if_bnx.c revision 1.15 1 /* $NetBSD: if_bnx.c,v 1.15 2007/12/30 00:56:45 dyoung Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.43 2007/01/30 03:21:10 krw Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.15 2007/12/30 00:56:45 dyoung Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5708C B1
44 *
45 * The following controllers are not supported by this driver:
46 * (These are not "Production" versions of the controller.)
47 *
48 * BCM5706C A0, A1
49 * BCM5706S A0, A1, A2, A3
50 * BCM5708C A0, B0
51 * BCM5708S A0, B0, B1
52 */
53
54 #include <sys/callout.h>
55
56 #include <dev/pci/if_bnxreg.h>
57 #include <dev/microcode/bnx/bnxfw.h>
58
59 /****************************************************************************/
60 /* BNX Driver Version */
61 /****************************************************************************/
62 const char bnx_driver_version[] = "v0.9.6";
63
64 /****************************************************************************/
65 /* BNX Debug Options */
66 /****************************************************************************/
67 #ifdef BNX_DEBUG
68 u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
69
70 /* 0 = Never */
71 /* 1 = 1 in 2,147,483,648 */
72 /* 256 = 1 in 8,388,608 */
73 /* 2048 = 1 in 1,048,576 */
74 /* 65536 = 1 in 32,768 */
75 /* 1048576 = 1 in 2,048 */
76 /* 268435456 = 1 in 8 */
77 /* 536870912 = 1 in 4 */
78 /* 1073741824 = 1 in 2 */
79
80 /* Controls how often the l2_fhdr frame error check will fail. */
81 int bnx_debug_l2fhdr_status_check = 0;
82
83 /* Controls how often the unexpected attention check will fail. */
84 int bnx_debug_unexpected_attention = 0;
85
86 /* Controls how often to simulate an mbuf allocation failure. */
87 int bnx_debug_mbuf_allocation_failure = 0;
88
89 /* Controls how often to simulate a DMA mapping failure. */
90 int bnx_debug_dma_map_addr_failure = 0;
91
92 /* Controls how often to simulate a bootcode failure. */
93 int bnx_debug_bootcode_running_failure = 0;
94 #endif
95
96 /****************************************************************************/
97 /* PCI Device ID Table */
98 /* */
99 /* Used by bnx_probe() to identify the devices supported by this driver. */
100 /****************************************************************************/
101 static const struct bnx_product {
102 pci_vendor_id_t bp_vendor;
103 pci_product_id_t bp_product;
104 pci_vendor_id_t bp_subvendor;
105 pci_product_id_t bp_subproduct;
106 const char *bp_name;
107 } bnx_devices[] = {
108 #ifdef PCI_SUBPRODUCT_HP_NC370T
109 {
110 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
111 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
112 "HP NC370T Multifunction Gigabit Server Adapter"
113 },
114 #endif
115 #ifdef PCI_SUBPRODUCT_HP_NC370i
116 {
117 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
118 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
119 "HP NC370i Multifunction Gigabit Server Adapter"
120 },
121 #endif
122 {
123 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
124 0, 0,
125 "Broadcom NetXtreme II BCM5706 1000Base-T"
126 },
127 #ifdef PCI_SUBPRODUCT_HP_NC370F
128 {
129 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
130 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
131 "HP NC370F Multifunction Gigabit Server Adapter"
132 },
133 #endif
134 {
135 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
136 0, 0,
137 "Broadcom NetXtreme II BCM5706 1000Base-SX"
138 },
139 {
140 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
141 0, 0,
142 "Broadcom NetXtreme II BCM5708 1000Base-T"
143 },
144 {
145 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
146 0, 0,
147 "Broadcom NetXtreme II BCM5708 1000Base-SX"
148 },
149 };
150
151 /****************************************************************************/
152 /* Supported Flash NVRAM device data. */
153 /****************************************************************************/
154 static struct flash_spec flash_table[] =
155 {
156 /* Slow EEPROM */
157 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
158 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
159 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
160 "EEPROM - slow"},
161 /* Expansion entry 0001 */
162 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
163 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
164 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
165 "Entry 0001"},
166 /* Saifun SA25F010 (non-buffered flash) */
167 /* strap, cfg1, & write1 need updates */
168 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
169 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
170 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
171 "Non-buffered flash (128kB)"},
172 /* Saifun SA25F020 (non-buffered flash) */
173 /* strap, cfg1, & write1 need updates */
174 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
175 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
176 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
177 "Non-buffered flash (256kB)"},
178 /* Expansion entry 0100 */
179 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
180 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
181 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
182 "Entry 0100"},
183 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
184 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
185 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
186 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
187 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
188 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
189 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
190 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
191 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
192 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
193 /* Saifun SA25F005 (non-buffered flash) */
194 /* strap, cfg1, & write1 need updates */
195 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
196 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
197 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
198 "Non-buffered flash (64kB)"},
199 /* Fast EEPROM */
200 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
201 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
202 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
203 "EEPROM - fast"},
204 /* Expansion entry 1001 */
205 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
206 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
208 "Entry 1001"},
209 /* Expansion entry 1010 */
210 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
211 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 "Entry 1010"},
214 /* ATMEL AT45DB011B (buffered flash) */
215 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
216 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
217 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
218 "Buffered flash (128kB)"},
219 /* Expansion entry 1100 */
220 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
221 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
222 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
223 "Entry 1100"},
224 /* Expansion entry 1101 */
225 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
226 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
228 "Entry 1101"},
229 /* Ateml Expansion entry 1110 */
230 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
231 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
232 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
233 "Entry 1110 (Atmel)"},
234 /* ATMEL AT45DB021B (buffered flash) */
235 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
236 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
237 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
238 "Buffered flash (256kB)"},
239 };
240
241 /****************************************************************************/
242 /* OpenBSD device entry points. */
243 /****************************************************************************/
244 static int bnx_probe(device_t, cfdata_t, void *);
245 void bnx_attach(device_t, device_t, void *);
246 int bnx_detach(device_t, int);
247
248 /****************************************************************************/
249 /* BNX Debug Data Structure Dump Routines */
250 /****************************************************************************/
251 #ifdef BNX_DEBUG
252 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
253 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
254 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
255 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
256 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
257 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
258 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
259 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
260 void bnx_dump_status_block(struct bnx_softc *);
261 void bnx_dump_stats_block(struct bnx_softc *);
262 void bnx_dump_driver_state(struct bnx_softc *);
263 void bnx_dump_hw_state(struct bnx_softc *);
264 void bnx_breakpoint(struct bnx_softc *);
265 #endif
266
267 /****************************************************************************/
268 /* BNX Register/Memory Access Routines */
269 /****************************************************************************/
270 u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
271 void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
272 void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
273 int bnx_miibus_read_reg(device_t, int, int);
274 void bnx_miibus_write_reg(device_t, int, int, int);
275 void bnx_miibus_statchg(device_t);
276
277 /****************************************************************************/
278 /* BNX NVRAM Access Routines */
279 /****************************************************************************/
280 int bnx_acquire_nvram_lock(struct bnx_softc *);
281 int bnx_release_nvram_lock(struct bnx_softc *);
282 void bnx_enable_nvram_access(struct bnx_softc *);
283 void bnx_disable_nvram_access(struct bnx_softc *);
284 int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
285 u_int32_t);
286 int bnx_init_nvram(struct bnx_softc *);
287 int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
288 int bnx_nvram_test(struct bnx_softc *);
289 #ifdef BNX_NVRAM_WRITE_SUPPORT
290 int bnx_enable_nvram_write(struct bnx_softc *);
291 void bnx_disable_nvram_write(struct bnx_softc *);
292 int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
293 int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
294 u_int32_t);
295 int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
296 #endif
297
298 /****************************************************************************/
299 /* */
300 /****************************************************************************/
301 int bnx_dma_alloc(struct bnx_softc *);
302 void bnx_dma_free(struct bnx_softc *);
303 void bnx_release_resources(struct bnx_softc *);
304
305 /****************************************************************************/
306 /* BNX Firmware Synchronization and Load */
307 /****************************************************************************/
308 int bnx_fw_sync(struct bnx_softc *, u_int32_t);
309 void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
310 u_int32_t);
311 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
312 struct fw_info *);
313 void bnx_init_cpus(struct bnx_softc *);
314
315 void bnx_stop(struct ifnet *, int);
316 int bnx_reset(struct bnx_softc *, u_int32_t);
317 int bnx_chipinit(struct bnx_softc *);
318 int bnx_blockinit(struct bnx_softc *);
319 int bnx_get_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
320 u_int16_t *, u_int32_t *);
321
322 int bnx_init_tx_chain(struct bnx_softc *);
323 int bnx_init_rx_chain(struct bnx_softc *);
324 void bnx_free_rx_chain(struct bnx_softc *);
325 void bnx_free_tx_chain(struct bnx_softc *);
326
327 int bnx_tx_encap(struct bnx_softc *, struct mbuf **);
328 void bnx_start(struct ifnet *);
329 int bnx_ioctl(struct ifnet *, u_long, void *);
330 void bnx_watchdog(struct ifnet *);
331 int bnx_ifmedia_upd(struct ifnet *);
332 void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
333 int bnx_init(struct ifnet *);
334
335 void bnx_init_context(struct bnx_softc *);
336 void bnx_get_mac_addr(struct bnx_softc *);
337 void bnx_set_mac_addr(struct bnx_softc *);
338 void bnx_phy_intr(struct bnx_softc *);
339 void bnx_rx_intr(struct bnx_softc *);
340 void bnx_tx_intr(struct bnx_softc *);
341 void bnx_disable_intr(struct bnx_softc *);
342 void bnx_enable_intr(struct bnx_softc *);
343
344 int bnx_intr(void *);
345 void bnx_set_rx_mode(struct bnx_softc *);
346 void bnx_stats_update(struct bnx_softc *);
347 void bnx_tick(void *);
348
349 /****************************************************************************/
350 /* OpenBSD device dispatch table. */
351 /****************************************************************************/
352 CFATTACH_DECL_NEW(bnx, sizeof(struct bnx_softc),
353 bnx_probe, bnx_attach, bnx_detach, NULL);
354
355 /****************************************************************************/
356 /* Device probe function. */
357 /* */
358 /* Compares the device to the driver's list of supported devices and */
359 /* reports back to the OS whether this is the right driver for the device. */
360 /* */
361 /* Returns: */
362 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
363 /****************************************************************************/
364 static const struct bnx_product *
365 bnx_lookup(const struct pci_attach_args *pa)
366 {
367 int i;
368 pcireg_t subid;
369
370 for (i = 0; i < __arraycount(bnx_devices); i++) {
371 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
372 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
373 continue;
374 if (!bnx_devices[i].bp_subvendor)
375 return &bnx_devices[i];
376 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
377 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
378 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
379 return &bnx_devices[i];
380 }
381
382 return NULL;
383 }
384 static int
385 bnx_probe(device_t parent, cfdata_t match, void *aux)
386 {
387 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
388
389 if (bnx_lookup(pa) != NULL)
390 return (1);
391
392 return (0);
393 }
394
395 /****************************************************************************/
396 /* Device attach function. */
397 /* */
398 /* Allocates device resources, performs secondary chip identification, */
399 /* resets and initializes the hardware, and initializes driver instance */
400 /* variables. */
401 /* */
402 /* Returns: */
403 /* 0 on success, positive value on failure. */
404 /****************************************************************************/
405 void
406 bnx_attach(device_t parent, device_t self, void *aux)
407 {
408 const struct bnx_product *bp;
409 struct bnx_softc *sc = device_private(self);
410 struct pci_attach_args *pa = aux;
411 pci_chipset_tag_t pc = pa->pa_pc;
412 pci_intr_handle_t ih;
413 const char *intrstr = NULL;
414 u_int32_t command;
415 struct ifnet *ifp;
416 u_int32_t val;
417 pcireg_t memtype;
418
419 bp = bnx_lookup(pa);
420 if (bp == NULL)
421 panic("unknown device");
422
423 sc->bnx_dev = self;
424
425 aprint_naive("\n");
426 aprint_normal(": %s\n", bp->bp_name);
427
428 sc->bnx_pa = *pa;
429
430 /*
431 * Map control/status registers.
432 */
433 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
434 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
435 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
436 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
437
438 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
439 aprint_error_dev(sc->bnx_dev,
440 "failed to enable memory mapping!\n");
441 return;
442 }
443
444 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
445 switch (memtype) {
446 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
447 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
448 if (pci_mapreg_map(pa, BNX_PCI_BAR0,
449 memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
450 NULL, &sc->bnx_size) == 0)
451 break;
452 default:
453 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
454 return;
455 }
456
457 if (pci_intr_map(pa, &ih)) {
458 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
459 goto bnx_attach_fail;
460 }
461
462 intrstr = pci_intr_string(pc, ih);
463
464 /*
465 * Configure byte swap and enable indirect register access.
466 * Rely on CPU to do target byte swapping on big endian systems.
467 * Access to registers outside of PCI configurtion space are not
468 * valid until this is done.
469 */
470 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
471 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
472 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
473
474 /* Save ASIC revsion info. */
475 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
476
477 /* Weed out any non-production controller revisions. */
478 switch(BNX_CHIP_ID(sc)) {
479 case BNX_CHIP_ID_5706_A0:
480 case BNX_CHIP_ID_5706_A1:
481 case BNX_CHIP_ID_5708_A0:
482 case BNX_CHIP_ID_5708_B0:
483 aprint_error_dev(sc->bnx_dev,
484 "unsupported controller revision (%c%d)!\n",
485 ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
486 PCI_REVISION(pa->pa_class) & 0x0f);
487 goto bnx_attach_fail;
488 }
489
490 if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
491 aprint_error_dev(sc->bnx_dev,
492 "SerDes controllers are not supported!\n");
493 goto bnx_attach_fail;
494 }
495
496 /*
497 * Find the base address for shared memory access.
498 * Newer versions of bootcode use a signature and offset
499 * while older versions use a fixed address.
500 */
501 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
502 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
503 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
504 else
505 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
506
507 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
508
509 /* Set initial device and PHY flags */
510 sc->bnx_flags = 0;
511 sc->bnx_phy_flags = 0;
512
513 /* Get PCI bus information (speed and type). */
514 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
515 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
516 u_int32_t clkreg;
517
518 sc->bnx_flags |= BNX_PCIX_FLAG;
519
520 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
521
522 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
523 switch (clkreg) {
524 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
525 sc->bus_speed_mhz = 133;
526 break;
527
528 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
529 sc->bus_speed_mhz = 100;
530 break;
531
532 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
533 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
534 sc->bus_speed_mhz = 66;
535 break;
536
537 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
538 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
539 sc->bus_speed_mhz = 50;
540 break;
541
542 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
543 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
544 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
545 sc->bus_speed_mhz = 33;
546 break;
547 }
548 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
549 sc->bus_speed_mhz = 66;
550 else
551 sc->bus_speed_mhz = 33;
552
553 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
554 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
555
556 /* Reset the controller. */
557 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
558 goto bnx_attach_fail;
559
560 /* Initialize the controller. */
561 if (bnx_chipinit(sc)) {
562 aprint_error_dev(sc->bnx_dev,
563 "Controller initialization failed!\n");
564 goto bnx_attach_fail;
565 }
566
567 /* Perform NVRAM test. */
568 if (bnx_nvram_test(sc)) {
569 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
570 goto bnx_attach_fail;
571 }
572
573 /* Fetch the permanent Ethernet MAC address. */
574 bnx_get_mac_addr(sc);
575 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
576 ether_sprintf(sc->eaddr));
577
578 /*
579 * Trip points control how many BDs
580 * should be ready before generating an
581 * interrupt while ticks control how long
582 * a BD can sit in the chain before
583 * generating an interrupt. Set the default
584 * values for the RX and TX rings.
585 */
586
587 #ifdef BNX_DEBUG
588 /* Force more frequent interrupts. */
589 sc->bnx_tx_quick_cons_trip_int = 1;
590 sc->bnx_tx_quick_cons_trip = 1;
591 sc->bnx_tx_ticks_int = 0;
592 sc->bnx_tx_ticks = 0;
593
594 sc->bnx_rx_quick_cons_trip_int = 1;
595 sc->bnx_rx_quick_cons_trip = 1;
596 sc->bnx_rx_ticks_int = 0;
597 sc->bnx_rx_ticks = 0;
598 #else
599 sc->bnx_tx_quick_cons_trip_int = 20;
600 sc->bnx_tx_quick_cons_trip = 20;
601 sc->bnx_tx_ticks_int = 80;
602 sc->bnx_tx_ticks = 80;
603
604 sc->bnx_rx_quick_cons_trip_int = 6;
605 sc->bnx_rx_quick_cons_trip = 6;
606 sc->bnx_rx_ticks_int = 18;
607 sc->bnx_rx_ticks = 18;
608 #endif
609
610 /* Update statistics once every second. */
611 sc->bnx_stats_ticks = 1000000 & 0xffff00;
612
613 /*
614 * The copper based NetXtreme II controllers
615 * use an integrated PHY at address 1 while
616 * the SerDes controllers use a PHY at
617 * address 2.
