Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.20
      1 /*	$NetBSD: if_bnx.c,v 1.20 2008/09/09 20:12:18 mhitch Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.43 2007/01/30 03:21:10 krw Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2006 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.20 2008/09/09 20:12:18 mhitch Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5708C B1, B2
     44  *
     45  * The following controllers are not supported by this driver:
     46  * (These are not "Production" versions of the controller.)
     47  *
     48  *   BCM5706C A0, A1
     49  *   BCM5706S A0, A1, A2, A3
     50  *   BCM5708C A0, B0
     51  *   BCM5708S A0, B0, B1
     52  */
     53 
     54 #include <sys/callout.h>
     55 
     56 #include <dev/pci/if_bnxreg.h>
     57 #include <dev/microcode/bnx/bnxfw.h>
     58 
     59 /****************************************************************************/
     60 /* BNX Driver Version                                                       */
     61 /****************************************************************************/
     62 const char bnx_driver_version[] = "v0.9.6";
     63 
     64 /****************************************************************************/
     65 /* BNX Debug Options                                                        */
     66 /****************************************************************************/
     67 #ifdef BNX_DEBUG
     68 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     69 
     70 	/*          0 = Never              */
     71 	/*          1 = 1 in 2,147,483,648 */
     72 	/*        256 = 1 in     8,388,608 */
     73 	/*       2048 = 1 in     1,048,576 */
     74 	/*      65536 = 1 in        32,768 */
     75 	/*    1048576 = 1 in         2,048 */
     76 	/*  268435456 =	1 in             8 */
     77 	/*  536870912 = 1 in             4 */
     78 	/* 1073741824 = 1 in             2 */
     79 
     80 	/* Controls how often the l2_fhdr frame error check will fail. */
     81 	int bnx_debug_l2fhdr_status_check = 0;
     82 
     83 	/* Controls how often the unexpected attention check will fail. */
     84 	int bnx_debug_unexpected_attention = 0;
     85 
     86 	/* Controls how often to simulate an mbuf allocation failure. */
     87 	int bnx_debug_mbuf_allocation_failure = 0;
     88 
     89 	/* Controls how often to simulate a DMA mapping failure. */
     90 	int bnx_debug_dma_map_addr_failure = 0;
     91 
     92 	/* Controls how often to simulate a bootcode failure. */
     93 	int bnx_debug_bootcode_running_failure = 0;
     94 #endif
     95 
     96 /****************************************************************************/
     97 /* PCI Device ID Table                                                      */
     98 /*                                                                          */
     99 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    100 /****************************************************************************/
    101 static const struct bnx_product {
    102 	pci_vendor_id_t		bp_vendor;
    103 	pci_product_id_t	bp_product;
    104 	pci_vendor_id_t		bp_subvendor;
    105 	pci_product_id_t	bp_subproduct;
    106 	const char		*bp_name;
    107 } bnx_devices[] = {
    108 #ifdef PCI_SUBPRODUCT_HP_NC370T
    109 	{
    110 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    111 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    112 	  "HP NC370T Multifunction Gigabit Server Adapter"
    113 	},
    114 #endif
    115 #ifdef PCI_SUBPRODUCT_HP_NC370i
    116 	{
    117 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    118 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    119 	  "HP NC370i Multifunction Gigabit Server Adapter"
    120 	},
    121 #endif
    122 	{
    123 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    124 	  0, 0,
    125 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    126 	},
    127 #ifdef PCI_SUBPRODUCT_HP_NC370F
    128 	{
    129 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    130 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    131 	  "HP NC370F Multifunction Gigabit Server Adapter"
    132 	},
    133 #endif
    134 	{
    135 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    136 	  0, 0,
    137 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    138 	},
    139 	{
    140 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    141 	  0, 0,
    142 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    143 	},
    144 	{
    145 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    146 	  0, 0,
    147 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    148 	},
    149 };
    150 
    151 /****************************************************************************/
    152 /* Supported Flash NVRAM device data.                                       */
    153 /****************************************************************************/
    154 static struct flash_spec flash_table[] =
    155 {
    156 	/* Slow EEPROM */
    157 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    158 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    159 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    160 	 "EEPROM - slow"},
    161 	/* Expansion entry 0001 */
    162 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    163 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    164 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    165 	 "Entry 0001"},
    166 	/* Saifun SA25F010 (non-buffered flash) */
    167 	/* strap, cfg1, & write1 need updates */
    168 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    169 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    170 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    171 	 "Non-buffered flash (128kB)"},
    172 	/* Saifun SA25F020 (non-buffered flash) */
    173 	/* strap, cfg1, & write1 need updates */
    174 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    175 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    176 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    177 	 "Non-buffered flash (256kB)"},
    178 	/* Expansion entry 0100 */
    179 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    180 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    181 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    182 	 "Entry 0100"},
    183 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    184 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    185 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    186 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    187 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    188 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    189 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    190 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    191 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    192 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    193 	/* Saifun SA25F005 (non-buffered flash) */
    194 	/* strap, cfg1, & write1 need updates */
    195 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    196 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    197 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    198 	 "Non-buffered flash (64kB)"},
    199 	/* Fast EEPROM */
    200 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    201 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    202 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    203 	 "EEPROM - fast"},
    204 	/* Expansion entry 1001 */
    205 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    206 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    207 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    208 	 "Entry 1001"},
    209 	/* Expansion entry 1010 */
    210 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    211 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    213 	 "Entry 1010"},
    214 	/* ATMEL AT45DB011B (buffered flash) */
    215 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    216 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    217 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    218 	 "Buffered flash (128kB)"},
    219 	/* Expansion entry 1100 */
    220 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    221 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    222 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    223 	 "Entry 1100"},
    224 	/* Expansion entry 1101 */
    225 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    226 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    228 	 "Entry 1101"},
    229 	/* Ateml Expansion entry 1110 */
    230 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    231 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    232 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    233 	 "Entry 1110 (Atmel)"},
    234 	/* ATMEL AT45DB021B (buffered flash) */
    235 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    236 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    237 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    238 	 "Buffered flash (256kB)"},
    239 };
    240 
    241 /****************************************************************************/
    242 /* OpenBSD device entry points.                                             */
    243 /****************************************************************************/
    244 static int	bnx_probe(device_t, cfdata_t, void *);
    245 void	bnx_attach(device_t, device_t, void *);
    246 int	bnx_detach(device_t, int);
    247 
    248 /****************************************************************************/
    249 /* BNX Debug Data Structure Dump Routines                                   */
    250 /****************************************************************************/
    251 #ifdef BNX_DEBUG
    252 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    253 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    254 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    255 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    256 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    257 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    258 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    259 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    260 void	bnx_dump_status_block(struct bnx_softc *);
    261 void	bnx_dump_stats_block(struct bnx_softc *);
    262 void	bnx_dump_driver_state(struct bnx_softc *);
    263 void	bnx_dump_hw_state(struct bnx_softc *);
    264 void	bnx_breakpoint(struct bnx_softc *);
    265 #endif
    266 
    267 /****************************************************************************/
    268 /* BNX Register/Memory Access Routines                                      */
    269 /****************************************************************************/
    270 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
    271 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
    272 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
    273 int	bnx_miibus_read_reg(device_t, int, int);
    274 void	bnx_miibus_write_reg(device_t, int, int, int);
    275 void	bnx_miibus_statchg(device_t);
    276 
    277 /****************************************************************************/
    278 /* BNX NVRAM Access Routines                                                */
    279 /****************************************************************************/
    280 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    281 int	bnx_release_nvram_lock(struct bnx_softc *);
    282 void	bnx_enable_nvram_access(struct bnx_softc *);
    283 void	bnx_disable_nvram_access(struct bnx_softc *);
    284 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    285 	    u_int32_t);
    286 int	bnx_init_nvram(struct bnx_softc *);
    287 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    288 int	bnx_nvram_test(struct bnx_softc *);
    289 #ifdef BNX_NVRAM_WRITE_SUPPORT
    290 int	bnx_enable_nvram_write(struct bnx_softc *);
    291 void	bnx_disable_nvram_write(struct bnx_softc *);
    292 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
    293 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    294 	    u_int32_t);
    295 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    296 #endif
    297 
    298 /****************************************************************************/
    299 /*                                                                          */
    300 /****************************************************************************/
    301 int	bnx_dma_alloc(struct bnx_softc *);
    302 void	bnx_dma_free(struct bnx_softc *);
    303 void	bnx_release_resources(struct bnx_softc *);
    304 
    305 /****************************************************************************/
    306 /* BNX Firmware Synchronization and Load                                    */
    307 /****************************************************************************/
    308 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
    309 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
    310 	    u_int32_t);
    311 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    312 	    struct fw_info *);
    313 void	bnx_init_cpus(struct bnx_softc *);
    314 
    315 void	bnx_stop(struct ifnet *, int);
    316 int	bnx_reset(struct bnx_softc *, u_int32_t);
    317 int	bnx_chipinit(struct bnx_softc *);
    318 int	bnx_blockinit(struct bnx_softc *);
    319 int	bnx_get_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
    320 	    u_int16_t *, u_int32_t *);
    321 
    322 int	bnx_init_tx_chain(struct bnx_softc *);
    323 int	bnx_init_rx_chain(struct bnx_softc *);
    324 void	bnx_free_rx_chain(struct bnx_softc *);
    325 void	bnx_free_tx_chain(struct bnx_softc *);
    326 
    327 int	bnx_tx_encap(struct bnx_softc *, struct mbuf **);
    328 void	bnx_start(struct ifnet *);
    329 int	bnx_ioctl(struct ifnet *, u_long, void *);
    330 void	bnx_watchdog(struct ifnet *);
    331 int	bnx_init(struct ifnet *);
    332 
    333 void	bnx_init_context(struct bnx_softc *);
    334 void	bnx_get_mac_addr(struct bnx_softc *);
    335 void	bnx_set_mac_addr(struct bnx_softc *);
    336 void	bnx_phy_intr(struct bnx_softc *);
    337 void	bnx_rx_intr(struct bnx_softc *);
    338 void	bnx_tx_intr(struct bnx_softc *);
    339 void	bnx_disable_intr(struct bnx_softc *);
    340 void	bnx_enable_intr(struct bnx_softc *);
    341 
    342 int	bnx_intr(void *);
    343 void	bnx_set_rx_mode(struct bnx_softc *);
    344 void	bnx_stats_update(struct bnx_softc *);
    345 void	bnx_tick(void *);
    346 
    347 /****************************************************************************/
    348 /* OpenBSD device dispatch table.                                           */
    349 /****************************************************************************/
    350 CFATTACH_DECL_NEW(bnx, sizeof(struct bnx_softc),
    351     bnx_probe, bnx_attach, bnx_detach, NULL);
    352 
    353 /****************************************************************************/
    354 /* Device probe function.                                                   */
    355 /*                                                                          */
    356 /* Compares the device to the driver's list of supported devices and        */
    357 /* reports back to the OS whether this is the right driver for the device.  */
    358 /*                                                                          */
    359 /* Returns:                                                                 */
    360 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    361 /****************************************************************************/
    362 static const struct bnx_product *
    363 bnx_lookup(const struct pci_attach_args *pa)
    364 {
    365 	int i;
    366 	pcireg_t subid;
    367 
    368 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    369 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    370 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    371 			continue;
    372 		if (!bnx_devices[i].bp_subvendor)
    373 			return &bnx_devices[i];
    374 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    375 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    376 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    377 			return &bnx_devices[i];
    378 	}
    379 
    380 	return NULL;
    381 }
    382 static int
    383 bnx_probe(device_t parent, cfdata_t match, void *aux)
    384 {
    385 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    386 
    387 	if (bnx_lookup(pa) != NULL)
    388 		return (1);
    389 
    390 	return (0);
    391 }
    392 
    393 /****************************************************************************/
    394 /* Device attach function.                                                  */
    395 /*                                                                          */
    396 /* Allocates device resources, performs secondary chip identification,      */
    397 /* resets and initializes the hardware, and initializes driver instance     */
    398 /* variables.                                                               */
    399 /*                                                                          */
    400 /* Returns:                                                                 */
    401 /*   0 on success, positive value on failure.                               */
    402 /****************************************************************************/
    403 void
    404 bnx_attach(device_t parent, device_t self, void *aux)
    405 {
    406 	const struct bnx_product *bp;
    407 	struct bnx_softc	*sc = device_private(self);
    408 	struct pci_attach_args	*pa = aux;
    409 	pci_chipset_tag_t	pc = pa->pa_pc;
    410 	pci_intr_handle_t	ih;
    411 	const char 		*intrstr = NULL;
    412 	u_int32_t		command;
    413 	struct ifnet		*ifp;
    414 	u_int32_t		val;
    415 	int			mii_flags = MIIF_FORCEANEG;
    416 	pcireg_t		memtype;
    417 
    418 	bp = bnx_lookup(pa);
    419 	if (bp == NULL)
    420 		panic("unknown device");
    421 
    422 	sc->bnx_dev = self;
    423 
    424 	aprint_naive("\n");
    425 	aprint_normal(": %s\n", bp->bp_name);
    426 
    427 	sc->bnx_pa = *pa;
    428 
    429 	/*
    430 	 * Map control/status registers.
    431 	*/
    432 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    433 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    434 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    435 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    436 
    437 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    438 		aprint_error_dev(sc->bnx_dev,
    439 		    "failed to enable memory mapping!\n");
    440 		return;
    441 	}
    442 
    443 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    444 	switch (memtype) {
    445 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    446 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    447 		if (pci_mapreg_map(pa, BNX_PCI_BAR0,
    448 		    memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
    449 		    NULL, &sc->bnx_size) == 0)
    450 			break;
    451 	default:
    452 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    453 		return;
    454 	}
    455 
    456 	if (pci_intr_map(pa, &ih)) {
    457 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    458 		goto bnx_attach_fail;
    459 	}
    460 
    461 	intrstr = pci_intr_string(pc, ih);
    462 
    463 	/*
    464 	 * Configure byte swap and enable indirect register access.
    465 	 * Rely on CPU to do target byte swapping on big endian systems.
    466 	 * Access to registers outside of PCI configurtion space are not
    467 	 * valid until this is done.
    468 	 */
    469 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    470 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    471 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    472 
    473 	/* Save ASIC revsion info. */
    474 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    475 
    476 	/* Weed out any non-production controller revisions. */
    477 	switch(BNX_CHIP_ID(sc)) {
    478 	case BNX_CHIP_ID_5706_A0:
    479 	case BNX_CHIP_ID_5706_A1:
    480 	case BNX_CHIP_ID_5708_A0:
    481 	case BNX_CHIP_ID_5708_B0:
    482 		aprint_error_dev(sc->bnx_dev,
    483 		    "unsupported controller revision (%c%d)!\n",
    484 		    ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
    485 		    PCI_REVISION(pa->pa_class) & 0x0f);
    486 		goto bnx_attach_fail;
    487 	}
    488 
    489 	/*
    490 	 * Find the base address for shared memory access.
    491 	 * Newer versions of bootcode use a signature and offset
    492 	 * while older versions use a fixed address.
    493 	 */
    494 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    495 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    496 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
    497 	else
    498 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    499 
    500 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    501 
    502 	/* Set initial device and PHY flags */
    503 	sc->bnx_flags = 0;
    504 	sc->bnx_phy_flags = 0;
    505 
    506 	/* Get PCI bus information (speed and type). */
    507 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    508 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    509 		u_int32_t clkreg;
    510 
    511 		sc->bnx_flags |= BNX_PCIX_FLAG;
    512 
    513 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    514 
    515 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    516 		switch (clkreg) {
    517 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    518 			sc->bus_speed_mhz = 133;
    519 			break;
    520 
    521 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    522 			sc->bus_speed_mhz = 100;
    523 			break;
    524 
    525 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    526 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    527 			sc->bus_speed_mhz = 66;
    528 			break;
    529 
    530 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    531 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    532 			sc->bus_speed_mhz = 50;
    533 			break;
    534 
    535 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    536 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    537 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    538 			sc->bus_speed_mhz = 33;
    539 			break;
    540 		}
    541 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    542 			sc->bus_speed_mhz = 66;
    543 		else
    544 			sc->bus_speed_mhz = 33;
    545 
    546 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    547 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    548 
    549 	/* Reset the controller. */
    550 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    551 		goto bnx_attach_fail;
    552 
    553 	/* Initialize the controller. */
    554 	if (bnx_chipinit(sc)) {
    555 		aprint_error_dev(sc->bnx_dev,
    556 		    "Controller initialization failed!\n");
    557 		goto bnx_attach_fail;
    558 	}
    559 
    560 	/* Perform NVRAM test. */
    561 	if (bnx_nvram_test(sc)) {
    562 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    563 		goto bnx_attach_fail;
    564 	}
    565 
    566 	/* Fetch the permanent Ethernet MAC address. */
    567 	bnx_get_mac_addr(sc);
    568 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    569 	    ether_sprintf(sc->eaddr));
    570 
    571 	/*
    572 	 * Trip points control how many BDs
    573 	 * should be ready before generating an
    574 	 * interrupt while ticks control how long
    575 	 * a BD can sit in the chain before
    576 	 * generating an interrupt.  Set the default
    577 	 * values for the RX and TX rings.
    578 	 */
    579 
    580 #ifdef BNX_DEBUG
    581 	/* Force more frequent interrupts. */
    582 	sc->bnx_tx_quick_cons_trip_int = 1;
    583 	sc->bnx_tx_quick_cons_trip     = 1;
    584 	sc->bnx_tx_ticks_int           = 0;
    585 	sc->bnx_tx_ticks               = 0;
    586 
    587 	sc->bnx_rx_quick_cons_trip_int = 1;
    588 	sc->bnx_rx_quick_cons_trip     = 1;
    589 	sc->bnx_rx_ticks_int           = 0;
    590 	sc->bnx_rx_ticks               = 0;
    591 #else
    592 	sc->bnx_tx_quick_cons_trip_int = 20;
    593 	sc->bnx_tx_quick_cons_trip     = 20;
    594 	sc->bnx_tx_ticks_int           = 80;
    595 	sc->bnx_tx_ticks               = 80;
    596 
    597 	sc->bnx_rx_quick_cons_trip_int = 6;
    598 	sc->bnx_rx_quick_cons_trip     = 6;
    599 	sc->bnx_rx_ticks_int           = 18;
    600 	sc->bnx_rx_ticks               = 18;
    601 #endif
    602 
    603 	/* Update statistics once every second. */
    604 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    605 
    606 	/*
    607 	 * The copper based NetXtreme II controllers
    608 	 * that support 2.5Gb operation (currently
    609 	 * 5708S) use a PHY at address 2, otherwise
    610 	 * the PHY is present at address 1.
