if_bnx.c revision 1.13 1 /* $NetBSD: if_bnx.c,v 1.13 2007/12/26 04:06:29 dyoung Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.43 2007/01/30 03:21:10 krw Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.13 2007/12/26 04:06:29 dyoung Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5708C B1
44 *
45 * The following controllers are not supported by this driver:
46 * (These are not "Production" versions of the controller.)
47 *
48 * BCM5706C A0, A1
49 * BCM5706S A0, A1, A2, A3
50 * BCM5708C A0, B0
51 * BCM5708S A0, B0, B1
52 */
53
54 #include <sys/callout.h>
55
56 #include <dev/pci/if_bnxreg.h>
57 #include <dev/microcode/bnx/bnxfw.h>
58
59 /****************************************************************************/
60 /* BNX Driver Version */
61 /****************************************************************************/
62 const char bnx_driver_version[] = "v0.9.6";
63
64 /****************************************************************************/
65 /* BNX Debug Options */
66 /****************************************************************************/
67 #ifdef BNX_DEBUG
68 u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
69
70 /* 0 = Never */
71 /* 1 = 1 in 2,147,483,648 */
72 /* 256 = 1 in 8,388,608 */
73 /* 2048 = 1 in 1,048,576 */
74 /* 65536 = 1 in 32,768 */
75 /* 1048576 = 1 in 2,048 */
76 /* 268435456 = 1 in 8 */
77 /* 536870912 = 1 in 4 */
78 /* 1073741824 = 1 in 2 */
79
80 /* Controls how often the l2_fhdr frame error check will fail. */
81 int bnx_debug_l2fhdr_status_check = 0;
82
83 /* Controls how often the unexpected attention check will fail. */
84 int bnx_debug_unexpected_attention = 0;
85
86 /* Controls how often to simulate an mbuf allocation failure. */
87 int bnx_debug_mbuf_allocation_failure = 0;
88
89 /* Controls how often to simulate a DMA mapping failure. */
90 int bnx_debug_dma_map_addr_failure = 0;
91
92 /* Controls how often to simulate a bootcode failure. */
93 int bnx_debug_bootcode_running_failure = 0;
94 #endif
95
96 /****************************************************************************/
97 /* PCI Device ID Table */
98 /* */
99 /* Used by bnx_probe() to identify the devices supported by this driver. */
100 /****************************************************************************/
101 static const struct bnx_product {
102 pci_vendor_id_t bp_vendor;
103 pci_product_id_t bp_product;
104 pci_vendor_id_t bp_subvendor;
105 pci_product_id_t bp_subproduct;
106 const char *bp_name;
107 } bnx_devices[] = {
108 #ifdef PCI_SUBPRODUCT_HP_NC370T
109 {
110 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
111 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
112 "HP NC370T Multifunction Gigabit Server Adapter"
113 },
114 #endif
115 #ifdef PCI_SUBPRODUCT_HP_NC370i
116 {
117 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
118 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
119 "HP NC370i Multifunction Gigabit Server Adapter"
120 },
121 #endif
122 {
123 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
124 0, 0,
125 "Broadcom NetXtreme II BCM5706 1000Base-T"
126 },
127 #ifdef PCI_SUBPRODUCT_HP_NC370F
128 {
129 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
130 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
131 "HP NC370F Multifunction Gigabit Server Adapter"
132 },
133 #endif
134 {
135 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
136 0, 0,
137 "Broadcom NetXtreme II BCM5706 1000Base-SX"
138 },
139 {
140 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
141 0, 0,
142 "Broadcom NetXtreme II BCM5708 1000Base-T"
143 },
144 {
145 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
146 0, 0,
147 "Broadcom NetXtreme II BCM5708 1000Base-SX"
148 },
149 };
150
151 /****************************************************************************/
152 /* Supported Flash NVRAM device data. */
153 /****************************************************************************/
154 static struct flash_spec flash_table[] =
155 {
156 /* Slow EEPROM */
157 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
158 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
159 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
160 "EEPROM - slow"},
161 /* Expansion entry 0001 */
162 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
163 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
164 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
165 "Entry 0001"},
166 /* Saifun SA25F010 (non-buffered flash) */
167 /* strap, cfg1, & write1 need updates */
168 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
169 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
170 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
171 "Non-buffered flash (128kB)"},
172 /* Saifun SA25F020 (non-buffered flash) */
173 /* strap, cfg1, & write1 need updates */
174 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
175 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
176 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
177 "Non-buffered flash (256kB)"},
178 /* Expansion entry 0100 */
179 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
180 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
181 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
182 "Entry 0100"},
183 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
184 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
185 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
186 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
187 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
188 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
189 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
190 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
191 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
192 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
193 /* Saifun SA25F005 (non-buffered flash) */
194 /* strap, cfg1, & write1 need updates */
195 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
196 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
197 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
198 "Non-buffered flash (64kB)"},
199 /* Fast EEPROM */
200 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
201 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
202 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
203 "EEPROM - fast"},
204 /* Expansion entry 1001 */
205 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
206 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
208 "Entry 1001"},
209 /* Expansion entry 1010 */
210 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
211 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 "Entry 1010"},
214 /* ATMEL AT45DB011B (buffered flash) */
215 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
216 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
217 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
218 "Buffered flash (128kB)"},
219 /* Expansion entry 1100 */
220 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
221 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
222 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
223 "Entry 1100"},
224 /* Expansion entry 1101 */
225 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
226 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
228 "Entry 1101"},
229 /* Ateml Expansion entry 1110 */
230 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
231 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
232 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
233 "Entry 1110 (Atmel)"},
234 /* ATMEL AT45DB021B (buffered flash) */
235 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
236 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
237 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
238 "Buffered flash (256kB)"},
239 };
240
241 /****************************************************************************/
242 /* OpenBSD device entry points. */
243 /****************************************************************************/
244 static int bnx_probe(device_t, cfdata_t, void *);
245 bool bnx_suspend_resume(device_t);
246 void bnx_attach(device_t, device_t, void *);
247 int bnx_detach(device_t, int);
248
249 /****************************************************************************/
250 /* BNX Debug Data Structure Dump Routines */
251 /****************************************************************************/
252 #ifdef BNX_DEBUG
253 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
254 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
255 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
256 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
257 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
258 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
259 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
260 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
261 void bnx_dump_status_block(struct bnx_softc *);
262 void bnx_dump_stats_block(struct bnx_softc *);
263 void bnx_dump_driver_state(struct bnx_softc *);
264 void bnx_dump_hw_state(struct bnx_softc *);
265 void bnx_breakpoint(struct bnx_softc *);
266 #endif
267
268 /****************************************************************************/
269 /* BNX Register/Memory Access Routines */
270 /****************************************************************************/
271 u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
272 void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
273 void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
274 int bnx_miibus_read_reg(device_t, int, int);
275 void bnx_miibus_write_reg(device_t, int, int, int);
276 void bnx_miibus_statchg(device_t);
277
278 /****************************************************************************/
279 /* BNX NVRAM Access Routines */
280 /****************************************************************************/
281 int bnx_acquire_nvram_lock(struct bnx_softc *);
282 int bnx_release_nvram_lock(struct bnx_softc *);
283 void bnx_enable_nvram_access(struct bnx_softc *);
284 void bnx_disable_nvram_access(struct bnx_softc *);
285 int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
286 u_int32_t);
287 int bnx_init_nvram(struct bnx_softc *);
288 int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
289 int bnx_nvram_test(struct bnx_softc *);
290 #ifdef BNX_NVRAM_WRITE_SUPPORT
291 int bnx_enable_nvram_write(struct bnx_softc *);
292 void bnx_disable_nvram_write(struct bnx_softc *);
293 int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
294 int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
295 u_int32_t);
296 int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
297 #endif
298
299 /****************************************************************************/
300 /* */
301 /****************************************************************************/
302 int bnx_dma_alloc(struct bnx_softc *);
303 void bnx_dma_free(struct bnx_softc *);
304 void bnx_release_resources(struct bnx_softc *);
305
306 /****************************************************************************/
307 /* BNX Firmware Synchronization and Load */
308 /****************************************************************************/
309 int bnx_fw_sync(struct bnx_softc *, u_int32_t);
310 void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
311 u_int32_t);
312 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
313 struct fw_info *);
314 void bnx_init_cpus(struct bnx_softc *);
315
316 void bnx_if_stop(struct ifnet *, int);
317 void bnx_stop(struct bnx_softc *);
318 int bnx_reset(struct bnx_softc *, u_int32_t);
319 int bnx_chipinit(struct bnx_softc *);
320 int bnx_blockinit(struct bnx_softc *);
321 int bnx_get_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
322 u_int16_t *, u_int32_t *);
323
324 int bnx_init_tx_chain(struct bnx_softc *);
325 int bnx_init_rx_chain(struct bnx_softc *);
326 void bnx_free_rx_chain(struct bnx_softc *);
327 void bnx_free_tx_chain(struct bnx_softc *);
328
329 int bnx_tx_encap(struct bnx_softc *, struct mbuf **);
330 void bnx_start(struct ifnet *);
331 int bnx_ioctl(struct ifnet *, u_long, void *);
332 void bnx_watchdog(struct ifnet *);
333 int bnx_ifmedia_upd(struct ifnet *);
334 void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
335 int bnx_init(struct ifnet *);
336
337 void bnx_init_context(struct bnx_softc *);
338 void bnx_get_mac_addr(struct bnx_softc *);
339 void bnx_set_mac_addr(struct bnx_softc *);
340 void bnx_phy_intr(struct bnx_softc *);
341 void bnx_rx_intr(struct bnx_softc *);
342 void bnx_tx_intr(struct bnx_softc *);
343 void bnx_disable_intr(struct bnx_softc *);
344 void bnx_enable_intr(struct bnx_softc *);
345
346 int bnx_intr(void *);
347 void bnx_set_rx_mode(struct bnx_softc *);
348 void bnx_stats_update(struct bnx_softc *);
349 void bnx_tick(void *);
350
351 /****************************************************************************/
352 /* OpenBSD device dispatch table. */
353 /****************************************************************************/
354 CFATTACH_DECL_NEW(bnx, sizeof(struct bnx_softc),
355 bnx_probe, bnx_attach, bnx_detach, NULL);
356
357 /****************************************************************************/
358 /* Device probe function. */
359 /* */
360 /* Compares the device to the driver's list of supported devices and */
361 /* reports back to the OS whether this is the right driver for the device. */
362 /* */
363 /* Returns: */
364 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
365 /****************************************************************************/
366 static const struct bnx_product *
367 bnx_lookup(const struct pci_attach_args *pa)
368 {
369 int i;
370 pcireg_t subid;
371
372 for (i = 0; i < __arraycount(bnx_devices); i++) {
373 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
374 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
375 continue;
376 if (!bnx_devices[i].bp_subvendor)
377 return &bnx_devices[i];
378 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
379 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
380 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
381 return &bnx_devices[i];
382 }
383
384 return NULL;
385 }
386 static int
387 bnx_probe(device_t parent, cfdata_t match, void *aux)
388 {
389 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
390
391 if (bnx_lookup(pa) != NULL)
392 return (1);
393
394 return (0);
395 }
396
397 bool
398 bnx_suspend_resume(device_t dev)
399 {
400 struct bnx_softc *sc = device_private(dev);
401
402 return bnx_reset(sc, BNX_DRV_MSG_CODE_RESET) == 0;
403 }
404
405 /****************************************************************************/
406 /* Device attach function. */
407 /* */
408 /* Allocates device resources, performs secondary chip identification, */
409 /* resets and initializes the hardware, and initializes driver instance */
410 /* variables. */
411 /* */
412 /* Returns: */
413 /* 0 on success, positive value on failure. */
414 /****************************************************************************/
415 void
416 bnx_attach(device_t parent, device_t self, void *aux)
417 {
418 const struct bnx_product *bp;
419 struct bnx_softc *sc = device_private(self);
420 struct pci_attach_args *pa = aux;
421 pci_chipset_tag_t pc = pa->pa_pc;
422 pci_intr_handle_t ih;
423 const char *intrstr = NULL;
424 u_int32_t command;
425 struct ifnet *ifp;
426 u_int32_t val;
427 pcireg_t memtype;
428
429 bp = bnx_lookup(pa);
430 if (bp == NULL)
431 panic("unknown device");
432
433 sc->bnx_dev = self;
434
435 aprint_naive("\n");
436 aprint_normal(": %s\n", bp->bp_name);
437
438 sc->bnx_pa = *pa;
439
440 /*
441 * Map control/status registers.
442 */
443 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
444 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
445 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
446 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
447
448 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
449 aprint_error_dev(sc->bnx_dev,
450 "failed to enable memory mapping!\n");
451 return;
452 }
453
454 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
455 switch (memtype) {
456 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
457 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
458 if (pci_mapreg_map(pa, BNX_PCI_BAR0,
459 memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
460 NULL, &sc->bnx_size) == 0)
461 break;
462 default:
463 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
464 return;
465 }
466
467 if (pci_intr_map(pa, &ih)) {
468 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
469 goto bnx_attach_fail;
470 }
471
472 intrstr = pci_intr_string(pc, ih);
473
474 /*
475 * Configure byte swap and enable indirect register access.
476 * Rely on CPU to do target byte swapping on big endian systems.
477 * Access to registers outside of PCI configurtion space are not
478 * valid until this is done.
479 */
480 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
481 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
482 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
483
484 /* Save ASIC revsion info. */
485 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
486
487 /* Weed out any non-production controller revisions. */
488 switch(BNX_CHIP_ID(sc)) {
489 case BNX_CHIP_ID_5706_A0:
490 case BNX_CHIP_ID_5706_A1:
491 case BNX_CHIP_ID_5708_A0:
492 case BNX_CHIP_ID_5708_B0:
493 aprint_error_dev(sc->bnx_dev,
494 "unsupported controller revision (%c%d)!\n",
495 ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
496 PCI_REVISION(pa->pa_class) & 0x0f);
497 goto bnx_attach_fail;
498 }
499
500 if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
501 aprint_error_dev(sc->bnx_dev,
502 "SerDes controllers are not supported!\n");
503 goto bnx_attach_fail;
504 }
505
506 /*
507 * Find the base address for shared memory access.
508 * Newer versions of bootcode use a signature and offset
509 * while older versions use a fixed address.
510 */
511 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
512 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
513 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
514 else
515 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
516
517 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
518
519 /* Set initial device and PHY flags */
520 sc->bnx_flags = 0;
521 sc->bnx_phy_flags = 0;
522
523 /* Get PCI bus information (speed and type). */
524 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
525 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
526 u_int32_t clkreg;
527
528 sc->bnx_flags |= BNX_PCIX_FLAG;
529
530 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
531
532 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
533 switch (clkreg) {
534 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
535 sc->bus_speed_mhz = 133;
536 break;
537
538 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
539 sc->bus_speed_mhz = 100;
540 break;
541
542 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
543 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
544 sc->bus_speed_mhz = 66;
545 break;
546
547 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
548 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
549 sc->bus_speed_mhz = 50;
550 break;
551
552 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
553 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
554 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
555 sc->bus_speed_mhz = 33;
556 break;
557 }
558 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
559 sc->bus_speed_mhz = 66;
560 else
561 sc->bus_speed_mhz = 33;
562
563 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
564 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
565
566 /* Reset the controller. */
567 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
568 goto bnx_attach_fail;
569
570 /* Initialize the controller. */
571 if (bnx_chipinit(sc)) {
572 aprint_error_dev(sc->bnx_dev,
573 "Controller initialization failed!\n");
574 goto bnx_attach_fail;
575 }
576
577 /* Perform NVRAM test. */
578 if (bnx_nvram_test(sc)) {
579 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
580 goto bnx_attach_fail;
581 }
582
583 /* Fetch the permanent Ethernet MAC address. */
584 bnx_get_mac_addr(sc);
585 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
586 ether_sprintf(sc->eaddr));
587
588 /*
589 * Trip points control how many BDs
590 * should be ready before generating an
591 * interrupt while ticks control how long
592 * a BD can sit in the chain before
593 * generating an interrupt. Set the default
594 * values for the RX and TX rings.
595 */
596
597 #ifdef BNX_DEBUG
598 /* Force more frequent interrupts. */
599 sc->bnx_tx_quick_cons_trip_int = 1;
600 sc->bnx_tx_quick_cons_trip = 1;
601 sc->bnx_tx_ticks_int = 0;
602 sc->bnx_tx_ticks = 0;
603
604 sc->bnx_rx_quick_cons_trip_int = 1;
605 sc->bnx_rx_quick_cons_trip = 1;
606 sc->bnx_rx_ticks_int = 0;
607 sc->bnx_rx_ticks = 0;
608 #else
609 sc->bnx_tx_quick_cons_trip_int = 20;
610 sc->bnx_tx_quick_cons_trip = 20;
611 sc->bnx_tx_ticks_int = 80;
612 sc->bnx_tx_ticks = 80;
613
614 sc->bnx_rx_quick_cons_trip_int = 6;
615 sc->bnx_rx_quick_cons_trip = 6;
616 sc->bnx_rx_ticks_int = 18;
617 sc->bnx_rx_ticks = 18;
618 #endif
619
620 /* Update statistics once every second. */
621 sc->bnx_stats_ticks = 1000000 & 0xffff00;
622
623 /*
624 * The copper based NetXtreme II controllers
625 * use an integrated PHY at address 1 while
626 * the SerDes controllers use a PHY at
627 * address 2.
