Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.18
      1 /*	$NetBSD: if_bnx.c,v 1.18 2008/02/07 01:21:55 dyoung Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.43 2007/01/30 03:21:10 krw Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2006 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.18 2008/02/07 01:21:55 dyoung Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5708C B1
     44  *
     45  * The following controllers are not supported by this driver:
     46  * (These are not "Production" versions of the controller.)
     47  *
     48  *   BCM5706C A0, A1
     49  *   BCM5706S A0, A1, A2, A3
     50  *   BCM5708C A0, B0
     51  *   BCM5708S A0, B0, B1
     52  */
     53 
     54 #include <sys/callout.h>
     55 
     56 #include <dev/pci/if_bnxreg.h>
     57 #include <dev/microcode/bnx/bnxfw.h>
     58 
     59 /****************************************************************************/
     60 /* BNX Driver Version                                                       */
     61 /****************************************************************************/
     62 const char bnx_driver_version[] = "v0.9.6";
     63 
     64 /****************************************************************************/
     65 /* BNX Debug Options                                                        */
     66 /****************************************************************************/
     67 #ifdef BNX_DEBUG
     68 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     69 
     70 	/*          0 = Never              */
     71 	/*          1 = 1 in 2,147,483,648 */
     72 	/*        256 = 1 in     8,388,608 */
     73 	/*       2048 = 1 in     1,048,576 */
     74 	/*      65536 = 1 in        32,768 */
     75 	/*    1048576 = 1 in         2,048 */
     76 	/*  268435456 =	1 in             8 */
     77 	/*  536870912 = 1 in             4 */
     78 	/* 1073741824 = 1 in             2 */
     79 
     80 	/* Controls how often the l2_fhdr frame error check will fail. */
     81 	int bnx_debug_l2fhdr_status_check = 0;
     82 
     83 	/* Controls how often the unexpected attention check will fail. */
     84 	int bnx_debug_unexpected_attention = 0;
     85 
     86 	/* Controls how often to simulate an mbuf allocation failure. */
     87 	int bnx_debug_mbuf_allocation_failure = 0;
     88 
     89 	/* Controls how often to simulate a DMA mapping failure. */
     90 	int bnx_debug_dma_map_addr_failure = 0;
     91 
     92 	/* Controls how often to simulate a bootcode failure. */
     93 	int bnx_debug_bootcode_running_failure = 0;
     94 #endif
     95 
     96 /****************************************************************************/
     97 /* PCI Device ID Table                                                      */
     98 /*                                                                          */
     99 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    100 /****************************************************************************/
    101 static const struct bnx_product {
    102 	pci_vendor_id_t		bp_vendor;
    103 	pci_product_id_t	bp_product;
    104 	pci_vendor_id_t		bp_subvendor;
    105 	pci_product_id_t	bp_subproduct;
    106 	const char		*bp_name;
    107 } bnx_devices[] = {
    108 #ifdef PCI_SUBPRODUCT_HP_NC370T
    109 	{
    110 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    111 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    112 	  "HP NC370T Multifunction Gigabit Server Adapter"
    113 	},
    114 #endif
    115 #ifdef PCI_SUBPRODUCT_HP_NC370i
    116 	{
    117 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    118 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    119 	  "HP NC370i Multifunction Gigabit Server Adapter"
    120 	},
    121 #endif
    122 	{
    123 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    124 	  0, 0,
    125 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    126 	},
    127 #ifdef PCI_SUBPRODUCT_HP_NC370F
    128 	{
    129 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    130 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    131 	  "HP NC370F Multifunction Gigabit Server Adapter"
    132 	},
    133 #endif
    134 	{
    135 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    136 	  0, 0,
    137 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    138 	},
    139 	{
    140 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    141 	  0, 0,
    142 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    143 	},
    144 	{
    145 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    146 	  0, 0,
    147 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    148 	},
    149 };
    150 
    151 /****************************************************************************/
    152 /* Supported Flash NVRAM device data.                                       */
    153 /****************************************************************************/
    154 static struct flash_spec flash_table[] =
    155 {
    156 	/* Slow EEPROM */
    157 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    158 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    159 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    160 	 "EEPROM - slow"},
    161 	/* Expansion entry 0001 */
    162 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    163 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    164 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    165 	 "Entry 0001"},
    166 	/* Saifun SA25F010 (non-buffered flash) */
    167 	/* strap, cfg1, & write1 need updates */
    168 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    169 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    170 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    171 	 "Non-buffered flash (128kB)"},
    172 	/* Saifun SA25F020 (non-buffered flash) */
    173 	/* strap, cfg1, & write1 need updates */
    174 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    175 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    176 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    177 	 "Non-buffered flash (256kB)"},
    178 	/* Expansion entry 0100 */
    179 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    180 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    181 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    182 	 "Entry 0100"},
    183 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    184 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    185 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    186 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    187 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    188 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    189 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    190 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    191 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    192 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    193 	/* Saifun SA25F005 (non-buffered flash) */
    194 	/* strap, cfg1, & write1 need updates */
    195 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    196 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    197 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    198 	 "Non-buffered flash (64kB)"},
    199 	/* Fast EEPROM */
    200 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    201 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    202 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    203 	 "EEPROM - fast"},
    204 	/* Expansion entry 1001 */
    205 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    206 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    207 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    208 	 "Entry 1001"},
    209 	/* Expansion entry 1010 */
    210 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    211 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    213 	 "Entry 1010"},
    214 	/* ATMEL AT45DB011B (buffered flash) */
    215 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    216 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    217 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    218 	 "Buffered flash (128kB)"},
    219 	/* Expansion entry 1100 */
    220 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    221 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    222 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    223 	 "Entry 1100"},
    224 	/* Expansion entry 1101 */
    225 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    226 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    228 	 "Entry 1101"},
    229 	/* Ateml Expansion entry 1110 */
    230 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    231 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    232 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    233 	 "Entry 1110 (Atmel)"},
    234 	/* ATMEL AT45DB021B (buffered flash) */
    235 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    236 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    237 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    238 	 "Buffered flash (256kB)"},
    239 };
    240 
    241 /****************************************************************************/
    242 /* OpenBSD device entry points.                                             */
    243 /****************************************************************************/
    244 static int	bnx_probe(device_t, cfdata_t, void *);
    245 void	bnx_attach(device_t, device_t, void *);
    246 int	bnx_detach(device_t, int);
    247 
    248 /****************************************************************************/
    249 /* BNX Debug Data Structure Dump Routines                                   */
    250 /****************************************************************************/
    251 #ifdef BNX_DEBUG
    252 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    253 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    254 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    255 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    256 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    257 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    258 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    259 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    260 void	bnx_dump_status_block(struct bnx_softc *);
    261 void	bnx_dump_stats_block(struct bnx_softc *);
    262 void	bnx_dump_driver_state(struct bnx_softc *);
    263 void	bnx_dump_hw_state(struct bnx_softc *);
    264 void	bnx_breakpoint(struct bnx_softc *);
    265 #endif
    266 
    267 /****************************************************************************/
    268 /* BNX Register/Memory Access Routines                                      */
    269 /****************************************************************************/
    270 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
    271 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
    272 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
    273 int	bnx_miibus_read_reg(device_t, int, int);
    274 void	bnx_miibus_write_reg(device_t, int, int, int);
    275 void	bnx_miibus_statchg(device_t);
    276 
    277 /****************************************************************************/
    278 /* BNX NVRAM Access Routines                                                */
    279 /****************************************************************************/
    280 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    281 int	bnx_release_nvram_lock(struct bnx_softc *);
    282 void	bnx_enable_nvram_access(struct bnx_softc *);
    283 void	bnx_disable_nvram_access(struct bnx_softc *);
    284 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    285 	    u_int32_t);
    286 int	bnx_init_nvram(struct bnx_softc *);
    287 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    288 int	bnx_nvram_test(struct bnx_softc *);
    289 #ifdef BNX_NVRAM_WRITE_SUPPORT
    290 int	bnx_enable_nvram_write(struct bnx_softc *);
    291 void	bnx_disable_nvram_write(struct bnx_softc *);
    292 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
    293 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    294 	    u_int32_t);
    295 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    296 #endif
    297 
    298 /****************************************************************************/
    299 /*                                                                          */
    300 /****************************************************************************/
    301 int	bnx_dma_alloc(struct bnx_softc *);
    302 void	bnx_dma_free(struct bnx_softc *);
    303 void	bnx_release_resources(struct bnx_softc *);
    304 
    305 /****************************************************************************/
    306 /* BNX Firmware Synchronization and Load                                    */
    307 /****************************************************************************/
    308 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
    309 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
    310 	    u_int32_t);
    311 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    312 	    struct fw_info *);
    313 void	bnx_init_cpus(struct bnx_softc *);
    314 
    315 void	bnx_stop(struct ifnet *, int);
    316 int	bnx_reset(struct bnx_softc *, u_int32_t);
    317 int	bnx_chipinit(struct bnx_softc *);
    318 int	bnx_blockinit(struct bnx_softc *);
    319 int	bnx_get_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
    320 	    u_int16_t *, u_int32_t *);
    321 
    322 int	bnx_init_tx_chain(struct bnx_softc *);
    323 int	bnx_init_rx_chain(struct bnx_softc *);
    324 void	bnx_free_rx_chain(struct bnx_softc *);
    325 void	bnx_free_tx_chain(struct bnx_softc *);
    326 
    327 int	bnx_tx_encap(struct bnx_softc *, struct mbuf **);
    328 void	bnx_start(struct ifnet *);
    329 int	bnx_ioctl(struct ifnet *, u_long, void *);
    330 void	bnx_watchdog(struct ifnet *);
    331 int	bnx_init(struct ifnet *);
    332 
    333 void	bnx_init_context(struct bnx_softc *);
    334 void	bnx_get_mac_addr(struct bnx_softc *);
    335 void	bnx_set_mac_addr(struct bnx_softc *);
    336 void	bnx_phy_intr(struct bnx_softc *);
    337 void	bnx_rx_intr(struct bnx_softc *);
    338 void	bnx_tx_intr(struct bnx_softc *);
    339 void	bnx_disable_intr(struct bnx_softc *);
    340 void	bnx_enable_intr(struct bnx_softc *);
    341 
    342 int	bnx_intr(void *);
    343 void	bnx_set_rx_mode(struct bnx_softc *);
    344 void	bnx_stats_update(struct bnx_softc *);
    345 void	bnx_tick(void *);
    346 
    347 /****************************************************************************/
    348 /* OpenBSD device dispatch table.                                           */
    349 /****************************************************************************/
    350 CFATTACH_DECL_NEW(bnx, sizeof(struct bnx_softc),
    351     bnx_probe, bnx_attach, bnx_detach, NULL);
    352 
    353 /****************************************************************************/
    354 /* Device probe function.                                                   */
    355 /*                                                                          */
    356 /* Compares the device to the driver's list of supported devices and        */
    357 /* reports back to the OS whether this is the right driver for the device.  */
    358 /*                                                                          */
    359 /* Returns:                                                                 */
    360 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    361 /****************************************************************************/
    362 static const struct bnx_product *
    363 bnx_lookup(const struct pci_attach_args *pa)
    364 {
    365 	int i;
    366 	pcireg_t subid;
    367 
    368 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    369 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    370 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    371 			continue;
    372 		if (!bnx_devices[i].bp_subvendor)
    373 			return &bnx_devices[i];
    374 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    375 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    376 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    377 			return &bnx_devices[i];
    378 	}
    379 
    380 	return NULL;
    381 }
    382 static int
    383 bnx_probe(device_t parent, cfdata_t match, void *aux)
    384 {
    385 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    386 
    387 	if (bnx_lookup(pa) != NULL)
    388 		return (1);
    389 
    390 	return (0);
    391 }
    392 
    393 /****************************************************************************/
    394 /* Device attach function.                                                  */
    395 /*                                                                          */
    396 /* Allocates device resources, performs secondary chip identification,      */
    397 /* resets and initializes the hardware, and initializes driver instance     */
    398 /* variables.                                                               */
    399 /*                                                                          */
    400 /* Returns:                                                                 */
    401 /*   0 on success, positive value on failure.                               */
    402 /****************************************************************************/
    403 void
    404 bnx_attach(device_t parent, device_t self, void *aux)
    405 {
    406 	const struct bnx_product *bp;
    407 	struct bnx_softc	*sc = device_private(self);
    408 	struct pci_attach_args	*pa = aux;
    409 	pci_chipset_tag_t	pc = pa->pa_pc;
    410 	pci_intr_handle_t	ih;
    411 	const char 		*intrstr = NULL;
    412 	u_int32_t		command;
    413 	struct ifnet		*ifp;
    414 	u_int32_t		val;
    415 	pcireg_t		memtype;
    416 
    417 	bp = bnx_lookup(pa);
    418 	if (bp == NULL)
    419 		panic("unknown device");
    420 
    421 	sc->bnx_dev = self;
    422 
    423 	aprint_naive("\n");
    424 	aprint_normal(": %s\n", bp->bp_name);
    425 
    426 	sc->bnx_pa = *pa;
    427 
    428 	/*
    429 	 * Map control/status registers.
    430 	*/
    431 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    432 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    433 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    434 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    435 
    436 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    437 		aprint_error_dev(sc->bnx_dev,
    438 		    "failed to enable memory mapping!\n");
    439 		return;
    440 	}
    441 
    442 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    443 	switch (memtype) {
    444 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    445 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    446 		if (pci_mapreg_map(pa, BNX_PCI_BAR0,
    447 		    memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
    448 		    NULL, &sc->bnx_size) == 0)
    449 			break;
    450 	default:
    451 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    452 		return;
    453 	}
    454 
    455 	if (pci_intr_map(pa, &ih)) {
    456 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    457 		goto bnx_attach_fail;
    458 	}
    459 
    460 	intrstr = pci_intr_string(pc, ih);
    461 
    462 	/*
    463 	 * Configure byte swap and enable indirect register access.
    464 	 * Rely on CPU to do target byte swapping on big endian systems.
    465 	 * Access to registers outside of PCI configurtion space are not
    466 	 * valid until this is done.
    467 	 */
    468 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    469 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    470 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    471 
    472 	/* Save ASIC revsion info. */
    473 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    474 
    475 	/* Weed out any non-production controller revisions. */
    476 	switch(BNX_CHIP_ID(sc)) {
    477 	case BNX_CHIP_ID_5706_A0:
    478 	case BNX_CHIP_ID_5706_A1:
    479 	case BNX_CHIP_ID_5708_A0:
    480 	case BNX_CHIP_ID_5708_B0:
    481 		aprint_error_dev(sc->bnx_dev,
    482 		    "unsupported controller revision (%c%d)!\n",
    483 		    ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
    484 		    PCI_REVISION(pa->pa_class) & 0x0f);
    485 		goto bnx_attach_fail;
    486 	}
    487 
    488 	if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
    489 		aprint_error_dev(sc->bnx_dev,
    490 		    "SerDes controllers are not supported!\n");
    491 		goto bnx_attach_fail;
    492 	}
    493 
    494 	/*
    495 	 * Find the base address for shared memory access.
    496 	 * Newer versions of bootcode use a signature and offset
    497 	 * while older versions use a fixed address.
    498 	 */
    499 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    500 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    501 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
    502 	else
    503 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    504 
    505 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    506 
    507 	/* Set initial device and PHY flags */
    508 	sc->bnx_flags = 0;
    509 	sc->bnx_phy_flags = 0;
    510 
    511 	/* Get PCI bus information (speed and type). */
    512 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    513 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    514 		u_int32_t clkreg;
    515 
    516 		sc->bnx_flags |= BNX_PCIX_FLAG;
    517 
    518 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    519 
    520 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    521 		switch (clkreg) {
    522 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    523 			sc->bus_speed_mhz = 133;
    524 			break;
    525 
    526 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    527 			sc->bus_speed_mhz = 100;
    528 			break;
    529 
    530 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    531 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    532 			sc->bus_speed_mhz = 66;
    533 			break;
    534 
    535 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    536 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    537 			sc->bus_speed_mhz = 50;
    538 			break;
    539 
    540 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    541 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    542 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    543 			sc->bus_speed_mhz = 33;
    544 			break;
    545 		}
    546 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    547 			sc->bus_speed_mhz = 66;
    548 		else
    549 			sc->bus_speed_mhz = 33;
    550 
    551 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    552 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    553 
    554 	/* Reset the controller. */
    555 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    556 		goto bnx_attach_fail;
    557 
    558 	/* Initialize the controller. */
    559 	if (bnx_chipinit(sc)) {
    560 		aprint_error_dev(sc->bnx_dev,
    561 		    "Controller initialization failed!\n");
    562 		goto bnx_attach_fail;
    563 	}
    564 
    565 	/* Perform NVRAM test. */
    566 	if (bnx_nvram_test(sc)) {
    567 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    568 		goto bnx_attach_fail;
    569 	}
    570 
    571 	/* Fetch the permanent Ethernet MAC address. */
    572 	bnx_get_mac_addr(sc);
    573 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    574 	    ether_sprintf(sc->eaddr));
    575 
    576 	/*
    577 	 * Trip points control how many BDs
    578 	 * should be ready before generating an
    579 	 * interrupt while ticks control how long
    580 	 * a BD can sit in the chain before
    581 	 * generating an interrupt.  Set the default
    582 	 * values for the RX and TX rings.
    583 	 */
    584 
    585 #ifdef BNX_DEBUG
    586 	/* Force more frequent interrupts. */
    587 	sc->bnx_tx_quick_cons_trip_int = 1;
    588 	sc->bnx_tx_quick_cons_trip     = 1;
    589 	sc->bnx_tx_ticks_int           = 0;
    590 	sc->bnx_tx_ticks               = 0;
    591 
    592 	sc->bnx_rx_quick_cons_trip_int = 1;
    593 	sc->bnx_rx_quick_cons_trip     = 1;
    594 	sc->bnx_rx_ticks_int           = 0;
    595 	sc->bnx_rx_ticks               = 0;
    596 #else
    597 	sc->bnx_tx_quick_cons_trip_int = 20;
    598 	sc->bnx_tx_quick_cons_trip     = 20;
    599 	sc->bnx_tx_ticks_int           = 80;
    600 	sc->bnx_tx_ticks               = 80;
    601 
    602 	sc->bnx_rx_quick_cons_trip_int = 6;
    603 	sc->bnx_rx_quick_cons_trip     = 6;
    604 	sc->bnx_rx_ticks_int           = 18;
    605 	sc->bnx_rx_ticks               = 18;
    606 #endif
    607 
    608 	/* Update statistics once every second. */
    609 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    610 
    611 	/*
    612 	 * The copper based NetXtreme II controllers
    613 	 * use an integrated PHY at address 1 while
    614 	 * the SerDes controllers use a PHY at
    615 	 * address 2.
