Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.18.10.1
      1 /*	$NetBSD: if_bnx.c,v 1.18.10.1 2009/05/04 08:12:56 yamt Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.43 2007/01/30 03:21:10 krw Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2006 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.18.10.1 2009/05/04 08:12:56 yamt Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5708C B1, B2
     44  *
     45  * The following controllers are not supported by this driver:
     46  * (These are not "Production" versions of the controller.)
     47  *
     48  *   BCM5706C A0, A1
     49  *   BCM5706S A0, A1, A2, A3
     50  *   BCM5708C A0, B0
     51  *   BCM5708S A0, B0, B1
     52  */
     53 
     54 #include <sys/callout.h>
     55 
     56 #include <dev/pci/if_bnxreg.h>
     57 #include <dev/microcode/bnx/bnxfw.h>
     58 
     59 /****************************************************************************/
     60 /* BNX Driver Version                                                       */
     61 /****************************************************************************/
     62 const char bnx_driver_version[] = "v0.9.6";
     63 
     64 /****************************************************************************/
     65 /* BNX Debug Options                                                        */
     66 /****************************************************************************/
     67 #ifdef BNX_DEBUG
     68 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     69 
     70 	/*          0 = Never              */
     71 	/*          1 = 1 in 2,147,483,648 */
     72 	/*        256 = 1 in     8,388,608 */
     73 	/*       2048 = 1 in     1,048,576 */
     74 	/*      65536 = 1 in        32,768 */
     75 	/*    1048576 = 1 in         2,048 */
     76 	/*  268435456 =	1 in             8 */
     77 	/*  536870912 = 1 in             4 */
     78 	/* 1073741824 = 1 in             2 */
     79 
     80 	/* Controls how often the l2_fhdr frame error check will fail. */
     81 	int bnx_debug_l2fhdr_status_check = 0;
     82 
     83 	/* Controls how often the unexpected attention check will fail. */
     84 	int bnx_debug_unexpected_attention = 0;
     85 
     86 	/* Controls how often to simulate an mbuf allocation failure. */
     87 	int bnx_debug_mbuf_allocation_failure = 0;
     88 
     89 	/* Controls how often to simulate a DMA mapping failure. */
     90 	int bnx_debug_dma_map_addr_failure = 0;
     91 
     92 	/* Controls how often to simulate a bootcode failure. */
     93 	int bnx_debug_bootcode_running_failure = 0;
     94 #endif
     95 
     96 /****************************************************************************/
     97 /* PCI Device ID Table                                                      */
     98 /*                                                                          */
     99 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    100 /****************************************************************************/
    101 static const struct bnx_product {
    102 	pci_vendor_id_t		bp_vendor;
    103 	pci_product_id_t	bp_product;
    104 	pci_vendor_id_t		bp_subvendor;
    105 	pci_product_id_t	bp_subproduct;
    106 	const char		*bp_name;
    107 } bnx_devices[] = {
    108 #ifdef PCI_SUBPRODUCT_HP_NC370T
    109 	{
    110 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    111 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    112 	  "HP NC370T Multifunction Gigabit Server Adapter"
    113 	},
    114 #endif
    115 #ifdef PCI_SUBPRODUCT_HP_NC370i
    116 	{
    117 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    118 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    119 	  "HP NC370i Multifunction Gigabit Server Adapter"
    120 	},
    121 #endif
    122 	{
    123 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    124 	  0, 0,
    125 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    126 	},
    127 #ifdef PCI_SUBPRODUCT_HP_NC370F
    128 	{
    129 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    130 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    131 	  "HP NC370F Multifunction Gigabit Server Adapter"
    132 	},
    133 #endif
    134 	{
    135 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    136 	  0, 0,
    137 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    138 	},
    139 	{
    140 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    141 	  0, 0,
    142 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    143 	},
    144 	{
    145 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    146 	  0, 0,
    147 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    148 	},
    149 };
    150 
    151 /****************************************************************************/
    152 /* Supported Flash NVRAM device data.                                       */
    153 /****************************************************************************/
    154 static struct flash_spec flash_table[] =
    155 {
    156 	/* Slow EEPROM */
    157 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    158 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    159 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    160 	 "EEPROM - slow"},
    161 	/* Expansion entry 0001 */
    162 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    163 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    164 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    165 	 "Entry 0001"},
    166 	/* Saifun SA25F010 (non-buffered flash) */
    167 	/* strap, cfg1, & write1 need updates */
    168 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    169 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    170 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    171 	 "Non-buffered flash (128kB)"},
    172 	/* Saifun SA25F020 (non-buffered flash) */
    173 	/* strap, cfg1, & write1 need updates */
    174 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    175 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    176 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    177 	 "Non-buffered flash (256kB)"},
    178 	/* Expansion entry 0100 */
    179 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    180 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    181 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    182 	 "Entry 0100"},
    183 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    184 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    185 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    186 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    187 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    188 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    189 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    190 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    191 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    192 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    193 	/* Saifun SA25F005 (non-buffered flash) */
    194 	/* strap, cfg1, & write1 need updates */
    195 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    196 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    197 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    198 	 "Non-buffered flash (64kB)"},
    199 	/* Fast EEPROM */
    200 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    201 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    202 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    203 	 "EEPROM - fast"},
    204 	/* Expansion entry 1001 */
    205 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    206 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    207 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    208 	 "Entry 1001"},
    209 	/* Expansion entry 1010 */
    210 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    211 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    213 	 "Entry 1010"},
    214 	/* ATMEL AT45DB011B (buffered flash) */
    215 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    216 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    217 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    218 	 "Buffered flash (128kB)"},
    219 	/* Expansion entry 1100 */
    220 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    221 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    222 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    223 	 "Entry 1100"},
    224 	/* Expansion entry 1101 */
    225 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    226 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    228 	 "Entry 1101"},
    229 	/* Ateml Expansion entry 1110 */
    230 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    231 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    232 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    233 	 "Entry 1110 (Atmel)"},
    234 	/* ATMEL AT45DB021B (buffered flash) */
    235 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    236 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    237 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    238 	 "Buffered flash (256kB)"},
    239 };
    240 
    241 /****************************************************************************/
    242 /* OpenBSD device entry points.                                             */
    243 /****************************************************************************/
    244 static int	bnx_probe(device_t, cfdata_t, void *);
    245 void	bnx_attach(device_t, device_t, void *);
    246 int	bnx_detach(device_t, int);
    247 
    248 /****************************************************************************/
    249 /* BNX Debug Data Structure Dump Routines                                   */
    250 /****************************************************************************/
    251 #ifdef BNX_DEBUG
    252 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    253 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    254 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    255 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    256 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    257 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    258 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    259 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    260 void	bnx_dump_status_block(struct bnx_softc *);
    261 void	bnx_dump_stats_block(struct bnx_softc *);
    262 void	bnx_dump_driver_state(struct bnx_softc *);
    263 void	bnx_dump_hw_state(struct bnx_softc *);
    264 void	bnx_breakpoint(struct bnx_softc *);
    265 #endif
    266 
    267 /****************************************************************************/
    268 /* BNX Register/Memory Access Routines                                      */
    269 /****************************************************************************/
    270 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
    271 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
    272 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
    273 int	bnx_miibus_read_reg(device_t, int, int);
    274 void	bnx_miibus_write_reg(device_t, int, int, int);
    275 void	bnx_miibus_statchg(device_t);
    276 
    277 /****************************************************************************/
    278 /* BNX NVRAM Access Routines                                                */
    279 /****************************************************************************/
    280 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    281 int	bnx_release_nvram_lock(struct bnx_softc *);
    282 void	bnx_enable_nvram_access(struct bnx_softc *);
    283 void	bnx_disable_nvram_access(struct bnx_softc *);
    284 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    285 	    u_int32_t);
    286 int	bnx_init_nvram(struct bnx_softc *);
    287 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    288 int	bnx_nvram_test(struct bnx_softc *);
    289 #ifdef BNX_NVRAM_WRITE_SUPPORT
    290 int	bnx_enable_nvram_write(struct bnx_softc *);
    291 void	bnx_disable_nvram_write(struct bnx_softc *);
    292 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
    293 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    294 	    u_int32_t);
    295 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    296 #endif
    297 
    298 /****************************************************************************/
    299 /*                                                                          */
    300 /****************************************************************************/
    301 int	bnx_dma_alloc(struct bnx_softc *);
    302 void	bnx_dma_free(struct bnx_softc *);
    303 void	bnx_release_resources(struct bnx_softc *);
    304 
    305 /****************************************************************************/
    306 /* BNX Firmware Synchronization and Load                                    */
    307 /****************************************************************************/
    308 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
    309 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
    310 	    u_int32_t);
    311 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    312 	    struct fw_info *);
    313 void	bnx_init_cpus(struct bnx_softc *);
    314 
    315 void	bnx_stop(struct ifnet *, int);
    316 int	bnx_reset(struct bnx_softc *, u_int32_t);
    317 int	bnx_chipinit(struct bnx_softc *);
    318 int	bnx_blockinit(struct bnx_softc *);
    319 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
    320 	    u_int16_t *, u_int32_t *);
    321 int	bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
    322 
    323 int	bnx_init_tx_chain(struct bnx_softc *);
    324 int	bnx_init_rx_chain(struct bnx_softc *);
    325 void	bnx_free_rx_chain(struct bnx_softc *);
    326 void	bnx_free_tx_chain(struct bnx_softc *);
    327 
    328 int	bnx_tx_encap(struct bnx_softc *, struct mbuf **);
    329 void	bnx_start(struct ifnet *);
    330 int	bnx_ioctl(struct ifnet *, u_long, void *);
    331 void	bnx_watchdog(struct ifnet *);
    332 int	bnx_init(struct ifnet *);
    333 
    334 void	bnx_init_context(struct bnx_softc *);
    335 void	bnx_get_mac_addr(struct bnx_softc *);
    336 void	bnx_set_mac_addr(struct bnx_softc *);
    337 void	bnx_phy_intr(struct bnx_softc *);
    338 void	bnx_rx_intr(struct bnx_softc *);
    339 void	bnx_tx_intr(struct bnx_softc *);
    340 void	bnx_disable_intr(struct bnx_softc *);
    341 void	bnx_enable_intr(struct bnx_softc *);
    342 
    343 int	bnx_intr(void *);
    344 void	bnx_set_rx_mode(struct bnx_softc *);
    345 void	bnx_stats_update(struct bnx_softc *);
    346 void	bnx_tick(void *);
    347 
    348 /****************************************************************************/
    349 /* OpenBSD device dispatch table.                                           */
    350 /****************************************************************************/
    351 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    352     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    353 
    354 /****************************************************************************/
    355 /* Device probe function.                                                   */
    356 /*                                                                          */
    357 /* Compares the device to the driver's list of supported devices and        */
    358 /* reports back to the OS whether this is the right driver for the device.  */
    359 /*                                                                          */
    360 /* Returns:                                                                 */
    361 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    362 /****************************************************************************/
    363 static const struct bnx_product *
    364 bnx_lookup(const struct pci_attach_args *pa)
    365 {
    366 	int i;
    367 	pcireg_t subid;
    368 
    369 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    370 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    371 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    372 			continue;
    373 		if (!bnx_devices[i].bp_subvendor)
    374 			return &bnx_devices[i];
    375 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    376 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    377 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    378 			return &bnx_devices[i];
    379 	}
    380 
    381 	return NULL;
    382 }
    383 static int
    384 bnx_probe(device_t parent, cfdata_t match, void *aux)
    385 {
    386 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    387 
    388 	if (bnx_lookup(pa) != NULL)
    389 		return (1);
    390 
    391 	return (0);
    392 }
    393 
    394 /****************************************************************************/
    395 /* Device attach function.                                                  */
    396 /*                                                                          */
    397 /* Allocates device resources, performs secondary chip identification,      */
    398 /* resets and initializes the hardware, and initializes driver instance     */
    399 /* variables.                                                               */
    400 /*                                                                          */
    401 /* Returns:                                                                 */
    402 /*   0 on success, positive value on failure.                               */
    403 /****************************************************************************/
    404 void
    405 bnx_attach(device_t parent, device_t self, void *aux)
    406 {
    407 	const struct bnx_product *bp;
    408 	struct bnx_softc	*sc = device_private(self);
    409 	struct pci_attach_args	*pa = aux;
    410 	pci_chipset_tag_t	pc = pa->pa_pc;
    411 	pci_intr_handle_t	ih;
    412 	const char 		*intrstr = NULL;
    413 	u_int32_t		command;
    414 	struct ifnet		*ifp;
    415 	u_int32_t		val;
    416 	int			mii_flags = MIIF_FORCEANEG;
    417 	pcireg_t		memtype;
    418 
    419 	bp = bnx_lookup(pa);
    420 	if (bp == NULL)
    421 		panic("unknown device");
    422 
    423 	sc->bnx_dev = self;
    424 
    425 	aprint_naive("\n");
    426 	aprint_normal(": %s\n", bp->bp_name);
    427 
    428 	sc->bnx_pa = *pa;
    429 
    430 	/*
    431 	 * Map control/status registers.
    432 	*/
    433 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    434 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    435 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    436 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    437 
    438 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    439 		aprint_error_dev(sc->bnx_dev,
    440 		    "failed to enable memory mapping!\n");
    441 		return;
    442 	}
    443 
    444 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    445 	switch (memtype) {
    446 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    447 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    448 		if (pci_mapreg_map(pa, BNX_PCI_BAR0,
    449 		    memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
    450 		    NULL, &sc->bnx_size) == 0)
    451 			break;
    452 	default:
    453 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    454 		return;
    455 	}
    456 
    457 	if (pci_intr_map(pa, &ih)) {
    458 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    459 		goto bnx_attach_fail;
    460 	}
    461 
    462 	intrstr = pci_intr_string(pc, ih);
    463 
    464 	/*
    465 	 * Configure byte swap and enable indirect register access.
    466 	 * Rely on CPU to do target byte swapping on big endian systems.
    467 	 * Access to registers outside of PCI configurtion space are not
    468 	 * valid until this is done.
    469 	 */
    470 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    471 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    472 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    473 
    474 	/* Save ASIC revsion info. */
    475 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    476 
    477 	/* Weed out any non-production controller revisions. */
    478 	switch(BNX_CHIP_ID(sc)) {
    479 	case BNX_CHIP_ID_5706_A0:
    480 	case BNX_CHIP_ID_5706_A1:
    481 	case BNX_CHIP_ID_5708_A0:
    482 	case BNX_CHIP_ID_5708_B0:
    483 		aprint_error_dev(sc->bnx_dev,
    484 		    "unsupported controller revision (%c%d)!\n",
    485 		    ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
    486 		    PCI_REVISION(pa->pa_class) & 0x0f);
    487 		goto bnx_attach_fail;
    488 	}
    489 
    490 	/*
    491 	 * Find the base address for shared memory access.
    492 	 * Newer versions of bootcode use a signature and offset
    493 	 * while older versions use a fixed address.
    494 	 */
    495 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    496 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    497 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
    498 	else
    499 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    500 
    501 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    502 
    503 	/* Set initial device and PHY flags */
    504 	sc->bnx_flags = 0;
    505 	sc->bnx_phy_flags = 0;
    506 
    507 	/* Get PCI bus information (speed and type). */
    508 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    509 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    510 		u_int32_t clkreg;
    511 
    512 		sc->bnx_flags |= BNX_PCIX_FLAG;
    513 
    514 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    515 
    516 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    517 		switch (clkreg) {
    518 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    519 			sc->bus_speed_mhz = 133;
    520 			break;
    521 
    522 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    523 			sc->bus_speed_mhz = 100;
    524 			break;
    525 
    526 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    527 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    528 			sc->bus_speed_mhz = 66;
    529 			break;
    530 
    531 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    532 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    533 			sc->bus_speed_mhz = 50;
    534 			break;
    535 
    536 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    537 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    538 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    539 			sc->bus_speed_mhz = 33;
    540 			break;
    541 		}
    542 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    543 			sc->bus_speed_mhz = 66;
    544 		else
    545 			sc->bus_speed_mhz = 33;
    546 
    547 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    548 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    549 
    550 	/* Reset the controller. */
    551 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    552 		goto bnx_attach_fail;
    553 
    554 	/* Initialize the controller. */
    555 	if (bnx_chipinit(sc)) {
    556 		aprint_error_dev(sc->bnx_dev,
    557 		    "Controller initialization failed!\n");
    558 		goto bnx_attach_fail;
    559 	}
    560 
    561 	/* Perform NVRAM test. */
    562 	if (bnx_nvram_test(sc)) {
    563 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    564 		goto bnx_attach_fail;
    565 	}
    566 
    567 	/* Fetch the permanent Ethernet MAC address. */
    568 	bnx_get_mac_addr(sc);
    569 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    570 	    ether_sprintf(sc->eaddr));
    571 
    572 	/*
    573 	 * Trip points control how many BDs
    574 	 * should be ready before generating an
    575 	 * interrupt while ticks control how long
    576 	 * a BD can sit in the chain before
    577 	 * generating an interrupt.  Set the default
    578 	 * values for the RX and TX rings.
    579 	 */
    580 
    581 #ifdef BNX_DEBUG
    582 	/* Force more frequent interrupts. */
    583 	sc->bnx_tx_quick_cons_trip_int = 1;
    584 	sc->bnx_tx_quick_cons_trip     = 1;
    585 	sc->bnx_tx_ticks_int           = 0;
    586 	sc->bnx_tx_ticks               = 0;
    587 
    588 	sc->bnx_rx_quick_cons_trip_int = 1;
    589 	sc->bnx_rx_quick_cons_trip     = 1;
    590 	sc->bnx_rx_ticks_int           = 0;
    591 	sc->bnx_rx_ticks               = 0;
    592 #else
    593 	sc->bnx_tx_quick_cons_trip_int = 20;
    594 	sc->bnx_tx_quick_cons_trip     = 20;
    595 	sc->bnx_tx_ticks_int           = 80;
    596 	sc->bnx_tx_ticks               = 80;
    597 
    598 	sc->bnx_rx_quick_cons_trip_int = 6;
    599 	sc->bnx_rx_quick_cons_trip     = 6;
    600 	sc->bnx_rx_ticks_int           = 18;
    601 	sc->bnx_rx_ticks               = 18;
    602 #endif
    603 
    604 	/* Update statistics once every second. */
    605 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    606 
    607 	/*
    608 	 * The copper based NetXtreme II controllers
    609 	 * that support 2.5Gb operation (currently
    610 	 * 5708S) use a PHY at address 2, otherwise
    611 	 * the PHY is present at address 1.
