Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.15
      1 /*	$NetBSD: if_bnx.c,v 1.15 2007/12/30 00:56:45 dyoung Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.43 2007/01/30 03:21:10 krw Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2006 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.15 2007/12/30 00:56:45 dyoung Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5708C B1
     44  *
     45  * The following controllers are not supported by this driver:
     46  * (These are not "Production" versions of the controller.)
     47  *
     48  *   BCM5706C A0, A1
     49  *   BCM5706S A0, A1, A2, A3
     50  *   BCM5708C A0, B0
     51  *   BCM5708S A0, B0, B1
     52  */
     53 
     54 #include <sys/callout.h>
     55 
     56 #include <dev/pci/if_bnxreg.h>
     57 #include <dev/microcode/bnx/bnxfw.h>
     58 
     59 /****************************************************************************/
     60 /* BNX Driver Version                                                       */
     61 /****************************************************************************/
     62 const char bnx_driver_version[] = "v0.9.6";
     63 
     64 /****************************************************************************/
     65 /* BNX Debug Options                                                        */
     66 /****************************************************************************/
     67 #ifdef BNX_DEBUG
     68 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     69 
     70 	/*          0 = Never              */
     71 	/*          1 = 1 in 2,147,483,648 */
     72 	/*        256 = 1 in     8,388,608 */
     73 	/*       2048 = 1 in     1,048,576 */
     74 	/*      65536 = 1 in        32,768 */
     75 	/*    1048576 = 1 in         2,048 */
     76 	/*  268435456 =	1 in             8 */
     77 	/*  536870912 = 1 in             4 */
     78 	/* 1073741824 = 1 in             2 */
     79 
     80 	/* Controls how often the l2_fhdr frame error check will fail. */
     81 	int bnx_debug_l2fhdr_status_check = 0;
     82 
     83 	/* Controls how often the unexpected attention check will fail. */
     84 	int bnx_debug_unexpected_attention = 0;
     85 
     86 	/* Controls how often to simulate an mbuf allocation failure. */
     87 	int bnx_debug_mbuf_allocation_failure = 0;
     88 
     89 	/* Controls how often to simulate a DMA mapping failure. */
     90 	int bnx_debug_dma_map_addr_failure = 0;
     91 
     92 	/* Controls how often to simulate a bootcode failure. */
     93 	int bnx_debug_bootcode_running_failure = 0;
     94 #endif
     95 
     96 /****************************************************************************/
     97 /* PCI Device ID Table                                                      */
     98 /*                                                                          */
     99 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    100 /****************************************************************************/
    101 static const struct bnx_product {
    102 	pci_vendor_id_t		bp_vendor;
    103 	pci_product_id_t	bp_product;
    104 	pci_vendor_id_t		bp_subvendor;
    105 	pci_product_id_t	bp_subproduct;
    106 	const char		*bp_name;
    107 } bnx_devices[] = {
    108 #ifdef PCI_SUBPRODUCT_HP_NC370T
    109 	{
    110 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    111 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    112 	  "HP NC370T Multifunction Gigabit Server Adapter"
    113 	},
    114 #endif
    115 #ifdef PCI_SUBPRODUCT_HP_NC370i
    116 	{
    117 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    118 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    119 	  "HP NC370i Multifunction Gigabit Server Adapter"
    120 	},
    121 #endif
    122 	{
    123 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    124 	  0, 0,
    125 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    126 	},
    127 #ifdef PCI_SUBPRODUCT_HP_NC370F
    128 	{
    129 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    130 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    131 	  "HP NC370F Multifunction Gigabit Server Adapter"
    132 	},
    133 #endif
    134 	{
    135 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    136 	  0, 0,
    137 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    138 	},
    139 	{
    140 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    141 	  0, 0,
    142 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    143 	},
    144 	{
    145 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    146 	  0, 0,
    147 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    148 	},
    149 };
    150 
    151 /****************************************************************************/
    152 /* Supported Flash NVRAM device data.                                       */
    153 /****************************************************************************/
    154 static struct flash_spec flash_table[] =
    155 {
    156 	/* Slow EEPROM */
    157 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    158 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    159 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    160 	 "EEPROM - slow"},
    161 	/* Expansion entry 0001 */
    162 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    163 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    164 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    165 	 "Entry 0001"},
    166 	/* Saifun SA25F010 (non-buffered flash) */
    167 	/* strap, cfg1, & write1 need updates */
    168 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    169 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    170 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    171 	 "Non-buffered flash (128kB)"},
    172 	/* Saifun SA25F020 (non-buffered flash) */
    173 	/* strap, cfg1, & write1 need updates */
    174 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    175 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    176 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    177 	 "Non-buffered flash (256kB)"},
    178 	/* Expansion entry 0100 */
    179 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    180 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    181 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    182 	 "Entry 0100"},
    183 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    184 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    185 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    186 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    187 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    188 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    189 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    190 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    191 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    192 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    193 	/* Saifun SA25F005 (non-buffered flash) */
    194 	/* strap, cfg1, & write1 need updates */
    195 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    196 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    197 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    198 	 "Non-buffered flash (64kB)"},
    199 	/* Fast EEPROM */
    200 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    201 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    202 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    203 	 "EEPROM - fast"},
    204 	/* Expansion entry 1001 */
    205 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    206 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    207 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    208 	 "Entry 1001"},
    209 	/* Expansion entry 1010 */
    210 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    211 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    213 	 "Entry 1010"},
    214 	/* ATMEL AT45DB011B (buffered flash) */
    215 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    216 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    217 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    218 	 "Buffered flash (128kB)"},
    219 	/* Expansion entry 1100 */
    220 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    221 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    222 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    223 	 "Entry 1100"},
    224 	/* Expansion entry 1101 */
    225 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    226 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    228 	 "Entry 1101"},
    229 	/* Ateml Expansion entry 1110 */
    230 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    231 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    232 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    233 	 "Entry 1110 (Atmel)"},
    234 	/* ATMEL AT45DB021B (buffered flash) */
    235 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    236 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    237 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    238 	 "Buffered flash (256kB)"},
    239 };
    240 
    241 /****************************************************************************/
    242 /* OpenBSD device entry points.                                             */
    243 /****************************************************************************/
    244 static int	bnx_probe(device_t, cfdata_t, void *);
    245 void	bnx_attach(device_t, device_t, void *);
    246 int	bnx_detach(device_t, int);
    247 
    248 /****************************************************************************/
    249 /* BNX Debug Data Structure Dump Routines                                   */
    250 /****************************************************************************/
    251 #ifdef BNX_DEBUG
    252 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    253 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    254 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    255 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    256 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    257 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    258 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    259 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    260 void	bnx_dump_status_block(struct bnx_softc *);
    261 void	bnx_dump_stats_block(struct bnx_softc *);
    262 void	bnx_dump_driver_state(struct bnx_softc *);
    263 void	bnx_dump_hw_state(struct bnx_softc *);
    264 void	bnx_breakpoint(struct bnx_softc *);
    265 #endif
    266 
    267 /****************************************************************************/
    268 /* BNX Register/Memory Access Routines                                      */
    269 /****************************************************************************/
    270 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
    271 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
    272 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
    273 int	bnx_miibus_read_reg(device_t, int, int);
    274 void	bnx_miibus_write_reg(device_t, int, int, int);
    275 void	bnx_miibus_statchg(device_t);
    276 
    277 /****************************************************************************/
    278 /* BNX NVRAM Access Routines                                                */
    279 /****************************************************************************/
    280 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    281 int	bnx_release_nvram_lock(struct bnx_softc *);
    282 void	bnx_enable_nvram_access(struct bnx_softc *);
    283 void	bnx_disable_nvram_access(struct bnx_softc *);
    284 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    285 	    u_int32_t);
    286 int	bnx_init_nvram(struct bnx_softc *);
    287 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    288 int	bnx_nvram_test(struct bnx_softc *);
    289 #ifdef BNX_NVRAM_WRITE_SUPPORT
    290 int	bnx_enable_nvram_write(struct bnx_softc *);
    291 void	bnx_disable_nvram_write(struct bnx_softc *);
    292 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
    293 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    294 	    u_int32_t);
    295 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    296 #endif
    297 
    298 /****************************************************************************/
    299 /*                                                                          */
    300 /****************************************************************************/
    301 int	bnx_dma_alloc(struct bnx_softc *);
    302 void	bnx_dma_free(struct bnx_softc *);
    303 void	bnx_release_resources(struct bnx_softc *);
    304 
    305 /****************************************************************************/
    306 /* BNX Firmware Synchronization and Load                                    */
    307 /****************************************************************************/
    308 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
    309 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
    310 	    u_int32_t);
    311 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    312 	    struct fw_info *);
    313 void	bnx_init_cpus(struct bnx_softc *);
    314 
    315 void	bnx_stop(struct ifnet *, int);
    316 int	bnx_reset(struct bnx_softc *, u_int32_t);
    317 int	bnx_chipinit(struct bnx_softc *);
    318 int	bnx_blockinit(struct bnx_softc *);
    319 int	bnx_get_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
    320 	    u_int16_t *, u_int32_t *);
    321 
    322 int	bnx_init_tx_chain(struct bnx_softc *);
    323 int	bnx_init_rx_chain(struct bnx_softc *);
    324 void	bnx_free_rx_chain(struct bnx_softc *);
    325 void	bnx_free_tx_chain(struct bnx_softc *);
    326 
    327 int	bnx_tx_encap(struct bnx_softc *, struct mbuf **);
    328 void	bnx_start(struct ifnet *);
    329 int	bnx_ioctl(struct ifnet *, u_long, void *);
    330 void	bnx_watchdog(struct ifnet *);
    331 int	bnx_ifmedia_upd(struct ifnet *);
    332 void	bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    333 int	bnx_init(struct ifnet *);
    334 
    335 void	bnx_init_context(struct bnx_softc *);
    336 void	bnx_get_mac_addr(struct bnx_softc *);
    337 void	bnx_set_mac_addr(struct bnx_softc *);
    338 void	bnx_phy_intr(struct bnx_softc *);
    339 void	bnx_rx_intr(struct bnx_softc *);
    340 void	bnx_tx_intr(struct bnx_softc *);
    341 void	bnx_disable_intr(struct bnx_softc *);
    342 void	bnx_enable_intr(struct bnx_softc *);
    343 
    344 int	bnx_intr(void *);
    345 void	bnx_set_rx_mode(struct bnx_softc *);
    346 void	bnx_stats_update(struct bnx_softc *);
    347 void	bnx_tick(void *);
    348 
    349 /****************************************************************************/
    350 /* OpenBSD device dispatch table.                                           */
    351 /****************************************************************************/
    352 CFATTACH_DECL_NEW(bnx, sizeof(struct bnx_softc),
    353     bnx_probe, bnx_attach, bnx_detach, NULL);
    354 
    355 /****************************************************************************/
    356 /* Device probe function.                                                   */
    357 /*                                                                          */
    358 /* Compares the device to the driver's list of supported devices and        */
    359 /* reports back to the OS whether this is the right driver for the device.  */
    360 /*                                                                          */
    361 /* Returns:                                                                 */
    362 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    363 /****************************************************************************/
    364 static const struct bnx_product *
    365 bnx_lookup(const struct pci_attach_args *pa)
    366 {
    367 	int i;
    368 	pcireg_t subid;
    369 
    370 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    371 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    372 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    373 			continue;
    374 		if (!bnx_devices[i].bp_subvendor)
    375 			return &bnx_devices[i];
    376 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    377 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    378 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    379 			return &bnx_devices[i];
    380 	}
    381 
    382 	return NULL;
    383 }
    384 static int
    385 bnx_probe(device_t parent, cfdata_t match, void *aux)
    386 {
    387 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    388 
    389 	if (bnx_lookup(pa) != NULL)
    390 		return (1);
    391 
    392 	return (0);
    393 }
    394 
    395 /****************************************************************************/
    396 /* Device attach function.                                                  */
    397 /*                                                                          */
    398 /* Allocates device resources, performs secondary chip identification,      */
    399 /* resets and initializes the hardware, and initializes driver instance     */
    400 /* variables.                                                               */
    401 /*                                                                          */
    402 /* Returns:                                                                 */
    403 /*   0 on success, positive value on failure.                               */
    404 /****************************************************************************/
    405 void
    406 bnx_attach(device_t parent, device_t self, void *aux)
    407 {
    408 	const struct bnx_product *bp;
    409 	struct bnx_softc	*sc = device_private(self);
    410 	struct pci_attach_args	*pa = aux;
    411 	pci_chipset_tag_t	pc = pa->pa_pc;
    412 	pci_intr_handle_t	ih;
    413 	const char 		*intrstr = NULL;
    414 	u_int32_t		command;
    415 	struct ifnet		*ifp;
    416 	u_int32_t		val;
    417 	pcireg_t		memtype;
    418 
    419 	bp = bnx_lookup(pa);
    420 	if (bp == NULL)
    421 		panic("unknown device");
    422 
    423 	sc->bnx_dev = self;
    424 
    425 	aprint_naive("\n");
    426 	aprint_normal(": %s\n", bp->bp_name);
    427 
    428 	sc->bnx_pa = *pa;
    429 
    430 	/*
    431 	 * Map control/status registers.
    432 	*/
    433 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    434 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    435 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    436 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    437 
    438 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    439 		aprint_error_dev(sc->bnx_dev,
    440 		    "failed to enable memory mapping!\n");
    441 		return;
    442 	}
    443 
    444 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    445 	switch (memtype) {
    446 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    447 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    448 		if (pci_mapreg_map(pa, BNX_PCI_BAR0,
    449 		    memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
    450 		    NULL, &sc->bnx_size) == 0)
    451 			break;
    452 	default:
    453 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    454 		return;
    455 	}
    456 
    457 	if (pci_intr_map(pa, &ih)) {
    458 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    459 		goto bnx_attach_fail;
    460 	}
    461 
    462 	intrstr = pci_intr_string(pc, ih);
    463 
    464 	/*
    465 	 * Configure byte swap and enable indirect register access.
    466 	 * Rely on CPU to do target byte swapping on big endian systems.
    467 	 * Access to registers outside of PCI configurtion space are not
    468 	 * valid until this is done.
    469 	 */
    470 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    471 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    472 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    473 
    474 	/* Save ASIC revsion info. */
    475 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    476 
    477 	/* Weed out any non-production controller revisions. */
    478 	switch(BNX_CHIP_ID(sc)) {
    479 	case BNX_CHIP_ID_5706_A0:
    480 	case BNX_CHIP_ID_5706_A1:
    481 	case BNX_CHIP_ID_5708_A0:
    482 	case BNX_CHIP_ID_5708_B0:
    483 		aprint_error_dev(sc->bnx_dev,
    484 		    "unsupported controller revision (%c%d)!\n",
    485 		    ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
    486 		    PCI_REVISION(pa->pa_class) & 0x0f);
    487 		goto bnx_attach_fail;
    488 	}
    489 
    490 	if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
    491 		aprint_error_dev(sc->bnx_dev,
    492 		    "SerDes controllers are not supported!\n");
    493 		goto bnx_attach_fail;
    494 	}
    495 
    496 	/*
    497 	 * Find the base address for shared memory access.
    498 	 * Newer versions of bootcode use a signature and offset
    499 	 * while older versions use a fixed address.
    500 	 */
    501 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    502 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    503 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
    504 	else
    505 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    506 
    507 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    508 
    509 	/* Set initial device and PHY flags */
    510 	sc->bnx_flags = 0;
    511 	sc->bnx_phy_flags = 0;
    512 
    513 	/* Get PCI bus information (speed and type). */
    514 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    515 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    516 		u_int32_t clkreg;
    517 
    518 		sc->bnx_flags |= BNX_PCIX_FLAG;
    519 
    520 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    521 
    522 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    523 		switch (clkreg) {
    524 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    525 			sc->bus_speed_mhz = 133;
    526 			break;
    527 
    528 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    529 			sc->bus_speed_mhz = 100;
    530 			break;
    531 
    532 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    533 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    534 			sc->bus_speed_mhz = 66;
    535 			break;
    536 
    537 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    538 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    539 			sc->bus_speed_mhz = 50;
    540 			break;
    541 
    542 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    543 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    544 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    545 			sc->bus_speed_mhz = 33;
    546 			break;
    547 		}
    548 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    549 			sc->bus_speed_mhz = 66;
    550 		else
    551 			sc->bus_speed_mhz = 33;
    552 
    553 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    554 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    555 
    556 	/* Reset the controller. */
    557 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    558 		goto bnx_attach_fail;
    559 
    560 	/* Initialize the controller. */
    561 	if (bnx_chipinit(sc)) {
    562 		aprint_error_dev(sc->bnx_dev,
    563 		    "Controller initialization failed!\n");
    564 		goto bnx_attach_fail;
    565 	}
    566 
    567 	/* Perform NVRAM test. */
    568 	if (bnx_nvram_test(sc)) {
    569 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    570 		goto bnx_attach_fail;
    571 	}
    572 
    573 	/* Fetch the permanent Ethernet MAC address. */
    574 	bnx_get_mac_addr(sc);
    575 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    576 	    ether_sprintf(sc->eaddr));
    577 
    578 	/*
    579 	 * Trip points control how many BDs
    580 	 * should be ready before generating an
    581 	 * interrupt while ticks control how long
    582 	 * a BD can sit in the chain before
    583 	 * generating an interrupt.  Set the default
    584 	 * values for the RX and TX rings.
    585 	 */
    586 
    587 #ifdef BNX_DEBUG
    588 	/* Force more frequent interrupts. */
    589 	sc->bnx_tx_quick_cons_trip_int = 1;
    590 	sc->bnx_tx_quick_cons_trip     = 1;
    591 	sc->bnx_tx_ticks_int           = 0;
    592 	sc->bnx_tx_ticks               = 0;
    593 
    594 	sc->bnx_rx_quick_cons_trip_int = 1;
    595 	sc->bnx_rx_quick_cons_trip     = 1;
    596 	sc->bnx_rx_ticks_int           = 0;
    597 	sc->bnx_rx_ticks               = 0;
    598 #else
    599 	sc->bnx_tx_quick_cons_trip_int = 20;
    600 	sc->bnx_tx_quick_cons_trip     = 20;
    601 	sc->bnx_tx_ticks_int           = 80;
    602 	sc->bnx_tx_ticks               = 80;
    603 
    604 	sc->bnx_rx_quick_cons_trip_int = 6;
    605 	sc->bnx_rx_quick_cons_trip     = 6;
    606 	sc->bnx_rx_ticks_int           = 18;
    607 	sc->bnx_rx_ticks               = 18;
    608 #endif
    609 
    610 	/* Update statistics once every second. */
    611 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    612 
    613 	/*
    614 	 * The copper based NetXtreme II controllers
    615 	 * use an integrated PHY at address 1 while
    616 	 * the SerDes controllers use a PHY at
    617 	 * address 2.