618 */
619 sc->bnx_phy_addr = 1;
620
621 if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
622 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
623 sc->bnx_flags |= BNX_NO_WOL_FLAG;
624 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708) {
625 sc->bnx_phy_addr = 2;
626 val = REG_RD_IND(sc, sc->bnx_shmem_base +
627 BNX_SHARED_HW_CFG_CONFIG);
628 if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
629 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
630 }
631 }
632
633 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
634 aprint_error_dev(sc->bnx_dev,
635 "SerDes is not supported by this driver!\n");
636 goto bnx_attach_fail;
637 }
638
639 /* Allocate DMA memory resources. */
640 sc->bnx_dmatag = pa->pa_dmat;
641 if (bnx_dma_alloc(sc)) {
642 aprint_error_dev(sc->bnx_dev,
643 "DMA resource allocation failed!\n");
644 goto bnx_attach_fail;
645 }
646
647 /* Initialize the ifnet interface. */
648 ifp = &sc->bnx_ec.ec_if;
649 ifp->if_softc = sc;
650 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
651 ifp->if_ioctl = bnx_ioctl;
652 ifp->if_stop = bnx_stop;
653 ifp->if_start = bnx_start;
654 ifp->if_init = bnx_init;
655 ifp->if_timer = 0;
656 ifp->if_watchdog = bnx_watchdog;
657 if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG)
658 ifp->if_baudrate = IF_Gbps(2.5);
659 else
660 ifp->if_baudrate = IF_Gbps(1);
661 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
662 IFQ_SET_READY(&ifp->if_snd);
663 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
664
665 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
666 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
667
668 ifp->if_capabilities |=
669 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
670 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
671 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
672
673 /* Hookup IRQ last. */
674 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
675 if (sc->bnx_intrhand == NULL) {
676 aprint_error_dev(self, "couldn't establish interrupt");
677 if (intrstr != NULL)
678 aprint_error(" at %s", intrstr);
679 aprint_error("\n");
680 goto bnx_attach_fail;
681 }
682
683 sc->bnx_mii.mii_ifp = ifp;
684 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
685 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
686 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
687
688 /* Look for our PHY. */
689 ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd,
690 bnx_ifmedia_sts);
691 mii_attach(self, &sc->bnx_mii, 0xffffffff,
692 MII_PHY_ANY, MII_OFFSET_ANY, 0);
693
694 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
695 aprint_error_dev(self, "no PHY found!\n");
696 ifmedia_add(&sc->bnx_mii.mii_media,
697 IFM_ETHER|IFM_MANUAL, 0, NULL);
698 ifmedia_set(&sc->bnx_mii.mii_media,
699 IFM_ETHER|IFM_MANUAL);
700 } else {
701 ifmedia_set(&sc->bnx_mii.mii_media,
702 IFM_ETHER|IFM_AUTO);
703 }
704
705 /* Attach to the Ethernet interface list. */
706 if_attach(ifp);
707 ether_ifattach(ifp,sc->eaddr);
708
709 callout_init(&sc->bnx_timeout, 0);
710
711 if (!pmf_device_register(self, NULL, NULL))
712 aprint_error_dev(self, "couldn't establish power handler\n");
713 else
714 pmf_class_network_register(self, ifp);
715
716 /* Print some important debugging info. */
717 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
718
719 goto bnx_attach_exit;
720
721 bnx_attach_fail:
722 bnx_release_resources(sc);
723
724 bnx_attach_exit:
725 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
726 }
727
728 /****************************************************************************/
729 /* Device detach function. */
730 /* */
731 /* Stops the controller, resets the controller, and releases resources. */
732 /* */
733 /* Returns: */
734 /* 0 on success, positive value on failure. */
735 /****************************************************************************/
736 int
737 bnx_detach(device_t dev, int flags)
738 {
739 int s;
740 struct bnx_softc *sc;
741 struct ifnet *ifp;
742
743 sc = device_private(dev);
744 ifp = &sc->bnx_ec.ec_if;
745
746 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
747
748 /* Stop and reset the controller. */
749 s = splnet();
750 if (ifp->if_flags & IFF_RUNNING)
751 bnx_stop(ifp, 1);
752 splx(s);
753
754 pmf_device_deregister(dev);
755 ether_ifdetach(ifp);
756 if_detach(ifp);
757 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
758
759 /* Release all remaining resources. */
760 bnx_release_resources(sc);
761
762 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
763
764 return(0);
765 }
766
767 /****************************************************************************/
768 /* Indirect register read. */
769 /* */
770 /* Reads NetXtreme II registers using an index/data register pair in PCI */
771 /* configuration space. Using this mechanism avoids issues with posted */
772 /* reads but is much slower than memory-mapped I/O. */
773 /* */
774 /* Returns: */
775 /* The value of the register. */
776 /****************************************************************************/
777 u_int32_t
778 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
779 {
780 struct pci_attach_args *pa = &(sc->bnx_pa);
781
782 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
783 offset);
784 #ifdef BNX_DEBUG
785 {
786 u_int32_t val;
787 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
788 BNX_PCICFG_REG_WINDOW);
789 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
790 "val = 0x%08X\n", __func__, offset, val);
791 return (val);
792 }
793 #else
794 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
795 #endif
796 }
797
798 /****************************************************************************/
799 /* Indirect register write. */
800 /* */
801 /* Writes NetXtreme II registers using an index/data register pair in PCI */
802 /* configuration space. Using this mechanism avoids issues with posted */
803 /* writes but is muchh slower than memory-mapped I/O. */
804 /* */
805 /* Returns: */
806 /* Nothing. */
807 /****************************************************************************/
808 void
809 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
810 {
811 struct pci_attach_args *pa = &(sc->bnx_pa);
812
813 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
814 __func__, offset, val);
815
816 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
817 offset);
818 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
819 }
820
821 /****************************************************************************/
822 /* Context memory write. */
823 /* */
824 /* The NetXtreme II controller uses context memory to track connection */
825 /* information for L2 and higher network protocols. */
826 /* */
827 /* Returns: */
828 /* Nothing. */
829 /****************************************************************************/
830 void
831 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
832 u_int32_t val)
833 {
834
835 DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
836 "val = 0x%08X\n", __func__, cid_addr, offset, val);
837
838 offset += cid_addr;
839 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
840 REG_WR(sc, BNX_CTX_DATA, val);
841 }
842
843 /****************************************************************************/
844 /* PHY register read. */
845 /* */
846 /* Implements register reads on the MII bus. */
847 /* */
848 /* Returns: */
849 /* The value of the register. */
850 /****************************************************************************/
851 int
852 bnx_miibus_read_reg(device_t dev, int phy, int reg)
853 {
854 struct bnx_softc *sc = device_private(dev);
855 u_int32_t val;
856 int i;
857
858 /* Make sure we are accessing the correct PHY address. */
859 if (phy != sc->bnx_phy_addr) {
860 DBPRINT(sc, BNX_VERBOSE,
861 "Invalid PHY address %d for PHY read!\n", phy);
862 return(0);
863 }
864
865 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
866 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
867 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
868
869 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
870 REG_RD(sc, BNX_EMAC_MDIO_MODE);
871
872 DELAY(40);
873 }
874
875 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
876 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
877 BNX_EMAC_MDIO_COMM_START_BUSY;
878 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
879
880 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
881 DELAY(10);
882
883 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
884 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
885 DELAY(5);
886
887 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
888 val &= BNX_EMAC_MDIO_COMM_DATA;
889
890 break;
891 }
892 }
893
894 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
895 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
896 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
897 val = 0x0;
898 } else
899 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
900
901 DBPRINT(sc, BNX_EXCESSIVE,
902 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
903 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
904
905 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
906 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
907 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
908
909 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
910 REG_RD(sc, BNX_EMAC_MDIO_MODE);
911
912 DELAY(40);
913 }
914
915 return (val & 0xffff);
916 }
917
918 /****************************************************************************/
919 /* PHY register write. */
920 /* */
921 /* Implements register writes on the MII bus. */
922 /* */
923 /* Returns: */
924 /* The value of the register. */
925 /****************************************************************************/
926 void
927 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
928 {
929 struct bnx_softc *sc = device_private(dev);
930 u_int32_t val1;
931 int i;
932
933 /* Make sure we are accessing the correct PHY address. */
934 if (phy != sc->bnx_phy_addr) {
935 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
936 phy);
937 return;
938 }
939
940 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
941 "val = 0x%04X\n", __func__,
942 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
943
944 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
945 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
946 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
947
948 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
949 REG_RD(sc, BNX_EMAC_MDIO_MODE);
950
951 DELAY(40);
952 }
953
954 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
955 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
956 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
957 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
958
959 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
960 DELAY(10);
961
962 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
963 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
964 DELAY(5);
965 break;
966 }
967 }
968
969 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
970 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
971 __LINE__);
972 }
973
974 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
975 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
976 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
977
978 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
979 REG_RD(sc, BNX_EMAC_MDIO_MODE);
980
981 DELAY(40);
982 }
983 }
984
985 /****************************************************************************/
986 /* MII bus status change. */
987 /* */
988 /* Called by the MII bus driver when the PHY establishes link to set the */
989 /* MAC interface registers. */
990 /* */
991 /* Returns: */
992 /* Nothing. */
993 /****************************************************************************/
994 void
995 bnx_miibus_statchg(device_t dev)
996 {
997 struct bnx_softc *sc = device_private(dev);
998 struct mii_data *mii = &sc->bnx_mii;
999
1000 BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT);
1001
1002 /* Set MII or GMII inerface based on the speed negotiated by the PHY. */
1003 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
1004 DBPRINT(sc, BNX_INFO, "Setting GMII interface.\n");
1005 BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_GMII);
1006 } else {
1007 DBPRINT(sc, BNX_INFO, "Setting MII interface.\n");
1008 BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_MII);
1009 }
1010
1011 /* Set half or full duplex based on the duplicity
1012 * negotiated by the PHY.
1013 */
1014 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1015 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1016 BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
1017 } else {
1018 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1019 BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
1020 }
1021 }
1022
1023 /****************************************************************************/
1024 /* Acquire NVRAM lock. */
1025 /* */
1026 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1027 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1028 /* for use by the driver. */
1029 /* */
1030 /* Returns: */
1031 /* 0 on success, positive value on failure. */
1032 /****************************************************************************/
1033 int
1034 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1035 {
1036 u_int32_t val;
1037 int j;
1038
1039 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1040
1041 /* Request access to the flash interface. */
1042 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1043 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1044 val = REG_RD(sc, BNX_NVM_SW_ARB);
1045 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1046 break;
1047
1048 DELAY(5);
1049 }
1050
1051 if (j >= NVRAM_TIMEOUT_COUNT) {
1052 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1053 return (EBUSY);
1054 }
1055
1056 return (0);
1057 }
1058
1059 /****************************************************************************/
1060 /* Release NVRAM lock. */
1061 /* */
1062 /* When the caller is finished accessing NVRAM the lock must be released. */
1063 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1064 /* for use by the driver. */
1065 /* */
1066 /* Returns: */
1067 /* 0 on success, positive value on failure. */
1068 /****************************************************************************/
1069 int
1070 bnx_release_nvram_lock(struct bnx_softc *sc)
1071 {
1072 int j;
1073 u_int32_t val;
1074
1075 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1076
1077 /* Relinquish nvram interface. */
1078 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1079
1080 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1081 val = REG_RD(sc, BNX_NVM_SW_ARB);
1082 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1083 break;
1084
1085 DELAY(5);
1086 }
1087
1088 if (j >= NVRAM_TIMEOUT_COUNT) {
1089 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1090 return (EBUSY);
1091 }
1092
1093 return (0);
1094 }
1095
1096 #ifdef BNX_NVRAM_WRITE_SUPPORT
1097 /****************************************************************************/
1098 /* Enable NVRAM write access. */
1099 /* */
1100 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1101 /* */
1102 /* Returns: */
1103 /* 0 on success, positive value on failure. */
1104 /****************************************************************************/
1105 int
1106 bnx_enable_nvram_write(struct bnx_softc *sc)
1107 {
1108 u_int32_t val;
1109
1110 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1111
1112 val = REG_RD(sc, BNX_MISC_CFG);
1113 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1114
1115 if (!sc->bnx_flash_info->buffered) {
1116 int j;
1117
1118 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1119 REG_WR(sc, BNX_NVM_COMMAND,
1120 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1121
1122 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1123 DELAY(5);
1124
1125 val = REG_RD(sc, BNX_NVM_COMMAND);
1126 if (val & BNX_NVM_COMMAND_DONE)
1127 break;
1128 }
1129
1130 if (j >= NVRAM_TIMEOUT_COUNT) {
1131 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1132 return (EBUSY);
1133 }
1134 }
1135
1136 return (0);
1137 }
1138
1139 /****************************************************************************/
1140 /* Disable NVRAM write access. */
1141 /* */
1142 /* When the caller is finished writing to NVRAM write access must be */
1143 /* disabled. */
1144 /* */
1145 /* Returns: */
1146 /* Nothing. */
1147 /****************************************************************************/
1148 void
1149 bnx_disable_nvram_write(struct bnx_softc *sc)
1150 {
1151 u_int32_t val;
1152
1153 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1154
1155 val = REG_RD(sc, BNX_MISC_CFG);
1156 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1157 }
1158 #endif
1159
1160 /****************************************************************************/
1161 /* Enable NVRAM access. */
1162 /* */
1163 /* Before accessing NVRAM for read or write operations the caller must */
1164 /* enabled NVRAM access. */
1165 /* */
1166 /* Returns: */
1167 /* Nothing. */
1168 /****************************************************************************/
1169 void
1170 bnx_enable_nvram_access(struct bnx_softc *sc)
1171 {
1172 u_int32_t val;
1173
1174 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1175
1176 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1177 /* Enable both bits, even on read. */
1178 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1179 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1180 }
1181
1182 /****************************************************************************/
1183 /* Disable NVRAM access. */
1184 /* */
1185 /* When the caller is finished accessing NVRAM access must be disabled. */
1186 /* */
1187 /* Returns: */
1188 /* Nothing. */
1189 /****************************************************************************/
1190 void
1191 bnx_disable_nvram_access(struct bnx_softc *sc)
1192 {
1193 u_int32_t val;
1194
1195 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1196
1197 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1198
1199 /* Disable both bits, even after read. */
1200 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1201 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1202 }
1203
1204 #ifdef BNX_NVRAM_WRITE_SUPPORT
1205 /****************************************************************************/
1206 /* Erase NVRAM page before writing. */
1207 /* */
1208 /* Non-buffered flash parts require that a page be erased before it is */
1209 /* written. */
1210 /* */
1211 /* Returns: */
1212 /* 0 on success, positive value on failure. */
1213 /****************************************************************************/
1214 int
1215 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1216 {
1217 u_int32_t cmd;
1218 int j;
1219
1220 /* Buffered flash doesn't require an erase. */
1221 if (sc->bnx_flash_info->buffered)
1222 return (0);
1223
1224 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1225
1226 /* Build an erase command. */
1227 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1228 BNX_NVM_COMMAND_DOIT;
1229
1230 /*
1231 * Clear the DONE bit separately, set the NVRAM adress to erase,
1232 * and issue the erase command.
1233 */
1234 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1235 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1236 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1237
1238 /* Wait for completion. */
1239 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1240 u_int32_t val;
1241
1242 DELAY(5);
1243
1244 val = REG_RD(sc, BNX_NVM_COMMAND);
1245 if (val & BNX_NVM_COMMAND_DONE)
1246 break;
1247 }
1248
1249 if (j >= NVRAM_TIMEOUT_COUNT) {
1250 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1251 return (EBUSY);
1252 }
1253
1254 return (0);
1255 }
1256 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1257
1258 /****************************************************************************/
1259 /* Read a dword (32 bits) from NVRAM. */
1260 /* */
1261 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1262 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1263 /* */
1264 /* Returns: */
1265 /* 0 on success and the 32 bit value read, positive value on failure. */
1266 /****************************************************************************/
1267 int
1268 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1269 u_int8_t *ret_val, u_int32_t cmd_flags)
1270 {
1271 u_int32_t cmd;
1272 int i, rc = 0;
1273
1274 /* Build the command word. */
1275 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1276
1277 /* Calculate the offset for buffered flash. */
1278 if (sc->bnx_flash_info->buffered)
1279 offset = ((offset / sc->bnx_flash_info->page_size) <<
1280 sc->bnx_flash_info->page_bits) +
1281 (offset % sc->bnx_flash_info->page_size);
1282
1283 /*
1284 * Clear the DONE bit separately, set the address to read,
1285 * and issue the read.
1286 */
1287 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1288 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1289 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1290
1291 /* Wait for completion. */
1292 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1293 u_int32_t val;
1294
1295 DELAY(5);
1296
1297 val = REG_RD(sc, BNX_NVM_COMMAND);
1298 if (val & BNX_NVM_COMMAND_DONE) {
1299 val = REG_RD(sc, BNX_NVM_READ);
1300
1301 val = bnx_be32toh(val);
1302 memcpy(ret_val, &val, 4);
1303 break;
1304 }
1305 }
1306
1307 /* Check for errors. */
1308 if (i >= NVRAM_TIMEOUT_COUNT) {
1309 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1310 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1311 rc = EBUSY;
1312 }
1313
1314 return(rc);
1315 }
1316
1317 #ifdef BNX_NVRAM_WRITE_SUPPORT
1318 /****************************************************************************/
1319 /* Write a dword (32 bits) to NVRAM. */
1320 /* */
1321 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1322 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1323 /* enabled NVRAM write access. */
1324 /* */
1325 /* Returns: */
1326 /* 0 on success, positive value on failure. */
1327 /****************************************************************************/
1328 int
1329 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1330 u_int32_t cmd_flags)
1331 {
1332 u_int32_t cmd, val32;
1333 int j;
1334
1335 /* Build the command word. */
1336 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1337
1338 /* Calculate the offset for buffered flash. */
1339 if (sc->bnx_flash_info->buffered)
1340 offset = ((offset / sc->bnx_flash_info->page_size) <<
1341 sc->bnx_flash_info->page_bits) +
1342 (offset % sc->bnx_flash_info->page_size);
1343
1344 /*
1345 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1346 * set the NVRAM address to write, and issue the write command
1347 */
1348 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1349 memcpy(&val32, val, 4);
1350 val32 = htobe32(val32);
1351 REG_WR(sc, BNX_NVM_WRITE, val32);
1352 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1353 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1354
1355 /* Wait for completion. */
1356 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1357 DELAY(5);
1358
1359 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1360 break;
1361 }
1362 if (j >= NVRAM_TIMEOUT_COUNT) {
1363 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1364 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1365 return (EBUSY);
1366 }
1367
1368 return (0);
1369 }
1370 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1371
1372 /****************************************************************************/
1373 /* Initialize NVRAM access. */
1374 /* */
1375 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1376 /* access that device. */
1377 /* */
1378 /* Returns: */
1379 /* 0 on success, positive value on failure. */
1380 /****************************************************************************/
1381 int
1382 bnx_init_nvram(struct bnx_softc *sc)
1383 {
1384 u_int32_t val;
1385 int j, entry_count, rc;
1386 struct flash_spec *flash;
1387
1388 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1389
1390 /* Determine the selected interface. */
1391 val = REG_RD(sc, BNX_NVM_CFG1);
1392
1393 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1394
1395 rc = 0;
1396
1397 /*
1398 * Flash reconfiguration is required to support additional
1399 * NVRAM devices not directly supported in hardware.
1400 * Check if the flash interface was reconfigured
1401 * by the bootcode.
1402 */
1403
1404 if (val & 0x40000000) {
1405 /* Flash interface reconfigured by bootcode. */
1406
1407 DBPRINT(sc,BNX_INFO_LOAD,
1408 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1409
1410 for (j = 0, flash = &flash_table[0]; j < entry_count;
1411 j++, flash++) {
1412 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1413 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1414 sc->bnx_flash_info = flash;
1415 break;
1416 }
1417 }
1418 } else {
1419 /* Flash interface not yet reconfigured. */
1420 u_int32_t mask;
1421
1422 DBPRINT(sc,BNX_INFO_LOAD,
1423 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1424
1425 if (val & (1 << 23))
1426 mask = FLASH_BACKUP_STRAP_MASK;
1427 else
1428 mask = FLASH_STRAP_MASK;
1429
1430 /* Look for the matching NVRAM device configuration data. */
1431 for (j = 0, flash = &flash_table[0]; j < entry_count;
1432 j++, flash++) {
1433 /* Check if the dev matches any of the known devices. */
1434 if ((val & mask) == (flash->strapping & mask)) {
1435 /* Found a device match. */
1436 sc->bnx_flash_info = flash;
1437
1438 /* Request access to the flash interface. */
1439 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1440 return (rc);
1441
1442 /* Reconfigure the flash interface. */
1443 bnx_enable_nvram_access(sc);
1444 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1445 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1446 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1447 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1448 bnx_disable_nvram_access(sc);
1449 bnx_release_nvram_lock(sc);
1450
1451 break;
1452 }
1453 }
1454 }
1455
1456 /* Check if a matching device was found. */
1457 if (j == entry_count) {
1458 sc->bnx_flash_info = NULL;
1459 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1460 __FILE__, __LINE__);
1461 rc = ENODEV;
1462 }
1463
1464 /* Write the flash config data to the shared memory interface. */
1465 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1466 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1467 if (val)
1468 sc->bnx_flash_size = val;
1469 else
1470 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1471
1472 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1473 "0x%08X\n", sc->bnx_flash_info->total_size);
1474
1475 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1476
1477 return (rc);
1478 }
1479
1480 /****************************************************************************/
1481 /* Read an arbitrary range of data from NVRAM. */
1482 /* */
1483 /* Prepares the NVRAM interface for access and reads the requested data */
1484 /* into the supplied buffer. */
1485 /* */
1486 /* Returns: */
1487 /* 0 on success and the data read, positive value on failure. */
1488 /****************************************************************************/
1489 int
1490 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1491 int buf_size)
1492 {
1493 int rc = 0;
1494 u_int32_t cmd_flags, offset32, len32, extra;
1495
1496 if (buf_size == 0)
1497 return (0);
1498
1499 /* Request access to the flash interface. */
1500 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1501 return (rc);
1502
1503 /* Enable access to flash interface */
1504 bnx_enable_nvram_access(sc);
1505
1506 len32 = buf_size;
1507 offset32 = offset;
1508 extra = 0;
1509
1510 cmd_flags = 0;
1511
1512 if (offset32 & 3) {
1513 u_int8_t buf[4];
1514 u_int32_t pre_len;
1515
1516 offset32 &= ~3;
1517 pre_len = 4 - (offset & 3);
1518
1519 if (pre_len >= len32) {
1520 pre_len = len32;
1521 cmd_flags =
1522 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1523 } else
1524 cmd_flags = BNX_NVM_COMMAND_FIRST;
1525
1526 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1527
1528 if (rc)
1529 return (rc);
1530
1531 memcpy(ret_buf, buf + (offset & 3), pre_len);
1532
1533 offset32 += 4;
1534 ret_buf += pre_len;
1535 len32 -= pre_len;
1536 }
1537
1538 if (len32 & 3) {
1539 extra = 4 - (len32 & 3);
1540 len32 = (len32 + 4) & ~3;
1541 }
1542
1543 if (len32 == 4) {
1544 u_int8_t buf[4];
1545
1546 if (cmd_flags)
1547 cmd_flags = BNX_NVM_COMMAND_LAST;
1548 else
1549 cmd_flags =
1550 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1551
1552 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1553
1554 memcpy(ret_buf, buf, 4 - extra);
1555 } else if (len32 > 0) {
1556 u_int8_t buf[4];
1557
1558 /* Read the first word. */
1559 if (cmd_flags)
1560 cmd_flags = 0;
1561 else
1562 cmd_flags = BNX_NVM_COMMAND_FIRST;
1563
1564 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1565
1566 /* Advance to the next dword. */
1567 offset32 += 4;
1568 ret_buf += 4;
1569 len32 -= 4;
1570
1571 while (len32 > 4 && rc == 0) {
1572 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1573
1574 /* Advance to the next dword. */
1575 offset32 += 4;
1576 ret_buf += 4;
1577 len32 -= 4;
1578 }
1579
1580 if (rc)
1581 return (rc);
1582
1583 cmd_flags = BNX_NVM_COMMAND_LAST;
1584 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1585
1586 memcpy(ret_buf, buf, 4 - extra);
1587 }
1588
1589 /* Disable access to flash interface and release the lock. */
1590 bnx_disable_nvram_access(sc);
1591 bnx_release_nvram_lock(sc);
1592
1593 return (rc);
1594 }
1595
1596 #ifdef BNX_NVRAM_WRITE_SUPPORT
1597 /****************************************************************************/
1598 /* Write an arbitrary range of data from NVRAM. */
1599 /* */
1600 /* Prepares the NVRAM interface for write access and writes the requested */
1601 /* data from the supplied buffer. The caller is responsible for */
1602 /* calculating any appropriate CRCs. */
1603 /* */
1604 /* Returns: */
1605 /* 0 on success, positive value on failure. */
1606 /****************************************************************************/
1607 int
1608 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1609 int buf_size)
1610 {
1611 u_int32_t written, offset32, len32;
1612 u_int8_t *buf, start[4], end[4];
1613 int rc = 0;
1614 int align_start, align_end;
1615
1616 buf = data_buf;
1617 offset32 = offset;
1618 len32 = buf_size;
1619 align_start = align_end = 0;
1620
1621 if ((align_start = (offset32 & 3))) {
1622 offset32 &= ~3;
1623 len32 += align_start;
1624 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1625 return (rc);
1626 }
1627
1628 if (len32 & 3) {
1629 if ((len32 > 4) || !align_start) {
1630 align_end = 4 - (len32 & 3);
1631 len32 += align_end;
1632 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1633 end, 4))) {
1634 return (rc);
1635 }
1636 }
1637 }
1638
1639 if (align_start || align_end) {
1640 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1641 if (buf == 0)
1642 return (ENOMEM);
1643
1644 if (align_start)
1645 memcpy(buf, start, 4);
1646
1647 if (align_end)
1648 memcpy(buf + len32 - 4, end, 4);
1649
1650 memcpy(buf + align_start, data_buf, buf_size);
1651 }
1652
1653 written = 0;
1654 while ((written < len32) && (rc == 0)) {
1655 u_int32_t page_start, page_end, data_start, data_end;
1656 u_int32_t addr, cmd_flags;
1657 int i;
1658 u_int8_t flash_buffer[264];
1659
1660 /* Find the page_start addr */
1661 page_start = offset32 + written;
1662 page_start -= (page_start % sc->bnx_flash_info->page_size);
1663 /* Find the page_end addr */
1664 page_end = page_start + sc->bnx_flash_info->page_size;
1665 /* Find the data_start addr */
1666 data_start = (written == 0) ? offset32 : page_start;
1667 /* Find the data_end addr */
1668 data_end = (page_end > offset32 + len32) ?