    612 	 */
    613 	sc->bnx_phy_addr = 1;
    614 
    615 	if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
    616 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
    617 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
    618 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
    619 			sc->bnx_phy_addr = 2;
    620 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
    621 					 BNX_SHARED_HW_CFG_CONFIG);
    622 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
    623 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
    624 		}
    625 	}
    626 
    627 	/* Allocate DMA memory resources. */
    628 	sc->bnx_dmatag = pa->pa_dmat;
    629 	if (bnx_dma_alloc(sc)) {
    630 		aprint_error_dev(sc->bnx_dev,
    631 		    "DMA resource allocation failed!\n");
    632 		goto bnx_attach_fail;
    633 	}
    634 
    635 	/* Initialize the ifnet interface. */
    636 	ifp = &sc->bnx_ec.ec_if;
    637 	ifp->if_softc = sc;
    638 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    639 	ifp->if_ioctl = bnx_ioctl;
    640 	ifp->if_stop = bnx_stop;
    641 	ifp->if_start = bnx_start;
    642 	ifp->if_init = bnx_init;
    643 	ifp->if_timer = 0;
    644 	ifp->if_watchdog = bnx_watchdog;
    645 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    646 	IFQ_SET_READY(&ifp->if_snd);
    647 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    648 
    649 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    650 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    651 
    652 	ifp->if_capabilities |=
    653 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    654 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    655 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    656 
    657 	/* Hookup IRQ last. */
    658 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    659 	if (sc->bnx_intrhand == NULL) {
    660 		aprint_error_dev(self, "couldn't establish interrupt");
    661 		if (intrstr != NULL)
    662 			aprint_error(" at %s", intrstr);
    663 		aprint_error("\n");
    664 		goto bnx_attach_fail;
    665 	}
    666 
    667 	sc->bnx_mii.mii_ifp = ifp;
    668 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    669 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    670 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    671 
    672 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    673 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    674 	    ether_mediastatus);
    675 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    676 		mii_flags |= MIIF_HAVEFIBER;
    677 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    678 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    679 
    680 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    681 		aprint_error_dev(self, "no PHY found!\n");
    682 		ifmedia_add(&sc->bnx_mii.mii_media,
    683 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    684 		ifmedia_set(&sc->bnx_mii.mii_media,
    685 		    IFM_ETHER|IFM_MANUAL);
    686 	} else {
    687 		ifmedia_set(&sc->bnx_mii.mii_media,
    688 		    IFM_ETHER|IFM_AUTO);
    689 	}
    690 
    691 	/* Attach to the Ethernet interface list. */
    692 	if_attach(ifp);
    693 	ether_ifattach(ifp,sc->eaddr);
    694 
    695 	callout_init(&sc->bnx_timeout, 0);
    696 
    697 	if (!pmf_device_register(self, NULL, NULL))
    698 		aprint_error_dev(self, "couldn't establish power handler\n");
    699 	else
    700 		pmf_class_network_register(self, ifp);
    701 
    702 	/* Print some important debugging info. */
    703 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    704 
    705 	goto bnx_attach_exit;
    706 
    707 bnx_attach_fail:
    708 	bnx_release_resources(sc);
    709 
    710 bnx_attach_exit:
    711 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    712 }
    713 
    714 /****************************************************************************/
    715 /* Device detach function.                                                  */
    716 /*                                                                          */
    717 /* Stops the controller, resets the controller, and releases resources.     */
    718 /*                                                                          */
    719 /* Returns:                                                                 */
    720 /*   0 on success, positive value on failure.                               */
    721 /****************************************************************************/
    722 int
    723 bnx_detach(device_t dev, int flags)
    724 {
    725 	int s;
    726 	struct bnx_softc *sc;
    727 	struct ifnet *ifp;
    728 
    729 	sc = device_private(dev);
    730 	ifp = &sc->bnx_ec.ec_if;
    731 
    732 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    733 
    734 	/* Stop and reset the controller. */
    735 	s = splnet();
    736 	if (ifp->if_flags & IFF_RUNNING)
    737 		bnx_stop(ifp, 1);
    738 	splx(s);
    739 
    740 	pmf_device_deregister(dev);
    741 	callout_destroy(&sc->bnx_timeout);
    742 	ether_ifdetach(ifp);
    743 	if_detach(ifp);
    744 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    745 
    746 	/* Release all remaining resources. */
    747 	bnx_release_resources(sc);
    748 
    749 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    750 
    751 	return(0);
    752 }
    753 
    754 /****************************************************************************/
    755 /* Indirect register read.                                                  */
    756 /*                                                                          */
    757 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    758 /* configuration space.  Using this mechanism avoids issues with posted     */
    759 /* reads but is much slower than memory-mapped I/O.                         */
    760 /*                                                                          */
    761 /* Returns:                                                                 */
    762 /*   The value of the register.                                             */
    763 /****************************************************************************/
    764 u_int32_t
    765 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
    766 {
    767 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    768 
    769 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    770 	    offset);
    771 #ifdef BNX_DEBUG
    772 	{
    773 		u_int32_t val;
    774 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    775 		    BNX_PCICFG_REG_WINDOW);
    776 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    777 		    "val = 0x%08X\n", __func__, offset, val);
    778 		return (val);
    779 	}
    780 #else
    781 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    782 #endif
    783 }
    784 
    785 /****************************************************************************/
    786 /* Indirect register write.                                                 */
    787 /*                                                                          */
    788 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    789 /* configuration space.  Using this mechanism avoids issues with posted     */
    790 /* writes but is muchh slower than memory-mapped I/O.                       */
    791 /*                                                                          */
    792 /* Returns:                                                                 */
    793 /*   Nothing.                                                               */
    794 /****************************************************************************/
    795 void
    796 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
    797 {
    798 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    799 
    800 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    801 		__func__, offset, val);
    802 
    803 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    804 	    offset);
    805 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    806 }
    807 
    808 /****************************************************************************/
    809 /* Context memory write.                                                    */
    810 /*                                                                          */
    811 /* The NetXtreme II controller uses context memory to track connection      */
    812 /* information for L2 and higher network protocols.                         */
    813 /*                                                                          */
    814 /* Returns:                                                                 */
    815 /*   Nothing.                                                               */
    816 /****************************************************************************/
    817 void
    818 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
    819     u_int32_t val)
    820 {
    821 
    822 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
    823 		"val = 0x%08X\n", __func__, cid_addr, offset, val);
    824 
    825 	offset += cid_addr;
    826 	REG_WR(sc, BNX_CTX_DATA_ADR, offset);
    827 	REG_WR(sc, BNX_CTX_DATA, val);
    828 }
    829 
    830 /****************************************************************************/
    831 /* PHY register read.                                                       */
    832 /*                                                                          */
    833 /* Implements register reads on the MII bus.                                */
    834 /*                                                                          */
    835 /* Returns:                                                                 */
    836 /*   The value of the register.                                             */
    837 /****************************************************************************/
    838 int
    839 bnx_miibus_read_reg(device_t dev, int phy, int reg)
    840 {
    841 	struct bnx_softc	*sc = device_private(dev);
    842 	u_int32_t		val;
    843 	int			i;
    844 
    845 	/* Make sure we are accessing the correct PHY address. */
    846 	if (phy != sc->bnx_phy_addr) {
    847 		DBPRINT(sc, BNX_VERBOSE,
    848 		    "Invalid PHY address %d for PHY read!\n", phy);
    849 		return(0);
    850 	}
    851 
    852 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    853 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    854 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    855 
    856 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    857 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    858 
    859 		DELAY(40);
    860 	}
    861 
    862 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
    863 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
    864 	    BNX_EMAC_MDIO_COMM_START_BUSY;
    865 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
    866 
    867 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    868 		DELAY(10);
    869 
    870 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    871 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    872 			DELAY(5);
    873 
    874 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    875 			val &= BNX_EMAC_MDIO_COMM_DATA;
    876 
    877 			break;
    878 		}
    879 	}
    880 
    881 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
    882 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
    883 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
    884 		val = 0x0;
    885 	} else
    886 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    887 
    888 	DBPRINT(sc, BNX_EXCESSIVE,
    889 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
    890 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    891 
    892 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    893 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    894 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    895 
    896 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    897 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    898 
    899 		DELAY(40);
    900 	}
    901 
    902 	return (val & 0xffff);
    903 }
    904 
    905 /****************************************************************************/
    906 /* PHY register write.                                                      */
    907 /*                                                                          */
    908 /* Implements register writes on the MII bus.                               */
    909 /*                                                                          */
    910 /* Returns:                                                                 */
    911 /*   The value of the register.                                             */
    912 /****************************************************************************/
    913 void
    914 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
    915 {
    916 	struct bnx_softc	*sc = device_private(dev);
    917 	u_int32_t		val1;
    918 	int			i;
    919 
    920 	/* Make sure we are accessing the correct PHY address. */
    921 	if (phy != sc->bnx_phy_addr) {
    922 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
    923 		    phy);
    924 		return;
    925 	}
    926 
    927 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
    928 	    "val = 0x%04X\n", __func__,
    929 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    930 
    931 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    932 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    933 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    934 
    935 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
    936 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    937 
    938 		DELAY(40);
    939 	}
    940 
    941 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
    942 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
    943 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
    944 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
    945 
    946 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    947 		DELAY(10);
    948 
    949 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    950 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    951 			DELAY(5);
    952 			break;
    953 		}
    954 	}
    955 
    956 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
    957 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
    958 		    __LINE__);
    959 	}
    960 
    961 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    962 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    963 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    964 
    965 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
    966 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    967 
    968 		DELAY(40);
    969 	}
    970 }
    971 
    972 /****************************************************************************/
    973 /* MII bus status change.                                                   */
    974 /*                                                                          */
    975 /* Called by the MII bus driver when the PHY establishes link to set the    */
    976 /* MAC interface registers.                                                 */
    977 /*                                                                          */
    978 /* Returns:                                                                 */
    979 /*   Nothing.                                                               */
    980 /****************************************************************************/
    981 void
    982 bnx_miibus_statchg(device_t dev)
    983 {
    984 	struct bnx_softc	*sc = device_private(dev);
    985 	struct mii_data		*mii = &sc->bnx_mii;
    986 	int			val;
    987 
    988 	val = REG_RD(sc, BNX_EMAC_MODE);
    989 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
    990 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
    991 	    BNX_EMAC_MODE_25G);
    992 
    993 	/* Set MII or GMII interface based on the speed
    994 	 * negotiated by the PHY.
    995 	 */
    996 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
    997 	case IFM_10_T:
    998 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
    999 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1000 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1001 			break;
   1002 		}
   1003 		/* FALLTHROUGH */
   1004 	case IFM_100_TX:
   1005 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1006 		val |= BNX_EMAC_MODE_PORT_MII;
   1007 		break;
   1008 	case IFM_2500_SX:
   1009 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1010 		val |= BNX_EMAC_MODE_25G;
   1011 		/* FALLTHROUGH */
   1012 	case IFM_1000_T:
   1013 	case IFM_1000_SX:
   1014 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1015 		val |= BNX_EMAC_MODE_PORT_GMII;
   1016 		break;
   1017 	default:
   1018 		val |= BNX_EMAC_MODE_PORT_GMII;
   1019 		break;
   1020 	}
   1021 
   1022 	/* Set half or full duplex based on the duplicity
   1023 	 * negotiated by the PHY.
   1024 	 */
   1025 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1026 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1027 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1028 	} else {
   1029 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1030 	}
   1031 
   1032 	REG_WR(sc, BNX_EMAC_MODE, val);
   1033 }
   1034 
   1035 /****************************************************************************/
   1036 /* Acquire NVRAM lock.                                                      */
   1037 /*                                                                          */
   1038 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1039 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1040 /* for use by the driver.                                                   */
   1041 /*                                                                          */
   1042 /* Returns:                                                                 */
   1043 /*   0 on success, positive value on failure.                               */
   1044 /****************************************************************************/
   1045 int
   1046 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1047 {
   1048 	u_int32_t		val;
   1049 	int			j;
   1050 
   1051 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1052 
   1053 	/* Request access to the flash interface. */
   1054 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1055 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1056 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1057 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1058 			break;
   1059 
   1060 		DELAY(5);
   1061 	}
   1062 
   1063 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1064 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1065 		return (EBUSY);
   1066 	}
   1067 
   1068 	return (0);
   1069 }
   1070 
   1071 /****************************************************************************/
   1072 /* Release NVRAM lock.                                                      */
   1073 /*                                                                          */
   1074 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1075 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1076 /* for use by the driver.                                                   */
   1077 /*                                                                          */
   1078 /* Returns:                                                                 */
   1079 /*   0 on success, positive value on failure.                               */
   1080 /****************************************************************************/
   1081 int
   1082 bnx_release_nvram_lock(struct bnx_softc *sc)
   1083 {
   1084 	int			j;
   1085 	u_int32_t		val;
   1086 
   1087 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1088 
   1089 	/* Relinquish nvram interface. */
   1090 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1091 
   1092 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1093 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1094 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1095 			break;
   1096 
   1097 		DELAY(5);
   1098 	}
   1099 
   1100 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1101 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1102 		return (EBUSY);
   1103 	}
   1104 
   1105 	return (0);
   1106 }
   1107 
   1108 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1109 /****************************************************************************/
   1110 /* Enable NVRAM write access.                                               */
   1111 /*                                                                          */
   1112 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1113 /*                                                                          */
   1114 /* Returns:                                                                 */
   1115 /*   0 on success, positive value on failure.                               */
   1116 /****************************************************************************/
   1117 int
   1118 bnx_enable_nvram_write(struct bnx_softc *sc)
   1119 {
   1120 	u_int32_t		val;
   1121 
   1122 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1123 
   1124 	val = REG_RD(sc, BNX_MISC_CFG);
   1125 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1126 
   1127 	if (!sc->bnx_flash_info->buffered) {
   1128 		int j;
   1129 
   1130 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1131 		REG_WR(sc, BNX_NVM_COMMAND,
   1132 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1133 
   1134 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1135 			DELAY(5);
   1136 
   1137 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1138 			if (val & BNX_NVM_COMMAND_DONE)
   1139 				break;
   1140 		}
   1141 
   1142 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1143 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1144 			return (EBUSY);
   1145 		}
   1146 	}
   1147 
   1148 	return (0);
   1149 }
   1150 
   1151 /****************************************************************************/
   1152 /* Disable NVRAM write access.                                              */
   1153 /*                                                                          */
   1154 /* When the caller is finished writing to NVRAM write access must be        */
   1155 /* disabled.                                                                */
   1156 /*                                                                          */
   1157 /* Returns:                                                                 */
   1158 /*   Nothing.                                                               */
   1159 /****************************************************************************/
   1160 void
   1161 bnx_disable_nvram_write(struct bnx_softc *sc)
   1162 {
   1163 	u_int32_t		val;
   1164 
   1165 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1166 
   1167 	val = REG_RD(sc, BNX_MISC_CFG);
   1168 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1169 }
   1170 #endif
   1171 
   1172 /****************************************************************************/
   1173 /* Enable NVRAM access.                                                     */
   1174 /*                                                                          */
   1175 /* Before accessing NVRAM for read or write operations the caller must      */
   1176 /* enabled NVRAM access.                                                    */
   1177 /*                                                                          */
   1178 /* Returns:                                                                 */
   1179 /*   Nothing.                                                               */
   1180 /****************************************************************************/
   1181 void
   1182 bnx_enable_nvram_access(struct bnx_softc *sc)
   1183 {
   1184 	u_int32_t		val;
   1185 
   1186 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1187 
   1188 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1189 	/* Enable both bits, even on read. */
   1190 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1191 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1192 }
   1193 
   1194 /****************************************************************************/
   1195 /* Disable NVRAM access.                                                    */
   1196 /*                                                                          */
   1197 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1198 /*                                                                          */
   1199 /* Returns:                                                                 */
   1200 /*   Nothing.                                                               */
   1201 /****************************************************************************/
   1202 void
   1203 bnx_disable_nvram_access(struct bnx_softc *sc)
   1204 {
   1205 	u_int32_t		val;
   1206 
   1207 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1208 
   1209 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1210 
   1211 	/* Disable both bits, even after read. */
   1212 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1213 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1214 }
   1215 
   1216 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1217 /****************************************************************************/
   1218 /* Erase NVRAM page before writing.                                         */
   1219 /*                                                                          */
   1220 /* Non-buffered flash parts require that a page be erased before it is      */
   1221 /* written.                                                                 */
   1222 /*                                                                          */
   1223 /* Returns:                                                                 */
   1224 /*   0 on success, positive value on failure.                               */
   1225 /****************************************************************************/
   1226 int
   1227 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
   1228 {
   1229 	u_int32_t		cmd;
   1230 	int			j;
   1231 
   1232 	/* Buffered flash doesn't require an erase. */
   1233 	if (sc->bnx_flash_info->buffered)
   1234 		return (0);
   1235 
   1236 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1237 
   1238 	/* Build an erase command. */
   1239 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1240 	    BNX_NVM_COMMAND_DOIT;
   1241 
   1242 	/*
   1243 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
   1244 	 * and issue the erase command.
   1245 	 */
   1246 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1247 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1248 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1249 
   1250 	/* Wait for completion. */
   1251 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1252 		u_int32_t val;
   1253 
   1254 		DELAY(5);
   1255 
   1256 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1257 		if (val & BNX_NVM_COMMAND_DONE)
   1258 			break;
   1259 	}
   1260 
   1261 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1262 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1263 		return (EBUSY);
   1264 	}
   1265 
   1266 	return (0);
   1267 }
   1268 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1269 
   1270 /****************************************************************************/
   1271 /* Read a dword (32 bits) from NVRAM.                                       */
   1272 /*                                                                          */
   1273 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1274 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1275 /*                                                                          */
   1276 /* Returns:                                                                 */
   1277 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1278 /****************************************************************************/
   1279 int
   1280 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
   1281     u_int8_t *ret_val, u_int32_t cmd_flags)
   1282 {
   1283 	u_int32_t		cmd;
   1284 	int			i, rc = 0;
   1285 
   1286 	/* Build the command word. */
   1287 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1288 
   1289 	/* Calculate the offset for buffered flash. */
   1290 	if (sc->bnx_flash_info->buffered)
   1291 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1292 		    sc->bnx_flash_info->page_bits) +
   1293 		    (offset % sc->bnx_flash_info->page_size);
   1294 
   1295 	/*
   1296 	 * Clear the DONE bit separately, set the address to read,
   1297 	 * and issue the read.
   1298 	 */
   1299 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1300 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1301 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1302 
   1303 	/* Wait for completion. */
   1304 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1305 		u_int32_t val;
   1306 
   1307 		DELAY(5);
   1308 
   1309 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1310 		if (val & BNX_NVM_COMMAND_DONE) {
   1311 			val = REG_RD(sc, BNX_NVM_READ);
   1312 
   1313 			val = bnx_be32toh(val);
   1314 			memcpy(ret_val, &val, 4);
   1315 			break;
   1316 		}
   1317 	}
   1318 
   1319 	/* Check for errors. */
   1320 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1321 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1322 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1323 		rc = EBUSY;
   1324 	}
   1325 
   1326 	return(rc);
   1327 }
   1328 
   1329 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1330 /****************************************************************************/
   1331 /* Write a dword (32 bits) to NVRAM.                                        */
   1332 /*                                                                          */
   1333 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1334 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1335 /* enabled NVRAM write access.                                              */
   1336 /*                                                                          */
   1337 /* Returns:                                                                 */
   1338 /*   0 on success, positive value on failure.                               */
   1339 /****************************************************************************/
   1340 int
   1341 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
   1342     u_int32_t cmd_flags)
   1343 {
   1344 	u_int32_t		cmd, val32;
   1345 	int			j;
   1346 
   1347 	/* Build the command word. */
   1348 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1349 
   1350 	/* Calculate the offset for buffered flash. */
   1351 	if (sc->bnx_flash_info->buffered)
   1352 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1353 		    sc->bnx_flash_info->page_bits) +
   1354 		    (offset % sc->bnx_flash_info->page_size);
   1355 
   1356 	/*
   1357 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1358 	 * set the NVRAM address to write, and issue the write command
   1359 	 */
   1360 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1361 	memcpy(&val32, val, 4);
   1362 	val32 = htobe32(val32);
   1363 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1364 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1365 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1366 
   1367 	/* Wait for completion. */
   1368 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1369 		DELAY(5);
   1370 
   1371 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1372 			break;
   1373 	}
   1374 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1375 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1376 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1377 		return (EBUSY);
   1378 	}
   1379 
   1380 	return (0);
   1381 }
   1382 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1383 
   1384 /****************************************************************************/
   1385 /* Initialize NVRAM access.                                                 */
   1386 /*                                                                          */
   1387 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1388 /* access that device.                                                      */
   1389 /*                                                                          */
   1390 /* Returns:                                                                 */
   1391 /*   0 on success, positive value on failure.                               */
   1392 /****************************************************************************/
   1393 int
   1394 bnx_init_nvram(struct bnx_softc *sc)
   1395 {
   1396 	u_int32_t		val;
   1397 	int			j, entry_count, rc;
   1398 	struct flash_spec	*flash;
   1399 
   1400 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1401 
   1402 	/* Determine the selected interface. */
   1403 	val = REG_RD(sc, BNX_NVM_CFG1);
   1404 
   1405 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1406 
   1407 	rc = 0;
   1408 
   1409 	/*
   1410 	 * Flash reconfiguration is required to support additional
   1411 	 * NVRAM devices not directly supported in hardware.
   1412 	 * Check if the flash interface was reconfigured
   1413 	 * by the bootcode.