    618 	 */
    619 	sc->bnx_phy_addr = 1;
    620 
    621 	if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
    622 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
    623 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
    624 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708) {
    625 			sc->bnx_phy_addr = 2;
    626 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
    627 					 BNX_SHARED_HW_CFG_CONFIG);
    628 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
    629 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
    630 		}
    631 	}
    632 
    633 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
    634 		aprint_error_dev(sc->bnx_dev,
    635 		    "SerDes is not supported by this driver!\n");
    636 		goto bnx_attach_fail;
    637 	}
    638 
    639 	/* Allocate DMA memory resources. */
    640 	sc->bnx_dmatag = pa->pa_dmat;
    641 	if (bnx_dma_alloc(sc)) {
    642 		aprint_error_dev(sc->bnx_dev,
    643 		    "DMA resource allocation failed!\n");
    644 		goto bnx_attach_fail;
    645 	}
    646 
    647 	/* Initialize the ifnet interface. */
    648 	ifp = &sc->bnx_ec.ec_if;
    649 	ifp->if_softc = sc;
    650 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    651 	ifp->if_ioctl = bnx_ioctl;
    652 	ifp->if_stop = bnx_stop;
    653 	ifp->if_start = bnx_start;
    654 	ifp->if_init = bnx_init;
    655 	ifp->if_timer = 0;
    656 	ifp->if_watchdog = bnx_watchdog;
    657         if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG)
    658                 ifp->if_baudrate = IF_Gbps(2.5);
    659         else
    660                 ifp->if_baudrate = IF_Gbps(1);
    661 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    662 	IFQ_SET_READY(&ifp->if_snd);
    663 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    664 
    665 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    666 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    667 
    668 	ifp->if_capabilities |=
    669 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    670 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    671 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    672 
    673 	/* Hookup IRQ last. */
    674 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    675 	if (sc->bnx_intrhand == NULL) {
    676 		aprint_error_dev(self, "couldn't establish interrupt");
    677 		if (intrstr != NULL)
    678 			aprint_error(" at %s", intrstr);
    679 		aprint_error("\n");
    680 		goto bnx_attach_fail;
    681 	}
    682 
    683 	sc->bnx_mii.mii_ifp = ifp;
    684 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    685 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    686 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    687 
    688 	/* Look for our PHY. */
    689 	ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd,
    690 	    bnx_ifmedia_sts);
    691 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    692 	    MII_PHY_ANY, MII_OFFSET_ANY, 0);
    693 
    694 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    695 		aprint_error_dev(self, "no PHY found!\n");
    696 		ifmedia_add(&sc->bnx_mii.mii_media,
    697 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    698 		ifmedia_set(&sc->bnx_mii.mii_media,
    699 		    IFM_ETHER|IFM_MANUAL);
    700 	} else {
    701 		ifmedia_set(&sc->bnx_mii.mii_media,
    702 		    IFM_ETHER|IFM_AUTO);
    703 	}
    704 
    705 	/* Attach to the Ethernet interface list. */
    706 	if_attach(ifp);
    707 	ether_ifattach(ifp,sc->eaddr);
    708 
    709 	callout_init(&sc->bnx_timeout, 0);
    710 
    711 	if (!pmf_device_register(self, NULL, NULL))
    712 		aprint_error_dev(self, "couldn't establish power handler\n");
    713 	else
    714 		pmf_class_network_register(self, ifp);
    715 
    716 	/* Print some important debugging info. */
    717 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    718 
    719 	goto bnx_attach_exit;
    720 
    721 bnx_attach_fail:
    722 	bnx_release_resources(sc);
    723 
    724 bnx_attach_exit:
    725 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    726 }
    727 
    728 /****************************************************************************/
    729 /* Device detach function.                                                  */
    730 /*                                                                          */
    731 /* Stops the controller, resets the controller, and releases resources.     */
    732 /*                                                                          */
    733 /* Returns:                                                                 */
    734 /*   0 on success, positive value on failure.                               */
    735 /****************************************************************************/
    736 int
    737 bnx_detach(device_t dev, int flags)
    738 {
    739 	int s;
    740 	struct bnx_softc *sc;
    741 	struct ifnet *ifp;
    742 
    743 	sc = device_private(dev);
    744 	ifp = &sc->bnx_ec.ec_if;
    745 
    746 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    747 
    748 	/* Stop and reset the controller. */
    749 	s = splnet();
    750 	if (ifp->if_flags & IFF_RUNNING)
    751 		bnx_stop(ifp, 1);
    752 	splx(s);
    753 
    754 	pmf_device_deregister(dev);
    755 	ether_ifdetach(ifp);
    756 	if_detach(ifp);
    757 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    758 
    759 	/* Release all remaining resources. */
    760 	bnx_release_resources(sc);
    761 
    762 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    763 
    764 	return(0);
    765 }
    766 
    767 /****************************************************************************/
    768 /* Indirect register read.                                                  */
    769 /*                                                                          */
    770 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    771 /* configuration space.  Using this mechanism avoids issues with posted     */
    772 /* reads but is much slower than memory-mapped I/O.                         */
    773 /*                                                                          */
    774 /* Returns:                                                                 */
    775 /*   The value of the register.                                             */
    776 /****************************************************************************/
    777 u_int32_t
    778 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
    779 {
    780 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    781 
    782 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    783 	    offset);
    784 #ifdef BNX_DEBUG
    785 	{
    786 		u_int32_t val;
    787 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    788 		    BNX_PCICFG_REG_WINDOW);
    789 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    790 		    "val = 0x%08X\n", __func__, offset, val);
    791 		return (val);
    792 	}
    793 #else
    794 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    795 #endif
    796 }
    797 
    798 /****************************************************************************/
    799 /* Indirect register write.                                                 */
    800 /*                                                                          */
    801 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    802 /* configuration space.  Using this mechanism avoids issues with posted     */
    803 /* writes but is muchh slower than memory-mapped I/O.                       */
    804 /*                                                                          */
    805 /* Returns:                                                                 */
    806 /*   Nothing.                                                               */
    807 /****************************************************************************/
    808 void
    809 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
    810 {
    811 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    812 
    813 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    814 		__func__, offset, val);
    815 
    816 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    817 	    offset);
    818 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    819 }
    820 
    821 /****************************************************************************/
    822 /* Context memory write.                                                    */
    823 /*                                                                          */
    824 /* The NetXtreme II controller uses context memory to track connection      */
    825 /* information for L2 and higher network protocols.                         */
    826 /*                                                                          */
    827 /* Returns:                                                                 */
    828 /*   Nothing.                                                               */
    829 /****************************************************************************/
    830 void
    831 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
    832     u_int32_t val)
    833 {
    834 
    835 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
    836 		"val = 0x%08X\n", __func__, cid_addr, offset, val);
    837 
    838 	offset += cid_addr;
    839 	REG_WR(sc, BNX_CTX_DATA_ADR, offset);
    840 	REG_WR(sc, BNX_CTX_DATA, val);
    841 }
    842 
    843 /****************************************************************************/
    844 /* PHY register read.                                                       */
    845 /*                                                                          */
    846 /* Implements register reads on the MII bus.                                */
    847 /*                                                                          */
    848 /* Returns:                                                                 */
    849 /*   The value of the register.                                             */
    850 /****************************************************************************/
    851 int
    852 bnx_miibus_read_reg(device_t dev, int phy, int reg)
    853 {
    854 	struct bnx_softc	*sc = device_private(dev);
    855 	u_int32_t		val;
    856 	int			i;
    857 
    858 	/* Make sure we are accessing the correct PHY address. */
    859 	if (phy != sc->bnx_phy_addr) {
    860 		DBPRINT(sc, BNX_VERBOSE,
    861 		    "Invalid PHY address %d for PHY read!\n", phy);
    862 		return(0);
    863 	}
    864 
    865 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    866 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    867 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    868 
    869 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    870 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    871 
    872 		DELAY(40);
    873 	}
    874 
    875 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
    876 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
    877 	    BNX_EMAC_MDIO_COMM_START_BUSY;
    878 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
    879 
    880 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    881 		DELAY(10);
    882 
    883 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    884 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    885 			DELAY(5);
    886 
    887 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    888 			val &= BNX_EMAC_MDIO_COMM_DATA;
    889 
    890 			break;
    891 		}
    892 	}
    893 
    894 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
    895 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
    896 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
    897 		val = 0x0;
    898 	} else
    899 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    900 
    901 	DBPRINT(sc, BNX_EXCESSIVE,
    902 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
    903 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    904 
    905 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    906 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    907 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    908 
    909 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    910 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    911 
    912 		DELAY(40);
    913 	}
    914 
    915 	return (val & 0xffff);
    916 }
    917 
    918 /****************************************************************************/
    919 /* PHY register write.                                                      */
    920 /*                                                                          */
    921 /* Implements register writes on the MII bus.                               */
    922 /*                                                                          */
    923 /* Returns:                                                                 */
    924 /*   The value of the register.                                             */
    925 /****************************************************************************/
    926 void
    927 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
    928 {
    929 	struct bnx_softc	*sc = device_private(dev);
    930 	u_int32_t		val1;
    931 	int			i;
    932 
    933 	/* Make sure we are accessing the correct PHY address. */
    934 	if (phy != sc->bnx_phy_addr) {
    935 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
    936 		    phy);
    937 		return;
    938 	}
    939 
    940 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
    941 	    "val = 0x%04X\n", __func__,
    942 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    943 
    944 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    945 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    946 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    947 
    948 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
    949 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    950 
    951 		DELAY(40);
    952 	}
    953 
    954 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
    955 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
    956 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
    957 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
    958 
    959 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    960 		DELAY(10);
    961 
    962 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    963 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    964 			DELAY(5);
    965 			break;
    966 		}
    967 	}
    968 
    969 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
    970 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
    971 		    __LINE__);
    972 	}
    973 
    974 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    975 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    976 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    977 
    978 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
    979 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    980 
    981 		DELAY(40);
    982 	}
    983 }
    984 
    985 /****************************************************************************/
    986 /* MII bus status change.                                                   */
    987 /*                                                                          */
    988 /* Called by the MII bus driver when the PHY establishes link to set the    */
    989 /* MAC interface registers.                                                 */
    990 /*                                                                          */
    991 /* Returns:                                                                 */
    992 /*   Nothing.                                                               */
    993 /****************************************************************************/
    994 void
    995 bnx_miibus_statchg(device_t dev)
    996 {
    997 	struct bnx_softc	*sc = device_private(dev);
    998 	struct mii_data		*mii = &sc->bnx_mii;
    999 
   1000 	BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT);
   1001 
   1002 	/* Set MII or GMII inerface based on the speed negotiated by the PHY. */
   1003 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
   1004 		DBPRINT(sc, BNX_INFO, "Setting GMII interface.\n");
   1005 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_GMII);
   1006 	} else {
   1007 		DBPRINT(sc, BNX_INFO, "Setting MII interface.\n");
   1008 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_MII);
   1009 	}
   1010 
   1011 	/* Set half or full duplex based on the duplicity
   1012 	 * negotiated by the PHY.
   1013 	 */
   1014 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
   1015 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1016 		BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
   1017 	} else {
   1018 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1019 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
   1020 	}
   1021 }
   1022 
   1023 /****************************************************************************/
   1024 /* Acquire NVRAM lock.                                                      */
   1025 /*                                                                          */
   1026 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1027 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1028 /* for use by the driver.                                                   */
   1029 /*                                                                          */
   1030 /* Returns:                                                                 */
   1031 /*   0 on success, positive value on failure.                               */
   1032 /****************************************************************************/
   1033 int
   1034 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1035 {
   1036 	u_int32_t		val;
   1037 	int			j;
   1038 
   1039 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1040 
   1041 	/* Request access to the flash interface. */
   1042 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1043 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1044 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1045 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1046 			break;
   1047 
   1048 		DELAY(5);
   1049 	}
   1050 
   1051 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1052 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1053 		return (EBUSY);
   1054 	}
   1055 
   1056 	return (0);
   1057 }
   1058 
   1059 /****************************************************************************/
   1060 /* Release NVRAM lock.                                                      */
   1061 /*                                                                          */
   1062 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1063 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1064 /* for use by the driver.                                                   */
   1065 /*                                                                          */
   1066 /* Returns:                                                                 */
   1067 /*   0 on success, positive value on failure.                               */
   1068 /****************************************************************************/
   1069 int
   1070 bnx_release_nvram_lock(struct bnx_softc *sc)
   1071 {
   1072 	int			j;
   1073 	u_int32_t		val;
   1074 
   1075 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1076 
   1077 	/* Relinquish nvram interface. */
   1078 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1079 
   1080 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1081 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1082 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1083 			break;
   1084 
   1085 		DELAY(5);
   1086 	}
   1087 
   1088 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1089 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1090 		return (EBUSY);
   1091 	}
   1092 
   1093 	return (0);
   1094 }
   1095 
   1096 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1097 /****************************************************************************/
   1098 /* Enable NVRAM write access.                                               */
   1099 /*                                                                          */
   1100 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1101 /*                                                                          */
   1102 /* Returns:                                                                 */
   1103 /*   0 on success, positive value on failure.                               */
   1104 /****************************************************************************/
   1105 int
   1106 bnx_enable_nvram_write(struct bnx_softc *sc)
   1107 {
   1108 	u_int32_t		val;
   1109 
   1110 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1111 
   1112 	val = REG_RD(sc, BNX_MISC_CFG);
   1113 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1114 
   1115 	if (!sc->bnx_flash_info->buffered) {
   1116 		int j;
   1117 
   1118 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1119 		REG_WR(sc, BNX_NVM_COMMAND,
   1120 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1121 
   1122 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1123 			DELAY(5);
   1124 
   1125 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1126 			if (val & BNX_NVM_COMMAND_DONE)
   1127 				break;
   1128 		}
   1129 
   1130 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1131 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1132 			return (EBUSY);
   1133 		}
   1134 	}
   1135 
   1136 	return (0);
   1137 }
   1138 
   1139 /****************************************************************************/
   1140 /* Disable NVRAM write access.                                              */
   1141 /*                                                                          */
   1142 /* When the caller is finished writing to NVRAM write access must be        */
   1143 /* disabled.                                                                */
   1144 /*                                                                          */
   1145 /* Returns:                                                                 */
   1146 /*   Nothing.                                                               */
   1147 /****************************************************************************/
   1148 void
   1149 bnx_disable_nvram_write(struct bnx_softc *sc)
   1150 {
   1151 	u_int32_t		val;
   1152 
   1153 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1154 
   1155 	val = REG_RD(sc, BNX_MISC_CFG);
   1156 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1157 }
   1158 #endif
   1159 
   1160 /****************************************************************************/
   1161 /* Enable NVRAM access.                                                     */
   1162 /*                                                                          */
   1163 /* Before accessing NVRAM for read or write operations the caller must      */
   1164 /* enabled NVRAM access.                                                    */
   1165 /*                                                                          */
   1166 /* Returns:                                                                 */
   1167 /*   Nothing.                                                               */
   1168 /****************************************************************************/
   1169 void
   1170 bnx_enable_nvram_access(struct bnx_softc *sc)
   1171 {
   1172 	u_int32_t		val;
   1173 
   1174 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1175 
   1176 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1177 	/* Enable both bits, even on read. */
   1178 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1179 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1180 }
   1181 
   1182 /****************************************************************************/
   1183 /* Disable NVRAM access.                                                    */
   1184 /*                                                                          */
   1185 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1186 /*                                                                          */
   1187 /* Returns:                                                                 */
   1188 /*   Nothing.                                                               */
   1189 /****************************************************************************/
   1190 void
   1191 bnx_disable_nvram_access(struct bnx_softc *sc)
   1192 {
   1193 	u_int32_t		val;
   1194 
   1195 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1196 
   1197 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1198 
   1199 	/* Disable both bits, even after read. */
   1200 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1201 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1202 }
   1203 
   1204 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1205 /****************************************************************************/
   1206 /* Erase NVRAM page before writing.                                         */
   1207 /*                                                                          */
   1208 /* Non-buffered flash parts require that a page be erased before it is      */
   1209 /* written.                                                                 */
   1210 /*                                                                          */
   1211 /* Returns:                                                                 */
   1212 /*   0 on success, positive value on failure.                               */
   1213 /****************************************************************************/
   1214 int
   1215 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
   1216 {
   1217 	u_int32_t		cmd;
   1218 	int			j;
   1219 
   1220 	/* Buffered flash doesn't require an erase. */
   1221 	if (sc->bnx_flash_info->buffered)
   1222 		return (0);
   1223 
   1224 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1225 
   1226 	/* Build an erase command. */
   1227 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1228 	    BNX_NVM_COMMAND_DOIT;
   1229 
   1230 	/*
   1231 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
   1232 	 * and issue the erase command.
   1233 	 */
   1234 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1235 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1236 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1237 
   1238 	/* Wait for completion. */
   1239 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1240 		u_int32_t val;
   1241 
   1242 		DELAY(5);
   1243 
   1244 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1245 		if (val & BNX_NVM_COMMAND_DONE)
   1246 			break;
   1247 	}
   1248 
   1249 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1250 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1251 		return (EBUSY);
   1252 	}
   1253 
   1254 	return (0);
   1255 }
   1256 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1257 
   1258 /****************************************************************************/
   1259 /* Read a dword (32 bits) from NVRAM.                                       */
   1260 /*                                                                          */
   1261 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1262 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1263 /*                                                                          */
   1264 /* Returns:                                                                 */
   1265 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1266 /****************************************************************************/
   1267 int
   1268 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
   1269     u_int8_t *ret_val, u_int32_t cmd_flags)
   1270 {
   1271 	u_int32_t		cmd;
   1272 	int			i, rc = 0;
   1273 
   1274 	/* Build the command word. */
   1275 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1276 
   1277 	/* Calculate the offset for buffered flash. */
   1278 	if (sc->bnx_flash_info->buffered)
   1279 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1280 		    sc->bnx_flash_info->page_bits) +
   1281 		    (offset % sc->bnx_flash_info->page_size);
   1282 
   1283 	/*
   1284 	 * Clear the DONE bit separately, set the address to read,
   1285 	 * and issue the read.
   1286 	 */
   1287 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1288 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1289 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1290 
   1291 	/* Wait for completion. */
   1292 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1293 		u_int32_t val;
   1294 
   1295 		DELAY(5);
   1296 
   1297 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1298 		if (val & BNX_NVM_COMMAND_DONE) {
   1299 			val = REG_RD(sc, BNX_NVM_READ);
   1300 
   1301 			val = bnx_be32toh(val);
   1302 			memcpy(ret_val, &val, 4);
   1303 			break;
   1304 		}
   1305 	}
   1306 
   1307 	/* Check for errors. */
   1308 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1309 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1310 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1311 		rc = EBUSY;
   1312 	}
   1313 
   1314 	return(rc);
   1315 }
   1316 
   1317 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1318 /****************************************************************************/
   1319 /* Write a dword (32 bits) to NVRAM.                                        */
   1320 /*                                                                          */
   1321 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1322 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1323 /* enabled NVRAM write access.                                              */
   1324 /*                                                                          */
   1325 /* Returns:                                                                 */
   1326 /*   0 on success, positive value on failure.                               */
   1327 /****************************************************************************/
   1328 int
   1329 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
   1330     u_int32_t cmd_flags)
   1331 {
   1332 	u_int32_t		cmd, val32;
   1333 	int			j;
   1334 
   1335 	/* Build the command word. */
   1336 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1337 
   1338 	/* Calculate the offset for buffered flash. */
   1339 	if (sc->bnx_flash_info->buffered)
   1340 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1341 		    sc->bnx_flash_info->page_bits) +
   1342 		    (offset % sc->bnx_flash_info->page_size);
   1343 
   1344 	/*
   1345 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1346 	 * set the NVRAM address to write, and issue the write command
   1347 	 */
   1348 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1349 	memcpy(&val32, val, 4);
   1350 	val32 = htobe32(val32);
   1351 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1352 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1353 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1354 
   1355 	/* Wait for completion. */
   1356 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1357 		DELAY(5);
   1358 
   1359 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1360 			break;
   1361 	}
   1362 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1363 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1364 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1365 		return (EBUSY);
   1366 	}
   1367 
   1368 	return (0);
   1369 }
   1370 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1371 
   1372 /****************************************************************************/
   1373 /* Initialize NVRAM access.                                                 */
   1374 /*                                                                          */
   1375 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1376 /* access that device.                                                      */
   1377 /*                                                                          */
   1378 /* Returns:                                                                 */
   1379 /*   0 on success, positive value on failure.                               */
   1380 /****************************************************************************/
   1381 int
   1382 bnx_init_nvram(struct bnx_softc *sc)
   1383 {
   1384 	u_int32_t		val;
   1385 	int			j, entry_count, rc;
   1386 	struct flash_spec	*flash;
   1387 
   1388 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1389 
   1390 	/* Determine the selected interface. */
   1391 	val = REG_RD(sc, BNX_NVM_CFG1);
   1392 
   1393 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1394 
   1395 	rc = 0;
   1396 
   1397 	/*
   1398 	 * Flash reconfiguration is required to support additional
   1399 	 * NVRAM devices not directly supported in hardware.
   1400 	 * Check if the flash interface was reconfigured
   1401 	 * by the bootcode.
   1402 	 */
   1403 
   1404 	if (val & 0x40000000) {
   1405 		/* Flash interface reconfigured by bootcode. */
   1406 
   1407 		DBPRINT(sc,BNX_INFO_LOAD,
   1408 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1409 
   1410 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1411 		     j++, flash++) {
   1412 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1413 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1414 				sc->bnx_flash_info = flash;
   1415 				break;
   1416 			}
   1417 		}
   1418 	} else {
   1419 		/* Flash interface not yet reconfigured. */
   1420 		u_int32_t mask;
   1421 
   1422 		DBPRINT(sc,BNX_INFO_LOAD,
   1423 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1424 
   1425 		if (val & (1 << 23))
   1426 			mask = FLASH_BACKUP_STRAP_MASK;
   1427 		else
   1428 			mask = FLASH_STRAP_MASK;
   1429 
   1430 		/* Look for the matching NVRAM device configuration data. */
   1431 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1432 		    j++, flash++) {
   1433 			/* Check if the dev matches any of the known devices. */
   1434 			if ((val & mask) == (flash->strapping & mask)) {
   1435 				/* Found a device match. */
   1436 				sc->bnx_flash_info = flash;
   1437 
   1438 				/* Request access to the flash interface. */
   1439 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1440 					return (rc);
   1441 
   1442 				/* Reconfigure the flash interface. */
   1443 				bnx_enable_nvram_access(sc);
   1444 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1445 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1446 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1447 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1448 				bnx_disable_nvram_access(sc);
   1449 				bnx_release_nvram_lock(sc);
   1450 
   1451 				break;
   1452 			}
   1453 		}
   1454 	}
   1455 
   1456 	/* Check if a matching device was found. */
   1457 	if (j == entry_count) {
   1458 		sc->bnx_flash_info = NULL;
   1459 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1460 			__FILE__, __LINE__);
   1461 		rc = ENODEV;
   1462 	}
   1463 
   1464 	/* Write the flash config data to the shared memory interface. */
   1465 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1466 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1467 	if (val)
   1468 		sc->bnx_flash_size = val;
   1469 	else
   1470 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1471 
   1472 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1473 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1474 
   1475 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1476 
   1477 	return (rc);
   1478 }
   1479 
   1480 /****************************************************************************/
   1481 /* Read an arbitrary range of data from NVRAM.                              */
   1482 /*                                                                          */
   1483 /* Prepares the NVRAM interface for access and reads the requested data     */
   1484 /* into the supplied buffer.                                                */
   1485 /*                                                                          */
   1486 /* Returns:                                                                 */
   1487 /*   0 on success and the data read, positive value on failure.             */
   1488 /****************************************************************************/
   1489 int
   1490 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
   1491     int buf_size)
   1492 {
   1493 	int			rc = 0;
   1494 	u_int32_t		cmd_flags, offset32, len32, extra;
   1495 
   1496 	if (buf_size == 0)
   1497 		return (0);
   1498 
   1499 	/* Request access to the flash interface. */
   1500 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1501 		return (rc);
   1502 
   1503 	/* Enable access to flash interface */
   1504 	bnx_enable_nvram_access(sc);
   1505 
   1506 	len32 = buf_size;
   1507 	offset32 = offset;
   1508 	extra = 0;
   1509 
   1510 	cmd_flags = 0;
   1511 
   1512 	if (offset32 & 3) {
   1513 		u_int8_t buf[4];
   1514 		u_int32_t pre_len;
   1515 
   1516 		offset32 &= ~3;
   1517 		pre_len = 4 - (offset & 3);
   1518 
   1519 		if (pre_len >= len32) {
   1520 			pre_len = len32;
   1521 			cmd_flags =
   1522 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1523 		} else
   1524 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1525 
   1526 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1527 
   1528 		if (rc)
   1529 			return (rc);
   1530 
   1531 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1532 
   1533 		offset32 += 4;
   1534 		ret_buf += pre_len;
   1535 		len32 -= pre_len;
   1536 	}
   1537 
   1538 	if (len32 & 3) {
   1539 		extra = 4 - (len32 & 3);
   1540 		len32 = (len32 + 4) & ~3;
   1541 	}
   1542 
   1543 	if (len32 == 4) {
   1544 		u_int8_t buf[4];
   1545 
   1546 		if (cmd_flags)
   1547 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1548 		else
   1549 			cmd_flags =
   1550 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1551 
   1552 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1553 
   1554 		memcpy(ret_buf, buf, 4 - extra);
   1555 	} else if (len32 > 0) {
   1556 		u_int8_t buf[4];
   1557 
   1558 		/* Read the first word. */
   1559 		if (cmd_flags)
   1560 			cmd_flags = 0;
   1561 		else
   1562 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1563 
   1564 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1565 
   1566 		/* Advance to the next dword. */
   1567 		offset32 += 4;
   1568 		ret_buf += 4;
   1569 		len32 -= 4;
   1570 
   1571 		while (len32 > 4 && rc == 0) {
   1572 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1573 
   1574 			/* Advance to the next dword. */
   1575 			offset32 += 4;
   1576 			ret_buf += 4;
   1577 			len32 -= 4;
   1578 		}
   1579 
   1580 		if (rc)
   1581 			return (rc);
   1582 
   1583 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1584 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1585 
   1586 		memcpy(ret_buf, buf, 4 - extra);
   1587 	}
   1588 
   1589 	/* Disable access to flash interface and release the lock. */
   1590 	bnx_disable_nvram_access(sc);
   1591 	bnx_release_nvram_lock(sc);
   1592 
   1593 	return (rc);
   1594 }
   1595 
   1596 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1597 /****************************************************************************/
   1598 /* Write an arbitrary range of data from NVRAM.                             */
   1599 /*                                                                          */
   1600 /* Prepares the NVRAM interface for write access and writes the requested   */
   1601 /* data from the supplied buffer.  The caller is responsible for            */
   1602 /* calculating any appropriate CRCs.                                        */
   1603 /*                                                                          */
   1604 /* Returns:                                                                 */
   1605 /*   0 on success, positive value on failure.                               */
   1606 /****************************************************************************/
   1607 int
   1608 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
   1609     int buf_size)
   1610 {
   1611 	u_int32_t		written, offset32, len32;
   1612 	u_int8_t		*buf, start[4], end[4];
   1613 	int			rc = 0;
   1614 	int			align_start, align_end;
   1615 
   1616 	buf = data_buf;
   1617 	offset32 = offset;
   1618 	len32 = buf_size;
   1619 	align_start = align_end = 0;
   1620 
   1621 	if ((align_start = (offset32 & 3))) {
   1622 		offset32 &= ~3;
   1623 		len32 += align_start;
   1624 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1625 			return (rc);
   1626 	}
   1627 
   1628 	if (len32 & 3) {
   1629 	       	if ((len32 > 4) || !align_start) {
   1630 			align_end = 4 - (len32 & 3);
   1631 			len32 += align_end;
   1632 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1633 			    end, 4))) {
   1634 				return (rc);
   1635 			}
   1636 		}
   1637 	}
   1638 
   1639 	if (align_start || align_end) {
   1640 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1641 		if (buf == 0)
   1642 			return (ENOMEM);
   1643 
   1644 		if (align_start)
   1645 			memcpy(buf, start, 4);
   1646 
   1647 		if (align_end)
   1648 			memcpy(buf + len32 - 4, end, 4);
   1649 
   1650 		memcpy(buf + align_start, data_buf, buf_size);
   1651 	}
   1652 
   1653 	written = 0;
   1654 	while ((written < len32) && (rc == 0)) {
   1655 		u_int32_t page_start, page_end, data_start, data_end;
   1656 		u_int32_t addr, cmd_flags;
   1657 		int i;
   1658 		u_int8_t flash_buffer[264];
   1659 
   1660 	    /* Find the page_start addr */
   1661 		page_start = offset32 + written;
   1662 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1663 		/* Find the page_end addr */
   1664 		page_end = page_start + sc->bnx_flash_info->page_size;
   1665 		/* Find the data_start addr */
   1666 		data_start = (written == 0) ? offset32 : page_start;
   1667 		/* Find the data_end addr */
   1668 		data_end = (page_end > offset32 + len32) ?
