if_bnx.c revision 1.16 1 /* $NetBSD: if_bnx.c,v 1.16 2007/12/31 22:52:14 dyoung Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.43 2007/01/30 03:21:10 krw Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.16 2007/12/31 22:52:14 dyoung Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5708C B1
44 *
45 * The following controllers are not supported by this driver:
46 * (These are not "Production" versions of the controller.)
47 *
48 * BCM5706C A0, A1
49 * BCM5706S A0, A1, A2, A3
50 * BCM5708C A0, B0
51 * BCM5708S A0, B0, B1
52 */
53
54 #include <sys/callout.h>
55
56 #include <dev/pci/if_bnxreg.h>
57 #include <dev/microcode/bnx/bnxfw.h>
58
59 /****************************************************************************/
60 /* BNX Driver Version */
61 /****************************************************************************/
62 const char bnx_driver_version[] = "v0.9.6";
63
64 /****************************************************************************/
65 /* BNX Debug Options */
66 /****************************************************************************/
67 #ifdef BNX_DEBUG
68 u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
69
70 /* 0 = Never */
71 /* 1 = 1 in 2,147,483,648 */
72 /* 256 = 1 in 8,388,608 */
73 /* 2048 = 1 in 1,048,576 */
74 /* 65536 = 1 in 32,768 */
75 /* 1048576 = 1 in 2,048 */
76 /* 268435456 = 1 in 8 */
77 /* 536870912 = 1 in 4 */
78 /* 1073741824 = 1 in 2 */
79
80 /* Controls how often the l2_fhdr frame error check will fail. */
81 int bnx_debug_l2fhdr_status_check = 0;
82
83 /* Controls how often the unexpected attention check will fail. */
84 int bnx_debug_unexpected_attention = 0;
85
86 /* Controls how often to simulate an mbuf allocation failure. */
87 int bnx_debug_mbuf_allocation_failure = 0;
88
89 /* Controls how often to simulate a DMA mapping failure. */
90 int bnx_debug_dma_map_addr_failure = 0;
91
92 /* Controls how often to simulate a bootcode failure. */
93 int bnx_debug_bootcode_running_failure = 0;
94 #endif
95
96 /****************************************************************************/
97 /* PCI Device ID Table */
98 /* */
99 /* Used by bnx_probe() to identify the devices supported by this driver. */
100 /****************************************************************************/
101 static const struct bnx_product {
102 pci_vendor_id_t bp_vendor;
103 pci_product_id_t bp_product;
104 pci_vendor_id_t bp_subvendor;
105 pci_product_id_t bp_subproduct;
106 const char *bp_name;
107 } bnx_devices[] = {
108 #ifdef PCI_SUBPRODUCT_HP_NC370T
109 {
110 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
111 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
112 "HP NC370T Multifunction Gigabit Server Adapter"
113 },
114 #endif
115 #ifdef PCI_SUBPRODUCT_HP_NC370i
116 {
117 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
118 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
119 "HP NC370i Multifunction Gigabit Server Adapter"
120 },
121 #endif
122 {
123 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
124 0, 0,
125 "Broadcom NetXtreme II BCM5706 1000Base-T"
126 },
127 #ifdef PCI_SUBPRODUCT_HP_NC370F
128 {
129 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
130 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
131 "HP NC370F Multifunction Gigabit Server Adapter"
132 },
133 #endif
134 {
135 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
136 0, 0,
137 "Broadcom NetXtreme II BCM5706 1000Base-SX"
138 },
139 {
140 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
141 0, 0,
142 "Broadcom NetXtreme II BCM5708 1000Base-T"
143 },
144 {
145 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
146 0, 0,
147 "Broadcom NetXtreme II BCM5708 1000Base-SX"
148 },
149 };
150
151 /****************************************************************************/
152 /* Supported Flash NVRAM device data. */
153 /****************************************************************************/
154 static struct flash_spec flash_table[] =
155 {
156 /* Slow EEPROM */
157 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
158 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
159 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
160 "EEPROM - slow"},
161 /* Expansion entry 0001 */
162 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
163 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
164 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
165 "Entry 0001"},
166 /* Saifun SA25F010 (non-buffered flash) */
167 /* strap, cfg1, & write1 need updates */
168 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
169 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
170 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
171 "Non-buffered flash (128kB)"},
172 /* Saifun SA25F020 (non-buffered flash) */
173 /* strap, cfg1, & write1 need updates */
174 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
175 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
176 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
177 "Non-buffered flash (256kB)"},
178 /* Expansion entry 0100 */
179 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
180 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
181 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
182 "Entry 0100"},
183 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
184 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
185 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
186 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
187 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
188 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
189 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
190 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
191 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
192 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
193 /* Saifun SA25F005 (non-buffered flash) */
194 /* strap, cfg1, & write1 need updates */
195 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
196 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
197 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
198 "Non-buffered flash (64kB)"},
199 /* Fast EEPROM */
200 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
201 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
202 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
203 "EEPROM - fast"},
204 /* Expansion entry 1001 */
205 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
206 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
208 "Entry 1001"},
209 /* Expansion entry 1010 */
210 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
211 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 "Entry 1010"},
214 /* ATMEL AT45DB011B (buffered flash) */
215 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
216 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
217 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
218 "Buffered flash (128kB)"},
219 /* Expansion entry 1100 */
220 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
221 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
222 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
223 "Entry 1100"},
224 /* Expansion entry 1101 */
225 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
226 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
228 "Entry 1101"},
229 /* Ateml Expansion entry 1110 */
230 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
231 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
232 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
233 "Entry 1110 (Atmel)"},
234 /* ATMEL AT45DB021B (buffered flash) */
235 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
236 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
237 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
238 "Buffered flash (256kB)"},
239 };
240
241 /****************************************************************************/
242 /* OpenBSD device entry points. */
243 /****************************************************************************/
244 static int bnx_probe(device_t, cfdata_t, void *);
245 void bnx_attach(device_t, device_t, void *);
246 int bnx_detach(device_t, int);
247
248 /****************************************************************************/
249 /* BNX Debug Data Structure Dump Routines */
250 /****************************************************************************/
251 #ifdef BNX_DEBUG
252 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
253 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
254 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
255 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
256 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
257 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
258 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
259 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
260 void bnx_dump_status_block(struct bnx_softc *);
261 void bnx_dump_stats_block(struct bnx_softc *);
262 void bnx_dump_driver_state(struct bnx_softc *);
263 void bnx_dump_hw_state(struct bnx_softc *);
264 void bnx_breakpoint(struct bnx_softc *);
265 #endif
266
267 /****************************************************************************/
268 /* BNX Register/Memory Access Routines */
269 /****************************************************************************/
270 u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
271 void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
272 void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
273 int bnx_miibus_read_reg(device_t, int, int);
274 void bnx_miibus_write_reg(device_t, int, int, int);
275 void bnx_miibus_statchg(device_t);
276
277 /****************************************************************************/
278 /* BNX NVRAM Access Routines */
279 /****************************************************************************/
280 int bnx_acquire_nvram_lock(struct bnx_softc *);
281 int bnx_release_nvram_lock(struct bnx_softc *);
282 void bnx_enable_nvram_access(struct bnx_softc *);
283 void bnx_disable_nvram_access(struct bnx_softc *);
284 int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
285 u_int32_t);
286 int bnx_init_nvram(struct bnx_softc *);
287 int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
288 int bnx_nvram_test(struct bnx_softc *);
289 #ifdef BNX_NVRAM_WRITE_SUPPORT
290 int bnx_enable_nvram_write(struct bnx_softc *);
291 void bnx_disable_nvram_write(struct bnx_softc *);
292 int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
293 int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
294 u_int32_t);
295 int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
296 #endif
297
298 /****************************************************************************/
299 /* */
300 /****************************************************************************/
301 int bnx_dma_alloc(struct bnx_softc *);
302 void bnx_dma_free(struct bnx_softc *);
303 void bnx_release_resources(struct bnx_softc *);
304
305 /****************************************************************************/
306 /* BNX Firmware Synchronization and Load */
307 /****************************************************************************/
308 int bnx_fw_sync(struct bnx_softc *, u_int32_t);
309 void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
310 u_int32_t);
311 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
312 struct fw_info *);
313 void bnx_init_cpus(struct bnx_softc *);
314
315 void bnx_stop(struct ifnet *, int);
316 int bnx_reset(struct bnx_softc *, u_int32_t);
317 int bnx_chipinit(struct bnx_softc *);
318 int bnx_blockinit(struct bnx_softc *);
319 int bnx_get_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
320 u_int16_t *, u_int32_t *);
321
322 int bnx_init_tx_chain(struct bnx_softc *);
323 int bnx_init_rx_chain(struct bnx_softc *);
324 void bnx_free_rx_chain(struct bnx_softc *);
325 void bnx_free_tx_chain(struct bnx_softc *);
326
327 int bnx_tx_encap(struct bnx_softc *, struct mbuf **);
328 void bnx_start(struct ifnet *);
329 int bnx_ioctl(struct ifnet *, u_long, void *);
330 void bnx_watchdog(struct ifnet *);
331 int bnx_init(struct ifnet *);
332
333 void bnx_init_context(struct bnx_softc *);
334 void bnx_get_mac_addr(struct bnx_softc *);
335 void bnx_set_mac_addr(struct bnx_softc *);
336 void bnx_phy_intr(struct bnx_softc *);
337 void bnx_rx_intr(struct bnx_softc *);
338 void bnx_tx_intr(struct bnx_softc *);
339 void bnx_disable_intr(struct bnx_softc *);
340 void bnx_enable_intr(struct bnx_softc *);
341
342 int bnx_intr(void *);
343 void bnx_set_rx_mode(struct bnx_softc *);
344 void bnx_stats_update(struct bnx_softc *);
345 void bnx_tick(void *);
346
347 /****************************************************************************/
348 /* OpenBSD device dispatch table. */
349 /****************************************************************************/
350 CFATTACH_DECL_NEW(bnx, sizeof(struct bnx_softc),
351 bnx_probe, bnx_attach, bnx_detach, NULL);
352
353 /****************************************************************************/
354 /* Device probe function. */
355 /* */
356 /* Compares the device to the driver's list of supported devices and */
357 /* reports back to the OS whether this is the right driver for the device. */
358 /* */
359 /* Returns: */
360 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
361 /****************************************************************************/
362 static const struct bnx_product *
363 bnx_lookup(const struct pci_attach_args *pa)
364 {
365 int i;
366 pcireg_t subid;
367
368 for (i = 0; i < __arraycount(bnx_devices); i++) {
369 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
370 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
371 continue;
372 if (!bnx_devices[i].bp_subvendor)
373 return &bnx_devices[i];
374 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
375 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
376 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
377 return &bnx_devices[i];
378 }
379
380 return NULL;
381 }
382 static int
383 bnx_probe(device_t parent, cfdata_t match, void *aux)
384 {
385 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
386
387 if (bnx_lookup(pa) != NULL)
388 return (1);
389
390 return (0);
391 }
392
393 /****************************************************************************/
394 /* Device attach function. */
395 /* */
396 /* Allocates device resources, performs secondary chip identification, */
397 /* resets and initializes the hardware, and initializes driver instance */
398 /* variables. */
399 /* */
400 /* Returns: */
401 /* 0 on success, positive value on failure. */
402 /****************************************************************************/
403 void
404 bnx_attach(device_t parent, device_t self, void *aux)
405 {
406 const struct bnx_product *bp;
407 struct bnx_softc *sc = device_private(self);
408 struct pci_attach_args *pa = aux;
409 pci_chipset_tag_t pc = pa->pa_pc;
410 pci_intr_handle_t ih;
411 const char *intrstr = NULL;
412 u_int32_t command;
413 struct ifnet *ifp;
414 u_int32_t val;
415 pcireg_t memtype;
416
417 bp = bnx_lookup(pa);
418 if (bp == NULL)
419 panic("unknown device");
420
421 sc->bnx_dev = self;
422
423 aprint_naive("\n");
424 aprint_normal(": %s\n", bp->bp_name);
425
426 sc->bnx_pa = *pa;
427
428 /*
429 * Map control/status registers.
430 */
431 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
432 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
433 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
434 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
435
436 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
437 aprint_error_dev(sc->bnx_dev,
438 "failed to enable memory mapping!\n");
439 return;
440 }
441
442 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
443 switch (memtype) {
444 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
445 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
446 if (pci_mapreg_map(pa, BNX_PCI_BAR0,
447 memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
448 NULL, &sc->bnx_size) == 0)
449 break;
450 default:
451 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
452 return;
453 }
454
455 if (pci_intr_map(pa, &ih)) {
456 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
457 goto bnx_attach_fail;
458 }
459
460 intrstr = pci_intr_string(pc, ih);
461
462 /*
463 * Configure byte swap and enable indirect register access.
464 * Rely on CPU to do target byte swapping on big endian systems.
465 * Access to registers outside of PCI configurtion space are not
466 * valid until this is done.
467 */
468 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
469 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
470 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
471
472 /* Save ASIC revsion info. */
473 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
474
475 /* Weed out any non-production controller revisions. */
476 switch(BNX_CHIP_ID(sc)) {
477 case BNX_CHIP_ID_5706_A0:
478 case BNX_CHIP_ID_5706_A1:
479 case BNX_CHIP_ID_5708_A0:
480 case BNX_CHIP_ID_5708_B0:
481 aprint_error_dev(sc->bnx_dev,
482 "unsupported controller revision (%c%d)!\n",
483 ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
484 PCI_REVISION(pa->pa_class) & 0x0f);
485 goto bnx_attach_fail;
486 }
487
488 if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
489 aprint_error_dev(sc->bnx_dev,
490 "SerDes controllers are not supported!\n");
491 goto bnx_attach_fail;
492 }
493
494 /*
495 * Find the base address for shared memory access.
496 * Newer versions of bootcode use a signature and offset
497 * while older versions use a fixed address.
498 */
499 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
500 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
501 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
502 else
503 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
504
505 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
506
507 /* Set initial device and PHY flags */
508 sc->bnx_flags = 0;
509 sc->bnx_phy_flags = 0;
510
511 /* Get PCI bus information (speed and type). */
512 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
513 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
514 u_int32_t clkreg;
515
516 sc->bnx_flags |= BNX_PCIX_FLAG;
517
518 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
519
520 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
521 switch (clkreg) {
522 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
523 sc->bus_speed_mhz = 133;
524 break;
525
526 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
527 sc->bus_speed_mhz = 100;
528 break;
529
530 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
531 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
532 sc->bus_speed_mhz = 66;
533 break;
534
535 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
536 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
537 sc->bus_speed_mhz = 50;
538 break;
539
540 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
541 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
542 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
543 sc->bus_speed_mhz = 33;
544 break;
545 }
546 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
547 sc->bus_speed_mhz = 66;
548 else
549 sc->bus_speed_mhz = 33;
550
551 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
552 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
553
554 /* Reset the controller. */
555 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
556 goto bnx_attach_fail;
557
558 /* Initialize the controller. */
559 if (bnx_chipinit(sc)) {
560 aprint_error_dev(sc->bnx_dev,
561 "Controller initialization failed!\n");
562 goto bnx_attach_fail;
563 }
564
565 /* Perform NVRAM test. */
566 if (bnx_nvram_test(sc)) {
567 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
568 goto bnx_attach_fail;
569 }
570
571 /* Fetch the permanent Ethernet MAC address. */
572 bnx_get_mac_addr(sc);
573 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
574 ether_sprintf(sc->eaddr));
575
576 /*
577 * Trip points control how many BDs
578 * should be ready before generating an
579 * interrupt while ticks control how long
580 * a BD can sit in the chain before
581 * generating an interrupt. Set the default
582 * values for the RX and TX rings.
583 */
584
585 #ifdef BNX_DEBUG
586 /* Force more frequent interrupts. */
587 sc->bnx_tx_quick_cons_trip_int = 1;
588 sc->bnx_tx_quick_cons_trip = 1;
589 sc->bnx_tx_ticks_int = 0;
590 sc->bnx_tx_ticks = 0;
591
592 sc->bnx_rx_quick_cons_trip_int = 1;
593 sc->bnx_rx_quick_cons_trip = 1;
594 sc->bnx_rx_ticks_int = 0;
595 sc->bnx_rx_ticks = 0;
596 #else
597 sc->bnx_tx_quick_cons_trip_int = 20;
598 sc->bnx_tx_quick_cons_trip = 20;
599 sc->bnx_tx_ticks_int = 80;
600 sc->bnx_tx_ticks = 80;
601
602 sc->bnx_rx_quick_cons_trip_int = 6;
603 sc->bnx_rx_quick_cons_trip = 6;
604 sc->bnx_rx_ticks_int = 18;
605 sc->bnx_rx_ticks = 18;
606 #endif
607
608 /* Update statistics once every second. */
609 sc->bnx_stats_ticks = 1000000 & 0xffff00;
610
611 /*
612 * The copper based NetXtreme II controllers
613 * use an integrated PHY at address 1 while
614 * the SerDes controllers use a PHY at
615 * address 2.