    616 	 */
    617 	sc->bnx_phy_addr = 1;
    618 
    619 	if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
    620 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
    621 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
    622 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708) {
    623 			sc->bnx_phy_addr = 2;
    624 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
    625 					 BNX_SHARED_HW_CFG_CONFIG);
    626 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
    627 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
    628 		}
    629 	}
    630 
    631 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
    632 		aprint_error_dev(sc->bnx_dev,
    633 		    "SerDes is not supported by this driver!\n");
    634 		goto bnx_attach_fail;
    635 	}
    636 
    637 	/* Allocate DMA memory resources. */
    638 	sc->bnx_dmatag = pa->pa_dmat;
    639 	if (bnx_dma_alloc(sc)) {
    640 		aprint_error_dev(sc->bnx_dev,
    641 		    "DMA resource allocation failed!\n");
    642 		goto bnx_attach_fail;
    643 	}
    644 
    645 	/* Initialize the ifnet interface. */
    646 	ifp = &sc->bnx_ec.ec_if;
    647 	ifp->if_softc = sc;
    648 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    649 	ifp->if_ioctl = bnx_ioctl;
    650 	ifp->if_stop = bnx_stop;
    651 	ifp->if_start = bnx_start;
    652 	ifp->if_init = bnx_init;
    653 	ifp->if_timer = 0;
    654 	ifp->if_watchdog = bnx_watchdog;
    655         if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG)
    656                 ifp->if_baudrate = IF_Gbps(2.5);
    657         else
    658                 ifp->if_baudrate = IF_Gbps(1);
    659 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    660 	IFQ_SET_READY(&ifp->if_snd);
    661 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    662 
    663 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    664 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    665 
    666 	ifp->if_capabilities |=
    667 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    668 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    669 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    670 
    671 	/* Hookup IRQ last. */
    672 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    673 	if (sc->bnx_intrhand == NULL) {
    674 		aprint_error_dev(self, "couldn't establish interrupt");
    675 		if (intrstr != NULL)
    676 			aprint_error(" at %s", intrstr);
    677 		aprint_error("\n");
    678 		goto bnx_attach_fail;
    679 	}
    680 
    681 	sc->bnx_mii.mii_ifp = ifp;
    682 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    683 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    684 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    685 
    686 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    687 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    688 	    ether_mediastatus);
    689 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    690 	    MII_PHY_ANY, MII_OFFSET_ANY, MIIF_FORCEANEG);
    691 
    692 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    693 		aprint_error_dev(self, "no PHY found!\n");
    694 		ifmedia_add(&sc->bnx_mii.mii_media,
    695 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    696 		ifmedia_set(&sc->bnx_mii.mii_media,
    697 		    IFM_ETHER|IFM_MANUAL);
    698 	} else {
    699 		ifmedia_set(&sc->bnx_mii.mii_media,
    700 		    IFM_ETHER|IFM_AUTO);
    701 	}
    702 
    703 	/* Attach to the Ethernet interface list. */
    704 	if_attach(ifp);
    705 	ether_ifattach(ifp,sc->eaddr);
    706 
    707 	callout_init(&sc->bnx_timeout, 0);
    708 
    709 	if (!pmf_device_register(self, NULL, NULL))
    710 		aprint_error_dev(self, "couldn't establish power handler\n");
    711 	else
    712 		pmf_class_network_register(self, ifp);
    713 
    714 	/* Print some important debugging info. */
    715 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    716 
    717 	goto bnx_attach_exit;
    718 
    719 bnx_attach_fail:
    720 	bnx_release_resources(sc);
    721 
    722 bnx_attach_exit:
    723 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    724 }
    725 
    726 /****************************************************************************/
    727 /* Device detach function.                                                  */
    728 /*                                                                          */
    729 /* Stops the controller, resets the controller, and releases resources.     */
    730 /*                                                                          */
    731 /* Returns:                                                                 */
    732 /*   0 on success, positive value on failure.                               */
    733 /****************************************************************************/
    734 int
    735 bnx_detach(device_t dev, int flags)
    736 {
    737 	int s;
    738 	struct bnx_softc *sc;
    739 	struct ifnet *ifp;
    740 
    741 	sc = device_private(dev);
    742 	ifp = &sc->bnx_ec.ec_if;
    743 
    744 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    745 
    746 	/* Stop and reset the controller. */
    747 	s = splnet();
    748 	if (ifp->if_flags & IFF_RUNNING)
    749 		bnx_stop(ifp, 1);
    750 	splx(s);
    751 
    752 	pmf_device_deregister(dev);
    753 	ether_ifdetach(ifp);
    754 	if_detach(ifp);
    755 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    756 
    757 	/* Release all remaining resources. */
    758 	bnx_release_resources(sc);
    759 
    760 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    761 
    762 	return(0);
    763 }
    764 
    765 /****************************************************************************/
    766 /* Indirect register read.                                                  */
    767 /*                                                                          */
    768 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    769 /* configuration space.  Using this mechanism avoids issues with posted     */
    770 /* reads but is much slower than memory-mapped I/O.                         */
    771 /*                                                                          */
    772 /* Returns:                                                                 */
    773 /*   The value of the register.                                             */
    774 /****************************************************************************/
    775 u_int32_t
    776 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
    777 {
    778 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    779 
    780 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    781 	    offset);
    782 #ifdef BNX_DEBUG
    783 	{
    784 		u_int32_t val;
    785 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    786 		    BNX_PCICFG_REG_WINDOW);
    787 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    788 		    "val = 0x%08X\n", __func__, offset, val);
    789 		return (val);
    790 	}
    791 #else
    792 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    793 #endif
    794 }
    795 
    796 /****************************************************************************/
    797 /* Indirect register write.                                                 */
    798 /*                                                                          */
    799 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    800 /* configuration space.  Using this mechanism avoids issues with posted     */
    801 /* writes but is muchh slower than memory-mapped I/O.                       */
    802 /*                                                                          */
    803 /* Returns:                                                                 */
    804 /*   Nothing.                                                               */
    805 /****************************************************************************/
    806 void
    807 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
    808 {
    809 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    810 
    811 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    812 		__func__, offset, val);
    813 
    814 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    815 	    offset);
    816 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    817 }
    818 
    819 /****************************************************************************/
    820 /* Context memory write.                                                    */
    821 /*                                                                          */
    822 /* The NetXtreme II controller uses context memory to track connection      */
    823 /* information for L2 and higher network protocols.                         */
    824 /*                                                                          */
    825 /* Returns:                                                                 */
    826 /*   Nothing.                                                               */
    827 /****************************************************************************/
    828 void
    829 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
    830     u_int32_t val)
    831 {
    832 
    833 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
    834 		"val = 0x%08X\n", __func__, cid_addr, offset, val);
    835 
    836 	offset += cid_addr;
    837 	REG_WR(sc, BNX_CTX_DATA_ADR, offset);
    838 	REG_WR(sc, BNX_CTX_DATA, val);
    839 }
    840 
    841 /****************************************************************************/
    842 /* PHY register read.                                                       */
    843 /*                                                                          */
    844 /* Implements register reads on the MII bus.                                */
    845 /*                                                                          */
    846 /* Returns:                                                                 */
    847 /*   The value of the register.                                             */
    848 /****************************************************************************/
    849 int
    850 bnx_miibus_read_reg(device_t dev, int phy, int reg)
    851 {
    852 	struct bnx_softc	*sc = device_private(dev);
    853 	u_int32_t		val;
    854 	int			i;
    855 
    856 	/* Make sure we are accessing the correct PHY address. */
    857 	if (phy != sc->bnx_phy_addr) {
    858 		DBPRINT(sc, BNX_VERBOSE,
    859 		    "Invalid PHY address %d for PHY read!\n", phy);
    860 		return(0);
    861 	}
    862 
    863 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    864 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    865 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    866 
    867 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    868 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    869 
    870 		DELAY(40);
    871 	}
    872 
    873 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
    874 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
    875 	    BNX_EMAC_MDIO_COMM_START_BUSY;
    876 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
    877 
    878 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    879 		DELAY(10);
    880 
    881 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    882 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    883 			DELAY(5);
    884 
    885 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    886 			val &= BNX_EMAC_MDIO_COMM_DATA;
    887 
    888 			break;
    889 		}
    890 	}
    891 
    892 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
    893 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
    894 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
    895 		val = 0x0;
    896 	} else
    897 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    898 
    899 	DBPRINT(sc, BNX_EXCESSIVE,
    900 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
    901 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    902 
    903 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    904 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    905 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    906 
    907 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    908 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    909 
    910 		DELAY(40);
    911 	}
    912 
    913 	return (val & 0xffff);
    914 }
    915 
    916 /****************************************************************************/
    917 /* PHY register write.                                                      */
    918 /*                                                                          */
    919 /* Implements register writes on the MII bus.                               */
    920 /*                                                                          */
    921 /* Returns:                                                                 */
    922 /*   The value of the register.                                             */
    923 /****************************************************************************/
    924 void
    925 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
    926 {
    927 	struct bnx_softc	*sc = device_private(dev);
    928 	u_int32_t		val1;
    929 	int			i;
    930 
    931 	/* Make sure we are accessing the correct PHY address. */
    932 	if (phy != sc->bnx_phy_addr) {
    933 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
    934 		    phy);
    935 		return;
    936 	}
    937 
    938 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
    939 	    "val = 0x%04X\n", __func__,
    940 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    941 
    942 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    943 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    944 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    945 
    946 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
    947 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    948 
    949 		DELAY(40);
    950 	}
    951 
    952 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
    953 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
    954 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
    955 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
    956 
    957 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    958 		DELAY(10);
    959 
    960 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    961 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    962 			DELAY(5);
    963 			break;
    964 		}
    965 	}
    966 
    967 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
    968 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
    969 		    __LINE__);
    970 	}
    971 
    972 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    973 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    974 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    975 
    976 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
    977 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    978 
    979 		DELAY(40);
    980 	}
    981 }
    982 
    983 /****************************************************************************/
    984 /* MII bus status change.                                                   */
    985 /*                                                                          */
    986 /* Called by the MII bus driver when the PHY establishes link to set the    */
    987 /* MAC interface registers.                                                 */
    988 /*                                                                          */
    989 /* Returns:                                                                 */
    990 /*   Nothing.                                                               */
    991 /****************************************************************************/
    992 void
    993 bnx_miibus_statchg(device_t dev)
    994 {
    995 	struct bnx_softc	*sc = device_private(dev);
    996 	struct mii_data		*mii = &sc->bnx_mii;
    997 
    998 	BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT);
    999 
   1000 	/* Set MII or GMII inerface based on the speed negotiated by the PHY. */
   1001 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
   1002 		DBPRINT(sc, BNX_INFO, "Setting GMII interface.\n");
   1003 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_GMII);
   1004 	} else {
   1005 		DBPRINT(sc, BNX_INFO, "Setting MII interface.\n");
   1006 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_MII);
   1007 	}
   1008 
   1009 	/* Set half or full duplex based on the duplicity
   1010 	 * negotiated by the PHY.
   1011 	 */
   1012 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
   1013 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1014 		BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
   1015 	} else {
   1016 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1017 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
   1018 	}
   1019 }
   1020 
   1021 /****************************************************************************/
   1022 /* Acquire NVRAM lock.                                                      */
   1023 /*                                                                          */
   1024 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1025 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1026 /* for use by the driver.                                                   */
   1027 /*                                                                          */
   1028 /* Returns:                                                                 */
   1029 /*   0 on success, positive value on failure.                               */
   1030 /****************************************************************************/
   1031 int
   1032 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1033 {
   1034 	u_int32_t		val;
   1035 	int			j;
   1036 
   1037 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1038 
   1039 	/* Request access to the flash interface. */
   1040 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1041 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1042 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1043 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1044 			break;
   1045 
   1046 		DELAY(5);
   1047 	}
   1048 
   1049 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1050 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1051 		return (EBUSY);
   1052 	}
   1053 
   1054 	return (0);
   1055 }
   1056 
   1057 /****************************************************************************/
   1058 /* Release NVRAM lock.                                                      */
   1059 /*                                                                          */
   1060 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1061 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1062 /* for use by the driver.                                                   */
   1063 /*                                                                          */
   1064 /* Returns:                                                                 */
   1065 /*   0 on success, positive value on failure.                               */
   1066 /****************************************************************************/
   1067 int
   1068 bnx_release_nvram_lock(struct bnx_softc *sc)
   1069 {
   1070 	int			j;
   1071 	u_int32_t		val;
   1072 
   1073 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1074 
   1075 	/* Relinquish nvram interface. */
   1076 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1077 
   1078 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1079 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1080 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1081 			break;
   1082 
   1083 		DELAY(5);
   1084 	}
   1085 
   1086 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1087 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1088 		return (EBUSY);
   1089 	}
   1090 
   1091 	return (0);
   1092 }
   1093 
   1094 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1095 /****************************************************************************/
   1096 /* Enable NVRAM write access.                                               */
   1097 /*                                                                          */
   1098 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1099 /*                                                                          */
   1100 /* Returns:                                                                 */
   1101 /*   0 on success, positive value on failure.                               */
   1102 /****************************************************************************/
   1103 int
   1104 bnx_enable_nvram_write(struct bnx_softc *sc)
   1105 {
   1106 	u_int32_t		val;
   1107 
   1108 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1109 
   1110 	val = REG_RD(sc, BNX_MISC_CFG);
   1111 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1112 
   1113 	if (!sc->bnx_flash_info->buffered) {
   1114 		int j;
   1115 
   1116 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1117 		REG_WR(sc, BNX_NVM_COMMAND,
   1118 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1119 
   1120 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1121 			DELAY(5);
   1122 
   1123 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1124 			if (val & BNX_NVM_COMMAND_DONE)
   1125 				break;
   1126 		}
   1127 
   1128 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1129 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1130 			return (EBUSY);
   1131 		}
   1132 	}
   1133 
   1134 	return (0);
   1135 }
   1136 
   1137 /****************************************************************************/
   1138 /* Disable NVRAM write access.                                              */
   1139 /*                                                                          */
   1140 /* When the caller is finished writing to NVRAM write access must be        */
   1141 /* disabled.                                                                */
   1142 /*                                                                          */
   1143 /* Returns:                                                                 */
   1144 /*   Nothing.                                                               */
   1145 /****************************************************************************/
   1146 void
   1147 bnx_disable_nvram_write(struct bnx_softc *sc)
   1148 {
   1149 	u_int32_t		val;
   1150 
   1151 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1152 
   1153 	val = REG_RD(sc, BNX_MISC_CFG);
   1154 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1155 }
   1156 #endif
   1157 
   1158 /****************************************************************************/
   1159 /* Enable NVRAM access.                                                     */
   1160 /*                                                                          */
   1161 /* Before accessing NVRAM for read or write operations the caller must      */
   1162 /* enabled NVRAM access.                                                    */
   1163 /*                                                                          */
   1164 /* Returns:                                                                 */
   1165 /*   Nothing.                                                               */
   1166 /****************************************************************************/
   1167 void
   1168 bnx_enable_nvram_access(struct bnx_softc *sc)
   1169 {
   1170 	u_int32_t		val;
   1171 
   1172 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1173 
   1174 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1175 	/* Enable both bits, even on read. */
   1176 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1177 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1178 }
   1179 
   1180 /****************************************************************************/
   1181 /* Disable NVRAM access.                                                    */
   1182 /*                                                                          */
   1183 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1184 /*                                                                          */
   1185 /* Returns:                                                                 */
   1186 /*   Nothing.                                                               */
   1187 /****************************************************************************/
   1188 void
   1189 bnx_disable_nvram_access(struct bnx_softc *sc)
   1190 {
   1191 	u_int32_t		val;
   1192 
   1193 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1194 
   1195 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1196 
   1197 	/* Disable both bits, even after read. */
   1198 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1199 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1200 }
   1201 
   1202 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1203 /****************************************************************************/
   1204 /* Erase NVRAM page before writing.                                         */
   1205 /*                                                                          */
   1206 /* Non-buffered flash parts require that a page be erased before it is      */
   1207 /* written.                                                                 */
   1208 /*                                                                          */
   1209 /* Returns:                                                                 */
   1210 /*   0 on success, positive value on failure.                               */
   1211 /****************************************************************************/
   1212 int
   1213 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
   1214 {
   1215 	u_int32_t		cmd;
   1216 	int			j;
   1217 
   1218 	/* Buffered flash doesn't require an erase. */
   1219 	if (sc->bnx_flash_info->buffered)
   1220 		return (0);
   1221 
   1222 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1223 
   1224 	/* Build an erase command. */
   1225 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1226 	    BNX_NVM_COMMAND_DOIT;
   1227 
   1228 	/*
   1229 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
   1230 	 * and issue the erase command.
   1231 	 */
   1232 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1233 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1234 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1235 
   1236 	/* Wait for completion. */
   1237 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1238 		u_int32_t val;
   1239 
   1240 		DELAY(5);
   1241 
   1242 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1243 		if (val & BNX_NVM_COMMAND_DONE)
   1244 			break;
   1245 	}
   1246 
   1247 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1248 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1249 		return (EBUSY);
   1250 	}
   1251 
   1252 	return (0);
   1253 }
   1254 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1255 
   1256 /****************************************************************************/
   1257 /* Read a dword (32 bits) from NVRAM.                                       */
   1258 /*                                                                          */
   1259 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1260 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1261 /*                                                                          */
   1262 /* Returns:                                                                 */
   1263 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1264 /****************************************************************************/
   1265 int
   1266 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
   1267     u_int8_t *ret_val, u_int32_t cmd_flags)
   1268 {
   1269 	u_int32_t		cmd;
   1270 	int			i, rc = 0;
   1271 
   1272 	/* Build the command word. */
   1273 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1274 
   1275 	/* Calculate the offset for buffered flash. */
   1276 	if (sc->bnx_flash_info->buffered)
   1277 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1278 		    sc->bnx_flash_info->page_bits) +
   1279 		    (offset % sc->bnx_flash_info->page_size);
   1280 
   1281 	/*
   1282 	 * Clear the DONE bit separately, set the address to read,
   1283 	 * and issue the read.
   1284 	 */
   1285 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1286 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1287 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1288 
   1289 	/* Wait for completion. */
   1290 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1291 		u_int32_t val;
   1292 
   1293 		DELAY(5);
   1294 
   1295 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1296 		if (val & BNX_NVM_COMMAND_DONE) {
   1297 			val = REG_RD(sc, BNX_NVM_READ);
   1298 
   1299 			val = bnx_be32toh(val);
   1300 			memcpy(ret_val, &val, 4);
   1301 			break;
   1302 		}
   1303 	}
   1304 
   1305 	/* Check for errors. */
   1306 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1307 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1308 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1309 		rc = EBUSY;
   1310 	}
   1311 
   1312 	return(rc);
   1313 }
   1314 
   1315 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1316 /****************************************************************************/
   1317 /* Write a dword (32 bits) to NVRAM.                                        */
   1318 /*                                                                          */
   1319 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1320 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1321 /* enabled NVRAM write access.                                              */
   1322 /*                                                                          */
   1323 /* Returns:                                                                 */
   1324 /*   0 on success, positive value on failure.                               */
   1325 /****************************************************************************/
   1326 int
   1327 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
   1328     u_int32_t cmd_flags)
   1329 {
   1330 	u_int32_t		cmd, val32;
   1331 	int			j;
   1332 
   1333 	/* Build the command word. */
   1334 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1335 
   1336 	/* Calculate the offset for buffered flash. */
   1337 	if (sc->bnx_flash_info->buffered)
   1338 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1339 		    sc->bnx_flash_info->page_bits) +
   1340 		    (offset % sc->bnx_flash_info->page_size);
   1341 
   1342 	/*
   1343 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1344 	 * set the NVRAM address to write, and issue the write command
   1345 	 */
   1346 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1347 	memcpy(&val32, val, 4);
   1348 	val32 = htobe32(val32);
   1349 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1350 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1351 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1352 
   1353 	/* Wait for completion. */
   1354 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1355 		DELAY(5);
   1356 
   1357 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1358 			break;
   1359 	}
   1360 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1361 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1362 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1363 		return (EBUSY);
   1364 	}
   1365 
   1366 	return (0);
   1367 }
   1368 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1369 
   1370 /****************************************************************************/
   1371 /* Initialize NVRAM access.                                                 */
   1372 /*                                                                          */
   1373 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1374 /* access that device.                                                      */
   1375 /*                                                                          */
   1376 /* Returns:                                                                 */
   1377 /*   0 on success, positive value on failure.                               */
   1378 /****************************************************************************/
   1379 int
   1380 bnx_init_nvram(struct bnx_softc *sc)
   1381 {
   1382 	u_int32_t		val;
   1383 	int			j, entry_count, rc;
   1384 	struct flash_spec	*flash;
   1385 
   1386 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1387 
   1388 	/* Determine the selected interface. */
   1389 	val = REG_RD(sc, BNX_NVM_CFG1);
   1390 
   1391 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1392 
   1393 	rc = 0;
   1394 
   1395 	/*
   1396 	 * Flash reconfiguration is required to support additional
   1397 	 * NVRAM devices not directly supported in hardware.
   1398 	 * Check if the flash interface was reconfigured
   1399 	 * by the bootcode.
