Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.20.10.1
      1 /*	$NetBSD: if_bnx.c,v 1.20.10.1 2010/04/21 00:27:41 matt Exp $	*/
      2 /*      $OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
      3 
      4 /*-
      5  * Copyright (c) 2006 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.20.10.1 2010/04/21 00:27:41 matt Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5716  C0
     48  *
     49  * The following controllers are not supported by this driver:
     50  *
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, A1, B0, B1, B2, C0 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/microcode/bnx/bnxfw.h>
     64 
     65 /****************************************************************************/
     66 /* BNX Driver Version                                                       */
     67 /****************************************************************************/
     68 #define BNX_DRIVER_VERSION	"v0.9.6"
     69 
     70 /****************************************************************************/
     71 /* BNX Debug Options                                                        */
     72 /****************************************************************************/
     73 #ifdef BNX_DEBUG
     74 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     75 
     76 	/*          0 = Never              */
     77 	/*          1 = 1 in 2,147,483,648 */
     78 	/*        256 = 1 in     8,388,608 */
     79 	/*       2048 = 1 in     1,048,576 */
     80 	/*      65536 = 1 in        32,768 */
     81 	/*    1048576 = 1 in         2,048 */
     82 	/*  268435456 =	1 in             8 */
     83 	/*  536870912 = 1 in             4 */
     84 	/* 1073741824 = 1 in             2 */
     85 
     86 	/* Controls how often the l2_fhdr frame error check will fail. */
     87 	int bnx_debug_l2fhdr_status_check = 0;
     88 
     89 	/* Controls how often the unexpected attention check will fail. */
     90 	int bnx_debug_unexpected_attention = 0;
     91 
     92 	/* Controls how often to simulate an mbuf allocation failure. */
     93 	int bnx_debug_mbuf_allocation_failure = 0;
     94 
     95 	/* Controls how often to simulate a DMA mapping failure. */
     96 	int bnx_debug_dma_map_addr_failure = 0;
     97 
     98 	/* Controls how often to simulate a bootcode failure. */
     99 	int bnx_debug_bootcode_running_failure = 0;
    100 #endif
    101 
    102 /****************************************************************************/
    103 /* PCI Device ID Table                                                      */
    104 /*                                                                          */
    105 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    106 /****************************************************************************/
    107 static const struct bnx_product {
    108 	pci_vendor_id_t		bp_vendor;
    109 	pci_product_id_t	bp_product;
    110 	pci_vendor_id_t		bp_subvendor;
    111 	pci_product_id_t	bp_subproduct;
    112 	const char		*bp_name;
    113 } bnx_devices[] = {
    114 #ifdef PCI_SUBPRODUCT_HP_NC370T
    115 	{
    116 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    117 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    118 	  "HP NC370T Multifunction Gigabit Server Adapter"
    119 	},
    120 #endif
    121 #ifdef PCI_SUBPRODUCT_HP_NC370i
    122 	{
    123 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    124 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    125 	  "HP NC370i Multifunction Gigabit Server Adapter"
    126 	},
    127 #endif
    128 	{
    129 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    130 	  0, 0,
    131 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    132 	},
    133 #ifdef PCI_SUBPRODUCT_HP_NC370F
    134 	{
    135 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    136 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    137 	  "HP NC370F Multifunction Gigabit Server Adapter"
    138 	},
    139 #endif
    140 	{
    141 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    142 	  0, 0,
    143 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    144 	},
    145 	{
    146 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    147 	  0, 0,
    148 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    149 	},
    150 	{
    151 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    152 	  0, 0,
    153 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    154 	},
    155 	{
    156 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    157 	  0, 0,
    158 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    159 	},
    160 	{
    161 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    162 	  0, 0,
    163 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    164 	},
    165 	{
    166 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    167 	  0, 0,
    168 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    169 	},
    170 	{
    171 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    172 	  0, 0,
    173 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    174 	},
    175 };
    176 
    177 /****************************************************************************/
    178 /* Supported Flash NVRAM device data.                                       */
    179 /****************************************************************************/
    180 static struct flash_spec flash_table[] =
    181 {
    182 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    183 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    184 	/* Slow EEPROM */
    185 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    186 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    187 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    188 	 "EEPROM - slow"},
    189 	/* Expansion entry 0001 */
    190 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    191 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    192 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    193 	 "Entry 0001"},
    194 	/* Saifun SA25F010 (non-buffered flash) */
    195 	/* strap, cfg1, & write1 need updates */
    196 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    197 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    198 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    199 	 "Non-buffered flash (128kB)"},
    200 	/* Saifun SA25F020 (non-buffered flash) */
    201 	/* strap, cfg1, & write1 need updates */
    202 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    203 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    204 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    205 	 "Non-buffered flash (256kB)"},
    206 	/* Expansion entry 0100 */
    207 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    208 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    209 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    210 	 "Entry 0100"},
    211 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    212 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    213 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    214 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    215 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    216 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    217 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    218 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    219 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    220 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    221 	/* Saifun SA25F005 (non-buffered flash) */
    222 	/* strap, cfg1, & write1 need updates */
    223 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    224 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    225 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    226 	 "Non-buffered flash (64kB)"},
    227 	/* Fast EEPROM */
    228 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    229 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    230 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    231 	 "EEPROM - fast"},
    232 	/* Expansion entry 1001 */
    233 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    234 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    235 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    236 	 "Entry 1001"},
    237 	/* Expansion entry 1010 */
    238 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    239 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    240 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    241 	 "Entry 1010"},
    242 	/* ATMEL AT45DB011B (buffered flash) */
    243 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    244 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    245 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    246 	 "Buffered flash (128kB)"},
    247 	/* Expansion entry 1100 */
    248 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    249 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    250 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    251 	 "Entry 1100"},
    252 	/* Expansion entry 1101 */
    253 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    254 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    255 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    256 	 "Entry 1101"},
    257 	/* Ateml Expansion entry 1110 */
    258 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    259 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    260 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    261 	 "Entry 1110 (Atmel)"},
    262 	/* ATMEL AT45DB021B (buffered flash) */
    263 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    264 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    265 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    266 	 "Buffered flash (256kB)"},
    267 };
    268 
    269 /*
    270  * The BCM5709 controllers transparently handle the
    271  * differences between Atmel 264 byte pages and all
    272  * flash devices which use 256 byte pages, so no
    273  * logical-to-physical mapping is required in the
    274  * driver.