628 */
629 sc->bnx_phy_addr = 1;
630
631 if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
632 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
633 sc->bnx_flags |= BNX_NO_WOL_FLAG;
634 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708) {
635 sc->bnx_phy_addr = 2;
636 val = REG_RD_IND(sc, sc->bnx_shmem_base +
637 BNX_SHARED_HW_CFG_CONFIG);
638 if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
639 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
640 }
641 }
642
643 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
644 aprint_error_dev(sc->bnx_dev,
645 "SerDes is not supported by this driver!\n");
646 goto bnx_attach_fail;
647 }
648
649 /* Allocate DMA memory resources. */
650 sc->bnx_dmatag = pa->pa_dmat;
651 if (bnx_dma_alloc(sc)) {
652 aprint_error_dev(sc->bnx_dev,
653 "DMA resource allocation failed!\n");
654 goto bnx_attach_fail;
655 }
656
657 /* Initialize the ifnet interface. */
658 ifp = &sc->ethercom.ec_if;
659 ifp->if_softc = sc;
660 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
661 ifp->if_ioctl = bnx_ioctl;
662 ifp->if_stop = bnx_if_stop;
663 ifp->if_start = bnx_start;
664 ifp->if_init = bnx_init;
665 ifp->if_timer = 0;
666 ifp->if_watchdog = bnx_watchdog;
667 if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG)
668 ifp->if_baudrate = IF_Gbps(2.5);
669 else
670 ifp->if_baudrate = IF_Gbps(1);
671 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
672 IFQ_SET_READY(&ifp->if_snd);
673 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
674
675 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU |
676 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
677
678 ifp->if_capabilities |=
679 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
680 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
681 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
682
683 /* Hookup IRQ last. */
684 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
685 if (sc->bnx_intrhand == NULL) {
686 aprint_error_dev(self, "couldn't establish interrupt");
687 if (intrstr != NULL)
688 aprint_error(" at %s", intrstr);
689 aprint_error("\n");
690 goto bnx_attach_fail;
691 }
692
693 sc->bnx_mii.mii_ifp = ifp;
694 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
695 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
696 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
697
698 /* Look for our PHY. */
699 ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd,
700 bnx_ifmedia_sts);
701 mii_attach(self, &sc->bnx_mii, 0xffffffff,
702 MII_PHY_ANY, MII_OFFSET_ANY, 0);
703
704 if (LIST_FIRST(&sc->bnx_mii.mii_phys) == NULL) {
705 aprint_error_dev(self, "no PHY found!\n");
706 ifmedia_add(&sc->bnx_mii.mii_media,
707 IFM_ETHER|IFM_MANUAL, 0, NULL);
708 ifmedia_set(&sc->bnx_mii.mii_media,
709 IFM_ETHER|IFM_MANUAL);
710 } else {
711 ifmedia_set(&sc->bnx_mii.mii_media,
712 IFM_ETHER|IFM_AUTO);
713 }
714
715 /* Attach to the Ethernet interface list. */
716 if_attach(ifp);
717 ether_ifattach(ifp,sc->eaddr);
718
719 callout_init(&sc->bnx_timeout, 0);
720
721 if (!pmf_device_register(self, bnx_suspend_resume, bnx_suspend_resume))
722 aprint_error_dev(self, "couldn't establish power handler\n");
723 else
724 pmf_class_network_register(self, ifp);
725
726 /* Print some important debugging info. */
727 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
728
729 goto bnx_attach_exit;
730
731 bnx_attach_fail:
732 bnx_release_resources(sc);
733
734 bnx_attach_exit:
735 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
736 }
737
738 /****************************************************************************/
739 /* Device detach function. */
740 /* */
741 /* Stops the controller, resets the controller, and releases resources. */
742 /* */
743 /* Returns: */
744 /* 0 on success, positive value on failure. */
745 /****************************************************************************/
746 int
747 bnx_detach(device_t dev, int flags)
748 {
749 struct bnx_softc *sc;
750 struct ifnet *ifp;
751
752 sc = device_private(dev);
753 ifp = &sc->ethercom.ec_if;
754
755 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
756
757 /* Stop and reset the controller. */
758 bnx_stop(sc);
759 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
760
761 pmf_device_deregister(dev);
762 ether_ifdetach(ifp);
763 if_detach(ifp);
764 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
765
766 /* Release all remaining resources. */
767 bnx_release_resources(sc);
768
769 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
770
771 return(0);
772 }
773
774 /****************************************************************************/
775 /* Indirect register read. */
776 /* */
777 /* Reads NetXtreme II registers using an index/data register pair in PCI */
778 /* configuration space. Using this mechanism avoids issues with posted */
779 /* reads but is much slower than memory-mapped I/O. */
780 /* */
781 /* Returns: */
782 /* The value of the register. */
783 /****************************************************************************/
784 u_int32_t
785 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
786 {
787 struct pci_attach_args *pa = &(sc->bnx_pa);
788
789 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
790 offset);
791 #ifdef BNX_DEBUG
792 {
793 u_int32_t val;
794 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
795 BNX_PCICFG_REG_WINDOW);
796 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
797 "val = 0x%08X\n", __func__, offset, val);
798 return (val);
799 }
800 #else
801 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
802 #endif
803 }
804
805 /****************************************************************************/
806 /* Indirect register write. */
807 /* */
808 /* Writes NetXtreme II registers using an index/data register pair in PCI */
809 /* configuration space. Using this mechanism avoids issues with posted */
810 /* writes but is muchh slower than memory-mapped I/O. */
811 /* */
812 /* Returns: */
813 /* Nothing. */
814 /****************************************************************************/
815 void
816 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
817 {
818 struct pci_attach_args *pa = &(sc->bnx_pa);
819
820 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
821 __func__, offset, val);
822
823 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
824 offset);
825 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
826 }
827
828 /****************************************************************************/
829 /* Context memory write. */
830 /* */
831 /* The NetXtreme II controller uses context memory to track connection */
832 /* information for L2 and higher network protocols. */
833 /* */
834 /* Returns: */
835 /* Nothing. */
836 /****************************************************************************/
837 void
838 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
839 u_int32_t val)
840 {
841
842 DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
843 "val = 0x%08X\n", __func__, cid_addr, offset, val);
844
845 offset += cid_addr;
846 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
847 REG_WR(sc, BNX_CTX_DATA, val);
848 }
849
850 /****************************************************************************/
851 /* PHY register read. */
852 /* */
853 /* Implements register reads on the MII bus. */
854 /* */
855 /* Returns: */
856 /* The value of the register. */
857 /****************************************************************************/
858 int
859 bnx_miibus_read_reg(device_t dev, int phy, int reg)
860 {
861 struct bnx_softc *sc = device_private(dev);
862 u_int32_t val;
863 int i;
864
865 /* Make sure we are accessing the correct PHY address. */
866 if (phy != sc->bnx_phy_addr) {
867 DBPRINT(sc, BNX_VERBOSE,
868 "Invalid PHY address %d for PHY read!\n", phy);
869 return(0);
870 }
871
872 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
873 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
874 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
875
876 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
877 REG_RD(sc, BNX_EMAC_MDIO_MODE);
878
879 DELAY(40);
880 }
881
882 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
883 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
884 BNX_EMAC_MDIO_COMM_START_BUSY;
885 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
886
887 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
888 DELAY(10);
889
890 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
891 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
892 DELAY(5);
893
894 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
895 val &= BNX_EMAC_MDIO_COMM_DATA;
896
897 break;
898 }
899 }
900
901 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
902 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
903 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
904 val = 0x0;
905 } else
906 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
907
908 DBPRINT(sc, BNX_EXCESSIVE,
909 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
910 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
911
912 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
913 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
914 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
915
916 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
917 REG_RD(sc, BNX_EMAC_MDIO_MODE);
918
919 DELAY(40);
920 }
921
922 return (val & 0xffff);
923 }
924
925 /****************************************************************************/
926 /* PHY register write. */
927 /* */
928 /* Implements register writes on the MII bus. */
929 /* */
930 /* Returns: */
931 /* The value of the register. */
932 /****************************************************************************/
933 void
934 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
935 {
936 struct bnx_softc *sc = device_private(dev);
937 u_int32_t val1;
938 int i;
939
940 /* Make sure we are accessing the correct PHY address. */
941 if (phy != sc->bnx_phy_addr) {
942 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
943 phy);
944 return;
945 }
946
947 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
948 "val = 0x%04X\n", __func__,
949 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
950
951 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
952 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
953 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
954
955 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
956 REG_RD(sc, BNX_EMAC_MDIO_MODE);
957
958 DELAY(40);
959 }
960
961 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
962 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
963 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
964 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
965
966 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
967 DELAY(10);
968
969 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
970 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
971 DELAY(5);
972 break;
973 }
974 }
975
976 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
977 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
978 __LINE__);
979 }
980
981 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
982 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
983 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
984
985 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
986 REG_RD(sc, BNX_EMAC_MDIO_MODE);
987
988 DELAY(40);
989 }
990 }
991
992 /****************************************************************************/
993 /* MII bus status change. */
994 /* */
995 /* Called by the MII bus driver when the PHY establishes link to set the */
996 /* MAC interface registers. */
997 /* */
998 /* Returns: */
999 /* Nothing. */
1000 /****************************************************************************/
1001 void
1002 bnx_miibus_statchg(device_t dev)
1003 {
1004 struct bnx_softc *sc = device_private(dev);
1005 struct mii_data *mii = &sc->bnx_mii;
1006
1007 BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT);
1008
1009 /* Set MII or GMII inerface based on the speed negotiated by the PHY. */
1010 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
1011 DBPRINT(sc, BNX_INFO, "Setting GMII interface.\n");
1012 BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_GMII);
1013 } else {
1014 DBPRINT(sc, BNX_INFO, "Setting MII interface.\n");
1015 BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_MII);
1016 }
1017
1018 /* Set half or full duplex based on the duplicity
1019 * negotiated by the PHY.
1020 */
1021 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1022 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1023 BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
1024 } else {
1025 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1026 BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
1027 }
1028 }
1029
1030 /****************************************************************************/
1031 /* Acquire NVRAM lock. */
1032 /* */
1033 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1034 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1035 /* for use by the driver. */
1036 /* */
1037 /* Returns: */
1038 /* 0 on success, positive value on failure. */
1039 /****************************************************************************/
1040 int
1041 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1042 {
1043 u_int32_t val;
1044 int j;
1045
1046 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1047
1048 /* Request access to the flash interface. */
1049 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1050 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1051 val = REG_RD(sc, BNX_NVM_SW_ARB);
1052 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1053 break;
1054
1055 DELAY(5);
1056 }
1057
1058 if (j >= NVRAM_TIMEOUT_COUNT) {
1059 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1060 return (EBUSY);
1061 }
1062
1063 return (0);
1064 }
1065
1066 /****************************************************************************/
1067 /* Release NVRAM lock. */
1068 /* */
1069 /* When the caller is finished accessing NVRAM the lock must be released. */
1070 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1071 /* for use by the driver. */
1072 /* */
1073 /* Returns: */
1074 /* 0 on success, positive value on failure. */
1075 /****************************************************************************/
1076 int
1077 bnx_release_nvram_lock(struct bnx_softc *sc)
1078 {
1079 int j;
1080 u_int32_t val;
1081
1082 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1083
1084 /* Relinquish nvram interface. */
1085 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1086
1087 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1088 val = REG_RD(sc, BNX_NVM_SW_ARB);
1089 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1090 break;
1091
1092 DELAY(5);
1093 }
1094
1095 if (j >= NVRAM_TIMEOUT_COUNT) {
1096 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1097 return (EBUSY);
1098 }
1099
1100 return (0);
1101 }
1102
1103 #ifdef BNX_NVRAM_WRITE_SUPPORT
1104 /****************************************************************************/
1105 /* Enable NVRAM write access. */
1106 /* */
1107 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1108 /* */
1109 /* Returns: */
1110 /* 0 on success, positive value on failure. */
1111 /****************************************************************************/
1112 int
1113 bnx_enable_nvram_write(struct bnx_softc *sc)
1114 {
1115 u_int32_t val;
1116
1117 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1118
1119 val = REG_RD(sc, BNX_MISC_CFG);
1120 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1121
1122 if (!sc->bnx_flash_info->buffered) {
1123 int j;
1124
1125 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1126 REG_WR(sc, BNX_NVM_COMMAND,
1127 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1128
1129 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1130 DELAY(5);
1131
1132 val = REG_RD(sc, BNX_NVM_COMMAND);
1133 if (val & BNX_NVM_COMMAND_DONE)
1134 break;
1135 }
1136
1137 if (j >= NVRAM_TIMEOUT_COUNT) {
1138 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1139 return (EBUSY);
1140 }
1141 }
1142
1143 return (0);
1144 }
1145
1146 /****************************************************************************/
1147 /* Disable NVRAM write access. */
1148 /* */
1149 /* When the caller is finished writing to NVRAM write access must be */
1150 /* disabled. */
1151 /* */
1152 /* Returns: */
1153 /* Nothing. */
1154 /****************************************************************************/
1155 void
1156 bnx_disable_nvram_write(struct bnx_softc *sc)
1157 {
1158 u_int32_t val;
1159
1160 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1161
1162 val = REG_RD(sc, BNX_MISC_CFG);
1163 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1164 }
1165 #endif
1166
1167 /****************************************************************************/
1168 /* Enable NVRAM access. */
1169 /* */
1170 /* Before accessing NVRAM for read or write operations the caller must */
1171 /* enabled NVRAM access. */
1172 /* */
1173 /* Returns: */
1174 /* Nothing. */
1175 /****************************************************************************/
1176 void
1177 bnx_enable_nvram_access(struct bnx_softc *sc)
1178 {
1179 u_int32_t val;
1180
1181 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1182
1183 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1184 /* Enable both bits, even on read. */
1185 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1186 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1187 }
1188
1189 /****************************************************************************/
1190 /* Disable NVRAM access. */
1191 /* */
1192 /* When the caller is finished accessing NVRAM access must be disabled. */
1193 /* */
1194 /* Returns: */
1195 /* Nothing. */
1196 /****************************************************************************/
1197 void
1198 bnx_disable_nvram_access(struct bnx_softc *sc)
1199 {
1200 u_int32_t val;
1201
1202 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1203
1204 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1205
1206 /* Disable both bits, even after read. */
1207 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1208 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1209 }
1210
1211 #ifdef BNX_NVRAM_WRITE_SUPPORT
1212 /****************************************************************************/
1213 /* Erase NVRAM page before writing. */
1214 /* */
1215 /* Non-buffered flash parts require that a page be erased before it is */
1216 /* written. */
1217 /* */
1218 /* Returns: */
1219 /* 0 on success, positive value on failure. */
1220 /****************************************************************************/
1221 int
1222 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1223 {
1224 u_int32_t cmd;
1225 int j;
1226
1227 /* Buffered flash doesn't require an erase. */
1228 if (sc->bnx_flash_info->buffered)
1229 return (0);
1230
1231 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1232
1233 /* Build an erase command. */
1234 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1235 BNX_NVM_COMMAND_DOIT;
1236
1237 /*
1238 * Clear the DONE bit separately, set the NVRAM adress to erase,
1239 * and issue the erase command.
1240 */
1241 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1242 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1243 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1244
1245 /* Wait for completion. */
1246 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1247 u_int32_t val;
1248
1249 DELAY(5);
1250
1251 val = REG_RD(sc, BNX_NVM_COMMAND);
1252 if (val & BNX_NVM_COMMAND_DONE)
1253 break;
1254 }
1255
1256 if (j >= NVRAM_TIMEOUT_COUNT) {
1257 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1258 return (EBUSY);
1259 }
1260
1261 return (0);
1262 }
1263 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1264
1265 /****************************************************************************/
1266 /* Read a dword (32 bits) from NVRAM. */
1267 /* */
1268 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1269 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1270 /* */
1271 /* Returns: */
1272 /* 0 on success and the 32 bit value read, positive value on failure. */
1273 /****************************************************************************/
1274 int
1275 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1276 u_int8_t *ret_val, u_int32_t cmd_flags)
1277 {
1278 u_int32_t cmd;
1279 int i, rc = 0;
1280
1281 /* Build the command word. */
1282 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1283
1284 /* Calculate the offset for buffered flash. */
1285 if (sc->bnx_flash_info->buffered)
1286 offset = ((offset / sc->bnx_flash_info->page_size) <<
1287 sc->bnx_flash_info->page_bits) +
1288 (offset % sc->bnx_flash_info->page_size);
1289
1290 /*
1291 * Clear the DONE bit separately, set the address to read,
1292 * and issue the read.
1293 */
1294 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1295 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1296 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1297
1298 /* Wait for completion. */
1299 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1300 u_int32_t val;
1301
1302 DELAY(5);
1303
1304 val = REG_RD(sc, BNX_NVM_COMMAND);
1305 if (val & BNX_NVM_COMMAND_DONE) {
1306 val = REG_RD(sc, BNX_NVM_READ);
1307
1308 val = bnx_be32toh(val);
1309 memcpy(ret_val, &val, 4);
1310 break;
1311 }
1312 }
1313
1314 /* Check for errors. */
1315 if (i >= NVRAM_TIMEOUT_COUNT) {
1316 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1317 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1318 rc = EBUSY;
1319 }
1320
1321 return(rc);
1322 }
1323
1324 #ifdef BNX_NVRAM_WRITE_SUPPORT
1325 /****************************************************************************/
1326 /* Write a dword (32 bits) to NVRAM. */
1327 /* */
1328 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1329 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1330 /* enabled NVRAM write access. */
1331 /* */
1332 /* Returns: */
1333 /* 0 on success, positive value on failure. */
1334 /****************************************************************************/
1335 int
1336 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1337 u_int32_t cmd_flags)
1338 {
1339 u_int32_t cmd, val32;
1340 int j;
1341
1342 /* Build the command word. */
1343 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1344
1345 /* Calculate the offset for buffered flash. */
1346 if (sc->bnx_flash_info->buffered)
1347 offset = ((offset / sc->bnx_flash_info->page_size) <<
1348 sc->bnx_flash_info->page_bits) +
1349 (offset % sc->bnx_flash_info->page_size);
1350
1351 /*
1352 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1353 * set the NVRAM address to write, and issue the write command
1354 */
1355 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1356 memcpy(&val32, val, 4);
1357 val32 = htobe32(val32);
1358 REG_WR(sc, BNX_NVM_WRITE, val32);
1359 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1360 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1361
1362 /* Wait for completion. */
1363 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1364 DELAY(5);
1365
1366 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1367 break;
1368 }
1369 if (j >= NVRAM_TIMEOUT_COUNT) {
1370 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1371 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1372 return (EBUSY);
1373 }
1374
1375 return (0);
1376 }
1377 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1378
1379 /****************************************************************************/
1380 /* Initialize NVRAM access. */
1381 /* */
1382 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1383 /* access that device. */
1384 /* */
1385 /* Returns: */
1386 /* 0 on success, positive value on failure. */
1387 /****************************************************************************/
1388 int
1389 bnx_init_nvram(struct bnx_softc *sc)
1390 {
1391 u_int32_t val;
1392 int j, entry_count, rc;
1393 struct flash_spec *flash;
1394
1395 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1396
1397 /* Determine the selected interface. */
1398 val = REG_RD(sc, BNX_NVM_CFG1);
1399
1400 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1401
1402 rc = 0;
1403
1404 /*
1405 * Flash reconfiguration is required to support additional
1406 * NVRAM devices not directly supported in hardware.
1407 * Check if the flash interface was reconfigured
1408 * by the bootcode.
1409 */
1410
1411 if (val & 0x40000000) {
1412 /* Flash interface reconfigured by bootcode. */
1413
1414 DBPRINT(sc,BNX_INFO_LOAD,
1415 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1416
1417 for (j = 0, flash = &flash_table[0]; j < entry_count;
1418 j++, flash++) {
1419 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1420 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1421 sc->bnx_flash_info = flash;
1422 break;
1423 }
1424 }
1425 } else {
1426 /* Flash interface not yet reconfigured. */
1427 u_int32_t mask;
1428
1429 DBPRINT(sc,BNX_INFO_LOAD,
1430 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1431
1432 if (val & (1 << 23))
1433 mask = FLASH_BACKUP_STRAP_MASK;
1434 else
1435 mask = FLASH_STRAP_MASK;
1436
1437 /* Look for the matching NVRAM device configuration data. */
1438 for (j = 0, flash = &flash_table[0]; j < entry_count;
1439 j++, flash++) {
1440 /* Check if the dev matches any of the known devices. */
1441 if ((val & mask) == (flash->strapping & mask)) {
1442 /* Found a device match. */
1443 sc->bnx_flash_info = flash;
1444
1445 /* Request access to the flash interface. */
1446 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1447 return (rc);
1448
1449 /* Reconfigure the flash interface. */
1450 bnx_enable_nvram_access(sc);
1451 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1452 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1453 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1454 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1455 bnx_disable_nvram_access(sc);
1456 bnx_release_nvram_lock(sc);
1457
1458 break;
1459 }
1460 }
1461 }
1462
1463 /* Check if a matching device was found. */
1464 if (j == entry_count) {
1465 sc->bnx_flash_info = NULL;
1466 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1467 __FILE__, __LINE__);
1468 rc = ENODEV;
1469 }
1470
1471 /* Write the flash config data to the shared memory interface. */
1472 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1473 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1474 if (val)
1475 sc->bnx_flash_size = val;
1476 else
1477 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1478
1479 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1480 "0x%08X\n", sc->bnx_flash_info->total_size);
1481
1482 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1483
1484 return (rc);
1485 }
1486
1487 /****************************************************************************/
1488 /* Read an arbitrary range of data from NVRAM. */
1489 /* */
1490 /* Prepares the NVRAM interface for access and reads the requested data */
1491 /* into the supplied buffer. */
1492 /* */
1493 /* Returns: */
1494 /* 0 on success and the data read, positive value on failure. */
1495 /****************************************************************************/
1496 int
1497 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1498 int buf_size)
1499 {
1500 int rc = 0;
1501 u_int32_t cmd_flags, offset32, len32, extra;
1502
1503 if (buf_size == 0)
1504 return (0);
1505
1506 /* Request access to the flash interface. */
1507 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1508 return (rc);
1509
1510 /* Enable access to flash interface */
1511 bnx_enable_nvram_access(sc);
1512
1513 len32 = buf_size;
1514 offset32 = offset;
1515 extra = 0;
1516
1517 cmd_flags = 0;
1518
1519 if (offset32 & 3) {
1520 u_int8_t buf[4];
1521 u_int32_t pre_len;
1522
1523 offset32 &= ~3;
1524 pre_len = 4 - (offset & 3);
1525
1526 if (pre_len >= len32) {
1527 pre_len = len32;
1528 cmd_flags =
1529 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1530 } else
1531 cmd_flags = BNX_NVM_COMMAND_FIRST;
1532
1533 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1534
1535 if (rc)
1536 return (rc);
1537
1538 memcpy(ret_buf, buf + (offset & 3), pre_len);
1539
1540 offset32 += 4;
1541 ret_buf += pre_len;
1542 len32 -= pre_len;
1543 }
1544
1545 if (len32 & 3) {
1546 extra = 4 - (len32 & 3);
1547 len32 = (len32 + 4) & ~3;
1548 }
1549
1550 if (len32 == 4) {
1551 u_int8_t buf[4];
1552
1553 if (cmd_flags)
1554 cmd_flags = BNX_NVM_COMMAND_LAST;
1555 else
1556 cmd_flags =
1557 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1558
1559 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1560
1561 memcpy(ret_buf, buf, 4 - extra);
1562 } else if (len32 > 0) {
1563 u_int8_t buf[4];
1564
1565 /* Read the first word. */
1566 if (cmd_flags)
1567 cmd_flags = 0;
1568 else
1569 cmd_flags = BNX_NVM_COMMAND_FIRST;
1570
1571 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1572
1573 /* Advance to the next dword. */
1574 offset32 += 4;
1575 ret_buf += 4;
1576 len32 -= 4;
1577
1578 while (len32 > 4 && rc == 0) {
1579 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1580
1581 /* Advance to the next dword. */
1582 offset32 += 4;
1583 ret_buf += 4;
1584 len32 -= 4;
1585 }
1586
1587 if (rc)
1588 return (rc);
1589
1590 cmd_flags = BNX_NVM_COMMAND_LAST;
1591 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1592
1593 memcpy(ret_buf, buf, 4 - extra);
1594 }
1595
1596 /* Disable access to flash interface and release the lock. */
1597 bnx_disable_nvram_access(sc);
1598 bnx_release_nvram_lock(sc);
1599
1600 return (rc);
1601 }
1602
1603 #ifdef BNX_NVRAM_WRITE_SUPPORT
1604 /****************************************************************************/
1605 /* Write an arbitrary range of data from NVRAM. */
1606 /* */
1607 /* Prepares the NVRAM interface for write access and writes the requested */
1608 /* data from the supplied buffer. The caller is responsible for */
1609 /* calculating any appropriate CRCs. */
1610 /* */
1611 /* Returns: */
1612 /* 0 on success, positive value on failure. */
1613 /****************************************************************************/
1614 int
1615 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1616 int buf_size)
1617 {
1618 u_int32_t written, offset32, len32;
1619 u_int8_t *buf, start[4], end[4];
1620 int rc = 0;
1621 int align_start, align_end;
1622
1623 buf = data_buf;
1624 offset32 = offset;
1625 len32 = buf_size;
1626 align_start = align_end = 0;
1627
1628 if ((align_start = (offset32 & 3))) {
1629 offset32 &= ~3;
1630 len32 += align_start;
1631 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1632 return (rc);
1633 }
1634
1635 if (len32 & 3) {
1636 if ((len32 > 4) || !align_start) {
1637 align_end = 4 - (len32 & 3);
1638 len32 += align_end;
1639 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1640 end, 4))) {
1641 return (rc);
1642 }
1643 }
1644 }
1645
1646 if (align_start || align_end) {
1647 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1648 if (buf == 0)
1649 return (ENOMEM);
1650
1651 if (align_start)
1652 memcpy(buf, start, 4);
1653
1654 if (align_end)
1655 memcpy(buf + len32 - 4, end, 4);
1656
1657 memcpy(buf + align_start, data_buf, buf_size);
1658 }
1659
1660 written = 0;
1661 while ((written < len32) && (rc == 0)) {
1662 u_int32_t page_start, page_end, data_start, data_end;
1663 u_int32_t addr, cmd_flags;
1664 int i;
1665 u_int8_t flash_buffer[264];
1666
1667 /* Find the page_start addr */
1668 page_start = offset32 + written;
1669 page_start -= (page_start % sc->bnx_flash_info->page_size);
1670 /* Find the page_end addr */
1671 page_end = page_start + sc->bnx_flash_info->page_size;
1672 /* Find the data_start addr */
1673 data_start = (written == 0) ? offset32 : page_start;
1674 /* Find the data_end addr */
1675 data_end = (page_end > offset32 + len32) ?
