if_bnx.c revision 1.11 1 /* $NetBSD: if_bnx.c,v 1.11 2007/12/04 09:22:05 dyoung Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.43 2007/01/30 03:21:10 krw Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.11 2007/12/04 09:22:05 dyoung Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5708C B1
44 *
45 * The following controllers are not supported by this driver:
46 * (These are not "Production" versions of the controller.)
47 *
48 * BCM5706C A0, A1
49 * BCM5706S A0, A1, A2, A3
50 * BCM5708C A0, B0
51 * BCM5708S A0, B0, B1
52 */
53
54 #include <sys/callout.h>
55
56 #include <dev/pci/if_bnxreg.h>
57 #include <dev/microcode/bnx/bnxfw.h>
58
59 /****************************************************************************/
60 /* BNX Driver Version */
61 /****************************************************************************/
62 const char bnx_driver_version[] = "v0.9.6";
63
64 /****************************************************************************/
65 /* BNX Debug Options */
66 /****************************************************************************/
67 #ifdef BNX_DEBUG
68 u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
69
70 /* 0 = Never */
71 /* 1 = 1 in 2,147,483,648 */
72 /* 256 = 1 in 8,388,608 */
73 /* 2048 = 1 in 1,048,576 */
74 /* 65536 = 1 in 32,768 */
75 /* 1048576 = 1 in 2,048 */
76 /* 268435456 = 1 in 8 */
77 /* 536870912 = 1 in 4 */
78 /* 1073741824 = 1 in 2 */
79
80 /* Controls how often the l2_fhdr frame error check will fail. */
81 int bnx_debug_l2fhdr_status_check = 0;
82
83 /* Controls how often the unexpected attention check will fail. */
84 int bnx_debug_unexpected_attention = 0;
85
86 /* Controls how often to simulate an mbuf allocation failure. */
87 int bnx_debug_mbuf_allocation_failure = 0;
88
89 /* Controls how often to simulate a DMA mapping failure. */
90 int bnx_debug_dma_map_addr_failure = 0;
91
92 /* Controls how often to simulate a bootcode failure. */
93 int bnx_debug_bootcode_running_failure = 0;
94 #endif
95
96 /****************************************************************************/
97 /* PCI Device ID Table */
98 /* */
99 /* Used by bnx_probe() to identify the devices supported by this driver. */
100 /****************************************************************************/
101 static const struct bnx_product {
102 pci_vendor_id_t bp_vendor;
103 pci_product_id_t bp_product;
104 pci_vendor_id_t bp_subvendor;
105 pci_product_id_t bp_subproduct;
106 const char *bp_name;
107 } bnx_devices[] = {
108 #ifdef PCI_SUBPRODUCT_HP_NC370T
109 {
110 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
111 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
112 "HP NC370T Multifunction Gigabit Server Adapter"
113 },
114 #endif
115 #ifdef PCI_SUBPRODUCT_HP_NC370i
116 {
117 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
118 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
119 "HP NC370i Multifunction Gigabit Server Adapter"
120 },
121 #endif
122 {
123 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
124 0, 0,
125 "Broadcom NetXtreme II BCM5706 1000Base-T"
126 },
127 #ifdef PCI_SUBPRODUCT_HP_NC370F
128 {
129 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
130 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
131 "HP NC370F Multifunction Gigabit Server Adapter"
132 },
133 #endif
134 {
135 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
136 0, 0,
137 "Broadcom NetXtreme II BCM5706 1000Base-SX"
138 },
139 {
140 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
141 0, 0,
142 "Broadcom NetXtreme II BCM5708 1000Base-T"
143 },
144 {
145 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
146 0, 0,
147 "Broadcom NetXtreme II BCM5708 1000Base-SX"
148 },
149 };
150
151 /****************************************************************************/
152 /* Supported Flash NVRAM device data. */
153 /****************************************************************************/
154 static struct flash_spec flash_table[] =
155 {
156 /* Slow EEPROM */
157 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
158 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
159 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
160 "EEPROM - slow"},
161 /* Expansion entry 0001 */
162 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
163 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
164 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
165 "Entry 0001"},
166 /* Saifun SA25F010 (non-buffered flash) */
167 /* strap, cfg1, & write1 need updates */
168 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
169 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
170 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
171 "Non-buffered flash (128kB)"},
172 /* Saifun SA25F020 (non-buffered flash) */
173 /* strap, cfg1, & write1 need updates */
174 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
175 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
176 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
177 "Non-buffered flash (256kB)"},
178 /* Expansion entry 0100 */
179 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
180 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
181 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
182 "Entry 0100"},
183 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
184 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
185 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
186 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
187 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
188 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
189 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
190 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
191 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
192 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
193 /* Saifun SA25F005 (non-buffered flash) */
194 /* strap, cfg1, & write1 need updates */
195 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
196 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
197 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
198 "Non-buffered flash (64kB)"},
199 /* Fast EEPROM */
200 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
201 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
202 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
203 "EEPROM - fast"},
204 /* Expansion entry 1001 */
205 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
206 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
208 "Entry 1001"},
209 /* Expansion entry 1010 */
210 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
211 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 "Entry 1010"},
214 /* ATMEL AT45DB011B (buffered flash) */
215 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
216 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
217 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
218 "Buffered flash (128kB)"},
219 /* Expansion entry 1100 */
220 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
221 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
222 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
223 "Entry 1100"},
224 /* Expansion entry 1101 */
225 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
226 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
228 "Entry 1101"},
229 /* Ateml Expansion entry 1110 */
230 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
231 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
232 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
233 "Entry 1110 (Atmel)"},
234 /* ATMEL AT45DB021B (buffered flash) */
235 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
236 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
237 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
238 "Buffered flash (256kB)"},
239 };
240
241 /****************************************************************************/
242 /* OpenBSD device entry points. */
243 /****************************************************************************/
244 static int bnx_probe(device_t, cfdata_t, void *);
245 void bnx_attach(struct device *, struct device *, void *);
246 #if 0
247 void bnx_detach(void *);
248 #endif
249 void bnx_shutdown(void *);
250
251 /****************************************************************************/
252 /* BNX Debug Data Structure Dump Routines */
253 /****************************************************************************/
254 #ifdef BNX_DEBUG
255 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
256 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
257 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
258 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
259 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
260 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
261 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
262 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
263 void bnx_dump_status_block(struct bnx_softc *);
264 void bnx_dump_stats_block(struct bnx_softc *);
265 void bnx_dump_driver_state(struct bnx_softc *);
266 void bnx_dump_hw_state(struct bnx_softc *);
267 void bnx_breakpoint(struct bnx_softc *);
268 #endif
269
270 /****************************************************************************/
271 /* BNX Register/Memory Access Routines */
272 /****************************************************************************/
273 u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
274 void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
275 void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
276 int bnx_miibus_read_reg(struct device *, int, int);
277 void bnx_miibus_write_reg(struct device *, int, int, int);
278 void bnx_miibus_statchg(struct device *);
279
280 /****************************************************************************/
281 /* BNX NVRAM Access Routines */
282 /****************************************************************************/
283 int bnx_acquire_nvram_lock(struct bnx_softc *);
284 int bnx_release_nvram_lock(struct bnx_softc *);
285 void bnx_enable_nvram_access(struct bnx_softc *);
286 void bnx_disable_nvram_access(struct bnx_softc *);
287 int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
288 u_int32_t);
289 int bnx_init_nvram(struct bnx_softc *);
290 int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
291 int bnx_nvram_test(struct bnx_softc *);
292 #ifdef BNX_NVRAM_WRITE_SUPPORT
293 int bnx_enable_nvram_write(struct bnx_softc *);
294 void bnx_disable_nvram_write(struct bnx_softc *);
295 int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
296 int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
297 u_int32_t);
298 int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
299 #endif
300
301 /****************************************************************************/
302 /* */
303 /****************************************************************************/
304 int bnx_dma_alloc(struct bnx_softc *);
305 void bnx_dma_free(struct bnx_softc *);
306 void bnx_release_resources(struct bnx_softc *);
307
308 /****************************************************************************/
309 /* BNX Firmware Synchronization and Load */
310 /****************************************************************************/
311 int bnx_fw_sync(struct bnx_softc *, u_int32_t);
312 void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
313 u_int32_t);
314 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
315 struct fw_info *);
316 void bnx_init_cpus(struct bnx_softc *);
317
318 void bnx_stop(struct bnx_softc *);
319 int bnx_reset(struct bnx_softc *, u_int32_t);
320 int bnx_chipinit(struct bnx_softc *);
321 int bnx_blockinit(struct bnx_softc *);
322 int bnx_get_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
323 u_int16_t *, u_int32_t *);
324
325 int bnx_init_tx_chain(struct bnx_softc *);
326 int bnx_init_rx_chain(struct bnx_softc *);
327 void bnx_free_rx_chain(struct bnx_softc *);
328 void bnx_free_tx_chain(struct bnx_softc *);
329
330 int bnx_tx_encap(struct bnx_softc *, struct mbuf **);
331 void bnx_start(struct ifnet *);
332 int bnx_ioctl(struct ifnet *, u_long, void *);
333 void bnx_watchdog(struct ifnet *);
334 int bnx_ifmedia_upd(struct ifnet *);
335 void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
336 int bnx_init(struct ifnet *);
337
338 void bnx_init_context(struct bnx_softc *);
339 void bnx_get_mac_addr(struct bnx_softc *);
340 void bnx_set_mac_addr(struct bnx_softc *);
341 void bnx_phy_intr(struct bnx_softc *);
342 void bnx_rx_intr(struct bnx_softc *);
343 void bnx_tx_intr(struct bnx_softc *);
344 void bnx_disable_intr(struct bnx_softc *);
345 void bnx_enable_intr(struct bnx_softc *);
346
347 int bnx_intr(void *);
348 void bnx_set_rx_mode(struct bnx_softc *);
349 void bnx_stats_update(struct bnx_softc *);
350 void bnx_tick(void *);
351
352 /****************************************************************************/
353 /* OpenBSD device dispatch table. */
354 /****************************************************************************/
355 CFATTACH_DECL(bnx, sizeof(struct bnx_softc),
356 bnx_probe, bnx_attach, NULL, NULL);
357
358 /****************************************************************************/
359 /* Device probe function. */
360 /* */
361 /* Compares the device to the driver's list of supported devices and */
362 /* reports back to the OS whether this is the right driver for the device. */
363 /* */
364 /* Returns: */
365 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
366 /****************************************************************************/
367 static const struct bnx_product *
368 bnx_lookup(const struct pci_attach_args *pa)
369 {
370 int i;
371 pcireg_t subid;
372
373 for (i = 0; i < sizeof(bnx_devices)/sizeof(struct bnx_product); i++) {
374 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
375 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
376 continue;
377 if (!bnx_devices[i].bp_subvendor)
378 return &bnx_devices[i];
379 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
380 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
381 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
382 return &bnx_devices[i];
383 }
384
385 return NULL;
386 }
387 static int
388 bnx_probe(device_t parent, cfdata_t match, void *aux)
389 {
390 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
391
392 if (bnx_lookup(pa) != NULL)
393 return (1);
394
395 return (0);
396 }
397
398 /****************************************************************************/
399 /* Device attach function. */
400 /* */
401 /* Allocates device resources, performs secondary chip identification, */
402 /* resets and initializes the hardware, and initializes driver instance */
403 /* variables. */
404 /* */
405 /* Returns: */
406 /* 0 on success, positive value on failure. */
407 /****************************************************************************/
408 void
409 bnx_attach(struct device *parent, struct device *self, void *aux)
410 {
411 const struct bnx_product *bp;
412 struct bnx_softc *sc = (struct bnx_softc *)self;
413 struct pci_attach_args *pa = aux;
414 pci_chipset_tag_t pc = pa->pa_pc;
415 pci_intr_handle_t ih;
416 const char *intrstr = NULL;
417 u_int32_t command;
418 struct ifnet *ifp;
419 u_int32_t val;
420 pcireg_t memtype;
421
422 bp = bnx_lookup(pa);
423 if (bp == NULL)
424 panic("unknown device");
425
426 aprint_naive("\n");
427 aprint_normal(": %s\n", bp->bp_name);
428
429 sc->bnx_pa = *pa;
430
431 /*
432 * Map control/status registers.
433 */
434 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
435 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
436 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
437 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
438
439 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
440 aprint_error("%s: failed to enable memory mapping!\n",
441 sc->bnx_dev.dv_xname);
442 return;
443 }
444
445 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
446 switch (memtype) {
447 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
448 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
449 if (pci_mapreg_map(pa, BNX_PCI_BAR0,
450 memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
451 NULL, &sc->bnx_size) == 0)
452 break;
453 default:
454 aprint_error("%s: can't find mem space\n",
455 sc->bnx_dev.dv_xname);
456 return;
457 }
458
459 if (pci_intr_map(pa, &ih)) {
460 aprint_error("%s: couldn't map interrupt\n",
461 sc->bnx_dev.dv_xname);
462 goto bnx_attach_fail;
463 }
464
465 intrstr = pci_intr_string(pc, ih);
466
467 /*
468 * Configure byte swap and enable indirect register access.
469 * Rely on CPU to do target byte swapping on big endian systems.
470 * Access to registers outside of PCI configurtion space are not
471 * valid until this is done.
472 */
473 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
474 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
475 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
476
477 /* Save ASIC revsion info. */
478 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
479
480 /* Weed out any non-production controller revisions. */
481 switch(BNX_CHIP_ID(sc)) {
482 case BNX_CHIP_ID_5706_A0:
483 case BNX_CHIP_ID_5706_A1:
484 case BNX_CHIP_ID_5708_A0:
485 case BNX_CHIP_ID_5708_B0:
486 aprint_error("%s: unsupported controller revision (%c%d)!\n",
487 sc->bnx_dev.dv_xname,
488 ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
489 PCI_REVISION(pa->pa_class) & 0x0f);
490 goto bnx_attach_fail;
491 }
492
493 if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
494 aprint_error("%s: SerDes controllers are not supported!\n",
495 sc->bnx_dev.dv_xname);
496 goto bnx_attach_fail;
497 }
498
499 /*
500 * Find the base address for shared memory access.
501 * Newer versions of bootcode use a signature and offset
502 * while older versions use a fixed address.
503 */
504 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
505 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
506 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
507 else
508 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
509
510 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
511
512 /* Set initial device and PHY flags */
513 sc->bnx_flags = 0;
514 sc->bnx_phy_flags = 0;
515
516 /* Get PCI bus information (speed and type). */
517 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
518 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
519 u_int32_t clkreg;
520
521 sc->bnx_flags |= BNX_PCIX_FLAG;
522
523 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
524
525 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
526 switch (clkreg) {
527 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
528 sc->bus_speed_mhz = 133;
529 break;
530
531 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
532 sc->bus_speed_mhz = 100;
533 break;
534
535 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
536 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
537 sc->bus_speed_mhz = 66;
538 break;
539
540 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
541 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
542 sc->bus_speed_mhz = 50;
543 break;
544
545 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
546 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
547 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
548 sc->bus_speed_mhz = 33;
549 break;
550 }
551 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
552 sc->bus_speed_mhz = 66;
553 else
554 sc->bus_speed_mhz = 33;
555
556 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
557 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
558
559 /* Reset the controller. */
560 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
561 goto bnx_attach_fail;
562
563 /* Initialize the controller. */
564 if (bnx_chipinit(sc)) {
565 aprint_error("%s: Controller initialization failed!\n",
566 sc->bnx_dev.dv_xname);
567 goto bnx_attach_fail;
568 }
569
570 /* Perform NVRAM test. */
571 if (bnx_nvram_test(sc)) {
572 aprint_error("%s: NVRAM test failed!\n", sc->bnx_dev.dv_xname);
573 goto bnx_attach_fail;
574 }
575
576 /* Fetch the permanent Ethernet MAC address. */
577 bnx_get_mac_addr(sc);
578 aprint_normal("%s: Ethernet address %s\n", sc->bnx_dev.dv_xname,
579 ether_sprintf(sc->eaddr));
580
581 /*
582 * Trip points control how many BDs
583 * should be ready before generating an
584 * interrupt while ticks control how long
585 * a BD can sit in the chain before
586 * generating an interrupt. Set the default
587 * values for the RX and TX rings.
588 */
589
590 #ifdef BNX_DEBUG
591 /* Force more frequent interrupts. */
592 sc->bnx_tx_quick_cons_trip_int = 1;
593 sc->bnx_tx_quick_cons_trip = 1;
594 sc->bnx_tx_ticks_int = 0;
595 sc->bnx_tx_ticks = 0;
596
597 sc->bnx_rx_quick_cons_trip_int = 1;
598 sc->bnx_rx_quick_cons_trip = 1;
599 sc->bnx_rx_ticks_int = 0;
600 sc->bnx_rx_ticks = 0;
601 #else
602 sc->bnx_tx_quick_cons_trip_int = 20;
603 sc->bnx_tx_quick_cons_trip = 20;
604 sc->bnx_tx_ticks_int = 80;
605 sc->bnx_tx_ticks = 80;
606
607 sc->bnx_rx_quick_cons_trip_int = 6;
608 sc->bnx_rx_quick_cons_trip = 6;
609 sc->bnx_rx_ticks_int = 18;
610 sc->bnx_rx_ticks = 18;
611 #endif
612
613 /* Update statistics once every second. */
614 sc->bnx_stats_ticks = 1000000 & 0xffff00;
615
616 /*
617 * The copper based NetXtreme II controllers
618 * use an integrated PHY at address 1 while
619 * the SerDes controllers use a PHY at
620 * address 2.
