5580 
   5581 	/* Initialize receive mode default settings. */
   5582 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5583 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5584 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5585 	ifp->if_flags &= ~IFF_ALLMULTI;
   5586 
   5587 	/*
   5588 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5589 	 * be enbled.
   5590 	 */
   5591 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5592 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5593 
   5594 	/*
   5595 	 * Check for promiscuous, all multicast, or selected
   5596 	 * multicast address filtering.
   5597 	 */
   5598 	if (ifp->if_flags & IFF_PROMISC) {
   5599 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5600 
   5601 		ifp->if_flags |= IFF_ALLMULTI;
   5602 		/* Enable promiscuous mode. */
   5603 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5604 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5605 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5606 allmulti:
   5607 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5608 
   5609 		ifp->if_flags |= IFF_ALLMULTI;
   5610 		/* Enable all multicast addresses. */
   5611 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5612 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5613 			    0xffffffff);
   5614 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5615 	} else {
   5616 		/* Accept one or more multicast(s). */
   5617 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5618 
   5619 		ETHER_LOCK(ec);
   5620 		ETHER_FIRST_MULTI(step, ec, enm);
   5621 		while (enm != NULL) {
   5622 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5623 			    ETHER_ADDR_LEN)) {
   5624 				ETHER_UNLOCK(ec);
   5625 				goto allmulti;
   5626 			}
   5627 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5628 			    0xFF;
   5629 			hashes[(h & 0xE0) >> 5] |= __BIT(h & 0x1F);
   5630 			ETHER_NEXT_MULTI(step, enm);
   5631 		}
   5632 		ETHER_UNLOCK(ec);
   5633 
   5634 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5635 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5636 			    hashes[i]);
   5637 
   5638 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5639 	}
   5640 
   5641 	/* Only make changes if the receive mode has actually changed. */
   5642 	if (rx_mode != sc->rx_mode) {
   5643 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5644 		    rx_mode);
   5645 
   5646 		sc->rx_mode = rx_mode;
   5647 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5648 	}
   5649 
   5650 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5651 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5652 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5653 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5654 }
   5655 
   5656 /****************************************************************************/
   5657 /* Called periodically to updates statistics from the controllers           */
   5658 /* statistics block.                                                        */
   5659 /*                                                                          */
   5660 /* Returns:                                                                 */
   5661 /*   Nothing.                                                               */
   5662 /****************************************************************************/
   5663 void
   5664 bnx_stats_update(struct bnx_softc *sc)
   5665 {
   5666 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5667 	struct statistics_block	*stats;
   5668 
   5669 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5670 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5671 	    BUS_DMASYNC_POSTREAD);
   5672 
   5673 	stats = (struct statistics_block *)sc->stats_block;
   5674 
   5675 	net_stat_ref_t nsr = IF_STAT_GETREF(ifp);
   5676 	uint64_t value;
   5677 
   5678 	/*
   5679 	 * Update the interface statistics from the
   5680 	 * hardware statistics.
   5681 	 */
   5682 	value = (u_long)stats->stat_EtherStatsCollisions;
   5683 	if_statadd_ref(nsr, if_collisions, value - sc->if_stat_collisions);
   5684 	sc->if_stat_collisions = value;
   5685 
   5686 	value = (u_long)stats->stat_EtherStatsUndersizePkts +
   5687 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5688 	    (u_long)stats->stat_IfInMBUFDiscards +
   5689 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5690 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5691 	if_statadd_ref(nsr, if_ierrors, value - sc->if_stat_ierrors);
   5692 	sc->if_stat_ierrors = value;
   5693 
   5694 	value = (u_long)
   5695 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5696 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5697 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5698 	if_statadd_ref(nsr, if_oerrors, value - sc->if_stat_oerrors);
   5699 	sc->if_stat_oerrors = value;
   5700 
   5701 	/*
   5702 	 * Certain controllers don't report
   5703 	 * carrier sense errors correctly.
   5704 	 * See errata E11_5708CA0_1165.