    611 	 */
    612 	sc->bnx_phy_addr = 1;
    613 
    614 	if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
    615 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
    616 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
    617 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
    618 			sc->bnx_phy_addr = 2;
    619 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
    620 					 BNX_SHARED_HW_CFG_CONFIG);
    621 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
    622 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
    623 		}
    624 	}
    625 
    626 	/* Allocate DMA memory resources. */
    627 	sc->bnx_dmatag = pa->pa_dmat;
    628 	if (bnx_dma_alloc(sc)) {
    629 		aprint_error_dev(sc->bnx_dev,
    630 		    "DMA resource allocation failed!\n");
    631 		goto bnx_attach_fail;
    632 	}
    633 
    634 	/* Initialize the ifnet interface. */
    635 	ifp = &sc->bnx_ec.ec_if;
    636 	ifp->if_softc = sc;
    637 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    638 	ifp->if_ioctl = bnx_ioctl;
    639 	ifp->if_stop = bnx_stop;
    640 	ifp->if_start = bnx_start;
    641 	ifp->if_init = bnx_init;
    642 	ifp->if_timer = 0;
    643 	ifp->if_watchdog = bnx_watchdog;
    644 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    645 	IFQ_SET_READY(&ifp->if_snd);
    646 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    647 
    648 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    649 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    650 
    651 	ifp->if_capabilities |=
    652 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    653 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    654 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    655 
    656 	/* Hookup IRQ last. */
    657 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    658 	if (sc->bnx_intrhand == NULL) {
    659 		aprint_error_dev(self, "couldn't establish interrupt");
    660 		if (intrstr != NULL)
    661 			aprint_error(" at %s", intrstr);
    662 		aprint_error("\n");
    663 		goto bnx_attach_fail;
    664 	}
    665 
    666 	sc->bnx_mii.mii_ifp = ifp;
    667 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    668 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    669 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    670 
    671 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    672 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    673 	    ether_mediastatus);
    674 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    675 		mii_flags |= MIIF_HAVEFIBER;
    676 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    677 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    678 
    679 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    680 		aprint_error_dev(self, "no PHY found!\n");
    681 		ifmedia_add(&sc->bnx_mii.mii_media,
    682 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    683 		ifmedia_set(&sc->bnx_mii.mii_media,
    684 		    IFM_ETHER|IFM_MANUAL);
    685 	} else {
    686 		ifmedia_set(&sc->bnx_mii.mii_media,
    687 		    IFM_ETHER|IFM_AUTO);
    688 	}
    689 
    690 	/* Attach to the Ethernet interface list. */
    691 	if_attach(ifp);
    692 	ether_ifattach(ifp,sc->eaddr);
    693 
    694 	callout_init(&sc->bnx_timeout, 0);
    695 
    696 	if (!pmf_device_register(self, NULL, NULL))
    697 		aprint_error_dev(self, "couldn't establish power handler\n");
    698 	else
    699 		pmf_class_network_register(self, ifp);
    700 
    701 	/* Print some important debugging info. */
    702 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    703 
    704 	goto bnx_attach_exit;
    705 
    706 bnx_attach_fail:
    707 	bnx_release_resources(sc);
    708 
    709 bnx_attach_exit:
    710 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    711 }
    712 
    713 /****************************************************************************/
    714 /* Device detach function.                                                  */
    715 /*                                                                          */
    716 /* Stops the controller, resets the controller, and releases resources.     */
    717 /*                                                                          */
    718 /* Returns:                                                                 */
    719 /*   0 on success, positive value on failure.                               */
    720 /****************************************************************************/
    721 int
    722 bnx_detach(device_t dev, int flags)
    723 {
    724 	int s;
    725 	struct bnx_softc *sc;
    726 	struct ifnet *ifp;
    727 
    728 	sc = device_private(dev);
    729 	ifp = &sc->bnx_ec.ec_if;
    730 
    731 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    732 
    733 	/* Stop and reset the controller. */
    734 	s = splnet();
    735 	if (ifp->if_flags & IFF_RUNNING)
    736 		bnx_stop(ifp, 1);
    737 	splx(s);
    738 
    739 	pmf_device_deregister(dev);
    740 	ether_ifdetach(ifp);
    741 	if_detach(ifp);
    742 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    743 
    744 	/* Release all remaining resources. */
    745 	bnx_release_resources(sc);
    746 
    747 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    748 
    749 	return(0);
    750 }
    751 
    752 /****************************************************************************/
    753 /* Indirect register read.                                                  */
    754 /*                                                                          */
    755 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    756 /* configuration space.  Using this mechanism avoids issues with posted     */
    757 /* reads but is much slower than memory-mapped I/O.                         */
    758 /*                                                                          */
    759 /* Returns:                                                                 */
    760 /*   The value of the register.                                             */
    761 /****************************************************************************/
    762 u_int32_t
    763 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
    764 {
    765 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    766 
    767 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    768 	    offset);
    769 #ifdef BNX_DEBUG
    770 	{
    771 		u_int32_t val;
    772 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    773 		    BNX_PCICFG_REG_WINDOW);
    774 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    775 		    "val = 0x%08X\n", __func__, offset, val);
    776 		return (val);
    777 	}
    778 #else
    779 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    780 #endif
    781 }
    782 
    783 /****************************************************************************/
    784 /* Indirect register write.                                                 */
    785 /*                                                                          */
    786 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    787 /* configuration space.  Using this mechanism avoids issues with posted     */
    788 /* writes but is muchh slower than memory-mapped I/O.                       */
    789 /*                                                                          */
    790 /* Returns:                                                                 */
    791 /*   Nothing.                                                               */
    792 /****************************************************************************/
    793 void
    794 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
    795 {
    796 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    797 
    798 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    799 		__func__, offset, val);
    800 
    801 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    802 	    offset);
    803 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    804 }
    805 
    806 /****************************************************************************/
    807 /* Context memory write.                                                    */
    808 /*                                                                          */
    809 /* The NetXtreme II controller uses context memory to track connection      */
    810 /* information for L2 and higher network protocols.                         */
    811 /*                                                                          */
    812 /* Returns:                                                                 */
    813 /*   Nothing.                                                               */
    814 /****************************************************************************/
    815 void
    816 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
    817     u_int32_t val)
    818 {
    819 
    820 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
    821 		"val = 0x%08X\n", __func__, cid_addr, offset, val);
    822 
    823 	offset += cid_addr;
    824 	REG_WR(sc, BNX_CTX_DATA_ADR, offset);
    825 	REG_WR(sc, BNX_CTX_DATA, val);
    826 }
    827 
    828 /****************************************************************************/
    829 /* PHY register read.                                                       */
    830 /*                                                                          */
    831 /* Implements register reads on the MII bus.                                */
    832 /*                                                                          */
    833 /* Returns:                                                                 */
    834 /*   The value of the register.                                             */
    835 /****************************************************************************/
    836 int
    837 bnx_miibus_read_reg(device_t dev, int phy, int reg)
    838 {
    839 	struct bnx_softc	*sc = device_private(dev);
    840 	u_int32_t		val;
    841 	int			i;
    842 
    843 	/* Make sure we are accessing the correct PHY address. */
    844 	if (phy != sc->bnx_phy_addr) {
    845 		DBPRINT(sc, BNX_VERBOSE,
    846 		    "Invalid PHY address %d for PHY read!\n", phy);
    847 		return(0);
    848 	}
    849 
    850 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    851 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    852 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    853 
    854 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    855 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    856 
    857 		DELAY(40);
    858 	}
    859 
    860 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
    861 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
    862 	    BNX_EMAC_MDIO_COMM_START_BUSY;
    863 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
    864 
    865 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    866 		DELAY(10);
    867 
    868 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    869 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    870 			DELAY(5);
    871 
    872 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    873 			val &= BNX_EMAC_MDIO_COMM_DATA;
    874 
    875 			break;
    876 		}
    877 	}
    878 
    879 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
    880 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
    881 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
    882 		val = 0x0;
    883 	} else
    884 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    885 
    886 	DBPRINT(sc, BNX_EXCESSIVE,
    887 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
    888 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    889 
    890 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    891 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    892 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    893 
    894 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    895 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    896 
    897 		DELAY(40);
    898 	}
    899 
    900 	return (val & 0xffff);
    901 }
    902 
    903 /****************************************************************************/
    904 /* PHY register write.                                                      */
    905 /*                                                                          */
    906 /* Implements register writes on the MII bus.                               */
    907 /*                                                                          */
    908 /* Returns:                                                                 */
    909 /*   The value of the register.                                             */
    910 /****************************************************************************/
    911 void
    912 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
    913 {
    914 	struct bnx_softc	*sc = device_private(dev);
    915 	u_int32_t		val1;
    916 	int			i;
    917 
    918 	/* Make sure we are accessing the correct PHY address. */
    919 	if (phy != sc->bnx_phy_addr) {
    920 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
    921 		    phy);
    922 		return;
    923 	}
    924 
    925 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
    926 	    "val = 0x%04X\n", __func__,
    927 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    928 
    929 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    930 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    931 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    932 
    933 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
    934 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    935 
    936 		DELAY(40);
    937 	}
    938 
    939 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
    940 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
    941 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
    942 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
    943 
    944 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    945 		DELAY(10);
    946 
    947 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    948 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    949 			DELAY(5);
    950 			break;
    951 		}
    952 	}
    953 
    954 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
    955 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
    956 		    __LINE__);
    957 	}
    958 
    959 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    960 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    961 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    962 
    963 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
    964 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    965 
    966 		DELAY(40);
    967 	}
    968 }
    969 
    970 /****************************************************************************/
    971 /* MII bus status change.                                                   */
    972 /*                                                                          */
    973 /* Called by the MII bus driver when the PHY establishes link to set the    */
    974 /* MAC interface registers.                                                 */
    975 /*                                                                          */
    976 /* Returns:                                                                 */
    977 /*   Nothing.                                                               */
    978 /****************************************************************************/
    979 void
    980 bnx_miibus_statchg(device_t dev)
    981 {
    982 	struct bnx_softc	*sc = device_private(dev);
    983 	struct mii_data		*mii = &sc->bnx_mii;
    984 	int			val;
    985 
    986 	val = REG_RD(sc, BNX_EMAC_MODE);
    987 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
    988 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
    989 	    BNX_EMAC_MODE_25G);
    990 
    991 	/* Set MII or GMII interface based on the speed
    992 	 * negotiated by the PHY.
    993 	 */
    994 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
    995 	case IFM_10_T:
    996 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
    997 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
    998 			val |= BNX_EMAC_MODE_PORT_MII_10;
    999 			break;
   1000 		}
   1001 		/* FALLTHROUGH */
   1002 	case IFM_100_TX:
   1003 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1004 		val |= BNX_EMAC_MODE_PORT_MII;
   1005 		break;
   1006 	case IFM_2500_SX:
   1007 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1008 		val |= BNX_EMAC_MODE_25G;
   1009 		/* FALLTHROUGH */
   1010 	case IFM_1000_T:
   1011 	case IFM_1000_SX:
   1012 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1013 		val |= BNX_EMAC_MODE_PORT_GMII;
   1014 		break;
   1015 	default:
   1016 		val |= BNX_EMAC_MODE_PORT_GMII;
   1017 		break;
   1018 	}
   1019 
   1020 	/* Set half or full duplex based on the duplicity
   1021 	 * negotiated by the PHY.
   1022 	 */
   1023 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1024 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1025 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1026 	} else {
   1027 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1028 	}
   1029 
   1030 	REG_WR(sc, BNX_EMAC_MODE, val);
   1031 }
   1032 
   1033 /****************************************************************************/
   1034 /* Acquire NVRAM lock.                                                      */
   1035 /*                                                                          */
   1036 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1037 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1038 /* for use by the driver.                                                   */
   1039 /*                                                                          */
   1040 /* Returns:                                                                 */
   1041 /*   0 on success, positive value on failure.                               */
   1042 /****************************************************************************/
   1043 int
   1044 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1045 {
   1046 	u_int32_t		val;
   1047 	int			j;
   1048 
   1049 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1050 
   1051 	/* Request access to the flash interface. */
   1052 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1053 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1054 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1055 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1056 			break;
   1057 
   1058 		DELAY(5);
   1059 	}
   1060 
   1061 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1062 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1063 		return (EBUSY);
   1064 	}
   1065 
   1066 	return (0);
   1067 }
   1068 
   1069 /****************************************************************************/
   1070 /* Release NVRAM lock.                                                      */
   1071 /*                                                                          */
   1072 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1073 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1074 /* for use by the driver.                                                   */
   1075 /*                                                                          */
   1076 /* Returns:                                                                 */
   1077 /*   0 on success, positive value on failure.                               */
   1078 /****************************************************************************/
   1079 int
   1080 bnx_release_nvram_lock(struct bnx_softc *sc)
   1081 {
   1082 	int			j;
   1083 	u_int32_t		val;
   1084 
   1085 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1086 
   1087 	/* Relinquish nvram interface. */
   1088 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1089 
   1090 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1091 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1092 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1093 			break;
   1094 
   1095 		DELAY(5);
   1096 	}
   1097 
   1098 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1099 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1100 		return (EBUSY);
   1101 	}
   1102 
   1103 	return (0);
   1104 }
   1105 
   1106 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1107 /****************************************************************************/
   1108 /* Enable NVRAM write access.                                               */
   1109 /*                                                                          */
   1110 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1111 /*                                                                          */
   1112 /* Returns:                                                                 */
   1113 /*   0 on success, positive value on failure.                               */
   1114 /****************************************************************************/
   1115 int
   1116 bnx_enable_nvram_write(struct bnx_softc *sc)
   1117 {
   1118 	u_int32_t		val;
   1119 
   1120 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1121 
   1122 	val = REG_RD(sc, BNX_MISC_CFG);
   1123 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1124 
   1125 	if (!sc->bnx_flash_info->buffered) {
   1126 		int j;
   1127 
   1128 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1129 		REG_WR(sc, BNX_NVM_COMMAND,
   1130 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1131 
   1132 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1133 			DELAY(5);
   1134 
   1135 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1136 			if (val & BNX_NVM_COMMAND_DONE)
   1137 				break;
   1138 		}
   1139 
   1140 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1141 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1142 			return (EBUSY);
   1143 		}
   1144 	}
   1145 
   1146 	return (0);
   1147 }
   1148 
   1149 /****************************************************************************/
   1150 /* Disable NVRAM write access.                                              */
   1151 /*                                                                          */
   1152 /* When the caller is finished writing to NVRAM write access must be        */
   1153 /* disabled.                                                                */
   1154 /*                                                                          */
   1155 /* Returns:                                                                 */
   1156 /*   Nothing.                                                               */
   1157 /****************************************************************************/
   1158 void
   1159 bnx_disable_nvram_write(struct bnx_softc *sc)
   1160 {
   1161 	u_int32_t		val;
   1162 
   1163 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1164 
   1165 	val = REG_RD(sc, BNX_MISC_CFG);
   1166 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1167 }
   1168 #endif
   1169 
   1170 /****************************************************************************/
   1171 /* Enable NVRAM access.                                                     */
   1172 /*                                                                          */
   1173 /* Before accessing NVRAM for read or write operations the caller must      */
   1174 /* enabled NVRAM access.                                                    */
   1175 /*                                                                          */
   1176 /* Returns:                                                                 */
   1177 /*   Nothing.                                                               */
   1178 /****************************************************************************/
   1179 void
   1180 bnx_enable_nvram_access(struct bnx_softc *sc)
   1181 {
   1182 	u_int32_t		val;
   1183 
   1184 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1185 
   1186 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1187 	/* Enable both bits, even on read. */
   1188 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1189 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1190 }
   1191 
   1192 /****************************************************************************/
   1193 /* Disable NVRAM access.                                                    */
   1194 /*                                                                          */
   1195 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1196 /*                                                                          */
   1197 /* Returns:                                                                 */
   1198 /*   Nothing.                                                               */
   1199 /****************************************************************************/
   1200 void
   1201 bnx_disable_nvram_access(struct bnx_softc *sc)
   1202 {
   1203 	u_int32_t		val;
   1204 
   1205 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1206 
   1207 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1208 
   1209 	/* Disable both bits, even after read. */
   1210 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1211 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1212 }
   1213 
   1214 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1215 /****************************************************************************/
   1216 /* Erase NVRAM page before writing.                                         */
   1217 /*                                                                          */
   1218 /* Non-buffered flash parts require that a page be erased before it is      */
   1219 /* written.                                                                 */
   1220 /*                                                                          */
   1221 /* Returns:                                                                 */
   1222 /*   0 on success, positive value on failure.                               */
   1223 /****************************************************************************/
   1224 int
   1225 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
   1226 {
   1227 	u_int32_t		cmd;
   1228 	int			j;
   1229 
   1230 	/* Buffered flash doesn't require an erase. */
   1231 	if (sc->bnx_flash_info->buffered)
   1232 		return (0);
   1233 
   1234 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1235 
   1236 	/* Build an erase command. */
   1237 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1238 	    BNX_NVM_COMMAND_DOIT;
   1239 
   1240 	/*
   1241 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
   1242 	 * and issue the erase command.
   1243 	 */
   1244 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1245 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1246 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1247 
   1248 	/* Wait for completion. */
   1249 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1250 		u_int32_t val;
   1251 
   1252 		DELAY(5);
   1253 
   1254 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1255 		if (val & BNX_NVM_COMMAND_DONE)
   1256 			break;
   1257 	}
   1258 
   1259 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1260 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1261 		return (EBUSY);
   1262 	}
   1263 
   1264 	return (0);
   1265 }
   1266 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1267 
   1268 /****************************************************************************/
   1269 /* Read a dword (32 bits) from NVRAM.                                       */
   1270 /*                                                                          */
   1271 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1272 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1273 /*                                                                          */
   1274 /* Returns:                                                                 */
   1275 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1276 /****************************************************************************/
   1277 int
   1278 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
   1279     u_int8_t *ret_val, u_int32_t cmd_flags)
   1280 {
   1281 	u_int32_t		cmd;
   1282 	int			i, rc = 0;
   1283 
   1284 	/* Build the command word. */
   1285 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1286 
   1287 	/* Calculate the offset for buffered flash. */
   1288 	if (sc->bnx_flash_info->buffered)
   1289 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1290 		    sc->bnx_flash_info->page_bits) +
   1291 		    (offset % sc->bnx_flash_info->page_size);
   1292 
   1293 	/*
   1294 	 * Clear the DONE bit separately, set the address to read,
   1295 	 * and issue the read.
   1296 	 */
   1297 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1298 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1299 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1300 
   1301 	/* Wait for completion. */
   1302 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1303 		u_int32_t val;
   1304 
   1305 		DELAY(5);
   1306 
   1307 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1308 		if (val & BNX_NVM_COMMAND_DONE) {
   1309 			val = REG_RD(sc, BNX_NVM_READ);
   1310 
   1311 			val = bnx_be32toh(val);
   1312 			memcpy(ret_val, &val, 4);
   1313 			break;
   1314 		}
   1315 	}
   1316 
   1317 	/* Check for errors. */
   1318 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1319 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1320 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1321 		rc = EBUSY;
   1322 	}
   1323 
   1324 	return(rc);
   1325 }
   1326 
   1327 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1328 /****************************************************************************/
   1329 /* Write a dword (32 bits) to NVRAM.                                        */
   1330 /*                                                                          */
   1331 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1332 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1333 /* enabled NVRAM write access.                                              */
   1334 /*                                                                          */
   1335 /* Returns:                                                                 */
   1336 /*   0 on success, positive value on failure.                               */
   1337 /****************************************************************************/
   1338 int
   1339 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
   1340     u_int32_t cmd_flags)
   1341 {
   1342 	u_int32_t		cmd, val32;
   1343 	int			j;
   1344 
   1345 	/* Build the command word. */
   1346 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1347 
   1348 	/* Calculate the offset for buffered flash. */
   1349 	if (sc->bnx_flash_info->buffered)
   1350 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1351 		    sc->bnx_flash_info->page_bits) +
   1352 		    (offset % sc->bnx_flash_info->page_size);
   1353 
   1354 	/*
   1355 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1356 	 * set the NVRAM address to write, and issue the write command
   1357 	 */
   1358 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1359 	memcpy(&val32, val, 4);
   1360 	val32 = htobe32(val32);
   1361 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1362 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1363 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1364 
   1365 	/* Wait for completion. */
   1366 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1367 		DELAY(5);
   1368 
   1369 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1370 			break;
   1371 	}
   1372 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1373 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1374 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1375 		return (EBUSY);
   1376 	}
   1377 
   1378 	return (0);
   1379 }
   1380 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1381 
   1382 /****************************************************************************/
   1383 /* Initialize NVRAM access.                                                 */
   1384 /*                                                                          */
   1385 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1386 /* access that device.                                                      */
   1387 /*                                                                          */
   1388 /* Returns:                                                                 */
   1389 /*   0 on success, positive value on failure.                               */
   1390 /****************************************************************************/
   1391 int
   1392 bnx_init_nvram(struct bnx_softc *sc)
   1393 {
   1394 	u_int32_t		val;
   1395 	int			j, entry_count, rc;
   1396 	struct flash_spec	*flash;
   1397 
   1398 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1399 
   1400 	/* Determine the selected interface. */
   1401 	val = REG_RD(sc, BNX_NVM_CFG1);
   1402 
   1403 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1404 
   1405 	rc = 0;
   1406 
   1407 	/*
   1408 	 * Flash reconfiguration is required to support additional
   1409 	 * NVRAM devices not directly supported in hardware.
   1410 	 * Check if the flash interface was reconfigured
   1411 	 * by the bootcode.