1676 (offset32 + len32) : page_end;
1677
1678 /* Request access to the flash interface. */
1679 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1680 goto nvram_write_end;
1681
1682 /* Enable access to flash interface */
1683 bnx_enable_nvram_access(sc);
1684
1685 cmd_flags = BNX_NVM_COMMAND_FIRST;
1686 if (sc->bnx_flash_info->buffered == 0) {
1687 int j;
1688
1689 /* Read the whole page into the buffer
1690 * (non-buffer flash only) */
1691 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1692 if (j == (sc->bnx_flash_info->page_size - 4))
1693 cmd_flags |= BNX_NVM_COMMAND_LAST;
1694
1695 rc = bnx_nvram_read_dword(sc,
1696 page_start + j,
1697 &flash_buffer[j],
1698 cmd_flags);
1699
1700 if (rc)
1701 goto nvram_write_end;
1702
1703 cmd_flags = 0;
1704 }
1705 }
1706
1707 /* Enable writes to flash interface (unlock write-protect) */
1708 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1709 goto nvram_write_end;
1710
1711 /* Erase the page */
1712 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1713 goto nvram_write_end;
1714
1715 /* Re-enable the write again for the actual write */
1716 bnx_enable_nvram_write(sc);
1717
1718 /* Loop to write back the buffer data from page_start to
1719 * data_start */
1720 i = 0;
1721 if (sc->bnx_flash_info->buffered == 0) {
1722 for (addr = page_start; addr < data_start;
1723 addr += 4, i += 4) {
1724
1725 rc = bnx_nvram_write_dword(sc, addr,
1726 &flash_buffer[i], cmd_flags);
1727
1728 if (rc != 0)
1729 goto nvram_write_end;
1730
1731 cmd_flags = 0;
1732 }
1733 }
1734
1735 /* Loop to write the new data from data_start to data_end */
1736 for (addr = data_start; addr < data_end; addr += 4, i++) {
1737 if ((addr == page_end - 4) ||
1738 ((sc->bnx_flash_info->buffered) &&
1739 (addr == data_end - 4))) {
1740
1741 cmd_flags |= BNX_NVM_COMMAND_LAST;
1742 }
1743
1744 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1745
1746 if (rc != 0)
1747 goto nvram_write_end;
1748
1749 cmd_flags = 0;
1750 buf += 4;
1751 }
1752
1753 /* Loop to write back the buffer data from data_end
1754 * to page_end */
1755 if (sc->bnx_flash_info->buffered == 0) {
1756 for (addr = data_end; addr < page_end;
1757 addr += 4, i += 4) {
1758
1759 if (addr == page_end-4)
1760 cmd_flags = BNX_NVM_COMMAND_LAST;
1761
1762 rc = bnx_nvram_write_dword(sc, addr,
1763 &flash_buffer[i], cmd_flags);
1764
1765 if (rc != 0)
1766 goto nvram_write_end;
1767
1768 cmd_flags = 0;
1769 }
1770 }
1771
1772 /* Disable writes to flash interface (lock write-protect) */
1773 bnx_disable_nvram_write(sc);
1774
1775 /* Disable access to flash interface */
1776 bnx_disable_nvram_access(sc);
1777 bnx_release_nvram_lock(sc);
1778
1779 /* Increment written */
1780 written += data_end - data_start;
1781 }
1782
1783 nvram_write_end:
1784 if (align_start || align_end)
1785 free(buf, M_DEVBUF);
1786
1787 return (rc);
1788 }
1789 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1790
1791 /****************************************************************************/
1792 /* Verifies that NVRAM is accessible and contains valid data. */
1793 /* */
1794 /* Reads the configuration data from NVRAM and verifies that the CRC is */
1795 /* correct. */
1796 /* */
1797 /* Returns: */
1798 /* 0 on success, positive value on failure. */
1799 /****************************************************************************/
1800 int
1801 bnx_nvram_test(struct bnx_softc *sc)
1802 {
1803 u_int32_t buf[BNX_NVRAM_SIZE / 4];
1804 u_int8_t *data = (u_int8_t *) buf;
1805 int rc = 0;
1806 u_int32_t magic, csum;
1807
1808 /*
1809 * Check that the device NVRAM is valid by reading
1810 * the magic value at offset 0.
1811 */
1812 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1813 goto bnx_nvram_test_done;
1814
1815 magic = bnx_be32toh(buf[0]);
1816 if (magic != BNX_NVRAM_MAGIC) {
1817 rc = ENODEV;
1818 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1819 "Expected: 0x%08X, Found: 0x%08X\n",
1820 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1821 goto bnx_nvram_test_done;
1822 }
1823
1824 /*
1825 * Verify that the device NVRAM includes valid
1826 * configuration data.
1827 */
1828 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1829 goto bnx_nvram_test_done;
1830
1831 csum = ether_crc32_le(data, 0x100);
1832 if (csum != BNX_CRC32_RESIDUAL) {
1833 rc = ENODEV;
1834 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1835 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1836 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1837 goto bnx_nvram_test_done;
1838 }
1839
1840 csum = ether_crc32_le(data + 0x100, 0x100);
1841 if (csum != BNX_CRC32_RESIDUAL) {
1842 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1843 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1844 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1845 rc = ENODEV;
1846 }
1847
1848 bnx_nvram_test_done:
1849 return (rc);
1850 }
1851
1852 /****************************************************************************/
1853 /* Free any DMA memory owned by the driver. */
1854 /* */
1855 /* Scans through each data structre that requires DMA memory and frees */
1856 /* the memory if allocated. */
1857 /* */
1858 /* Returns: */
1859 /* Nothing. */
1860 /****************************************************************************/
1861 void
1862 bnx_dma_free(struct bnx_softc *sc)
1863 {
1864 int i;
1865
1866 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1867
1868 /* Destroy the status block. */
1869 if (sc->status_block != NULL && sc->status_map != NULL) {
1870 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
1871 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
1872 BNX_STATUS_BLK_SZ);
1873 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
1874 sc->status_rseg);
1875 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
1876 sc->status_block = NULL;
1877 sc->status_map = NULL;
1878 }
1879
1880 /* Destroy the statistics block. */
1881 if (sc->stats_block != NULL && sc->stats_map != NULL) {
1882 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
1883 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
1884 BNX_STATS_BLK_SZ);
1885 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
1886 sc->stats_rseg);
1887 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
1888 sc->stats_block = NULL;
1889 sc->stats_map = NULL;
1890 }
1891
1892 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
1893 for (i = 0; i < TX_PAGES; i++ ) {
1894 if (sc->tx_bd_chain[i] != NULL &&
1895 sc->tx_bd_chain_map[i] != NULL) {
1896 bus_dmamap_unload(sc->bnx_dmatag,
1897 sc->tx_bd_chain_map[i]);
1898 bus_dmamem_unmap(sc->bnx_dmatag,
1899 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
1900 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
1901 sc->tx_bd_chain_rseg[i]);
1902 bus_dmamap_destroy(sc->bnx_dmatag,
1903 sc->tx_bd_chain_map[i]);
1904 sc->tx_bd_chain[i] = NULL;
1905 sc->tx_bd_chain_map[i] = NULL;
1906 }
1907 }
1908
1909 /* Unload and destroy the TX mbuf maps. */
1910 for (i = 0; i < TOTAL_TX_BD; i++) {
1911 if (sc->tx_mbuf_map[i] != NULL) {
1912 bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1913 bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1914 }
1915 }
1916
1917 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
1918 for (i = 0; i < RX_PAGES; i++ ) {
1919 if (sc->rx_bd_chain[i] != NULL &&
1920 sc->rx_bd_chain_map[i] != NULL) {
1921 bus_dmamap_unload(sc->bnx_dmatag,
1922 sc->rx_bd_chain_map[i]);
1923 bus_dmamem_unmap(sc->bnx_dmatag,
1924 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
1925 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
1926 sc->rx_bd_chain_rseg[i]);
1927
1928 bus_dmamap_destroy(sc->bnx_dmatag,
1929 sc->rx_bd_chain_map[i]);
1930 sc->rx_bd_chain[i] = NULL;
1931 sc->rx_bd_chain_map[i] = NULL;
1932 }
1933 }
1934
1935 /* Unload and destroy the RX mbuf maps. */
1936 for (i = 0; i < TOTAL_RX_BD; i++) {
1937 if (sc->rx_mbuf_map[i] != NULL) {
1938 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1939 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1940 }
1941 }
1942
1943 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1944 }
1945
1946 /****************************************************************************/
1947 /* Allocate any DMA memory needed by the driver. */
1948 /* */
1949 /* Allocates DMA memory needed for the various global structures needed by */
1950 /* hardware. */
1951 /* */
1952 /* Returns: */
1953 /* 0 for success, positive value for failure. */
1954 /****************************************************************************/
1955 int
1956 bnx_dma_alloc(struct bnx_softc *sc)
1957 {
1958 int i, rc = 0;
1959
1960 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1961
1962 /*
1963 * Allocate DMA memory for the status block, map the memory into DMA
1964 * space, and fetch the physical address of the block.
1965 */
1966 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
1967 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
1968 aprint_error_dev(sc->bnx_dev,
1969 "Could not create status block DMA map!\n");
1970 rc = ENOMEM;
1971 goto bnx_dma_alloc_exit;
1972 }
1973
1974 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
1975 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
1976 &sc->status_rseg, BUS_DMA_NOWAIT)) {
1977 aprint_error_dev(sc->bnx_dev,
1978 "Could not allocate status block DMA memory!\n");
1979 rc = ENOMEM;
1980 goto bnx_dma_alloc_exit;
1981 }
1982
1983 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
1984 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
1985 aprint_error_dev(sc->bnx_dev,
1986 "Could not map status block DMA memory!\n");
1987 rc = ENOMEM;
1988 goto bnx_dma_alloc_exit;
1989 }
1990
1991 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
1992 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
1993 aprint_error_dev(sc->bnx_dev,
1994 "Could not load status block DMA memory!\n");
1995 rc = ENOMEM;
1996 goto bnx_dma_alloc_exit;
1997 }
1998
1999 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2000 bzero(sc->status_block, BNX_STATUS_BLK_SZ);
2001
2002 /* DRC - Fix for 64 bit addresses. */
2003 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2004 (u_int32_t) sc->status_block_paddr);
2005
2006 /*
2007 * Allocate DMA memory for the statistics block, map the memory into
2008 * DMA space, and fetch the physical address of the block.
2009 */
2010 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2011 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2012 aprint_error_dev(sc->bnx_dev,
2013 "Could not create stats block DMA map!\n");
2014 rc = ENOMEM;
2015 goto bnx_dma_alloc_exit;
2016 }
2017
2018 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2019 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2020 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2021 aprint_error_dev(sc->bnx_dev,
2022 "Could not allocate stats block DMA memory!\n");
2023 rc = ENOMEM;
2024 goto bnx_dma_alloc_exit;
2025 }
2026
2027 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2028 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2029 aprint_error_dev(sc->bnx_dev,
2030 "Could not map stats block DMA memory!\n");
2031 rc = ENOMEM;
2032 goto bnx_dma_alloc_exit;
2033 }
2034
2035 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2036 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2037 aprint_error_dev(sc->bnx_dev,
2038 "Could not load status block DMA memory!\n");
2039 rc = ENOMEM;
2040 goto bnx_dma_alloc_exit;
2041 }
2042
2043 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2044 bzero(sc->stats_block, BNX_STATS_BLK_SZ);
2045
2046 /* DRC - Fix for 64 bit address. */
2047 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2048 (u_int32_t) sc->stats_block_paddr);
2049
2050 /*
2051 * Allocate DMA memory for the TX buffer descriptor chain,
2052 * and fetch the physical address of the block.
2053 */
2054 for (i = 0; i < TX_PAGES; i++) {
2055 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2056 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2057 &sc->tx_bd_chain_map[i])) {
2058 aprint_error_dev(sc->bnx_dev,
2059 "Could not create Tx desc %d DMA map!\n", i);
2060 rc = ENOMEM;
2061 goto bnx_dma_alloc_exit;
2062 }
2063
2064 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2065 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2066 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2067 aprint_error_dev(sc->bnx_dev,
2068 "Could not allocate TX desc %d DMA memory!\n",
2069 i);
2070 rc = ENOMEM;
2071 goto bnx_dma_alloc_exit;
2072 }
2073
2074 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2075 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2076 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2077 aprint_error_dev(sc->bnx_dev,
2078 "Could not map TX desc %d DMA memory!\n", i);
2079 rc = ENOMEM;
2080 goto bnx_dma_alloc_exit;
2081 }
2082
2083 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2084 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2085 BUS_DMA_NOWAIT)) {
2086 aprint_error_dev(sc->bnx_dev,
2087 "Could not load TX desc %d DMA memory!\n", i);
2088 rc = ENOMEM;
2089 goto bnx_dma_alloc_exit;
2090 }
2091
2092 sc->tx_bd_chain_paddr[i] =
2093 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2094
2095 /* DRC - Fix for 64 bit systems. */
2096 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2097 i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2098 }
2099
2100 /*
2101 * Create DMA maps for the TX buffer mbufs.
2102 */
2103 for (i = 0; i < TOTAL_TX_BD; i++) {
2104 if (bus_dmamap_create(sc->bnx_dmatag,
2105 MCLBYTES * BNX_MAX_SEGMENTS,
2106 USABLE_TX_BD - BNX_TX_SLACK_SPACE,
2107 MCLBYTES, 0, BUS_DMA_NOWAIT,
2108 &sc->tx_mbuf_map[i])) {
2109 aprint_error_dev(sc->bnx_dev,
2110 "Could not create Tx mbuf %d DMA map!\n", i);
2111 rc = ENOMEM;
2112 goto bnx_dma_alloc_exit;
2113 }
2114 }
2115
2116 /*
2117 * Allocate DMA memory for the Rx buffer descriptor chain,
2118 * and fetch the physical address of the block.
2119 */
2120 for (i = 0; i < RX_PAGES; i++) {
2121 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2122 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2123 &sc->rx_bd_chain_map[i])) {
2124 aprint_error_dev(sc->bnx_dev,
2125 "Could not create Rx desc %d DMA map!\n", i);
2126 rc = ENOMEM;
2127 goto bnx_dma_alloc_exit;
2128 }
2129
2130 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2131 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2132 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2133 aprint_error_dev(sc->bnx_dev,
2134 "Could not allocate Rx desc %d DMA memory!\n", i);
2135 rc = ENOMEM;
2136 goto bnx_dma_alloc_exit;
2137 }
2138
2139 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2140 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2141 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2142 aprint_error_dev(sc->bnx_dev,
2143 "Could not map Rx desc %d DMA memory!\n", i);
2144 rc = ENOMEM;
2145 goto bnx_dma_alloc_exit;
2146 }
2147
2148 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2149 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2150 BUS_DMA_NOWAIT)) {
2151 aprint_error_dev(sc->bnx_dev,
2152 "Could not load Rx desc %d DMA memory!\n", i);
2153 rc = ENOMEM;
2154 goto bnx_dma_alloc_exit;
2155 }
2156
2157 bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2158 sc->rx_bd_chain_paddr[i] =
2159 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2160
2161 /* DRC - Fix for 64 bit systems. */
2162 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2163 i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2164 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2165 0, BNX_RX_CHAIN_PAGE_SZ,
2166 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2167 }
2168
2169 /*
2170 * Create DMA maps for the Rx buffer mbufs.