   5705 	 */
   5706 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5707 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0)) {
   5708 		if_statadd_ref(nsr, if_oerrors,
   5709 		    (u_long) stats->stat_Dot3StatsCarrierSenseErrors);
   5710 	}
   5711 
   5712 	IF_STAT_PUTREF(ifp);
   5713 
   5714 	/*
   5715 	 * Update the sysctl statistics from the
   5716 	 * hardware statistics.
   5717 	 */
   5718 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
   5719 	    (uint64_t) stats->stat_IfHCInOctets_lo;
   5720 
   5721 	sc->stat_IfHCInBadOctets =
   5722 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5723 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
   5724 
   5725 	sc->stat_IfHCOutOctets =
   5726 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5727 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
   5728 
   5729 	sc->stat_IfHCOutBadOctets =
   5730 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5731 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
   5732 
   5733 	sc->stat_IfHCInUcastPkts =
   5734 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5735 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
   5736 
   5737 	sc->stat_IfHCInMulticastPkts =
   5738 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5739 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
   5740 
   5741 	sc->stat_IfHCInBroadcastPkts =
   5742 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5743 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5744 
   5745 	sc->stat_IfHCOutUcastPkts =
   5746 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5747 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
   5748 
   5749 	sc->stat_IfHCOutMulticastPkts =
   5750 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5751 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5752 
   5753 	sc->stat_IfHCOutBroadcastPkts =
   5754 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5755 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5756 
   5757 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5758 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5759 
   5760 	sc->stat_Dot3StatsCarrierSenseErrors =
   5761 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5762 
   5763 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5764 
   5765 	sc->stat_Dot3StatsAlignmentErrors =
   5766 	    stats->stat_Dot3StatsAlignmentErrors;
   5767 
   5768 	sc->stat_Dot3StatsSingleCollisionFrames =
   5769 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5770 
   5771 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5772 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5773 
   5774 	sc->stat_Dot3StatsDeferredTransmissions =
   5775 	    stats->stat_Dot3StatsDeferredTransmissions;
   5776 
   5777 	sc->stat_Dot3StatsExcessiveCollisions =
   5778 	    stats->stat_Dot3StatsExcessiveCollisions;
   5779 
   5780 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5781 
   5782 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5783 
   5784 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5785 
   5786 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5787 
   5788 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5789 
   5790 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5791 
   5792 	sc->stat_EtherStatsPktsRx64Octets =
   5793 	    stats->stat_EtherStatsPktsRx64Octets;
   5794 
   5795 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5796 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5797 
   5798 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5799 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5800 
   5801 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5802 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5803 
   5804 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5805 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5806 
   5807 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5808 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5809 
   5810 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5811 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5812 
   5813 	sc->stat_EtherStatsPktsTx64Octets =
   5814 	    stats->stat_EtherStatsPktsTx64Octets;
   5815 
   5816 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5817 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5818 
   5819 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5820 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5821 
   5822 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5823 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5824 
   5825 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5826 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5827 
   5828 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5829 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5830 
   5831 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5832 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5833 
   5834 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5835 
   5836 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5837 
   5838 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5839 
   5840 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5841 
   5842 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5843 
   5844 	sc->stat_MacControlFramesReceived =
   5845 	    stats->stat_MacControlFramesReceived;
   5846 