   1412 	 */
   1413 
   1414 	if (val & 0x40000000) {
   1415 		/* Flash interface reconfigured by bootcode. */
   1416 
   1417 		DBPRINT(sc,BNX_INFO_LOAD,
   1418 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1419 
   1420 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1421 		     j++, flash++) {
   1422 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1423 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1424 				sc->bnx_flash_info = flash;
   1425 				break;
   1426 			}
   1427 		}
   1428 	} else {
   1429 		/* Flash interface not yet reconfigured. */
   1430 		u_int32_t mask;
   1431 
   1432 		DBPRINT(sc,BNX_INFO_LOAD,
   1433 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1434 
   1435 		if (val & (1 << 23))
   1436 			mask = FLASH_BACKUP_STRAP_MASK;
   1437 		else
   1438 			mask = FLASH_STRAP_MASK;
   1439 
   1440 		/* Look for the matching NVRAM device configuration data. */
   1441 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1442 		    j++, flash++) {
   1443 			/* Check if the dev matches any of the known devices. */
   1444 			if ((val & mask) == (flash->strapping & mask)) {
   1445 				/* Found a device match. */
   1446 				sc->bnx_flash_info = flash;
   1447 
   1448 				/* Request access to the flash interface. */
   1449 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1450 					return (rc);
   1451 
   1452 				/* Reconfigure the flash interface. */
   1453 				bnx_enable_nvram_access(sc);
   1454 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1455 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1456 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1457 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1458 				bnx_disable_nvram_access(sc);
   1459 				bnx_release_nvram_lock(sc);
   1460 
   1461 				break;
   1462 			}
   1463 		}
   1464 	}
   1465 
   1466 	/* Check if a matching device was found. */
   1467 	if (j == entry_count) {
   1468 		sc->bnx_flash_info = NULL;
   1469 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1470 			__FILE__, __LINE__);
   1471 		rc = ENODEV;
   1472 	}
   1473 
   1474 	/* Write the flash config data to the shared memory interface. */
   1475 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1476 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1477 	if (val)
   1478 		sc->bnx_flash_size = val;
   1479 	else
   1480 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1481 
   1482 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1483 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1484 
   1485 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1486 
   1487 	return (rc);
   1488 }
   1489 
   1490 /****************************************************************************/
   1491 /* Read an arbitrary range of data from NVRAM.                              */
   1492 /*                                                                          */
   1493 /* Prepares the NVRAM interface for access and reads the requested data     */
   1494 /* into the supplied buffer.                                                */
   1495 /*                                                                          */
   1496 /* Returns:                                                                 */
   1497 /*   0 on success and the data read, positive value on failure.             */
   1498 /****************************************************************************/
   1499 int
   1500 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
   1501     int buf_size)
   1502 {
   1503 	int			rc = 0;
   1504 	u_int32_t		cmd_flags, offset32, len32, extra;
   1505 
   1506 	if (buf_size == 0)
   1507 		return (0);
   1508 
   1509 	/* Request access to the flash interface. */
   1510 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1511 		return (rc);
   1512 
   1513 	/* Enable access to flash interface */
   1514 	bnx_enable_nvram_access(sc);
   1515 
   1516 	len32 = buf_size;
   1517 	offset32 = offset;
   1518 	extra = 0;
   1519 
   1520 	cmd_flags = 0;
   1521 
   1522 	if (offset32 & 3) {
   1523 		u_int8_t buf[4];
   1524 		u_int32_t pre_len;
   1525 
   1526 		offset32 &= ~3;
   1527 		pre_len = 4 - (offset & 3);
   1528 
   1529 		if (pre_len >= len32) {
   1530 			pre_len = len32;
   1531 			cmd_flags =
   1532 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1533 		} else
   1534 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1535 
   1536 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1537 
   1538 		if (rc)
   1539 			return (rc);
   1540 
   1541 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1542 
   1543 		offset32 += 4;
   1544 		ret_buf += pre_len;
   1545 		len32 -= pre_len;
   1546 	}
   1547 
   1548 	if (len32 & 3) {
   1549 		extra = 4 - (len32 & 3);
   1550 		len32 = (len32 + 4) & ~3;
   1551 	}
   1552 
   1553 	if (len32 == 4) {
   1554 		u_int8_t buf[4];
   1555 
   1556 		if (cmd_flags)
   1557 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1558 		else
   1559 			cmd_flags =
   1560 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1561 
   1562 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1563 
   1564 		memcpy(ret_buf, buf, 4 - extra);
   1565 	} else if (len32 > 0) {
   1566 		u_int8_t buf[4];
   1567 
   1568 		/* Read the first word. */
   1569 		if (cmd_flags)
   1570 			cmd_flags = 0;
   1571 		else
   1572 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1573 
   1574 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1575 
   1576 		/* Advance to the next dword. */
   1577 		offset32 += 4;
   1578 		ret_buf += 4;
   1579 		len32 -= 4;
   1580 
   1581 		while (len32 > 4 && rc == 0) {
   1582 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1583 
   1584 			/* Advance to the next dword. */
   1585 			offset32 += 4;
   1586 			ret_buf += 4;
   1587 			len32 -= 4;
   1588 		}
   1589 
   1590 		if (rc)
   1591 			return (rc);
   1592 
   1593 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1594 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1595 
   1596 		memcpy(ret_buf, buf, 4 - extra);
   1597 	}
   1598 
   1599 	/* Disable access to flash interface and release the lock. */
   1600 	bnx_disable_nvram_access(sc);
   1601 	bnx_release_nvram_lock(sc);
   1602 
   1603 	return (rc);
   1604 }
   1605 
   1606 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1607 /****************************************************************************/
   1608 /* Write an arbitrary range of data from NVRAM.                             */
   1609 /*                                                                          */
   1610 /* Prepares the NVRAM interface for write access and writes the requested   */
   1611 /* data from the supplied buffer.  The caller is responsible for            */
   1612 /* calculating any appropriate CRCs.                                        */
   1613 /*                                                                          */
   1614 /* Returns:                                                                 */
   1615 /*   0 on success, positive value on failure.                               */
   1616 /****************************************************************************/
   1617 int
   1618 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
   1619     int buf_size)
   1620 {
   1621 	u_int32_t		written, offset32, len32;
   1622 	u_int8_t		*buf, start[4], end[4];
   1623 	int			rc = 0;
   1624 	int			align_start, align_end;
   1625 
   1626 	buf = data_buf;
   1627 	offset32 = offset;
   1628 	len32 = buf_size;
   1629 	align_start = align_end = 0;
   1630 
   1631 	if ((align_start = (offset32 & 3))) {
   1632 		offset32 &= ~3;
   1633 		len32 += align_start;
   1634 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1635 			return (rc);
   1636 	}
   1637 
   1638 	if (len32 & 3) {
   1639 	       	if ((len32 > 4) || !align_start) {
   1640 			align_end = 4 - (len32 & 3);
   1641 			len32 += align_end;
   1642 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1643 			    end, 4))) {
   1644 				return (rc);
   1645 			}
   1646 		}
   1647 	}
   1648 
   1649 	if (align_start || align_end) {
   1650 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1651 		if (buf == 0)
   1652 			return (ENOMEM);
   1653 
   1654 		if (align_start)
   1655 			memcpy(buf, start, 4);
   1656 
   1657 		if (align_end)
   1658 			memcpy(buf + len32 - 4, end, 4);
   1659 
   1660 		memcpy(buf + align_start, data_buf, buf_size);
   1661 	}
   1662 
   1663 	written = 0;
   1664 	while ((written < len32) && (rc == 0)) {
   1665 		u_int32_t page_start, page_end, data_start, data_end;
   1666 		u_int32_t addr, cmd_flags;
   1667 		int i;
   1668 		u_int8_t flash_buffer[264];
   1669 
   1670 	    /* Find the page_start addr */
   1671 		page_start = offset32 + written;
   1672 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1673 		/* Find the page_end addr */
   1674 		page_end = page_start + sc->bnx_flash_info->page_size;
   1675 		/* Find the data_start addr */
   1676 		data_start = (written == 0) ? offset32 : page_start;
   1677 		/* Find the data_end addr */
   1678 		data_end = (page_end > offset32 + len32) ?
   1679 		    (offset32 + len32) : page_end;
   1680 
   1681 		/* Request access to the flash interface. */
   1682 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1683 			goto nvram_write_end;
   1684 
   1685 		/* Enable access to flash interface */
   1686 		bnx_enable_nvram_access(sc);
   1687 
   1688 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1689 		if (sc->bnx_flash_info->buffered == 0) {
   1690 			int j;
   1691 
   1692 			/* Read the whole page into the buffer
   1693 			 * (non-buffer flash only) */
   1694 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1695 				if (j == (sc->bnx_flash_info->page_size - 4))
   1696 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1697 
   1698 				rc = bnx_nvram_read_dword(sc,
   1699 					page_start + j,
   1700 					&flash_buffer[j],
   1701 					cmd_flags);
   1702 
   1703 				if (rc)
   1704 					goto nvram_write_end;
   1705 
   1706 				cmd_flags = 0;
   1707 			}
   1708 		}
   1709 
   1710 		/* Enable writes to flash interface (unlock write-protect) */
   1711 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1712 			goto nvram_write_end;
   1713 
   1714 		/* Erase the page */
   1715 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1716 			goto nvram_write_end;
   1717 
   1718 		/* Re-enable the write again for the actual write */
   1719 		bnx_enable_nvram_write(sc);
   1720 
   1721 		/* Loop to write back the buffer data from page_start to
   1722 		 * data_start */
   1723 		i = 0;
   1724 		if (sc->bnx_flash_info->buffered == 0) {
   1725 			for (addr = page_start; addr < data_start;
   1726 				addr += 4, i += 4) {
   1727 
   1728 				rc = bnx_nvram_write_dword(sc, addr,
   1729 				    &flash_buffer[i], cmd_flags);
   1730 
   1731 				if (rc != 0)
   1732 					goto nvram_write_end;
   1733 
   1734 				cmd_flags = 0;
   1735 			}
   1736 		}
   1737 
   1738 		/* Loop to write the new data from data_start to data_end */
   1739 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1740 			if ((addr == page_end - 4) ||
   1741 			    ((sc->bnx_flash_info->buffered) &&
   1742 			    (addr == data_end - 4))) {
   1743 
   1744 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1745 			}
   1746 
   1747 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1748 
   1749 			if (rc != 0)
   1750 				goto nvram_write_end;
   1751 
   1752 			cmd_flags = 0;
   1753 			buf += 4;
   1754 		}
   1755 
   1756 		/* Loop to write back the buffer data from data_end
   1757 		 * to page_end */
   1758 		if (sc->bnx_flash_info->buffered == 0) {
   1759 			for (addr = data_end; addr < page_end;
   1760 			    addr += 4, i += 4) {
   1761 
   1762 				if (addr == page_end-4)
   1763 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1764 
   1765 				rc = bnx_nvram_write_dword(sc, addr,
   1766 				    &flash_buffer[i], cmd_flags);
   1767 
   1768 				if (rc != 0)
   1769 					goto nvram_write_end;
   1770 
   1771 				cmd_flags = 0;
   1772 			}
   1773 		}
   1774 
   1775 		/* Disable writes to flash interface (lock write-protect) */
   1776 		bnx_disable_nvram_write(sc);
   1777 
   1778 		/* Disable access to flash interface */
   1779 		bnx_disable_nvram_access(sc);
   1780 		bnx_release_nvram_lock(sc);
   1781 
   1782 		/* Increment written */
   1783 		written += data_end - data_start;
   1784 	}
   1785 
   1786 nvram_write_end:
   1787 	if (align_start || align_end)
   1788 		free(buf, M_DEVBUF);
   1789 
   1790 	return (rc);
   1791 }
   1792 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1793 
   1794 /****************************************************************************/
   1795 /* Verifies that NVRAM is accessible and contains valid data.               */
   1796 /*                                                                          */
   1797 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   1798 /* correct.                                                                 */
   1799 /*                                                                          */
   1800 /* Returns:                                                                 */
   1801 /*   0 on success, positive value on failure.                               */
   1802 /****************************************************************************/
   1803 int
   1804 bnx_nvram_test(struct bnx_softc *sc)
   1805 {
   1806 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
   1807 	u_int8_t		*data = (u_int8_t *) buf;
   1808 	int			rc = 0;
   1809 	u_int32_t		magic, csum;
   1810 
   1811 	/*
   1812 	 * Check that the device NVRAM is valid by reading
   1813 	 * the magic value at offset 0.
   1814 	 */
   1815 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   1816 		goto bnx_nvram_test_done;
   1817 
   1818 	magic = bnx_be32toh(buf[0]);
   1819 	if (magic != BNX_NVRAM_MAGIC) {
   1820 		rc = ENODEV;
   1821 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   1822 		    "Expected: 0x%08X, Found: 0x%08X\n",
   1823 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   1824 		goto bnx_nvram_test_done;
   1825 	}
   1826 
   1827 	/*
   1828 	 * Verify that the device NVRAM includes valid
   1829 	 * configuration data.
   1830 	 */
   1831 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   1832 		goto bnx_nvram_test_done;
   1833 
   1834 	csum = ether_crc32_le(data, 0x100);
   1835 	if (csum != BNX_CRC32_RESIDUAL) {
   1836 		rc = ENODEV;
   1837 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   1838 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   1839 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1840 		goto bnx_nvram_test_done;
   1841 	}
   1842 
   1843 	csum = ether_crc32_le(data + 0x100, 0x100);
   1844 	if (csum != BNX_CRC32_RESIDUAL) {
   1845 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   1846 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   1847 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1848 		rc = ENODEV;
   1849 	}
   1850 
   1851 bnx_nvram_test_done:
   1852 	return (rc);
   1853 }
   1854 
   1855 /****************************************************************************/
   1856 /* Free any DMA memory owned by the driver.                                 */
   1857 /*                                                                          */
   1858 /* Scans through each data structre that requires DMA memory and frees      */
   1859 /* the memory if allocated.                                                 */
   1860 /*                                                                          */
   1861 /* Returns:                                                                 */
   1862 /*   Nothing.                                                               */
   1863 /****************************************************************************/
   1864 void
   1865 bnx_dma_free(struct bnx_softc *sc)
   1866 {
   1867 	int			i;
   1868 
   1869 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1870 
   1871 	/* Destroy the status block. */
   1872 	if (sc->status_block != NULL && sc->status_map != NULL) {
   1873 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   1874 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   1875 		    BNX_STATUS_BLK_SZ);
   1876 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   1877 		    sc->status_rseg);
   1878 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   1879 		sc->status_block = NULL;
   1880 		sc->status_map = NULL;
   1881 	}
   1882 
   1883 	/* Destroy the statistics block. */
   1884 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   1885 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   1886 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   1887 		    BNX_STATS_BLK_SZ);
   1888 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   1889 		    sc->stats_rseg);
   1890 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   1891 		sc->stats_block = NULL;
   1892 		sc->stats_map = NULL;
   1893 	}
   1894 
   1895 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   1896 	for (i = 0; i < TX_PAGES; i++ ) {
   1897 		if (sc->tx_bd_chain[i] != NULL &&
   1898 		    sc->tx_bd_chain_map[i] != NULL) {
   1899 			bus_dmamap_unload(sc->bnx_dmatag,
   1900 			    sc->tx_bd_chain_map[i]);
   1901 			bus_dmamem_unmap(sc->bnx_dmatag,
   1902 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   1903 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   1904 			    sc->tx_bd_chain_rseg[i]);
   1905 			bus_dmamap_destroy(sc->bnx_dmatag,
   1906 			    sc->tx_bd_chain_map[i]);
   1907 			sc->tx_bd_chain[i] = NULL;
   1908 			sc->tx_bd_chain_map[i] = NULL;
   1909 		}
   1910 	}
   1911 
   1912 	/* Unload and destroy the TX mbuf maps. */
   1913 	for (i = 0; i < TOTAL_TX_BD; i++) {
   1914 		if (sc->tx_mbuf_map[i] != NULL) {
   1915 			bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
   1916 			bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
   1917 		}
   1918 	}
   1919 
   1920 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   1921 	for (i = 0; i < RX_PAGES; i++ ) {
   1922 		if (sc->rx_bd_chain[i] != NULL &&
   1923 		    sc->rx_bd_chain_map[i] != NULL) {
   1924 			bus_dmamap_unload(sc->bnx_dmatag,
   1925 			    sc->rx_bd_chain_map[i]);
   1926 			bus_dmamem_unmap(sc->bnx_dmatag,
   1927 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   1928 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   1929 			    sc->rx_bd_chain_rseg[i]);
   1930 
   1931 			bus_dmamap_destroy(sc->bnx_dmatag,
   1932 			    sc->rx_bd_chain_map[i]);
   1933 			sc->rx_bd_chain[i] = NULL;
   1934 			sc->rx_bd_chain_map[i] = NULL;
   1935 		}
   1936 	}
   1937 
   1938 	/* Unload and destroy the RX mbuf maps. */
   1939 	for (i = 0; i < TOTAL_RX_BD; i++) {
   1940 		if (sc->rx_mbuf_map[i] != NULL) {
   1941 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   1942 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   1943 		}
   1944 	}
   1945 
   1946 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1947 }
   1948 
   1949 /****************************************************************************/
   1950 /* Allocate any DMA memory needed by the driver.                            */
   1951 /*                                                                          */
   1952 /* Allocates DMA memory needed for the various global structures needed by  */
   1953 /* hardware.                                                                */
   1954 /*                                                                          */
   1955 /* Returns:                                                                 */
   1956 /*   0 for success, positive value for failure.                             */
   1957 /****************************************************************************/
   1958 int
   1959 bnx_dma_alloc(struct bnx_softc *sc)
   1960 {
   1961 	int			i, rc = 0;
   1962 
   1963 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1964 
   1965 	/*
   1966 	 * Allocate DMA memory for the status block, map the memory into DMA
   1967 	 * space, and fetch the physical address of the block.
   1968 	 */
   1969 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   1970 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   1971 		aprint_error_dev(sc->bnx_dev,
   1972 		    "Could not create status block DMA map!\n");
   1973 		rc = ENOMEM;
   1974 		goto bnx_dma_alloc_exit;
   1975 	}
   1976 
   1977 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   1978 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   1979 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   1980 		aprint_error_dev(sc->bnx_dev,
   1981 		    "Could not allocate status block DMA memory!\n");
   1982 		rc = ENOMEM;
   1983 		goto bnx_dma_alloc_exit;
   1984 	}
   1985 
   1986 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   1987 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   1988 		aprint_error_dev(sc->bnx_dev,
   1989 		    "Could not map status block DMA memory!\n");
   1990 		rc = ENOMEM;
   1991 		goto bnx_dma_alloc_exit;
   1992 	}
   1993 
   1994 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   1995 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   1996 		aprint_error_dev(sc->bnx_dev,
   1997 		    "Could not load status block DMA memory!\n");
   1998 		rc = ENOMEM;
   1999 		goto bnx_dma_alloc_exit;
   2000 	}
   2001 
   2002 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2003 	bzero(sc->status_block, BNX_STATUS_BLK_SZ);
   2004 
   2005 	/* DRC - Fix for 64 bit addresses. */
   2006 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2007 		(u_int32_t) sc->status_block_paddr);
   2008 
   2009 	/*
   2010 	 * Allocate DMA memory for the statistics block, map the memory into
   2011 	 * DMA space, and fetch the physical address of the block.
   2012 	 */
   2013 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2014 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2015 		aprint_error_dev(sc->bnx_dev,
   2016 		    "Could not create stats block DMA map!\n");
   2017 		rc = ENOMEM;
   2018 		goto bnx_dma_alloc_exit;
   2019 	}
   2020 
   2021 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2022 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2023 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2024 		aprint_error_dev(sc->bnx_dev,
   2025 		    "Could not allocate stats block DMA memory!\n");
   2026 		rc = ENOMEM;
   2027 		goto bnx_dma_alloc_exit;
   2028 	}
   2029 
   2030 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2031 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2032 		aprint_error_dev(sc->bnx_dev,
   2033 		    "Could not map stats block DMA memory!\n");
   2034 		rc = ENOMEM;
   2035 		goto bnx_dma_alloc_exit;
   2036 	}
   2037 
   2038 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2039 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2040 		aprint_error_dev(sc->bnx_dev,
   2041 		    "Could not load status block DMA memory!\n");
   2042 		rc = ENOMEM;
   2043 		goto bnx_dma_alloc_exit;
   2044 	}
   2045 
   2046 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2047 	bzero(sc->stats_block, BNX_STATS_BLK_SZ);
   2048 
   2049 	/* DRC - Fix for 64 bit address. */
   2050 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2051 	    (u_int32_t) sc->stats_block_paddr);
   2052 
   2053 	/*
   2054 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2055 	 * and fetch the physical address of the block.
   2056 	 */
   2057 	for (i = 0; i < TX_PAGES; i++) {
   2058 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2059 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2060 		    &sc->tx_bd_chain_map[i])) {
   2061 			aprint_error_dev(sc->bnx_dev,
   2062 			    "Could not create Tx desc %d DMA map!\n", i);
   2063 			rc = ENOMEM;
   2064 			goto bnx_dma_alloc_exit;
   2065 		}
   2066 
   2067 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2068 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2069 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2070 			aprint_error_dev(sc->bnx_dev,
   2071 			    "Could not allocate TX desc %d DMA memory!\n",
   2072 			    i);
   2073 			rc = ENOMEM;
   2074 			goto bnx_dma_alloc_exit;
   2075 		}
   2076 
   2077 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2078 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2079 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2080 			aprint_error_dev(sc->bnx_dev,
   2081 			    "Could not map TX desc %d DMA memory!\n", i);
   2082 			rc = ENOMEM;
   2083 			goto bnx_dma_alloc_exit;
   2084 		}
   2085 
   2086 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2087 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2088 		    BUS_DMA_NOWAIT)) {
   2089 			aprint_error_dev(sc->bnx_dev,
   2090 			    "Could not load TX desc %d DMA memory!\n", i);
   2091 			rc = ENOMEM;
   2092 			goto bnx_dma_alloc_exit;
   2093 		}
   2094 
   2095 		sc->tx_bd_chain_paddr[i] =
   2096 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2097 
   2098 		/* DRC - Fix for 64 bit systems. */
   2099 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2100 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
   2101 	}
   2102 
   2103 	/*
   2104 	 * Create DMA maps for the TX buffer mbufs.
   2105 	 */
   2106 	for (i = 0; i < TOTAL_TX_BD; i++) {
   2107 		if (bus_dmamap_create(sc->bnx_dmatag,
   2108 		    MCLBYTES * BNX_MAX_SEGMENTS,
   2109 		    USABLE_TX_BD - BNX_TX_SLACK_SPACE,
   2110 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
   2111 		    &sc->tx_mbuf_map[i])) {
   2112 			aprint_error_dev(sc->bnx_dev,
   2113 			    "Could not create Tx mbuf %d DMA map!\n", i);
   2114 			rc = ENOMEM;
   2115 			goto bnx_dma_alloc_exit;
   2116 		}
   2117 	}
   2118 
   2119 	/*
   2120 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2121 	 * and fetch the physical address of the block.
   2122 	 */
   2123 	for (i = 0; i < RX_PAGES; i++) {
   2124 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2125 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2126 		    &sc->rx_bd_chain_map[i])) {
   2127 			aprint_error_dev(sc->bnx_dev,
   2128 			    "Could not create Rx desc %d DMA map!\n", i);
   2129 			rc = ENOMEM;
   2130 			goto bnx_dma_alloc_exit;
   2131 		}
   2132 
   2133 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2134 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2135 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2136 			aprint_error_dev(sc->bnx_dev,
   2137 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2138 			rc = ENOMEM;
   2139 			goto bnx_dma_alloc_exit;
   2140 		}
   2141 
   2142 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2143 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2144 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2145 			aprint_error_dev(sc->bnx_dev,
   2146 			    "Could not map Rx desc %d DMA memory!\n", i);
   2147 			rc = ENOMEM;
   2148 			goto bnx_dma_alloc_exit;
   2149 		}
   2150 
   2151 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2152 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2153 		    BUS_DMA_NOWAIT)) {
   2154 			aprint_error_dev(sc->bnx_dev,
   2155 			    "Could not load Rx desc %d DMA memory!\n", i);
   2156 			rc = ENOMEM;
   2157 			goto bnx_dma_alloc_exit;
   2158 		}
   2159 
   2160 		bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2161 		sc->rx_bd_chain_paddr[i] =
   2162 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2163 
   2164 		/* DRC - Fix for 64 bit systems. */
   2165 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2166 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
   2167 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2168 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2169 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2170 	}
   2171 
   2172 	/*
   2173 	 * Create DMA maps for the Rx buffer mbufs.