   1669 		    (offset32 + len32) : page_end;
   1670 
   1671 		/* Request access to the flash interface. */
   1672 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1673 			goto nvram_write_end;
   1674 
   1675 		/* Enable access to flash interface */
   1676 		bnx_enable_nvram_access(sc);
   1677 
   1678 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1679 		if (sc->bnx_flash_info->buffered == 0) {
   1680 			int j;
   1681 
   1682 			/* Read the whole page into the buffer
   1683 			 * (non-buffer flash only) */
   1684 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1685 				if (j == (sc->bnx_flash_info->page_size - 4))
   1686 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1687 
   1688 				rc = bnx_nvram_read_dword(sc,
   1689 					page_start + j,
   1690 					&flash_buffer[j],
   1691 					cmd_flags);
   1692 
   1693 				if (rc)
   1694 					goto nvram_write_end;
   1695 
   1696 				cmd_flags = 0;
   1697 			}
   1698 		}
   1699 
   1700 		/* Enable writes to flash interface (unlock write-protect) */
   1701 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1702 			goto nvram_write_end;
   1703 
   1704 		/* Erase the page */
   1705 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1706 			goto nvram_write_end;
   1707 
   1708 		/* Re-enable the write again for the actual write */
   1709 		bnx_enable_nvram_write(sc);
   1710 
   1711 		/* Loop to write back the buffer data from page_start to
   1712 		 * data_start */
   1713 		i = 0;
   1714 		if (sc->bnx_flash_info->buffered == 0) {
   1715 			for (addr = page_start; addr < data_start;
   1716 				addr += 4, i += 4) {
   1717 
   1718 				rc = bnx_nvram_write_dword(sc, addr,
   1719 				    &flash_buffer[i], cmd_flags);
   1720 
   1721 				if (rc != 0)
   1722 					goto nvram_write_end;
   1723 
   1724 				cmd_flags = 0;
   1725 			}
   1726 		}
   1727 
   1728 		/* Loop to write the new data from data_start to data_end */
   1729 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1730 			if ((addr == page_end - 4) ||
   1731 			    ((sc->bnx_flash_info->buffered) &&
   1732 			    (addr == data_end - 4))) {
   1733 
   1734 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1735 			}
   1736 
   1737 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1738 
   1739 			if (rc != 0)
   1740 				goto nvram_write_end;
   1741 
   1742 			cmd_flags = 0;
   1743 			buf += 4;
   1744 		}
   1745 
   1746 		/* Loop to write back the buffer data from data_end
   1747 		 * to page_end */
   1748 		if (sc->bnx_flash_info->buffered == 0) {
   1749 			for (addr = data_end; addr < page_end;
   1750 			    addr += 4, i += 4) {
   1751 
   1752 				if (addr == page_end-4)
   1753 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1754 
   1755 				rc = bnx_nvram_write_dword(sc, addr,
   1756 				    &flash_buffer[i], cmd_flags);
   1757 
   1758 				if (rc != 0)
   1759 					goto nvram_write_end;
   1760 
   1761 				cmd_flags = 0;
   1762 			}
   1763 		}
   1764 
   1765 		/* Disable writes to flash interface (lock write-protect) */
   1766 		bnx_disable_nvram_write(sc);
   1767 
   1768 		/* Disable access to flash interface */
   1769 		bnx_disable_nvram_access(sc);
   1770 		bnx_release_nvram_lock(sc);
   1771 
   1772 		/* Increment written */
   1773 		written += data_end - data_start;
   1774 	}
   1775 
   1776 nvram_write_end:
   1777 	if (align_start || align_end)
   1778 		free(buf, M_DEVBUF);
   1779 
   1780 	return (rc);
   1781 }
   1782 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1783 
   1784 /****************************************************************************/
   1785 /* Verifies that NVRAM is accessible and contains valid data.               */
   1786 /*                                                                          */
   1787 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   1788 /* correct.                                                                 */
   1789 /*                                                                          */
   1790 /* Returns:                                                                 */
   1791 /*   0 on success, positive value on failure.                               */
   1792 /****************************************************************************/
   1793 int
   1794 bnx_nvram_test(struct bnx_softc *sc)
   1795 {
   1796 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
   1797 	u_int8_t		*data = (u_int8_t *) buf;
   1798 	int			rc = 0;
   1799 	u_int32_t		magic, csum;
   1800 
   1801 	/*
   1802 	 * Check that the device NVRAM is valid by reading
   1803 	 * the magic value at offset 0.
   1804 	 */
   1805 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   1806 		goto bnx_nvram_test_done;
   1807 
   1808 	magic = bnx_be32toh(buf[0]);
   1809 	if (magic != BNX_NVRAM_MAGIC) {
   1810 		rc = ENODEV;
   1811 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   1812 		    "Expected: 0x%08X, Found: 0x%08X\n",
   1813 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   1814 		goto bnx_nvram_test_done;
   1815 	}
   1816 
   1817 	/*
   1818 	 * Verify that the device NVRAM includes valid
   1819 	 * configuration data.
   1820 	 */
   1821 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   1822 		goto bnx_nvram_test_done;
   1823 
   1824 	csum = ether_crc32_le(data, 0x100);
   1825 	if (csum != BNX_CRC32_RESIDUAL) {
   1826 		rc = ENODEV;
   1827 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   1828 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   1829 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1830 		goto bnx_nvram_test_done;
   1831 	}
   1832 
   1833 	csum = ether_crc32_le(data + 0x100, 0x100);
   1834 	if (csum != BNX_CRC32_RESIDUAL) {
   1835 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   1836 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   1837 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1838 		rc = ENODEV;
   1839 	}
   1840 
   1841 bnx_nvram_test_done:
   1842 	return (rc);
   1843 }
   1844 
   1845 /****************************************************************************/
   1846 /* Free any DMA memory owned by the driver.                                 */
   1847 /*                                                                          */
   1848 /* Scans through each data structre that requires DMA memory and frees      */
   1849 /* the memory if allocated.                                                 */
   1850 /*                                                                          */
   1851 /* Returns:                                                                 */
   1852 /*   Nothing.                                                               */
   1853 /****************************************************************************/
   1854 void
   1855 bnx_dma_free(struct bnx_softc *sc)
   1856 {
   1857 	int			i;
   1858 
   1859 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1860 
   1861 	/* Destroy the status block. */
   1862 	if (sc->status_block != NULL && sc->status_map != NULL) {
   1863 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   1864 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   1865 		    BNX_STATUS_BLK_SZ);
   1866 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   1867 		    sc->status_rseg);
   1868 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   1869 		sc->status_block = NULL;
   1870 		sc->status_map = NULL;
   1871 	}
   1872 
   1873 	/* Destroy the statistics block. */
   1874 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   1875 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   1876 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   1877 		    BNX_STATS_BLK_SZ);
   1878 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   1879 		    sc->stats_rseg);
   1880 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   1881 		sc->stats_block = NULL;
   1882 		sc->stats_map = NULL;
   1883 	}
   1884 
   1885 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   1886 	for (i = 0; i < TX_PAGES; i++ ) {
   1887 		if (sc->tx_bd_chain[i] != NULL &&
   1888 		    sc->tx_bd_chain_map[i] != NULL) {
   1889 			bus_dmamap_unload(sc->bnx_dmatag,
   1890 			    sc->tx_bd_chain_map[i]);
   1891 			bus_dmamem_unmap(sc->bnx_dmatag,
   1892 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   1893 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   1894 			    sc->tx_bd_chain_rseg[i]);
   1895 			bus_dmamap_destroy(sc->bnx_dmatag,
   1896 			    sc->tx_bd_chain_map[i]);
   1897 			sc->tx_bd_chain[i] = NULL;
   1898 			sc->tx_bd_chain_map[i] = NULL;
   1899 		}
   1900 	}
   1901 
   1902 	/* Unload and destroy the TX mbuf maps. */
   1903 	for (i = 0; i < TOTAL_TX_BD; i++) {
   1904 		if (sc->tx_mbuf_map[i] != NULL) {
   1905 			bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
   1906 			bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
   1907 		}
   1908 	}
   1909 
   1910 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   1911 	for (i = 0; i < RX_PAGES; i++ ) {
   1912 		if (sc->rx_bd_chain[i] != NULL &&
   1913 		    sc->rx_bd_chain_map[i] != NULL) {
   1914 			bus_dmamap_unload(sc->bnx_dmatag,
   1915 			    sc->rx_bd_chain_map[i]);
   1916 			bus_dmamem_unmap(sc->bnx_dmatag,
   1917 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   1918 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   1919 			    sc->rx_bd_chain_rseg[i]);
   1920 
   1921 			bus_dmamap_destroy(sc->bnx_dmatag,
   1922 			    sc->rx_bd_chain_map[i]);
   1923 			sc->rx_bd_chain[i] = NULL;
   1924 			sc->rx_bd_chain_map[i] = NULL;
   1925 		}
   1926 	}
   1927 
   1928 	/* Unload and destroy the RX mbuf maps. */
   1929 	for (i = 0; i < TOTAL_RX_BD; i++) {
   1930 		if (sc->rx_mbuf_map[i] != NULL) {
   1931 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   1932 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   1933 		}
   1934 	}
   1935 
   1936 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1937 }
   1938 
   1939 /****************************************************************************/
   1940 /* Allocate any DMA memory needed by the driver.                            */
   1941 /*                                                                          */
   1942 /* Allocates DMA memory needed for the various global structures needed by  */
   1943 /* hardware.                                                                */
   1944 /*                                                                          */
   1945 /* Returns:                                                                 */
   1946 /*   0 for success, positive value for failure.                             */
   1947 /****************************************************************************/
   1948 int
   1949 bnx_dma_alloc(struct bnx_softc *sc)
   1950 {
   1951 	int			i, rc = 0;
   1952 
   1953 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1954 
   1955 	/*
   1956 	 * Allocate DMA memory for the status block, map the memory into DMA
   1957 	 * space, and fetch the physical address of the block.
   1958 	 */
   1959 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   1960 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   1961 		aprint_error_dev(sc->bnx_dev,
   1962 		    "Could not create status block DMA map!\n");
   1963 		rc = ENOMEM;
   1964 		goto bnx_dma_alloc_exit;
   1965 	}
   1966 
   1967 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   1968 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   1969 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   1970 		aprint_error_dev(sc->bnx_dev,
   1971 		    "Could not allocate status block DMA memory!\n");
   1972 		rc = ENOMEM;
   1973 		goto bnx_dma_alloc_exit;
   1974 	}
   1975 
   1976 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   1977 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   1978 		aprint_error_dev(sc->bnx_dev,
   1979 		    "Could not map status block DMA memory!\n");
   1980 		rc = ENOMEM;
   1981 		goto bnx_dma_alloc_exit;
   1982 	}
   1983 
   1984 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   1985 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   1986 		aprint_error_dev(sc->bnx_dev,
   1987 		    "Could not load status block DMA memory!\n");
   1988 		rc = ENOMEM;
   1989 		goto bnx_dma_alloc_exit;
   1990 	}
   1991 
   1992 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   1993 	bzero(sc->status_block, BNX_STATUS_BLK_SZ);
   1994 
   1995 	/* DRC - Fix for 64 bit addresses. */
   1996 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   1997 		(u_int32_t) sc->status_block_paddr);
   1998 
   1999 	/*
   2000 	 * Allocate DMA memory for the statistics block, map the memory into
   2001 	 * DMA space, and fetch the physical address of the block.
   2002 	 */
   2003 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2004 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2005 		aprint_error_dev(sc->bnx_dev,
   2006 		    "Could not create stats block DMA map!\n");
   2007 		rc = ENOMEM;
   2008 		goto bnx_dma_alloc_exit;
   2009 	}
   2010 
   2011 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2012 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2013 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2014 		aprint_error_dev(sc->bnx_dev,
   2015 		    "Could not allocate stats block DMA memory!\n");
   2016 		rc = ENOMEM;
   2017 		goto bnx_dma_alloc_exit;
   2018 	}
   2019 
   2020 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2021 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2022 		aprint_error_dev(sc->bnx_dev,
   2023 		    "Could not map stats block DMA memory!\n");
   2024 		rc = ENOMEM;
   2025 		goto bnx_dma_alloc_exit;
   2026 	}
   2027 
   2028 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2029 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2030 		aprint_error_dev(sc->bnx_dev,
   2031 		    "Could not load status block DMA memory!\n");
   2032 		rc = ENOMEM;
   2033 		goto bnx_dma_alloc_exit;
   2034 	}
   2035 
   2036 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2037 	bzero(sc->stats_block, BNX_STATS_BLK_SZ);
   2038 
   2039 	/* DRC - Fix for 64 bit address. */
   2040 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2041 	    (u_int32_t) sc->stats_block_paddr);
   2042 
   2043 	/*
   2044 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2045 	 * and fetch the physical address of the block.
   2046 	 */
   2047 	for (i = 0; i < TX_PAGES; i++) {
   2048 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2049 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2050 		    &sc->tx_bd_chain_map[i])) {
   2051 			aprint_error_dev(sc->bnx_dev,
   2052 			    "Could not create Tx desc %d DMA map!\n", i);
   2053 			rc = ENOMEM;
   2054 			goto bnx_dma_alloc_exit;
   2055 		}
   2056 
   2057 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2058 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2059 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2060 			aprint_error_dev(sc->bnx_dev,
   2061 			    "Could not allocate TX desc %d DMA memory!\n",
   2062 			    i);
   2063 			rc = ENOMEM;
   2064 			goto bnx_dma_alloc_exit;
   2065 		}
   2066 
   2067 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2068 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2069 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2070 			aprint_error_dev(sc->bnx_dev,
   2071 			    "Could not map TX desc %d DMA memory!\n", i);
   2072 			rc = ENOMEM;
   2073 			goto bnx_dma_alloc_exit;
   2074 		}
   2075 
   2076 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2077 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2078 		    BUS_DMA_NOWAIT)) {
   2079 			aprint_error_dev(sc->bnx_dev,
   2080 			    "Could not load TX desc %d DMA memory!\n", i);
   2081 			rc = ENOMEM;
   2082 			goto bnx_dma_alloc_exit;
   2083 		}
   2084 
   2085 		sc->tx_bd_chain_paddr[i] =
   2086 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2087 
   2088 		/* DRC - Fix for 64 bit systems. */
   2089 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2090 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
   2091 	}
   2092 
   2093 	/*
   2094 	 * Create DMA maps for the TX buffer mbufs.
   2095 	 */
   2096 	for (i = 0; i < TOTAL_TX_BD; i++) {
   2097 		if (bus_dmamap_create(sc->bnx_dmatag,
   2098 		    MCLBYTES * BNX_MAX_SEGMENTS,
   2099 		    USABLE_TX_BD - BNX_TX_SLACK_SPACE,
   2100 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
   2101 		    &sc->tx_mbuf_map[i])) {
   2102 			aprint_error_dev(sc->bnx_dev,
   2103 			    "Could not create Tx mbuf %d DMA map!\n", i);
   2104 			rc = ENOMEM;
   2105 			goto bnx_dma_alloc_exit;
   2106 		}
   2107 	}
   2108 
   2109 	/*
   2110 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2111 	 * and fetch the physical address of the block.
   2112 	 */
   2113 	for (i = 0; i < RX_PAGES; i++) {
   2114 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2115 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2116 		    &sc->rx_bd_chain_map[i])) {
   2117 			aprint_error_dev(sc->bnx_dev,
   2118 			    "Could not create Rx desc %d DMA map!\n", i);
   2119 			rc = ENOMEM;
   2120 			goto bnx_dma_alloc_exit;
   2121 		}
   2122 
   2123 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2124 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2125 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2126 			aprint_error_dev(sc->bnx_dev,
   2127 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2128 			rc = ENOMEM;
   2129 			goto bnx_dma_alloc_exit;
   2130 		}
   2131 
   2132 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2133 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2134 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2135 			aprint_error_dev(sc->bnx_dev,
   2136 			    "Could not map Rx desc %d DMA memory!\n", i);
   2137 			rc = ENOMEM;
   2138 			goto bnx_dma_alloc_exit;
   2139 		}
   2140 
   2141 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2142 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2143 		    BUS_DMA_NOWAIT)) {
   2144 			aprint_error_dev(sc->bnx_dev,
   2145 			    "Could not load Rx desc %d DMA memory!\n", i);
   2146 			rc = ENOMEM;
   2147 			goto bnx_dma_alloc_exit;
   2148 		}
   2149 
   2150 		bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2151 		sc->rx_bd_chain_paddr[i] =
   2152 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2153 
   2154 		/* DRC - Fix for 64 bit systems. */
   2155 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2156 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
   2157 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2158 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2159 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2160 	}
   2161 
   2162 	/*
   2163 	 * Create DMA maps for the Rx buffer mbufs.