   1400 	 */
   1401 
   1402 	if (val & 0x40000000) {
   1403 		/* Flash interface reconfigured by bootcode. */
   1404 
   1405 		DBPRINT(sc,BNX_INFO_LOAD,
   1406 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1407 
   1408 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1409 		     j++, flash++) {
   1410 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1411 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1412 				sc->bnx_flash_info = flash;
   1413 				break;
   1414 			}
   1415 		}
   1416 	} else {
   1417 		/* Flash interface not yet reconfigured. */
   1418 		u_int32_t mask;
   1419 
   1420 		DBPRINT(sc,BNX_INFO_LOAD,
   1421 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1422 
   1423 		if (val & (1 << 23))
   1424 			mask = FLASH_BACKUP_STRAP_MASK;
   1425 		else
   1426 			mask = FLASH_STRAP_MASK;
   1427 
   1428 		/* Look for the matching NVRAM device configuration data. */
   1429 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1430 		    j++, flash++) {
   1431 			/* Check if the dev matches any of the known devices. */
   1432 			if ((val & mask) == (flash->strapping & mask)) {
   1433 				/* Found a device match. */
   1434 				sc->bnx_flash_info = flash;
   1435 
   1436 				/* Request access to the flash interface. */
   1437 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1438 					return (rc);
   1439 
   1440 				/* Reconfigure the flash interface. */
   1441 				bnx_enable_nvram_access(sc);
   1442 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1443 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1444 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1445 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1446 				bnx_disable_nvram_access(sc);
   1447 				bnx_release_nvram_lock(sc);
   1448 
   1449 				break;
   1450 			}
   1451 		}
   1452 	}
   1453 
   1454 	/* Check if a matching device was found. */
   1455 	if (j == entry_count) {
   1456 		sc->bnx_flash_info = NULL;
   1457 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1458 			__FILE__, __LINE__);
   1459 		rc = ENODEV;
   1460 	}
   1461 
   1462 	/* Write the flash config data to the shared memory interface. */
   1463 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1464 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1465 	if (val)
   1466 		sc->bnx_flash_size = val;
   1467 	else
   1468 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1469 
   1470 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1471 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1472 
   1473 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1474 
   1475 	return (rc);
   1476 }
   1477 
   1478 /****************************************************************************/
   1479 /* Read an arbitrary range of data from NVRAM.                              */
   1480 /*                                                                          */
   1481 /* Prepares the NVRAM interface for access and reads the requested data     */
   1482 /* into the supplied buffer.                                                */
   1483 /*                                                                          */
   1484 /* Returns:                                                                 */
   1485 /*   0 on success and the data read, positive value on failure.             */
   1486 /****************************************************************************/
   1487 int
   1488 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
   1489     int buf_size)
   1490 {
   1491 	int			rc = 0;
   1492 	u_int32_t		cmd_flags, offset32, len32, extra;
   1493 
   1494 	if (buf_size == 0)
   1495 		return (0);
   1496 
   1497 	/* Request access to the flash interface. */
   1498 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1499 		return (rc);
   1500 
   1501 	/* Enable access to flash interface */
   1502 	bnx_enable_nvram_access(sc);
   1503 
   1504 	len32 = buf_size;
   1505 	offset32 = offset;
   1506 	extra = 0;
   1507 
   1508 	cmd_flags = 0;
   1509 
   1510 	if (offset32 & 3) {
   1511 		u_int8_t buf[4];
   1512 		u_int32_t pre_len;
   1513 
   1514 		offset32 &= ~3;
   1515 		pre_len = 4 - (offset & 3);
   1516 
   1517 		if (pre_len >= len32) {
   1518 			pre_len = len32;
   1519 			cmd_flags =
   1520 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1521 		} else
   1522 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1523 
   1524 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1525 
   1526 		if (rc)
   1527 			return (rc);
   1528 
   1529 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1530 
   1531 		offset32 += 4;
   1532 		ret_buf += pre_len;
   1533 		len32 -= pre_len;
   1534 	}
   1535 
   1536 	if (len32 & 3) {
   1537 		extra = 4 - (len32 & 3);
   1538 		len32 = (len32 + 4) & ~3;
   1539 	}
   1540 
   1541 	if (len32 == 4) {
   1542 		u_int8_t buf[4];
   1543 
   1544 		if (cmd_flags)
   1545 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1546 		else
   1547 			cmd_flags =
   1548 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1549 
   1550 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1551 
   1552 		memcpy(ret_buf, buf, 4 - extra);
   1553 	} else if (len32 > 0) {
   1554 		u_int8_t buf[4];
   1555 
   1556 		/* Read the first word. */
   1557 		if (cmd_flags)
   1558 			cmd_flags = 0;
   1559 		else
   1560 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1561 
   1562 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1563 
   1564 		/* Advance to the next dword. */
   1565 		offset32 += 4;
   1566 		ret_buf += 4;
   1567 		len32 -= 4;
   1568 
   1569 		while (len32 > 4 && rc == 0) {
   1570 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1571 
   1572 			/* Advance to the next dword. */
   1573 			offset32 += 4;
   1574 			ret_buf += 4;
   1575 			len32 -= 4;
   1576 		}
   1577 
   1578 		if (rc)
   1579 			return (rc);
   1580 
   1581 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1582 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1583 
   1584 		memcpy(ret_buf, buf, 4 - extra);
   1585 	}
   1586 
   1587 	/* Disable access to flash interface and release the lock. */
   1588 	bnx_disable_nvram_access(sc);
   1589 	bnx_release_nvram_lock(sc);
   1590 
   1591 	return (rc);
   1592 }
   1593 
   1594 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1595 /****************************************************************************/
   1596 /* Write an arbitrary range of data from NVRAM.                             */
   1597 /*                                                                          */
   1598 /* Prepares the NVRAM interface for write access and writes the requested   */
   1599 /* data from the supplied buffer.  The caller is responsible for            */
   1600 /* calculating any appropriate CRCs.                                        */
   1601 /*                                                                          */
   1602 /* Returns:                                                                 */
   1603 /*   0 on success, positive value on failure.                               */
   1604 /****************************************************************************/
   1605 int
   1606 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
   1607     int buf_size)
   1608 {
   1609 	u_int32_t		written, offset32, len32;
   1610 	u_int8_t		*buf, start[4], end[4];
   1611 	int			rc = 0;
   1612 	int			align_start, align_end;
   1613 
   1614 	buf = data_buf;
   1615 	offset32 = offset;
   1616 	len32 = buf_size;
   1617 	align_start = align_end = 0;
   1618 
   1619 	if ((align_start = (offset32 & 3))) {
   1620 		offset32 &= ~3;
   1621 		len32 += align_start;
   1622 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1623 			return (rc);
   1624 	}
   1625 
   1626 	if (len32 & 3) {
   1627 	       	if ((len32 > 4) || !align_start) {
   1628 			align_end = 4 - (len32 & 3);
   1629 			len32 += align_end;
   1630 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1631 			    end, 4))) {
   1632 				return (rc);
   1633 			}
   1634 		}
   1635 	}
   1636 
   1637 	if (align_start || align_end) {
   1638 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1639 		if (buf == 0)
   1640 			return (ENOMEM);
   1641 
   1642 		if (align_start)
   1643 			memcpy(buf, start, 4);
   1644 
   1645 		if (align_end)
   1646 			memcpy(buf + len32 - 4, end, 4);
   1647 
   1648 		memcpy(buf + align_start, data_buf, buf_size);
   1649 	}
   1650 
   1651 	written = 0;
   1652 	while ((written < len32) && (rc == 0)) {
   1653 		u_int32_t page_start, page_end, data_start, data_end;
   1654 		u_int32_t addr, cmd_flags;
   1655 		int i;
   1656 		u_int8_t flash_buffer[264];
   1657 
   1658 	    /* Find the page_start addr */
   1659 		page_start = offset32 + written;
   1660 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1661 		/* Find the page_end addr */
   1662 		page_end = page_start + sc->bnx_flash_info->page_size;
   1663 		/* Find the data_start addr */
   1664 		data_start = (written == 0) ? offset32 : page_start;
   1665 		/* Find the data_end addr */
   1666 		data_end = (page_end > offset32 + len32) ?
   1667 		    (offset32 + len32) : page_end;
   1668 
   1669 		/* Request access to the flash interface. */
   1670 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1671 			goto nvram_write_end;
   1672 
   1673 		/* Enable access to flash interface */
   1674 		bnx_enable_nvram_access(sc);
   1675 
   1676 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1677 		if (sc->bnx_flash_info->buffered == 0) {
   1678 			int j;
   1679 
   1680 			/* Read the whole page into the buffer
   1681 			 * (non-buffer flash only) */
   1682 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1683 				if (j == (sc->bnx_flash_info->page_size - 4))
   1684 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1685 
   1686 				rc = bnx_nvram_read_dword(sc,
   1687 					page_start + j,
   1688 					&flash_buffer[j],
   1689 					cmd_flags);
   1690 
   1691 				if (rc)
   1692 					goto nvram_write_end;
   1693 
   1694 				cmd_flags = 0;
   1695 			}
   1696 		}
   1697 
   1698 		/* Enable writes to flash interface (unlock write-protect) */
   1699 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1700 			goto nvram_write_end;
   1701 
   1702 		/* Erase the page */
   1703 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1704 			goto nvram_write_end;
   1705 
   1706 		/* Re-enable the write again for the actual write */
   1707 		bnx_enable_nvram_write(sc);
   1708 
   1709 		/* Loop to write back the buffer data from page_start to
   1710 		 * data_start */
   1711 		i = 0;
   1712 		if (sc->bnx_flash_info->buffered == 0) {
   1713 			for (addr = page_start; addr < data_start;
   1714 				addr += 4, i += 4) {
   1715 
   1716 				rc = bnx_nvram_write_dword(sc, addr,
   1717 				    &flash_buffer[i], cmd_flags);
   1718 
   1719 				if (rc != 0)
   1720 					goto nvram_write_end;
   1721 
   1722 				cmd_flags = 0;
   1723 			}
   1724 		}
   1725 
   1726 		/* Loop to write the new data from data_start to data_end */
   1727 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1728 			if ((addr == page_end - 4) ||
   1729 			    ((sc->bnx_flash_info->buffered) &&
   1730 			    (addr == data_end - 4))) {
   1731 
   1732 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1733 			}
   1734 
   1735 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1736 
   1737 			if (rc != 0)
   1738 				goto nvram_write_end;
   1739 
   1740 			cmd_flags = 0;
   1741 			buf += 4;
   1742 		}
   1743 
   1744 		/* Loop to write back the buffer data from data_end
   1745 		 * to page_end */
   1746 		if (sc->bnx_flash_info->buffered == 0) {
   1747 			for (addr = data_end; addr < page_end;
   1748 			    addr += 4, i += 4) {
   1749 
   1750 				if (addr == page_end-4)
   1751 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1752 
   1753 				rc = bnx_nvram_write_dword(sc, addr,
   1754 				    &flash_buffer[i], cmd_flags);
   1755 
   1756 				if (rc != 0)
   1757 					goto nvram_write_end;
   1758 
   1759 				cmd_flags = 0;
   1760 			}
   1761 		}
   1762 
   1763 		/* Disable writes to flash interface (lock write-protect) */
   1764 		bnx_disable_nvram_write(sc);
   1765 
   1766 		/* Disable access to flash interface */
   1767 		bnx_disable_nvram_access(sc);
   1768 		bnx_release_nvram_lock(sc);
   1769 
   1770 		/* Increment written */
   1771 		written += data_end - data_start;
   1772 	}
   1773 
   1774 nvram_write_end:
   1775 	if (align_start || align_end)
   1776 		free(buf, M_DEVBUF);
   1777 
   1778 	return (rc);
   1779 }
   1780 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1781 
   1782 /****************************************************************************/
   1783 /* Verifies that NVRAM is accessible and contains valid data.               */
   1784 /*                                                                          */
   1785 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   1786 /* correct.                                                                 */
   1787 /*                                                                          */
   1788 /* Returns:                                                                 */
   1789 /*   0 on success, positive value on failure.                               */
   1790 /****************************************************************************/
   1791 int
   1792 bnx_nvram_test(struct bnx_softc *sc)
   1793 {
   1794 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
   1795 	u_int8_t		*data = (u_int8_t *) buf;
   1796 	int			rc = 0;
   1797 	u_int32_t		magic, csum;
   1798 
   1799 	/*
   1800 	 * Check that the device NVRAM is valid by reading
   1801 	 * the magic value at offset 0.
   1802 	 */
   1803 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   1804 		goto bnx_nvram_test_done;
   1805 
   1806 	magic = bnx_be32toh(buf[0]);
   1807 	if (magic != BNX_NVRAM_MAGIC) {
   1808 		rc = ENODEV;
   1809 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   1810 		    "Expected: 0x%08X, Found: 0x%08X\n",
   1811 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   1812 		goto bnx_nvram_test_done;
   1813 	}
   1814 
   1815 	/*
   1816 	 * Verify that the device NVRAM includes valid
   1817 	 * configuration data.
   1818 	 */
   1819 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   1820 		goto bnx_nvram_test_done;
   1821 
   1822 	csum = ether_crc32_le(data, 0x100);
   1823 	if (csum != BNX_CRC32_RESIDUAL) {
   1824 		rc = ENODEV;
   1825 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   1826 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   1827 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1828 		goto bnx_nvram_test_done;
   1829 	}
   1830 
   1831 	csum = ether_crc32_le(data + 0x100, 0x100);
   1832 	if (csum != BNX_CRC32_RESIDUAL) {
   1833 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   1834 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   1835 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1836 		rc = ENODEV;
   1837 	}
   1838 
   1839 bnx_nvram_test_done:
   1840 	return (rc);
   1841 }
   1842 
   1843 /****************************************************************************/
   1844 /* Free any DMA memory owned by the driver.                                 */
   1845 /*                                                                          */
   1846 /* Scans through each data structre that requires DMA memory and frees      */
   1847 /* the memory if allocated.                                                 */
   1848 /*                                                                          */
   1849 /* Returns:                                                                 */
   1850 /*   Nothing.                                                               */
   1851 /****************************************************************************/
   1852 void
   1853 bnx_dma_free(struct bnx_softc *sc)
   1854 {
   1855 	int			i;
   1856 
   1857 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1858 
   1859 	/* Destroy the status block. */
   1860 	if (sc->status_block != NULL && sc->status_map != NULL) {
   1861 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   1862 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   1863 		    BNX_STATUS_BLK_SZ);
   1864 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   1865 		    sc->status_rseg);
   1866 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   1867 		sc->status_block = NULL;
   1868 		sc->status_map = NULL;
   1869 	}
   1870 
   1871 	/* Destroy the statistics block. */
   1872 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   1873 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   1874 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   1875 		    BNX_STATS_BLK_SZ);
   1876 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   1877 		    sc->stats_rseg);
   1878 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   1879 		sc->stats_block = NULL;
   1880 		sc->stats_map = NULL;
   1881 	}
   1882 
   1883 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   1884 	for (i = 0; i < TX_PAGES; i++ ) {
   1885 		if (sc->tx_bd_chain[i] != NULL &&
   1886 		    sc->tx_bd_chain_map[i] != NULL) {
   1887 			bus_dmamap_unload(sc->bnx_dmatag,
   1888 			    sc->tx_bd_chain_map[i]);
   1889 			bus_dmamem_unmap(sc->bnx_dmatag,
   1890 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   1891 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   1892 			    sc->tx_bd_chain_rseg[i]);
   1893 			bus_dmamap_destroy(sc->bnx_dmatag,
   1894 			    sc->tx_bd_chain_map[i]);
   1895 			sc->tx_bd_chain[i] = NULL;
   1896 			sc->tx_bd_chain_map[i] = NULL;
   1897 		}
   1898 	}
   1899 
   1900 	/* Unload and destroy the TX mbuf maps. */
   1901 	for (i = 0; i < TOTAL_TX_BD; i++) {
   1902 		if (sc->tx_mbuf_map[i] != NULL) {
   1903 			bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
   1904 			bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
   1905 		}
   1906 	}
   1907 
   1908 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   1909 	for (i = 0; i < RX_PAGES; i++ ) {
   1910 		if (sc->rx_bd_chain[i] != NULL &&
   1911 		    sc->rx_bd_chain_map[i] != NULL) {
   1912 			bus_dmamap_unload(sc->bnx_dmatag,
   1913 			    sc->rx_bd_chain_map[i]);
   1914 			bus_dmamem_unmap(sc->bnx_dmatag,
   1915 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   1916 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   1917 			    sc->rx_bd_chain_rseg[i]);
   1918 
   1919 			bus_dmamap_destroy(sc->bnx_dmatag,
   1920 			    sc->rx_bd_chain_map[i]);
   1921 			sc->rx_bd_chain[i] = NULL;
   1922 			sc->rx_bd_chain_map[i] = NULL;
   1923 		}
   1924 	}
   1925 
   1926 	/* Unload and destroy the RX mbuf maps. */
   1927 	for (i = 0; i < TOTAL_RX_BD; i++) {
   1928 		if (sc->rx_mbuf_map[i] != NULL) {
   1929 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   1930 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   1931 		}
   1932 	}
   1933 
   1934 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1935 }
   1936 
   1937 /****************************************************************************/
   1938 /* Allocate any DMA memory needed by the driver.                            */
   1939 /*                                                                          */
   1940 /* Allocates DMA memory needed for the various global structures needed by  */
   1941 /* hardware.                                                                */
   1942 /*                                                                          */
   1943 /* Returns:                                                                 */
   1944 /*   0 for success, positive value for failure.                             */
   1945 /****************************************************************************/
   1946 int
   1947 bnx_dma_alloc(struct bnx_softc *sc)
   1948 {
   1949 	int			i, rc = 0;
   1950 
   1951 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1952 
   1953 	/*
   1954 	 * Allocate DMA memory for the status block, map the memory into DMA
   1955 	 * space, and fetch the physical address of the block.
   1956 	 */
   1957 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   1958 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   1959 		aprint_error_dev(sc->bnx_dev,
   1960 		    "Could not create status block DMA map!\n");
   1961 		rc = ENOMEM;
   1962 		goto bnx_dma_alloc_exit;
   1963 	}
   1964 
   1965 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   1966 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   1967 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   1968 		aprint_error_dev(sc->bnx_dev,
   1969 		    "Could not allocate status block DMA memory!\n");
   1970 		rc = ENOMEM;
   1971 		goto bnx_dma_alloc_exit;
   1972 	}
   1973 
   1974 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   1975 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   1976 		aprint_error_dev(sc->bnx_dev,
   1977 		    "Could not map status block DMA memory!\n");
   1978 		rc = ENOMEM;
   1979 		goto bnx_dma_alloc_exit;
   1980 	}
   1981 
   1982 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   1983 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   1984 		aprint_error_dev(sc->bnx_dev,
   1985 		    "Could not load status block DMA memory!\n");
   1986 		rc = ENOMEM;
   1987 		goto bnx_dma_alloc_exit;
   1988 	}
   1989 
   1990 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   1991 	bzero(sc->status_block, BNX_STATUS_BLK_SZ);
   1992 
   1993 	/* DRC - Fix for 64 bit addresses. */
   1994 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   1995 		(u_int32_t) sc->status_block_paddr);
   1996 
   1997 	/*
   1998 	 * Allocate DMA memory for the statistics block, map the memory into
   1999 	 * DMA space, and fetch the physical address of the block.
   2000 	 */
   2001 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2002 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2003 		aprint_error_dev(sc->bnx_dev,
   2004 		    "Could not create stats block DMA map!\n");
   2005 		rc = ENOMEM;
   2006 		goto bnx_dma_alloc_exit;
   2007 	}
   2008 
   2009 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2010 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2011 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2012 		aprint_error_dev(sc->bnx_dev,
   2013 		    "Could not allocate stats block DMA memory!\n");
   2014 		rc = ENOMEM;
   2015 		goto bnx_dma_alloc_exit;
   2016 	}
   2017 
   2018 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2019 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2020 		aprint_error_dev(sc->bnx_dev,
   2021 		    "Could not map stats block DMA memory!\n");
   2022 		rc = ENOMEM;
   2023 		goto bnx_dma_alloc_exit;
   2024 	}
   2025 
   2026 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2027 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2028 		aprint_error_dev(sc->bnx_dev,
   2029 		    "Could not load status block DMA memory!\n");
   2030 		rc = ENOMEM;
   2031 		goto bnx_dma_alloc_exit;
   2032 	}
   2033 
   2034 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2035 	bzero(sc->stats_block, BNX_STATS_BLK_SZ);
   2036 
   2037 	/* DRC - Fix for 64 bit address. */
   2038 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2039 	    (u_int32_t) sc->stats_block_paddr);
   2040 
   2041 	/*
   2042 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2043 	 * and fetch the physical address of the block.
   2044 	 */
   2045 	for (i = 0; i < TX_PAGES; i++) {
   2046 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2047 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2048 		    &sc->tx_bd_chain_map[i])) {
   2049 			aprint_error_dev(sc->bnx_dev,
   2050 			    "Could not create Tx desc %d DMA map!\n", i);
   2051 			rc = ENOMEM;
   2052 			goto bnx_dma_alloc_exit;
   2053 		}
   2054 
   2055 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2056 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2057 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2058 			aprint_error_dev(sc->bnx_dev,
   2059 			    "Could not allocate TX desc %d DMA memory!\n",
   2060 			    i);
   2061 			rc = ENOMEM;
   2062 			goto bnx_dma_alloc_exit;
   2063 		}
   2064 
   2065 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2066 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2067 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2068 			aprint_error_dev(sc->bnx_dev,
   2069 			    "Could not map TX desc %d DMA memory!\n", i);
   2070 			rc = ENOMEM;
   2071 			goto bnx_dma_alloc_exit;
   2072 		}
   2073 
   2074 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2075 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2076 		    BUS_DMA_NOWAIT)) {
   2077 			aprint_error_dev(sc->bnx_dev,
   2078 			    "Could not load TX desc %d DMA memory!\n", i);
   2079 			rc = ENOMEM;
   2080 			goto bnx_dma_alloc_exit;
   2081 		}
   2082 
   2083 		sc->tx_bd_chain_paddr[i] =
   2084 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2085 
   2086 		/* DRC - Fix for 64 bit systems. */
   2087 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2088 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
   2089 	}
   2090 
   2091 	/*
   2092 	 * Create DMA maps for the TX buffer mbufs.
   2093 	 */
   2094 	for (i = 0; i < TOTAL_TX_BD; i++) {
   2095 		if (bus_dmamap_create(sc->bnx_dmatag,
   2096 		    MCLBYTES * BNX_MAX_SEGMENTS,
   2097 		    USABLE_TX_BD - BNX_TX_SLACK_SPACE,
   2098 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
   2099 		    &sc->tx_mbuf_map[i])) {
   2100 			aprint_error_dev(sc->bnx_dev,
   2101 			    "Could not create Tx mbuf %d DMA map!\n", i);
   2102 			rc = ENOMEM;
   2103 			goto bnx_dma_alloc_exit;
   2104 		}
   2105 	}
   2106 
   2107 	/*
   2108 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2109 	 * and fetch the physical address of the block.
   2110 	 */
   2111 	for (i = 0; i < RX_PAGES; i++) {
   2112 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2113 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2114 		    &sc->rx_bd_chain_map[i])) {
   2115 			aprint_error_dev(sc->bnx_dev,
   2116 			    "Could not create Rx desc %d DMA map!\n", i);
   2117 			rc = ENOMEM;
   2118 			goto bnx_dma_alloc_exit;
   2119 		}
   2120 
   2121 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2122 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2123 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2124 			aprint_error_dev(sc->bnx_dev,
   2125 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2126 			rc = ENOMEM;
   2127 			goto bnx_dma_alloc_exit;
   2128 		}
   2129 
   2130 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2131 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2132 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2133 			aprint_error_dev(sc->bnx_dev,
   2134 			    "Could not map Rx desc %d DMA memory!\n", i);
   2135 			rc = ENOMEM;
   2136 			goto bnx_dma_alloc_exit;
   2137 		}
   2138 
   2139 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2140 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2141 		    BUS_DMA_NOWAIT)) {
   2142 			aprint_error_dev(sc->bnx_dev,
   2143 			    "Could not load Rx desc %d DMA memory!\n", i);
   2144 			rc = ENOMEM;
   2145 			goto bnx_dma_alloc_exit;
   2146 		}
   2147 
   2148 		bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2149 		sc->rx_bd_chain_paddr[i] =
   2150 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2151 
   2152 		/* DRC - Fix for 64 bit systems. */
   2153 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2154 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
   2155 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2156 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2157 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2158 	}
   2159 
   2160 	/*
   2161 	 * Create DMA maps for the Rx buffer mbufs.