1669 (offset32 + len32) : page_end;
1670
1671 /* Request access to the flash interface. */
1672 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1673 goto nvram_write_end;
1674
1675 /* Enable access to flash interface */
1676 bnx_enable_nvram_access(sc);
1677
1678 cmd_flags = BNX_NVM_COMMAND_FIRST;
1679 if (sc->bnx_flash_info->buffered == 0) {
1680 int j;
1681
1682 /* Read the whole page into the buffer
1683 * (non-buffer flash only) */
1684 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1685 if (j == (sc->bnx_flash_info->page_size - 4))
1686 cmd_flags |= BNX_NVM_COMMAND_LAST;
1687
1688 rc = bnx_nvram_read_dword(sc,
1689 page_start + j,
1690 &flash_buffer[j],
1691 cmd_flags);
1692
1693 if (rc)
1694 goto nvram_write_end;
1695
1696 cmd_flags = 0;
1697 }
1698 }
1699
1700 /* Enable writes to flash interface (unlock write-protect) */
1701 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1702 goto nvram_write_end;
1703
1704 /* Erase the page */
1705 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1706 goto nvram_write_end;
1707
1708 /* Re-enable the write again for the actual write */
1709 bnx_enable_nvram_write(sc);
1710
1711 /* Loop to write back the buffer data from page_start to
1712 * data_start */
1713 i = 0;
1714 if (sc->bnx_flash_info->buffered == 0) {
1715 for (addr = page_start; addr < data_start;
1716 addr += 4, i += 4) {
1717
1718 rc = bnx_nvram_write_dword(sc, addr,
1719 &flash_buffer[i], cmd_flags);
1720
1721 if (rc != 0)
1722 goto nvram_write_end;
1723
1724 cmd_flags = 0;
1725 }
1726 }
1727
1728 /* Loop to write the new data from data_start to data_end */
1729 for (addr = data_start; addr < data_end; addr += 4, i++) {
1730 if ((addr == page_end - 4) ||
1731 ((sc->bnx_flash_info->buffered) &&
1732 (addr == data_end - 4))) {
1733
1734 cmd_flags |= BNX_NVM_COMMAND_LAST;
1735 }
1736
1737 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1738
1739 if (rc != 0)
1740 goto nvram_write_end;
1741
1742 cmd_flags = 0;
1743 buf += 4;
1744 }
1745
1746 /* Loop to write back the buffer data from data_end
1747 * to page_end */
1748 if (sc->bnx_flash_info->buffered == 0) {
1749 for (addr = data_end; addr < page_end;
1750 addr += 4, i += 4) {
1751
1752 if (addr == page_end-4)
1753 cmd_flags = BNX_NVM_COMMAND_LAST;
1754
1755 rc = bnx_nvram_write_dword(sc, addr,
1756 &flash_buffer[i], cmd_flags);
1757
1758 if (rc != 0)
1759 goto nvram_write_end;
1760
1761 cmd_flags = 0;
1762 }
1763 }
1764
1765 /* Disable writes to flash interface (lock write-protect) */
1766 bnx_disable_nvram_write(sc);
1767
1768 /* Disable access to flash interface */
1769 bnx_disable_nvram_access(sc);
1770 bnx_release_nvram_lock(sc);
1771
1772 /* Increment written */
1773 written += data_end - data_start;
1774 }
1775
1776 nvram_write_end:
1777 if (align_start || align_end)
1778 free(buf, M_DEVBUF);
1779
1780 return (rc);
1781 }
1782 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1783
1784 /****************************************************************************/
1785 /* Verifies that NVRAM is accessible and contains valid data. */
1786 /* */
1787 /* Reads the configuration data from NVRAM and verifies that the CRC is */
1788 /* correct. */
1789 /* */
1790 /* Returns: */
1791 /* 0 on success, positive value on failure. */
1792 /****************************************************************************/
1793 int
1794 bnx_nvram_test(struct bnx_softc *sc)
1795 {
1796 u_int32_t buf[BNX_NVRAM_SIZE / 4];
1797 u_int8_t *data = (u_int8_t *) buf;
1798 int rc = 0;
1799 u_int32_t magic, csum;
1800
1801 /*
1802 * Check that the device NVRAM is valid by reading
1803 * the magic value at offset 0.
1804 */
1805 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1806 goto bnx_nvram_test_done;
1807
1808 magic = bnx_be32toh(buf[0]);
1809 if (magic != BNX_NVRAM_MAGIC) {
1810 rc = ENODEV;
1811 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1812 "Expected: 0x%08X, Found: 0x%08X\n",
1813 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1814 goto bnx_nvram_test_done;
1815 }
1816
1817 /*
1818 * Verify that the device NVRAM includes valid
1819 * configuration data.
1820 */
1821 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1822 goto bnx_nvram_test_done;
1823
1824 csum = ether_crc32_le(data, 0x100);
1825 if (csum != BNX_CRC32_RESIDUAL) {
1826 rc = ENODEV;
1827 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1828 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1829 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1830 goto bnx_nvram_test_done;
1831 }
1832
1833 csum = ether_crc32_le(data + 0x100, 0x100);
1834 if (csum != BNX_CRC32_RESIDUAL) {
1835 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1836 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1837 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1838 rc = ENODEV;
1839 }
1840
1841 bnx_nvram_test_done:
1842 return (rc);
1843 }
1844
1845 /****************************************************************************/
1846 /* Free any DMA memory owned by the driver. */
1847 /* */
1848 /* Scans through each data structre that requires DMA memory and frees */
1849 /* the memory if allocated. */
1850 /* */
1851 /* Returns: */
1852 /* Nothing. */
1853 /****************************************************************************/
1854 void
1855 bnx_dma_free(struct bnx_softc *sc)
1856 {
1857 int i;
1858
1859 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1860
1861 /* Destroy the status block. */
1862 if (sc->status_block != NULL && sc->status_map != NULL) {
1863 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
1864 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
1865 BNX_STATUS_BLK_SZ);
1866 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
1867 sc->status_rseg);
1868 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
1869 sc->status_block = NULL;
1870 sc->status_map = NULL;
1871 }
1872
1873 /* Destroy the statistics block. */
1874 if (sc->stats_block != NULL && sc->stats_map != NULL) {
1875 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
1876 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
1877 BNX_STATS_BLK_SZ);
1878 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
1879 sc->stats_rseg);
1880 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
1881 sc->stats_block = NULL;
1882 sc->stats_map = NULL;
1883 }
1884
1885 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
1886 for (i = 0; i < TX_PAGES; i++ ) {
1887 if (sc->tx_bd_chain[i] != NULL &&
1888 sc->tx_bd_chain_map[i] != NULL) {
1889 bus_dmamap_unload(sc->bnx_dmatag,
1890 sc->tx_bd_chain_map[i]);
1891 bus_dmamem_unmap(sc->bnx_dmatag,
1892 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
1893 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
1894 sc->tx_bd_chain_rseg[i]);
1895 bus_dmamap_destroy(sc->bnx_dmatag,
1896 sc->tx_bd_chain_map[i]);
1897 sc->tx_bd_chain[i] = NULL;
1898 sc->tx_bd_chain_map[i] = NULL;
1899 }
1900 }
1901
1902 /* Unload and destroy the TX mbuf maps. */
1903 for (i = 0; i < TOTAL_TX_BD; i++) {
1904 if (sc->tx_mbuf_map[i] != NULL) {
1905 bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1906 bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1907 }
1908 }
1909
1910 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
1911 for (i = 0; i < RX_PAGES; i++ ) {
1912 if (sc->rx_bd_chain[i] != NULL &&
1913 sc->rx_bd_chain_map[i] != NULL) {
1914 bus_dmamap_unload(sc->bnx_dmatag,
1915 sc->rx_bd_chain_map[i]);
1916 bus_dmamem_unmap(sc->bnx_dmatag,
1917 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
1918 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
1919 sc->rx_bd_chain_rseg[i]);
1920
1921 bus_dmamap_destroy(sc->bnx_dmatag,
1922 sc->rx_bd_chain_map[i]);
1923 sc->rx_bd_chain[i] = NULL;
1924 sc->rx_bd_chain_map[i] = NULL;
1925 }
1926 }
1927
1928 /* Unload and destroy the RX mbuf maps. */
1929 for (i = 0; i < TOTAL_RX_BD; i++) {
1930 if (sc->rx_mbuf_map[i] != NULL) {
1931 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1932 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1933 }
1934 }
1935
1936 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1937 }
1938
1939 /****************************************************************************/
1940 /* Allocate any DMA memory needed by the driver. */
1941 /* */
1942 /* Allocates DMA memory needed for the various global structures needed by */
1943 /* hardware. */
1944 /* */
1945 /* Returns: */
1946 /* 0 for success, positive value for failure. */
1947 /****************************************************************************/
1948 int
1949 bnx_dma_alloc(struct bnx_softc *sc)
1950 {
1951 int i, rc = 0;
1952
1953 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1954
1955 /*
1956 * Allocate DMA memory for the status block, map the memory into DMA
1957 * space, and fetch the physical address of the block.
1958 */
1959 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
1960 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
1961 aprint_error_dev(sc->bnx_dev,
1962 "Could not create status block DMA map!\n");
1963 rc = ENOMEM;
1964 goto bnx_dma_alloc_exit;
1965 }
1966
1967 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
1968 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
1969 &sc->status_rseg, BUS_DMA_NOWAIT)) {
1970 aprint_error_dev(sc->bnx_dev,
1971 "Could not allocate status block DMA memory!\n");
1972 rc = ENOMEM;
1973 goto bnx_dma_alloc_exit;
1974 }
1975
1976 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
1977 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
1978 aprint_error_dev(sc->bnx_dev,
1979 "Could not map status block DMA memory!\n");
1980 rc = ENOMEM;
1981 goto bnx_dma_alloc_exit;
1982 }
1983
1984 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
1985 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
1986 aprint_error_dev(sc->bnx_dev,
1987 "Could not load status block DMA memory!\n");
1988 rc = ENOMEM;
1989 goto bnx_dma_alloc_exit;
1990 }
1991
1992 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
1993 bzero(sc->status_block, BNX_STATUS_BLK_SZ);
1994
1995 /* DRC - Fix for 64 bit addresses. */
1996 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
1997 (u_int32_t) sc->status_block_paddr);
1998
1999 /*
2000 * Allocate DMA memory for the statistics block, map the memory into
2001 * DMA space, and fetch the physical address of the block.
2002 */
2003 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2004 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2005 aprint_error_dev(sc->bnx_dev,
2006 "Could not create stats block DMA map!\n");
2007 rc = ENOMEM;
2008 goto bnx_dma_alloc_exit;
2009 }
2010
2011 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2012 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2013 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2014 aprint_error_dev(sc->bnx_dev,
2015 "Could not allocate stats block DMA memory!\n");
2016 rc = ENOMEM;
2017 goto bnx_dma_alloc_exit;
2018 }
2019
2020 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2021 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2022 aprint_error_dev(sc->bnx_dev,
2023 "Could not map stats block DMA memory!\n");
2024 rc = ENOMEM;
2025 goto bnx_dma_alloc_exit;
2026 }
2027
2028 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2029 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2030 aprint_error_dev(sc->bnx_dev,
2031 "Could not load status block DMA memory!\n");
2032 rc = ENOMEM;
2033 goto bnx_dma_alloc_exit;
2034 }
2035
2036 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2037 bzero(sc->stats_block, BNX_STATS_BLK_SZ);
2038
2039 /* DRC - Fix for 64 bit address. */
2040 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2041 (u_int32_t) sc->stats_block_paddr);
2042
2043 /*
2044 * Allocate DMA memory for the TX buffer descriptor chain,
2045 * and fetch the physical address of the block.
2046 */
2047 for (i = 0; i < TX_PAGES; i++) {
2048 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2049 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2050 &sc->tx_bd_chain_map[i])) {
2051 aprint_error_dev(sc->bnx_dev,
2052 "Could not create Tx desc %d DMA map!\n", i);
2053 rc = ENOMEM;
2054 goto bnx_dma_alloc_exit;
2055 }
2056
2057 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2058 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2059 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2060 aprint_error_dev(sc->bnx_dev,
2061 "Could not allocate TX desc %d DMA memory!\n",
2062 i);
2063 rc = ENOMEM;
2064 goto bnx_dma_alloc_exit;
2065 }
2066
2067 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2068 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2069 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2070 aprint_error_dev(sc->bnx_dev,
2071 "Could not map TX desc %d DMA memory!\n", i);
2072 rc = ENOMEM;
2073 goto bnx_dma_alloc_exit;
2074 }
2075
2076 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2077 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2078 BUS_DMA_NOWAIT)) {
2079 aprint_error_dev(sc->bnx_dev,
2080 "Could not load TX desc %d DMA memory!\n", i);
2081 rc = ENOMEM;
2082 goto bnx_dma_alloc_exit;
2083 }
2084
2085 sc->tx_bd_chain_paddr[i] =
2086 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2087
2088 /* DRC - Fix for 64 bit systems. */
2089 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2090 i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2091 }
2092
2093 /*
2094 * Create DMA maps for the TX buffer mbufs.
2095 */
2096 for (i = 0; i < TOTAL_TX_BD; i++) {
2097 if (bus_dmamap_create(sc->bnx_dmatag,
2098 MCLBYTES * BNX_MAX_SEGMENTS,
2099 USABLE_TX_BD - BNX_TX_SLACK_SPACE,
2100 MCLBYTES, 0, BUS_DMA_NOWAIT,
2101 &sc->tx_mbuf_map[i])) {
2102 aprint_error_dev(sc->bnx_dev,
2103 "Could not create Tx mbuf %d DMA map!\n", i);
2104 rc = ENOMEM;
2105 goto bnx_dma_alloc_exit;
2106 }
2107 }
2108
2109 /*
2110 * Allocate DMA memory for the Rx buffer descriptor chain,
2111 * and fetch the physical address of the block.
2112 */
2113 for (i = 0; i < RX_PAGES; i++) {
2114 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2115 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2116 &sc->rx_bd_chain_map[i])) {
2117 aprint_error_dev(sc->bnx_dev,
2118 "Could not create Rx desc %d DMA map!\n", i);
2119 rc = ENOMEM;
2120 goto bnx_dma_alloc_exit;
2121 }
2122
2123 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2124 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2125 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2126 aprint_error_dev(sc->bnx_dev,
2127 "Could not allocate Rx desc %d DMA memory!\n", i);
2128 rc = ENOMEM;
2129 goto bnx_dma_alloc_exit;
2130 }
2131
2132 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2133 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2134 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2135 aprint_error_dev(sc->bnx_dev,
2136 "Could not map Rx desc %d DMA memory!\n", i);
2137 rc = ENOMEM;
2138 goto bnx_dma_alloc_exit;
2139 }
2140
2141 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2142 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2143 BUS_DMA_NOWAIT)) {
2144 aprint_error_dev(sc->bnx_dev,
2145 "Could not load Rx desc %d DMA memory!\n", i);
2146 rc = ENOMEM;
2147 goto bnx_dma_alloc_exit;
2148 }
2149
2150 bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2151 sc->rx_bd_chain_paddr[i] =
2152 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2153
2154 /* DRC - Fix for 64 bit systems. */
2155 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2156 i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2157 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2158 0, BNX_RX_CHAIN_PAGE_SZ,
2159 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2160 }
2161
2162 /*
2163 * Create DMA maps for the Rx buffer mbufs.