   5847 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5848 
   5849 	sc->stat_IfInFramesL2FilterDiscards =
   5850 	    stats->stat_IfInFramesL2FilterDiscards;
   5851 
   5852 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5853 
   5854 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5855 
   5856 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5857 
   5858 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5859 
   5860 	sc->stat_CatchupInRuleCheckerDiscards =
   5861 	    stats->stat_CatchupInRuleCheckerDiscards;
   5862 
   5863 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5864 
   5865 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5866 
   5867 	sc->stat_CatchupInRuleCheckerP4Hit =
   5868 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5869 
   5870 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5871 }
   5872 
   5873 void
   5874 bnx_tick(void *xsc)
   5875 {
   5876 	struct bnx_softc	*sc = xsc;
   5877 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5878 	struct mii_data		*mii;
   5879 	uint32_t		msg;
   5880 	uint16_t		prod, chain_prod;
   5881 	uint32_t		prod_bseq;
   5882 	int s = splnet();
   5883 
   5884 	/* Tell the firmware that the driver is still running. */
   5885 #ifdef BNX_DEBUG
   5886 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5887 #else
   5888 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5889 #endif
   5890 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5891 
   5892 	/* Update the statistics from the hardware statistics block. */
   5893 	bnx_stats_update(sc);
   5894 
   5895 	/* Schedule the next tick. */
   5896 	if (!sc->bnx_detaching)
   5897 		callout_schedule(&sc->bnx_timeout, hz);
   5898 
   5899 	if (sc->bnx_link)
   5900 		goto bnx_tick_exit;
   5901 
   5902 	mii = &sc->bnx_mii;
   5903 	mii_tick(mii);
   5904 
   5905 	/* Check if the link has come up. */
   5906 	if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
   5907 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   5908 		sc->bnx_link++;
   5909 		/* Now that link is up, handle any outstanding TX traffic. */
   5910 		if_schedule_deferred_start(ifp);
   5911 	}
   5912 
   5913 bnx_tick_exit:
   5914 	/* try to get more RX buffers, just in case */
   5915 	prod = sc->rx_prod;
   5916 	prod_bseq = sc->rx_prod_bseq;
   5917 	chain_prod = RX_CHAIN_IDX(prod);
   5918 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5919 	sc->rx_prod = prod;
   5920 	sc->rx_prod_bseq = prod_bseq;
   5921 
   5922 	splx(s);
   5923 	return;
   5924 }
   5925 
   5926 /****************************************************************************/
   5927 /* BNX Debug Routines                                                       */
   5928 /****************************************************************************/
   5929 #ifdef BNX_DEBUG
   5930 
   5931 /****************************************************************************/
   5932 /* Prints out information about an mbuf.                                    */
   5933 /*                                                                          */
   5934 /* Returns:                                                                 */
   5935 /*   Nothing.                                                               */
   5936 /****************************************************************************/
   5937 void
   5938 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5939 {
   5940 	struct mbuf		*mp = m;
   5941 
   5942 	if (m == NULL) {
   5943 		/* Index out of range. */
   5944 		printf("mbuf ptr is null!\n");
   5945 		return;
   5946 	}
   5947 
   5948 	while (mp) {
   5949 		printf("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5950 		    mp, mp->m_len);
   5951 
   5952 		if (mp->m_flags & M_EXT)
   5953 			printf("M_EXT ");
   5954 		if (mp->m_flags & M_PKTHDR)
   5955 			printf("M_PKTHDR ");
   5956 		printf("\n");
   5957 
   5958 		if (mp->m_flags & M_EXT)
   5959 			printf("- m_ext: vaddr = %p, "
   5960 			    "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
   5961 
   5962 		mp = mp->m_next;
   5963 	}
   5964 }
   5965 
   5966 /****************************************************************************/
   5967 /* Prints out the mbufs in the TX mbuf chain.                               */
   5968 /*                                                                          */
   5969 /* Returns:                                                                 */
   5970 /*   Nothing.                                                               */
   5971 /****************************************************************************/
   5972 void
   5973 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5974 {
   5975 #if 0
   5976 	struct mbuf		*m;
   5977 	int			i;
   5978 
   5979 	device_printf(sc->bnx_dev,
   5980 	    "----------------------------"
   5981 	    "  tx mbuf data  "
   5982 	    "----------------------------\n");
   5983 
   5984 	for (i = 0; i < count; i++) {
   5985 		m = sc->tx_mbuf_ptr[chain_prod];
   5986 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5987 		bnx_dump_mbuf(sc, m);
   5988 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5989 	}
   5990 
   5991 	device_printf(sc->bnx_dev,
   5992 	    "--------------------------------------------"
   5993 	    "----------------------------\n");
   5994 #endif
   5995 }
   5996 
   5997 /*
   5998  * This routine prints the RX mbuf chain.