   2164 	 */
   2165 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2166 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
   2167 		    BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
   2168 		    &sc->rx_mbuf_map[i])) {
   2169 			aprint_error_dev(sc->bnx_dev,
   2170 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2171 			rc = ENOMEM;
   2172 			goto bnx_dma_alloc_exit;
   2173 		}
   2174 	}
   2175 
   2176  bnx_dma_alloc_exit:
   2177 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2178 
   2179 	return(rc);
   2180 }
   2181 
   2182 /****************************************************************************/
   2183 /* Release all resources used by the driver.                                */
   2184 /*                                                                          */
   2185 /* Releases all resources acquired by the driver including interrupts,      */
   2186 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2187 /*                                                                          */
   2188 /* Returns:                                                                 */
   2189 /*   Nothing.                                                               */
   2190 /****************************************************************************/
   2191 void
   2192 bnx_release_resources(struct bnx_softc *sc)
   2193 {
   2194 	int i;
   2195 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2196 
   2197 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2198 
   2199 	bnx_dma_free(sc);
   2200 
   2201 	if (sc->bnx_intrhand != NULL)
   2202 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2203 
   2204 	if (sc->bnx_size)
   2205 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2206 
   2207 	for (i = 0; i < TOTAL_RX_BD; i++)
   2208 		bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2209 
   2210 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2211 }
   2212 
   2213 /****************************************************************************/
   2214 /* Firmware synchronization.                                                */
   2215 /*                                                                          */
   2216 /* Before performing certain events such as a chip reset, synchronize with  */
   2217 /* the firmware first.                                                      */
   2218 /*                                                                          */
   2219 /* Returns:                                                                 */
   2220 /*   0 for success, positive value for failure.                             */
   2221 /****************************************************************************/
   2222 int
   2223 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
   2224 {
   2225 	int			i, rc = 0;
   2226 	u_int32_t		val;
   2227 
   2228 	/* Don't waste any time if we've timed out before. */
   2229 	if (sc->bnx_fw_timed_out) {
   2230 		rc = EBUSY;
   2231 		goto bnx_fw_sync_exit;
   2232 	}
   2233 
   2234 	/* Increment the message sequence number. */
   2235 	sc->bnx_fw_wr_seq++;
   2236 	msg_data |= sc->bnx_fw_wr_seq;
   2237 
   2238  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2239 	    msg_data);
   2240 
   2241 	/* Send the message to the bootcode driver mailbox. */
   2242 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2243 
   2244 	/* Wait for the bootcode to acknowledge the message. */
   2245 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2246 		/* Check for a response in the bootcode firmware mailbox. */
   2247 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2248 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2249 			break;
   2250 		DELAY(1000);
   2251 	}
   2252 
   2253 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2254 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2255 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2256 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2257 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2258 
   2259 		msg_data &= ~BNX_DRV_MSG_CODE;
   2260 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2261 
   2262 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2263 
   2264 		sc->bnx_fw_timed_out = 1;
   2265 		rc = EBUSY;
   2266 	}
   2267 
   2268 bnx_fw_sync_exit:
   2269 	return (rc);
   2270 }
   2271 
   2272 /****************************************************************************/
   2273 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2274 /*                                                                          */
   2275 /* Returns:                                                                 */
   2276 /*   Nothing.                                                               */
   2277 /****************************************************************************/
   2278 void
   2279 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
   2280     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
   2281 {
   2282 	int			i;
   2283 	u_int32_t		val;
   2284 
   2285 	for (i = 0; i < rv2p_code_len; i += 8) {
   2286 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2287 		rv2p_code++;
   2288 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2289 		rv2p_code++;
   2290 
   2291 		if (rv2p_proc == RV2P_PROC1) {
   2292 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2293 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2294 		}
   2295 		else {
   2296 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2297 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2298 		}
   2299 	}
   2300 
   2301 	/* Reset the processor, un-stall is done later. */
   2302 	if (rv2p_proc == RV2P_PROC1)
   2303 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2304 	else
   2305 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2306 }
   2307 
   2308 /****************************************************************************/
   2309 /* Load RISC processor firmware.                                            */
   2310 /*                                                                          */
   2311 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2312 /* associated with a particular processor.                                  */
   2313 /*                                                                          */
   2314 /* Returns:                                                                 */
   2315 /*   Nothing.                                                               */
   2316 /****************************************************************************/
   2317 void
   2318 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2319     struct fw_info *fw)
   2320 {
   2321 	u_int32_t		offset;
   2322 	u_int32_t		val;
   2323 
   2324 	/* Halt the CPU. */
   2325 	val = REG_RD_IND(sc, cpu_reg->mode);
   2326 	val |= cpu_reg->mode_value_halt;
   2327 	REG_WR_IND(sc, cpu_reg->mode, val);
   2328 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2329 
   2330 	/* Load the Text area. */
   2331 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2332 	if (fw->text) {
   2333 		int j;
   2334 
   2335 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2336 			REG_WR_IND(sc, offset, fw->text[j]);
   2337 	}
   2338 
   2339 	/* Load the Data area. */
   2340 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2341 	if (fw->data) {
   2342 		int j;
   2343 
   2344 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2345 			REG_WR_IND(sc, offset, fw->data[j]);
   2346 	}
   2347 
   2348 	/* Load the SBSS area. */
   2349 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2350 	if (fw->sbss) {
   2351 		int j;
   2352 
   2353 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2354 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2355 	}
   2356 
   2357 	/* Load the BSS area. */
   2358 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2359 	if (fw->bss) {
   2360 		int j;
   2361 
   2362 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2363 			REG_WR_IND(sc, offset, fw->bss[j]);
   2364 	}
   2365 
   2366 	/* Load the Read-Only area. */
   2367 	offset = cpu_reg->spad_base +
   2368 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2369 	if (fw->rodata) {
   2370 		int j;
   2371 
   2372 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2373 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2374 	}
   2375 
   2376 	/* Clear the pre-fetch instruction. */
   2377 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2378 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2379 
   2380 	/* Start the CPU. */
   2381 	val = REG_RD_IND(sc, cpu_reg->mode);
   2382 	val &= ~cpu_reg->mode_value_halt;
   2383 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2384 	REG_WR_IND(sc, cpu_reg->mode, val);
   2385 }
   2386 
   2387 /****************************************************************************/
   2388 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2389 /*                                                                          */
   2390 /* Loads the firmware for each CPU and starts the CPU.                      */
   2391 /*                                                                          */
   2392 /* Returns:                                                                 */
   2393 /*   Nothing.                                                               */
   2394 /****************************************************************************/
   2395 void
   2396 bnx_init_cpus(struct bnx_softc *sc)
   2397 {
   2398 	struct cpu_reg cpu_reg;
   2399 	struct fw_info fw;
   2400 
   2401 	/* Initialize the RV2P processor. */
   2402 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   2403 	    RV2P_PROC1);
   2404 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   2405 	    RV2P_PROC2);
   2406 
   2407 	/* Initialize the RX Processor. */
   2408 	cpu_reg.mode = BNX_RXP_CPU_MODE;
   2409 	cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2410 	cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2411 	cpu_reg.state = BNX_RXP_CPU_STATE;
   2412 	cpu_reg.state_value_clear = 0xffffff;
   2413 	cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2414 	cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2415 	cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2416 	cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2417 	cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2418 	cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2419 	cpu_reg.mips_view_base = 0x8000000;
   2420 
   2421 	fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   2422 	fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   2423 	fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   2424 	fw.start_addr = bnx_RXP_b06FwStartAddr;
   2425 
   2426 	fw.text_addr = bnx_RXP_b06FwTextAddr;
   2427 	fw.text_len = bnx_RXP_b06FwTextLen;
   2428 	fw.text_index = 0;
   2429 	fw.text = bnx_RXP_b06FwText;
   2430 
   2431 	fw.data_addr = bnx_RXP_b06FwDataAddr;
   2432 	fw.data_len = bnx_RXP_b06FwDataLen;
   2433 	fw.data_index = 0;
   2434 	fw.data = bnx_RXP_b06FwData;
   2435 
   2436 	fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   2437 	fw.sbss_len = bnx_RXP_b06FwSbssLen;
   2438 	fw.sbss_index = 0;
   2439 	fw.sbss = bnx_RXP_b06FwSbss;
   2440 
   2441 	fw.bss_addr = bnx_RXP_b06FwBssAddr;
   2442 	fw.bss_len = bnx_RXP_b06FwBssLen;
   2443 	fw.bss_index = 0;
   2444 	fw.bss = bnx_RXP_b06FwBss;
   2445 
   2446 	fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   2447 	fw.rodata_len = bnx_RXP_b06FwRodataLen;
   2448 	fw.rodata_index = 0;
   2449 	fw.rodata = bnx_RXP_b06FwRodata;
   2450 
   2451 	DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2452 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2453 
   2454 	/* Initialize the TX Processor. */
   2455 	cpu_reg.mode = BNX_TXP_CPU_MODE;
   2456 	cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2457 	cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2458 	cpu_reg.state = BNX_TXP_CPU_STATE;
   2459 	cpu_reg.state_value_clear = 0xffffff;
   2460 	cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2461 	cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2462 	cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2463 	cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2464 	cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2465 	cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2466 	cpu_reg.mips_view_base = 0x8000000;
   2467 
   2468 	fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   2469 	fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   2470 	fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   2471 	fw.start_addr = bnx_TXP_b06FwStartAddr;
   2472 
   2473 	fw.text_addr = bnx_TXP_b06FwTextAddr;
   2474 	fw.text_len = bnx_TXP_b06FwTextLen;
   2475 	fw.text_index = 0;
   2476 	fw.text = bnx_TXP_b06FwText;
   2477 
   2478 	fw.data_addr = bnx_TXP_b06FwDataAddr;
   2479 	fw.data_len = bnx_TXP_b06FwDataLen;
   2480 	fw.data_index = 0;
   2481 	fw.data = bnx_TXP_b06FwData;
   2482 
   2483 	fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   2484 	fw.sbss_len = bnx_TXP_b06FwSbssLen;
   2485 	fw.sbss_index = 0;
   2486 	fw.sbss = bnx_TXP_b06FwSbss;
   2487 
   2488 	fw.bss_addr = bnx_TXP_b06FwBssAddr;
   2489 	fw.bss_len = bnx_TXP_b06FwBssLen;
   2490 	fw.bss_index = 0;
   2491 	fw.bss = bnx_TXP_b06FwBss;
   2492 
   2493 	fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   2494 	fw.rodata_len = bnx_TXP_b06FwRodataLen;
   2495 	fw.rodata_index = 0;
   2496 	fw.rodata = bnx_TXP_b06FwRodata;
   2497 
   2498 	DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2499 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2500 
   2501 	/* Initialize the TX Patch-up Processor. */
   2502 	cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2503 	cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2504 	cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2505 	cpu_reg.state = BNX_TPAT_CPU_STATE;
   2506 	cpu_reg.state_value_clear = 0xffffff;
   2507 	cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2508 	cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2509 	cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2510 	cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2511 	cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2512 	cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2513 	cpu_reg.mips_view_base = 0x8000000;
   2514 
   2515 	fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   2516 	fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   2517 	fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   2518 	fw.start_addr = bnx_TPAT_b06FwStartAddr;
   2519 
   2520 	fw.text_addr = bnx_TPAT_b06FwTextAddr;
   2521 	fw.text_len = bnx_TPAT_b06FwTextLen;
   2522 	fw.text_index = 0;
   2523 	fw.text = bnx_TPAT_b06FwText;
   2524 
   2525 	fw.data_addr = bnx_TPAT_b06FwDataAddr;
   2526 	fw.data_len = bnx_TPAT_b06FwDataLen;
   2527 	fw.data_index = 0;
   2528 	fw.data = bnx_TPAT_b06FwData;
   2529 
   2530 	fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   2531 	fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   2532 	fw.sbss_index = 0;
   2533 	fw.sbss = bnx_TPAT_b06FwSbss;
   2534 
   2535 	fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   2536 	fw.bss_len = bnx_TPAT_b06FwBssLen;
   2537 	fw.bss_index = 0;
   2538 	fw.bss = bnx_TPAT_b06FwBss;
   2539 
   2540 	fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   2541 	fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   2542 	fw.rodata_index = 0;
   2543 	fw.rodata = bnx_TPAT_b06FwRodata;
   2544 
   2545 	DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2546 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2547 
   2548 	/* Initialize the Completion Processor. */
   2549 	cpu_reg.mode = BNX_COM_CPU_MODE;
   2550 	cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2551 	cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2552 	cpu_reg.state = BNX_COM_CPU_STATE;
   2553 	cpu_reg.state_value_clear = 0xffffff;
   2554 	cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2555 	cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2556 	cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2557 	cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2558 	cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2559 	cpu_reg.spad_base = BNX_COM_SCRATCH;
   2560 	cpu_reg.mips_view_base = 0x8000000;
   2561 
   2562 	fw.ver_major = bnx_COM_b06FwReleaseMajor;
   2563 	fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   2564 	fw.ver_fix = bnx_COM_b06FwReleaseFix;
   2565 	fw.start_addr = bnx_COM_b06FwStartAddr;
   2566 
   2567 	fw.text_addr = bnx_COM_b06FwTextAddr;
   2568 	fw.text_len = bnx_COM_b06FwTextLen;
   2569 	fw.text_index = 0;
   2570 	fw.text = bnx_COM_b06FwText;
   2571 
   2572 	fw.data_addr = bnx_COM_b06FwDataAddr;
   2573 	fw.data_len = bnx_COM_b06FwDataLen;
   2574 	fw.data_index = 0;
   2575 	fw.data = bnx_COM_b06FwData;
   2576 
   2577 	fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   2578 	fw.sbss_len = bnx_COM_b06FwSbssLen;
   2579 	fw.sbss_index = 0;
   2580 	fw.sbss = bnx_COM_b06FwSbss;
   2581 
   2582 	fw.bss_addr = bnx_COM_b06FwBssAddr;
   2583 	fw.bss_len = bnx_COM_b06FwBssLen;
   2584 	fw.bss_index = 0;
   2585 	fw.bss = bnx_COM_b06FwBss;
   2586 
   2587 	fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   2588 	fw.rodata_len = bnx_COM_b06FwRodataLen;
   2589 	fw.rodata_index = 0;
   2590 	fw.rodata = bnx_COM_b06FwRodata;
   2591 
   2592 	DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   2593 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2594 }
   2595 
   2596 /****************************************************************************/
   2597 /* Initialize context memory.                                               */
   2598 /*                                                                          */
   2599 /* Clears the memory associated with each Context ID (CID).                 */
   2600 /*                                                                          */
   2601 /* Returns:                                                                 */
   2602 /*   Nothing.                                                               */
   2603 /****************************************************************************/
   2604 void
   2605 bnx_init_context(struct bnx_softc *sc)
   2606 {
   2607 	u_int32_t		vcid;
   2608 
   2609 	vcid = 96;
   2610 	while (vcid) {
   2611 		u_int32_t vcid_addr, pcid_addr, offset;
   2612 
   2613 		vcid--;
   2614 
   2615    		vcid_addr = GET_CID_ADDR(vcid);
   2616 		pcid_addr = vcid_addr;
   2617 
   2618 		REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
   2619 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
   2620 
   2621 		/* Zero out the context. */
   2622 		for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
   2623 			CTX_WR(sc, 0x00, offset, 0);
   2624 
   2625 		REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   2626 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
   2627 	}
   2628 }
   2629 
   2630 /****************************************************************************/
   2631 /* Fetch the permanent MAC address of the controller.                       */
   2632 /*                                                                          */
   2633 /* Returns:                                                                 */
   2634 /*   Nothing.                                                               */
   2635 /****************************************************************************/
   2636 void
   2637 bnx_get_mac_addr(struct bnx_softc *sc)
   2638 {
   2639 	u_int32_t		mac_lo = 0, mac_hi = 0;
   2640 
   2641 	/*
   2642 	 * The NetXtreme II bootcode populates various NIC
   2643 	 * power-on and runtime configuration items in a
   2644 	 * shared memory area.  The factory configured MAC
   2645 	 * address is available from both NVRAM and the
   2646 	 * shared memory area so we'll read the value from
   2647 	 * shared memory for speed.
   2648 	 */
   2649 
   2650 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   2651 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   2652 
   2653 	if ((mac_lo == 0) && (mac_hi == 0)) {
   2654 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   2655 		    __FILE__, __LINE__);
   2656 	} else {
   2657 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   2658 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   2659 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   2660 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   2661 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   2662 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   2663 	}
   2664 
   2665 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   2666 	    "%s\n", ether_sprintf(sc->eaddr));
   2667 }
   2668 
   2669 /****************************************************************************/
   2670 /* Program the MAC address.                                                 */
   2671 /*                                                                          */
   2672 /* Returns:                                                                 */
   2673 /*   Nothing.                                                               */
   2674 /****************************************************************************/
   2675 void
   2676 bnx_set_mac_addr(struct bnx_softc *sc)
   2677 {
   2678 	u_int32_t		val;
   2679 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   2680 
   2681 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   2682 	    "%s\n", ether_sprintf(sc->eaddr));
   2683 
   2684 	val = (mac_addr[0] << 8) | mac_addr[1];
   2685 
   2686 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   2687 
   2688 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   2689 		(mac_addr[4] << 8) | mac_addr[5];
   2690 
   2691 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   2692 }
   2693 
   2694 /****************************************************************************/
   2695 /* Stop the controller.                                                     */
   2696 /*                                                                          */
   2697 /* Returns:                                                                 */
   2698 /*   Nothing.                                                               */
   2699 /****************************************************************************/
   2700 void
   2701 bnx_stop(struct ifnet *ifp, int disable)
   2702 {
   2703 	struct bnx_softc *sc = ifp->if_softc;
   2704 
   2705 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2706 
   2707 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   2708 		return;
   2709 
   2710 	callout_stop(&sc->bnx_timeout);
   2711 
   2712 	mii_down(&sc->bnx_mii);
   2713 
   2714 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2715 
   2716 	/* Disable the transmit/receive blocks. */
   2717 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   2718 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   2719 	DELAY(20);
   2720 
   2721 	bnx_disable_intr(sc);
   2722 
   2723 	/* Tell firmware that the driver is going away. */
   2724 	if (disable)
   2725 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   2726 	else
   2727 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   2728 
   2729 	/* Free the RX lists. */
   2730 	bnx_free_rx_chain(sc);
   2731 
   2732 	/* Free TX buffers. */
   2733 	bnx_free_tx_chain(sc);
   2734 
   2735 	ifp->if_timer = 0;
   2736 
   2737 	sc->bnx_link = 0;
   2738 
   2739 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2740 
   2741 }
   2742 
   2743 int
   2744 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
   2745 {
   2746 	u_int32_t		val;
   2747 	int			i, rc = 0;
   2748 
   2749 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2750 
   2751 	/* Wait for pending PCI transactions to complete. */
   2752 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   2753 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   2754 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   2755 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   2756 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   2757 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   2758 	DELAY(5);
   2759 
   2760 	/* Assume bootcode is running. */
   2761 	sc->bnx_fw_timed_out = 0;
   2762 
   2763 	/* Give the firmware a chance to prepare for the reset. */
   2764 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   2765 	if (rc)
   2766 		goto bnx_reset_exit;
   2767 
   2768 	/* Set a firmware reminder that this is a soft reset. */
   2769 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   2770 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   2771 
   2772 	/* Dummy read to force the chip to complete all current transactions. */
   2773 	val = REG_RD(sc, BNX_MISC_ID);
   2774 
   2775 	/* Chip reset. */
   2776 	val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2777 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   2778 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   2779 	REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   2780 
   2781 	/* Allow up to 30us for reset to complete. */
   2782 	for (i = 0; i < 10; i++) {
   2783 		val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   2784 		if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2785 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
   2786 			break;
   2787 
   2788 		DELAY(10);
   2789 	}
   2790 
   2791 	/* Check that reset completed successfully. */
   2792 	if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2793 	    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   2794 		BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
   2795 		rc = EBUSY;
   2796 		goto bnx_reset_exit;
   2797 	}
   2798 
   2799 	/* Make sure byte swapping is properly configured. */
   2800 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   2801 	if (val != 0x01020304) {
   2802 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   2803 		    __FILE__, __LINE__);
   2804 		rc = ENODEV;
   2805 		goto bnx_reset_exit;
   2806 	}
   2807 
   2808 	/* Just completed a reset, assume that firmware is running again. */
   2809 	sc->bnx_fw_timed_out = 0;
   2810 
   2811 	/* Wait for the firmware to finish its initialization. */
   2812 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   2813 	if (rc)
   2814 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   2815 		    "initialization!\n", __FILE__, __LINE__);
   2816 
   2817 bnx_reset_exit:
   2818 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2819 
   2820 	return (rc);
   2821 }
   2822 
   2823 int
   2824 bnx_chipinit(struct bnx_softc *sc)
   2825 {
   2826 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2827 	u_int32_t		val;
   2828 	int			rc = 0;
   2829 
   2830 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2831 
   2832 	/* Make sure the interrupt is not active. */
   2833 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   2834 
   2835 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   2836 	/* channels and PCI clock compensation delay.                      */
   2837 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   2838 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   2839 #if BYTE_ORDER == BIG_ENDIAN
   2840 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   2841 #endif
   2842 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   2843 	    DMA_READ_CHANS << 12 |
   2844 	    DMA_WRITE_CHANS << 16;
   2845 
   2846 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   2847 
   2848 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   2849 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   2850 
   2851 	/*
   2852 	 * This setting resolves a problem observed on certain Intel PCI
   2853 	 * chipsets that cannot handle multiple outstanding DMA operations.
   2854 	 * See errata E9_5706A1_65.