    275  */
    276 static struct flash_spec flash_5709 = {
    277 	.flags		= BNX_NV_BUFFERED,
    278 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    279 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    280 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    281 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    282 	.name		= "5709 buffered flash (256kB)",
    283 };
    284 
    285 /****************************************************************************/
    286 /* OpenBSD device entry points.                                             */
    287 /****************************************************************************/
    288 static int	bnx_probe(device_t, cfdata_t, void *);
    289 void	bnx_attach(device_t, device_t, void *);
    290 int	bnx_detach(device_t, int);
    291 
    292 /****************************************************************************/
    293 /* BNX Debug Data Structure Dump Routines                                   */
    294 /****************************************************************************/
    295 #ifdef BNX_DEBUG
    296 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    297 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    298 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    299 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    300 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    301 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    302 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    303 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    304 void	bnx_dump_status_block(struct bnx_softc *);
    305 void	bnx_dump_stats_block(struct bnx_softc *);
    306 void	bnx_dump_driver_state(struct bnx_softc *);
    307 void	bnx_dump_hw_state(struct bnx_softc *);
    308 void	bnx_breakpoint(struct bnx_softc *);
    309 #endif
    310 
    311 /****************************************************************************/
    312 /* BNX Register/Memory Access Routines                                      */
    313 /****************************************************************************/
    314 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
    315 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
    316 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
    317 int	bnx_miibus_read_reg(device_t, int, int);
    318 void	bnx_miibus_write_reg(device_t, int, int, int);
    319 void	bnx_miibus_statchg(device_t);
    320 
    321 /****************************************************************************/
    322 /* BNX NVRAM Access Routines                                                */
    323 /****************************************************************************/
    324 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    325 int	bnx_release_nvram_lock(struct bnx_softc *);
    326 void	bnx_enable_nvram_access(struct bnx_softc *);
    327 void	bnx_disable_nvram_access(struct bnx_softc *);
    328 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    329 	    u_int32_t);
    330 int	bnx_init_nvram(struct bnx_softc *);
    331 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    332 int	bnx_nvram_test(struct bnx_softc *);
    333 #ifdef BNX_NVRAM_WRITE_SUPPORT
    334 int	bnx_enable_nvram_write(struct bnx_softc *);
    335 void	bnx_disable_nvram_write(struct bnx_softc *);
    336 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
    337 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    338 	    u_int32_t);
    339 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    340 #endif
    341 
    342 /****************************************************************************/
    343 /*                                                                          */
    344 /****************************************************************************/
    345 void	bnx_get_media(struct bnx_softc *);
    346 int	bnx_dma_alloc(struct bnx_softc *);
    347 void	bnx_dma_free(struct bnx_softc *);
    348 void	bnx_release_resources(struct bnx_softc *);
    349 
    350 /****************************************************************************/
    351 /* BNX Firmware Synchronization and Load                                    */
    352 /****************************************************************************/
    353 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
    354 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
    355 	    u_int32_t);
    356 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    357 	    struct fw_info *);
    358 void	bnx_init_cpus(struct bnx_softc *);
    359 
    360 void	bnx_stop(struct ifnet *, int);
    361 int	bnx_reset(struct bnx_softc *, u_int32_t);
    362 int	bnx_chipinit(struct bnx_softc *);
    363 int	bnx_blockinit(struct bnx_softc *);
    364 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
    365 	    u_int16_t *, u_int32_t *);
    366 int	bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
    367 
    368 int	bnx_init_tx_chain(struct bnx_softc *);
    369 void	bnx_init_tx_context(struct bnx_softc *);
    370 int	bnx_init_rx_chain(struct bnx_softc *);
    371 void	bnx_init_rx_context(struct bnx_softc *);
    372 void	bnx_free_rx_chain(struct bnx_softc *);
    373 void	bnx_free_tx_chain(struct bnx_softc *);
    374 
    375 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    376 void	bnx_start(struct ifnet *);
    377 int	bnx_ioctl(struct ifnet *, u_long, void *);
    378 void	bnx_watchdog(struct ifnet *);
    379 int	bnx_init(struct ifnet *);
    380 
    381 void	bnx_init_context(struct bnx_softc *);
    382 void	bnx_get_mac_addr(struct bnx_softc *);
    383 void	bnx_set_mac_addr(struct bnx_softc *);
    384 void	bnx_phy_intr(struct bnx_softc *);
    385 void	bnx_rx_intr(struct bnx_softc *);
    386 void	bnx_tx_intr(struct bnx_softc *);
    387 void	bnx_disable_intr(struct bnx_softc *);
    388 void	bnx_enable_intr(struct bnx_softc *);
    389 
    390 int	bnx_intr(void *);
    391 void	bnx_iff(struct bnx_softc *);
    392 void	bnx_stats_update(struct bnx_softc *);
    393 void	bnx_tick(void *);
    394 
    395 struct pool *bnx_tx_pool = NULL;
    396 int	bnx_alloc_pkts(struct bnx_softc *);
    397 
    398 /****************************************************************************/
    399 /* OpenBSD device dispatch table.                                           */
    400 /****************************************************************************/
    401 CFATTACH_DECL_NEW(bnx, sizeof(struct bnx_softc),
    402     bnx_probe, bnx_attach, bnx_detach, NULL);
    403 
    404 /****************************************************************************/
    405 /* Device probe function.                                                   */
    406 /*                                                                          */
    407 /* Compares the device to the driver's list of supported devices and        */
    408 /* reports back to the OS whether this is the right driver for the device.  */
    409 /*                                                                          */
    410 /* Returns:                                                                 */
    411 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    412 /****************************************************************************/
    413 static const struct bnx_product *
    414 bnx_lookup(const struct pci_attach_args *pa)
    415 {
    416 	int i;
    417 	pcireg_t subid;
    418 