2164 */
2165 for (i = 0; i < TOTAL_RX_BD; i++) {
2166 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
2167 BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
2168 &sc->rx_mbuf_map[i])) {
2169 aprint_error_dev(sc->bnx_dev,
2170 "Could not create Rx mbuf %d DMA map!\n", i);
2171 rc = ENOMEM;
2172 goto bnx_dma_alloc_exit;
2173 }
2174 }
2175
2176 bnx_dma_alloc_exit:
2177 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2178
2179 return(rc);
2180 }
2181
2182 /****************************************************************************/
2183 /* Release all resources used by the driver. */
2184 /* */
2185 /* Releases all resources acquired by the driver including interrupts, */
2186 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2187 /* */
2188 /* Returns: */
2189 /* Nothing. */
2190 /****************************************************************************/
2191 void
2192 bnx_release_resources(struct bnx_softc *sc)
2193 {
2194 int i;
2195 struct pci_attach_args *pa = &(sc->bnx_pa);
2196
2197 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2198
2199 bnx_dma_free(sc);
2200
2201 if (sc->bnx_intrhand != NULL)
2202 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2203
2204 if (sc->bnx_size)
2205 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2206
2207 for (i = 0; i < TOTAL_RX_BD; i++)
2208 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2209
2210 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2211 }
2212
2213 /****************************************************************************/
2214 /* Firmware synchronization. */
2215 /* */
2216 /* Before performing certain events such as a chip reset, synchronize with */
2217 /* the firmware first. */
2218 /* */
2219 /* Returns: */
2220 /* 0 for success, positive value for failure. */
2221 /****************************************************************************/
2222 int
2223 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2224 {
2225 int i, rc = 0;
2226 u_int32_t val;
2227
2228 /* Don't waste any time if we've timed out before. */
2229 if (sc->bnx_fw_timed_out) {
2230 rc = EBUSY;
2231 goto bnx_fw_sync_exit;
2232 }
2233
2234 /* Increment the message sequence number. */
2235 sc->bnx_fw_wr_seq++;
2236 msg_data |= sc->bnx_fw_wr_seq;
2237
2238 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2239 msg_data);
2240
2241 /* Send the message to the bootcode driver mailbox. */
2242 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2243
2244 /* Wait for the bootcode to acknowledge the message. */
2245 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2246 /* Check for a response in the bootcode firmware mailbox. */
2247 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2248 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2249 break;
2250 DELAY(1000);
2251 }
2252
2253 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2254 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2255 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2256 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2257 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2258
2259 msg_data &= ~BNX_DRV_MSG_CODE;
2260 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2261
2262 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2263
2264 sc->bnx_fw_timed_out = 1;
2265 rc = EBUSY;
2266 }
2267
2268 bnx_fw_sync_exit:
2269 return (rc);
2270 }
2271
2272 /****************************************************************************/
2273 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2274 /* */
2275 /* Returns: */
2276 /* Nothing. */
2277 /****************************************************************************/
2278 void
2279 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2280 u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2281 {
2282 int i;
2283 u_int32_t val;
2284
2285 for (i = 0; i < rv2p_code_len; i += 8) {
2286 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2287 rv2p_code++;
2288 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2289 rv2p_code++;
2290
2291 if (rv2p_proc == RV2P_PROC1) {
2292 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2293 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2294 }
2295 else {
2296 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2297 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2298 }
2299 }
2300
2301 /* Reset the processor, un-stall is done later. */
2302 if (rv2p_proc == RV2P_PROC1)
2303 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2304 else
2305 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2306 }
2307
2308 /****************************************************************************/
2309 /* Load RISC processor firmware. */
2310 /* */
2311 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2312 /* associated with a particular processor. */
2313 /* */
2314 /* Returns: */
2315 /* Nothing. */
2316 /****************************************************************************/
2317 void
2318 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2319 struct fw_info *fw)
2320 {
2321 u_int32_t offset;
2322 u_int32_t val;
2323
2324 /* Halt the CPU. */
2325 val = REG_RD_IND(sc, cpu_reg->mode);
2326 val |= cpu_reg->mode_value_halt;
2327 REG_WR_IND(sc, cpu_reg->mode, val);
2328 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2329
2330 /* Load the Text area. */
2331 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2332 if (fw->text) {
2333 int j;
2334
2335 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2336 REG_WR_IND(sc, offset, fw->text[j]);
2337 }
2338
2339 /* Load the Data area. */
2340 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2341 if (fw->data) {
2342 int j;
2343
2344 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2345 REG_WR_IND(sc, offset, fw->data[j]);
2346 }
2347
2348 /* Load the SBSS area. */
2349 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2350 if (fw->sbss) {
2351 int j;
2352
2353 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2354 REG_WR_IND(sc, offset, fw->sbss[j]);
2355 }
2356
2357 /* Load the BSS area. */
2358 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2359 if (fw->bss) {
2360 int j;
2361
2362 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2363 REG_WR_IND(sc, offset, fw->bss[j]);
2364 }
2365
2366 /* Load the Read-Only area. */
2367 offset = cpu_reg->spad_base +
2368 (fw->rodata_addr - cpu_reg->mips_view_base);
2369 if (fw->rodata) {
2370 int j;
2371
2372 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2373 REG_WR_IND(sc, offset, fw->rodata[j]);
2374 }
2375
2376 /* Clear the pre-fetch instruction. */
2377 REG_WR_IND(sc, cpu_reg->inst, 0);
2378 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2379
2380 /* Start the CPU. */
2381 val = REG_RD_IND(sc, cpu_reg->mode);
2382 val &= ~cpu_reg->mode_value_halt;
2383 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2384 REG_WR_IND(sc, cpu_reg->mode, val);
2385 }
2386
2387 /****************************************************************************/
2388 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2389 /* */
2390 /* Loads the firmware for each CPU and starts the CPU. */
2391 /* */
2392 /* Returns: */
2393 /* Nothing. */
2394 /****************************************************************************/
2395 void
2396 bnx_init_cpus(struct bnx_softc *sc)
2397 {
2398 struct cpu_reg cpu_reg;
2399 struct fw_info fw;
2400
2401 /* Initialize the RV2P processor. */
2402 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2403 RV2P_PROC1);
2404 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2405 RV2P_PROC2);
2406
2407 /* Initialize the RX Processor. */
2408 cpu_reg.mode = BNX_RXP_CPU_MODE;
2409 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2410 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2411 cpu_reg.state = BNX_RXP_CPU_STATE;
2412 cpu_reg.state_value_clear = 0xffffff;
2413 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2414 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2415 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2416 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2417 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2418 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2419 cpu_reg.mips_view_base = 0x8000000;
2420
2421 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2422 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2423 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2424 fw.start_addr = bnx_RXP_b06FwStartAddr;
2425
2426 fw.text_addr = bnx_RXP_b06FwTextAddr;
2427 fw.text_len = bnx_RXP_b06FwTextLen;
2428 fw.text_index = 0;
2429 fw.text = bnx_RXP_b06FwText;
2430
2431 fw.data_addr = bnx_RXP_b06FwDataAddr;
2432 fw.data_len = bnx_RXP_b06FwDataLen;
2433 fw.data_index = 0;
2434 fw.data = bnx_RXP_b06FwData;
2435
2436 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2437 fw.sbss_len = bnx_RXP_b06FwSbssLen;
2438 fw.sbss_index = 0;
2439 fw.sbss = bnx_RXP_b06FwSbss;
2440
2441 fw.bss_addr = bnx_RXP_b06FwBssAddr;
2442 fw.bss_len = bnx_RXP_b06FwBssLen;
2443 fw.bss_index = 0;
2444 fw.bss = bnx_RXP_b06FwBss;
2445
2446 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2447 fw.rodata_len = bnx_RXP_b06FwRodataLen;
2448 fw.rodata_index = 0;
2449 fw.rodata = bnx_RXP_b06FwRodata;
2450
2451 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2452 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2453
2454 /* Initialize the TX Processor. */
2455 cpu_reg.mode = BNX_TXP_CPU_MODE;
2456 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2457 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2458 cpu_reg.state = BNX_TXP_CPU_STATE;
2459 cpu_reg.state_value_clear = 0xffffff;
2460 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2461 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2462 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2463 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2464 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2465 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2466 cpu_reg.mips_view_base = 0x8000000;
2467
2468 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2469 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2470 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2471 fw.start_addr = bnx_TXP_b06FwStartAddr;
2472
2473 fw.text_addr = bnx_TXP_b06FwTextAddr;
2474 fw.text_len = bnx_TXP_b06FwTextLen;
2475 fw.text_index = 0;
2476 fw.text = bnx_TXP_b06FwText;
2477
2478 fw.data_addr = bnx_TXP_b06FwDataAddr;
2479 fw.data_len = bnx_TXP_b06FwDataLen;
2480 fw.data_index = 0;
2481 fw.data = bnx_TXP_b06FwData;
2482
2483 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2484 fw.sbss_len = bnx_TXP_b06FwSbssLen;
2485 fw.sbss_index = 0;
2486 fw.sbss = bnx_TXP_b06FwSbss;
2487
2488 fw.bss_addr = bnx_TXP_b06FwBssAddr;
2489 fw.bss_len = bnx_TXP_b06FwBssLen;
2490 fw.bss_index = 0;
2491 fw.bss = bnx_TXP_b06FwBss;
2492
2493 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
2494 fw.rodata_len = bnx_TXP_b06FwRodataLen;
2495 fw.rodata_index = 0;
2496 fw.rodata = bnx_TXP_b06FwRodata;
2497
2498 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2499 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2500
2501 /* Initialize the TX Patch-up Processor. */
2502 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2503 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2504 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2505 cpu_reg.state = BNX_TPAT_CPU_STATE;
2506 cpu_reg.state_value_clear = 0xffffff;
2507 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2508 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2509 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2510 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2511 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2512 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2513 cpu_reg.mips_view_base = 0x8000000;
2514
2515 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
2516 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
2517 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
2518 fw.start_addr = bnx_TPAT_b06FwStartAddr;
2519
2520 fw.text_addr = bnx_TPAT_b06FwTextAddr;
2521 fw.text_len = bnx_TPAT_b06FwTextLen;
2522 fw.text_index = 0;
2523 fw.text = bnx_TPAT_b06FwText;
2524
2525 fw.data_addr = bnx_TPAT_b06FwDataAddr;
2526 fw.data_len = bnx_TPAT_b06FwDataLen;
2527 fw.data_index = 0;
2528 fw.data = bnx_TPAT_b06FwData;
2529
2530 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
2531 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
2532 fw.sbss_index = 0;
2533 fw.sbss = bnx_TPAT_b06FwSbss;
2534
2535 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
2536 fw.bss_len = bnx_TPAT_b06FwBssLen;
2537 fw.bss_index = 0;
2538 fw.bss = bnx_TPAT_b06FwBss;
2539
2540 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
2541 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
2542 fw.rodata_index = 0;
2543 fw.rodata = bnx_TPAT_b06FwRodata;
2544
2545 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2546 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2547
2548 /* Initialize the Completion Processor. */
2549 cpu_reg.mode = BNX_COM_CPU_MODE;
2550 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2551 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2552 cpu_reg.state = BNX_COM_CPU_STATE;
2553 cpu_reg.state_value_clear = 0xffffff;
2554 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2555 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2556 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2557 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2558 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2559 cpu_reg.spad_base = BNX_COM_SCRATCH;
2560 cpu_reg.mips_view_base = 0x8000000;
2561
2562 fw.ver_major = bnx_COM_b06FwReleaseMajor;
2563 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
2564 fw.ver_fix = bnx_COM_b06FwReleaseFix;
2565 fw.start_addr = bnx_COM_b06FwStartAddr;
2566
2567 fw.text_addr = bnx_COM_b06FwTextAddr;
2568 fw.text_len = bnx_COM_b06FwTextLen;
2569 fw.text_index = 0;
2570 fw.text = bnx_COM_b06FwText;
2571
2572 fw.data_addr = bnx_COM_b06FwDataAddr;
2573 fw.data_len = bnx_COM_b06FwDataLen;
2574 fw.data_index = 0;
2575 fw.data = bnx_COM_b06FwData;
2576
2577 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
2578 fw.sbss_len = bnx_COM_b06FwSbssLen;
2579 fw.sbss_index = 0;
2580 fw.sbss = bnx_COM_b06FwSbss;
2581
2582 fw.bss_addr = bnx_COM_b06FwBssAddr;
2583 fw.bss_len = bnx_COM_b06FwBssLen;
2584 fw.bss_index = 0;
2585 fw.bss = bnx_COM_b06FwBss;
2586
2587 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
2588 fw.rodata_len = bnx_COM_b06FwRodataLen;
2589 fw.rodata_index = 0;
2590 fw.rodata = bnx_COM_b06FwRodata;
2591
2592 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2593 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2594 }
2595
2596 /****************************************************************************/
2597 /* Initialize context memory. */
2598 /* */
2599 /* Clears the memory associated with each Context ID (CID). */
2600 /* */
2601 /* Returns: */
2602 /* Nothing. */
2603 /****************************************************************************/
2604 void
2605 bnx_init_context(struct bnx_softc *sc)
2606 {
2607 u_int32_t vcid;
2608
2609 vcid = 96;
2610 while (vcid) {
2611 u_int32_t vcid_addr, pcid_addr, offset;
2612
2613 vcid--;
2614
2615 vcid_addr = GET_CID_ADDR(vcid);
2616 pcid_addr = vcid_addr;
2617
2618 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
2619 REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2620
2621 /* Zero out the context. */
2622 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2623 CTX_WR(sc, 0x00, offset, 0);
2624
2625 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
2626 REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2627 }
2628 }
2629
2630 /****************************************************************************/
2631 /* Fetch the permanent MAC address of the controller. */
2632 /* */
2633 /* Returns: */
2634 /* Nothing. */
2635 /****************************************************************************/
2636 void
2637 bnx_get_mac_addr(struct bnx_softc *sc)
2638 {
2639 u_int32_t mac_lo = 0, mac_hi = 0;
2640
2641 /*
2642 * The NetXtreme II bootcode populates various NIC
2643 * power-on and runtime configuration items in a
2644 * shared memory area. The factory configured MAC
2645 * address is available from both NVRAM and the
2646 * shared memory area so we'll read the value from
2647 * shared memory for speed.
2648 */
2649
2650 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
2651 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
2652
2653 if ((mac_lo == 0) && (mac_hi == 0)) {
2654 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
2655 __FILE__, __LINE__);
2656 } else {
2657 sc->eaddr[0] = (u_char)(mac_hi >> 8);
2658 sc->eaddr[1] = (u_char)(mac_hi >> 0);
2659 sc->eaddr[2] = (u_char)(mac_lo >> 24);
2660 sc->eaddr[3] = (u_char)(mac_lo >> 16);
2661 sc->eaddr[4] = (u_char)(mac_lo >> 8);
2662 sc->eaddr[5] = (u_char)(mac_lo >> 0);
2663 }
2664
2665 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
2666 "%s\n", ether_sprintf(sc->eaddr));
2667 }
2668
2669 /****************************************************************************/
2670 /* Program the MAC address. */
2671 /* */
2672 /* Returns: */
2673 /* Nothing. */
2674 /****************************************************************************/
2675 void
2676 bnx_set_mac_addr(struct bnx_softc *sc)
2677 {
2678 u_int32_t val;
2679 const u_int8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
2680
2681 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
2682 "%s\n", ether_sprintf(sc->eaddr));
2683
2684 val = (mac_addr[0] << 8) | mac_addr[1];
2685
2686 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
2687
2688 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2689 (mac_addr[4] << 8) | mac_addr[5];
2690
2691 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
2692 }
2693
2694 /****************************************************************************/
2695 /* Stop the controller. */
2696 /* */
2697 /* Returns: */
2698 /* Nothing. */
2699 /****************************************************************************/
2700 void
2701 bnx_stop(struct ifnet *ifp, int disable)
2702 {
2703 struct bnx_softc *sc = ifp->if_softc;
2704
2705 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2706
2707 if ((ifp->if_flags & IFF_RUNNING) == 0)
2708 return;
2709
2710 callout_stop(&sc->bnx_timeout);
2711
2712 mii_down(&sc->bnx_mii);
2713
2714 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2715
2716 /* Disable the transmit/receive blocks. */
2717 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
2718 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2719 DELAY(20);
2720
2721 bnx_disable_intr(sc);
2722
2723 /* Tell firmware that the driver is going away. */
2724 if (disable)
2725 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
2726 else
2727 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
2728
2729 /* Free the RX lists. */
2730 bnx_free_rx_chain(sc);
2731
2732 /* Free TX buffers. */
2733 bnx_free_tx_chain(sc);
2734
2735 ifp->if_timer = 0;
2736
2737 sc->bnx_link = 0;
2738
2739 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2740
2741 }
2742
2743 int
2744 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
2745 {
2746 u_int32_t val;
2747 int i, rc = 0;
2748
2749 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2750
2751 /* Wait for pending PCI transactions to complete. */
2752 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
2753 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
2754 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
2755 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
2756 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
2757 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2758 DELAY(5);
2759
2760 /* Assume bootcode is running. */
2761 sc->bnx_fw_timed_out = 0;
2762
2763 /* Give the firmware a chance to prepare for the reset. */
2764 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
2765 if (rc)
2766 goto bnx_reset_exit;
2767
2768 /* Set a firmware reminder that this is a soft reset. */
2769 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
2770 BNX_DRV_RESET_SIGNATURE_MAGIC);
2771
2772 /* Dummy read to force the chip to complete all current transactions. */
2773 val = REG_RD(sc, BNX_MISC_ID);
2774
2775 /* Chip reset. */
2776 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2777 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
2778 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
2779 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
2780
2781 /* Allow up to 30us for reset to complete. */
2782 for (i = 0; i < 10; i++) {
2783 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
2784 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2785 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
2786 break;
2787
2788 DELAY(10);
2789 }
2790
2791 /* Check that reset completed successfully. */
2792 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2793 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
2794 BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
2795 rc = EBUSY;
2796 goto bnx_reset_exit;
2797 }
2798
2799 /* Make sure byte swapping is properly configured. */
2800 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
2801 if (val != 0x01020304) {
2802 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
2803 __FILE__, __LINE__);
2804 rc = ENODEV;
2805 goto bnx_reset_exit;
2806 }
2807
2808 /* Just completed a reset, assume that firmware is running again. */
2809 sc->bnx_fw_timed_out = 0;
2810
2811 /* Wait for the firmware to finish its initialization. */
2812 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
2813 if (rc)
2814 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
2815 "initialization!\n", __FILE__, __LINE__);
2816
2817 bnx_reset_exit:
2818 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2819
2820 return (rc);
2821 }
2822
2823 int
2824 bnx_chipinit(struct bnx_softc *sc)
2825 {
2826 struct pci_attach_args *pa = &(sc->bnx_pa);
2827 u_int32_t val;
2828 int rc = 0;
2829
2830 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2831
2832 /* Make sure the interrupt is not active. */
2833 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
2834
2835 /* Initialize DMA byte/word swapping, configure the number of DMA */
2836 /* channels and PCI clock compensation delay. */
2837 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
2838 BNX_DMA_CONFIG_DATA_WORD_SWAP |
2839 #if BYTE_ORDER == BIG_ENDIAN
2840 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
2841 #endif
2842 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
2843 DMA_READ_CHANS << 12 |
2844 DMA_WRITE_CHANS << 16;
2845
2846 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
2847
2848 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
2849 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
2850
2851 /*
2852 * This setting resolves a problem observed on certain Intel PCI
2853 * chipsets that cannot handle multiple outstanding DMA operations.
2854 * See errata E9_5706A1_65.