   5999  */
   6000 void
   6001 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   6002 {
   6003 	struct mbuf		*m;
   6004 	int			i;
   6005 
   6006 	device_printf(sc->bnx_dev,
   6007 	    "----------------------------"
   6008 	    "  rx mbuf data  "
   6009 	    "----------------------------\n");
   6010 
   6011 	for (i = 0; i < count; i++) {
   6012 		m = sc->rx_mbuf_ptr[chain_prod];
   6013 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   6014 		bnx_dump_mbuf(sc, m);
   6015 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   6016 	}
   6017 
   6018 
   6019 	device_printf(sc->bnx_dev,
   6020 	    "--------------------------------------------"
   6021 	    "----------------------------\n");
   6022 }
   6023 
   6024 void
   6025 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   6026 {
   6027 	if (idx > MAX_TX_BD)
   6028 		/* Index out of range. */
   6029 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   6030 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   6031 		/* TX Chain page pointer. */
   6032 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   6033 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   6034 		    txbd->tx_bd_haddr_lo);
   6035 	else
   6036 		/* Normal tx_bd entry. */
   6037 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   6038 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   6039 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   6040 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   6041 		    txbd->tx_bd_flags);
   6042 }
   6043 
   6044 void
   6045 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   6046 {
   6047 	if (idx > MAX_RX_BD)
   6048 		/* Index out of range. */
   6049 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   6050 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   6051 		/* TX Chain page pointer. */
   6052 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   6053 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   6054 		    rxbd->rx_bd_haddr_lo);
   6055 	else
   6056 		/* Normal tx_bd entry. */
   6057 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   6058 		    "0x%08X, flags = 0x%08X\n", idx,
   6059 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   6060 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   6061 }
   6062 
   6063 void
   6064 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   6065 {
   6066 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   6067 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   6068 	    "tcp_udp_xsum = 0x%04X\n", idx,
   6069 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   6070 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   6071 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   6072 }
   6073 
   6074 /*
   6075  * This routine prints the TX chain.
   6076  */
   6077 void
   6078 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   6079 {
   6080 	struct tx_bd		*txbd;
   6081 	int			i;
   6082 
   6083 	/* First some info about the tx_bd chain structure. */
   6084 	device_printf(sc->bnx_dev,
   6085 	    "----------------------------"
   6086 	    "  tx_bd  chain  "
   6087 	    "----------------------------\n");
   6088 
   6089 	BNX_PRINTF(sc,
   6090 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   6091 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
   6092 
   6093 	BNX_PRINTF(sc,
   6094 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   6095 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
   6096 
   6097 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (uint32_t)TOTAL_TX_BD);
   6098 
   6099 	device_printf(sc->bnx_dev, ""
   6100 	    "-----------------------------"
   6101 	    "   tx_bd data   "
   6102 	    "-----------------------------\n");
   6103 
   6104 	/* Now print out the tx_bd's themselves. */
   6105 	for (i = 0; i < count; i++) {
   6106 		txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   6107 		bnx_dump_txbd(sc, tx_prod, txbd);
   6108 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   6109 	}
   6110 
   6111 	device_printf(sc->bnx_dev,
   6112 	    "-----------------------------"
   6113 	    "--------------"
   6114 	    "-----------------------------\n");
   6115 }
   6116 
   6117 /*
   6118  * This routine prints the RX chain.
   6119  */
   6120 void
   6121 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   6122 {
   6123 	struct rx_bd		*rxbd;
   6124 	int			i;
   6125 
   6126 	/* First some info about the tx_bd chain structure. */
   6127 	device_printf(sc->bnx_dev,
   6128 	    "----------------------------"
   6129 	    "  rx_bd  chain  "
   6130 	    "----------------------------\n");
   6131 
   6132 	device_printf(sc->bnx_dev, "----- RX_BD Chain -----\n");
   6133 
   6134 	BNX_PRINTF(sc,
   6135 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   6136 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
   6137 
   6138 	BNX_PRINTF(sc,
   6139 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   6140 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
   6141 
   6142 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (uint32_t)TOTAL_RX_BD);
   6143 
   6144 	device_printf(sc->bnx_dev,
   6145 	    "----------------------------"
   6146 	    "   rx_bd data   "
   6147 	    "----------------------------\n");
   6148 
   6149 	/* Now print out the rx_bd's themselves. */
   6150 	for (i = 0; i < count; i++) {
   6151 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   6152 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   6153 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   6154 	}
   6155 
   6156 	device_printf(sc->bnx_dev,
   6157 	    "----------------------------"
   6158 	    "--------------"
   6159 	    "----------------------------\n");
   6160 }
   6161 
   6162 /*
   6163  * This routine prints the status block.