   2162 	 */
   2163 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2164 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
   2165 		    BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
   2166 		    &sc->rx_mbuf_map[i])) {
   2167 			aprint_error_dev(sc->bnx_dev,
   2168 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2169 			rc = ENOMEM;
   2170 			goto bnx_dma_alloc_exit;
   2171 		}
   2172 	}
   2173 
   2174  bnx_dma_alloc_exit:
   2175 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2176 
   2177 	return(rc);
   2178 }
   2179 
   2180 /****************************************************************************/
   2181 /* Release all resources used by the driver.                                */
   2182 /*                                                                          */
   2183 /* Releases all resources acquired by the driver including interrupts,      */
   2184 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2185 /*                                                                          */
   2186 /* Returns:                                                                 */
   2187 /*   Nothing.                                                               */
   2188 /****************************************************************************/
   2189 void
   2190 bnx_release_resources(struct bnx_softc *sc)
   2191 {
   2192 	int i;
   2193 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2194 
   2195 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2196 
   2197 	bnx_dma_free(sc);
   2198 
   2199 	if (sc->bnx_intrhand != NULL)
   2200 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2201 
   2202 	if (sc->bnx_size)
   2203 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2204 
   2205 	for (i = 0; i < TOTAL_RX_BD; i++)
   2206 		bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2207 
   2208 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2209 }
   2210 
   2211 /****************************************************************************/
   2212 /* Firmware synchronization.                                                */
   2213 /*                                                                          */
   2214 /* Before performing certain events such as a chip reset, synchronize with  */
   2215 /* the firmware first.                                                      */
   2216 /*                                                                          */
   2217 /* Returns:                                                                 */
   2218 /*   0 for success, positive value for failure.                             */
   2219 /****************************************************************************/
   2220 int
   2221 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
   2222 {
   2223 	int			i, rc = 0;
   2224 	u_int32_t		val;
   2225 
   2226 	/* Don't waste any time if we've timed out before. */
   2227 	if (sc->bnx_fw_timed_out) {
   2228 		rc = EBUSY;
   2229 		goto bnx_fw_sync_exit;
   2230 	}
   2231 
   2232 	/* Increment the message sequence number. */
   2233 	sc->bnx_fw_wr_seq++;
   2234 	msg_data |= sc->bnx_fw_wr_seq;
   2235 
   2236  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2237 	    msg_data);
   2238 
   2239 	/* Send the message to the bootcode driver mailbox. */
   2240 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2241 
   2242 	/* Wait for the bootcode to acknowledge the message. */
   2243 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2244 		/* Check for a response in the bootcode firmware mailbox. */
   2245 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2246 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2247 			break;
   2248 		DELAY(1000);
   2249 	}
   2250 
   2251 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2252 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2253 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2254 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2255 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2256 
   2257 		msg_data &= ~BNX_DRV_MSG_CODE;
   2258 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2259 
   2260 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2261 
   2262 		sc->bnx_fw_timed_out = 1;
   2263 		rc = EBUSY;
   2264 	}
   2265 
   2266 bnx_fw_sync_exit:
   2267 	return (rc);
   2268 }
   2269 
   2270 /****************************************************************************/
   2271 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2272 /*                                                                          */
   2273 /* Returns:                                                                 */
   2274 /*   Nothing.                                                               */
   2275 /****************************************************************************/
   2276 void
   2277 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
   2278     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
   2279 {
   2280 	int			i;
   2281 	u_int32_t		val;
   2282 
   2283 	for (i = 0; i < rv2p_code_len; i += 8) {
   2284 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2285 		rv2p_code++;
   2286 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2287 		rv2p_code++;
   2288 
   2289 		if (rv2p_proc == RV2P_PROC1) {
   2290 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2291 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2292 		}
   2293 		else {
   2294 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2295 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2296 		}
   2297 	}
   2298 
   2299 	/* Reset the processor, un-stall is done later. */
   2300 	if (rv2p_proc == RV2P_PROC1)
   2301 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2302 	else
   2303 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2304 }
   2305 
   2306 /****************************************************************************/
   2307 /* Load RISC processor firmware.                                            */
   2308 /*                                                                          */
   2309 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2310 /* associated with a particular processor.                                  */
   2311 /*                                                                          */
   2312 /* Returns:                                                                 */
   2313 /*   Nothing.                                                               */
   2314 /****************************************************************************/
   2315 void
   2316 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2317     struct fw_info *fw)
   2318 {
   2319 	u_int32_t		offset;
   2320 	u_int32_t		val;
   2321 
   2322 	/* Halt the CPU. */
   2323 	val = REG_RD_IND(sc, cpu_reg->mode);
   2324 	val |= cpu_reg->mode_value_halt;
   2325 	REG_WR_IND(sc, cpu_reg->mode, val);
   2326 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2327 
   2328 	/* Load the Text area. */
   2329 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2330 	if (fw->text) {
   2331 		int j;
   2332 
   2333 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2334 			REG_WR_IND(sc, offset, fw->text[j]);
   2335 	}
   2336 
   2337 	/* Load the Data area. */
   2338 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2339 	if (fw->data) {
   2340 		int j;
   2341 
   2342 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2343 			REG_WR_IND(sc, offset, fw->data[j]);
   2344 	}
   2345 
   2346 	/* Load the SBSS area. */
   2347 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2348 	if (fw->sbss) {
   2349 		int j;
   2350 
   2351 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2352 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2353 	}
   2354 
   2355 	/* Load the BSS area. */
   2356 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2357 	if (fw->bss) {
   2358 		int j;
   2359 
   2360 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2361 			REG_WR_IND(sc, offset, fw->bss[j]);
   2362 	}
   2363 
   2364 	/* Load the Read-Only area. */
   2365 	offset = cpu_reg->spad_base +
   2366 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2367 	if (fw->rodata) {
   2368 		int j;
   2369 
   2370 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2371 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2372 	}
   2373 
   2374 	/* Clear the pre-fetch instruction. */
   2375 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2376 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2377 
   2378 	/* Start the CPU. */
   2379 	val = REG_RD_IND(sc, cpu_reg->mode);
   2380 	val &= ~cpu_reg->mode_value_halt;
   2381 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2382 	REG_WR_IND(sc, cpu_reg->mode, val);
   2383 }
   2384 
   2385 /****************************************************************************/
   2386 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2387 /*                                                                          */
   2388 /* Loads the firmware for each CPU and starts the CPU.                      */
   2389 /*                                                                          */
   2390 /* Returns:                                                                 */
   2391 /*   Nothing.                                                               */
   2392 /****************************************************************************/
   2393 void
   2394 bnx_init_cpus(struct bnx_softc *sc)
   2395 {
   2396 	struct cpu_reg cpu_reg;
   2397 	struct fw_info fw;
   2398 
   2399 	/* Initialize the RV2P processor. */
   2400 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   2401 	    RV2P_PROC1);
   2402 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   2403 	    RV2P_PROC2);
   2404 
   2405 	/* Initialize the RX Processor. */
   2406 	cpu_reg.mode = BNX_RXP_CPU_MODE;
   2407 	cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2408 	cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2409 	cpu_reg.state = BNX_RXP_CPU_STATE;
   2410 	cpu_reg.state_value_clear = 0xffffff;
   2411 	cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2412 	cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2413 	cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2414 	cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2415 	cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2416 	cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2417 	cpu_reg.mips_view_base = 0x8000000;
   2418 
   2419 	fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   2420 	fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   2421 	fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   2422 	fw.start_addr = bnx_RXP_b06FwStartAddr;
   2423 
   2424 	fw.text_addr = bnx_RXP_b06FwTextAddr;
   2425 	fw.text_len = bnx_RXP_b06FwTextLen;
   2426 	fw.text_index = 0;
   2427 	fw.text = bnx_RXP_b06FwText;
   2428 
   2429 	fw.data_addr = bnx_RXP_b06FwDataAddr;
   2430 	fw.data_len = bnx_RXP_b06FwDataLen;
   2431 	fw.data_index = 0;
   2432 	fw.data = bnx_RXP_b06FwData;
   2433 
   2434 	fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   2435 	fw.sbss_len = bnx_RXP_b06FwSbssLen;
   2436 	fw.sbss_index = 0;
   2437 	fw.sbss = bnx_RXP_b06FwSbss;
   2438 
   2439 	fw.bss_addr = bnx_RXP_b06FwBssAddr;
   2440 	fw.bss_len = bnx_RXP_b06FwBssLen;
   2441 	fw.bss_index = 0;
   2442 	fw.bss = bnx_RXP_b06FwBss;
   2443 
   2444 	fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   2445 	fw.rodata_len = bnx_RXP_b06FwRodataLen;
   2446 	fw.rodata_index = 0;
   2447 	fw.rodata = bnx_RXP_b06FwRodata;
   2448 
   2449 	DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2450 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2451 
   2452 	/* Initialize the TX Processor. */
   2453 	cpu_reg.mode = BNX_TXP_CPU_MODE;
   2454 	cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2455 	cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2456 	cpu_reg.state = BNX_TXP_CPU_STATE;
   2457 	cpu_reg.state_value_clear = 0xffffff;
   2458 	cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2459 	cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2460 	cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2461 	cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2462 	cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2463 	cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2464 	cpu_reg.mips_view_base = 0x8000000;
   2465 
   2466 	fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   2467 	fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   2468 	fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   2469 	fw.start_addr = bnx_TXP_b06FwStartAddr;
   2470 
   2471 	fw.text_addr = bnx_TXP_b06FwTextAddr;
   2472 	fw.text_len = bnx_TXP_b06FwTextLen;
   2473 	fw.text_index = 0;
   2474 	fw.text = bnx_TXP_b06FwText;
   2475 
   2476 	fw.data_addr = bnx_TXP_b06FwDataAddr;
   2477 	fw.data_len = bnx_TXP_b06FwDataLen;
   2478 	fw.data_index = 0;
   2479 	fw.data = bnx_TXP_b06FwData;
   2480 
   2481 	fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   2482 	fw.sbss_len = bnx_TXP_b06FwSbssLen;
   2483 	fw.sbss_index = 0;
   2484 	fw.sbss = bnx_TXP_b06FwSbss;
   2485 
   2486 	fw.bss_addr = bnx_TXP_b06FwBssAddr;
   2487 	fw.bss_len = bnx_TXP_b06FwBssLen;
   2488 	fw.bss_index = 0;
   2489 	fw.bss = bnx_TXP_b06FwBss;
   2490 
   2491 	fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   2492 	fw.rodata_len = bnx_TXP_b06FwRodataLen;
   2493 	fw.rodata_index = 0;
   2494 	fw.rodata = bnx_TXP_b06FwRodata;
   2495 
   2496 	DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2497 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2498 
   2499 	/* Initialize the TX Patch-up Processor. */
   2500 	cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2501 	cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2502 	cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2503 	cpu_reg.state = BNX_TPAT_CPU_STATE;
   2504 	cpu_reg.state_value_clear = 0xffffff;
   2505 	cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2506 	cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2507 	cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2508 	cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2509 	cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2510 	cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2511 	cpu_reg.mips_view_base = 0x8000000;
   2512 
   2513 	fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   2514 	fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   2515 	fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   2516 	fw.start_addr = bnx_TPAT_b06FwStartAddr;
   2517 
   2518 	fw.text_addr = bnx_TPAT_b06FwTextAddr;
   2519 	fw.text_len = bnx_TPAT_b06FwTextLen;
   2520 	fw.text_index = 0;
   2521 	fw.text = bnx_TPAT_b06FwText;
   2522 
   2523 	fw.data_addr = bnx_TPAT_b06FwDataAddr;
   2524 	fw.data_len = bnx_TPAT_b06FwDataLen;
   2525 	fw.data_index = 0;
   2526 	fw.data = bnx_TPAT_b06FwData;
   2527 
   2528 	fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   2529 	fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   2530 	fw.sbss_index = 0;
   2531 	fw.sbss = bnx_TPAT_b06FwSbss;
   2532 
   2533 	fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   2534 	fw.bss_len = bnx_TPAT_b06FwBssLen;
   2535 	fw.bss_index = 0;
   2536 	fw.bss = bnx_TPAT_b06FwBss;
   2537 
   2538 	fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   2539 	fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   2540 	fw.rodata_index = 0;
   2541 	fw.rodata = bnx_TPAT_b06FwRodata;
   2542 
   2543 	DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2544 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2545 
   2546 	/* Initialize the Completion Processor. */
   2547 	cpu_reg.mode = BNX_COM_CPU_MODE;
   2548 	cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2549 	cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2550 	cpu_reg.state = BNX_COM_CPU_STATE;
   2551 	cpu_reg.state_value_clear = 0xffffff;
   2552 	cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2553 	cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2554 	cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2555 	cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2556 	cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2557 	cpu_reg.spad_base = BNX_COM_SCRATCH;
   2558 	cpu_reg.mips_view_base = 0x8000000;
   2559 
   2560 	fw.ver_major = bnx_COM_b06FwReleaseMajor;
   2561 	fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   2562 	fw.ver_fix = bnx_COM_b06FwReleaseFix;
   2563 	fw.start_addr = bnx_COM_b06FwStartAddr;
   2564 
   2565 	fw.text_addr = bnx_COM_b06FwTextAddr;
   2566 	fw.text_len = bnx_COM_b06FwTextLen;
   2567 	fw.text_index = 0;
   2568 	fw.text = bnx_COM_b06FwText;
   2569 
   2570 	fw.data_addr = bnx_COM_b06FwDataAddr;
   2571 	fw.data_len = bnx_COM_b06FwDataLen;
   2572 	fw.data_index = 0;
   2573 	fw.data = bnx_COM_b06FwData;
   2574 
   2575 	fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   2576 	fw.sbss_len = bnx_COM_b06FwSbssLen;
   2577 	fw.sbss_index = 0;
   2578 	fw.sbss = bnx_COM_b06FwSbss;
   2579 
   2580 	fw.bss_addr = bnx_COM_b06FwBssAddr;
   2581 	fw.bss_len = bnx_COM_b06FwBssLen;
   2582 	fw.bss_index = 0;
   2583 	fw.bss = bnx_COM_b06FwBss;
   2584 
   2585 	fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   2586 	fw.rodata_len = bnx_COM_b06FwRodataLen;
   2587 	fw.rodata_index = 0;
   2588 	fw.rodata = bnx_COM_b06FwRodata;
   2589 
   2590 	DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   2591 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2592 }
   2593 
   2594 /****************************************************************************/
   2595 /* Initialize context memory.                                               */
   2596 /*                                                                          */
   2597 /* Clears the memory associated with each Context ID (CID).                 */
   2598 /*                                                                          */
   2599 /* Returns:                                                                 */
   2600 /*   Nothing.                                                               */
   2601 /****************************************************************************/
   2602 void
   2603 bnx_init_context(struct bnx_softc *sc)
   2604 {
   2605 	u_int32_t		vcid;
   2606 
   2607 	vcid = 96;
   2608 	while (vcid) {
   2609 		u_int32_t vcid_addr, pcid_addr, offset;
   2610 
   2611 		vcid--;
   2612 
   2613    		vcid_addr = GET_CID_ADDR(vcid);
   2614 		pcid_addr = vcid_addr;
   2615 
   2616 		REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
   2617 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
   2618 
   2619 		/* Zero out the context. */
   2620 		for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
   2621 			CTX_WR(sc, 0x00, offset, 0);
   2622 
   2623 		REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   2624 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
   2625 	}
   2626 }
   2627 
   2628 /****************************************************************************/
   2629 /* Fetch the permanent MAC address of the controller.                       */
   2630 /*                                                                          */
   2631 /* Returns:                                                                 */
   2632 /*   Nothing.                                                               */
   2633 /****************************************************************************/
   2634 void
   2635 bnx_get_mac_addr(struct bnx_softc *sc)
   2636 {
   2637 	u_int32_t		mac_lo = 0, mac_hi = 0;
   2638 
   2639 	/*
   2640 	 * The NetXtreme II bootcode populates various NIC
   2641 	 * power-on and runtime configuration items in a
   2642 	 * shared memory area.  The factory configured MAC
   2643 	 * address is available from both NVRAM and the
   2644 	 * shared memory area so we'll read the value from
   2645 	 * shared memory for speed.
   2646 	 */
   2647 
   2648 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   2649 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   2650 
   2651 	if ((mac_lo == 0) && (mac_hi == 0)) {
   2652 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   2653 		    __FILE__, __LINE__);
   2654 	} else {
   2655 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   2656 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   2657 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   2658 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   2659 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   2660 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   2661 	}
   2662 
   2663 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   2664 	    "%s\n", ether_sprintf(sc->eaddr));
   2665 }
   2666 
   2667 /****************************************************************************/
   2668 /* Program the MAC address.                                                 */
   2669 /*                                                                          */
   2670 /* Returns:                                                                 */
   2671 /*   Nothing.                                                               */
   2672 /****************************************************************************/
   2673 void
   2674 bnx_set_mac_addr(struct bnx_softc *sc)
   2675 {
   2676 	u_int32_t		val;
   2677 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   2678 
   2679 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   2680 	    "%s\n", ether_sprintf(sc->eaddr));
   2681 
   2682 	val = (mac_addr[0] << 8) | mac_addr[1];
   2683 
   2684 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   2685 
   2686 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   2687 		(mac_addr[4] << 8) | mac_addr[5];
   2688 
   2689 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   2690 }
   2691 
   2692 /****************************************************************************/
   2693 /* Stop the controller.                                                     */
   2694 /*                                                                          */
   2695 /* Returns:                                                                 */
   2696 /*   Nothing.                                                               */
   2697 /****************************************************************************/
   2698 void
   2699 bnx_stop(struct ifnet *ifp, int disable)
   2700 {
   2701 	struct bnx_softc *sc = ifp->if_softc;
   2702 
   2703 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2704 
   2705 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   2706 		return;
   2707 
   2708 	callout_stop(&sc->bnx_timeout);
   2709 
   2710 	mii_down(&sc->bnx_mii);
   2711 
   2712 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2713 
   2714 	/* Disable the transmit/receive blocks. */
   2715 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   2716 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   2717 	DELAY(20);
   2718 
   2719 	bnx_disable_intr(sc);
   2720 
   2721 	/* Tell firmware that the driver is going away. */
   2722 	if (disable)
   2723 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   2724 	else
   2725 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   2726 
   2727 	/* Free the RX lists. */
   2728 	bnx_free_rx_chain(sc);
   2729 
   2730 	/* Free TX buffers. */
   2731 	bnx_free_tx_chain(sc);
   2732 
   2733 	ifp->if_timer = 0;
   2734 
   2735 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2736 
   2737 }
   2738 
   2739 int
   2740 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
   2741 {
   2742 	u_int32_t		val;
   2743 	int			i, rc = 0;
   2744 
   2745 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2746 
   2747 	/* Wait for pending PCI transactions to complete. */
   2748 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   2749 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   2750 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   2751 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   2752 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   2753 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   2754 	DELAY(5);
   2755 
   2756 	/* Assume bootcode is running. */
   2757 	sc->bnx_fw_timed_out = 0;
   2758 
   2759 	/* Give the firmware a chance to prepare for the reset. */
   2760 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   2761 	if (rc)
   2762 		goto bnx_reset_exit;
   2763 
   2764 	/* Set a firmware reminder that this is a soft reset. */
   2765 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   2766 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   2767 
   2768 	/* Dummy read to force the chip to complete all current transactions. */
   2769 	val = REG_RD(sc, BNX_MISC_ID);
   2770 
   2771 	/* Chip reset. */
   2772 	val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2773 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   2774 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   2775 	REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   2776 
   2777 	/* Allow up to 30us for reset to complete. */
   2778 	for (i = 0; i < 10; i++) {
   2779 		val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   2780 		if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2781 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
   2782 			break;
   2783 
   2784 		DELAY(10);
   2785 	}
   2786 
   2787 	/* Check that reset completed successfully. */
   2788 	if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2789 	    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   2790 		BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
   2791 		rc = EBUSY;
   2792 		goto bnx_reset_exit;
   2793 	}
   2794 
   2795 	/* Make sure byte swapping is properly configured. */
   2796 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   2797 	if (val != 0x01020304) {
   2798 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   2799 		    __FILE__, __LINE__);
   2800 		rc = ENODEV;
   2801 		goto bnx_reset_exit;
   2802 	}
   2803 
   2804 	/* Just completed a reset, assume that firmware is running again. */
   2805 	sc->bnx_fw_timed_out = 0;
   2806 
   2807 	/* Wait for the firmware to finish its initialization. */
   2808 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   2809 	if (rc)
   2810 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   2811 		    "initialization!\n", __FILE__, __LINE__);
   2812 
   2813 bnx_reset_exit:
   2814 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2815 
   2816 	return (rc);
   2817 }
   2818 
   2819 int
   2820 bnx_chipinit(struct bnx_softc *sc)
   2821 {
   2822 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2823 	u_int32_t		val;
   2824 	int			rc = 0;
   2825 
   2826 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2827 
   2828 	/* Make sure the interrupt is not active. */
   2829 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   2830 
   2831 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   2832 	/* channels and PCI clock compensation delay.                      */
   2833 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   2834 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   2835 #if BYTE_ORDER == BIG_ENDIAN
   2836 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   2837 #endif
   2838 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   2839 	    DMA_READ_CHANS << 12 |
   2840 	    DMA_WRITE_CHANS << 16;
   2841 
   2842 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   2843 
   2844 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   2845 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   2846 
   2847 	/*
   2848 	 * This setting resolves a problem observed on certain Intel PCI
   2849 	 * chipsets that cannot handle multiple outstanding DMA operations.
   2850 	 * See errata E9_5706A1_65.