   2174 	 */
   2175 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2176 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
   2177 		    BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
   2178 		    &sc->rx_mbuf_map[i])) {
   2179 			aprint_error_dev(sc->bnx_dev,
   2180 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2181 			rc = ENOMEM;
   2182 			goto bnx_dma_alloc_exit;
   2183 		}
   2184 	}
   2185 
   2186  bnx_dma_alloc_exit:
   2187 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2188 
   2189 	return(rc);
   2190 }
   2191 
   2192 /****************************************************************************/
   2193 /* Release all resources used by the driver.                                */
   2194 /*                                                                          */
   2195 /* Releases all resources acquired by the driver including interrupts,      */
   2196 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2197 /*                                                                          */
   2198 /* Returns:                                                                 */
   2199 /*   Nothing.                                                               */
   2200 /****************************************************************************/
   2201 void
   2202 bnx_release_resources(struct bnx_softc *sc)
   2203 {
   2204 	int i;
   2205 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2206 
   2207 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2208 
   2209 	bnx_dma_free(sc);
   2210 
   2211 	if (sc->bnx_intrhand != NULL)
   2212 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2213 
   2214 	if (sc->bnx_size)
   2215 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2216 
   2217 	for (i = 0; i < TOTAL_RX_BD; i++)
   2218 		if (sc->rx_mbuf_map[i])
   2219 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2220 
   2221 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2222 }
   2223 
   2224 /****************************************************************************/
   2225 /* Firmware synchronization.                                                */
   2226 /*                                                                          */
   2227 /* Before performing certain events such as a chip reset, synchronize with  */
   2228 /* the firmware first.                                                      */
   2229 /*                                                                          */
   2230 /* Returns:                                                                 */
   2231 /*   0 for success, positive value for failure.                             */
   2232 /****************************************************************************/
   2233 int
   2234 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
   2235 {
   2236 	int			i, rc = 0;
   2237 	u_int32_t		val;
   2238 
   2239 	/* Don't waste any time if we've timed out before. */
   2240 	if (sc->bnx_fw_timed_out) {
   2241 		rc = EBUSY;
   2242 		goto bnx_fw_sync_exit;
   2243 	}
   2244 
   2245 	/* Increment the message sequence number. */
   2246 	sc->bnx_fw_wr_seq++;
   2247 	msg_data |= sc->bnx_fw_wr_seq;
   2248 
   2249  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2250 	    msg_data);
   2251 
   2252 	/* Send the message to the bootcode driver mailbox. */
   2253 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2254 
   2255 	/* Wait for the bootcode to acknowledge the message. */
   2256 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2257 		/* Check for a response in the bootcode firmware mailbox. */
   2258 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2259 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2260 			break;
   2261 		DELAY(1000);
   2262 	}
   2263 
   2264 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2265 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2266 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2267 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2268 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2269 
   2270 		msg_data &= ~BNX_DRV_MSG_CODE;
   2271 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2272 
   2273 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2274 
   2275 		sc->bnx_fw_timed_out = 1;
   2276 		rc = EBUSY;
   2277 	}
   2278 
   2279 bnx_fw_sync_exit:
   2280 	return (rc);
   2281 }
   2282 
   2283 /****************************************************************************/
   2284 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2285 /*                                                                          */
   2286 /* Returns:                                                                 */
   2287 /*   Nothing.                                                               */
   2288 /****************************************************************************/
   2289 void
   2290 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
   2291     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
   2292 {
   2293 	int			i;
   2294 	u_int32_t		val;
   2295 
   2296 	for (i = 0; i < rv2p_code_len; i += 8) {
   2297 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2298 		rv2p_code++;
   2299 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2300 		rv2p_code++;
   2301 
   2302 		if (rv2p_proc == RV2P_PROC1) {
   2303 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2304 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2305 		}
   2306 		else {
   2307 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2308 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2309 		}
   2310 	}
   2311 
   2312 	/* Reset the processor, un-stall is done later. */
   2313 	if (rv2p_proc == RV2P_PROC1)
   2314 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2315 	else
   2316 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2317 }
   2318 
   2319 /****************************************************************************/
   2320 /* Load RISC processor firmware.                                            */
   2321 /*                                                                          */
   2322 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2323 /* associated with a particular processor.                                  */
   2324 /*                                                                          */
   2325 /* Returns:                                                                 */
   2326 /*   Nothing.                                                               */
   2327 /****************************************************************************/
   2328 void
   2329 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2330     struct fw_info *fw)
   2331 {
   2332 	u_int32_t		offset;
   2333 	u_int32_t		val;
   2334 
   2335 	/* Halt the CPU. */
   2336 	val = REG_RD_IND(sc, cpu_reg->mode);
   2337 	val |= cpu_reg->mode_value_halt;
   2338 	REG_WR_IND(sc, cpu_reg->mode, val);
   2339 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2340 
   2341 	/* Load the Text area. */
   2342 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2343 	if (fw->text) {
   2344 		int j;
   2345 
   2346 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2347 			REG_WR_IND(sc, offset, fw->text[j]);
   2348 	}
   2349 
   2350 	/* Load the Data area. */
   2351 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2352 	if (fw->data) {
   2353 		int j;
   2354 
   2355 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2356 			REG_WR_IND(sc, offset, fw->data[j]);
   2357 	}
   2358 
   2359 	/* Load the SBSS area. */
   2360 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2361 	if (fw->sbss) {
   2362 		int j;
   2363 
   2364 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2365 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2366 	}
   2367 
   2368 	/* Load the BSS area. */
   2369 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2370 	if (fw->bss) {
   2371 		int j;
   2372 
   2373 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2374 			REG_WR_IND(sc, offset, fw->bss[j]);
   2375 	}
   2376 
   2377 	/* Load the Read-Only area. */
   2378 	offset = cpu_reg->spad_base +
   2379 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2380 	if (fw->rodata) {
   2381 		int j;
   2382 
   2383 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2384 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2385 	}
   2386 
   2387 	/* Clear the pre-fetch instruction. */
   2388 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2389 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2390 
   2391 	/* Start the CPU. */
   2392 	val = REG_RD_IND(sc, cpu_reg->mode);
   2393 	val &= ~cpu_reg->mode_value_halt;
   2394 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2395 	REG_WR_IND(sc, cpu_reg->mode, val);
   2396 }
   2397 
   2398 /****************************************************************************/
   2399 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2400 /*                                                                          */
   2401 /* Loads the firmware for each CPU and starts the CPU.                      */
   2402 /*                                                                          */
   2403 /* Returns:                                                                 */
   2404 /*   Nothing.                                                               */
   2405 /****************************************************************************/
   2406 void
   2407 bnx_init_cpus(struct bnx_softc *sc)
   2408 {
   2409 	struct cpu_reg cpu_reg;
   2410 	struct fw_info fw;
   2411 
   2412 	/* Initialize the RV2P processor. */
   2413 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   2414 	    RV2P_PROC1);
   2415 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   2416 	    RV2P_PROC2);
   2417 
   2418 	/* Initialize the RX Processor. */
   2419 	cpu_reg.mode = BNX_RXP_CPU_MODE;
   2420 	cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2421 	cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2422 	cpu_reg.state = BNX_RXP_CPU_STATE;
   2423 	cpu_reg.state_value_clear = 0xffffff;
   2424 	cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2425 	cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2426 	cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2427 	cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2428 	cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2429 	cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2430 	cpu_reg.mips_view_base = 0x8000000;
   2431 
   2432 	fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   2433 	fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   2434 	fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   2435 	fw.start_addr = bnx_RXP_b06FwStartAddr;
   2436 
   2437 	fw.text_addr = bnx_RXP_b06FwTextAddr;
   2438 	fw.text_len = bnx_RXP_b06FwTextLen;
   2439 	fw.text_index = 0;
   2440 	fw.text = bnx_RXP_b06FwText;
   2441 
   2442 	fw.data_addr = bnx_RXP_b06FwDataAddr;
   2443 	fw.data_len = bnx_RXP_b06FwDataLen;
   2444 	fw.data_index = 0;
   2445 	fw.data = bnx_RXP_b06FwData;
   2446 
   2447 	fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   2448 	fw.sbss_len = bnx_RXP_b06FwSbssLen;
   2449 	fw.sbss_index = 0;
   2450 	fw.sbss = bnx_RXP_b06FwSbss;
   2451 
   2452 	fw.bss_addr = bnx_RXP_b06FwBssAddr;
   2453 	fw.bss_len = bnx_RXP_b06FwBssLen;
   2454 	fw.bss_index = 0;
   2455 	fw.bss = bnx_RXP_b06FwBss;
   2456 
   2457 	fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   2458 	fw.rodata_len = bnx_RXP_b06FwRodataLen;
   2459 	fw.rodata_index = 0;
   2460 	fw.rodata = bnx_RXP_b06FwRodata;
   2461 
   2462 	DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2463 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2464 
   2465 	/* Initialize the TX Processor. */
   2466 	cpu_reg.mode = BNX_TXP_CPU_MODE;
   2467 	cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2468 	cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2469 	cpu_reg.state = BNX_TXP_CPU_STATE;
   2470 	cpu_reg.state_value_clear = 0xffffff;
   2471 	cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2472 	cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2473 	cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2474 	cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2475 	cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2476 	cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2477 	cpu_reg.mips_view_base = 0x8000000;
   2478 
   2479 	fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   2480 	fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   2481 	fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   2482 	fw.start_addr = bnx_TXP_b06FwStartAddr;
   2483 
   2484 	fw.text_addr = bnx_TXP_b06FwTextAddr;
   2485 	fw.text_len = bnx_TXP_b06FwTextLen;
   2486 	fw.text_index = 0;
   2487 	fw.text = bnx_TXP_b06FwText;
   2488 
   2489 	fw.data_addr = bnx_TXP_b06FwDataAddr;
   2490 	fw.data_len = bnx_TXP_b06FwDataLen;
   2491 	fw.data_index = 0;
   2492 	fw.data = bnx_TXP_b06FwData;
   2493 
   2494 	fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   2495 	fw.sbss_len = bnx_TXP_b06FwSbssLen;
   2496 	fw.sbss_index = 0;
   2497 	fw.sbss = bnx_TXP_b06FwSbss;
   2498 
   2499 	fw.bss_addr = bnx_TXP_b06FwBssAddr;
   2500 	fw.bss_len = bnx_TXP_b06FwBssLen;
   2501 	fw.bss_index = 0;
   2502 	fw.bss = bnx_TXP_b06FwBss;
   2503 
   2504 	fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   2505 	fw.rodata_len = bnx_TXP_b06FwRodataLen;
   2506 	fw.rodata_index = 0;
   2507 	fw.rodata = bnx_TXP_b06FwRodata;
   2508 
   2509 	DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2510 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2511 
   2512 	/* Initialize the TX Patch-up Processor. */
   2513 	cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2514 	cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2515 	cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2516 	cpu_reg.state = BNX_TPAT_CPU_STATE;
   2517 	cpu_reg.state_value_clear = 0xffffff;
   2518 	cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2519 	cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2520 	cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2521 	cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2522 	cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2523 	cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2524 	cpu_reg.mips_view_base = 0x8000000;
   2525 
   2526 	fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   2527 	fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   2528 	fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   2529 	fw.start_addr = bnx_TPAT_b06FwStartAddr;
   2530 
   2531 	fw.text_addr = bnx_TPAT_b06FwTextAddr;
   2532 	fw.text_len = bnx_TPAT_b06FwTextLen;
   2533 	fw.text_index = 0;
   2534 	fw.text = bnx_TPAT_b06FwText;
   2535 
   2536 	fw.data_addr = bnx_TPAT_b06FwDataAddr;
   2537 	fw.data_len = bnx_TPAT_b06FwDataLen;
   2538 	fw.data_index = 0;
   2539 	fw.data = bnx_TPAT_b06FwData;
   2540 
   2541 	fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   2542 	fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   2543 	fw.sbss_index = 0;
   2544 	fw.sbss = bnx_TPAT_b06FwSbss;
   2545 
   2546 	fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   2547 	fw.bss_len = bnx_TPAT_b06FwBssLen;
   2548 	fw.bss_index = 0;
   2549 	fw.bss = bnx_TPAT_b06FwBss;
   2550 
   2551 	fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   2552 	fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   2553 	fw.rodata_index = 0;
   2554 	fw.rodata = bnx_TPAT_b06FwRodata;
   2555 
   2556 	DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2557 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2558 
   2559 	/* Initialize the Completion Processor. */
   2560 	cpu_reg.mode = BNX_COM_CPU_MODE;
   2561 	cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2562 	cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2563 	cpu_reg.state = BNX_COM_CPU_STATE;
   2564 	cpu_reg.state_value_clear = 0xffffff;
   2565 	cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2566 	cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2567 	cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2568 	cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2569 	cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2570 	cpu_reg.spad_base = BNX_COM_SCRATCH;
   2571 	cpu_reg.mips_view_base = 0x8000000;
   2572 
   2573 	fw.ver_major = bnx_COM_b06FwReleaseMajor;
   2574 	fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   2575 	fw.ver_fix = bnx_COM_b06FwReleaseFix;
   2576 	fw.start_addr = bnx_COM_b06FwStartAddr;
   2577 
   2578 	fw.text_addr = bnx_COM_b06FwTextAddr;
   2579 	fw.text_len = bnx_COM_b06FwTextLen;
   2580 	fw.text_index = 0;
   2581 	fw.text = bnx_COM_b06FwText;
   2582 
   2583 	fw.data_addr = bnx_COM_b06FwDataAddr;
   2584 	fw.data_len = bnx_COM_b06FwDataLen;
   2585 	fw.data_index = 0;
   2586 	fw.data = bnx_COM_b06FwData;
   2587 
   2588 	fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   2589 	fw.sbss_len = bnx_COM_b06FwSbssLen;
   2590 	fw.sbss_index = 0;
   2591 	fw.sbss = bnx_COM_b06FwSbss;
   2592 
   2593 	fw.bss_addr = bnx_COM_b06FwBssAddr;
   2594 	fw.bss_len = bnx_COM_b06FwBssLen;
   2595 	fw.bss_index = 0;
   2596 	fw.bss = bnx_COM_b06FwBss;
   2597 
   2598 	fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   2599 	fw.rodata_len = bnx_COM_b06FwRodataLen;
   2600 	fw.rodata_index = 0;
   2601 	fw.rodata = bnx_COM_b06FwRodata;
   2602 
   2603 	DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   2604 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2605 }
   2606 
   2607 /****************************************************************************/
   2608 /* Initialize context memory.                                               */
   2609 /*                                                                          */
   2610 /* Clears the memory associated with each Context ID (CID).                 */
   2611 /*                                                                          */
   2612 /* Returns:                                                                 */
   2613 /*   Nothing.                                                               */
   2614 /****************************************************************************/
   2615 void
   2616 bnx_init_context(struct bnx_softc *sc)
   2617 {
   2618 	u_int32_t		vcid;
   2619 
   2620 	vcid = 96;
   2621 	while (vcid) {
   2622 		u_int32_t vcid_addr, pcid_addr, offset;
   2623 
   2624 		vcid--;
   2625 
   2626    		vcid_addr = GET_CID_ADDR(vcid);
   2627 		pcid_addr = vcid_addr;
   2628 
   2629 		REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
   2630 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
   2631 
   2632 		/* Zero out the context. */
   2633 		for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
   2634 			CTX_WR(sc, 0x00, offset, 0);
   2635 
   2636 		REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   2637 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
   2638 	}
   2639 }
   2640 
   2641 /****************************************************************************/
   2642 /* Fetch the permanent MAC address of the controller.                       */
   2643 /*                                                                          */
   2644 /* Returns:                                                                 */
   2645 /*   Nothing.                                                               */
   2646 /****************************************************************************/
   2647 void
   2648 bnx_get_mac_addr(struct bnx_softc *sc)
   2649 {
   2650 	u_int32_t		mac_lo = 0, mac_hi = 0;
   2651 
   2652 	/*
   2653 	 * The NetXtreme II bootcode populates various NIC
   2654 	 * power-on and runtime configuration items in a
   2655 	 * shared memory area.  The factory configured MAC
   2656 	 * address is available from both NVRAM and the
   2657 	 * shared memory area so we'll read the value from
   2658 	 * shared memory for speed.
   2659 	 */
   2660 
   2661 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   2662 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   2663 
   2664 	if ((mac_lo == 0) && (mac_hi == 0)) {
   2665 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   2666 		    __FILE__, __LINE__);
   2667 	} else {
   2668 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   2669 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   2670 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   2671 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   2672 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   2673 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   2674 	}
   2675 
   2676 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   2677 	    "%s\n", ether_sprintf(sc->eaddr));
   2678 }
   2679 
   2680 /****************************************************************************/
   2681 /* Program the MAC address.                                                 */
   2682 /*                                                                          */
   2683 /* Returns:                                                                 */
   2684 /*   Nothing.                                                               */
   2685 /****************************************************************************/
   2686 void
   2687 bnx_set_mac_addr(struct bnx_softc *sc)
   2688 {
   2689 	u_int32_t		val;
   2690 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   2691 
   2692 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   2693 	    "%s\n", ether_sprintf(sc->eaddr));
   2694 
   2695 	val = (mac_addr[0] << 8) | mac_addr[1];
   2696 
   2697 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   2698 
   2699 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   2700 		(mac_addr[4] << 8) | mac_addr[5];
   2701 
   2702 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   2703 }
   2704 
   2705 /****************************************************************************/
   2706 /* Stop the controller.                                                     */
   2707 /*                                                                          */
   2708 /* Returns:                                                                 */
   2709 /*   Nothing.                                                               */
   2710 /****************************************************************************/
   2711 void
   2712 bnx_stop(struct ifnet *ifp, int disable)
   2713 {
   2714 	struct bnx_softc *sc = ifp->if_softc;
   2715 
   2716 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2717 
   2718 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   2719 		return;
   2720 
   2721 	callout_stop(&sc->bnx_timeout);
   2722 
   2723 	mii_down(&sc->bnx_mii);
   2724 
   2725 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2726 
   2727 	/* Disable the transmit/receive blocks. */
   2728 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   2729 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   2730 	DELAY(20);
   2731 
   2732 	bnx_disable_intr(sc);
   2733 
   2734 	/* Tell firmware that the driver is going away. */
   2735 	if (disable)
   2736 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   2737 	else
   2738 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   2739 
   2740 	/* Free the RX lists. */
   2741 	bnx_free_rx_chain(sc);
   2742 
   2743 	/* Free TX buffers. */
   2744 	bnx_free_tx_chain(sc);
   2745 
   2746 	ifp->if_timer = 0;
   2747 
   2748 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2749 
   2750 }
   2751 
   2752 int
   2753 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
   2754 {
   2755 	u_int32_t		val;
   2756 	int			i, rc = 0;
   2757 
   2758 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2759 
   2760 	/* Wait for pending PCI transactions to complete. */
   2761 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   2762 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   2763 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   2764 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   2765 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   2766 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   2767 	DELAY(5);
   2768 
   2769 	/* Assume bootcode is running. */
   2770 	sc->bnx_fw_timed_out = 0;
   2771 
   2772 	/* Give the firmware a chance to prepare for the reset. */
   2773 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   2774 	if (rc)
   2775 		goto bnx_reset_exit;
   2776 
   2777 	/* Set a firmware reminder that this is a soft reset. */
   2778 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   2779 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   2780 
   2781 	/* Dummy read to force the chip to complete all current transactions. */
   2782 	val = REG_RD(sc, BNX_MISC_ID);
   2783 
   2784 	/* Chip reset. */
   2785 	val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2786 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   2787 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   2788 	REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   2789 
   2790 	/* Allow up to 30us for reset to complete. */
   2791 	for (i = 0; i < 10; i++) {
   2792 		val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   2793 		if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2794 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
   2795 			break;
   2796 
   2797 		DELAY(10);
   2798 	}
   2799 
   2800 	/* Check that reset completed successfully. */
   2801 	if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2802 	    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   2803 		BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
   2804 		rc = EBUSY;
   2805 		goto bnx_reset_exit;
   2806 	}
   2807 
   2808 	/* Make sure byte swapping is properly configured. */
   2809 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   2810 	if (val != 0x01020304) {
   2811 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   2812 		    __FILE__, __LINE__);
   2813 		rc = ENODEV;
   2814 		goto bnx_reset_exit;
   2815 	}
   2816 
   2817 	/* Just completed a reset, assume that firmware is running again. */
   2818 	sc->bnx_fw_timed_out = 0;
   2819 
   2820 	/* Wait for the firmware to finish its initialization. */
   2821 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   2822 	if (rc)
   2823 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   2824 		    "initialization!\n", __FILE__, __LINE__);
   2825 
   2826 bnx_reset_exit:
   2827 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2828 
   2829 	return (rc);
   2830 }
   2831 
   2832 int
   2833 bnx_chipinit(struct bnx_softc *sc)
   2834 {
   2835 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2836 	u_int32_t		val;
   2837 	int			rc = 0;
   2838 
   2839 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2840 
   2841 	/* Make sure the interrupt is not active. */
   2842 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   2843 
   2844 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   2845 	/* channels and PCI clock compensation delay.                      */
   2846 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   2847 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   2848 #if BYTE_ORDER == BIG_ENDIAN
   2849 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   2850 #endif
   2851 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   2852 	    DMA_READ_CHANS << 12 |
   2853 	    DMA_WRITE_CHANS << 16;
   2854 
   2855 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   2856 
   2857 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   2858 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   2859 
   2860 	/*
   2861 	 * This setting resolves a problem observed on certain Intel PCI
   2862 	 * chipsets that cannot handle multiple outstanding DMA operations.
   2863 	 * See errata E9_5706A1_65.