   2855 	 */
   2856 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   2857 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   2858 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   2859 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   2860 
   2861 	REG_WR(sc, BNX_DMA_CONFIG, val);
   2862 
   2863 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   2864 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   2865 		u_int16_t nval;
   2866 
   2867 		nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   2868 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   2869 		    nval & ~0x2);
   2870 	}
   2871 
   2872 	/* Enable the RX_V2P and Context state machines before access. */
   2873 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   2874 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   2875 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   2876 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   2877 
   2878 	/* Initialize context mapping and zero out the quick contexts. */
   2879 	bnx_init_context(sc);
   2880 
   2881 	/* Initialize the on-boards CPUs */
   2882 	bnx_init_cpus(sc);
   2883 
   2884 	/* Prepare NVRAM for access. */
   2885 	if (bnx_init_nvram(sc)) {
   2886 		rc = ENODEV;
   2887 		goto bnx_chipinit_exit;
   2888 	}
   2889 
   2890 	/* Set the kernel bypass block size */
   2891 	val = REG_RD(sc, BNX_MQ_CONFIG);
   2892 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   2893 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   2894 	REG_WR(sc, BNX_MQ_CONFIG, val);
   2895 
   2896 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
   2897 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   2898 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   2899 
   2900 	val = (BCM_PAGE_BITS - 8) << 24;
   2901 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   2902 
   2903 	/* Configure page size. */
   2904 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   2905 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   2906 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   2907 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   2908 
   2909 bnx_chipinit_exit:
   2910 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2911 
   2912 	return(rc);
   2913 }
   2914 
   2915 /****************************************************************************/
   2916 /* Initialize the controller in preparation to send/receive traffic.        */
   2917 /*                                                                          */
   2918 /* Returns:                                                                 */
   2919 /*   0 for success, positive value for failure.                             */
   2920 /****************************************************************************/
   2921 int
   2922 bnx_blockinit(struct bnx_softc *sc)
   2923 {
   2924 	u_int32_t		reg, val;
   2925 	int 			rc = 0;
   2926 
   2927 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2928 
   2929 	/* Load the hardware default MAC address. */
   2930 	bnx_set_mac_addr(sc);
   2931 
   2932 	/* Set the Ethernet backoff seed value */
   2933 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   2934 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   2935 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   2936 
   2937 	sc->last_status_idx = 0;
   2938 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   2939 
   2940 	/* Set up link change interrupt generation. */
   2941 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   2942 
   2943 	/* Program the physical address of the status block. */
   2944 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
   2945 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   2946 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
   2947 
   2948 	/* Program the physical address of the statistics block. */
   2949 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   2950 	    (u_int32_t)(sc->stats_block_paddr));
   2951 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   2952 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
   2953 
   2954 	/* Program various host coalescing parameters. */
   2955 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   2956 	    << 16) | sc->bnx_tx_quick_cons_trip);
   2957 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   2958 	    << 16) | sc->bnx_rx_quick_cons_trip);
   2959 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   2960 	    sc->bnx_comp_prod_trip);
   2961 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   2962 	    sc->bnx_tx_ticks);
   2963 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   2964 	    sc->bnx_rx_ticks);
   2965 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   2966 	    sc->bnx_com_ticks);
   2967 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   2968 	    sc->bnx_cmd_ticks);
   2969 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   2970 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   2971 	REG_WR(sc, BNX_HC_CONFIG,
   2972 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   2973 	    BNX_HC_CONFIG_COLLECT_STATS));
   2974 
   2975 	/* Clear the internal statistics counters. */
   2976 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   2977 
   2978 	/* Verify that bootcode is running. */
   2979 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   2980 
   2981 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   2982 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   2983 	    __FILE__, __LINE__); reg = 0);
   2984 
   2985 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   2986 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   2987 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   2988 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   2989 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   2990 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   2991 		rc = ENODEV;
   2992 		goto bnx_blockinit_exit;
   2993 	}
   2994 
   2995 	/* Check if any management firmware is running. */
   2996 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   2997 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   2998 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   2999 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3000 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3001 	}
   3002 
   3003 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3004 	    BNX_DEV_INFO_BC_REV);
   3005 
   3006 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3007 
   3008 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3009 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3010 
   3011 	/* Enable link state change interrupt generation. */
   3012 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3013 
   3014 	/* Enable all remaining blocks in the MAC. */
   3015 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3016 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3017 	DELAY(20);
   3018 
   3019 bnx_blockinit_exit:
   3020 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3021 
   3022 	return (rc);
   3023 }
   3024 
   3025 /****************************************************************************/
   3026 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3027 /*                                                                          */
   3028 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3029 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3030 /* necessary.                                                               */
   3031 /*                                                                          */
   3032 /* Returns:                                                                 */
   3033 /*   0 for success, positive value for failure.                             */
   3034 /****************************************************************************/
   3035 int
   3036 bnx_get_buf(struct bnx_softc *sc, struct mbuf *m, u_int16_t *prod,
   3037     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3038 {
   3039 	bus_dmamap_t		map;
   3040 	struct mbuf 		*m_new = NULL;
   3041 	struct rx_bd		*rxbd;
   3042 	int			i, rc = 0;
   3043 	u_int32_t		addr;
   3044 #ifdef BNX_DEBUG
   3045 	u_int16_t debug_chain_prod =	*chain_prod;
   3046 #endif
   3047 	u_int16_t first_chain_prod;
   3048 	u_int16_t min_free_bd;
   3049 
   3050 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3051 	    __func__);
   3052 
   3053 	/* Make sure the inputs are valid. */
   3054 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3055 	    aprint_error_dev(sc->bnx_dev,
   3056 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3057 		*chain_prod, (u_int16_t)MAX_RX_BD));
   3058 
   3059 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3060 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3061 	    *prod_bseq);
   3062 
   3063 	/* try to get in as many mbufs as possible */
   3064 	if (sc->mbuf_alloc_size == MCLBYTES)
   3065 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3066 	else
   3067 		min_free_bd = (BNX_MAX_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3068 	while (sc->free_rx_bd >= min_free_bd) {
   3069 		if (m == NULL) {
   3070 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3071 			    BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
   3072 
   3073 				sc->mbuf_alloc_failed++;
   3074 				rc = ENOBUFS;
   3075 				goto bnx_get_buf_exit);
   3076 
   3077 			/* This is a new mbuf allocation. */
   3078 			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3079 			if (m_new == NULL) {
   3080 				DBPRINT(sc, BNX_WARN,
   3081 				    "%s(%d): RX mbuf header allocation failed!\n",
   3082 				    __FILE__, __LINE__);
   3083 
   3084 				DBRUNIF(1, sc->mbuf_alloc_failed++);
   3085 
   3086 				rc = ENOBUFS;
   3087 				goto bnx_get_buf_exit;
   3088 			}
   3089 
   3090 			DBRUNIF(1, sc->rx_mbuf_alloc++);
   3091 			if (sc->mbuf_alloc_size == MCLBYTES)
   3092 				MCLGET(m_new, M_DONTWAIT);
   3093 			else
   3094 				MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3095 				    M_DONTWAIT);
   3096 			if (!(m_new->m_flags & M_EXT)) {
   3097 				DBPRINT(sc, BNX_WARN,
   3098 				    "%s(%d): RX mbuf chain allocation failed!\n",
   3099 				    __FILE__, __LINE__);
   3100 
   3101 				m_freem(m_new);
   3102 
   3103 				DBRUNIF(1, sc->rx_mbuf_alloc--);
   3104 				DBRUNIF(1, sc->mbuf_alloc_failed++);
   3105 
   3106 				rc = ENOBUFS;
   3107 				goto bnx_get_buf_exit;
   3108 			}
   3109 
   3110 		} else {
   3111 			m_new = m;
   3112 			m = NULL;
   3113 			m_new->m_data = m_new->m_ext.ext_buf;
   3114 		}
   3115 		m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3116 
   3117 		/* Map the mbuf cluster into device memory. */
   3118 		map = sc->rx_mbuf_map[*chain_prod];
   3119 		first_chain_prod = *chain_prod;
   3120 		if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3121 			BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3122 			    __FILE__, __LINE__);
   3123 
   3124 			m_freem(m_new);
   3125 
   3126 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3127 
   3128 			rc = ENOBUFS;
   3129 			goto bnx_get_buf_exit;
   3130 		}
   3131 		bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3132 		    BUS_DMASYNC_PREREAD);
   3133 
   3134 		/* Watch for overflow. */
   3135 		DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
   3136 		    aprint_error_dev(sc->bnx_dev,
   3137 		        "Too many free rx_bd (0x%04X > 0x%04X)!\n",
   3138 			sc->free_rx_bd, (u_int16_t)USABLE_RX_BD));
   3139 
   3140 		DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3141 		    sc->rx_low_watermark = sc->free_rx_bd);
   3142 
   3143 		/*
   3144 		 * Setup the rx_bd for the first segment
   3145 		 */
   3146 		rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3147 
   3148 		addr = (u_int32_t)(map->dm_segs[0].ds_addr);
   3149 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3150 		addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
   3151 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3152 		rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
   3153 		rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
   3154 		*prod_bseq += map->dm_segs[0].ds_len;
   3155 		bus_dmamap_sync(sc->bnx_dmatag,
   3156 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3157 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3158 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3159 
   3160 		for (i = 1; i < map->dm_nsegs; i++) {
   3161 			*prod = NEXT_RX_BD(*prod);
   3162 			*chain_prod = RX_CHAIN_IDX(*prod);
   3163 
   3164 			rxbd =
   3165 			    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3166 
   3167 			addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   3168 			rxbd->rx_bd_haddr_lo = htole32(addr);
   3169 			addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   3170 			rxbd->rx_bd_haddr_hi = htole32(addr);
   3171 			rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
   3172 			rxbd->rx_bd_flags = 0;
   3173 			*prod_bseq += map->dm_segs[i].ds_len;
   3174 			bus_dmamap_sync(sc->bnx_dmatag,
   3175 			    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3176 			    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3177 			    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3178 		}
   3179 
   3180 		rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
   3181 		bus_dmamap_sync(sc->bnx_dmatag,
   3182 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3183 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3184 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3185 
   3186 		/*
   3187 		 * Save the mbuf, ajust the map pointer (swap map for first and
   3188 		 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
   3189 		 * and update counter.
   3190 		 */
   3191 		sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3192 		sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3193 		sc->rx_mbuf_map[*chain_prod] = map;
   3194 		sc->free_rx_bd -= map->dm_nsegs;
   3195 
   3196 		DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3197 		    map->dm_nsegs));
   3198 		*prod = NEXT_RX_BD(*prod);
   3199 		*chain_prod = RX_CHAIN_IDX(*prod);
   3200 	}
   3201 
   3202 bnx_get_buf_exit:
   3203 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3204 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3205 	    *chain_prod, *prod_bseq);
   3206 
   3207 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3208 	    __func__);
   3209 
   3210 	return(rc);
   3211 }
   3212 
   3213 /****************************************************************************/
   3214 /* Allocate memory and initialize the TX data structures.                   */
   3215 /*                                                                          */
   3216 /* Returns:                                                                 */
   3217 /*   0 for success, positive value for failure.                             */
   3218 /****************************************************************************/
   3219 int
   3220 bnx_init_tx_chain(struct bnx_softc *sc)
   3221 {
   3222 	struct tx_bd		*txbd;
   3223 	u_int32_t		val, addr;
   3224 	int			i, rc = 0;
   3225 
   3226 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3227 
   3228 	/* Set the initial TX producer/consumer indices. */
   3229 	sc->tx_prod = 0;
   3230 	sc->tx_cons = 0;
   3231 	sc->tx_prod_bseq = 0;
   3232 	sc->used_tx_bd = 0;
   3233 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   3234 
   3235 	/*
   3236 	 * The NetXtreme II supports a linked-list structure called
   3237 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   3238 	 * consists of a series of 1 or more chain pages, each of which
   3239 	 * consists of a fixed number of BD entries.
   3240 	 * The last BD entry on each page is a pointer to the next page
   3241 	 * in the chain, and the last pointer in the BD chain
   3242 	 * points back to the beginning of the chain.
   3243 	 */
   3244 
   3245 	/* Set the TX next pointer chain entries. */
   3246 	for (i = 0; i < TX_PAGES; i++) {
   3247 		int j;
   3248 
   3249 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   3250 
   3251 		/* Check if we've reached the last page. */
   3252 		if (i == (TX_PAGES - 1))
   3253 			j = 0;
   3254 		else
   3255 			j = i + 1;
   3256 
   3257 		addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
   3258 		txbd->tx_bd_haddr_lo = htole32(addr);
   3259 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
   3260 		txbd->tx_bd_haddr_hi = htole32(addr);
   3261 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3262 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3263 	}
   3264 
   3265 	/*
   3266 	 * Initialize the context ID for an L2 TX chain.
   3267 	 */
   3268 	val = BNX_L2CTX_TYPE_TYPE_L2;
   3269 	val |= BNX_L2CTX_TYPE_SIZE_L2;
   3270 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   3271 
   3272 	val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3273 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   3274 
   3275 	/* Point the hardware to the first page in the chain. */
   3276 	val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3277 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   3278 	val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3279 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   3280 
   3281 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
   3282 
   3283 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3284 
   3285 	return(rc);
   3286 }
   3287 
   3288 /****************************************************************************/
   3289 /* Free memory and clear the TX data structures.                            */
   3290 /*                                                                          */
   3291 /* Returns:                                                                 */
   3292 /*   Nothing.                                                               */
   3293 /****************************************************************************/
   3294 void
   3295 bnx_free_tx_chain(struct bnx_softc *sc)
   3296 {
   3297 	int			i;
   3298 
   3299 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3300 
   3301 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   3302 	for (i = 0; i < TOTAL_TX_BD; i++) {
   3303 		if (sc->tx_mbuf_ptr[i] != NULL) {
   3304 			if (sc->tx_mbuf_map != NULL)
   3305 				bus_dmamap_sync(sc->bnx_dmatag,
   3306 				    sc->tx_mbuf_map[i], 0,
   3307 				    sc->tx_mbuf_map[i]->dm_mapsize,
   3308 				    BUS_DMASYNC_POSTWRITE);
   3309 			m_freem(sc->tx_mbuf_ptr[i]);
   3310 			sc->tx_mbuf_ptr[i] = NULL;
   3311 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   3312 		}
   3313 	}
   3314 
   3315 	/* Clear each TX chain page. */
   3316 	for (i = 0; i < TX_PAGES; i++) {
   3317 		bzero((char *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   3318 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3319 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3320 	}
   3321 
   3322 	/* Check if we lost any mbufs in the process. */
   3323 	DBRUNIF((sc->tx_mbuf_alloc),
   3324 	    aprint_error_dev(sc->bnx_dev,
   3325 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   3326 		sc->tx_mbuf_alloc));
   3327 
   3328 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3329 }
   3330 
   3331 /****************************************************************************/
   3332 /* Allocate memory and initialize the RX data structures.                   */
   3333 /*                                                                          */
   3334 /* Returns:                                                                 */
   3335 /*   0 for success, positive value for failure.                             */
   3336 /****************************************************************************/
   3337 int
   3338 bnx_init_rx_chain(struct bnx_softc *sc)
   3339 {
   3340 	struct rx_bd		*rxbd;
   3341 	int			i, rc = 0;
   3342 	u_int16_t		prod, chain_prod;
   3343 	u_int32_t		prod_bseq, val, addr;
   3344 
   3345 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3346 
   3347 	/* Initialize the RX producer and consumer indices. */
   3348 	sc->rx_prod = 0;
   3349 	sc->rx_cons = 0;
   3350 	sc->rx_prod_bseq = 0;
   3351 	sc->free_rx_bd = BNX_RX_SLACK_SPACE;
   3352 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   3353 
   3354 	/* Initialize the RX next pointer chain entries. */
   3355 	for (i = 0; i < RX_PAGES; i++) {
   3356 		int j;
   3357 
   3358 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   3359 
   3360 		/* Check if we've reached the last page. */
   3361 		if (i == (RX_PAGES - 1))
   3362 			j = 0;
   3363 		else
   3364 			j = i + 1;
   3365 
   3366 		/* Setup the chain page pointers. */
   3367 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
   3368 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3369 		addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
   3370 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3371 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   3372 		    0, BNX_RX_CHAIN_PAGE_SZ,
   3373 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3374 	}
   3375 
   3376 	/* Initialize the context ID for an L2 RX chain. */
   3377 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
   3378 	val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
   3379 	val |= 0x02 << 8;
   3380 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   3381 
   3382 	/* Point the hardware to the first page in the chain. */
   3383 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
   3384 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   3385 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
   3386 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   3387 
   3388 	/* Allocate mbuf clusters for the rx_bd chain. */
   3389 	prod = prod_bseq = 0;
   3390 	chain_prod = RX_CHAIN_IDX(prod);
   3391 	if (bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq)) {
   3392 		BNX_PRINTF(sc,
   3393 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   3394 	}
   3395 
   3396 	/* Save the RX chain producer index. */
   3397 	sc->rx_prod = prod;
   3398 	sc->rx_prod_bseq = prod_bseq;
   3399 
   3400 	for (i = 0; i < RX_PAGES; i++)
   3401 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   3402 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3403 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3404 
   3405 	/* Tell the chip about the waiting rx_bd's. */
   3406 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   3407 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   3408 
   3409 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   3410 
   3411 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3412 
   3413 	return(rc);
   3414 }
   3415 
   3416 /****************************************************************************/
   3417 /* Free memory and clear the RX data structures.                            */
   3418 /*                                                                          */
   3419 /* Returns:                                                                 */
   3420 /*   Nothing.                                                               */
   3421 /****************************************************************************/
   3422 void
   3423 bnx_free_rx_chain(struct bnx_softc *sc)
   3424 {
   3425 	int			i;
   3426 
   3427 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3428 
   3429 	/* Free any mbufs still in the RX mbuf chain. */
   3430 	for (i = 0; i < TOTAL_RX_BD; i++) {
   3431 		if (sc->rx_mbuf_ptr[i] != NULL) {
   3432 			if (sc->rx_mbuf_map[i] != NULL)
   3433 				bus_dmamap_sync(sc->bnx_dmatag,
   3434 				    sc->rx_mbuf_map[i],	0,
   3435 				    sc->rx_mbuf_map[i]->dm_mapsize,
   3436 				    BUS_DMASYNC_POSTREAD);
   3437 			m_freem(sc->rx_mbuf_ptr[i]);
   3438 			sc->rx_mbuf_ptr[i] = NULL;
   3439 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3440 		}
   3441 	}
   3442 
   3443 	/* Clear each RX chain page. */
   3444 	for (i = 0; i < RX_PAGES; i++)
   3445 		bzero((char *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   3446 
   3447 	/* Check if we lost any mbufs in the process. */
   3448 	DBRUNIF((sc->rx_mbuf_alloc),
   3449 	    aprint_error_dev(sc->bnx_dev,
   3450 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   3451 		sc->rx_mbuf_alloc));
   3452 
   3453 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3454 }
   3455 
   3456 /****************************************************************************/
   3457 /* Set media options.                                                       */
   3458 /*                                                                          */
   3459 /* Returns:                                                                 */
   3460 /*   0 for success, positive value for failure.                             */
   3461 /****************************************************************************/
   3462 int
   3463 bnx_ifmedia_upd(struct ifnet *ifp)
   3464 {
   3465 	struct bnx_softc	*sc;
   3466 	struct mii_data		*mii;
   3467 	struct ifmedia		*ifm;
   3468 	int rc;
   3469 
   3470 	sc = ifp->if_softc;
   3471 	ifm = &sc->bnx_ifmedia;
   3472 
   3473 	/* DRC - ToDo: Add SerDes support. */
   3474 
   3475 	mii = &sc->bnx_mii;
   3476 	sc->bnx_link = 0;
   3477 	if ((rc = mii_mediachg(mii)) == ENXIO)
   3478 		return 0;
   3479 	return rc;
   3480 }
   3481 
   3482 /****************************************************************************/
   3483 /* Reports current media status.                                            */
   3484 /*                                                                          */
   3485 /* Returns:                                                                 */
   3486 /*   Nothing.                                                               */
   3487 /****************************************************************************/
   3488 void
   3489 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   3490 {
   3491 	struct bnx_softc	*sc;
   3492 	struct mii_data		*mii;
   3493 	int			s;
   3494 
   3495 	sc = ifp->if_softc;
   3496 
   3497 	s = splnet();
   3498 
   3499 	mii = &sc->bnx_mii;
   3500 
   3501 	/* DRC - ToDo: Add SerDes support. */
   3502 
   3503 	mii_pollstat(mii);
   3504 	ifmr->ifm_active = mii->mii_media_active;
   3505 	ifmr->ifm_status = mii->mii_media_status;
   3506 
   3507 	splx(s);
   3508 }
   3509 
   3510 /****************************************************************************/
   3511 /* Handles PHY generated interrupt events.                                  */
   3512 /*                                                                          */
   3513 /* Returns:                                                                 */
   3514 /*   Nothing.                                                               */
   3515 /****************************************************************************/
   3516 void
   3517 bnx_phy_intr(struct bnx_softc *sc)
   3518 {
   3519 	u_int32_t		new_link_state, old_link_state;
   3520 
   3521 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3522 	    BUS_DMASYNC_POSTREAD);
   3523 	new_link_state = sc->status_block->status_attn_bits &
   3524 	    STATUS_ATTN_BITS_LINK_STATE;
   3525 	old_link_state = sc->status_block->status_attn_bits_ack &
   3526 	    STATUS_ATTN_BITS_LINK_STATE;
   3527 
   3528 	/* Handle any changes if the link state has changed. */
   3529 	if (new_link_state != old_link_state) {
   3530 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   3531 
   3532 		sc->bnx_link = 0;
   3533 		callout_stop(&sc->bnx_timeout);
   3534 		bnx_tick(sc);
   3535 
   3536 		/* Update the status_attn_bits_ack field in the status block. */
   3537 		if (new_link_state) {
   3538 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   3539 			    STATUS_ATTN_BITS_LINK_STATE);
   3540 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   3541 		} else {
   3542 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   3543 			    STATUS_ATTN_BITS_LINK_STATE);
   3544 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   3545 		}
   3546 	}
   3547 
   3548 	/* Acknowledge the link change interrupt. */
   3549 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   3550 }
   3551 
   3552 /****************************************************************************/
   3553 /* Handles received frame interrupt events.                                 */
   3554 /*                                                                          */
   3555 /* Returns:                                                                 */
   3556 /*   Nothing.                                                               */
   3557 /****************************************************************************/
   3558 void
   3559 bnx_rx_intr(struct bnx_softc *sc)
   3560 {
   3561 	struct status_block	*sblk = sc->status_block;
   3562 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   3563 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
   3564 	u_int16_t		sw_prod, sw_chain_prod;
   3565 	u_int32_t		sw_prod_bseq;
   3566 	struct l2_fhdr		*l2fhdr;
   3567 	int			i;
   3568 
   3569 	DBRUNIF(1, sc->rx_interrupts++);
   3570 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3571 	    BUS_DMASYNC_POSTREAD);
   3572 
   3573 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   3574 	for (i = 0; i < RX_PAGES; i++)
   3575 		bus_dmamap_sync(sc->bnx_dmatag,
   3576 		    sc->rx_bd_chain_map[i], 0,
   3577 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3578 		    BUS_DMASYNC_POSTWRITE);
   3579 
   3580 	/* Get the hardware's view of the RX consumer index. */
   3581 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   3582 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   3583 		hw_cons++;
   3584 
   3585 	/* Get working copies of the driver's view of the RX indices. */
   3586 	sw_cons = sc->rx_cons;
   3587 	sw_prod = sc->rx_prod;
   3588 	sw_prod_bseq = sc->rx_prod_bseq;
   3589 
   3590 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   3591 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   3592 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   3593 
   3594 	/* Prevent speculative reads from getting ahead of the status block. */
   3595 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3596 	    BUS_SPACE_BARRIER_READ);
   3597 
   3598 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3599 	    sc->rx_low_watermark = sc->free_rx_bd);
   3600 
   3601 	/*
   3602 	 * Scan through the receive chain as long
   3603 	 * as there is work to do.