2171 */
2172 for (i = 0; i < TOTAL_RX_BD; i++) {
2173 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
2174 BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
2175 &sc->rx_mbuf_map[i])) {
2176 aprint_error_dev(sc->bnx_dev,
2177 "Could not create Rx mbuf %d DMA map!\n", i);
2178 rc = ENOMEM;
2179 goto bnx_dma_alloc_exit;
2180 }
2181 }
2182
2183 bnx_dma_alloc_exit:
2184 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2185
2186 return(rc);
2187 }
2188
2189 /****************************************************************************/
2190 /* Release all resources used by the driver. */
2191 /* */
2192 /* Releases all resources acquired by the driver including interrupts, */
2193 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2194 /* */
2195 /* Returns: */
2196 /* Nothing. */
2197 /****************************************************************************/
2198 void
2199 bnx_release_resources(struct bnx_softc *sc)
2200 {
2201 int i;
2202 struct pci_attach_args *pa = &(sc->bnx_pa);
2203
2204 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2205
2206 bnx_dma_free(sc);
2207
2208 if (sc->bnx_intrhand != NULL)
2209 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2210
2211 if (sc->bnx_size)
2212 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2213
2214 for (i = 0; i < TOTAL_RX_BD; i++)
2215 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2216
2217 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2218 }
2219
2220 /****************************************************************************/
2221 /* Firmware synchronization. */
2222 /* */
2223 /* Before performing certain events such as a chip reset, synchronize with */
2224 /* the firmware first. */
2225 /* */
2226 /* Returns: */
2227 /* 0 for success, positive value for failure. */
2228 /****************************************************************************/
2229 int
2230 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2231 {
2232 int i, rc = 0;
2233 u_int32_t val;
2234
2235 /* Don't waste any time if we've timed out before. */
2236 if (sc->bnx_fw_timed_out) {
2237 rc = EBUSY;
2238 goto bnx_fw_sync_exit;
2239 }
2240
2241 /* Increment the message sequence number. */
2242 sc->bnx_fw_wr_seq++;
2243 msg_data |= sc->bnx_fw_wr_seq;
2244
2245 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2246 msg_data);
2247
2248 /* Send the message to the bootcode driver mailbox. */
2249 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2250
2251 /* Wait for the bootcode to acknowledge the message. */
2252 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2253 /* Check for a response in the bootcode firmware mailbox. */
2254 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2255 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2256 break;
2257 DELAY(1000);
2258 }
2259
2260 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2261 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2262 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2263 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2264 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2265
2266 msg_data &= ~BNX_DRV_MSG_CODE;
2267 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2268
2269 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2270
2271 sc->bnx_fw_timed_out = 1;
2272 rc = EBUSY;
2273 }
2274
2275 bnx_fw_sync_exit:
2276 return (rc);
2277 }
2278
2279 /****************************************************************************/
2280 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2281 /* */
2282 /* Returns: */
2283 /* Nothing. */
2284 /****************************************************************************/
2285 void
2286 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2287 u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2288 {
2289 int i;
2290 u_int32_t val;
2291
2292 for (i = 0; i < rv2p_code_len; i += 8) {
2293 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2294 rv2p_code++;
2295 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2296 rv2p_code++;
2297
2298 if (rv2p_proc == RV2P_PROC1) {
2299 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2300 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2301 }
2302 else {
2303 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2304 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2305 }
2306 }
2307
2308 /* Reset the processor, un-stall is done later. */
2309 if (rv2p_proc == RV2P_PROC1)
2310 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2311 else
2312 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2313 }
2314
2315 /****************************************************************************/
2316 /* Load RISC processor firmware. */
2317 /* */
2318 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2319 /* associated with a particular processor. */
2320 /* */
2321 /* Returns: */
2322 /* Nothing. */
2323 /****************************************************************************/
2324 void
2325 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2326 struct fw_info *fw)
2327 {
2328 u_int32_t offset;
2329 u_int32_t val;
2330
2331 /* Halt the CPU. */
2332 val = REG_RD_IND(sc, cpu_reg->mode);
2333 val |= cpu_reg->mode_value_halt;
2334 REG_WR_IND(sc, cpu_reg->mode, val);
2335 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2336
2337 /* Load the Text area. */
2338 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2339 if (fw->text) {
2340 int j;
2341
2342 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2343 REG_WR_IND(sc, offset, fw->text[j]);
2344 }
2345
2346 /* Load the Data area. */
2347 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2348 if (fw->data) {
2349 int j;
2350
2351 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2352 REG_WR_IND(sc, offset, fw->data[j]);
2353 }
2354
2355 /* Load the SBSS area. */
2356 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2357 if (fw->sbss) {
2358 int j;
2359
2360 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2361 REG_WR_IND(sc, offset, fw->sbss[j]);
2362 }
2363
2364 /* Load the BSS area. */
2365 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2366 if (fw->bss) {
2367 int j;
2368
2369 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2370 REG_WR_IND(sc, offset, fw->bss[j]);
2371 }
2372
2373 /* Load the Read-Only area. */
2374 offset = cpu_reg->spad_base +
2375 (fw->rodata_addr - cpu_reg->mips_view_base);
2376 if (fw->rodata) {
2377 int j;
2378
2379 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2380 REG_WR_IND(sc, offset, fw->rodata[j]);
2381 }
2382
2383 /* Clear the pre-fetch instruction. */
2384 REG_WR_IND(sc, cpu_reg->inst, 0);
2385 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2386
2387 /* Start the CPU. */
2388 val = REG_RD_IND(sc, cpu_reg->mode);
2389 val &= ~cpu_reg->mode_value_halt;
2390 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2391 REG_WR_IND(sc, cpu_reg->mode, val);
2392 }
2393
2394 /****************************************************************************/
2395 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2396 /* */
2397 /* Loads the firmware for each CPU and starts the CPU. */
2398 /* */
2399 /* Returns: */
2400 /* Nothing. */
2401 /****************************************************************************/
2402 void
2403 bnx_init_cpus(struct bnx_softc *sc)
2404 {
2405 struct cpu_reg cpu_reg;
2406 struct fw_info fw;
2407
2408 /* Initialize the RV2P processor. */
2409 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2410 RV2P_PROC1);
2411 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2412 RV2P_PROC2);
2413
2414 /* Initialize the RX Processor. */
2415 cpu_reg.mode = BNX_RXP_CPU_MODE;
2416 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2417 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2418 cpu_reg.state = BNX_RXP_CPU_STATE;
2419 cpu_reg.state_value_clear = 0xffffff;
2420 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2421 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2422 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2423 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2424 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2425 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2426 cpu_reg.mips_view_base = 0x8000000;
2427
2428 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2429 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2430 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2431 fw.start_addr = bnx_RXP_b06FwStartAddr;
2432
2433 fw.text_addr = bnx_RXP_b06FwTextAddr;
2434 fw.text_len = bnx_RXP_b06FwTextLen;
2435 fw.text_index = 0;
2436 fw.text = bnx_RXP_b06FwText;
2437
2438 fw.data_addr = bnx_RXP_b06FwDataAddr;
2439 fw.data_len = bnx_RXP_b06FwDataLen;
2440 fw.data_index = 0;
2441 fw.data = bnx_RXP_b06FwData;
2442
2443 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2444 fw.sbss_len = bnx_RXP_b06FwSbssLen;
2445 fw.sbss_index = 0;
2446 fw.sbss = bnx_RXP_b06FwSbss;
2447
2448 fw.bss_addr = bnx_RXP_b06FwBssAddr;
2449 fw.bss_len = bnx_RXP_b06FwBssLen;
2450 fw.bss_index = 0;
2451 fw.bss = bnx_RXP_b06FwBss;
2452
2453 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2454 fw.rodata_len = bnx_RXP_b06FwRodataLen;
2455 fw.rodata_index = 0;
2456 fw.rodata = bnx_RXP_b06FwRodata;
2457
2458 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2459 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2460
2461 /* Initialize the TX Processor. */
2462 cpu_reg.mode = BNX_TXP_CPU_MODE;
2463 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2464 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2465 cpu_reg.state = BNX_TXP_CPU_STATE;
2466 cpu_reg.state_value_clear = 0xffffff;
2467 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2468 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2469 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2470 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2471 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2472 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2473 cpu_reg.mips_view_base = 0x8000000;
2474
2475 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2476 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2477 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2478 fw.start_addr = bnx_TXP_b06FwStartAddr;
2479
2480 fw.text_addr = bnx_TXP_b06FwTextAddr;
2481 fw.text_len = bnx_TXP_b06FwTextLen;
2482 fw.text_index = 0;
2483 fw.text = bnx_TXP_b06FwText;
2484
2485 fw.data_addr = bnx_TXP_b06FwDataAddr;
2486 fw.data_len = bnx_TXP_b06FwDataLen;
2487 fw.data_index = 0;
2488 fw.data = bnx_TXP_b06FwData;
2489
2490 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2491 fw.sbss_len = bnx_TXP_b06FwSbssLen;
2492 fw.sbss_index = 0;
2493 fw.sbss = bnx_TXP_b06FwSbss;
2494
2495 fw.bss_addr = bnx_TXP_b06FwBssAddr;
2496 fw.bss_len = bnx_TXP_b06FwBssLen;
2497 fw.bss_index = 0;
2498 fw.bss = bnx_TXP_b06FwBss;
2499
2500 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
2501 fw.rodata_len = bnx_TXP_b06FwRodataLen;
2502 fw.rodata_index = 0;
2503 fw.rodata = bnx_TXP_b06FwRodata;
2504
2505 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2506 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2507
2508 /* Initialize the TX Patch-up Processor. */
2509 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2510 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2511 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2512 cpu_reg.state = BNX_TPAT_CPU_STATE;
2513 cpu_reg.state_value_clear = 0xffffff;
2514 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2515 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2516 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2517 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2518 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2519 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2520 cpu_reg.mips_view_base = 0x8000000;
2521
2522 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
2523 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
2524 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
2525 fw.start_addr = bnx_TPAT_b06FwStartAddr;
2526
2527 fw.text_addr = bnx_TPAT_b06FwTextAddr;
2528 fw.text_len = bnx_TPAT_b06FwTextLen;
2529 fw.text_index = 0;
2530 fw.text = bnx_TPAT_b06FwText;
2531
2532 fw.data_addr = bnx_TPAT_b06FwDataAddr;
2533 fw.data_len = bnx_TPAT_b06FwDataLen;
2534 fw.data_index = 0;
2535 fw.data = bnx_TPAT_b06FwData;
2536
2537 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
2538 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
2539 fw.sbss_index = 0;
2540 fw.sbss = bnx_TPAT_b06FwSbss;
2541
2542 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
2543 fw.bss_len = bnx_TPAT_b06FwBssLen;
2544 fw.bss_index = 0;
2545 fw.bss = bnx_TPAT_b06FwBss;
2546
2547 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
2548 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
2549 fw.rodata_index = 0;
2550 fw.rodata = bnx_TPAT_b06FwRodata;
2551
2552 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2553 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2554
2555 /* Initialize the Completion Processor. */
2556 cpu_reg.mode = BNX_COM_CPU_MODE;
2557 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2558 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2559 cpu_reg.state = BNX_COM_CPU_STATE;
2560 cpu_reg.state_value_clear = 0xffffff;
2561 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2562 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2563 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2564 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2565 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2566 cpu_reg.spad_base = BNX_COM_SCRATCH;
2567 cpu_reg.mips_view_base = 0x8000000;
2568
2569 fw.ver_major = bnx_COM_b06FwReleaseMajor;
2570 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
2571 fw.ver_fix = bnx_COM_b06FwReleaseFix;
2572 fw.start_addr = bnx_COM_b06FwStartAddr;
2573
2574 fw.text_addr = bnx_COM_b06FwTextAddr;
2575 fw.text_len = bnx_COM_b06FwTextLen;
2576 fw.text_index = 0;
2577 fw.text = bnx_COM_b06FwText;
2578
2579 fw.data_addr = bnx_COM_b06FwDataAddr;
2580 fw.data_len = bnx_COM_b06FwDataLen;
2581 fw.data_index = 0;
2582 fw.data = bnx_COM_b06FwData;
2583
2584 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
2585 fw.sbss_len = bnx_COM_b06FwSbssLen;
2586 fw.sbss_index = 0;
2587 fw.sbss = bnx_COM_b06FwSbss;
2588
2589 fw.bss_addr = bnx_COM_b06FwBssAddr;
2590 fw.bss_len = bnx_COM_b06FwBssLen;
2591 fw.bss_index = 0;
2592 fw.bss = bnx_COM_b06FwBss;
2593
2594 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
2595 fw.rodata_len = bnx_COM_b06FwRodataLen;
2596 fw.rodata_index = 0;
2597 fw.rodata = bnx_COM_b06FwRodata;
2598
2599 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2600 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2601 }
2602
2603 /****************************************************************************/
2604 /* Initialize context memory. */
2605 /* */
2606 /* Clears the memory associated with each Context ID (CID). */
2607 /* */
2608 /* Returns: */
2609 /* Nothing. */
2610 /****************************************************************************/
2611 void
2612 bnx_init_context(struct bnx_softc *sc)
2613 {
2614 u_int32_t vcid;
2615
2616 vcid = 96;
2617 while (vcid) {
2618 u_int32_t vcid_addr, pcid_addr, offset;
2619
2620 vcid--;
2621
2622 vcid_addr = GET_CID_ADDR(vcid);
2623 pcid_addr = vcid_addr;
2624
2625 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
2626 REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2627
2628 /* Zero out the context. */
2629 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2630 CTX_WR(sc, 0x00, offset, 0);
2631
2632 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
2633 REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2634 }
2635 }
2636
2637 /****************************************************************************/
2638 /* Fetch the permanent MAC address of the controller. */
2639 /* */
2640 /* Returns: */
2641 /* Nothing. */
2642 /****************************************************************************/
2643 void
2644 bnx_get_mac_addr(struct bnx_softc *sc)
2645 {
2646 u_int32_t mac_lo = 0, mac_hi = 0;
2647
2648 /*
2649 * The NetXtreme II bootcode populates various NIC
2650 * power-on and runtime configuration items in a
2651 * shared memory area. The factory configured MAC
2652 * address is available from both NVRAM and the
2653 * shared memory area so we'll read the value from
2654 * shared memory for speed.
2655 */
2656
2657 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
2658 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
2659
2660 if ((mac_lo == 0) && (mac_hi == 0)) {
2661 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
2662 __FILE__, __LINE__);
2663 } else {
2664 sc->eaddr[0] = (u_char)(mac_hi >> 8);
2665 sc->eaddr[1] = (u_char)(mac_hi >> 0);
2666 sc->eaddr[2] = (u_char)(mac_lo >> 24);
2667 sc->eaddr[3] = (u_char)(mac_lo >> 16);
2668 sc->eaddr[4] = (u_char)(mac_lo >> 8);
2669 sc->eaddr[5] = (u_char)(mac_lo >> 0);
2670 }
2671
2672 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
2673 "%s\n", ether_sprintf(sc->eaddr));
2674 }
2675
2676 /****************************************************************************/
2677 /* Program the MAC address. */
2678 /* */
2679 /* Returns: */
2680 /* Nothing. */
2681 /****************************************************************************/
2682 void
2683 bnx_set_mac_addr(struct bnx_softc *sc)
2684 {
2685 u_int32_t val;
2686 const u_int8_t *mac_addr = CLLADDR(sc->ethercom.ec_if.if_sadl);
2687
2688 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
2689 "%s\n", ether_sprintf(sc->eaddr));
2690
2691 val = (mac_addr[0] << 8) | mac_addr[1];
2692
2693 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
2694
2695 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2696 (mac_addr[4] << 8) | mac_addr[5];
2697
2698 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
2699 }
2700
2701 void
2702 bnx_if_stop(struct ifnet *ifp, int disable)
2703 {
2704 struct bnx_softc *sc = ifp->if_softc;
2705
2706 bnx_stop(sc);
2707 }
2708
2709 /****************************************************************************/
2710 /* Stop the controller. */
2711 /* */
2712 /* Returns: */
2713 /* Nothing. */
2714 /****************************************************************************/
2715 void
2716 bnx_stop(struct bnx_softc *sc)
2717 {
2718 struct ifnet *ifp = &sc->ethercom.ec_if;
2719 struct mii_data *mii = NULL;
2720
2721 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2722
2723 mii = &sc->bnx_mii;
2724
2725 callout_stop(&sc->bnx_timeout);
2726
2727 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2728
2729 /* Disable the transmit/receive blocks. */
2730 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
2731 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2732 DELAY(20);
2733
2734 bnx_disable_intr(sc);
2735
2736 /* Tell firmware that the driver is going away. */
2737 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
2738
2739 /* Free the RX lists. */
2740 bnx_free_rx_chain(sc);
2741
2742 /* Free TX buffers. */
2743 bnx_free_tx_chain(sc);
2744
2745 ifp->if_timer = 0;
2746
2747 sc->bnx_link = 0;
2748
2749 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2750
2751 }
2752
2753 int
2754 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
2755 {
2756 u_int32_t val;
2757 int i, rc = 0;
2758
2759 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2760
2761 /* Wait for pending PCI transactions to complete. */
2762 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
2763 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
2764 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
2765 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
2766 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
2767 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2768 DELAY(5);
2769
2770 /* Assume bootcode is running. */
2771 sc->bnx_fw_timed_out = 0;
2772
2773 /* Give the firmware a chance to prepare for the reset. */
2774 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
2775 if (rc)
2776 goto bnx_reset_exit;
2777
2778 /* Set a firmware reminder that this is a soft reset. */
2779 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
2780 BNX_DRV_RESET_SIGNATURE_MAGIC);
2781
2782 /* Dummy read to force the chip to complete all current transactions. */
2783 val = REG_RD(sc, BNX_MISC_ID);
2784
2785 /* Chip reset. */
2786 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2787 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
2788 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
2789 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
2790
2791 /* Allow up to 30us for reset to complete. */
2792 for (i = 0; i < 10; i++) {
2793 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
2794 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2795 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
2796 break;
2797
2798 DELAY(10);
2799 }
2800
2801 /* Check that reset completed successfully. */
2802 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2803 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
2804 BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
2805 rc = EBUSY;
2806 goto bnx_reset_exit;
2807 }
2808
2809 /* Make sure byte swapping is properly configured. */
2810 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
2811 if (val != 0x01020304) {
2812 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
2813 __FILE__, __LINE__);
2814 rc = ENODEV;
2815 goto bnx_reset_exit;
2816 }
2817
2818 /* Just completed a reset, assume that firmware is running again. */
2819 sc->bnx_fw_timed_out = 0;
2820
2821 /* Wait for the firmware to finish its initialization. */
2822 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
2823 if (rc)
2824 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
2825 "initialization!\n", __FILE__, __LINE__);
2826
2827 bnx_reset_exit:
2828 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2829
2830 return (rc);
2831 }
2832
2833 int
2834 bnx_chipinit(struct bnx_softc *sc)
2835 {
2836 struct pci_attach_args *pa = &(sc->bnx_pa);
2837 u_int32_t val;
2838 int rc = 0;
2839
2840 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2841
2842 /* Make sure the interrupt is not active. */
2843 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
2844
2845 /* Initialize DMA byte/word swapping, configure the number of DMA */
2846 /* channels and PCI clock compensation delay. */
2847 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
2848 BNX_DMA_CONFIG_DATA_WORD_SWAP |
2849 #if BYTE_ORDER == BIG_ENDIAN
2850 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
2851 #endif
2852 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
2853 DMA_READ_CHANS << 12 |
2854 DMA_WRITE_CHANS << 16;
2855
2856 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
2857
2858 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
2859 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
2860
2861 /*
2862 * This setting resolves a problem observed on certain Intel PCI
2863 * chipsets that cannot handle multiple outstanding DMA operations.
2864 * See errata E9_5706A1_65.