   6164  */
   6165 void
   6166 bnx_dump_status_block(struct bnx_softc *sc)
   6167 {
   6168 	struct status_block	*sblk;
   6169 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6170 	    BUS_DMASYNC_POSTREAD);
   6171 
   6172 	sblk = sc->status_block;
   6173 
   6174 	device_printf(sc->bnx_dev, "----------------------------- "
   6175 	    "Status Block -----------------------------\n");
   6176 
   6177 	BNX_PRINTF(sc,
   6178 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   6179 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   6180 	    sblk->status_idx);
   6181 
   6182 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   6183 	    sblk->status_rx_quick_consumer_index0,
   6184 	    sblk->status_tx_quick_consumer_index0);
   6185 
   6186 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   6187 
   6188 	/* Theses indices are not used for normal L2 drivers. */
   6189 	if (sblk->status_rx_quick_consumer_index1 ||
   6190 		sblk->status_tx_quick_consumer_index1)
   6191 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   6192 		    sblk->status_rx_quick_consumer_index1,
   6193 		    sblk->status_tx_quick_consumer_index1);
   6194 
   6195 	if (sblk->status_rx_quick_consumer_index2 ||
   6196 		sblk->status_tx_quick_consumer_index2)
   6197 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   6198 		    sblk->status_rx_quick_consumer_index2,
   6199 		    sblk->status_tx_quick_consumer_index2);
   6200 
   6201 	if (sblk->status_rx_quick_consumer_index3 ||
   6202 		sblk->status_tx_quick_consumer_index3)
   6203 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   6204 		    sblk->status_rx_quick_consumer_index3,
   6205 		    sblk->status_tx_quick_consumer_index3);
   6206 
   6207 	if (sblk->status_rx_quick_consumer_index4 ||
   6208 		sblk->status_rx_quick_consumer_index5)
   6209 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   6210 		    sblk->status_rx_quick_consumer_index4,
   6211 		    sblk->status_rx_quick_consumer_index5);
   6212 
   6213 	if (sblk->status_rx_quick_consumer_index6 ||
   6214 		sblk->status_rx_quick_consumer_index7)
   6215 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   6216 		    sblk->status_rx_quick_consumer_index6,
   6217 		    sblk->status_rx_quick_consumer_index7);
   6218 
   6219 	if (sblk->status_rx_quick_consumer_index8 ||
   6220 		sblk->status_rx_quick_consumer_index9)
   6221 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   6222 		    sblk->status_rx_quick_consumer_index8,
   6223 		    sblk->status_rx_quick_consumer_index9);
   6224 
   6225 	if (sblk->status_rx_quick_consumer_index10 ||
   6226 		sblk->status_rx_quick_consumer_index11)
   6227 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   6228 		    sblk->status_rx_quick_consumer_index10,
   6229 		    sblk->status_rx_quick_consumer_index11);
   6230 
   6231 	if (sblk->status_rx_quick_consumer_index12 ||
   6232 		sblk->status_rx_quick_consumer_index13)
   6233 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   6234 		    sblk->status_rx_quick_consumer_index12,
   6235 		    sblk->status_rx_quick_consumer_index13);
   6236 
   6237 	if (sblk->status_rx_quick_consumer_index14 ||
   6238 		sblk->status_rx_quick_consumer_index15)
   6239 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   6240 		    sblk->status_rx_quick_consumer_index14,
   6241 		    sblk->status_rx_quick_consumer_index15);
   6242 
   6243 	if (sblk->status_completion_producer_index ||
   6244 		sblk->status_cmd_consumer_index)
   6245 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   6246 		    sblk->status_completion_producer_index,
   6247 		    sblk->status_cmd_consumer_index);
   6248 
   6249 	device_printf(sc->bnx_dev, "-------------------------------------------"
   6250 	    "-----------------------------\n");
   6251 }
   6252 
   6253 /*
   6254  * This routine prints the statistics block.