   1414 	 */
   1415 
   1416 	if (val & 0x40000000) {
   1417 		/* Flash interface reconfigured by bootcode. */
   1418 
   1419 		DBPRINT(sc,BNX_INFO_LOAD,
   1420 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1421 
   1422 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1423 		     j++, flash++) {
   1424 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1425 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1426 				sc->bnx_flash_info = flash;
   1427 				break;
   1428 			}
   1429 		}
   1430 	} else {
   1431 		/* Flash interface not yet reconfigured. */
   1432 		u_int32_t mask;
   1433 
   1434 		DBPRINT(sc,BNX_INFO_LOAD,
   1435 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1436 
   1437 		if (val & (1 << 23))
   1438 			mask = FLASH_BACKUP_STRAP_MASK;
   1439 		else
   1440 			mask = FLASH_STRAP_MASK;
   1441 
   1442 		/* Look for the matching NVRAM device configuration data. */
   1443 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1444 		    j++, flash++) {
   1445 			/* Check if the dev matches any of the known devices. */
   1446 			if ((val & mask) == (flash->strapping & mask)) {
   1447 				/* Found a device match. */
   1448 				sc->bnx_flash_info = flash;
   1449 
   1450 				/* Request access to the flash interface. */
   1451 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1452 					return (rc);
   1453 
   1454 				/* Reconfigure the flash interface. */
   1455 				bnx_enable_nvram_access(sc);
   1456 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1457 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1458 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1459 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1460 				bnx_disable_nvram_access(sc);
   1461 				bnx_release_nvram_lock(sc);
   1462 
   1463 				break;
   1464 			}
   1465 		}
   1466 	}
   1467 
   1468 	/* Check if a matching device was found. */
   1469 	if (j == entry_count) {
   1470 		sc->bnx_flash_info = NULL;
   1471 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1472 			__FILE__, __LINE__);
   1473 		rc = ENODEV;
   1474 	}
   1475 
   1476 	/* Write the flash config data to the shared memory interface. */
   1477 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1478 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1479 	if (val)
   1480 		sc->bnx_flash_size = val;
   1481 	else
   1482 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1483 
   1484 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1485 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1486 
   1487 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1488 
   1489 	return (rc);
   1490 }
   1491 
   1492 /****************************************************************************/
   1493 /* Read an arbitrary range of data from NVRAM.                              */
   1494 /*                                                                          */
   1495 /* Prepares the NVRAM interface for access and reads the requested data     */
   1496 /* into the supplied buffer.                                                */
   1497 /*                                                                          */
   1498 /* Returns:                                                                 */
   1499 /*   0 on success and the data read, positive value on failure.             */
   1500 /****************************************************************************/
   1501 int
   1502 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
   1503     int buf_size)
   1504 {
   1505 	int			rc = 0;
   1506 	u_int32_t		cmd_flags, offset32, len32, extra;
   1507 
   1508 	if (buf_size == 0)
   1509 		return (0);
   1510 
   1511 	/* Request access to the flash interface. */
   1512 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1513 		return (rc);
   1514 
   1515 	/* Enable access to flash interface */
   1516 	bnx_enable_nvram_access(sc);
   1517 
   1518 	len32 = buf_size;
   1519 	offset32 = offset;
   1520 	extra = 0;
   1521 
   1522 	cmd_flags = 0;
   1523 
   1524 	if (offset32 & 3) {
   1525 		u_int8_t buf[4];
   1526 		u_int32_t pre_len;
   1527 
   1528 		offset32 &= ~3;
   1529 		pre_len = 4 - (offset & 3);
   1530 
   1531 		if (pre_len >= len32) {
   1532 			pre_len = len32;
   1533 			cmd_flags =
   1534 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1535 		} else
   1536 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1537 
   1538 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1539 
   1540 		if (rc)
   1541 			return (rc);
   1542 
   1543 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1544 
   1545 		offset32 += 4;
   1546 		ret_buf += pre_len;
   1547 		len32 -= pre_len;
   1548 	}
   1549 
   1550 	if (len32 & 3) {
   1551 		extra = 4 - (len32 & 3);
   1552 		len32 = (len32 + 4) & ~3;
   1553 	}
   1554 
   1555 	if (len32 == 4) {
   1556 		u_int8_t buf[4];
   1557 
   1558 		if (cmd_flags)
   1559 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1560 		else
   1561 			cmd_flags =
   1562 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1563 
   1564 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1565 
   1566 		memcpy(ret_buf, buf, 4 - extra);
   1567 	} else if (len32 > 0) {
   1568 		u_int8_t buf[4];
   1569 
   1570 		/* Read the first word. */
   1571 		if (cmd_flags)
   1572 			cmd_flags = 0;
   1573 		else
   1574 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1575 
   1576 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1577 
   1578 		/* Advance to the next dword. */
   1579 		offset32 += 4;
   1580 		ret_buf += 4;
   1581 		len32 -= 4;
   1582 
   1583 		while (len32 > 4 && rc == 0) {
   1584 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1585 
   1586 			/* Advance to the next dword. */
   1587 			offset32 += 4;
   1588 			ret_buf += 4;
   1589 			len32 -= 4;
   1590 		}
   1591 
   1592 		if (rc)
   1593 			return (rc);
   1594 
   1595 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1596 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1597 
   1598 		memcpy(ret_buf, buf, 4 - extra);
   1599 	}
   1600 
   1601 	/* Disable access to flash interface and release the lock. */
   1602 	bnx_disable_nvram_access(sc);
   1603 	bnx_release_nvram_lock(sc);
   1604 
   1605 	return (rc);
   1606 }
   1607 
   1608 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1609 /****************************************************************************/
   1610 /* Write an arbitrary range of data from NVRAM.                             */
   1611 /*                                                                          */
   1612 /* Prepares the NVRAM interface for write access and writes the requested   */
   1613 /* data from the supplied buffer.  The caller is responsible for            */
   1614 /* calculating any appropriate CRCs.                                        */
   1615 /*                                                                          */
   1616 /* Returns:                                                                 */
   1617 /*   0 on success, positive value on failure.                               */
   1618 /****************************************************************************/
   1619 int
   1620 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
   1621     int buf_size)
   1622 {
   1623 	u_int32_t		written, offset32, len32;
   1624 	u_int8_t		*buf, start[4], end[4];
   1625 	int			rc = 0;
   1626 	int			align_start, align_end;
   1627 
   1628 	buf = data_buf;
   1629 	offset32 = offset;
   1630 	len32 = buf_size;
   1631 	align_start = align_end = 0;
   1632 
   1633 	if ((align_start = (offset32 & 3))) {
   1634 		offset32 &= ~3;
   1635 		len32 += align_start;
   1636 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1637 			return (rc);
   1638 	}
   1639 
   1640 	if (len32 & 3) {
   1641 	       	if ((len32 > 4) || !align_start) {
   1642 			align_end = 4 - (len32 & 3);
   1643 			len32 += align_end;
   1644 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1645 			    end, 4))) {
   1646 				return (rc);
   1647 			}
   1648 		}
   1649 	}
   1650 
   1651 	if (align_start || align_end) {
   1652 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1653 		if (buf == 0)
   1654 			return (ENOMEM);
   1655 
   1656 		if (align_start)
   1657 			memcpy(buf, start, 4);
   1658 
   1659 		if (align_end)
   1660 			memcpy(buf + len32 - 4, end, 4);
   1661 
   1662 		memcpy(buf + align_start, data_buf, buf_size);
   1663 	}
   1664 
   1665 	written = 0;
   1666 	while ((written < len32) && (rc == 0)) {
   1667 		u_int32_t page_start, page_end, data_start, data_end;
   1668 		u_int32_t addr, cmd_flags;
   1669 		int i;
   1670 		u_int8_t flash_buffer[264];
   1671 
   1672 	    /* Find the page_start addr */
   1673 		page_start = offset32 + written;
   1674 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1675 		/* Find the page_end addr */
   1676 		page_end = page_start + sc->bnx_flash_info->page_size;
   1677 		/* Find the data_start addr */
   1678 		data_start = (written == 0) ? offset32 : page_start;
   1679 		/* Find the data_end addr */
   1680 		data_end = (page_end > offset32 + len32) ?
   1681 		    (offset32 + len32) : page_end;
   1682 
   1683 		/* Request access to the flash interface. */
   1684 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1685 			goto nvram_write_end;
   1686 
   1687 		/* Enable access to flash interface */
   1688 		bnx_enable_nvram_access(sc);
   1689 
   1690 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1691 		if (sc->bnx_flash_info->buffered == 0) {
   1692 			int j;
   1693 
   1694 			/* Read the whole page into the buffer
   1695 			 * (non-buffer flash only) */
   1696 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1697 				if (j == (sc->bnx_flash_info->page_size - 4))
   1698 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1699 
   1700 				rc = bnx_nvram_read_dword(sc,
   1701 					page_start + j,
   1702 					&flash_buffer[j],
   1703 					cmd_flags);
   1704 
   1705 				if (rc)
   1706 					goto nvram_write_end;
   1707 
   1708 				cmd_flags = 0;
   1709 			}
   1710 		}
   1711 
   1712 		/* Enable writes to flash interface (unlock write-protect) */
   1713 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1714 			goto nvram_write_end;
   1715 
   1716 		/* Erase the page */
   1717 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1718 			goto nvram_write_end;
   1719 
   1720 		/* Re-enable the write again for the actual write */
   1721 		bnx_enable_nvram_write(sc);
   1722 
   1723 		/* Loop to write back the buffer data from page_start to
   1724 		 * data_start */
   1725 		i = 0;
   1726 		if (sc->bnx_flash_info->buffered == 0) {
   1727 			for (addr = page_start; addr < data_start;
   1728 				addr += 4, i += 4) {
   1729 
   1730 				rc = bnx_nvram_write_dword(sc, addr,
   1731 				    &flash_buffer[i], cmd_flags);
   1732 
   1733 				if (rc != 0)
   1734 					goto nvram_write_end;
   1735 
   1736 				cmd_flags = 0;
   1737 			}
   1738 		}
   1739 
   1740 		/* Loop to write the new data from data_start to data_end */
   1741 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1742 			if ((addr == page_end - 4) ||
   1743 			    ((sc->bnx_flash_info->buffered) &&
   1744 			    (addr == data_end - 4))) {
   1745 
   1746 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1747 			}
   1748 
   1749 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1750 
   1751 			if (rc != 0)
   1752 				goto nvram_write_end;
   1753 
   1754 			cmd_flags = 0;
   1755 			buf += 4;
   1756 		}
   1757 
   1758 		/* Loop to write back the buffer data from data_end
   1759 		 * to page_end */
   1760 		if (sc->bnx_flash_info->buffered == 0) {
   1761 			for (addr = data_end; addr < page_end;
   1762 			    addr += 4, i += 4) {
   1763 
   1764 				if (addr == page_end-4)
   1765 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1766 
   1767 				rc = bnx_nvram_write_dword(sc, addr,
   1768 				    &flash_buffer[i], cmd_flags);
   1769 
   1770 				if (rc != 0)
   1771 					goto nvram_write_end;
   1772 
   1773 				cmd_flags = 0;
   1774 			}
   1775 		}
   1776 
   1777 		/* Disable writes to flash interface (lock write-protect) */
   1778 		bnx_disable_nvram_write(sc);
   1779 
   1780 		/* Disable access to flash interface */
   1781 		bnx_disable_nvram_access(sc);
   1782 		bnx_release_nvram_lock(sc);
   1783 
   1784 		/* Increment written */
   1785 		written += data_end - data_start;
   1786 	}
   1787 
   1788 nvram_write_end:
   1789 	if (align_start || align_end)
   1790 		free(buf, M_DEVBUF);
   1791 
   1792 	return (rc);
   1793 }
   1794 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1795 
   1796 /****************************************************************************/
   1797 /* Verifies that NVRAM is accessible and contains valid data.               */
   1798 /*                                                                          */
   1799 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   1800 /* correct.                                                                 */
   1801 /*                                                                          */
   1802 /* Returns:                                                                 */
   1803 /*   0 on success, positive value on failure.                               */
   1804 /****************************************************************************/
   1805 int
   1806 bnx_nvram_test(struct bnx_softc *sc)
   1807 {
   1808 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
   1809 	u_int8_t		*data = (u_int8_t *) buf;
   1810 	int			rc = 0;
   1811 	u_int32_t		magic, csum;
   1812 
   1813 	/*
   1814 	 * Check that the device NVRAM is valid by reading
   1815 	 * the magic value at offset 0.
   1816 	 */
   1817 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   1818 		goto bnx_nvram_test_done;
   1819 
   1820 	magic = bnx_be32toh(buf[0]);
   1821 	if (magic != BNX_NVRAM_MAGIC) {
   1822 		rc = ENODEV;
   1823 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   1824 		    "Expected: 0x%08X, Found: 0x%08X\n",
   1825 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   1826 		goto bnx_nvram_test_done;
   1827 	}
   1828 
   1829 	/*
   1830 	 * Verify that the device NVRAM includes valid
   1831 	 * configuration data.
   1832 	 */
   1833 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   1834 		goto bnx_nvram_test_done;
   1835 
   1836 	csum = ether_crc32_le(data, 0x100);
   1837 	if (csum != BNX_CRC32_RESIDUAL) {
   1838 		rc = ENODEV;
   1839 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   1840 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   1841 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1842 		goto bnx_nvram_test_done;
   1843 	}
   1844 
   1845 	csum = ether_crc32_le(data + 0x100, 0x100);
   1846 	if (csum != BNX_CRC32_RESIDUAL) {
   1847 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   1848 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   1849 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1850 		rc = ENODEV;
   1851 	}
   1852 
   1853 bnx_nvram_test_done:
   1854 	return (rc);
   1855 }
   1856 
   1857 /****************************************************************************/
   1858 /* Free any DMA memory owned by the driver.                                 */
   1859 /*                                                                          */
   1860 /* Scans through each data structre that requires DMA memory and frees      */
   1861 /* the memory if allocated.                                                 */
   1862 /*                                                                          */
   1863 /* Returns:                                                                 */
   1864 /*   Nothing.                                                               */
   1865 /****************************************************************************/
   1866 void
   1867 bnx_dma_free(struct bnx_softc *sc)
   1868 {
   1869 	int			i;
   1870 
   1871 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1872 
   1873 	/* Destroy the status block. */
   1874 	if (sc->status_block != NULL && sc->status_map != NULL) {
   1875 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   1876 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   1877 		    BNX_STATUS_BLK_SZ);
   1878 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   1879 		    sc->status_rseg);
   1880 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   1881 		sc->status_block = NULL;
   1882 		sc->status_map = NULL;
   1883 	}
   1884 
   1885 	/* Destroy the statistics block. */
   1886 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   1887 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   1888 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   1889 		    BNX_STATS_BLK_SZ);
   1890 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   1891 		    sc->stats_rseg);
   1892 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   1893 		sc->stats_block = NULL;
   1894 		sc->stats_map = NULL;
   1895 	}
   1896 
   1897 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   1898 	for (i = 0; i < TX_PAGES; i++ ) {
   1899 		if (sc->tx_bd_chain[i] != NULL &&
   1900 		    sc->tx_bd_chain_map[i] != NULL) {
   1901 			bus_dmamap_unload(sc->bnx_dmatag,
   1902 			    sc->tx_bd_chain_map[i]);
   1903 			bus_dmamem_unmap(sc->bnx_dmatag,
   1904 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   1905 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   1906 			    sc->tx_bd_chain_rseg[i]);
   1907 			bus_dmamap_destroy(sc->bnx_dmatag,
   1908 			    sc->tx_bd_chain_map[i]);
   1909 			sc->tx_bd_chain[i] = NULL;
   1910 			sc->tx_bd_chain_map[i] = NULL;
   1911 		}
   1912 	}
   1913 
   1914 	/* Unload and destroy the TX mbuf maps. */
   1915 	for (i = 0; i < TOTAL_TX_BD; i++) {
   1916 		if (sc->tx_mbuf_map[i] != NULL) {
   1917 			bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
   1918 			bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
   1919 		}
   1920 	}
   1921 
   1922 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   1923 	for (i = 0; i < RX_PAGES; i++ ) {
   1924 		if (sc->rx_bd_chain[i] != NULL &&
   1925 		    sc->rx_bd_chain_map[i] != NULL) {
   1926 			bus_dmamap_unload(sc->bnx_dmatag,
   1927 			    sc->rx_bd_chain_map[i]);
   1928 			bus_dmamem_unmap(sc->bnx_dmatag,
   1929 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   1930 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   1931 			    sc->rx_bd_chain_rseg[i]);
   1932 
   1933 			bus_dmamap_destroy(sc->bnx_dmatag,
   1934 			    sc->rx_bd_chain_map[i]);
   1935 			sc->rx_bd_chain[i] = NULL;
   1936 			sc->rx_bd_chain_map[i] = NULL;
   1937 		}
   1938 	}
   1939 
   1940 	/* Unload and destroy the RX mbuf maps. */
   1941 	for (i = 0; i < TOTAL_RX_BD; i++) {
   1942 		if (sc->rx_mbuf_map[i] != NULL) {
   1943 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   1944 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   1945 		}
   1946 	}
   1947 
   1948 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1949 }
   1950 
   1951 /****************************************************************************/
   1952 /* Allocate any DMA memory needed by the driver.                            */
   1953 /*                                                                          */
   1954 /* Allocates DMA memory needed for the various global structures needed by  */
   1955 /* hardware.                                                                */
   1956 /*                                                                          */
   1957 /* Returns:                                                                 */
   1958 /*   0 for success, positive value for failure.                             */
   1959 /****************************************************************************/
   1960 int
   1961 bnx_dma_alloc(struct bnx_softc *sc)
   1962 {
   1963 	int			i, rc = 0;
   1964 
   1965 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1966 
   1967 	/*
   1968 	 * Allocate DMA memory for the status block, map the memory into DMA
   1969 	 * space, and fetch the physical address of the block.
   1970 	 */
   1971 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   1972 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   1973 		aprint_error_dev(sc->bnx_dev,
   1974 		    "Could not create status block DMA map!\n");
   1975 		rc = ENOMEM;
   1976 		goto bnx_dma_alloc_exit;
   1977 	}
   1978 
   1979 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   1980 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   1981 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   1982 		aprint_error_dev(sc->bnx_dev,
   1983 		    "Could not allocate status block DMA memory!\n");
   1984 		rc = ENOMEM;
   1985 		goto bnx_dma_alloc_exit;
   1986 	}
   1987 
   1988 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   1989 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   1990 		aprint_error_dev(sc->bnx_dev,
   1991 		    "Could not map status block DMA memory!\n");
   1992 		rc = ENOMEM;
   1993 		goto bnx_dma_alloc_exit;
   1994 	}
   1995 
   1996 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   1997 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   1998 		aprint_error_dev(sc->bnx_dev,
   1999 		    "Could not load status block DMA memory!\n");
   2000 		rc = ENOMEM;
   2001 		goto bnx_dma_alloc_exit;
   2002 	}
   2003 
   2004 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2005 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2006 
   2007 	/* DRC - Fix for 64 bit addresses. */
   2008 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2009 		(u_int32_t) sc->status_block_paddr);
   2010 
   2011 	/*
   2012 	 * Allocate DMA memory for the statistics block, map the memory into
   2013 	 * DMA space, and fetch the physical address of the block.
   2014 	 */
   2015 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2016 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2017 		aprint_error_dev(sc->bnx_dev,
   2018 		    "Could not create stats block DMA map!\n");
   2019 		rc = ENOMEM;
   2020 		goto bnx_dma_alloc_exit;
   2021 	}
   2022 
   2023 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2024 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2025 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2026 		aprint_error_dev(sc->bnx_dev,
   2027 		    "Could not allocate stats block DMA memory!\n");
   2028 		rc = ENOMEM;
   2029 		goto bnx_dma_alloc_exit;
   2030 	}
   2031 
   2032 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2033 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2034 		aprint_error_dev(sc->bnx_dev,
   2035 		    "Could not map stats block DMA memory!\n");
   2036 		rc = ENOMEM;
   2037 		goto bnx_dma_alloc_exit;
   2038 	}
   2039 
   2040 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2041 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2042 		aprint_error_dev(sc->bnx_dev,
   2043 		    "Could not load status block DMA memory!\n");
   2044 		rc = ENOMEM;
   2045 		goto bnx_dma_alloc_exit;
   2046 	}
   2047 
   2048 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2049 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2050 
   2051 	/* DRC - Fix for 64 bit address. */
   2052 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2053 	    (u_int32_t) sc->stats_block_paddr);
   2054 
   2055 	/*
   2056 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2057 	 * and fetch the physical address of the block.
   2058 	 */
   2059 	for (i = 0; i < TX_PAGES; i++) {
   2060 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2061 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2062 		    &sc->tx_bd_chain_map[i])) {
   2063 			aprint_error_dev(sc->bnx_dev,
   2064 			    "Could not create Tx desc %d DMA map!\n", i);
   2065 			rc = ENOMEM;
   2066 			goto bnx_dma_alloc_exit;
   2067 		}
   2068 
   2069 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2070 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2071 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2072 			aprint_error_dev(sc->bnx_dev,
   2073 			    "Could not allocate TX desc %d DMA memory!\n",
   2074 			    i);
   2075 			rc = ENOMEM;
   2076 			goto bnx_dma_alloc_exit;
   2077 		}
   2078 
   2079 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2080 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2081 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2082 			aprint_error_dev(sc->bnx_dev,
   2083 			    "Could not map TX desc %d DMA memory!\n", i);
   2084 			rc = ENOMEM;
   2085 			goto bnx_dma_alloc_exit;
   2086 		}
   2087 
   2088 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2089 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2090 		    BUS_DMA_NOWAIT)) {
   2091 			aprint_error_dev(sc->bnx_dev,
   2092 			    "Could not load TX desc %d DMA memory!\n", i);
   2093 			rc = ENOMEM;
   2094 			goto bnx_dma_alloc_exit;
   2095 		}
   2096 
   2097 		sc->tx_bd_chain_paddr[i] =
   2098 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2099 
   2100 		/* DRC - Fix for 64 bit systems. */
   2101 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2102 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
   2103 	}
   2104 
   2105 	/*
   2106 	 * Create DMA maps for the TX buffer mbufs.
   2107 	 */
   2108 	for (i = 0; i < TOTAL_TX_BD; i++) {
   2109 		if (bus_dmamap_create(sc->bnx_dmatag,
   2110 		    MCLBYTES * BNX_MAX_SEGMENTS,
   2111 		    USABLE_TX_BD - BNX_TX_SLACK_SPACE,
   2112 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
   2113 		    &sc->tx_mbuf_map[i])) {
   2114 			aprint_error_dev(sc->bnx_dev,
   2115 			    "Could not create Tx mbuf %d DMA map!\n", i);
   2116 			rc = ENOMEM;
   2117 			goto bnx_dma_alloc_exit;
   2118 		}
   2119 	}
   2120 
   2121 	/*
   2122 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2123 	 * and fetch the physical address of the block.
   2124 	 */
   2125 	for (i = 0; i < RX_PAGES; i++) {
   2126 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2127 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2128 		    &sc->rx_bd_chain_map[i])) {
   2129 			aprint_error_dev(sc->bnx_dev,
   2130 			    "Could not create Rx desc %d DMA map!\n", i);
   2131 			rc = ENOMEM;
   2132 			goto bnx_dma_alloc_exit;
   2133 		}
   2134 
   2135 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2136 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2137 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2138 			aprint_error_dev(sc->bnx_dev,
   2139 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2140 			rc = ENOMEM;
   2141 			goto bnx_dma_alloc_exit;
   2142 		}
   2143 
   2144 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2145 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2146 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2147 			aprint_error_dev(sc->bnx_dev,
   2148 			    "Could not map Rx desc %d DMA memory!\n", i);
   2149 			rc = ENOMEM;
   2150 			goto bnx_dma_alloc_exit;
   2151 		}
   2152 
   2153 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2154 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2155 		    BUS_DMA_NOWAIT)) {
   2156 			aprint_error_dev(sc->bnx_dev,
   2157 			    "Could not load Rx desc %d DMA memory!\n", i);
   2158 			rc = ENOMEM;
   2159 			goto bnx_dma_alloc_exit;
   2160 		}
   2161 
   2162 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2163 		sc->rx_bd_chain_paddr[i] =
   2164 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2165 
   2166 		/* DRC - Fix for 64 bit systems. */
   2167 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2168 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
   2169 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2170 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2171 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2172 	}
   2173 
   2174 	/*
   2175 	 * Create DMA maps for the Rx buffer mbufs.