2865 */
2866 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
2867 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
2868 !(sc->bnx_flags & BNX_PCIX_FLAG))
2869 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
2870
2871 REG_WR(sc, BNX_DMA_CONFIG, val);
2872
2873 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
2874 if (sc->bnx_flags & BNX_PCIX_FLAG) {
2875 u_int16_t nval;
2876
2877 nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
2878 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
2879 nval & ~0x2);
2880 }
2881
2882 /* Enable the RX_V2P and Context state machines before access. */
2883 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
2884 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
2885 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
2886 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
2887
2888 /* Initialize context mapping and zero out the quick contexts. */
2889 bnx_init_context(sc);
2890
2891 /* Initialize the on-boards CPUs */
2892 bnx_init_cpus(sc);
2893
2894 /* Prepare NVRAM for access. */
2895 if (bnx_init_nvram(sc)) {
2896 rc = ENODEV;
2897 goto bnx_chipinit_exit;
2898 }
2899
2900 /* Set the kernel bypass block size */
2901 val = REG_RD(sc, BNX_MQ_CONFIG);
2902 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
2903 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
2904 REG_WR(sc, BNX_MQ_CONFIG, val);
2905
2906 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
2907 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
2908 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
2909
2910 val = (BCM_PAGE_BITS - 8) << 24;
2911 REG_WR(sc, BNX_RV2P_CONFIG, val);
2912
2913 /* Configure page size. */
2914 val = REG_RD(sc, BNX_TBDR_CONFIG);
2915 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
2916 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
2917 REG_WR(sc, BNX_TBDR_CONFIG, val);
2918
2919 bnx_chipinit_exit:
2920 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2921
2922 return(rc);
2923 }
2924
2925 /****************************************************************************/
2926 /* Initialize the controller in preparation to send/receive traffic. */
2927 /* */
2928 /* Returns: */
2929 /* 0 for success, positive value for failure. */
2930 /****************************************************************************/
2931 int
2932 bnx_blockinit(struct bnx_softc *sc)
2933 {
2934 u_int32_t reg, val;
2935 int rc = 0;
2936
2937 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2938
2939 /* Load the hardware default MAC address. */
2940 bnx_set_mac_addr(sc);
2941
2942 /* Set the Ethernet backoff seed value */
2943 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
2944 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
2945 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
2946
2947 sc->last_status_idx = 0;
2948 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
2949
2950 /* Set up link change interrupt generation. */
2951 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
2952
2953 /* Program the physical address of the status block. */
2954 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
2955 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
2956 (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
2957
2958 /* Program the physical address of the statistics block. */
2959 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
2960 (u_int32_t)(sc->stats_block_paddr));
2961 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
2962 (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
2963
2964 /* Program various host coalescing parameters. */
2965 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
2966 << 16) | sc->bnx_tx_quick_cons_trip);
2967 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
2968 << 16) | sc->bnx_rx_quick_cons_trip);
2969 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
2970 sc->bnx_comp_prod_trip);
2971 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
2972 sc->bnx_tx_ticks);
2973 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
2974 sc->bnx_rx_ticks);
2975 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
2976 sc->bnx_com_ticks);
2977 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
2978 sc->bnx_cmd_ticks);
2979 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
2980 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
2981 REG_WR(sc, BNX_HC_CONFIG,
2982 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
2983 BNX_HC_CONFIG_COLLECT_STATS));
2984
2985 /* Clear the internal statistics counters. */
2986 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
2987
2988 /* Verify that bootcode is running. */
2989 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
2990
2991 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
2992 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
2993 __FILE__, __LINE__); reg = 0);
2994
2995 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
2996 BNX_DEV_INFO_SIGNATURE_MAGIC) {
2997 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
2998 "Expected: 08%08X\n", __FILE__, __LINE__,
2999 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3000 BNX_DEV_INFO_SIGNATURE_MAGIC);
3001 rc = ENODEV;
3002 goto bnx_blockinit_exit;
3003 }
3004
3005 /* Check if any management firmware is running. */
3006 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3007 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3008 BNX_PORT_FEATURE_IMD_ENABLED)) {
3009 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3010 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3011 }
3012
3013 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3014 BNX_DEV_INFO_BC_REV);
3015
3016 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3017
3018 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3019 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3020
3021 /* Enable link state change interrupt generation. */
3022 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3023
3024 /* Enable all remaining blocks in the MAC. */
3025 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3026 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3027 DELAY(20);
3028
3029 bnx_blockinit_exit:
3030 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3031
3032 return (rc);
3033 }
3034
3035 /****************************************************************************/
3036 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3037 /* */
3038 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3039 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3040 /* necessary. */
3041 /* */
3042 /* Returns: */
3043 /* 0 for success, positive value for failure. */
3044 /****************************************************************************/
3045 int
3046 bnx_get_buf(struct bnx_softc *sc, struct mbuf *m, u_int16_t *prod,
3047 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3048 {
3049 bus_dmamap_t map;
3050 struct mbuf *m_new = NULL;
3051 struct rx_bd *rxbd;
3052 int i, rc = 0;
3053 u_int32_t addr;
3054 #ifdef BNX_DEBUG
3055 u_int16_t debug_chain_prod = *chain_prod;
3056 #endif
3057 u_int16_t first_chain_prod;
3058 u_int16_t min_free_bd;
3059
3060 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3061 __func__);
3062
3063 /* Make sure the inputs are valid. */
3064 DBRUNIF((*chain_prod > MAX_RX_BD),
3065 aprint_error_dev(sc->bnx_dev,
3066 "RX producer out of range: 0x%04X > 0x%04X\n",
3067 *chain_prod, (u_int16_t)MAX_RX_BD));
3068
3069 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3070 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3071 *prod_bseq);
3072
3073 /* try to get in as many mbufs as possible */
3074 if (sc->mbuf_alloc_size == MCLBYTES)
3075 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3076 else
3077 min_free_bd = (BNX_MAX_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3078 while (sc->free_rx_bd >= min_free_bd) {
3079 if (m == NULL) {
3080 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3081 BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
3082
3083 sc->mbuf_alloc_failed++;
3084 rc = ENOBUFS;
3085 goto bnx_get_buf_exit);
3086
3087 /* This is a new mbuf allocation. */
3088 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3089 if (m_new == NULL) {
3090 DBPRINT(sc, BNX_WARN,
3091 "%s(%d): RX mbuf header allocation failed!\n",
3092 __FILE__, __LINE__);
3093
3094 DBRUNIF(1, sc->mbuf_alloc_failed++);
3095
3096 rc = ENOBUFS;
3097 goto bnx_get_buf_exit;
3098 }
3099
3100 DBRUNIF(1, sc->rx_mbuf_alloc++);
3101 if (sc->mbuf_alloc_size == MCLBYTES)
3102 MCLGET(m_new, M_DONTWAIT);
3103 else
3104 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3105 M_DONTWAIT);
3106 if (!(m_new->m_flags & M_EXT)) {
3107 DBPRINT(sc, BNX_WARN,
3108 "%s(%d): RX mbuf chain allocation failed!\n",
3109 __FILE__, __LINE__);
3110
3111 m_freem(m_new);
3112
3113 DBRUNIF(1, sc->rx_mbuf_alloc--);
3114 DBRUNIF(1, sc->mbuf_alloc_failed++);
3115
3116 rc = ENOBUFS;
3117 goto bnx_get_buf_exit;
3118 }
3119
3120 } else {
3121 m_new = m;
3122 m = NULL;
3123 m_new->m_data = m_new->m_ext.ext_buf;
3124 }
3125 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3126
3127 /* Map the mbuf cluster into device memory. */
3128 map = sc->rx_mbuf_map[*chain_prod];
3129 first_chain_prod = *chain_prod;
3130 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3131 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3132 __FILE__, __LINE__);
3133
3134 m_freem(m_new);
3135
3136 DBRUNIF(1, sc->rx_mbuf_alloc--);
3137
3138 rc = ENOBUFS;
3139 goto bnx_get_buf_exit;
3140 }
3141 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3142 BUS_DMASYNC_PREREAD);
3143
3144 /* Watch for overflow. */
3145 DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
3146 aprint_error_dev(sc->bnx_dev,
3147 "Too many free rx_bd (0x%04X > 0x%04X)!\n",
3148 sc->free_rx_bd, (u_int16_t)USABLE_RX_BD));
3149
3150 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3151 sc->rx_low_watermark = sc->free_rx_bd);
3152
3153 /*
3154 * Setup the rx_bd for the first segment
3155 */
3156 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3157
3158 addr = (u_int32_t)(map->dm_segs[0].ds_addr);
3159 rxbd->rx_bd_haddr_lo = htole32(addr);
3160 addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3161 rxbd->rx_bd_haddr_hi = htole32(addr);
3162 rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
3163 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3164 *prod_bseq += map->dm_segs[0].ds_len;
3165 bus_dmamap_sync(sc->bnx_dmatag,
3166 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3167 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3168 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3169
3170 for (i = 1; i < map->dm_nsegs; i++) {
3171 *prod = NEXT_RX_BD(*prod);
3172 *chain_prod = RX_CHAIN_IDX(*prod);
3173
3174 rxbd =
3175 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3176
3177 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
3178 rxbd->rx_bd_haddr_lo = htole32(addr);
3179 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3180 rxbd->rx_bd_haddr_hi = htole32(addr);
3181 rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
3182 rxbd->rx_bd_flags = 0;
3183 *prod_bseq += map->dm_segs[i].ds_len;
3184 bus_dmamap_sync(sc->bnx_dmatag,
3185 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3186 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3187 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3188 }
3189
3190 rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3191 bus_dmamap_sync(sc->bnx_dmatag,
3192 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3193 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3194 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3195
3196 /*
3197 * Save the mbuf, ajust the map pointer (swap map for first and
3198 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3199 * and update counter.
3200 */
3201 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3202 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3203 sc->rx_mbuf_map[*chain_prod] = map;
3204 sc->free_rx_bd -= map->dm_nsegs;
3205
3206 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3207 map->dm_nsegs));
3208 *prod = NEXT_RX_BD(*prod);
3209 *chain_prod = RX_CHAIN_IDX(*prod);
3210 }
3211
3212 bnx_get_buf_exit:
3213 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3214 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3215 *chain_prod, *prod_bseq);
3216
3217 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3218 __func__);
3219
3220 return(rc);
3221 }
3222
3223 /****************************************************************************/
3224 /* Allocate memory and initialize the TX data structures. */
3225 /* */
3226 /* Returns: */
3227 /* 0 for success, positive value for failure. */
3228 /****************************************************************************/
3229 int
3230 bnx_init_tx_chain(struct bnx_softc *sc)
3231 {
3232 struct tx_bd *txbd;
3233 u_int32_t val, addr;
3234 int i, rc = 0;
3235
3236 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3237
3238 /* Set the initial TX producer/consumer indices. */
3239 sc->tx_prod = 0;
3240 sc->tx_cons = 0;
3241 sc->tx_prod_bseq = 0;
3242 sc->used_tx_bd = 0;
3243 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3244
3245 /*
3246 * The NetXtreme II supports a linked-list structure called
3247 * a Buffer Descriptor Chain (or BD chain). A BD chain
3248 * consists of a series of 1 or more chain pages, each of which
3249 * consists of a fixed number of BD entries.
3250 * The last BD entry on each page is a pointer to the next page
3251 * in the chain, and the last pointer in the BD chain
3252 * points back to the beginning of the chain.
3253 */
3254
3255 /* Set the TX next pointer chain entries. */
3256 for (i = 0; i < TX_PAGES; i++) {
3257 int j;
3258
3259 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3260
3261 /* Check if we've reached the last page. */
3262 if (i == (TX_PAGES - 1))
3263 j = 0;
3264 else
3265 j = i + 1;
3266
3267 addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
3268 txbd->tx_bd_haddr_lo = htole32(addr);
3269 addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3270 txbd->tx_bd_haddr_hi = htole32(addr);
3271 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3272 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3273 }
3274
3275 /*
3276 * Initialize the context ID for an L2 TX chain.
3277 */
3278 val = BNX_L2CTX_TYPE_TYPE_L2;
3279 val |= BNX_L2CTX_TYPE_SIZE_L2;
3280 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3281
3282 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3283 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3284
3285 /* Point the hardware to the first page in the chain. */
3286 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3287 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3288 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3289 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3290
3291 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
3292
3293 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3294
3295 return(rc);
3296 }
3297
3298 /****************************************************************************/
3299 /* Free memory and clear the TX data structures. */
3300 /* */
3301 /* Returns: */
3302 /* Nothing. */
3303 /****************************************************************************/
3304 void
3305 bnx_free_tx_chain(struct bnx_softc *sc)
3306 {
3307 int i;
3308
3309 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3310
3311 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
3312 for (i = 0; i < TOTAL_TX_BD; i++) {
3313 if (sc->tx_mbuf_ptr[i] != NULL) {
3314 if (sc->tx_mbuf_map != NULL)
3315 bus_dmamap_sync(sc->bnx_dmatag,
3316 sc->tx_mbuf_map[i], 0,
3317 sc->tx_mbuf_map[i]->dm_mapsize,
3318 BUS_DMASYNC_POSTWRITE);
3319 m_freem(sc->tx_mbuf_ptr[i]);
3320 sc->tx_mbuf_ptr[i] = NULL;
3321 DBRUNIF(1, sc->tx_mbuf_alloc--);
3322 }
3323 }
3324
3325 /* Clear each TX chain page. */
3326 for (i = 0; i < TX_PAGES; i++) {
3327 bzero((char *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
3328 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3329 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3330 }
3331
3332 /* Check if we lost any mbufs in the process. */
3333 DBRUNIF((sc->tx_mbuf_alloc),
3334 aprint_error_dev(sc->bnx_dev,
3335 "Memory leak! Lost %d mbufs from tx chain!\n",
3336 sc->tx_mbuf_alloc));
3337
3338 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3339 }
3340
3341 /****************************************************************************/
3342 /* Allocate memory and initialize the RX data structures. */
3343 /* */
3344 /* Returns: */
3345 /* 0 for success, positive value for failure. */
3346 /****************************************************************************/
3347 int
3348 bnx_init_rx_chain(struct bnx_softc *sc)
3349 {
3350 struct rx_bd *rxbd;
3351 int i, rc = 0;
3352 u_int16_t prod, chain_prod;
3353 u_int32_t prod_bseq, val, addr;
3354
3355 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3356
3357 /* Initialize the RX producer and consumer indices. */
3358 sc->rx_prod = 0;
3359 sc->rx_cons = 0;
3360 sc->rx_prod_bseq = 0;
3361 sc->free_rx_bd = BNX_RX_SLACK_SPACE;
3362 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
3363
3364 /* Initialize the RX next pointer chain entries. */
3365 for (i = 0; i < RX_PAGES; i++) {
3366 int j;
3367
3368 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
3369
3370 /* Check if we've reached the last page. */
3371 if (i == (RX_PAGES - 1))
3372 j = 0;
3373 else
3374 j = i + 1;
3375
3376 /* Setup the chain page pointers. */
3377 addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
3378 rxbd->rx_bd_haddr_hi = htole32(addr);
3379 addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
3380 rxbd->rx_bd_haddr_lo = htole32(addr);
3381 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
3382 0, BNX_RX_CHAIN_PAGE_SZ,
3383 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3384 }
3385
3386 /* Initialize the context ID for an L2 RX chain. */
3387 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
3388 val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
3389 val |= 0x02 << 8;
3390 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
3391
3392 /* Point the hardware to the first page in the chain. */
3393 val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
3394 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
3395 val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
3396 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
3397
3398 /* Allocate mbuf clusters for the rx_bd chain. */
3399 prod = prod_bseq = 0;
3400 chain_prod = RX_CHAIN_IDX(prod);
3401 if (bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq)) {
3402 BNX_PRINTF(sc,
3403 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
3404 }
3405
3406 /* Save the RX chain producer index. */
3407 sc->rx_prod = prod;
3408 sc->rx_prod_bseq = prod_bseq;
3409
3410 for (i = 0; i < RX_PAGES; i++)
3411 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
3412 sc->rx_bd_chain_map[i]->dm_mapsize,
3413 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3414
3415 /* Tell the chip about the waiting rx_bd's. */
3416 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3417 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3418
3419 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
3420
3421 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3422
3423 return(rc);
3424 }
3425
3426 /****************************************************************************/
3427 /* Free memory and clear the RX data structures. */
3428 /* */
3429 /* Returns: */
3430 /* Nothing. */
3431 /****************************************************************************/
3432 void
3433 bnx_free_rx_chain(struct bnx_softc *sc)
3434 {
3435 int i;
3436
3437 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3438
3439 /* Free any mbufs still in the RX mbuf chain. */
3440 for (i = 0; i < TOTAL_RX_BD; i++) {
3441 if (sc->rx_mbuf_ptr[i] != NULL) {
3442 if (sc->rx_mbuf_map[i] != NULL)
3443 bus_dmamap_sync(sc->bnx_dmatag,
3444 sc->rx_mbuf_map[i], 0,
3445 sc->rx_mbuf_map[i]->dm_mapsize,
3446 BUS_DMASYNC_POSTREAD);
3447 m_freem(sc->rx_mbuf_ptr[i]);
3448 sc->rx_mbuf_ptr[i] = NULL;
3449 DBRUNIF(1, sc->rx_mbuf_alloc--);
3450 }
3451 }
3452
3453 /* Clear each RX chain page. */
3454 for (i = 0; i < RX_PAGES; i++)
3455 bzero((char *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
3456
3457 /* Check if we lost any mbufs in the process. */
3458 DBRUNIF((sc->rx_mbuf_alloc),
3459 aprint_error_dev(sc->bnx_dev,
3460 "Memory leak! Lost %d mbufs from rx chain!\n",
3461 sc->rx_mbuf_alloc));
3462
3463 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3464 }
3465
3466 /****************************************************************************/
3467 /* Set media options. */
3468 /* */
3469 /* Returns: */
3470 /* 0 for success, positive value for failure. */
3471 /****************************************************************************/
3472 int
3473 bnx_ifmedia_upd(struct ifnet *ifp)
3474 {
3475 struct bnx_softc *sc;
3476 struct mii_data *mii;
3477 struct ifmedia *ifm;
3478 int rc = 0;
3479
3480 sc = ifp->if_softc;
3481 ifm = &sc->bnx_ifmedia;
3482
3483 /* DRC - ToDo: Add SerDes support. */
3484
3485 mii = &sc->bnx_mii;
3486 sc->bnx_link = 0;
3487 if (mii->mii_instance) {
3488 struct mii_softc *miisc;
3489 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3490 mii_phy_reset(miisc);
3491 }
3492 mii_mediachg(mii);
3493
3494 return(rc);
3495 }
3496
3497 /****************************************************************************/
3498 /* Reports current media status. */
3499 /* */
3500 /* Returns: */
3501 /* Nothing. */
3502 /****************************************************************************/
3503 void
3504 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3505 {
3506 struct bnx_softc *sc;
3507 struct mii_data *mii;
3508 int s;
3509
3510 sc = ifp->if_softc;
3511
3512 s = splnet();
3513
3514 mii = &sc->bnx_mii;
3515
3516 /* DRC - ToDo: Add SerDes support. */
3517
3518 mii_pollstat(mii);
3519 ifmr->ifm_active = mii->mii_media_active;
3520 ifmr->ifm_status = mii->mii_media_status;
3521
3522 splx(s);
3523 }
3524
3525 /****************************************************************************/
3526 /* Handles PHY generated interrupt events. */
3527 /* */
3528 /* Returns: */
3529 /* Nothing. */
3530 /****************************************************************************/
3531 void
3532 bnx_phy_intr(struct bnx_softc *sc)
3533 {
3534 u_int32_t new_link_state, old_link_state;
3535
3536 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3537 BUS_DMASYNC_POSTREAD);
3538 new_link_state = sc->status_block->status_attn_bits &
3539 STATUS_ATTN_BITS_LINK_STATE;
3540 old_link_state = sc->status_block->status_attn_bits_ack &
3541 STATUS_ATTN_BITS_LINK_STATE;
3542
3543 /* Handle any changes if the link state has changed. */
3544 if (new_link_state != old_link_state) {
3545 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
3546
3547 sc->bnx_link = 0;
3548 callout_stop(&sc->bnx_timeout);
3549 bnx_tick(sc);
3550
3551 /* Update the status_attn_bits_ack field in the status block. */
3552 if (new_link_state) {
3553 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
3554 STATUS_ATTN_BITS_LINK_STATE);
3555 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
3556 } else {
3557 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
3558 STATUS_ATTN_BITS_LINK_STATE);
3559 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
3560 }
3561 }
3562
3563 /* Acknowledge the link change interrupt. */
3564 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
3565 }
3566
3567 /****************************************************************************/
3568 /* Handles received frame interrupt events. */
3569 /* */
3570 /* Returns: */
3571 /* Nothing. */
3572 /****************************************************************************/
3573 void
3574 bnx_rx_intr(struct bnx_softc *sc)
3575 {
3576 struct status_block *sblk = sc->status_block;
3577 struct ifnet *ifp = &sc->ethercom.ec_if;
3578 u_int16_t hw_cons, sw_cons, sw_chain_cons;
3579 u_int16_t sw_prod, sw_chain_prod;
3580 u_int32_t sw_prod_bseq;
3581 struct l2_fhdr *l2fhdr;
3582 int i;
3583
3584 DBRUNIF(1, sc->rx_interrupts++);
3585 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3586 BUS_DMASYNC_POSTREAD);
3587
3588 /* Prepare the RX chain pages to be accessed by the host CPU. */
3589 for (i = 0; i < RX_PAGES; i++)
3590 bus_dmamap_sync(sc->bnx_dmatag,
3591 sc->rx_bd_chain_map[i], 0,
3592 sc->rx_bd_chain_map[i]->dm_mapsize,
3593 BUS_DMASYNC_POSTWRITE);
3594
3595 /* Get the hardware's view of the RX consumer index. */
3596 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
3597 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
3598 hw_cons++;
3599
3600 /* Get working copies of the driver's view of the RX indices. */
3601 sw_cons = sc->rx_cons;
3602 sw_prod = sc->rx_prod;
3603 sw_prod_bseq = sc->rx_prod_bseq;
3604
3605 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
3606 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
3607 __func__, sw_prod, sw_cons, sw_prod_bseq);
3608
3609 /* Prevent speculative reads from getting ahead of the status block. */
3610 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3611 BUS_SPACE_BARRIER_READ);
3612
3613 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3614 sc->rx_low_watermark = sc->free_rx_bd);
3615
3616 /*
3617 * Scan through the receive chain as long
3618 * as there is work to do.
3619 */
3620 while (sw_cons != hw_cons) {
3621 struct mbuf *m;
3622 struct rx_bd *rxbd;
3623 unsigned int len;
3624 u_int32_t status;
3625
3626 /* Convert the producer/consumer indices to an actual
3627 * rx_bd index.