    419 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    420 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    421 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    422 			continue;
    423 		if (!bnx_devices[i].bp_subvendor)
    424 			return &bnx_devices[i];
    425 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    426 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    427 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    428 			return &bnx_devices[i];
    429 	}
    430 
    431 	return NULL;
    432 }
    433 static int
    434 bnx_probe(device_t parent, cfdata_t match, void *aux)
    435 {
    436 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    437 
    438 	if (bnx_lookup(pa) != NULL)
    439 		return (1);
    440 
    441 	return (0);
    442 }
    443 
    444 /****************************************************************************/
    445 /* Device attach function.                                                  */
    446 /*                                                                          */
    447 /* Allocates device resources, performs secondary chip identification,      */
    448 /* resets and initializes the hardware, and initializes driver instance     */
    449 /* variables.                                                               */
    450 /*                                                                          */
    451 /* Returns:                                                                 */
    452 /*   0 on success, positive value on failure.                               */
    453 /****************************************************************************/
    454 void
    455 bnx_attach(device_t parent, device_t self, void *aux)
    456 {
    457 	const struct bnx_product *bp;
    458 	struct bnx_softc	*sc = device_private(self);
    459 	struct pci_attach_args	*pa = aux;
    460 	pci_chipset_tag_t	pc = pa->pa_pc;
    461 	pci_intr_handle_t	ih;
    462 	const char 		*intrstr = NULL;
    463 	u_int32_t		command;
    464 	struct ifnet		*ifp;
    465 	u_int32_t		val;
    466 	int			mii_flags = MIIF_FORCEANEG;
    467 	pcireg_t		memtype;
    468 
    469 	if (bnx_tx_pool == NULL) {
    470 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    471 		if (bnx_tx_pool != NULL) {
    472 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    473 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    474 		} else {
    475 			aprint_error(": can't alloc bnx_tx_pool\n");
    476 			return;
    477 		}
    478 	}
    479 
    480 	bp = bnx_lookup(pa);
    481 	if (bp == NULL)
    482 		panic("unknown device");
    483 
    484 	sc->bnx_dev = self;
    485 
    486 	aprint_naive("\n");
    487 	aprint_normal(": %s\n", bp->bp_name);
    488 
    489 	sc->bnx_pa = *pa;
    490 
    491 	/*
    492 	 * Map control/status registers.
    493 	*/
    494 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    495 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    496 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    497 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    498 
    499 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    500 		aprint_error_dev(sc->bnx_dev,
    501 		    "failed to enable memory mapping!\n");
    502 		return;
    503 	}
    504 
    505 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    506 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    507 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    508 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    509 		return;
    510 	}
    511 
    512 	if (pci_intr_map(pa, &ih)) {
    513 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    514 		goto bnx_attach_fail;
    515 	}
    516 
    517 	intrstr = pci_intr_string(pc, ih);
    518 
    519 	/*
    520 	 * Configure byte swap and enable indirect register access.
    521 	 * Rely on CPU to do target byte swapping on big endian systems.
    522 	 * Access to registers outside of PCI configurtion space are not
    523 	 * valid until this is done.
    524 	 */
    525 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    526 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    527 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    528 
    529 	/* Save ASIC revsion info. */
    530 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    531 
    532 	/*
    533 	 * Find the base address for shared memory access.
    534 	 * Newer versions of bootcode use a signature and offset
    535 	 * while older versions use a fixed address.
    536 	 */
    537 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    538 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    539 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    540 		    (sc->bnx_pa.pa_function << 2));
    541 	else
    542 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    543 
    544 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    545 
    546 	/* Set initial device and PHY flags */
    547 	sc->bnx_flags = 0;
    548 	sc->bnx_phy_flags = 0;
    549 
    550 	/* Get PCI bus information (speed and type). */
    551 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    552 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    553 		u_int32_t clkreg;
    554 
    555 		sc->bnx_flags |= BNX_PCIX_FLAG;
    556 
    557 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    558 
    559 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    560 		switch (clkreg) {
    561 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    562 			sc->bus_speed_mhz = 133;
    563 			break;
    564 
    565 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    566 			sc->bus_speed_mhz = 100;
    567 			break;
    568 
    569 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    570 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    571 			sc->bus_speed_mhz = 66;
    572 			break;
    573 
    574 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    575 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    576 			sc->bus_speed_mhz = 50;
    577 			break;
    578 
    579 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    580 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    581 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    582 			sc->bus_speed_mhz = 33;
    583 			break;
    584 		}
    585 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    586 			sc->bus_speed_mhz = 66;
    587 		else
    588 			sc->bus_speed_mhz = 33;
    589 
    590 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    591 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    592 
    593 	/* Reset the controller. */
    594 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    595 		goto bnx_attach_fail;
    596 
    597 	/* Initialize the controller. */
    598 	if (bnx_chipinit(sc)) {
    599 		aprint_error_dev(sc->bnx_dev,
    600 		    "Controller initialization failed!\n");
    601 		goto bnx_attach_fail;
    602 	}
    603 
    604 	/* Perform NVRAM test. */
    605 	if (bnx_nvram_test(sc)) {
    606 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    607 		goto bnx_attach_fail;
    608 	}
    609 
    610 	/* Fetch the permanent Ethernet MAC address. */
    611 	bnx_get_mac_addr(sc);
    612 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    613 	    ether_sprintf(sc->eaddr));
    614 
    615 	/*
    616 	 * Trip points control how many BDs
    617 	 * should be ready before generating an
    618 	 * interrupt while ticks control how long
    619 	 * a BD can sit in the chain before
    620 	 * generating an interrupt.  Set the default
    621 	 * values for the RX and TX rings.