   2176 	 */
   2177 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2178 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
   2179 		    BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
   2180 		    &sc->rx_mbuf_map[i])) {
   2181 			aprint_error_dev(sc->bnx_dev,
   2182 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2183 			rc = ENOMEM;
   2184 			goto bnx_dma_alloc_exit;
   2185 		}
   2186 	}
   2187 
   2188  bnx_dma_alloc_exit:
   2189 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2190 
   2191 	return(rc);
   2192 }
   2193 
   2194 /****************************************************************************/
   2195 /* Release all resources used by the driver.                                */
   2196 /*                                                                          */
   2197 /* Releases all resources acquired by the driver including interrupts,      */
   2198 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2199 /*                                                                          */
   2200 /* Returns:                                                                 */
   2201 /*   Nothing.                                                               */
   2202 /****************************************************************************/
   2203 void
   2204 bnx_release_resources(struct bnx_softc *sc)
   2205 {
   2206 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2207 
   2208 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2209 
   2210 	bnx_dma_free(sc);
   2211 
   2212 	if (sc->bnx_intrhand != NULL)
   2213 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2214 
   2215 	if (sc->bnx_size)
   2216 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2217 
   2218 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2219 }
   2220 
   2221 /****************************************************************************/
   2222 /* Firmware synchronization.                                                */
   2223 /*                                                                          */
   2224 /* Before performing certain events such as a chip reset, synchronize with  */
   2225 /* the firmware first.                                                      */
   2226 /*                                                                          */
   2227 /* Returns:                                                                 */
   2228 /*   0 for success, positive value for failure.                             */
   2229 /****************************************************************************/
   2230 int
   2231 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
   2232 {
   2233 	int			i, rc = 0;
   2234 	u_int32_t		val;
   2235 
   2236 	/* Don't waste any time if we've timed out before. */
   2237 	if (sc->bnx_fw_timed_out) {
   2238 		rc = EBUSY;
   2239 		goto bnx_fw_sync_exit;
   2240 	}
   2241 
   2242 	/* Increment the message sequence number. */
   2243 	sc->bnx_fw_wr_seq++;
   2244 	msg_data |= sc->bnx_fw_wr_seq;
   2245 
   2246  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2247 	    msg_data);
   2248 
   2249 	/* Send the message to the bootcode driver mailbox. */
   2250 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2251 
   2252 	/* Wait for the bootcode to acknowledge the message. */
   2253 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2254 		/* Check for a response in the bootcode firmware mailbox. */
   2255 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2256 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2257 			break;
   2258 		DELAY(1000);
   2259 	}
   2260 
   2261 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2262 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2263 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2264 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2265 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2266 
   2267 		msg_data &= ~BNX_DRV_MSG_CODE;
   2268 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2269 
   2270 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2271 
   2272 		sc->bnx_fw_timed_out = 1;
   2273 		rc = EBUSY;
   2274 	}
   2275 
   2276 bnx_fw_sync_exit:
   2277 	return (rc);
   2278 }
   2279 
   2280 /****************************************************************************/
   2281 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2282 /*                                                                          */
   2283 /* Returns:                                                                 */
   2284 /*   Nothing.                                                               */
   2285 /****************************************************************************/
   2286 void
   2287 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
   2288     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
   2289 {
   2290 	int			i;
   2291 	u_int32_t		val;
   2292 
   2293 	for (i = 0; i < rv2p_code_len; i += 8) {
   2294 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2295 		rv2p_code++;
   2296 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2297 		rv2p_code++;
   2298 
   2299 		if (rv2p_proc == RV2P_PROC1) {
   2300 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2301 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2302 		}
   2303 		else {
   2304 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2305 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2306 		}
   2307 	}
   2308 
   2309 	/* Reset the processor, un-stall is done later. */
   2310 	if (rv2p_proc == RV2P_PROC1)
   2311 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2312 	else
   2313 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2314 }
   2315 
   2316 /****************************************************************************/
   2317 /* Load RISC processor firmware.                                            */
   2318 /*                                                                          */
   2319 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2320 /* associated with a particular processor.                                  */
   2321 /*                                                                          */
   2322 /* Returns:                                                                 */
   2323 /*   Nothing.                                                               */
   2324 /****************************************************************************/
   2325 void
   2326 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2327     struct fw_info *fw)
   2328 {
   2329 	u_int32_t		offset;
   2330 	u_int32_t		val;
   2331 
   2332 	/* Halt the CPU. */
   2333 	val = REG_RD_IND(sc, cpu_reg->mode);
   2334 	val |= cpu_reg->mode_value_halt;
   2335 	REG_WR_IND(sc, cpu_reg->mode, val);
   2336 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2337 
   2338 	/* Load the Text area. */
   2339 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2340 	if (fw->text) {
   2341 		int j;
   2342 
   2343 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2344 			REG_WR_IND(sc, offset, fw->text[j]);
   2345 	}
   2346 
   2347 	/* Load the Data area. */
   2348 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2349 	if (fw->data) {
   2350 		int j;
   2351 
   2352 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2353 			REG_WR_IND(sc, offset, fw->data[j]);
   2354 	}
   2355 
   2356 	/* Load the SBSS area. */
   2357 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2358 	if (fw->sbss) {
   2359 		int j;
   2360 
   2361 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2362 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2363 	}
   2364 
   2365 	/* Load the BSS area. */
   2366 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2367 	if (fw->bss) {
   2368 		int j;
   2369 
   2370 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2371 			REG_WR_IND(sc, offset, fw->bss[j]);
   2372 	}
   2373 
   2374 	/* Load the Read-Only area. */
   2375 	offset = cpu_reg->spad_base +
   2376 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2377 	if (fw->rodata) {
   2378 		int j;
   2379 
   2380 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2381 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2382 	}
   2383 
   2384 	/* Clear the pre-fetch instruction. */
   2385 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2386 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2387 
   2388 	/* Start the CPU. */
   2389 	val = REG_RD_IND(sc, cpu_reg->mode);
   2390 	val &= ~cpu_reg->mode_value_halt;
   2391 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2392 	REG_WR_IND(sc, cpu_reg->mode, val);
   2393 }
   2394 
   2395 /****************************************************************************/
   2396 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2397 /*                                                                          */
   2398 /* Loads the firmware for each CPU and starts the CPU.                      */
   2399 /*                                                                          */
   2400 /* Returns:                                                                 */
   2401 /*   Nothing.                                                               */
   2402 /****************************************************************************/
   2403 void
   2404 bnx_init_cpus(struct bnx_softc *sc)
   2405 {
   2406 	struct cpu_reg cpu_reg;
   2407 	struct fw_info fw;
   2408 
   2409 	/* Initialize the RV2P processor. */
   2410 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   2411 	    RV2P_PROC1);
   2412 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   2413 	    RV2P_PROC2);
   2414 
   2415 	/* Initialize the RX Processor. */
   2416 	cpu_reg.mode = BNX_RXP_CPU_MODE;
   2417 	cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2418 	cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2419 	cpu_reg.state = BNX_RXP_CPU_STATE;
   2420 	cpu_reg.state_value_clear = 0xffffff;
   2421 	cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2422 	cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2423 	cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2424 	cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2425 	cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2426 	cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2427 	cpu_reg.mips_view_base = 0x8000000;
   2428 
   2429 	fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   2430 	fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   2431 	fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   2432 	fw.start_addr = bnx_RXP_b06FwStartAddr;
   2433 
   2434 	fw.text_addr = bnx_RXP_b06FwTextAddr;
   2435 	fw.text_len = bnx_RXP_b06FwTextLen;
   2436 	fw.text_index = 0;
   2437 	fw.text = bnx_RXP_b06FwText;
   2438 
   2439 	fw.data_addr = bnx_RXP_b06FwDataAddr;
   2440 	fw.data_len = bnx_RXP_b06FwDataLen;
   2441 	fw.data_index = 0;
   2442 	fw.data = bnx_RXP_b06FwData;
   2443 
   2444 	fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   2445 	fw.sbss_len = bnx_RXP_b06FwSbssLen;
   2446 	fw.sbss_index = 0;
   2447 	fw.sbss = bnx_RXP_b06FwSbss;
   2448 
   2449 	fw.bss_addr = bnx_RXP_b06FwBssAddr;
   2450 	fw.bss_len = bnx_RXP_b06FwBssLen;
   2451 	fw.bss_index = 0;
   2452 	fw.bss = bnx_RXP_b06FwBss;
   2453 
   2454 	fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   2455 	fw.rodata_len = bnx_RXP_b06FwRodataLen;
   2456 	fw.rodata_index = 0;
   2457 	fw.rodata = bnx_RXP_b06FwRodata;
   2458 
   2459 	DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2460 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2461 
   2462 	/* Initialize the TX Processor. */
   2463 	cpu_reg.mode = BNX_TXP_CPU_MODE;
   2464 	cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2465 	cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2466 	cpu_reg.state = BNX_TXP_CPU_STATE;
   2467 	cpu_reg.state_value_clear = 0xffffff;
   2468 	cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2469 	cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2470 	cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2471 	cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2472 	cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2473 	cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2474 	cpu_reg.mips_view_base = 0x8000000;
   2475 
   2476 	fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   2477 	fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   2478 	fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   2479 	fw.start_addr = bnx_TXP_b06FwStartAddr;
   2480 
   2481 	fw.text_addr = bnx_TXP_b06FwTextAddr;
   2482 	fw.text_len = bnx_TXP_b06FwTextLen;
   2483 	fw.text_index = 0;
   2484 	fw.text = bnx_TXP_b06FwText;
   2485 
   2486 	fw.data_addr = bnx_TXP_b06FwDataAddr;
   2487 	fw.data_len = bnx_TXP_b06FwDataLen;
   2488 	fw.data_index = 0;
   2489 	fw.data = bnx_TXP_b06FwData;
   2490 
   2491 	fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   2492 	fw.sbss_len = bnx_TXP_b06FwSbssLen;
   2493 	fw.sbss_index = 0;
   2494 	fw.sbss = bnx_TXP_b06FwSbss;
   2495 
   2496 	fw.bss_addr = bnx_TXP_b06FwBssAddr;
   2497 	fw.bss_len = bnx_TXP_b06FwBssLen;
   2498 	fw.bss_index = 0;
   2499 	fw.bss = bnx_TXP_b06FwBss;
   2500 
   2501 	fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   2502 	fw.rodata_len = bnx_TXP_b06FwRodataLen;
   2503 	fw.rodata_index = 0;
   2504 	fw.rodata = bnx_TXP_b06FwRodata;
   2505 
   2506 	DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2507 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2508 
   2509 	/* Initialize the TX Patch-up Processor. */
   2510 	cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2511 	cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2512 	cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2513 	cpu_reg.state = BNX_TPAT_CPU_STATE;
   2514 	cpu_reg.state_value_clear = 0xffffff;
   2515 	cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2516 	cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2517 	cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2518 	cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2519 	cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2520 	cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2521 	cpu_reg.mips_view_base = 0x8000000;
   2522 
   2523 	fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   2524 	fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   2525 	fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   2526 	fw.start_addr = bnx_TPAT_b06FwStartAddr;
   2527 
   2528 	fw.text_addr = bnx_TPAT_b06FwTextAddr;
   2529 	fw.text_len = bnx_TPAT_b06FwTextLen;
   2530 	fw.text_index = 0;
   2531 	fw.text = bnx_TPAT_b06FwText;
   2532 
   2533 	fw.data_addr = bnx_TPAT_b06FwDataAddr;
   2534 	fw.data_len = bnx_TPAT_b06FwDataLen;
   2535 	fw.data_index = 0;
   2536 	fw.data = bnx_TPAT_b06FwData;
   2537 
   2538 	fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   2539 	fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   2540 	fw.sbss_index = 0;
   2541 	fw.sbss = bnx_TPAT_b06FwSbss;
   2542 
   2543 	fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   2544 	fw.bss_len = bnx_TPAT_b06FwBssLen;
   2545 	fw.bss_index = 0;
   2546 	fw.bss = bnx_TPAT_b06FwBss;
   2547 
   2548 	fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   2549 	fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   2550 	fw.rodata_index = 0;
   2551 	fw.rodata = bnx_TPAT_b06FwRodata;
   2552 
   2553 	DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2554 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2555 
   2556 	/* Initialize the Completion Processor. */
   2557 	cpu_reg.mode = BNX_COM_CPU_MODE;
   2558 	cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2559 	cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2560 	cpu_reg.state = BNX_COM_CPU_STATE;
   2561 	cpu_reg.state_value_clear = 0xffffff;
   2562 	cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2563 	cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2564 	cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2565 	cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2566 	cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2567 	cpu_reg.spad_base = BNX_COM_SCRATCH;
   2568 	cpu_reg.mips_view_base = 0x8000000;
   2569 
   2570 	fw.ver_major = bnx_COM_b06FwReleaseMajor;
   2571 	fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   2572 	fw.ver_fix = bnx_COM_b06FwReleaseFix;
   2573 	fw.start_addr = bnx_COM_b06FwStartAddr;
   2574 
   2575 	fw.text_addr = bnx_COM_b06FwTextAddr;
   2576 	fw.text_len = bnx_COM_b06FwTextLen;
   2577 	fw.text_index = 0;
   2578 	fw.text = bnx_COM_b06FwText;
   2579 
   2580 	fw.data_addr = bnx_COM_b06FwDataAddr;
   2581 	fw.data_len = bnx_COM_b06FwDataLen;
   2582 	fw.data_index = 0;
   2583 	fw.data = bnx_COM_b06FwData;
   2584 
   2585 	fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   2586 	fw.sbss_len = bnx_COM_b06FwSbssLen;
   2587 	fw.sbss_index = 0;
   2588 	fw.sbss = bnx_COM_b06FwSbss;
   2589 
   2590 	fw.bss_addr = bnx_COM_b06FwBssAddr;
   2591 	fw.bss_len = bnx_COM_b06FwBssLen;
   2592 	fw.bss_index = 0;
   2593 	fw.bss = bnx_COM_b06FwBss;
   2594 
   2595 	fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   2596 	fw.rodata_len = bnx_COM_b06FwRodataLen;
   2597 	fw.rodata_index = 0;
   2598 	fw.rodata = bnx_COM_b06FwRodata;
   2599 
   2600 	DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   2601 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2602 }
   2603 
   2604 /****************************************************************************/
   2605 /* Initialize context memory.                                               */
   2606 /*                                                                          */
   2607 /* Clears the memory associated with each Context ID (CID).                 */
   2608 /*                                                                          */
   2609 /* Returns:                                                                 */
   2610 /*   Nothing.                                                               */
   2611 /****************************************************************************/
   2612 void
   2613 bnx_init_context(struct bnx_softc *sc)
   2614 {
   2615 	u_int32_t		vcid;
   2616 
   2617 	vcid = 96;
   2618 	while (vcid) {
   2619 		u_int32_t vcid_addr, pcid_addr, offset;
   2620 
   2621 		vcid--;
   2622 
   2623    		vcid_addr = GET_CID_ADDR(vcid);
   2624 		pcid_addr = vcid_addr;
   2625 
   2626 		REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
   2627 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
   2628 
   2629 		/* Zero out the context. */
   2630 		for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
   2631 			CTX_WR(sc, 0x00, offset, 0);
   2632 
   2633 		REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   2634 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
   2635 	}
   2636 }
   2637 
   2638 /****************************************************************************/
   2639 /* Fetch the permanent MAC address of the controller.                       */
   2640 /*                                                                          */
   2641 /* Returns:                                                                 */
   2642 /*   Nothing.                                                               */
   2643 /****************************************************************************/
   2644 void
   2645 bnx_get_mac_addr(struct bnx_softc *sc)
   2646 {
   2647 	u_int32_t		mac_lo = 0, mac_hi = 0;
   2648 
   2649 	/*
   2650 	 * The NetXtreme II bootcode populates various NIC
   2651 	 * power-on and runtime configuration items in a
   2652 	 * shared memory area.  The factory configured MAC
   2653 	 * address is available from both NVRAM and the
   2654 	 * shared memory area so we'll read the value from
   2655 	 * shared memory for speed.
   2656 	 */
   2657 
   2658 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   2659 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   2660 
   2661 	if ((mac_lo == 0) && (mac_hi == 0)) {
   2662 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   2663 		    __FILE__, __LINE__);
   2664 	} else {
   2665 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   2666 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   2667 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   2668 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   2669 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   2670 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   2671 	}
   2672 
   2673 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   2674 	    "%s\n", ether_sprintf(sc->eaddr));
   2675 }
   2676 
   2677 /****************************************************************************/
   2678 /* Program the MAC address.                                                 */
   2679 /*                                                                          */
   2680 /* Returns:                                                                 */
   2681 /*   Nothing.                                                               */
   2682 /****************************************************************************/
   2683 void
   2684 bnx_set_mac_addr(struct bnx_softc *sc)
   2685 {
   2686 	u_int32_t		val;
   2687 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   2688 
   2689 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   2690 	    "%s\n", ether_sprintf(sc->eaddr));
   2691 
   2692 	val = (mac_addr[0] << 8) | mac_addr[1];
   2693 
   2694 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   2695 
   2696 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   2697 		(mac_addr[4] << 8) | mac_addr[5];
   2698 
   2699 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   2700 }
   2701 
   2702 /****************************************************************************/
   2703 /* Stop the controller.                                                     */
   2704 /*                                                                          */
   2705 /* Returns:                                                                 */
   2706 /*   Nothing.                                                               */
   2707 /****************************************************************************/
   2708 void
   2709 bnx_stop(struct ifnet *ifp, int disable)
   2710 {
   2711 	struct bnx_softc *sc = ifp->if_softc;
   2712 
   2713 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2714 
   2715 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   2716 		return;
   2717 
   2718 	callout_stop(&sc->bnx_timeout);
   2719 
   2720 	mii_down(&sc->bnx_mii);
   2721 
   2722 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2723 
   2724 	/* Disable the transmit/receive blocks. */
   2725 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   2726 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   2727 	DELAY(20);
   2728 
   2729 	bnx_disable_intr(sc);
   2730 
   2731 	/* Tell firmware that the driver is going away. */
   2732 	if (disable)
   2733 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   2734 	else
   2735 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   2736 
   2737 	/* Free the RX lists. */
   2738 	bnx_free_rx_chain(sc);
   2739 
   2740 	/* Free TX buffers. */
   2741 	bnx_free_tx_chain(sc);
   2742 
   2743 	ifp->if_timer = 0;
   2744 
   2745 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2746 
   2747 }
   2748 
   2749 int
   2750 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
   2751 {
   2752 	u_int32_t		val;
   2753 	int			i, rc = 0;
   2754 
   2755 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2756 
   2757 	/* Wait for pending PCI transactions to complete. */
   2758 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   2759 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   2760 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   2761 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   2762 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   2763 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   2764 	DELAY(5);
   2765 
   2766 	/* Assume bootcode is running. */
   2767 	sc->bnx_fw_timed_out = 0;
   2768 
   2769 	/* Give the firmware a chance to prepare for the reset. */
   2770 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   2771 	if (rc)
   2772 		goto bnx_reset_exit;
   2773 
   2774 	/* Set a firmware reminder that this is a soft reset. */
   2775 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   2776 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   2777 
   2778 	/* Dummy read to force the chip to complete all current transactions. */
   2779 	val = REG_RD(sc, BNX_MISC_ID);
   2780 
   2781 	/* Chip reset. */
   2782 	val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2783 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   2784 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   2785 	REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   2786 
   2787 	/* Allow up to 30us for reset to complete. */
   2788 	for (i = 0; i < 10; i++) {
   2789 		val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   2790 		if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2791 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
   2792 			break;
   2793 
   2794 		DELAY(10);
   2795 	}
   2796 
   2797 	/* Check that reset completed successfully. */
   2798 	if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2799 	    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   2800 		BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
   2801 		rc = EBUSY;
   2802 		goto bnx_reset_exit;
   2803 	}
   2804 
   2805 	/* Make sure byte swapping is properly configured. */
   2806 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   2807 	if (val != 0x01020304) {
   2808 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   2809 		    __FILE__, __LINE__);
   2810 		rc = ENODEV;
   2811 		goto bnx_reset_exit;
   2812 	}
   2813 
   2814 	/* Just completed a reset, assume that firmware is running again. */
   2815 	sc->bnx_fw_timed_out = 0;
   2816 
   2817 	/* Wait for the firmware to finish its initialization. */
   2818 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   2819 	if (rc)
   2820 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   2821 		    "initialization!\n", __FILE__, __LINE__);
   2822 
   2823 bnx_reset_exit:
   2824 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2825 
   2826 	return (rc);
   2827 }
   2828 
   2829 int
   2830 bnx_chipinit(struct bnx_softc *sc)
   2831 {
   2832 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2833 	u_int32_t		val;
   2834 	int			rc = 0;
   2835 
   2836 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2837 
   2838 	/* Make sure the interrupt is not active. */
   2839 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   2840 
   2841 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   2842 	/* channels and PCI clock compensation delay.                      */
   2843 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   2844 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   2845 #if BYTE_ORDER == BIG_ENDIAN
   2846 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   2847 #endif
   2848 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   2849 	    DMA_READ_CHANS << 12 |
   2850 	    DMA_WRITE_CHANS << 16;
   2851 
   2852 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   2853 
   2854 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   2855 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   2856 
   2857 	/*
   2858 	 * This setting resolves a problem observed on certain Intel PCI
   2859 	 * chipsets that cannot handle multiple outstanding DMA operations.
   2860 	 * See errata E9_5706A1_65.