   6255  */
   6256 void
   6257 bnx_dump_stats_block(struct bnx_softc *sc)
   6258 {
   6259 	struct statistics_block	*sblk;
   6260 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6261 	    BUS_DMASYNC_POSTREAD);
   6262 
   6263 	sblk = sc->stats_block;
   6264 
   6265 	device_printf(sc->bnx_dev, ""
   6266 	    "-----------------------------"
   6267 	    " Stats  Block "
   6268 	    "-----------------------------\n");
   6269 
   6270 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   6271 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   6272 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   6273 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   6274 
   6275 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   6276 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   6277 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   6278 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   6279 
   6280 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   6281 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   6282 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   6283 	    sblk->stat_IfHCInMulticastPkts_hi,
   6284 	    sblk->stat_IfHCInMulticastPkts_lo);
   6285 
   6286 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   6287 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   6288 	    sblk->stat_IfHCInBroadcastPkts_hi,
   6289 	    sblk->stat_IfHCInBroadcastPkts_lo,
   6290 	    sblk->stat_IfHCOutUcastPkts_hi,
   6291 	    sblk->stat_IfHCOutUcastPkts_lo);
   6292 
   6293 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   6294 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   6295 	    sblk->stat_IfHCOutMulticastPkts_hi,
   6296 	    sblk->stat_IfHCOutMulticastPkts_lo,
   6297 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   6298 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   6299 
   6300 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   6301 		BNX_PRINTF(sc, "0x%08X : "
   6302 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6303 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6304 
   6305 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6306 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6307 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6308 
   6309 	if (sblk->stat_Dot3StatsFCSErrors)
   6310 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6311 		    sblk->stat_Dot3StatsFCSErrors);
   6312 
   6313 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6314 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6315 		    sblk->stat_Dot3StatsAlignmentErrors);
   6316 
   6317 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6318 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6319 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6320 
   6321 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6322 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6323 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6324 
   6325 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6326 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6327 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6328 
   6329 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6330 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6331 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6332 
   6333 	if (sblk->stat_Dot3StatsLateCollisions)
   6334 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6335 		    sblk->stat_Dot3StatsLateCollisions);
   6336 
   6337 	if (sblk->stat_EtherStatsCollisions)
   6338 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6339 		    sblk->stat_EtherStatsCollisions);
   6340 
   6341 	if (sblk->stat_EtherStatsFragments)
   6342 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6343 		    sblk->stat_EtherStatsFragments);
   6344 
   6345 	if (sblk->stat_EtherStatsJabbers)
   6346 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6347 		    sblk->stat_EtherStatsJabbers);
   6348 
   6349 	if (sblk->stat_EtherStatsUndersizePkts)
   6350 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6351 		    sblk->stat_EtherStatsUndersizePkts);
   6352 
   6353 	if (sblk->stat_EtherStatsOverrsizePkts)
   6354 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6355 		    sblk->stat_EtherStatsOverrsizePkts);
   6356 
   6357 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6358 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6359 		    sblk->stat_EtherStatsPktsRx64Octets);
   6360 
   6361 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6362 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6363 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6364 
   6365 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6366 		BNX_PRINTF(sc, "0x%08X : "
   6367 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6368 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6369 
   6370 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6371 		BNX_PRINTF(sc, "0x%08X : "
   6372 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6373 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6374 
   6375 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6376 		BNX_PRINTF(sc, "0x%08X : "
   6377 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6378 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6379 
   6380 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6381 		BNX_PRINTF(sc, "0x%08X : "
   6382 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6383 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6384 