   3604 	 */
   3605 	while (sw_cons != hw_cons) {
   3606 		struct mbuf *m;
   3607 		struct rx_bd *rxbd;
   3608 		unsigned int len;
   3609 		u_int32_t status;
   3610 
   3611 		/* Convert the producer/consumer indices to an actual
   3612 		 * rx_bd index.
   3613 		 */
   3614 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   3615 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   3616 
   3617 		/* Get the used rx_bd. */
   3618 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   3619 		sc->free_rx_bd++;
   3620 
   3621 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   3622 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   3623 
   3624 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   3625 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   3626 #ifdef DIAGNOSTIC
   3627 			/* Validate that this is the last rx_bd. */
   3628 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   3629 			    printf("%s: Unexpected mbuf found in "
   3630 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   3631 			        sw_chain_cons);
   3632 			}
   3633 #endif
   3634 
   3635 			/* DRC - ToDo: If the received packet is small, say less
   3636 			 *             than 128 bytes, allocate a new mbuf here,
   3637 			 *             copy the data to that mbuf, and recycle
   3638 			 *             the mapped jumbo frame.
   3639 			 */
   3640 
   3641 			/* Unmap the mbuf from DMA space. */
   3642 #ifdef DIAGNOSTIC
   3643 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   3644 				printf("invalid map sw_cons 0x%x "
   3645 				"sw_prod 0x%x "
   3646 				"sw_chain_cons 0x%x "
   3647 				"sw_chain_prod 0x%x "
   3648 				"hw_cons 0x%x "
   3649 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   3650 				"TOTAL_RX_BD 0x%x\n",
   3651 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   3652 				hw_cons,
   3653 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   3654 			}
   3655 #endif
   3656 			bus_dmamap_sync(sc->bnx_dmatag,
   3657 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   3658 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   3659 			    BUS_DMASYNC_POSTREAD);
   3660 			bus_dmamap_unload(sc->bnx_dmatag,
   3661 			    sc->rx_mbuf_map[sw_chain_cons]);
   3662 
   3663 			/* Remove the mbuf from the driver's chain. */
   3664 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   3665 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   3666 
   3667 			/*
   3668 			 * Frames received on the NetXteme II are prepended
   3669 			 * with the l2_fhdr structure which provides status
   3670 			 * information about the received frame (including
   3671 			 * VLAN tags and checksum info) and are also
   3672 			 * automatically adjusted to align the IP header
   3673 			 * (i.e. two null bytes are inserted before the
   3674 			 * Ethernet header).
   3675 			 */
   3676 			l2fhdr = mtod(m, struct l2_fhdr *);
   3677 
   3678 			len    = l2fhdr->l2_fhdr_pkt_len;
   3679 			status = l2fhdr->l2_fhdr_status;
   3680 
   3681 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   3682 			    aprint_error("Simulating l2_fhdr status error.\n");
   3683 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   3684 
   3685 			/* Watch for unusual sized frames. */
   3686 			DBRUNIF(((len < BNX_MIN_MTU) ||
   3687 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   3688 			    aprint_error_dev(sc->bnx_dev,
   3689 			        "Unusual frame size found. "
   3690 				"Min(%d), Actual(%d), Max(%d)\n",
   3691 				(int)BNX_MIN_MTU, len,
   3692 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   3693 
   3694 			bnx_dump_mbuf(sc, m);
   3695 			bnx_breakpoint(sc));
   3696 
   3697 			len -= ETHER_CRC_LEN;
   3698 
   3699 			/* Check the received frame for errors. */
   3700 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   3701 			    L2_FHDR_ERRORS_PHY_DECODE |
   3702 			    L2_FHDR_ERRORS_ALIGNMENT |
   3703 			    L2_FHDR_ERRORS_TOO_SHORT |
   3704 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   3705 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   3706 			    len >
   3707 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   3708 				ifp->if_ierrors++;
   3709 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   3710 
   3711 				/* Reuse the mbuf for a new frame. */
   3712 				if (bnx_get_buf(sc, m, &sw_prod,
   3713 				    &sw_chain_prod, &sw_prod_bseq)) {
   3714 					DBRUNIF(1, bnx_breakpoint(sc));
   3715 					panic("%s: Can't reuse RX mbuf!\n",
   3716 					    device_xname(sc->bnx_dev));
   3717 				}
   3718 				continue;
   3719 			}
   3720 
   3721 			/*
   3722 			 * Get a new mbuf for the rx_bd.   If no new
   3723 			 * mbufs are available then reuse the current mbuf,
   3724 			 * log an ierror on the interface, and generate
   3725 			 * an error in the system log.
   3726 			 */
   3727 			if (bnx_get_buf(sc, NULL, &sw_prod, &sw_chain_prod,
   3728 			    &sw_prod_bseq)) {
   3729 				DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
   3730 					"new mbuf, incoming frame dropped!\n"));
   3731 
   3732 				ifp->if_ierrors++;
   3733 
   3734 				/* Try and reuse the exisitng mbuf. */
   3735 				if (bnx_get_buf(sc, m, &sw_prod,
   3736 				    &sw_chain_prod, &sw_prod_bseq)) {
   3737 					DBRUNIF(1, bnx_breakpoint(sc));
   3738 					panic("%s: Double mbuf allocation "
   3739 					    "failure!",
   3740 					    device_xname(sc->bnx_dev));
   3741 				}
   3742 				continue;
   3743 			}
   3744 
   3745 			/* Skip over the l2_fhdr when passing the data up
   3746 			 * the stack.
   3747 			 */
   3748 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   3749 
   3750 			/* Adjust the pckt length to match the received data. */
   3751 			m->m_pkthdr.len = m->m_len = len;
   3752 
   3753 			/* Send the packet to the appropriate interface. */
   3754 			m->m_pkthdr.rcvif = ifp;
   3755 
   3756 			DBRUN(BNX_VERBOSE_RECV,
   3757 			    struct ether_header *eh;
   3758 			    eh = mtod(m, struct ether_header *);
   3759 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   3760 			    __func__, ether_sprintf(eh->ether_dhost),
   3761 			    ether_sprintf(eh->ether_shost),
   3762 			    htons(eh->ether_type)));
   3763 
   3764 			/* Validate the checksum. */
   3765 
   3766 			/* Check for an IP datagram. */
   3767 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   3768 				/* Check if the IP checksum is valid. */
   3769 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   3770 				    == 0)
   3771 					m->m_pkthdr.csum_flags |=
   3772 					    M_CSUM_IPv4;
   3773 #ifdef BNX_DEBUG
   3774 				else
   3775 					DBPRINT(sc, BNX_WARN_SEND,
   3776 					    "%s(): Invalid IP checksum "
   3777 					        "= 0x%04X!\n",
   3778 						__func__,
   3779 						l2fhdr->l2_fhdr_ip_xsum
   3780 						);
   3781 #endif
   3782 			}
   3783 
   3784 			/* Check for a valid TCP/UDP frame. */
   3785 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   3786 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   3787 				/* Check for a good TCP/UDP checksum. */
   3788 				if ((status &
   3789 				    (L2_FHDR_ERRORS_TCP_XSUM |
   3790 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   3791 					m->m_pkthdr.csum_flags |=
   3792 					    M_CSUM_TCPv4 |
   3793 					    M_CSUM_UDPv4;
   3794 				} else {
   3795 					DBPRINT(sc, BNX_WARN_SEND,
   3796 					    "%s(): Invalid TCP/UDP "
   3797 					    "checksum = 0x%04X!\n",
   3798 					    __func__,
   3799 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   3800 				}
   3801 			}
   3802 
   3803 			/*
   3804 			 * If we received a packet with a vlan tag,
   3805 			 * attach that information to the packet.
   3806 			 */
   3807 			if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
   3808 #if 0
   3809 				struct ether_vlan_header vh;
   3810 
   3811 				DBPRINT(sc, BNX_VERBOSE_SEND,
   3812 				    "%s(): VLAN tag = 0x%04X\n",
   3813 				    __func__,
   3814 				    l2fhdr->l2_fhdr_vlan_tag);
   3815 
   3816 				if (m->m_pkthdr.len < ETHER_HDR_LEN) {
   3817 					m_freem(m);
   3818 					continue;
   3819 				}
   3820 				m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh);
   3821 				vh.evl_proto = vh.evl_encap_proto;
   3822 				vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag;
   3823 				vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
   3824 				m_adj(m, ETHER_HDR_LEN);
   3825 				if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
   3826 					continue;
   3827 				m->m_pkthdr.len += sizeof(vh);
   3828 				if (m->m_len < sizeof(vh) &&
   3829 				    (m = m_pullup(m, sizeof(vh))) == NULL)
   3830 					goto bnx_rx_int_next_rx;
   3831 				m_copyback(m, 0, sizeof(vh), &vh);
   3832 #else
   3833 				VLAN_INPUT_TAG(ifp, m,
   3834 				    l2fhdr->l2_fhdr_vlan_tag,
   3835 				    continue);
   3836 #endif
   3837 			}
   3838 
   3839 #if NBPFILTER > 0
   3840 			/*
   3841 			 * Handle BPF listeners. Let the BPF
   3842 			 * user see the packet.
   3843 			 */
   3844 			if (ifp->if_bpf)
   3845 				bpf_mtap(ifp->if_bpf, m);
   3846 #endif
   3847 
   3848 			/* Pass the mbuf off to the upper layers. */
   3849 			ifp->if_ipackets++;
   3850 			DBPRINT(sc, BNX_VERBOSE_RECV,
   3851 			    "%s(): Passing received frame up.\n", __func__);
   3852 			(*ifp->if_input)(ifp, m);
   3853 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3854 
   3855 		}
   3856 
   3857 		sw_cons = NEXT_RX_BD(sw_cons);
   3858 
   3859 		/* Refresh hw_cons to see if there's new work */
   3860 		if (sw_cons == hw_cons) {
   3861 			hw_cons = sc->hw_rx_cons =
   3862 			    sblk->status_rx_quick_consumer_index0;
   3863 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   3864 			    USABLE_RX_BD_PER_PAGE)
   3865 				hw_cons++;
   3866 		}
   3867 
   3868 		/* Prevent speculative reads from getting ahead of
   3869 		 * the status block.
   3870 		 */
   3871 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3872 		    BUS_SPACE_BARRIER_READ);
   3873 	}
   3874 
   3875 	for (i = 0; i < RX_PAGES; i++)
   3876 		bus_dmamap_sync(sc->bnx_dmatag,
   3877 		    sc->rx_bd_chain_map[i], 0,
   3878 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3879 		    BUS_DMASYNC_PREWRITE);
   3880 
   3881 	sc->rx_cons = sw_cons;
   3882 	sc->rx_prod = sw_prod;
   3883 	sc->rx_prod_bseq = sw_prod_bseq;
   3884 
   3885 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   3886 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   3887 
   3888 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   3889 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   3890 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   3891 }
   3892 
   3893 /****************************************************************************/
   3894 /* Handles transmit completion interrupt events.                            */
   3895 /*                                                                          */
   3896 /* Returns:                                                                 */
   3897 /*   Nothing.                                                               */
   3898 /****************************************************************************/
   3899 void
   3900 bnx_tx_intr(struct bnx_softc *sc)
   3901 {
   3902 	struct status_block	*sblk = sc->status_block;
   3903 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   3904 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   3905 
   3906 	DBRUNIF(1, sc->tx_interrupts++);
   3907 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3908 	    BUS_DMASYNC_POSTREAD);
   3909 
   3910 	/* Get the hardware's view of the TX consumer index. */
   3911 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   3912 
   3913 	/* Skip to the next entry if this is a chain page pointer. */
   3914 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   3915 		hw_tx_cons++;
   3916 
   3917 	sw_tx_cons = sc->tx_cons;
   3918 
   3919 	/* Prevent speculative reads from getting ahead of the status block. */
   3920 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3921 	    BUS_SPACE_BARRIER_READ);
   3922 
   3923 	/* Cycle through any completed TX chain page entries. */
   3924 	while (sw_tx_cons != hw_tx_cons) {
   3925 #ifdef BNX_DEBUG
   3926 		struct tx_bd *txbd = NULL;
   3927 #endif
   3928 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   3929 
   3930 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   3931 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   3932 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   3933 
   3934 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   3935 		    aprint_error_dev(sc->bnx_dev,
   3936 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   3937 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   3938 
   3939 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   3940 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   3941 
   3942 		DBRUNIF((txbd == NULL),
   3943 		    aprint_error_dev(sc->bnx_dev,
   3944 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   3945 		    bnx_breakpoint(sc));
   3946 
   3947 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   3948 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   3949 
   3950 		/*
   3951 		 * Free the associated mbuf. Remember
   3952 		 * that only the last tx_bd of a packet
   3953 		 * has an mbuf pointer and DMA map.
   3954 		 */
   3955 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
   3956 			/* Validate that this is the last tx_bd. */
   3957 			DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
   3958 			    TX_BD_FLAGS_END)),
   3959 			    aprint_error_dev(sc->bnx_dev,
   3960 			        "tx_bd END flag not set but txmbuf == NULL!\n");
   3961 			    bnx_breakpoint(sc));
   3962 
   3963 			DBRUN(BNX_INFO_SEND,
   3964 			    aprint_debug("%s: Unloading map/freeing mbuf "
   3965 			    "from tx_bd[0x%04X]\n",
   3966 			    __func__, sw_tx_chain_cons));
   3967 
   3968 			/* Unmap the mbuf. */
   3969 			bus_dmamap_unload(sc->bnx_dmatag,
   3970 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
   3971 
   3972 			/* Free the mbuf. */
   3973 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
   3974 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
   3975 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   3976 
   3977 			ifp->if_opackets++;
   3978 		}
   3979 
   3980 		sc->used_tx_bd--;
   3981 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   3982 
   3983 		/* Refresh hw_cons to see if there's new work. */
   3984 		hw_tx_cons = sc->hw_tx_cons =
   3985 		    sblk->status_tx_quick_consumer_index0;
   3986 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   3987 		    USABLE_TX_BD_PER_PAGE)
   3988 			hw_tx_cons++;
   3989 
   3990 		/* Prevent speculative reads from getting ahead of
   3991 		 * the status block.
   3992 		 */
   3993 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3994 		    BUS_SPACE_BARRIER_READ);
   3995 	}
   3996 
   3997 	/* Clear the TX timeout timer. */
   3998 	ifp->if_timer = 0;
   3999 
   4000 	/* Clear the tx hardware queue full flag. */
   4001 	if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
   4002 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4003 		    aprint_debug_dev(sc->bnx_dev,
   4004 		        "TX chain is open for business! Used tx_bd = %d\n",
   4005 			sc->used_tx_bd));
   4006 		ifp->if_flags &= ~IFF_OACTIVE;
   4007 	}
   4008 
   4009 	sc->tx_cons = sw_tx_cons;
   4010 }
   4011 
   4012 /****************************************************************************/
   4013 /* Disables interrupt generation.                                           */
   4014 /*                                                                          */
   4015 /* Returns:                                                                 */
   4016 /*   Nothing.                                                               */
   4017 /****************************************************************************/
   4018 void
   4019 bnx_disable_intr(struct bnx_softc *sc)
   4020 {
   4021 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4022 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4023 }
   4024 
   4025 /****************************************************************************/
   4026 /* Enables interrupt generation.                                            */
   4027 /*                                                                          */
   4028 /* Returns:                                                                 */
   4029 /*   Nothing.                                                               */
   4030 /****************************************************************************/
   4031 void
   4032 bnx_enable_intr(struct bnx_softc *sc)
   4033 {
   4034 	u_int32_t		val;
   4035 
   4036 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4037 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4038 
   4039 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4040 	    sc->last_status_idx);
   4041 
   4042 	val = REG_RD(sc, BNX_HC_COMMAND);
   4043 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4044 }
   4045 
   4046 /****************************************************************************/
   4047 /* Handles controller initialization.                                       */
   4048 /*                                                                          */
   4049 /****************************************************************************/
   4050 int
   4051 bnx_init(struct ifnet *ifp)
   4052 {
   4053 	struct bnx_softc	*sc = ifp->if_softc;
   4054 	u_int32_t		ether_mtu;
   4055 	int			s, error = 0;
   4056 
   4057 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4058 
   4059 	s = splnet();
   4060 
   4061 	bnx_stop(ifp, 0);
   4062 
   4063 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4064 		aprint_error("bnx: Controller reset failed!\n");
   4065 		goto bnx_init_exit;
   4066 	}
   4067 
   4068 	if ((error = bnx_chipinit(sc)) != 0) {
   4069 		aprint_error("bnx: Controller initialization failed!\n");
   4070 		goto bnx_init_exit;
   4071 	}
   4072 
   4073 	if ((error = bnx_blockinit(sc)) != 0) {
   4074 		aprint_error("bnx: Block initialization failed!\n");
   4075 		goto bnx_init_exit;
   4076 	}
   4077 
   4078 	/* Calculate and program the Ethernet MRU size. */
   4079 	if (ifp->if_mtu <= ETHERMTU) {
   4080 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4081 		sc->mbuf_alloc_size = MCLBYTES;
   4082 	} else {
   4083 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4084 		sc->mbuf_alloc_size = BNX_MAX_MRU;
   4085 	}
   4086 
   4087 
   4088 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4089 	    __func__, ether_mtu);
   4090 
   4091 	/*
   4092 	 * Program the MRU and enable Jumbo frame
   4093 	 * support.
   4094 	 */
   4095 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4096 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4097 
   4098 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4099 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4100 
   4101 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4102 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4103 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4104 
   4105 	/* Program appropriate promiscuous/multicast filtering. */
   4106 	bnx_set_rx_mode(sc);
   4107 
   4108 	/* Init RX buffer descriptor chain. */
   4109 	bnx_init_rx_chain(sc);
   4110 
   4111 	/* Init TX buffer descriptor chain. */
   4112 	bnx_init_tx_chain(sc);
   4113 
   4114 	/* Enable host interrupts. */
   4115 	bnx_enable_intr(sc);
   4116 
   4117 	if ((error = bnx_ifmedia_upd(ifp)) != 0)
   4118 		goto bnx_init_exit;
   4119 
   4120 	ifp->if_flags |= IFF_RUNNING;
   4121 	ifp->if_flags &= ~IFF_OACTIVE;
   4122 
   4123 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4124 
   4125 bnx_init_exit:
   4126 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4127 
   4128 	splx(s);
   4129 
   4130 	return(error);
   4131 }
   4132 
   4133 /****************************************************************************/
   4134 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4135 /* memory visible to the controller.                                        */
   4136 /*                                                                          */
   4137 /* Returns:                                                                 */
   4138 /*   0 for success, positive value for failure.                             */
   4139 /****************************************************************************/
   4140 int
   4141 bnx_tx_encap(struct bnx_softc *sc, struct mbuf **m_head)
   4142 {
   4143 	bus_dmamap_t		map;
   4144 	struct tx_bd		*txbd = NULL;
   4145 	struct mbuf		*m0;
   4146 	u_int16_t		vlan_tag = 0, flags = 0;
   4147 	u_int16_t		chain_prod, prod;
   4148 #ifdef BNX_DEBUG
   4149 	u_int16_t		debug_prod;
   4150 #endif
   4151 	u_int32_t		addr, prod_bseq;
   4152 	int			i, error, rc = 0;
   4153 	struct m_tag		*mtag;
   4154 
   4155 	m0 = *m_head;
   4156 
   4157 	/* Transfer any checksum offload flags to the bd. */
   4158 	if (m0->m_pkthdr.csum_flags) {
   4159 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4160 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4161 		if (m0->m_pkthdr.csum_flags &
   4162 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4163 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4164 	}
   4165 
   4166 	/* Transfer any VLAN tags to the bd. */
   4167 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m0);
   4168 	if (mtag != NULL) {
   4169 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4170 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4171 	}
   4172 
   4173 	/* Map the mbuf into DMAable memory. */
   4174 	prod = sc->tx_prod;
   4175 	chain_prod = TX_CHAIN_IDX(prod);
   4176 	map = sc->tx_mbuf_map[chain_prod];
   4177 
   4178 	/* Map the mbuf into our DMA address space. */
   4179 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m0, BUS_DMA_NOWAIT);
   4180 	if (error != 0) {
   4181 		aprint_error_dev(sc->bnx_dev,
   4182 		    "Error mapping mbuf into TX chain!\n");
   4183 		m_freem(m0);
   4184 		*m_head = NULL;
   4185 		return (error);
   4186 	}
   4187 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4188 	    BUS_DMASYNC_PREWRITE);
   4189         /*
   4190          * The chip seems to require that at least 16 descriptors be kept
   4191          * empty at all times.  Make sure we honor that.
   4192          * XXX Would it be faster to assume worst case scenario for
   4193          * map->dm_nsegs and do this calculation higher up?
   4194          */
   4195         if (map->dm_nsegs > (USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE)) {
   4196                 bus_dmamap_unload(sc->bnx_dmatag, map);
   4197                 return (ENOBUFS);
   4198         }
   4199 
   4200 	/* prod points to an empty tx_bd at this point. */
   4201 	prod_bseq = sc->tx_prod_bseq;
   4202 #ifdef BNX_DEBUG
   4203 	debug_prod = chain_prod;
   4204 #endif
   4205 	DBPRINT(sc, BNX_INFO_SEND,
   4206 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   4207 		"prod_bseq = 0x%08X\n",
   4208 		__func__, *prod, chain_prod, prod_bseq);
   4209 
   4210 	/*
   4211 	 * Cycle through each mbuf segment that makes up
   4212 	 * the outgoing frame, gathering the mapping info
   4213 	 * for that segment and creating a tx_bd for the
   4214 	 * mbuf.