   2861 	 */
   2862 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   2863 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   2864 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   2865 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   2866 
   2867 	REG_WR(sc, BNX_DMA_CONFIG, val);
   2868 
   2869 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   2870 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   2871 		u_int16_t nval;
   2872 
   2873 		nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   2874 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   2875 		    nval & ~0x20000);
   2876 	}
   2877 
   2878 	/* Enable the RX_V2P and Context state machines before access. */
   2879 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   2880 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   2881 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   2882 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   2883 
   2884 	/* Initialize context mapping and zero out the quick contexts. */
   2885 	bnx_init_context(sc);
   2886 
   2887 	/* Initialize the on-boards CPUs */
   2888 	bnx_init_cpus(sc);
   2889 
   2890 	/* Prepare NVRAM for access. */
   2891 	if (bnx_init_nvram(sc)) {
   2892 		rc = ENODEV;
   2893 		goto bnx_chipinit_exit;
   2894 	}
   2895 
   2896 	/* Set the kernel bypass block size */
   2897 	val = REG_RD(sc, BNX_MQ_CONFIG);
   2898 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   2899 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   2900 	REG_WR(sc, BNX_MQ_CONFIG, val);
   2901 
   2902 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
   2903 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   2904 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   2905 
   2906 	val = (BCM_PAGE_BITS - 8) << 24;
   2907 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   2908 
   2909 	/* Configure page size. */
   2910 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   2911 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   2912 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   2913 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   2914 
   2915 bnx_chipinit_exit:
   2916 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2917 
   2918 	return(rc);
   2919 }
   2920 
   2921 /****************************************************************************/
   2922 /* Initialize the controller in preparation to send/receive traffic.        */
   2923 /*                                                                          */
   2924 /* Returns:                                                                 */
   2925 /*   0 for success, positive value for failure.                             */
   2926 /****************************************************************************/
   2927 int
   2928 bnx_blockinit(struct bnx_softc *sc)
   2929 {
   2930 	u_int32_t		reg, val;
   2931 	int 			rc = 0;
   2932 
   2933 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2934 
   2935 	/* Load the hardware default MAC address. */
   2936 	bnx_set_mac_addr(sc);
   2937 
   2938 	/* Set the Ethernet backoff seed value */
   2939 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   2940 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   2941 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   2942 
   2943 	sc->last_status_idx = 0;
   2944 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   2945 
   2946 	/* Set up link change interrupt generation. */
   2947 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   2948 
   2949 	/* Program the physical address of the status block. */
   2950 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
   2951 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   2952 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
   2953 
   2954 	/* Program the physical address of the statistics block. */
   2955 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   2956 	    (u_int32_t)(sc->stats_block_paddr));
   2957 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   2958 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
   2959 
   2960 	/* Program various host coalescing parameters. */
   2961 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   2962 	    << 16) | sc->bnx_tx_quick_cons_trip);
   2963 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   2964 	    << 16) | sc->bnx_rx_quick_cons_trip);
   2965 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   2966 	    sc->bnx_comp_prod_trip);
   2967 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   2968 	    sc->bnx_tx_ticks);
   2969 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   2970 	    sc->bnx_rx_ticks);
   2971 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   2972 	    sc->bnx_com_ticks);
   2973 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   2974 	    sc->bnx_cmd_ticks);
   2975 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   2976 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   2977 	REG_WR(sc, BNX_HC_CONFIG,
   2978 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   2979 	    BNX_HC_CONFIG_COLLECT_STATS));
   2980 
   2981 	/* Clear the internal statistics counters. */
   2982 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   2983 
   2984 	/* Verify that bootcode is running. */
   2985 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   2986 
   2987 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   2988 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   2989 	    __FILE__, __LINE__); reg = 0);
   2990 
   2991 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   2992 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   2993 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   2994 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   2995 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   2996 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   2997 		rc = ENODEV;
   2998 		goto bnx_blockinit_exit;
   2999 	}
   3000 
   3001 	/* Check if any management firmware is running. */
   3002 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3003 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3004 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3005 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3006 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3007 	}
   3008 
   3009 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3010 	    BNX_DEV_INFO_BC_REV);
   3011 
   3012 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3013 
   3014 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3015 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3016 
   3017 	/* Enable link state change interrupt generation. */
   3018 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3019 
   3020 	/* Enable all remaining blocks in the MAC. */
   3021 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3022 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3023 	DELAY(20);
   3024 
   3025 bnx_blockinit_exit:
   3026 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3027 
   3028 	return (rc);
   3029 }
   3030 
   3031 static int
   3032 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
   3033     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3034 {
   3035 	bus_dmamap_t		map;
   3036 	struct rx_bd		*rxbd;
   3037 	u_int32_t		addr;
   3038 	int i;
   3039 #ifdef BNX_DEBUG
   3040 	u_int16_t debug_chain_prod =	*chain_prod;
   3041 #endif
   3042 	u_int16_t first_chain_prod;
   3043 
   3044 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3045 
   3046 	/* Map the mbuf cluster into device memory. */
   3047 	map = sc->rx_mbuf_map[*chain_prod];
   3048 	first_chain_prod = *chain_prod;
   3049 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3050 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3051 		    __FILE__, __LINE__);
   3052 
   3053 		m_freem(m_new);
   3054 
   3055 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3056 
   3057 		return ENOBUFS;
   3058 	}
   3059 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3060 	    BUS_DMASYNC_PREREAD);
   3061 
   3062 	/* Watch for overflow. */
   3063 	DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
   3064 	    aprint_error_dev(sc->bnx_dev,
   3065 		"Too many free rx_bd (0x%04X > 0x%04X)!\n",
   3066 		sc->free_rx_bd, (u_int16_t)USABLE_RX_BD));
   3067 
   3068 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3069 	    sc->rx_low_watermark = sc->free_rx_bd);
   3070 
   3071 	/*
   3072 	 * Setup the rx_bd for the first segment
   3073 	 */
   3074 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3075 
   3076 	addr = (u_int32_t)(map->dm_segs[0].ds_addr);
   3077 	rxbd->rx_bd_haddr_lo = htole32(addr);
   3078 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
   3079 	rxbd->rx_bd_haddr_hi = htole32(addr);
   3080 	rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
   3081 	rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
   3082 	*prod_bseq += map->dm_segs[0].ds_len;
   3083 	bus_dmamap_sync(sc->bnx_dmatag,
   3084 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3085 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3086 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3087 
   3088 	for (i = 1; i < map->dm_nsegs; i++) {
   3089 		*prod = NEXT_RX_BD(*prod);
   3090 		*chain_prod = RX_CHAIN_IDX(*prod);
   3091 
   3092 		rxbd =
   3093 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3094 
   3095 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   3096 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3097 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   3098 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3099 		rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
   3100 		rxbd->rx_bd_flags = 0;
   3101 		*prod_bseq += map->dm_segs[i].ds_len;
   3102 		bus_dmamap_sync(sc->bnx_dmatag,
   3103 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3104 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3105 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3106 	}
   3107 
   3108 	rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
   3109 	bus_dmamap_sync(sc->bnx_dmatag,
   3110 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3111 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3112 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3113 
   3114 	/*
   3115 	 * Save the mbuf, ajust the map pointer (swap map for first and
   3116 	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
   3117 	 * and update counter.
   3118 	 */
   3119 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3120 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3121 	sc->rx_mbuf_map[*chain_prod] = map;
   3122 	sc->free_rx_bd -= map->dm_nsegs;
   3123 
   3124 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3125 	    map->dm_nsegs));
   3126 	*prod = NEXT_RX_BD(*prod);
   3127 	*chain_prod = RX_CHAIN_IDX(*prod);
   3128 
   3129 	return 0;
   3130 }
   3131 
   3132 /****************************************************************************/
   3133 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3134 /*                                                                          */
   3135 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3136 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3137 /* necessary.                                                               */
   3138 /*                                                                          */
   3139 /* Returns:                                                                 */
   3140 /*   0 for success, positive value for failure.                             */
   3141 /****************************************************************************/
   3142 int
   3143 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
   3144     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3145 {
   3146 	struct mbuf 		*m_new = NULL;
   3147 	int			rc = 0;
   3148 	u_int16_t min_free_bd;
   3149 
   3150 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3151 	    __func__);
   3152 
   3153 	/* Make sure the inputs are valid. */
   3154 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3155 	    aprint_error_dev(sc->bnx_dev,
   3156 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3157 		*chain_prod, (u_int16_t)MAX_RX_BD));
   3158 
   3159 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3160 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3161 	    *prod_bseq);
   3162 
   3163 	/* try to get in as many mbufs as possible */
   3164 	if (sc->mbuf_alloc_size == MCLBYTES)
   3165 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3166 	else
   3167 		min_free_bd = (BNX_MAX_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3168 	while (sc->free_rx_bd >= min_free_bd) {
   3169 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3170 		    BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
   3171 
   3172 			sc->mbuf_alloc_failed++;
   3173 			rc = ENOBUFS;
   3174 			goto bnx_get_buf_exit);
   3175 
   3176 		/* This is a new mbuf allocation. */
   3177 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3178 		if (m_new == NULL) {
   3179 			DBPRINT(sc, BNX_WARN,
   3180 			    "%s(%d): RX mbuf header allocation failed!\n",
   3181 			    __FILE__, __LINE__);
   3182 
   3183 			DBRUNIF(1, sc->mbuf_alloc_failed++);
   3184 
   3185 			rc = ENOBUFS;
   3186 			goto bnx_get_buf_exit;
   3187 		}
   3188 
   3189 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3190 		if (sc->mbuf_alloc_size == MCLBYTES)
   3191 			MCLGET(m_new, M_DONTWAIT);
   3192 		else
   3193 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3194 			    M_DONTWAIT);
   3195 		if (!(m_new->m_flags & M_EXT)) {
   3196 			DBPRINT(sc, BNX_WARN,
   3197 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3198 			    __FILE__, __LINE__);
   3199 
   3200 			m_freem(m_new);
   3201 
   3202 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3203 			DBRUNIF(1, sc->mbuf_alloc_failed++);
   3204 
   3205 			rc = ENOBUFS;
   3206 			goto bnx_get_buf_exit;
   3207 		}
   3208 
   3209 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3210 		if (rc != 0)
   3211 			goto bnx_get_buf_exit;
   3212 	}
   3213 
   3214 bnx_get_buf_exit:
   3215 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3216 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3217 	    *chain_prod, *prod_bseq);
   3218 
   3219 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3220 	    __func__);
   3221 
   3222 	return(rc);
   3223 }
   3224 
   3225 /****************************************************************************/
   3226 /* Allocate memory and initialize the TX data structures.                   */
   3227 /*                                                                          */
   3228 /* Returns:                                                                 */
   3229 /*   0 for success, positive value for failure.                             */
   3230 /****************************************************************************/
   3231 int
   3232 bnx_init_tx_chain(struct bnx_softc *sc)
   3233 {
   3234 	struct tx_bd		*txbd;
   3235 	u_int32_t		val, addr;
   3236 	int			i, rc = 0;
   3237 
   3238 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3239 
   3240 	/* Set the initial TX producer/consumer indices. */
   3241 	sc->tx_prod = 0;
   3242 	sc->tx_cons = 0;
   3243 	sc->tx_prod_bseq = 0;
   3244 	sc->used_tx_bd = 0;
   3245 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   3246 
   3247 	/*
   3248 	 * The NetXtreme II supports a linked-list structure called
   3249 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   3250 	 * consists of a series of 1 or more chain pages, each of which
   3251 	 * consists of a fixed number of BD entries.
   3252 	 * The last BD entry on each page is a pointer to the next page
   3253 	 * in the chain, and the last pointer in the BD chain
   3254 	 * points back to the beginning of the chain.
   3255 	 */
   3256 
   3257 	/* Set the TX next pointer chain entries. */
   3258 	for (i = 0; i < TX_PAGES; i++) {
   3259 		int j;
   3260 
   3261 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   3262 
   3263 		/* Check if we've reached the last page. */
   3264 		if (i == (TX_PAGES - 1))
   3265 			j = 0;
   3266 		else
   3267 			j = i + 1;
   3268 
   3269 		addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
   3270 		txbd->tx_bd_haddr_lo = htole32(addr);
   3271 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
   3272 		txbd->tx_bd_haddr_hi = htole32(addr);
   3273 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3274 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3275 	}
   3276 
   3277 	/*
   3278 	 * Initialize the context ID for an L2 TX chain.
   3279 	 */
   3280 	val = BNX_L2CTX_TYPE_TYPE_L2;
   3281 	val |= BNX_L2CTX_TYPE_SIZE_L2;
   3282 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   3283 
   3284 	val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3285 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   3286 
   3287 	/* Point the hardware to the first page in the chain. */
   3288 	val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3289 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   3290 	val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3291 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   3292 
   3293 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
   3294 
   3295 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3296 
   3297 	return(rc);
   3298 }
   3299 
   3300 /****************************************************************************/
   3301 /* Free memory and clear the TX data structures.                            */
   3302 /*                                                                          */
   3303 /* Returns:                                                                 */
   3304 /*   Nothing.                                                               */
   3305 /****************************************************************************/
   3306 void
   3307 bnx_free_tx_chain(struct bnx_softc *sc)
   3308 {
   3309 	int			i;
   3310 
   3311 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3312 
   3313 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   3314 	for (i = 0; i < TOTAL_TX_BD; i++) {
   3315 		if (sc->tx_mbuf_ptr[i] != NULL) {
   3316 			if (sc->tx_mbuf_map != NULL)
   3317 				bus_dmamap_sync(sc->bnx_dmatag,
   3318 				    sc->tx_mbuf_map[i], 0,
   3319 				    sc->tx_mbuf_map[i]->dm_mapsize,
   3320 				    BUS_DMASYNC_POSTWRITE);
   3321 			m_freem(sc->tx_mbuf_ptr[i]);
   3322 			sc->tx_mbuf_ptr[i] = NULL;
   3323 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   3324 		}
   3325 	}
   3326 
   3327 	/* Clear each TX chain page. */
   3328 	for (i = 0; i < TX_PAGES; i++) {
   3329 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   3330 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3331 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3332 	}
   3333 
   3334 	/* Check if we lost any mbufs in the process. */
   3335 	DBRUNIF((sc->tx_mbuf_alloc),
   3336 	    aprint_error_dev(sc->bnx_dev,
   3337 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   3338 		sc->tx_mbuf_alloc));
   3339 
   3340 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3341 }
   3342 
   3343 /****************************************************************************/
   3344 /* Allocate memory and initialize the RX data structures.                   */
   3345 /*                                                                          */
   3346 /* Returns:                                                                 */
   3347 /*   0 for success, positive value for failure.                             */
   3348 /****************************************************************************/
   3349 int
   3350 bnx_init_rx_chain(struct bnx_softc *sc)
   3351 {
   3352 	struct rx_bd		*rxbd;
   3353 	int			i, rc = 0;
   3354 	u_int16_t		prod, chain_prod;
   3355 	u_int32_t		prod_bseq, val, addr;
   3356 
   3357 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3358 
   3359 	/* Initialize the RX producer and consumer indices. */
   3360 	sc->rx_prod = 0;
   3361 	sc->rx_cons = 0;
   3362 	sc->rx_prod_bseq = 0;
   3363 	sc->free_rx_bd = BNX_RX_SLACK_SPACE;
   3364 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   3365 
   3366 	/* Initialize the RX next pointer chain entries. */
   3367 	for (i = 0; i < RX_PAGES; i++) {
   3368 		int j;
   3369 
   3370 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   3371 
   3372 		/* Check if we've reached the last page. */
   3373 		if (i == (RX_PAGES - 1))
   3374 			j = 0;
   3375 		else
   3376 			j = i + 1;
   3377 
   3378 		/* Setup the chain page pointers. */
   3379 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
   3380 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3381 		addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
   3382 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3383 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   3384 		    0, BNX_RX_CHAIN_PAGE_SZ,
   3385 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3386 	}
   3387 
   3388 	/* Initialize the context ID for an L2 RX chain. */
   3389 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
   3390 	val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
   3391 	val |= 0x02 << 8;
   3392 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   3393 
   3394 	/* Point the hardware to the first page in the chain. */
   3395 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
   3396 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   3397 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
   3398 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   3399 
   3400 	/* Allocate mbuf clusters for the rx_bd chain. */
   3401 	prod = prod_bseq = 0;
   3402 	chain_prod = RX_CHAIN_IDX(prod);
   3403 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   3404 		BNX_PRINTF(sc,
   3405 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   3406 	}
   3407 
   3408 	/* Save the RX chain producer index. */
   3409 	sc->rx_prod = prod;
   3410 	sc->rx_prod_bseq = prod_bseq;
   3411 
   3412 	for (i = 0; i < RX_PAGES; i++)
   3413 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   3414 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3415 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3416 
   3417 	/* Tell the chip about the waiting rx_bd's. */
   3418 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   3419 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   3420 
   3421 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   3422 
   3423 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3424 
   3425 	return(rc);
   3426 }
   3427 
   3428 /****************************************************************************/
   3429 /* Free memory and clear the RX data structures.                            */
   3430 /*                                                                          */
   3431 /* Returns:                                                                 */
   3432 /*   Nothing.                                                               */
   3433 /****************************************************************************/
   3434 void
   3435 bnx_free_rx_chain(struct bnx_softc *sc)
   3436 {
   3437 	int			i;
   3438 
   3439 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3440 
   3441 	/* Free any mbufs still in the RX mbuf chain. */
   3442 	for (i = 0; i < TOTAL_RX_BD; i++) {
   3443 		if (sc->rx_mbuf_ptr[i] != NULL) {
   3444 			if (sc->rx_mbuf_map[i] != NULL)
   3445 				bus_dmamap_sync(sc->bnx_dmatag,
   3446 				    sc->rx_mbuf_map[i],	0,
   3447 				    sc->rx_mbuf_map[i]->dm_mapsize,
   3448 				    BUS_DMASYNC_POSTREAD);
   3449 			m_freem(sc->rx_mbuf_ptr[i]);
   3450 			sc->rx_mbuf_ptr[i] = NULL;
   3451 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3452 		}
   3453 	}
   3454 
   3455 	/* Clear each RX chain page. */
   3456 	for (i = 0; i < RX_PAGES; i++)
   3457 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   3458 
   3459 	/* Check if we lost any mbufs in the process. */
   3460 	DBRUNIF((sc->rx_mbuf_alloc),
   3461 	    aprint_error_dev(sc->bnx_dev,
   3462 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   3463 		sc->rx_mbuf_alloc));
   3464 
   3465 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3466 }
   3467 
   3468 /****************************************************************************/
   3469 /* Handles PHY generated interrupt events.                                  */
   3470 /*                                                                          */
   3471 /* Returns:                                                                 */
   3472 /*   Nothing.                                                               */
   3473 /****************************************************************************/
   3474 void
   3475 bnx_phy_intr(struct bnx_softc *sc)
   3476 {
   3477 	u_int32_t		new_link_state, old_link_state;
   3478 
   3479 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3480 	    BUS_DMASYNC_POSTREAD);
   3481 	new_link_state = sc->status_block->status_attn_bits &
   3482 	    STATUS_ATTN_BITS_LINK_STATE;
   3483 	old_link_state = sc->status_block->status_attn_bits_ack &
   3484 	    STATUS_ATTN_BITS_LINK_STATE;
   3485 
   3486 	/* Handle any changes if the link state has changed. */
   3487 	if (new_link_state != old_link_state) {
   3488 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   3489 
   3490 		callout_stop(&sc->bnx_timeout);
   3491 		bnx_tick(sc);
   3492 
   3493 		/* Update the status_attn_bits_ack field in the status block. */
   3494 		if (new_link_state) {
   3495 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   3496 			    STATUS_ATTN_BITS_LINK_STATE);
   3497 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   3498 		} else {
   3499 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   3500 			    STATUS_ATTN_BITS_LINK_STATE);
   3501 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   3502 		}
   3503 	}
   3504 
   3505 	/* Acknowledge the link change interrupt. */
   3506 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   3507 }
   3508 
   3509 /****************************************************************************/
   3510 /* Handles received frame interrupt events.                                 */
   3511 /*                                                                          */
   3512 /* Returns:                                                                 */
   3513 /*   Nothing.                                                               */
   3514 /****************************************************************************/
   3515 void
   3516 bnx_rx_intr(struct bnx_softc *sc)
   3517 {
   3518 	struct status_block	*sblk = sc->status_block;
   3519 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   3520 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
   3521 	u_int16_t		sw_prod, sw_chain_prod;
   3522 	u_int32_t		sw_prod_bseq;
   3523 	struct l2_fhdr		*l2fhdr;
   3524 	int			i;
   3525 
   3526 	DBRUNIF(1, sc->rx_interrupts++);
   3527 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3528 	    BUS_DMASYNC_POSTREAD);
   3529 
   3530 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   3531 	for (i = 0; i < RX_PAGES; i++)
   3532 		bus_dmamap_sync(sc->bnx_dmatag,
   3533 		    sc->rx_bd_chain_map[i], 0,
   3534 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3535 		    BUS_DMASYNC_POSTWRITE);
   3536 
   3537 	/* Get the hardware's view of the RX consumer index. */
   3538 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   3539 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   3540 		hw_cons++;
   3541 
   3542 	/* Get working copies of the driver's view of the RX indices. */
   3543 	sw_cons = sc->rx_cons;
   3544 	sw_prod = sc->rx_prod;
   3545 	sw_prod_bseq = sc->rx_prod_bseq;
   3546 
   3547 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   3548 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   3549 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   3550 
   3551 	/* Prevent speculative reads from getting ahead of the status block. */
   3552 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3553 	    BUS_SPACE_BARRIER_READ);
   3554 
   3555 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3556 	    sc->rx_low_watermark = sc->free_rx_bd);
   3557 
   3558 	/*
   3559 	 * Scan through the receive chain as long
   3560 	 * as there is work to do.
   3561 	 */
   3562 	while (sw_cons != hw_cons) {
   3563 		struct mbuf *m;
   3564 		struct rx_bd *rxbd;
   3565 		unsigned int len;
   3566 		u_int32_t status;
   3567 
   3568 		/* Convert the producer/consumer indices to an actual
   3569 		 * rx_bd index.