3628 */
3629 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
3630 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
3631
3632 /* Get the used rx_bd. */
3633 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
3634 sc->free_rx_bd++;
3635
3636 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
3637 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
3638
3639 /* The mbuf is stored with the last rx_bd entry of a packet. */
3640 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
3641 #ifdef DIAGNOSTIC
3642 /* Validate that this is the last rx_bd. */
3643 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
3644 printf("%s: Unexpected mbuf found in "
3645 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
3646 sw_chain_cons);
3647 }
3648 #endif
3649
3650 /* DRC - ToDo: If the received packet is small, say less
3651 * than 128 bytes, allocate a new mbuf here,
3652 * copy the data to that mbuf, and recycle
3653 * the mapped jumbo frame.
3654 */
3655
3656 /* Unmap the mbuf from DMA space. */
3657 #ifdef DIAGNOSTIC
3658 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
3659 printf("invalid map sw_cons 0x%x "
3660 "sw_prod 0x%x "
3661 "sw_chain_cons 0x%x "
3662 "sw_chain_prod 0x%x "
3663 "hw_cons 0x%x "
3664 "TOTAL_RX_BD_PER_PAGE 0x%x "
3665 "TOTAL_RX_BD 0x%x\n",
3666 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
3667 hw_cons,
3668 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
3669 }
3670 #endif
3671 bus_dmamap_sync(sc->bnx_dmatag,
3672 sc->rx_mbuf_map[sw_chain_cons], 0,
3673 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
3674 BUS_DMASYNC_POSTREAD);
3675 bus_dmamap_unload(sc->bnx_dmatag,
3676 sc->rx_mbuf_map[sw_chain_cons]);
3677
3678 /* Remove the mbuf from the driver's chain. */
3679 m = sc->rx_mbuf_ptr[sw_chain_cons];
3680 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
3681
3682 /*
3683 * Frames received on the NetXteme II are prepended
3684 * with the l2_fhdr structure which provides status
3685 * information about the received frame (including
3686 * VLAN tags and checksum info) and are also
3687 * automatically adjusted to align the IP header
3688 * (i.e. two null bytes are inserted before the
3689 * Ethernet header).
3690 */
3691 l2fhdr = mtod(m, struct l2_fhdr *);
3692
3693 len = l2fhdr->l2_fhdr_pkt_len;
3694 status = l2fhdr->l2_fhdr_status;
3695
3696 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
3697 aprint_error("Simulating l2_fhdr status error.\n");
3698 status = status | L2_FHDR_ERRORS_PHY_DECODE);
3699
3700 /* Watch for unusual sized frames. */
3701 DBRUNIF(((len < BNX_MIN_MTU) ||
3702 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
3703 aprint_error_dev(sc->bnx_dev,
3704 "Unusual frame size found. "
3705 "Min(%d), Actual(%d), Max(%d)\n",
3706 (int)BNX_MIN_MTU, len,
3707 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
3708
3709 bnx_dump_mbuf(sc, m);
3710 bnx_breakpoint(sc));
3711
3712 len -= ETHER_CRC_LEN;
3713
3714 /* Check the received frame for errors. */
3715 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
3716 L2_FHDR_ERRORS_PHY_DECODE |
3717 L2_FHDR_ERRORS_ALIGNMENT |
3718 L2_FHDR_ERRORS_TOO_SHORT |
3719 L2_FHDR_ERRORS_GIANT_FRAME)) ||
3720 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
3721 len >
3722 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
3723 ifp->if_ierrors++;
3724 DBRUNIF(1, sc->l2fhdr_status_errors++);
3725
3726 /* Reuse the mbuf for a new frame. */
3727 if (bnx_get_buf(sc, m, &sw_prod,
3728 &sw_chain_prod, &sw_prod_bseq)) {
3729 DBRUNIF(1, bnx_breakpoint(sc));
3730 panic("%s: Can't reuse RX mbuf!\n",
3731 device_xname(sc->bnx_dev));
3732 }
3733 continue;
3734 }
3735
3736 /*
3737 * Get a new mbuf for the rx_bd. If no new
3738 * mbufs are available then reuse the current mbuf,
3739 * log an ierror on the interface, and generate
3740 * an error in the system log.
3741 */
3742 if (bnx_get_buf(sc, NULL, &sw_prod, &sw_chain_prod,
3743 &sw_prod_bseq)) {
3744 DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
3745 "new mbuf, incoming frame dropped!\n"));
3746
3747 ifp->if_ierrors++;
3748
3749 /* Try and reuse the exisitng mbuf. */
3750 if (bnx_get_buf(sc, m, &sw_prod,
3751 &sw_chain_prod, &sw_prod_bseq)) {
3752 DBRUNIF(1, bnx_breakpoint(sc));
3753 panic("%s: Double mbuf allocation "
3754 "failure!",
3755 device_xname(sc->bnx_dev));
3756 }
3757 continue;
3758 }
3759
3760 /* Skip over the l2_fhdr when passing the data up
3761 * the stack.
3762 */
3763 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
3764
3765 /* Adjust the pckt length to match the received data. */
3766 m->m_pkthdr.len = m->m_len = len;
3767
3768 /* Send the packet to the appropriate interface. */
3769 m->m_pkthdr.rcvif = ifp;
3770
3771 DBRUN(BNX_VERBOSE_RECV,
3772 struct ether_header *eh;
3773 eh = mtod(m, struct ether_header *);
3774 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
3775 __func__, ether_sprintf(eh->ether_dhost),
3776 ether_sprintf(eh->ether_shost),
3777 htons(eh->ether_type)));
3778
3779 /* Validate the checksum. */
3780
3781 /* Check for an IP datagram. */
3782 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
3783 /* Check if the IP checksum is valid. */
3784 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
3785 == 0)
3786 m->m_pkthdr.csum_flags |=
3787 M_CSUM_IPv4;
3788 #ifdef BNX_DEBUG
3789 else
3790 DBPRINT(sc, BNX_WARN_SEND,
3791 "%s(): Invalid IP checksum "
3792 "= 0x%04X!\n",
3793 __func__,
3794 l2fhdr->l2_fhdr_ip_xsum
3795 );
3796 #endif
3797 }
3798
3799 /* Check for a valid TCP/UDP frame. */
3800 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3801 L2_FHDR_STATUS_UDP_DATAGRAM)) {
3802 /* Check for a good TCP/UDP checksum. */
3803 if ((status &
3804 (L2_FHDR_ERRORS_TCP_XSUM |
3805 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
3806 m->m_pkthdr.csum_flags |=
3807 M_CSUM_TCPv4 |
3808 M_CSUM_UDPv4;
3809 } else {
3810 DBPRINT(sc, BNX_WARN_SEND,
3811 "%s(): Invalid TCP/UDP "
3812 "checksum = 0x%04X!\n",
3813 __func__,
3814 l2fhdr->l2_fhdr_tcp_udp_xsum);
3815 }
3816 }
3817
3818 /*
3819 * If we received a packet with a vlan tag,
3820 * attach that information to the packet.
3821 */
3822 if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
3823 #if 0
3824 struct ether_vlan_header vh;
3825
3826 DBPRINT(sc, BNX_VERBOSE_SEND,
3827 "%s(): VLAN tag = 0x%04X\n",
3828 __func__,
3829 l2fhdr->l2_fhdr_vlan_tag);
3830
3831 if (m->m_pkthdr.len < ETHER_HDR_LEN) {
3832 m_freem(m);
3833 continue;
3834 }
3835 m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh);
3836 vh.evl_proto = vh.evl_encap_proto;
3837 vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag;
3838 vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
3839 m_adj(m, ETHER_HDR_LEN);
3840 if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
3841 continue;
3842 m->m_pkthdr.len += sizeof(vh);
3843 if (m->m_len < sizeof(vh) &&
3844 (m = m_pullup(m, sizeof(vh))) == NULL)
3845 goto bnx_rx_int_next_rx;
3846 m_copyback(m, 0, sizeof(vh), &vh);
3847 #else
3848 VLAN_INPUT_TAG(ifp, m,
3849 l2fhdr->l2_fhdr_vlan_tag,
3850 continue);
3851 #endif
3852 }
3853
3854 #if NBPFILTER > 0
3855 /*
3856 * Handle BPF listeners. Let the BPF
3857 * user see the packet.
3858 */
3859 if (ifp->if_bpf)
3860 bpf_mtap(ifp->if_bpf, m);
3861 #endif
3862
3863 /* Pass the mbuf off to the upper layers. */
3864 ifp->if_ipackets++;
3865 DBPRINT(sc, BNX_VERBOSE_RECV,
3866 "%s(): Passing received frame up.\n", __func__);
3867 (*ifp->if_input)(ifp, m);
3868 DBRUNIF(1, sc->rx_mbuf_alloc--);
3869
3870 }
3871
3872 sw_cons = NEXT_RX_BD(sw_cons);
3873
3874 /* Refresh hw_cons to see if there's new work */
3875 if (sw_cons == hw_cons) {
3876 hw_cons = sc->hw_rx_cons =
3877 sblk->status_rx_quick_consumer_index0;
3878 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
3879 USABLE_RX_BD_PER_PAGE)
3880 hw_cons++;
3881 }
3882
3883 /* Prevent speculative reads from getting ahead of
3884 * the status block.
3885 */
3886 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3887 BUS_SPACE_BARRIER_READ);
3888 }
3889
3890 for (i = 0; i < RX_PAGES; i++)
3891 bus_dmamap_sync(sc->bnx_dmatag,
3892 sc->rx_bd_chain_map[i], 0,
3893 sc->rx_bd_chain_map[i]->dm_mapsize,
3894 BUS_DMASYNC_PREWRITE);
3895
3896 sc->rx_cons = sw_cons;
3897 sc->rx_prod = sw_prod;
3898 sc->rx_prod_bseq = sw_prod_bseq;
3899
3900 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3901 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3902
3903 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
3904 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
3905 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
3906 }
3907
3908 /****************************************************************************/
3909 /* Handles transmit completion interrupt events. */
3910 /* */
3911 /* Returns: */
3912 /* Nothing. */
3913 /****************************************************************************/
3914 void
3915 bnx_tx_intr(struct bnx_softc *sc)
3916 {
3917 struct status_block *sblk = sc->status_block;
3918 struct ifnet *ifp = &sc->ethercom.ec_if;
3919 u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
3920
3921 DBRUNIF(1, sc->tx_interrupts++);
3922 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3923 BUS_DMASYNC_POSTREAD);
3924
3925 /* Get the hardware's view of the TX consumer index. */
3926 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
3927
3928 /* Skip to the next entry if this is a chain page pointer. */
3929 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
3930 hw_tx_cons++;
3931
3932 sw_tx_cons = sc->tx_cons;
3933
3934 /* Prevent speculative reads from getting ahead of the status block. */
3935 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3936 BUS_SPACE_BARRIER_READ);
3937
3938 /* Cycle through any completed TX chain page entries. */
3939 while (sw_tx_cons != hw_tx_cons) {
3940 #ifdef BNX_DEBUG
3941 struct tx_bd *txbd = NULL;
3942 #endif
3943 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
3944
3945 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
3946 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
3947 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
3948
3949 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
3950 aprint_error_dev(sc->bnx_dev,
3951 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
3952 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
3953
3954 DBRUNIF(1, txbd = &sc->tx_bd_chain
3955 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
3956
3957 DBRUNIF((txbd == NULL),
3958 aprint_error_dev(sc->bnx_dev,
3959 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
3960 bnx_breakpoint(sc));
3961
3962 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
3963 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
3964
3965 /*
3966 * Free the associated mbuf. Remember
3967 * that only the last tx_bd of a packet
3968 * has an mbuf pointer and DMA map.
3969 */
3970 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
3971 /* Validate that this is the last tx_bd. */
3972 DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
3973 TX_BD_FLAGS_END)),
3974 aprint_error_dev(sc->bnx_dev,
3975 "tx_bd END flag not set but txmbuf == NULL!\n");
3976 bnx_breakpoint(sc));
3977
3978 DBRUN(BNX_INFO_SEND,
3979 aprint_debug("%s: Unloading map/freeing mbuf "
3980 "from tx_bd[0x%04X]\n",
3981 __func__, sw_tx_chain_cons));
3982
3983 /* Unmap the mbuf. */
3984 bus_dmamap_unload(sc->bnx_dmatag,
3985 sc->tx_mbuf_map[sw_tx_chain_cons]);
3986
3987 /* Free the mbuf. */
3988 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
3989 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
3990 DBRUNIF(1, sc->tx_mbuf_alloc--);
3991
3992 ifp->if_opackets++;
3993 }
3994
3995 sc->used_tx_bd--;
3996 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
3997
3998 /* Refresh hw_cons to see if there's new work. */
3999 hw_tx_cons = sc->hw_tx_cons =
4000 sblk->status_tx_quick_consumer_index0;
4001 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4002 USABLE_TX_BD_PER_PAGE)
4003 hw_tx_cons++;
4004
4005 /* Prevent speculative reads from getting ahead of
4006 * the status block.
4007 */
4008 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4009 BUS_SPACE_BARRIER_READ);
4010 }
4011
4012 /* Clear the TX timeout timer. */
4013 ifp->if_timer = 0;
4014
4015 /* Clear the tx hardware queue full flag. */
4016 if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
4017 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4018 aprint_debug_dev(sc->bnx_dev,
4019 "TX chain is open for business! Used tx_bd = %d\n",
4020 sc->used_tx_bd));
4021 ifp->if_flags &= ~IFF_OACTIVE;
4022 }
4023
4024 sc->tx_cons = sw_tx_cons;
4025 }
4026
4027 /****************************************************************************/
4028 /* Disables interrupt generation. */
4029 /* */
4030 /* Returns: */
4031 /* Nothing. */
4032 /****************************************************************************/
4033 void
4034 bnx_disable_intr(struct bnx_softc *sc)
4035 {
4036 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4037 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4038 }
4039
4040 /****************************************************************************/
4041 /* Enables interrupt generation. */
4042 /* */
4043 /* Returns: */
4044 /* Nothing. */
4045 /****************************************************************************/
4046 void
4047 bnx_enable_intr(struct bnx_softc *sc)
4048 {
4049 u_int32_t val;
4050
4051 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4052 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4053
4054 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4055 sc->last_status_idx);
4056
4057 val = REG_RD(sc, BNX_HC_COMMAND);
4058 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4059 }
4060
4061 /****************************************************************************/
4062 /* Handles controller initialization. */
4063 /* */
4064 /****************************************************************************/
4065 int
4066 bnx_init(struct ifnet *ifp)
4067 {
4068 struct bnx_softc *sc = ifp->if_softc;
4069 u_int32_t ether_mtu;
4070 int s, error = 0;
4071
4072 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4073
4074 s = splnet();
4075
4076 bnx_stop(sc);
4077
4078 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4079 aprint_error("bnx: Controller reset failed!\n");
4080 goto bnx_init_exit;
4081 }
4082
4083 if ((error = bnx_chipinit(sc)) != 0) {
4084 aprint_error("bnx: Controller initialization failed!\n");
4085 goto bnx_init_exit;
4086 }
4087
4088 if ((error = bnx_blockinit(sc)) != 0) {
4089 aprint_error("bnx: Block initialization failed!\n");
4090 goto bnx_init_exit;
4091 }
4092
4093 /* Calculate and program the Ethernet MRU size. */
4094 if (ifp->if_mtu <= ETHERMTU) {
4095 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4096 sc->mbuf_alloc_size = MCLBYTES;
4097 } else {
4098 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4099 sc->mbuf_alloc_size = BNX_MAX_MRU;
4100 }
4101
4102
4103 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4104 __func__, ether_mtu);
4105
4106 /*
4107 * Program the MRU and enable Jumbo frame
4108 * support.
4109 */
4110 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4111 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4112
4113 /* Calculate the RX Ethernet frame size for rx_bd's. */
4114 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4115
4116 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4117 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4118 sc->mbuf_alloc_size, sc->max_frame_size);
4119
4120 /* Program appropriate promiscuous/multicast filtering. */
4121 bnx_set_rx_mode(sc);
4122
4123 /* Init RX buffer descriptor chain. */
4124 bnx_init_rx_chain(sc);
4125
4126 /* Init TX buffer descriptor chain. */
4127 bnx_init_tx_chain(sc);
4128
4129 /* Enable host interrupts. */
4130 bnx_enable_intr(sc);
4131
4132 bnx_ifmedia_upd(ifp);
4133
4134 ifp->if_flags |= IFF_RUNNING;
4135 ifp->if_flags &= ~IFF_OACTIVE;
4136
4137 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4138
4139 bnx_init_exit:
4140 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4141
4142 splx(s);
4143
4144 return(error);
4145 }
4146
4147 /****************************************************************************/
4148 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4149 /* memory visible to the controller. */
4150 /* */
4151 /* Returns: */
4152 /* 0 for success, positive value for failure. */
4153 /****************************************************************************/
4154 int
4155 bnx_tx_encap(struct bnx_softc *sc, struct mbuf **m_head)
4156 {
4157 bus_dmamap_t map;
4158 struct tx_bd *txbd = NULL;
4159 struct mbuf *m0;
4160 u_int16_t vlan_tag = 0, flags = 0;
4161 u_int16_t chain_prod, prod;
4162 #ifdef BNX_DEBUG
4163 u_int16_t debug_prod;
4164 #endif
4165 u_int32_t addr, prod_bseq;
4166 int i, error, rc = 0;
4167 struct m_tag *mtag;
4168
4169 m0 = *m_head;
4170
4171 /* Transfer any checksum offload flags to the bd. */
4172 if (m0->m_pkthdr.csum_flags) {
4173 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
4174 flags |= TX_BD_FLAGS_IP_CKSUM;
4175 if (m0->m_pkthdr.csum_flags &
4176 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4177 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4178 }
4179
4180 /* Transfer any VLAN tags to the bd. */
4181 mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m0);
4182 if (mtag != NULL) {
4183 flags |= TX_BD_FLAGS_VLAN_TAG;
4184 vlan_tag = VLAN_TAG_VALUE(mtag);
4185 }
4186
4187 /* Map the mbuf into DMAable memory. */
4188 prod = sc->tx_prod;
4189 chain_prod = TX_CHAIN_IDX(prod);
4190 map = sc->tx_mbuf_map[chain_prod];
4191
4192 /* Map the mbuf into our DMA address space. */
4193 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m0, BUS_DMA_NOWAIT);
4194 if (error != 0) {
4195 aprint_error_dev(sc->bnx_dev,
4196 "Error mapping mbuf into TX chain!\n");
4197 m_freem(m0);
4198 *m_head = NULL;
4199 return (error);
4200 }
4201 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4202 BUS_DMASYNC_PREWRITE);
4203 /*
4204 * The chip seems to require that at least 16 descriptors be kept
4205 * empty at all times. Make sure we honor that.
4206 * XXX Would it be faster to assume worst case scenario for
4207 * map->dm_nsegs and do this calculation higher up?
4208 */
4209 if (map->dm_nsegs > (USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE)) {
4210 bus_dmamap_unload(sc->bnx_dmatag, map);
4211 return (ENOBUFS);
4212 }
4213
4214 /* prod points to an empty tx_bd at this point. */
4215 prod_bseq = sc->tx_prod_bseq;
4216 #ifdef BNX_DEBUG
4217 debug_prod = chain_prod;
4218 #endif
4219 DBPRINT(sc, BNX_INFO_SEND,
4220 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4221 "prod_bseq = 0x%08X\n",
4222 __func__, *prod, chain_prod, prod_bseq);
4223
4224 /*
4225 * Cycle through each mbuf segment that makes up
4226 * the outgoing frame, gathering the mapping info
4227 * for that segment and creating a tx_bd for the
4228 * mbuf.
4229 */
4230 for (i = 0; i < map->dm_nsegs ; i++) {
4231 chain_prod = TX_CHAIN_IDX(prod);
4232 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4233
4234 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
4235 txbd->tx_bd_haddr_lo = htole32(addr);
4236 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4237 txbd->tx_bd_haddr_hi = htole32(addr);
4238 txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
4239 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
4240 txbd->tx_bd_flags = htole16(flags);
4241 prod_bseq += map->dm_segs[i].ds_len;
4242 if (i == 0)
4243 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
4244 prod = NEXT_TX_BD(prod);
4245 }
4246 /* Set the END flag on the last TX buffer descriptor. */
4247 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
4248
4249 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
4250
4251 DBPRINT(sc, BNX_INFO_SEND,
4252 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
4253 "prod_bseq = 0x%08X\n",
4254 __func__, prod, chain_prod, prod_bseq);
4255
4256 /*
4257 * Ensure that the mbuf pointer for this
4258 * transmission is placed at the array
4259 * index of the last descriptor in this
4260 * chain. This is done because a single
4261 * map is used for all segments of the mbuf
4262 * and we don't want to unload the map before
4263 * all of the segments have been freed.