616 */
617 sc->bnx_phy_addr = 1;
618
619 if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
620 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
621 sc->bnx_flags |= BNX_NO_WOL_FLAG;
622 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708) {
623 sc->bnx_phy_addr = 2;
624 val = REG_RD_IND(sc, sc->bnx_shmem_base +
625 BNX_SHARED_HW_CFG_CONFIG);
626 if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
627 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
628 }
629 }
630
631 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
632 aprint_error_dev(sc->bnx_dev,
633 "SerDes is not supported by this driver!\n");
634 goto bnx_attach_fail;
635 }
636
637 /* Allocate DMA memory resources. */
638 sc->bnx_dmatag = pa->pa_dmat;
639 if (bnx_dma_alloc(sc)) {
640 aprint_error_dev(sc->bnx_dev,
641 "DMA resource allocation failed!\n");
642 goto bnx_attach_fail;
643 }
644
645 /* Initialize the ifnet interface. */
646 ifp = &sc->bnx_ec.ec_if;
647 ifp->if_softc = sc;
648 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
649 ifp->if_ioctl = bnx_ioctl;
650 ifp->if_stop = bnx_stop;
651 ifp->if_start = bnx_start;
652 ifp->if_init = bnx_init;
653 ifp->if_timer = 0;
654 ifp->if_watchdog = bnx_watchdog;
655 if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG)
656 ifp->if_baudrate = IF_Gbps(2.5);
657 else
658 ifp->if_baudrate = IF_Gbps(1);
659 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
660 IFQ_SET_READY(&ifp->if_snd);
661 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
662
663 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
664 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
665
666 ifp->if_capabilities |=
667 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
668 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
669 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
670
671 /* Hookup IRQ last. */
672 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
673 if (sc->bnx_intrhand == NULL) {
674 aprint_error_dev(self, "couldn't establish interrupt");
675 if (intrstr != NULL)
676 aprint_error(" at %s", intrstr);
677 aprint_error("\n");
678 goto bnx_attach_fail;
679 }
680
681 sc->bnx_mii.mii_ifp = ifp;
682 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
683 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
684 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
685
686 sc->bnx_ec.ec_mii = &sc->bnx_mii;
687 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
688 ether_mediastatus);
689 mii_attach(self, &sc->bnx_mii, 0xffffffff,
690 MII_PHY_ANY, MII_OFFSET_ANY, 0);
691
692 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
693 aprint_error_dev(self, "no PHY found!\n");
694 ifmedia_add(&sc->bnx_mii.mii_media,
695 IFM_ETHER|IFM_MANUAL, 0, NULL);
696 ifmedia_set(&sc->bnx_mii.mii_media,
697 IFM_ETHER|IFM_MANUAL);
698 } else {
699 ifmedia_set(&sc->bnx_mii.mii_media,
700 IFM_ETHER|IFM_AUTO);
701 }
702
703 /* Attach to the Ethernet interface list. */
704 if_attach(ifp);
705 ether_ifattach(ifp,sc->eaddr);
706
707 callout_init(&sc->bnx_timeout, 0);
708
709 if (!pmf_device_register(self, NULL, NULL))
710 aprint_error_dev(self, "couldn't establish power handler\n");
711 else
712 pmf_class_network_register(self, ifp);
713
714 /* Print some important debugging info. */
715 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
716
717 goto bnx_attach_exit;
718
719 bnx_attach_fail:
720 bnx_release_resources(sc);
721
722 bnx_attach_exit:
723 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
724 }
725
726 /****************************************************************************/
727 /* Device detach function. */
728 /* */
729 /* Stops the controller, resets the controller, and releases resources. */
730 /* */
731 /* Returns: */
732 /* 0 on success, positive value on failure. */
733 /****************************************************************************/
734 int
735 bnx_detach(device_t dev, int flags)
736 {
737 int s;
738 struct bnx_softc *sc;
739 struct ifnet *ifp;
740
741 sc = device_private(dev);
742 ifp = &sc->bnx_ec.ec_if;
743
744 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
745
746 /* Stop and reset the controller. */
747 s = splnet();
748 if (ifp->if_flags & IFF_RUNNING)
749 bnx_stop(ifp, 1);
750 splx(s);
751
752 pmf_device_deregister(dev);
753 ether_ifdetach(ifp);
754 if_detach(ifp);
755 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
756
757 /* Release all remaining resources. */
758 bnx_release_resources(sc);
759
760 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
761
762 return(0);
763 }
764
765 /****************************************************************************/
766 /* Indirect register read. */
767 /* */
768 /* Reads NetXtreme II registers using an index/data register pair in PCI */
769 /* configuration space. Using this mechanism avoids issues with posted */
770 /* reads but is much slower than memory-mapped I/O. */
771 /* */
772 /* Returns: */
773 /* The value of the register. */
774 /****************************************************************************/
775 u_int32_t
776 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
777 {
778 struct pci_attach_args *pa = &(sc->bnx_pa);
779
780 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
781 offset);
782 #ifdef BNX_DEBUG
783 {
784 u_int32_t val;
785 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
786 BNX_PCICFG_REG_WINDOW);
787 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
788 "val = 0x%08X\n", __func__, offset, val);
789 return (val);
790 }
791 #else
792 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
793 #endif
794 }
795
796 /****************************************************************************/
797 /* Indirect register write. */
798 /* */
799 /* Writes NetXtreme II registers using an index/data register pair in PCI */
800 /* configuration space. Using this mechanism avoids issues with posted */
801 /* writes but is muchh slower than memory-mapped I/O. */
802 /* */
803 /* Returns: */
804 /* Nothing. */
805 /****************************************************************************/
806 void
807 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
808 {
809 struct pci_attach_args *pa = &(sc->bnx_pa);
810
811 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
812 __func__, offset, val);
813
814 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
815 offset);
816 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
817 }
818
819 /****************************************************************************/
820 /* Context memory write. */
821 /* */
822 /* The NetXtreme II controller uses context memory to track connection */
823 /* information for L2 and higher network protocols. */
824 /* */
825 /* Returns: */
826 /* Nothing. */
827 /****************************************************************************/
828 void
829 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
830 u_int32_t val)
831 {
832
833 DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
834 "val = 0x%08X\n", __func__, cid_addr, offset, val);
835
836 offset += cid_addr;
837 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
838 REG_WR(sc, BNX_CTX_DATA, val);
839 }
840
841 /****************************************************************************/
842 /* PHY register read. */
843 /* */
844 /* Implements register reads on the MII bus. */
845 /* */
846 /* Returns: */
847 /* The value of the register. */
848 /****************************************************************************/
849 int
850 bnx_miibus_read_reg(device_t dev, int phy, int reg)
851 {
852 struct bnx_softc *sc = device_private(dev);
853 u_int32_t val;
854 int i;
855
856 /* Make sure we are accessing the correct PHY address. */
857 if (phy != sc->bnx_phy_addr) {
858 DBPRINT(sc, BNX_VERBOSE,
859 "Invalid PHY address %d for PHY read!\n", phy);
860 return(0);
861 }
862
863 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
864 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
865 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
866
867 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
868 REG_RD(sc, BNX_EMAC_MDIO_MODE);
869
870 DELAY(40);
871 }
872
873 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
874 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
875 BNX_EMAC_MDIO_COMM_START_BUSY;
876 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
877
878 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
879 DELAY(10);
880
881 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
882 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
883 DELAY(5);
884
885 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
886 val &= BNX_EMAC_MDIO_COMM_DATA;
887
888 break;
889 }
890 }
891
892 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
893 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
894 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
895 val = 0x0;
896 } else
897 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
898
899 DBPRINT(sc, BNX_EXCESSIVE,
900 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
901 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
902
903 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
904 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
905 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
906
907 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
908 REG_RD(sc, BNX_EMAC_MDIO_MODE);
909
910 DELAY(40);
911 }
912
913 return (val & 0xffff);
914 }
915
916 /****************************************************************************/
917 /* PHY register write. */
918 /* */
919 /* Implements register writes on the MII bus. */
920 /* */
921 /* Returns: */
922 /* The value of the register. */
923 /****************************************************************************/
924 void
925 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
926 {
927 struct bnx_softc *sc = device_private(dev);
928 u_int32_t val1;
929 int i;
930
931 /* Make sure we are accessing the correct PHY address. */
932 if (phy != sc->bnx_phy_addr) {
933 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
934 phy);
935 return;
936 }
937
938 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
939 "val = 0x%04X\n", __func__,
940 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
941
942 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
943 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
944 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
945
946 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
947 REG_RD(sc, BNX_EMAC_MDIO_MODE);
948
949 DELAY(40);
950 }
951
952 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
953 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
954 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
955 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
956
957 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
958 DELAY(10);
959
960 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
961 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
962 DELAY(5);
963 break;
964 }
965 }
966
967 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
968 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
969 __LINE__);
970 }
971
972 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
973 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
974 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
975
976 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
977 REG_RD(sc, BNX_EMAC_MDIO_MODE);
978
979 DELAY(40);
980 }
981 }
982
983 /****************************************************************************/
984 /* MII bus status change. */
985 /* */
986 /* Called by the MII bus driver when the PHY establishes link to set the */
987 /* MAC interface registers. */
988 /* */
989 /* Returns: */
990 /* Nothing. */
991 /****************************************************************************/
992 void
993 bnx_miibus_statchg(device_t dev)
994 {
995 struct bnx_softc *sc = device_private(dev);
996 struct mii_data *mii = &sc->bnx_mii;
997
998 BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT);
999
1000 /* Set MII or GMII inerface based on the speed negotiated by the PHY. */
1001 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
1002 DBPRINT(sc, BNX_INFO, "Setting GMII interface.\n");
1003 BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_GMII);
1004 } else {
1005 DBPRINT(sc, BNX_INFO, "Setting MII interface.\n");
1006 BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_MII);
1007 }
1008
1009 /* Set half or full duplex based on the duplicity
1010 * negotiated by the PHY.
1011 */
1012 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1013 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1014 BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
1015 } else {
1016 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1017 BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
1018 }
1019 }
1020
1021 /****************************************************************************/
1022 /* Acquire NVRAM lock. */
1023 /* */
1024 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1025 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1026 /* for use by the driver. */
1027 /* */
1028 /* Returns: */
1029 /* 0 on success, positive value on failure. */
1030 /****************************************************************************/
1031 int
1032 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1033 {
1034 u_int32_t val;
1035 int j;
1036
1037 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1038
1039 /* Request access to the flash interface. */
1040 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1041 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1042 val = REG_RD(sc, BNX_NVM_SW_ARB);
1043 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1044 break;
1045
1046 DELAY(5);
1047 }
1048
1049 if (j >= NVRAM_TIMEOUT_COUNT) {
1050 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1051 return (EBUSY);
1052 }
1053
1054 return (0);
1055 }
1056
1057 /****************************************************************************/
1058 /* Release NVRAM lock. */
1059 /* */
1060 /* When the caller is finished accessing NVRAM the lock must be released. */
1061 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1062 /* for use by the driver. */
1063 /* */
1064 /* Returns: */
1065 /* 0 on success, positive value on failure. */
1066 /****************************************************************************/
1067 int
1068 bnx_release_nvram_lock(struct bnx_softc *sc)
1069 {
1070 int j;
1071 u_int32_t val;
1072
1073 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1074
1075 /* Relinquish nvram interface. */
1076 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1077
1078 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1079 val = REG_RD(sc, BNX_NVM_SW_ARB);
1080 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1081 break;
1082
1083 DELAY(5);
1084 }
1085
1086 if (j >= NVRAM_TIMEOUT_COUNT) {
1087 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1088 return (EBUSY);
1089 }
1090
1091 return (0);
1092 }
1093
1094 #ifdef BNX_NVRAM_WRITE_SUPPORT
1095 /****************************************************************************/
1096 /* Enable NVRAM write access. */
1097 /* */
1098 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1099 /* */
1100 /* Returns: */
1101 /* 0 on success, positive value on failure. */
1102 /****************************************************************************/
1103 int
1104 bnx_enable_nvram_write(struct bnx_softc *sc)
1105 {
1106 u_int32_t val;
1107
1108 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1109
1110 val = REG_RD(sc, BNX_MISC_CFG);
1111 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1112
1113 if (!sc->bnx_flash_info->buffered) {
1114 int j;
1115
1116 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1117 REG_WR(sc, BNX_NVM_COMMAND,
1118 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1119
1120 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1121 DELAY(5);
1122
1123 val = REG_RD(sc, BNX_NVM_COMMAND);
1124 if (val & BNX_NVM_COMMAND_DONE)
1125 break;
1126 }
1127
1128 if (j >= NVRAM_TIMEOUT_COUNT) {
1129 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1130 return (EBUSY);
1131 }
1132 }
1133
1134 return (0);
1135 }
1136
1137 /****************************************************************************/
1138 /* Disable NVRAM write access. */
1139 /* */
1140 /* When the caller is finished writing to NVRAM write access must be */
1141 /* disabled. */
1142 /* */
1143 /* Returns: */
1144 /* Nothing. */
1145 /****************************************************************************/
1146 void
1147 bnx_disable_nvram_write(struct bnx_softc *sc)
1148 {
1149 u_int32_t val;
1150
1151 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1152
1153 val = REG_RD(sc, BNX_MISC_CFG);
1154 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1155 }
1156 #endif
1157
1158 /****************************************************************************/
1159 /* Enable NVRAM access. */
1160 /* */
1161 /* Before accessing NVRAM for read or write operations the caller must */
1162 /* enabled NVRAM access. */
1163 /* */
1164 /* Returns: */
1165 /* Nothing. */
1166 /****************************************************************************/
1167 void
1168 bnx_enable_nvram_access(struct bnx_softc *sc)
1169 {
1170 u_int32_t val;
1171
1172 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1173
1174 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1175 /* Enable both bits, even on read. */
1176 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1177 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1178 }
1179
1180 /****************************************************************************/
1181 /* Disable NVRAM access. */
1182 /* */
1183 /* When the caller is finished accessing NVRAM access must be disabled. */
1184 /* */
1185 /* Returns: */
1186 /* Nothing. */
1187 /****************************************************************************/
1188 void
1189 bnx_disable_nvram_access(struct bnx_softc *sc)
1190 {
1191 u_int32_t val;
1192
1193 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1194
1195 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1196
1197 /* Disable both bits, even after read. */
1198 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1199 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1200 }
1201
1202 #ifdef BNX_NVRAM_WRITE_SUPPORT
1203 /****************************************************************************/
1204 /* Erase NVRAM page before writing. */
1205 /* */
1206 /* Non-buffered flash parts require that a page be erased before it is */
1207 /* written. */
1208 /* */
1209 /* Returns: */
1210 /* 0 on success, positive value on failure. */
1211 /****************************************************************************/
1212 int
1213 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1214 {
1215 u_int32_t cmd;
1216 int j;
1217
1218 /* Buffered flash doesn't require an erase. */
1219 if (sc->bnx_flash_info->buffered)
1220 return (0);
1221
1222 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1223
1224 /* Build an erase command. */
1225 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1226 BNX_NVM_COMMAND_DOIT;
1227
1228 /*
1229 * Clear the DONE bit separately, set the NVRAM adress to erase,
1230 * and issue the erase command.
1231 */
1232 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1233 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1234 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1235
1236 /* Wait for completion. */
1237 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1238 u_int32_t val;
1239
1240 DELAY(5);
1241
1242 val = REG_RD(sc, BNX_NVM_COMMAND);
1243 if (val & BNX_NVM_COMMAND_DONE)
1244 break;
1245 }
1246
1247 if (j >= NVRAM_TIMEOUT_COUNT) {
1248 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1249 return (EBUSY);
1250 }
1251
1252 return (0);
1253 }
1254 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1255
1256 /****************************************************************************/
1257 /* Read a dword (32 bits) from NVRAM. */
1258 /* */
1259 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1260 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1261 /* */
1262 /* Returns: */
1263 /* 0 on success and the 32 bit value read, positive value on failure. */
1264 /****************************************************************************/
1265 int
1266 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1267 u_int8_t *ret_val, u_int32_t cmd_flags)
1268 {
1269 u_int32_t cmd;
1270 int i, rc = 0;
1271
1272 /* Build the command word. */
1273 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1274
1275 /* Calculate the offset for buffered flash. */
1276 if (sc->bnx_flash_info->buffered)
1277 offset = ((offset / sc->bnx_flash_info->page_size) <<
1278 sc->bnx_flash_info->page_bits) +
1279 (offset % sc->bnx_flash_info->page_size);
1280
1281 /*
1282 * Clear the DONE bit separately, set the address to read,
1283 * and issue the read.
1284 */
1285 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1286 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1287 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1288
1289 /* Wait for completion. */
1290 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1291 u_int32_t val;
1292
1293 DELAY(5);
1294
1295 val = REG_RD(sc, BNX_NVM_COMMAND);
1296 if (val & BNX_NVM_COMMAND_DONE) {
1297 val = REG_RD(sc, BNX_NVM_READ);
1298
1299 val = bnx_be32toh(val);
1300 memcpy(ret_val, &val, 4);
1301 break;
1302 }
1303 }
1304
1305 /* Check for errors. */
1306 if (i >= NVRAM_TIMEOUT_COUNT) {
1307 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1308 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1309 rc = EBUSY;
1310 }
1311
1312 return(rc);
1313 }
1314
1315 #ifdef BNX_NVRAM_WRITE_SUPPORT
1316 /****************************************************************************/
1317 /* Write a dword (32 bits) to NVRAM. */
1318 /* */
1319 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1320 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1321 /* enabled NVRAM write access. */
1322 /* */
1323 /* Returns: */
1324 /* 0 on success, positive value on failure. */
1325 /****************************************************************************/
1326 int
1327 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1328 u_int32_t cmd_flags)
1329 {
1330 u_int32_t cmd, val32;
1331 int j;
1332
1333 /* Build the command word. */
1334 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1335
1336 /* Calculate the offset for buffered flash. */
1337 if (sc->bnx_flash_info->buffered)
1338 offset = ((offset / sc->bnx_flash_info->page_size) <<
1339 sc->bnx_flash_info->page_bits) +
1340 (offset % sc->bnx_flash_info->page_size);
1341
1342 /*
1343 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1344 * set the NVRAM address to write, and issue the write command
1345 */
1346 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1347 memcpy(&val32, val, 4);
1348 val32 = htobe32(val32);
1349 REG_WR(sc, BNX_NVM_WRITE, val32);
1350 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1351 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1352
1353 /* Wait for completion. */
1354 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1355 DELAY(5);
1356
1357 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1358 break;
1359 }
1360 if (j >= NVRAM_TIMEOUT_COUNT) {
1361 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1362 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1363 return (EBUSY);
1364 }
1365
1366 return (0);
1367 }
1368 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1369
1370 /****************************************************************************/
1371 /* Initialize NVRAM access. */
1372 /* */
1373 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1374 /* access that device. */
1375 /* */
1376 /* Returns: */
1377 /* 0 on success, positive value on failure. */
1378 /****************************************************************************/
1379 int
1380 bnx_init_nvram(struct bnx_softc *sc)
1381 {
1382 u_int32_t val;
1383 int j, entry_count, rc;
1384 struct flash_spec *flash;
1385
1386 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1387
1388 /* Determine the selected interface. */
1389 val = REG_RD(sc, BNX_NVM_CFG1);
1390
1391 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1392
1393 rc = 0;
1394
1395 /*
1396 * Flash reconfiguration is required to support additional
1397 * NVRAM devices not directly supported in hardware.
1398 * Check if the flash interface was reconfigured
1399 * by the bootcode.
1400 */
1401
1402 if (val & 0x40000000) {
1403 /* Flash interface reconfigured by bootcode. */
1404
1405 DBPRINT(sc,BNX_INFO_LOAD,
1406 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1407
1408 for (j = 0, flash = &flash_table[0]; j < entry_count;
1409 j++, flash++) {
1410 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1411 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1412 sc->bnx_flash_info = flash;
1413 break;
1414 }
1415 }
1416 } else {
1417 /* Flash interface not yet reconfigured. */
1418 u_int32_t mask;
1419
1420 DBPRINT(sc,BNX_INFO_LOAD,
1421 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1422
1423 if (val & (1 << 23))
1424 mask = FLASH_BACKUP_STRAP_MASK;
1425 else
1426 mask = FLASH_STRAP_MASK;
1427
1428 /* Look for the matching NVRAM device configuration data. */
1429 for (j = 0, flash = &flash_table[0]; j < entry_count;
1430 j++, flash++) {
1431 /* Check if the dev matches any of the known devices. */
1432 if ((val & mask) == (flash->strapping & mask)) {
1433 /* Found a device match. */
1434 sc->bnx_flash_info = flash;
1435
1436 /* Request access to the flash interface. */
1437 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1438 return (rc);
1439
1440 /* Reconfigure the flash interface. */
1441 bnx_enable_nvram_access(sc);
1442 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1443 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1444 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1445 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1446 bnx_disable_nvram_access(sc);
1447 bnx_release_nvram_lock(sc);
1448
1449 break;
1450 }
1451 }
1452 }
1453
1454 /* Check if a matching device was found. */
1455 if (j == entry_count) {
1456 sc->bnx_flash_info = NULL;
1457 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1458 __FILE__, __LINE__);
1459 rc = ENODEV;
1460 }
1461
1462 /* Write the flash config data to the shared memory interface. */
1463 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1464 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1465 if (val)
1466 sc->bnx_flash_size = val;
1467 else
1468 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1469
1470 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1471 "0x%08X\n", sc->bnx_flash_info->total_size);
1472
1473 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1474
1475 return (rc);
1476 }
1477
1478 /****************************************************************************/
1479 /* Read an arbitrary range of data from NVRAM. */
1480 /* */
1481 /* Prepares the NVRAM interface for access and reads the requested data */
1482 /* into the supplied buffer. */
1483 /* */
1484 /* Returns: */
1485 /* 0 on success and the data read, positive value on failure. */
1486 /****************************************************************************/
1487 int
1488 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1489 int buf_size)
1490 {
1491 int rc = 0;
1492 u_int32_t cmd_flags, offset32, len32, extra;
1493
1494 if (buf_size == 0)
1495 return (0);
1496
1497 /* Request access to the flash interface. */
1498 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1499 return (rc);
1500
1501 /* Enable access to flash interface */
1502 bnx_enable_nvram_access(sc);
1503
1504 len32 = buf_size;
1505 offset32 = offset;
1506 extra = 0;
1507
1508 cmd_flags = 0;
1509
1510 if (offset32 & 3) {
1511 u_int8_t buf[4];
1512 u_int32_t pre_len;
1513
1514 offset32 &= ~3;
1515 pre_len = 4 - (offset & 3);
1516
1517 if (pre_len >= len32) {
1518 pre_len = len32;
1519 cmd_flags =
1520 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1521 } else
1522 cmd_flags = BNX_NVM_COMMAND_FIRST;
1523
1524 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1525
1526 if (rc)
1527 return (rc);
1528
1529 memcpy(ret_buf, buf + (offset & 3), pre_len);
1530
1531 offset32 += 4;
1532 ret_buf += pre_len;
1533 len32 -= pre_len;
1534 }
1535
1536 if (len32 & 3) {
1537 extra = 4 - (len32 & 3);
1538 len32 = (len32 + 4) & ~3;
1539 }
1540
1541 if (len32 == 4) {
1542 u_int8_t buf[4];
1543
1544 if (cmd_flags)
1545 cmd_flags = BNX_NVM_COMMAND_LAST;
1546 else
1547 cmd_flags =
1548 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1549
1550 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1551
1552 memcpy(ret_buf, buf, 4 - extra);
1553 } else if (len32 > 0) {
1554 u_int8_t buf[4];
1555
1556 /* Read the first word. */
1557 if (cmd_flags)
1558 cmd_flags = 0;
1559 else
1560 cmd_flags = BNX_NVM_COMMAND_FIRST;
1561
1562 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1563
1564 /* Advance to the next dword. */
1565 offset32 += 4;
1566 ret_buf += 4;
1567 len32 -= 4;
1568
1569 while (len32 > 4 && rc == 0) {
1570 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1571
1572 /* Advance to the next dword. */
1573 offset32 += 4;
1574 ret_buf += 4;
1575 len32 -= 4;
1576 }
1577
1578 if (rc)
1579 return (rc);
1580
1581 cmd_flags = BNX_NVM_COMMAND_LAST;
1582 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1583
1584 memcpy(ret_buf, buf, 4 - extra);
1585 }
1586
1587 /* Disable access to flash interface and release the lock. */
1588 bnx_disable_nvram_access(sc);
1589 bnx_release_nvram_lock(sc);
1590
1591 return (rc);
1592 }
1593
1594 #ifdef BNX_NVRAM_WRITE_SUPPORT
1595 /****************************************************************************/
1596 /* Write an arbitrary range of data from NVRAM. */
1597 /* */
1598 /* Prepares the NVRAM interface for write access and writes the requested */
1599 /* data from the supplied buffer. The caller is responsible for */
1600 /* calculating any appropriate CRCs. */
1601 /* */
1602 /* Returns: */
1603 /* 0 on success, positive value on failure. */
1604 /****************************************************************************/
1605 int
1606 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1607 int buf_size)
1608 {
1609 u_int32_t written, offset32, len32;
1610 u_int8_t *buf, start[4], end[4];
1611 int rc = 0;
1612 int align_start, align_end;
1613
1614 buf = data_buf;
1615 offset32 = offset;
1616 len32 = buf_size;
1617 align_start = align_end = 0;
1618
1619 if ((align_start = (offset32 & 3))) {
1620 offset32 &= ~3;
1621 len32 += align_start;
1622 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1623 return (rc);
1624 }
1625
1626 if (len32 & 3) {
1627 if ((len32 > 4) || !align_start) {
1628 align_end = 4 - (len32 & 3);
1629 len32 += align_end;
1630 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1631 end, 4))) {
1632 return (rc);
1633 }
1634 }
1635 }
1636
1637 if (align_start || align_end) {
1638 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1639 if (buf == 0)
1640 return (ENOMEM);
1641
1642 if (align_start)
1643 memcpy(buf, start, 4);
1644
1645 if (align_end)
1646 memcpy(buf + len32 - 4, end, 4);
1647
1648 memcpy(buf + align_start, data_buf, buf_size);
1649 }
1650
1651 written = 0;
1652 while ((written < len32) && (rc == 0)) {
1653 u_int32_t page_start, page_end, data_start, data_end;
1654 u_int32_t addr, cmd_flags;
1655 int i;
1656 u_int8_t flash_buffer[264];
1657
1658 /* Find the page_start addr */
1659 page_start = offset32 + written;
1660 page_start -= (page_start % sc->bnx_flash_info->page_size);
1661 /* Find the page_end addr */
1662 page_end = page_start + sc->bnx_flash_info->page_size;
1663 /* Find the data_start addr */
1664 data_start = (written == 0) ? offset32 : page_start;
1665 /* Find the data_end addr */
1666 data_end = (page_end > offset32 + len32) ?