   3570 		 */
   3571 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   3572 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   3573 
   3574 		/* Get the used rx_bd. */
   3575 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   3576 		sc->free_rx_bd++;
   3577 
   3578 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   3579 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   3580 
   3581 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   3582 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   3583 #ifdef DIAGNOSTIC
   3584 			/* Validate that this is the last rx_bd. */
   3585 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   3586 			    printf("%s: Unexpected mbuf found in "
   3587 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   3588 			        sw_chain_cons);
   3589 			}
   3590 #endif
   3591 
   3592 			/* DRC - ToDo: If the received packet is small, say less
   3593 			 *             than 128 bytes, allocate a new mbuf here,
   3594 			 *             copy the data to that mbuf, and recycle
   3595 			 *             the mapped jumbo frame.
   3596 			 */
   3597 
   3598 			/* Unmap the mbuf from DMA space. */
   3599 #ifdef DIAGNOSTIC
   3600 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   3601 				printf("invalid map sw_cons 0x%x "
   3602 				"sw_prod 0x%x "
   3603 				"sw_chain_cons 0x%x "
   3604 				"sw_chain_prod 0x%x "
   3605 				"hw_cons 0x%x "
   3606 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   3607 				"TOTAL_RX_BD 0x%x\n",
   3608 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   3609 				hw_cons,
   3610 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   3611 			}
   3612 #endif
   3613 			bus_dmamap_sync(sc->bnx_dmatag,
   3614 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   3615 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   3616 			    BUS_DMASYNC_POSTREAD);
   3617 			bus_dmamap_unload(sc->bnx_dmatag,
   3618 			    sc->rx_mbuf_map[sw_chain_cons]);
   3619 
   3620 			/* Remove the mbuf from the driver's chain. */
   3621 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   3622 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   3623 
   3624 			/*
   3625 			 * Frames received on the NetXteme II are prepended
   3626 			 * with the l2_fhdr structure which provides status
   3627 			 * information about the received frame (including
   3628 			 * VLAN tags and checksum info) and are also
   3629 			 * automatically adjusted to align the IP header
   3630 			 * (i.e. two null bytes are inserted before the
   3631 			 * Ethernet header).
   3632 			 */
   3633 			l2fhdr = mtod(m, struct l2_fhdr *);
   3634 
   3635 			len    = l2fhdr->l2_fhdr_pkt_len;
   3636 			status = l2fhdr->l2_fhdr_status;
   3637 
   3638 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   3639 			    aprint_error("Simulating l2_fhdr status error.\n");
   3640 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   3641 
   3642 			/* Watch for unusual sized frames. */
   3643 			DBRUNIF(((len < BNX_MIN_MTU) ||
   3644 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   3645 			    aprint_error_dev(sc->bnx_dev,
   3646 			        "Unusual frame size found. "
   3647 				"Min(%d), Actual(%d), Max(%d)\n",
   3648 				(int)BNX_MIN_MTU, len,
   3649 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   3650 
   3651 			bnx_dump_mbuf(sc, m);
   3652 			bnx_breakpoint(sc));
   3653 
   3654 			len -= ETHER_CRC_LEN;
   3655 
   3656 			/* Check the received frame for errors. */
   3657 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   3658 			    L2_FHDR_ERRORS_PHY_DECODE |
   3659 			    L2_FHDR_ERRORS_ALIGNMENT |
   3660 			    L2_FHDR_ERRORS_TOO_SHORT |
   3661 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   3662 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   3663 			    len >
   3664 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   3665 				ifp->if_ierrors++;
   3666 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   3667 
   3668 				/* Reuse the mbuf for a new frame. */
   3669 				if (bnx_add_buf(sc, m, &sw_prod,
   3670 				    &sw_chain_prod, &sw_prod_bseq)) {
   3671 					DBRUNIF(1, bnx_breakpoint(sc));
   3672 					panic("%s: Can't reuse RX mbuf!\n",
   3673 					    device_xname(sc->bnx_dev));
   3674 				}
   3675 				continue;
   3676 			}
   3677 
   3678 			/*
   3679 			 * Get a new mbuf for the rx_bd.   If no new
   3680 			 * mbufs are available then reuse the current mbuf,
   3681 			 * log an ierror on the interface, and generate
   3682 			 * an error in the system log.
   3683 			 */
   3684 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   3685 			    &sw_prod_bseq)) {
   3686 				DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
   3687 					"new mbuf, incoming frame dropped!\n"));
   3688 
   3689 				ifp->if_ierrors++;
   3690 
   3691 				/* Try and reuse the exisitng mbuf. */
   3692 				if (bnx_add_buf(sc, m, &sw_prod,
   3693 				    &sw_chain_prod, &sw_prod_bseq)) {
   3694 					DBRUNIF(1, bnx_breakpoint(sc));
   3695 					panic("%s: Double mbuf allocation "
   3696 					    "failure!",
   3697 					    device_xname(sc->bnx_dev));
   3698 				}
   3699 				continue;
   3700 			}
   3701 
   3702 			/* Skip over the l2_fhdr when passing the data up
   3703 			 * the stack.
   3704 			 */
   3705 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   3706 
   3707 			/* Adjust the pckt length to match the received data. */
   3708 			m->m_pkthdr.len = m->m_len = len;
   3709 
   3710 			/* Send the packet to the appropriate interface. */
   3711 			m->m_pkthdr.rcvif = ifp;
   3712 
   3713 			DBRUN(BNX_VERBOSE_RECV,
   3714 			    struct ether_header *eh;
   3715 			    eh = mtod(m, struct ether_header *);
   3716 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   3717 			    __func__, ether_sprintf(eh->ether_dhost),
   3718 			    ether_sprintf(eh->ether_shost),
   3719 			    htons(eh->ether_type)));
   3720 
   3721 			/* Validate the checksum. */
   3722 
   3723 			/* Check for an IP datagram. */
   3724 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   3725 				/* Check if the IP checksum is valid. */
   3726 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   3727 				    == 0)
   3728 					m->m_pkthdr.csum_flags |=
   3729 					    M_CSUM_IPv4;
   3730 #ifdef BNX_DEBUG
   3731 				else
   3732 					DBPRINT(sc, BNX_WARN_SEND,
   3733 					    "%s(): Invalid IP checksum "
   3734 					        "= 0x%04X!\n",
   3735 						__func__,
   3736 						l2fhdr->l2_fhdr_ip_xsum
   3737 						);
   3738 #endif
   3739 			}
   3740 
   3741 			/* Check for a valid TCP/UDP frame. */
   3742 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   3743 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   3744 				/* Check for a good TCP/UDP checksum. */
   3745 				if ((status &
   3746 				    (L2_FHDR_ERRORS_TCP_XSUM |
   3747 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   3748 					m->m_pkthdr.csum_flags |=
   3749 					    M_CSUM_TCPv4 |
   3750 					    M_CSUM_UDPv4;
   3751 				} else {
   3752 					DBPRINT(sc, BNX_WARN_SEND,
   3753 					    "%s(): Invalid TCP/UDP "
   3754 					    "checksum = 0x%04X!\n",
   3755 					    __func__,
   3756 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   3757 				}
   3758 			}
   3759 
   3760 			/*
   3761 			 * If we received a packet with a vlan tag,
   3762 			 * attach that information to the packet.
   3763 			 */
   3764 			if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
   3765 #if 0
   3766 				struct ether_vlan_header vh;
   3767 
   3768 				DBPRINT(sc, BNX_VERBOSE_SEND,
   3769 				    "%s(): VLAN tag = 0x%04X\n",
   3770 				    __func__,
   3771 				    l2fhdr->l2_fhdr_vlan_tag);
   3772 
   3773 				if (m->m_pkthdr.len < ETHER_HDR_LEN) {
   3774 					m_freem(m);
   3775 					continue;
   3776 				}
   3777 				m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh);
   3778 				vh.evl_proto = vh.evl_encap_proto;
   3779 				vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag;
   3780 				vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
   3781 				m_adj(m, ETHER_HDR_LEN);
   3782 				if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
   3783 					continue;
   3784 				m->m_pkthdr.len += sizeof(vh);
   3785 				if (m->m_len < sizeof(vh) &&
   3786 				    (m = m_pullup(m, sizeof(vh))) == NULL)
   3787 					goto bnx_rx_int_next_rx;
   3788 				m_copyback(m, 0, sizeof(vh), &vh);
   3789 #else
   3790 				VLAN_INPUT_TAG(ifp, m,
   3791 				    l2fhdr->l2_fhdr_vlan_tag,
   3792 				    continue);
   3793 #endif
   3794 			}
   3795 
   3796 #if NBPFILTER > 0
   3797 			/*
   3798 			 * Handle BPF listeners. Let the BPF
   3799 			 * user see the packet.
   3800 			 */
   3801 			if (ifp->if_bpf)
   3802 				bpf_mtap(ifp->if_bpf, m);
   3803 #endif
   3804 
   3805 			/* Pass the mbuf off to the upper layers. */
   3806 			ifp->if_ipackets++;
   3807 			DBPRINT(sc, BNX_VERBOSE_RECV,
   3808 			    "%s(): Passing received frame up.\n", __func__);
   3809 			(*ifp->if_input)(ifp, m);
   3810 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3811 
   3812 		}
   3813 
   3814 		sw_cons = NEXT_RX_BD(sw_cons);
   3815 
   3816 		/* Refresh hw_cons to see if there's new work */
   3817 		if (sw_cons == hw_cons) {
   3818 			hw_cons = sc->hw_rx_cons =
   3819 			    sblk->status_rx_quick_consumer_index0;
   3820 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   3821 			    USABLE_RX_BD_PER_PAGE)
   3822 				hw_cons++;
   3823 		}
   3824 
   3825 		/* Prevent speculative reads from getting ahead of
   3826 		 * the status block.
   3827 		 */
   3828 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3829 		    BUS_SPACE_BARRIER_READ);
   3830 	}
   3831 
   3832 	for (i = 0; i < RX_PAGES; i++)
   3833 		bus_dmamap_sync(sc->bnx_dmatag,
   3834 		    sc->rx_bd_chain_map[i], 0,
   3835 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3836 		    BUS_DMASYNC_PREWRITE);
   3837 
   3838 	sc->rx_cons = sw_cons;
   3839 	sc->rx_prod = sw_prod;
   3840 	sc->rx_prod_bseq = sw_prod_bseq;
   3841 
   3842 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   3843 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   3844 
   3845 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   3846 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   3847 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   3848 }
   3849 
   3850 /****************************************************************************/
   3851 /* Handles transmit completion interrupt events.                            */
   3852 /*                                                                          */
   3853 /* Returns:                                                                 */
   3854 /*   Nothing.                                                               */
   3855 /****************************************************************************/
   3856 void
   3857 bnx_tx_intr(struct bnx_softc *sc)
   3858 {
   3859 	struct status_block	*sblk = sc->status_block;
   3860 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   3861 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   3862 
   3863 	DBRUNIF(1, sc->tx_interrupts++);
   3864 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3865 	    BUS_DMASYNC_POSTREAD);
   3866 
   3867 	/* Get the hardware's view of the TX consumer index. */
   3868 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   3869 
   3870 	/* Skip to the next entry if this is a chain page pointer. */
   3871 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   3872 		hw_tx_cons++;
   3873 
   3874 	sw_tx_cons = sc->tx_cons;
   3875 
   3876 	/* Prevent speculative reads from getting ahead of the status block. */
   3877 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3878 	    BUS_SPACE_BARRIER_READ);
   3879 
   3880 	/* Cycle through any completed TX chain page entries. */
   3881 	while (sw_tx_cons != hw_tx_cons) {
   3882 #ifdef BNX_DEBUG
   3883 		struct tx_bd *txbd = NULL;
   3884 #endif
   3885 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   3886 
   3887 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   3888 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   3889 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   3890 
   3891 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   3892 		    aprint_error_dev(sc->bnx_dev,
   3893 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   3894 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   3895 
   3896 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   3897 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   3898 
   3899 		DBRUNIF((txbd == NULL),
   3900 		    aprint_error_dev(sc->bnx_dev,
   3901 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   3902 		    bnx_breakpoint(sc));
   3903 
   3904 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   3905 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   3906 
   3907 		/*
   3908 		 * Free the associated mbuf. Remember
   3909 		 * that only the last tx_bd of a packet
   3910 		 * has an mbuf pointer and DMA map.
   3911 		 */
   3912 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
   3913 			/* Validate that this is the last tx_bd. */
   3914 			DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
   3915 			    TX_BD_FLAGS_END)),
   3916 			    aprint_error_dev(sc->bnx_dev,
   3917 			        "tx_bd END flag not set but txmbuf == NULL!\n");
   3918 			    bnx_breakpoint(sc));
   3919 
   3920 			DBRUN(BNX_INFO_SEND,
   3921 			    aprint_debug("%s: Unloading map/freeing mbuf "
   3922 			    "from tx_bd[0x%04X]\n",
   3923 			    __func__, sw_tx_chain_cons));
   3924 
   3925 			/* Unmap the mbuf. */
   3926 			bus_dmamap_unload(sc->bnx_dmatag,
   3927 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
   3928 
   3929 			/* Free the mbuf. */
   3930 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
   3931 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
   3932 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   3933 
   3934 			ifp->if_opackets++;
   3935 		}
   3936 
   3937 		sc->used_tx_bd--;
   3938 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   3939 
   3940 		/* Refresh hw_cons to see if there's new work. */
   3941 		hw_tx_cons = sc->hw_tx_cons =
   3942 		    sblk->status_tx_quick_consumer_index0;
   3943 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   3944 		    USABLE_TX_BD_PER_PAGE)
   3945 			hw_tx_cons++;
   3946 
   3947 		/* Prevent speculative reads from getting ahead of
   3948 		 * the status block.
   3949 		 */
   3950 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3951 		    BUS_SPACE_BARRIER_READ);
   3952 	}
   3953 
   3954 	/* Clear the TX timeout timer. */
   3955 	ifp->if_timer = 0;
   3956 
   3957 	/* Clear the tx hardware queue full flag. */
   3958 	if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
   3959 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   3960 		    aprint_debug_dev(sc->bnx_dev,
   3961 		        "TX chain is open for business! Used tx_bd = %d\n",
   3962 			sc->used_tx_bd));
   3963 		ifp->if_flags &= ~IFF_OACTIVE;
   3964 	}
   3965 
   3966 	sc->tx_cons = sw_tx_cons;
   3967 }
   3968 
   3969 /****************************************************************************/
   3970 /* Disables interrupt generation.                                           */
   3971 /*                                                                          */
   3972 /* Returns:                                                                 */
   3973 /*   Nothing.                                                               */
   3974 /****************************************************************************/
   3975 void
   3976 bnx_disable_intr(struct bnx_softc *sc)
   3977 {
   3978 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3979 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   3980 }
   3981 
   3982 /****************************************************************************/
   3983 /* Enables interrupt generation.                                            */
   3984 /*                                                                          */
   3985 /* Returns:                                                                 */
   3986 /*   Nothing.                                                               */
   3987 /****************************************************************************/
   3988 void
   3989 bnx_enable_intr(struct bnx_softc *sc)
   3990 {
   3991 	u_int32_t		val;
   3992 
   3993 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   3994 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   3995 
   3996 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   3997 	    sc->last_status_idx);
   3998 
   3999 	val = REG_RD(sc, BNX_HC_COMMAND);
   4000 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4001 }
   4002 
   4003 /****************************************************************************/
   4004 /* Handles controller initialization.                                       */
   4005 /*                                                                          */
   4006 /****************************************************************************/
   4007 int
   4008 bnx_init(struct ifnet *ifp)
   4009 {
   4010 	struct bnx_softc	*sc = ifp->if_softc;
   4011 	u_int32_t		ether_mtu;
   4012 	int			s, error = 0;
   4013 
   4014 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4015 
   4016 	s = splnet();
   4017 
   4018 	bnx_stop(ifp, 0);
   4019 
   4020 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4021 		aprint_error("bnx: Controller reset failed!\n");
   4022 		goto bnx_init_exit;
   4023 	}
   4024 
   4025 	if ((error = bnx_chipinit(sc)) != 0) {
   4026 		aprint_error("bnx: Controller initialization failed!\n");
   4027 		goto bnx_init_exit;
   4028 	}
   4029 
   4030 	if ((error = bnx_blockinit(sc)) != 0) {
   4031 		aprint_error("bnx: Block initialization failed!\n");
   4032 		goto bnx_init_exit;
   4033 	}
   4034 
   4035 	/* Calculate and program the Ethernet MRU size. */
   4036 	if (ifp->if_mtu <= ETHERMTU) {
   4037 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4038 		sc->mbuf_alloc_size = MCLBYTES;
   4039 	} else {
   4040 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4041 		sc->mbuf_alloc_size = BNX_MAX_MRU;
   4042 	}
   4043 
   4044 
   4045 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4046 	    __func__, ether_mtu);
   4047 
   4048 	/*
   4049 	 * Program the MRU and enable Jumbo frame
   4050 	 * support.
   4051 	 */
   4052 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4053 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4054 
   4055 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4056 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4057 
   4058 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4059 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4060 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4061 
   4062 	/* Program appropriate promiscuous/multicast filtering. */
   4063 	bnx_set_rx_mode(sc);
   4064 
   4065 	/* Init RX buffer descriptor chain. */
   4066 	bnx_init_rx_chain(sc);
   4067 
   4068 	/* Init TX buffer descriptor chain. */
   4069 	bnx_init_tx_chain(sc);
   4070 
   4071 	/* Enable host interrupts. */
   4072 	bnx_enable_intr(sc);
   4073 
   4074 	if ((error = ether_mediachange(ifp)) != 0)
   4075 		goto bnx_init_exit;
   4076 
   4077 	ifp->if_flags |= IFF_RUNNING;
   4078 	ifp->if_flags &= ~IFF_OACTIVE;
   4079 
   4080 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4081 
   4082 bnx_init_exit:
   4083 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4084 
   4085 	splx(s);
   4086 
   4087 	return(error);
   4088 }
   4089 
   4090 /****************************************************************************/
   4091 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4092 /* memory visible to the controller.                                        */
   4093 /*                                                                          */
   4094 /* Returns:                                                                 */
   4095 /*   0 for success, positive value for failure.                             */
   4096 /****************************************************************************/
   4097 int
   4098 bnx_tx_encap(struct bnx_softc *sc, struct mbuf **m_head)
   4099 {
   4100 	bus_dmamap_t		map;
   4101 	struct tx_bd		*txbd = NULL;
   4102 	struct mbuf		*m0;
   4103 	u_int16_t		vlan_tag = 0, flags = 0;
   4104 	u_int16_t		chain_prod, prod;
   4105 #ifdef BNX_DEBUG
   4106 	u_int16_t		debug_prod;
   4107 #endif
   4108 	u_int32_t		addr, prod_bseq;
   4109 	int			i, error, rc = 0;
   4110 	struct m_tag		*mtag;
   4111 
   4112 	m0 = *m_head;
   4113 
   4114 	/* Transfer any checksum offload flags to the bd. */
   4115 	if (m0->m_pkthdr.csum_flags) {
   4116 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4117 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4118 		if (m0->m_pkthdr.csum_flags &
   4119 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4120 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4121 	}
   4122 
   4123 	/* Transfer any VLAN tags to the bd. */
   4124 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m0);
   4125 	if (mtag != NULL) {
   4126 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4127 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4128 	}
   4129 
   4130 	/* Map the mbuf into DMAable memory. */
   4131 	prod = sc->tx_prod;
   4132 	chain_prod = TX_CHAIN_IDX(prod);
   4133 	map = sc->tx_mbuf_map[chain_prod];
   4134 
   4135 	/* Map the mbuf into our DMA address space. */
   4136 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m0, BUS_DMA_NOWAIT);
   4137 	if (error != 0) {
   4138 		aprint_error_dev(sc->bnx_dev,
   4139 		    "Error mapping mbuf into TX chain!\n");
   4140 		m_freem(m0);
   4141 		*m_head = NULL;
   4142 		return (error);
   4143 	}
   4144 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4145 	    BUS_DMASYNC_PREWRITE);
   4146         /*
   4147          * The chip seems to require that at least 16 descriptors be kept
   4148          * empty at all times.  Make sure we honor that.
   4149          * XXX Would it be faster to assume worst case scenario for
   4150          * map->dm_nsegs and do this calculation higher up?
   4151          */
   4152         if (map->dm_nsegs > (USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE)) {
   4153                 bus_dmamap_unload(sc->bnx_dmatag, map);
   4154                 return (ENOBUFS);
   4155         }
   4156 
   4157 	/* prod points to an empty tx_bd at this point. */
   4158 	prod_bseq = sc->tx_prod_bseq;
   4159 #ifdef BNX_DEBUG
   4160 	debug_prod = chain_prod;
   4161 #endif
   4162 	DBPRINT(sc, BNX_INFO_SEND,
   4163 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   4164 		"prod_bseq = 0x%08X\n",
   4165 		__func__, *prod, chain_prod, prod_bseq);
   4166 
   4167 	/*
   4168 	 * Cycle through each mbuf segment that makes up
   4169 	 * the outgoing frame, gathering the mapping info
   4170 	 * for that segment and creating a tx_bd for the
   4171 	 * mbuf.