   2864 	 */
   2865 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   2866 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   2867 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   2868 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   2869 
   2870 	REG_WR(sc, BNX_DMA_CONFIG, val);
   2871 
   2872 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   2873 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   2874 		u_int16_t nval;
   2875 
   2876 		nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   2877 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   2878 		    nval & ~0x20000);
   2879 	}
   2880 
   2881 	/* Enable the RX_V2P and Context state machines before access. */
   2882 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   2883 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   2884 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   2885 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   2886 
   2887 	/* Initialize context mapping and zero out the quick contexts. */
   2888 	bnx_init_context(sc);
   2889 
   2890 	/* Initialize the on-boards CPUs */
   2891 	bnx_init_cpus(sc);
   2892 
   2893 	/* Prepare NVRAM for access. */
   2894 	if (bnx_init_nvram(sc)) {
   2895 		rc = ENODEV;
   2896 		goto bnx_chipinit_exit;
   2897 	}
   2898 
   2899 	/* Set the kernel bypass block size */
   2900 	val = REG_RD(sc, BNX_MQ_CONFIG);
   2901 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   2902 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   2903 	REG_WR(sc, BNX_MQ_CONFIG, val);
   2904 
   2905 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
   2906 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   2907 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   2908 
   2909 	val = (BCM_PAGE_BITS - 8) << 24;
   2910 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   2911 
   2912 	/* Configure page size. */
   2913 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   2914 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   2915 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   2916 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   2917 
   2918 bnx_chipinit_exit:
   2919 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2920 
   2921 	return(rc);
   2922 }
   2923 
   2924 /****************************************************************************/
   2925 /* Initialize the controller in preparation to send/receive traffic.        */
   2926 /*                                                                          */
   2927 /* Returns:                                                                 */
   2928 /*   0 for success, positive value for failure.                             */
   2929 /****************************************************************************/
   2930 int
   2931 bnx_blockinit(struct bnx_softc *sc)
   2932 {
   2933 	u_int32_t		reg, val;
   2934 	int 			rc = 0;
   2935 
   2936 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2937 
   2938 	/* Load the hardware default MAC address. */
   2939 	bnx_set_mac_addr(sc);
   2940 
   2941 	/* Set the Ethernet backoff seed value */
   2942 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   2943 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   2944 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   2945 
   2946 	sc->last_status_idx = 0;
   2947 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   2948 
   2949 	/* Set up link change interrupt generation. */
   2950 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   2951 
   2952 	/* Program the physical address of the status block. */
   2953 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
   2954 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   2955 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
   2956 
   2957 	/* Program the physical address of the statistics block. */
   2958 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   2959 	    (u_int32_t)(sc->stats_block_paddr));
   2960 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   2961 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
   2962 
   2963 	/* Program various host coalescing parameters. */
   2964 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   2965 	    << 16) | sc->bnx_tx_quick_cons_trip);
   2966 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   2967 	    << 16) | sc->bnx_rx_quick_cons_trip);
   2968 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   2969 	    sc->bnx_comp_prod_trip);
   2970 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   2971 	    sc->bnx_tx_ticks);
   2972 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   2973 	    sc->bnx_rx_ticks);
   2974 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   2975 	    sc->bnx_com_ticks);
   2976 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   2977 	    sc->bnx_cmd_ticks);
   2978 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   2979 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   2980 	REG_WR(sc, BNX_HC_CONFIG,
   2981 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   2982 	    BNX_HC_CONFIG_COLLECT_STATS));
   2983 
   2984 	/* Clear the internal statistics counters. */
   2985 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   2986 
   2987 	/* Verify that bootcode is running. */
   2988 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   2989 
   2990 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   2991 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   2992 	    __FILE__, __LINE__); reg = 0);
   2993 
   2994 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   2995 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   2996 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   2997 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   2998 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   2999 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3000 		rc = ENODEV;
   3001 		goto bnx_blockinit_exit;
   3002 	}
   3003 
   3004 	/* Check if any management firmware is running. */
   3005 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3006 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3007 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3008 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3009 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3010 	}
   3011 
   3012 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3013 	    BNX_DEV_INFO_BC_REV);
   3014 
   3015 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3016 
   3017 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3018 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3019 
   3020 	/* Enable link state change interrupt generation. */
   3021 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3022 
   3023 	/* Enable all remaining blocks in the MAC. */
   3024 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3025 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3026 	DELAY(20);
   3027 
   3028 bnx_blockinit_exit:
   3029 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3030 
   3031 	return (rc);
   3032 }
   3033 
   3034 /****************************************************************************/
   3035 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3036 /*                                                                          */
   3037 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3038 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3039 /* necessary.                                                               */
   3040 /*                                                                          */
   3041 /* Returns:                                                                 */
   3042 /*   0 for success, positive value for failure.                             */
   3043 /****************************************************************************/
   3044 int
   3045 bnx_get_buf(struct bnx_softc *sc, struct mbuf *m, u_int16_t *prod,
   3046     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3047 {
   3048 	bus_dmamap_t		map;
   3049 	struct mbuf 		*m_new = NULL;
   3050 	struct rx_bd		*rxbd;
   3051 	int			i, rc = 0;
   3052 	u_int32_t		addr;
   3053 #ifdef BNX_DEBUG
   3054 	u_int16_t debug_chain_prod =	*chain_prod;
   3055 #endif
   3056 	u_int16_t first_chain_prod;
   3057 	u_int16_t min_free_bd;
   3058 
   3059 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3060 	    __func__);
   3061 
   3062 	/* Make sure the inputs are valid. */
   3063 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3064 	    aprint_error_dev(sc->bnx_dev,
   3065 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3066 		*chain_prod, (u_int16_t)MAX_RX_BD));
   3067 
   3068 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3069 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3070 	    *prod_bseq);
   3071 
   3072 	/* try to get in as many mbufs as possible */
   3073 	if (sc->mbuf_alloc_size == MCLBYTES)
   3074 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3075 	else
   3076 		min_free_bd = (BNX_MAX_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3077 	while (sc->free_rx_bd >= min_free_bd) {
   3078 		if (m == NULL) {
   3079 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3080 			    BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
   3081 
   3082 				sc->mbuf_alloc_failed++;
   3083 				rc = ENOBUFS;
   3084 				goto bnx_get_buf_exit);
   3085 
   3086 			/* This is a new mbuf allocation. */
   3087 			MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3088 			if (m_new == NULL) {
   3089 				DBPRINT(sc, BNX_WARN,
   3090 				    "%s(%d): RX mbuf header allocation failed!\n",
   3091 				    __FILE__, __LINE__);
   3092 
   3093 				DBRUNIF(1, sc->mbuf_alloc_failed++);
   3094 
   3095 				rc = ENOBUFS;
   3096 				goto bnx_get_buf_exit;
   3097 			}
   3098 
   3099 			DBRUNIF(1, sc->rx_mbuf_alloc++);
   3100 			if (sc->mbuf_alloc_size == MCLBYTES)
   3101 				MCLGET(m_new, M_DONTWAIT);
   3102 			else
   3103 				MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3104 				    M_DONTWAIT);
   3105 			if (!(m_new->m_flags & M_EXT)) {
   3106 				DBPRINT(sc, BNX_WARN,
   3107 				    "%s(%d): RX mbuf chain allocation failed!\n",
   3108 				    __FILE__, __LINE__);
   3109 
   3110 				m_freem(m_new);
   3111 
   3112 				DBRUNIF(1, sc->rx_mbuf_alloc--);
   3113 				DBRUNIF(1, sc->mbuf_alloc_failed++);
   3114 
   3115 				rc = ENOBUFS;
   3116 				goto bnx_get_buf_exit;
   3117 			}
   3118 
   3119 		} else {
   3120 			m_new = m;
   3121 			m = NULL;
   3122 			m_new->m_data = m_new->m_ext.ext_buf;
   3123 		}
   3124 		m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3125 
   3126 		/* Map the mbuf cluster into device memory. */
   3127 		map = sc->rx_mbuf_map[*chain_prod];
   3128 		first_chain_prod = *chain_prod;
   3129 		if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3130 			BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3131 			    __FILE__, __LINE__);
   3132 
   3133 			m_freem(m_new);
   3134 
   3135 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3136 
   3137 			rc = ENOBUFS;
   3138 			goto bnx_get_buf_exit;
   3139 		}
   3140 		bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3141 		    BUS_DMASYNC_PREREAD);
   3142 
   3143 		/* Watch for overflow. */
   3144 		DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
   3145 		    aprint_error_dev(sc->bnx_dev,
   3146 		        "Too many free rx_bd (0x%04X > 0x%04X)!\n",
   3147 			sc->free_rx_bd, (u_int16_t)USABLE_RX_BD));
   3148 
   3149 		DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3150 		    sc->rx_low_watermark = sc->free_rx_bd);
   3151 
   3152 		/*
   3153 		 * Setup the rx_bd for the first segment
   3154 		 */
   3155 		rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3156 
   3157 		addr = (u_int32_t)(map->dm_segs[0].ds_addr);
   3158 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3159 		addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
   3160 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3161 		rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
   3162 		rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
   3163 		*prod_bseq += map->dm_segs[0].ds_len;
   3164 		bus_dmamap_sync(sc->bnx_dmatag,
   3165 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3166 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3167 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3168 
   3169 		for (i = 1; i < map->dm_nsegs; i++) {
   3170 			*prod = NEXT_RX_BD(*prod);
   3171 			*chain_prod = RX_CHAIN_IDX(*prod);
   3172 
   3173 			rxbd =
   3174 			    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3175 
   3176 			addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   3177 			rxbd->rx_bd_haddr_lo = htole32(addr);
   3178 			addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   3179 			rxbd->rx_bd_haddr_hi = htole32(addr);
   3180 			rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
   3181 			rxbd->rx_bd_flags = 0;
   3182 			*prod_bseq += map->dm_segs[i].ds_len;
   3183 			bus_dmamap_sync(sc->bnx_dmatag,
   3184 			    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3185 			    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3186 			    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3187 		}
   3188 
   3189 		rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
   3190 		bus_dmamap_sync(sc->bnx_dmatag,
   3191 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3192 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3193 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3194 
   3195 		/*
   3196 		 * Save the mbuf, ajust the map pointer (swap map for first and
   3197 		 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
   3198 		 * and update counter.
   3199 		 */
   3200 		sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3201 		sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3202 		sc->rx_mbuf_map[*chain_prod] = map;
   3203 		sc->free_rx_bd -= map->dm_nsegs;
   3204 
   3205 		DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3206 		    map->dm_nsegs));
   3207 		*prod = NEXT_RX_BD(*prod);
   3208 		*chain_prod = RX_CHAIN_IDX(*prod);
   3209 	}
   3210 
   3211 bnx_get_buf_exit:
   3212 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3213 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3214 	    *chain_prod, *prod_bseq);
   3215 
   3216 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3217 	    __func__);
   3218 
   3219 	return(rc);
   3220 }
   3221 
   3222 /****************************************************************************/
   3223 /* Allocate memory and initialize the TX data structures.                   */
   3224 /*                                                                          */
   3225 /* Returns:                                                                 */
   3226 /*   0 for success, positive value for failure.                             */
   3227 /****************************************************************************/
   3228 int
   3229 bnx_init_tx_chain(struct bnx_softc *sc)
   3230 {
   3231 	struct tx_bd		*txbd;
   3232 	u_int32_t		val, addr;
   3233 	int			i, rc = 0;
   3234 
   3235 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3236 
   3237 	/* Set the initial TX producer/consumer indices. */
   3238 	sc->tx_prod = 0;
   3239 	sc->tx_cons = 0;
   3240 	sc->tx_prod_bseq = 0;
   3241 	sc->used_tx_bd = 0;
   3242 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   3243 
   3244 	/*
   3245 	 * The NetXtreme II supports a linked-list structure called
   3246 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   3247 	 * consists of a series of 1 or more chain pages, each of which
   3248 	 * consists of a fixed number of BD entries.
   3249 	 * The last BD entry on each page is a pointer to the next page
   3250 	 * in the chain, and the last pointer in the BD chain
   3251 	 * points back to the beginning of the chain.
   3252 	 */
   3253 
   3254 	/* Set the TX next pointer chain entries. */
   3255 	for (i = 0; i < TX_PAGES; i++) {
   3256 		int j;
   3257 
   3258 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   3259 
   3260 		/* Check if we've reached the last page. */
   3261 		if (i == (TX_PAGES - 1))
   3262 			j = 0;
   3263 		else
   3264 			j = i + 1;
   3265 
   3266 		addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
   3267 		txbd->tx_bd_haddr_lo = htole32(addr);
   3268 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
   3269 		txbd->tx_bd_haddr_hi = htole32(addr);
   3270 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3271 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3272 	}
   3273 
   3274 	/*
   3275 	 * Initialize the context ID for an L2 TX chain.
   3276 	 */
   3277 	val = BNX_L2CTX_TYPE_TYPE_L2;
   3278 	val |= BNX_L2CTX_TYPE_SIZE_L2;
   3279 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   3280 
   3281 	val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3282 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   3283 
   3284 	/* Point the hardware to the first page in the chain. */
   3285 	val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3286 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   3287 	val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3288 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   3289 
   3290 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
   3291 
   3292 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3293 
   3294 	return(rc);
   3295 }
   3296 
   3297 /****************************************************************************/
   3298 /* Free memory and clear the TX data structures.                            */
   3299 /*                                                                          */
   3300 /* Returns:                                                                 */
   3301 /*   Nothing.                                                               */
   3302 /****************************************************************************/
   3303 void
   3304 bnx_free_tx_chain(struct bnx_softc *sc)
   3305 {
   3306 	int			i;
   3307 
   3308 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3309 
   3310 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   3311 	for (i = 0; i < TOTAL_TX_BD; i++) {
   3312 		if (sc->tx_mbuf_ptr[i] != NULL) {
   3313 			if (sc->tx_mbuf_map != NULL)
   3314 				bus_dmamap_sync(sc->bnx_dmatag,
   3315 				    sc->tx_mbuf_map[i], 0,
   3316 				    sc->tx_mbuf_map[i]->dm_mapsize,
   3317 				    BUS_DMASYNC_POSTWRITE);
   3318 			m_freem(sc->tx_mbuf_ptr[i]);
   3319 			sc->tx_mbuf_ptr[i] = NULL;
   3320 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   3321 		}
   3322 	}
   3323 
   3324 	/* Clear each TX chain page. */
   3325 	for (i = 0; i < TX_PAGES; i++) {
   3326 		bzero((char *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   3327 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3328 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3329 	}
   3330 
   3331 	/* Check if we lost any mbufs in the process. */
   3332 	DBRUNIF((sc->tx_mbuf_alloc),
   3333 	    aprint_error_dev(sc->bnx_dev,
   3334 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   3335 		sc->tx_mbuf_alloc));
   3336 
   3337 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3338 }
   3339 
   3340 /****************************************************************************/
   3341 /* Allocate memory and initialize the RX data structures.                   */
   3342 /*                                                                          */
   3343 /* Returns:                                                                 */
   3344 /*   0 for success, positive value for failure.                             */
   3345 /****************************************************************************/
   3346 int
   3347 bnx_init_rx_chain(struct bnx_softc *sc)
   3348 {
   3349 	struct rx_bd		*rxbd;
   3350 	int			i, rc = 0;
   3351 	u_int16_t		prod, chain_prod;
   3352 	u_int32_t		prod_bseq, val, addr;
   3353 
   3354 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3355 
   3356 	/* Initialize the RX producer and consumer indices. */
   3357 	sc->rx_prod = 0;
   3358 	sc->rx_cons = 0;
   3359 	sc->rx_prod_bseq = 0;
   3360 	sc->free_rx_bd = BNX_RX_SLACK_SPACE;
   3361 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   3362 
   3363 	/* Initialize the RX next pointer chain entries. */
   3364 	for (i = 0; i < RX_PAGES; i++) {
   3365 		int j;
   3366 
   3367 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   3368 
   3369 		/* Check if we've reached the last page. */
   3370 		if (i == (RX_PAGES - 1))
   3371 			j = 0;
   3372 		else
   3373 			j = i + 1;
   3374 
   3375 		/* Setup the chain page pointers. */
   3376 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
   3377 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3378 		addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
   3379 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3380 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   3381 		    0, BNX_RX_CHAIN_PAGE_SZ,
   3382 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3383 	}
   3384 
   3385 	/* Initialize the context ID for an L2 RX chain. */
   3386 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
   3387 	val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
   3388 	val |= 0x02 << 8;
   3389 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   3390 
   3391 	/* Point the hardware to the first page in the chain. */
   3392 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
   3393 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   3394 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
   3395 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   3396 
   3397 	/* Allocate mbuf clusters for the rx_bd chain. */
   3398 	prod = prod_bseq = 0;
   3399 	chain_prod = RX_CHAIN_IDX(prod);
   3400 	if (bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq)) {
   3401 		BNX_PRINTF(sc,
   3402 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   3403 	}
   3404 
   3405 	/* Save the RX chain producer index. */
   3406 	sc->rx_prod = prod;
   3407 	sc->rx_prod_bseq = prod_bseq;
   3408 
   3409 	for (i = 0; i < RX_PAGES; i++)
   3410 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   3411 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3412 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3413 
   3414 	/* Tell the chip about the waiting rx_bd's. */
   3415 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   3416 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   3417 
   3418 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   3419 
   3420 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3421 
   3422 	return(rc);
   3423 }
   3424 
   3425 /****************************************************************************/
   3426 /* Free memory and clear the RX data structures.                            */
   3427 /*                                                                          */
   3428 /* Returns:                                                                 */
   3429 /*   Nothing.                                                               */
   3430 /****************************************************************************/
   3431 void
   3432 bnx_free_rx_chain(struct bnx_softc *sc)
   3433 {
   3434 	int			i;
   3435 
   3436 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3437 
   3438 	/* Free any mbufs still in the RX mbuf chain. */
   3439 	for (i = 0; i < TOTAL_RX_BD; i++) {
   3440 		if (sc->rx_mbuf_ptr[i] != NULL) {
   3441 			if (sc->rx_mbuf_map[i] != NULL)
   3442 				bus_dmamap_sync(sc->bnx_dmatag,
   3443 				    sc->rx_mbuf_map[i],	0,
   3444 				    sc->rx_mbuf_map[i]->dm_mapsize,
   3445 				    BUS_DMASYNC_POSTREAD);
   3446 			m_freem(sc->rx_mbuf_ptr[i]);
   3447 			sc->rx_mbuf_ptr[i] = NULL;
   3448 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3449 		}
   3450 	}
   3451 
   3452 	/* Clear each RX chain page. */
   3453 	for (i = 0; i < RX_PAGES; i++)
   3454 		bzero((char *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   3455 
   3456 	/* Check if we lost any mbufs in the process. */
   3457 	DBRUNIF((sc->rx_mbuf_alloc),
   3458 	    aprint_error_dev(sc->bnx_dev,
   3459 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   3460 		sc->rx_mbuf_alloc));
   3461 
   3462 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3463 }
   3464 
   3465 /****************************************************************************/
   3466 /* Handles PHY generated interrupt events.                                  */
   3467 /*                                                                          */
   3468 /* Returns:                                                                 */
   3469 /*   Nothing.                                                               */
   3470 /****************************************************************************/
   3471 void
   3472 bnx_phy_intr(struct bnx_softc *sc)
   3473 {
   3474 	u_int32_t		new_link_state, old_link_state;
   3475 
   3476 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3477 	    BUS_DMASYNC_POSTREAD);
   3478 	new_link_state = sc->status_block->status_attn_bits &
   3479 	    STATUS_ATTN_BITS_LINK_STATE;
   3480 	old_link_state = sc->status_block->status_attn_bits_ack &
   3481 	    STATUS_ATTN_BITS_LINK_STATE;
   3482 
   3483 	/* Handle any changes if the link state has changed. */
   3484 	if (new_link_state != old_link_state) {
   3485 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   3486 
   3487 		callout_stop(&sc->bnx_timeout);
   3488 		bnx_tick(sc);
   3489 
   3490 		/* Update the status_attn_bits_ack field in the status block. */
   3491 		if (new_link_state) {
   3492 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   3493 			    STATUS_ATTN_BITS_LINK_STATE);
   3494 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   3495 		} else {
   3496 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   3497 			    STATUS_ATTN_BITS_LINK_STATE);
   3498 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   3499 		}
   3500 	}
   3501 
   3502 	/* Acknowledge the link change interrupt. */
   3503 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   3504 }
   3505 
   3506 /****************************************************************************/
   3507 /* Handles received frame interrupt events.                                 */
   3508 /*                                                                          */
   3509 /* Returns:                                                                 */
   3510 /*   Nothing.                                                               */
   3511 /****************************************************************************/
   3512 void
   3513 bnx_rx_intr(struct bnx_softc *sc)
   3514 {
   3515 	struct status_block	*sblk = sc->status_block;
   3516 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   3517 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
   3518 	u_int16_t		sw_prod, sw_chain_prod;
   3519 	u_int32_t		sw_prod_bseq;
   3520 	struct l2_fhdr		*l2fhdr;
   3521 	int			i;
   3522 
   3523 	DBRUNIF(1, sc->rx_interrupts++);
   3524 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3525 	    BUS_DMASYNC_POSTREAD);
   3526 
   3527 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   3528 	for (i = 0; i < RX_PAGES; i++)
   3529 		bus_dmamap_sync(sc->bnx_dmatag,
   3530 		    sc->rx_bd_chain_map[i], 0,
   3531 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3532 		    BUS_DMASYNC_POSTWRITE);
   3533 
   3534 	/* Get the hardware's view of the RX consumer index. */
   3535 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   3536 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   3537 		hw_cons++;
   3538 
   3539 	/* Get working copies of the driver's view of the RX indices. */
   3540 	sw_cons = sc->rx_cons;
   3541 	sw_prod = sc->rx_prod;
   3542 	sw_prod_bseq = sc->rx_prod_bseq;
   3543 
   3544 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   3545 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   3546 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   3547 
   3548 	/* Prevent speculative reads from getting ahead of the status block. */
   3549 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3550 	    BUS_SPACE_BARRIER_READ);
   3551 
   3552 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3553 	    sc->rx_low_watermark = sc->free_rx_bd);
   3554 
   3555 	/*
   3556 	 * Scan through the receive chain as long
   3557 	 * as there is work to do.