1667 (offset32 + len32) : page_end;
1668
1669 /* Request access to the flash interface. */
1670 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1671 goto nvram_write_end;
1672
1673 /* Enable access to flash interface */
1674 bnx_enable_nvram_access(sc);
1675
1676 cmd_flags = BNX_NVM_COMMAND_FIRST;
1677 if (sc->bnx_flash_info->buffered == 0) {
1678 int j;
1679
1680 /* Read the whole page into the buffer
1681 * (non-buffer flash only) */
1682 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1683 if (j == (sc->bnx_flash_info->page_size - 4))
1684 cmd_flags |= BNX_NVM_COMMAND_LAST;
1685
1686 rc = bnx_nvram_read_dword(sc,
1687 page_start + j,
1688 &flash_buffer[j],
1689 cmd_flags);
1690
1691 if (rc)
1692 goto nvram_write_end;
1693
1694 cmd_flags = 0;
1695 }
1696 }
1697
1698 /* Enable writes to flash interface (unlock write-protect) */
1699 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1700 goto nvram_write_end;
1701
1702 /* Erase the page */
1703 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1704 goto nvram_write_end;
1705
1706 /* Re-enable the write again for the actual write */
1707 bnx_enable_nvram_write(sc);
1708
1709 /* Loop to write back the buffer data from page_start to
1710 * data_start */
1711 i = 0;
1712 if (sc->bnx_flash_info->buffered == 0) {
1713 for (addr = page_start; addr < data_start;
1714 addr += 4, i += 4) {
1715
1716 rc = bnx_nvram_write_dword(sc, addr,
1717 &flash_buffer[i], cmd_flags);
1718
1719 if (rc != 0)
1720 goto nvram_write_end;
1721
1722 cmd_flags = 0;
1723 }
1724 }
1725
1726 /* Loop to write the new data from data_start to data_end */
1727 for (addr = data_start; addr < data_end; addr += 4, i++) {
1728 if ((addr == page_end - 4) ||
1729 ((sc->bnx_flash_info->buffered) &&
1730 (addr == data_end - 4))) {
1731
1732 cmd_flags |= BNX_NVM_COMMAND_LAST;
1733 }
1734
1735 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1736
1737 if (rc != 0)
1738 goto nvram_write_end;
1739
1740 cmd_flags = 0;
1741 buf += 4;
1742 }
1743
1744 /* Loop to write back the buffer data from data_end
1745 * to page_end */
1746 if (sc->bnx_flash_info->buffered == 0) {
1747 for (addr = data_end; addr < page_end;
1748 addr += 4, i += 4) {
1749
1750 if (addr == page_end-4)
1751 cmd_flags = BNX_NVM_COMMAND_LAST;
1752
1753 rc = bnx_nvram_write_dword(sc, addr,
1754 &flash_buffer[i], cmd_flags);
1755
1756 if (rc != 0)
1757 goto nvram_write_end;
1758
1759 cmd_flags = 0;
1760 }
1761 }
1762
1763 /* Disable writes to flash interface (lock write-protect) */
1764 bnx_disable_nvram_write(sc);
1765
1766 /* Disable access to flash interface */
1767 bnx_disable_nvram_access(sc);
1768 bnx_release_nvram_lock(sc);
1769
1770 /* Increment written */
1771 written += data_end - data_start;
1772 }
1773
1774 nvram_write_end:
1775 if (align_start || align_end)
1776 free(buf, M_DEVBUF);
1777
1778 return (rc);
1779 }
1780 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1781
1782 /****************************************************************************/
1783 /* Verifies that NVRAM is accessible and contains valid data. */
1784 /* */
1785 /* Reads the configuration data from NVRAM and verifies that the CRC is */
1786 /* correct. */
1787 /* */
1788 /* Returns: */
1789 /* 0 on success, positive value on failure. */
1790 /****************************************************************************/
1791 int
1792 bnx_nvram_test(struct bnx_softc *sc)
1793 {
1794 u_int32_t buf[BNX_NVRAM_SIZE / 4];
1795 u_int8_t *data = (u_int8_t *) buf;
1796 int rc = 0;
1797 u_int32_t magic, csum;
1798
1799 /*
1800 * Check that the device NVRAM is valid by reading
1801 * the magic value at offset 0.
1802 */
1803 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1804 goto bnx_nvram_test_done;
1805
1806 magic = bnx_be32toh(buf[0]);
1807 if (magic != BNX_NVRAM_MAGIC) {
1808 rc = ENODEV;
1809 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1810 "Expected: 0x%08X, Found: 0x%08X\n",
1811 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1812 goto bnx_nvram_test_done;
1813 }
1814
1815 /*
1816 * Verify that the device NVRAM includes valid
1817 * configuration data.
1818 */
1819 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1820 goto bnx_nvram_test_done;
1821
1822 csum = ether_crc32_le(data, 0x100);
1823 if (csum != BNX_CRC32_RESIDUAL) {
1824 rc = ENODEV;
1825 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1826 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1827 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1828 goto bnx_nvram_test_done;
1829 }
1830
1831 csum = ether_crc32_le(data + 0x100, 0x100);
1832 if (csum != BNX_CRC32_RESIDUAL) {
1833 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1834 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1835 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1836 rc = ENODEV;
1837 }
1838
1839 bnx_nvram_test_done:
1840 return (rc);
1841 }
1842
1843 /****************************************************************************/
1844 /* Free any DMA memory owned by the driver. */
1845 /* */
1846 /* Scans through each data structre that requires DMA memory and frees */
1847 /* the memory if allocated. */
1848 /* */
1849 /* Returns: */
1850 /* Nothing. */
1851 /****************************************************************************/
1852 void
1853 bnx_dma_free(struct bnx_softc *sc)
1854 {
1855 int i;
1856
1857 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1858
1859 /* Destroy the status block. */
1860 if (sc->status_block != NULL && sc->status_map != NULL) {
1861 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
1862 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
1863 BNX_STATUS_BLK_SZ);
1864 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
1865 sc->status_rseg);
1866 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
1867 sc->status_block = NULL;
1868 sc->status_map = NULL;
1869 }
1870
1871 /* Destroy the statistics block. */
1872 if (sc->stats_block != NULL && sc->stats_map != NULL) {
1873 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
1874 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
1875 BNX_STATS_BLK_SZ);
1876 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
1877 sc->stats_rseg);
1878 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
1879 sc->stats_block = NULL;
1880 sc->stats_map = NULL;
1881 }
1882
1883 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
1884 for (i = 0; i < TX_PAGES; i++ ) {
1885 if (sc->tx_bd_chain[i] != NULL &&
1886 sc->tx_bd_chain_map[i] != NULL) {
1887 bus_dmamap_unload(sc->bnx_dmatag,
1888 sc->tx_bd_chain_map[i]);
1889 bus_dmamem_unmap(sc->bnx_dmatag,
1890 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
1891 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
1892 sc->tx_bd_chain_rseg[i]);
1893 bus_dmamap_destroy(sc->bnx_dmatag,
1894 sc->tx_bd_chain_map[i]);
1895 sc->tx_bd_chain[i] = NULL;
1896 sc->tx_bd_chain_map[i] = NULL;
1897 }
1898 }
1899
1900 /* Unload and destroy the TX mbuf maps. */
1901 for (i = 0; i < TOTAL_TX_BD; i++) {
1902 if (sc->tx_mbuf_map[i] != NULL) {
1903 bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1904 bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1905 }
1906 }
1907
1908 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
1909 for (i = 0; i < RX_PAGES; i++ ) {
1910 if (sc->rx_bd_chain[i] != NULL &&
1911 sc->rx_bd_chain_map[i] != NULL) {
1912 bus_dmamap_unload(sc->bnx_dmatag,
1913 sc->rx_bd_chain_map[i]);
1914 bus_dmamem_unmap(sc->bnx_dmatag,
1915 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
1916 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
1917 sc->rx_bd_chain_rseg[i]);
1918
1919 bus_dmamap_destroy(sc->bnx_dmatag,
1920 sc->rx_bd_chain_map[i]);
1921 sc->rx_bd_chain[i] = NULL;
1922 sc->rx_bd_chain_map[i] = NULL;
1923 }
1924 }
1925
1926 /* Unload and destroy the RX mbuf maps. */
1927 for (i = 0; i < TOTAL_RX_BD; i++) {
1928 if (sc->rx_mbuf_map[i] != NULL) {
1929 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1930 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1931 }
1932 }
1933
1934 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1935 }
1936
1937 /****************************************************************************/
1938 /* Allocate any DMA memory needed by the driver. */
1939 /* */
1940 /* Allocates DMA memory needed for the various global structures needed by */
1941 /* hardware. */
1942 /* */
1943 /* Returns: */
1944 /* 0 for success, positive value for failure. */
1945 /****************************************************************************/
1946 int
1947 bnx_dma_alloc(struct bnx_softc *sc)
1948 {
1949 int i, rc = 0;
1950
1951 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1952
1953 /*
1954 * Allocate DMA memory for the status block, map the memory into DMA
1955 * space, and fetch the physical address of the block.
1956 */
1957 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
1958 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
1959 aprint_error_dev(sc->bnx_dev,
1960 "Could not create status block DMA map!\n");
1961 rc = ENOMEM;
1962 goto bnx_dma_alloc_exit;
1963 }
1964
1965 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
1966 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
1967 &sc->status_rseg, BUS_DMA_NOWAIT)) {
1968 aprint_error_dev(sc->bnx_dev,
1969 "Could not allocate status block DMA memory!\n");
1970 rc = ENOMEM;
1971 goto bnx_dma_alloc_exit;
1972 }
1973
1974 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
1975 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
1976 aprint_error_dev(sc->bnx_dev,
1977 "Could not map status block DMA memory!\n");
1978 rc = ENOMEM;
1979 goto bnx_dma_alloc_exit;
1980 }
1981
1982 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
1983 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
1984 aprint_error_dev(sc->bnx_dev,
1985 "Could not load status block DMA memory!\n");
1986 rc = ENOMEM;
1987 goto bnx_dma_alloc_exit;
1988 }
1989
1990 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
1991 bzero(sc->status_block, BNX_STATUS_BLK_SZ);
1992
1993 /* DRC - Fix for 64 bit addresses. */
1994 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
1995 (u_int32_t) sc->status_block_paddr);
1996
1997 /*
1998 * Allocate DMA memory for the statistics block, map the memory into
1999 * DMA space, and fetch the physical address of the block.
2000 */
2001 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2002 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2003 aprint_error_dev(sc->bnx_dev,
2004 "Could not create stats block DMA map!\n");
2005 rc = ENOMEM;
2006 goto bnx_dma_alloc_exit;
2007 }
2008
2009 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2010 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2011 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2012 aprint_error_dev(sc->bnx_dev,
2013 "Could not allocate stats block DMA memory!\n");
2014 rc = ENOMEM;
2015 goto bnx_dma_alloc_exit;
2016 }
2017
2018 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2019 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2020 aprint_error_dev(sc->bnx_dev,
2021 "Could not map stats block DMA memory!\n");
2022 rc = ENOMEM;
2023 goto bnx_dma_alloc_exit;
2024 }
2025
2026 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2027 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2028 aprint_error_dev(sc->bnx_dev,
2029 "Could not load status block DMA memory!\n");
2030 rc = ENOMEM;
2031 goto bnx_dma_alloc_exit;
2032 }
2033
2034 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2035 bzero(sc->stats_block, BNX_STATS_BLK_SZ);
2036
2037 /* DRC - Fix for 64 bit address. */
2038 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2039 (u_int32_t) sc->stats_block_paddr);
2040
2041 /*
2042 * Allocate DMA memory for the TX buffer descriptor chain,
2043 * and fetch the physical address of the block.
2044 */
2045 for (i = 0; i < TX_PAGES; i++) {
2046 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2047 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2048 &sc->tx_bd_chain_map[i])) {
2049 aprint_error_dev(sc->bnx_dev,
2050 "Could not create Tx desc %d DMA map!\n", i);
2051 rc = ENOMEM;
2052 goto bnx_dma_alloc_exit;
2053 }
2054
2055 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2056 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2057 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2058 aprint_error_dev(sc->bnx_dev,
2059 "Could not allocate TX desc %d DMA memory!\n",
2060 i);
2061 rc = ENOMEM;
2062 goto bnx_dma_alloc_exit;
2063 }
2064
2065 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2066 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2067 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2068 aprint_error_dev(sc->bnx_dev,
2069 "Could not map TX desc %d DMA memory!\n", i);
2070 rc = ENOMEM;
2071 goto bnx_dma_alloc_exit;
2072 }
2073
2074 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2075 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2076 BUS_DMA_NOWAIT)) {
2077 aprint_error_dev(sc->bnx_dev,
2078 "Could not load TX desc %d DMA memory!\n", i);
2079 rc = ENOMEM;
2080 goto bnx_dma_alloc_exit;
2081 }
2082
2083 sc->tx_bd_chain_paddr[i] =
2084 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2085
2086 /* DRC - Fix for 64 bit systems. */
2087 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2088 i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2089 }
2090
2091 /*
2092 * Create DMA maps for the TX buffer mbufs.
2093 */
2094 for (i = 0; i < TOTAL_TX_BD; i++) {
2095 if (bus_dmamap_create(sc->bnx_dmatag,
2096 MCLBYTES * BNX_MAX_SEGMENTS,
2097 USABLE_TX_BD - BNX_TX_SLACK_SPACE,
2098 MCLBYTES, 0, BUS_DMA_NOWAIT,
2099 &sc->tx_mbuf_map[i])) {
2100 aprint_error_dev(sc->bnx_dev,
2101 "Could not create Tx mbuf %d DMA map!\n", i);
2102 rc = ENOMEM;
2103 goto bnx_dma_alloc_exit;
2104 }
2105 }
2106
2107 /*
2108 * Allocate DMA memory for the Rx buffer descriptor chain,
2109 * and fetch the physical address of the block.
2110 */
2111 for (i = 0; i < RX_PAGES; i++) {
2112 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2113 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2114 &sc->rx_bd_chain_map[i])) {
2115 aprint_error_dev(sc->bnx_dev,
2116 "Could not create Rx desc %d DMA map!\n", i);
2117 rc = ENOMEM;
2118 goto bnx_dma_alloc_exit;
2119 }
2120
2121 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2122 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2123 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2124 aprint_error_dev(sc->bnx_dev,
2125 "Could not allocate Rx desc %d DMA memory!\n", i);
2126 rc = ENOMEM;
2127 goto bnx_dma_alloc_exit;
2128 }
2129
2130 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2131 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2132 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2133 aprint_error_dev(sc->bnx_dev,
2134 "Could not map Rx desc %d DMA memory!\n", i);
2135 rc = ENOMEM;
2136 goto bnx_dma_alloc_exit;
2137 }
2138
2139 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2140 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2141 BUS_DMA_NOWAIT)) {
2142 aprint_error_dev(sc->bnx_dev,
2143 "Could not load Rx desc %d DMA memory!\n", i);
2144 rc = ENOMEM;
2145 goto bnx_dma_alloc_exit;
2146 }
2147
2148 bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2149 sc->rx_bd_chain_paddr[i] =
2150 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2151
2152 /* DRC - Fix for 64 bit systems. */
2153 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2154 i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2155 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2156 0, BNX_RX_CHAIN_PAGE_SZ,
2157 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2158 }
2159
2160 /*
2161 * Create DMA maps for the Rx buffer mbufs.