    622 	 */
    623 
    624 #ifdef BNX_DEBUG
    625 	/* Force more frequent interrupts. */
    626 	sc->bnx_tx_quick_cons_trip_int = 1;
    627 	sc->bnx_tx_quick_cons_trip     = 1;
    628 	sc->bnx_tx_ticks_int           = 0;
    629 	sc->bnx_tx_ticks               = 0;
    630 
    631 	sc->bnx_rx_quick_cons_trip_int = 1;
    632 	sc->bnx_rx_quick_cons_trip     = 1;
    633 	sc->bnx_rx_ticks_int           = 0;
    634 	sc->bnx_rx_ticks               = 0;
    635 #else
    636 	sc->bnx_tx_quick_cons_trip_int = 20;
    637 	sc->bnx_tx_quick_cons_trip     = 20;
    638 	sc->bnx_tx_ticks_int           = 80;
    639 	sc->bnx_tx_ticks               = 80;
    640 
    641 	sc->bnx_rx_quick_cons_trip_int = 6;
    642 	sc->bnx_rx_quick_cons_trip     = 6;
    643 	sc->bnx_rx_ticks_int           = 18;
    644 	sc->bnx_rx_ticks               = 18;
    645 #endif
    646 
    647 	/* Update statistics once every second. */
    648 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    649 
    650 	/* Find the media type for the adapter. */
    651 	bnx_get_media(sc);
    652 
    653 	/*
    654 	 * Store config data needed by the PHY driver for
    655 	 * backplane applications
    656 	 */
    657 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    658 	    BNX_SHARED_HW_CFG_CONFIG);
    659 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    660 	    BNX_PORT_HW_CFG_CONFIG);
    661 
    662 	/* Allocate DMA memory resources. */
    663 	sc->bnx_dmatag = pa->pa_dmat;
    664 	if (bnx_dma_alloc(sc)) {
    665 		aprint_error_dev(sc->bnx_dev,
    666 		    "DMA resource allocation failed!\n");
    667 		goto bnx_attach_fail;
    668 	}
    669 
    670 	/* Initialize the ifnet interface. */
    671 	ifp = &sc->bnx_ec.ec_if;
    672 	ifp->if_softc = sc;
    673 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    674 	ifp->if_ioctl = bnx_ioctl;
    675 	ifp->if_stop = bnx_stop;
    676 	ifp->if_start = bnx_start;
    677 	ifp->if_init = bnx_init;
    678 	ifp->if_timer = 0;
    679 	ifp->if_watchdog = bnx_watchdog;
    680 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    681 	IFQ_SET_READY(&ifp->if_snd);
    682 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    683 
    684 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    685 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    686 
    687 	ifp->if_capabilities |=
    688 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    689 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    690 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    691 
    692 	/* Hookup IRQ last. */
    693 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    694 	if (sc->bnx_intrhand == NULL) {
    695 		aprint_error_dev(self, "couldn't establish interrupt");
    696 		if (intrstr != NULL)
    697 			aprint_error(" at %s", intrstr);
    698 		aprint_error("\n");
    699 		goto bnx_attach_fail;
    700 	}
    701 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    702 
    703 	sc->bnx_mii.mii_ifp = ifp;
    704 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    705 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    706 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    707 
    708 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    709 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    710 	    ether_mediastatus);
    711 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    712 		mii_flags |= MIIF_HAVEFIBER;
    713 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    714 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    715 
    716 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    717 		aprint_error_dev(self, "no PHY found!\n");
    718 		ifmedia_add(&sc->bnx_mii.mii_media,
    719 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    720 		ifmedia_set(&sc->bnx_mii.mii_media,
    721 		    IFM_ETHER|IFM_MANUAL);
    722 	} else {
    723 		ifmedia_set(&sc->bnx_mii.mii_media,
    724 		    IFM_ETHER|IFM_AUTO);
    725 	}
    726 
    727 	/* Attach to the Ethernet interface list. */
    728 	if_attach(ifp);
    729 	ether_ifattach(ifp,sc->eaddr);
    730 
    731 	callout_init(&sc->bnx_timeout, 0);
    732 
    733 	if (!pmf_device_register(self, NULL, NULL))
    734 		aprint_error_dev(self, "couldn't establish power handler\n");
    735 	else
    736 		pmf_class_network_register(self, ifp);
    737 
    738 	/* Print some important debugging info. */
    739 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    740 
    741 	goto bnx_attach_exit;
    742 
    743 bnx_attach_fail:
    744 	bnx_release_resources(sc);
    745 
    746 bnx_attach_exit:
    747 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    748 }
    749 
    750 /****************************************************************************/
    751 /* Device detach function.                                                  */
    752 /*                                                                          */
    753 /* Stops the controller, resets the controller, and releases resources.     */
    754 /*                                                                          */
    755 /* Returns:                                                                 */
    756 /*   0 on success, positive value on failure.                               */
    757 /****************************************************************************/
    758 int
    759 bnx_detach(device_t dev, int flags)
    760 {
    761 	int s;
    762 	struct bnx_softc *sc;
    763 	struct ifnet *ifp;
    764 
    765 	sc = device_private(dev);
    766 	ifp = &sc->bnx_ec.ec_if;
    767 
    768 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    769 
    770 	/* Stop and reset the controller. */
    771 	s = splnet();
    772 	if (ifp->if_flags & IFF_RUNNING)
    773 		bnx_stop(ifp, 1);
    774 	else {
    775 		/* Disable the transmit/receive blocks. */
    776 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
    777 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
    778 		DELAY(20);
    779 		bnx_disable_intr(sc);
    780 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
    781 	}
    782 
    783 	splx(s);
    784 
    785 	pmf_device_deregister(dev);
    786 	ether_ifdetach(ifp);
    787 	if_detach(ifp);
    788 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    789 
    790 	/* Release all remaining resources. */
    791 	bnx_release_resources(sc);
    792 
    793 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    794 
    795 	return(0);
    796 }
    797 
    798 /****************************************************************************/
    799 /* Indirect register read.                                                  */
    800 /*                                                                          */
    801 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    802 /* configuration space.  Using this mechanism avoids issues with posted     */
    803 /* reads but is much slower than memory-mapped I/O.                         */
    804 /*                                                                          */
    805 /* Returns:                                                                 */
    806 /*   The value of the register.                                             */
    807 /****************************************************************************/
    808 u_int32_t
    809 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
    810 {
    811 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    812 
    813 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    814 	    offset);
    815 #ifdef BNX_DEBUG
    816 	{
    817 		u_int32_t val;
    818 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    819 		    BNX_PCICFG_REG_WINDOW);
    820 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    821 		    "val = 0x%08X\n", __func__, offset, val);
    822 		return (val);
    823 	}
    824 #else
    825 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    826 #endif
    827 }
    828 
    829 /****************************************************************************/
    830 /* Indirect register write.                                                 */
    831 /*                                                                          */
    832 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    833 /* configuration space.  Using this mechanism avoids issues with posted     */
    834 /* writes but is muchh slower than memory-mapped I/O.                       */
    835 /*                                                                          */
    836 /* Returns:                                                                 */
    837 /*   Nothing.                                                               */
    838 /****************************************************************************/
    839 void
    840 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
    841 {
    842 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    843 
    844 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    845 		__func__, offset, val);
    846 
    847 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    848 	    offset);
    849 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    850 }
    851 
    852 /****************************************************************************/
    853 /* Context memory write.                                                    */
    854 /*                                                                          */