621 */
622 sc->bnx_phy_addr = 1;
623
624 if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
625 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
626 sc->bnx_flags |= BNX_NO_WOL_FLAG;
627 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708) {
628 sc->bnx_phy_addr = 2;
629 val = REG_RD_IND(sc, sc->bnx_shmem_base +
630 BNX_SHARED_HW_CFG_CONFIG);
631 if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
632 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
633 }
634 }
635
636 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
637 aprint_error("%s: SerDes is not supported by this driver!\n",
638 sc->bnx_dev.dv_xname);
639 goto bnx_attach_fail;
640 }
641
642 /* Allocate DMA memory resources. */
643 sc->bnx_dmatag = pa->pa_dmat;
644 if (bnx_dma_alloc(sc)) {
645 aprint_error("%s: DMA resource allocation failed!\n",
646 sc->bnx_dev.dv_xname);
647 goto bnx_attach_fail;
648 }
649
650 /* Initialize the ifnet interface. */
651 ifp = &sc->ethercom.ec_if;
652 ifp->if_softc = sc;
653 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
654 ifp->if_ioctl = bnx_ioctl;
655 ifp->if_start = bnx_start;
656 ifp->if_init = bnx_init;
657 ifp->if_timer = 0;
658 ifp->if_watchdog = bnx_watchdog;
659 if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG)
660 ifp->if_baudrate = IF_Gbps(2.5);
661 else
662 ifp->if_baudrate = IF_Gbps(1);
663 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
664 IFQ_SET_READY(&ifp->if_snd);
665 bcopy(sc->bnx_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
666
667 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU |
668 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
669
670 ifp->if_capabilities |=
671 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
672 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
673 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
674
675 /* Hookup IRQ last. */
676 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
677 if (sc->bnx_intrhand == NULL) {
678 aprint_error("%s: couldn't establish interrupt",
679 sc->bnx_dev.dv_xname);
680 if (intrstr != NULL)
681 aprint_error(" at %s", intrstr);
682 aprint_error("\n");
683 goto bnx_attach_fail;
684 }
685
686 sc->bnx_mii.mii_ifp = ifp;
687 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
688 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
689 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
690
691 /* Look for our PHY. */
692 ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd,
693 bnx_ifmedia_sts);
694 mii_attach(&sc->bnx_dev, &sc->bnx_mii, 0xffffffff,
695 MII_PHY_ANY, MII_OFFSET_ANY, 0);
696
697 if (LIST_FIRST(&sc->bnx_mii.mii_phys) == NULL) {
698 aprint_error("%s: no PHY found!\n", sc->bnx_dev.dv_xname);
699 ifmedia_add(&sc->bnx_mii.mii_media,
700 IFM_ETHER|IFM_MANUAL, 0, NULL);
701 ifmedia_set(&sc->bnx_mii.mii_media,
702 IFM_ETHER|IFM_MANUAL);
703 } else {
704 ifmedia_set(&sc->bnx_mii.mii_media,
705 IFM_ETHER|IFM_AUTO);
706 }
707
708 /* Attach to the Ethernet interface list. */
709 if_attach(ifp);
710 ether_ifattach(ifp,sc->eaddr);
711
712 callout_init(&sc->bnx_timeout, 0);
713
714 /* Print some important debugging info. */
715 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
716
717 goto bnx_attach_exit;
718
719 bnx_attach_fail:
720 bnx_release_resources(sc);
721
722 bnx_attach_exit:
723 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
724 }
725
726 /****************************************************************************/
727 /* Device detach function. */
728 /* */
729 /* Stops the controller, resets the controller, and releases resources. */
730 /* */
731 /* Returns: */
732 /* 0 on success, positive value on failure. */
733 /****************************************************************************/
734 #if 0
735 void
736 bnx_detach(void *xsc)
737 {
738 struct bnx_softc *sc;
739 struct ifnet *ifp = &sc->arpcom.ac_if;
740
741 sc = device_get_softc(dev);
742
743 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
744
745 /* Stop and reset the controller. */
746 bnx_stop(sc);
747 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
748
749 ether_ifdetach(ifp);
750
751 /* If we have a child device on the MII bus remove it too. */
752 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
753 ifmedia_removeall(&sc->bnx_ifmedia);
754 } else {
755 bus_generic_detach(dev);
756 device_delete_child(dev, sc->bnx_mii);
757 }
758
759 /* Release all remaining resources. */
760 bnx_release_resources(sc);
761
762 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
763
764 return(0);
765 }
766 #endif
767
768 /****************************************************************************/
769 /* Device shutdown function. */
770 /* */
771 /* Stops and resets the controller. */
772 /* */
773 /* Returns: */
774 /* Nothing */
775 /****************************************************************************/
776 void
777 bnx_shutdown(void *xsc)
778 {
779 struct bnx_softc *sc = (struct bnx_softc *)xsc;
780
781 bnx_stop(sc);
782 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
783 }
784
785 /****************************************************************************/
786 /* Indirect register read. */
787 /* */
788 /* Reads NetXtreme II registers using an index/data register pair in PCI */
789 /* configuration space. Using this mechanism avoids issues with posted */
790 /* reads but is much slower than memory-mapped I/O. */
791 /* */
792 /* Returns: */
793 /* The value of the register. */
794 /****************************************************************************/
795 u_int32_t
796 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
797 {
798 struct pci_attach_args *pa = &(sc->bnx_pa);
799
800 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
801 offset);
802 #ifdef BNX_DEBUG
803 {
804 u_int32_t val;
805 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
806 BNX_PCICFG_REG_WINDOW);
807 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
808 "val = 0x%08X\n", __FUNCTION__, offset, val);
809 return (val);
810 }
811 #else
812 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
813 #endif
814 }
815
816 /****************************************************************************/
817 /* Indirect register write. */
818 /* */
819 /* Writes NetXtreme II registers using an index/data register pair in PCI */
820 /* configuration space. Using this mechanism avoids issues with posted */
821 /* writes but is muchh slower than memory-mapped I/O. */
822 /* */
823 /* Returns: */
824 /* Nothing. */
825 /****************************************************************************/
826 void
827 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
828 {
829 struct pci_attach_args *pa = &(sc->bnx_pa);
830
831 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
832 __FUNCTION__, offset, val);
833
834 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
835 offset);
836 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
837 }
838
839 /****************************************************************************/
840 /* Context memory write. */
841 /* */
842 /* The NetXtreme II controller uses context memory to track connection */
843 /* information for L2 and higher network protocols. */
844 /* */
845 /* Returns: */
846 /* Nothing. */
847 /****************************************************************************/
848 void
849 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
850 u_int32_t val)
851 {
852
853 DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
854 "val = 0x%08X\n", __FUNCTION__, cid_addr, offset, val);
855
856 offset += cid_addr;
857 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
858 REG_WR(sc, BNX_CTX_DATA, val);
859 }
860
861 /****************************************************************************/
862 /* PHY register read. */
863 /* */
864 /* Implements register reads on the MII bus. */
865 /* */
866 /* Returns: */
867 /* The value of the register. */
868 /****************************************************************************/
869 int
870 bnx_miibus_read_reg(struct device *dev, int phy, int reg)
871 {
872 struct bnx_softc *sc = (struct bnx_softc *)dev;
873 u_int32_t val;
874 int i;
875
876 /* Make sure we are accessing the correct PHY address. */
877 if (phy != sc->bnx_phy_addr) {
878 DBPRINT(sc, BNX_VERBOSE,
879 "Invalid PHY address %d for PHY read!\n", phy);
880 return(0);
881 }
882
883 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
884 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
885 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
886
887 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
888 REG_RD(sc, BNX_EMAC_MDIO_MODE);
889
890 DELAY(40);
891 }
892
893 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
894 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
895 BNX_EMAC_MDIO_COMM_START_BUSY;
896 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
897
898 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
899 DELAY(10);
900
901 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
902 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
903 DELAY(5);
904
905 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
906 val &= BNX_EMAC_MDIO_COMM_DATA;
907
908 break;
909 }
910 }
911
912 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
913 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
914 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
915 val = 0x0;
916 } else
917 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
918
919 DBPRINT(sc, BNX_EXCESSIVE,
920 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __FUNCTION__, phy,
921 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
922
923 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
924 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
925 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
926
927 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
928 REG_RD(sc, BNX_EMAC_MDIO_MODE);
929
930 DELAY(40);
931 }
932
933 return (val & 0xffff);
934 }
935
936 /****************************************************************************/
937 /* PHY register write. */
938 /* */
939 /* Implements register writes on the MII bus. */
940 /* */
941 /* Returns: */
942 /* The value of the register. */
943 /****************************************************************************/
944 void
945 bnx_miibus_write_reg(struct device *dev, int phy, int reg, int val)
946 {
947 struct bnx_softc *sc = (struct bnx_softc *)dev;
948 u_int32_t val1;
949 int i;
950
951 /* Make sure we are accessing the correct PHY address. */
952 if (phy != sc->bnx_phy_addr) {
953 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
954 phy);
955 return;
956 }
957
958 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
959 "val = 0x%04X\n", __FUNCTION__,
960 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
961
962 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
963 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
964 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
965
966 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
967 REG_RD(sc, BNX_EMAC_MDIO_MODE);
968
969 DELAY(40);
970 }
971
972 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
973 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
974 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
975 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
976
977 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
978 DELAY(10);
979
980 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
981 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
982 DELAY(5);
983 break;
984 }
985 }
986
987 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
988 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
989 __LINE__);
990 }
991
992 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
993 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
994 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
995
996 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
997 REG_RD(sc, BNX_EMAC_MDIO_MODE);
998
999 DELAY(40);
1000 }
1001 }
1002
1003 /****************************************************************************/
1004 /* MII bus status change. */
1005 /* */
1006 /* Called by the MII bus driver when the PHY establishes link to set the */
1007 /* MAC interface registers. */
1008 /* */
1009 /* Returns: */
1010 /* Nothing. */
1011 /****************************************************************************/
1012 void
1013 bnx_miibus_statchg(struct device *dev)
1014 {
1015 struct bnx_softc *sc = (struct bnx_softc *)dev;
1016 struct mii_data *mii = &sc->bnx_mii;
1017
1018 BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT);
1019
1020 /* Set MII or GMII inerface based on the speed negotiated by the PHY. */
1021 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
1022 DBPRINT(sc, BNX_INFO, "Setting GMII interface.\n");
1023 BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_GMII);
1024 } else {
1025 DBPRINT(sc, BNX_INFO, "Setting MII interface.\n");
1026 BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_MII);
1027 }
1028
1029 /* Set half or full duplex based on the duplicity
1030 * negotiated by the PHY.
1031 */
1032 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1033 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1034 BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
1035 } else {
1036 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1037 BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
1038 }
1039 }
1040
1041 /****************************************************************************/
1042 /* Acquire NVRAM lock. */
1043 /* */
1044 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1045 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1046 /* for use by the driver. */
1047 /* */
1048 /* Returns: */
1049 /* 0 on success, positive value on failure. */
1050 /****************************************************************************/
1051 int
1052 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1053 {
1054 u_int32_t val;
1055 int j;
1056
1057 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1058
1059 /* Request access to the flash interface. */
1060 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1061 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1062 val = REG_RD(sc, BNX_NVM_SW_ARB);
1063 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1064 break;
1065
1066 DELAY(5);
1067 }
1068
1069 if (j >= NVRAM_TIMEOUT_COUNT) {
1070 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1071 return (EBUSY);
1072 }
1073
1074 return (0);
1075 }
1076
1077 /****************************************************************************/
1078 /* Release NVRAM lock. */
1079 /* */
1080 /* When the caller is finished accessing NVRAM the lock must be released. */
1081 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1082 /* for use by the driver. */
1083 /* */
1084 /* Returns: */
1085 /* 0 on success, positive value on failure. */
1086 /****************************************************************************/
1087 int
1088 bnx_release_nvram_lock(struct bnx_softc *sc)
1089 {
1090 int j;
1091 u_int32_t val;
1092
1093 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1094
1095 /* Relinquish nvram interface. */
1096 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1097
1098 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1099 val = REG_RD(sc, BNX_NVM_SW_ARB);
1100 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1101 break;
1102
1103 DELAY(5);
1104 }
1105
1106 if (j >= NVRAM_TIMEOUT_COUNT) {
1107 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1108 return (EBUSY);
1109 }
1110
1111 return (0);
1112 }
1113
1114 #ifdef BNX_NVRAM_WRITE_SUPPORT
1115 /****************************************************************************/
1116 /* Enable NVRAM write access. */
1117 /* */
1118 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1119 /* */
1120 /* Returns: */
1121 /* 0 on success, positive value on failure. */
1122 /****************************************************************************/
1123 int
1124 bnx_enable_nvram_write(struct bnx_softc *sc)
1125 {
1126 u_int32_t val;
1127
1128 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1129
1130 val = REG_RD(sc, BNX_MISC_CFG);
1131 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1132
1133 if (!sc->bnx_flash_info->buffered) {
1134 int j;
1135
1136 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1137 REG_WR(sc, BNX_NVM_COMMAND,
1138 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1139
1140 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1141 DELAY(5);
1142
1143 val = REG_RD(sc, BNX_NVM_COMMAND);
1144 if (val & BNX_NVM_COMMAND_DONE)
1145 break;
1146 }
1147
1148 if (j >= NVRAM_TIMEOUT_COUNT) {
1149 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1150 return (EBUSY);
1151 }
1152 }
1153
1154 return (0);
1155 }
1156
1157 /****************************************************************************/
1158 /* Disable NVRAM write access. */
1159 /* */
1160 /* When the caller is finished writing to NVRAM write access must be */
1161 /* disabled. */
1162 /* */
1163 /* Returns: */
1164 /* Nothing. */
1165 /****************************************************************************/
1166 void
1167 bnx_disable_nvram_write(struct bnx_softc *sc)
1168 {
1169 u_int32_t val;
1170
1171 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1172
1173 val = REG_RD(sc, BNX_MISC_CFG);
1174 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1175 }
1176 #endif
1177
1178 /****************************************************************************/
1179 /* Enable NVRAM access. */
1180 /* */
1181 /* Before accessing NVRAM for read or write operations the caller must */
1182 /* enabled NVRAM access. */
1183 /* */
1184 /* Returns: */
1185 /* Nothing. */
1186 /****************************************************************************/
1187 void
1188 bnx_enable_nvram_access(struct bnx_softc *sc)
1189 {
1190 u_int32_t val;
1191
1192 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1193
1194 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1195 /* Enable both bits, even on read. */
1196 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1197 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1198 }
1199
1200 /****************************************************************************/
1201 /* Disable NVRAM access. */
1202 /* */
1203 /* When the caller is finished accessing NVRAM access must be disabled. */
1204 /* */
1205 /* Returns: */
1206 /* Nothing. */
1207 /****************************************************************************/
1208 void
1209 bnx_disable_nvram_access(struct bnx_softc *sc)
1210 {
1211 u_int32_t val;
1212
1213 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1214
1215 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1216
1217 /* Disable both bits, even after read. */
1218 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1219 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1220 }
1221
1222 #ifdef BNX_NVRAM_WRITE_SUPPORT
1223 /****************************************************************************/
1224 /* Erase NVRAM page before writing. */
1225 /* */
1226 /* Non-buffered flash parts require that a page be erased before it is */
1227 /* written. */
1228 /* */
1229 /* Returns: */
1230 /* 0 on success, positive value on failure. */
1231 /****************************************************************************/
1232 int
1233 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1234 {
1235 u_int32_t cmd;
1236 int j;
1237
1238 /* Buffered flash doesn't require an erase. */
1239 if (sc->bnx_flash_info->buffered)
1240 return (0);
1241
1242 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1243
1244 /* Build an erase command. */
1245 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1246 BNX_NVM_COMMAND_DOIT;
1247
1248 /*
1249 * Clear the DONE bit separately, set the NVRAM adress to erase,
1250 * and issue the erase command.
1251 */
1252 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1253 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1254 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1255
1256 /* Wait for completion. */
1257 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1258 u_int32_t val;
1259
1260 DELAY(5);
1261
1262 val = REG_RD(sc, BNX_NVM_COMMAND);
1263 if (val & BNX_NVM_COMMAND_DONE)
1264 break;
1265 }
1266
1267 if (j >= NVRAM_TIMEOUT_COUNT) {
1268 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1269 return (EBUSY);
1270 }
1271
1272 return (0);
1273 }
1274 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1275
1276 /****************************************************************************/
1277 /* Read a dword (32 bits) from NVRAM. */
1278 /* */
1279 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1280 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1281 /* */
1282 /* Returns: */
1283 /* 0 on success and the 32 bit value read, positive value on failure. */
1284 /****************************************************************************/
1285 int
1286 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1287 u_int8_t *ret_val, u_int32_t cmd_flags)
1288 {
1289 u_int32_t cmd;
1290 int i, rc = 0;
1291
1292 /* Build the command word. */
1293 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1294
1295 /* Calculate the offset for buffered flash. */
1296 if (sc->bnx_flash_info->buffered)
1297 offset = ((offset / sc->bnx_flash_info->page_size) <<
1298 sc->bnx_flash_info->page_bits) +
1299 (offset % sc->bnx_flash_info->page_size);
1300
1301 /*
1302 * Clear the DONE bit separately, set the address to read,
1303 * and issue the read.
1304 */
1305 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1306 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1307 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1308
1309 /* Wait for completion. */
1310 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1311 u_int32_t val;
1312
1313 DELAY(5);
1314
1315 val = REG_RD(sc, BNX_NVM_COMMAND);
1316 if (val & BNX_NVM_COMMAND_DONE) {
1317 val = REG_RD(sc, BNX_NVM_READ);
1318
1319 val = bnx_be32toh(val);
1320 memcpy(ret_val, &val, 4);
1321 break;
1322 }
1323 }
1324
1325 /* Check for errors. */
1326 if (i >= NVRAM_TIMEOUT_COUNT) {
1327 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1328 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1329 rc = EBUSY;
1330 }
1331
1332 return(rc);
1333 }
1334
1335 #ifdef BNX_NVRAM_WRITE_SUPPORT
1336 /****************************************************************************/
1337 /* Write a dword (32 bits) to NVRAM. */
1338 /* */
1339 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1340 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1341 /* enabled NVRAM write access. */
1342 /* */
1343 /* Returns: */
1344 /* 0 on success, positive value on failure. */
1345 /****************************************************************************/
1346 int
1347 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1348 u_int32_t cmd_flags)
1349 {
1350 u_int32_t cmd, val32;
1351 int j;
1352
1353 /* Build the command word. */
1354 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1355
1356 /* Calculate the offset for buffered flash. */
1357 if (sc->bnx_flash_info->buffered)
1358 offset = ((offset / sc->bnx_flash_info->page_size) <<
1359 sc->bnx_flash_info->page_bits) +
1360 (offset % sc->bnx_flash_info->page_size);
1361
1362 /*
1363 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1364 * set the NVRAM address to write, and issue the write command
1365 */
1366 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1367 memcpy(&val32, val, 4);
1368 val32 = htobe32(val32);
1369 REG_WR(sc, BNX_NVM_WRITE, val32);
1370 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1371 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1372
1373 /* Wait for completion. */
1374 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1375 DELAY(5);
1376
1377 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1378 break;
1379 }
1380 if (j >= NVRAM_TIMEOUT_COUNT) {
1381 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1382 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1383 return (EBUSY);
1384 }
1385
1386 return (0);
1387 }
1388 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1389
1390 /****************************************************************************/
1391 /* Initialize NVRAM access. */
1392 /* */
1393 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1394 /* access that device. */
1395 /* */
1396 /* Returns: */
1397 /* 0 on success, positive value on failure. */
1398 /****************************************************************************/
1399 int
1400 bnx_init_nvram(struct bnx_softc *sc)
1401 {
1402 u_int32_t val;
1403 int j, entry_count, rc;
1404 struct flash_spec *flash;
1405
1406 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
1407
1408 /* Determine the selected interface. */
1409 val = REG_RD(sc, BNX_NVM_CFG1);
1410
1411 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1412
1413 rc = 0;
1414
1415 /*
1416 * Flash reconfiguration is required to support additional
1417 * NVRAM devices not directly supported in hardware.
1418 * Check if the flash interface was reconfigured
1419 * by the bootcode.