   3558 	 */
   3559 	while (sw_cons != hw_cons) {
   3560 		struct mbuf *m;
   3561 		struct rx_bd *rxbd;
   3562 		unsigned int len;
   3563 		u_int32_t status;
   3564 
   3565 		/* Convert the producer/consumer indices to an actual
   3566 		 * rx_bd index.
   3567 		 */
   3568 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   3569 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   3570 
   3571 		/* Get the used rx_bd. */
   3572 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   3573 		sc->free_rx_bd++;
   3574 
   3575 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   3576 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   3577 
   3578 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   3579 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   3580 #ifdef DIAGNOSTIC
   3581 			/* Validate that this is the last rx_bd. */
   3582 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   3583 			    printf("%s: Unexpected mbuf found in "
   3584 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   3585 			        sw_chain_cons);
   3586 			}
   3587 #endif
   3588 
   3589 			/* DRC - ToDo: If the received packet is small, say less
   3590 			 *             than 128 bytes, allocate a new mbuf here,
   3591 			 *             copy the data to that mbuf, and recycle
   3592 			 *             the mapped jumbo frame.
   3593 			 */
   3594 
   3595 			/* Unmap the mbuf from DMA space. */
   3596 #ifdef DIAGNOSTIC
   3597 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   3598 				printf("invalid map sw_cons 0x%x "
   3599 				"sw_prod 0x%x "
   3600 				"sw_chain_cons 0x%x "
   3601 				"sw_chain_prod 0x%x "
   3602 				"hw_cons 0x%x "
   3603 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   3604 				"TOTAL_RX_BD 0x%x\n",
   3605 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   3606 				hw_cons,
   3607 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   3608 			}
   3609 #endif
   3610 			bus_dmamap_sync(sc->bnx_dmatag,
   3611 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   3612 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   3613 			    BUS_DMASYNC_POSTREAD);
   3614 			bus_dmamap_unload(sc->bnx_dmatag,
   3615 			    sc->rx_mbuf_map[sw_chain_cons]);
   3616 
   3617 			/* Remove the mbuf from the driver's chain. */
   3618 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   3619 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   3620 
   3621 			/*
   3622 			 * Frames received on the NetXteme II are prepended
   3623 			 * with the l2_fhdr structure which provides status
   3624 			 * information about the received frame (including
   3625 			 * VLAN tags and checksum info) and are also
   3626 			 * automatically adjusted to align the IP header
   3627 			 * (i.e. two null bytes are inserted before the
   3628 			 * Ethernet header).
   3629 			 */
   3630 			l2fhdr = mtod(m, struct l2_fhdr *);
   3631 
   3632 			len    = l2fhdr->l2_fhdr_pkt_len;
   3633 			status = l2fhdr->l2_fhdr_status;
   3634 
   3635 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   3636 			    aprint_error("Simulating l2_fhdr status error.\n");
   3637 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   3638 
   3639 			/* Watch for unusual sized frames. */
   3640 			DBRUNIF(((len < BNX_MIN_MTU) ||
   3641 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   3642 			    aprint_error_dev(sc->bnx_dev,
   3643 			        "Unusual frame size found. "
   3644 				"Min(%d), Actual(%d), Max(%d)\n",
   3645 				(int)BNX_MIN_MTU, len,
   3646 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   3647 
   3648 			bnx_dump_mbuf(sc, m);
   3649 			bnx_breakpoint(sc));
   3650 
   3651 			len -= ETHER_CRC_LEN;
   3652 
   3653 			/* Check the received frame for errors. */
   3654 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   3655 			    L2_FHDR_ERRORS_PHY_DECODE |
   3656 			    L2_FHDR_ERRORS_ALIGNMENT |
   3657 			    L2_FHDR_ERRORS_TOO_SHORT |
   3658 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   3659 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   3660 			    len >
   3661 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   3662 				ifp->if_ierrors++;
   3663 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   3664 
   3665 				/* Reuse the mbuf for a new frame. */
   3666 				if (bnx_get_buf(sc, m, &sw_prod,
   3667 				    &sw_chain_prod, &sw_prod_bseq)) {
   3668 					DBRUNIF(1, bnx_breakpoint(sc));
   3669 					panic("%s: Can't reuse RX mbuf!\n",
   3670 					    device_xname(sc->bnx_dev));
   3671 				}
   3672 				continue;
   3673 			}
   3674 
   3675 			/*
   3676 			 * Get a new mbuf for the rx_bd.   If no new
   3677 			 * mbufs are available then reuse the current mbuf,
   3678 			 * log an ierror on the interface, and generate
   3679 			 * an error in the system log.
   3680 			 */
   3681 			if (bnx_get_buf(sc, NULL, &sw_prod, &sw_chain_prod,
   3682 			    &sw_prod_bseq)) {
   3683 				DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
   3684 					"new mbuf, incoming frame dropped!\n"));
   3685 
   3686 				ifp->if_ierrors++;
   3687 
   3688 				/* Try and reuse the exisitng mbuf. */
   3689 				if (bnx_get_buf(sc, m, &sw_prod,
   3690 				    &sw_chain_prod, &sw_prod_bseq)) {
   3691 					DBRUNIF(1, bnx_breakpoint(sc));
   3692 					panic("%s: Double mbuf allocation "
   3693 					    "failure!",
   3694 					    device_xname(sc->bnx_dev));
   3695 				}
   3696 				continue;
   3697 			}
   3698 
   3699 			/* Skip over the l2_fhdr when passing the data up
   3700 			 * the stack.
   3701 			 */
   3702 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   3703 
   3704 			/* Adjust the pckt length to match the received data. */
   3705 			m->m_pkthdr.len = m->m_len = len;
   3706 
   3707 			/* Send the packet to the appropriate interface. */
   3708 			m->m_pkthdr.rcvif = ifp;
   3709 
   3710 			DBRUN(BNX_VERBOSE_RECV,
   3711 			    struct ether_header *eh;
   3712 			    eh = mtod(m, struct ether_header *);
   3713 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   3714 			    __func__, ether_sprintf(eh->ether_dhost),
   3715 			    ether_sprintf(eh->ether_shost),
   3716 			    htons(eh->ether_type)));
   3717 
   3718 			/* Validate the checksum. */
   3719 
   3720 			/* Check for an IP datagram. */
   3721 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   3722 				/* Check if the IP checksum is valid. */
   3723 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   3724 				    == 0)
   3725 					m->m_pkthdr.csum_flags |=
   3726 					    M_CSUM_IPv4;
   3727 #ifdef BNX_DEBUG
   3728 				else
   3729 					DBPRINT(sc, BNX_WARN_SEND,
   3730 					    "%s(): Invalid IP checksum "
   3731 					        "= 0x%04X!\n",
   3732 						__func__,
   3733 						l2fhdr->l2_fhdr_ip_xsum
   3734 						);
   3735 #endif
   3736 			}
   3737 
   3738 			/* Check for a valid TCP/UDP frame. */
   3739 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   3740 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   3741 				/* Check for a good TCP/UDP checksum. */
   3742 				if ((status &
   3743 				    (L2_FHDR_ERRORS_TCP_XSUM |
   3744 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   3745 					m->m_pkthdr.csum_flags |=
   3746 					    M_CSUM_TCPv4 |
   3747 					    M_CSUM_UDPv4;
   3748 				} else {
   3749 					DBPRINT(sc, BNX_WARN_SEND,
   3750 					    "%s(): Invalid TCP/UDP "
   3751 					    "checksum = 0x%04X!\n",
   3752 					    __func__,
   3753 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   3754 				}
   3755 			}
   3756 
   3757 			/*
   3758 			 * If we received a packet with a vlan tag,
   3759 			 * attach that information to the packet.
   3760 			 */
   3761 			if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
   3762 #if 0
   3763 				struct ether_vlan_header vh;
   3764 
   3765 				DBPRINT(sc, BNX_VERBOSE_SEND,
   3766 				    "%s(): VLAN tag = 0x%04X\n",
   3767 				    __func__,
   3768 				    l2fhdr->l2_fhdr_vlan_tag);
   3769 
   3770 				if (m->m_pkthdr.len < ETHER_HDR_LEN) {
   3771 					m_freem(m);
   3772 					continue;
   3773 				}
   3774 				m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh);
   3775 				vh.evl_proto = vh.evl_encap_proto;
   3776 				vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag;
   3777 				vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
   3778 				m_adj(m, ETHER_HDR_LEN);
   3779 				if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
   3780 					continue;
   3781 				m->m_pkthdr.len += sizeof(vh);
   3782 				if (m->m_len < sizeof(vh) &&
   3783 				    (m = m_pullup(m, sizeof(vh))) == NULL)
   3784 					goto bnx_rx_int_next_rx;
   3785 				m_copyback(m, 0, sizeof(vh), &vh);
   3786 #else
   3787 				VLAN_INPUT_TAG(ifp, m,
   3788 				    l2fhdr->l2_fhdr_vlan_tag,
   3789 				    continue);
   3790 #endif
   3791 			}
   3792 
   3793 #if NBPFILTER > 0
   3794 			/*
   3795 			 * Handle BPF listeners. Let the BPF
   3796 			 * user see the packet.
   3797 			 */
   3798 			if (ifp->if_bpf)
   3799 				bpf_mtap(ifp->if_bpf, m);
   3800 #endif
   3801 
   3802 			/* Pass the mbuf off to the upper layers. */
   3803 			ifp->if_ipackets++;
   3804 			DBPRINT(sc, BNX_VERBOSE_RECV,
   3805 			    "%s(): Passing received frame up.\n", __func__);
   3806 			(*ifp->if_input)(ifp, m);
   3807 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3808 
   3809 		}
   3810 
   3811 		sw_cons = NEXT_RX_BD(sw_cons);
   3812 
   3813 		/* Refresh hw_cons to see if there's new work */
   3814 		if (sw_cons == hw_cons) {
   3815 			hw_cons = sc->hw_rx_cons =
   3816 			    sblk->status_rx_quick_consumer_index0;
   3817 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   3818 			    USABLE_RX_BD_PER_PAGE)
   3819 				hw_cons++;
   3820 		}
   3821 
   3822 		/* Prevent speculative reads from getting ahead of
   3823 		 * the status block.
   3824 		 */
   3825 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3826 		    BUS_SPACE_BARRIER_READ);
   3827 	}
   3828 
   3829 	for (i = 0; i < RX_PAGES; i++)
   3830 		bus_dmamap_sync(sc->bnx_dmatag,
   3831 		    sc->rx_bd_chain_map[i], 0,
   3832 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3833 		    BUS_DMASYNC_PREWRITE);
   3834 
   3835 	sc->rx_cons = sw_cons;
   3836 	sc->rx_prod = sw_prod;
   3837 	sc->rx_prod_bseq = sw_prod_bseq;
   3838 
   3839 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   3840 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   3841 
   3842 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   3843 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   3844 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   3845 }
   3846 
   3847 /****************************************************************************/
   3848 /* Handles transmit completion interrupt events.                            */
   3849 /*                                                                          */
   3850 /* Returns:                                                                 */
   3851 /*   Nothing.                                                               */
   3852 /****************************************************************************/
   3853 void
   3854 bnx_tx_intr(struct bnx_softc *sc)
   3855 {
   3856 	struct status_block	*sblk = sc->status_block;
   3857 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   3858 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   3859 
   3860 	DBRUNIF(1, sc->tx_interrupts++);
   3861 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3862 	    BUS_DMASYNC_POSTREAD);
   3863 
   3864 	/* Get the hardware's view of the TX consumer index. */
   3865 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   3866 
   3867 	/* Skip to the next entry if this is a chain page pointer. */
   3868 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   3869 		hw_tx_cons++;
   3870 
   3871 	sw_tx_cons = sc->tx_cons;
   3872 
   3873 	/* Prevent speculative reads from getting ahead of the status block. */
   3874 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3875 	    BUS_SPACE_BARRIER_READ);
   3876 
   3877 	/* Cycle through any completed TX chain page entries. */
   3878 	while (sw_tx_cons != hw_tx_cons) {
   3879 #ifdef BNX_DEBUG
   3880 		struct tx_bd *txbd = NULL;
   3881 #endif
   3882 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   3883 
   3884 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   3885 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   3886 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   3887 
   3888 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   3889 		    aprint_error_dev(sc->bnx_dev,
   3890 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   3891 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   3892 
   3893 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   3894 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   3895 
   3896 		DBRUNIF((txbd == NULL),
   3897 		    aprint_error_dev(sc->bnx_dev,
   3898 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   3899 		    bnx_breakpoint(sc));
   3900 
   3901 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   3902 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   3903 
   3904 		/*
   3905 		 * Free the associated mbuf. Remember
   3906 		 * that only the last tx_bd of a packet
   3907 		 * has an mbuf pointer and DMA map.
   3908 		 */
   3909 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
   3910 			/* Validate that this is the last tx_bd. */
   3911 			DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
   3912 			    TX_BD_FLAGS_END)),
   3913 			    aprint_error_dev(sc->bnx_dev,
   3914 			        "tx_bd END flag not set but txmbuf == NULL!\n");
   3915 			    bnx_breakpoint(sc));
   3916 
   3917 			DBRUN(BNX_INFO_SEND,
   3918 			    aprint_debug("%s: Unloading map/freeing mbuf "
   3919 			    "from tx_bd[0x%04X]\n",
   3920 			    __func__, sw_tx_chain_cons));
   3921 
   3922 			/* Unmap the mbuf. */
   3923 			bus_dmamap_unload(sc->bnx_dmatag,
   3924 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
   3925 
   3926 			/* Free the mbuf. */
   3927 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
   3928 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
   3929 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   3930 
   3931 			ifp->if_opackets++;
   3932 		}
   3933 
   3934 		sc->used_tx_bd--;
   3935 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   3936 
   3937 		/* Refresh hw_cons to see if there's new work. */
   3938 		hw_tx_cons = sc->hw_tx_cons =
   3939 		    sblk->status_tx_quick_consumer_index0;
   3940 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   3941 		    USABLE_TX_BD_PER_PAGE)
   3942 			hw_tx_cons++;
   3943 
   3944 		/* Prevent speculative reads from getting ahead of
   3945 		 * the status block.
   3946 		 */
   3947 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3948 		    BUS_SPACE_BARRIER_READ);
   3949 	}
   3950 
   3951 	/* Clear the TX timeout timer. */
   3952 	ifp->if_timer = 0;
   3953 
   3954 	/* Clear the tx hardware queue full flag. */
   3955 	if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
   3956 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   3957 		    aprint_debug_dev(sc->bnx_dev,
   3958 		        "TX chain is open for business! Used tx_bd = %d\n",
   3959 			sc->used_tx_bd));
   3960 		ifp->if_flags &= ~IFF_OACTIVE;
   3961 	}
   3962 
   3963 	sc->tx_cons = sw_tx_cons;
   3964 }
   3965 
   3966 /****************************************************************************/
   3967 /* Disables interrupt generation.                                           */
   3968 /*                                                                          */
   3969 /* Returns:                                                                 */
   3970 /*   Nothing.                                                               */
   3971 /****************************************************************************/
   3972 void
   3973 bnx_disable_intr(struct bnx_softc *sc)
   3974 {
   3975 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3976 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   3977 }
   3978 
   3979 /****************************************************************************/
   3980 /* Enables interrupt generation.                                            */
   3981 /*                                                                          */
   3982 /* Returns:                                                                 */
   3983 /*   Nothing.                                                               */
   3984 /****************************************************************************/
   3985 void
   3986 bnx_enable_intr(struct bnx_softc *sc)
   3987 {
   3988 	u_int32_t		val;
   3989 
   3990 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   3991 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   3992 
   3993 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   3994 	    sc->last_status_idx);
   3995 
   3996 	val = REG_RD(sc, BNX_HC_COMMAND);
   3997 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   3998 }
   3999 
   4000 /****************************************************************************/
   4001 /* Handles controller initialization.                                       */
   4002 /*                                                                          */
   4003 /****************************************************************************/
   4004 int
   4005 bnx_init(struct ifnet *ifp)
   4006 {
   4007 	struct bnx_softc	*sc = ifp->if_softc;
   4008 	u_int32_t		ether_mtu;
   4009 	int			s, error = 0;
   4010 
   4011 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4012 
   4013 	s = splnet();
   4014 
   4015 	bnx_stop(ifp, 0);
   4016 
   4017 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4018 		aprint_error("bnx: Controller reset failed!\n");
   4019 		goto bnx_init_exit;
   4020 	}
   4021 
   4022 	if ((error = bnx_chipinit(sc)) != 0) {
   4023 		aprint_error("bnx: Controller initialization failed!\n");
   4024 		goto bnx_init_exit;
   4025 	}
   4026 
   4027 	if ((error = bnx_blockinit(sc)) != 0) {
   4028 		aprint_error("bnx: Block initialization failed!\n");
   4029 		goto bnx_init_exit;
   4030 	}
   4031 
   4032 	/* Calculate and program the Ethernet MRU size. */
   4033 	if (ifp->if_mtu <= ETHERMTU) {
   4034 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4035 		sc->mbuf_alloc_size = MCLBYTES;
   4036 	} else {
   4037 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4038 		sc->mbuf_alloc_size = BNX_MAX_MRU;
   4039 	}
   4040 
   4041 
   4042 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4043 	    __func__, ether_mtu);
   4044 
   4045 	/*
   4046 	 * Program the MRU and enable Jumbo frame
   4047 	 * support.
   4048 	 */
   4049 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4050 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4051 
   4052 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4053 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4054 
   4055 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4056 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4057 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4058 
   4059 	/* Program appropriate promiscuous/multicast filtering. */
   4060 	bnx_set_rx_mode(sc);
   4061 
   4062 	/* Init RX buffer descriptor chain. */
   4063 	bnx_init_rx_chain(sc);
   4064 
   4065 	/* Init TX buffer descriptor chain. */
   4066 	bnx_init_tx_chain(sc);
   4067 
   4068 	/* Enable host interrupts. */
   4069 	bnx_enable_intr(sc);
   4070 
   4071 	if ((error = ether_mediachange(ifp)) != 0)
   4072 		goto bnx_init_exit;
   4073 
   4074 	ifp->if_flags |= IFF_RUNNING;
   4075 	ifp->if_flags &= ~IFF_OACTIVE;
   4076 
   4077 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4078 
   4079 bnx_init_exit:
   4080 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4081 
   4082 	splx(s);
   4083 
   4084 	return(error);
   4085 }
   4086 
   4087 /****************************************************************************/
   4088 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4089 /* memory visible to the controller.                                        */
   4090 /*                                                                          */
   4091 /* Returns:                                                                 */
   4092 /*   0 for success, positive value for failure.                             */
   4093 /****************************************************************************/
   4094 int
   4095 bnx_tx_encap(struct bnx_softc *sc, struct mbuf **m_head)
   4096 {
   4097 	bus_dmamap_t		map;
   4098 	struct tx_bd		*txbd = NULL;
   4099 	struct mbuf		*m0;
   4100 	u_int16_t		vlan_tag = 0, flags = 0;
   4101 	u_int16_t		chain_prod, prod;
   4102 #ifdef BNX_DEBUG
   4103 	u_int16_t		debug_prod;
   4104 #endif
   4105 	u_int32_t		addr, prod_bseq;
   4106 	int			i, error, rc = 0;
   4107 	struct m_tag		*mtag;
   4108 
   4109 	m0 = *m_head;
   4110 
   4111 	/* Transfer any checksum offload flags to the bd. */
   4112 	if (m0->m_pkthdr.csum_flags) {
   4113 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4114 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4115 		if (m0->m_pkthdr.csum_flags &
   4116 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4117 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4118 	}
   4119 
   4120 	/* Transfer any VLAN tags to the bd. */
   4121 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m0);
   4122 	if (mtag != NULL) {
   4123 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4124 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4125 	}
   4126 
   4127 	/* Map the mbuf into DMAable memory. */
   4128 	prod = sc->tx_prod;
   4129 	chain_prod = TX_CHAIN_IDX(prod);
   4130 	map = sc->tx_mbuf_map[chain_prod];
   4131 
   4132 	/* Map the mbuf into our DMA address space. */
   4133 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m0, BUS_DMA_NOWAIT);
   4134 	if (error != 0) {
   4135 		aprint_error_dev(sc->bnx_dev,
   4136 		    "Error mapping mbuf into TX chain!\n");
   4137 		m_freem(m0);
   4138 		*m_head = NULL;
   4139 		return (error);
   4140 	}
   4141 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4142 	    BUS_DMASYNC_PREWRITE);
   4143         /*
   4144          * The chip seems to require that at least 16 descriptors be kept
   4145          * empty at all times.  Make sure we honor that.
   4146          * XXX Would it be faster to assume worst case scenario for
   4147          * map->dm_nsegs and do this calculation higher up?
   4148          */
   4149         if (map->dm_nsegs > (USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE)) {
   4150                 bus_dmamap_unload(sc->bnx_dmatag, map);
   4151                 return (ENOBUFS);
   4152         }
   4153 
   4154 	/* prod points to an empty tx_bd at this point. */
   4155 	prod_bseq = sc->tx_prod_bseq;
   4156 #ifdef BNX_DEBUG
   4157 	debug_prod = chain_prod;
   4158 #endif
   4159 	DBPRINT(sc, BNX_INFO_SEND,
   4160 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   4161 		"prod_bseq = 0x%08X\n",
   4162 		__func__, *prod, chain_prod, prod_bseq);
   4163 
   4164 	/*
   4165 	 * Cycle through each mbuf segment that makes up
   4166 	 * the outgoing frame, gathering the mapping info
   4167 	 * for that segment and creating a tx_bd for the
   4168 	 * mbuf.