   2851 	 */
   2852 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   2853 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   2854 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   2855 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   2856 
   2857 	REG_WR(sc, BNX_DMA_CONFIG, val);
   2858 
   2859 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   2860 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   2861 		u_int16_t nval;
   2862 
   2863 		nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   2864 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   2865 		    nval & ~0x20000);
   2866 	}
   2867 
   2868 	/* Enable the RX_V2P and Context state machines before access. */
   2869 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   2870 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   2871 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   2872 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   2873 
   2874 	/* Initialize context mapping and zero out the quick contexts. */
   2875 	bnx_init_context(sc);
   2876 
   2877 	/* Initialize the on-boards CPUs */
   2878 	bnx_init_cpus(sc);
   2879 
   2880 	/* Prepare NVRAM for access. */
   2881 	if (bnx_init_nvram(sc)) {
   2882 		rc = ENODEV;
   2883 		goto bnx_chipinit_exit;
   2884 	}
   2885 
   2886 	/* Set the kernel bypass block size */
   2887 	val = REG_RD(sc, BNX_MQ_CONFIG);
   2888 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   2889 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   2890 	REG_WR(sc, BNX_MQ_CONFIG, val);
   2891 
   2892 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
   2893 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   2894 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   2895 
   2896 	val = (BCM_PAGE_BITS - 8) << 24;
   2897 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   2898 
   2899 	/* Configure page size. */
   2900 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   2901 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   2902 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   2903 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   2904 
   2905 bnx_chipinit_exit:
   2906 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2907 
   2908 	return(rc);
   2909 }
   2910 
   2911 /****************************************************************************/
   2912 /* Initialize the controller in preparation to send/receive traffic.        */
   2913 /*                                                                          */
   2914 /* Returns:                                                                 */
   2915 /*   0 for success, positive value for failure.                             */
   2916 /****************************************************************************/
   2917 int
   2918 bnx_blockinit(struct bnx_softc *sc)
   2919 {
   2920 	u_int32_t		reg, val;
   2921 	int 			rc = 0;
   2922 
   2923 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2924 
   2925 	/* Load the hardware default MAC address. */
   2926 	bnx_set_mac_addr(sc);
   2927 
   2928 	/* Set the Ethernet backoff seed value */
   2929 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   2930 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   2931 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   2932 
   2933 	sc->last_status_idx = 0;
   2934 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   2935 
   2936 	/* Set up link change interrupt generation. */
   2937 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   2938 
   2939 	/* Program the physical address of the status block. */
   2940 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
   2941 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   2942 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
   2943 
   2944 	/* Program the physical address of the statistics block. */
   2945 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   2946 	    (u_int32_t)(sc->stats_block_paddr));
   2947 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   2948 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
   2949 
   2950 	/* Program various host coalescing parameters. */
   2951 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   2952 	    << 16) | sc->bnx_tx_quick_cons_trip);
   2953 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   2954 	    << 16) | sc->bnx_rx_quick_cons_trip);
   2955 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   2956 	    sc->bnx_comp_prod_trip);
   2957 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   2958 	    sc->bnx_tx_ticks);
   2959 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   2960 	    sc->bnx_rx_ticks);
   2961 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   2962 	    sc->bnx_com_ticks);
   2963 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   2964 	    sc->bnx_cmd_ticks);
   2965 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   2966 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   2967 	REG_WR(sc, BNX_HC_CONFIG,
   2968 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   2969 	    BNX_HC_CONFIG_COLLECT_STATS));
   2970 
   2971 	/* Clear the internal statistics counters. */
   2972 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   2973 
   2974 	/* Verify that bootcode is running. */
   2975 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   2976 
   2977 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   2978 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   2979 	    __FILE__, __LINE__); reg = 0);
   2980 
   2981 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   2982 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   2983 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   2984 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   2985 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   2986 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   2987 		rc = ENODEV;
   2988 		goto bnx_blockinit_exit;
   2989 	}
   2990 
   2991 	/* Check if any management firmware is running. */
   2992 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   2993 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   2994 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   2995 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   2996 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   2997 	}
   2998 
   2999 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3000 	    BNX_DEV_INFO_BC_REV);
   3001 
   3002 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3003 
   3004 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3005 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3006 
   3007 	/* Enable link state change interrupt generation. */
   3008 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3009 
   3010 	/* Enable all remaining blocks in the MAC. */
   3011 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3012 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3013 	DELAY(20);
   3014 
   3015 bnx_blockinit_exit:
   3016 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3017 
   3018 	return (rc);
   3019 }
   3020 
   3021 /****************************************************************************/
   3022 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3023 /*                                                                          */
   3024 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3025 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3026 /* necessary.                                                               */
   3027 /*                                                                          */
   3028 /* Returns:                                                                 */
   3029 /*   0 for success, positive value for failure.                             */
   3030 /****************************************************************************/
   3031 int
   3032 bnx_get_buf(struct bnx_softc *sc, struct mbuf *m, u_int16_t *prod,
   3033     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3034 {
   3035 	bus_dmamap_t		map;
   3036 	struct mbuf 		*m_new = NULL;
   3037 	struct rx_bd		*rxbd;
   3038 	int			i, rc = 0;
   3039 	u_int32_t		addr;
   3040 #ifdef BNX_DEBUG
   3041 	u_int16_t debug_chain_prod =	*chain_prod;
   3042 #endif
   3043 	u_int16_t first_chain_prod;
   3044 	u_int16_t min_free_bd;
   3045 
   3046 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3047 	    __func__);
   3048 
   3049 	/* Make sure the inputs are valid. */
   3050 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3051 	    aprint_error_dev(sc->bnx_dev,
   3052 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3053 		*chain_prod, (u_int16_t)MAX_RX_BD));
   3054 
   3055 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3056 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3057 	    *prod_bseq);
   3058 
   3059 	/* try to get in as many mbufs as possible */
   3060 	if (sc->mbuf_alloc_size == MCLBYTES)
   3061 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3062 	else
   3063 		min_free_bd = (BNX_MAX_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3064 	while (sc->free_rx_bd >= min_free_bd) {
   3065 		if (m == NULL) {
   3066 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3067 			    BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
   3068 
   3069 				sc->mbuf_alloc_failed++;
   3070 				rc = ENOBUFS;
   3071 				goto bnx_get_buf_exit);
   3072 
   3073 			/* This is a new mbuf allocation. */
   3074 			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3075 			if (m_new == NULL) {
   3076 				DBPRINT(sc, BNX_WARN,
   3077 				    "%s(%d): RX mbuf header allocation failed!\n",
   3078 				    __FILE__, __LINE__);
   3079 
   3080 				DBRUNIF(1, sc->mbuf_alloc_failed++);
   3081 
   3082 				rc = ENOBUFS;
   3083 				goto bnx_get_buf_exit;
   3084 			}
   3085 
   3086 			DBRUNIF(1, sc->rx_mbuf_alloc++);
   3087 			if (sc->mbuf_alloc_size == MCLBYTES)
   3088 				MCLGET(m_new, M_DONTWAIT);
   3089 			else
   3090 				MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3091 				    M_DONTWAIT);
   3092 			if (!(m_new->m_flags & M_EXT)) {
   3093 				DBPRINT(sc, BNX_WARN,
   3094 				    "%s(%d): RX mbuf chain allocation failed!\n",
   3095 				    __FILE__, __LINE__);
   3096 
   3097 				m_freem(m_new);
   3098 
   3099 				DBRUNIF(1, sc->rx_mbuf_alloc--);
   3100 				DBRUNIF(1, sc->mbuf_alloc_failed++);
   3101 
   3102 				rc = ENOBUFS;
   3103 				goto bnx_get_buf_exit;
   3104 			}
   3105 
   3106 		} else {
   3107 			m_new = m;
   3108 			m = NULL;
   3109 			m_new->m_data = m_new->m_ext.ext_buf;
   3110 		}
   3111 		m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3112 
   3113 		/* Map the mbuf cluster into device memory. */
   3114 		map = sc->rx_mbuf_map[*chain_prod];
   3115 		first_chain_prod = *chain_prod;
   3116 		if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3117 			BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3118 			    __FILE__, __LINE__);
   3119 
   3120 			m_freem(m_new);
   3121 
   3122 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3123 
   3124 			rc = ENOBUFS;
   3125 			goto bnx_get_buf_exit;
   3126 		}
   3127 		bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3128 		    BUS_DMASYNC_PREREAD);
   3129 
   3130 		/* Watch for overflow. */
   3131 		DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
   3132 		    aprint_error_dev(sc->bnx_dev,
   3133 		        "Too many free rx_bd (0x%04X > 0x%04X)!\n",
   3134 			sc->free_rx_bd, (u_int16_t)USABLE_RX_BD));
   3135 
   3136 		DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3137 		    sc->rx_low_watermark = sc->free_rx_bd);
   3138 
   3139 		/*
   3140 		 * Setup the rx_bd for the first segment
   3141 		 */
   3142 		rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3143 
   3144 		addr = (u_int32_t)(map->dm_segs[0].ds_addr);
   3145 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3146 		addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
   3147 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3148 		rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
   3149 		rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
   3150 		*prod_bseq += map->dm_segs[0].ds_len;
   3151 		bus_dmamap_sync(sc->bnx_dmatag,
   3152 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3153 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3154 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3155 
   3156 		for (i = 1; i < map->dm_nsegs; i++) {
   3157 			*prod = NEXT_RX_BD(*prod);
   3158 			*chain_prod = RX_CHAIN_IDX(*prod);
   3159 
   3160 			rxbd =
   3161 			    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3162 
   3163 			addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   3164 			rxbd->rx_bd_haddr_lo = htole32(addr);
   3165 			addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   3166 			rxbd->rx_bd_haddr_hi = htole32(addr);
   3167 			rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
   3168 			rxbd->rx_bd_flags = 0;
   3169 			*prod_bseq += map->dm_segs[i].ds_len;
   3170 			bus_dmamap_sync(sc->bnx_dmatag,
   3171 			    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3172 			    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3173 			    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3174 		}
   3175 
   3176 		rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
   3177 		bus_dmamap_sync(sc->bnx_dmatag,
   3178 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3179 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3180 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3181 
   3182 		/*
   3183 		 * Save the mbuf, ajust the map pointer (swap map for first and
   3184 		 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
   3185 		 * and update counter.
   3186 		 */
   3187 		sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3188 		sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3189 		sc->rx_mbuf_map[*chain_prod] = map;
   3190 		sc->free_rx_bd -= map->dm_nsegs;
   3191 
   3192 		DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3193 		    map->dm_nsegs));
   3194 		*prod = NEXT_RX_BD(*prod);
   3195 		*chain_prod = RX_CHAIN_IDX(*prod);
   3196 	}
   3197 
   3198 bnx_get_buf_exit:
   3199 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3200 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3201 	    *chain_prod, *prod_bseq);
   3202 
   3203 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3204 	    __func__);
   3205 
   3206 	return(rc);
   3207 }
   3208 
   3209 /****************************************************************************/
   3210 /* Allocate memory and initialize the TX data structures.                   */
   3211 /*                                                                          */
   3212 /* Returns:                                                                 */
   3213 /*   0 for success, positive value for failure.                             */
   3214 /****************************************************************************/
   3215 int
   3216 bnx_init_tx_chain(struct bnx_softc *sc)
   3217 {
   3218 	struct tx_bd		*txbd;
   3219 	u_int32_t		val, addr;
   3220 	int			i, rc = 0;
   3221 
   3222 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3223 
   3224 	/* Set the initial TX producer/consumer indices. */
   3225 	sc->tx_prod = 0;
   3226 	sc->tx_cons = 0;
   3227 	sc->tx_prod_bseq = 0;
   3228 	sc->used_tx_bd = 0;
   3229 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   3230 
   3231 	/*
   3232 	 * The NetXtreme II supports a linked-list structure called
   3233 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   3234 	 * consists of a series of 1 or more chain pages, each of which
   3235 	 * consists of a fixed number of BD entries.
   3236 	 * The last BD entry on each page is a pointer to the next page
   3237 	 * in the chain, and the last pointer in the BD chain
   3238 	 * points back to the beginning of the chain.
   3239 	 */
   3240 
   3241 	/* Set the TX next pointer chain entries. */
   3242 	for (i = 0; i < TX_PAGES; i++) {
   3243 		int j;
   3244 
   3245 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   3246 
   3247 		/* Check if we've reached the last page. */
   3248 		if (i == (TX_PAGES - 1))
   3249 			j = 0;
   3250 		else
   3251 			j = i + 1;
   3252 
   3253 		addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
   3254 		txbd->tx_bd_haddr_lo = htole32(addr);
   3255 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
   3256 		txbd->tx_bd_haddr_hi = htole32(addr);
   3257 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3258 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3259 	}
   3260 
   3261 	/*
   3262 	 * Initialize the context ID for an L2 TX chain.
   3263 	 */
   3264 	val = BNX_L2CTX_TYPE_TYPE_L2;
   3265 	val |= BNX_L2CTX_TYPE_SIZE_L2;
   3266 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   3267 
   3268 	val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3269 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   3270 
   3271 	/* Point the hardware to the first page in the chain. */
   3272 	val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3273 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   3274 	val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3275 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   3276 
   3277 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
   3278 
   3279 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3280 
   3281 	return(rc);
   3282 }
   3283 
   3284 /****************************************************************************/
   3285 /* Free memory and clear the TX data structures.                            */
   3286 /*                                                                          */
   3287 /* Returns:                                                                 */
   3288 /*   Nothing.                                                               */
   3289 /****************************************************************************/
   3290 void
   3291 bnx_free_tx_chain(struct bnx_softc *sc)
   3292 {
   3293 	int			i;
   3294 
   3295 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3296 
   3297 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   3298 	for (i = 0; i < TOTAL_TX_BD; i++) {
   3299 		if (sc->tx_mbuf_ptr[i] != NULL) {
   3300 			if (sc->tx_mbuf_map != NULL)
   3301 				bus_dmamap_sync(sc->bnx_dmatag,
   3302 				    sc->tx_mbuf_map[i], 0,
   3303 				    sc->tx_mbuf_map[i]->dm_mapsize,
   3304 				    BUS_DMASYNC_POSTWRITE);
   3305 			m_freem(sc->tx_mbuf_ptr[i]);
   3306 			sc->tx_mbuf_ptr[i] = NULL;
   3307 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   3308 		}
   3309 	}
   3310 
   3311 	/* Clear each TX chain page. */
   3312 	for (i = 0; i < TX_PAGES; i++) {
   3313 		bzero((char *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   3314 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3315 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3316 	}
   3317 
   3318 	/* Check if we lost any mbufs in the process. */
   3319 	DBRUNIF((sc->tx_mbuf_alloc),
   3320 	    aprint_error_dev(sc->bnx_dev,
   3321 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   3322 		sc->tx_mbuf_alloc));
   3323 
   3324 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3325 }
   3326 
   3327 /****************************************************************************/
   3328 /* Allocate memory and initialize the RX data structures.                   */
   3329 /*                                                                          */
   3330 /* Returns:                                                                 */
   3331 /*   0 for success, positive value for failure.                             */
   3332 /****************************************************************************/
   3333 int
   3334 bnx_init_rx_chain(struct bnx_softc *sc)
   3335 {
   3336 	struct rx_bd		*rxbd;
   3337 	int			i, rc = 0;
   3338 	u_int16_t		prod, chain_prod;
   3339 	u_int32_t		prod_bseq, val, addr;
   3340 
   3341 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3342 
   3343 	/* Initialize the RX producer and consumer indices. */
   3344 	sc->rx_prod = 0;
   3345 	sc->rx_cons = 0;
   3346 	sc->rx_prod_bseq = 0;
   3347 	sc->free_rx_bd = BNX_RX_SLACK_SPACE;
   3348 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   3349 
   3350 	/* Initialize the RX next pointer chain entries. */
   3351 	for (i = 0; i < RX_PAGES; i++) {
   3352 		int j;
   3353 
   3354 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   3355 
   3356 		/* Check if we've reached the last page. */
   3357 		if (i == (RX_PAGES - 1))
   3358 			j = 0;
   3359 		else
   3360 			j = i + 1;
   3361 
   3362 		/* Setup the chain page pointers. */
   3363 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
   3364 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3365 		addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
   3366 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3367 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   3368 		    0, BNX_RX_CHAIN_PAGE_SZ,
   3369 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3370 	}
   3371 
   3372 	/* Initialize the context ID for an L2 RX chain. */
   3373 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
   3374 	val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
   3375 	val |= 0x02 << 8;
   3376 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   3377 
   3378 	/* Point the hardware to the first page in the chain. */
   3379 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
   3380 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   3381 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
   3382 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   3383 
   3384 	/* Allocate mbuf clusters for the rx_bd chain. */
   3385 	prod = prod_bseq = 0;
   3386 	chain_prod = RX_CHAIN_IDX(prod);
   3387 	if (bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq)) {
   3388 		BNX_PRINTF(sc,
   3389 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   3390 	}
   3391 
   3392 	/* Save the RX chain producer index. */
   3393 	sc->rx_prod = prod;
   3394 	sc->rx_prod_bseq = prod_bseq;
   3395 
   3396 	for (i = 0; i < RX_PAGES; i++)
   3397 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   3398 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3399 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3400 
   3401 	/* Tell the chip about the waiting rx_bd's. */
   3402 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   3403 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   3404 
   3405 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   3406 
   3407 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3408 
   3409 	return(rc);
   3410 }
   3411 
   3412 /****************************************************************************/
   3413 /* Free memory and clear the RX data structures.                            */
   3414 /*                                                                          */
   3415 /* Returns:                                                                 */
   3416 /*   Nothing.                                                               */
   3417 /****************************************************************************/
   3418 void
   3419 bnx_free_rx_chain(struct bnx_softc *sc)
   3420 {
   3421 	int			i;
   3422 
   3423 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3424 
   3425 	/* Free any mbufs still in the RX mbuf chain. */
   3426 	for (i = 0; i < TOTAL_RX_BD; i++) {
   3427 		if (sc->rx_mbuf_ptr[i] != NULL) {
   3428 			if (sc->rx_mbuf_map[i] != NULL)
   3429 				bus_dmamap_sync(sc->bnx_dmatag,
   3430 				    sc->rx_mbuf_map[i],	0,
   3431 				    sc->rx_mbuf_map[i]->dm_mapsize,
   3432 				    BUS_DMASYNC_POSTREAD);
   3433 			m_freem(sc->rx_mbuf_ptr[i]);
   3434 			sc->rx_mbuf_ptr[i] = NULL;
   3435 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3436 		}
   3437 	}
   3438 
   3439 	/* Clear each RX chain page. */
   3440 	for (i = 0; i < RX_PAGES; i++)
   3441 		bzero((char *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   3442 
   3443 	/* Check if we lost any mbufs in the process. */
   3444 	DBRUNIF((sc->rx_mbuf_alloc),
   3445 	    aprint_error_dev(sc->bnx_dev,
   3446 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   3447 		sc->rx_mbuf_alloc));
   3448 
   3449 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3450 }
   3451 
   3452 /****************************************************************************/
   3453 /* Handles PHY generated interrupt events.                                  */
   3454 /*                                                                          */
   3455 /* Returns:                                                                 */
   3456 /*   Nothing.                                                               */
   3457 /****************************************************************************/
   3458 void
   3459 bnx_phy_intr(struct bnx_softc *sc)
   3460 {
   3461 	u_int32_t		new_link_state, old_link_state;
   3462 
   3463 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3464 	    BUS_DMASYNC_POSTREAD);
   3465 	new_link_state = sc->status_block->status_attn_bits &
   3466 	    STATUS_ATTN_BITS_LINK_STATE;
   3467 	old_link_state = sc->status_block->status_attn_bits_ack &
   3468 	    STATUS_ATTN_BITS_LINK_STATE;
   3469 
   3470 	/* Handle any changes if the link state has changed. */
   3471 	if (new_link_state != old_link_state) {
   3472 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   3473 
   3474 		callout_stop(&sc->bnx_timeout);
   3475 		bnx_tick(sc);
   3476 
   3477 		/* Update the status_attn_bits_ack field in the status block. */
   3478 		if (new_link_state) {
   3479 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   3480 			    STATUS_ATTN_BITS_LINK_STATE);
   3481 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   3482 		} else {
   3483 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   3484 			    STATUS_ATTN_BITS_LINK_STATE);
   3485 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   3486 		}
   3487 	}
   3488 
   3489 	/* Acknowledge the link change interrupt. */
   3490 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   3491 }
   3492 
   3493 /****************************************************************************/
   3494 /* Handles received frame interrupt events.                                 */
   3495 /*                                                                          */
   3496 /* Returns:                                                                 */
   3497 /*   Nothing.                                                               */
   3498 /****************************************************************************/
   3499 void
   3500 bnx_rx_intr(struct bnx_softc *sc)
   3501 {
   3502 	struct status_block	*sblk = sc->status_block;
   3503 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   3504 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
   3505 	u_int16_t		sw_prod, sw_chain_prod;
   3506 	u_int32_t		sw_prod_bseq;
   3507 	struct l2_fhdr		*l2fhdr;
   3508 	int			i;
   3509 
   3510 	DBRUNIF(1, sc->rx_interrupts++);
   3511 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3512 	    BUS_DMASYNC_POSTREAD);
   3513 
   3514 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   3515 	for (i = 0; i < RX_PAGES; i++)
   3516 		bus_dmamap_sync(sc->bnx_dmatag,
   3517 		    sc->rx_bd_chain_map[i], 0,
   3518 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3519 		    BUS_DMASYNC_POSTWRITE);
   3520 
   3521 	/* Get the hardware's view of the RX consumer index. */
   3522 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   3523 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   3524 		hw_cons++;
   3525 
   3526 	/* Get working copies of the driver's view of the RX indices. */
   3527 	sw_cons = sc->rx_cons;
   3528 	sw_prod = sc->rx_prod;
   3529 	sw_prod_bseq = sc->rx_prod_bseq;
   3530 
   3531 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   3532 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   3533 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   3534 
   3535 	/* Prevent speculative reads from getting ahead of the status block. */
   3536 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3537 	    BUS_SPACE_BARRIER_READ);
   3538 
   3539 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3540 	    sc->rx_low_watermark = sc->free_rx_bd);
   3541 
   3542 	/*
   3543 	 * Scan through the receive chain as long
   3544 	 * as there is work to do.
   3545 	 */
   3546 	while (sw_cons != hw_cons) {
   3547 		struct mbuf *m;
   3548 		struct rx_bd *rxbd;
   3549 		unsigned int len;
   3550 		u_int32_t status;
   3551 
   3552 		/* Convert the producer/consumer indices to an actual
   3553 		 * rx_bd index.