1420 */
1421
1422 if (val & 0x40000000) {
1423 /* Flash interface reconfigured by bootcode. */
1424
1425 DBPRINT(sc,BNX_INFO_LOAD,
1426 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1427
1428 for (j = 0, flash = &flash_table[0]; j < entry_count;
1429 j++, flash++) {
1430 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1431 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1432 sc->bnx_flash_info = flash;
1433 break;
1434 }
1435 }
1436 } else {
1437 /* Flash interface not yet reconfigured. */
1438 u_int32_t mask;
1439
1440 DBPRINT(sc,BNX_INFO_LOAD,
1441 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1442
1443 if (val & (1 << 23))
1444 mask = FLASH_BACKUP_STRAP_MASK;
1445 else
1446 mask = FLASH_STRAP_MASK;
1447
1448 /* Look for the matching NVRAM device configuration data. */
1449 for (j = 0, flash = &flash_table[0]; j < entry_count;
1450 j++, flash++) {
1451 /* Check if the dev matches any of the known devices. */
1452 if ((val & mask) == (flash->strapping & mask)) {
1453 /* Found a device match. */
1454 sc->bnx_flash_info = flash;
1455
1456 /* Request access to the flash interface. */
1457 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1458 return (rc);
1459
1460 /* Reconfigure the flash interface. */
1461 bnx_enable_nvram_access(sc);
1462 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1463 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1464 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1465 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1466 bnx_disable_nvram_access(sc);
1467 bnx_release_nvram_lock(sc);
1468
1469 break;
1470 }
1471 }
1472 }
1473
1474 /* Check if a matching device was found. */
1475 if (j == entry_count) {
1476 sc->bnx_flash_info = NULL;
1477 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1478 __FILE__, __LINE__);
1479 rc = ENODEV;
1480 }
1481
1482 /* Write the flash config data to the shared memory interface. */
1483 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1484 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1485 if (val)
1486 sc->bnx_flash_size = val;
1487 else
1488 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1489
1490 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1491 "0x%08X\n", sc->bnx_flash_info->total_size);
1492
1493 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
1494
1495 return (rc);
1496 }
1497
1498 /****************************************************************************/
1499 /* Read an arbitrary range of data from NVRAM. */
1500 /* */
1501 /* Prepares the NVRAM interface for access and reads the requested data */
1502 /* into the supplied buffer. */
1503 /* */
1504 /* Returns: */
1505 /* 0 on success and the data read, positive value on failure. */
1506 /****************************************************************************/
1507 int
1508 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1509 int buf_size)
1510 {
1511 int rc = 0;
1512 u_int32_t cmd_flags, offset32, len32, extra;
1513
1514 if (buf_size == 0)
1515 return (0);
1516
1517 /* Request access to the flash interface. */
1518 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1519 return (rc);
1520
1521 /* Enable access to flash interface */
1522 bnx_enable_nvram_access(sc);
1523
1524 len32 = buf_size;
1525 offset32 = offset;
1526 extra = 0;
1527
1528 cmd_flags = 0;
1529
1530 if (offset32 & 3) {
1531 u_int8_t buf[4];
1532 u_int32_t pre_len;
1533
1534 offset32 &= ~3;
1535 pre_len = 4 - (offset & 3);
1536
1537 if (pre_len >= len32) {
1538 pre_len = len32;
1539 cmd_flags =
1540 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1541 } else
1542 cmd_flags = BNX_NVM_COMMAND_FIRST;
1543
1544 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1545
1546 if (rc)
1547 return (rc);
1548
1549 memcpy(ret_buf, buf + (offset & 3), pre_len);
1550
1551 offset32 += 4;
1552 ret_buf += pre_len;
1553 len32 -= pre_len;
1554 }
1555
1556 if (len32 & 3) {
1557 extra = 4 - (len32 & 3);
1558 len32 = (len32 + 4) & ~3;
1559 }
1560
1561 if (len32 == 4) {
1562 u_int8_t buf[4];
1563
1564 if (cmd_flags)
1565 cmd_flags = BNX_NVM_COMMAND_LAST;
1566 else
1567 cmd_flags =
1568 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1569
1570 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1571
1572 memcpy(ret_buf, buf, 4 - extra);
1573 } else if (len32 > 0) {
1574 u_int8_t buf[4];
1575
1576 /* Read the first word. */
1577 if (cmd_flags)
1578 cmd_flags = 0;
1579 else
1580 cmd_flags = BNX_NVM_COMMAND_FIRST;
1581
1582 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1583
1584 /* Advance to the next dword. */
1585 offset32 += 4;
1586 ret_buf += 4;
1587 len32 -= 4;
1588
1589 while (len32 > 4 && rc == 0) {
1590 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1591
1592 /* Advance to the next dword. */
1593 offset32 += 4;
1594 ret_buf += 4;
1595 len32 -= 4;
1596 }
1597
1598 if (rc)
1599 return (rc);
1600
1601 cmd_flags = BNX_NVM_COMMAND_LAST;
1602 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1603
1604 memcpy(ret_buf, buf, 4 - extra);
1605 }
1606
1607 /* Disable access to flash interface and release the lock. */
1608 bnx_disable_nvram_access(sc);
1609 bnx_release_nvram_lock(sc);
1610
1611 return (rc);
1612 }
1613
1614 #ifdef BNX_NVRAM_WRITE_SUPPORT
1615 /****************************************************************************/
1616 /* Write an arbitrary range of data from NVRAM. */
1617 /* */
1618 /* Prepares the NVRAM interface for write access and writes the requested */
1619 /* data from the supplied buffer. The caller is responsible for */
1620 /* calculating any appropriate CRCs. */
1621 /* */
1622 /* Returns: */
1623 /* 0 on success, positive value on failure. */
1624 /****************************************************************************/
1625 int
1626 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1627 int buf_size)
1628 {
1629 u_int32_t written, offset32, len32;
1630 u_int8_t *buf, start[4], end[4];
1631 int rc = 0;
1632 int align_start, align_end;
1633
1634 buf = data_buf;
1635 offset32 = offset;
1636 len32 = buf_size;
1637 align_start = align_end = 0;
1638
1639 if ((align_start = (offset32 & 3))) {
1640 offset32 &= ~3;
1641 len32 += align_start;
1642 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1643 return (rc);
1644 }
1645
1646 if (len32 & 3) {
1647 if ((len32 > 4) || !align_start) {
1648 align_end = 4 - (len32 & 3);
1649 len32 += align_end;
1650 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1651 end, 4))) {
1652 return (rc);
1653 }
1654 }
1655 }
1656
1657 if (align_start || align_end) {
1658 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1659 if (buf == 0)
1660 return (ENOMEM);
1661
1662 if (align_start)
1663 memcpy(buf, start, 4);
1664
1665 if (align_end)
1666 memcpy(buf + len32 - 4, end, 4);
1667
1668 memcpy(buf + align_start, data_buf, buf_size);
1669 }
1670
1671 written = 0;
1672 while ((written < len32) && (rc == 0)) {
1673 u_int32_t page_start, page_end, data_start, data_end;
1674 u_int32_t addr, cmd_flags;
1675 int i;
1676 u_int8_t flash_buffer[264];
1677
1678 /* Find the page_start addr */
1679 page_start = offset32 + written;
1680 page_start -= (page_start % sc->bnx_flash_info->page_size);
1681 /* Find the page_end addr */
1682 page_end = page_start + sc->bnx_flash_info->page_size;
1683 /* Find the data_start addr */
1684 data_start = (written == 0) ? offset32 : page_start;
1685 /* Find the data_end addr */
1686 data_end = (page_end > offset32 + len32) ?
1687 (offset32 + len32) : page_end;
1688
1689 /* Request access to the flash interface. */
1690 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1691 goto nvram_write_end;
1692
1693 /* Enable access to flash interface */
1694 bnx_enable_nvram_access(sc);
1695
1696 cmd_flags = BNX_NVM_COMMAND_FIRST;
1697 if (sc->bnx_flash_info->buffered == 0) {
1698 int j;
1699
1700 /* Read the whole page into the buffer
1701 * (non-buffer flash only) */
1702 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1703 if (j == (sc->bnx_flash_info->page_size - 4))
1704 cmd_flags |= BNX_NVM_COMMAND_LAST;
1705
1706 rc = bnx_nvram_read_dword(sc,
1707 page_start + j,
1708 &flash_buffer[j],
1709 cmd_flags);
1710
1711 if (rc)
1712 goto nvram_write_end;
1713
1714 cmd_flags = 0;
1715 }
1716 }
1717
1718 /* Enable writes to flash interface (unlock write-protect) */
1719 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1720 goto nvram_write_end;
1721
1722 /* Erase the page */
1723 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1724 goto nvram_write_end;
1725
1726 /* Re-enable the write again for the actual write */
1727 bnx_enable_nvram_write(sc);
1728
1729 /* Loop to write back the buffer data from page_start to
1730 * data_start */
1731 i = 0;
1732 if (sc->bnx_flash_info->buffered == 0) {
1733 for (addr = page_start; addr < data_start;
1734 addr += 4, i += 4) {
1735
1736 rc = bnx_nvram_write_dword(sc, addr,
1737 &flash_buffer[i], cmd_flags);
1738
1739 if (rc != 0)
1740 goto nvram_write_end;
1741
1742 cmd_flags = 0;
1743 }
1744 }
1745
1746 /* Loop to write the new data from data_start to data_end */
1747 for (addr = data_start; addr < data_end; addr += 4, i++) {
1748 if ((addr == page_end - 4) ||
1749 ((sc->bnx_flash_info->buffered) &&
1750 (addr == data_end - 4))) {
1751
1752 cmd_flags |= BNX_NVM_COMMAND_LAST;
1753 }
1754
1755 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1756
1757 if (rc != 0)
1758 goto nvram_write_end;
1759
1760 cmd_flags = 0;
1761 buf += 4;
1762 }
1763
1764 /* Loop to write back the buffer data from data_end
1765 * to page_end */
1766 if (sc->bnx_flash_info->buffered == 0) {
1767 for (addr = data_end; addr < page_end;
1768 addr += 4, i += 4) {
1769
1770 if (addr == page_end-4)
1771 cmd_flags = BNX_NVM_COMMAND_LAST;
1772
1773 rc = bnx_nvram_write_dword(sc, addr,
1774 &flash_buffer[i], cmd_flags);
1775
1776 if (rc != 0)
1777 goto nvram_write_end;
1778
1779 cmd_flags = 0;
1780 }
1781 }
1782
1783 /* Disable writes to flash interface (lock write-protect) */
1784 bnx_disable_nvram_write(sc);
1785
1786 /* Disable access to flash interface */
1787 bnx_disable_nvram_access(sc);
1788 bnx_release_nvram_lock(sc);
1789
1790 /* Increment written */
1791 written += data_end - data_start;
1792 }
1793
1794 nvram_write_end:
1795 if (align_start || align_end)
1796 free(buf, M_DEVBUF);
1797
1798 return (rc);
1799 }
1800 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1801
1802 /****************************************************************************/
1803 /* Verifies that NVRAM is accessible and contains valid data. */
1804 /* */
1805 /* Reads the configuration data from NVRAM and verifies that the CRC is */
1806 /* correct. */
1807 /* */
1808 /* Returns: */
1809 /* 0 on success, positive value on failure. */
1810 /****************************************************************************/
1811 int
1812 bnx_nvram_test(struct bnx_softc *sc)
1813 {
1814 u_int32_t buf[BNX_NVRAM_SIZE / 4];
1815 u_int8_t *data = (u_int8_t *) buf;
1816 int rc = 0;
1817 u_int32_t magic, csum;
1818
1819 /*
1820 * Check that the device NVRAM is valid by reading
1821 * the magic value at offset 0.
1822 */
1823 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1824 goto bnx_nvram_test_done;
1825
1826 magic = bnx_be32toh(buf[0]);
1827 if (magic != BNX_NVRAM_MAGIC) {
1828 rc = ENODEV;
1829 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1830 "Expected: 0x%08X, Found: 0x%08X\n",
1831 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1832 goto bnx_nvram_test_done;
1833 }
1834
1835 /*
1836 * Verify that the device NVRAM includes valid
1837 * configuration data.
1838 */
1839 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1840 goto bnx_nvram_test_done;
1841
1842 csum = ether_crc32_le(data, 0x100);
1843 if (csum != BNX_CRC32_RESIDUAL) {
1844 rc = ENODEV;
1845 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1846 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1847 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1848 goto bnx_nvram_test_done;
1849 }
1850
1851 csum = ether_crc32_le(data + 0x100, 0x100);
1852 if (csum != BNX_CRC32_RESIDUAL) {
1853 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1854 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1855 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1856 rc = ENODEV;
1857 }
1858
1859 bnx_nvram_test_done:
1860 return (rc);
1861 }
1862
1863 /****************************************************************************/
1864 /* Free any DMA memory owned by the driver. */
1865 /* */
1866 /* Scans through each data structre that requires DMA memory and frees */
1867 /* the memory if allocated. */
1868 /* */
1869 /* Returns: */
1870 /* Nothing. */
1871 /****************************************************************************/
1872 void
1873 bnx_dma_free(struct bnx_softc *sc)
1874 {
1875 int i;
1876
1877 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
1878
1879 /* Destroy the status block. */
1880 if (sc->status_block != NULL && sc->status_map != NULL) {
1881 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
1882 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
1883 BNX_STATUS_BLK_SZ);
1884 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
1885 sc->status_rseg);
1886 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
1887 sc->status_block = NULL;
1888 sc->status_map = NULL;
1889 }
1890
1891 /* Destroy the statistics block. */
1892 if (sc->stats_block != NULL && sc->stats_map != NULL) {
1893 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
1894 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
1895 BNX_STATS_BLK_SZ);
1896 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
1897 sc->stats_rseg);
1898 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
1899 sc->stats_block = NULL;
1900 sc->stats_map = NULL;
1901 }
1902
1903 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
1904 for (i = 0; i < TX_PAGES; i++ ) {
1905 if (sc->tx_bd_chain[i] != NULL &&
1906 sc->tx_bd_chain_map[i] != NULL) {
1907 bus_dmamap_unload(sc->bnx_dmatag,
1908 sc->tx_bd_chain_map[i]);
1909 bus_dmamem_unmap(sc->bnx_dmatag,
1910 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
1911 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
1912 sc->tx_bd_chain_rseg[i]);
1913 bus_dmamap_destroy(sc->bnx_dmatag,
1914 sc->tx_bd_chain_map[i]);
1915 sc->tx_bd_chain[i] = NULL;
1916 sc->tx_bd_chain_map[i] = NULL;
1917 }
1918 }
1919
1920 /* Unload and destroy the TX mbuf maps. */
1921 for (i = 0; i < TOTAL_TX_BD; i++) {
1922 if (sc->tx_mbuf_map[i] != NULL) {
1923 bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1924 bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1925 }
1926 }
1927
1928 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
1929 for (i = 0; i < RX_PAGES; i++ ) {
1930 if (sc->rx_bd_chain[i] != NULL &&
1931 sc->rx_bd_chain_map[i] != NULL) {
1932 bus_dmamap_unload(sc->bnx_dmatag,
1933 sc->rx_bd_chain_map[i]);
1934 bus_dmamem_unmap(sc->bnx_dmatag,
1935 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
1936 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
1937 sc->rx_bd_chain_rseg[i]);
1938
1939 bus_dmamap_destroy(sc->bnx_dmatag,
1940 sc->rx_bd_chain_map[i]);
1941 sc->rx_bd_chain[i] = NULL;
1942 sc->rx_bd_chain_map[i] = NULL;
1943 }
1944 }
1945
1946 /* Unload and destroy the RX mbuf maps. */
1947 for (i = 0; i < TOTAL_RX_BD; i++) {
1948 if (sc->rx_mbuf_map[i] != NULL) {
1949 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1950 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1951 }
1952 }
1953
1954 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
1955 }
1956
1957 /****************************************************************************/
1958 /* Allocate any DMA memory needed by the driver. */
1959 /* */
1960 /* Allocates DMA memory needed for the various global structures needed by */
1961 /* hardware. */
1962 /* */
1963 /* Returns: */
1964 /* 0 for success, positive value for failure. */
1965 /****************************************************************************/
1966 int
1967 bnx_dma_alloc(struct bnx_softc *sc)
1968 {
1969 int i, rc = 0;
1970
1971 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
1972
1973 /*
1974 * Allocate DMA memory for the status block, map the memory into DMA
1975 * space, and fetch the physical address of the block.
1976 */
1977 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
1978 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
1979 aprint_error("%s: Could not create status block DMA map!\n",
1980 sc->bnx_dev.dv_xname);
1981 rc = ENOMEM;
1982 goto bnx_dma_alloc_exit;
1983 }
1984
1985 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
1986 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
1987 &sc->status_rseg, BUS_DMA_NOWAIT)) {
1988 aprint_error(
1989 "%s: Could not allocate status block DMA memory!\n",
1990 sc->bnx_dev.dv_xname);
1991 rc = ENOMEM;
1992 goto bnx_dma_alloc_exit;
1993 }
1994
1995 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
1996 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
1997 aprint_error("%s: Could not map status block DMA memory!\n",
1998 sc->bnx_dev.dv_xname);
1999 rc = ENOMEM;
2000 goto bnx_dma_alloc_exit;
2001 }
2002
2003 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2004 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2005 aprint_error("%s: Could not load status block DMA memory!\n",
2006 sc->bnx_dev.dv_xname);
2007 rc = ENOMEM;
2008 goto bnx_dma_alloc_exit;
2009 }
2010
2011 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2012 bzero(sc->status_block, BNX_STATUS_BLK_SZ);
2013
2014 /* DRC - Fix for 64 bit addresses. */
2015 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2016 (u_int32_t) sc->status_block_paddr);
2017
2018 /*
2019 * Allocate DMA memory for the statistics block, map the memory into
2020 * DMA space, and fetch the physical address of the block.
2021 */
2022 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2023 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2024 aprint_error("%s: Could not create stats block DMA map!\n",
2025 sc->bnx_dev.dv_xname);
2026 rc = ENOMEM;
2027 goto bnx_dma_alloc_exit;
2028 }
2029
2030 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2031 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2032 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2033 aprint_error("%s: Could not allocate stats block DMA memory!\n",
2034 sc->bnx_dev.dv_xname);
2035 rc = ENOMEM;
2036 goto bnx_dma_alloc_exit;
2037 }
2038
2039 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2040 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2041 aprint_error("%s: Could not map stats block DMA memory!\n",
2042 sc->bnx_dev.dv_xname);
2043 rc = ENOMEM;
2044 goto bnx_dma_alloc_exit;
2045 }
2046
2047 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2048 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2049 aprint_error("%s: Could not load status block DMA memory!\n",
2050 sc->bnx_dev.dv_xname);
2051 rc = ENOMEM;
2052 goto bnx_dma_alloc_exit;
2053 }
2054
2055 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2056 bzero(sc->stats_block, BNX_STATS_BLK_SZ);
2057
2058 /* DRC - Fix for 64 bit address. */
2059 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2060 (u_int32_t) sc->stats_block_paddr);
2061
2062 /*
2063 * Allocate DMA memory for the TX buffer descriptor chain,
2064 * and fetch the physical address of the block.
2065 */
2066 for (i = 0; i < TX_PAGES; i++) {
2067 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2068 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2069 &sc->tx_bd_chain_map[i])) {
2070 aprint_error(
2071 "%s: Could not create Tx desc %d DMA map!\n",
2072 sc->bnx_dev.dv_xname, i);
2073 rc = ENOMEM;
2074 goto bnx_dma_alloc_exit;
2075 }
2076
2077 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2078 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2079 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2080 aprint_error(
2081 "%s: Could not allocate TX desc %d DMA memory!\n",
2082 sc->bnx_dev.dv_xname, i);
2083 rc = ENOMEM;
2084 goto bnx_dma_alloc_exit;
2085 }
2086
2087 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2088 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2089 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2090 aprint_error(
2091 "%s: Could not map TX desc %d DMA memory!\n",
2092 sc->bnx_dev.dv_xname, i);
2093 rc = ENOMEM;
2094 goto bnx_dma_alloc_exit;
2095 }
2096
2097 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2098 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2099 BUS_DMA_NOWAIT)) {
2100 aprint_error(
2101 "%s: Could not load TX desc %d DMA memory!\n",
2102 sc->bnx_dev.dv_xname, i);
2103 rc = ENOMEM;
2104 goto bnx_dma_alloc_exit;
2105 }
2106
2107 sc->tx_bd_chain_paddr[i] =
2108 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2109
2110 /* DRC - Fix for 64 bit systems. */
2111 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2112 i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2113 }
2114
2115 /*
2116 * Create DMA maps for the TX buffer mbufs.
2117 */
2118 for (i = 0; i < TOTAL_TX_BD; i++) {
2119 if (bus_dmamap_create(sc->bnx_dmatag,
2120 MCLBYTES * BNX_MAX_SEGMENTS,
2121 USABLE_TX_BD - BNX_TX_SLACK_SPACE,
2122 MCLBYTES, 0, BUS_DMA_NOWAIT,
2123 &sc->tx_mbuf_map[i])) {
2124 aprint_error(
2125 "%s: Could not create Tx mbuf %d DMA map!\n",
2126 sc->bnx_dev.dv_xname, i);
2127 rc = ENOMEM;
2128 goto bnx_dma_alloc_exit;
2129 }
2130 }
2131
2132 /*
2133 * Allocate DMA memory for the Rx buffer descriptor chain,
2134 * and fetch the physical address of the block.
2135 */
2136 for (i = 0; i < RX_PAGES; i++) {
2137 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2138 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2139 &sc->rx_bd_chain_map[i])) {
2140 aprint_error(
2141 "%s: Could not create Rx desc %d DMA map!\n",
2142 sc->bnx_dev.dv_xname, i);
2143 rc = ENOMEM;
2144 goto bnx_dma_alloc_exit;
2145 }
2146
2147 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2148 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2149 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2150 aprint_error(
2151 "%s: Could not allocate Rx desc %d DMA memory!\n",
2152 sc->bnx_dev.dv_xname, i);
2153 rc = ENOMEM;
2154 goto bnx_dma_alloc_exit;
2155 }
2156
2157 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2158 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2159 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2160 aprint_error(
2161 "%s: Could not map Rx desc %d DMA memory!\n",
2162 sc->bnx_dev.dv_xname, i);
2163 rc = ENOMEM;
2164 goto bnx_dma_alloc_exit;
2165 }
2166
2167 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2168 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2169 BUS_DMA_NOWAIT)) {
2170 aprint_error(
2171 "%s: Could not load Rx desc %d DMA memory!\n",
2172 sc->bnx_dev.dv_xname, i);
2173 rc = ENOMEM;
2174 goto bnx_dma_alloc_exit;
2175 }
2176
2177 bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2178 sc->rx_bd_chain_paddr[i] =
2179 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2180
2181 /* DRC - Fix for 64 bit systems. */
2182 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2183 i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2184 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2185 0, BNX_RX_CHAIN_PAGE_SZ,
2186 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2187 }
2188
2189 /*
2190 * Create DMA maps for the Rx buffer mbufs.