   4169 	 */
   4170 	for (i = 0; i < map->dm_nsegs ; i++) {
   4171 		chain_prod = TX_CHAIN_IDX(prod);
   4172 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   4173 
   4174 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   4175 		txbd->tx_bd_haddr_lo = htole32(addr);
   4176 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   4177 		txbd->tx_bd_haddr_hi = htole32(addr);
   4178 		txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
   4179 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
   4180 		txbd->tx_bd_flags = htole16(flags);
   4181 		prod_bseq += map->dm_segs[i].ds_len;
   4182 		if (i == 0)
   4183 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
   4184 		prod = NEXT_TX_BD(prod);
   4185 	}
   4186 	/* Set the END flag on the last TX buffer descriptor. */
   4187 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
   4188 
   4189 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
   4190 
   4191 	DBPRINT(sc, BNX_INFO_SEND,
   4192 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   4193 		"prod_bseq = 0x%08X\n",
   4194 		__func__, prod, chain_prod, prod_bseq);
   4195 
   4196 	/*
   4197 	 * Ensure that the mbuf pointer for this
   4198 	 * transmission is placed at the array
   4199 	 * index of the last descriptor in this
   4200 	 * chain.  This is done because a single
   4201 	 * map is used for all segments of the mbuf
   4202 	 * and we don't want to unload the map before
   4203 	 * all of the segments have been freed.
   4204 	 */
   4205 	sc->tx_mbuf_ptr[chain_prod] = m0;
   4206 	sc->used_tx_bd += map->dm_nsegs;
   4207 
   4208 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   4209 	    sc->tx_hi_watermark = sc->used_tx_bd);
   4210 
   4211 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   4212 
   4213 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   4214 	    map_arg.maxsegs));
   4215 
   4216 	/* prod points to the next free tx_bd at this point. */
   4217 	sc->tx_prod = prod;
   4218 	sc->tx_prod_bseq = prod_bseq;
   4219 
   4220 	return (rc);
   4221 }
   4222 
   4223 /****************************************************************************/
   4224 /* Main transmit routine.                                                   */
   4225 /*                                                                          */
   4226 /* Returns:                                                                 */
   4227 /*   Nothing.                                                               */
   4228 /****************************************************************************/
   4229 void
   4230 bnx_start(struct ifnet *ifp)
   4231 {
   4232 	struct bnx_softc	*sc = ifp->if_softc;
   4233 	struct mbuf		*m_head = NULL;
   4234 	int			count = 0;
   4235 	u_int16_t		tx_prod, tx_chain_prod;
   4236 
   4237 	/* If there's no link or the transmit queue is empty then just exit. */
   4238 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   4239 		DBPRINT(sc, BNX_INFO_SEND,
   4240 		    "%s(): output active or device not running.\n", __func__);
   4241 		goto bnx_start_exit;
   4242 	}
   4243 
   4244 	/* prod points to the next free tx_bd. */
   4245 	tx_prod = sc->tx_prod;
   4246 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
   4247 
   4248 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   4249 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
   4250 	    __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   4251 
   4252 	/*
   4253 	 * Keep adding entries while there is space in the ring.  We keep
   4254 	 * BNX_TX_SLACK_SPACE entries unused at all times.
   4255 	 */
   4256 	while (sc->used_tx_bd < USABLE_TX_BD - BNX_TX_SLACK_SPACE) {
   4257 		/* Check for any frames to send. */
   4258 		IFQ_POLL(&ifp->if_snd, m_head);
   4259 		if (m_head == NULL)
   4260 			break;
   4261 
   4262 		/*
   4263 		 * Pack the data into the transmit ring. If we
   4264 		 * don't have room, set the OACTIVE flag to wait
   4265 		 * for the NIC to drain the chain.
   4266 		 */
   4267 		if (bnx_tx_encap(sc, &m_head)) {
   4268 			ifp->if_flags |= IFF_OACTIVE;
   4269 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   4270 			    "business! Total tx_bd used = %d\n",
   4271 			    sc->used_tx_bd);
   4272 			break;
   4273 		}
   4274 
   4275 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4276 		count++;
   4277 
   4278 #if NBPFILTER > 0
   4279 		/* Send a copy of the frame to any BPF listeners. */
   4280 		if (ifp->if_bpf)
   4281 			bpf_mtap(ifp->if_bpf, m_head);
   4282 #endif
   4283 	}
   4284 
   4285 	if (count == 0) {
   4286 		/* no packets were dequeued */
   4287 		DBPRINT(sc, BNX_VERBOSE_SEND,
   4288 		    "%s(): No packets were dequeued\n", __func__);
   4289 		goto bnx_start_exit;
   4290 	}
   4291 
   4292 	/* Update the driver's counters. */
   4293 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   4294 
   4295 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   4296 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
   4297 	    tx_chain_prod, sc->tx_prod_bseq);
   4298 
   4299 	/* Start the transmit. */
   4300 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   4301 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   4302 
   4303 	/* Set the tx timeout. */
   4304 	ifp->if_timer = BNX_TX_TIMEOUT;
   4305 
   4306 bnx_start_exit:
   4307 	return;
   4308 }
   4309 
   4310 /****************************************************************************/
   4311 /* Handles any IOCTL calls from the operating system.                       */
   4312 /*                                                                          */
   4313 /* Returns:                                                                 */
   4314 /*   0 for success, positive value for failure.                             */
   4315 /****************************************************************************/
   4316 int
   4317 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   4318 {
   4319 	struct bnx_softc	*sc = ifp->if_softc;
   4320 	struct ifreq		*ifr = (struct ifreq *) data;
   4321 	struct mii_data		*mii = &sc->bnx_mii;
   4322 	int			s, error = 0;
   4323 
   4324 	s = splnet();
   4325 
   4326 	switch (command) {
   4327 	case SIOCSIFFLAGS:
   4328 		if (ifp->if_flags & IFF_UP) {
   4329 			if ((ifp->if_flags & IFF_RUNNING) &&
   4330 			    ((ifp->if_flags ^ sc->bnx_if_flags) &
   4331 			    (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
   4332 				bnx_set_rx_mode(sc);
   4333 			} else if (!(ifp->if_flags & IFF_RUNNING))
   4334 				bnx_init(ifp);
   4335 
   4336 		} else if (ifp->if_flags & IFF_RUNNING)
   4337 			bnx_stop(ifp, 1);
   4338 
   4339 		sc->bnx_if_flags = ifp->if_flags;
   4340 		break;
   4341 
   4342 	case SIOCSIFMEDIA:
   4343 	case SIOCGIFMEDIA:
   4344 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   4345 		    sc->bnx_phy_flags);
   4346 
   4347 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   4348 		break;
   4349 
   4350 	default:
   4351 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4352 			break;
   4353 
   4354 		error = 0;
   4355 
   4356 		if (command != SIOCADDMULTI && command && SIOCDELMULTI)
   4357 			;
   4358 		else if (ifp->if_flags & IFF_RUNNING) {
   4359 			/* reload packet filter if running */
   4360 			bnx_set_rx_mode(sc);
   4361 		}
   4362 		break;
   4363 	}
   4364 
   4365 	splx(s);
   4366 
   4367 	return (error);
   4368 }
   4369 
   4370 /****************************************************************************/
   4371 /* Transmit timeout handler.                                                */
   4372 /*                                                                          */
   4373 /* Returns:                                                                 */
   4374 /*   Nothing.                                                               */
   4375 /****************************************************************************/
   4376 void
   4377 bnx_watchdog(struct ifnet *ifp)
   4378 {
   4379 	struct bnx_softc	*sc = ifp->if_softc;
   4380 
   4381 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   4382 	    bnx_dump_status_block(sc));
   4383 
   4384 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   4385 
   4386 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   4387 
   4388 	bnx_init(ifp);
   4389 
   4390 	ifp->if_oerrors++;
   4391 }
   4392 
   4393 /*
   4394  * Interrupt handler.
   4395  */
   4396 /****************************************************************************/
   4397 /* Main interrupt entry point.  Verifies that the controller generated the  */
   4398 /* interrupt and then calls a separate routine for handle the various       */
   4399 /* interrupt causes (PHY, TX, RX).                                          */
   4400 /*                                                                          */
   4401 /* Returns:                                                                 */
   4402 /*   0 for success, positive value for failure.                             */
   4403 /****************************************************************************/
   4404 int
   4405 bnx_intr(void *xsc)
   4406 {
   4407 	struct bnx_softc	*sc;
   4408 	struct ifnet		*ifp;
   4409 	u_int32_t		status_attn_bits;
   4410 	const struct status_block *sblk;
   4411 
   4412 	sc = xsc;
   4413 	if (!device_is_active(sc->bnx_dev))
   4414 		return 0;
   4415 
   4416 	ifp = &sc->bnx_ec.ec_if;
   4417 
   4418 	DBRUNIF(1, sc->interrupts_generated++);
   4419 
   4420 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   4421 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4422 
   4423 	/*
   4424 	 * If the hardware status block index
   4425 	 * matches the last value read by the
   4426 	 * driver and we haven't asserted our
   4427 	 * interrupt then there's nothing to do.
   4428 	 */
   4429 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   4430 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   4431 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   4432 		return (0);
   4433 
   4434 	/* Ack the interrupt and stop others from occuring. */
   4435 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4436 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   4437 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4438 
   4439 	/* Keep processing data as long as there is work to do. */
   4440 	for (;;) {
   4441 		sblk = sc->status_block;
   4442 		status_attn_bits = sblk->status_attn_bits;
   4443 
   4444 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   4445 		    aprint_debug("Simulating unexpected status attention bit set.");
   4446 		    status_attn_bits = status_attn_bits |
   4447 		    STATUS_ATTN_BITS_PARITY_ERROR);
   4448 
   4449 		/* Was it a link change interrupt? */
   4450 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   4451 		    (sblk->status_attn_bits_ack &
   4452 		    STATUS_ATTN_BITS_LINK_STATE))
   4453 			bnx_phy_intr(sc);
   4454 
   4455 		/* If any other attention is asserted then the chip is toast. */
   4456 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   4457 		    (sblk->status_attn_bits_ack &
   4458 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   4459 			DBRUN(1, sc->unexpected_attentions++);
   4460 
   4461 			aprint_error_dev(sc->bnx_dev,
   4462 			    "Fatal attention detected: 0x%08X\n",
   4463 			    sblk->status_attn_bits);
   4464 
   4465 			DBRUN(BNX_FATAL,
   4466 			    if (bnx_debug_unexpected_attention == 0)
   4467 			    bnx_breakpoint(sc));
   4468 
   4469 			bnx_init(ifp);
   4470 			return (1);
   4471 		}
   4472 
   4473 		/* Check for any completed RX frames. */
   4474 		if (sblk->status_rx_quick_consumer_index0 !=
   4475 		    sc->hw_rx_cons)
   4476 			bnx_rx_intr(sc);
   4477 
   4478 		/* Check for any completed TX frames. */
   4479 		if (sblk->status_tx_quick_consumer_index0 !=
   4480 		    sc->hw_tx_cons)
   4481 			bnx_tx_intr(sc);
   4482 
   4483 		/* Save the status block index value for use during the
   4484 		 * next interrupt.
   4485 		 */
   4486 		sc->last_status_idx = sblk->status_idx;
   4487 
   4488 		/* Prevent speculative reads from getting ahead of the
   4489 		 * status block.
   4490 		 */
   4491 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4492 		    BUS_SPACE_BARRIER_READ);
   4493 
   4494 		/* If there's no work left then exit the isr. */
   4495 		if ((sblk->status_rx_quick_consumer_index0 ==
   4496 		    sc->hw_rx_cons) &&
   4497 		    (sblk->status_tx_quick_consumer_index0 ==
   4498 		    sc->hw_tx_cons))
   4499 			break;
   4500 	}
   4501 
   4502 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   4503 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   4504 
   4505 	/* Re-enable interrupts. */
   4506 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4507 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   4508 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4509 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4510 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   4511 
   4512 	/* Handle any frames that arrived while handling the interrupt. */
   4513 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   4514 		bnx_start(ifp);
   4515 
   4516 	return (1);
   4517 }
   4518 
   4519 /****************************************************************************/
   4520 /* Programs the various packet receive modes (broadcast and multicast).     */
   4521 /*                                                                          */
   4522 /* Returns:                                                                 */
   4523 /*   Nothing.                                                               */
   4524 /****************************************************************************/
   4525 void
   4526 bnx_set_rx_mode(struct bnx_softc *sc)
   4527 {
   4528 	struct ethercom		*ec = &sc->bnx_ec;
   4529 	struct ifnet		*ifp = &ec->ec_if;
   4530 	struct ether_multi	*enm;
   4531 	struct ether_multistep	step;
   4532 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   4533 	u_int32_t		rx_mode, sort_mode;
   4534 	int			h, i;
   4535 
   4536 	/* Initialize receive mode default settings. */
   4537 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   4538 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   4539 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   4540 
   4541 	/*
   4542 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   4543 	 * be enbled.
   4544 	 */
   4545 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   4546 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   4547 
   4548 	/*
   4549 	 * Check for promiscuous, all multicast, or selected
   4550 	 * multicast address filtering.
   4551 	 */
   4552 	if (ifp->if_flags & IFF_PROMISC) {
   4553 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   4554 
   4555 		/* Enable promiscuous mode. */
   4556 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   4557 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   4558 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   4559 allmulti:
   4560 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   4561 
   4562 		/* Enable all multicast addresses. */
   4563 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   4564 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   4565 			    0xffffffff);
   4566 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   4567 	} else {
   4568 		/* Accept one or more multicast(s). */
   4569 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   4570 
   4571 		ETHER_FIRST_MULTI(step, ec, enm);
   4572 		while (enm != NULL) {
   4573 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
   4574 			    ETHER_ADDR_LEN)) {
   4575 				ifp->if_flags |= IFF_ALLMULTI;
   4576 				goto allmulti;
   4577 			}
   4578 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   4579 			    0xFF;
   4580 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   4581 			ETHER_NEXT_MULTI(step, enm);
   4582 		}
   4583 
   4584 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   4585 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   4586 			    hashes[i]);
   4587 
   4588 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   4589 	}
   4590 
   4591 	/* Only make changes if the recive mode has actually changed. */
   4592 	if (rx_mode != sc->rx_mode) {
   4593 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   4594 		    rx_mode);
   4595 
   4596 		sc->rx_mode = rx_mode;
   4597 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   4598 	}
   4599 
   4600 	/* Disable and clear the exisitng sort before enabling a new sort. */
   4601 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   4602 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   4603 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   4604 }
   4605 
   4606 /****************************************************************************/
   4607 /* Called periodically to updates statistics from the controllers           */
   4608 /* statistics block.                                                        */
   4609 /*                                                                          */
   4610 /* Returns:                                                                 */
   4611 /*   Nothing.                                                               */
   4612 /****************************************************************************/
   4613 void
   4614 bnx_stats_update(struct bnx_softc *sc)
   4615 {
   4616 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4617 	struct statistics_block	*stats;
   4618 
   4619 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   4620 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4621 	    BUS_DMASYNC_POSTREAD);
   4622 
   4623 	stats = (struct statistics_block *)sc->stats_block;
   4624 
   4625 	/*
   4626 	 * Update the interface statistics from the
   4627 	 * hardware statistics.
   4628 	 */
   4629 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   4630 
   4631 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   4632 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   4633 	    (u_long)stats->stat_IfInMBUFDiscards +
   4634 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   4635 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   4636 
   4637 	ifp->if_oerrors = (u_long)
   4638 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   4639 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   4640 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   4641 
   4642 	/*
   4643 	 * Certain controllers don't report
   4644 	 * carrier sense errors correctly.
   4645 	 * See errata E11_5708CA0_1165.
   4646 	 */
   4647 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   4648 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   4649 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   4650 
   4651 	/*
   4652 	 * Update the sysctl statistics from the
   4653 	 * hardware statistics.
   4654 	 */
   4655 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
   4656 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
   4657 
   4658 	sc->stat_IfHCInBadOctets =
   4659 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   4660 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
   4661 
   4662 	sc->stat_IfHCOutOctets =
   4663 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
   4664 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
   4665 
   4666 	sc->stat_IfHCOutBadOctets =
   4667 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   4668 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
   4669 
   4670 	sc->stat_IfHCInUcastPkts =
   4671 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   4672 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
   4673 
   4674 	sc->stat_IfHCInMulticastPkts =
   4675 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   4676 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
   4677 
   4678 	sc->stat_IfHCInBroadcastPkts =
   4679 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   4680 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
   4681 
   4682 	sc->stat_IfHCOutUcastPkts =
   4683 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   4684 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
   4685 
   4686 	sc->stat_IfHCOutMulticastPkts =
   4687 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   4688 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
   4689 
   4690 	sc->stat_IfHCOutBroadcastPkts =
   4691 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   4692 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   4693 
   4694 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   4695 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   4696 
   4697 	sc->stat_Dot3StatsCarrierSenseErrors =
   4698 	    stats->stat_Dot3StatsCarrierSenseErrors;
   4699 
   4700 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   4701 
   4702 	sc->stat_Dot3StatsAlignmentErrors =
   4703 	    stats->stat_Dot3StatsAlignmentErrors;
   4704 
   4705 	sc->stat_Dot3StatsSingleCollisionFrames =
   4706 	    stats->stat_Dot3StatsSingleCollisionFrames;
   4707 
   4708 	sc->stat_Dot3StatsMultipleCollisionFrames =
   4709 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   4710 
   4711 	sc->stat_Dot3StatsDeferredTransmissions =
   4712 	    stats->stat_Dot3StatsDeferredTransmissions;
   4713 
   4714 	sc->stat_Dot3StatsExcessiveCollisions =
   4715 	    stats->stat_Dot3StatsExcessiveCollisions;
   4716 
   4717 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   4718 
   4719 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   4720 
   4721 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   4722 
   4723 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   4724 
   4725 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   4726 
   4727 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   4728 
   4729 	sc->stat_EtherStatsPktsRx64Octets =
   4730 	    stats->stat_EtherStatsPktsRx64Octets;
   4731 
   4732 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   4733 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   4734 
   4735 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   4736 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   4737 
   4738 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   4739 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   4740 
   4741 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   4742 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   4743 
   4744 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   4745 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   4746 
   4747 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   4748 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   4749 
   4750 	sc->stat_EtherStatsPktsTx64Octets =
   4751 	    stats->stat_EtherStatsPktsTx64Octets;
   4752 
   4753 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   4754 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   4755 
   4756 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   4757 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   4758 
   4759 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   4760 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   4761 
   4762 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   4763 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   4764 
   4765 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   4766 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   4767 
   4768 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   4769 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   4770 
   4771 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   4772 
   4773 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   4774 
   4775 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   4776 
   4777 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   4778 
   4779 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   4780 
   4781 	sc->stat_MacControlFramesReceived =
   4782 	    stats->stat_MacControlFramesReceived;
   4783 
   4784 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   4785 
   4786 	sc->stat_IfInFramesL2FilterDiscards =
   4787 	    stats->stat_IfInFramesL2FilterDiscards;
   4788 
   4789 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   4790 
   4791 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   4792 
   4793 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   4794 
   4795 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   4796 
   4797 	sc->stat_CatchupInRuleCheckerDiscards =
   4798 	    stats->stat_CatchupInRuleCheckerDiscards;
   4799 
   4800 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   4801 
   4802 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   4803 
   4804 	sc->stat_CatchupInRuleCheckerP4Hit =
   4805 	    stats->stat_CatchupInRuleCheckerP4Hit;
   4806 
   4807 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   4808 }
   4809 
   4810 void
   4811 bnx_tick(void *xsc)
   4812 {
   4813 	struct bnx_softc	*sc = xsc;
   4814 	struct mii_data		*mii;
   4815 	u_int32_t		msg;
   4816 	u_int16_t		prod, chain_prod;
   4817 	u_int32_t		prod_bseq;
   4818 	int s = splnet();
   4819 
   4820 	/* Tell the firmware that the driver is still running. */
   4821 #ifdef BNX_DEBUG
   4822 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   4823 #else
   4824 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   4825 #endif
   4826 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   4827 
   4828 	/* Update the statistics from the hardware statistics block. */
   4829 	bnx_stats_update(sc);
   4830 
   4831 	/* Schedule the next tick. */
   4832 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4833 
   4834 	mii = &sc->bnx_mii;
   4835 	mii_tick(mii);
   4836 
   4837 	/* try to get more RX buffers, just in case */
   4838 	prod = sc->rx_prod;
   4839 	prod_bseq = sc->rx_prod_bseq;
   4840 	chain_prod = RX_CHAIN_IDX(prod);
   4841 	bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq);
   4842 	sc->rx_prod = prod;
   4843 	sc->rx_prod_bseq = prod_bseq;
   4844 	splx(s);
   4845 	return;
   4846 }
   4847 
   4848 /****************************************************************************/
   4849 /* BNX Debug Routines                                                       */
   4850 /****************************************************************************/
   4851 #ifdef BNX_DEBUG
   4852 
   4853 /****************************************************************************/
   4854 /* Prints out information about an mbuf.                                    */
   4855 /*                                                                          */
   4856 /* Returns:                                                                 */
   4857 /*   Nothing.                                                               */
   4858 /****************************************************************************/
   4859 void
   4860 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   4861 {
   4862 	struct mbuf		*mp = m;
   4863 
   4864 	if (m == NULL) {
   4865 		/* Index out of range. */
   4866 		aprint_error("mbuf ptr is null!\n");
   4867 		return;
   4868 	}
   4869 
   4870 	while (mp) {
   4871 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   4872 		    mp, mp->m_len);
   4873 
   4874 		if (mp->m_flags & M_EXT)
   4875 			aprint_debug("M_EXT ");
   4876 		if (mp->m_flags & M_PKTHDR)
   4877 			aprint_debug("M_PKTHDR ");
   4878 		aprint_debug("\n");
   4879 
   4880 		if (mp->m_flags & M_EXT)
   4881 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   4882 			    mp, mp->m_ext.ext_size);
   4883 
   4884 		mp = mp->m_next;
   4885 	}
   4886 }
   4887 
   4888 /****************************************************************************/
   4889 /* Prints out the mbufs in the TX mbuf chain.                               */
   4890 /*                                                                          */
   4891 /* Returns:                                                                 */
   4892 /*   Nothing.                                                               */
   4893 /****************************************************************************/
   4894 void
   4895 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   4896 {
   4897 	struct mbuf		*m;
   4898 	int			i;
   4899 
   4900 	BNX_PRINTF(sc,
   4901 	    "----------------------------"
   4902 	    "  tx mbuf data  "
   4903 	    "----------------------------\n");
   4904 
   4905 	for (i = 0; i < count; i++) {
   4906 	 	m = sc->tx_mbuf_ptr[chain_prod];
   4907 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   4908 		bnx_dump_mbuf(sc, m);
   4909 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   4910 	}
   4911 
   4912 	BNX_PRINTF(sc,
   4913 	    "--------------------------------------------"
   4914 	    "----------------------------\n");
   4915 }
   4916 
   4917 /*
   4918  * This routine prints the RX mbuf chain.