2162 */
2163 for (i = 0; i < TOTAL_RX_BD; i++) {
2164 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
2165 BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
2166 &sc->rx_mbuf_map[i])) {
2167 aprint_error_dev(sc->bnx_dev,
2168 "Could not create Rx mbuf %d DMA map!\n", i);
2169 rc = ENOMEM;
2170 goto bnx_dma_alloc_exit;
2171 }
2172 }
2173
2174 bnx_dma_alloc_exit:
2175 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2176
2177 return(rc);
2178 }
2179
2180 /****************************************************************************/
2181 /* Release all resources used by the driver. */
2182 /* */
2183 /* Releases all resources acquired by the driver including interrupts, */
2184 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2185 /* */
2186 /* Returns: */
2187 /* Nothing. */
2188 /****************************************************************************/
2189 void
2190 bnx_release_resources(struct bnx_softc *sc)
2191 {
2192 int i;
2193 struct pci_attach_args *pa = &(sc->bnx_pa);
2194
2195 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2196
2197 bnx_dma_free(sc);
2198
2199 if (sc->bnx_intrhand != NULL)
2200 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2201
2202 if (sc->bnx_size)
2203 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2204
2205 for (i = 0; i < TOTAL_RX_BD; i++)
2206 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2207
2208 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2209 }
2210
2211 /****************************************************************************/
2212 /* Firmware synchronization. */
2213 /* */
2214 /* Before performing certain events such as a chip reset, synchronize with */
2215 /* the firmware first. */
2216 /* */
2217 /* Returns: */
2218 /* 0 for success, positive value for failure. */
2219 /****************************************************************************/
2220 int
2221 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2222 {
2223 int i, rc = 0;
2224 u_int32_t val;
2225
2226 /* Don't waste any time if we've timed out before. */
2227 if (sc->bnx_fw_timed_out) {
2228 rc = EBUSY;
2229 goto bnx_fw_sync_exit;
2230 }
2231
2232 /* Increment the message sequence number. */
2233 sc->bnx_fw_wr_seq++;
2234 msg_data |= sc->bnx_fw_wr_seq;
2235
2236 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2237 msg_data);
2238
2239 /* Send the message to the bootcode driver mailbox. */
2240 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2241
2242 /* Wait for the bootcode to acknowledge the message. */
2243 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2244 /* Check for a response in the bootcode firmware mailbox. */
2245 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2246 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2247 break;
2248 DELAY(1000);
2249 }
2250
2251 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2252 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2253 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2254 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2255 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2256
2257 msg_data &= ~BNX_DRV_MSG_CODE;
2258 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2259
2260 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2261
2262 sc->bnx_fw_timed_out = 1;
2263 rc = EBUSY;
2264 }
2265
2266 bnx_fw_sync_exit:
2267 return (rc);
2268 }
2269
2270 /****************************************************************************/
2271 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2272 /* */
2273 /* Returns: */
2274 /* Nothing. */
2275 /****************************************************************************/
2276 void
2277 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2278 u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2279 {
2280 int i;
2281 u_int32_t val;
2282
2283 for (i = 0; i < rv2p_code_len; i += 8) {
2284 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2285 rv2p_code++;
2286 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2287 rv2p_code++;
2288
2289 if (rv2p_proc == RV2P_PROC1) {
2290 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2291 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2292 }
2293 else {
2294 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2295 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2296 }
2297 }
2298
2299 /* Reset the processor, un-stall is done later. */
2300 if (rv2p_proc == RV2P_PROC1)
2301 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2302 else
2303 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2304 }
2305
2306 /****************************************************************************/
2307 /* Load RISC processor firmware. */
2308 /* */
2309 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2310 /* associated with a particular processor. */
2311 /* */
2312 /* Returns: */
2313 /* Nothing. */
2314 /****************************************************************************/
2315 void
2316 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2317 struct fw_info *fw)
2318 {
2319 u_int32_t offset;
2320 u_int32_t val;
2321
2322 /* Halt the CPU. */
2323 val = REG_RD_IND(sc, cpu_reg->mode);
2324 val |= cpu_reg->mode_value_halt;
2325 REG_WR_IND(sc, cpu_reg->mode, val);
2326 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2327
2328 /* Load the Text area. */
2329 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2330 if (fw->text) {
2331 int j;
2332
2333 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2334 REG_WR_IND(sc, offset, fw->text[j]);
2335 }
2336
2337 /* Load the Data area. */
2338 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2339 if (fw->data) {
2340 int j;
2341
2342 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2343 REG_WR_IND(sc, offset, fw->data[j]);
2344 }
2345
2346 /* Load the SBSS area. */
2347 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2348 if (fw->sbss) {
2349 int j;
2350
2351 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2352 REG_WR_IND(sc, offset, fw->sbss[j]);
2353 }
2354
2355 /* Load the BSS area. */
2356 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2357 if (fw->bss) {
2358 int j;
2359
2360 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2361 REG_WR_IND(sc, offset, fw->bss[j]);
2362 }
2363
2364 /* Load the Read-Only area. */
2365 offset = cpu_reg->spad_base +
2366 (fw->rodata_addr - cpu_reg->mips_view_base);
2367 if (fw->rodata) {
2368 int j;
2369
2370 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2371 REG_WR_IND(sc, offset, fw->rodata[j]);
2372 }
2373
2374 /* Clear the pre-fetch instruction. */
2375 REG_WR_IND(sc, cpu_reg->inst, 0);
2376 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2377
2378 /* Start the CPU. */
2379 val = REG_RD_IND(sc, cpu_reg->mode);
2380 val &= ~cpu_reg->mode_value_halt;
2381 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2382 REG_WR_IND(sc, cpu_reg->mode, val);
2383 }
2384
2385 /****************************************************************************/
2386 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2387 /* */
2388 /* Loads the firmware for each CPU and starts the CPU. */
2389 /* */
2390 /* Returns: */
2391 /* Nothing. */
2392 /****************************************************************************/
2393 void
2394 bnx_init_cpus(struct bnx_softc *sc)
2395 {
2396 struct cpu_reg cpu_reg;
2397 struct fw_info fw;
2398
2399 /* Initialize the RV2P processor. */
2400 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2401 RV2P_PROC1);
2402 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2403 RV2P_PROC2);
2404
2405 /* Initialize the RX Processor. */
2406 cpu_reg.mode = BNX_RXP_CPU_MODE;
2407 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2408 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2409 cpu_reg.state = BNX_RXP_CPU_STATE;
2410 cpu_reg.state_value_clear = 0xffffff;
2411 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2412 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2413 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2414 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2415 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2416 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2417 cpu_reg.mips_view_base = 0x8000000;
2418
2419 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2420 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2421 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2422 fw.start_addr = bnx_RXP_b06FwStartAddr;
2423
2424 fw.text_addr = bnx_RXP_b06FwTextAddr;
2425 fw.text_len = bnx_RXP_b06FwTextLen;
2426 fw.text_index = 0;
2427 fw.text = bnx_RXP_b06FwText;
2428
2429 fw.data_addr = bnx_RXP_b06FwDataAddr;
2430 fw.data_len = bnx_RXP_b06FwDataLen;
2431 fw.data_index = 0;
2432 fw.data = bnx_RXP_b06FwData;
2433
2434 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2435 fw.sbss_len = bnx_RXP_b06FwSbssLen;
2436 fw.sbss_index = 0;
2437 fw.sbss = bnx_RXP_b06FwSbss;
2438
2439 fw.bss_addr = bnx_RXP_b06FwBssAddr;
2440 fw.bss_len = bnx_RXP_b06FwBssLen;
2441 fw.bss_index = 0;
2442 fw.bss = bnx_RXP_b06FwBss;
2443
2444 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2445 fw.rodata_len = bnx_RXP_b06FwRodataLen;
2446 fw.rodata_index = 0;
2447 fw.rodata = bnx_RXP_b06FwRodata;
2448
2449 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2450 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2451
2452 /* Initialize the TX Processor. */
2453 cpu_reg.mode = BNX_TXP_CPU_MODE;
2454 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2455 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2456 cpu_reg.state = BNX_TXP_CPU_STATE;
2457 cpu_reg.state_value_clear = 0xffffff;
2458 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2459 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2460 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2461 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2462 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2463 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2464 cpu_reg.mips_view_base = 0x8000000;
2465
2466 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2467 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2468 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2469 fw.start_addr = bnx_TXP_b06FwStartAddr;
2470
2471 fw.text_addr = bnx_TXP_b06FwTextAddr;
2472 fw.text_len = bnx_TXP_b06FwTextLen;
2473 fw.text_index = 0;
2474 fw.text = bnx_TXP_b06FwText;
2475
2476 fw.data_addr = bnx_TXP_b06FwDataAddr;
2477 fw.data_len = bnx_TXP_b06FwDataLen;
2478 fw.data_index = 0;
2479 fw.data = bnx_TXP_b06FwData;
2480
2481 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2482 fw.sbss_len = bnx_TXP_b06FwSbssLen;
2483 fw.sbss_index = 0;
2484 fw.sbss = bnx_TXP_b06FwSbss;
2485
2486 fw.bss_addr = bnx_TXP_b06FwBssAddr;
2487 fw.bss_len = bnx_TXP_b06FwBssLen;
2488 fw.bss_index = 0;
2489 fw.bss = bnx_TXP_b06FwBss;
2490
2491 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
2492 fw.rodata_len = bnx_TXP_b06FwRodataLen;
2493 fw.rodata_index = 0;
2494 fw.rodata = bnx_TXP_b06FwRodata;
2495
2496 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2497 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2498
2499 /* Initialize the TX Patch-up Processor. */
2500 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2501 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2502 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2503 cpu_reg.state = BNX_TPAT_CPU_STATE;
2504 cpu_reg.state_value_clear = 0xffffff;
2505 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2506 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2507 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2508 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2509 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2510 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2511 cpu_reg.mips_view_base = 0x8000000;
2512
2513 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
2514 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
2515 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
2516 fw.start_addr = bnx_TPAT_b06FwStartAddr;
2517
2518 fw.text_addr = bnx_TPAT_b06FwTextAddr;
2519 fw.text_len = bnx_TPAT_b06FwTextLen;
2520 fw.text_index = 0;
2521 fw.text = bnx_TPAT_b06FwText;
2522
2523 fw.data_addr = bnx_TPAT_b06FwDataAddr;
2524 fw.data_len = bnx_TPAT_b06FwDataLen;
2525 fw.data_index = 0;
2526 fw.data = bnx_TPAT_b06FwData;
2527
2528 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
2529 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
2530 fw.sbss_index = 0;
2531 fw.sbss = bnx_TPAT_b06FwSbss;
2532
2533 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
2534 fw.bss_len = bnx_TPAT_b06FwBssLen;
2535 fw.bss_index = 0;
2536 fw.bss = bnx_TPAT_b06FwBss;
2537
2538 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
2539 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
2540 fw.rodata_index = 0;
2541 fw.rodata = bnx_TPAT_b06FwRodata;
2542
2543 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2544 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2545
2546 /* Initialize the Completion Processor. */
2547 cpu_reg.mode = BNX_COM_CPU_MODE;
2548 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2549 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2550 cpu_reg.state = BNX_COM_CPU_STATE;
2551 cpu_reg.state_value_clear = 0xffffff;
2552 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2553 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2554 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2555 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2556 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2557 cpu_reg.spad_base = BNX_COM_SCRATCH;
2558 cpu_reg.mips_view_base = 0x8000000;
2559
2560 fw.ver_major = bnx_COM_b06FwReleaseMajor;
2561 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
2562 fw.ver_fix = bnx_COM_b06FwReleaseFix;
2563 fw.start_addr = bnx_COM_b06FwStartAddr;
2564
2565 fw.text_addr = bnx_COM_b06FwTextAddr;
2566 fw.text_len = bnx_COM_b06FwTextLen;
2567 fw.text_index = 0;
2568 fw.text = bnx_COM_b06FwText;
2569
2570 fw.data_addr = bnx_COM_b06FwDataAddr;
2571 fw.data_len = bnx_COM_b06FwDataLen;
2572 fw.data_index = 0;
2573 fw.data = bnx_COM_b06FwData;
2574
2575 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
2576 fw.sbss_len = bnx_COM_b06FwSbssLen;
2577 fw.sbss_index = 0;
2578 fw.sbss = bnx_COM_b06FwSbss;
2579
2580 fw.bss_addr = bnx_COM_b06FwBssAddr;
2581 fw.bss_len = bnx_COM_b06FwBssLen;
2582 fw.bss_index = 0;
2583 fw.bss = bnx_COM_b06FwBss;
2584
2585 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
2586 fw.rodata_len = bnx_COM_b06FwRodataLen;
2587 fw.rodata_index = 0;
2588 fw.rodata = bnx_COM_b06FwRodata;
2589
2590 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2591 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2592 }
2593
2594 /****************************************************************************/
2595 /* Initialize context memory. */
2596 /* */
2597 /* Clears the memory associated with each Context ID (CID). */
2598 /* */
2599 /* Returns: */
2600 /* Nothing. */
2601 /****************************************************************************/
2602 void
2603 bnx_init_context(struct bnx_softc *sc)
2604 {
2605 u_int32_t vcid;
2606
2607 vcid = 96;
2608 while (vcid) {
2609 u_int32_t vcid_addr, pcid_addr, offset;
2610
2611 vcid--;
2612
2613 vcid_addr = GET_CID_ADDR(vcid);
2614 pcid_addr = vcid_addr;
2615
2616 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
2617 REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2618
2619 /* Zero out the context. */
2620 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2621 CTX_WR(sc, 0x00, offset, 0);
2622
2623 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
2624 REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2625 }
2626 }
2627
2628 /****************************************************************************/
2629 /* Fetch the permanent MAC address of the controller. */
2630 /* */
2631 /* Returns: */
2632 /* Nothing. */
2633 /****************************************************************************/
2634 void
2635 bnx_get_mac_addr(struct bnx_softc *sc)
2636 {
2637 u_int32_t mac_lo = 0, mac_hi = 0;
2638
2639 /*
2640 * The NetXtreme II bootcode populates various NIC
2641 * power-on and runtime configuration items in a
2642 * shared memory area. The factory configured MAC
2643 * address is available from both NVRAM and the
2644 * shared memory area so we'll read the value from
2645 * shared memory for speed.
2646 */
2647
2648 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
2649 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
2650
2651 if ((mac_lo == 0) && (mac_hi == 0)) {
2652 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
2653 __FILE__, __LINE__);
2654 } else {
2655 sc->eaddr[0] = (u_char)(mac_hi >> 8);
2656 sc->eaddr[1] = (u_char)(mac_hi >> 0);
2657 sc->eaddr[2] = (u_char)(mac_lo >> 24);
2658 sc->eaddr[3] = (u_char)(mac_lo >> 16);
2659 sc->eaddr[4] = (u_char)(mac_lo >> 8);
2660 sc->eaddr[5] = (u_char)(mac_lo >> 0);
2661 }
2662
2663 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
2664 "%s\n", ether_sprintf(sc->eaddr));
2665 }
2666
2667 /****************************************************************************/
2668 /* Program the MAC address. */
2669 /* */
2670 /* Returns: */
2671 /* Nothing. */
2672 /****************************************************************************/
2673 void
2674 bnx_set_mac_addr(struct bnx_softc *sc)
2675 {
2676 u_int32_t val;
2677 const u_int8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
2678
2679 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
2680 "%s\n", ether_sprintf(sc->eaddr));
2681
2682 val = (mac_addr[0] << 8) | mac_addr[1];
2683
2684 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
2685
2686 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2687 (mac_addr[4] << 8) | mac_addr[5];
2688
2689 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
2690 }
2691
2692 /****************************************************************************/
2693 /* Stop the controller. */
2694 /* */
2695 /* Returns: */
2696 /* Nothing. */
2697 /****************************************************************************/
2698 void
2699 bnx_stop(struct ifnet *ifp, int disable)
2700 {
2701 struct bnx_softc *sc = ifp->if_softc;
2702
2703 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2704
2705 if ((ifp->if_flags & IFF_RUNNING) == 0)
2706 return;
2707
2708 callout_stop(&sc->bnx_timeout);
2709
2710 mii_down(&sc->bnx_mii);
2711
2712 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2713
2714 /* Disable the transmit/receive blocks. */
2715 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
2716 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2717 DELAY(20);
2718
2719 bnx_disable_intr(sc);
2720
2721 /* Tell firmware that the driver is going away. */
2722 if (disable)
2723 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
2724 else
2725 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
2726
2727 /* Free the RX lists. */
2728 bnx_free_rx_chain(sc);
2729
2730 /* Free TX buffers. */
2731 bnx_free_tx_chain(sc);
2732
2733 ifp->if_timer = 0;
2734
2735 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2736
2737 }
2738
2739 int
2740 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
2741 {
2742 u_int32_t val;
2743 int i, rc = 0;
2744
2745 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2746
2747 /* Wait for pending PCI transactions to complete. */
2748 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
2749 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
2750 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
2751 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
2752 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
2753 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2754 DELAY(5);
2755
2756 /* Assume bootcode is running. */
2757 sc->bnx_fw_timed_out = 0;
2758
2759 /* Give the firmware a chance to prepare for the reset. */
2760 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
2761 if (rc)
2762 goto bnx_reset_exit;
2763
2764 /* Set a firmware reminder that this is a soft reset. */
2765 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
2766 BNX_DRV_RESET_SIGNATURE_MAGIC);
2767
2768 /* Dummy read to force the chip to complete all current transactions. */
2769 val = REG_RD(sc, BNX_MISC_ID);
2770
2771 /* Chip reset. */
2772 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2773 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
2774 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
2775 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
2776
2777 /* Allow up to 30us for reset to complete. */
2778 for (i = 0; i < 10; i++) {
2779 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
2780 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2781 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
2782 break;
2783
2784 DELAY(10);
2785 }
2786
2787 /* Check that reset completed successfully. */
2788 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2789 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
2790 BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
2791 rc = EBUSY;
2792 goto bnx_reset_exit;
2793 }
2794
2795 /* Make sure byte swapping is properly configured. */
2796 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
2797 if (val != 0x01020304) {
2798 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
2799 __FILE__, __LINE__);
2800 rc = ENODEV;
2801 goto bnx_reset_exit;
2802 }
2803
2804 /* Just completed a reset, assume that firmware is running again. */
2805 sc->bnx_fw_timed_out = 0;
2806
2807 /* Wait for the firmware to finish its initialization. */
2808 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
2809 if (rc)
2810 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
2811 "initialization!\n", __FILE__, __LINE__);
2812
2813 bnx_reset_exit:
2814 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2815
2816 return (rc);
2817 }
2818
2819 int
2820 bnx_chipinit(struct bnx_softc *sc)
2821 {
2822 struct pci_attach_args *pa = &(sc->bnx_pa);
2823 u_int32_t val;
2824 int rc = 0;
2825
2826 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2827
2828 /* Make sure the interrupt is not active. */
2829 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
2830
2831 /* Initialize DMA byte/word swapping, configure the number of DMA */
2832 /* channels and PCI clock compensation delay. */
2833 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
2834 BNX_DMA_CONFIG_DATA_WORD_SWAP |
2835 #if BYTE_ORDER == BIG_ENDIAN
2836 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
2837 #endif
2838 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
2839 DMA_READ_CHANS << 12 |
2840 DMA_WRITE_CHANS << 16;
2841
2842 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
2843
2844 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
2845 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
2846
2847 /*
2848 * This setting resolves a problem observed on certain Intel PCI
2849 * chipsets that cannot handle multiple outstanding DMA operations.
2850 * See errata E9_5706A1_65.