2191 */
2192 for (i = 0; i < TOTAL_RX_BD; i++) {
2193 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
2194 BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
2195 &sc->rx_mbuf_map[i])) {
2196 aprint_error(
2197 "%s: Could not create Rx mbuf %d DMA map!\n",
2198 sc->bnx_dev.dv_xname, i);
2199 rc = ENOMEM;
2200 goto bnx_dma_alloc_exit;
2201 }
2202 }
2203
2204 bnx_dma_alloc_exit:
2205 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
2206
2207 return(rc);
2208 }
2209
2210 /****************************************************************************/
2211 /* Release all resources used by the driver. */
2212 /* */
2213 /* Releases all resources acquired by the driver including interrupts, */
2214 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2215 /* */
2216 /* Returns: */
2217 /* Nothing. */
2218 /****************************************************************************/
2219 void
2220 bnx_release_resources(struct bnx_softc *sc)
2221 {
2222 struct pci_attach_args *pa = &(sc->bnx_pa);
2223
2224 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
2225
2226 bnx_dma_free(sc);
2227
2228 if (sc->bnx_intrhand != NULL)
2229 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2230
2231 if (sc->bnx_size)
2232 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2233
2234 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
2235 }
2236
2237 /****************************************************************************/
2238 /* Firmware synchronization. */
2239 /* */
2240 /* Before performing certain events such as a chip reset, synchronize with */
2241 /* the firmware first. */
2242 /* */
2243 /* Returns: */
2244 /* 0 for success, positive value for failure. */
2245 /****************************************************************************/
2246 int
2247 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2248 {
2249 int i, rc = 0;
2250 u_int32_t val;
2251
2252 /* Don't waste any time if we've timed out before. */
2253 if (sc->bnx_fw_timed_out) {
2254 rc = EBUSY;
2255 goto bnx_fw_sync_exit;
2256 }
2257
2258 /* Increment the message sequence number. */
2259 sc->bnx_fw_wr_seq++;
2260 msg_data |= sc->bnx_fw_wr_seq;
2261
2262 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2263 msg_data);
2264
2265 /* Send the message to the bootcode driver mailbox. */
2266 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2267
2268 /* Wait for the bootcode to acknowledge the message. */
2269 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2270 /* Check for a response in the bootcode firmware mailbox. */
2271 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2272 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2273 break;
2274 DELAY(1000);
2275 }
2276
2277 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2278 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2279 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2280 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2281 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2282
2283 msg_data &= ~BNX_DRV_MSG_CODE;
2284 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2285
2286 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2287
2288 sc->bnx_fw_timed_out = 1;
2289 rc = EBUSY;
2290 }
2291
2292 bnx_fw_sync_exit:
2293 return (rc);
2294 }
2295
2296 /****************************************************************************/
2297 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2298 /* */
2299 /* Returns: */
2300 /* Nothing. */
2301 /****************************************************************************/
2302 void
2303 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2304 u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2305 {
2306 int i;
2307 u_int32_t val;
2308
2309 for (i = 0; i < rv2p_code_len; i += 8) {
2310 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2311 rv2p_code++;
2312 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2313 rv2p_code++;
2314
2315 if (rv2p_proc == RV2P_PROC1) {
2316 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2317 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2318 }
2319 else {
2320 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2321 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2322 }
2323 }
2324
2325 /* Reset the processor, un-stall is done later. */
2326 if (rv2p_proc == RV2P_PROC1)
2327 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2328 else
2329 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2330 }
2331
2332 /****************************************************************************/
2333 /* Load RISC processor firmware. */
2334 /* */
2335 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2336 /* associated with a particular processor. */
2337 /* */
2338 /* Returns: */
2339 /* Nothing. */
2340 /****************************************************************************/
2341 void
2342 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2343 struct fw_info *fw)
2344 {
2345 u_int32_t offset;
2346 u_int32_t val;
2347
2348 /* Halt the CPU. */
2349 val = REG_RD_IND(sc, cpu_reg->mode);
2350 val |= cpu_reg->mode_value_halt;
2351 REG_WR_IND(sc, cpu_reg->mode, val);
2352 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2353
2354 /* Load the Text area. */
2355 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2356 if (fw->text) {
2357 int j;
2358
2359 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2360 REG_WR_IND(sc, offset, fw->text[j]);
2361 }
2362
2363 /* Load the Data area. */
2364 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2365 if (fw->data) {
2366 int j;
2367
2368 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2369 REG_WR_IND(sc, offset, fw->data[j]);
2370 }
2371
2372 /* Load the SBSS area. */
2373 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2374 if (fw->sbss) {
2375 int j;
2376
2377 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2378 REG_WR_IND(sc, offset, fw->sbss[j]);
2379 }
2380
2381 /* Load the BSS area. */
2382 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2383 if (fw->bss) {
2384 int j;
2385
2386 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2387 REG_WR_IND(sc, offset, fw->bss[j]);
2388 }
2389
2390 /* Load the Read-Only area. */
2391 offset = cpu_reg->spad_base +
2392 (fw->rodata_addr - cpu_reg->mips_view_base);
2393 if (fw->rodata) {
2394 int j;
2395
2396 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2397 REG_WR_IND(sc, offset, fw->rodata[j]);
2398 }
2399
2400 /* Clear the pre-fetch instruction. */
2401 REG_WR_IND(sc, cpu_reg->inst, 0);
2402 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2403
2404 /* Start the CPU. */
2405 val = REG_RD_IND(sc, cpu_reg->mode);
2406 val &= ~cpu_reg->mode_value_halt;
2407 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2408 REG_WR_IND(sc, cpu_reg->mode, val);
2409 }
2410
2411 /****************************************************************************/
2412 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2413 /* */
2414 /* Loads the firmware for each CPU and starts the CPU. */
2415 /* */
2416 /* Returns: */
2417 /* Nothing. */
2418 /****************************************************************************/
2419 void
2420 bnx_init_cpus(struct bnx_softc *sc)
2421 {
2422 struct cpu_reg cpu_reg;
2423 struct fw_info fw;
2424
2425 /* Initialize the RV2P processor. */
2426 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2427 RV2P_PROC1);
2428 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2429 RV2P_PROC2);
2430
2431 /* Initialize the RX Processor. */
2432 cpu_reg.mode = BNX_RXP_CPU_MODE;
2433 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2434 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2435 cpu_reg.state = BNX_RXP_CPU_STATE;
2436 cpu_reg.state_value_clear = 0xffffff;
2437 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2438 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2439 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2440 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2441 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2442 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2443 cpu_reg.mips_view_base = 0x8000000;
2444
2445 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2446 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2447 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2448 fw.start_addr = bnx_RXP_b06FwStartAddr;
2449
2450 fw.text_addr = bnx_RXP_b06FwTextAddr;
2451 fw.text_len = bnx_RXP_b06FwTextLen;
2452 fw.text_index = 0;
2453 fw.text = bnx_RXP_b06FwText;
2454
2455 fw.data_addr = bnx_RXP_b06FwDataAddr;
2456 fw.data_len = bnx_RXP_b06FwDataLen;
2457 fw.data_index = 0;
2458 fw.data = bnx_RXP_b06FwData;
2459
2460 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2461 fw.sbss_len = bnx_RXP_b06FwSbssLen;
2462 fw.sbss_index = 0;
2463 fw.sbss = bnx_RXP_b06FwSbss;
2464
2465 fw.bss_addr = bnx_RXP_b06FwBssAddr;
2466 fw.bss_len = bnx_RXP_b06FwBssLen;
2467 fw.bss_index = 0;
2468 fw.bss = bnx_RXP_b06FwBss;
2469
2470 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2471 fw.rodata_len = bnx_RXP_b06FwRodataLen;
2472 fw.rodata_index = 0;
2473 fw.rodata = bnx_RXP_b06FwRodata;
2474
2475 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2476 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2477
2478 /* Initialize the TX Processor. */
2479 cpu_reg.mode = BNX_TXP_CPU_MODE;
2480 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2481 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2482 cpu_reg.state = BNX_TXP_CPU_STATE;
2483 cpu_reg.state_value_clear = 0xffffff;
2484 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2485 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2486 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2487 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2488 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2489 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2490 cpu_reg.mips_view_base = 0x8000000;
2491
2492 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2493 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2494 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2495 fw.start_addr = bnx_TXP_b06FwStartAddr;
2496
2497 fw.text_addr = bnx_TXP_b06FwTextAddr;
2498 fw.text_len = bnx_TXP_b06FwTextLen;
2499 fw.text_index = 0;
2500 fw.text = bnx_TXP_b06FwText;
2501
2502 fw.data_addr = bnx_TXP_b06FwDataAddr;
2503 fw.data_len = bnx_TXP_b06FwDataLen;
2504 fw.data_index = 0;
2505 fw.data = bnx_TXP_b06FwData;
2506
2507 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2508 fw.sbss_len = bnx_TXP_b06FwSbssLen;
2509 fw.sbss_index = 0;
2510 fw.sbss = bnx_TXP_b06FwSbss;
2511
2512 fw.bss_addr = bnx_TXP_b06FwBssAddr;
2513 fw.bss_len = bnx_TXP_b06FwBssLen;
2514 fw.bss_index = 0;
2515 fw.bss = bnx_TXP_b06FwBss;
2516
2517 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
2518 fw.rodata_len = bnx_TXP_b06FwRodataLen;
2519 fw.rodata_index = 0;
2520 fw.rodata = bnx_TXP_b06FwRodata;
2521
2522 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2523 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2524
2525 /* Initialize the TX Patch-up Processor. */
2526 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2527 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2528 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2529 cpu_reg.state = BNX_TPAT_CPU_STATE;
2530 cpu_reg.state_value_clear = 0xffffff;
2531 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2532 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2533 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2534 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2535 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2536 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2537 cpu_reg.mips_view_base = 0x8000000;
2538
2539 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
2540 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
2541 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
2542 fw.start_addr = bnx_TPAT_b06FwStartAddr;
2543
2544 fw.text_addr = bnx_TPAT_b06FwTextAddr;
2545 fw.text_len = bnx_TPAT_b06FwTextLen;
2546 fw.text_index = 0;
2547 fw.text = bnx_TPAT_b06FwText;
2548
2549 fw.data_addr = bnx_TPAT_b06FwDataAddr;
2550 fw.data_len = bnx_TPAT_b06FwDataLen;
2551 fw.data_index = 0;
2552 fw.data = bnx_TPAT_b06FwData;
2553
2554 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
2555 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
2556 fw.sbss_index = 0;
2557 fw.sbss = bnx_TPAT_b06FwSbss;
2558
2559 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
2560 fw.bss_len = bnx_TPAT_b06FwBssLen;
2561 fw.bss_index = 0;
2562 fw.bss = bnx_TPAT_b06FwBss;
2563
2564 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
2565 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
2566 fw.rodata_index = 0;
2567 fw.rodata = bnx_TPAT_b06FwRodata;
2568
2569 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2570 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2571
2572 /* Initialize the Completion Processor. */
2573 cpu_reg.mode = BNX_COM_CPU_MODE;
2574 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2575 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2576 cpu_reg.state = BNX_COM_CPU_STATE;
2577 cpu_reg.state_value_clear = 0xffffff;
2578 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2579 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2580 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2581 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2582 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2583 cpu_reg.spad_base = BNX_COM_SCRATCH;
2584 cpu_reg.mips_view_base = 0x8000000;
2585
2586 fw.ver_major = bnx_COM_b06FwReleaseMajor;
2587 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
2588 fw.ver_fix = bnx_COM_b06FwReleaseFix;
2589 fw.start_addr = bnx_COM_b06FwStartAddr;
2590
2591 fw.text_addr = bnx_COM_b06FwTextAddr;
2592 fw.text_len = bnx_COM_b06FwTextLen;
2593 fw.text_index = 0;
2594 fw.text = bnx_COM_b06FwText;
2595
2596 fw.data_addr = bnx_COM_b06FwDataAddr;
2597 fw.data_len = bnx_COM_b06FwDataLen;
2598 fw.data_index = 0;
2599 fw.data = bnx_COM_b06FwData;
2600
2601 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
2602 fw.sbss_len = bnx_COM_b06FwSbssLen;
2603 fw.sbss_index = 0;
2604 fw.sbss = bnx_COM_b06FwSbss;
2605
2606 fw.bss_addr = bnx_COM_b06FwBssAddr;
2607 fw.bss_len = bnx_COM_b06FwBssLen;
2608 fw.bss_index = 0;
2609 fw.bss = bnx_COM_b06FwBss;
2610
2611 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
2612 fw.rodata_len = bnx_COM_b06FwRodataLen;
2613 fw.rodata_index = 0;
2614 fw.rodata = bnx_COM_b06FwRodata;
2615
2616 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2617 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2618 }
2619
2620 /****************************************************************************/
2621 /* Initialize context memory. */
2622 /* */
2623 /* Clears the memory associated with each Context ID (CID). */
2624 /* */
2625 /* Returns: */
2626 /* Nothing. */
2627 /****************************************************************************/
2628 void
2629 bnx_init_context(struct bnx_softc *sc)
2630 {
2631 u_int32_t vcid;
2632
2633 vcid = 96;
2634 while (vcid) {
2635 u_int32_t vcid_addr, pcid_addr, offset;
2636
2637 vcid--;
2638
2639 vcid_addr = GET_CID_ADDR(vcid);
2640 pcid_addr = vcid_addr;
2641
2642 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
2643 REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2644
2645 /* Zero out the context. */
2646 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2647 CTX_WR(sc, 0x00, offset, 0);
2648
2649 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
2650 REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2651 }
2652 }
2653
2654 /****************************************************************************/
2655 /* Fetch the permanent MAC address of the controller. */
2656 /* */
2657 /* Returns: */
2658 /* Nothing. */
2659 /****************************************************************************/
2660 void
2661 bnx_get_mac_addr(struct bnx_softc *sc)
2662 {
2663 u_int32_t mac_lo = 0, mac_hi = 0;
2664
2665 /*
2666 * The NetXtreme II bootcode populates various NIC
2667 * power-on and runtime configuration items in a
2668 * shared memory area. The factory configured MAC
2669 * address is available from both NVRAM and the
2670 * shared memory area so we'll read the value from
2671 * shared memory for speed.
2672 */
2673
2674 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
2675 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
2676
2677 if ((mac_lo == 0) && (mac_hi == 0)) {
2678 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
2679 __FILE__, __LINE__);
2680 } else {
2681 sc->eaddr[0] = (u_char)(mac_hi >> 8);
2682 sc->eaddr[1] = (u_char)(mac_hi >> 0);
2683 sc->eaddr[2] = (u_char)(mac_lo >> 24);
2684 sc->eaddr[3] = (u_char)(mac_lo >> 16);
2685 sc->eaddr[4] = (u_char)(mac_lo >> 8);
2686 sc->eaddr[5] = (u_char)(mac_lo >> 0);
2687 }
2688
2689 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
2690 "%s\n", ether_sprintf(sc->eaddr));
2691 }
2692
2693 /****************************************************************************/
2694 /* Program the MAC address. */
2695 /* */
2696 /* Returns: */
2697 /* Nothing. */
2698 /****************************************************************************/
2699 void
2700 bnx_set_mac_addr(struct bnx_softc *sc)
2701 {
2702 u_int32_t val;
2703 const u_int8_t *mac_addr = CLLADDR(sc->ethercom.ec_if.if_sadl);
2704
2705 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
2706 "%s\n", ether_sprintf(sc->eaddr));
2707
2708 val = (mac_addr[0] << 8) | mac_addr[1];
2709
2710 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
2711
2712 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2713 (mac_addr[4] << 8) | mac_addr[5];
2714
2715 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
2716 }
2717
2718 /****************************************************************************/
2719 /* Stop the controller. */
2720 /* */
2721 /* Returns: */
2722 /* Nothing. */
2723 /****************************************************************************/
2724 void
2725 bnx_stop(struct bnx_softc *sc)
2726 {
2727 struct ifnet *ifp = &sc->ethercom.ec_if;
2728 struct mii_data *mii = NULL;
2729
2730 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
2731
2732 mii = &sc->bnx_mii;
2733
2734 callout_stop(&sc->bnx_timeout);
2735
2736 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2737
2738 /* Disable the transmit/receive blocks. */
2739 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
2740 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2741 DELAY(20);
2742
2743 bnx_disable_intr(sc);
2744
2745 /* Tell firmware that the driver is going away. */
2746 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
2747
2748 /* Free the RX lists. */
2749 bnx_free_rx_chain(sc);
2750
2751 /* Free TX buffers. */
2752 bnx_free_tx_chain(sc);
2753
2754 ifp->if_timer = 0;
2755
2756 sc->bnx_link = 0;
2757
2758 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
2759
2760 }
2761
2762 int
2763 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
2764 {
2765 u_int32_t val;
2766 int i, rc = 0;
2767
2768 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
2769
2770 /* Wait for pending PCI transactions to complete. */
2771 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
2772 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
2773 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
2774 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
2775 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
2776 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2777 DELAY(5);
2778
2779 /* Assume bootcode is running. */
2780 sc->bnx_fw_timed_out = 0;
2781
2782 /* Give the firmware a chance to prepare for the reset. */
2783 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
2784 if (rc)
2785 goto bnx_reset_exit;
2786
2787 /* Set a firmware reminder that this is a soft reset. */
2788 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
2789 BNX_DRV_RESET_SIGNATURE_MAGIC);
2790
2791 /* Dummy read to force the chip to complete all current transactions. */
2792 val = REG_RD(sc, BNX_MISC_ID);
2793
2794 /* Chip reset. */
2795 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2796 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
2797 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
2798 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
2799
2800 /* Allow up to 30us for reset to complete. */
2801 for (i = 0; i < 10; i++) {
2802 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
2803 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2804 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
2805 break;
2806
2807 DELAY(10);
2808 }
2809
2810 /* Check that reset completed successfully. */
2811 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2812 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
2813 BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
2814 rc = EBUSY;
2815 goto bnx_reset_exit;
2816 }
2817
2818 /* Make sure byte swapping is properly configured. */
2819 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
2820 if (val != 0x01020304) {
2821 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
2822 __FILE__, __LINE__);
2823 rc = ENODEV;
2824 goto bnx_reset_exit;
2825 }
2826
2827 /* Just completed a reset, assume that firmware is running again. */
2828 sc->bnx_fw_timed_out = 0;
2829
2830 /* Wait for the firmware to finish its initialization. */
2831 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
2832 if (rc)
2833 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
2834 "initialization!\n", __FILE__, __LINE__);
2835
2836 bnx_reset_exit:
2837 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
2838
2839 return (rc);
2840 }
2841
2842 int
2843 bnx_chipinit(struct bnx_softc *sc)
2844 {
2845 struct pci_attach_args *pa = &(sc->bnx_pa);
2846 u_int32_t val;
2847 int rc = 0;
2848
2849 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
2850
2851 /* Make sure the interrupt is not active. */
2852 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
2853
2854 /* Initialize DMA byte/word swapping, configure the number of DMA */
2855 /* channels and PCI clock compensation delay. */
2856 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
2857 BNX_DMA_CONFIG_DATA_WORD_SWAP |
2858 #if BYTE_ORDER == BIG_ENDIAN
2859 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
2860 #endif
2861 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
2862 DMA_READ_CHANS << 12 |
2863 DMA_WRITE_CHANS << 16;
2864
2865 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
2866
2867 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
2868 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
2869
2870 /*
2871 * This setting resolves a problem observed on certain Intel PCI
2872 * chipsets that cannot handle multiple outstanding DMA operations.
2873 * See errata E9_5706A1_65.