   3554 		 */
   3555 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   3556 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   3557 
   3558 		/* Get the used rx_bd. */
   3559 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   3560 		sc->free_rx_bd++;
   3561 
   3562 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   3563 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   3564 
   3565 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   3566 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   3567 #ifdef DIAGNOSTIC
   3568 			/* Validate that this is the last rx_bd. */
   3569 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   3570 			    printf("%s: Unexpected mbuf found in "
   3571 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   3572 			        sw_chain_cons);
   3573 			}
   3574 #endif
   3575 
   3576 			/* DRC - ToDo: If the received packet is small, say less
   3577 			 *             than 128 bytes, allocate a new mbuf here,
   3578 			 *             copy the data to that mbuf, and recycle
   3579 			 *             the mapped jumbo frame.
   3580 			 */
   3581 
   3582 			/* Unmap the mbuf from DMA space. */
   3583 #ifdef DIAGNOSTIC
   3584 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   3585 				printf("invalid map sw_cons 0x%x "
   3586 				"sw_prod 0x%x "
   3587 				"sw_chain_cons 0x%x "
   3588 				"sw_chain_prod 0x%x "
   3589 				"hw_cons 0x%x "
   3590 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   3591 				"TOTAL_RX_BD 0x%x\n",
   3592 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   3593 				hw_cons,
   3594 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   3595 			}
   3596 #endif
   3597 			bus_dmamap_sync(sc->bnx_dmatag,
   3598 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   3599 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   3600 			    BUS_DMASYNC_POSTREAD);
   3601 			bus_dmamap_unload(sc->bnx_dmatag,
   3602 			    sc->rx_mbuf_map[sw_chain_cons]);
   3603 
   3604 			/* Remove the mbuf from the driver's chain. */
   3605 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   3606 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   3607 
   3608 			/*
   3609 			 * Frames received on the NetXteme II are prepended
   3610 			 * with the l2_fhdr structure which provides status
   3611 			 * information about the received frame (including
   3612 			 * VLAN tags and checksum info) and are also
   3613 			 * automatically adjusted to align the IP header
   3614 			 * (i.e. two null bytes are inserted before the
   3615 			 * Ethernet header).
   3616 			 */
   3617 			l2fhdr = mtod(m, struct l2_fhdr *);
   3618 
   3619 			len    = l2fhdr->l2_fhdr_pkt_len;
   3620 			status = l2fhdr->l2_fhdr_status;
   3621 
   3622 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   3623 			    aprint_error("Simulating l2_fhdr status error.\n");
   3624 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   3625 
   3626 			/* Watch for unusual sized frames. */
   3627 			DBRUNIF(((len < BNX_MIN_MTU) ||
   3628 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   3629 			    aprint_error_dev(sc->bnx_dev,
   3630 			        "Unusual frame size found. "
   3631 				"Min(%d), Actual(%d), Max(%d)\n",
   3632 				(int)BNX_MIN_MTU, len,
   3633 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   3634 
   3635 			bnx_dump_mbuf(sc, m);
   3636 			bnx_breakpoint(sc));
   3637 
   3638 			len -= ETHER_CRC_LEN;
   3639 
   3640 			/* Check the received frame for errors. */
   3641 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   3642 			    L2_FHDR_ERRORS_PHY_DECODE |
   3643 			    L2_FHDR_ERRORS_ALIGNMENT |
   3644 			    L2_FHDR_ERRORS_TOO_SHORT |
   3645 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   3646 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   3647 			    len >
   3648 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   3649 				ifp->if_ierrors++;
   3650 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   3651 
   3652 				/* Reuse the mbuf for a new frame. */
   3653 				if (bnx_get_buf(sc, m, &sw_prod,
   3654 				    &sw_chain_prod, &sw_prod_bseq)) {
   3655 					DBRUNIF(1, bnx_breakpoint(sc));
   3656 					panic("%s: Can't reuse RX mbuf!\n",
   3657 					    device_xname(sc->bnx_dev));
   3658 				}
   3659 				continue;
   3660 			}
   3661 
   3662 			/*
   3663 			 * Get a new mbuf for the rx_bd.   If no new
   3664 			 * mbufs are available then reuse the current mbuf,
   3665 			 * log an ierror on the interface, and generate
   3666 			 * an error in the system log.
   3667 			 */
   3668 			if (bnx_get_buf(sc, NULL, &sw_prod, &sw_chain_prod,
   3669 			    &sw_prod_bseq)) {
   3670 				DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
   3671 					"new mbuf, incoming frame dropped!\n"));
   3672 
   3673 				ifp->if_ierrors++;
   3674 
   3675 				/* Try and reuse the exisitng mbuf. */
   3676 				if (bnx_get_buf(sc, m, &sw_prod,
   3677 				    &sw_chain_prod, &sw_prod_bseq)) {
   3678 					DBRUNIF(1, bnx_breakpoint(sc));
   3679 					panic("%s: Double mbuf allocation "
   3680 					    "failure!",
   3681 					    device_xname(sc->bnx_dev));
   3682 				}
   3683 				continue;
   3684 			}
   3685 
   3686 			/* Skip over the l2_fhdr when passing the data up
   3687 			 * the stack.
   3688 			 */
   3689 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   3690 
   3691 			/* Adjust the pckt length to match the received data. */
   3692 			m->m_pkthdr.len = m->m_len = len;
   3693 
   3694 			/* Send the packet to the appropriate interface. */
   3695 			m->m_pkthdr.rcvif = ifp;
   3696 
   3697 			DBRUN(BNX_VERBOSE_RECV,
   3698 			    struct ether_header *eh;
   3699 			    eh = mtod(m, struct ether_header *);
   3700 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   3701 			    __func__, ether_sprintf(eh->ether_dhost),
   3702 			    ether_sprintf(eh->ether_shost),
   3703 			    htons(eh->ether_type)));
   3704 
   3705 			/* Validate the checksum. */
   3706 
   3707 			/* Check for an IP datagram. */
   3708 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   3709 				/* Check if the IP checksum is valid. */
   3710 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   3711 				    == 0)
   3712 					m->m_pkthdr.csum_flags |=
   3713 					    M_CSUM_IPv4;
   3714 #ifdef BNX_DEBUG
   3715 				else
   3716 					DBPRINT(sc, BNX_WARN_SEND,
   3717 					    "%s(): Invalid IP checksum "
   3718 					        "= 0x%04X!\n",
   3719 						__func__,
   3720 						l2fhdr->l2_fhdr_ip_xsum
   3721 						);
   3722 #endif
   3723 			}
   3724 
   3725 			/* Check for a valid TCP/UDP frame. */
   3726 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   3727 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   3728 				/* Check for a good TCP/UDP checksum. */
   3729 				if ((status &
   3730 				    (L2_FHDR_ERRORS_TCP_XSUM |
   3731 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   3732 					m->m_pkthdr.csum_flags |=
   3733 					    M_CSUM_TCPv4 |
   3734 					    M_CSUM_UDPv4;
   3735 				} else {
   3736 					DBPRINT(sc, BNX_WARN_SEND,
   3737 					    "%s(): Invalid TCP/UDP "
   3738 					    "checksum = 0x%04X!\n",
   3739 					    __func__,
   3740 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   3741 				}
   3742 			}
   3743 
   3744 			/*
   3745 			 * If we received a packet with a vlan tag,
   3746 			 * attach that information to the packet.
   3747 			 */
   3748 			if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
   3749 #if 0
   3750 				struct ether_vlan_header vh;
   3751 
   3752 				DBPRINT(sc, BNX_VERBOSE_SEND,
   3753 				    "%s(): VLAN tag = 0x%04X\n",
   3754 				    __func__,
   3755 				    l2fhdr->l2_fhdr_vlan_tag);
   3756 
   3757 				if (m->m_pkthdr.len < ETHER_HDR_LEN) {
   3758 					m_freem(m);
   3759 					continue;
   3760 				}
   3761 				m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh);
   3762 				vh.evl_proto = vh.evl_encap_proto;
   3763 				vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag;
   3764 				vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
   3765 				m_adj(m, ETHER_HDR_LEN);
   3766 				if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
   3767 					continue;
   3768 				m->m_pkthdr.len += sizeof(vh);
   3769 				if (m->m_len < sizeof(vh) &&
   3770 				    (m = m_pullup(m, sizeof(vh))) == NULL)
   3771 					goto bnx_rx_int_next_rx;
   3772 				m_copyback(m, 0, sizeof(vh), &vh);
   3773 #else
   3774 				VLAN_INPUT_TAG(ifp, m,
   3775 				    l2fhdr->l2_fhdr_vlan_tag,
   3776 				    continue);
   3777 #endif
   3778 			}
   3779 
   3780 #if NBPFILTER > 0
   3781 			/*
   3782 			 * Handle BPF listeners. Let the BPF
   3783 			 * user see the packet.
   3784 			 */
   3785 			if (ifp->if_bpf)
   3786 				bpf_mtap(ifp->if_bpf, m);
   3787 #endif
   3788 
   3789 			/* Pass the mbuf off to the upper layers. */
   3790 			ifp->if_ipackets++;
   3791 			DBPRINT(sc, BNX_VERBOSE_RECV,
   3792 			    "%s(): Passing received frame up.\n", __func__);
   3793 			(*ifp->if_input)(ifp, m);
   3794 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3795 
   3796 		}
   3797 
   3798 		sw_cons = NEXT_RX_BD(sw_cons);
   3799 
   3800 		/* Refresh hw_cons to see if there's new work */
   3801 		if (sw_cons == hw_cons) {
   3802 			hw_cons = sc->hw_rx_cons =
   3803 			    sblk->status_rx_quick_consumer_index0;
   3804 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   3805 			    USABLE_RX_BD_PER_PAGE)
   3806 				hw_cons++;
   3807 		}
   3808 
   3809 		/* Prevent speculative reads from getting ahead of
   3810 		 * the status block.
   3811 		 */
   3812 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3813 		    BUS_SPACE_BARRIER_READ);
   3814 	}
   3815 
   3816 	for (i = 0; i < RX_PAGES; i++)
   3817 		bus_dmamap_sync(sc->bnx_dmatag,
   3818 		    sc->rx_bd_chain_map[i], 0,
   3819 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3820 		    BUS_DMASYNC_PREWRITE);
   3821 
   3822 	sc->rx_cons = sw_cons;
   3823 	sc->rx_prod = sw_prod;
   3824 	sc->rx_prod_bseq = sw_prod_bseq;
   3825 
   3826 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   3827 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   3828 
   3829 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   3830 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   3831 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   3832 }
   3833 
   3834 /****************************************************************************/
   3835 /* Handles transmit completion interrupt events.                            */
   3836 /*                                                                          */
   3837 /* Returns:                                                                 */
   3838 /*   Nothing.                                                               */
   3839 /****************************************************************************/
   3840 void
   3841 bnx_tx_intr(struct bnx_softc *sc)
   3842 {
   3843 	struct status_block	*sblk = sc->status_block;
   3844 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   3845 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   3846 
   3847 	DBRUNIF(1, sc->tx_interrupts++);
   3848 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3849 	    BUS_DMASYNC_POSTREAD);
   3850 
   3851 	/* Get the hardware's view of the TX consumer index. */
   3852 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   3853 
   3854 	/* Skip to the next entry if this is a chain page pointer. */
   3855 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   3856 		hw_tx_cons++;
   3857 
   3858 	sw_tx_cons = sc->tx_cons;
   3859 
   3860 	/* Prevent speculative reads from getting ahead of the status block. */
   3861 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3862 	    BUS_SPACE_BARRIER_READ);
   3863 
   3864 	/* Cycle through any completed TX chain page entries. */
   3865 	while (sw_tx_cons != hw_tx_cons) {
   3866 #ifdef BNX_DEBUG
   3867 		struct tx_bd *txbd = NULL;
   3868 #endif
   3869 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   3870 
   3871 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   3872 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   3873 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   3874 
   3875 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   3876 		    aprint_error_dev(sc->bnx_dev,
   3877 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   3878 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   3879 
   3880 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   3881 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   3882 
   3883 		DBRUNIF((txbd == NULL),
   3884 		    aprint_error_dev(sc->bnx_dev,
   3885 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   3886 		    bnx_breakpoint(sc));
   3887 
   3888 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   3889 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   3890 
   3891 		/*
   3892 		 * Free the associated mbuf. Remember
   3893 		 * that only the last tx_bd of a packet
   3894 		 * has an mbuf pointer and DMA map.
   3895 		 */
   3896 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
   3897 			/* Validate that this is the last tx_bd. */
   3898 			DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
   3899 			    TX_BD_FLAGS_END)),
   3900 			    aprint_error_dev(sc->bnx_dev,
   3901 			        "tx_bd END flag not set but txmbuf == NULL!\n");
   3902 			    bnx_breakpoint(sc));
   3903 
   3904 			DBRUN(BNX_INFO_SEND,
   3905 			    aprint_debug("%s: Unloading map/freeing mbuf "
   3906 			    "from tx_bd[0x%04X]\n",
   3907 			    __func__, sw_tx_chain_cons));
   3908 
   3909 			/* Unmap the mbuf. */
   3910 			bus_dmamap_unload(sc->bnx_dmatag,
   3911 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
   3912 
   3913 			/* Free the mbuf. */
   3914 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
   3915 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
   3916 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   3917 
   3918 			ifp->if_opackets++;
   3919 		}
   3920 
   3921 		sc->used_tx_bd--;
   3922 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   3923 
   3924 		/* Refresh hw_cons to see if there's new work. */
   3925 		hw_tx_cons = sc->hw_tx_cons =
   3926 		    sblk->status_tx_quick_consumer_index0;
   3927 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   3928 		    USABLE_TX_BD_PER_PAGE)
   3929 			hw_tx_cons++;
   3930 
   3931 		/* Prevent speculative reads from getting ahead of
   3932 		 * the status block.
   3933 		 */
   3934 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3935 		    BUS_SPACE_BARRIER_READ);
   3936 	}
   3937 
   3938 	/* Clear the TX timeout timer. */
   3939 	ifp->if_timer = 0;
   3940 
   3941 	/* Clear the tx hardware queue full flag. */
   3942 	if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
   3943 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   3944 		    aprint_debug_dev(sc->bnx_dev,
   3945 		        "TX chain is open for business! Used tx_bd = %d\n",
   3946 			sc->used_tx_bd));
   3947 		ifp->if_flags &= ~IFF_OACTIVE;
   3948 	}
   3949 
   3950 	sc->tx_cons = sw_tx_cons;
   3951 }
   3952 
   3953 /****************************************************************************/
   3954 /* Disables interrupt generation.                                           */
   3955 /*                                                                          */
   3956 /* Returns:                                                                 */
   3957 /*   Nothing.                                                               */
   3958 /****************************************************************************/
   3959 void
   3960 bnx_disable_intr(struct bnx_softc *sc)
   3961 {
   3962 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3963 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   3964 }
   3965 
   3966 /****************************************************************************/
   3967 /* Enables interrupt generation.                                            */
   3968 /*                                                                          */
   3969 /* Returns:                                                                 */
   3970 /*   Nothing.                                                               */
   3971 /****************************************************************************/
   3972 void
   3973 bnx_enable_intr(struct bnx_softc *sc)
   3974 {
   3975 	u_int32_t		val;
   3976 
   3977 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   3978 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   3979 
   3980 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   3981 	    sc->last_status_idx);
   3982 
   3983 	val = REG_RD(sc, BNX_HC_COMMAND);
   3984 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   3985 }
   3986 
   3987 /****************************************************************************/
   3988 /* Handles controller initialization.                                       */
   3989 /*                                                                          */
   3990 /****************************************************************************/
   3991 int
   3992 bnx_init(struct ifnet *ifp)
   3993 {
   3994 	struct bnx_softc	*sc = ifp->if_softc;
   3995 	u_int32_t		ether_mtu;
   3996 	int			s, error = 0;
   3997 
   3998 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3999 
   4000 	s = splnet();
   4001 
   4002 	bnx_stop(ifp, 0);
   4003 
   4004 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4005 		aprint_error("bnx: Controller reset failed!\n");
   4006 		goto bnx_init_exit;
   4007 	}
   4008 
   4009 	if ((error = bnx_chipinit(sc)) != 0) {
   4010 		aprint_error("bnx: Controller initialization failed!\n");
   4011 		goto bnx_init_exit;
   4012 	}
   4013 
   4014 	if ((error = bnx_blockinit(sc)) != 0) {
   4015 		aprint_error("bnx: Block initialization failed!\n");
   4016 		goto bnx_init_exit;
   4017 	}
   4018 
   4019 	/* Calculate and program the Ethernet MRU size. */
   4020 	if (ifp->if_mtu <= ETHERMTU) {
   4021 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4022 		sc->mbuf_alloc_size = MCLBYTES;
   4023 	} else {
   4024 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4025 		sc->mbuf_alloc_size = BNX_MAX_MRU;
   4026 	}
   4027 
   4028 
   4029 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4030 	    __func__, ether_mtu);
   4031 
   4032 	/*
   4033 	 * Program the MRU and enable Jumbo frame
   4034 	 * support.
   4035 	 */
   4036 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4037 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4038 
   4039 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4040 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4041 
   4042 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4043 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4044 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4045 
   4046 	/* Program appropriate promiscuous/multicast filtering. */
   4047 	bnx_set_rx_mode(sc);
   4048 
   4049 	/* Init RX buffer descriptor chain. */
   4050 	bnx_init_rx_chain(sc);
   4051 
   4052 	/* Init TX buffer descriptor chain. */
   4053 	bnx_init_tx_chain(sc);
   4054 
   4055 	/* Enable host interrupts. */
   4056 	bnx_enable_intr(sc);
   4057 
   4058 	if ((error = ether_mediachange(ifp)) != 0)
   4059 		goto bnx_init_exit;
   4060 
   4061 	ifp->if_flags |= IFF_RUNNING;
   4062 	ifp->if_flags &= ~IFF_OACTIVE;
   4063 
   4064 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4065 
   4066 bnx_init_exit:
   4067 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4068 
   4069 	splx(s);
   4070 
   4071 	return(error);
   4072 }
   4073 
   4074 /****************************************************************************/
   4075 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4076 /* memory visible to the controller.                                        */
   4077 /*                                                                          */
   4078 /* Returns:                                                                 */
   4079 /*   0 for success, positive value for failure.                             */
   4080 /****************************************************************************/
   4081 int
   4082 bnx_tx_encap(struct bnx_softc *sc, struct mbuf **m_head)
   4083 {
   4084 	bus_dmamap_t		map;
   4085 	struct tx_bd		*txbd = NULL;
   4086 	struct mbuf		*m0;
   4087 	u_int16_t		vlan_tag = 0, flags = 0;
   4088 	u_int16_t		chain_prod, prod;
   4089 #ifdef BNX_DEBUG
   4090 	u_int16_t		debug_prod;
   4091 #endif
   4092 	u_int32_t		addr, prod_bseq;
   4093 	int			i, error, rc = 0;
   4094 	struct m_tag		*mtag;
   4095 
   4096 	m0 = *m_head;
   4097 
   4098 	/* Transfer any checksum offload flags to the bd. */
   4099 	if (m0->m_pkthdr.csum_flags) {
   4100 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4101 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4102 		if (m0->m_pkthdr.csum_flags &
   4103 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4104 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4105 	}
   4106 
   4107 	/* Transfer any VLAN tags to the bd. */
   4108 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m0);
   4109 	if (mtag != NULL) {
   4110 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4111 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4112 	}
   4113 
   4114 	/* Map the mbuf into DMAable memory. */
   4115 	prod = sc->tx_prod;
   4116 	chain_prod = TX_CHAIN_IDX(prod);
   4117 	map = sc->tx_mbuf_map[chain_prod];
   4118 
   4119 	/* Map the mbuf into our DMA address space. */
   4120 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m0, BUS_DMA_NOWAIT);
   4121 	if (error != 0) {
   4122 		aprint_error_dev(sc->bnx_dev,
   4123 		    "Error mapping mbuf into TX chain!\n");
   4124 		m_freem(m0);
   4125 		*m_head = NULL;
   4126 		return (error);
   4127 	}
   4128 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4129 	    BUS_DMASYNC_PREWRITE);
   4130         /*
   4131          * The chip seems to require that at least 16 descriptors be kept
   4132          * empty at all times.  Make sure we honor that.
   4133          * XXX Would it be faster to assume worst case scenario for
   4134          * map->dm_nsegs and do this calculation higher up?
   4135          */
   4136         if (map->dm_nsegs > (USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE)) {
   4137                 bus_dmamap_unload(sc->bnx_dmatag, map);
   4138                 return (ENOBUFS);
   4139         }
   4140 
   4141 	/* prod points to an empty tx_bd at this point. */
   4142 	prod_bseq = sc->tx_prod_bseq;
   4143 #ifdef BNX_DEBUG
   4144 	debug_prod = chain_prod;
   4145 #endif
   4146 	DBPRINT(sc, BNX_INFO_SEND,
   4147 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   4148 		"prod_bseq = 0x%08X\n",
   4149 		__func__, *prod, chain_prod, prod_bseq);
   4150 
   4151 	/*
   4152 	 * Cycle through each mbuf segment that makes up
   4153 	 * the outgoing frame, gathering the mapping info
   4154 	 * for that segment and creating a tx_bd for the
   4155 	 * mbuf.