2851 */
2852 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
2853 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
2854 !(sc->bnx_flags & BNX_PCIX_FLAG))
2855 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
2856
2857 REG_WR(sc, BNX_DMA_CONFIG, val);
2858
2859 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
2860 if (sc->bnx_flags & BNX_PCIX_FLAG) {
2861 u_int16_t nval;
2862
2863 nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
2864 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
2865 nval & ~0x2);
2866 }
2867
2868 /* Enable the RX_V2P and Context state machines before access. */
2869 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
2870 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
2871 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
2872 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
2873
2874 /* Initialize context mapping and zero out the quick contexts. */
2875 bnx_init_context(sc);
2876
2877 /* Initialize the on-boards CPUs */
2878 bnx_init_cpus(sc);
2879
2880 /* Prepare NVRAM for access. */
2881 if (bnx_init_nvram(sc)) {
2882 rc = ENODEV;
2883 goto bnx_chipinit_exit;
2884 }
2885
2886 /* Set the kernel bypass block size */
2887 val = REG_RD(sc, BNX_MQ_CONFIG);
2888 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
2889 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
2890 REG_WR(sc, BNX_MQ_CONFIG, val);
2891
2892 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
2893 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
2894 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
2895
2896 val = (BCM_PAGE_BITS - 8) << 24;
2897 REG_WR(sc, BNX_RV2P_CONFIG, val);
2898
2899 /* Configure page size. */
2900 val = REG_RD(sc, BNX_TBDR_CONFIG);
2901 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
2902 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
2903 REG_WR(sc, BNX_TBDR_CONFIG, val);
2904
2905 bnx_chipinit_exit:
2906 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2907
2908 return(rc);
2909 }
2910
2911 /****************************************************************************/
2912 /* Initialize the controller in preparation to send/receive traffic. */
2913 /* */
2914 /* Returns: */
2915 /* 0 for success, positive value for failure. */
2916 /****************************************************************************/
2917 int
2918 bnx_blockinit(struct bnx_softc *sc)
2919 {
2920 u_int32_t reg, val;
2921 int rc = 0;
2922
2923 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2924
2925 /* Load the hardware default MAC address. */
2926 bnx_set_mac_addr(sc);
2927
2928 /* Set the Ethernet backoff seed value */
2929 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
2930 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
2931 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
2932
2933 sc->last_status_idx = 0;
2934 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
2935
2936 /* Set up link change interrupt generation. */
2937 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
2938
2939 /* Program the physical address of the status block. */
2940 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
2941 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
2942 (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
2943
2944 /* Program the physical address of the statistics block. */
2945 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
2946 (u_int32_t)(sc->stats_block_paddr));
2947 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
2948 (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
2949
2950 /* Program various host coalescing parameters. */
2951 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
2952 << 16) | sc->bnx_tx_quick_cons_trip);
2953 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
2954 << 16) | sc->bnx_rx_quick_cons_trip);
2955 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
2956 sc->bnx_comp_prod_trip);
2957 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
2958 sc->bnx_tx_ticks);
2959 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
2960 sc->bnx_rx_ticks);
2961 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
2962 sc->bnx_com_ticks);
2963 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
2964 sc->bnx_cmd_ticks);
2965 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
2966 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
2967 REG_WR(sc, BNX_HC_CONFIG,
2968 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
2969 BNX_HC_CONFIG_COLLECT_STATS));
2970
2971 /* Clear the internal statistics counters. */
2972 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
2973
2974 /* Verify that bootcode is running. */
2975 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
2976
2977 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
2978 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
2979 __FILE__, __LINE__); reg = 0);
2980
2981 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
2982 BNX_DEV_INFO_SIGNATURE_MAGIC) {
2983 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
2984 "Expected: 08%08X\n", __FILE__, __LINE__,
2985 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
2986 BNX_DEV_INFO_SIGNATURE_MAGIC);
2987 rc = ENODEV;
2988 goto bnx_blockinit_exit;
2989 }
2990
2991 /* Check if any management firmware is running. */
2992 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
2993 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
2994 BNX_PORT_FEATURE_IMD_ENABLED)) {
2995 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
2996 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
2997 }
2998
2999 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3000 BNX_DEV_INFO_BC_REV);
3001
3002 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3003
3004 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3005 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3006
3007 /* Enable link state change interrupt generation. */
3008 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3009
3010 /* Enable all remaining blocks in the MAC. */
3011 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3012 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3013 DELAY(20);
3014
3015 bnx_blockinit_exit:
3016 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3017
3018 return (rc);
3019 }
3020
3021 /****************************************************************************/
3022 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3023 /* */
3024 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3025 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3026 /* necessary. */
3027 /* */
3028 /* Returns: */
3029 /* 0 for success, positive value for failure. */
3030 /****************************************************************************/
3031 int
3032 bnx_get_buf(struct bnx_softc *sc, struct mbuf *m, u_int16_t *prod,
3033 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3034 {
3035 bus_dmamap_t map;
3036 struct mbuf *m_new = NULL;
3037 struct rx_bd *rxbd;
3038 int i, rc = 0;
3039 u_int32_t addr;
3040 #ifdef BNX_DEBUG
3041 u_int16_t debug_chain_prod = *chain_prod;
3042 #endif
3043 u_int16_t first_chain_prod;
3044 u_int16_t min_free_bd;
3045
3046 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3047 __func__);
3048
3049 /* Make sure the inputs are valid. */
3050 DBRUNIF((*chain_prod > MAX_RX_BD),
3051 aprint_error_dev(sc->bnx_dev,
3052 "RX producer out of range: 0x%04X > 0x%04X\n",
3053 *chain_prod, (u_int16_t)MAX_RX_BD));
3054
3055 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3056 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3057 *prod_bseq);
3058
3059 /* try to get in as many mbufs as possible */
3060 if (sc->mbuf_alloc_size == MCLBYTES)
3061 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3062 else
3063 min_free_bd = (BNX_MAX_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3064 while (sc->free_rx_bd >= min_free_bd) {
3065 if (m == NULL) {
3066 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3067 BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
3068
3069 sc->mbuf_alloc_failed++;
3070 rc = ENOBUFS;
3071 goto bnx_get_buf_exit);
3072
3073 /* This is a new mbuf allocation. */
3074 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3075 if (m_new == NULL) {
3076 DBPRINT(sc, BNX_WARN,
3077 "%s(%d): RX mbuf header allocation failed!\n",
3078 __FILE__, __LINE__);
3079
3080 DBRUNIF(1, sc->mbuf_alloc_failed++);
3081
3082 rc = ENOBUFS;
3083 goto bnx_get_buf_exit;
3084 }
3085
3086 DBRUNIF(1, sc->rx_mbuf_alloc++);
3087 if (sc->mbuf_alloc_size == MCLBYTES)
3088 MCLGET(m_new, M_DONTWAIT);
3089 else
3090 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3091 M_DONTWAIT);
3092 if (!(m_new->m_flags & M_EXT)) {
3093 DBPRINT(sc, BNX_WARN,
3094 "%s(%d): RX mbuf chain allocation failed!\n",
3095 __FILE__, __LINE__);
3096
3097 m_freem(m_new);
3098
3099 DBRUNIF(1, sc->rx_mbuf_alloc--);
3100 DBRUNIF(1, sc->mbuf_alloc_failed++);
3101
3102 rc = ENOBUFS;
3103 goto bnx_get_buf_exit;
3104 }
3105
3106 } else {
3107 m_new = m;
3108 m = NULL;
3109 m_new->m_data = m_new->m_ext.ext_buf;
3110 }
3111 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3112
3113 /* Map the mbuf cluster into device memory. */
3114 map = sc->rx_mbuf_map[*chain_prod];
3115 first_chain_prod = *chain_prod;
3116 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3117 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3118 __FILE__, __LINE__);
3119
3120 m_freem(m_new);
3121
3122 DBRUNIF(1, sc->rx_mbuf_alloc--);
3123
3124 rc = ENOBUFS;
3125 goto bnx_get_buf_exit;
3126 }
3127 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3128 BUS_DMASYNC_PREREAD);
3129
3130 /* Watch for overflow. */
3131 DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
3132 aprint_error_dev(sc->bnx_dev,
3133 "Too many free rx_bd (0x%04X > 0x%04X)!\n",
3134 sc->free_rx_bd, (u_int16_t)USABLE_RX_BD));
3135
3136 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3137 sc->rx_low_watermark = sc->free_rx_bd);
3138
3139 /*
3140 * Setup the rx_bd for the first segment
3141 */
3142 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3143
3144 addr = (u_int32_t)(map->dm_segs[0].ds_addr);
3145 rxbd->rx_bd_haddr_lo = htole32(addr);
3146 addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3147 rxbd->rx_bd_haddr_hi = htole32(addr);
3148 rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
3149 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3150 *prod_bseq += map->dm_segs[0].ds_len;
3151 bus_dmamap_sync(sc->bnx_dmatag,
3152 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3153 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3154 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3155
3156 for (i = 1; i < map->dm_nsegs; i++) {
3157 *prod = NEXT_RX_BD(*prod);
3158 *chain_prod = RX_CHAIN_IDX(*prod);
3159
3160 rxbd =
3161 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3162
3163 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
3164 rxbd->rx_bd_haddr_lo = htole32(addr);
3165 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3166 rxbd->rx_bd_haddr_hi = htole32(addr);
3167 rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
3168 rxbd->rx_bd_flags = 0;
3169 *prod_bseq += map->dm_segs[i].ds_len;
3170 bus_dmamap_sync(sc->bnx_dmatag,
3171 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3172 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3173 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3174 }
3175
3176 rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3177 bus_dmamap_sync(sc->bnx_dmatag,
3178 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3179 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3180 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3181
3182 /*
3183 * Save the mbuf, ajust the map pointer (swap map for first and
3184 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3185 * and update counter.
3186 */
3187 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3188 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3189 sc->rx_mbuf_map[*chain_prod] = map;
3190 sc->free_rx_bd -= map->dm_nsegs;
3191
3192 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3193 map->dm_nsegs));
3194 *prod = NEXT_RX_BD(*prod);
3195 *chain_prod = RX_CHAIN_IDX(*prod);
3196 }
3197
3198 bnx_get_buf_exit:
3199 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3200 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3201 *chain_prod, *prod_bseq);
3202
3203 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3204 __func__);
3205
3206 return(rc);
3207 }
3208
3209 /****************************************************************************/
3210 /* Allocate memory and initialize the TX data structures. */
3211 /* */
3212 /* Returns: */
3213 /* 0 for success, positive value for failure. */
3214 /****************************************************************************/
3215 int
3216 bnx_init_tx_chain(struct bnx_softc *sc)
3217 {
3218 struct tx_bd *txbd;
3219 u_int32_t val, addr;
3220 int i, rc = 0;
3221
3222 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3223
3224 /* Set the initial TX producer/consumer indices. */
3225 sc->tx_prod = 0;
3226 sc->tx_cons = 0;
3227 sc->tx_prod_bseq = 0;
3228 sc->used_tx_bd = 0;
3229 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3230
3231 /*
3232 * The NetXtreme II supports a linked-list structure called
3233 * a Buffer Descriptor Chain (or BD chain). A BD chain
3234 * consists of a series of 1 or more chain pages, each of which
3235 * consists of a fixed number of BD entries.
3236 * The last BD entry on each page is a pointer to the next page
3237 * in the chain, and the last pointer in the BD chain
3238 * points back to the beginning of the chain.
3239 */
3240
3241 /* Set the TX next pointer chain entries. */
3242 for (i = 0; i < TX_PAGES; i++) {
3243 int j;
3244
3245 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3246
3247 /* Check if we've reached the last page. */
3248 if (i == (TX_PAGES - 1))
3249 j = 0;
3250 else
3251 j = i + 1;
3252
3253 addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
3254 txbd->tx_bd_haddr_lo = htole32(addr);
3255 addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3256 txbd->tx_bd_haddr_hi = htole32(addr);
3257 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3258 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3259 }
3260
3261 /*
3262 * Initialize the context ID for an L2 TX chain.
3263 */
3264 val = BNX_L2CTX_TYPE_TYPE_L2;
3265 val |= BNX_L2CTX_TYPE_SIZE_L2;
3266 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3267
3268 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3269 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3270
3271 /* Point the hardware to the first page in the chain. */
3272 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3273 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3274 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3275 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3276
3277 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
3278
3279 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3280
3281 return(rc);
3282 }
3283
3284 /****************************************************************************/
3285 /* Free memory and clear the TX data structures. */
3286 /* */
3287 /* Returns: */
3288 /* Nothing. */
3289 /****************************************************************************/
3290 void
3291 bnx_free_tx_chain(struct bnx_softc *sc)
3292 {
3293 int i;
3294
3295 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3296
3297 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
3298 for (i = 0; i < TOTAL_TX_BD; i++) {
3299 if (sc->tx_mbuf_ptr[i] != NULL) {
3300 if (sc->tx_mbuf_map != NULL)
3301 bus_dmamap_sync(sc->bnx_dmatag,
3302 sc->tx_mbuf_map[i], 0,
3303 sc->tx_mbuf_map[i]->dm_mapsize,
3304 BUS_DMASYNC_POSTWRITE);
3305 m_freem(sc->tx_mbuf_ptr[i]);
3306 sc->tx_mbuf_ptr[i] = NULL;
3307 DBRUNIF(1, sc->tx_mbuf_alloc--);
3308 }
3309 }
3310
3311 /* Clear each TX chain page. */
3312 for (i = 0; i < TX_PAGES; i++) {
3313 bzero((char *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
3314 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3315 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3316 }
3317
3318 /* Check if we lost any mbufs in the process. */
3319 DBRUNIF((sc->tx_mbuf_alloc),
3320 aprint_error_dev(sc->bnx_dev,
3321 "Memory leak! Lost %d mbufs from tx chain!\n",
3322 sc->tx_mbuf_alloc));
3323
3324 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3325 }
3326
3327 /****************************************************************************/
3328 /* Allocate memory and initialize the RX data structures. */
3329 /* */
3330 /* Returns: */
3331 /* 0 for success, positive value for failure. */
3332 /****************************************************************************/
3333 int
3334 bnx_init_rx_chain(struct bnx_softc *sc)
3335 {
3336 struct rx_bd *rxbd;
3337 int i, rc = 0;
3338 u_int16_t prod, chain_prod;
3339 u_int32_t prod_bseq, val, addr;
3340
3341 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3342
3343 /* Initialize the RX producer and consumer indices. */
3344 sc->rx_prod = 0;
3345 sc->rx_cons = 0;
3346 sc->rx_prod_bseq = 0;
3347 sc->free_rx_bd = BNX_RX_SLACK_SPACE;
3348 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
3349
3350 /* Initialize the RX next pointer chain entries. */
3351 for (i = 0; i < RX_PAGES; i++) {
3352 int j;
3353
3354 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
3355
3356 /* Check if we've reached the last page. */
3357 if (i == (RX_PAGES - 1))
3358 j = 0;
3359 else
3360 j = i + 1;
3361
3362 /* Setup the chain page pointers. */
3363 addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
3364 rxbd->rx_bd_haddr_hi = htole32(addr);
3365 addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
3366 rxbd->rx_bd_haddr_lo = htole32(addr);
3367 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
3368 0, BNX_RX_CHAIN_PAGE_SZ,
3369 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3370 }
3371
3372 /* Initialize the context ID for an L2 RX chain. */
3373 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
3374 val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
3375 val |= 0x02 << 8;
3376 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
3377
3378 /* Point the hardware to the first page in the chain. */
3379 val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
3380 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
3381 val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
3382 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
3383
3384 /* Allocate mbuf clusters for the rx_bd chain. */
3385 prod = prod_bseq = 0;
3386 chain_prod = RX_CHAIN_IDX(prod);
3387 if (bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq)) {
3388 BNX_PRINTF(sc,
3389 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
3390 }
3391
3392 /* Save the RX chain producer index. */
3393 sc->rx_prod = prod;
3394 sc->rx_prod_bseq = prod_bseq;
3395
3396 for (i = 0; i < RX_PAGES; i++)
3397 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
3398 sc->rx_bd_chain_map[i]->dm_mapsize,
3399 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3400
3401 /* Tell the chip about the waiting rx_bd's. */
3402 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3403 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3404
3405 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
3406
3407 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3408
3409 return(rc);
3410 }
3411
3412 /****************************************************************************/
3413 /* Free memory and clear the RX data structures. */
3414 /* */
3415 /* Returns: */
3416 /* Nothing. */
3417 /****************************************************************************/
3418 void
3419 bnx_free_rx_chain(struct bnx_softc *sc)
3420 {
3421 int i;
3422
3423 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3424
3425 /* Free any mbufs still in the RX mbuf chain. */
3426 for (i = 0; i < TOTAL_RX_BD; i++) {
3427 if (sc->rx_mbuf_ptr[i] != NULL) {
3428 if (sc->rx_mbuf_map[i] != NULL)
3429 bus_dmamap_sync(sc->bnx_dmatag,
3430 sc->rx_mbuf_map[i], 0,
3431 sc->rx_mbuf_map[i]->dm_mapsize,
3432 BUS_DMASYNC_POSTREAD);
3433 m_freem(sc->rx_mbuf_ptr[i]);
3434 sc->rx_mbuf_ptr[i] = NULL;
3435 DBRUNIF(1, sc->rx_mbuf_alloc--);
3436 }
3437 }
3438
3439 /* Clear each RX chain page. */
3440 for (i = 0; i < RX_PAGES; i++)
3441 bzero((char *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
3442
3443 /* Check if we lost any mbufs in the process. */
3444 DBRUNIF((sc->rx_mbuf_alloc),
3445 aprint_error_dev(sc->bnx_dev,
3446 "Memory leak! Lost %d mbufs from rx chain!\n",
3447 sc->rx_mbuf_alloc));
3448
3449 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3450 }
3451
3452 /****************************************************************************/
3453 /* Handles PHY generated interrupt events. */
3454 /* */
3455 /* Returns: */
3456 /* Nothing. */
3457 /****************************************************************************/
3458 void
3459 bnx_phy_intr(struct bnx_softc *sc)
3460 {
3461 u_int32_t new_link_state, old_link_state;
3462
3463 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3464 BUS_DMASYNC_POSTREAD);
3465 new_link_state = sc->status_block->status_attn_bits &
3466 STATUS_ATTN_BITS_LINK_STATE;
3467 old_link_state = sc->status_block->status_attn_bits_ack &
3468 STATUS_ATTN_BITS_LINK_STATE;
3469
3470 /* Handle any changes if the link state has changed. */
3471 if (new_link_state != old_link_state) {
3472 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
3473
3474 callout_stop(&sc->bnx_timeout);
3475 bnx_tick(sc);
3476
3477 /* Update the status_attn_bits_ack field in the status block. */
3478 if (new_link_state) {
3479 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
3480 STATUS_ATTN_BITS_LINK_STATE);
3481 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
3482 } else {
3483 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
3484 STATUS_ATTN_BITS_LINK_STATE);
3485 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
3486 }
3487 }
3488
3489 /* Acknowledge the link change interrupt. */
3490 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
3491 }
3492
3493 /****************************************************************************/
3494 /* Handles received frame interrupt events. */
3495 /* */
3496 /* Returns: */
3497 /* Nothing. */
3498 /****************************************************************************/
3499 void
3500 bnx_rx_intr(struct bnx_softc *sc)
3501 {
3502 struct status_block *sblk = sc->status_block;
3503 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3504 u_int16_t hw_cons, sw_cons, sw_chain_cons;
3505 u_int16_t sw_prod, sw_chain_prod;
3506 u_int32_t sw_prod_bseq;
3507 struct l2_fhdr *l2fhdr;
3508 int i;
3509
3510 DBRUNIF(1, sc->rx_interrupts++);
3511 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3512 BUS_DMASYNC_POSTREAD);
3513
3514 /* Prepare the RX chain pages to be accessed by the host CPU. */
3515 for (i = 0; i < RX_PAGES; i++)
3516 bus_dmamap_sync(sc->bnx_dmatag,
3517 sc->rx_bd_chain_map[i], 0,
3518 sc->rx_bd_chain_map[i]->dm_mapsize,
3519 BUS_DMASYNC_POSTWRITE);
3520
3521 /* Get the hardware's view of the RX consumer index. */
3522 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
3523 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
3524 hw_cons++;
3525
3526 /* Get working copies of the driver's view of the RX indices. */
3527 sw_cons = sc->rx_cons;
3528 sw_prod = sc->rx_prod;
3529 sw_prod_bseq = sc->rx_prod_bseq;
3530
3531 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
3532 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
3533 __func__, sw_prod, sw_cons, sw_prod_bseq);
3534
3535 /* Prevent speculative reads from getting ahead of the status block. */
3536 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3537 BUS_SPACE_BARRIER_READ);
3538
3539 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3540 sc->rx_low_watermark = sc->free_rx_bd);
3541
3542 /*
3543 * Scan through the receive chain as long
3544 * as there is work to do.
3545 */
3546 while (sw_cons != hw_cons) {
3547 struct mbuf *m;
3548 struct rx_bd *rxbd;
3549 unsigned int len;
3550 u_int32_t status;
3551
3552 /* Convert the producer/consumer indices to an actual
3553 * rx_bd index.
3554 */
3555 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
3556 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
3557
3558 /* Get the used rx_bd. */
3559 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
3560 sc->free_rx_bd++;
3561
3562 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
3563 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
3564
3565 /* The mbuf is stored with the last rx_bd entry of a packet. */
3566 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
3567 #ifdef DIAGNOSTIC
3568 /* Validate that this is the last rx_bd. */
3569 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
3570 printf("%s: Unexpected mbuf found in "
3571 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
3572 sw_chain_cons);
3573 }
3574 #endif
3575
3576 /* DRC - ToDo: If the received packet is small, say less
3577 * than 128 bytes, allocate a new mbuf here,
3578 * copy the data to that mbuf, and recycle
3579 * the mapped jumbo frame.