   6385 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6386 		BNX_PRINTF(sc, "0x%08X : "
   6387 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6388 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6389 
   6390 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6391 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6392 		    sblk->stat_EtherStatsPktsTx64Octets);
   6393 
   6394 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6395 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6396 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6397 
   6398 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6399 		BNX_PRINTF(sc, "0x%08X : "
   6400 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6401 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6402 
   6403 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6404 		BNX_PRINTF(sc, "0x%08X : "
   6405 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6406 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6407 
   6408 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6409 		BNX_PRINTF(sc, "0x%08X : "
   6410 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6411 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6412 
   6413 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6414 		BNX_PRINTF(sc, "0x%08X : "
   6415 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6416 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6417 
   6418 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6419 		BNX_PRINTF(sc, "0x%08X : "
   6420 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6421 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6422 
   6423 	if (sblk->stat_XonPauseFramesReceived)
   6424 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6425 		    sblk->stat_XonPauseFramesReceived);
   6426 
   6427 	if (sblk->stat_XoffPauseFramesReceived)
   6428 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6429 		    sblk->stat_XoffPauseFramesReceived);
   6430 
   6431 	if (sblk->stat_OutXonSent)
   6432 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6433 		    sblk->stat_OutXonSent);
   6434 
   6435 	if (sblk->stat_OutXoffSent)
   6436 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6437 		    sblk->stat_OutXoffSent);
   6438 
   6439 	if (sblk->stat_FlowControlDone)
   6440 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6441 		    sblk->stat_FlowControlDone);
   6442 
   6443 	if (sblk->stat_MacControlFramesReceived)
   6444 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6445 		    sblk->stat_MacControlFramesReceived);
   6446 
   6447 	if (sblk->stat_XoffStateEntered)
   6448 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6449 		    sblk->stat_XoffStateEntered);
   6450 
   6451 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6452 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6453 		    sblk->stat_IfInFramesL2FilterDiscards);
   6454 
   6455 	if (sblk->stat_IfInRuleCheckerDiscards)
   6456 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6457 		    sblk->stat_IfInRuleCheckerDiscards);
   6458 
   6459 	if (sblk->stat_IfInFTQDiscards)
   6460 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6461 		    sblk->stat_IfInFTQDiscards);
   6462 
   6463 	if (sblk->stat_IfInMBUFDiscards)
   6464 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6465 		    sblk->stat_IfInMBUFDiscards);
   6466 
   6467 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6468 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6469 		    sblk->stat_IfInRuleCheckerP4Hit);
   6470 
   6471 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6472 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6473 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6474 
   6475 	if (sblk->stat_CatchupInFTQDiscards)
   6476 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6477 		    sblk->stat_CatchupInFTQDiscards);
   6478 
   6479 	if (sblk->stat_CatchupInMBUFDiscards)
   6480 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6481 		    sblk->stat_CatchupInMBUFDiscards);
   6482 
   6483 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6484 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6485 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6486 
   6487 	device_printf(sc->bnx_dev,
   6488 	    "-----------------------------"
   6489 	    "--------------"
   6490 	    "-----------------------------\n");
   6491 }
   6492 
   6493 void
   6494 bnx_dump_driver_state(struct bnx_softc *sc)
   6495 {
   6496 	device_printf(sc->bnx_dev,
   6497 	    "-----------------------------"
   6498 	    " Driver State "
   6499 	    "-----------------------------\n");
   6500 
   6501 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6502 	    "address\n", sc);
   6503 
   6504 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6505 	    sc->status_block);
   6506 
   6507 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6508 	    "address\n", sc->stats_block);
   6509 
   6510 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6511 	    "address\n", sc->tx_bd_chain);
   6512 
   6513 #if 0
   6514 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6515 	    sc->rx_bd_chain);
   6516 
   6517 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6518 	    sc->tx_mbuf_ptr);
   6519 #endif
   6520 
   6521 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6522 	    sc->rx_mbuf_ptr);
   6523 
   6524 	BNX_PRINTF(sc,
   6525 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6526 	    sc->interrupts_generated);