   4156 	 */
   4157 	for (i = 0; i < map->dm_nsegs ; i++) {
   4158 		chain_prod = TX_CHAIN_IDX(prod);
   4159 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   4160 
   4161 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   4162 		txbd->tx_bd_haddr_lo = htole32(addr);
   4163 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   4164 		txbd->tx_bd_haddr_hi = htole32(addr);
   4165 		txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
   4166 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
   4167 		txbd->tx_bd_flags = htole16(flags);
   4168 		prod_bseq += map->dm_segs[i].ds_len;
   4169 		if (i == 0)
   4170 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
   4171 		prod = NEXT_TX_BD(prod);
   4172 	}
   4173 	/* Set the END flag on the last TX buffer descriptor. */
   4174 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
   4175 
   4176 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
   4177 
   4178 	DBPRINT(sc, BNX_INFO_SEND,
   4179 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   4180 		"prod_bseq = 0x%08X\n",
   4181 		__func__, prod, chain_prod, prod_bseq);
   4182 
   4183 	/*
   4184 	 * Ensure that the mbuf pointer for this
   4185 	 * transmission is placed at the array
   4186 	 * index of the last descriptor in this
   4187 	 * chain.  This is done because a single
   4188 	 * map is used for all segments of the mbuf
   4189 	 * and we don't want to unload the map before
   4190 	 * all of the segments have been freed.
   4191 	 */
   4192 	sc->tx_mbuf_ptr[chain_prod] = m0;
   4193 	sc->used_tx_bd += map->dm_nsegs;
   4194 
   4195 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   4196 	    sc->tx_hi_watermark = sc->used_tx_bd);
   4197 
   4198 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   4199 
   4200 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   4201 	    map_arg.maxsegs));
   4202 
   4203 	/* prod points to the next free tx_bd at this point. */
   4204 	sc->tx_prod = prod;
   4205 	sc->tx_prod_bseq = prod_bseq;
   4206 
   4207 	return (rc);
   4208 }
   4209 
   4210 /****************************************************************************/
   4211 /* Main transmit routine.                                                   */
   4212 /*                                                                          */
   4213 /* Returns:                                                                 */
   4214 /*   Nothing.                                                               */
   4215 /****************************************************************************/
   4216 void
   4217 bnx_start(struct ifnet *ifp)
   4218 {
   4219 	struct bnx_softc	*sc = ifp->if_softc;
   4220 	struct mbuf		*m_head = NULL;
   4221 	int			count = 0;
   4222 	u_int16_t		tx_prod, tx_chain_prod;
   4223 
   4224 	/* If there's no link or the transmit queue is empty then just exit. */
   4225 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   4226 		DBPRINT(sc, BNX_INFO_SEND,
   4227 		    "%s(): output active or device not running.\n", __func__);
   4228 		goto bnx_start_exit;
   4229 	}
   4230 
   4231 	/* prod points to the next free tx_bd. */
   4232 	tx_prod = sc->tx_prod;
   4233 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
   4234 
   4235 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   4236 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
   4237 	    __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   4238 
   4239 	/*
   4240 	 * Keep adding entries while there is space in the ring.  We keep
   4241 	 * BNX_TX_SLACK_SPACE entries unused at all times.
   4242 	 */
   4243 	while (sc->used_tx_bd < USABLE_TX_BD - BNX_TX_SLACK_SPACE) {
   4244 		/* Check for any frames to send. */
   4245 		IFQ_POLL(&ifp->if_snd, m_head);
   4246 		if (m_head == NULL)
   4247 			break;
   4248 
   4249 		/*
   4250 		 * Pack the data into the transmit ring. If we
   4251 		 * don't have room, set the OACTIVE flag to wait
   4252 		 * for the NIC to drain the chain.
   4253 		 */
   4254 		if (bnx_tx_encap(sc, &m_head)) {
   4255 			ifp->if_flags |= IFF_OACTIVE;
   4256 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   4257 			    "business! Total tx_bd used = %d\n",
   4258 			    sc->used_tx_bd);
   4259 			break;
   4260 		}
   4261 
   4262 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4263 		count++;
   4264 
   4265 #if NBPFILTER > 0
   4266 		/* Send a copy of the frame to any BPF listeners. */
   4267 		if (ifp->if_bpf)
   4268 			bpf_mtap(ifp->if_bpf, m_head);
   4269 #endif
   4270 	}
   4271 
   4272 	if (count == 0) {
   4273 		/* no packets were dequeued */
   4274 		DBPRINT(sc, BNX_VERBOSE_SEND,
   4275 		    "%s(): No packets were dequeued\n", __func__);
   4276 		goto bnx_start_exit;
   4277 	}
   4278 
   4279 	/* Update the driver's counters. */
   4280 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   4281 
   4282 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   4283 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
   4284 	    tx_chain_prod, sc->tx_prod_bseq);
   4285 
   4286 	/* Start the transmit. */
   4287 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   4288 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   4289 
   4290 	/* Set the tx timeout. */
   4291 	ifp->if_timer = BNX_TX_TIMEOUT;
   4292 
   4293 bnx_start_exit:
   4294 	return;
   4295 }
   4296 
   4297 /****************************************************************************/
   4298 /* Handles any IOCTL calls from the operating system.                       */
   4299 /*                                                                          */
   4300 /* Returns:                                                                 */
   4301 /*   0 for success, positive value for failure.                             */
   4302 /****************************************************************************/
   4303 int
   4304 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   4305 {
   4306 	struct bnx_softc	*sc = ifp->if_softc;
   4307 	struct ifreq		*ifr = (struct ifreq *) data;
   4308 	struct mii_data		*mii;
   4309 	int			s, error = 0;
   4310 
   4311 	s = splnet();
   4312 
   4313 	switch (command) {
   4314 	case SIOCSIFFLAGS:
   4315 		if (ifp->if_flags & IFF_UP) {
   4316 			if ((ifp->if_flags & IFF_RUNNING) &&
   4317 			    ((ifp->if_flags ^ sc->bnx_if_flags) &
   4318 			    (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
   4319 				bnx_set_rx_mode(sc);
   4320 			} else if (!(ifp->if_flags & IFF_RUNNING))
   4321 				bnx_init(ifp);
   4322 
   4323 		} else if (ifp->if_flags & IFF_RUNNING)
   4324 			bnx_stop(ifp, 1);
   4325 
   4326 		sc->bnx_if_flags = ifp->if_flags;
   4327 		break;
   4328 
   4329 	case SIOCSIFMEDIA:
   4330 	case SIOCGIFMEDIA:
   4331 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   4332 		    sc->bnx_phy_flags);
   4333 
   4334 		if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
   4335 			error = ifmedia_ioctl(ifp, ifr,
   4336 			    &sc->bnx_ifmedia, command);
   4337 		else {
   4338 			mii = &sc->bnx_mii;
   4339 			error = ifmedia_ioctl(ifp, ifr,
   4340 			    &mii->mii_media, command);
   4341 		}
   4342 		break;
   4343 
   4344 	default:
   4345 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4346 			break;
   4347 
   4348 		error = 0;
   4349 
   4350 		if (command != SIOCADDMULTI && command && SIOCDELMULTI)
   4351 			;
   4352 		else if (ifp->if_flags & IFF_RUNNING) {
   4353 			/* reload packet filter if running */
   4354 			bnx_set_rx_mode(sc);
   4355 		}
   4356 		break;
   4357 	}
   4358 
   4359 	splx(s);
   4360 
   4361 	return (error);
   4362 }
   4363 
   4364 /****************************************************************************/
   4365 /* Transmit timeout handler.                                                */
   4366 /*                                                                          */
   4367 /* Returns:                                                                 */
   4368 /*   Nothing.                                                               */
   4369 /****************************************************************************/
   4370 void
   4371 bnx_watchdog(struct ifnet *ifp)
   4372 {
   4373 	struct bnx_softc	*sc = ifp->if_softc;
   4374 
   4375 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   4376 	    bnx_dump_status_block(sc));
   4377 
   4378 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   4379 
   4380 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   4381 
   4382 	bnx_init(ifp);
   4383 
   4384 	ifp->if_oerrors++;
   4385 }
   4386 
   4387 /*
   4388  * Interrupt handler.
   4389  */
   4390 /****************************************************************************/
   4391 /* Main interrupt entry point.  Verifies that the controller generated the  */
   4392 /* interrupt and then calls a separate routine for handle the various       */
   4393 /* interrupt causes (PHY, TX, RX).                                          */
   4394 /*                                                                          */
   4395 /* Returns:                                                                 */
   4396 /*   0 for success, positive value for failure.                             */
   4397 /****************************************************************************/
   4398 int
   4399 bnx_intr(void *xsc)
   4400 {
   4401 	struct bnx_softc	*sc;
   4402 	struct ifnet		*ifp;
   4403 	u_int32_t		status_attn_bits;
   4404 	const struct status_block *sblk;
   4405 
   4406 	sc = xsc;
   4407 	if (!device_is_active(sc->bnx_dev))
   4408 		return 0;
   4409 
   4410 	ifp = &sc->bnx_ec.ec_if;
   4411 
   4412 	DBRUNIF(1, sc->interrupts_generated++);
   4413 
   4414 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   4415 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4416 
   4417 	/*
   4418 	 * If the hardware status block index
   4419 	 * matches the last value read by the
   4420 	 * driver and we haven't asserted our
   4421 	 * interrupt then there's nothing to do.
   4422 	 */
   4423 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   4424 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   4425 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   4426 		return (0);
   4427 
   4428 	/* Ack the interrupt and stop others from occuring. */
   4429 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4430 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   4431 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4432 
   4433 	/* Keep processing data as long as there is work to do. */
   4434 	for (;;) {
   4435 		sblk = sc->status_block;
   4436 		status_attn_bits = sblk->status_attn_bits;
   4437 
   4438 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   4439 		    aprint_debug("Simulating unexpected status attention bit set.");
   4440 		    status_attn_bits = status_attn_bits |
   4441 		    STATUS_ATTN_BITS_PARITY_ERROR);
   4442 
   4443 		/* Was it a link change interrupt? */
   4444 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   4445 		    (sblk->status_attn_bits_ack &
   4446 		    STATUS_ATTN_BITS_LINK_STATE))
   4447 			bnx_phy_intr(sc);
   4448 
   4449 		/* If any other attention is asserted then the chip is toast. */
   4450 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   4451 		    (sblk->status_attn_bits_ack &
   4452 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   4453 			DBRUN(1, sc->unexpected_attentions++);
   4454 
   4455 			aprint_error_dev(sc->bnx_dev,
   4456 			    "Fatal attention detected: 0x%08X\n",
   4457 			    sblk->status_attn_bits);
   4458 
   4459 			DBRUN(BNX_FATAL,
   4460 			    if (bnx_debug_unexpected_attention == 0)
   4461 			    bnx_breakpoint(sc));
   4462 
   4463 			bnx_init(ifp);
   4464 			return (1);
   4465 		}
   4466 
   4467 		/* Check for any completed RX frames. */
   4468 		if (sblk->status_rx_quick_consumer_index0 !=
   4469 		    sc->hw_rx_cons)
   4470 			bnx_rx_intr(sc);
   4471 
   4472 		/* Check for any completed TX frames. */
   4473 		if (sblk->status_tx_quick_consumer_index0 !=
   4474 		    sc->hw_tx_cons)
   4475 			bnx_tx_intr(sc);
   4476 
   4477 		/* Save the status block index value for use during the
   4478 		 * next interrupt.
   4479 		 */
   4480 		sc->last_status_idx = sblk->status_idx;
   4481 
   4482 		/* Prevent speculative reads from getting ahead of the
   4483 		 * status block.
   4484 		 */
   4485 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4486 		    BUS_SPACE_BARRIER_READ);
   4487 
   4488 		/* If there's no work left then exit the isr. */
   4489 		if ((sblk->status_rx_quick_consumer_index0 ==
   4490 		    sc->hw_rx_cons) &&
   4491 		    (sblk->status_tx_quick_consumer_index0 ==
   4492 		    sc->hw_tx_cons))
   4493 			break;
   4494 	}
   4495 
   4496 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   4497 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   4498 
   4499 	/* Re-enable interrupts. */
   4500 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4501 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   4502 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4503 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4504 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   4505 
   4506 	/* Handle any frames that arrived while handling the interrupt. */
   4507 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   4508 		bnx_start(ifp);
   4509 
   4510 	return (1);
   4511 }
   4512 
   4513 /****************************************************************************/
   4514 /* Programs the various packet receive modes (broadcast and multicast).     */
   4515 /*                                                                          */
   4516 /* Returns:                                                                 */
   4517 /*   Nothing.                                                               */
   4518 /****************************************************************************/
   4519 void
   4520 bnx_set_rx_mode(struct bnx_softc *sc)
   4521 {
   4522 	struct ethercom		*ec = &sc->bnx_ec;
   4523 	struct ifnet		*ifp = &ec->ec_if;
   4524 	struct ether_multi	*enm;
   4525 	struct ether_multistep	step;
   4526 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   4527 	u_int32_t		rx_mode, sort_mode;
   4528 	int			h, i;
   4529 
   4530 	/* Initialize receive mode default settings. */
   4531 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   4532 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   4533 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   4534 
   4535 	/*
   4536 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   4537 	 * be enbled.
   4538 	 */
   4539 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   4540 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   4541 
   4542 	/*
   4543 	 * Check for promiscuous, all multicast, or selected
   4544 	 * multicast address filtering.
   4545 	 */
   4546 	if (ifp->if_flags & IFF_PROMISC) {
   4547 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   4548 
   4549 		/* Enable promiscuous mode. */
   4550 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   4551 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   4552 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   4553 allmulti:
   4554 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   4555 
   4556 		/* Enable all multicast addresses. */
   4557 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   4558 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   4559 			    0xffffffff);
   4560 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   4561 	} else {
   4562 		/* Accept one or more multicast(s). */
   4563 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   4564 
   4565 		ETHER_FIRST_MULTI(step, ec, enm);
   4566 		while (enm != NULL) {
   4567 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
   4568 			    ETHER_ADDR_LEN)) {
   4569 				ifp->if_flags |= IFF_ALLMULTI;
   4570 				goto allmulti;
   4571 			}
   4572 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   4573 			    0xFF;
   4574 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   4575 			ETHER_NEXT_MULTI(step, enm);
   4576 		}
   4577 
   4578 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   4579 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   4580 			    hashes[i]);
   4581 
   4582 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   4583 	}
   4584 
   4585 	/* Only make changes if the recive mode has actually changed. */
   4586 	if (rx_mode != sc->rx_mode) {
   4587 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   4588 		    rx_mode);
   4589 
   4590 		sc->rx_mode = rx_mode;
   4591 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   4592 	}
   4593 
   4594 	/* Disable and clear the exisitng sort before enabling a new sort. */
   4595 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   4596 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   4597 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   4598 }
   4599 
   4600 /****************************************************************************/
   4601 /* Called periodically to updates statistics from the controllers           */
   4602 /* statistics block.                                                        */
   4603 /*                                                                          */
   4604 /* Returns:                                                                 */
   4605 /*   Nothing.                                                               */
   4606 /****************************************************************************/
   4607 void
   4608 bnx_stats_update(struct bnx_softc *sc)
   4609 {
   4610 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4611 	struct statistics_block	*stats;
   4612 
   4613 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   4614 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4615 	    BUS_DMASYNC_POSTREAD);
   4616 
   4617 	stats = (struct statistics_block *)sc->stats_block;
   4618 
   4619 	/*
   4620 	 * Update the interface statistics from the
   4621 	 * hardware statistics.
   4622 	 */
   4623 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   4624 
   4625 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   4626 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   4627 	    (u_long)stats->stat_IfInMBUFDiscards +
   4628 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   4629 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   4630 
   4631 	ifp->if_oerrors = (u_long)
   4632 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   4633 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   4634 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   4635 
   4636 	/*
   4637 	 * Certain controllers don't report
   4638 	 * carrier sense errors correctly.
   4639 	 * See errata E11_5708CA0_1165.
   4640 	 */
   4641 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   4642 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   4643 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   4644 
   4645 	/*
   4646 	 * Update the sysctl statistics from the
   4647 	 * hardware statistics.
   4648 	 */
   4649 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
   4650 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
   4651 
   4652 	sc->stat_IfHCInBadOctets =
   4653 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   4654 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
   4655 
   4656 	sc->stat_IfHCOutOctets =
   4657 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
   4658 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
   4659 
   4660 	sc->stat_IfHCOutBadOctets =
   4661 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   4662 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
   4663 
   4664 	sc->stat_IfHCInUcastPkts =
   4665 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   4666 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
   4667 
   4668 	sc->stat_IfHCInMulticastPkts =
   4669 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   4670 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
   4671 
   4672 	sc->stat_IfHCInBroadcastPkts =
   4673 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   4674 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
   4675 
   4676 	sc->stat_IfHCOutUcastPkts =
   4677 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   4678 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
   4679 
   4680 	sc->stat_IfHCOutMulticastPkts =
   4681 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   4682 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
   4683 
   4684 	sc->stat_IfHCOutBroadcastPkts =
   4685 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   4686 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   4687 
   4688 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   4689 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   4690 
   4691 	sc->stat_Dot3StatsCarrierSenseErrors =
   4692 	    stats->stat_Dot3StatsCarrierSenseErrors;
   4693 
   4694 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   4695 
   4696 	sc->stat_Dot3StatsAlignmentErrors =
   4697 	    stats->stat_Dot3StatsAlignmentErrors;
   4698 
   4699 	sc->stat_Dot3StatsSingleCollisionFrames =
   4700 	    stats->stat_Dot3StatsSingleCollisionFrames;
   4701 
   4702 	sc->stat_Dot3StatsMultipleCollisionFrames =
   4703 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   4704 
   4705 	sc->stat_Dot3StatsDeferredTransmissions =
   4706 	    stats->stat_Dot3StatsDeferredTransmissions;
   4707 
   4708 	sc->stat_Dot3StatsExcessiveCollisions =
   4709 	    stats->stat_Dot3StatsExcessiveCollisions;
   4710 
   4711 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   4712 
   4713 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   4714 
   4715 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   4716 
   4717 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   4718 
   4719 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   4720 
   4721 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   4722 
   4723 	sc->stat_EtherStatsPktsRx64Octets =
   4724 	    stats->stat_EtherStatsPktsRx64Octets;
   4725 
   4726 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   4727 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   4728 
   4729 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   4730 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   4731 
   4732 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   4733 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   4734 
   4735 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   4736 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   4737 
   4738 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   4739 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   4740 
   4741 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   4742 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   4743 
   4744 	sc->stat_EtherStatsPktsTx64Octets =
   4745 	    stats->stat_EtherStatsPktsTx64Octets;
   4746 
   4747 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   4748 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   4749 
   4750 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   4751 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   4752 
   4753 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   4754 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   4755 
   4756 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   4757 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   4758 
   4759 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   4760 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   4761 
   4762 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   4763 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   4764 
   4765 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   4766 
   4767 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   4768 
   4769 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   4770 
   4771 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   4772 
   4773 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   4774 
   4775 	sc->stat_MacControlFramesReceived =
   4776 	    stats->stat_MacControlFramesReceived;
   4777 
   4778 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   4779 
   4780 	sc->stat_IfInFramesL2FilterDiscards =
   4781 	    stats->stat_IfInFramesL2FilterDiscards;
   4782 
   4783 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   4784 
   4785 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   4786 
   4787 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   4788 
   4789 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   4790 
   4791 	sc->stat_CatchupInRuleCheckerDiscards =
   4792 	    stats->stat_CatchupInRuleCheckerDiscards;
   4793 
   4794 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   4795 
   4796 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   4797 
   4798 	sc->stat_CatchupInRuleCheckerP4Hit =
   4799 	    stats->stat_CatchupInRuleCheckerP4Hit;
   4800 
   4801 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   4802 }
   4803 
   4804 void
   4805 bnx_tick(void *xsc)
   4806 {
   4807 	struct bnx_softc	*sc = xsc;
   4808 	struct mii_data		*mii;
   4809 	u_int32_t		msg;
   4810 	u_int16_t		prod, chain_prod;
   4811 	u_int32_t		prod_bseq;
   4812 	int s = splnet();
   4813 
   4814 	/* Tell the firmware that the driver is still running. */
   4815 #ifdef BNX_DEBUG
   4816 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   4817 #else
   4818 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   4819 #endif
   4820 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   4821 
   4822 	/* Update the statistics from the hardware statistics block. */
   4823 	bnx_stats_update(sc);
   4824 
   4825 	/* Schedule the next tick. */
   4826 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4827 
   4828 	/* DRC - ToDo: Add SerDes support and check SerDes link here. */
   4829 
   4830 	mii = &sc->bnx_mii;
   4831 	mii_tick(mii);
   4832 
   4833 	/* try to get more RX buffers, just in case */
   4834 	prod = sc->rx_prod;
   4835 	prod_bseq = sc->rx_prod_bseq;
   4836 	chain_prod = RX_CHAIN_IDX(prod);
   4837 	bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq);
   4838 	sc->rx_prod = prod;
   4839 	sc->rx_prod_bseq = prod_bseq;
   4840 	splx(s);
   4841 	return;
   4842 }
   4843 
   4844 /****************************************************************************/
   4845 /* BNX Debug Routines                                                       */
   4846 /****************************************************************************/
   4847 #ifdef BNX_DEBUG
   4848 
   4849 /****************************************************************************/
   4850 /* Prints out information about an mbuf.                                    */
   4851 /*                                                                          */
   4852 /* Returns:                                                                 */
   4853 /*   Nothing.                                                               */
   4854 /****************************************************************************/
   4855 void
   4856 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   4857 {
   4858 	struct mbuf		*mp = m;
   4859 
   4860 	if (m == NULL) {
   4861 		/* Index out of range. */
   4862 		aprint_error("mbuf ptr is null!\n");
   4863 		return;
   4864 	}
   4865 
   4866 	while (mp) {
   4867 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   4868 		    mp, mp->m_len);
   4869 
   4870 		if (mp->m_flags & M_EXT)
   4871 			aprint_debug("M_EXT ");
   4872 		if (mp->m_flags & M_PKTHDR)
   4873 			aprint_debug("M_PKTHDR ");
   4874 		aprint_debug("\n");
   4875 
   4876 		if (mp->m_flags & M_EXT)
   4877 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   4878 			    mp, mp->m_ext.ext_size);
   4879 
   4880 		mp = mp->m_next;
   4881 	}
   4882 }
   4883 
   4884 /****************************************************************************/
   4885 /* Prints out the mbufs in the TX mbuf chain.                               */
   4886 /*                                                                          */
   4887 /* Returns:                                                                 */
   4888 /*   Nothing.                                                               */
   4889 /****************************************************************************/
   4890 void
   4891 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   4892 {
   4893 	struct mbuf		*m;
   4894 	int			i;
   4895 
   4896 	BNX_PRINTF(sc,
   4897 	    "----------------------------"
   4898 	    "  tx mbuf data  "
   4899 	    "----------------------------\n");
   4900 
   4901 	for (i = 0; i < count; i++) {
   4902 	 	m = sc->tx_mbuf_ptr[chain_prod];
   4903 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   4904 		bnx_dump_mbuf(sc, m);
   4905 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   4906 	}
   4907 
   4908 	BNX_PRINTF(sc,
   4909 	    "--------------------------------------------"
   4910 	    "----------------------------\n");
   4911 }
   4912 
   4913 /*
   4914  * This routine prints the RX mbuf chain.