    855 /* The NetXtreme II controller uses context memory to track connection      */
    856 /* information for L2 and higher network protocols.                         */
    857 /*                                                                          */
    858 /* Returns:                                                                 */
    859 /*   Nothing.                                                               */
    860 /****************************************************************************/
    861 void
    862 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
    863     u_int32_t ctx_val)
    864 {
    865 	u_int32_t idx, offset = ctx_offset + cid_addr;
    866 	u_int32_t val, retry_cnt = 5;
    867 
    868 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
    869 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
    870 		REG_WR(sc, BNX_CTX_CTX_CTRL,
    871 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
    872 
    873 		for (idx = 0; idx < retry_cnt; idx++) {
    874 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
    875 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
    876 				break;
    877 			DELAY(5);
    878 		}
    879 
    880 #if 0
    881 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
    882 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
    883 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
    884 				__FILE__, __LINE__, cid_addr, ctx_offset);
    885 #endif
    886 
    887 	} else {
    888 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
    889 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
    890 	}
    891 }
    892 
    893 /****************************************************************************/
    894 /* PHY register read.                                                       */
    895 /*                                                                          */
    896 /* Implements register reads on the MII bus.                                */
    897 /*                                                                          */
    898 /* Returns:                                                                 */
    899 /*   The value of the register.                                             */
    900 /****************************************************************************/
    901 int
    902 bnx_miibus_read_reg(device_t dev, int phy, int reg)
    903 {
    904 	struct bnx_softc	*sc = device_private(dev);
    905 	u_int32_t		val;
    906 	int			i;
    907 
    908 	/* Make sure we are accessing the correct PHY address. */
    909 	if (phy != sc->bnx_phy_addr) {
    910 		DBPRINT(sc, BNX_VERBOSE,
    911 		    "Invalid PHY address %d for PHY read!\n", phy);
    912 		return(0);
    913 	}
    914 
    915 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    916 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    917 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    918 
    919 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    920 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    921 
    922 		DELAY(40);
    923 	}
    924 
    925 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
    926 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
    927 	    BNX_EMAC_MDIO_COMM_START_BUSY;
    928 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
    929 
    930 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    931 		DELAY(10);
    932 
    933 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    934 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    935 			DELAY(5);
    936 
    937 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    938 			val &= BNX_EMAC_MDIO_COMM_DATA;
    939 
    940 			break;
    941 		}
    942 	}
    943 
    944 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
    945 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
    946 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
    947 		val = 0x0;
    948 	} else
    949 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    950 
    951 	DBPRINT(sc, BNX_EXCESSIVE,
    952 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
    953 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    954 
    955 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    956 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    957 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    958 
    959 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    960 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    961 
    962 		DELAY(40);
    963 	}
    964 
    965 	return (val & 0xffff);
    966 }
    967 
    968 /****************************************************************************/
    969 /* PHY register write.                                                      */
    970 /*                                                                          */
    971 /* Implements register writes on the MII bus.                               */
    972 /*                                                                          */
    973 /* Returns:                                                                 */
    974 /*   The value of the register.                                             */
    975 /****************************************************************************/
    976 void
    977 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
    978 {
    979 	struct bnx_softc	*sc = device_private(dev);
    980 	u_int32_t		val1;
    981 	int			i;
    982 
    983 	/* Make sure we are accessing the correct PHY address. */
    984 	if (phy != sc->bnx_phy_addr) {
    985 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
    986 		    phy);
    987 		return;
    988 	}
    989 
    990 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
    991 	    "val = 0x%04X\n", __func__,
    992 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    993 
    994 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    995 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    996 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    997 
    998 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
    999 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1000 
   1001 		DELAY(40);
   1002 	}
   1003 
   1004 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1005 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1006 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1007 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1008 
   1009 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1010 		DELAY(10);
   1011 
   1012 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1013 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1014 			DELAY(5);
   1015 			break;
   1016 		}
   1017 	}
   1018 
   1019 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1020 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1021 		    __LINE__);
   1022 	}
   1023 
   1024 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1025 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1026 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1027 
   1028 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1029 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1030 
   1031 		DELAY(40);
   1032 	}
   1033 }
   1034 
   1035 /****************************************************************************/
   1036 /* MII bus status change.                                                   */
   1037 /*                                                                          */
   1038 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1039 /* MAC interface registers.                                                 */
   1040 /*                                                                          */
   1041 /* Returns:                                                                 */
   1042 /*   Nothing.                                                               */
   1043 /****************************************************************************/
   1044 void
   1045 bnx_miibus_statchg(device_t dev)
   1046 {
   1047 	struct bnx_softc	*sc = device_private(dev);
   1048 	struct mii_data		*mii = &sc->bnx_mii;
   1049 	int			val;
   1050 
   1051 	val = REG_RD(sc, BNX_EMAC_MODE);
   1052 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1053 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1054 	    BNX_EMAC_MODE_25G);
   1055 
   1056 	/* Set MII or GMII interface based on the speed
   1057 	 * negotiated by the PHY.
   1058 	 */
   1059 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1060 	case IFM_10_T:
   1061 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1062 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1063 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1064 			break;
   1065 		}
   1066 		/* FALLTHROUGH */
   1067 	case IFM_100_TX:
   1068 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1069 		val |= BNX_EMAC_MODE_PORT_MII;
   1070 		break;
   1071 	case IFM_2500_SX:
   1072 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1073 		val |= BNX_EMAC_MODE_25G;
   1074 		/* FALLTHROUGH */
   1075 	case IFM_1000_T:
   1076 	case IFM_1000_SX:
   1077 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1078 		val |= BNX_EMAC_MODE_PORT_GMII;
   1079 		break;
   1080 	default:
   1081 		val |= BNX_EMAC_MODE_PORT_GMII;
   1082 		break;
   1083 	}
   1084 
   1085 	/* Set half or full duplex based on the duplicity
   1086 	 * negotiated by the PHY.