2855 */
2856 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
2857 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
2858 !(sc->bnx_flags & BNX_PCIX_FLAG))
2859 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
2860
2861 REG_WR(sc, BNX_DMA_CONFIG, val);
2862
2863 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
2864 if (sc->bnx_flags & BNX_PCIX_FLAG) {
2865 u_int16_t nval;
2866
2867 nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
2868 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
2869 nval & ~0x2);
2870 }
2871
2872 /* Enable the RX_V2P and Context state machines before access. */
2873 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
2874 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
2875 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
2876 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
2877
2878 /* Initialize context mapping and zero out the quick contexts. */
2879 bnx_init_context(sc);
2880
2881 /* Initialize the on-boards CPUs */
2882 bnx_init_cpus(sc);
2883
2884 /* Prepare NVRAM for access. */
2885 if (bnx_init_nvram(sc)) {
2886 rc = ENODEV;
2887 goto bnx_chipinit_exit;
2888 }
2889
2890 /* Set the kernel bypass block size */
2891 val = REG_RD(sc, BNX_MQ_CONFIG);
2892 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
2893 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
2894 REG_WR(sc, BNX_MQ_CONFIG, val);
2895
2896 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
2897 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
2898 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
2899
2900 val = (BCM_PAGE_BITS - 8) << 24;
2901 REG_WR(sc, BNX_RV2P_CONFIG, val);
2902
2903 /* Configure page size. */
2904 val = REG_RD(sc, BNX_TBDR_CONFIG);
2905 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
2906 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
2907 REG_WR(sc, BNX_TBDR_CONFIG, val);
2908
2909 bnx_chipinit_exit:
2910 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2911
2912 return(rc);
2913 }
2914
2915 /****************************************************************************/
2916 /* Initialize the controller in preparation to send/receive traffic. */
2917 /* */
2918 /* Returns: */
2919 /* 0 for success, positive value for failure. */
2920 /****************************************************************************/
2921 int
2922 bnx_blockinit(struct bnx_softc *sc)
2923 {
2924 u_int32_t reg, val;
2925 int rc = 0;
2926
2927 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2928
2929 /* Load the hardware default MAC address. */
2930 bnx_set_mac_addr(sc);
2931
2932 /* Set the Ethernet backoff seed value */
2933 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
2934 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
2935 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
2936
2937 sc->last_status_idx = 0;
2938 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
2939
2940 /* Set up link change interrupt generation. */
2941 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
2942
2943 /* Program the physical address of the status block. */
2944 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
2945 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
2946 (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
2947
2948 /* Program the physical address of the statistics block. */
2949 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
2950 (u_int32_t)(sc->stats_block_paddr));
2951 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
2952 (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
2953
2954 /* Program various host coalescing parameters. */
2955 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
2956 << 16) | sc->bnx_tx_quick_cons_trip);
2957 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
2958 << 16) | sc->bnx_rx_quick_cons_trip);
2959 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
2960 sc->bnx_comp_prod_trip);
2961 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
2962 sc->bnx_tx_ticks);
2963 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
2964 sc->bnx_rx_ticks);
2965 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
2966 sc->bnx_com_ticks);
2967 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
2968 sc->bnx_cmd_ticks);
2969 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
2970 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
2971 REG_WR(sc, BNX_HC_CONFIG,
2972 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
2973 BNX_HC_CONFIG_COLLECT_STATS));
2974
2975 /* Clear the internal statistics counters. */
2976 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
2977
2978 /* Verify that bootcode is running. */
2979 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
2980
2981 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
2982 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
2983 __FILE__, __LINE__); reg = 0);
2984
2985 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
2986 BNX_DEV_INFO_SIGNATURE_MAGIC) {
2987 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
2988 "Expected: 08%08X\n", __FILE__, __LINE__,
2989 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
2990 BNX_DEV_INFO_SIGNATURE_MAGIC);
2991 rc = ENODEV;
2992 goto bnx_blockinit_exit;
2993 }
2994
2995 /* Check if any management firmware is running. */
2996 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
2997 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
2998 BNX_PORT_FEATURE_IMD_ENABLED)) {
2999 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3000 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3001 }
3002
3003 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3004 BNX_DEV_INFO_BC_REV);
3005
3006 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3007
3008 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3009 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3010
3011 /* Enable link state change interrupt generation. */
3012 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3013
3014 /* Enable all remaining blocks in the MAC. */
3015 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3016 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3017 DELAY(20);
3018
3019 bnx_blockinit_exit:
3020 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3021
3022 return (rc);
3023 }
3024
3025 /****************************************************************************/
3026 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3027 /* */
3028 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3029 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3030 /* necessary. */
3031 /* */
3032 /* Returns: */
3033 /* 0 for success, positive value for failure. */
3034 /****************************************************************************/
3035 int
3036 bnx_get_buf(struct bnx_softc *sc, struct mbuf *m, u_int16_t *prod,
3037 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3038 {
3039 bus_dmamap_t map;
3040 struct mbuf *m_new = NULL;
3041 struct rx_bd *rxbd;
3042 int i, rc = 0;
3043 u_int32_t addr;
3044 #ifdef BNX_DEBUG
3045 u_int16_t debug_chain_prod = *chain_prod;
3046 #endif
3047 u_int16_t first_chain_prod;
3048 u_int16_t min_free_bd;
3049
3050 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3051 __func__);
3052
3053 /* Make sure the inputs are valid. */
3054 DBRUNIF((*chain_prod > MAX_RX_BD),
3055 aprint_error_dev(sc->bnx_dev,
3056 "RX producer out of range: 0x%04X > 0x%04X\n",
3057 *chain_prod, (u_int16_t)MAX_RX_BD));
3058
3059 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3060 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3061 *prod_bseq);
3062
3063 /* try to get in as many mbufs as possible */
3064 if (sc->mbuf_alloc_size == MCLBYTES)
3065 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3066 else
3067 min_free_bd = (BNX_MAX_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3068 while (sc->free_rx_bd >= min_free_bd) {
3069 if (m == NULL) {
3070 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3071 BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
3072
3073 sc->mbuf_alloc_failed++;
3074 rc = ENOBUFS;
3075 goto bnx_get_buf_exit);
3076
3077 /* This is a new mbuf allocation. */
3078 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3079 if (m_new == NULL) {
3080 DBPRINT(sc, BNX_WARN,
3081 "%s(%d): RX mbuf header allocation failed!\n",
3082 __FILE__, __LINE__);
3083
3084 DBRUNIF(1, sc->mbuf_alloc_failed++);
3085
3086 rc = ENOBUFS;
3087 goto bnx_get_buf_exit;
3088 }
3089
3090 DBRUNIF(1, sc->rx_mbuf_alloc++);
3091 if (sc->mbuf_alloc_size == MCLBYTES)
3092 MCLGET(m_new, M_DONTWAIT);
3093 else
3094 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3095 M_DONTWAIT);
3096 if (!(m_new->m_flags & M_EXT)) {
3097 DBPRINT(sc, BNX_WARN,
3098 "%s(%d): RX mbuf chain allocation failed!\n",
3099 __FILE__, __LINE__);
3100
3101 m_freem(m_new);
3102
3103 DBRUNIF(1, sc->rx_mbuf_alloc--);
3104 DBRUNIF(1, sc->mbuf_alloc_failed++);
3105
3106 rc = ENOBUFS;
3107 goto bnx_get_buf_exit;
3108 }
3109
3110 } else {
3111 m_new = m;
3112 m = NULL;
3113 m_new->m_data = m_new->m_ext.ext_buf;
3114 }
3115 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3116
3117 /* Map the mbuf cluster into device memory. */
3118 map = sc->rx_mbuf_map[*chain_prod];
3119 first_chain_prod = *chain_prod;
3120 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3121 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3122 __FILE__, __LINE__);
3123
3124 m_freem(m_new);
3125
3126 DBRUNIF(1, sc->rx_mbuf_alloc--);
3127
3128 rc = ENOBUFS;
3129 goto bnx_get_buf_exit;
3130 }
3131 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3132 BUS_DMASYNC_PREREAD);
3133
3134 /* Watch for overflow. */
3135 DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
3136 aprint_error_dev(sc->bnx_dev,
3137 "Too many free rx_bd (0x%04X > 0x%04X)!\n",
3138 sc->free_rx_bd, (u_int16_t)USABLE_RX_BD));
3139
3140 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3141 sc->rx_low_watermark = sc->free_rx_bd);
3142
3143 /*
3144 * Setup the rx_bd for the first segment
3145 */
3146 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3147
3148 addr = (u_int32_t)(map->dm_segs[0].ds_addr);
3149 rxbd->rx_bd_haddr_lo = htole32(addr);
3150 addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3151 rxbd->rx_bd_haddr_hi = htole32(addr);
3152 rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
3153 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3154 *prod_bseq += map->dm_segs[0].ds_len;
3155 bus_dmamap_sync(sc->bnx_dmatag,
3156 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3157 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3158 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3159
3160 for (i = 1; i < map->dm_nsegs; i++) {
3161 *prod = NEXT_RX_BD(*prod);
3162 *chain_prod = RX_CHAIN_IDX(*prod);
3163
3164 rxbd =
3165 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3166
3167 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
3168 rxbd->rx_bd_haddr_lo = htole32(addr);
3169 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3170 rxbd->rx_bd_haddr_hi = htole32(addr);
3171 rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
3172 rxbd->rx_bd_flags = 0;
3173 *prod_bseq += map->dm_segs[i].ds_len;
3174 bus_dmamap_sync(sc->bnx_dmatag,
3175 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3176 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3177 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3178 }
3179
3180 rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3181 bus_dmamap_sync(sc->bnx_dmatag,
3182 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3183 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3184 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3185
3186 /*
3187 * Save the mbuf, ajust the map pointer (swap map for first and
3188 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3189 * and update counter.
3190 */
3191 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3192 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3193 sc->rx_mbuf_map[*chain_prod] = map;
3194 sc->free_rx_bd -= map->dm_nsegs;
3195
3196 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3197 map->dm_nsegs));
3198 *prod = NEXT_RX_BD(*prod);
3199 *chain_prod = RX_CHAIN_IDX(*prod);
3200 }
3201
3202 bnx_get_buf_exit:
3203 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3204 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3205 *chain_prod, *prod_bseq);
3206
3207 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3208 __func__);
3209
3210 return(rc);
3211 }
3212
3213 /****************************************************************************/
3214 /* Allocate memory and initialize the TX data structures. */
3215 /* */
3216 /* Returns: */
3217 /* 0 for success, positive value for failure. */
3218 /****************************************************************************/
3219 int
3220 bnx_init_tx_chain(struct bnx_softc *sc)
3221 {
3222 struct tx_bd *txbd;
3223 u_int32_t val, addr;
3224 int i, rc = 0;
3225
3226 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3227
3228 /* Set the initial TX producer/consumer indices. */
3229 sc->tx_prod = 0;
3230 sc->tx_cons = 0;
3231 sc->tx_prod_bseq = 0;
3232 sc->used_tx_bd = 0;
3233 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3234
3235 /*
3236 * The NetXtreme II supports a linked-list structure called
3237 * a Buffer Descriptor Chain (or BD chain). A BD chain
3238 * consists of a series of 1 or more chain pages, each of which
3239 * consists of a fixed number of BD entries.
3240 * The last BD entry on each page is a pointer to the next page
3241 * in the chain, and the last pointer in the BD chain
3242 * points back to the beginning of the chain.
3243 */
3244
3245 /* Set the TX next pointer chain entries. */
3246 for (i = 0; i < TX_PAGES; i++) {
3247 int j;
3248
3249 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3250
3251 /* Check if we've reached the last page. */
3252 if (i == (TX_PAGES - 1))
3253 j = 0;
3254 else
3255 j = i + 1;
3256
3257 addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
3258 txbd->tx_bd_haddr_lo = htole32(addr);
3259 addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3260 txbd->tx_bd_haddr_hi = htole32(addr);
3261 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3262 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3263 }
3264
3265 /*
3266 * Initialize the context ID for an L2 TX chain.
3267 */
3268 val = BNX_L2CTX_TYPE_TYPE_L2;
3269 val |= BNX_L2CTX_TYPE_SIZE_L2;
3270 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3271
3272 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3273 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3274
3275 /* Point the hardware to the first page in the chain. */
3276 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3277 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3278 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3279 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3280
3281 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
3282
3283 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3284
3285 return(rc);
3286 }
3287
3288 /****************************************************************************/
3289 /* Free memory and clear the TX data structures. */
3290 /* */
3291 /* Returns: */
3292 /* Nothing. */
3293 /****************************************************************************/
3294 void
3295 bnx_free_tx_chain(struct bnx_softc *sc)
3296 {
3297 int i;
3298
3299 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3300
3301 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
3302 for (i = 0; i < TOTAL_TX_BD; i++) {
3303 if (sc->tx_mbuf_ptr[i] != NULL) {
3304 if (sc->tx_mbuf_map != NULL)
3305 bus_dmamap_sync(sc->bnx_dmatag,
3306 sc->tx_mbuf_map[i], 0,
3307 sc->tx_mbuf_map[i]->dm_mapsize,
3308 BUS_DMASYNC_POSTWRITE);
3309 m_freem(sc->tx_mbuf_ptr[i]);
3310 sc->tx_mbuf_ptr[i] = NULL;
3311 DBRUNIF(1, sc->tx_mbuf_alloc--);
3312 }
3313 }
3314
3315 /* Clear each TX chain page. */
3316 for (i = 0; i < TX_PAGES; i++) {
3317 bzero((char *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
3318 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3319 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3320 }
3321
3322 /* Check if we lost any mbufs in the process. */
3323 DBRUNIF((sc->tx_mbuf_alloc),
3324 aprint_error_dev(sc->bnx_dev,
3325 "Memory leak! Lost %d mbufs from tx chain!\n",
3326 sc->tx_mbuf_alloc));
3327
3328 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3329 }
3330
3331 /****************************************************************************/
3332 /* Allocate memory and initialize the RX data structures. */
3333 /* */
3334 /* Returns: */
3335 /* 0 for success, positive value for failure. */
3336 /****************************************************************************/
3337 int
3338 bnx_init_rx_chain(struct bnx_softc *sc)
3339 {
3340 struct rx_bd *rxbd;
3341 int i, rc = 0;
3342 u_int16_t prod, chain_prod;
3343 u_int32_t prod_bseq, val, addr;
3344
3345 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3346
3347 /* Initialize the RX producer and consumer indices. */
3348 sc->rx_prod = 0;
3349 sc->rx_cons = 0;
3350 sc->rx_prod_bseq = 0;
3351 sc->free_rx_bd = BNX_RX_SLACK_SPACE;
3352 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
3353
3354 /* Initialize the RX next pointer chain entries. */
3355 for (i = 0; i < RX_PAGES; i++) {
3356 int j;
3357
3358 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
3359
3360 /* Check if we've reached the last page. */
3361 if (i == (RX_PAGES - 1))
3362 j = 0;
3363 else
3364 j = i + 1;
3365
3366 /* Setup the chain page pointers. */
3367 addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
3368 rxbd->rx_bd_haddr_hi = htole32(addr);
3369 addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
3370 rxbd->rx_bd_haddr_lo = htole32(addr);
3371 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
3372 0, BNX_RX_CHAIN_PAGE_SZ,
3373 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3374 }
3375
3376 /* Initialize the context ID for an L2 RX chain. */
3377 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
3378 val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
3379 val |= 0x02 << 8;
3380 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
3381
3382 /* Point the hardware to the first page in the chain. */
3383 val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
3384 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
3385 val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
3386 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
3387
3388 /* Allocate mbuf clusters for the rx_bd chain. */
3389 prod = prod_bseq = 0;
3390 chain_prod = RX_CHAIN_IDX(prod);
3391 if (bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq)) {
3392 BNX_PRINTF(sc,
3393 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
3394 }
3395
3396 /* Save the RX chain producer index. */
3397 sc->rx_prod = prod;
3398 sc->rx_prod_bseq = prod_bseq;
3399
3400 for (i = 0; i < RX_PAGES; i++)
3401 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
3402 sc->rx_bd_chain_map[i]->dm_mapsize,
3403 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3404
3405 /* Tell the chip about the waiting rx_bd's. */
3406 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3407 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3408
3409 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
3410
3411 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3412
3413 return(rc);
3414 }
3415
3416 /****************************************************************************/
3417 /* Free memory and clear the RX data structures. */
3418 /* */
3419 /* Returns: */
3420 /* Nothing. */
3421 /****************************************************************************/
3422 void
3423 bnx_free_rx_chain(struct bnx_softc *sc)
3424 {
3425 int i;
3426
3427 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3428
3429 /* Free any mbufs still in the RX mbuf chain. */
3430 for (i = 0; i < TOTAL_RX_BD; i++) {
3431 if (sc->rx_mbuf_ptr[i] != NULL) {
3432 if (sc->rx_mbuf_map[i] != NULL)
3433 bus_dmamap_sync(sc->bnx_dmatag,
3434 sc->rx_mbuf_map[i], 0,
3435 sc->rx_mbuf_map[i]->dm_mapsize,
3436 BUS_DMASYNC_POSTREAD);
3437 m_freem(sc->rx_mbuf_ptr[i]);
3438 sc->rx_mbuf_ptr[i] = NULL;
3439 DBRUNIF(1, sc->rx_mbuf_alloc--);
3440 }
3441 }
3442
3443 /* Clear each RX chain page. */
3444 for (i = 0; i < RX_PAGES; i++)
3445 bzero((char *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
3446
3447 /* Check if we lost any mbufs in the process. */
3448 DBRUNIF((sc->rx_mbuf_alloc),
3449 aprint_error_dev(sc->bnx_dev,
3450 "Memory leak! Lost %d mbufs from rx chain!\n",
3451 sc->rx_mbuf_alloc));
3452
3453 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3454 }
3455
3456 /****************************************************************************/
3457 /* Set media options. */
3458 /* */
3459 /* Returns: */
3460 /* 0 for success, positive value for failure. */
3461 /****************************************************************************/
3462 int
3463 bnx_ifmedia_upd(struct ifnet *ifp)
3464 {
3465 struct bnx_softc *sc;
3466 struct mii_data *mii;
3467 struct ifmedia *ifm;
3468 int rc;
3469
3470 sc = ifp->if_softc;
3471 ifm = &sc->bnx_ifmedia;
3472
3473 /* DRC - ToDo: Add SerDes support. */
3474
3475 mii = &sc->bnx_mii;
3476 sc->bnx_link = 0;
3477 if ((rc = mii_mediachg(mii)) == ENXIO)
3478 return 0;
3479 return rc;
3480 }
3481
3482 /****************************************************************************/
3483 /* Reports current media status. */
3484 /* */
3485 /* Returns: */
3486 /* Nothing. */
3487 /****************************************************************************/
3488 void
3489 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3490 {
3491 struct bnx_softc *sc;
3492 struct mii_data *mii;
3493 int s;
3494
3495 sc = ifp->if_softc;
3496
3497 s = splnet();
3498
3499 mii = &sc->bnx_mii;
3500
3501 /* DRC - ToDo: Add SerDes support. */
3502
3503 mii_pollstat(mii);
3504 ifmr->ifm_active = mii->mii_media_active;
3505 ifmr->ifm_status = mii->mii_media_status;
3506
3507 splx(s);
3508 }
3509
3510 /****************************************************************************/
3511 /* Handles PHY generated interrupt events. */
3512 /* */
3513 /* Returns: */
3514 /* Nothing. */
3515 /****************************************************************************/
3516 void
3517 bnx_phy_intr(struct bnx_softc *sc)
3518 {
3519 u_int32_t new_link_state, old_link_state;
3520
3521 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3522 BUS_DMASYNC_POSTREAD);
3523 new_link_state = sc->status_block->status_attn_bits &
3524 STATUS_ATTN_BITS_LINK_STATE;
3525 old_link_state = sc->status_block->status_attn_bits_ack &
3526 STATUS_ATTN_BITS_LINK_STATE;
3527
3528 /* Handle any changes if the link state has changed. */
3529 if (new_link_state != old_link_state) {
3530 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
3531
3532 sc->bnx_link = 0;
3533 callout_stop(&sc->bnx_timeout);
3534 bnx_tick(sc);
3535
3536 /* Update the status_attn_bits_ack field in the status block. */
3537 if (new_link_state) {
3538 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
3539 STATUS_ATTN_BITS_LINK_STATE);
3540 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
3541 } else {
3542 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
3543 STATUS_ATTN_BITS_LINK_STATE);
3544 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
3545 }
3546 }
3547
3548 /* Acknowledge the link change interrupt. */
3549 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
3550 }
3551
3552 /****************************************************************************/
3553 /* Handles received frame interrupt events. */
3554 /* */
3555 /* Returns: */
3556 /* Nothing. */
3557 /****************************************************************************/
3558 void
3559 bnx_rx_intr(struct bnx_softc *sc)
3560 {
3561 struct status_block *sblk = sc->status_block;
3562 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3563 u_int16_t hw_cons, sw_cons, sw_chain_cons;
3564 u_int16_t sw_prod, sw_chain_prod;
3565 u_int32_t sw_prod_bseq;
3566 struct l2_fhdr *l2fhdr;
3567 int i;
3568
3569 DBRUNIF(1, sc->rx_interrupts++);
3570 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3571 BUS_DMASYNC_POSTREAD);
3572
3573 /* Prepare the RX chain pages to be accessed by the host CPU. */
3574 for (i = 0; i < RX_PAGES; i++)
3575 bus_dmamap_sync(sc->bnx_dmatag,
3576 sc->rx_bd_chain_map[i], 0,
3577 sc->rx_bd_chain_map[i]->dm_mapsize,
3578 BUS_DMASYNC_POSTWRITE);
3579
3580 /* Get the hardware's view of the RX consumer index. */
3581 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
3582 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
3583 hw_cons++;
3584
3585 /* Get working copies of the driver's view of the RX indices. */
3586 sw_cons = sc->rx_cons;
3587 sw_prod = sc->rx_prod;
3588 sw_prod_bseq = sc->rx_prod_bseq;
3589
3590 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
3591 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
3592 __func__, sw_prod, sw_cons, sw_prod_bseq);
3593
3594 /* Prevent speculative reads from getting ahead of the status block. */
3595 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3596 BUS_SPACE_BARRIER_READ);
3597
3598 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3599 sc->rx_low_watermark = sc->free_rx_bd);
3600
3601 /*
3602 * Scan through the receive chain as long
3603 * as there is work to do.
3604 */
3605 while (sw_cons != hw_cons) {
3606 struct mbuf *m;
3607 struct rx_bd *rxbd;
3608 unsigned int len;
3609 u_int32_t status;
3610
3611 /* Convert the producer/consumer indices to an actual
3612 * rx_bd index.