   6527 
   6528 	BNX_PRINTF(sc,
   6529 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6530 	    sc->rx_interrupts);
   6531 
   6532 	BNX_PRINTF(sc,
   6533 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6534 	    sc->tx_interrupts);
   6535 
   6536 	BNX_PRINTF(sc,
   6537 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6538 	    sc->last_status_idx);
   6539 
   6540 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6541 	    sc->tx_prod);
   6542 
   6543 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6544 	    sc->tx_cons);
   6545 
   6546 	BNX_PRINTF(sc,
   6547 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6548 	    sc->tx_prod_bseq);
   6549 	BNX_PRINTF(sc,
   6550 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6551 	    sc->tx_mbuf_alloc);
   6552 
   6553 	BNX_PRINTF(sc,
   6554 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6555 	    sc->used_tx_bd);
   6556 
   6557 	BNX_PRINTF(sc,
   6558 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6559 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6560 
   6561 
   6562 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6563 	    sc->rx_prod);
   6564 
   6565 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6566 	    sc->rx_cons);
   6567 
   6568 	BNX_PRINTF(sc,
   6569 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6570 	    sc->rx_prod_bseq);
   6571 
   6572 	BNX_PRINTF(sc,
   6573 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6574 	    sc->rx_mbuf_alloc);
   6575 
   6576 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6577 	    sc->free_rx_bd);
   6578 
   6579 	BNX_PRINTF(sc,
   6580 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6581 	    sc->rx_low_watermark, sc->max_rx_bd);
   6582 
   6583 	BNX_PRINTF(sc,
   6584 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6585 	    "mbuf alloc failures\n",
   6586 	    sc->mbuf_alloc_failed);
   6587 
   6588 	BNX_PRINTF(sc,
   6589 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6590 	    "simulated mbuf alloc failures\n",
   6591 	    sc->mbuf_sim_alloc_failed);
   6592 
   6593 	device_printf(sc->bnx_dev, "-------------------------------------------"
   6594 	    "-----------------------------\n");
   6595 }
   6596 
   6597 void
   6598 bnx_dump_hw_state(struct bnx_softc *sc)
   6599 {
   6600 	uint32_t		val1;
   6601 	int			i;
   6602 
   6603 	device_printf(sc->bnx_dev,
   6604 	    "----------------------------"
   6605 	    " Hardware State "
   6606 	    "----------------------------\n");
   6607 
   6608 	val1 = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_BC_REV);
   6609 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", val1);
   6610 
   6611 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6612 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6613 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6614 
   6615 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6616 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6617 
   6618 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6619 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6620 
   6621 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6622 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6623 	    BNX_EMAC_STATUS);
   6624 
   6625 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6626 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6627 
   6628 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6629 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6630 	    BNX_TBDR_STATUS);
   6631 
   6632 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6633 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6634 	    BNX_TDMA_STATUS);
   6635 
   6636 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6637 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6638 
   6639 	device_printf(sc->bnx_dev,
   6640 	    "----------------------------"
   6641 	    "----------------"
   6642 	    "----------------------------\n");
   6643 
   6644 	device_printf(sc->bnx_dev,
   6645 	    "----------------------------"
   6646 	    " Register  Dump "
   6647 	    "----------------------------\n");
   6648 
   6649 	for (i = 0x400; i < 0x8000; i += 0x10)
   6650 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6651 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6652 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6653 
   6654 	device_printf(sc->bnx_dev,
   6655 	    "----------------------------"
   6656 	    "----------------"
   6657 	    "----------------------------\n");
   6658 }
   6659 
   6660 void
   6661 bnx_breakpoint(struct bnx_softc *sc)
   6662 {
   6663 	/* Unreachable code to shut the compiler up about unused functions. */
   6664 	if (0) {
   6665 		bnx_dump_txbd(sc, 0, NULL);
   6666 		bnx_dump_rxbd(sc, 0, NULL);
   6667 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6668 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6669 		bnx_dump_l2fhdr(sc, 0, NULL);
   6670 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6671 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6672 		bnx_dump_status_block(sc);
   6673 		bnx_dump_stats_block(sc);
   6674 		bnx_dump_driver_state(sc);
   6675 		bnx_dump_hw_state(sc);
   6676 	}
   6677 
   6678 	bnx_dump_driver_state(sc);
   6679 	/* Print the important status block fields. */
   6680 	bnx_dump_status_block(sc);
   6681 
   6682 #if 0
   6683 	/* Call the debugger. */
   6684 	breakpoint();
   6685 #endif
   6686 
   6687 	return;
   6688 }
   6689 #endif
   6690