   1087 	 */
   1088 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1089 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1090 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1091 	} else {
   1092 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1093 	}
   1094 
   1095 	REG_WR(sc, BNX_EMAC_MODE, val);
   1096 }
   1097 
   1098 /****************************************************************************/
   1099 /* Acquire NVRAM lock.                                                      */
   1100 /*                                                                          */
   1101 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1102 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1103 /* for use by the driver.                                                   */
   1104 /*                                                                          */
   1105 /* Returns:                                                                 */
   1106 /*   0 on success, positive value on failure.                               */
   1107 /****************************************************************************/
   1108 int
   1109 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1110 {
   1111 	u_int32_t		val;
   1112 	int			j;
   1113 
   1114 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1115 
   1116 	/* Request access to the flash interface. */
   1117 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1118 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1119 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1120 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1121 			break;
   1122 
   1123 		DELAY(5);
   1124 	}
   1125 
   1126 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1127 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1128 		return (EBUSY);
   1129 	}
   1130 
   1131 	return (0);
   1132 }
   1133 
   1134 /****************************************************************************/
   1135 /* Release NVRAM lock.                                                      */
   1136 /*                                                                          */
   1137 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1138 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1139 /* for use by the driver.                                                   */
   1140 /*                                                                          */
   1141 /* Returns:                                                                 */
   1142 /*   0 on success, positive value on failure.                               */
   1143 /****************************************************************************/
   1144 int
   1145 bnx_release_nvram_lock(struct bnx_softc *sc)
   1146 {
   1147 	int			j;
   1148 	u_int32_t		val;
   1149 
   1150 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1151 
   1152 	/* Relinquish nvram interface. */
   1153 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1154 
   1155 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1156 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1157 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1158 			break;
   1159 
   1160 		DELAY(5);
   1161 	}
   1162 
   1163 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1164 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1165 		return (EBUSY);
   1166 	}
   1167 
   1168 	return (0);
   1169 }
   1170 
   1171 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1172 /****************************************************************************/
   1173 /* Enable NVRAM write access.                                               */
   1174 /*                                                                          */
   1175 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1176 /*                                                                          */
   1177 /* Returns:                                                                 */
   1178 /*   0 on success, positive value on failure.                               */
   1179 /****************************************************************************/
   1180 int
   1181 bnx_enable_nvram_write(struct bnx_softc *sc)
   1182 {
   1183 	u_int32_t		val;
   1184 
   1185 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1186 
   1187 	val = REG_RD(sc, BNX_MISC_CFG);
   1188 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1189 
   1190 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1191 		int j;
   1192 
   1193 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1194 		REG_WR(sc, BNX_NVM_COMMAND,
   1195 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1196 
   1197 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1198 			DELAY(5);
   1199 
   1200 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1201 			if (val & BNX_NVM_COMMAND_DONE)
   1202 				break;
   1203 		}
   1204 
   1205 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1206 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1207 			return (EBUSY);
   1208 		}
   1209 	}
   1210 
   1211 	return (0);
   1212 }
   1213 
   1214 /****************************************************************************/
   1215 /* Disable NVRAM write access.                                              */
   1216 /*                                                                          */
   1217 /* When the caller is finished writing to NVRAM write access must be        */
   1218 /* disabled.                                                                */
   1219 /*                                                                          */
   1220 /* Returns:                                                                 */
   1221 /*   Nothing.                                                               */
   1222 /****************************************************************************/
   1223 void
   1224 bnx_disable_nvram_write(struct bnx_softc *sc)
   1225 {
   1226 	u_int32_t		val;
   1227 
   1228 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1229 
   1230 	val = REG_RD(sc, BNX_MISC_CFG);
   1231 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1232 }
   1233 #endif
   1234 
   1235 /****************************************************************************/
   1236 /* Enable NVRAM access.                                                     */
   1237 /*                                                                          */
   1238 /* Before accessing NVRAM for read or write operations the caller must      */
   1239 /* enabled NVRAM access.                                                    */
   1240 /*                                                                          */
   1241 /* Returns:                                                                 */
   1242 /*   Nothing.                                                               */
   1243 /****************************************************************************/
   1244 void
   1245 bnx_enable_nvram_access(struct bnx_softc *sc)
   1246 {
   1247 	u_int32_t		val;
   1248 
   1249 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1250 
   1251 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1252 	/* Enable both bits, even on read. */
   1253 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1254 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1255 }
   1256 
   1257 /****************************************************************************/
   1258 /* Disable NVRAM access.                                                    */
   1259 /*                                                                          */
   1260 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1261 /*                                                                          */
   1262 /* Returns:                                                                 */
   1263 /*   Nothing.                                                               */
   1264 /****************************************************************************/
   1265 void
   1266 bnx_disable_nvram_access(struct bnx_softc *sc)
   1267 {
   1268 	u_int32_t		val;
   1269 
   1270 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1271 
   1272 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1273 
   1274 	/* Disable both bits, even after read. */
   1275 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1276 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1277 }
   1278 
   1279 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1280 /****************************************************************************/
   1281 /* Erase NVRAM page before writing.                                         */
   1282 /*                                                                          */
   1283 /* Non-buffered flash parts require that a page be erased before it is      */
   1284 /* written.                                                                 */
   1285 /*                                                                          */
   1286 /* Returns:                                                                 */
   1287 /*   0 on success, positive value on failure.                               */
   1288 /****************************************************************************/
   1289 int
   1290 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
   1291 {
   1292 	u_int32_t		cmd;
   1293 	int			j;
   1294 
   1295 	/* Buffered flash doesn't require an erase. */
   1296 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1297 		return (0);
   1298 
   1299 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1300 
   1301 	/* Build an erase command. */
   1302 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1303 	    BNX_NVM_COMMAND_DOIT;
   1304 
   1305 	/*
   1306 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
   1307 	 * and issue the erase command.