2874 */
2875 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
2876 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
2877 !(sc->bnx_flags & BNX_PCIX_FLAG))
2878 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
2879
2880 REG_WR(sc, BNX_DMA_CONFIG, val);
2881
2882 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
2883 if (sc->bnx_flags & BNX_PCIX_FLAG) {
2884 u_int16_t nval;
2885
2886 nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
2887 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
2888 nval & ~0x2);
2889 }
2890
2891 /* Enable the RX_V2P and Context state machines before access. */
2892 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
2893 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
2894 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
2895 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
2896
2897 /* Initialize context mapping and zero out the quick contexts. */
2898 bnx_init_context(sc);
2899
2900 /* Initialize the on-boards CPUs */
2901 bnx_init_cpus(sc);
2902
2903 /* Prepare NVRAM for access. */
2904 if (bnx_init_nvram(sc)) {
2905 rc = ENODEV;
2906 goto bnx_chipinit_exit;
2907 }
2908
2909 /* Set the kernel bypass block size */
2910 val = REG_RD(sc, BNX_MQ_CONFIG);
2911 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
2912 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
2913 REG_WR(sc, BNX_MQ_CONFIG, val);
2914
2915 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
2916 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
2917 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
2918
2919 val = (BCM_PAGE_BITS - 8) << 24;
2920 REG_WR(sc, BNX_RV2P_CONFIG, val);
2921
2922 /* Configure page size. */
2923 val = REG_RD(sc, BNX_TBDR_CONFIG);
2924 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
2925 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
2926 REG_WR(sc, BNX_TBDR_CONFIG, val);
2927
2928 bnx_chipinit_exit:
2929 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
2930
2931 return(rc);
2932 }
2933
2934 /****************************************************************************/
2935 /* Initialize the controller in preparation to send/receive traffic. */
2936 /* */
2937 /* Returns: */
2938 /* 0 for success, positive value for failure. */
2939 /****************************************************************************/
2940 int
2941 bnx_blockinit(struct bnx_softc *sc)
2942 {
2943 u_int32_t reg, val;
2944 int rc = 0;
2945
2946 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
2947
2948 /* Load the hardware default MAC address. */
2949 bnx_set_mac_addr(sc);
2950
2951 /* Set the Ethernet backoff seed value */
2952 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
2953 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
2954 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
2955
2956 sc->last_status_idx = 0;
2957 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
2958
2959 /* Set up link change interrupt generation. */
2960 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
2961
2962 /* Program the physical address of the status block. */
2963 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
2964 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
2965 (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
2966
2967 /* Program the physical address of the statistics block. */
2968 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
2969 (u_int32_t)(sc->stats_block_paddr));
2970 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
2971 (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
2972
2973 /* Program various host coalescing parameters. */
2974 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
2975 << 16) | sc->bnx_tx_quick_cons_trip);
2976 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
2977 << 16) | sc->bnx_rx_quick_cons_trip);
2978 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
2979 sc->bnx_comp_prod_trip);
2980 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
2981 sc->bnx_tx_ticks);
2982 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
2983 sc->bnx_rx_ticks);
2984 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
2985 sc->bnx_com_ticks);
2986 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
2987 sc->bnx_cmd_ticks);
2988 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
2989 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
2990 REG_WR(sc, BNX_HC_CONFIG,
2991 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
2992 BNX_HC_CONFIG_COLLECT_STATS));
2993
2994 /* Clear the internal statistics counters. */
2995 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
2996
2997 /* Verify that bootcode is running. */
2998 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
2999
3000 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3001 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3002 __FILE__, __LINE__); reg = 0);
3003
3004 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3005 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3006 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3007 "Expected: 08%08X\n", __FILE__, __LINE__,
3008 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3009 BNX_DEV_INFO_SIGNATURE_MAGIC);
3010 rc = ENODEV;
3011 goto bnx_blockinit_exit;
3012 }
3013
3014 /* Check if any management firmware is running. */
3015 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3016 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3017 BNX_PORT_FEATURE_IMD_ENABLED)) {
3018 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3019 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3020 }
3021
3022 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3023 BNX_DEV_INFO_BC_REV);
3024
3025 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3026
3027 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3028 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3029
3030 /* Enable link state change interrupt generation. */
3031 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3032
3033 /* Enable all remaining blocks in the MAC. */
3034 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3035 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3036 DELAY(20);
3037
3038 bnx_blockinit_exit:
3039 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3040
3041 return (rc);
3042 }
3043
3044 /****************************************************************************/
3045 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3046 /* */
3047 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3048 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3049 /* necessary. */
3050 /* */
3051 /* Returns: */
3052 /* 0 for success, positive value for failure. */
3053 /****************************************************************************/
3054 int
3055 bnx_get_buf(struct bnx_softc *sc, struct mbuf *m, u_int16_t *prod,
3056 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3057 {
3058 bus_dmamap_t map;
3059 struct mbuf *m_new = NULL;
3060 struct rx_bd *rxbd;
3061 int i, rc = 0;
3062 u_int32_t addr;
3063 #ifdef BNX_DEBUG
3064 u_int16_t debug_chain_prod = *chain_prod;
3065 #endif
3066 u_int16_t first_chain_prod;
3067 u_int16_t min_free_bd;
3068
3069 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3070 __FUNCTION__);
3071
3072 /* Make sure the inputs are valid. */
3073 DBRUNIF((*chain_prod > MAX_RX_BD),
3074 aprint_error("%s: RX producer out of range: 0x%04X > 0x%04X\n",
3075 sc->bnx_dev.dv_xname, *chain_prod, (u_int16_t) MAX_RX_BD));
3076
3077 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3078 "0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod,
3079 *prod_bseq);
3080
3081 /* try to get in as many mbufs as possible */
3082 if (sc->mbuf_alloc_size == MCLBYTES)
3083 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3084 else
3085 min_free_bd = (BNX_MAX_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3086 while (sc->free_rx_bd >= min_free_bd) {
3087 if (m == NULL) {
3088 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3089 BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
3090
3091 sc->mbuf_alloc_failed++;
3092 rc = ENOBUFS;
3093 goto bnx_get_buf_exit);
3094
3095 /* This is a new mbuf allocation. */
3096 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3097 if (m_new == NULL) {
3098 DBPRINT(sc, BNX_WARN,
3099 "%s(%d): RX mbuf header allocation failed!\n",
3100 __FILE__, __LINE__);
3101
3102 DBRUNIF(1, sc->mbuf_alloc_failed++);
3103
3104 rc = ENOBUFS;
3105 goto bnx_get_buf_exit;
3106 }
3107
3108 DBRUNIF(1, sc->rx_mbuf_alloc++);
3109 if (sc->mbuf_alloc_size == MCLBYTES)
3110 MCLGET(m_new, M_DONTWAIT);
3111 else
3112 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3113 M_DONTWAIT);
3114 if (!(m_new->m_flags & M_EXT)) {
3115 DBPRINT(sc, BNX_WARN,
3116 "%s(%d): RX mbuf chain allocation failed!\n",
3117 __FILE__, __LINE__);
3118
3119 m_freem(m_new);
3120
3121 DBRUNIF(1, sc->rx_mbuf_alloc--);
3122 DBRUNIF(1, sc->mbuf_alloc_failed++);
3123
3124 rc = ENOBUFS;
3125 goto bnx_get_buf_exit;
3126 }
3127
3128 } else {
3129 m_new = m;
3130 m = NULL;
3131 m_new->m_data = m_new->m_ext.ext_buf;
3132 }
3133 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3134
3135 /* Map the mbuf cluster into device memory. */
3136 map = sc->rx_mbuf_map[*chain_prod];
3137 first_chain_prod = *chain_prod;
3138 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3139 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3140 __FILE__, __LINE__);
3141
3142 m_freem(m_new);
3143
3144 DBRUNIF(1, sc->rx_mbuf_alloc--);
3145
3146 rc = ENOBUFS;
3147 goto bnx_get_buf_exit;
3148 }
3149 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3150 BUS_DMASYNC_PREREAD);
3151
3152 /* Watch for overflow. */
3153 DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
3154 aprint_error("%s: Too many free rx_bd (0x%04X > 0x%04X)!\n",
3155 sc->bnx_dev.dv_xname,
3156 sc->free_rx_bd, (u_int16_t) USABLE_RX_BD));
3157
3158 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3159 sc->rx_low_watermark = sc->free_rx_bd);
3160
3161 /*
3162 * Setup the rx_bd for the first segment
3163 */
3164 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3165
3166 addr = (u_int32_t)(map->dm_segs[0].ds_addr);
3167 rxbd->rx_bd_haddr_lo = htole32(addr);
3168 addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3169 rxbd->rx_bd_haddr_hi = htole32(addr);
3170 rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
3171 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3172 *prod_bseq += map->dm_segs[0].ds_len;
3173 bus_dmamap_sync(sc->bnx_dmatag,
3174 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3175 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3176 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3177
3178 for (i = 1; i < map->dm_nsegs; i++) {
3179 *prod = NEXT_RX_BD(*prod);
3180 *chain_prod = RX_CHAIN_IDX(*prod);
3181
3182 rxbd =
3183 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3184
3185 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
3186 rxbd->rx_bd_haddr_lo = htole32(addr);
3187 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3188 rxbd->rx_bd_haddr_hi = htole32(addr);
3189 rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
3190 rxbd->rx_bd_flags = 0;
3191 *prod_bseq += map->dm_segs[i].ds_len;
3192 bus_dmamap_sync(sc->bnx_dmatag,
3193 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3194 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3195 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3196 }
3197
3198 rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3199 bus_dmamap_sync(sc->bnx_dmatag,
3200 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3201 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3202 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3203
3204 /*
3205 * Save the mbuf, ajust the map pointer (swap map for first and
3206 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3207 * and update counter.
3208 */
3209 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3210 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3211 sc->rx_mbuf_map[*chain_prod] = map;
3212 sc->free_rx_bd -= map->dm_nsegs;
3213
3214 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3215 map->dm_nsegs));
3216 *prod = NEXT_RX_BD(*prod);
3217 *chain_prod = RX_CHAIN_IDX(*prod);
3218 }
3219
3220 bnx_get_buf_exit:
3221 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3222 "= 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, *prod,
3223 *chain_prod, *prod_bseq);
3224
3225 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3226 __FUNCTION__);
3227
3228 return(rc);
3229 }
3230
3231 /****************************************************************************/
3232 /* Allocate memory and initialize the TX data structures. */
3233 /* */
3234 /* Returns: */
3235 /* 0 for success, positive value for failure. */
3236 /****************************************************************************/
3237 int
3238 bnx_init_tx_chain(struct bnx_softc *sc)
3239 {
3240 struct tx_bd *txbd;
3241 u_int32_t val, addr;
3242 int i, rc = 0;
3243
3244 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3245
3246 /* Set the initial TX producer/consumer indices. */
3247 sc->tx_prod = 0;
3248 sc->tx_cons = 0;
3249 sc->tx_prod_bseq = 0;
3250 sc->used_tx_bd = 0;
3251 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3252
3253 /*
3254 * The NetXtreme II supports a linked-list structure called
3255 * a Buffer Descriptor Chain (or BD chain). A BD chain
3256 * consists of a series of 1 or more chain pages, each of which
3257 * consists of a fixed number of BD entries.
3258 * The last BD entry on each page is a pointer to the next page
3259 * in the chain, and the last pointer in the BD chain
3260 * points back to the beginning of the chain.
3261 */
3262
3263 /* Set the TX next pointer chain entries. */
3264 for (i = 0; i < TX_PAGES; i++) {
3265 int j;
3266
3267 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3268
3269 /* Check if we've reached the last page. */
3270 if (i == (TX_PAGES - 1))
3271 j = 0;
3272 else
3273 j = i + 1;
3274
3275 addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
3276 txbd->tx_bd_haddr_lo = htole32(addr);
3277 addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3278 txbd->tx_bd_haddr_hi = htole32(addr);
3279 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3280 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3281 }
3282
3283 /*
3284 * Initialize the context ID for an L2 TX chain.
3285 */
3286 val = BNX_L2CTX_TYPE_TYPE_L2;
3287 val |= BNX_L2CTX_TYPE_SIZE_L2;
3288 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3289
3290 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3291 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3292
3293 /* Point the hardware to the first page in the chain. */
3294 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3295 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3296 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3297 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3298
3299 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
3300
3301 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3302
3303 return(rc);
3304 }
3305
3306 /****************************************************************************/
3307 /* Free memory and clear the TX data structures. */
3308 /* */
3309 /* Returns: */
3310 /* Nothing. */
3311 /****************************************************************************/
3312 void
3313 bnx_free_tx_chain(struct bnx_softc *sc)
3314 {
3315 int i;
3316
3317 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3318
3319 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
3320 for (i = 0; i < TOTAL_TX_BD; i++) {
3321 if (sc->tx_mbuf_ptr[i] != NULL) {
3322 if (sc->tx_mbuf_map != NULL)
3323 bus_dmamap_sync(sc->bnx_dmatag,
3324 sc->tx_mbuf_map[i], 0,
3325 sc->tx_mbuf_map[i]->dm_mapsize,
3326 BUS_DMASYNC_POSTWRITE);
3327 m_freem(sc->tx_mbuf_ptr[i]);
3328 sc->tx_mbuf_ptr[i] = NULL;
3329 DBRUNIF(1, sc->tx_mbuf_alloc--);
3330 }
3331 }
3332
3333 /* Clear each TX chain page. */
3334 for (i = 0; i < TX_PAGES; i++) {
3335 bzero((char *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
3336 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3337 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3338 }
3339
3340 /* Check if we lost any mbufs in the process. */
3341 DBRUNIF((sc->tx_mbuf_alloc),
3342 aprint_error("%s: Memory leak! Lost %d mbufs from tx chain!\n",
3343 sc->bnx_dev.dv_xname, sc->tx_mbuf_alloc));
3344
3345 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3346 }
3347
3348 /****************************************************************************/
3349 /* Allocate memory and initialize the RX data structures. */
3350 /* */
3351 /* Returns: */
3352 /* 0 for success, positive value for failure. */
3353 /****************************************************************************/
3354 int
3355 bnx_init_rx_chain(struct bnx_softc *sc)
3356 {
3357 struct rx_bd *rxbd;
3358 int i, rc = 0;
3359 u_int16_t prod, chain_prod;
3360 u_int32_t prod_bseq, val, addr;
3361
3362 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3363
3364 /* Initialize the RX producer and consumer indices. */
3365 sc->rx_prod = 0;
3366 sc->rx_cons = 0;
3367 sc->rx_prod_bseq = 0;
3368 sc->free_rx_bd = BNX_RX_SLACK_SPACE;
3369 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
3370
3371 /* Initialize the RX next pointer chain entries. */
3372 for (i = 0; i < RX_PAGES; i++) {
3373 int j;
3374
3375 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
3376
3377 /* Check if we've reached the last page. */
3378 if (i == (RX_PAGES - 1))
3379 j = 0;
3380 else
3381 j = i + 1;
3382
3383 /* Setup the chain page pointers. */
3384 addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
3385 rxbd->rx_bd_haddr_hi = htole32(addr);
3386 addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
3387 rxbd->rx_bd_haddr_lo = htole32(addr);
3388 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
3389 0, BNX_RX_CHAIN_PAGE_SZ,
3390 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3391 }
3392
3393 /* Initialize the context ID for an L2 RX chain. */
3394 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
3395 val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
3396 val |= 0x02 << 8;
3397 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
3398
3399 /* Point the hardware to the first page in the chain. */
3400 val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
3401 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
3402 val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
3403 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
3404
3405 /* Allocate mbuf clusters for the rx_bd chain. */
3406 prod = prod_bseq = 0;
3407 chain_prod = RX_CHAIN_IDX(prod);
3408 if (bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq)) {
3409 BNX_PRINTF(sc,
3410 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
3411 }
3412
3413 /* Save the RX chain producer index. */
3414 sc->rx_prod = prod;
3415 sc->rx_prod_bseq = prod_bseq;
3416
3417 for (i = 0; i < RX_PAGES; i++)
3418 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
3419 sc->rx_bd_chain_map[i]->dm_mapsize,
3420 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3421
3422 /* Tell the chip about the waiting rx_bd's. */
3423 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3424 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3425
3426 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
3427
3428 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3429
3430 return(rc);
3431 }
3432
3433 /****************************************************************************/
3434 /* Free memory and clear the RX data structures. */
3435 /* */
3436 /* Returns: */
3437 /* Nothing. */
3438 /****************************************************************************/
3439 void
3440 bnx_free_rx_chain(struct bnx_softc *sc)
3441 {
3442 int i;
3443
3444 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3445
3446 /* Free any mbufs still in the RX mbuf chain. */
3447 for (i = 0; i < TOTAL_RX_BD; i++) {
3448 if (sc->rx_mbuf_ptr[i] != NULL) {
3449 if (sc->rx_mbuf_map[i] != NULL)
3450 bus_dmamap_sync(sc->bnx_dmatag,
3451 sc->rx_mbuf_map[i], 0,
3452 sc->rx_mbuf_map[i]->dm_mapsize,
3453 BUS_DMASYNC_POSTREAD);
3454 m_freem(sc->rx_mbuf_ptr[i]);
3455 sc->rx_mbuf_ptr[i] = NULL;
3456 DBRUNIF(1, sc->rx_mbuf_alloc--);
3457 }
3458 }
3459
3460 /* Clear each RX chain page. */
3461 for (i = 0; i < RX_PAGES; i++)
3462 bzero((char *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
3463
3464 /* Check if we lost any mbufs in the process. */
3465 DBRUNIF((sc->rx_mbuf_alloc),
3466 aprint_error("%s: Memory leak! Lost %d mbufs from rx chain!\n",
3467 sc->bnx_dev.dv_xname, sc->rx_mbuf_alloc));
3468
3469 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3470 }
3471
3472 /****************************************************************************/
3473 /* Set media options. */
3474 /* */
3475 /* Returns: */
3476 /* 0 for success, positive value for failure. */
3477 /****************************************************************************/
3478 int
3479 bnx_ifmedia_upd(struct ifnet *ifp)
3480 {
3481 struct bnx_softc *sc;
3482 struct mii_data *mii;
3483 struct ifmedia *ifm;
3484 int rc = 0;
3485
3486 sc = ifp->if_softc;
3487 ifm = &sc->bnx_ifmedia;
3488
3489 /* DRC - ToDo: Add SerDes support. */
3490
3491 mii = &sc->bnx_mii;
3492 sc->bnx_link = 0;
3493 if (mii->mii_instance) {
3494 struct mii_softc *miisc;
3495 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3496 mii_phy_reset(miisc);
3497 }
3498 mii_mediachg(mii);
3499
3500 return(rc);
3501 }
3502
3503 /****************************************************************************/
3504 /* Reports current media status. */
3505 /* */
3506 /* Returns: */
3507 /* Nothing. */
3508 /****************************************************************************/
3509 void
3510 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3511 {
3512 struct bnx_softc *sc;
3513 struct mii_data *mii;
3514 int s;
3515
3516 sc = ifp->if_softc;
3517
3518 s = splnet();
3519
3520 mii = &sc->bnx_mii;
3521
3522 /* DRC - ToDo: Add SerDes support. */
3523
3524 mii_pollstat(mii);
3525 ifmr->ifm_active = mii->mii_media_active;
3526 ifmr->ifm_status = mii->mii_media_status;
3527
3528 splx(s);
3529 }
3530
3531 /****************************************************************************/
3532 /* Handles PHY generated interrupt events. */
3533 /* */
3534 /* Returns: */
3535 /* Nothing. */
3536 /****************************************************************************/
3537 void
3538 bnx_phy_intr(struct bnx_softc *sc)
3539 {
3540 u_int32_t new_link_state, old_link_state;
3541
3542 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3543 BUS_DMASYNC_POSTREAD);
3544 new_link_state = sc->status_block->status_attn_bits &
3545 STATUS_ATTN_BITS_LINK_STATE;
3546 old_link_state = sc->status_block->status_attn_bits_ack &
3547 STATUS_ATTN_BITS_LINK_STATE;
3548
3549 /* Handle any changes if the link state has changed. */
3550 if (new_link_state != old_link_state) {
3551 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
3552
3553 sc->bnx_link = 0;
3554 callout_stop(&sc->bnx_timeout);
3555 bnx_tick(sc);
3556
3557 /* Update the status_attn_bits_ack field in the status block. */
3558 if (new_link_state) {
3559 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
3560 STATUS_ATTN_BITS_LINK_STATE);
3561 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
3562 } else {
3563 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
3564 STATUS_ATTN_BITS_LINK_STATE);
3565 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
3566 }
3567 }
3568
3569 /* Acknowledge the link change interrupt. */
3570 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
3571 }
3572
3573 /****************************************************************************/
3574 /* Handles received frame interrupt events. */
3575 /* */
3576 /* Returns: */
3577 /* Nothing. */
3578 /****************************************************************************/
3579 void
3580 bnx_rx_intr(struct bnx_softc *sc)
3581 {
3582 struct status_block *sblk = sc->status_block;
3583 struct ifnet *ifp = &sc->ethercom.ec_if;
3584 u_int16_t hw_cons, sw_cons, sw_chain_cons;
3585 u_int16_t sw_prod, sw_chain_prod;
3586 u_int32_t sw_prod_bseq;
3587 struct l2_fhdr *l2fhdr;
3588 int i;
3589
3590 DBRUNIF(1, sc->rx_interrupts++);
3591 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3592 BUS_DMASYNC_POSTREAD);
3593
3594 /* Prepare the RX chain pages to be accessed by the host CPU. */
3595 for (i = 0; i < RX_PAGES; i++)
3596 bus_dmamap_sync(sc->bnx_dmatag,
3597 sc->rx_bd_chain_map[i], 0,
3598 sc->rx_bd_chain_map[i]->dm_mapsize,
3599 BUS_DMASYNC_POSTWRITE);
3600
3601 /* Get the hardware's view of the RX consumer index. */
3602 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
3603 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
3604 hw_cons++;
3605
3606 /* Get working copies of the driver's view of the RX indices. */
3607 sw_cons = sc->rx_cons;
3608 sw_prod = sc->rx_prod;
3609 sw_prod_bseq = sc->rx_prod_bseq;
3610
3611 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
3612 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
3613 __FUNCTION__, sw_prod, sw_cons, sw_prod_bseq);
3614
3615 /* Prevent speculative reads from getting ahead of the status block. */
3616 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3617 BUS_SPACE_BARRIER_READ);
3618
3619 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3620 sc->rx_low_watermark = sc->free_rx_bd);
3621
3622 /*
3623 * Scan through the receive chain as long
3624 * as there is work to do.
3625 */
3626 while (sw_cons != hw_cons) {
3627 struct mbuf *m;
3628 struct rx_bd *rxbd;
3629 unsigned int len;
3630 u_int32_t status;
3631
3632 /* Convert the producer/consumer indices to an actual
3633 * rx_bd index.