3613 */
3614 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
3615 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
3616
3617 /* Get the used rx_bd. */
3618 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
3619 sc->free_rx_bd++;
3620
3621 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
3622 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
3623
3624 /* The mbuf is stored with the last rx_bd entry of a packet. */
3625 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
3626 #ifdef DIAGNOSTIC
3627 /* Validate that this is the last rx_bd. */
3628 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
3629 printf("%s: Unexpected mbuf found in "
3630 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
3631 sw_chain_cons);
3632 }
3633 #endif
3634
3635 /* DRC - ToDo: If the received packet is small, say less
3636 * than 128 bytes, allocate a new mbuf here,
3637 * copy the data to that mbuf, and recycle
3638 * the mapped jumbo frame.
3639 */
3640
3641 /* Unmap the mbuf from DMA space. */
3642 #ifdef DIAGNOSTIC
3643 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
3644 printf("invalid map sw_cons 0x%x "
3645 "sw_prod 0x%x "
3646 "sw_chain_cons 0x%x "
3647 "sw_chain_prod 0x%x "
3648 "hw_cons 0x%x "
3649 "TOTAL_RX_BD_PER_PAGE 0x%x "
3650 "TOTAL_RX_BD 0x%x\n",
3651 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
3652 hw_cons,
3653 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
3654 }
3655 #endif
3656 bus_dmamap_sync(sc->bnx_dmatag,
3657 sc->rx_mbuf_map[sw_chain_cons], 0,
3658 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
3659 BUS_DMASYNC_POSTREAD);
3660 bus_dmamap_unload(sc->bnx_dmatag,
3661 sc->rx_mbuf_map[sw_chain_cons]);
3662
3663 /* Remove the mbuf from the driver's chain. */
3664 m = sc->rx_mbuf_ptr[sw_chain_cons];
3665 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
3666
3667 /*
3668 * Frames received on the NetXteme II are prepended
3669 * with the l2_fhdr structure which provides status
3670 * information about the received frame (including
3671 * VLAN tags and checksum info) and are also
3672 * automatically adjusted to align the IP header
3673 * (i.e. two null bytes are inserted before the
3674 * Ethernet header).
3675 */
3676 l2fhdr = mtod(m, struct l2_fhdr *);
3677
3678 len = l2fhdr->l2_fhdr_pkt_len;
3679 status = l2fhdr->l2_fhdr_status;
3680
3681 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
3682 aprint_error("Simulating l2_fhdr status error.\n");
3683 status = status | L2_FHDR_ERRORS_PHY_DECODE);
3684
3685 /* Watch for unusual sized frames. */
3686 DBRUNIF(((len < BNX_MIN_MTU) ||
3687 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
3688 aprint_error_dev(sc->bnx_dev,
3689 "Unusual frame size found. "
3690 "Min(%d), Actual(%d), Max(%d)\n",
3691 (int)BNX_MIN_MTU, len,
3692 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
3693
3694 bnx_dump_mbuf(sc, m);
3695 bnx_breakpoint(sc));
3696
3697 len -= ETHER_CRC_LEN;
3698
3699 /* Check the received frame for errors. */
3700 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
3701 L2_FHDR_ERRORS_PHY_DECODE |
3702 L2_FHDR_ERRORS_ALIGNMENT |
3703 L2_FHDR_ERRORS_TOO_SHORT |
3704 L2_FHDR_ERRORS_GIANT_FRAME)) ||
3705 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
3706 len >
3707 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
3708 ifp->if_ierrors++;
3709 DBRUNIF(1, sc->l2fhdr_status_errors++);
3710
3711 /* Reuse the mbuf for a new frame. */
3712 if (bnx_get_buf(sc, m, &sw_prod,
3713 &sw_chain_prod, &sw_prod_bseq)) {
3714 DBRUNIF(1, bnx_breakpoint(sc));
3715 panic("%s: Can't reuse RX mbuf!\n",
3716 device_xname(sc->bnx_dev));
3717 }
3718 continue;
3719 }
3720
3721 /*
3722 * Get a new mbuf for the rx_bd. If no new
3723 * mbufs are available then reuse the current mbuf,
3724 * log an ierror on the interface, and generate
3725 * an error in the system log.
3726 */
3727 if (bnx_get_buf(sc, NULL, &sw_prod, &sw_chain_prod,
3728 &sw_prod_bseq)) {
3729 DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
3730 "new mbuf, incoming frame dropped!\n"));
3731
3732 ifp->if_ierrors++;
3733
3734 /* Try and reuse the exisitng mbuf. */
3735 if (bnx_get_buf(sc, m, &sw_prod,
3736 &sw_chain_prod, &sw_prod_bseq)) {
3737 DBRUNIF(1, bnx_breakpoint(sc));
3738 panic("%s: Double mbuf allocation "
3739 "failure!",
3740 device_xname(sc->bnx_dev));
3741 }
3742 continue;
3743 }
3744
3745 /* Skip over the l2_fhdr when passing the data up
3746 * the stack.
3747 */
3748 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
3749
3750 /* Adjust the pckt length to match the received data. */
3751 m->m_pkthdr.len = m->m_len = len;
3752
3753 /* Send the packet to the appropriate interface. */
3754 m->m_pkthdr.rcvif = ifp;
3755
3756 DBRUN(BNX_VERBOSE_RECV,
3757 struct ether_header *eh;
3758 eh = mtod(m, struct ether_header *);
3759 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
3760 __func__, ether_sprintf(eh->ether_dhost),
3761 ether_sprintf(eh->ether_shost),
3762 htons(eh->ether_type)));
3763
3764 /* Validate the checksum. */
3765
3766 /* Check for an IP datagram. */
3767 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
3768 /* Check if the IP checksum is valid. */
3769 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
3770 == 0)
3771 m->m_pkthdr.csum_flags |=
3772 M_CSUM_IPv4;
3773 #ifdef BNX_DEBUG
3774 else
3775 DBPRINT(sc, BNX_WARN_SEND,
3776 "%s(): Invalid IP checksum "
3777 "= 0x%04X!\n",
3778 __func__,
3779 l2fhdr->l2_fhdr_ip_xsum
3780 );
3781 #endif
3782 }
3783
3784 /* Check for a valid TCP/UDP frame. */
3785 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3786 L2_FHDR_STATUS_UDP_DATAGRAM)) {
3787 /* Check for a good TCP/UDP checksum. */
3788 if ((status &
3789 (L2_FHDR_ERRORS_TCP_XSUM |
3790 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
3791 m->m_pkthdr.csum_flags |=
3792 M_CSUM_TCPv4 |
3793 M_CSUM_UDPv4;
3794 } else {
3795 DBPRINT(sc, BNX_WARN_SEND,
3796 "%s(): Invalid TCP/UDP "
3797 "checksum = 0x%04X!\n",
3798 __func__,
3799 l2fhdr->l2_fhdr_tcp_udp_xsum);
3800 }
3801 }
3802
3803 /*
3804 * If we received a packet with a vlan tag,
3805 * attach that information to the packet.
3806 */
3807 if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
3808 #if 0
3809 struct ether_vlan_header vh;
3810
3811 DBPRINT(sc, BNX_VERBOSE_SEND,
3812 "%s(): VLAN tag = 0x%04X\n",
3813 __func__,
3814 l2fhdr->l2_fhdr_vlan_tag);
3815
3816 if (m->m_pkthdr.len < ETHER_HDR_LEN) {
3817 m_freem(m);
3818 continue;
3819 }
3820 m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh);
3821 vh.evl_proto = vh.evl_encap_proto;
3822 vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag;
3823 vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
3824 m_adj(m, ETHER_HDR_LEN);
3825 if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
3826 continue;
3827 m->m_pkthdr.len += sizeof(vh);
3828 if (m->m_len < sizeof(vh) &&
3829 (m = m_pullup(m, sizeof(vh))) == NULL)
3830 goto bnx_rx_int_next_rx;
3831 m_copyback(m, 0, sizeof(vh), &vh);
3832 #else
3833 VLAN_INPUT_TAG(ifp, m,
3834 l2fhdr->l2_fhdr_vlan_tag,
3835 continue);
3836 #endif
3837 }
3838
3839 #if NBPFILTER > 0
3840 /*
3841 * Handle BPF listeners. Let the BPF
3842 * user see the packet.
3843 */
3844 if (ifp->if_bpf)
3845 bpf_mtap(ifp->if_bpf, m);
3846 #endif
3847
3848 /* Pass the mbuf off to the upper layers. */
3849 ifp->if_ipackets++;
3850 DBPRINT(sc, BNX_VERBOSE_RECV,
3851 "%s(): Passing received frame up.\n", __func__);
3852 (*ifp->if_input)(ifp, m);
3853 DBRUNIF(1, sc->rx_mbuf_alloc--);
3854
3855 }
3856
3857 sw_cons = NEXT_RX_BD(sw_cons);
3858
3859 /* Refresh hw_cons to see if there's new work */
3860 if (sw_cons == hw_cons) {
3861 hw_cons = sc->hw_rx_cons =
3862 sblk->status_rx_quick_consumer_index0;
3863 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
3864 USABLE_RX_BD_PER_PAGE)
3865 hw_cons++;
3866 }
3867
3868 /* Prevent speculative reads from getting ahead of
3869 * the status block.
3870 */
3871 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3872 BUS_SPACE_BARRIER_READ);
3873 }
3874
3875 for (i = 0; i < RX_PAGES; i++)
3876 bus_dmamap_sync(sc->bnx_dmatag,
3877 sc->rx_bd_chain_map[i], 0,
3878 sc->rx_bd_chain_map[i]->dm_mapsize,
3879 BUS_DMASYNC_PREWRITE);
3880
3881 sc->rx_cons = sw_cons;
3882 sc->rx_prod = sw_prod;
3883 sc->rx_prod_bseq = sw_prod_bseq;
3884
3885 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3886 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3887
3888 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
3889 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
3890 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
3891 }
3892
3893 /****************************************************************************/
3894 /* Handles transmit completion interrupt events. */
3895 /* */
3896 /* Returns: */
3897 /* Nothing. */
3898 /****************************************************************************/
3899 void
3900 bnx_tx_intr(struct bnx_softc *sc)
3901 {
3902 struct status_block *sblk = sc->status_block;
3903 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3904 u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
3905
3906 DBRUNIF(1, sc->tx_interrupts++);
3907 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3908 BUS_DMASYNC_POSTREAD);
3909
3910 /* Get the hardware's view of the TX consumer index. */
3911 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
3912
3913 /* Skip to the next entry if this is a chain page pointer. */
3914 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
3915 hw_tx_cons++;
3916
3917 sw_tx_cons = sc->tx_cons;
3918
3919 /* Prevent speculative reads from getting ahead of the status block. */
3920 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3921 BUS_SPACE_BARRIER_READ);
3922
3923 /* Cycle through any completed TX chain page entries. */
3924 while (sw_tx_cons != hw_tx_cons) {
3925 #ifdef BNX_DEBUG
3926 struct tx_bd *txbd = NULL;
3927 #endif
3928 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
3929
3930 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
3931 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
3932 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
3933
3934 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
3935 aprint_error_dev(sc->bnx_dev,
3936 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
3937 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
3938
3939 DBRUNIF(1, txbd = &sc->tx_bd_chain
3940 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
3941
3942 DBRUNIF((txbd == NULL),
3943 aprint_error_dev(sc->bnx_dev,
3944 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
3945 bnx_breakpoint(sc));
3946
3947 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
3948 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
3949
3950 /*
3951 * Free the associated mbuf. Remember
3952 * that only the last tx_bd of a packet
3953 * has an mbuf pointer and DMA map.
3954 */
3955 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
3956 /* Validate that this is the last tx_bd. */
3957 DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
3958 TX_BD_FLAGS_END)),
3959 aprint_error_dev(sc->bnx_dev,
3960 "tx_bd END flag not set but txmbuf == NULL!\n");
3961 bnx_breakpoint(sc));
3962
3963 DBRUN(BNX_INFO_SEND,
3964 aprint_debug("%s: Unloading map/freeing mbuf "
3965 "from tx_bd[0x%04X]\n",
3966 __func__, sw_tx_chain_cons));
3967
3968 /* Unmap the mbuf. */
3969 bus_dmamap_unload(sc->bnx_dmatag,
3970 sc->tx_mbuf_map[sw_tx_chain_cons]);
3971
3972 /* Free the mbuf. */
3973 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
3974 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
3975 DBRUNIF(1, sc->tx_mbuf_alloc--);
3976
3977 ifp->if_opackets++;
3978 }
3979
3980 sc->used_tx_bd--;
3981 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
3982
3983 /* Refresh hw_cons to see if there's new work. */
3984 hw_tx_cons = sc->hw_tx_cons =
3985 sblk->status_tx_quick_consumer_index0;
3986 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
3987 USABLE_TX_BD_PER_PAGE)
3988 hw_tx_cons++;
3989
3990 /* Prevent speculative reads from getting ahead of
3991 * the status block.
3992 */
3993 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3994 BUS_SPACE_BARRIER_READ);
3995 }
3996
3997 /* Clear the TX timeout timer. */
3998 ifp->if_timer = 0;
3999
4000 /* Clear the tx hardware queue full flag. */
4001 if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
4002 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4003 aprint_debug_dev(sc->bnx_dev,
4004 "TX chain is open for business! Used tx_bd = %d\n",
4005 sc->used_tx_bd));
4006 ifp->if_flags &= ~IFF_OACTIVE;
4007 }
4008
4009 sc->tx_cons = sw_tx_cons;
4010 }
4011
4012 /****************************************************************************/
4013 /* Disables interrupt generation. */
4014 /* */
4015 /* Returns: */
4016 /* Nothing. */
4017 /****************************************************************************/
4018 void
4019 bnx_disable_intr(struct bnx_softc *sc)
4020 {
4021 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4022 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4023 }
4024
4025 /****************************************************************************/
4026 /* Enables interrupt generation. */
4027 /* */
4028 /* Returns: */
4029 /* Nothing. */
4030 /****************************************************************************/
4031 void
4032 bnx_enable_intr(struct bnx_softc *sc)
4033 {
4034 u_int32_t val;
4035
4036 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4037 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4038
4039 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4040 sc->last_status_idx);
4041
4042 val = REG_RD(sc, BNX_HC_COMMAND);
4043 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4044 }
4045
4046 /****************************************************************************/
4047 /* Handles controller initialization. */
4048 /* */
4049 /****************************************************************************/
4050 int
4051 bnx_init(struct ifnet *ifp)
4052 {
4053 struct bnx_softc *sc = ifp->if_softc;
4054 u_int32_t ether_mtu;
4055 int s, error = 0;
4056
4057 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4058
4059 s = splnet();
4060
4061 bnx_stop(ifp, 0);
4062
4063 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4064 aprint_error("bnx: Controller reset failed!\n");
4065 goto bnx_init_exit;
4066 }
4067
4068 if ((error = bnx_chipinit(sc)) != 0) {
4069 aprint_error("bnx: Controller initialization failed!\n");
4070 goto bnx_init_exit;
4071 }
4072
4073 if ((error = bnx_blockinit(sc)) != 0) {
4074 aprint_error("bnx: Block initialization failed!\n");
4075 goto bnx_init_exit;
4076 }
4077
4078 /* Calculate and program the Ethernet MRU size. */
4079 if (ifp->if_mtu <= ETHERMTU) {
4080 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4081 sc->mbuf_alloc_size = MCLBYTES;
4082 } else {
4083 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4084 sc->mbuf_alloc_size = BNX_MAX_MRU;
4085 }
4086
4087
4088 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4089 __func__, ether_mtu);
4090
4091 /*
4092 * Program the MRU and enable Jumbo frame
4093 * support.
4094 */
4095 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4096 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4097
4098 /* Calculate the RX Ethernet frame size for rx_bd's. */
4099 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4100
4101 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4102 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4103 sc->mbuf_alloc_size, sc->max_frame_size);
4104
4105 /* Program appropriate promiscuous/multicast filtering. */
4106 bnx_set_rx_mode(sc);
4107
4108 /* Init RX buffer descriptor chain. */
4109 bnx_init_rx_chain(sc);
4110
4111 /* Init TX buffer descriptor chain. */
4112 bnx_init_tx_chain(sc);
4113
4114 /* Enable host interrupts. */
4115 bnx_enable_intr(sc);
4116
4117 if ((error = bnx_ifmedia_upd(ifp)) != 0)
4118 goto bnx_init_exit;
4119
4120 ifp->if_flags |= IFF_RUNNING;
4121 ifp->if_flags &= ~IFF_OACTIVE;
4122
4123 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4124
4125 bnx_init_exit:
4126 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4127
4128 splx(s);
4129
4130 return(error);
4131 }
4132
4133 /****************************************************************************/
4134 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4135 /* memory visible to the controller. */
4136 /* */
4137 /* Returns: */
4138 /* 0 for success, positive value for failure. */
4139 /****************************************************************************/
4140 int
4141 bnx_tx_encap(struct bnx_softc *sc, struct mbuf **m_head)
4142 {
4143 bus_dmamap_t map;
4144 struct tx_bd *txbd = NULL;
4145 struct mbuf *m0;
4146 u_int16_t vlan_tag = 0, flags = 0;
4147 u_int16_t chain_prod, prod;
4148 #ifdef BNX_DEBUG
4149 u_int16_t debug_prod;
4150 #endif
4151 u_int32_t addr, prod_bseq;
4152 int i, error, rc = 0;
4153 struct m_tag *mtag;
4154
4155 m0 = *m_head;
4156
4157 /* Transfer any checksum offload flags to the bd. */
4158 if (m0->m_pkthdr.csum_flags) {
4159 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
4160 flags |= TX_BD_FLAGS_IP_CKSUM;
4161 if (m0->m_pkthdr.csum_flags &
4162 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4163 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4164 }
4165
4166 /* Transfer any VLAN tags to the bd. */
4167 mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m0);
4168 if (mtag != NULL) {
4169 flags |= TX_BD_FLAGS_VLAN_TAG;
4170 vlan_tag = VLAN_TAG_VALUE(mtag);
4171 }
4172
4173 /* Map the mbuf into DMAable memory. */
4174 prod = sc->tx_prod;
4175 chain_prod = TX_CHAIN_IDX(prod);
4176 map = sc->tx_mbuf_map[chain_prod];
4177
4178 /* Map the mbuf into our DMA address space. */
4179 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m0, BUS_DMA_NOWAIT);
4180 if (error != 0) {
4181 aprint_error_dev(sc->bnx_dev,
4182 "Error mapping mbuf into TX chain!\n");
4183 m_freem(m0);
4184 *m_head = NULL;
4185 return (error);
4186 }
4187 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4188 BUS_DMASYNC_PREWRITE);
4189 /*
4190 * The chip seems to require that at least 16 descriptors be kept
4191 * empty at all times. Make sure we honor that.
4192 * XXX Would it be faster to assume worst case scenario for
4193 * map->dm_nsegs and do this calculation higher up?
4194 */
4195 if (map->dm_nsegs > (USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE)) {
4196 bus_dmamap_unload(sc->bnx_dmatag, map);
4197 return (ENOBUFS);
4198 }
4199
4200 /* prod points to an empty tx_bd at this point. */
4201 prod_bseq = sc->tx_prod_bseq;
4202 #ifdef BNX_DEBUG
4203 debug_prod = chain_prod;
4204 #endif
4205 DBPRINT(sc, BNX_INFO_SEND,
4206 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4207 "prod_bseq = 0x%08X\n",
4208 __func__, *prod, chain_prod, prod_bseq);
4209
4210 /*
4211 * Cycle through each mbuf segment that makes up
4212 * the outgoing frame, gathering the mapping info
4213 * for that segment and creating a tx_bd for the
4214 * mbuf.
4215 */
4216 for (i = 0; i < map->dm_nsegs ; i++) {
4217 chain_prod = TX_CHAIN_IDX(prod);
4218 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4219
4220 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
4221 txbd->tx_bd_haddr_lo = htole32(addr);
4222 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4223 txbd->tx_bd_haddr_hi = htole32(addr);
4224 txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
4225 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
4226 txbd->tx_bd_flags = htole16(flags);
4227 prod_bseq += map->dm_segs[i].ds_len;
4228 if (i == 0)
4229 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
4230 prod = NEXT_TX_BD(prod);
4231 }
4232 /* Set the END flag on the last TX buffer descriptor. */
4233 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
4234
4235 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
4236
4237 DBPRINT(sc, BNX_INFO_SEND,
4238 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
4239 "prod_bseq = 0x%08X\n",
4240 __func__, prod, chain_prod, prod_bseq);
4241
4242 /*
4243 * Ensure that the mbuf pointer for this
4244 * transmission is placed at the array
4245 * index of the last descriptor in this
4246 * chain. This is done because a single
4247 * map is used for all segments of the mbuf
4248 * and we don't want to unload the map before
4249 * all of the segments have been freed.