3580 */
3581
3582 /* Unmap the mbuf from DMA space. */
3583 #ifdef DIAGNOSTIC
3584 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
3585 printf("invalid map sw_cons 0x%x "
3586 "sw_prod 0x%x "
3587 "sw_chain_cons 0x%x "
3588 "sw_chain_prod 0x%x "
3589 "hw_cons 0x%x "
3590 "TOTAL_RX_BD_PER_PAGE 0x%x "
3591 "TOTAL_RX_BD 0x%x\n",
3592 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
3593 hw_cons,
3594 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
3595 }
3596 #endif
3597 bus_dmamap_sync(sc->bnx_dmatag,
3598 sc->rx_mbuf_map[sw_chain_cons], 0,
3599 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
3600 BUS_DMASYNC_POSTREAD);
3601 bus_dmamap_unload(sc->bnx_dmatag,
3602 sc->rx_mbuf_map[sw_chain_cons]);
3603
3604 /* Remove the mbuf from the driver's chain. */
3605 m = sc->rx_mbuf_ptr[sw_chain_cons];
3606 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
3607
3608 /*
3609 * Frames received on the NetXteme II are prepended
3610 * with the l2_fhdr structure which provides status
3611 * information about the received frame (including
3612 * VLAN tags and checksum info) and are also
3613 * automatically adjusted to align the IP header
3614 * (i.e. two null bytes are inserted before the
3615 * Ethernet header).
3616 */
3617 l2fhdr = mtod(m, struct l2_fhdr *);
3618
3619 len = l2fhdr->l2_fhdr_pkt_len;
3620 status = l2fhdr->l2_fhdr_status;
3621
3622 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
3623 aprint_error("Simulating l2_fhdr status error.\n");
3624 status = status | L2_FHDR_ERRORS_PHY_DECODE);
3625
3626 /* Watch for unusual sized frames. */
3627 DBRUNIF(((len < BNX_MIN_MTU) ||
3628 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
3629 aprint_error_dev(sc->bnx_dev,
3630 "Unusual frame size found. "
3631 "Min(%d), Actual(%d), Max(%d)\n",
3632 (int)BNX_MIN_MTU, len,
3633 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
3634
3635 bnx_dump_mbuf(sc, m);
3636 bnx_breakpoint(sc));
3637
3638 len -= ETHER_CRC_LEN;
3639
3640 /* Check the received frame for errors. */
3641 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
3642 L2_FHDR_ERRORS_PHY_DECODE |
3643 L2_FHDR_ERRORS_ALIGNMENT |
3644 L2_FHDR_ERRORS_TOO_SHORT |
3645 L2_FHDR_ERRORS_GIANT_FRAME)) ||
3646 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
3647 len >
3648 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
3649 ifp->if_ierrors++;
3650 DBRUNIF(1, sc->l2fhdr_status_errors++);
3651
3652 /* Reuse the mbuf for a new frame. */
3653 if (bnx_get_buf(sc, m, &sw_prod,
3654 &sw_chain_prod, &sw_prod_bseq)) {
3655 DBRUNIF(1, bnx_breakpoint(sc));
3656 panic("%s: Can't reuse RX mbuf!\n",
3657 device_xname(sc->bnx_dev));
3658 }
3659 continue;
3660 }
3661
3662 /*
3663 * Get a new mbuf for the rx_bd. If no new
3664 * mbufs are available then reuse the current mbuf,
3665 * log an ierror on the interface, and generate
3666 * an error in the system log.
3667 */
3668 if (bnx_get_buf(sc, NULL, &sw_prod, &sw_chain_prod,
3669 &sw_prod_bseq)) {
3670 DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
3671 "new mbuf, incoming frame dropped!\n"));
3672
3673 ifp->if_ierrors++;
3674
3675 /* Try and reuse the exisitng mbuf. */
3676 if (bnx_get_buf(sc, m, &sw_prod,
3677 &sw_chain_prod, &sw_prod_bseq)) {
3678 DBRUNIF(1, bnx_breakpoint(sc));
3679 panic("%s: Double mbuf allocation "
3680 "failure!",
3681 device_xname(sc->bnx_dev));
3682 }
3683 continue;
3684 }
3685
3686 /* Skip over the l2_fhdr when passing the data up
3687 * the stack.
3688 */
3689 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
3690
3691 /* Adjust the pckt length to match the received data. */
3692 m->m_pkthdr.len = m->m_len = len;
3693
3694 /* Send the packet to the appropriate interface. */
3695 m->m_pkthdr.rcvif = ifp;
3696
3697 DBRUN(BNX_VERBOSE_RECV,
3698 struct ether_header *eh;
3699 eh = mtod(m, struct ether_header *);
3700 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
3701 __func__, ether_sprintf(eh->ether_dhost),
3702 ether_sprintf(eh->ether_shost),
3703 htons(eh->ether_type)));
3704
3705 /* Validate the checksum. */
3706
3707 /* Check for an IP datagram. */
3708 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
3709 /* Check if the IP checksum is valid. */
3710 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
3711 == 0)
3712 m->m_pkthdr.csum_flags |=
3713 M_CSUM_IPv4;
3714 #ifdef BNX_DEBUG
3715 else
3716 DBPRINT(sc, BNX_WARN_SEND,
3717 "%s(): Invalid IP checksum "
3718 "= 0x%04X!\n",
3719 __func__,
3720 l2fhdr->l2_fhdr_ip_xsum
3721 );
3722 #endif
3723 }
3724
3725 /* Check for a valid TCP/UDP frame. */
3726 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3727 L2_FHDR_STATUS_UDP_DATAGRAM)) {
3728 /* Check for a good TCP/UDP checksum. */
3729 if ((status &
3730 (L2_FHDR_ERRORS_TCP_XSUM |
3731 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
3732 m->m_pkthdr.csum_flags |=
3733 M_CSUM_TCPv4 |
3734 M_CSUM_UDPv4;
3735 } else {
3736 DBPRINT(sc, BNX_WARN_SEND,
3737 "%s(): Invalid TCP/UDP "
3738 "checksum = 0x%04X!\n",
3739 __func__,
3740 l2fhdr->l2_fhdr_tcp_udp_xsum);
3741 }
3742 }
3743
3744 /*
3745 * If we received a packet with a vlan tag,
3746 * attach that information to the packet.
3747 */
3748 if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
3749 #if 0
3750 struct ether_vlan_header vh;
3751
3752 DBPRINT(sc, BNX_VERBOSE_SEND,
3753 "%s(): VLAN tag = 0x%04X\n",
3754 __func__,
3755 l2fhdr->l2_fhdr_vlan_tag);
3756
3757 if (m->m_pkthdr.len < ETHER_HDR_LEN) {
3758 m_freem(m);
3759 continue;
3760 }
3761 m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh);
3762 vh.evl_proto = vh.evl_encap_proto;
3763 vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag;
3764 vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
3765 m_adj(m, ETHER_HDR_LEN);
3766 if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
3767 continue;
3768 m->m_pkthdr.len += sizeof(vh);
3769 if (m->m_len < sizeof(vh) &&
3770 (m = m_pullup(m, sizeof(vh))) == NULL)
3771 goto bnx_rx_int_next_rx;
3772 m_copyback(m, 0, sizeof(vh), &vh);
3773 #else
3774 VLAN_INPUT_TAG(ifp, m,
3775 l2fhdr->l2_fhdr_vlan_tag,
3776 continue);
3777 #endif
3778 }
3779
3780 #if NBPFILTER > 0
3781 /*
3782 * Handle BPF listeners. Let the BPF
3783 * user see the packet.
3784 */
3785 if (ifp->if_bpf)
3786 bpf_mtap(ifp->if_bpf, m);
3787 #endif
3788
3789 /* Pass the mbuf off to the upper layers. */
3790 ifp->if_ipackets++;
3791 DBPRINT(sc, BNX_VERBOSE_RECV,
3792 "%s(): Passing received frame up.\n", __func__);
3793 (*ifp->if_input)(ifp, m);
3794 DBRUNIF(1, sc->rx_mbuf_alloc--);
3795
3796 }
3797
3798 sw_cons = NEXT_RX_BD(sw_cons);
3799
3800 /* Refresh hw_cons to see if there's new work */
3801 if (sw_cons == hw_cons) {
3802 hw_cons = sc->hw_rx_cons =
3803 sblk->status_rx_quick_consumer_index0;
3804 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
3805 USABLE_RX_BD_PER_PAGE)
3806 hw_cons++;
3807 }
3808
3809 /* Prevent speculative reads from getting ahead of
3810 * the status block.
3811 */
3812 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3813 BUS_SPACE_BARRIER_READ);
3814 }
3815
3816 for (i = 0; i < RX_PAGES; i++)
3817 bus_dmamap_sync(sc->bnx_dmatag,
3818 sc->rx_bd_chain_map[i], 0,
3819 sc->rx_bd_chain_map[i]->dm_mapsize,
3820 BUS_DMASYNC_PREWRITE);
3821
3822 sc->rx_cons = sw_cons;
3823 sc->rx_prod = sw_prod;
3824 sc->rx_prod_bseq = sw_prod_bseq;
3825
3826 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3827 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3828
3829 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
3830 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
3831 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
3832 }
3833
3834 /****************************************************************************/
3835 /* Handles transmit completion interrupt events. */
3836 /* */
3837 /* Returns: */
3838 /* Nothing. */
3839 /****************************************************************************/
3840 void
3841 bnx_tx_intr(struct bnx_softc *sc)
3842 {
3843 struct status_block *sblk = sc->status_block;
3844 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3845 u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
3846
3847 DBRUNIF(1, sc->tx_interrupts++);
3848 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3849 BUS_DMASYNC_POSTREAD);
3850
3851 /* Get the hardware's view of the TX consumer index. */
3852 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
3853
3854 /* Skip to the next entry if this is a chain page pointer. */
3855 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
3856 hw_tx_cons++;
3857
3858 sw_tx_cons = sc->tx_cons;
3859
3860 /* Prevent speculative reads from getting ahead of the status block. */
3861 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3862 BUS_SPACE_BARRIER_READ);
3863
3864 /* Cycle through any completed TX chain page entries. */
3865 while (sw_tx_cons != hw_tx_cons) {
3866 #ifdef BNX_DEBUG
3867 struct tx_bd *txbd = NULL;
3868 #endif
3869 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
3870
3871 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
3872 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
3873 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
3874
3875 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
3876 aprint_error_dev(sc->bnx_dev,
3877 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
3878 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
3879
3880 DBRUNIF(1, txbd = &sc->tx_bd_chain
3881 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
3882
3883 DBRUNIF((txbd == NULL),
3884 aprint_error_dev(sc->bnx_dev,
3885 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
3886 bnx_breakpoint(sc));
3887
3888 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
3889 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
3890
3891 /*
3892 * Free the associated mbuf. Remember
3893 * that only the last tx_bd of a packet
3894 * has an mbuf pointer and DMA map.
3895 */
3896 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
3897 /* Validate that this is the last tx_bd. */
3898 DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
3899 TX_BD_FLAGS_END)),
3900 aprint_error_dev(sc->bnx_dev,
3901 "tx_bd END flag not set but txmbuf == NULL!\n");
3902 bnx_breakpoint(sc));
3903
3904 DBRUN(BNX_INFO_SEND,
3905 aprint_debug("%s: Unloading map/freeing mbuf "
3906 "from tx_bd[0x%04X]\n",
3907 __func__, sw_tx_chain_cons));
3908
3909 /* Unmap the mbuf. */
3910 bus_dmamap_unload(sc->bnx_dmatag,
3911 sc->tx_mbuf_map[sw_tx_chain_cons]);
3912
3913 /* Free the mbuf. */
3914 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
3915 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
3916 DBRUNIF(1, sc->tx_mbuf_alloc--);
3917
3918 ifp->if_opackets++;
3919 }
3920
3921 sc->used_tx_bd--;
3922 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
3923
3924 /* Refresh hw_cons to see if there's new work. */
3925 hw_tx_cons = sc->hw_tx_cons =
3926 sblk->status_tx_quick_consumer_index0;
3927 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
3928 USABLE_TX_BD_PER_PAGE)
3929 hw_tx_cons++;
3930
3931 /* Prevent speculative reads from getting ahead of
3932 * the status block.
3933 */
3934 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3935 BUS_SPACE_BARRIER_READ);
3936 }
3937
3938 /* Clear the TX timeout timer. */
3939 ifp->if_timer = 0;
3940
3941 /* Clear the tx hardware queue full flag. */
3942 if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
3943 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
3944 aprint_debug_dev(sc->bnx_dev,
3945 "TX chain is open for business! Used tx_bd = %d\n",
3946 sc->used_tx_bd));
3947 ifp->if_flags &= ~IFF_OACTIVE;
3948 }
3949
3950 sc->tx_cons = sw_tx_cons;
3951 }
3952
3953 /****************************************************************************/
3954 /* Disables interrupt generation. */
3955 /* */
3956 /* Returns: */
3957 /* Nothing. */
3958 /****************************************************************************/
3959 void
3960 bnx_disable_intr(struct bnx_softc *sc)
3961 {
3962 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3963 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
3964 }
3965
3966 /****************************************************************************/
3967 /* Enables interrupt generation. */
3968 /* */
3969 /* Returns: */
3970 /* Nothing. */
3971 /****************************************************************************/
3972 void
3973 bnx_enable_intr(struct bnx_softc *sc)
3974 {
3975 u_int32_t val;
3976
3977 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
3978 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
3979
3980 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
3981 sc->last_status_idx);
3982
3983 val = REG_RD(sc, BNX_HC_COMMAND);
3984 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
3985 }
3986
3987 /****************************************************************************/
3988 /* Handles controller initialization. */
3989 /* */
3990 /****************************************************************************/
3991 int
3992 bnx_init(struct ifnet *ifp)
3993 {
3994 struct bnx_softc *sc = ifp->if_softc;
3995 u_int32_t ether_mtu;
3996 int s, error = 0;
3997
3998 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3999
4000 s = splnet();
4001
4002 bnx_stop(ifp, 0);
4003
4004 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4005 aprint_error("bnx: Controller reset failed!\n");
4006 goto bnx_init_exit;
4007 }
4008
4009 if ((error = bnx_chipinit(sc)) != 0) {
4010 aprint_error("bnx: Controller initialization failed!\n");
4011 goto bnx_init_exit;
4012 }
4013
4014 if ((error = bnx_blockinit(sc)) != 0) {
4015 aprint_error("bnx: Block initialization failed!\n");
4016 goto bnx_init_exit;
4017 }
4018
4019 /* Calculate and program the Ethernet MRU size. */
4020 if (ifp->if_mtu <= ETHERMTU) {
4021 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4022 sc->mbuf_alloc_size = MCLBYTES;
4023 } else {
4024 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4025 sc->mbuf_alloc_size = BNX_MAX_MRU;
4026 }
4027
4028
4029 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4030 __func__, ether_mtu);
4031
4032 /*
4033 * Program the MRU and enable Jumbo frame
4034 * support.
4035 */
4036 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4037 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4038
4039 /* Calculate the RX Ethernet frame size for rx_bd's. */
4040 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4041
4042 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4043 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4044 sc->mbuf_alloc_size, sc->max_frame_size);
4045
4046 /* Program appropriate promiscuous/multicast filtering. */
4047 bnx_set_rx_mode(sc);
4048
4049 /* Init RX buffer descriptor chain. */
4050 bnx_init_rx_chain(sc);
4051
4052 /* Init TX buffer descriptor chain. */
4053 bnx_init_tx_chain(sc);
4054
4055 /* Enable host interrupts. */
4056 bnx_enable_intr(sc);
4057
4058 if ((error = ether_mediachange(ifp)) != 0)
4059 goto bnx_init_exit;
4060
4061 ifp->if_flags |= IFF_RUNNING;
4062 ifp->if_flags &= ~IFF_OACTIVE;
4063
4064 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4065
4066 bnx_init_exit:
4067 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4068
4069 splx(s);
4070
4071 return(error);
4072 }
4073
4074 /****************************************************************************/
4075 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4076 /* memory visible to the controller. */
4077 /* */
4078 /* Returns: */
4079 /* 0 for success, positive value for failure. */
4080 /****************************************************************************/
4081 int
4082 bnx_tx_encap(struct bnx_softc *sc, struct mbuf **m_head)
4083 {
4084 bus_dmamap_t map;
4085 struct tx_bd *txbd = NULL;
4086 struct mbuf *m0;
4087 u_int16_t vlan_tag = 0, flags = 0;
4088 u_int16_t chain_prod, prod;
4089 #ifdef BNX_DEBUG
4090 u_int16_t debug_prod;
4091 #endif
4092 u_int32_t addr, prod_bseq;
4093 int i, error, rc = 0;
4094 struct m_tag *mtag;
4095
4096 m0 = *m_head;
4097
4098 /* Transfer any checksum offload flags to the bd. */
4099 if (m0->m_pkthdr.csum_flags) {
4100 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
4101 flags |= TX_BD_FLAGS_IP_CKSUM;
4102 if (m0->m_pkthdr.csum_flags &
4103 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4104 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4105 }
4106
4107 /* Transfer any VLAN tags to the bd. */
4108 mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m0);
4109 if (mtag != NULL) {
4110 flags |= TX_BD_FLAGS_VLAN_TAG;
4111 vlan_tag = VLAN_TAG_VALUE(mtag);
4112 }
4113
4114 /* Map the mbuf into DMAable memory. */
4115 prod = sc->tx_prod;
4116 chain_prod = TX_CHAIN_IDX(prod);
4117 map = sc->tx_mbuf_map[chain_prod];
4118
4119 /* Map the mbuf into our DMA address space. */
4120 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m0, BUS_DMA_NOWAIT);
4121 if (error != 0) {
4122 aprint_error_dev(sc->bnx_dev,
4123 "Error mapping mbuf into TX chain!\n");
4124 m_freem(m0);
4125 *m_head = NULL;
4126 return (error);
4127 }
4128 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4129 BUS_DMASYNC_PREWRITE);
4130 /*
4131 * The chip seems to require that at least 16 descriptors be kept
4132 * empty at all times. Make sure we honor that.
4133 * XXX Would it be faster to assume worst case scenario for
4134 * map->dm_nsegs and do this calculation higher up?
4135 */
4136 if (map->dm_nsegs > (USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE)) {
4137 bus_dmamap_unload(sc->bnx_dmatag, map);
4138 return (ENOBUFS);
4139 }
4140
4141 /* prod points to an empty tx_bd at this point. */
4142 prod_bseq = sc->tx_prod_bseq;
4143 #ifdef BNX_DEBUG
4144 debug_prod = chain_prod;
4145 #endif
4146 DBPRINT(sc, BNX_INFO_SEND,
4147 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4148 "prod_bseq = 0x%08X\n",
4149 __func__, *prod, chain_prod, prod_bseq);
4150
4151 /*
4152 * Cycle through each mbuf segment that makes up
4153 * the outgoing frame, gathering the mapping info
4154 * for that segment and creating a tx_bd for the
4155 * mbuf.
4156 */
4157 for (i = 0; i < map->dm_nsegs ; i++) {
4158 chain_prod = TX_CHAIN_IDX(prod);
4159 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4160
4161 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
4162 txbd->tx_bd_haddr_lo = htole32(addr);
4163 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4164 txbd->tx_bd_haddr_hi = htole32(addr);
4165 txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
4166 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
4167 txbd->tx_bd_flags = htole16(flags);
4168 prod_bseq += map->dm_segs[i].ds_len;
4169 if (i == 0)
4170 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
4171 prod = NEXT_TX_BD(prod);
4172 }
4173 /* Set the END flag on the last TX buffer descriptor. */
4174 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
4175
4176 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
4177
4178 DBPRINT(sc, BNX_INFO_SEND,
4179 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
4180 "prod_bseq = 0x%08X\n",
4181 __func__, prod, chain_prod, prod_bseq);
4182
4183 /*
4184 * Ensure that the mbuf pointer for this
4185 * transmission is placed at the array
4186 * index of the last descriptor in this
4187 * chain. This is done because a single
4188 * map is used for all segments of the mbuf
4189 * and we don't want to unload the map before
4190 * all of the segments have been freed.