3634 */
3635 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
3636 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
3637
3638 /* Get the used rx_bd. */
3639 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
3640 sc->free_rx_bd++;
3641
3642 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __FUNCTION__);
3643 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
3644
3645 /* The mbuf is stored with the last rx_bd entry of a packet. */
3646 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
3647 #ifdef DIAGNOSTIC
3648 /* Validate that this is the last rx_bd. */
3649 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
3650 printf("%s: Unexpected mbuf found in "
3651 "rx_bd[0x%04X]!\n", sc->bnx_dev.dv_xname,
3652 sw_chain_cons);
3653 }
3654 #endif
3655
3656 /* DRC - ToDo: If the received packet is small, say less
3657 * than 128 bytes, allocate a new mbuf here,
3658 * copy the data to that mbuf, and recycle
3659 * the mapped jumbo frame.
3660 */
3661
3662 /* Unmap the mbuf from DMA space. */
3663 #ifdef DIAGNOSTIC
3664 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
3665 printf("invalid map sw_cons 0x%x "
3666 "sw_prod 0x%x "
3667 "sw_chain_cons 0x%x "
3668 "sw_chain_prod 0x%x "
3669 "hw_cons 0x%x "
3670 "TOTAL_RX_BD_PER_PAGE 0x%x "
3671 "TOTAL_RX_BD 0x%x\n",
3672 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
3673 hw_cons,
3674 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
3675 }
3676 #endif
3677 bus_dmamap_sync(sc->bnx_dmatag,
3678 sc->rx_mbuf_map[sw_chain_cons], 0,
3679 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
3680 BUS_DMASYNC_POSTREAD);
3681 bus_dmamap_unload(sc->bnx_dmatag,
3682 sc->rx_mbuf_map[sw_chain_cons]);
3683
3684 /* Remove the mbuf from the driver's chain. */
3685 m = sc->rx_mbuf_ptr[sw_chain_cons];
3686 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
3687
3688 /*
3689 * Frames received on the NetXteme II are prepended
3690 * with the l2_fhdr structure which provides status
3691 * information about the received frame (including
3692 * VLAN tags and checksum info) and are also
3693 * automatically adjusted to align the IP header
3694 * (i.e. two null bytes are inserted before the
3695 * Ethernet header).
3696 */
3697 l2fhdr = mtod(m, struct l2_fhdr *);
3698
3699 len = l2fhdr->l2_fhdr_pkt_len;
3700 status = l2fhdr->l2_fhdr_status;
3701
3702 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
3703 aprint_error("Simulating l2_fhdr status error.\n");
3704 status = status | L2_FHDR_ERRORS_PHY_DECODE);
3705
3706 /* Watch for unusual sized frames. */
3707 DBRUNIF(((len < BNX_MIN_MTU) ||
3708 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
3709 aprint_error("%s: Unusual frame size found. "
3710 "Min(%d), Actual(%d), Max(%d)\n",
3711 sc->bnx_dev.dv_xname, (int)BNX_MIN_MTU, len,
3712 (int) BNX_MAX_JUMBO_ETHER_MTU_VLAN);
3713
3714 bnx_dump_mbuf(sc, m);
3715 bnx_breakpoint(sc));
3716
3717 len -= ETHER_CRC_LEN;
3718
3719 /* Check the received frame for errors. */
3720 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
3721 L2_FHDR_ERRORS_PHY_DECODE |
3722 L2_FHDR_ERRORS_ALIGNMENT |
3723 L2_FHDR_ERRORS_TOO_SHORT |
3724 L2_FHDR_ERRORS_GIANT_FRAME)) ||
3725 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
3726 len >
3727 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
3728 ifp->if_ierrors++;
3729 DBRUNIF(1, sc->l2fhdr_status_errors++);
3730
3731 /* Reuse the mbuf for a new frame. */
3732 if (bnx_get_buf(sc, m, &sw_prod,
3733 &sw_chain_prod, &sw_prod_bseq)) {
3734 DBRUNIF(1, bnx_breakpoint(sc));
3735 panic("%s: Can't reuse RX mbuf!\n",
3736 sc->bnx_dev.dv_xname);
3737 }
3738 continue;
3739 }
3740
3741 /*
3742 * Get a new mbuf for the rx_bd. If no new
3743 * mbufs are available then reuse the current mbuf,
3744 * log an ierror on the interface, and generate
3745 * an error in the system log.
3746 */
3747 if (bnx_get_buf(sc, NULL, &sw_prod, &sw_chain_prod,
3748 &sw_prod_bseq)) {
3749 DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
3750 "new mbuf, incoming frame dropped!\n"));
3751
3752 ifp->if_ierrors++;
3753
3754 /* Try and reuse the exisitng mbuf. */
3755 if (bnx_get_buf(sc, m, &sw_prod,
3756 &sw_chain_prod, &sw_prod_bseq)) {
3757 DBRUNIF(1, bnx_breakpoint(sc));
3758 panic("%s: Double mbuf allocation "
3759 "failure!", sc->bnx_dev.dv_xname);
3760 }
3761 continue;
3762 }
3763
3764 /* Skip over the l2_fhdr when passing the data up
3765 * the stack.
3766 */
3767 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
3768
3769 /* Adjust the pckt length to match the received data. */
3770 m->m_pkthdr.len = m->m_len = len;
3771
3772 /* Send the packet to the appropriate interface. */
3773 m->m_pkthdr.rcvif = ifp;
3774
3775 DBRUN(BNX_VERBOSE_RECV,
3776 struct ether_header *eh;
3777 eh = mtod(m, struct ether_header *);
3778 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
3779 __FUNCTION__, ether_sprintf(eh->ether_dhost),
3780 ether_sprintf(eh->ether_shost),
3781 htons(eh->ether_type)));
3782
3783 /* Validate the checksum. */
3784
3785 /* Check for an IP datagram. */
3786 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
3787 /* Check if the IP checksum is valid. */
3788 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
3789 == 0)
3790 m->m_pkthdr.csum_flags |=
3791 M_CSUM_IPv4;
3792 #ifdef BNX_DEBUG
3793 else
3794 DBPRINT(sc, BNX_WARN_SEND,
3795 "%s(): Invalid IP checksum "
3796 "= 0x%04X!\n",
3797 __FUNCTION__,
3798 l2fhdr->l2_fhdr_ip_xsum
3799 );
3800 #endif
3801 }
3802
3803 /* Check for a valid TCP/UDP frame. */
3804 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3805 L2_FHDR_STATUS_UDP_DATAGRAM)) {
3806 /* Check for a good TCP/UDP checksum. */
3807 if ((status &
3808 (L2_FHDR_ERRORS_TCP_XSUM |
3809 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
3810 m->m_pkthdr.csum_flags |=
3811 M_CSUM_TCPv4 |
3812 M_CSUM_UDPv4;
3813 } else {
3814 DBPRINT(sc, BNX_WARN_SEND,
3815 "%s(): Invalid TCP/UDP "
3816 "checksum = 0x%04X!\n",
3817 __FUNCTION__,
3818 l2fhdr->l2_fhdr_tcp_udp_xsum);
3819 }
3820 }
3821
3822 /*
3823 * If we received a packet with a vlan tag,
3824 * attach that information to the packet.
3825 */
3826 if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
3827 #if 0
3828 struct ether_vlan_header vh;
3829
3830 DBPRINT(sc, BNX_VERBOSE_SEND,
3831 "%s(): VLAN tag = 0x%04X\n",
3832 __FUNCTION__,
3833 l2fhdr->l2_fhdr_vlan_tag);
3834
3835 if (m->m_pkthdr.len < ETHER_HDR_LEN) {
3836 m_freem(m);
3837 continue;
3838 }
3839 m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh);
3840 vh.evl_proto = vh.evl_encap_proto;
3841 vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag;
3842 vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
3843 m_adj(m, ETHER_HDR_LEN);
3844 if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
3845 continue;
3846 m->m_pkthdr.len += sizeof(vh);
3847 if (m->m_len < sizeof(vh) &&
3848 (m = m_pullup(m, sizeof(vh))) == NULL)
3849 goto bnx_rx_int_next_rx;
3850 m_copyback(m, 0, sizeof(vh), &vh);
3851 #else
3852 VLAN_INPUT_TAG(ifp, m,
3853 l2fhdr->l2_fhdr_vlan_tag,
3854 continue);
3855 #endif
3856 }
3857
3858 #if NBPFILTER > 0
3859 /*
3860 * Handle BPF listeners. Let the BPF
3861 * user see the packet.
3862 */
3863 if (ifp->if_bpf)
3864 bpf_mtap(ifp->if_bpf, m);
3865 #endif
3866
3867 /* Pass the mbuf off to the upper layers. */
3868 ifp->if_ipackets++;
3869 DBPRINT(sc, BNX_VERBOSE_RECV,
3870 "%s(): Passing received frame up.\n", __FUNCTION__);
3871 (*ifp->if_input)(ifp, m);
3872 DBRUNIF(1, sc->rx_mbuf_alloc--);
3873
3874 }
3875
3876 sw_cons = NEXT_RX_BD(sw_cons);
3877
3878 /* Refresh hw_cons to see if there's new work */
3879 if (sw_cons == hw_cons) {
3880 hw_cons = sc->hw_rx_cons =
3881 sblk->status_rx_quick_consumer_index0;
3882 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
3883 USABLE_RX_BD_PER_PAGE)
3884 hw_cons++;
3885 }
3886
3887 /* Prevent speculative reads from getting ahead of
3888 * the status block.
3889 */
3890 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3891 BUS_SPACE_BARRIER_READ);
3892 }
3893
3894 for (i = 0; i < RX_PAGES; i++)
3895 bus_dmamap_sync(sc->bnx_dmatag,
3896 sc->rx_bd_chain_map[i], 0,
3897 sc->rx_bd_chain_map[i]->dm_mapsize,
3898 BUS_DMASYNC_PREWRITE);
3899
3900 sc->rx_cons = sw_cons;
3901 sc->rx_prod = sw_prod;
3902 sc->rx_prod_bseq = sw_prod_bseq;
3903
3904 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3905 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3906
3907 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
3908 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
3909 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
3910 }
3911
3912 /****************************************************************************/
3913 /* Handles transmit completion interrupt events. */
3914 /* */
3915 /* Returns: */
3916 /* Nothing. */
3917 /****************************************************************************/
3918 void
3919 bnx_tx_intr(struct bnx_softc *sc)
3920 {
3921 struct status_block *sblk = sc->status_block;
3922 struct ifnet *ifp = &sc->ethercom.ec_if;
3923 u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
3924
3925 DBRUNIF(1, sc->tx_interrupts++);
3926 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3927 BUS_DMASYNC_POSTREAD);
3928
3929 /* Get the hardware's view of the TX consumer index. */
3930 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
3931
3932 /* Skip to the next entry if this is a chain page pointer. */
3933 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
3934 hw_tx_cons++;
3935
3936 sw_tx_cons = sc->tx_cons;
3937
3938 /* Prevent speculative reads from getting ahead of the status block. */
3939 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3940 BUS_SPACE_BARRIER_READ);
3941
3942 /* Cycle through any completed TX chain page entries. */
3943 while (sw_tx_cons != hw_tx_cons) {
3944 #ifdef BNX_DEBUG
3945 struct tx_bd *txbd = NULL;
3946 #endif
3947 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
3948
3949 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
3950 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
3951 __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
3952
3953 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
3954 aprint_error("%s: TX chain consumer out of range! "
3955 " 0x%04X > 0x%04X\n", sc->bnx_dev.dv_xname,
3956 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
3957
3958 DBRUNIF(1, txbd = &sc->tx_bd_chain
3959 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
3960
3961 DBRUNIF((txbd == NULL),
3962 aprint_error("%s: Unexpected NULL tx_bd[0x%04X]!\n",
3963 sc->bnx_dev.dv_xname, sw_tx_chain_cons);
3964 bnx_breakpoint(sc));
3965
3966 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __FUNCTION__);
3967 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
3968
3969 /*
3970 * Free the associated mbuf. Remember
3971 * that only the last tx_bd of a packet
3972 * has an mbuf pointer and DMA map.
3973 */
3974 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
3975 /* Validate that this is the last tx_bd. */
3976 DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
3977 TX_BD_FLAGS_END)),
3978 aprint_error("%s: tx_bd END flag not set but "
3979 "txmbuf == NULL!\n", sc->bnx_dev.dv_xname);
3980 bnx_breakpoint(sc));
3981
3982 DBRUN(BNX_INFO_SEND,
3983 aprint_debug("%s: Unloading map/freeing mbuf "
3984 "from tx_bd[0x%04X]\n",
3985 __FUNCTION__, sw_tx_chain_cons));
3986
3987 /* Unmap the mbuf. */
3988 bus_dmamap_unload(sc->bnx_dmatag,
3989 sc->tx_mbuf_map[sw_tx_chain_cons]);
3990
3991 /* Free the mbuf. */
3992 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
3993 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
3994 DBRUNIF(1, sc->tx_mbuf_alloc--);
3995
3996 ifp->if_opackets++;
3997 }
3998
3999 sc->used_tx_bd--;
4000 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4001
4002 /* Refresh hw_cons to see if there's new work. */
4003 hw_tx_cons = sc->hw_tx_cons =
4004 sblk->status_tx_quick_consumer_index0;
4005 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4006 USABLE_TX_BD_PER_PAGE)
4007 hw_tx_cons++;
4008
4009 /* Prevent speculative reads from getting ahead of
4010 * the status block.
4011 */
4012 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4013 BUS_SPACE_BARRIER_READ);
4014 }
4015
4016 /* Clear the TX timeout timer. */
4017 ifp->if_timer = 0;
4018
4019 /* Clear the tx hardware queue full flag. */
4020 if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
4021 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4022 aprint_debug("%s: TX chain is open for business! Used "
4023 "tx_bd = %d\n", sc->bnx_dev.dv_xname,
4024 sc->used_tx_bd));
4025 ifp->if_flags &= ~IFF_OACTIVE;
4026 }
4027
4028 sc->tx_cons = sw_tx_cons;
4029 }
4030
4031 /****************************************************************************/
4032 /* Disables interrupt generation. */
4033 /* */
4034 /* Returns: */
4035 /* Nothing. */
4036 /****************************************************************************/
4037 void
4038 bnx_disable_intr(struct bnx_softc *sc)
4039 {
4040 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4041 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4042 }
4043
4044 /****************************************************************************/
4045 /* Enables interrupt generation. */
4046 /* */
4047 /* Returns: */
4048 /* Nothing. */
4049 /****************************************************************************/
4050 void
4051 bnx_enable_intr(struct bnx_softc *sc)
4052 {
4053 u_int32_t val;
4054
4055 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4056 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4057
4058 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4059 sc->last_status_idx);
4060
4061 val = REG_RD(sc, BNX_HC_COMMAND);
4062 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4063 }
4064
4065 /****************************************************************************/
4066 /* Handles controller initialization. */
4067 /* */
4068 /****************************************************************************/
4069 int
4070 bnx_init(struct ifnet *ifp)
4071 {
4072 struct bnx_softc *sc = ifp->if_softc;
4073 u_int32_t ether_mtu;
4074 int s, error = 0;
4075
4076 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
4077
4078 s = splnet();
4079
4080 bnx_stop(sc);
4081
4082 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4083 aprint_error("bnx: Controller reset failed!\n");
4084 goto bnx_init_exit;
4085 }
4086
4087 if ((error = bnx_chipinit(sc)) != 0) {
4088 aprint_error("bnx: Controller initialization failed!\n");
4089 goto bnx_init_exit;
4090 }
4091
4092 if ((error = bnx_blockinit(sc)) != 0) {
4093 aprint_error("bnx: Block initialization failed!\n");
4094 goto bnx_init_exit;
4095 }
4096
4097 /* Calculate and program the Ethernet MRU size. */
4098 if (ifp->if_mtu <= ETHERMTU) {
4099 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4100 sc->mbuf_alloc_size = MCLBYTES;
4101 } else {
4102 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4103 sc->mbuf_alloc_size = BNX_MAX_MRU;
4104 }
4105
4106
4107 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4108 __FUNCTION__, ether_mtu);
4109
4110 /*
4111 * Program the MRU and enable Jumbo frame
4112 * support.
4113 */
4114 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4115 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4116
4117 /* Calculate the RX Ethernet frame size for rx_bd's. */
4118 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4119
4120 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4121 "max_frame_size = %d\n", __FUNCTION__, (int)MCLBYTES,
4122 sc->mbuf_alloc_size, sc->max_frame_size);
4123
4124 /* Program appropriate promiscuous/multicast filtering. */
4125 bnx_set_rx_mode(sc);
4126
4127 /* Init RX buffer descriptor chain. */
4128 bnx_init_rx_chain(sc);
4129
4130 /* Init TX buffer descriptor chain. */
4131 bnx_init_tx_chain(sc);
4132
4133 /* Enable host interrupts. */
4134 bnx_enable_intr(sc);
4135
4136 bnx_ifmedia_upd(ifp);
4137
4138 ifp->if_flags |= IFF_RUNNING;
4139 ifp->if_flags &= ~IFF_OACTIVE;
4140
4141 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4142
4143 bnx_init_exit:
4144 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
4145
4146 splx(s);
4147
4148 return(error);
4149 }
4150
4151 /****************************************************************************/
4152 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4153 /* memory visible to the controller. */
4154 /* */
4155 /* Returns: */
4156 /* 0 for success, positive value for failure. */
4157 /****************************************************************************/
4158 int
4159 bnx_tx_encap(struct bnx_softc *sc, struct mbuf **m_head)
4160 {
4161 bus_dmamap_t map;
4162 struct tx_bd *txbd = NULL;
4163 struct mbuf *m0;
4164 u_int16_t vlan_tag = 0, flags = 0;
4165 u_int16_t chain_prod, prod;
4166 #ifdef BNX_DEBUG
4167 u_int16_t debug_prod;
4168 #endif
4169 u_int32_t addr, prod_bseq;
4170 int i, error, rc = 0;
4171 struct m_tag *mtag;
4172
4173 m0 = *m_head;
4174
4175 /* Transfer any checksum offload flags to the bd. */
4176 if (m0->m_pkthdr.csum_flags) {
4177 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
4178 flags |= TX_BD_FLAGS_IP_CKSUM;
4179 if (m0->m_pkthdr.csum_flags &
4180 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4181 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4182 }
4183
4184 /* Transfer any VLAN tags to the bd. */
4185 mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m0);
4186 if (mtag != NULL) {
4187 flags |= TX_BD_FLAGS_VLAN_TAG;
4188 vlan_tag = VLAN_TAG_VALUE(mtag);
4189 }
4190
4191 /* Map the mbuf into DMAable memory. */
4192 prod = sc->tx_prod;
4193 chain_prod = TX_CHAIN_IDX(prod);
4194 map = sc->tx_mbuf_map[chain_prod];
4195
4196 /* Map the mbuf into our DMA address space. */
4197 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m0, BUS_DMA_NOWAIT);
4198 if (error != 0) {
4199 aprint_error("%s: Error mapping mbuf into TX chain!\n",
4200 sc->bnx_dev.dv_xname);
4201 m_freem(m0);
4202 *m_head = NULL;
4203 return (error);
4204 }
4205 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4206 BUS_DMASYNC_PREWRITE);
4207 /*
4208 * The chip seems to require that at least 16 descriptors be kept
4209 * empty at all times. Make sure we honor that.
4210 * XXX Would it be faster to assume worst case scenario for
4211 * map->dm_nsegs and do this calculation higher up?
4212 */
4213 if (map->dm_nsegs > (USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE)) {
4214 bus_dmamap_unload(sc->bnx_dmatag, map);
4215 return (ENOBUFS);
4216 }
4217
4218 /* prod points to an empty tx_bd at this point. */
4219 prod_bseq = sc->tx_prod_bseq;
4220 #ifdef BNX_DEBUG
4221 debug_prod = chain_prod;
4222 #endif
4223 DBPRINT(sc, BNX_INFO_SEND,
4224 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4225 "prod_bseq = 0x%08X\n",
4226 __FUNCTION__, *prod, chain_prod, prod_bseq);
4227
4228 /*
4229 * Cycle through each mbuf segment that makes up
4230 * the outgoing frame, gathering the mapping info
4231 * for that segment and creating a tx_bd for the
4232 * mbuf.