4264 */
4265 sc->tx_mbuf_ptr[chain_prod] = m0;
4266 sc->used_tx_bd += map->dm_nsegs;
4267
4268 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4269 sc->tx_hi_watermark = sc->used_tx_bd);
4270
4271 DBRUNIF(1, sc->tx_mbuf_alloc++);
4272
4273 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4274 map_arg.maxsegs));
4275
4276 /* prod points to the next free tx_bd at this point. */
4277 sc->tx_prod = prod;
4278 sc->tx_prod_bseq = prod_bseq;
4279
4280 return (rc);
4281 }
4282
4283 /****************************************************************************/
4284 /* Main transmit routine. */
4285 /* */
4286 /* Returns: */
4287 /* Nothing. */
4288 /****************************************************************************/
4289 void
4290 bnx_start(struct ifnet *ifp)
4291 {
4292 struct bnx_softc *sc = ifp->if_softc;
4293 struct mbuf *m_head = NULL;
4294 int count = 0;
4295 u_int16_t tx_prod, tx_chain_prod;
4296
4297 /* If there's no link or the transmit queue is empty then just exit. */
4298 if (!sc->bnx_link || IFQ_IS_EMPTY(&ifp->if_snd)) {
4299 DBPRINT(sc, BNX_INFO_SEND,
4300 "%s(): No link or transmit queue empty.\n", __func__);
4301 goto bnx_start_exit;
4302 }
4303
4304 /* prod points to the next free tx_bd. */
4305 tx_prod = sc->tx_prod;
4306 tx_chain_prod = TX_CHAIN_IDX(tx_prod);
4307
4308 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
4309 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
4310 __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
4311
4312 /*
4313 * Keep adding entries while there is space in the ring. We keep
4314 * BNX_TX_SLACK_SPACE entries unused at all times.
4315 */
4316 while (sc->used_tx_bd < USABLE_TX_BD - BNX_TX_SLACK_SPACE) {
4317 /* Check for any frames to send. */
4318 IFQ_POLL(&ifp->if_snd, m_head);
4319 if (m_head == NULL)
4320 break;
4321
4322 /*
4323 * Pack the data into the transmit ring. If we
4324 * don't have room, set the OACTIVE flag to wait
4325 * for the NIC to drain the chain.
4326 */
4327 if (bnx_tx_encap(sc, &m_head)) {
4328 ifp->if_flags |= IFF_OACTIVE;
4329 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
4330 "business! Total tx_bd used = %d\n",
4331 sc->used_tx_bd);
4332 break;
4333 }
4334
4335 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4336 count++;
4337
4338 #if NBPFILTER > 0
4339 /* Send a copy of the frame to any BPF listeners. */
4340 if (ifp->if_bpf)
4341 bpf_mtap(ifp->if_bpf, m_head);
4342 #endif
4343 }
4344
4345 if (count == 0) {
4346 /* no packets were dequeued */
4347 DBPRINT(sc, BNX_VERBOSE_SEND,
4348 "%s(): No packets were dequeued\n", __func__);
4349 goto bnx_start_exit;
4350 }
4351
4352 /* Update the driver's counters. */
4353 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
4354
4355 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
4356 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
4357 tx_chain_prod, sc->tx_prod_bseq);
4358
4359 /* Start the transmit. */
4360 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
4361 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
4362
4363 /* Set the tx timeout. */
4364 ifp->if_timer = BNX_TX_TIMEOUT;
4365
4366 bnx_start_exit:
4367 return;
4368 }
4369
4370 /****************************************************************************/
4371 /* Handles any IOCTL calls from the operating system. */
4372 /* */
4373 /* Returns: */
4374 /* 0 for success, positive value for failure. */
4375 /****************************************************************************/
4376 int
4377 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
4378 {
4379 struct bnx_softc *sc = ifp->if_softc;
4380 struct ifreq *ifr = (struct ifreq *) data;
4381 struct mii_data *mii;
4382 int s, error = 0;
4383
4384 s = splnet();
4385
4386 switch (command) {
4387 case SIOCSIFFLAGS:
4388 if (ifp->if_flags & IFF_UP) {
4389 if ((ifp->if_flags & IFF_RUNNING) &&
4390 ((ifp->if_flags ^ sc->bnx_if_flags) &
4391 (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
4392 bnx_set_rx_mode(sc);
4393 } else if (!(ifp->if_flags & IFF_RUNNING))
4394 bnx_init(ifp);
4395
4396 } else if (ifp->if_flags & IFF_RUNNING)
4397 bnx_stop(sc);
4398
4399 sc->bnx_if_flags = ifp->if_flags;
4400 break;
4401
4402 case SIOCSIFMEDIA:
4403 case SIOCGIFMEDIA:
4404 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
4405 sc->bnx_phy_flags);
4406
4407 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
4408 error = ifmedia_ioctl(ifp, ifr,
4409 &sc->bnx_ifmedia, command);
4410 else {
4411 mii = &sc->bnx_mii;
4412 error = ifmedia_ioctl(ifp, ifr,
4413 &mii->mii_media, command);
4414 }
4415 break;
4416
4417 default:
4418 error = ether_ioctl(ifp, command, data);
4419 if (error != ENETRESET)
4420 break;
4421 error = 0;
4422 if (command == SIOCADDMULTI || command == SIOCDELMULTI) {
4423 /* reload packet filter if running */
4424 if (ifp->if_flags & IFF_RUNNING)
4425 bnx_set_rx_mode(sc);
4426 }
4427 break;
4428 }
4429
4430 splx(s);
4431
4432 return (error);
4433 }
4434
4435 /****************************************************************************/
4436 /* Transmit timeout handler. */
4437 /* */
4438 /* Returns: */
4439 /* Nothing. */
4440 /****************************************************************************/
4441 void
4442 bnx_watchdog(struct ifnet *ifp)
4443 {
4444 struct bnx_softc *sc = ifp->if_softc;
4445
4446 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
4447 bnx_dump_status_block(sc));
4448
4449 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
4450
4451 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
4452
4453 bnx_init(ifp);
4454
4455 ifp->if_oerrors++;
4456 }
4457
4458 /*
4459 * Interrupt handler.
4460 */
4461 /****************************************************************************/
4462 /* Main interrupt entry point. Verifies that the controller generated the */
4463 /* interrupt and then calls a separate routine for handle the various */
4464 /* interrupt causes (PHY, TX, RX). */
4465 /* */
4466 /* Returns: */
4467 /* 0 for success, positive value for failure. */
4468 /****************************************************************************/
4469 int
4470 bnx_intr(void *xsc)
4471 {
4472 struct bnx_softc *sc;
4473 struct ifnet *ifp;
4474 u_int32_t status_attn_bits;
4475
4476 sc = xsc;
4477 if (!device_is_active(sc->bnx_dev))
4478 return 0;
4479
4480 ifp = &sc->ethercom.ec_if;
4481
4482 DBRUNIF(1, sc->interrupts_generated++);
4483
4484 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4485 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4486
4487 /*
4488 * If the hardware status block index
4489 * matches the last value read by the
4490 * driver and we haven't asserted our
4491 * interrupt then there's nothing to do.
4492 */
4493 if ((sc->status_block->status_idx == sc->last_status_idx) &&
4494 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
4495 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
4496 return (0);
4497
4498 /* Ack the interrupt and stop others from occuring. */
4499 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4500 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
4501 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4502
4503 /* Keep processing data as long as there is work to do. */
4504 for (;;) {
4505 status_attn_bits = sc->status_block->status_attn_bits;
4506
4507 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
4508 aprint_debug("Simulating unexpected status attention bit set.");
4509 status_attn_bits = status_attn_bits |
4510 STATUS_ATTN_BITS_PARITY_ERROR);
4511
4512 /* Was it a link change interrupt? */
4513 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
4514 (sc->status_block->status_attn_bits_ack &
4515 STATUS_ATTN_BITS_LINK_STATE))
4516 bnx_phy_intr(sc);
4517
4518 /* If any other attention is asserted then the chip is toast. */
4519 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
4520 (sc->status_block->status_attn_bits_ack &
4521 ~STATUS_ATTN_BITS_LINK_STATE))) {
4522 DBRUN(1, sc->unexpected_attentions++);
4523
4524 aprint_error_dev(sc->bnx_dev,
4525 "Fatal attention detected: 0x%08X\n",
4526 sc->status_block->status_attn_bits);
4527
4528 DBRUN(BNX_FATAL,
4529 if (bnx_debug_unexpected_attention == 0)
4530 bnx_breakpoint(sc));
4531
4532 bnx_init(ifp);
4533 return (1);
4534 }
4535
4536 /* Check for any completed RX frames. */
4537 if (sc->status_block->status_rx_quick_consumer_index0 !=
4538 sc->hw_rx_cons)
4539 bnx_rx_intr(sc);
4540
4541 /* Check for any completed TX frames. */
4542 if (sc->status_block->status_tx_quick_consumer_index0 !=
4543 sc->hw_tx_cons)
4544 bnx_tx_intr(sc);
4545
4546 /* Save the status block index value for use during the
4547 * next interrupt.
4548 */
4549 sc->last_status_idx = sc->status_block->status_idx;
4550
4551 /* Prevent speculative reads from getting ahead of the
4552 * status block.
4553 */
4554 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4555 BUS_SPACE_BARRIER_READ);
4556
4557 /* If there's no work left then exit the isr. */
4558 if ((sc->status_block->status_rx_quick_consumer_index0 ==
4559 sc->hw_rx_cons) &&
4560 (sc->status_block->status_tx_quick_consumer_index0 ==
4561 sc->hw_tx_cons))
4562 break;
4563 }
4564
4565 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4566 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
4567
4568 /* Re-enable interrupts. */
4569 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4570 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
4571 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4572 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4573 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
4574
4575 /* Handle any frames that arrived while handling the interrupt. */
4576 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4577 bnx_start(ifp);
4578
4579 return (1);
4580 }
4581
4582 /****************************************************************************/
4583 /* Programs the various packet receive modes (broadcast and multicast). */
4584 /* */
4585 /* Returns: */
4586 /* Nothing. */
4587 /****************************************************************************/
4588 void
4589 bnx_set_rx_mode(struct bnx_softc *sc)
4590 {
4591 struct ethercom *ec = &sc->ethercom;
4592 struct ifnet *ifp = &ec->ec_if;
4593 struct ether_multi *enm;
4594 struct ether_multistep step;
4595 u_int32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
4596 u_int32_t rx_mode, sort_mode;
4597 int h, i;
4598
4599 /* Initialize receive mode default settings. */
4600 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
4601 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
4602 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
4603
4604 /*
4605 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
4606 * be enbled.
4607 */
4608 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
4609 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
4610
4611 /*
4612 * Check for promiscuous, all multicast, or selected
4613 * multicast address filtering.
4614 */
4615 if (ifp->if_flags & IFF_PROMISC) {
4616 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
4617
4618 /* Enable promiscuous mode. */
4619 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
4620 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
4621 } else if (ifp->if_flags & IFF_ALLMULTI) {
4622 allmulti:
4623 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
4624
4625 /* Enable all multicast addresses. */
4626 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4627 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4628 0xffffffff);
4629 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
4630 } else {
4631 /* Accept one or more multicast(s). */
4632 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
4633
4634 ETHER_FIRST_MULTI(step, ec, enm);
4635 while (enm != NULL) {
4636 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
4637 ETHER_ADDR_LEN)) {
4638 ifp->if_flags |= IFF_ALLMULTI;
4639 goto allmulti;
4640 }
4641 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
4642 0xFF;
4643 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
4644 ETHER_NEXT_MULTI(step, enm);
4645 }
4646
4647 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4648 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4649 hashes[i]);
4650
4651 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
4652 }
4653
4654 /* Only make changes if the recive mode has actually changed. */
4655 if (rx_mode != sc->rx_mode) {
4656 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
4657 rx_mode);
4658
4659 sc->rx_mode = rx_mode;
4660 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
4661 }
4662
4663 /* Disable and clear the exisitng sort before enabling a new sort. */
4664 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
4665 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
4666 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
4667 }
4668
4669 /****************************************************************************/
4670 /* Called periodically to updates statistics from the controllers */
4671 /* statistics block. */
4672 /* */
4673 /* Returns: */
4674 /* Nothing. */
4675 /****************************************************************************/
4676 void
4677 bnx_stats_update(struct bnx_softc *sc)
4678 {
4679 struct ifnet *ifp = &sc->ethercom.ec_if;
4680 struct statistics_block *stats;
4681
4682 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
4683 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4684 BUS_DMASYNC_POSTREAD);
4685
4686 stats = (struct statistics_block *)sc->stats_block;
4687
4688 /*
4689 * Update the interface statistics from the
4690 * hardware statistics.
4691 */
4692 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
4693
4694 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
4695 (u_long)stats->stat_EtherStatsOverrsizePkts +
4696 (u_long)stats->stat_IfInMBUFDiscards +
4697 (u_long)stats->stat_Dot3StatsAlignmentErrors +
4698 (u_long)stats->stat_Dot3StatsFCSErrors;
4699
4700 ifp->if_oerrors = (u_long)
4701 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
4702 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
4703 (u_long)stats->stat_Dot3StatsLateCollisions;
4704
4705 /*
4706 * Certain controllers don't report
4707 * carrier sense errors correctly.
4708 * See errata E11_5708CA0_1165.
4709 */
4710 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
4711 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
4712 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
4713
4714 /*
4715 * Update the sysctl statistics from the
4716 * hardware statistics.
4717 */
4718 sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
4719 (u_int64_t) stats->stat_IfHCInOctets_lo;
4720
4721 sc->stat_IfHCInBadOctets =
4722 ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
4723 (u_int64_t) stats->stat_IfHCInBadOctets_lo;
4724
4725 sc->stat_IfHCOutOctets =
4726 ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
4727 (u_int64_t) stats->stat_IfHCOutOctets_lo;
4728
4729 sc->stat_IfHCOutBadOctets =
4730 ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
4731 (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
4732
4733 sc->stat_IfHCInUcastPkts =
4734 ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
4735 (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
4736
4737 sc->stat_IfHCInMulticastPkts =
4738 ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
4739 (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
4740
4741 sc->stat_IfHCInBroadcastPkts =
4742 ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
4743 (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
4744
4745 sc->stat_IfHCOutUcastPkts =
4746 ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
4747 (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
4748
4749 sc->stat_IfHCOutMulticastPkts =
4750 ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
4751 (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
4752
4753 sc->stat_IfHCOutBroadcastPkts =
4754 ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
4755 (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
4756
4757 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
4758 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
4759
4760 sc->stat_Dot3StatsCarrierSenseErrors =
4761 stats->stat_Dot3StatsCarrierSenseErrors;
4762
4763 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
4764
4765 sc->stat_Dot3StatsAlignmentErrors =
4766 stats->stat_Dot3StatsAlignmentErrors;
4767
4768 sc->stat_Dot3StatsSingleCollisionFrames =
4769 stats->stat_Dot3StatsSingleCollisionFrames;
4770
4771 sc->stat_Dot3StatsMultipleCollisionFrames =
4772 stats->stat_Dot3StatsMultipleCollisionFrames;
4773
4774 sc->stat_Dot3StatsDeferredTransmissions =
4775 stats->stat_Dot3StatsDeferredTransmissions;
4776
4777 sc->stat_Dot3StatsExcessiveCollisions =
4778 stats->stat_Dot3StatsExcessiveCollisions;
4779
4780 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
4781
4782 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
4783
4784 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
4785
4786 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
4787
4788 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
4789
4790 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
4791
4792 sc->stat_EtherStatsPktsRx64Octets =
4793 stats->stat_EtherStatsPktsRx64Octets;
4794
4795 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
4796 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
4797
4798 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
4799 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
4800
4801 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
4802 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
4803
4804 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
4805 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
4806
4807 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
4808 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
4809
4810 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
4811 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
4812
4813 sc->stat_EtherStatsPktsTx64Octets =
4814 stats->stat_EtherStatsPktsTx64Octets;
4815
4816 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
4817 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
4818
4819 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
4820 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
4821
4822 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
4823 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
4824
4825 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
4826 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
4827
4828 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
4829 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
4830
4831 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
4832 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
4833
4834 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
4835
4836 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
4837
4838 sc->stat_OutXonSent = stats->stat_OutXonSent;
4839
4840 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
4841
4842 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
4843
4844 sc->stat_MacControlFramesReceived =
4845 stats->stat_MacControlFramesReceived;
4846
4847 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
4848
4849 sc->stat_IfInFramesL2FilterDiscards =
4850 stats->stat_IfInFramesL2FilterDiscards;
4851
4852 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
4853
4854 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
4855
4856 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
4857
4858 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
4859
4860 sc->stat_CatchupInRuleCheckerDiscards =
4861 stats->stat_CatchupInRuleCheckerDiscards;
4862
4863 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
4864
4865 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
4866
4867 sc->stat_CatchupInRuleCheckerP4Hit =
4868 stats->stat_CatchupInRuleCheckerP4Hit;
4869
4870 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
4871 }
4872
4873 void
4874 bnx_tick(void *xsc)
4875 {
4876 struct bnx_softc *sc = xsc;
4877 struct ifnet *ifp = &sc->ethercom.ec_if;
4878 struct mii_data *mii = NULL;
4879 u_int32_t msg;
4880 u_int16_t prod, chain_prod;
4881 u_int32_t prod_bseq;
4882 int s = splnet();
4883
4884 /* Tell the firmware that the driver is still running. */
4885 #ifdef BNX_DEBUG
4886 msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
4887 #else
4888 msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
4889 #endif
4890 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
4891
4892 /* Update the statistics from the hardware statistics block. */
4893 bnx_stats_update(sc);
4894
4895 /* Schedule the next tick. */
4896 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4897
4898 /* If link is up already up then we're done. */
4899 if (sc->bnx_link)
4900 goto bnx_tick_exit;
4901
4902 /* DRC - ToDo: Add SerDes support and check SerDes link here. */
4903
4904 mii = &sc->bnx_mii;
4905 mii_tick(mii);
4906
4907 /* Check if the link has come up. */
4908 if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
4909 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4910 sc->bnx_link++;
4911 /* Now that link is up, handle any outstanding TX traffic. */
4912 if (!IFQ_IS_EMPTY(&ifp->if_snd))
4913 bnx_start(ifp);
4914 }
4915
4916 bnx_tick_exit:
4917 /* try to get more RX buffers, just in case */
4918 prod = sc->rx_prod;
4919 prod_bseq = sc->rx_prod_bseq;
4920 chain_prod = RX_CHAIN_IDX(prod);
4921 bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq);
4922 sc->rx_prod = prod;
4923 sc->rx_prod_bseq = prod_bseq;
4924 splx(s);
4925 return;
4926 }
4927
4928 /****************************************************************************/
4929 /* BNX Debug Routines */
4930 /****************************************************************************/
4931 #ifdef BNX_DEBUG
4932
4933 /****************************************************************************/
4934 /* Prints out information about an mbuf. */
4935 /* */
4936 /* Returns: */
4937 /* Nothing. */
4938 /****************************************************************************/
4939 void
4940 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
4941 {
4942 struct mbuf *mp = m;
4943
4944 if (m == NULL) {
4945 /* Index out of range. */
4946 aprint_error("mbuf ptr is null!\n");
4947 return;
4948 }
4949
4950 while (mp) {
4951 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
4952 mp, mp->m_len);
4953
4954 if (mp->m_flags & M_EXT)
4955 aprint_debug("M_EXT ");
4956 if (mp->m_flags & M_PKTHDR)
4957 aprint_debug("M_PKTHDR ");
4958 aprint_debug("\n");
4959
4960 if (mp->m_flags & M_EXT)
4961 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
4962 mp, mp->m_ext.ext_size);
4963
4964 mp = mp->m_next;
4965 }
4966 }
4967
4968 /****************************************************************************/
4969 /* Prints out the mbufs in the TX mbuf chain. */
4970 /* */
4971 /* Returns: */
4972 /* Nothing. */
4973 /****************************************************************************/
4974 void
4975 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
4976 {
4977 struct mbuf *m;
4978 int i;
4979
4980 BNX_PRINTF(sc,
4981 "----------------------------"
4982 " tx mbuf data "
4983 "----------------------------\n");
4984
4985 for (i = 0; i < count; i++) {
4986 m = sc->tx_mbuf_ptr[chain_prod];
4987 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
4988 bnx_dump_mbuf(sc, m);
4989 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
4990 }
4991
4992 BNX_PRINTF(sc,
4993 "--------------------------------------------"
4994 "----------------------------\n");
4995 }
4996
4997 /*
4998 * This routine prints the RX mbuf chain.