   1308 	 */
   1309 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1310 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1311 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1312 
   1313 	/* Wait for completion. */
   1314 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1315 		u_int32_t val;
   1316 
   1317 		DELAY(5);
   1318 
   1319 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1320 		if (val & BNX_NVM_COMMAND_DONE)
   1321 			break;
   1322 	}
   1323 
   1324 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1325 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1326 		return (EBUSY);
   1327 	}
   1328 
   1329 	return (0);
   1330 }
   1331 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1332 
   1333 /****************************************************************************/
   1334 /* Read a dword (32 bits) from NVRAM.                                       */
   1335 /*                                                                          */
   1336 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1337 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1338 /*                                                                          */
   1339 /* Returns:                                                                 */
   1340 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1341 /****************************************************************************/
   1342 int
   1343 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
   1344     u_int8_t *ret_val, u_int32_t cmd_flags)
   1345 {
   1346 	u_int32_t		cmd;
   1347 	int			i, rc = 0;
   1348 
   1349 	/* Build the command word. */
   1350 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1351 
   1352 	/* Calculate the offset for buffered flash if translation is used. */
   1353 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1354 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1355 		    sc->bnx_flash_info->page_bits) +
   1356 		    (offset % sc->bnx_flash_info->page_size);
   1357 	}
   1358 
   1359 	/*
   1360 	 * Clear the DONE bit separately, set the address to read,
   1361 	 * and issue the read.
   1362 	 */
   1363 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1364 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1365 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1366 
   1367 	/* Wait for completion. */
   1368 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1369 		u_int32_t val;
   1370 
   1371 		DELAY(5);
   1372 
   1373 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1374 		if (val & BNX_NVM_COMMAND_DONE) {
   1375 			val = REG_RD(sc, BNX_NVM_READ);
   1376 
   1377 			val = bnx_be32toh(val);
   1378 			memcpy(ret_val, &val, 4);
   1379 			break;
   1380 		}
   1381 	}
   1382 
   1383 	/* Check for errors. */
   1384 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1385 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1386 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1387 		rc = EBUSY;
   1388 	}
   1389 
   1390 	return(rc);
   1391 }
   1392 
   1393 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1394 /****************************************************************************/
   1395 /* Write a dword (32 bits) to NVRAM.                                        */
   1396 /*                                                                          */
   1397 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1398 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1399 /* enabled NVRAM write access.                                              */
   1400 /*                                                                          */
   1401 /* Returns:                                                                 */
   1402 /*   0 on success, positive value on failure.                               */
   1403 /****************************************************************************/
   1404 int
   1405 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
   1406     u_int32_t cmd_flags)
   1407 {
   1408 	u_int32_t		cmd, val32;
   1409 	int			j;
   1410 
   1411 	/* Build the command word. */
   1412 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1413 
   1414 	/* Calculate the offset for buffered flash if translation is used. */
   1415 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1416 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1417 		    sc->bnx_flash_info->page_bits) +
   1418 		    (offset % sc->bnx_flash_info->page_size);
   1419 	}
   1420 
   1421 	/*
   1422 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1423 	 * set the NVRAM address to write, and issue the write command
   1424 	 */
   1425 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1426 	memcpy(&val32, val, 4);
   1427 	val32 = htobe32(val32);
   1428 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1429 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1430 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1431 
   1432 	/* Wait for completion. */
   1433 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1434 		DELAY(5);
   1435 
   1436 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1437 			break;
   1438 	}
   1439 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1440 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1441 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1442 		return (EBUSY);
   1443 	}
   1444 
   1445 	return (0);
   1446 }
   1447 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1448 
   1449 /****************************************************************************/
   1450 /* Initialize NVRAM access.                                                 */
   1451 /*                                                                          */
   1452 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1453 /* access that device.                                                      */
   1454 /*                                                                          */
   1455 /* Returns:                                                                 */
   1456 /*   0 on success, positive value on failure.                               */
   1457 /****************************************************************************/
   1458 int
   1459 bnx_init_nvram(struct bnx_softc *sc)
   1460 {
   1461 	u_int32_t		val;
   1462 	int			j, entry_count, rc = 0;
   1463 	struct flash_spec	*flash;
   1464 
   1465 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1466 
   1467 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1468 		sc->bnx_flash_info = &flash_5709;
   1469 		goto bnx_init_nvram_get_flash_size;
   1470 	}
   1471 
   1472 	/* Determine the selected interface. */
   1473 	val = REG_RD(sc, BNX_NVM_CFG1);
   1474 
   1475 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1476 
   1477 	/*
   1478 	 * Flash reconfiguration is required to support additional
   1479 	 * NVRAM devices not directly supported in hardware.
   1480 	 * Check if the flash interface was reconfigured
   1481 	 * by the bootcode.
   1482 	 */
   1483 
   1484 	if (val & 0x40000000) {
   1485 		/* Flash interface reconfigured by bootcode. */
   1486 
   1487 		DBPRINT(sc,BNX_INFO_LOAD,
   1488 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1489 
   1490 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1491 		     j++, flash++) {
   1492 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1493 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1494 				sc->bnx_flash_info = flash;
   1495 				break;
   1496 			}
   1497 		}
   1498 	} else {
   1499 		/* Flash interface not yet reconfigured. */
   1500 		u_int32_t mask;
   1501 
   1502 		DBPRINT(sc,BNX_INFO_LOAD,
   1503 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1504 
   1505 		if (val & (1 << 23))
   1506 			mask = FLASH_BACKUP_STRAP_MASK;
   1507 		else
   1508 			mask = FLASH_STRAP_MASK;
   1509 
   1510 		/* Look for the matching NVRAM device configuration data. */
   1511 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1512 		    j++, flash++) {