4233 */
4234 for (i = 0; i < map->dm_nsegs ; i++) {
4235 chain_prod = TX_CHAIN_IDX(prod);
4236 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4237
4238 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
4239 txbd->tx_bd_haddr_lo = htole32(addr);
4240 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4241 txbd->tx_bd_haddr_hi = htole32(addr);
4242 txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
4243 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
4244 txbd->tx_bd_flags = htole16(flags);
4245 prod_bseq += map->dm_segs[i].ds_len;
4246 if (i == 0)
4247 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
4248 prod = NEXT_TX_BD(prod);
4249 }
4250 /* Set the END flag on the last TX buffer descriptor. */
4251 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
4252
4253 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
4254
4255 DBPRINT(sc, BNX_INFO_SEND,
4256 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
4257 "prod_bseq = 0x%08X\n",
4258 __FUNCTION__, prod, chain_prod, prod_bseq);
4259
4260 /*
4261 * Ensure that the mbuf pointer for this
4262 * transmission is placed at the array
4263 * index of the last descriptor in this
4264 * chain. This is done because a single
4265 * map is used for all segments of the mbuf
4266 * and we don't want to unload the map before
4267 * all of the segments have been freed.
4268 */
4269 sc->tx_mbuf_ptr[chain_prod] = m0;
4270 sc->used_tx_bd += map->dm_nsegs;
4271
4272 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4273 sc->tx_hi_watermark = sc->used_tx_bd);
4274
4275 DBRUNIF(1, sc->tx_mbuf_alloc++);
4276
4277 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4278 map_arg.maxsegs));
4279
4280 /* prod points to the next free tx_bd at this point. */
4281 sc->tx_prod = prod;
4282 sc->tx_prod_bseq = prod_bseq;
4283
4284 return (rc);
4285 }
4286
4287 /****************************************************************************/
4288 /* Main transmit routine. */
4289 /* */
4290 /* Returns: */
4291 /* Nothing. */
4292 /****************************************************************************/
4293 void
4294 bnx_start(struct ifnet *ifp)
4295 {
4296 struct bnx_softc *sc = ifp->if_softc;
4297 struct mbuf *m_head = NULL;
4298 int count = 0;
4299 u_int16_t tx_prod, tx_chain_prod;
4300
4301 /* If there's no link or the transmit queue is empty then just exit. */
4302 if (!sc->bnx_link || IFQ_IS_EMPTY(&ifp->if_snd)) {
4303 DBPRINT(sc, BNX_INFO_SEND,
4304 "%s(): No link or transmit queue empty.\n", __FUNCTION__);
4305 goto bnx_start_exit;
4306 }
4307
4308 /* prod points to the next free tx_bd. */
4309 tx_prod = sc->tx_prod;
4310 tx_chain_prod = TX_CHAIN_IDX(tx_prod);
4311
4312 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
4313 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
4314 __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
4315
4316 /*
4317 * Keep adding entries while there is space in the ring. We keep
4318 * BNX_TX_SLACK_SPACE entries unused at all times.
4319 */
4320 while (sc->used_tx_bd < USABLE_TX_BD - BNX_TX_SLACK_SPACE) {
4321 /* Check for any frames to send. */
4322 IFQ_POLL(&ifp->if_snd, m_head);
4323 if (m_head == NULL)
4324 break;
4325
4326 /*
4327 * Pack the data into the transmit ring. If we
4328 * don't have room, set the OACTIVE flag to wait
4329 * for the NIC to drain the chain.
4330 */
4331 if (bnx_tx_encap(sc, &m_head)) {
4332 ifp->if_flags |= IFF_OACTIVE;
4333 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
4334 "business! Total tx_bd used = %d\n",
4335 sc->used_tx_bd);
4336 break;
4337 }
4338
4339 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4340 count++;
4341
4342 #if NBPFILTER > 0
4343 /* Send a copy of the frame to any BPF listeners. */
4344 if (ifp->if_bpf)
4345 bpf_mtap(ifp->if_bpf, m_head);
4346 #endif
4347 }
4348
4349 if (count == 0) {
4350 /* no packets were dequeued */
4351 DBPRINT(sc, BNX_VERBOSE_SEND,
4352 "%s(): No packets were dequeued\n", __FUNCTION__);
4353 goto bnx_start_exit;
4354 }
4355
4356 /* Update the driver's counters. */
4357 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
4358
4359 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
4360 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __FUNCTION__, tx_prod,
4361 tx_chain_prod, sc->tx_prod_bseq);
4362
4363 /* Start the transmit. */
4364 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
4365 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
4366
4367 /* Set the tx timeout. */
4368 ifp->if_timer = BNX_TX_TIMEOUT;
4369
4370 bnx_start_exit:
4371 return;
4372 }
4373
4374 /****************************************************************************/
4375 /* Handles any IOCTL calls from the operating system. */
4376 /* */
4377 /* Returns: */
4378 /* 0 for success, positive value for failure. */
4379 /****************************************************************************/
4380 int
4381 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
4382 {
4383 struct bnx_softc *sc = ifp->if_softc;
4384 struct ifreq *ifr = (struct ifreq *) data;
4385 struct mii_data *mii;
4386 int s, error = 0;
4387
4388 s = splnet();
4389
4390 switch (command) {
4391 case SIOCSIFFLAGS:
4392 if (ifp->if_flags & IFF_UP) {
4393 if ((ifp->if_flags & IFF_RUNNING) &&
4394 ((ifp->if_flags ^ sc->bnx_if_flags) &
4395 (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
4396 bnx_set_rx_mode(sc);
4397 } else if (!(ifp->if_flags & IFF_RUNNING))
4398 bnx_init(ifp);
4399
4400 } else if (ifp->if_flags & IFF_RUNNING)
4401 bnx_stop(sc);
4402
4403 sc->bnx_if_flags = ifp->if_flags;
4404 break;
4405
4406 case SIOCSIFMEDIA:
4407 case SIOCGIFMEDIA:
4408 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
4409 sc->bnx_phy_flags);
4410
4411 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
4412 error = ifmedia_ioctl(ifp, ifr,
4413 &sc->bnx_ifmedia, command);
4414 else {
4415 mii = &sc->bnx_mii;
4416 error = ifmedia_ioctl(ifp, ifr,
4417 &mii->mii_media, command);
4418 }
4419 break;
4420
4421 default:
4422 error = ether_ioctl(ifp, command, data);
4423 if (error != ENETRESET)
4424 break;
4425 error = 0;
4426 if (command == SIOCADDMULTI || command == SIOCDELMULTI) {
4427 /* reload packet filter if running */
4428 if (ifp->if_flags & IFF_RUNNING)
4429 bnx_set_rx_mode(sc);
4430 }
4431 break;
4432 }
4433
4434 splx(s);
4435
4436 return (error);
4437 }
4438
4439 /****************************************************************************/
4440 /* Transmit timeout handler. */
4441 /* */
4442 /* Returns: */
4443 /* Nothing. */
4444 /****************************************************************************/
4445 void
4446 bnx_watchdog(struct ifnet *ifp)
4447 {
4448 struct bnx_softc *sc = ifp->if_softc;
4449
4450 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
4451 bnx_dump_status_block(sc));
4452
4453 aprint_error("%s: Watchdog timeout -- resetting!\n",
4454 sc->bnx_dev.dv_xname);
4455
4456 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
4457
4458 bnx_init(ifp);
4459
4460 ifp->if_oerrors++;
4461 }
4462
4463 /*
4464 * Interrupt handler.
4465 */
4466 /****************************************************************************/
4467 /* Main interrupt entry point. Verifies that the controller generated the */
4468 /* interrupt and then calls a separate routine for handle the various */
4469 /* interrupt causes (PHY, TX, RX). */
4470 /* */
4471 /* Returns: */
4472 /* 0 for success, positive value for failure. */
4473 /****************************************************************************/
4474 int
4475 bnx_intr(void *xsc)
4476 {
4477 struct bnx_softc *sc;
4478 struct ifnet *ifp;
4479 u_int32_t status_attn_bits;
4480
4481 sc = xsc;
4482 ifp = &sc->ethercom.ec_if;
4483
4484 DBRUNIF(1, sc->interrupts_generated++);
4485
4486 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4487 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4488
4489 /*
4490 * If the hardware status block index
4491 * matches the last value read by the
4492 * driver and we haven't asserted our
4493 * interrupt then there's nothing to do.
4494 */
4495 if ((sc->status_block->status_idx == sc->last_status_idx) &&
4496 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
4497 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
4498 return (0);
4499
4500 /* Ack the interrupt and stop others from occuring. */
4501 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4502 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
4503 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4504
4505 /* Keep processing data as long as there is work to do. */
4506 for (;;) {
4507 status_attn_bits = sc->status_block->status_attn_bits;
4508
4509 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
4510 aprint_debug("Simulating unexpected status attention bit set.");
4511 status_attn_bits = status_attn_bits |
4512 STATUS_ATTN_BITS_PARITY_ERROR);
4513
4514 /* Was it a link change interrupt? */
4515 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
4516 (sc->status_block->status_attn_bits_ack &
4517 STATUS_ATTN_BITS_LINK_STATE))
4518 bnx_phy_intr(sc);
4519
4520 /* If any other attention is asserted then the chip is toast. */
4521 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
4522 (sc->status_block->status_attn_bits_ack &
4523 ~STATUS_ATTN_BITS_LINK_STATE))) {
4524 DBRUN(1, sc->unexpected_attentions++);
4525
4526 aprint_error("%s: Fatal attention detected: 0x%08X\n",
4527 sc->bnx_dev.dv_xname,
4528 sc->status_block->status_attn_bits);
4529
4530 DBRUN(BNX_FATAL,
4531 if (bnx_debug_unexpected_attention == 0)
4532 bnx_breakpoint(sc));
4533
4534 bnx_init(ifp);
4535 return (1);
4536 }
4537
4538 /* Check for any completed RX frames. */
4539 if (sc->status_block->status_rx_quick_consumer_index0 !=
4540 sc->hw_rx_cons)
4541 bnx_rx_intr(sc);
4542
4543 /* Check for any completed TX frames. */
4544 if (sc->status_block->status_tx_quick_consumer_index0 !=
4545 sc->hw_tx_cons)
4546 bnx_tx_intr(sc);
4547
4548 /* Save the status block index value for use during the
4549 * next interrupt.
4550 */
4551 sc->last_status_idx = sc->status_block->status_idx;
4552
4553 /* Prevent speculative reads from getting ahead of the
4554 * status block.
4555 */
4556 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4557 BUS_SPACE_BARRIER_READ);
4558
4559 /* If there's no work left then exit the isr. */
4560 if ((sc->status_block->status_rx_quick_consumer_index0 ==
4561 sc->hw_rx_cons) &&
4562 (sc->status_block->status_tx_quick_consumer_index0 ==
4563 sc->hw_tx_cons))
4564 break;
4565 }
4566
4567 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4568 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
4569
4570 /* Re-enable interrupts. */
4571 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4572 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
4573 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4574 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4575 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
4576
4577 /* Handle any frames that arrived while handling the interrupt. */
4578 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4579 bnx_start(ifp);
4580
4581 return (1);
4582 }
4583
4584 /****************************************************************************/
4585 /* Programs the various packet receive modes (broadcast and multicast). */
4586 /* */
4587 /* Returns: */
4588 /* Nothing. */
4589 /****************************************************************************/
4590 void
4591 bnx_set_rx_mode(struct bnx_softc *sc)
4592 {
4593 struct ethercom *ec = &sc->ethercom;
4594 struct ifnet *ifp = &ec->ec_if;
4595 struct ether_multi *enm;
4596 struct ether_multistep step;
4597 u_int32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
4598 u_int32_t rx_mode, sort_mode;
4599 int h, i;
4600
4601 /* Initialize receive mode default settings. */
4602 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
4603 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
4604 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
4605
4606 /*
4607 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
4608 * be enbled.
4609 */
4610 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
4611 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
4612
4613 /*
4614 * Check for promiscuous, all multicast, or selected
4615 * multicast address filtering.
4616 */
4617 if (ifp->if_flags & IFF_PROMISC) {
4618 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
4619
4620 /* Enable promiscuous mode. */
4621 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
4622 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
4623 } else if (ifp->if_flags & IFF_ALLMULTI) {
4624 allmulti:
4625 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
4626
4627 /* Enable all multicast addresses. */
4628 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4629 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4630 0xffffffff);
4631 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
4632 } else {
4633 /* Accept one or more multicast(s). */
4634 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
4635
4636 ETHER_FIRST_MULTI(step, ec, enm);
4637 while (enm != NULL) {
4638 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
4639 ETHER_ADDR_LEN)) {
4640 ifp->if_flags |= IFF_ALLMULTI;
4641 goto allmulti;
4642 }
4643 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
4644 0xFF;
4645 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
4646 ETHER_NEXT_MULTI(step, enm);
4647 }
4648
4649 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4650 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4651 hashes[i]);
4652
4653 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
4654 }
4655
4656 /* Only make changes if the recive mode has actually changed. */
4657 if (rx_mode != sc->rx_mode) {
4658 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
4659 rx_mode);
4660
4661 sc->rx_mode = rx_mode;
4662 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
4663 }
4664
4665 /* Disable and clear the exisitng sort before enabling a new sort. */
4666 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
4667 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
4668 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
4669 }
4670
4671 /****************************************************************************/
4672 /* Called periodically to updates statistics from the controllers */
4673 /* statistics block. */
4674 /* */
4675 /* Returns: */
4676 /* Nothing. */
4677 /****************************************************************************/
4678 void
4679 bnx_stats_update(struct bnx_softc *sc)
4680 {
4681 struct ifnet *ifp = &sc->ethercom.ec_if;
4682 struct statistics_block *stats;
4683
4684 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __FUNCTION__);
4685 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4686 BUS_DMASYNC_POSTREAD);
4687
4688 stats = (struct statistics_block *)sc->stats_block;
4689
4690 /*
4691 * Update the interface statistics from the
4692 * hardware statistics.
4693 */
4694 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
4695
4696 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
4697 (u_long)stats->stat_EtherStatsOverrsizePkts +
4698 (u_long)stats->stat_IfInMBUFDiscards +
4699 (u_long)stats->stat_Dot3StatsAlignmentErrors +
4700 (u_long)stats->stat_Dot3StatsFCSErrors;
4701
4702 ifp->if_oerrors = (u_long)
4703 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
4704 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
4705 (u_long)stats->stat_Dot3StatsLateCollisions;
4706
4707 /*
4708 * Certain controllers don't report
4709 * carrier sense errors correctly.
4710 * See errata E11_5708CA0_1165.
4711 */
4712 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
4713 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
4714 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
4715
4716 /*
4717 * Update the sysctl statistics from the
4718 * hardware statistics.
4719 */
4720 sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
4721 (u_int64_t) stats->stat_IfHCInOctets_lo;
4722
4723 sc->stat_IfHCInBadOctets =
4724 ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
4725 (u_int64_t) stats->stat_IfHCInBadOctets_lo;
4726
4727 sc->stat_IfHCOutOctets =
4728 ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
4729 (u_int64_t) stats->stat_IfHCOutOctets_lo;
4730
4731 sc->stat_IfHCOutBadOctets =
4732 ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
4733 (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
4734
4735 sc->stat_IfHCInUcastPkts =
4736 ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
4737 (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
4738
4739 sc->stat_IfHCInMulticastPkts =
4740 ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
4741 (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
4742
4743 sc->stat_IfHCInBroadcastPkts =
4744 ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
4745 (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
4746
4747 sc->stat_IfHCOutUcastPkts =
4748 ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
4749 (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
4750
4751 sc->stat_IfHCOutMulticastPkts =
4752 ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
4753 (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
4754
4755 sc->stat_IfHCOutBroadcastPkts =
4756 ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
4757 (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
4758
4759 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
4760 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
4761
4762 sc->stat_Dot3StatsCarrierSenseErrors =
4763 stats->stat_Dot3StatsCarrierSenseErrors;
4764
4765 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
4766
4767 sc->stat_Dot3StatsAlignmentErrors =
4768 stats->stat_Dot3StatsAlignmentErrors;
4769
4770 sc->stat_Dot3StatsSingleCollisionFrames =
4771 stats->stat_Dot3StatsSingleCollisionFrames;
4772
4773 sc->stat_Dot3StatsMultipleCollisionFrames =
4774 stats->stat_Dot3StatsMultipleCollisionFrames;
4775
4776 sc->stat_Dot3StatsDeferredTransmissions =
4777 stats->stat_Dot3StatsDeferredTransmissions;
4778
4779 sc->stat_Dot3StatsExcessiveCollisions =
4780 stats->stat_Dot3StatsExcessiveCollisions;
4781
4782 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
4783
4784 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
4785
4786 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
4787
4788 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
4789
4790 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
4791
4792 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
4793
4794 sc->stat_EtherStatsPktsRx64Octets =
4795 stats->stat_EtherStatsPktsRx64Octets;
4796
4797 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
4798 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
4799
4800 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
4801 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
4802
4803 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
4804 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
4805
4806 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
4807 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
4808
4809 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
4810 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
4811
4812 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
4813 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
4814
4815 sc->stat_EtherStatsPktsTx64Octets =
4816 stats->stat_EtherStatsPktsTx64Octets;
4817
4818 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
4819 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
4820
4821 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
4822 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
4823
4824 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
4825 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
4826
4827 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
4828 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
4829
4830 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
4831 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
4832
4833 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
4834 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
4835
4836 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
4837
4838 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
4839
4840 sc->stat_OutXonSent = stats->stat_OutXonSent;
4841
4842 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
4843
4844 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
4845
4846 sc->stat_MacControlFramesReceived =
4847 stats->stat_MacControlFramesReceived;
4848
4849 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
4850
4851 sc->stat_IfInFramesL2FilterDiscards =
4852 stats->stat_IfInFramesL2FilterDiscards;
4853
4854 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
4855
4856 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
4857
4858 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
4859
4860 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
4861
4862 sc->stat_CatchupInRuleCheckerDiscards =
4863 stats->stat_CatchupInRuleCheckerDiscards;
4864
4865 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
4866
4867 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
4868
4869 sc->stat_CatchupInRuleCheckerP4Hit =
4870 stats->stat_CatchupInRuleCheckerP4Hit;
4871
4872 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __FUNCTION__);
4873 }
4874
4875 void
4876 bnx_tick(void *xsc)
4877 {
4878 struct bnx_softc *sc = xsc;
4879 struct ifnet *ifp = &sc->ethercom.ec_if;
4880 struct mii_data *mii = NULL;
4881 u_int32_t msg;
4882 u_int16_t prod, chain_prod;
4883 u_int32_t prod_bseq;
4884 int s = splnet();
4885
4886 /* Tell the firmware that the driver is still running. */
4887 #ifdef BNX_DEBUG
4888 msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
4889 #else
4890 msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
4891 #endif
4892 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
4893
4894 /* Update the statistics from the hardware statistics block. */
4895 bnx_stats_update(sc);
4896
4897 /* Schedule the next tick. */
4898 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4899
4900 /* If link is up already up then we're done. */
4901 if (sc->bnx_link)
4902 goto bnx_tick_exit;
4903
4904 /* DRC - ToDo: Add SerDes support and check SerDes link here. */
4905
4906 mii = &sc->bnx_mii;
4907 mii_tick(mii);
4908
4909 /* Check if the link has come up. */
4910 if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
4911 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4912 sc->bnx_link++;
4913 /* Now that link is up, handle any outstanding TX traffic. */
4914 if (!IFQ_IS_EMPTY(&ifp->if_snd))
4915 bnx_start(ifp);
4916 }
4917
4918 bnx_tick_exit:
4919 /* try to get more RX buffers, just in case */
4920 prod = sc->rx_prod;
4921 prod_bseq = sc->rx_prod_bseq;
4922 chain_prod = RX_CHAIN_IDX(prod);
4923 bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq);
4924 sc->rx_prod = prod;
4925 sc->rx_prod_bseq = prod_bseq;
4926 splx(s);
4927 return;
4928 }
4929
4930 /****************************************************************************/
4931 /* BNX Debug Routines */
4932 /****************************************************************************/
4933 #ifdef BNX_DEBUG
4934
4935 /****************************************************************************/
4936 /* Prints out information about an mbuf. */
4937 /* */
4938 /* Returns: */
4939 /* Nothing. */
4940 /****************************************************************************/
4941 void
4942 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
4943 {
4944 struct mbuf *mp = m;
4945
4946 if (m == NULL) {
4947 /* Index out of range. */
4948 aprint_error("mbuf ptr is null!\n");
4949 return;
4950 }
4951
4952 while (mp) {
4953 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
4954 mp, mp->m_len);
4955
4956 if (mp->m_flags & M_EXT)
4957 aprint_debug("M_EXT ");
4958 if (mp->m_flags & M_PKTHDR)
4959 aprint_debug("M_PKTHDR ");
4960 aprint_debug("\n");
4961
4962 if (mp->m_flags & M_EXT)
4963 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
4964 mp, mp->m_ext.ext_size);
4965
4966 mp = mp->m_next;
4967 }
4968 }
4969
4970 /****************************************************************************/
4971 /* Prints out the mbufs in the TX mbuf chain. */
4972 /* */
4973 /* Returns: */
4974 /* Nothing. */
4975 /****************************************************************************/
4976 void
4977 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
4978 {
4979 struct mbuf *m;
4980 int i;
4981
4982 BNX_PRINTF(sc,
4983 "----------------------------"
4984 " tx mbuf data "
4985 "----------------------------\n");
4986
4987 for (i = 0; i < count; i++) {
4988 m = sc->tx_mbuf_ptr[chain_prod];
4989 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
4990 bnx_dump_mbuf(sc, m);
4991 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
4992 }
4993
4994 BNX_PRINTF(sc,
4995 "--------------------------------------------"
4996 "----------------------------\n");
4997 }
4998
4999 /*
5000 * This routine prints the RX mbuf chain.