4250 */
4251 sc->tx_mbuf_ptr[chain_prod] = m0;
4252 sc->used_tx_bd += map->dm_nsegs;
4253
4254 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4255 sc->tx_hi_watermark = sc->used_tx_bd);
4256
4257 DBRUNIF(1, sc->tx_mbuf_alloc++);
4258
4259 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4260 map_arg.maxsegs));
4261
4262 /* prod points to the next free tx_bd at this point. */
4263 sc->tx_prod = prod;
4264 sc->tx_prod_bseq = prod_bseq;
4265
4266 return (rc);
4267 }
4268
4269 /****************************************************************************/
4270 /* Main transmit routine. */
4271 /* */
4272 /* Returns: */
4273 /* Nothing. */
4274 /****************************************************************************/
4275 void
4276 bnx_start(struct ifnet *ifp)
4277 {
4278 struct bnx_softc *sc = ifp->if_softc;
4279 struct mbuf *m_head = NULL;
4280 int count = 0;
4281 u_int16_t tx_prod, tx_chain_prod;
4282
4283 /* If there's no link or the transmit queue is empty then just exit. */
4284 if (!sc->bnx_link || IFQ_IS_EMPTY(&ifp->if_snd)) {
4285 DBPRINT(sc, BNX_INFO_SEND,
4286 "%s(): No link or transmit queue empty.\n", __func__);
4287 goto bnx_start_exit;
4288 }
4289
4290 /* prod points to the next free tx_bd. */
4291 tx_prod = sc->tx_prod;
4292 tx_chain_prod = TX_CHAIN_IDX(tx_prod);
4293
4294 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
4295 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
4296 __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
4297
4298 /*
4299 * Keep adding entries while there is space in the ring. We keep
4300 * BNX_TX_SLACK_SPACE entries unused at all times.
4301 */
4302 while (sc->used_tx_bd < USABLE_TX_BD - BNX_TX_SLACK_SPACE) {
4303 /* Check for any frames to send. */
4304 IFQ_POLL(&ifp->if_snd, m_head);
4305 if (m_head == NULL)
4306 break;
4307
4308 /*
4309 * Pack the data into the transmit ring. If we
4310 * don't have room, set the OACTIVE flag to wait
4311 * for the NIC to drain the chain.
4312 */
4313 if (bnx_tx_encap(sc, &m_head)) {
4314 ifp->if_flags |= IFF_OACTIVE;
4315 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
4316 "business! Total tx_bd used = %d\n",
4317 sc->used_tx_bd);
4318 break;
4319 }
4320
4321 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4322 count++;
4323
4324 #if NBPFILTER > 0
4325 /* Send a copy of the frame to any BPF listeners. */
4326 if (ifp->if_bpf)
4327 bpf_mtap(ifp->if_bpf, m_head);
4328 #endif
4329 }
4330
4331 if (count == 0) {
4332 /* no packets were dequeued */
4333 DBPRINT(sc, BNX_VERBOSE_SEND,
4334 "%s(): No packets were dequeued\n", __func__);
4335 goto bnx_start_exit;
4336 }
4337
4338 /* Update the driver's counters. */
4339 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
4340
4341 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
4342 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
4343 tx_chain_prod, sc->tx_prod_bseq);
4344
4345 /* Start the transmit. */
4346 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
4347 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
4348
4349 /* Set the tx timeout. */
4350 ifp->if_timer = BNX_TX_TIMEOUT;
4351
4352 bnx_start_exit:
4353 return;
4354 }
4355
4356 /****************************************************************************/
4357 /* Handles any IOCTL calls from the operating system. */
4358 /* */
4359 /* Returns: */
4360 /* 0 for success, positive value for failure. */
4361 /****************************************************************************/
4362 int
4363 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
4364 {
4365 struct bnx_softc *sc = ifp->if_softc;
4366 struct ifreq *ifr = (struct ifreq *) data;
4367 struct mii_data *mii;
4368 int s, error = 0;
4369
4370 s = splnet();
4371
4372 switch (command) {
4373 case SIOCSIFFLAGS:
4374 if (ifp->if_flags & IFF_UP) {
4375 if ((ifp->if_flags & IFF_RUNNING) &&
4376 ((ifp->if_flags ^ sc->bnx_if_flags) &
4377 (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
4378 bnx_set_rx_mode(sc);
4379 } else if (!(ifp->if_flags & IFF_RUNNING))
4380 bnx_init(ifp);
4381
4382 } else if (ifp->if_flags & IFF_RUNNING)
4383 bnx_stop(ifp, 1);
4384
4385 sc->bnx_if_flags = ifp->if_flags;
4386 break;
4387
4388 case SIOCSIFMEDIA:
4389 case SIOCGIFMEDIA:
4390 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
4391 sc->bnx_phy_flags);
4392
4393 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
4394 error = ifmedia_ioctl(ifp, ifr,
4395 &sc->bnx_ifmedia, command);
4396 else {
4397 mii = &sc->bnx_mii;
4398 error = ifmedia_ioctl(ifp, ifr,
4399 &mii->mii_media, command);
4400 }
4401 break;
4402
4403 default:
4404 error = ether_ioctl(ifp, command, data);
4405 if (error != ENETRESET)
4406 break;
4407 error = 0;
4408 if (command == SIOCADDMULTI || command == SIOCDELMULTI) {
4409 /* reload packet filter if running */
4410 if (ifp->if_flags & IFF_RUNNING)
4411 bnx_set_rx_mode(sc);
4412 }
4413 break;
4414 }
4415
4416 splx(s);
4417
4418 return (error);
4419 }
4420
4421 /****************************************************************************/
4422 /* Transmit timeout handler. */
4423 /* */
4424 /* Returns: */
4425 /* Nothing. */
4426 /****************************************************************************/
4427 void
4428 bnx_watchdog(struct ifnet *ifp)
4429 {
4430 struct bnx_softc *sc = ifp->if_softc;
4431
4432 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
4433 bnx_dump_status_block(sc));
4434
4435 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
4436
4437 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
4438
4439 bnx_init(ifp);
4440
4441 ifp->if_oerrors++;
4442 }
4443
4444 /*
4445 * Interrupt handler.
4446 */
4447 /****************************************************************************/
4448 /* Main interrupt entry point. Verifies that the controller generated the */
4449 /* interrupt and then calls a separate routine for handle the various */
4450 /* interrupt causes (PHY, TX, RX). */
4451 /* */
4452 /* Returns: */
4453 /* 0 for success, positive value for failure. */
4454 /****************************************************************************/
4455 int
4456 bnx_intr(void *xsc)
4457 {
4458 struct bnx_softc *sc;
4459 struct ifnet *ifp;
4460 u_int32_t status_attn_bits;
4461 const struct status_block *sblk;
4462
4463 sc = xsc;
4464 if (!device_is_active(sc->bnx_dev))
4465 return 0;
4466
4467 ifp = &sc->bnx_ec.ec_if;
4468
4469 DBRUNIF(1, sc->interrupts_generated++);
4470
4471 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4472 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4473
4474 /*
4475 * If the hardware status block index
4476 * matches the last value read by the
4477 * driver and we haven't asserted our
4478 * interrupt then there's nothing to do.
4479 */
4480 if ((sc->status_block->status_idx == sc->last_status_idx) &&
4481 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
4482 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
4483 return (0);
4484
4485 /* Ack the interrupt and stop others from occuring. */
4486 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4487 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
4488 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4489
4490 /* Keep processing data as long as there is work to do. */
4491 for (;;) {
4492 sblk = sc->status_block;
4493 status_attn_bits = sblk->status_attn_bits;
4494
4495 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
4496 aprint_debug("Simulating unexpected status attention bit set.");
4497 status_attn_bits = status_attn_bits |
4498 STATUS_ATTN_BITS_PARITY_ERROR);
4499
4500 /* Was it a link change interrupt? */
4501 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
4502 (sblk->status_attn_bits_ack &
4503 STATUS_ATTN_BITS_LINK_STATE))
4504 bnx_phy_intr(sc);
4505
4506 /* If any other attention is asserted then the chip is toast. */
4507 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
4508 (sblk->status_attn_bits_ack &
4509 ~STATUS_ATTN_BITS_LINK_STATE))) {
4510 DBRUN(1, sc->unexpected_attentions++);
4511
4512 aprint_error_dev(sc->bnx_dev,
4513 "Fatal attention detected: 0x%08X\n",
4514 sblk->status_attn_bits);
4515
4516 DBRUN(BNX_FATAL,
4517 if (bnx_debug_unexpected_attention == 0)
4518 bnx_breakpoint(sc));
4519
4520 bnx_init(ifp);
4521 return (1);
4522 }
4523
4524 /* Check for any completed RX frames. */
4525 if (sblk->status_rx_quick_consumer_index0 !=
4526 sc->hw_rx_cons)
4527 bnx_rx_intr(sc);
4528
4529 /* Check for any completed TX frames. */
4530 if (sblk->status_tx_quick_consumer_index0 !=
4531 sc->hw_tx_cons)
4532 bnx_tx_intr(sc);
4533
4534 /* Save the status block index value for use during the
4535 * next interrupt.
4536 */
4537 sc->last_status_idx = sblk->status_idx;
4538
4539 /* Prevent speculative reads from getting ahead of the
4540 * status block.
4541 */
4542 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4543 BUS_SPACE_BARRIER_READ);
4544
4545 /* If there's no work left then exit the isr. */
4546 if ((sblk->status_rx_quick_consumer_index0 ==
4547 sc->hw_rx_cons) &&
4548 (sblk->status_tx_quick_consumer_index0 ==
4549 sc->hw_tx_cons))
4550 break;
4551 }
4552
4553 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4554 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
4555
4556 /* Re-enable interrupts. */
4557 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4558 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
4559 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4560 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4561 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
4562
4563 /* Handle any frames that arrived while handling the interrupt. */
4564 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4565 bnx_start(ifp);
4566
4567 return (1);
4568 }
4569
4570 /****************************************************************************/
4571 /* Programs the various packet receive modes (broadcast and multicast). */
4572 /* */
4573 /* Returns: */
4574 /* Nothing. */
4575 /****************************************************************************/
4576 void
4577 bnx_set_rx_mode(struct bnx_softc *sc)
4578 {
4579 struct ethercom *ec = &sc->bnx_ec;
4580 struct ifnet *ifp = &ec->ec_if;
4581 struct ether_multi *enm;
4582 struct ether_multistep step;
4583 u_int32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
4584 u_int32_t rx_mode, sort_mode;
4585 int h, i;
4586
4587 /* Initialize receive mode default settings. */
4588 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
4589 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
4590 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
4591
4592 /*
4593 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
4594 * be enbled.
4595 */
4596 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
4597 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
4598
4599 /*
4600 * Check for promiscuous, all multicast, or selected
4601 * multicast address filtering.
4602 */
4603 if (ifp->if_flags & IFF_PROMISC) {
4604 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
4605
4606 /* Enable promiscuous mode. */
4607 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
4608 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
4609 } else if (ifp->if_flags & IFF_ALLMULTI) {
4610 allmulti:
4611 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
4612
4613 /* Enable all multicast addresses. */
4614 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4615 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4616 0xffffffff);
4617 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
4618 } else {
4619 /* Accept one or more multicast(s). */
4620 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
4621
4622 ETHER_FIRST_MULTI(step, ec, enm);
4623 while (enm != NULL) {
4624 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
4625 ETHER_ADDR_LEN)) {
4626 ifp->if_flags |= IFF_ALLMULTI;
4627 goto allmulti;
4628 }
4629 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
4630 0xFF;
4631 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
4632 ETHER_NEXT_MULTI(step, enm);
4633 }
4634
4635 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4636 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4637 hashes[i]);
4638
4639 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
4640 }
4641
4642 /* Only make changes if the recive mode has actually changed. */
4643 if (rx_mode != sc->rx_mode) {
4644 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
4645 rx_mode);
4646
4647 sc->rx_mode = rx_mode;
4648 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
4649 }
4650
4651 /* Disable and clear the exisitng sort before enabling a new sort. */
4652 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
4653 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
4654 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
4655 }
4656
4657 /****************************************************************************/
4658 /* Called periodically to updates statistics from the controllers */
4659 /* statistics block. */
4660 /* */
4661 /* Returns: */
4662 /* Nothing. */
4663 /****************************************************************************/
4664 void
4665 bnx_stats_update(struct bnx_softc *sc)
4666 {
4667 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4668 struct statistics_block *stats;
4669
4670 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
4671 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4672 BUS_DMASYNC_POSTREAD);
4673
4674 stats = (struct statistics_block *)sc->stats_block;
4675
4676 /*
4677 * Update the interface statistics from the
4678 * hardware statistics.
4679 */
4680 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
4681
4682 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
4683 (u_long)stats->stat_EtherStatsOverrsizePkts +
4684 (u_long)stats->stat_IfInMBUFDiscards +
4685 (u_long)stats->stat_Dot3StatsAlignmentErrors +
4686 (u_long)stats->stat_Dot3StatsFCSErrors;
4687
4688 ifp->if_oerrors = (u_long)
4689 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
4690 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
4691 (u_long)stats->stat_Dot3StatsLateCollisions;
4692
4693 /*
4694 * Certain controllers don't report
4695 * carrier sense errors correctly.
4696 * See errata E11_5708CA0_1165.
4697 */
4698 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
4699 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
4700 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
4701
4702 /*
4703 * Update the sysctl statistics from the
4704 * hardware statistics.
4705 */
4706 sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
4707 (u_int64_t) stats->stat_IfHCInOctets_lo;
4708
4709 sc->stat_IfHCInBadOctets =
4710 ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
4711 (u_int64_t) stats->stat_IfHCInBadOctets_lo;
4712
4713 sc->stat_IfHCOutOctets =
4714 ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
4715 (u_int64_t) stats->stat_IfHCOutOctets_lo;
4716
4717 sc->stat_IfHCOutBadOctets =
4718 ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
4719 (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
4720
4721 sc->stat_IfHCInUcastPkts =
4722 ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
4723 (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
4724
4725 sc->stat_IfHCInMulticastPkts =
4726 ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
4727 (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
4728
4729 sc->stat_IfHCInBroadcastPkts =
4730 ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
4731 (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
4732
4733 sc->stat_IfHCOutUcastPkts =
4734 ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
4735 (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
4736
4737 sc->stat_IfHCOutMulticastPkts =
4738 ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
4739 (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
4740
4741 sc->stat_IfHCOutBroadcastPkts =
4742 ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
4743 (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
4744
4745 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
4746 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
4747
4748 sc->stat_Dot3StatsCarrierSenseErrors =
4749 stats->stat_Dot3StatsCarrierSenseErrors;
4750
4751 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
4752
4753 sc->stat_Dot3StatsAlignmentErrors =
4754 stats->stat_Dot3StatsAlignmentErrors;
4755
4756 sc->stat_Dot3StatsSingleCollisionFrames =
4757 stats->stat_Dot3StatsSingleCollisionFrames;
4758
4759 sc->stat_Dot3StatsMultipleCollisionFrames =
4760 stats->stat_Dot3StatsMultipleCollisionFrames;
4761
4762 sc->stat_Dot3StatsDeferredTransmissions =
4763 stats->stat_Dot3StatsDeferredTransmissions;
4764
4765 sc->stat_Dot3StatsExcessiveCollisions =
4766 stats->stat_Dot3StatsExcessiveCollisions;
4767
4768 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
4769
4770 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
4771
4772 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
4773
4774 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
4775
4776 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
4777
4778 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
4779
4780 sc->stat_EtherStatsPktsRx64Octets =
4781 stats->stat_EtherStatsPktsRx64Octets;
4782
4783 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
4784 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
4785
4786 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
4787 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
4788
4789 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
4790 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
4791
4792 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
4793 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
4794
4795 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
4796 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
4797
4798 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
4799 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
4800
4801 sc->stat_EtherStatsPktsTx64Octets =
4802 stats->stat_EtherStatsPktsTx64Octets;
4803
4804 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
4805 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
4806
4807 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
4808 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
4809
4810 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
4811 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
4812
4813 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
4814 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
4815
4816 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
4817 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
4818
4819 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
4820 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
4821
4822 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
4823
4824 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
4825
4826 sc->stat_OutXonSent = stats->stat_OutXonSent;
4827
4828 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
4829
4830 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
4831
4832 sc->stat_MacControlFramesReceived =
4833 stats->stat_MacControlFramesReceived;
4834
4835 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
4836
4837 sc->stat_IfInFramesL2FilterDiscards =
4838 stats->stat_IfInFramesL2FilterDiscards;
4839
4840 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
4841
4842 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
4843
4844 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
4845
4846 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
4847
4848 sc->stat_CatchupInRuleCheckerDiscards =
4849 stats->stat_CatchupInRuleCheckerDiscards;
4850
4851 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
4852
4853 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
4854
4855 sc->stat_CatchupInRuleCheckerP4Hit =
4856 stats->stat_CatchupInRuleCheckerP4Hit;
4857
4858 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
4859 }
4860
4861 void
4862 bnx_tick(void *xsc)
4863 {
4864 struct bnx_softc *sc = xsc;
4865 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4866 struct mii_data *mii;
4867 u_int32_t msg;
4868 u_int16_t prod, chain_prod;
4869 u_int32_t prod_bseq;
4870 int s = splnet();
4871
4872 /* Tell the firmware that the driver is still running. */
4873 #ifdef BNX_DEBUG
4874 msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
4875 #else
4876 msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
4877 #endif
4878 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
4879
4880 /* Update the statistics from the hardware statistics block. */
4881 bnx_stats_update(sc);
4882
4883 /* Schedule the next tick. */
4884 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4885
4886 /* DRC - ToDo: Add SerDes support and check SerDes link here. */
4887
4888 mii = &sc->bnx_mii;
4889 mii_tick(mii);
4890
4891 /* If link is up already up then we're done. */
4892 if (sc->bnx_link)
4893 goto bnx_tick_exit;
4894
4895 /* Check if the link has come up. */
4896 if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
4897 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4898 sc->bnx_link++;
4899 /* Now that link is up, handle any outstanding TX traffic. */
4900 if (!IFQ_IS_EMPTY(&ifp->if_snd))
4901 bnx_start(ifp);
4902 }
4903
4904 bnx_tick_exit:
4905 /* try to get more RX buffers, just in case */
4906 prod = sc->rx_prod;
4907 prod_bseq = sc->rx_prod_bseq;
4908 chain_prod = RX_CHAIN_IDX(prod);
4909 bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq);
4910 sc->rx_prod = prod;
4911 sc->rx_prod_bseq = prod_bseq;
4912 splx(s);
4913 return;
4914 }
4915
4916 /****************************************************************************/
4917 /* BNX Debug Routines */
4918 /****************************************************************************/
4919 #ifdef BNX_DEBUG
4920
4921 /****************************************************************************/
4922 /* Prints out information about an mbuf. */
4923 /* */
4924 /* Returns: */
4925 /* Nothing. */
4926 /****************************************************************************/
4927 void
4928 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
4929 {
4930 struct mbuf *mp = m;
4931
4932 if (m == NULL) {
4933 /* Index out of range. */
4934 aprint_error("mbuf ptr is null!\n");
4935 return;
4936 }
4937
4938 while (mp) {
4939 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
4940 mp, mp->m_len);
4941
4942 if (mp->m_flags & M_EXT)
4943 aprint_debug("M_EXT ");
4944 if (mp->m_flags & M_PKTHDR)
4945 aprint_debug("M_PKTHDR ");
4946 aprint_debug("\n");
4947
4948 if (mp->m_flags & M_EXT)
4949 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
4950 mp, mp->m_ext.ext_size);
4951
4952 mp = mp->m_next;
4953 }
4954 }
4955
4956 /****************************************************************************/
4957 /* Prints out the mbufs in the TX mbuf chain. */
4958 /* */
4959 /* Returns: */
4960 /* Nothing. */
4961 /****************************************************************************/
4962 void
4963 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
4964 {
4965 struct mbuf *m;
4966 int i;
4967
4968 BNX_PRINTF(sc,
4969 "----------------------------"
4970 " tx mbuf data "
4971 "----------------------------\n");
4972
4973 for (i = 0; i < count; i++) {
4974 m = sc->tx_mbuf_ptr[chain_prod];
4975 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
4976 bnx_dump_mbuf(sc, m);
4977 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
4978 }
4979
4980 BNX_PRINTF(sc,
4981 "--------------------------------------------"
4982 "----------------------------\n");
4983 }
4984
4985 /*
4986 * This routine prints the RX mbuf chain.