   4172 	 */
   4173 	for (i = 0; i < map->dm_nsegs ; i++) {
   4174 		chain_prod = TX_CHAIN_IDX(prod);
   4175 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   4176 
   4177 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   4178 		txbd->tx_bd_haddr_lo = htole32(addr);
   4179 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   4180 		txbd->tx_bd_haddr_hi = htole32(addr);
   4181 		txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
   4182 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
   4183 		txbd->tx_bd_flags = htole16(flags);
   4184 		prod_bseq += map->dm_segs[i].ds_len;
   4185 		if (i == 0)
   4186 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
   4187 		prod = NEXT_TX_BD(prod);
   4188 	}
   4189 	/* Set the END flag on the last TX buffer descriptor. */
   4190 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
   4191 
   4192 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
   4193 
   4194 	DBPRINT(sc, BNX_INFO_SEND,
   4195 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   4196 		"prod_bseq = 0x%08X\n",
   4197 		__func__, prod, chain_prod, prod_bseq);
   4198 
   4199 	/*
   4200 	 * Ensure that the mbuf pointer for this
   4201 	 * transmission is placed at the array
   4202 	 * index of the last descriptor in this
   4203 	 * chain.  This is done because a single
   4204 	 * map is used for all segments of the mbuf
   4205 	 * and we don't want to unload the map before
   4206 	 * all of the segments have been freed.
   4207 	 */
   4208 	sc->tx_mbuf_ptr[chain_prod] = m0;
   4209 	sc->used_tx_bd += map->dm_nsegs;
   4210 
   4211 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   4212 	    sc->tx_hi_watermark = sc->used_tx_bd);
   4213 
   4214 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   4215 
   4216 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   4217 	    map_arg.maxsegs));
   4218 
   4219 	/* prod points to the next free tx_bd at this point. */
   4220 	sc->tx_prod = prod;
   4221 	sc->tx_prod_bseq = prod_bseq;
   4222 
   4223 	return (rc);
   4224 }
   4225 
   4226 /****************************************************************************/
   4227 /* Main transmit routine.                                                   */
   4228 /*                                                                          */
   4229 /* Returns:                                                                 */
   4230 /*   Nothing.                                                               */
   4231 /****************************************************************************/
   4232 void
   4233 bnx_start(struct ifnet *ifp)
   4234 {
   4235 	struct bnx_softc	*sc = ifp->if_softc;
   4236 	struct mbuf		*m_head = NULL;
   4237 	int			count = 0;
   4238 	u_int16_t		tx_prod, tx_chain_prod;
   4239 
   4240 	/* If there's no link or the transmit queue is empty then just exit. */
   4241 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   4242 		DBPRINT(sc, BNX_INFO_SEND,
   4243 		    "%s(): output active or device not running.\n", __func__);
   4244 		goto bnx_start_exit;
   4245 	}
   4246 
   4247 	/* prod points to the next free tx_bd. */
   4248 	tx_prod = sc->tx_prod;
   4249 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
   4250 
   4251 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   4252 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
   4253 	    __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   4254 
   4255 	/*
   4256 	 * Keep adding entries while there is space in the ring.  We keep
   4257 	 * BNX_TX_SLACK_SPACE entries unused at all times.
   4258 	 */
   4259 	while (sc->used_tx_bd < USABLE_TX_BD - BNX_TX_SLACK_SPACE) {
   4260 		/* Check for any frames to send. */
   4261 		IFQ_POLL(&ifp->if_snd, m_head);
   4262 		if (m_head == NULL)
   4263 			break;
   4264 
   4265 		/*
   4266 		 * Pack the data into the transmit ring. If we
   4267 		 * don't have room, set the OACTIVE flag to wait
   4268 		 * for the NIC to drain the chain.
   4269 		 */
   4270 		if (bnx_tx_encap(sc, &m_head)) {
   4271 			ifp->if_flags |= IFF_OACTIVE;
   4272 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   4273 			    "business! Total tx_bd used = %d\n",
   4274 			    sc->used_tx_bd);
   4275 			break;
   4276 		}
   4277 
   4278 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4279 		count++;
   4280 
   4281 #if NBPFILTER > 0
   4282 		/* Send a copy of the frame to any BPF listeners. */
   4283 		if (ifp->if_bpf)
   4284 			bpf_mtap(ifp->if_bpf, m_head);
   4285 #endif
   4286 	}
   4287 
   4288 	if (count == 0) {
   4289 		/* no packets were dequeued */
   4290 		DBPRINT(sc, BNX_VERBOSE_SEND,
   4291 		    "%s(): No packets were dequeued\n", __func__);
   4292 		goto bnx_start_exit;
   4293 	}
   4294 
   4295 	/* Update the driver's counters. */
   4296 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   4297 
   4298 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   4299 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
   4300 	    tx_chain_prod, sc->tx_prod_bseq);
   4301 
   4302 	/* Start the transmit. */
   4303 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   4304 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   4305 
   4306 	/* Set the tx timeout. */
   4307 	ifp->if_timer = BNX_TX_TIMEOUT;
   4308 
   4309 bnx_start_exit:
   4310 	return;
   4311 }
   4312 
   4313 /****************************************************************************/
   4314 /* Handles any IOCTL calls from the operating system.                       */
   4315 /*                                                                          */
   4316 /* Returns:                                                                 */
   4317 /*   0 for success, positive value for failure.                             */
   4318 /****************************************************************************/
   4319 int
   4320 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   4321 {
   4322 	struct bnx_softc	*sc = ifp->if_softc;
   4323 	struct ifreq		*ifr = (struct ifreq *) data;
   4324 	struct mii_data		*mii = &sc->bnx_mii;
   4325 	int			s, error = 0;
   4326 
   4327 	s = splnet();
   4328 
   4329 	switch (command) {
   4330 	case SIOCSIFFLAGS:
   4331 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   4332 			break;
   4333 		/* XXX set an ifflags callback and let ether_ioctl
   4334 		 * handle all of this.
   4335 		 */
   4336 		switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
   4337 		case IFF_UP|IFF_RUNNING:
   4338 			if (((ifp->if_flags ^ sc->bnx_if_flags) &
   4339 			    (IFF_ALLMULTI | IFF_PROMISC)) != 0)
   4340 				bnx_set_rx_mode(sc);
   4341 			break;
   4342 		case IFF_UP:
   4343 			bnx_init(ifp);
   4344 			break;
   4345 		case IFF_RUNNING:
   4346 			bnx_stop(ifp, 1);
   4347 			break;
   4348 		case 0:
   4349 			break;
   4350 		}
   4351 
   4352 		sc->bnx_if_flags = ifp->if_flags;
   4353 		break;
   4354 
   4355 	case SIOCSIFMEDIA:
   4356 	case SIOCGIFMEDIA:
   4357 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   4358 		    sc->bnx_phy_flags);
   4359 
   4360 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   4361 		break;
   4362 
   4363 	default:
   4364 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4365 			break;
   4366 
   4367 		error = 0;
   4368 
   4369 		if (command != SIOCADDMULTI && command && SIOCDELMULTI)
   4370 			;
   4371 		else if (ifp->if_flags & IFF_RUNNING) {
   4372 			/* reload packet filter if running */
   4373 			bnx_set_rx_mode(sc);
   4374 		}
   4375 		break;
   4376 	}
   4377 
   4378 	splx(s);
   4379 
   4380 	return (error);
   4381 }
   4382 
   4383 /****************************************************************************/
   4384 /* Transmit timeout handler.                                                */
   4385 /*                                                                          */
   4386 /* Returns:                                                                 */
   4387 /*   Nothing.                                                               */
   4388 /****************************************************************************/
   4389 void
   4390 bnx_watchdog(struct ifnet *ifp)
   4391 {
   4392 	struct bnx_softc	*sc = ifp->if_softc;
   4393 
   4394 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   4395 	    bnx_dump_status_block(sc));
   4396 
   4397 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   4398 
   4399 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   4400 
   4401 	bnx_init(ifp);
   4402 
   4403 	ifp->if_oerrors++;
   4404 }
   4405 
   4406 /*
   4407  * Interrupt handler.
   4408  */
   4409 /****************************************************************************/
   4410 /* Main interrupt entry point.  Verifies that the controller generated the  */
   4411 /* interrupt and then calls a separate routine for handle the various       */
   4412 /* interrupt causes (PHY, TX, RX).                                          */
   4413 /*                                                                          */
   4414 /* Returns:                                                                 */
   4415 /*   0 for success, positive value for failure.                             */
   4416 /****************************************************************************/
   4417 int
   4418 bnx_intr(void *xsc)
   4419 {
   4420 	struct bnx_softc	*sc;
   4421 	struct ifnet		*ifp;
   4422 	u_int32_t		status_attn_bits;
   4423 	const struct status_block *sblk;
   4424 
   4425 	sc = xsc;
   4426 	if (!device_is_active(sc->bnx_dev))
   4427 		return 0;
   4428 
   4429 	ifp = &sc->bnx_ec.ec_if;
   4430 
   4431 	DBRUNIF(1, sc->interrupts_generated++);
   4432 
   4433 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   4434 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4435 
   4436 	/*
   4437 	 * If the hardware status block index
   4438 	 * matches the last value read by the
   4439 	 * driver and we haven't asserted our
   4440 	 * interrupt then there's nothing to do.
   4441 	 */
   4442 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   4443 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   4444 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   4445 		return (0);
   4446 
   4447 	/* Ack the interrupt and stop others from occuring. */
   4448 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4449 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   4450 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4451 
   4452 	/* Keep processing data as long as there is work to do. */
   4453 	for (;;) {
   4454 		sblk = sc->status_block;
   4455 		status_attn_bits = sblk->status_attn_bits;
   4456 
   4457 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   4458 		    aprint_debug("Simulating unexpected status attention bit set.");
   4459 		    status_attn_bits = status_attn_bits |
   4460 		    STATUS_ATTN_BITS_PARITY_ERROR);
   4461 
   4462 		/* Was it a link change interrupt? */
   4463 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   4464 		    (sblk->status_attn_bits_ack &
   4465 		    STATUS_ATTN_BITS_LINK_STATE))
   4466 			bnx_phy_intr(sc);
   4467 
   4468 		/* If any other attention is asserted then the chip is toast. */
   4469 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   4470 		    (sblk->status_attn_bits_ack &
   4471 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   4472 			DBRUN(1, sc->unexpected_attentions++);
   4473 
   4474 			aprint_error_dev(sc->bnx_dev,
   4475 			    "Fatal attention detected: 0x%08X\n",
   4476 			    sblk->status_attn_bits);
   4477 
   4478 			DBRUN(BNX_FATAL,
   4479 			    if (bnx_debug_unexpected_attention == 0)
   4480 			    bnx_breakpoint(sc));
   4481 
   4482 			bnx_init(ifp);
   4483 			return (1);
   4484 		}
   4485 
   4486 		/* Check for any completed RX frames. */
   4487 		if (sblk->status_rx_quick_consumer_index0 !=
   4488 		    sc->hw_rx_cons)
   4489 			bnx_rx_intr(sc);
   4490 
   4491 		/* Check for any completed TX frames. */
   4492 		if (sblk->status_tx_quick_consumer_index0 !=
   4493 		    sc->hw_tx_cons)
   4494 			bnx_tx_intr(sc);
   4495 
   4496 		/* Save the status block index value for use during the
   4497 		 * next interrupt.
   4498 		 */
   4499 		sc->last_status_idx = sblk->status_idx;
   4500 
   4501 		/* Prevent speculative reads from getting ahead of the
   4502 		 * status block.
   4503 		 */
   4504 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4505 		    BUS_SPACE_BARRIER_READ);
   4506 
   4507 		/* If there's no work left then exit the isr. */
   4508 		if ((sblk->status_rx_quick_consumer_index0 ==
   4509 		    sc->hw_rx_cons) &&
   4510 		    (sblk->status_tx_quick_consumer_index0 ==
   4511 		    sc->hw_tx_cons))
   4512 			break;
   4513 	}
   4514 
   4515 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   4516 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   4517 
   4518 	/* Re-enable interrupts. */
   4519 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4520 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   4521 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4522 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4523 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   4524 
   4525 	/* Handle any frames that arrived while handling the interrupt. */
   4526 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   4527 		bnx_start(ifp);
   4528 
   4529 	return (1);
   4530 }
   4531 
   4532 /****************************************************************************/
   4533 /* Programs the various packet receive modes (broadcast and multicast).     */
   4534 /*                                                                          */
   4535 /* Returns:                                                                 */
   4536 /*   Nothing.                                                               */
   4537 /****************************************************************************/
   4538 void
   4539 bnx_set_rx_mode(struct bnx_softc *sc)
   4540 {
   4541 	struct ethercom		*ec = &sc->bnx_ec;
   4542 	struct ifnet		*ifp = &ec->ec_if;
   4543 	struct ether_multi	*enm;
   4544 	struct ether_multistep	step;
   4545 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   4546 	u_int32_t		rx_mode, sort_mode;
   4547 	int			h, i;
   4548 
   4549 	/* Initialize receive mode default settings. */
   4550 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   4551 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   4552 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   4553 
   4554 	/*
   4555 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   4556 	 * be enbled.
   4557 	 */
   4558 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   4559 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   4560 
   4561 	/*
   4562 	 * Check for promiscuous, all multicast, or selected
   4563 	 * multicast address filtering.
   4564 	 */
   4565 	if (ifp->if_flags & IFF_PROMISC) {
   4566 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   4567 
   4568 		/* Enable promiscuous mode. */
   4569 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   4570 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   4571 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   4572 allmulti:
   4573 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   4574 
   4575 		/* Enable all multicast addresses. */
   4576 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   4577 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   4578 			    0xffffffff);
   4579 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   4580 	} else {
   4581 		/* Accept one or more multicast(s). */
   4582 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   4583 
   4584 		ETHER_FIRST_MULTI(step, ec, enm);
   4585 		while (enm != NULL) {
   4586 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   4587 			    ETHER_ADDR_LEN)) {
   4588 				ifp->if_flags |= IFF_ALLMULTI;
   4589 				goto allmulti;
   4590 			}
   4591 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   4592 			    0xFF;
   4593 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   4594 			ETHER_NEXT_MULTI(step, enm);
   4595 		}
   4596 
   4597 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   4598 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   4599 			    hashes[i]);
   4600 
   4601 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   4602 	}
   4603 
   4604 	/* Only make changes if the recive mode has actually changed. */
   4605 	if (rx_mode != sc->rx_mode) {
   4606 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   4607 		    rx_mode);
   4608 
   4609 		sc->rx_mode = rx_mode;
   4610 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   4611 	}
   4612 
   4613 	/* Disable and clear the exisitng sort before enabling a new sort. */
   4614 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   4615 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   4616 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   4617 }
   4618 
   4619 /****************************************************************************/
   4620 /* Called periodically to updates statistics from the controllers           */
   4621 /* statistics block.                                                        */
   4622 /*                                                                          */
   4623 /* Returns:                                                                 */
   4624 /*   Nothing.                                                               */
   4625 /****************************************************************************/
   4626 void
   4627 bnx_stats_update(struct bnx_softc *sc)
   4628 {
   4629 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4630 	struct statistics_block	*stats;
   4631 
   4632 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   4633 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4634 	    BUS_DMASYNC_POSTREAD);
   4635 
   4636 	stats = (struct statistics_block *)sc->stats_block;
   4637 
   4638 	/*
   4639 	 * Update the interface statistics from the
   4640 	 * hardware statistics.
   4641 	 */
   4642 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   4643 
   4644 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   4645 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   4646 	    (u_long)stats->stat_IfInMBUFDiscards +
   4647 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   4648 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   4649 
   4650 	ifp->if_oerrors = (u_long)
   4651 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   4652 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   4653 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   4654 
   4655 	/*
   4656 	 * Certain controllers don't report
   4657 	 * carrier sense errors correctly.
   4658 	 * See errata E11_5708CA0_1165.
   4659 	 */
   4660 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   4661 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   4662 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   4663 
   4664 	/*
   4665 	 * Update the sysctl statistics from the
   4666 	 * hardware statistics.
   4667 	 */
   4668 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
   4669 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
   4670 
   4671 	sc->stat_IfHCInBadOctets =
   4672 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   4673 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
   4674 
   4675 	sc->stat_IfHCOutOctets =
   4676 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
   4677 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
   4678 
   4679 	sc->stat_IfHCOutBadOctets =
   4680 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   4681 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
   4682 
   4683 	sc->stat_IfHCInUcastPkts =
   4684 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   4685 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
   4686 
   4687 	sc->stat_IfHCInMulticastPkts =
   4688 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   4689 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
   4690 
   4691 	sc->stat_IfHCInBroadcastPkts =
   4692 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   4693 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
   4694 
   4695 	sc->stat_IfHCOutUcastPkts =
   4696 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   4697 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
   4698 
   4699 	sc->stat_IfHCOutMulticastPkts =
   4700 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   4701 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
   4702 
   4703 	sc->stat_IfHCOutBroadcastPkts =
   4704 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   4705 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   4706 
   4707 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   4708 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   4709 
   4710 	sc->stat_Dot3StatsCarrierSenseErrors =
   4711 	    stats->stat_Dot3StatsCarrierSenseErrors;
   4712 
   4713 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   4714 
   4715 	sc->stat_Dot3StatsAlignmentErrors =
   4716 	    stats->stat_Dot3StatsAlignmentErrors;
   4717 
   4718 	sc->stat_Dot3StatsSingleCollisionFrames =
   4719 	    stats->stat_Dot3StatsSingleCollisionFrames;
   4720 
   4721 	sc->stat_Dot3StatsMultipleCollisionFrames =
   4722 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   4723 
   4724 	sc->stat_Dot3StatsDeferredTransmissions =
   4725 	    stats->stat_Dot3StatsDeferredTransmissions;
   4726 
   4727 	sc->stat_Dot3StatsExcessiveCollisions =
   4728 	    stats->stat_Dot3StatsExcessiveCollisions;
   4729 
   4730 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   4731 
   4732 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   4733 
   4734 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   4735 
   4736 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   4737 
   4738 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   4739 
   4740 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   4741 
   4742 	sc->stat_EtherStatsPktsRx64Octets =
   4743 	    stats->stat_EtherStatsPktsRx64Octets;
   4744 
   4745 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   4746 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   4747 
   4748 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   4749 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   4750 
   4751 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   4752 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   4753 
   4754 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   4755 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   4756 
   4757 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   4758 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   4759 
   4760 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   4761 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   4762 
   4763 	sc->stat_EtherStatsPktsTx64Octets =
   4764 	    stats->stat_EtherStatsPktsTx64Octets;
   4765 
   4766 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   4767 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   4768 
   4769 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   4770 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   4771 
   4772 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   4773 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   4774 
   4775 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   4776 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   4777 
   4778 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   4779 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   4780 
   4781 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   4782 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   4783 
   4784 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   4785 
   4786 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   4787 
   4788 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   4789 
   4790 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   4791 
   4792 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   4793 
   4794 	sc->stat_MacControlFramesReceived =
   4795 	    stats->stat_MacControlFramesReceived;
   4796 
   4797 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   4798 
   4799 	sc->stat_IfInFramesL2FilterDiscards =
   4800 	    stats->stat_IfInFramesL2FilterDiscards;
   4801 
   4802 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   4803 
   4804 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   4805 
   4806 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   4807 
   4808 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   4809 
   4810 	sc->stat_CatchupInRuleCheckerDiscards =
   4811 	    stats->stat_CatchupInRuleCheckerDiscards;
   4812 
   4813 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   4814 
   4815 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   4816 
   4817 	sc->stat_CatchupInRuleCheckerP4Hit =
   4818 	    stats->stat_CatchupInRuleCheckerP4Hit;
   4819 
   4820 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   4821 }
   4822 
   4823 void
   4824 bnx_tick(void *xsc)
   4825 {
   4826 	struct bnx_softc	*sc = xsc;
   4827 	struct mii_data		*mii;
   4828 	u_int32_t		msg;
   4829 	u_int16_t		prod, chain_prod;
   4830 	u_int32_t		prod_bseq;
   4831 	int s = splnet();
   4832 
   4833 	/* Tell the firmware that the driver is still running. */
   4834 #ifdef BNX_DEBUG
   4835 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   4836 #else
   4837 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   4838 #endif
   4839 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   4840 
   4841 	/* Update the statistics from the hardware statistics block. */
   4842 	bnx_stats_update(sc);
   4843 
   4844 	/* Schedule the next tick. */
   4845 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4846 
   4847 	mii = &sc->bnx_mii;
   4848 	mii_tick(mii);
   4849 
   4850 	/* try to get more RX buffers, just in case */
   4851 	prod = sc->rx_prod;
   4852 	prod_bseq = sc->rx_prod_bseq;
   4853 	chain_prod = RX_CHAIN_IDX(prod);
   4854 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   4855 	sc->rx_prod = prod;
   4856 	sc->rx_prod_bseq = prod_bseq;
   4857 	splx(s);
   4858 	return;
   4859 }
   4860 
   4861 /****************************************************************************/
   4862 /* BNX Debug Routines                                                       */
   4863 /****************************************************************************/
   4864 #ifdef BNX_DEBUG
   4865 
   4866 /****************************************************************************/
   4867 /* Prints out information about an mbuf.                                    */
   4868 /*                                                                          */
   4869 /* Returns:                                                                 */
   4870 /*   Nothing.                                                               */
   4871 /****************************************************************************/
   4872 void
   4873 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   4874 {
   4875 	struct mbuf		*mp = m;
   4876 
   4877 	if (m == NULL) {
   4878 		/* Index out of range. */
   4879 		aprint_error("mbuf ptr is null!\n");
   4880 		return;
   4881 	}
   4882 
   4883 	while (mp) {
   4884 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   4885 		    mp, mp->m_len);
   4886 
   4887 		if (mp->m_flags & M_EXT)
   4888 			aprint_debug("M_EXT ");
   4889 		if (mp->m_flags & M_PKTHDR)
   4890 			aprint_debug("M_PKTHDR ");
   4891 		aprint_debug("\n");
   4892 
   4893 		if (mp->m_flags & M_EXT)
   4894 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   4895 			    mp, mp->m_ext.ext_size);
   4896 
   4897 		mp = mp->m_next;
   4898 	}
   4899 }
   4900 
   4901 /****************************************************************************/
   4902 /* Prints out the mbufs in the TX mbuf chain.                               */
   4903 /*                                                                          */
   4904 /* Returns:                                                                 */
   4905 /*   Nothing.                                                               */
   4906 /****************************************************************************/
   4907 void
   4908 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   4909 {
   4910 	struct mbuf		*m;
   4911 	int			i;
   4912 
   4913 	BNX_PRINTF(sc,
   4914 	    "----------------------------"
   4915 	    "  tx mbuf data  "
   4916 	    "----------------------------\n");
   4917 
   4918 	for (i = 0; i < count; i++) {
   4919 	 	m = sc->tx_mbuf_ptr[chain_prod];
   4920 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   4921 		bnx_dump_mbuf(sc, m);
   4922 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   4923 	}
   4924 
   4925 	BNX_PRINTF(sc,
   4926 	    "--------------------------------------------"
   4927 	    "----------------------------\n");
   4928 }
   4929 
   4930 /*
   4931  * This routine prints the RX mbuf chain.