4191 */
4192 sc->tx_mbuf_ptr[chain_prod] = m0;
4193 sc->used_tx_bd += map->dm_nsegs;
4194
4195 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4196 sc->tx_hi_watermark = sc->used_tx_bd);
4197
4198 DBRUNIF(1, sc->tx_mbuf_alloc++);
4199
4200 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4201 map_arg.maxsegs));
4202
4203 /* prod points to the next free tx_bd at this point. */
4204 sc->tx_prod = prod;
4205 sc->tx_prod_bseq = prod_bseq;
4206
4207 return (rc);
4208 }
4209
4210 /****************************************************************************/
4211 /* Main transmit routine. */
4212 /* */
4213 /* Returns: */
4214 /* Nothing. */
4215 /****************************************************************************/
4216 void
4217 bnx_start(struct ifnet *ifp)
4218 {
4219 struct bnx_softc *sc = ifp->if_softc;
4220 struct mbuf *m_head = NULL;
4221 int count = 0;
4222 u_int16_t tx_prod, tx_chain_prod;
4223
4224 /* If there's no link or the transmit queue is empty then just exit. */
4225 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
4226 DBPRINT(sc, BNX_INFO_SEND,
4227 "%s(): output active or device not running.\n", __func__);
4228 goto bnx_start_exit;
4229 }
4230
4231 /* prod points to the next free tx_bd. */
4232 tx_prod = sc->tx_prod;
4233 tx_chain_prod = TX_CHAIN_IDX(tx_prod);
4234
4235 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
4236 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
4237 __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
4238
4239 /*
4240 * Keep adding entries while there is space in the ring. We keep
4241 * BNX_TX_SLACK_SPACE entries unused at all times.
4242 */
4243 while (sc->used_tx_bd < USABLE_TX_BD - BNX_TX_SLACK_SPACE) {
4244 /* Check for any frames to send. */
4245 IFQ_POLL(&ifp->if_snd, m_head);
4246 if (m_head == NULL)
4247 break;
4248
4249 /*
4250 * Pack the data into the transmit ring. If we
4251 * don't have room, set the OACTIVE flag to wait
4252 * for the NIC to drain the chain.
4253 */
4254 if (bnx_tx_encap(sc, &m_head)) {
4255 ifp->if_flags |= IFF_OACTIVE;
4256 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
4257 "business! Total tx_bd used = %d\n",
4258 sc->used_tx_bd);
4259 break;
4260 }
4261
4262 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4263 count++;
4264
4265 #if NBPFILTER > 0
4266 /* Send a copy of the frame to any BPF listeners. */
4267 if (ifp->if_bpf)
4268 bpf_mtap(ifp->if_bpf, m_head);
4269 #endif
4270 }
4271
4272 if (count == 0) {
4273 /* no packets were dequeued */
4274 DBPRINT(sc, BNX_VERBOSE_SEND,
4275 "%s(): No packets were dequeued\n", __func__);
4276 goto bnx_start_exit;
4277 }
4278
4279 /* Update the driver's counters. */
4280 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
4281
4282 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
4283 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
4284 tx_chain_prod, sc->tx_prod_bseq);
4285
4286 /* Start the transmit. */
4287 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
4288 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
4289
4290 /* Set the tx timeout. */
4291 ifp->if_timer = BNX_TX_TIMEOUT;
4292
4293 bnx_start_exit:
4294 return;
4295 }
4296
4297 /****************************************************************************/
4298 /* Handles any IOCTL calls from the operating system. */
4299 /* */
4300 /* Returns: */
4301 /* 0 for success, positive value for failure. */
4302 /****************************************************************************/
4303 int
4304 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
4305 {
4306 struct bnx_softc *sc = ifp->if_softc;
4307 struct ifreq *ifr = (struct ifreq *) data;
4308 struct mii_data *mii;
4309 int s, error = 0;
4310
4311 s = splnet();
4312
4313 switch (command) {
4314 case SIOCSIFFLAGS:
4315 if (ifp->if_flags & IFF_UP) {
4316 if ((ifp->if_flags & IFF_RUNNING) &&
4317 ((ifp->if_flags ^ sc->bnx_if_flags) &
4318 (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
4319 bnx_set_rx_mode(sc);
4320 } else if (!(ifp->if_flags & IFF_RUNNING))
4321 bnx_init(ifp);
4322
4323 } else if (ifp->if_flags & IFF_RUNNING)
4324 bnx_stop(ifp, 1);
4325
4326 sc->bnx_if_flags = ifp->if_flags;
4327 break;
4328
4329 case SIOCSIFMEDIA:
4330 case SIOCGIFMEDIA:
4331 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
4332 sc->bnx_phy_flags);
4333
4334 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
4335 error = ifmedia_ioctl(ifp, ifr,
4336 &sc->bnx_ifmedia, command);
4337 else {
4338 mii = &sc->bnx_mii;
4339 error = ifmedia_ioctl(ifp, ifr,
4340 &mii->mii_media, command);
4341 }
4342 break;
4343
4344 default:
4345 error = ether_ioctl(ifp, command, data);
4346 if (error != ENETRESET)
4347 break;
4348 error = 0;
4349 if (command == SIOCADDMULTI || command == SIOCDELMULTI) {
4350 /* reload packet filter if running */
4351 if (ifp->if_flags & IFF_RUNNING)
4352 bnx_set_rx_mode(sc);
4353 }
4354 break;
4355 }
4356
4357 splx(s);
4358
4359 return (error);
4360 }
4361
4362 /****************************************************************************/
4363 /* Transmit timeout handler. */
4364 /* */
4365 /* Returns: */
4366 /* Nothing. */
4367 /****************************************************************************/
4368 void
4369 bnx_watchdog(struct ifnet *ifp)
4370 {
4371 struct bnx_softc *sc = ifp->if_softc;
4372
4373 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
4374 bnx_dump_status_block(sc));
4375
4376 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
4377
4378 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
4379
4380 bnx_init(ifp);
4381
4382 ifp->if_oerrors++;
4383 }
4384
4385 /*
4386 * Interrupt handler.
4387 */
4388 /****************************************************************************/
4389 /* Main interrupt entry point. Verifies that the controller generated the */
4390 /* interrupt and then calls a separate routine for handle the various */
4391 /* interrupt causes (PHY, TX, RX). */
4392 /* */
4393 /* Returns: */
4394 /* 0 for success, positive value for failure. */
4395 /****************************************************************************/
4396 int
4397 bnx_intr(void *xsc)
4398 {
4399 struct bnx_softc *sc;
4400 struct ifnet *ifp;
4401 u_int32_t status_attn_bits;
4402 const struct status_block *sblk;
4403
4404 sc = xsc;
4405 if (!device_is_active(sc->bnx_dev))
4406 return 0;
4407
4408 ifp = &sc->bnx_ec.ec_if;
4409
4410 DBRUNIF(1, sc->interrupts_generated++);
4411
4412 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4413 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4414
4415 /*
4416 * If the hardware status block index
4417 * matches the last value read by the
4418 * driver and we haven't asserted our
4419 * interrupt then there's nothing to do.
4420 */
4421 if ((sc->status_block->status_idx == sc->last_status_idx) &&
4422 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
4423 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
4424 return (0);
4425
4426 /* Ack the interrupt and stop others from occuring. */
4427 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4428 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
4429 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4430
4431 /* Keep processing data as long as there is work to do. */
4432 for (;;) {
4433 sblk = sc->status_block;
4434 status_attn_bits = sblk->status_attn_bits;
4435
4436 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
4437 aprint_debug("Simulating unexpected status attention bit set.");
4438 status_attn_bits = status_attn_bits |
4439 STATUS_ATTN_BITS_PARITY_ERROR);
4440
4441 /* Was it a link change interrupt? */
4442 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
4443 (sblk->status_attn_bits_ack &
4444 STATUS_ATTN_BITS_LINK_STATE))
4445 bnx_phy_intr(sc);
4446
4447 /* If any other attention is asserted then the chip is toast. */
4448 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
4449 (sblk->status_attn_bits_ack &
4450 ~STATUS_ATTN_BITS_LINK_STATE))) {
4451 DBRUN(1, sc->unexpected_attentions++);
4452
4453 aprint_error_dev(sc->bnx_dev,
4454 "Fatal attention detected: 0x%08X\n",
4455 sblk->status_attn_bits);
4456
4457 DBRUN(BNX_FATAL,
4458 if (bnx_debug_unexpected_attention == 0)
4459 bnx_breakpoint(sc));
4460
4461 bnx_init(ifp);
4462 return (1);
4463 }
4464
4465 /* Check for any completed RX frames. */
4466 if (sblk->status_rx_quick_consumer_index0 !=
4467 sc->hw_rx_cons)
4468 bnx_rx_intr(sc);
4469
4470 /* Check for any completed TX frames. */
4471 if (sblk->status_tx_quick_consumer_index0 !=
4472 sc->hw_tx_cons)
4473 bnx_tx_intr(sc);
4474
4475 /* Save the status block index value for use during the
4476 * next interrupt.
4477 */
4478 sc->last_status_idx = sblk->status_idx;
4479
4480 /* Prevent speculative reads from getting ahead of the
4481 * status block.
4482 */
4483 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4484 BUS_SPACE_BARRIER_READ);
4485
4486 /* If there's no work left then exit the isr. */
4487 if ((sblk->status_rx_quick_consumer_index0 ==
4488 sc->hw_rx_cons) &&
4489 (sblk->status_tx_quick_consumer_index0 ==
4490 sc->hw_tx_cons))
4491 break;
4492 }
4493
4494 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4495 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
4496
4497 /* Re-enable interrupts. */
4498 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4499 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
4500 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4501 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4502 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
4503
4504 /* Handle any frames that arrived while handling the interrupt. */
4505 if (!IFQ_IS_EMPTY(&ifp->if_snd))
4506 bnx_start(ifp);
4507
4508 return (1);
4509 }
4510
4511 /****************************************************************************/
4512 /* Programs the various packet receive modes (broadcast and multicast). */
4513 /* */
4514 /* Returns: */
4515 /* Nothing. */
4516 /****************************************************************************/
4517 void
4518 bnx_set_rx_mode(struct bnx_softc *sc)
4519 {
4520 struct ethercom *ec = &sc->bnx_ec;
4521 struct ifnet *ifp = &ec->ec_if;
4522 struct ether_multi *enm;
4523 struct ether_multistep step;
4524 u_int32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
4525 u_int32_t rx_mode, sort_mode;
4526 int h, i;
4527
4528 /* Initialize receive mode default settings. */
4529 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
4530 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
4531 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
4532
4533 /*
4534 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
4535 * be enbled.
4536 */
4537 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
4538 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
4539
4540 /*
4541 * Check for promiscuous, all multicast, or selected
4542 * multicast address filtering.
4543 */
4544 if (ifp->if_flags & IFF_PROMISC) {
4545 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
4546
4547 /* Enable promiscuous mode. */
4548 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
4549 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
4550 } else if (ifp->if_flags & IFF_ALLMULTI) {
4551 allmulti:
4552 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
4553
4554 /* Enable all multicast addresses. */
4555 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4556 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4557 0xffffffff);
4558 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
4559 } else {
4560 /* Accept one or more multicast(s). */
4561 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
4562
4563 ETHER_FIRST_MULTI(step, ec, enm);
4564 while (enm != NULL) {
4565 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
4566 ETHER_ADDR_LEN)) {
4567 ifp->if_flags |= IFF_ALLMULTI;
4568 goto allmulti;
4569 }
4570 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
4571 0xFF;
4572 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
4573 ETHER_NEXT_MULTI(step, enm);
4574 }
4575
4576 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4577 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4578 hashes[i]);
4579
4580 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
4581 }
4582
4583 /* Only make changes if the recive mode has actually changed. */
4584 if (rx_mode != sc->rx_mode) {
4585 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
4586 rx_mode);
4587
4588 sc->rx_mode = rx_mode;
4589 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
4590 }
4591
4592 /* Disable and clear the exisitng sort before enabling a new sort. */
4593 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
4594 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
4595 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
4596 }
4597
4598 /****************************************************************************/
4599 /* Called periodically to updates statistics from the controllers */
4600 /* statistics block. */
4601 /* */
4602 /* Returns: */
4603 /* Nothing. */
4604 /****************************************************************************/
4605 void
4606 bnx_stats_update(struct bnx_softc *sc)
4607 {
4608 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4609 struct statistics_block *stats;
4610
4611 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
4612 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4613 BUS_DMASYNC_POSTREAD);
4614
4615 stats = (struct statistics_block *)sc->stats_block;
4616
4617 /*
4618 * Update the interface statistics from the
4619 * hardware statistics.
4620 */
4621 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
4622
4623 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
4624 (u_long)stats->stat_EtherStatsOverrsizePkts +
4625 (u_long)stats->stat_IfInMBUFDiscards +
4626 (u_long)stats->stat_Dot3StatsAlignmentErrors +
4627 (u_long)stats->stat_Dot3StatsFCSErrors;
4628
4629 ifp->if_oerrors = (u_long)
4630 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
4631 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
4632 (u_long)stats->stat_Dot3StatsLateCollisions;
4633
4634 /*
4635 * Certain controllers don't report
4636 * carrier sense errors correctly.
4637 * See errata E11_5708CA0_1165.
4638 */
4639 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
4640 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
4641 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
4642
4643 /*
4644 * Update the sysctl statistics from the
4645 * hardware statistics.
4646 */
4647 sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
4648 (u_int64_t) stats->stat_IfHCInOctets_lo;
4649
4650 sc->stat_IfHCInBadOctets =
4651 ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
4652 (u_int64_t) stats->stat_IfHCInBadOctets_lo;
4653
4654 sc->stat_IfHCOutOctets =
4655 ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
4656 (u_int64_t) stats->stat_IfHCOutOctets_lo;
4657
4658 sc->stat_IfHCOutBadOctets =
4659 ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
4660 (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
4661
4662 sc->stat_IfHCInUcastPkts =
4663 ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
4664 (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
4665
4666 sc->stat_IfHCInMulticastPkts =
4667 ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
4668 (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
4669
4670 sc->stat_IfHCInBroadcastPkts =
4671 ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
4672 (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
4673
4674 sc->stat_IfHCOutUcastPkts =
4675 ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
4676 (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
4677
4678 sc->stat_IfHCOutMulticastPkts =
4679 ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
4680 (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
4681
4682 sc->stat_IfHCOutBroadcastPkts =
4683 ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
4684 (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
4685
4686 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
4687 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
4688
4689 sc->stat_Dot3StatsCarrierSenseErrors =
4690 stats->stat_Dot3StatsCarrierSenseErrors;
4691
4692 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
4693
4694 sc->stat_Dot3StatsAlignmentErrors =
4695 stats->stat_Dot3StatsAlignmentErrors;
4696
4697 sc->stat_Dot3StatsSingleCollisionFrames =
4698 stats->stat_Dot3StatsSingleCollisionFrames;
4699
4700 sc->stat_Dot3StatsMultipleCollisionFrames =
4701 stats->stat_Dot3StatsMultipleCollisionFrames;
4702
4703 sc->stat_Dot3StatsDeferredTransmissions =
4704 stats->stat_Dot3StatsDeferredTransmissions;
4705
4706 sc->stat_Dot3StatsExcessiveCollisions =
4707 stats->stat_Dot3StatsExcessiveCollisions;
4708
4709 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
4710
4711 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
4712
4713 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
4714
4715 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
4716
4717 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
4718
4719 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
4720
4721 sc->stat_EtherStatsPktsRx64Octets =
4722 stats->stat_EtherStatsPktsRx64Octets;
4723
4724 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
4725 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
4726
4727 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
4728 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
4729
4730 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
4731 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
4732
4733 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
4734 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
4735
4736 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
4737 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
4738
4739 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
4740 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
4741
4742 sc->stat_EtherStatsPktsTx64Octets =
4743 stats->stat_EtherStatsPktsTx64Octets;
4744
4745 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
4746 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
4747
4748 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
4749 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
4750
4751 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
4752 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
4753
4754 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
4755 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
4756
4757 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
4758 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
4759
4760 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
4761 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
4762
4763 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
4764
4765 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
4766
4767 sc->stat_OutXonSent = stats->stat_OutXonSent;
4768
4769 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
4770
4771 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
4772
4773 sc->stat_MacControlFramesReceived =
4774 stats->stat_MacControlFramesReceived;
4775
4776 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
4777
4778 sc->stat_IfInFramesL2FilterDiscards =
4779 stats->stat_IfInFramesL2FilterDiscards;
4780
4781 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
4782
4783 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
4784
4785 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
4786
4787 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
4788
4789 sc->stat_CatchupInRuleCheckerDiscards =
4790 stats->stat_CatchupInRuleCheckerDiscards;
4791
4792 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
4793
4794 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
4795
4796 sc->stat_CatchupInRuleCheckerP4Hit =
4797 stats->stat_CatchupInRuleCheckerP4Hit;
4798
4799 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
4800 }
4801
4802 void
4803 bnx_tick(void *xsc)
4804 {
4805 struct bnx_softc *sc = xsc;
4806 struct mii_data *mii;
4807 u_int32_t msg;
4808 u_int16_t prod, chain_prod;
4809 u_int32_t prod_bseq;
4810 int s = splnet();
4811
4812 /* Tell the firmware that the driver is still running. */
4813 #ifdef BNX_DEBUG
4814 msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
4815 #else
4816 msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
4817 #endif
4818 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
4819
4820 /* Update the statistics from the hardware statistics block. */
4821 bnx_stats_update(sc);
4822
4823 /* Schedule the next tick. */
4824 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4825
4826 /* DRC - ToDo: Add SerDes support and check SerDes link here. */
4827
4828 mii = &sc->bnx_mii;
4829 mii_tick(mii);
4830
4831 /* try to get more RX buffers, just in case */
4832 prod = sc->rx_prod;
4833 prod_bseq = sc->rx_prod_bseq;
4834 chain_prod = RX_CHAIN_IDX(prod);
4835 bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq);
4836 sc->rx_prod = prod;
4837 sc->rx_prod_bseq = prod_bseq;
4838 splx(s);
4839 return;
4840 }
4841
4842 /****************************************************************************/
4843 /* BNX Debug Routines */
4844 /****************************************************************************/
4845 #ifdef BNX_DEBUG
4846
4847 /****************************************************************************/
4848 /* Prints out information about an mbuf. */
4849 /* */
4850 /* Returns: */
4851 /* Nothing. */
4852 /****************************************************************************/
4853 void
4854 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
4855 {
4856 struct mbuf *mp = m;
4857
4858 if (m == NULL) {
4859 /* Index out of range. */
4860 aprint_error("mbuf ptr is null!\n");
4861 return;
4862 }
4863
4864 while (mp) {
4865 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
4866 mp, mp->m_len);
4867
4868 if (mp->m_flags & M_EXT)
4869 aprint_debug("M_EXT ");
4870 if (mp->m_flags & M_PKTHDR)
4871 aprint_debug("M_PKTHDR ");
4872 aprint_debug("\n");
4873
4874 if (mp->m_flags & M_EXT)
4875 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
4876 mp, mp->m_ext.ext_size);
4877
4878 mp = mp->m_next;
4879 }
4880 }
4881
4882 /****************************************************************************/
4883 /* Prints out the mbufs in the TX mbuf chain. */
4884 /* */
4885 /* Returns: */
4886 /* Nothing. */
4887 /****************************************************************************/
4888 void
4889 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
4890 {
4891 struct mbuf *m;
4892 int i;
4893
4894 BNX_PRINTF(sc,
4895 "----------------------------"
4896 " tx mbuf data "
4897 "----------------------------\n");
4898
4899 for (i = 0; i < count; i++) {
4900 m = sc->tx_mbuf_ptr[chain_prod];
4901 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
4902 bnx_dump_mbuf(sc, m);
4903 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
4904 }
4905
4906 BNX_PRINTF(sc,
4907 "--------------------------------------------"
4908 "----------------------------\n");
4909 }
4910
4911 /*
4912 * This routine prints the RX mbuf chain.