5001 */
5002 void
5003 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5004 {
5005 struct mbuf *m;
5006 int i;
5007
5008 BNX_PRINTF(sc,
5009 "----------------------------"
5010 " rx mbuf data "
5011 "----------------------------\n");
5012
5013 for (i = 0; i < count; i++) {
5014 m = sc->rx_mbuf_ptr[chain_prod];
5015 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5016 bnx_dump_mbuf(sc, m);
5017 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5018 }
5019
5020
5021 BNX_PRINTF(sc,
5022 "--------------------------------------------"
5023 "----------------------------\n");
5024 }
5025
5026 void
5027 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5028 {
5029 if (idx > MAX_TX_BD)
5030 /* Index out of range. */
5031 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5032 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5033 /* TX Chain page pointer. */
5034 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5035 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5036 txbd->tx_bd_haddr_lo);
5037 else
5038 /* Normal tx_bd entry. */
5039 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5040 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5041 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5042 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5043 txbd->tx_bd_flags);
5044 }
5045
5046 void
5047 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5048 {
5049 if (idx > MAX_RX_BD)
5050 /* Index out of range. */
5051 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5052 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5053 /* TX Chain page pointer. */
5054 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5055 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5056 rxbd->rx_bd_haddr_lo);
5057 else
5058 /* Normal tx_bd entry. */
5059 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5060 "0x%08X, flags = 0x%08X\n", idx,
5061 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5062 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5063 }
5064
5065 void
5066 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5067 {
5068 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5069 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5070 "tcp_udp_xsum = 0x%04X\n", idx,
5071 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5072 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5073 l2fhdr->l2_fhdr_tcp_udp_xsum);
5074 }
5075
5076 /*
5077 * This routine prints the TX chain.
5078 */
5079 void
5080 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5081 {
5082 struct tx_bd *txbd;
5083 int i;
5084
5085 /* First some info about the tx_bd chain structure. */
5086 BNX_PRINTF(sc,
5087 "----------------------------"
5088 " tx_bd chain "
5089 "----------------------------\n");
5090
5091 BNX_PRINTF(sc,
5092 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5093 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5094
5095 BNX_PRINTF(sc,
5096 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5097 (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5098
5099 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
5100
5101 BNX_PRINTF(sc, ""
5102 "-----------------------------"
5103 " tx_bd data "
5104 "-----------------------------\n");
5105
5106 /* Now print out the tx_bd's themselves. */
5107 for (i = 0; i < count; i++) {
5108 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5109 bnx_dump_txbd(sc, tx_prod, txbd);
5110 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5111 }
5112
5113 BNX_PRINTF(sc,
5114 "-----------------------------"
5115 "--------------"
5116 "-----------------------------\n");
5117 }
5118
5119 /*
5120 * This routine prints the RX chain.
5121 */
5122 void
5123 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5124 {
5125 struct rx_bd *rxbd;
5126 int i;
5127
5128 /* First some info about the tx_bd chain structure. */
5129 BNX_PRINTF(sc,
5130 "----------------------------"
5131 " rx_bd chain "
5132 "----------------------------\n");
5133
5134 BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
5135
5136 BNX_PRINTF(sc,
5137 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5138 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5139
5140 BNX_PRINTF(sc,
5141 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5142 (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5143
5144 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
5145
5146 BNX_PRINTF(sc,
5147 "----------------------------"
5148 " rx_bd data "
5149 "----------------------------\n");
5150
5151 /* Now print out the rx_bd's themselves. */
5152 for (i = 0; i < count; i++) {
5153 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5154 bnx_dump_rxbd(sc, rx_prod, rxbd);
5155 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5156 }
5157
5158 BNX_PRINTF(sc,
5159 "----------------------------"
5160 "--------------"
5161 "----------------------------\n");
5162 }
5163
5164 /*
5165 * This routine prints the status block.
5166 */
5167 void
5168 bnx_dump_status_block(struct bnx_softc *sc)
5169 {
5170 struct status_block *sblk;
5171 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5172 BUS_DMASYNC_POSTREAD);
5173
5174 sblk = sc->status_block;
5175
5176 BNX_PRINTF(sc, "----------------------------- Status Block "
5177 "-----------------------------\n");
5178
5179 BNX_PRINTF(sc,
5180 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5181 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5182 sblk->status_idx);
5183
5184 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5185 sblk->status_rx_quick_consumer_index0,
5186 sblk->status_tx_quick_consumer_index0);
5187
5188 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5189
5190 /* Theses indices are not used for normal L2 drivers. */
5191 if (sblk->status_rx_quick_consumer_index1 ||
5192 sblk->status_tx_quick_consumer_index1)
5193 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5194 sblk->status_rx_quick_consumer_index1,
5195 sblk->status_tx_quick_consumer_index1);
5196
5197 if (sblk->status_rx_quick_consumer_index2 ||
5198 sblk->status_tx_quick_consumer_index2)
5199 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5200 sblk->status_rx_quick_consumer_index2,
5201 sblk->status_tx_quick_consumer_index2);
5202
5203 if (sblk->status_rx_quick_consumer_index3 ||
5204 sblk->status_tx_quick_consumer_index3)
5205 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5206 sblk->status_rx_quick_consumer_index3,
5207 sblk->status_tx_quick_consumer_index3);
5208
5209 if (sblk->status_rx_quick_consumer_index4 ||
5210 sblk->status_rx_quick_consumer_index5)
5211 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5212 sblk->status_rx_quick_consumer_index4,
5213 sblk->status_rx_quick_consumer_index5);
5214
5215 if (sblk->status_rx_quick_consumer_index6 ||
5216 sblk->status_rx_quick_consumer_index7)
5217 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
5218 sblk->status_rx_quick_consumer_index6,
5219 sblk->status_rx_quick_consumer_index7);
5220
5221 if (sblk->status_rx_quick_consumer_index8 ||
5222 sblk->status_rx_quick_consumer_index9)
5223 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
5224 sblk->status_rx_quick_consumer_index8,
5225 sblk->status_rx_quick_consumer_index9);
5226
5227 if (sblk->status_rx_quick_consumer_index10 ||
5228 sblk->status_rx_quick_consumer_index11)
5229 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
5230 sblk->status_rx_quick_consumer_index10,
5231 sblk->status_rx_quick_consumer_index11);
5232
5233 if (sblk->status_rx_quick_consumer_index12 ||
5234 sblk->status_rx_quick_consumer_index13)
5235 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
5236 sblk->status_rx_quick_consumer_index12,
5237 sblk->status_rx_quick_consumer_index13);
5238
5239 if (sblk->status_rx_quick_consumer_index14 ||
5240 sblk->status_rx_quick_consumer_index15)
5241 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
5242 sblk->status_rx_quick_consumer_index14,
5243 sblk->status_rx_quick_consumer_index15);
5244
5245 if (sblk->status_completion_producer_index ||
5246 sblk->status_cmd_consumer_index)
5247 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
5248 sblk->status_completion_producer_index,
5249 sblk->status_cmd_consumer_index);
5250
5251 BNX_PRINTF(sc, "-------------------------------------------"
5252 "-----------------------------\n");
5253 }
5254
5255 /*
5256 * This routine prints the statistics block.
5257 */
5258 void
5259 bnx_dump_stats_block(struct bnx_softc *sc)
5260 {
5261 struct statistics_block *sblk;
5262 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5263 BUS_DMASYNC_POSTREAD);
5264
5265 sblk = sc->stats_block;
5266
5267 BNX_PRINTF(sc, ""
5268 "-----------------------------"
5269 " Stats Block "
5270 "-----------------------------\n");
5271
5272 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
5273 "IfHcInBadOctets = 0x%08X:%08X\n",
5274 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5275 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5276
5277 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
5278 "IfHcOutBadOctets = 0x%08X:%08X\n",
5279 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5280 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5281
5282 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
5283 "IfHcInMulticastPkts = 0x%08X:%08X\n",
5284 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5285 sblk->stat_IfHCInMulticastPkts_hi,
5286 sblk->stat_IfHCInMulticastPkts_lo);
5287
5288 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
5289 "IfHcOutUcastPkts = 0x%08X:%08X\n",
5290 sblk->stat_IfHCInBroadcastPkts_hi,
5291 sblk->stat_IfHCInBroadcastPkts_lo,
5292 sblk->stat_IfHCOutUcastPkts_hi,
5293 sblk->stat_IfHCOutUcastPkts_lo);
5294
5295 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5296 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5297 sblk->stat_IfHCOutMulticastPkts_hi,
5298 sblk->stat_IfHCOutMulticastPkts_lo,
5299 sblk->stat_IfHCOutBroadcastPkts_hi,
5300 sblk->stat_IfHCOutBroadcastPkts_lo);
5301
5302 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5303 BNX_PRINTF(sc, "0x%08X : "
5304 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5305 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5306
5307 if (sblk->stat_Dot3StatsCarrierSenseErrors)
5308 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5309 sblk->stat_Dot3StatsCarrierSenseErrors);
5310
5311 if (sblk->stat_Dot3StatsFCSErrors)
5312 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5313 sblk->stat_Dot3StatsFCSErrors);
5314
5315 if (sblk->stat_Dot3StatsAlignmentErrors)
5316 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5317 sblk->stat_Dot3StatsAlignmentErrors);
5318
5319 if (sblk->stat_Dot3StatsSingleCollisionFrames)
5320 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5321 sblk->stat_Dot3StatsSingleCollisionFrames);
5322
5323 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
5324 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
5325 sblk->stat_Dot3StatsMultipleCollisionFrames);
5326
5327 if (sblk->stat_Dot3StatsDeferredTransmissions)
5328 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
5329 sblk->stat_Dot3StatsDeferredTransmissions);
5330
5331 if (sblk->stat_Dot3StatsExcessiveCollisions)
5332 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
5333 sblk->stat_Dot3StatsExcessiveCollisions);
5334
5335 if (sblk->stat_Dot3StatsLateCollisions)
5336 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
5337 sblk->stat_Dot3StatsLateCollisions);
5338
5339 if (sblk->stat_EtherStatsCollisions)
5340 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
5341 sblk->stat_EtherStatsCollisions);
5342
5343 if (sblk->stat_EtherStatsFragments)
5344 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
5345 sblk->stat_EtherStatsFragments);
5346
5347 if (sblk->stat_EtherStatsJabbers)
5348 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
5349 sblk->stat_EtherStatsJabbers);
5350
5351 if (sblk->stat_EtherStatsUndersizePkts)
5352 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
5353 sblk->stat_EtherStatsUndersizePkts);
5354
5355 if (sblk->stat_EtherStatsOverrsizePkts)
5356 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
5357 sblk->stat_EtherStatsOverrsizePkts);
5358
5359 if (sblk->stat_EtherStatsPktsRx64Octets)
5360 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
5361 sblk->stat_EtherStatsPktsRx64Octets);
5362
5363 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
5364 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
5365 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
5366
5367 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
5368 BNX_PRINTF(sc, "0x%08X : "
5369 "EtherStatsPktsRx128Octetsto255Octets\n",
5370 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
5371
5372 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
5373 BNX_PRINTF(sc, "0x%08X : "
5374 "EtherStatsPktsRx256Octetsto511Octets\n",
5375 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
5376
5377 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
5378 BNX_PRINTF(sc, "0x%08X : "
5379 "EtherStatsPktsRx512Octetsto1023Octets\n",
5380 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
5381
5382 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
5383 BNX_PRINTF(sc, "0x%08X : "
5384 "EtherStatsPktsRx1024Octetsto1522Octets\n",
5385 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
5386
5387 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
5388 BNX_PRINTF(sc, "0x%08X : "
5389 "EtherStatsPktsRx1523Octetsto9022Octets\n",
5390 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
5391
5392 if (sblk->stat_EtherStatsPktsTx64Octets)
5393 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
5394 sblk->stat_EtherStatsPktsTx64Octets);
5395
5396 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
5397 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
5398 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
5399
5400 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
5401 BNX_PRINTF(sc, "0x%08X : "
5402 "EtherStatsPktsTx128Octetsto255Octets\n",
5403 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
5404
5405 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
5406 BNX_PRINTF(sc, "0x%08X : "
5407 "EtherStatsPktsTx256Octetsto511Octets\n",
5408 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
5409
5410 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
5411 BNX_PRINTF(sc, "0x%08X : "
5412 "EtherStatsPktsTx512Octetsto1023Octets\n",
5413 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
5414
5415 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
5416 BNX_PRINTF(sc, "0x%08X : "
5417 "EtherStatsPktsTx1024Octetsto1522Octets\n",
5418 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
5419
5420 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
5421 BNX_PRINTF(sc, "0x%08X : "
5422 "EtherStatsPktsTx1523Octetsto9022Octets\n",
5423 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
5424
5425 if (sblk->stat_XonPauseFramesReceived)
5426 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
5427 sblk->stat_XonPauseFramesReceived);
5428
5429 if (sblk->stat_XoffPauseFramesReceived)
5430 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
5431 sblk->stat_XoffPauseFramesReceived);
5432
5433 if (sblk->stat_OutXonSent)
5434 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
5435 sblk->stat_OutXonSent);
5436
5437 if (sblk->stat_OutXoffSent)
5438 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
5439 sblk->stat_OutXoffSent);
5440
5441 if (sblk->stat_FlowControlDone)
5442 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
5443 sblk->stat_FlowControlDone);
5444
5445 if (sblk->stat_MacControlFramesReceived)
5446 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
5447 sblk->stat_MacControlFramesReceived);
5448
5449 if (sblk->stat_XoffStateEntered)
5450 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
5451 sblk->stat_XoffStateEntered);
5452
5453 if (sblk->stat_IfInFramesL2FilterDiscards)
5454 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
5455 sblk->stat_IfInFramesL2FilterDiscards);
5456
5457 if (sblk->stat_IfInRuleCheckerDiscards)
5458 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
5459 sblk->stat_IfInRuleCheckerDiscards);
5460
5461 if (sblk->stat_IfInFTQDiscards)
5462 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
5463 sblk->stat_IfInFTQDiscards);
5464
5465 if (sblk->stat_IfInMBUFDiscards)
5466 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
5467 sblk->stat_IfInMBUFDiscards);
5468
5469 if (sblk->stat_IfInRuleCheckerP4Hit)
5470 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
5471 sblk->stat_IfInRuleCheckerP4Hit);
5472
5473 if (sblk->stat_CatchupInRuleCheckerDiscards)
5474 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
5475 sblk->stat_CatchupInRuleCheckerDiscards);
5476
5477 if (sblk->stat_CatchupInFTQDiscards)
5478 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
5479 sblk->stat_CatchupInFTQDiscards);
5480
5481 if (sblk->stat_CatchupInMBUFDiscards)
5482 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
5483 sblk->stat_CatchupInMBUFDiscards);
5484
5485 if (sblk->stat_CatchupInRuleCheckerP4Hit)
5486 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
5487 sblk->stat_CatchupInRuleCheckerP4Hit);
5488
5489 BNX_PRINTF(sc,
5490 "-----------------------------"
5491 "--------------"
5492 "-----------------------------\n");
5493 }
5494
5495 void
5496 bnx_dump_driver_state(struct bnx_softc *sc)
5497 {
5498 BNX_PRINTF(sc,
5499 "-----------------------------"
5500 " Driver State "
5501 "-----------------------------\n");
5502
5503 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
5504 "address\n", sc);
5505
5506 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
5507 sc->status_block);
5508
5509 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
5510 "address\n", sc->stats_block);
5511
5512 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
5513 "adddress\n", sc->tx_bd_chain);
5514
5515 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
5516 sc->rx_bd_chain);
5517
5518 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
5519 sc->tx_mbuf_ptr);
5520
5521 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
5522 sc->rx_mbuf_ptr);
5523
5524 BNX_PRINTF(sc,
5525 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
5526 sc->interrupts_generated);
5527
5528 BNX_PRINTF(sc,
5529 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
5530 sc->rx_interrupts);
5531
5532 BNX_PRINTF(sc,
5533 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
5534 sc->tx_interrupts);
5535
5536 BNX_PRINTF(sc,
5537 " 0x%08X - (sc->last_status_idx) status block index\n",
5538 sc->last_status_idx);
5539
5540 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
5541 sc->tx_prod);
5542
5543 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
5544 sc->tx_cons);
5545
5546 BNX_PRINTF(sc,
5547 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
5548 sc->tx_prod_bseq);
5549
5550 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
5551 sc->rx_prod);
5552
5553 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
5554 sc->rx_cons);
5555
5556 BNX_PRINTF(sc,
5557 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
5558 sc->rx_prod_bseq);
5559
5560 BNX_PRINTF(sc,
5561 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5562 sc->rx_mbuf_alloc);
5563
5564 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
5565 sc->free_rx_bd);
5566
5567 BNX_PRINTF(sc,
5568 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
5569 sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
5570
5571 BNX_PRINTF(sc,
5572 " 0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
5573 sc->tx_mbuf_alloc);
5574
5575 BNX_PRINTF(sc,
5576 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5577 sc->rx_mbuf_alloc);
5578
5579 BNX_PRINTF(sc, " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
5580 sc->used_tx_bd);
5581
5582 BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
5583 sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
5584
5585 BNX_PRINTF(sc,
5586 " 0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
5587 sc->mbuf_alloc_failed);
5588
5589 BNX_PRINTF(sc, "-------------------------------------------"
5590 "-----------------------------\n");
5591 }
5592
5593 void
5594 bnx_dump_hw_state(struct bnx_softc *sc)
5595 {
5596 u_int32_t val1;
5597 int i;
5598
5599 BNX_PRINTF(sc,
5600 "----------------------------"
5601 " Hardware State "
5602 "----------------------------\n");
5603
5604 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
5605
5606 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
5607 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
5608 val1, BNX_MISC_ENABLE_STATUS_BITS);
5609
5610 val1 = REG_RD(sc, BNX_DMA_STATUS);
5611 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
5612
5613 val1 = REG_RD(sc, BNX_CTX_STATUS);
5614 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
5615
5616 val1 = REG_RD(sc, BNX_EMAC_STATUS);
5617 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
5618 BNX_EMAC_STATUS);
5619
5620 val1 = REG_RD(sc, BNX_RPM_STATUS);
5621 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
5622
5623 val1 = REG_RD(sc, BNX_TBDR_STATUS);
5624 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
5625 BNX_TBDR_STATUS);
5626
5627 val1 = REG_RD(sc, BNX_TDMA_STATUS);
5628 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
5629 BNX_TDMA_STATUS);
5630
5631 val1 = REG_RD(sc, BNX_HC_STATUS);
5632 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
5633
5634 BNX_PRINTF(sc,
5635 "----------------------------"
5636 "----------------"
5637 "----------------------------\n");
5638
5639 BNX_PRINTF(sc,
5640 "----------------------------"
5641 " Register Dump "
5642 "----------------------------\n");
5643
5644 for (i = 0x400; i < 0x8000; i += 0x10)
5645 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
5646 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
5647 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
5648
5649 BNX_PRINTF(sc,
5650 "----------------------------"
5651 "----------------"
5652 "----------------------------\n");
5653 }
5654
5655 void
5656 bnx_breakpoint(struct bnx_softc *sc)
5657 {
5658 /* Unreachable code to shut the compiler up about unused functions. */
5659 if (0) {
5660 bnx_dump_txbd(sc, 0, NULL);
5661 bnx_dump_rxbd(sc, 0, NULL);
5662 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
5663 bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
5664 bnx_dump_l2fhdr(sc, 0, NULL);
5665 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
5666 bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
5667 bnx_dump_status_block(sc);
5668 bnx_dump_stats_block(sc);
5669 bnx_dump_driver_state(sc);
5670 bnx_dump_hw_state(sc);
5671 }
5672
5673 bnx_dump_driver_state(sc);
5674 /* Print the important status block fields. */
5675 bnx_dump_status_block(sc);
5676
5677 #if 0
5678 /* Call the debugger. */
5679 breakpoint();
5680 #endif
5681
5682 return;
5683 }
5684 #endif
5685