   4915  */
   4916 void
   4917 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   4918 {
   4919 	struct mbuf		*m;
   4920 	int			i;
   4921 
   4922 	BNX_PRINTF(sc,
   4923 	    "----------------------------"
   4924 	    "  rx mbuf data  "
   4925 	    "----------------------------\n");
   4926 
   4927 	for (i = 0; i < count; i++) {
   4928 	 	m = sc->rx_mbuf_ptr[chain_prod];
   4929 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   4930 		bnx_dump_mbuf(sc, m);
   4931 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   4932 	}
   4933 
   4934 
   4935 	BNX_PRINTF(sc,
   4936 	    "--------------------------------------------"
   4937 	    "----------------------------\n");
   4938 }
   4939 
   4940 void
   4941 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   4942 {
   4943 	if (idx > MAX_TX_BD)
   4944 		/* Index out of range. */
   4945 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   4946 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4947 		/* TX Chain page pointer. */
   4948 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   4949 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   4950 		    txbd->tx_bd_haddr_lo);
   4951 	else
   4952 		/* Normal tx_bd entry. */
   4953 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   4954 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   4955 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   4956 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   4957 		    txbd->tx_bd_flags);
   4958 }
   4959 
   4960 void
   4961 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   4962 {
   4963 	if (idx > MAX_RX_BD)
   4964 		/* Index out of range. */
   4965 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   4966 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4967 		/* TX Chain page pointer. */
   4968 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   4969 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   4970 		    rxbd->rx_bd_haddr_lo);
   4971 	else
   4972 		/* Normal tx_bd entry. */
   4973 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   4974 		    "0x%08X, flags = 0x%08X\n", idx,
   4975 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   4976 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   4977 }
   4978 
   4979 void
   4980 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   4981 {
   4982 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   4983 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   4984 	    "tcp_udp_xsum = 0x%04X\n", idx,
   4985 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   4986 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   4987 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4988 }
   4989 
   4990 /*
   4991  * This routine prints the TX chain.
   4992  */
   4993 void
   4994 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   4995 {
   4996 	struct tx_bd		*txbd;
   4997 	int			i;
   4998 
   4999 	/* First some info about the tx_bd chain structure. */
   5000 	BNX_PRINTF(sc,
   5001 	    "----------------------------"
   5002 	    "  tx_bd  chain  "
   5003 	    "----------------------------\n");
   5004 
   5005 	BNX_PRINTF(sc,
   5006 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5007 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
   5008 
   5009 	BNX_PRINTF(sc,
   5010 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5011 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
   5012 
   5013 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
   5014 
   5015 	BNX_PRINTF(sc, ""
   5016 	    "-----------------------------"
   5017 	    "   tx_bd data   "
   5018 	    "-----------------------------\n");
   5019 
   5020 	/* Now print out the tx_bd's themselves. */
   5021 	for (i = 0; i < count; i++) {
   5022 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5023 		bnx_dump_txbd(sc, tx_prod, txbd);
   5024 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5025 	}
   5026 
   5027 	BNX_PRINTF(sc,
   5028 	    "-----------------------------"
   5029 	    "--------------"
   5030 	    "-----------------------------\n");
   5031 }
   5032 
   5033 /*
   5034  * This routine prints the RX chain.
   5035  */
   5036 void
   5037 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5038 {
   5039 	struct rx_bd		*rxbd;
   5040 	int			i;
   5041 
   5042 	/* First some info about the tx_bd chain structure. */
   5043 	BNX_PRINTF(sc,
   5044 	    "----------------------------"
   5045 	    "  rx_bd  chain  "
   5046 	    "----------------------------\n");
   5047 
   5048 	BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
   5049 
   5050 	BNX_PRINTF(sc,
   5051 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5052 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
   5053 
   5054 	BNX_PRINTF(sc,
   5055 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5056 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
   5057 
   5058 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
   5059 
   5060 	BNX_PRINTF(sc,
   5061 	    "----------------------------"
   5062 	    "   rx_bd data   "
   5063 	    "----------------------------\n");
   5064 
   5065 	/* Now print out the rx_bd's themselves. */
   5066 	for (i = 0; i < count; i++) {
   5067 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5068 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5069 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5070 	}
   5071 
   5072 	BNX_PRINTF(sc,
   5073 	    "----------------------------"
   5074 	    "--------------"
   5075 	    "----------------------------\n");
   5076 }
   5077 
   5078 /*
   5079  * This routine prints the status block.
   5080  */
   5081 void
   5082 bnx_dump_status_block(struct bnx_softc *sc)
   5083 {
   5084 	struct status_block	*sblk;
   5085 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5086 	    BUS_DMASYNC_POSTREAD);
   5087 
   5088 	sblk = sc->status_block;
   5089 
   5090    	BNX_PRINTF(sc, "----------------------------- Status Block "
   5091 	    "-----------------------------\n");
   5092 
   5093 	BNX_PRINTF(sc,
   5094 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5095 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5096 	    sblk->status_idx);
   5097 
   5098 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5099 	    sblk->status_rx_quick_consumer_index0,
   5100 	    sblk->status_tx_quick_consumer_index0);
   5101 
   5102 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5103 
   5104 	/* Theses indices are not used for normal L2 drivers. */
   5105 	if (sblk->status_rx_quick_consumer_index1 ||
   5106 		sblk->status_tx_quick_consumer_index1)
   5107 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5108 		    sblk->status_rx_quick_consumer_index1,
   5109 		    sblk->status_tx_quick_consumer_index1);
   5110 
   5111 	if (sblk->status_rx_quick_consumer_index2 ||
   5112 		sblk->status_tx_quick_consumer_index2)
   5113 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5114 		    sblk->status_rx_quick_consumer_index2,
   5115 		    sblk->status_tx_quick_consumer_index2);
   5116 
   5117 	if (sblk->status_rx_quick_consumer_index3 ||
   5118 		sblk->status_tx_quick_consumer_index3)
   5119 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5120 		    sblk->status_rx_quick_consumer_index3,
   5121 		    sblk->status_tx_quick_consumer_index3);
   5122 
   5123 	if (sblk->status_rx_quick_consumer_index4 ||
   5124 		sblk->status_rx_quick_consumer_index5)
   5125 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5126 		    sblk->status_rx_quick_consumer_index4,
   5127 		    sblk->status_rx_quick_consumer_index5);
   5128 
   5129 	if (sblk->status_rx_quick_consumer_index6 ||
   5130 		sblk->status_rx_quick_consumer_index7)
   5131 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5132 		    sblk->status_rx_quick_consumer_index6,
   5133 		    sblk->status_rx_quick_consumer_index7);
   5134 
   5135 	if (sblk->status_rx_quick_consumer_index8 ||
   5136 		sblk->status_rx_quick_consumer_index9)
   5137 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5138 		    sblk->status_rx_quick_consumer_index8,
   5139 		    sblk->status_rx_quick_consumer_index9);
   5140 
   5141 	if (sblk->status_rx_quick_consumer_index10 ||
   5142 		sblk->status_rx_quick_consumer_index11)
   5143 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   5144 		    sblk->status_rx_quick_consumer_index10,
   5145 		    sblk->status_rx_quick_consumer_index11);
   5146 
   5147 	if (sblk->status_rx_quick_consumer_index12 ||
   5148 		sblk->status_rx_quick_consumer_index13)
   5149 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   5150 		    sblk->status_rx_quick_consumer_index12,
   5151 		    sblk->status_rx_quick_consumer_index13);
   5152 
   5153 	if (sblk->status_rx_quick_consumer_index14 ||
   5154 		sblk->status_rx_quick_consumer_index15)
   5155 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   5156 		    sblk->status_rx_quick_consumer_index14,
   5157 		    sblk->status_rx_quick_consumer_index15);
   5158 
   5159 	if (sblk->status_completion_producer_index ||
   5160 		sblk->status_cmd_consumer_index)
   5161 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   5162 		    sblk->status_completion_producer_index,
   5163 		    sblk->status_cmd_consumer_index);
   5164 
   5165 	BNX_PRINTF(sc, "-------------------------------------------"
   5166 	    "-----------------------------\n");
   5167 }
   5168 
   5169 /*
   5170  * This routine prints the statistics block.
   5171  */
   5172 void
   5173 bnx_dump_stats_block(struct bnx_softc *sc)
   5174 {
   5175 	struct statistics_block	*sblk;
   5176 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5177 	    BUS_DMASYNC_POSTREAD);
   5178 
   5179 	sblk = sc->stats_block;
   5180 
   5181 	BNX_PRINTF(sc, ""
   5182 	    "-----------------------------"
   5183 	    " Stats  Block "
   5184 	    "-----------------------------\n");
   5185 
   5186 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   5187 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   5188 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   5189 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   5190 
   5191 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   5192 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   5193 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   5194 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   5195 
   5196 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   5197 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   5198 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   5199 	    sblk->stat_IfHCInMulticastPkts_hi,
   5200 	    sblk->stat_IfHCInMulticastPkts_lo);
   5201 
   5202 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   5203 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   5204 	    sblk->stat_IfHCInBroadcastPkts_hi,
   5205 	    sblk->stat_IfHCInBroadcastPkts_lo,
   5206 	    sblk->stat_IfHCOutUcastPkts_hi,
   5207 	    sblk->stat_IfHCOutUcastPkts_lo);
   5208 
   5209 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   5210 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   5211 	    sblk->stat_IfHCOutMulticastPkts_hi,
   5212 	    sblk->stat_IfHCOutMulticastPkts_lo,
   5213 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   5214 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   5215 
   5216 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   5217 		BNX_PRINTF(sc, "0x%08X : "
   5218 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   5219 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   5220 
   5221 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   5222 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   5223 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   5224 
   5225 	if (sblk->stat_Dot3StatsFCSErrors)
   5226 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   5227 		    sblk->stat_Dot3StatsFCSErrors);
   5228 
   5229 	if (sblk->stat_Dot3StatsAlignmentErrors)
   5230 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   5231 		    sblk->stat_Dot3StatsAlignmentErrors);
   5232 
   5233 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   5234 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   5235 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   5236 
   5237 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   5238 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   5239 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   5240 
   5241 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   5242 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   5243 		    sblk->stat_Dot3StatsDeferredTransmissions);
   5244 
   5245 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   5246 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   5247 		    sblk->stat_Dot3StatsExcessiveCollisions);
   5248 
   5249 	if (sblk->stat_Dot3StatsLateCollisions)
   5250 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   5251 		    sblk->stat_Dot3StatsLateCollisions);
   5252 
   5253 	if (sblk->stat_EtherStatsCollisions)
   5254 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   5255 		    sblk->stat_EtherStatsCollisions);
   5256 
   5257 	if (sblk->stat_EtherStatsFragments)
   5258 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   5259 		    sblk->stat_EtherStatsFragments);
   5260 
   5261 	if (sblk->stat_EtherStatsJabbers)
   5262 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   5263 		    sblk->stat_EtherStatsJabbers);
   5264 
   5265 	if (sblk->stat_EtherStatsUndersizePkts)
   5266 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   5267 		    sblk->stat_EtherStatsUndersizePkts);
   5268 
   5269 	if (sblk->stat_EtherStatsOverrsizePkts)
   5270 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   5271 		    sblk->stat_EtherStatsOverrsizePkts);
   5272 
   5273 	if (sblk->stat_EtherStatsPktsRx64Octets)
   5274 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   5275 		    sblk->stat_EtherStatsPktsRx64Octets);
   5276 
   5277 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   5278 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   5279 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   5280 
   5281 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   5282 		BNX_PRINTF(sc, "0x%08X : "
   5283 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   5284 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   5285 
   5286 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   5287 		BNX_PRINTF(sc, "0x%08X : "
   5288 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   5289 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   5290 
   5291 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   5292 		BNX_PRINTF(sc, "0x%08X : "
   5293 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   5294 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   5295 
   5296 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   5297 		BNX_PRINTF(sc, "0x%08X : "
   5298 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   5299 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   5300 
   5301 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   5302 		BNX_PRINTF(sc, "0x%08X : "
   5303 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   5304 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   5305 
   5306 	if (sblk->stat_EtherStatsPktsTx64Octets)
   5307 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   5308 		    sblk->stat_EtherStatsPktsTx64Octets);
   5309 
   5310 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   5311 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   5312 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   5313 
   5314 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   5315 		BNX_PRINTF(sc, "0x%08X : "
   5316 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   5317 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   5318 
   5319 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   5320 		BNX_PRINTF(sc, "0x%08X : "
   5321 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   5322 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   5323 
   5324 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   5325 		BNX_PRINTF(sc, "0x%08X : "
   5326 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   5327 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   5328 
   5329 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   5330 		BNX_PRINTF(sc, "0x%08X : "
   5331 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   5332 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   5333 
   5334 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   5335 		BNX_PRINTF(sc, "0x%08X : "
   5336 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   5337 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   5338 
   5339 	if (sblk->stat_XonPauseFramesReceived)
   5340 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   5341 		    sblk->stat_XonPauseFramesReceived);
   5342 
   5343 	if (sblk->stat_XoffPauseFramesReceived)
   5344 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   5345 		    sblk->stat_XoffPauseFramesReceived);
   5346 
   5347 	if (sblk->stat_OutXonSent)
   5348 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   5349 		    sblk->stat_OutXonSent);
   5350 
   5351 	if (sblk->stat_OutXoffSent)
   5352 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   5353 		    sblk->stat_OutXoffSent);
   5354 
   5355 	if (sblk->stat_FlowControlDone)
   5356 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   5357 		    sblk->stat_FlowControlDone);
   5358 
   5359 	if (sblk->stat_MacControlFramesReceived)
   5360 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   5361 		    sblk->stat_MacControlFramesReceived);
   5362 
   5363 	if (sblk->stat_XoffStateEntered)
   5364 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   5365 		    sblk->stat_XoffStateEntered);
   5366 
   5367 	if (sblk->stat_IfInFramesL2FilterDiscards)
   5368 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   5369 		    sblk->stat_IfInFramesL2FilterDiscards);
   5370 
   5371 	if (sblk->stat_IfInRuleCheckerDiscards)
   5372 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   5373 		    sblk->stat_IfInRuleCheckerDiscards);
   5374 
   5375 	if (sblk->stat_IfInFTQDiscards)
   5376 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   5377 		    sblk->stat_IfInFTQDiscards);
   5378 
   5379 	if (sblk->stat_IfInMBUFDiscards)
   5380 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   5381 		    sblk->stat_IfInMBUFDiscards);
   5382 
   5383 	if (sblk->stat_IfInRuleCheckerP4Hit)
   5384 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   5385 		    sblk->stat_IfInRuleCheckerP4Hit);
   5386 
   5387 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   5388 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   5389 		    sblk->stat_CatchupInRuleCheckerDiscards);
   5390 
   5391 	if (sblk->stat_CatchupInFTQDiscards)
   5392 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   5393 		    sblk->stat_CatchupInFTQDiscards);
   5394 
   5395 	if (sblk->stat_CatchupInMBUFDiscards)
   5396 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   5397 		    sblk->stat_CatchupInMBUFDiscards);
   5398 
   5399 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   5400 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   5401 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   5402 
   5403 	BNX_PRINTF(sc,
   5404 	    "-----------------------------"
   5405 	    "--------------"
   5406 	    "-----------------------------\n");
   5407 }
   5408 
   5409 void
   5410 bnx_dump_driver_state(struct bnx_softc *sc)
   5411 {
   5412 	BNX_PRINTF(sc,
   5413 	    "-----------------------------"
   5414 	    " Driver State "
   5415 	    "-----------------------------\n");
   5416 
   5417 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   5418 	    "address\n", sc);
   5419 
   5420 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   5421 	    sc->status_block);
   5422 
   5423 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   5424 	    "address\n", sc->stats_block);
   5425 
   5426 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   5427 	    "adddress\n", sc->tx_bd_chain);
   5428 
   5429 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   5430 	    sc->rx_bd_chain);
   5431 
   5432 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   5433 	    sc->tx_mbuf_ptr);
   5434 
   5435 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   5436 	    sc->rx_mbuf_ptr);
   5437 
   5438 	BNX_PRINTF(sc,
   5439 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   5440 	    sc->interrupts_generated);
   5441 
   5442 	BNX_PRINTF(sc,
   5443 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   5444 	    sc->rx_interrupts);
   5445 
   5446 	BNX_PRINTF(sc,
   5447 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   5448 	    sc->tx_interrupts);
   5449 
   5450 	BNX_PRINTF(sc,
   5451 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   5452 	    sc->last_status_idx);
   5453 
   5454 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   5455 	    sc->tx_prod);
   5456 
   5457 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   5458 	    sc->tx_cons);
   5459 
   5460 	BNX_PRINTF(sc,
   5461 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   5462 	    sc->tx_prod_bseq);
   5463 
   5464 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   5465 	    sc->rx_prod);
   5466 
   5467 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   5468 	    sc->rx_cons);
   5469 
   5470 	BNX_PRINTF(sc,
   5471 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   5472 	    sc->rx_prod_bseq);
   5473 
   5474 	BNX_PRINTF(sc,
   5475 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   5476 	    sc->rx_mbuf_alloc);
   5477 
   5478 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   5479 	    sc->free_rx_bd);
   5480 
   5481 	BNX_PRINTF(sc,
   5482 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   5483 	    sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
   5484 
   5485 	BNX_PRINTF(sc,
   5486 	    "         0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
   5487 	    sc->tx_mbuf_alloc);
   5488 
   5489 	BNX_PRINTF(sc,
   5490 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   5491 	    sc->rx_mbuf_alloc);
   5492 
   5493 	BNX_PRINTF(sc, "         0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   5494 	    sc->used_tx_bd);
   5495 
   5496 	BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   5497 	    sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
   5498 
   5499 	BNX_PRINTF(sc,
   5500 	    "         0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
   5501 	    sc->mbuf_alloc_failed);
   5502 
   5503 	BNX_PRINTF(sc, "-------------------------------------------"
   5504 	    "-----------------------------\n");
   5505 }
   5506 
   5507 void
   5508 bnx_dump_hw_state(struct bnx_softc *sc)
   5509 {
   5510 	u_int32_t		val1;
   5511 	int			i;
   5512 
   5513 	BNX_PRINTF(sc,
   5514 	    "----------------------------"
   5515 	    " Hardware State "
   5516 	    "----------------------------\n");
   5517 
   5518 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   5519 
   5520 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   5521 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   5522 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   5523 
   5524 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   5525 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   5526 
   5527 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   5528 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   5529 
   5530 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   5531 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   5532 	    BNX_EMAC_STATUS);
   5533 
   5534 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   5535 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   5536 
   5537 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   5538 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   5539 	    BNX_TBDR_STATUS);
   5540 
   5541 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   5542 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   5543 	    BNX_TDMA_STATUS);
   5544 
   5545 	val1 = REG_RD(sc, BNX_HC_STATUS);
   5546 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   5547 
   5548 	BNX_PRINTF(sc,
   5549 	    "----------------------------"
   5550 	    "----------------"
   5551 	    "----------------------------\n");
   5552 
   5553 	BNX_PRINTF(sc,
   5554 	    "----------------------------"
   5555 	    " Register  Dump "
   5556 	    "----------------------------\n");
   5557 
   5558 	for (i = 0x400; i < 0x8000; i += 0x10)
   5559 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   5560 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   5561 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   5562 
   5563 	BNX_PRINTF(sc,
   5564 	    "----------------------------"
   5565 	    "----------------"
   5566 	    "----------------------------\n");
   5567 }
   5568 
   5569 void
   5570 bnx_breakpoint(struct bnx_softc *sc)
   5571 {
   5572 	/* Unreachable code to shut the compiler up about unused functions. */
   5573 	if (0) {
   5574    		bnx_dump_txbd(sc, 0, NULL);
   5575 		bnx_dump_rxbd(sc, 0, NULL);
   5576 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   5577 		bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
   5578 		bnx_dump_l2fhdr(sc, 0, NULL);
   5579 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   5580 		bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
   5581 		bnx_dump_status_block(sc);
   5582 		bnx_dump_stats_block(sc);
   5583 		bnx_dump_driver_state(sc);
   5584 		bnx_dump_hw_state(sc);
   5585 	}
   5586 
   5587 	bnx_dump_driver_state(sc);
   5588 	/* Print the important status block fields. */
   5589 	bnx_dump_status_block(sc);
   5590 
   5591 #if 0
   5592 	/* Call the debugger. */
   5593 	breakpoint();
   5594 #endif
   5595 
   5596 	return;
   5597 }
   5598 #endif
   5599