4999 */
5000 void
5001 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5002 {
5003 struct mbuf *m;
5004 int i;
5005
5006 BNX_PRINTF(sc,
5007 "----------------------------"
5008 " rx mbuf data "
5009 "----------------------------\n");
5010
5011 for (i = 0; i < count; i++) {
5012 m = sc->rx_mbuf_ptr[chain_prod];
5013 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5014 bnx_dump_mbuf(sc, m);
5015 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5016 }
5017
5018
5019 BNX_PRINTF(sc,
5020 "--------------------------------------------"
5021 "----------------------------\n");
5022 }
5023
5024 void
5025 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5026 {
5027 if (idx > MAX_TX_BD)
5028 /* Index out of range. */
5029 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5030 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5031 /* TX Chain page pointer. */
5032 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5033 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5034 txbd->tx_bd_haddr_lo);
5035 else
5036 /* Normal tx_bd entry. */
5037 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5038 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5039 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5040 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5041 txbd->tx_bd_flags);
5042 }
5043
5044 void
5045 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5046 {
5047 if (idx > MAX_RX_BD)
5048 /* Index out of range. */
5049 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5050 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5051 /* TX Chain page pointer. */
5052 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5053 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5054 rxbd->rx_bd_haddr_lo);
5055 else
5056 /* Normal tx_bd entry. */
5057 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5058 "0x%08X, flags = 0x%08X\n", idx,
5059 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5060 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5061 }
5062
5063 void
5064 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5065 {
5066 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5067 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5068 "tcp_udp_xsum = 0x%04X\n", idx,
5069 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5070 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5071 l2fhdr->l2_fhdr_tcp_udp_xsum);
5072 }
5073
5074 /*
5075 * This routine prints the TX chain.
5076 */
5077 void
5078 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5079 {
5080 struct tx_bd *txbd;
5081 int i;
5082
5083 /* First some info about the tx_bd chain structure. */
5084 BNX_PRINTF(sc,
5085 "----------------------------"
5086 " tx_bd chain "
5087 "----------------------------\n");
5088
5089 BNX_PRINTF(sc,
5090 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5091 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5092
5093 BNX_PRINTF(sc,
5094 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5095 (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5096
5097 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
5098
5099 BNX_PRINTF(sc, ""
5100 "-----------------------------"
5101 " tx_bd data "
5102 "-----------------------------\n");
5103
5104 /* Now print out the tx_bd's themselves. */
5105 for (i = 0; i < count; i++) {
5106 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5107 bnx_dump_txbd(sc, tx_prod, txbd);
5108 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5109 }
5110
5111 BNX_PRINTF(sc,
5112 "-----------------------------"
5113 "--------------"
5114 "-----------------------------\n");
5115 }
5116
5117 /*
5118 * This routine prints the RX chain.
5119 */
5120 void
5121 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5122 {
5123 struct rx_bd *rxbd;
5124 int i;
5125
5126 /* First some info about the tx_bd chain structure. */
5127 BNX_PRINTF(sc,
5128 "----------------------------"
5129 " rx_bd chain "
5130 "----------------------------\n");
5131
5132 BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
5133
5134 BNX_PRINTF(sc,
5135 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5136 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5137
5138 BNX_PRINTF(sc,
5139 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5140 (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5141
5142 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
5143
5144 BNX_PRINTF(sc,
5145 "----------------------------"
5146 " rx_bd data "
5147 "----------------------------\n");
5148
5149 /* Now print out the rx_bd's themselves. */
5150 for (i = 0; i < count; i++) {
5151 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5152 bnx_dump_rxbd(sc, rx_prod, rxbd);
5153 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5154 }
5155
5156 BNX_PRINTF(sc,
5157 "----------------------------"
5158 "--------------"
5159 "----------------------------\n");
5160 }
5161
5162 /*
5163 * This routine prints the status block.
5164 */
5165 void
5166 bnx_dump_status_block(struct bnx_softc *sc)
5167 {
5168 struct status_block *sblk;
5169 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5170 BUS_DMASYNC_POSTREAD);
5171
5172 sblk = sc->status_block;
5173
5174 BNX_PRINTF(sc, "----------------------------- Status Block "
5175 "-----------------------------\n");
5176
5177 BNX_PRINTF(sc,
5178 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5179 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5180 sblk->status_idx);
5181
5182 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5183 sblk->status_rx_quick_consumer_index0,
5184 sblk->status_tx_quick_consumer_index0);
5185
5186 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5187
5188 /* Theses indices are not used for normal L2 drivers. */
5189 if (sblk->status_rx_quick_consumer_index1 ||
5190 sblk->status_tx_quick_consumer_index1)
5191 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5192 sblk->status_rx_quick_consumer_index1,
5193 sblk->status_tx_quick_consumer_index1);
5194
5195 if (sblk->status_rx_quick_consumer_index2 ||
5196 sblk->status_tx_quick_consumer_index2)
5197 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5198 sblk->status_rx_quick_consumer_index2,
5199 sblk->status_tx_quick_consumer_index2);
5200
5201 if (sblk->status_rx_quick_consumer_index3 ||
5202 sblk->status_tx_quick_consumer_index3)
5203 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5204 sblk->status_rx_quick_consumer_index3,
5205 sblk->status_tx_quick_consumer_index3);
5206
5207 if (sblk->status_rx_quick_consumer_index4 ||
5208 sblk->status_rx_quick_consumer_index5)
5209 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5210 sblk->status_rx_quick_consumer_index4,
5211 sblk->status_rx_quick_consumer_index5);
5212
5213 if (sblk->status_rx_quick_consumer_index6 ||
5214 sblk->status_rx_quick_consumer_index7)
5215 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
5216 sblk->status_rx_quick_consumer_index6,
5217 sblk->status_rx_quick_consumer_index7);
5218
5219 if (sblk->status_rx_quick_consumer_index8 ||
5220 sblk->status_rx_quick_consumer_index9)
5221 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
5222 sblk->status_rx_quick_consumer_index8,
5223 sblk->status_rx_quick_consumer_index9);
5224
5225 if (sblk->status_rx_quick_consumer_index10 ||
5226 sblk->status_rx_quick_consumer_index11)
5227 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
5228 sblk->status_rx_quick_consumer_index10,
5229 sblk->status_rx_quick_consumer_index11);
5230
5231 if (sblk->status_rx_quick_consumer_index12 ||
5232 sblk->status_rx_quick_consumer_index13)
5233 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
5234 sblk->status_rx_quick_consumer_index12,
5235 sblk->status_rx_quick_consumer_index13);
5236
5237 if (sblk->status_rx_quick_consumer_index14 ||
5238 sblk->status_rx_quick_consumer_index15)
5239 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
5240 sblk->status_rx_quick_consumer_index14,
5241 sblk->status_rx_quick_consumer_index15);
5242
5243 if (sblk->status_completion_producer_index ||
5244 sblk->status_cmd_consumer_index)
5245 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
5246 sblk->status_completion_producer_index,
5247 sblk->status_cmd_consumer_index);
5248
5249 BNX_PRINTF(sc, "-------------------------------------------"
5250 "-----------------------------\n");
5251 }
5252
5253 /*
5254 * This routine prints the statistics block.
5255 */
5256 void
5257 bnx_dump_stats_block(struct bnx_softc *sc)
5258 {
5259 struct statistics_block *sblk;
5260 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5261 BUS_DMASYNC_POSTREAD);
5262
5263 sblk = sc->stats_block;
5264
5265 BNX_PRINTF(sc, ""
5266 "-----------------------------"
5267 " Stats Block "
5268 "-----------------------------\n");
5269
5270 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
5271 "IfHcInBadOctets = 0x%08X:%08X\n",
5272 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5273 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5274
5275 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
5276 "IfHcOutBadOctets = 0x%08X:%08X\n",
5277 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5278 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5279
5280 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
5281 "IfHcInMulticastPkts = 0x%08X:%08X\n",
5282 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5283 sblk->stat_IfHCInMulticastPkts_hi,
5284 sblk->stat_IfHCInMulticastPkts_lo);
5285
5286 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
5287 "IfHcOutUcastPkts = 0x%08X:%08X\n",
5288 sblk->stat_IfHCInBroadcastPkts_hi,
5289 sblk->stat_IfHCInBroadcastPkts_lo,
5290 sblk->stat_IfHCOutUcastPkts_hi,
5291 sblk->stat_IfHCOutUcastPkts_lo);
5292
5293 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5294 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5295 sblk->stat_IfHCOutMulticastPkts_hi,
5296 sblk->stat_IfHCOutMulticastPkts_lo,
5297 sblk->stat_IfHCOutBroadcastPkts_hi,
5298 sblk->stat_IfHCOutBroadcastPkts_lo);
5299
5300 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5301 BNX_PRINTF(sc, "0x%08X : "
5302 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5303 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5304
5305 if (sblk->stat_Dot3StatsCarrierSenseErrors)
5306 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5307 sblk->stat_Dot3StatsCarrierSenseErrors);
5308
5309 if (sblk->stat_Dot3StatsFCSErrors)
5310 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5311 sblk->stat_Dot3StatsFCSErrors);
5312
5313 if (sblk->stat_Dot3StatsAlignmentErrors)
5314 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5315 sblk->stat_Dot3StatsAlignmentErrors);
5316
5317 if (sblk->stat_Dot3StatsSingleCollisionFrames)
5318 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5319 sblk->stat_Dot3StatsSingleCollisionFrames);
5320
5321 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
5322 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
5323 sblk->stat_Dot3StatsMultipleCollisionFrames);
5324
5325 if (sblk->stat_Dot3StatsDeferredTransmissions)
5326 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
5327 sblk->stat_Dot3StatsDeferredTransmissions);
5328
5329 if (sblk->stat_Dot3StatsExcessiveCollisions)
5330 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
5331 sblk->stat_Dot3StatsExcessiveCollisions);
5332
5333 if (sblk->stat_Dot3StatsLateCollisions)
5334 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
5335 sblk->stat_Dot3StatsLateCollisions);
5336
5337 if (sblk->stat_EtherStatsCollisions)
5338 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
5339 sblk->stat_EtherStatsCollisions);
5340
5341 if (sblk->stat_EtherStatsFragments)
5342 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
5343 sblk->stat_EtherStatsFragments);
5344
5345 if (sblk->stat_EtherStatsJabbers)
5346 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
5347 sblk->stat_EtherStatsJabbers);
5348
5349 if (sblk->stat_EtherStatsUndersizePkts)
5350 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
5351 sblk->stat_EtherStatsUndersizePkts);
5352
5353 if (sblk->stat_EtherStatsOverrsizePkts)
5354 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
5355 sblk->stat_EtherStatsOverrsizePkts);
5356
5357 if (sblk->stat_EtherStatsPktsRx64Octets)
5358 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
5359 sblk->stat_EtherStatsPktsRx64Octets);
5360
5361 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
5362 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
5363 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
5364
5365 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
5366 BNX_PRINTF(sc, "0x%08X : "
5367 "EtherStatsPktsRx128Octetsto255Octets\n",
5368 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
5369
5370 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
5371 BNX_PRINTF(sc, "0x%08X : "
5372 "EtherStatsPktsRx256Octetsto511Octets\n",
5373 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
5374
5375 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
5376 BNX_PRINTF(sc, "0x%08X : "
5377 "EtherStatsPktsRx512Octetsto1023Octets\n",
5378 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
5379
5380 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
5381 BNX_PRINTF(sc, "0x%08X : "
5382 "EtherStatsPktsRx1024Octetsto1522Octets\n",
5383 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
5384
5385 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
5386 BNX_PRINTF(sc, "0x%08X : "
5387 "EtherStatsPktsRx1523Octetsto9022Octets\n",
5388 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
5389
5390 if (sblk->stat_EtherStatsPktsTx64Octets)
5391 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
5392 sblk->stat_EtherStatsPktsTx64Octets);
5393
5394 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
5395 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
5396 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
5397
5398 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
5399 BNX_PRINTF(sc, "0x%08X : "
5400 "EtherStatsPktsTx128Octetsto255Octets\n",
5401 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
5402
5403 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
5404 BNX_PRINTF(sc, "0x%08X : "
5405 "EtherStatsPktsTx256Octetsto511Octets\n",
5406 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
5407
5408 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
5409 BNX_PRINTF(sc, "0x%08X : "
5410 "EtherStatsPktsTx512Octetsto1023Octets\n",
5411 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
5412
5413 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
5414 BNX_PRINTF(sc, "0x%08X : "
5415 "EtherStatsPktsTx1024Octetsto1522Octets\n",
5416 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
5417
5418 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
5419 BNX_PRINTF(sc, "0x%08X : "
5420 "EtherStatsPktsTx1523Octetsto9022Octets\n",
5421 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
5422
5423 if (sblk->stat_XonPauseFramesReceived)
5424 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
5425 sblk->stat_XonPauseFramesReceived);
5426
5427 if (sblk->stat_XoffPauseFramesReceived)
5428 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
5429 sblk->stat_XoffPauseFramesReceived);
5430
5431 if (sblk->stat_OutXonSent)
5432 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
5433 sblk->stat_OutXonSent);
5434
5435 if (sblk->stat_OutXoffSent)
5436 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
5437 sblk->stat_OutXoffSent);
5438
5439 if (sblk->stat_FlowControlDone)
5440 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
5441 sblk->stat_FlowControlDone);
5442
5443 if (sblk->stat_MacControlFramesReceived)
5444 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
5445 sblk->stat_MacControlFramesReceived);
5446
5447 if (sblk->stat_XoffStateEntered)
5448 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
5449 sblk->stat_XoffStateEntered);
5450
5451 if (sblk->stat_IfInFramesL2FilterDiscards)
5452 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
5453 sblk->stat_IfInFramesL2FilterDiscards);
5454
5455 if (sblk->stat_IfInRuleCheckerDiscards)
5456 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
5457 sblk->stat_IfInRuleCheckerDiscards);
5458
5459 if (sblk->stat_IfInFTQDiscards)
5460 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
5461 sblk->stat_IfInFTQDiscards);
5462
5463 if (sblk->stat_IfInMBUFDiscards)
5464 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
5465 sblk->stat_IfInMBUFDiscards);
5466
5467 if (sblk->stat_IfInRuleCheckerP4Hit)
5468 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
5469 sblk->stat_IfInRuleCheckerP4Hit);
5470
5471 if (sblk->stat_CatchupInRuleCheckerDiscards)
5472 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
5473 sblk->stat_CatchupInRuleCheckerDiscards);
5474
5475 if (sblk->stat_CatchupInFTQDiscards)
5476 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
5477 sblk->stat_CatchupInFTQDiscards);
5478
5479 if (sblk->stat_CatchupInMBUFDiscards)
5480 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
5481 sblk->stat_CatchupInMBUFDiscards);
5482
5483 if (sblk->stat_CatchupInRuleCheckerP4Hit)
5484 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
5485 sblk->stat_CatchupInRuleCheckerP4Hit);
5486
5487 BNX_PRINTF(sc,
5488 "-----------------------------"
5489 "--------------"
5490 "-----------------------------\n");
5491 }
5492
5493 void
5494 bnx_dump_driver_state(struct bnx_softc *sc)
5495 {
5496 BNX_PRINTF(sc,
5497 "-----------------------------"
5498 " Driver State "
5499 "-----------------------------\n");
5500
5501 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
5502 "address\n", sc);
5503
5504 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
5505 sc->status_block);
5506
5507 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
5508 "address\n", sc->stats_block);
5509
5510 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
5511 "adddress\n", sc->tx_bd_chain);
5512
5513 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
5514 sc->rx_bd_chain);
5515
5516 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
5517 sc->tx_mbuf_ptr);
5518
5519 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
5520 sc->rx_mbuf_ptr);
5521
5522 BNX_PRINTF(sc,
5523 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
5524 sc->interrupts_generated);
5525
5526 BNX_PRINTF(sc,
5527 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
5528 sc->rx_interrupts);
5529
5530 BNX_PRINTF(sc,
5531 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
5532 sc->tx_interrupts);
5533
5534 BNX_PRINTF(sc,
5535 " 0x%08X - (sc->last_status_idx) status block index\n",
5536 sc->last_status_idx);
5537
5538 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
5539 sc->tx_prod);
5540
5541 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
5542 sc->tx_cons);
5543
5544 BNX_PRINTF(sc,
5545 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
5546 sc->tx_prod_bseq);
5547
5548 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
5549 sc->rx_prod);
5550
5551 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
5552 sc->rx_cons);
5553
5554 BNX_PRINTF(sc,
5555 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
5556 sc->rx_prod_bseq);
5557
5558 BNX_PRINTF(sc,
5559 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5560 sc->rx_mbuf_alloc);
5561
5562 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
5563 sc->free_rx_bd);
5564
5565 BNX_PRINTF(sc,
5566 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
5567 sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
5568
5569 BNX_PRINTF(sc,
5570 " 0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
5571 sc->tx_mbuf_alloc);
5572
5573 BNX_PRINTF(sc,
5574 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5575 sc->rx_mbuf_alloc);
5576
5577 BNX_PRINTF(sc, " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
5578 sc->used_tx_bd);
5579
5580 BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
5581 sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
5582
5583 BNX_PRINTF(sc,
5584 " 0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
5585 sc->mbuf_alloc_failed);
5586
5587 BNX_PRINTF(sc, "-------------------------------------------"
5588 "-----------------------------\n");
5589 }
5590
5591 void
5592 bnx_dump_hw_state(struct bnx_softc *sc)
5593 {
5594 u_int32_t val1;
5595 int i;
5596
5597 BNX_PRINTF(sc,
5598 "----------------------------"
5599 " Hardware State "
5600 "----------------------------\n");
5601
5602 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
5603
5604 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
5605 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
5606 val1, BNX_MISC_ENABLE_STATUS_BITS);
5607
5608 val1 = REG_RD(sc, BNX_DMA_STATUS);
5609 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
5610
5611 val1 = REG_RD(sc, BNX_CTX_STATUS);
5612 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
5613
5614 val1 = REG_RD(sc, BNX_EMAC_STATUS);
5615 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
5616 BNX_EMAC_STATUS);
5617
5618 val1 = REG_RD(sc, BNX_RPM_STATUS);
5619 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
5620
5621 val1 = REG_RD(sc, BNX_TBDR_STATUS);
5622 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
5623 BNX_TBDR_STATUS);
5624
5625 val1 = REG_RD(sc, BNX_TDMA_STATUS);
5626 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
5627 BNX_TDMA_STATUS);
5628
5629 val1 = REG_RD(sc, BNX_HC_STATUS);
5630 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
5631
5632 BNX_PRINTF(sc,
5633 "----------------------------"
5634 "----------------"
5635 "----------------------------\n");
5636
5637 BNX_PRINTF(sc,
5638 "----------------------------"
5639 " Register Dump "
5640 "----------------------------\n");
5641
5642 for (i = 0x400; i < 0x8000; i += 0x10)
5643 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
5644 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
5645 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
5646
5647 BNX_PRINTF(sc,
5648 "----------------------------"
5649 "----------------"
5650 "----------------------------\n");
5651 }
5652
5653 void
5654 bnx_breakpoint(struct bnx_softc *sc)
5655 {
5656 /* Unreachable code to shut the compiler up about unused functions. */
5657 if (0) {
5658 bnx_dump_txbd(sc, 0, NULL);
5659 bnx_dump_rxbd(sc, 0, NULL);
5660 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
5661 bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
5662 bnx_dump_l2fhdr(sc, 0, NULL);
5663 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
5664 bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
5665 bnx_dump_status_block(sc);
5666 bnx_dump_stats_block(sc);
5667 bnx_dump_driver_state(sc);
5668 bnx_dump_hw_state(sc);
5669 }
5670
5671 bnx_dump_driver_state(sc);
5672 /* Print the important status block fields. */
5673 bnx_dump_status_block(sc);
5674
5675 #if 0
5676 /* Call the debugger. */
5677 breakpoint();
5678 #endif
5679
5680 return;
5681 }
5682 #endif
5683