   4932  */
   4933 void
   4934 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   4935 {
   4936 	struct mbuf		*m;
   4937 	int			i;
   4938 
   4939 	BNX_PRINTF(sc,
   4940 	    "----------------------------"
   4941 	    "  rx mbuf data  "
   4942 	    "----------------------------\n");
   4943 
   4944 	for (i = 0; i < count; i++) {
   4945 	 	m = sc->rx_mbuf_ptr[chain_prod];
   4946 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   4947 		bnx_dump_mbuf(sc, m);
   4948 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   4949 	}
   4950 
   4951 
   4952 	BNX_PRINTF(sc,
   4953 	    "--------------------------------------------"
   4954 	    "----------------------------\n");
   4955 }
   4956 
   4957 void
   4958 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   4959 {
   4960 	if (idx > MAX_TX_BD)
   4961 		/* Index out of range. */
   4962 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   4963 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4964 		/* TX Chain page pointer. */
   4965 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   4966 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   4967 		    txbd->tx_bd_haddr_lo);
   4968 	else
   4969 		/* Normal tx_bd entry. */
   4970 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   4971 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   4972 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   4973 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   4974 		    txbd->tx_bd_flags);
   4975 }
   4976 
   4977 void
   4978 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   4979 {
   4980 	if (idx > MAX_RX_BD)
   4981 		/* Index out of range. */
   4982 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   4983 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4984 		/* TX Chain page pointer. */
   4985 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   4986 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   4987 		    rxbd->rx_bd_haddr_lo);
   4988 	else
   4989 		/* Normal tx_bd entry. */
   4990 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   4991 		    "0x%08X, flags = 0x%08X\n", idx,
   4992 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   4993 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   4994 }
   4995 
   4996 void
   4997 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   4998 {
   4999 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5000 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5001 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5002 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5003 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5004 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5005 }
   5006 
   5007 /*
   5008  * This routine prints the TX chain.
   5009  */
   5010 void
   5011 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5012 {
   5013 	struct tx_bd		*txbd;
   5014 	int			i;
   5015 
   5016 	/* First some info about the tx_bd chain structure. */
   5017 	BNX_PRINTF(sc,
   5018 	    "----------------------------"
   5019 	    "  tx_bd  chain  "
   5020 	    "----------------------------\n");
   5021 
   5022 	BNX_PRINTF(sc,
   5023 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5024 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
   5025 
   5026 	BNX_PRINTF(sc,
   5027 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5028 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
   5029 
   5030 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
   5031 
   5032 	BNX_PRINTF(sc, ""
   5033 	    "-----------------------------"
   5034 	    "   tx_bd data   "
   5035 	    "-----------------------------\n");
   5036 
   5037 	/* Now print out the tx_bd's themselves. */
   5038 	for (i = 0; i < count; i++) {
   5039 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5040 		bnx_dump_txbd(sc, tx_prod, txbd);
   5041 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5042 	}
   5043 
   5044 	BNX_PRINTF(sc,
   5045 	    "-----------------------------"
   5046 	    "--------------"
   5047 	    "-----------------------------\n");
   5048 }
   5049 
   5050 /*
   5051  * This routine prints the RX chain.
   5052  */
   5053 void
   5054 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5055 {
   5056 	struct rx_bd		*rxbd;
   5057 	int			i;
   5058 
   5059 	/* First some info about the tx_bd chain structure. */
   5060 	BNX_PRINTF(sc,
   5061 	    "----------------------------"
   5062 	    "  rx_bd  chain  "
   5063 	    "----------------------------\n");
   5064 
   5065 	BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
   5066 
   5067 	BNX_PRINTF(sc,
   5068 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5069 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
   5070 
   5071 	BNX_PRINTF(sc,
   5072 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5073 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
   5074 
   5075 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
   5076 
   5077 	BNX_PRINTF(sc,
   5078 	    "----------------------------"
   5079 	    "   rx_bd data   "
   5080 	    "----------------------------\n");
   5081 
   5082 	/* Now print out the rx_bd's themselves. */
   5083 	for (i = 0; i < count; i++) {
   5084 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5085 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5086 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5087 	}
   5088 
   5089 	BNX_PRINTF(sc,
   5090 	    "----------------------------"
   5091 	    "--------------"
   5092 	    "----------------------------\n");
   5093 }
   5094 
   5095 /*
   5096  * This routine prints the status block.
   5097  */
   5098 void
   5099 bnx_dump_status_block(struct bnx_softc *sc)
   5100 {
   5101 	struct status_block	*sblk;
   5102 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5103 	    BUS_DMASYNC_POSTREAD);
   5104 
   5105 	sblk = sc->status_block;
   5106 
   5107    	BNX_PRINTF(sc, "----------------------------- Status Block "
   5108 	    "-----------------------------\n");
   5109 
   5110 	BNX_PRINTF(sc,
   5111 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5112 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5113 	    sblk->status_idx);
   5114 
   5115 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5116 	    sblk->status_rx_quick_consumer_index0,
   5117 	    sblk->status_tx_quick_consumer_index0);
   5118 
   5119 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5120 
   5121 	/* Theses indices are not used for normal L2 drivers. */
   5122 	if (sblk->status_rx_quick_consumer_index1 ||
   5123 		sblk->status_tx_quick_consumer_index1)
   5124 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5125 		    sblk->status_rx_quick_consumer_index1,
   5126 		    sblk->status_tx_quick_consumer_index1);
   5127 
   5128 	if (sblk->status_rx_quick_consumer_index2 ||
   5129 		sblk->status_tx_quick_consumer_index2)
   5130 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5131 		    sblk->status_rx_quick_consumer_index2,
   5132 		    sblk->status_tx_quick_consumer_index2);
   5133 
   5134 	if (sblk->status_rx_quick_consumer_index3 ||
   5135 		sblk->status_tx_quick_consumer_index3)
   5136 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5137 		    sblk->status_rx_quick_consumer_index3,
   5138 		    sblk->status_tx_quick_consumer_index3);
   5139 
   5140 	if (sblk->status_rx_quick_consumer_index4 ||
   5141 		sblk->status_rx_quick_consumer_index5)
   5142 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5143 		    sblk->status_rx_quick_consumer_index4,
   5144 		    sblk->status_rx_quick_consumer_index5);
   5145 
   5146 	if (sblk->status_rx_quick_consumer_index6 ||
   5147 		sblk->status_rx_quick_consumer_index7)
   5148 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5149 		    sblk->status_rx_quick_consumer_index6,
   5150 		    sblk->status_rx_quick_consumer_index7);
   5151 
   5152 	if (sblk->status_rx_quick_consumer_index8 ||
   5153 		sblk->status_rx_quick_consumer_index9)
   5154 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5155 		    sblk->status_rx_quick_consumer_index8,
   5156 		    sblk->status_rx_quick_consumer_index9);
   5157 
   5158 	if (sblk->status_rx_quick_consumer_index10 ||
   5159 		sblk->status_rx_quick_consumer_index11)
   5160 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   5161 		    sblk->status_rx_quick_consumer_index10,
   5162 		    sblk->status_rx_quick_consumer_index11);
   5163 
   5164 	if (sblk->status_rx_quick_consumer_index12 ||
   5165 		sblk->status_rx_quick_consumer_index13)
   5166 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   5167 		    sblk->status_rx_quick_consumer_index12,
   5168 		    sblk->status_rx_quick_consumer_index13);
   5169 
   5170 	if (sblk->status_rx_quick_consumer_index14 ||
   5171 		sblk->status_rx_quick_consumer_index15)
   5172 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   5173 		    sblk->status_rx_quick_consumer_index14,
   5174 		    sblk->status_rx_quick_consumer_index15);
   5175 
   5176 	if (sblk->status_completion_producer_index ||
   5177 		sblk->status_cmd_consumer_index)
   5178 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   5179 		    sblk->status_completion_producer_index,
   5180 		    sblk->status_cmd_consumer_index);
   5181 
   5182 	BNX_PRINTF(sc, "-------------------------------------------"
   5183 	    "-----------------------------\n");
   5184 }
   5185 
   5186 /*
   5187  * This routine prints the statistics block.
   5188  */
   5189 void
   5190 bnx_dump_stats_block(struct bnx_softc *sc)
   5191 {
   5192 	struct statistics_block	*sblk;
   5193 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5194 	    BUS_DMASYNC_POSTREAD);
   5195 
   5196 	sblk = sc->stats_block;
   5197 
   5198 	BNX_PRINTF(sc, ""
   5199 	    "-----------------------------"
   5200 	    " Stats  Block "
   5201 	    "-----------------------------\n");
   5202 
   5203 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   5204 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   5205 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   5206 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   5207 
   5208 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   5209 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   5210 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   5211 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   5212 
   5213 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   5214 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   5215 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   5216 	    sblk->stat_IfHCInMulticastPkts_hi,
   5217 	    sblk->stat_IfHCInMulticastPkts_lo);
   5218 
   5219 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   5220 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   5221 	    sblk->stat_IfHCInBroadcastPkts_hi,
   5222 	    sblk->stat_IfHCInBroadcastPkts_lo,
   5223 	    sblk->stat_IfHCOutUcastPkts_hi,
   5224 	    sblk->stat_IfHCOutUcastPkts_lo);
   5225 
   5226 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   5227 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   5228 	    sblk->stat_IfHCOutMulticastPkts_hi,
   5229 	    sblk->stat_IfHCOutMulticastPkts_lo,
   5230 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   5231 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   5232 
   5233 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   5234 		BNX_PRINTF(sc, "0x%08X : "
   5235 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   5236 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   5237 
   5238 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   5239 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   5240 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   5241 
   5242 	if (sblk->stat_Dot3StatsFCSErrors)
   5243 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   5244 		    sblk->stat_Dot3StatsFCSErrors);
   5245 
   5246 	if (sblk->stat_Dot3StatsAlignmentErrors)
   5247 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   5248 		    sblk->stat_Dot3StatsAlignmentErrors);
   5249 
   5250 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   5251 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   5252 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   5253 
   5254 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   5255 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   5256 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   5257 
   5258 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   5259 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   5260 		    sblk->stat_Dot3StatsDeferredTransmissions);
   5261 
   5262 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   5263 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   5264 		    sblk->stat_Dot3StatsExcessiveCollisions);
   5265 
   5266 	if (sblk->stat_Dot3StatsLateCollisions)
   5267 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   5268 		    sblk->stat_Dot3StatsLateCollisions);
   5269 
   5270 	if (sblk->stat_EtherStatsCollisions)
   5271 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   5272 		    sblk->stat_EtherStatsCollisions);
   5273 
   5274 	if (sblk->stat_EtherStatsFragments)
   5275 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   5276 		    sblk->stat_EtherStatsFragments);
   5277 
   5278 	if (sblk->stat_EtherStatsJabbers)
   5279 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   5280 		    sblk->stat_EtherStatsJabbers);
   5281 
   5282 	if (sblk->stat_EtherStatsUndersizePkts)
   5283 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   5284 		    sblk->stat_EtherStatsUndersizePkts);
   5285 
   5286 	if (sblk->stat_EtherStatsOverrsizePkts)
   5287 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   5288 		    sblk->stat_EtherStatsOverrsizePkts);
   5289 
   5290 	if (sblk->stat_EtherStatsPktsRx64Octets)
   5291 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   5292 		    sblk->stat_EtherStatsPktsRx64Octets);
   5293 
   5294 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   5295 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   5296 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   5297 
   5298 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   5299 		BNX_PRINTF(sc, "0x%08X : "
   5300 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   5301 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   5302 
   5303 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   5304 		BNX_PRINTF(sc, "0x%08X : "
   5305 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   5306 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   5307 
   5308 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   5309 		BNX_PRINTF(sc, "0x%08X : "
   5310 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   5311 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   5312 
   5313 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   5314 		BNX_PRINTF(sc, "0x%08X : "
   5315 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   5316 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   5317 
   5318 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   5319 		BNX_PRINTF(sc, "0x%08X : "
   5320 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   5321 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   5322 
   5323 	if (sblk->stat_EtherStatsPktsTx64Octets)
   5324 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   5325 		    sblk->stat_EtherStatsPktsTx64Octets);
   5326 
   5327 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   5328 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   5329 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   5330 
   5331 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   5332 		BNX_PRINTF(sc, "0x%08X : "
   5333 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   5334 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   5335 
   5336 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   5337 		BNX_PRINTF(sc, "0x%08X : "
   5338 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   5339 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   5340 
   5341 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   5342 		BNX_PRINTF(sc, "0x%08X : "
   5343 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   5344 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   5345 
   5346 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   5347 		BNX_PRINTF(sc, "0x%08X : "
   5348 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   5349 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   5350 
   5351 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   5352 		BNX_PRINTF(sc, "0x%08X : "
   5353 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   5354 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   5355 
   5356 	if (sblk->stat_XonPauseFramesReceived)
   5357 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   5358 		    sblk->stat_XonPauseFramesReceived);
   5359 
   5360 	if (sblk->stat_XoffPauseFramesReceived)
   5361 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   5362 		    sblk->stat_XoffPauseFramesReceived);
   5363 
   5364 	if (sblk->stat_OutXonSent)
   5365 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   5366 		    sblk->stat_OutXonSent);
   5367 
   5368 	if (sblk->stat_OutXoffSent)
   5369 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   5370 		    sblk->stat_OutXoffSent);
   5371 
   5372 	if (sblk->stat_FlowControlDone)
   5373 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   5374 		    sblk->stat_FlowControlDone);
   5375 
   5376 	if (sblk->stat_MacControlFramesReceived)
   5377 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   5378 		    sblk->stat_MacControlFramesReceived);
   5379 
   5380 	if (sblk->stat_XoffStateEntered)
   5381 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   5382 		    sblk->stat_XoffStateEntered);
   5383 
   5384 	if (sblk->stat_IfInFramesL2FilterDiscards)
   5385 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   5386 		    sblk->stat_IfInFramesL2FilterDiscards);
   5387 
   5388 	if (sblk->stat_IfInRuleCheckerDiscards)
   5389 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   5390 		    sblk->stat_IfInRuleCheckerDiscards);
   5391 
   5392 	if (sblk->stat_IfInFTQDiscards)
   5393 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   5394 		    sblk->stat_IfInFTQDiscards);
   5395 
   5396 	if (sblk->stat_IfInMBUFDiscards)
   5397 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   5398 		    sblk->stat_IfInMBUFDiscards);
   5399 
   5400 	if (sblk->stat_IfInRuleCheckerP4Hit)
   5401 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   5402 		    sblk->stat_IfInRuleCheckerP4Hit);
   5403 
   5404 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   5405 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   5406 		    sblk->stat_CatchupInRuleCheckerDiscards);
   5407 
   5408 	if (sblk->stat_CatchupInFTQDiscards)
   5409 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   5410 		    sblk->stat_CatchupInFTQDiscards);
   5411 
   5412 	if (sblk->stat_CatchupInMBUFDiscards)
   5413 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   5414 		    sblk->stat_CatchupInMBUFDiscards);
   5415 
   5416 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   5417 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   5418 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   5419 
   5420 	BNX_PRINTF(sc,
   5421 	    "-----------------------------"
   5422 	    "--------------"
   5423 	    "-----------------------------\n");
   5424 }
   5425 
   5426 void
   5427 bnx_dump_driver_state(struct bnx_softc *sc)
   5428 {
   5429 	BNX_PRINTF(sc,
   5430 	    "-----------------------------"
   5431 	    " Driver State "
   5432 	    "-----------------------------\n");
   5433 
   5434 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   5435 	    "address\n", sc);
   5436 
   5437 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   5438 	    sc->status_block);
   5439 
   5440 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   5441 	    "address\n", sc->stats_block);
   5442 
   5443 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   5444 	    "adddress\n", sc->tx_bd_chain);
   5445 
   5446 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   5447 	    sc->rx_bd_chain);
   5448 
   5449 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   5450 	    sc->tx_mbuf_ptr);
   5451 
   5452 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   5453 	    sc->rx_mbuf_ptr);
   5454 
   5455 	BNX_PRINTF(sc,
   5456 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   5457 	    sc->interrupts_generated);
   5458 
   5459 	BNX_PRINTF(sc,
   5460 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   5461 	    sc->rx_interrupts);
   5462 
   5463 	BNX_PRINTF(sc,
   5464 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   5465 	    sc->tx_interrupts);
   5466 
   5467 	BNX_PRINTF(sc,
   5468 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   5469 	    sc->last_status_idx);
   5470 
   5471 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   5472 	    sc->tx_prod);
   5473 
   5474 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   5475 	    sc->tx_cons);
   5476 
   5477 	BNX_PRINTF(sc,
   5478 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   5479 	    sc->tx_prod_bseq);
   5480 
   5481 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   5482 	    sc->rx_prod);
   5483 
   5484 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   5485 	    sc->rx_cons);
   5486 
   5487 	BNX_PRINTF(sc,
   5488 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   5489 	    sc->rx_prod_bseq);
   5490 
   5491 	BNX_PRINTF(sc,
   5492 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   5493 	    sc->rx_mbuf_alloc);
   5494 
   5495 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   5496 	    sc->free_rx_bd);
   5497 
   5498 	BNX_PRINTF(sc,
   5499 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   5500 	    sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
   5501 
   5502 	BNX_PRINTF(sc,
   5503 	    "         0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
   5504 	    sc->tx_mbuf_alloc);
   5505 
   5506 	BNX_PRINTF(sc,
   5507 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   5508 	    sc->rx_mbuf_alloc);
   5509 
   5510 	BNX_PRINTF(sc, "         0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   5511 	    sc->used_tx_bd);
   5512 
   5513 	BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   5514 	    sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
   5515 
   5516 	BNX_PRINTF(sc,
   5517 	    "         0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
   5518 	    sc->mbuf_alloc_failed);
   5519 
   5520 	BNX_PRINTF(sc, "-------------------------------------------"
   5521 	    "-----------------------------\n");
   5522 }
   5523 
   5524 void
   5525 bnx_dump_hw_state(struct bnx_softc *sc)
   5526 {
   5527 	u_int32_t		val1;
   5528 	int			i;
   5529 
   5530 	BNX_PRINTF(sc,
   5531 	    "----------------------------"
   5532 	    " Hardware State "
   5533 	    "----------------------------\n");
   5534 
   5535 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   5536 
   5537 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   5538 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   5539 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   5540 
   5541 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   5542 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   5543 
   5544 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   5545 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   5546 
   5547 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   5548 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   5549 	    BNX_EMAC_STATUS);
   5550 
   5551 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   5552 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   5553 
   5554 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   5555 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   5556 	    BNX_TBDR_STATUS);
   5557 
   5558 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   5559 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   5560 	    BNX_TDMA_STATUS);
   5561 
   5562 	val1 = REG_RD(sc, BNX_HC_STATUS);
   5563 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   5564 
   5565 	BNX_PRINTF(sc,
   5566 	    "----------------------------"
   5567 	    "----------------"
   5568 	    "----------------------------\n");
   5569 
   5570 	BNX_PRINTF(sc,
   5571 	    "----------------------------"
   5572 	    " Register  Dump "
   5573 	    "----------------------------\n");
   5574 
   5575 	for (i = 0x400; i < 0x8000; i += 0x10)
   5576 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   5577 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   5578 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   5579 
   5580 	BNX_PRINTF(sc,
   5581 	    "----------------------------"
   5582 	    "----------------"
   5583 	    "----------------------------\n");
   5584 }
   5585 
   5586 void
   5587 bnx_breakpoint(struct bnx_softc *sc)
   5588 {
   5589 	/* Unreachable code to shut the compiler up about unused functions. */
   5590 	if (0) {
   5591    		bnx_dump_txbd(sc, 0, NULL);
   5592 		bnx_dump_rxbd(sc, 0, NULL);
   5593 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   5594 		bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
   5595 		bnx_dump_l2fhdr(sc, 0, NULL);
   5596 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   5597 		bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
   5598 		bnx_dump_status_block(sc);
   5599 		bnx_dump_stats_block(sc);
   5600 		bnx_dump_driver_state(sc);
   5601 		bnx_dump_hw_state(sc);
   5602 	}
   5603 
   5604 	bnx_dump_driver_state(sc);
   5605 	/* Print the important status block fields. */
   5606 	bnx_dump_status_block(sc);
   5607 
   5608 #if 0
   5609 	/* Call the debugger. */
   5610 	breakpoint();
   5611 #endif
   5612 
   5613 	return;
   5614 }
   5615 #endif
   5616