   4215 	 */
   4216 	for (i = 0; i < map->dm_nsegs ; i++) {
   4217 		chain_prod = TX_CHAIN_IDX(prod);
   4218 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   4219 
   4220 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   4221 		txbd->tx_bd_haddr_lo = htole32(addr);
   4222 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   4223 		txbd->tx_bd_haddr_hi = htole32(addr);
   4224 		txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
   4225 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
   4226 		txbd->tx_bd_flags = htole16(flags);
   4227 		prod_bseq += map->dm_segs[i].ds_len;
   4228 		if (i == 0)
   4229 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
   4230 		prod = NEXT_TX_BD(prod);
   4231 	}
   4232 	/* Set the END flag on the last TX buffer descriptor. */
   4233 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
   4234 
   4235 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
   4236 
   4237 	DBPRINT(sc, BNX_INFO_SEND,
   4238 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   4239 		"prod_bseq = 0x%08X\n",
   4240 		__func__, prod, chain_prod, prod_bseq);
   4241 
   4242 	/*
   4243 	 * Ensure that the mbuf pointer for this
   4244 	 * transmission is placed at the array
   4245 	 * index of the last descriptor in this
   4246 	 * chain.  This is done because a single
   4247 	 * map is used for all segments of the mbuf
   4248 	 * and we don't want to unload the map before
   4249 	 * all of the segments have been freed.
   4250 	 */
   4251 	sc->tx_mbuf_ptr[chain_prod] = m0;
   4252 	sc->used_tx_bd += map->dm_nsegs;
   4253 
   4254 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   4255 	    sc->tx_hi_watermark = sc->used_tx_bd);
   4256 
   4257 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   4258 
   4259 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   4260 	    map_arg.maxsegs));
   4261 
   4262 	/* prod points to the next free tx_bd at this point. */
   4263 	sc->tx_prod = prod;
   4264 	sc->tx_prod_bseq = prod_bseq;
   4265 
   4266 	return (rc);
   4267 }
   4268 
   4269 /****************************************************************************/
   4270 /* Main transmit routine.                                                   */
   4271 /*                                                                          */
   4272 /* Returns:                                                                 */
   4273 /*   Nothing.                                                               */
   4274 /****************************************************************************/
   4275 void
   4276 bnx_start(struct ifnet *ifp)
   4277 {
   4278 	struct bnx_softc	*sc = ifp->if_softc;
   4279 	struct mbuf		*m_head = NULL;
   4280 	int			count = 0;
   4281 	u_int16_t		tx_prod, tx_chain_prod;
   4282 
   4283 	/* If there's no link or the transmit queue is empty then just exit. */
   4284 	if (!sc->bnx_link || IFQ_IS_EMPTY(&ifp->if_snd)) {
   4285 		DBPRINT(sc, BNX_INFO_SEND,
   4286 		    "%s(): No link or transmit queue empty.\n", __func__);
   4287 		goto bnx_start_exit;
   4288 	}
   4289 
   4290 	/* prod points to the next free tx_bd. */
   4291 	tx_prod = sc->tx_prod;
   4292 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
   4293 
   4294 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   4295 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
   4296 	    __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   4297 
   4298 	/*
   4299 	 * Keep adding entries while there is space in the ring.  We keep
   4300 	 * BNX_TX_SLACK_SPACE entries unused at all times.
   4301 	 */
   4302 	while (sc->used_tx_bd < USABLE_TX_BD - BNX_TX_SLACK_SPACE) {
   4303 		/* Check for any frames to send. */
   4304 		IFQ_POLL(&ifp->if_snd, m_head);
   4305 		if (m_head == NULL)
   4306 			break;
   4307 
   4308 		/*
   4309 		 * Pack the data into the transmit ring. If we
   4310 		 * don't have room, set the OACTIVE flag to wait
   4311 		 * for the NIC to drain the chain.
   4312 		 */
   4313 		if (bnx_tx_encap(sc, &m_head)) {
   4314 			ifp->if_flags |= IFF_OACTIVE;
   4315 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   4316 			    "business! Total tx_bd used = %d\n",
   4317 			    sc->used_tx_bd);
   4318 			break;
   4319 		}
   4320 
   4321 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4322 		count++;
   4323 
   4324 #if NBPFILTER > 0
   4325 		/* Send a copy of the frame to any BPF listeners. */
   4326 		if (ifp->if_bpf)
   4327 			bpf_mtap(ifp->if_bpf, m_head);
   4328 #endif
   4329 	}
   4330 
   4331 	if (count == 0) {
   4332 		/* no packets were dequeued */
   4333 		DBPRINT(sc, BNX_VERBOSE_SEND,
   4334 		    "%s(): No packets were dequeued\n", __func__);
   4335 		goto bnx_start_exit;
   4336 	}
   4337 
   4338 	/* Update the driver's counters. */
   4339 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   4340 
   4341 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   4342 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
   4343 	    tx_chain_prod, sc->tx_prod_bseq);
   4344 
   4345 	/* Start the transmit. */
   4346 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   4347 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   4348 
   4349 	/* Set the tx timeout. */
   4350 	ifp->if_timer = BNX_TX_TIMEOUT;
   4351 
   4352 bnx_start_exit:
   4353 	return;
   4354 }
   4355 
   4356 /****************************************************************************/
   4357 /* Handles any IOCTL calls from the operating system.                       */
   4358 /*                                                                          */
   4359 /* Returns:                                                                 */
   4360 /*   0 for success, positive value for failure.                             */
   4361 /****************************************************************************/
   4362 int
   4363 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   4364 {
   4365 	struct bnx_softc	*sc = ifp->if_softc;
   4366 	struct ifreq		*ifr = (struct ifreq *) data;
   4367 	struct mii_data		*mii;
   4368 	int			s, error = 0;
   4369 
   4370 	s = splnet();
   4371 
   4372 	switch (command) {
   4373 	case SIOCSIFFLAGS:
   4374 		if (ifp->if_flags & IFF_UP) {
   4375 			if ((ifp->if_flags & IFF_RUNNING) &&
   4376 			    ((ifp->if_flags ^ sc->bnx_if_flags) &
   4377 			    (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
   4378 				bnx_set_rx_mode(sc);
   4379 			} else if (!(ifp->if_flags & IFF_RUNNING))
   4380 				bnx_init(ifp);
   4381 
   4382 		} else if (ifp->if_flags & IFF_RUNNING)
   4383 			bnx_stop(ifp, 1);
   4384 
   4385 		sc->bnx_if_flags = ifp->if_flags;
   4386 		break;
   4387 
   4388 	case SIOCSIFMEDIA:
   4389 	case SIOCGIFMEDIA:
   4390 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   4391 		    sc->bnx_phy_flags);
   4392 
   4393 		if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
   4394 			error = ifmedia_ioctl(ifp, ifr,
   4395 			    &sc->bnx_ifmedia, command);
   4396 		else {
   4397 			mii = &sc->bnx_mii;
   4398 			error = ifmedia_ioctl(ifp, ifr,
   4399 			    &mii->mii_media, command);
   4400 		}
   4401 		break;
   4402 
   4403 	default:
   4404 		error = ether_ioctl(ifp, command, data);
   4405 		if (error != ENETRESET)
   4406 			break;
   4407 		error = 0;
   4408 		if (command == SIOCADDMULTI || command == SIOCDELMULTI) {
   4409 			/* reload packet filter if running */
   4410 			if (ifp->if_flags & IFF_RUNNING)
   4411 				bnx_set_rx_mode(sc);
   4412 		}
   4413 		break;
   4414 	}
   4415 
   4416 	splx(s);
   4417 
   4418 	return (error);
   4419 }
   4420 
   4421 /****************************************************************************/
   4422 /* Transmit timeout handler.                                                */
   4423 /*                                                                          */
   4424 /* Returns:                                                                 */
   4425 /*   Nothing.                                                               */
   4426 /****************************************************************************/
   4427 void
   4428 bnx_watchdog(struct ifnet *ifp)
   4429 {
   4430 	struct bnx_softc	*sc = ifp->if_softc;
   4431 
   4432 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   4433 	    bnx_dump_status_block(sc));
   4434 
   4435 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   4436 
   4437 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   4438 
   4439 	bnx_init(ifp);
   4440 
   4441 	ifp->if_oerrors++;
   4442 }
   4443 
   4444 /*
   4445  * Interrupt handler.
   4446  */
   4447 /****************************************************************************/
   4448 /* Main interrupt entry point.  Verifies that the controller generated the  */
   4449 /* interrupt and then calls a separate routine for handle the various       */
   4450 /* interrupt causes (PHY, TX, RX).                                          */
   4451 /*                                                                          */
   4452 /* Returns:                                                                 */
   4453 /*   0 for success, positive value for failure.                             */
   4454 /****************************************************************************/
   4455 int
   4456 bnx_intr(void *xsc)
   4457 {
   4458 	struct bnx_softc	*sc;
   4459 	struct ifnet		*ifp;
   4460 	u_int32_t		status_attn_bits;
   4461 	const struct status_block *sblk;
   4462 
   4463 	sc = xsc;
   4464 	if (!device_is_active(sc->bnx_dev))
   4465 		return 0;
   4466 
   4467 	ifp = &sc->bnx_ec.ec_if;
   4468 
   4469 	DBRUNIF(1, sc->interrupts_generated++);
   4470 
   4471 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   4472 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4473 
   4474 	/*
   4475 	 * If the hardware status block index
   4476 	 * matches the last value read by the
   4477 	 * driver and we haven't asserted our
   4478 	 * interrupt then there's nothing to do.
   4479 	 */
   4480 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   4481 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   4482 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   4483 		return (0);
   4484 
   4485 	/* Ack the interrupt and stop others from occuring. */
   4486 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4487 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   4488 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4489 
   4490 	/* Keep processing data as long as there is work to do. */
   4491 	for (;;) {
   4492 		sblk = sc->status_block;
   4493 		status_attn_bits = sblk->status_attn_bits;
   4494 
   4495 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   4496 		    aprint_debug("Simulating unexpected status attention bit set.");
   4497 		    status_attn_bits = status_attn_bits |
   4498 		    STATUS_ATTN_BITS_PARITY_ERROR);
   4499 
   4500 		/* Was it a link change interrupt? */
   4501 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   4502 		    (sblk->status_attn_bits_ack &
   4503 		    STATUS_ATTN_BITS_LINK_STATE))
   4504 			bnx_phy_intr(sc);
   4505 
   4506 		/* If any other attention is asserted then the chip is toast. */
   4507 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   4508 		    (sblk->status_attn_bits_ack &
   4509 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   4510 			DBRUN(1, sc->unexpected_attentions++);
   4511 
   4512 			aprint_error_dev(sc->bnx_dev,
   4513 			    "Fatal attention detected: 0x%08X\n",
   4514 			    sblk->status_attn_bits);
   4515 
   4516 			DBRUN(BNX_FATAL,
   4517 			    if (bnx_debug_unexpected_attention == 0)
   4518 			    bnx_breakpoint(sc));
   4519 
   4520 			bnx_init(ifp);
   4521 			return (1);
   4522 		}
   4523 
   4524 		/* Check for any completed RX frames. */
   4525 		if (sblk->status_rx_quick_consumer_index0 !=
   4526 		    sc->hw_rx_cons)
   4527 			bnx_rx_intr(sc);
   4528 
   4529 		/* Check for any completed TX frames. */
   4530 		if (sblk->status_tx_quick_consumer_index0 !=
   4531 		    sc->hw_tx_cons)
   4532 			bnx_tx_intr(sc);
   4533 
   4534 		/* Save the status block index value for use during the
   4535 		 * next interrupt.
   4536 		 */
   4537 		sc->last_status_idx = sblk->status_idx;
   4538 
   4539 		/* Prevent speculative reads from getting ahead of the
   4540 		 * status block.
   4541 		 */
   4542 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4543 		    BUS_SPACE_BARRIER_READ);
   4544 
   4545 		/* If there's no work left then exit the isr. */
   4546 		if ((sblk->status_rx_quick_consumer_index0 ==
   4547 		    sc->hw_rx_cons) &&
   4548 		    (sblk->status_tx_quick_consumer_index0 ==
   4549 		    sc->hw_tx_cons))
   4550 			break;
   4551 	}
   4552 
   4553 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   4554 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   4555 
   4556 	/* Re-enable interrupts. */
   4557 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4558 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   4559 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4560 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4561 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   4562 
   4563 	/* Handle any frames that arrived while handling the interrupt. */
   4564 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   4565 		bnx_start(ifp);
   4566 
   4567 	return (1);
   4568 }
   4569 
   4570 /****************************************************************************/
   4571 /* Programs the various packet receive modes (broadcast and multicast).     */
   4572 /*                                                                          */
   4573 /* Returns:                                                                 */
   4574 /*   Nothing.                                                               */
   4575 /****************************************************************************/
   4576 void
   4577 bnx_set_rx_mode(struct bnx_softc *sc)
   4578 {
   4579 	struct ethercom		*ec = &sc->bnx_ec;
   4580 	struct ifnet		*ifp = &ec->ec_if;
   4581 	struct ether_multi	*enm;
   4582 	struct ether_multistep	step;
   4583 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   4584 	u_int32_t		rx_mode, sort_mode;
   4585 	int			h, i;
   4586 
   4587 	/* Initialize receive mode default settings. */
   4588 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   4589 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   4590 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   4591 
   4592 	/*
   4593 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   4594 	 * be enbled.
   4595 	 */
   4596 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   4597 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   4598 
   4599 	/*
   4600 	 * Check for promiscuous, all multicast, or selected
   4601 	 * multicast address filtering.
   4602 	 */
   4603 	if (ifp->if_flags & IFF_PROMISC) {
   4604 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   4605 
   4606 		/* Enable promiscuous mode. */
   4607 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   4608 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   4609 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   4610 allmulti:
   4611 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   4612 
   4613 		/* Enable all multicast addresses. */
   4614 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   4615 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   4616 			    0xffffffff);
   4617 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   4618 	} else {
   4619 		/* Accept one or more multicast(s). */
   4620 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   4621 
   4622 		ETHER_FIRST_MULTI(step, ec, enm);
   4623 		while (enm != NULL) {
   4624 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
   4625 			    ETHER_ADDR_LEN)) {
   4626 				ifp->if_flags |= IFF_ALLMULTI;
   4627 				goto allmulti;
   4628 			}
   4629 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   4630 			    0xFF;
   4631 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   4632 			ETHER_NEXT_MULTI(step, enm);
   4633 		}
   4634 
   4635 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   4636 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   4637 			    hashes[i]);
   4638 
   4639 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   4640 	}
   4641 
   4642 	/* Only make changes if the recive mode has actually changed. */
   4643 	if (rx_mode != sc->rx_mode) {
   4644 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   4645 		    rx_mode);
   4646 
   4647 		sc->rx_mode = rx_mode;
   4648 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   4649 	}
   4650 
   4651 	/* Disable and clear the exisitng sort before enabling a new sort. */
   4652 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   4653 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   4654 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   4655 }
   4656 
   4657 /****************************************************************************/
   4658 /* Called periodically to updates statistics from the controllers           */
   4659 /* statistics block.                                                        */
   4660 /*                                                                          */
   4661 /* Returns:                                                                 */
   4662 /*   Nothing.                                                               */
   4663 /****************************************************************************/
   4664 void
   4665 bnx_stats_update(struct bnx_softc *sc)
   4666 {
   4667 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4668 	struct statistics_block	*stats;
   4669 
   4670 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   4671 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4672 	    BUS_DMASYNC_POSTREAD);
   4673 
   4674 	stats = (struct statistics_block *)sc->stats_block;
   4675 
   4676 	/*
   4677 	 * Update the interface statistics from the
   4678 	 * hardware statistics.
   4679 	 */
   4680 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   4681 
   4682 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   4683 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   4684 	    (u_long)stats->stat_IfInMBUFDiscards +
   4685 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   4686 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   4687 
   4688 	ifp->if_oerrors = (u_long)
   4689 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   4690 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   4691 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   4692 
   4693 	/*
   4694 	 * Certain controllers don't report
   4695 	 * carrier sense errors correctly.
   4696 	 * See errata E11_5708CA0_1165.
   4697 	 */
   4698 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   4699 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   4700 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   4701 
   4702 	/*
   4703 	 * Update the sysctl statistics from the
   4704 	 * hardware statistics.
   4705 	 */
   4706 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
   4707 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
   4708 
   4709 	sc->stat_IfHCInBadOctets =
   4710 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   4711 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
   4712 
   4713 	sc->stat_IfHCOutOctets =
   4714 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
   4715 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
   4716 
   4717 	sc->stat_IfHCOutBadOctets =
   4718 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   4719 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
   4720 
   4721 	sc->stat_IfHCInUcastPkts =
   4722 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   4723 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
   4724 
   4725 	sc->stat_IfHCInMulticastPkts =
   4726 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   4727 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
   4728 
   4729 	sc->stat_IfHCInBroadcastPkts =
   4730 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   4731 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
   4732 
   4733 	sc->stat_IfHCOutUcastPkts =
   4734 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   4735 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
   4736 
   4737 	sc->stat_IfHCOutMulticastPkts =
   4738 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   4739 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
   4740 
   4741 	sc->stat_IfHCOutBroadcastPkts =
   4742 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   4743 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   4744 
   4745 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   4746 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   4747 
   4748 	sc->stat_Dot3StatsCarrierSenseErrors =
   4749 	    stats->stat_Dot3StatsCarrierSenseErrors;
   4750 
   4751 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   4752 
   4753 	sc->stat_Dot3StatsAlignmentErrors =
   4754 	    stats->stat_Dot3StatsAlignmentErrors;
   4755 
   4756 	sc->stat_Dot3StatsSingleCollisionFrames =
   4757 	    stats->stat_Dot3StatsSingleCollisionFrames;
   4758 
   4759 	sc->stat_Dot3StatsMultipleCollisionFrames =
   4760 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   4761 
   4762 	sc->stat_Dot3StatsDeferredTransmissions =
   4763 	    stats->stat_Dot3StatsDeferredTransmissions;
   4764 
   4765 	sc->stat_Dot3StatsExcessiveCollisions =
   4766 	    stats->stat_Dot3StatsExcessiveCollisions;
   4767 
   4768 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   4769 
   4770 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   4771 
   4772 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   4773 
   4774 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   4775 
   4776 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   4777 
   4778 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   4779 
   4780 	sc->stat_EtherStatsPktsRx64Octets =
   4781 	    stats->stat_EtherStatsPktsRx64Octets;
   4782 
   4783 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   4784 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   4785 
   4786 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   4787 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   4788 
   4789 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   4790 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   4791 
   4792 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   4793 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   4794 
   4795 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   4796 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   4797 
   4798 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   4799 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   4800 
   4801 	sc->stat_EtherStatsPktsTx64Octets =
   4802 	    stats->stat_EtherStatsPktsTx64Octets;
   4803 
   4804 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   4805 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   4806 
   4807 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   4808 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   4809 
   4810 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   4811 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   4812 
   4813 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   4814 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   4815 
   4816 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   4817 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   4818 
   4819 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   4820 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   4821 
   4822 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   4823 
   4824 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   4825 
   4826 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   4827 
   4828 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   4829 
   4830 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   4831 
   4832 	sc->stat_MacControlFramesReceived =
   4833 	    stats->stat_MacControlFramesReceived;
   4834 
   4835 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   4836 
   4837 	sc->stat_IfInFramesL2FilterDiscards =
   4838 	    stats->stat_IfInFramesL2FilterDiscards;
   4839 
   4840 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   4841 
   4842 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   4843 
   4844 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   4845 
   4846 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   4847 
   4848 	sc->stat_CatchupInRuleCheckerDiscards =
   4849 	    stats->stat_CatchupInRuleCheckerDiscards;
   4850 
   4851 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   4852 
   4853 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   4854 
   4855 	sc->stat_CatchupInRuleCheckerP4Hit =
   4856 	    stats->stat_CatchupInRuleCheckerP4Hit;
   4857 
   4858 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   4859 }
   4860 
   4861 void
   4862 bnx_tick(void *xsc)
   4863 {
   4864 	struct bnx_softc	*sc = xsc;
   4865 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4866 	struct mii_data		*mii;
   4867 	u_int32_t		msg;
   4868 	u_int16_t		prod, chain_prod;
   4869 	u_int32_t		prod_bseq;
   4870 	int s = splnet();
   4871 
   4872 	/* Tell the firmware that the driver is still running. */
   4873 #ifdef BNX_DEBUG
   4874 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   4875 #else
   4876 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   4877 #endif
   4878 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   4879 
   4880 	/* Update the statistics from the hardware statistics block. */
   4881 	bnx_stats_update(sc);
   4882 
   4883 	/* Schedule the next tick. */
   4884 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4885 
   4886 	/* DRC - ToDo: Add SerDes support and check SerDes link here. */
   4887 
   4888 	mii = &sc->bnx_mii;
   4889 	mii_tick(mii);
   4890 
   4891 	/* If link is up already up then we're done. */
   4892 	if (sc->bnx_link)
   4893 		goto bnx_tick_exit;
   4894 
   4895 	/* Check if the link has come up. */
   4896 	if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
   4897 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   4898 		sc->bnx_link++;
   4899 		/* Now that link is up, handle any outstanding TX traffic. */
   4900 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   4901 			bnx_start(ifp);
   4902 	}
   4903 
   4904 bnx_tick_exit:
   4905 	/* try to get more RX buffers, just in case */
   4906 	prod = sc->rx_prod;
   4907 	prod_bseq = sc->rx_prod_bseq;
   4908 	chain_prod = RX_CHAIN_IDX(prod);
   4909 	bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq);
   4910 	sc->rx_prod = prod;
   4911 	sc->rx_prod_bseq = prod_bseq;
   4912 	splx(s);
   4913 	return;
   4914 }
   4915 
   4916 /****************************************************************************/
   4917 /* BNX Debug Routines                                                       */
   4918 /****************************************************************************/
   4919 #ifdef BNX_DEBUG
   4920 
   4921 /****************************************************************************/
   4922 /* Prints out information about an mbuf.                                    */
   4923 /*                                                                          */
   4924 /* Returns:                                                                 */
   4925 /*   Nothing.                                                               */
   4926 /****************************************************************************/
   4927 void
   4928 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   4929 {
   4930 	struct mbuf		*mp = m;
   4931 
   4932 	if (m == NULL) {
   4933 		/* Index out of range. */
   4934 		aprint_error("mbuf ptr is null!\n");
   4935 		return;
   4936 	}
   4937 
   4938 	while (mp) {
   4939 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   4940 		    mp, mp->m_len);
   4941 
   4942 		if (mp->m_flags & M_EXT)
   4943 			aprint_debug("M_EXT ");
   4944 		if (mp->m_flags & M_PKTHDR)
   4945 			aprint_debug("M_PKTHDR ");
   4946 		aprint_debug("\n");
   4947 
   4948 		if (mp->m_flags & M_EXT)
   4949 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   4950 			    mp, mp->m_ext.ext_size);
   4951 
   4952 		mp = mp->m_next;
   4953 	}
   4954 }
   4955 
   4956 /****************************************************************************/
   4957 /* Prints out the mbufs in the TX mbuf chain.                               */
   4958 /*                                                                          */
   4959 /* Returns:                                                                 */
   4960 /*   Nothing.                                                               */
   4961 /****************************************************************************/
   4962 void
   4963 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   4964 {
   4965 	struct mbuf		*m;
   4966 	int			i;
   4967 
   4968 	BNX_PRINTF(sc,
   4969 	    "----------------------------"
   4970 	    "  tx mbuf data  "
   4971 	    "----------------------------\n");
   4972 
   4973 	for (i = 0; i < count; i++) {
   4974 	 	m = sc->tx_mbuf_ptr[chain_prod];
   4975 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   4976 		bnx_dump_mbuf(sc, m);
   4977 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   4978 	}
   4979 
   4980 	BNX_PRINTF(sc,
   4981 	    "--------------------------------------------"
   4982 	    "----------------------------\n");
   4983 }
   4984 
   4985 /*
   4986  * This routine prints the RX mbuf chain.