4987 */
4988 void
4989 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
4990 {
4991 struct mbuf *m;
4992 int i;
4993
4994 BNX_PRINTF(sc,
4995 "----------------------------"
4996 " rx mbuf data "
4997 "----------------------------\n");
4998
4999 for (i = 0; i < count; i++) {
5000 m = sc->rx_mbuf_ptr[chain_prod];
5001 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5002 bnx_dump_mbuf(sc, m);
5003 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5004 }
5005
5006
5007 BNX_PRINTF(sc,
5008 "--------------------------------------------"
5009 "----------------------------\n");
5010 }
5011
5012 void
5013 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5014 {
5015 if (idx > MAX_TX_BD)
5016 /* Index out of range. */
5017 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5018 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5019 /* TX Chain page pointer. */
5020 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5021 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5022 txbd->tx_bd_haddr_lo);
5023 else
5024 /* Normal tx_bd entry. */
5025 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5026 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5027 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5028 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5029 txbd->tx_bd_flags);
5030 }
5031
5032 void
5033 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5034 {
5035 if (idx > MAX_RX_BD)
5036 /* Index out of range. */
5037 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5038 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5039 /* TX Chain page pointer. */
5040 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5041 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5042 rxbd->rx_bd_haddr_lo);
5043 else
5044 /* Normal tx_bd entry. */
5045 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5046 "0x%08X, flags = 0x%08X\n", idx,
5047 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5048 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5049 }
5050
5051 void
5052 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5053 {
5054 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5055 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5056 "tcp_udp_xsum = 0x%04X\n", idx,
5057 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5058 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5059 l2fhdr->l2_fhdr_tcp_udp_xsum);
5060 }
5061
5062 /*
5063 * This routine prints the TX chain.
5064 */
5065 void
5066 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5067 {
5068 struct tx_bd *txbd;
5069 int i;
5070
5071 /* First some info about the tx_bd chain structure. */
5072 BNX_PRINTF(sc,
5073 "----------------------------"
5074 " tx_bd chain "
5075 "----------------------------\n");
5076
5077 BNX_PRINTF(sc,
5078 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5079 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5080
5081 BNX_PRINTF(sc,
5082 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5083 (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5084
5085 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
5086
5087 BNX_PRINTF(sc, ""
5088 "-----------------------------"
5089 " tx_bd data "
5090 "-----------------------------\n");
5091
5092 /* Now print out the tx_bd's themselves. */
5093 for (i = 0; i < count; i++) {
5094 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5095 bnx_dump_txbd(sc, tx_prod, txbd);
5096 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5097 }
5098
5099 BNX_PRINTF(sc,
5100 "-----------------------------"
5101 "--------------"
5102 "-----------------------------\n");
5103 }
5104
5105 /*
5106 * This routine prints the RX chain.
5107 */
5108 void
5109 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5110 {
5111 struct rx_bd *rxbd;
5112 int i;
5113
5114 /* First some info about the tx_bd chain structure. */
5115 BNX_PRINTF(sc,
5116 "----------------------------"
5117 " rx_bd chain "
5118 "----------------------------\n");
5119
5120 BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
5121
5122 BNX_PRINTF(sc,
5123 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5124 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5125
5126 BNX_PRINTF(sc,
5127 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5128 (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5129
5130 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
5131
5132 BNX_PRINTF(sc,
5133 "----------------------------"
5134 " rx_bd data "
5135 "----------------------------\n");
5136
5137 /* Now print out the rx_bd's themselves. */
5138 for (i = 0; i < count; i++) {
5139 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5140 bnx_dump_rxbd(sc, rx_prod, rxbd);
5141 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5142 }
5143
5144 BNX_PRINTF(sc,
5145 "----------------------------"
5146 "--------------"
5147 "----------------------------\n");
5148 }
5149
5150 /*
5151 * This routine prints the status block.
5152 */
5153 void
5154 bnx_dump_status_block(struct bnx_softc *sc)
5155 {
5156 struct status_block *sblk;
5157 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5158 BUS_DMASYNC_POSTREAD);
5159
5160 sblk = sc->status_block;
5161
5162 BNX_PRINTF(sc, "----------------------------- Status Block "
5163 "-----------------------------\n");
5164
5165 BNX_PRINTF(sc,
5166 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5167 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5168 sblk->status_idx);
5169
5170 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5171 sblk->status_rx_quick_consumer_index0,
5172 sblk->status_tx_quick_consumer_index0);
5173
5174 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5175
5176 /* Theses indices are not used for normal L2 drivers. */
5177 if (sblk->status_rx_quick_consumer_index1 ||
5178 sblk->status_tx_quick_consumer_index1)
5179 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5180 sblk->status_rx_quick_consumer_index1,
5181 sblk->status_tx_quick_consumer_index1);
5182
5183 if (sblk->status_rx_quick_consumer_index2 ||
5184 sblk->status_tx_quick_consumer_index2)
5185 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5186 sblk->status_rx_quick_consumer_index2,
5187 sblk->status_tx_quick_consumer_index2);
5188
5189 if (sblk->status_rx_quick_consumer_index3 ||
5190 sblk->status_tx_quick_consumer_index3)
5191 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5192 sblk->status_rx_quick_consumer_index3,
5193 sblk->status_tx_quick_consumer_index3);
5194
5195 if (sblk->status_rx_quick_consumer_index4 ||
5196 sblk->status_rx_quick_consumer_index5)
5197 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5198 sblk->status_rx_quick_consumer_index4,
5199 sblk->status_rx_quick_consumer_index5);
5200
5201 if (sblk->status_rx_quick_consumer_index6 ||
5202 sblk->status_rx_quick_consumer_index7)
5203 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
5204 sblk->status_rx_quick_consumer_index6,
5205 sblk->status_rx_quick_consumer_index7);
5206
5207 if (sblk->status_rx_quick_consumer_index8 ||
5208 sblk->status_rx_quick_consumer_index9)
5209 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
5210 sblk->status_rx_quick_consumer_index8,
5211 sblk->status_rx_quick_consumer_index9);
5212
5213 if (sblk->status_rx_quick_consumer_index10 ||
5214 sblk->status_rx_quick_consumer_index11)
5215 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
5216 sblk->status_rx_quick_consumer_index10,
5217 sblk->status_rx_quick_consumer_index11);
5218
5219 if (sblk->status_rx_quick_consumer_index12 ||
5220 sblk->status_rx_quick_consumer_index13)
5221 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
5222 sblk->status_rx_quick_consumer_index12,
5223 sblk->status_rx_quick_consumer_index13);
5224
5225 if (sblk->status_rx_quick_consumer_index14 ||
5226 sblk->status_rx_quick_consumer_index15)
5227 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
5228 sblk->status_rx_quick_consumer_index14,
5229 sblk->status_rx_quick_consumer_index15);
5230
5231 if (sblk->status_completion_producer_index ||
5232 sblk->status_cmd_consumer_index)
5233 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
5234 sblk->status_completion_producer_index,
5235 sblk->status_cmd_consumer_index);
5236
5237 BNX_PRINTF(sc, "-------------------------------------------"
5238 "-----------------------------\n");
5239 }
5240
5241 /*
5242 * This routine prints the statistics block.
5243 */
5244 void
5245 bnx_dump_stats_block(struct bnx_softc *sc)
5246 {
5247 struct statistics_block *sblk;
5248 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5249 BUS_DMASYNC_POSTREAD);
5250
5251 sblk = sc->stats_block;
5252
5253 BNX_PRINTF(sc, ""
5254 "-----------------------------"
5255 " Stats Block "
5256 "-----------------------------\n");
5257
5258 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
5259 "IfHcInBadOctets = 0x%08X:%08X\n",
5260 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5261 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5262
5263 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
5264 "IfHcOutBadOctets = 0x%08X:%08X\n",
5265 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5266 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5267
5268 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
5269 "IfHcInMulticastPkts = 0x%08X:%08X\n",
5270 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5271 sblk->stat_IfHCInMulticastPkts_hi,
5272 sblk->stat_IfHCInMulticastPkts_lo);
5273
5274 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
5275 "IfHcOutUcastPkts = 0x%08X:%08X\n",
5276 sblk->stat_IfHCInBroadcastPkts_hi,
5277 sblk->stat_IfHCInBroadcastPkts_lo,
5278 sblk->stat_IfHCOutUcastPkts_hi,
5279 sblk->stat_IfHCOutUcastPkts_lo);
5280
5281 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5282 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5283 sblk->stat_IfHCOutMulticastPkts_hi,
5284 sblk->stat_IfHCOutMulticastPkts_lo,
5285 sblk->stat_IfHCOutBroadcastPkts_hi,
5286 sblk->stat_IfHCOutBroadcastPkts_lo);
5287
5288 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5289 BNX_PRINTF(sc, "0x%08X : "
5290 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5291 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5292
5293 if (sblk->stat_Dot3StatsCarrierSenseErrors)
5294 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5295 sblk->stat_Dot3StatsCarrierSenseErrors);
5296
5297 if (sblk->stat_Dot3StatsFCSErrors)
5298 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5299 sblk->stat_Dot3StatsFCSErrors);
5300
5301 if (sblk->stat_Dot3StatsAlignmentErrors)
5302 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5303 sblk->stat_Dot3StatsAlignmentErrors);
5304
5305 if (sblk->stat_Dot3StatsSingleCollisionFrames)
5306 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5307 sblk->stat_Dot3StatsSingleCollisionFrames);
5308
5309 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
5310 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
5311 sblk->stat_Dot3StatsMultipleCollisionFrames);
5312
5313 if (sblk->stat_Dot3StatsDeferredTransmissions)
5314 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
5315 sblk->stat_Dot3StatsDeferredTransmissions);
5316
5317 if (sblk->stat_Dot3StatsExcessiveCollisions)
5318 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
5319 sblk->stat_Dot3StatsExcessiveCollisions);
5320
5321 if (sblk->stat_Dot3StatsLateCollisions)
5322 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
5323 sblk->stat_Dot3StatsLateCollisions);
5324
5325 if (sblk->stat_EtherStatsCollisions)
5326 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
5327 sblk->stat_EtherStatsCollisions);
5328
5329 if (sblk->stat_EtherStatsFragments)
5330 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
5331 sblk->stat_EtherStatsFragments);
5332
5333 if (sblk->stat_EtherStatsJabbers)
5334 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
5335 sblk->stat_EtherStatsJabbers);
5336
5337 if (sblk->stat_EtherStatsUndersizePkts)
5338 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
5339 sblk->stat_EtherStatsUndersizePkts);
5340
5341 if (sblk->stat_EtherStatsOverrsizePkts)
5342 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
5343 sblk->stat_EtherStatsOverrsizePkts);
5344
5345 if (sblk->stat_EtherStatsPktsRx64Octets)
5346 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
5347 sblk->stat_EtherStatsPktsRx64Octets);
5348
5349 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
5350 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
5351 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
5352
5353 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
5354 BNX_PRINTF(sc, "0x%08X : "
5355 "EtherStatsPktsRx128Octetsto255Octets\n",
5356 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
5357
5358 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
5359 BNX_PRINTF(sc, "0x%08X : "
5360 "EtherStatsPktsRx256Octetsto511Octets\n",
5361 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
5362
5363 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
5364 BNX_PRINTF(sc, "0x%08X : "
5365 "EtherStatsPktsRx512Octetsto1023Octets\n",
5366 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
5367
5368 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
5369 BNX_PRINTF(sc, "0x%08X : "
5370 "EtherStatsPktsRx1024Octetsto1522Octets\n",
5371 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
5372
5373 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
5374 BNX_PRINTF(sc, "0x%08X : "
5375 "EtherStatsPktsRx1523Octetsto9022Octets\n",
5376 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
5377
5378 if (sblk->stat_EtherStatsPktsTx64Octets)
5379 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
5380 sblk->stat_EtherStatsPktsTx64Octets);
5381
5382 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
5383 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
5384 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
5385
5386 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
5387 BNX_PRINTF(sc, "0x%08X : "
5388 "EtherStatsPktsTx128Octetsto255Octets\n",
5389 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
5390
5391 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
5392 BNX_PRINTF(sc, "0x%08X : "
5393 "EtherStatsPktsTx256Octetsto511Octets\n",
5394 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
5395
5396 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
5397 BNX_PRINTF(sc, "0x%08X : "
5398 "EtherStatsPktsTx512Octetsto1023Octets\n",
5399 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
5400
5401 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
5402 BNX_PRINTF(sc, "0x%08X : "
5403 "EtherStatsPktsTx1024Octetsto1522Octets\n",
5404 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
5405
5406 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
5407 BNX_PRINTF(sc, "0x%08X : "
5408 "EtherStatsPktsTx1523Octetsto9022Octets\n",
5409 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
5410
5411 if (sblk->stat_XonPauseFramesReceived)
5412 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
5413 sblk->stat_XonPauseFramesReceived);
5414
5415 if (sblk->stat_XoffPauseFramesReceived)
5416 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
5417 sblk->stat_XoffPauseFramesReceived);
5418
5419 if (sblk->stat_OutXonSent)
5420 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
5421 sblk->stat_OutXonSent);
5422
5423 if (sblk->stat_OutXoffSent)
5424 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
5425 sblk->stat_OutXoffSent);
5426
5427 if (sblk->stat_FlowControlDone)
5428 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
5429 sblk->stat_FlowControlDone);
5430
5431 if (sblk->stat_MacControlFramesReceived)
5432 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
5433 sblk->stat_MacControlFramesReceived);
5434
5435 if (sblk->stat_XoffStateEntered)
5436 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
5437 sblk->stat_XoffStateEntered);
5438
5439 if (sblk->stat_IfInFramesL2FilterDiscards)
5440 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
5441 sblk->stat_IfInFramesL2FilterDiscards);
5442
5443 if (sblk->stat_IfInRuleCheckerDiscards)
5444 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
5445 sblk->stat_IfInRuleCheckerDiscards);
5446
5447 if (sblk->stat_IfInFTQDiscards)
5448 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
5449 sblk->stat_IfInFTQDiscards);
5450
5451 if (sblk->stat_IfInMBUFDiscards)
5452 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
5453 sblk->stat_IfInMBUFDiscards);
5454
5455 if (sblk->stat_IfInRuleCheckerP4Hit)
5456 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
5457 sblk->stat_IfInRuleCheckerP4Hit);
5458
5459 if (sblk->stat_CatchupInRuleCheckerDiscards)
5460 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
5461 sblk->stat_CatchupInRuleCheckerDiscards);
5462
5463 if (sblk->stat_CatchupInFTQDiscards)
5464 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
5465 sblk->stat_CatchupInFTQDiscards);
5466
5467 if (sblk->stat_CatchupInMBUFDiscards)
5468 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
5469 sblk->stat_CatchupInMBUFDiscards);
5470
5471 if (sblk->stat_CatchupInRuleCheckerP4Hit)
5472 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
5473 sblk->stat_CatchupInRuleCheckerP4Hit);
5474
5475 BNX_PRINTF(sc,
5476 "-----------------------------"
5477 "--------------"
5478 "-----------------------------\n");
5479 }
5480
5481 void
5482 bnx_dump_driver_state(struct bnx_softc *sc)
5483 {
5484 BNX_PRINTF(sc,
5485 "-----------------------------"
5486 " Driver State "
5487 "-----------------------------\n");
5488
5489 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
5490 "address\n", sc);
5491
5492 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
5493 sc->status_block);
5494
5495 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
5496 "address\n", sc->stats_block);
5497
5498 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
5499 "adddress\n", sc->tx_bd_chain);
5500
5501 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
5502 sc->rx_bd_chain);
5503
5504 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
5505 sc->tx_mbuf_ptr);
5506
5507 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
5508 sc->rx_mbuf_ptr);
5509
5510 BNX_PRINTF(sc,
5511 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
5512 sc->interrupts_generated);
5513
5514 BNX_PRINTF(sc,
5515 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
5516 sc->rx_interrupts);
5517
5518 BNX_PRINTF(sc,
5519 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
5520 sc->tx_interrupts);
5521
5522 BNX_PRINTF(sc,
5523 " 0x%08X - (sc->last_status_idx) status block index\n",
5524 sc->last_status_idx);
5525
5526 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
5527 sc->tx_prod);
5528
5529 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
5530 sc->tx_cons);
5531
5532 BNX_PRINTF(sc,
5533 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
5534 sc->tx_prod_bseq);
5535
5536 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
5537 sc->rx_prod);
5538
5539 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
5540 sc->rx_cons);
5541
5542 BNX_PRINTF(sc,
5543 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
5544 sc->rx_prod_bseq);
5545
5546 BNX_PRINTF(sc,
5547 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5548 sc->rx_mbuf_alloc);
5549
5550 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
5551 sc->free_rx_bd);
5552
5553 BNX_PRINTF(sc,
5554 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
5555 sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
5556
5557 BNX_PRINTF(sc,
5558 " 0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
5559 sc->tx_mbuf_alloc);
5560
5561 BNX_PRINTF(sc,
5562 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5563 sc->rx_mbuf_alloc);
5564
5565 BNX_PRINTF(sc, " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
5566 sc->used_tx_bd);
5567
5568 BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
5569 sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
5570
5571 BNX_PRINTF(sc,
5572 " 0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
5573 sc->mbuf_alloc_failed);
5574
5575 BNX_PRINTF(sc, "-------------------------------------------"
5576 "-----------------------------\n");
5577 }
5578
5579 void
5580 bnx_dump_hw_state(struct bnx_softc *sc)
5581 {
5582 u_int32_t val1;
5583 int i;
5584
5585 BNX_PRINTF(sc,
5586 "----------------------------"
5587 " Hardware State "
5588 "----------------------------\n");
5589
5590 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
5591
5592 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
5593 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
5594 val1, BNX_MISC_ENABLE_STATUS_BITS);
5595
5596 val1 = REG_RD(sc, BNX_DMA_STATUS);
5597 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
5598
5599 val1 = REG_RD(sc, BNX_CTX_STATUS);
5600 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
5601
5602 val1 = REG_RD(sc, BNX_EMAC_STATUS);
5603 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
5604 BNX_EMAC_STATUS);
5605
5606 val1 = REG_RD(sc, BNX_RPM_STATUS);
5607 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
5608
5609 val1 = REG_RD(sc, BNX_TBDR_STATUS);
5610 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
5611 BNX_TBDR_STATUS);
5612
5613 val1 = REG_RD(sc, BNX_TDMA_STATUS);
5614 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
5615 BNX_TDMA_STATUS);
5616
5617 val1 = REG_RD(sc, BNX_HC_STATUS);
5618 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
5619
5620 BNX_PRINTF(sc,
5621 "----------------------------"
5622 "----------------"
5623 "----------------------------\n");
5624
5625 BNX_PRINTF(sc,
5626 "----------------------------"
5627 " Register Dump "
5628 "----------------------------\n");
5629
5630 for (i = 0x400; i < 0x8000; i += 0x10)
5631 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
5632 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
5633 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
5634
5635 BNX_PRINTF(sc,
5636 "----------------------------"
5637 "----------------"
5638 "----------------------------\n");
5639 }
5640
5641 void
5642 bnx_breakpoint(struct bnx_softc *sc)
5643 {
5644 /* Unreachable code to shut the compiler up about unused functions. */
5645 if (0) {
5646 bnx_dump_txbd(sc, 0, NULL);
5647 bnx_dump_rxbd(sc, 0, NULL);
5648 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
5649 bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
5650 bnx_dump_l2fhdr(sc, 0, NULL);
5651 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
5652 bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
5653 bnx_dump_status_block(sc);
5654 bnx_dump_stats_block(sc);
5655 bnx_dump_driver_state(sc);
5656 bnx_dump_hw_state(sc);
5657 }
5658
5659 bnx_dump_driver_state(sc);
5660 /* Print the important status block fields. */
5661 bnx_dump_status_block(sc);
5662
5663 #if 0
5664 /* Call the debugger. */
5665 breakpoint();
5666 #endif
5667
5668 return;
5669 }
5670 #endif
5671