4913 */
4914 void
4915 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
4916 {
4917 struct mbuf *m;
4918 int i;
4919
4920 BNX_PRINTF(sc,
4921 "----------------------------"
4922 " rx mbuf data "
4923 "----------------------------\n");
4924
4925 for (i = 0; i < count; i++) {
4926 m = sc->rx_mbuf_ptr[chain_prod];
4927 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
4928 bnx_dump_mbuf(sc, m);
4929 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
4930 }
4931
4932
4933 BNX_PRINTF(sc,
4934 "--------------------------------------------"
4935 "----------------------------\n");
4936 }
4937
4938 void
4939 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
4940 {
4941 if (idx > MAX_TX_BD)
4942 /* Index out of range. */
4943 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
4944 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4945 /* TX Chain page pointer. */
4946 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
4947 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
4948 txbd->tx_bd_haddr_lo);
4949 else
4950 /* Normal tx_bd entry. */
4951 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
4952 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
4953 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
4954 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
4955 txbd->tx_bd_flags);
4956 }
4957
4958 void
4959 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
4960 {
4961 if (idx > MAX_RX_BD)
4962 /* Index out of range. */
4963 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
4964 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4965 /* TX Chain page pointer. */
4966 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
4967 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
4968 rxbd->rx_bd_haddr_lo);
4969 else
4970 /* Normal tx_bd entry. */
4971 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
4972 "0x%08X, flags = 0x%08X\n", idx,
4973 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
4974 rxbd->rx_bd_len, rxbd->rx_bd_flags);
4975 }
4976
4977 void
4978 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
4979 {
4980 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
4981 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
4982 "tcp_udp_xsum = 0x%04X\n", idx,
4983 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
4984 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
4985 l2fhdr->l2_fhdr_tcp_udp_xsum);
4986 }
4987
4988 /*
4989 * This routine prints the TX chain.
4990 */
4991 void
4992 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
4993 {
4994 struct tx_bd *txbd;
4995 int i;
4996
4997 /* First some info about the tx_bd chain structure. */
4998 BNX_PRINTF(sc,
4999 "----------------------------"
5000 " tx_bd chain "
5001 "----------------------------\n");
5002
5003 BNX_PRINTF(sc,
5004 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5005 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5006
5007 BNX_PRINTF(sc,
5008 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5009 (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5010
5011 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
5012
5013 BNX_PRINTF(sc, ""
5014 "-----------------------------"
5015 " tx_bd data "
5016 "-----------------------------\n");
5017
5018 /* Now print out the tx_bd's themselves. */
5019 for (i = 0; i < count; i++) {
5020 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5021 bnx_dump_txbd(sc, tx_prod, txbd);
5022 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5023 }
5024
5025 BNX_PRINTF(sc,
5026 "-----------------------------"
5027 "--------------"
5028 "-----------------------------\n");
5029 }
5030
5031 /*
5032 * This routine prints the RX chain.
5033 */
5034 void
5035 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5036 {
5037 struct rx_bd *rxbd;
5038 int i;
5039
5040 /* First some info about the tx_bd chain structure. */
5041 BNX_PRINTF(sc,
5042 "----------------------------"
5043 " rx_bd chain "
5044 "----------------------------\n");
5045
5046 BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
5047
5048 BNX_PRINTF(sc,
5049 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5050 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5051
5052 BNX_PRINTF(sc,
5053 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5054 (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5055
5056 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
5057
5058 BNX_PRINTF(sc,
5059 "----------------------------"
5060 " rx_bd data "
5061 "----------------------------\n");
5062
5063 /* Now print out the rx_bd's themselves. */
5064 for (i = 0; i < count; i++) {
5065 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5066 bnx_dump_rxbd(sc, rx_prod, rxbd);
5067 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5068 }
5069
5070 BNX_PRINTF(sc,
5071 "----------------------------"
5072 "--------------"
5073 "----------------------------\n");
5074 }
5075
5076 /*
5077 * This routine prints the status block.
5078 */
5079 void
5080 bnx_dump_status_block(struct bnx_softc *sc)
5081 {
5082 struct status_block *sblk;
5083 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5084 BUS_DMASYNC_POSTREAD);
5085
5086 sblk = sc->status_block;
5087
5088 BNX_PRINTF(sc, "----------------------------- Status Block "
5089 "-----------------------------\n");
5090
5091 BNX_PRINTF(sc,
5092 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5093 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5094 sblk->status_idx);
5095
5096 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5097 sblk->status_rx_quick_consumer_index0,
5098 sblk->status_tx_quick_consumer_index0);
5099
5100 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5101
5102 /* Theses indices are not used for normal L2 drivers. */
5103 if (sblk->status_rx_quick_consumer_index1 ||
5104 sblk->status_tx_quick_consumer_index1)
5105 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5106 sblk->status_rx_quick_consumer_index1,
5107 sblk->status_tx_quick_consumer_index1);
5108
5109 if (sblk->status_rx_quick_consumer_index2 ||
5110 sblk->status_tx_quick_consumer_index2)
5111 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5112 sblk->status_rx_quick_consumer_index2,
5113 sblk->status_tx_quick_consumer_index2);
5114
5115 if (sblk->status_rx_quick_consumer_index3 ||
5116 sblk->status_tx_quick_consumer_index3)
5117 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5118 sblk->status_rx_quick_consumer_index3,
5119 sblk->status_tx_quick_consumer_index3);
5120
5121 if (sblk->status_rx_quick_consumer_index4 ||
5122 sblk->status_rx_quick_consumer_index5)
5123 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5124 sblk->status_rx_quick_consumer_index4,
5125 sblk->status_rx_quick_consumer_index5);
5126
5127 if (sblk->status_rx_quick_consumer_index6 ||
5128 sblk->status_rx_quick_consumer_index7)
5129 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
5130 sblk->status_rx_quick_consumer_index6,
5131 sblk->status_rx_quick_consumer_index7);
5132
5133 if (sblk->status_rx_quick_consumer_index8 ||
5134 sblk->status_rx_quick_consumer_index9)
5135 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
5136 sblk->status_rx_quick_consumer_index8,
5137 sblk->status_rx_quick_consumer_index9);
5138
5139 if (sblk->status_rx_quick_consumer_index10 ||
5140 sblk->status_rx_quick_consumer_index11)
5141 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
5142 sblk->status_rx_quick_consumer_index10,
5143 sblk->status_rx_quick_consumer_index11);
5144
5145 if (sblk->status_rx_quick_consumer_index12 ||
5146 sblk->status_rx_quick_consumer_index13)
5147 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
5148 sblk->status_rx_quick_consumer_index12,
5149 sblk->status_rx_quick_consumer_index13);
5150
5151 if (sblk->status_rx_quick_consumer_index14 ||
5152 sblk->status_rx_quick_consumer_index15)
5153 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
5154 sblk->status_rx_quick_consumer_index14,
5155 sblk->status_rx_quick_consumer_index15);
5156
5157 if (sblk->status_completion_producer_index ||
5158 sblk->status_cmd_consumer_index)
5159 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
5160 sblk->status_completion_producer_index,
5161 sblk->status_cmd_consumer_index);
5162
5163 BNX_PRINTF(sc, "-------------------------------------------"
5164 "-----------------------------\n");
5165 }
5166
5167 /*
5168 * This routine prints the statistics block.
5169 */
5170 void
5171 bnx_dump_stats_block(struct bnx_softc *sc)
5172 {
5173 struct statistics_block *sblk;
5174 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5175 BUS_DMASYNC_POSTREAD);
5176
5177 sblk = sc->stats_block;
5178
5179 BNX_PRINTF(sc, ""
5180 "-----------------------------"
5181 " Stats Block "
5182 "-----------------------------\n");
5183
5184 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
5185 "IfHcInBadOctets = 0x%08X:%08X\n",
5186 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5187 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5188
5189 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
5190 "IfHcOutBadOctets = 0x%08X:%08X\n",
5191 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5192 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5193
5194 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
5195 "IfHcInMulticastPkts = 0x%08X:%08X\n",
5196 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5197 sblk->stat_IfHCInMulticastPkts_hi,
5198 sblk->stat_IfHCInMulticastPkts_lo);
5199
5200 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
5201 "IfHcOutUcastPkts = 0x%08X:%08X\n",
5202 sblk->stat_IfHCInBroadcastPkts_hi,
5203 sblk->stat_IfHCInBroadcastPkts_lo,
5204 sblk->stat_IfHCOutUcastPkts_hi,
5205 sblk->stat_IfHCOutUcastPkts_lo);
5206
5207 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5208 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5209 sblk->stat_IfHCOutMulticastPkts_hi,
5210 sblk->stat_IfHCOutMulticastPkts_lo,
5211 sblk->stat_IfHCOutBroadcastPkts_hi,
5212 sblk->stat_IfHCOutBroadcastPkts_lo);
5213
5214 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5215 BNX_PRINTF(sc, "0x%08X : "
5216 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5217 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5218
5219 if (sblk->stat_Dot3StatsCarrierSenseErrors)
5220 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5221 sblk->stat_Dot3StatsCarrierSenseErrors);
5222
5223 if (sblk->stat_Dot3StatsFCSErrors)
5224 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5225 sblk->stat_Dot3StatsFCSErrors);
5226
5227 if (sblk->stat_Dot3StatsAlignmentErrors)
5228 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5229 sblk->stat_Dot3StatsAlignmentErrors);
5230
5231 if (sblk->stat_Dot3StatsSingleCollisionFrames)
5232 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5233 sblk->stat_Dot3StatsSingleCollisionFrames);
5234
5235 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
5236 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
5237 sblk->stat_Dot3StatsMultipleCollisionFrames);
5238
5239 if (sblk->stat_Dot3StatsDeferredTransmissions)
5240 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
5241 sblk->stat_Dot3StatsDeferredTransmissions);
5242
5243 if (sblk->stat_Dot3StatsExcessiveCollisions)
5244 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
5245 sblk->stat_Dot3StatsExcessiveCollisions);
5246
5247 if (sblk->stat_Dot3StatsLateCollisions)
5248 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
5249 sblk->stat_Dot3StatsLateCollisions);
5250
5251 if (sblk->stat_EtherStatsCollisions)
5252 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
5253 sblk->stat_EtherStatsCollisions);
5254
5255 if (sblk->stat_EtherStatsFragments)
5256 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
5257 sblk->stat_EtherStatsFragments);
5258
5259 if (sblk->stat_EtherStatsJabbers)
5260 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
5261 sblk->stat_EtherStatsJabbers);
5262
5263 if (sblk->stat_EtherStatsUndersizePkts)
5264 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
5265 sblk->stat_EtherStatsUndersizePkts);
5266
5267 if (sblk->stat_EtherStatsOverrsizePkts)
5268 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
5269 sblk->stat_EtherStatsOverrsizePkts);
5270
5271 if (sblk->stat_EtherStatsPktsRx64Octets)
5272 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
5273 sblk->stat_EtherStatsPktsRx64Octets);
5274
5275 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
5276 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
5277 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
5278
5279 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
5280 BNX_PRINTF(sc, "0x%08X : "
5281 "EtherStatsPktsRx128Octetsto255Octets\n",
5282 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
5283
5284 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
5285 BNX_PRINTF(sc, "0x%08X : "
5286 "EtherStatsPktsRx256Octetsto511Octets\n",
5287 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
5288
5289 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
5290 BNX_PRINTF(sc, "0x%08X : "
5291 "EtherStatsPktsRx512Octetsto1023Octets\n",
5292 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
5293
5294 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
5295 BNX_PRINTF(sc, "0x%08X : "
5296 "EtherStatsPktsRx1024Octetsto1522Octets\n",
5297 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
5298
5299 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
5300 BNX_PRINTF(sc, "0x%08X : "
5301 "EtherStatsPktsRx1523Octetsto9022Octets\n",
5302 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
5303
5304 if (sblk->stat_EtherStatsPktsTx64Octets)
5305 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
5306 sblk->stat_EtherStatsPktsTx64Octets);
5307
5308 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
5309 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
5310 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
5311
5312 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
5313 BNX_PRINTF(sc, "0x%08X : "
5314 "EtherStatsPktsTx128Octetsto255Octets\n",
5315 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
5316
5317 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
5318 BNX_PRINTF(sc, "0x%08X : "
5319 "EtherStatsPktsTx256Octetsto511Octets\n",
5320 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
5321
5322 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
5323 BNX_PRINTF(sc, "0x%08X : "
5324 "EtherStatsPktsTx512Octetsto1023Octets\n",
5325 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
5326
5327 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
5328 BNX_PRINTF(sc, "0x%08X : "
5329 "EtherStatsPktsTx1024Octetsto1522Octets\n",
5330 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
5331
5332 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
5333 BNX_PRINTF(sc, "0x%08X : "
5334 "EtherStatsPktsTx1523Octetsto9022Octets\n",
5335 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
5336
5337 if (sblk->stat_XonPauseFramesReceived)
5338 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
5339 sblk->stat_XonPauseFramesReceived);
5340
5341 if (sblk->stat_XoffPauseFramesReceived)
5342 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
5343 sblk->stat_XoffPauseFramesReceived);
5344
5345 if (sblk->stat_OutXonSent)
5346 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
5347 sblk->stat_OutXonSent);
5348
5349 if (sblk->stat_OutXoffSent)
5350 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
5351 sblk->stat_OutXoffSent);
5352
5353 if (sblk->stat_FlowControlDone)
5354 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
5355 sblk->stat_FlowControlDone);
5356
5357 if (sblk->stat_MacControlFramesReceived)
5358 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
5359 sblk->stat_MacControlFramesReceived);
5360
5361 if (sblk->stat_XoffStateEntered)
5362 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
5363 sblk->stat_XoffStateEntered);
5364
5365 if (sblk->stat_IfInFramesL2FilterDiscards)
5366 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
5367 sblk->stat_IfInFramesL2FilterDiscards);
5368
5369 if (sblk->stat_IfInRuleCheckerDiscards)
5370 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
5371 sblk->stat_IfInRuleCheckerDiscards);
5372
5373 if (sblk->stat_IfInFTQDiscards)
5374 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
5375 sblk->stat_IfInFTQDiscards);
5376
5377 if (sblk->stat_IfInMBUFDiscards)
5378 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
5379 sblk->stat_IfInMBUFDiscards);
5380
5381 if (sblk->stat_IfInRuleCheckerP4Hit)
5382 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
5383 sblk->stat_IfInRuleCheckerP4Hit);
5384
5385 if (sblk->stat_CatchupInRuleCheckerDiscards)
5386 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
5387 sblk->stat_CatchupInRuleCheckerDiscards);
5388
5389 if (sblk->stat_CatchupInFTQDiscards)
5390 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
5391 sblk->stat_CatchupInFTQDiscards);
5392
5393 if (sblk->stat_CatchupInMBUFDiscards)
5394 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
5395 sblk->stat_CatchupInMBUFDiscards);
5396
5397 if (sblk->stat_CatchupInRuleCheckerP4Hit)
5398 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
5399 sblk->stat_CatchupInRuleCheckerP4Hit);
5400
5401 BNX_PRINTF(sc,
5402 "-----------------------------"
5403 "--------------"
5404 "-----------------------------\n");
5405 }
5406
5407 void
5408 bnx_dump_driver_state(struct bnx_softc *sc)
5409 {
5410 BNX_PRINTF(sc,
5411 "-----------------------------"
5412 " Driver State "
5413 "-----------------------------\n");
5414
5415 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
5416 "address\n", sc);
5417
5418 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
5419 sc->status_block);
5420
5421 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
5422 "address\n", sc->stats_block);
5423
5424 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
5425 "adddress\n", sc->tx_bd_chain);
5426
5427 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
5428 sc->rx_bd_chain);
5429
5430 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
5431 sc->tx_mbuf_ptr);
5432
5433 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
5434 sc->rx_mbuf_ptr);
5435
5436 BNX_PRINTF(sc,
5437 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
5438 sc->interrupts_generated);
5439
5440 BNX_PRINTF(sc,
5441 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
5442 sc->rx_interrupts);
5443
5444 BNX_PRINTF(sc,
5445 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
5446 sc->tx_interrupts);
5447
5448 BNX_PRINTF(sc,
5449 " 0x%08X - (sc->last_status_idx) status block index\n",
5450 sc->last_status_idx);
5451
5452 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
5453 sc->tx_prod);
5454
5455 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
5456 sc->tx_cons);
5457
5458 BNX_PRINTF(sc,
5459 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
5460 sc->tx_prod_bseq);
5461
5462 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
5463 sc->rx_prod);
5464
5465 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
5466 sc->rx_cons);
5467
5468 BNX_PRINTF(sc,
5469 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
5470 sc->rx_prod_bseq);
5471
5472 BNX_PRINTF(sc,
5473 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5474 sc->rx_mbuf_alloc);
5475
5476 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
5477 sc->free_rx_bd);
5478
5479 BNX_PRINTF(sc,
5480 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
5481 sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
5482
5483 BNX_PRINTF(sc,
5484 " 0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
5485 sc->tx_mbuf_alloc);
5486
5487 BNX_PRINTF(sc,
5488 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5489 sc->rx_mbuf_alloc);
5490
5491 BNX_PRINTF(sc, " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
5492 sc->used_tx_bd);
5493
5494 BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
5495 sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
5496
5497 BNX_PRINTF(sc,
5498 " 0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
5499 sc->mbuf_alloc_failed);
5500
5501 BNX_PRINTF(sc, "-------------------------------------------"
5502 "-----------------------------\n");
5503 }
5504
5505 void
5506 bnx_dump_hw_state(struct bnx_softc *sc)
5507 {
5508 u_int32_t val1;
5509 int i;
5510
5511 BNX_PRINTF(sc,
5512 "----------------------------"
5513 " Hardware State "
5514 "----------------------------\n");
5515
5516 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
5517
5518 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
5519 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
5520 val1, BNX_MISC_ENABLE_STATUS_BITS);
5521
5522 val1 = REG_RD(sc, BNX_DMA_STATUS);
5523 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
5524
5525 val1 = REG_RD(sc, BNX_CTX_STATUS);
5526 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
5527
5528 val1 = REG_RD(sc, BNX_EMAC_STATUS);
5529 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
5530 BNX_EMAC_STATUS);
5531
5532 val1 = REG_RD(sc, BNX_RPM_STATUS);
5533 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
5534
5535 val1 = REG_RD(sc, BNX_TBDR_STATUS);
5536 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
5537 BNX_TBDR_STATUS);
5538
5539 val1 = REG_RD(sc, BNX_TDMA_STATUS);
5540 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
5541 BNX_TDMA_STATUS);
5542
5543 val1 = REG_RD(sc, BNX_HC_STATUS);
5544 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
5545
5546 BNX_PRINTF(sc,
5547 "----------------------------"
5548 "----------------"
5549 "----------------------------\n");
5550
5551 BNX_PRINTF(sc,
5552 "----------------------------"
5553 " Register Dump "
5554 "----------------------------\n");
5555
5556 for (i = 0x400; i < 0x8000; i += 0x10)
5557 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
5558 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
5559 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
5560
5561 BNX_PRINTF(sc,
5562 "----------------------------"
5563 "----------------"
5564 "----------------------------\n");
5565 }
5566
5567 void
5568 bnx_breakpoint(struct bnx_softc *sc)
5569 {
5570 /* Unreachable code to shut the compiler up about unused functions. */
5571 if (0) {
5572 bnx_dump_txbd(sc, 0, NULL);
5573 bnx_dump_rxbd(sc, 0, NULL);
5574 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
5575 bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
5576 bnx_dump_l2fhdr(sc, 0, NULL);
5577 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
5578 bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
5579 bnx_dump_status_block(sc);
5580 bnx_dump_stats_block(sc);
5581 bnx_dump_driver_state(sc);
5582 bnx_dump_hw_state(sc);
5583 }
5584
5585 bnx_dump_driver_state(sc);
5586 /* Print the important status block fields. */
5587 bnx_dump_status_block(sc);
5588
5589 #if 0
5590 /* Call the debugger. */
5591 breakpoint();
5592 #endif
5593
5594 return;
5595 }
5596 #endif
5597