   4987  */
   4988 void
   4989 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   4990 {
   4991 	struct mbuf		*m;
   4992 	int			i;
   4993 
   4994 	BNX_PRINTF(sc,
   4995 	    "----------------------------"
   4996 	    "  rx mbuf data  "
   4997 	    "----------------------------\n");
   4998 
   4999 	for (i = 0; i < count; i++) {
   5000 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5001 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5002 		bnx_dump_mbuf(sc, m);
   5003 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5004 	}
   5005 
   5006 
   5007 	BNX_PRINTF(sc,
   5008 	    "--------------------------------------------"
   5009 	    "----------------------------\n");
   5010 }
   5011 
   5012 void
   5013 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5014 {
   5015 	if (idx > MAX_TX_BD)
   5016 		/* Index out of range. */
   5017 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5018 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5019 		/* TX Chain page pointer. */
   5020 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5021 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5022 		    txbd->tx_bd_haddr_lo);
   5023 	else
   5024 		/* Normal tx_bd entry. */
   5025 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5026 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5027 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5028 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5029 		    txbd->tx_bd_flags);
   5030 }
   5031 
   5032 void
   5033 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5034 {
   5035 	if (idx > MAX_RX_BD)
   5036 		/* Index out of range. */
   5037 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5038 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5039 		/* TX Chain page pointer. */
   5040 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5041 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5042 		    rxbd->rx_bd_haddr_lo);
   5043 	else
   5044 		/* Normal tx_bd entry. */
   5045 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5046 		    "0x%08X, flags = 0x%08X\n", idx,
   5047 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5048 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5049 }
   5050 
   5051 void
   5052 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5053 {
   5054 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5055 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5056 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5057 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5058 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5059 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5060 }
   5061 
   5062 /*
   5063  * This routine prints the TX chain.
   5064  */
   5065 void
   5066 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5067 {
   5068 	struct tx_bd		*txbd;
   5069 	int			i;
   5070 
   5071 	/* First some info about the tx_bd chain structure. */
   5072 	BNX_PRINTF(sc,
   5073 	    "----------------------------"
   5074 	    "  tx_bd  chain  "
   5075 	    "----------------------------\n");
   5076 
   5077 	BNX_PRINTF(sc,
   5078 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5079 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
   5080 
   5081 	BNX_PRINTF(sc,
   5082 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5083 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
   5084 
   5085 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
   5086 
   5087 	BNX_PRINTF(sc, ""
   5088 	    "-----------------------------"
   5089 	    "   tx_bd data   "
   5090 	    "-----------------------------\n");
   5091 
   5092 	/* Now print out the tx_bd's themselves. */
   5093 	for (i = 0; i < count; i++) {
   5094 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5095 		bnx_dump_txbd(sc, tx_prod, txbd);
   5096 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5097 	}
   5098 
   5099 	BNX_PRINTF(sc,
   5100 	    "-----------------------------"
   5101 	    "--------------"
   5102 	    "-----------------------------\n");
   5103 }
   5104 
   5105 /*
   5106  * This routine prints the RX chain.
   5107  */
   5108 void
   5109 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5110 {
   5111 	struct rx_bd		*rxbd;
   5112 	int			i;
   5113 
   5114 	/* First some info about the tx_bd chain structure. */
   5115 	BNX_PRINTF(sc,
   5116 	    "----------------------------"
   5117 	    "  rx_bd  chain  "
   5118 	    "----------------------------\n");
   5119 
   5120 	BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
   5121 
   5122 	BNX_PRINTF(sc,
   5123 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5124 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
   5125 
   5126 	BNX_PRINTF(sc,
   5127 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5128 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
   5129 
   5130 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
   5131 
   5132 	BNX_PRINTF(sc,
   5133 	    "----------------------------"
   5134 	    "   rx_bd data   "
   5135 	    "----------------------------\n");
   5136 
   5137 	/* Now print out the rx_bd's themselves. */
   5138 	for (i = 0; i < count; i++) {
   5139 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5140 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5141 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5142 	}
   5143 
   5144 	BNX_PRINTF(sc,
   5145 	    "----------------------------"
   5146 	    "--------------"
   5147 	    "----------------------------\n");
   5148 }
   5149 
   5150 /*
   5151  * This routine prints the status block.
   5152  */
   5153 void
   5154 bnx_dump_status_block(struct bnx_softc *sc)
   5155 {
   5156 	struct status_block	*sblk;
   5157 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5158 	    BUS_DMASYNC_POSTREAD);
   5159 
   5160 	sblk = sc->status_block;
   5161 
   5162    	BNX_PRINTF(sc, "----------------------------- Status Block "
   5163 	    "-----------------------------\n");
   5164 
   5165 	BNX_PRINTF(sc,
   5166 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5167 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5168 	    sblk->status_idx);
   5169 
   5170 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5171 	    sblk->status_rx_quick_consumer_index0,
   5172 	    sblk->status_tx_quick_consumer_index0);
   5173 
   5174 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5175 
   5176 	/* Theses indices are not used for normal L2 drivers. */
   5177 	if (sblk->status_rx_quick_consumer_index1 ||
   5178 		sblk->status_tx_quick_consumer_index1)
   5179 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5180 		    sblk->status_rx_quick_consumer_index1,
   5181 		    sblk->status_tx_quick_consumer_index1);
   5182 
   5183 	if (sblk->status_rx_quick_consumer_index2 ||
   5184 		sblk->status_tx_quick_consumer_index2)
   5185 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5186 		    sblk->status_rx_quick_consumer_index2,
   5187 		    sblk->status_tx_quick_consumer_index2);
   5188 
   5189 	if (sblk->status_rx_quick_consumer_index3 ||
   5190 		sblk->status_tx_quick_consumer_index3)
   5191 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5192 		    sblk->status_rx_quick_consumer_index3,
   5193 		    sblk->status_tx_quick_consumer_index3);
   5194 
   5195 	if (sblk->status_rx_quick_consumer_index4 ||
   5196 		sblk->status_rx_quick_consumer_index5)
   5197 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5198 		    sblk->status_rx_quick_consumer_index4,
   5199 		    sblk->status_rx_quick_consumer_index5);
   5200 
   5201 	if (sblk->status_rx_quick_consumer_index6 ||
   5202 		sblk->status_rx_quick_consumer_index7)
   5203 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5204 		    sblk->status_rx_quick_consumer_index6,
   5205 		    sblk->status_rx_quick_consumer_index7);
   5206 
   5207 	if (sblk->status_rx_quick_consumer_index8 ||
   5208 		sblk->status_rx_quick_consumer_index9)
   5209 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5210 		    sblk->status_rx_quick_consumer_index8,
   5211 		    sblk->status_rx_quick_consumer_index9);
   5212 
   5213 	if (sblk->status_rx_quick_consumer_index10 ||
   5214 		sblk->status_rx_quick_consumer_index11)
   5215 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   5216 		    sblk->status_rx_quick_consumer_index10,
   5217 		    sblk->status_rx_quick_consumer_index11);
   5218 
   5219 	if (sblk->status_rx_quick_consumer_index12 ||
   5220 		sblk->status_rx_quick_consumer_index13)
   5221 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   5222 		    sblk->status_rx_quick_consumer_index12,
   5223 		    sblk->status_rx_quick_consumer_index13);
   5224 
   5225 	if (sblk->status_rx_quick_consumer_index14 ||
   5226 		sblk->status_rx_quick_consumer_index15)
   5227 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   5228 		    sblk->status_rx_quick_consumer_index14,
   5229 		    sblk->status_rx_quick_consumer_index15);
   5230 
   5231 	if (sblk->status_completion_producer_index ||
   5232 		sblk->status_cmd_consumer_index)
   5233 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   5234 		    sblk->status_completion_producer_index,
   5235 		    sblk->status_cmd_consumer_index);
   5236 
   5237 	BNX_PRINTF(sc, "-------------------------------------------"
   5238 	    "-----------------------------\n");
   5239 }
   5240 
   5241 /*
   5242  * This routine prints the statistics block.
   5243  */
   5244 void
   5245 bnx_dump_stats_block(struct bnx_softc *sc)
   5246 {
   5247 	struct statistics_block	*sblk;
   5248 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5249 	    BUS_DMASYNC_POSTREAD);
   5250 
   5251 	sblk = sc->stats_block;
   5252 
   5253 	BNX_PRINTF(sc, ""
   5254 	    "-----------------------------"
   5255 	    " Stats  Block "
   5256 	    "-----------------------------\n");
   5257 
   5258 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   5259 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   5260 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   5261 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   5262 
   5263 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   5264 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   5265 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   5266 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   5267 
   5268 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   5269 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   5270 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   5271 	    sblk->stat_IfHCInMulticastPkts_hi,
   5272 	    sblk->stat_IfHCInMulticastPkts_lo);
   5273 
   5274 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   5275 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   5276 	    sblk->stat_IfHCInBroadcastPkts_hi,
   5277 	    sblk->stat_IfHCInBroadcastPkts_lo,
   5278 	    sblk->stat_IfHCOutUcastPkts_hi,
   5279 	    sblk->stat_IfHCOutUcastPkts_lo);
   5280 
   5281 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   5282 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   5283 	    sblk->stat_IfHCOutMulticastPkts_hi,
   5284 	    sblk->stat_IfHCOutMulticastPkts_lo,
   5285 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   5286 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   5287 
   5288 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   5289 		BNX_PRINTF(sc, "0x%08X : "
   5290 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   5291 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   5292 
   5293 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   5294 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   5295 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   5296 
   5297 	if (sblk->stat_Dot3StatsFCSErrors)
   5298 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   5299 		    sblk->stat_Dot3StatsFCSErrors);
   5300 
   5301 	if (sblk->stat_Dot3StatsAlignmentErrors)
   5302 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   5303 		    sblk->stat_Dot3StatsAlignmentErrors);
   5304 
   5305 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   5306 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   5307 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   5308 
   5309 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   5310 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   5311 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   5312 
   5313 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   5314 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   5315 		    sblk->stat_Dot3StatsDeferredTransmissions);
   5316 
   5317 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   5318 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   5319 		    sblk->stat_Dot3StatsExcessiveCollisions);
   5320 
   5321 	if (sblk->stat_Dot3StatsLateCollisions)
   5322 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   5323 		    sblk->stat_Dot3StatsLateCollisions);
   5324 
   5325 	if (sblk->stat_EtherStatsCollisions)
   5326 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   5327 		    sblk->stat_EtherStatsCollisions);
   5328 
   5329 	if (sblk->stat_EtherStatsFragments)
   5330 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   5331 		    sblk->stat_EtherStatsFragments);
   5332 
   5333 	if (sblk->stat_EtherStatsJabbers)
   5334 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   5335 		    sblk->stat_EtherStatsJabbers);
   5336 
   5337 	if (sblk->stat_EtherStatsUndersizePkts)
   5338 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   5339 		    sblk->stat_EtherStatsUndersizePkts);
   5340 
   5341 	if (sblk->stat_EtherStatsOverrsizePkts)
   5342 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   5343 		    sblk->stat_EtherStatsOverrsizePkts);
   5344 
   5345 	if (sblk->stat_EtherStatsPktsRx64Octets)
   5346 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   5347 		    sblk->stat_EtherStatsPktsRx64Octets);
   5348 
   5349 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   5350 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   5351 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   5352 
   5353 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   5354 		BNX_PRINTF(sc, "0x%08X : "
   5355 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   5356 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   5357 
   5358 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   5359 		BNX_PRINTF(sc, "0x%08X : "
   5360 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   5361 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   5362 
   5363 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   5364 		BNX_PRINTF(sc, "0x%08X : "
   5365 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   5366 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   5367 
   5368 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   5369 		BNX_PRINTF(sc, "0x%08X : "
   5370 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   5371 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   5372 
   5373 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   5374 		BNX_PRINTF(sc, "0x%08X : "
   5375 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   5376 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   5377 
   5378 	if (sblk->stat_EtherStatsPktsTx64Octets)
   5379 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   5380 		    sblk->stat_EtherStatsPktsTx64Octets);
   5381 
   5382 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   5383 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   5384 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   5385 
   5386 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   5387 		BNX_PRINTF(sc, "0x%08X : "
   5388 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   5389 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   5390 
   5391 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   5392 		BNX_PRINTF(sc, "0x%08X : "
   5393 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   5394 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   5395 
   5396 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   5397 		BNX_PRINTF(sc, "0x%08X : "
   5398 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   5399 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   5400 
   5401 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   5402 		BNX_PRINTF(sc, "0x%08X : "
   5403 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   5404 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   5405 
   5406 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   5407 		BNX_PRINTF(sc, "0x%08X : "
   5408 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   5409 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   5410 
   5411 	if (sblk->stat_XonPauseFramesReceived)
   5412 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   5413 		    sblk->stat_XonPauseFramesReceived);
   5414 
   5415 	if (sblk->stat_XoffPauseFramesReceived)
   5416 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   5417 		    sblk->stat_XoffPauseFramesReceived);
   5418 
   5419 	if (sblk->stat_OutXonSent)
   5420 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   5421 		    sblk->stat_OutXonSent);
   5422 
   5423 	if (sblk->stat_OutXoffSent)
   5424 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   5425 		    sblk->stat_OutXoffSent);
   5426 
   5427 	if (sblk->stat_FlowControlDone)
   5428 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   5429 		    sblk->stat_FlowControlDone);
   5430 
   5431 	if (sblk->stat_MacControlFramesReceived)
   5432 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   5433 		    sblk->stat_MacControlFramesReceived);
   5434 
   5435 	if (sblk->stat_XoffStateEntered)
   5436 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   5437 		    sblk->stat_XoffStateEntered);
   5438 
   5439 	if (sblk->stat_IfInFramesL2FilterDiscards)
   5440 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   5441 		    sblk->stat_IfInFramesL2FilterDiscards);
   5442 
   5443 	if (sblk->stat_IfInRuleCheckerDiscards)
   5444 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   5445 		    sblk->stat_IfInRuleCheckerDiscards);
   5446 
   5447 	if (sblk->stat_IfInFTQDiscards)
   5448 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   5449 		    sblk->stat_IfInFTQDiscards);
   5450 
   5451 	if (sblk->stat_IfInMBUFDiscards)
   5452 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   5453 		    sblk->stat_IfInMBUFDiscards);
   5454 
   5455 	if (sblk->stat_IfInRuleCheckerP4Hit)
   5456 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   5457 		    sblk->stat_IfInRuleCheckerP4Hit);
   5458 
   5459 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   5460 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   5461 		    sblk->stat_CatchupInRuleCheckerDiscards);
   5462 
   5463 	if (sblk->stat_CatchupInFTQDiscards)
   5464 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   5465 		    sblk->stat_CatchupInFTQDiscards);
   5466 
   5467 	if (sblk->stat_CatchupInMBUFDiscards)
   5468 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   5469 		    sblk->stat_CatchupInMBUFDiscards);
   5470 
   5471 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   5472 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   5473 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   5474 
   5475 	BNX_PRINTF(sc,
   5476 	    "-----------------------------"
   5477 	    "--------------"
   5478 	    "-----------------------------\n");
   5479 }
   5480 
   5481 void
   5482 bnx_dump_driver_state(struct bnx_softc *sc)
   5483 {
   5484 	BNX_PRINTF(sc,
   5485 	    "-----------------------------"
   5486 	    " Driver State "
   5487 	    "-----------------------------\n");
   5488 
   5489 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   5490 	    "address\n", sc);
   5491 
   5492 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   5493 	    sc->status_block);
   5494 
   5495 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   5496 	    "address\n", sc->stats_block);
   5497 
   5498 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   5499 	    "adddress\n", sc->tx_bd_chain);
   5500 
   5501 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   5502 	    sc->rx_bd_chain);
   5503 
   5504 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   5505 	    sc->tx_mbuf_ptr);
   5506 
   5507 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   5508 	    sc->rx_mbuf_ptr);
   5509 
   5510 	BNX_PRINTF(sc,
   5511 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   5512 	    sc->interrupts_generated);
   5513 
   5514 	BNX_PRINTF(sc,
   5515 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   5516 	    sc->rx_interrupts);
   5517 
   5518 	BNX_PRINTF(sc,
   5519 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   5520 	    sc->tx_interrupts);
   5521 
   5522 	BNX_PRINTF(sc,
   5523 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   5524 	    sc->last_status_idx);
   5525 
   5526 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   5527 	    sc->tx_prod);
   5528 
   5529 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   5530 	    sc->tx_cons);
   5531 
   5532 	BNX_PRINTF(sc,
   5533 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   5534 	    sc->tx_prod_bseq);
   5535 
   5536 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   5537 	    sc->rx_prod);
   5538 
   5539 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   5540 	    sc->rx_cons);
   5541 
   5542 	BNX_PRINTF(sc,
   5543 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   5544 	    sc->rx_prod_bseq);
   5545 
   5546 	BNX_PRINTF(sc,
   5547 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   5548 	    sc->rx_mbuf_alloc);
   5549 
   5550 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   5551 	    sc->free_rx_bd);
   5552 
   5553 	BNX_PRINTF(sc,
   5554 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   5555 	    sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
   5556 
   5557 	BNX_PRINTF(sc,
   5558 	    "         0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
   5559 	    sc->tx_mbuf_alloc);
   5560 
   5561 	BNX_PRINTF(sc,
   5562 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   5563 	    sc->rx_mbuf_alloc);
   5564 
   5565 	BNX_PRINTF(sc, "         0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   5566 	    sc->used_tx_bd);
   5567 
   5568 	BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   5569 	    sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
   5570 
   5571 	BNX_PRINTF(sc,
   5572 	    "         0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
   5573 	    sc->mbuf_alloc_failed);
   5574 
   5575 	BNX_PRINTF(sc, "-------------------------------------------"
   5576 	    "-----------------------------\n");
   5577 }
   5578 
   5579 void
   5580 bnx_dump_hw_state(struct bnx_softc *sc)
   5581 {
   5582 	u_int32_t		val1;
   5583 	int			i;
   5584 
   5585 	BNX_PRINTF(sc,
   5586 	    "----------------------------"
   5587 	    " Hardware State "
   5588 	    "----------------------------\n");
   5589 
   5590 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   5591 
   5592 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   5593 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   5594 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   5595 
   5596 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   5597 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   5598 
   5599 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   5600 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   5601 
   5602 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   5603 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   5604 	    BNX_EMAC_STATUS);
   5605 
   5606 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   5607 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   5608 
   5609 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   5610 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   5611 	    BNX_TBDR_STATUS);
   5612 
   5613 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   5614 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   5615 	    BNX_TDMA_STATUS);
   5616 
   5617 	val1 = REG_RD(sc, BNX_HC_STATUS);
   5618 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   5619 
   5620 	BNX_PRINTF(sc,
   5621 	    "----------------------------"
   5622 	    "----------------"
   5623 	    "----------------------------\n");
   5624 
   5625 	BNX_PRINTF(sc,
   5626 	    "----------------------------"
   5627 	    " Register  Dump "
   5628 	    "----------------------------\n");
   5629 
   5630 	for (i = 0x400; i < 0x8000; i += 0x10)
   5631 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   5632 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   5633 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   5634 
   5635 	BNX_PRINTF(sc,
   5636 	    "----------------------------"
   5637 	    "----------------"
   5638 	    "----------------------------\n");
   5639 }
   5640 
   5641 void
   5642 bnx_breakpoint(struct bnx_softc *sc)
   5643 {
   5644 	/* Unreachable code to shut the compiler up about unused functions. */
   5645 	if (0) {
   5646    		bnx_dump_txbd(sc, 0, NULL);
   5647 		bnx_dump_rxbd(sc, 0, NULL);
   5648 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   5649 		bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
   5650 		bnx_dump_l2fhdr(sc, 0, NULL);
   5651 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   5652 		bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
   5653 		bnx_dump_status_block(sc);
   5654 		bnx_dump_stats_block(sc);
   5655 		bnx_dump_driver_state(sc);
   5656 		bnx_dump_hw_state(sc);
   5657 	}
   5658 
   5659 	bnx_dump_driver_state(sc);
   5660 	/* Print the important status block fields. */
   5661 	bnx_dump_status_block(sc);
   5662 
   5663 #if 0
   5664 	/* Call the debugger. */
   5665 	breakpoint();
   5666 #endif
   5667 
   5668 	return;
   5669 }
   5670 #endif
   5671