   4919  */
   4920 void
   4921 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   4922 {
   4923 	struct mbuf		*m;
   4924 	int			i;
   4925 
   4926 	BNX_PRINTF(sc,
   4927 	    "----------------------------"
   4928 	    "  rx mbuf data  "
   4929 	    "----------------------------\n");
   4930 
   4931 	for (i = 0; i < count; i++) {
   4932 	 	m = sc->rx_mbuf_ptr[chain_prod];
   4933 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   4934 		bnx_dump_mbuf(sc, m);
   4935 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   4936 	}
   4937 
   4938 
   4939 	BNX_PRINTF(sc,
   4940 	    "--------------------------------------------"
   4941 	    "----------------------------\n");
   4942 }
   4943 
   4944 void
   4945 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   4946 {
   4947 	if (idx > MAX_TX_BD)
   4948 		/* Index out of range. */
   4949 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   4950 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4951 		/* TX Chain page pointer. */
   4952 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   4953 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   4954 		    txbd->tx_bd_haddr_lo);
   4955 	else
   4956 		/* Normal tx_bd entry. */
   4957 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   4958 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   4959 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   4960 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   4961 		    txbd->tx_bd_flags);
   4962 }
   4963 
   4964 void
   4965 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   4966 {
   4967 	if (idx > MAX_RX_BD)
   4968 		/* Index out of range. */
   4969 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   4970 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4971 		/* TX Chain page pointer. */
   4972 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   4973 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   4974 		    rxbd->rx_bd_haddr_lo);
   4975 	else
   4976 		/* Normal tx_bd entry. */
   4977 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   4978 		    "0x%08X, flags = 0x%08X\n", idx,
   4979 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   4980 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   4981 }
   4982 
   4983 void
   4984 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   4985 {
   4986 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   4987 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   4988 	    "tcp_udp_xsum = 0x%04X\n", idx,
   4989 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   4990 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   4991 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4992 }
   4993 
   4994 /*
   4995  * This routine prints the TX chain.
   4996  */
   4997 void
   4998 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   4999 {
   5000 	struct tx_bd		*txbd;
   5001 	int			i;
   5002 
   5003 	/* First some info about the tx_bd chain structure. */
   5004 	BNX_PRINTF(sc,
   5005 	    "----------------------------"
   5006 	    "  tx_bd  chain  "
   5007 	    "----------------------------\n");
   5008 
   5009 	BNX_PRINTF(sc,
   5010 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5011 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
   5012 
   5013 	BNX_PRINTF(sc,
   5014 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5015 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
   5016 
   5017 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
   5018 
   5019 	BNX_PRINTF(sc, ""
   5020 	    "-----------------------------"
   5021 	    "   tx_bd data   "
   5022 	    "-----------------------------\n");
   5023 
   5024 	/* Now print out the tx_bd's themselves. */
   5025 	for (i = 0; i < count; i++) {
   5026 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5027 		bnx_dump_txbd(sc, tx_prod, txbd);
   5028 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5029 	}
   5030 
   5031 	BNX_PRINTF(sc,
   5032 	    "-----------------------------"
   5033 	    "--------------"
   5034 	    "-----------------------------\n");
   5035 }
   5036 
   5037 /*
   5038  * This routine prints the RX chain.
   5039  */
   5040 void
   5041 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5042 {
   5043 	struct rx_bd		*rxbd;
   5044 	int			i;
   5045 
   5046 	/* First some info about the tx_bd chain structure. */
   5047 	BNX_PRINTF(sc,
   5048 	    "----------------------------"
   5049 	    "  rx_bd  chain  "
   5050 	    "----------------------------\n");
   5051 
   5052 	BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
   5053 
   5054 	BNX_PRINTF(sc,
   5055 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5056 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
   5057 
   5058 	BNX_PRINTF(sc,
   5059 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5060 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
   5061 
   5062 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
   5063 
   5064 	BNX_PRINTF(sc,
   5065 	    "----------------------------"
   5066 	    "   rx_bd data   "
   5067 	    "----------------------------\n");
   5068 
   5069 	/* Now print out the rx_bd's themselves. */
   5070 	for (i = 0; i < count; i++) {
   5071 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5072 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5073 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5074 	}
   5075 
   5076 	BNX_PRINTF(sc,
   5077 	    "----------------------------"
   5078 	    "--------------"
   5079 	    "----------------------------\n");
   5080 }
   5081 
   5082 /*
   5083  * This routine prints the status block.
   5084  */
   5085 void
   5086 bnx_dump_status_block(struct bnx_softc *sc)
   5087 {
   5088 	struct status_block	*sblk;
   5089 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5090 	    BUS_DMASYNC_POSTREAD);
   5091 
   5092 	sblk = sc->status_block;
   5093 
   5094    	BNX_PRINTF(sc, "----------------------------- Status Block "
   5095 	    "-----------------------------\n");
   5096 
   5097 	BNX_PRINTF(sc,
   5098 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5099 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5100 	    sblk->status_idx);
   5101 
   5102 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5103 	    sblk->status_rx_quick_consumer_index0,
   5104 	    sblk->status_tx_quick_consumer_index0);
   5105 
   5106 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5107 
   5108 	/* Theses indices are not used for normal L2 drivers. */
   5109 	if (sblk->status_rx_quick_consumer_index1 ||
   5110 		sblk->status_tx_quick_consumer_index1)
   5111 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5112 		    sblk->status_rx_quick_consumer_index1,
   5113 		    sblk->status_tx_quick_consumer_index1);
   5114 
   5115 	if (sblk->status_rx_quick_consumer_index2 ||
   5116 		sblk->status_tx_quick_consumer_index2)
   5117 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5118 		    sblk->status_rx_quick_consumer_index2,
   5119 		    sblk->status_tx_quick_consumer_index2);
   5120 
   5121 	if (sblk->status_rx_quick_consumer_index3 ||
   5122 		sblk->status_tx_quick_consumer_index3)
   5123 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5124 		    sblk->status_rx_quick_consumer_index3,
   5125 		    sblk->status_tx_quick_consumer_index3);
   5126 
   5127 	if (sblk->status_rx_quick_consumer_index4 ||
   5128 		sblk->status_rx_quick_consumer_index5)
   5129 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5130 		    sblk->status_rx_quick_consumer_index4,
   5131 		    sblk->status_rx_quick_consumer_index5);
   5132 
   5133 	if (sblk->status_rx_quick_consumer_index6 ||
   5134 		sblk->status_rx_quick_consumer_index7)
   5135 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5136 		    sblk->status_rx_quick_consumer_index6,
   5137 		    sblk->status_rx_quick_consumer_index7);
   5138 
   5139 	if (sblk->status_rx_quick_consumer_index8 ||
   5140 		sblk->status_rx_quick_consumer_index9)
   5141 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5142 		    sblk->status_rx_quick_consumer_index8,
   5143 		    sblk->status_rx_quick_consumer_index9);
   5144 
   5145 	if (sblk->status_rx_quick_consumer_index10 ||
   5146 		sblk->status_rx_quick_consumer_index11)
   5147 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   5148 		    sblk->status_rx_quick_consumer_index10,
   5149 		    sblk->status_rx_quick_consumer_index11);
   5150 
   5151 	if (sblk->status_rx_quick_consumer_index12 ||
   5152 		sblk->status_rx_quick_consumer_index13)
   5153 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   5154 		    sblk->status_rx_quick_consumer_index12,
   5155 		    sblk->status_rx_quick_consumer_index13);
   5156 
   5157 	if (sblk->status_rx_quick_consumer_index14 ||
   5158 		sblk->status_rx_quick_consumer_index15)
   5159 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   5160 		    sblk->status_rx_quick_consumer_index14,
   5161 		    sblk->status_rx_quick_consumer_index15);
   5162 
   5163 	if (sblk->status_completion_producer_index ||
   5164 		sblk->status_cmd_consumer_index)
   5165 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   5166 		    sblk->status_completion_producer_index,
   5167 		    sblk->status_cmd_consumer_index);
   5168 
   5169 	BNX_PRINTF(sc, "-------------------------------------------"
   5170 	    "-----------------------------\n");
   5171 }
   5172 
   5173 /*
   5174  * This routine prints the statistics block.
   5175  */
   5176 void
   5177 bnx_dump_stats_block(struct bnx_softc *sc)
   5178 {
   5179 	struct statistics_block	*sblk;
   5180 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5181 	    BUS_DMASYNC_POSTREAD);
   5182 
   5183 	sblk = sc->stats_block;
   5184 
   5185 	BNX_PRINTF(sc, ""
   5186 	    "-----------------------------"
   5187 	    " Stats  Block "
   5188 	    "-----------------------------\n");
   5189 
   5190 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   5191 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   5192 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   5193 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   5194 
   5195 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   5196 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   5197 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   5198 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   5199 
   5200 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   5201 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   5202 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   5203 	    sblk->stat_IfHCInMulticastPkts_hi,
   5204 	    sblk->stat_IfHCInMulticastPkts_lo);
   5205 
   5206 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   5207 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   5208 	    sblk->stat_IfHCInBroadcastPkts_hi,
   5209 	    sblk->stat_IfHCInBroadcastPkts_lo,
   5210 	    sblk->stat_IfHCOutUcastPkts_hi,
   5211 	    sblk->stat_IfHCOutUcastPkts_lo);
   5212 
   5213 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   5214 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   5215 	    sblk->stat_IfHCOutMulticastPkts_hi,
   5216 	    sblk->stat_IfHCOutMulticastPkts_lo,
   5217 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   5218 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   5219 
   5220 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   5221 		BNX_PRINTF(sc, "0x%08X : "
   5222 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   5223 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   5224 
   5225 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   5226 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   5227 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   5228 
   5229 	if (sblk->stat_Dot3StatsFCSErrors)
   5230 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   5231 		    sblk->stat_Dot3StatsFCSErrors);
   5232 
   5233 	if (sblk->stat_Dot3StatsAlignmentErrors)
   5234 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   5235 		    sblk->stat_Dot3StatsAlignmentErrors);
   5236 
   5237 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   5238 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   5239 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   5240 
   5241 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   5242 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   5243 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   5244 
   5245 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   5246 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   5247 		    sblk->stat_Dot3StatsDeferredTransmissions);
   5248 
   5249 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   5250 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   5251 		    sblk->stat_Dot3StatsExcessiveCollisions);
   5252 
   5253 	if (sblk->stat_Dot3StatsLateCollisions)
   5254 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   5255 		    sblk->stat_Dot3StatsLateCollisions);
   5256 
   5257 	if (sblk->stat_EtherStatsCollisions)
   5258 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   5259 		    sblk->stat_EtherStatsCollisions);
   5260 
   5261 	if (sblk->stat_EtherStatsFragments)
   5262 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   5263 		    sblk->stat_EtherStatsFragments);
   5264 
   5265 	if (sblk->stat_EtherStatsJabbers)
   5266 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   5267 		    sblk->stat_EtherStatsJabbers);
   5268 
   5269 	if (sblk->stat_EtherStatsUndersizePkts)
   5270 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   5271 		    sblk->stat_EtherStatsUndersizePkts);
   5272 
   5273 	if (sblk->stat_EtherStatsOverrsizePkts)
   5274 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   5275 		    sblk->stat_EtherStatsOverrsizePkts);
   5276 
   5277 	if (sblk->stat_EtherStatsPktsRx64Octets)
   5278 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   5279 		    sblk->stat_EtherStatsPktsRx64Octets);
   5280 
   5281 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   5282 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   5283 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   5284 
   5285 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   5286 		BNX_PRINTF(sc, "0x%08X : "
   5287 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   5288 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   5289 
   5290 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   5291 		BNX_PRINTF(sc, "0x%08X : "
   5292 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   5293 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   5294 
   5295 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   5296 		BNX_PRINTF(sc, "0x%08X : "
   5297 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   5298 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   5299 
   5300 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   5301 		BNX_PRINTF(sc, "0x%08X : "
   5302 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   5303 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   5304 
   5305 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   5306 		BNX_PRINTF(sc, "0x%08X : "
   5307 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   5308 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   5309 
   5310 	if (sblk->stat_EtherStatsPktsTx64Octets)
   5311 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   5312 		    sblk->stat_EtherStatsPktsTx64Octets);
   5313 
   5314 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   5315 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   5316 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   5317 
   5318 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   5319 		BNX_PRINTF(sc, "0x%08X : "
   5320 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   5321 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   5322 
   5323 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   5324 		BNX_PRINTF(sc, "0x%08X : "
   5325 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   5326 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   5327 
   5328 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   5329 		BNX_PRINTF(sc, "0x%08X : "
   5330 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   5331 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   5332 
   5333 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   5334 		BNX_PRINTF(sc, "0x%08X : "
   5335 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   5336 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   5337 
   5338 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   5339 		BNX_PRINTF(sc, "0x%08X : "
   5340 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   5341 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   5342 
   5343 	if (sblk->stat_XonPauseFramesReceived)
   5344 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   5345 		    sblk->stat_XonPauseFramesReceived);
   5346 
   5347 	if (sblk->stat_XoffPauseFramesReceived)
   5348 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   5349 		    sblk->stat_XoffPauseFramesReceived);
   5350 
   5351 	if (sblk->stat_OutXonSent)
   5352 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   5353 		    sblk->stat_OutXonSent);
   5354 
   5355 	if (sblk->stat_OutXoffSent)
   5356 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   5357 		    sblk->stat_OutXoffSent);
   5358 
   5359 	if (sblk->stat_FlowControlDone)
   5360 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   5361 		    sblk->stat_FlowControlDone);
   5362 
   5363 	if (sblk->stat_MacControlFramesReceived)
   5364 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   5365 		    sblk->stat_MacControlFramesReceived);
   5366 
   5367 	if (sblk->stat_XoffStateEntered)
   5368 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   5369 		    sblk->stat_XoffStateEntered);
   5370 
   5371 	if (sblk->stat_IfInFramesL2FilterDiscards)
   5372 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   5373 		    sblk->stat_IfInFramesL2FilterDiscards);
   5374 
   5375 	if (sblk->stat_IfInRuleCheckerDiscards)
   5376 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   5377 		    sblk->stat_IfInRuleCheckerDiscards);
   5378 
   5379 	if (sblk->stat_IfInFTQDiscards)
   5380 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   5381 		    sblk->stat_IfInFTQDiscards);
   5382 
   5383 	if (sblk->stat_IfInMBUFDiscards)
   5384 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   5385 		    sblk->stat_IfInMBUFDiscards);
   5386 
   5387 	if (sblk->stat_IfInRuleCheckerP4Hit)
   5388 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   5389 		    sblk->stat_IfInRuleCheckerP4Hit);
   5390 
   5391 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   5392 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   5393 		    sblk->stat_CatchupInRuleCheckerDiscards);
   5394 
   5395 	if (sblk->stat_CatchupInFTQDiscards)
   5396 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   5397 		    sblk->stat_CatchupInFTQDiscards);
   5398 
   5399 	if (sblk->stat_CatchupInMBUFDiscards)
   5400 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   5401 		    sblk->stat_CatchupInMBUFDiscards);
   5402 
   5403 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   5404 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   5405 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   5406 
   5407 	BNX_PRINTF(sc,
   5408 	    "-----------------------------"
   5409 	    "--------------"
   5410 	    "-----------------------------\n");
   5411 }
   5412 
   5413 void
   5414 bnx_dump_driver_state(struct bnx_softc *sc)
   5415 {
   5416 	BNX_PRINTF(sc,
   5417 	    "-----------------------------"
   5418 	    " Driver State "
   5419 	    "-----------------------------\n");
   5420 
   5421 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   5422 	    "address\n", sc);
   5423 
   5424 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   5425 	    sc->status_block);
   5426 
   5427 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   5428 	    "address\n", sc->stats_block);
   5429 
   5430 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   5431 	    "adddress\n", sc->tx_bd_chain);
   5432 
   5433 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   5434 	    sc->rx_bd_chain);
   5435 
   5436 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   5437 	    sc->tx_mbuf_ptr);
   5438 
   5439 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   5440 	    sc->rx_mbuf_ptr);
   5441 
   5442 	BNX_PRINTF(sc,
   5443 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   5444 	    sc->interrupts_generated);
   5445 
   5446 	BNX_PRINTF(sc,
   5447 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   5448 	    sc->rx_interrupts);
   5449 
   5450 	BNX_PRINTF(sc,
   5451 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   5452 	    sc->tx_interrupts);
   5453 
   5454 	BNX_PRINTF(sc,
   5455 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   5456 	    sc->last_status_idx);
   5457 
   5458 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   5459 	    sc->tx_prod);
   5460 
   5461 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   5462 	    sc->tx_cons);
   5463 
   5464 	BNX_PRINTF(sc,
   5465 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   5466 	    sc->tx_prod_bseq);
   5467 
   5468 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   5469 	    sc->rx_prod);
   5470 
   5471 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   5472 	    sc->rx_cons);
   5473 
   5474 	BNX_PRINTF(sc,
   5475 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   5476 	    sc->rx_prod_bseq);
   5477 
   5478 	BNX_PRINTF(sc,
   5479 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   5480 	    sc->rx_mbuf_alloc);
   5481 
   5482 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   5483 	    sc->free_rx_bd);
   5484 
   5485 	BNX_PRINTF(sc,
   5486 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   5487 	    sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
   5488 
   5489 	BNX_PRINTF(sc,
   5490 	    "         0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
   5491 	    sc->tx_mbuf_alloc);
   5492 
   5493 	BNX_PRINTF(sc,
   5494 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   5495 	    sc->rx_mbuf_alloc);
   5496 
   5497 	BNX_PRINTF(sc, "         0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   5498 	    sc->used_tx_bd);
   5499 
   5500 	BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   5501 	    sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
   5502 
   5503 	BNX_PRINTF(sc,
   5504 	    "         0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
   5505 	    sc->mbuf_alloc_failed);
   5506 
   5507 	BNX_PRINTF(sc, "-------------------------------------------"
   5508 	    "-----------------------------\n");
   5509 }
   5510 
   5511 void
   5512 bnx_dump_hw_state(struct bnx_softc *sc)
   5513 {
   5514 	u_int32_t		val1;
   5515 	int			i;
   5516 
   5517 	BNX_PRINTF(sc,
   5518 	    "----------------------------"
   5519 	    " Hardware State "
   5520 	    "----------------------------\n");
   5521 
   5522 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   5523 
   5524 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   5525 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   5526 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   5527 
   5528 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   5529 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   5530 
   5531 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   5532 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   5533 
   5534 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   5535 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   5536 	    BNX_EMAC_STATUS);
   5537 
   5538 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   5539 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   5540 
   5541 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   5542 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   5543 	    BNX_TBDR_STATUS);
   5544 
   5545 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   5546 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   5547 	    BNX_TDMA_STATUS);
   5548 
   5549 	val1 = REG_RD(sc, BNX_HC_STATUS);
   5550 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   5551 
   5552 	BNX_PRINTF(sc,
   5553 	    "----------------------------"
   5554 	    "----------------"
   5555 	    "----------------------------\n");
   5556 
   5557 	BNX_PRINTF(sc,
   5558 	    "----------------------------"
   5559 	    " Register  Dump "
   5560 	    "----------------------------\n");
   5561 
   5562 	for (i = 0x400; i < 0x8000; i += 0x10)
   5563 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   5564 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   5565 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   5566 
   5567 	BNX_PRINTF(sc,
   5568 	    "----------------------------"
   5569 	    "----------------"
   5570 	    "----------------------------\n");
   5571 }
   5572 
   5573 void
   5574 bnx_breakpoint(struct bnx_softc *sc)
   5575 {
   5576 	/* Unreachable code to shut the compiler up about unused functions. */
   5577 	if (0) {
   5578    		bnx_dump_txbd(sc, 0, NULL);
   5579 		bnx_dump_rxbd(sc, 0, NULL);
   5580 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   5581 		bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
   5582 		bnx_dump_l2fhdr(sc, 0, NULL);
   5583 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   5584 		bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
   5585 		bnx_dump_status_block(sc);
   5586 		bnx_dump_stats_block(sc);
   5587 		bnx_dump_driver_state(sc);
   5588 		bnx_dump_hw_state(sc);
   5589 	}
   5590 
   5591 	bnx_dump_driver_state(sc);
   5592 	/* Print the important status block fields. */
   5593 	bnx_dump_status_block(sc);
   5594 
   5595 #if 0
   5596 	/* Call the debugger. */
   5597 	breakpoint();
   5598 #endif
   5599 
   5600 	return;
   5601 }
   5602 #endif
   5603