   1513 			/* Check if the dev matches any of the known devices. */
   1514 			if ((val & mask) == (flash->strapping & mask)) {
   1515 				/* Found a device match. */
   1516 				sc->bnx_flash_info = flash;
   1517 
   1518 				/* Request access to the flash interface. */
   1519 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1520 					return (rc);
   1521 
   1522 				/* Reconfigure the flash interface. */
   1523 				bnx_enable_nvram_access(sc);
   1524 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1525 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1526 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1527 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1528 				bnx_disable_nvram_access(sc);
   1529 				bnx_release_nvram_lock(sc);
   1530 
   1531 				break;
   1532 			}
   1533 		}
   1534 	}
   1535 
   1536 	/* Check if a matching device was found. */
   1537 	if (j == entry_count) {
   1538 		sc->bnx_flash_info = NULL;
   1539 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1540 			__FILE__, __LINE__);
   1541 		rc = ENODEV;
   1542 	}
   1543 
   1544 bnx_init_nvram_get_flash_size:
   1545 	/* Write the flash config data to the shared memory interface. */
   1546 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1547 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1548 	if (val)
   1549 		sc->bnx_flash_size = val;
   1550 	else
   1551 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1552 
   1553 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1554 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1555 
   1556 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1557 
   1558 	return (rc);
   1559 }
   1560 
   1561 /****************************************************************************/
   1562 /* Read an arbitrary range of data from NVRAM.                              */
   1563 /*                                                                          */
   1564 /* Prepares the NVRAM interface for access and reads the requested data     */
   1565 /* into the supplied buffer.                                                */
   1566 /*                                                                          */
   1567 /* Returns:                                                                 */
   1568 /*   0 on success and the data read, positive value on failure.             */
   1569 /****************************************************************************/
   1570 int
   1571 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
   1572     int buf_size)
   1573 {
   1574 	int			rc = 0;
   1575 	u_int32_t		cmd_flags, offset32, len32, extra;
   1576 
   1577 	if (buf_size == 0)
   1578 		return (0);
   1579 
   1580 	/* Request access to the flash interface. */
   1581 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1582 		return (rc);
   1583 
   1584 	/* Enable access to flash interface */
   1585 	bnx_enable_nvram_access(sc);
   1586 
   1587 	len32 = buf_size;
   1588 	offset32 = offset;
   1589 	extra = 0;
   1590 
   1591 	cmd_flags = 0;
   1592 
   1593 	if (offset32 & 3) {
   1594 		u_int8_t buf[4];
   1595 		u_int32_t pre_len;
   1596 
   1597 		offset32 &= ~3;
   1598 		pre_len = 4 - (offset & 3);
   1599 
   1600 		if (pre_len >= len32) {
   1601 			pre_len = len32;
   1602 			cmd_flags =
   1603 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1604 		} else
   1605 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1606 
   1607 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1608 
   1609 		if (rc)
   1610 			return (rc);
   1611 
   1612 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1613 
   1614 		offset32 += 4;
   1615 		ret_buf += pre_len;
   1616 		len32 -= pre_len;
   1617 	}
   1618 
   1619 	if (len32 & 3) {
   1620 		extra = 4 - (len32 & 3);
   1621 		len32 = (len32 + 4) & ~3;
   1622 	}
   1623 
   1624 	if (len32 == 4) {
   1625 		u_int8_t buf[4];
   1626 
   1627 		if (cmd_flags)
   1628 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1629 		else
   1630 			cmd_flags =
   1631 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1632 
   1633 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1634 
   1635 		memcpy(ret_buf, buf, 4 - extra);
   1636 	} else if (len32 > 0) {
   1637 		u_int8_t buf[4];
   1638 
   1639 		/* Read the first word. */
   1640 		if (cmd_flags)
   1641 			cmd_flags = 0;
   1642 		else
   1643 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1644 
   1645 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1646 
   1647 		/* Advance to the next dword. */
   1648 		offset32 += 4;
   1649 		ret_buf += 4;
   1650 		len32 -= 4;
   1651 
   1652 		while (len32 > 4 && rc == 0) {
   1653 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1654 
   1655 			/* Advance to the next dword. */
   1656 			offset32 += 4;
   1657 			ret_buf += 4;
   1658 			len32 -= 4;
   1659 		}
   1660 
   1661 		if (rc)
   1662 			return (rc);
   1663 
   1664 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1665 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1666 
   1667 		memcpy(ret_buf, buf, 4 - extra);
   1668 	}
   1669 
   1670 	/* Disable access to flash interface and release the lock. */
   1671 	bnx_disable_nvram_access(sc);
   1672 	bnx_release_nvram_lock(sc);
   1673 
   1674 	return (rc);
   1675 }
   1676 
   1677 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1678 /****************************************************************************/
   1679 /* Write an arbitrary range of data from NVRAM.                             */
   1680 /*                                                                          */
   1681 /* Prepares the NVRAM interface for write access and writes the requested   */
   1682 /* data from the supplied buffer.  The caller is responsible for            */
   1683 /* calculating any appropriate CRCs.                                        */
   1684 /*                                                                          */
   1685 /* Returns:                                                                 */
   1686 /*   0 on success, positive value on failure.                               */
   1687 /****************************************************************************/
   1688 int
   1689 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
   1690     int buf_size)
   1691 {
   1692 	u_int32_t		written, offset32, len32;
   1693 	u_int8_t		*buf, start[4], end[4];
   1694 	int			rc = 0;
   1695 	int			align_start, align_end;
   1696 
   1697 	buf = data_buf;
   1698 	offset32 = offset;
   1699 	len32 = buf_size;
   1700 	align_start = align_end = 0;
   1701 
   1702 	if ((align_start = (offset32 & 3))) {
   1703 		offset32 &= ~3;
   1704 		len32 += align_start;
   1705 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1706 			return (rc);
   1707 	}
   1708 
   1709 	if (len32 & 3) {
   1710 	       	if ((len32 > 4) || !align_start) {
   1711 			align_end = 4 - (len32 & 3);
   1712 			len32 += align_end;
   1713 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1714 			    end, 4))) {
   1715 				return (rc);
   1716 			}
   1717 		}
   1718 	}
   1719 
   1720 	if (align_start || align_end) {
   1721 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1722 		if (buf == 0)
   1723 			return (ENOMEM);
   1724 
   1725 		if (align_start)
   1726 			memcpy(buf, start, 4);
   1727 
   1728 		if (align_end)
   1729 			memcpy(buf + len32 - 4, end, 4);
   1730 
   1731 		memcpy(buf + align_start, data_buf, buf_size);
   1732 	}
   1733 
   1734 	written = 0;
   1735 	while ((written < len32) && (rc == 0)) {
   1736 		u_int32_t page_start, page_end, data_start, data_end;
   1737 		u_int32_t addr, cmd_flags;
   1738 		int i;
   1739 		u_int8_t flash_buffer[264];
   1740 
   1741 	    /* Find the page_start addr */
   1742 		page_start = offset32 + written;
   1743 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1744 		/* Find the page_end addr */
   1745 		page_end = page_start + sc->bnx_flash_info->page_size;
   1746 		/* Find the data_start addr */
   1747 		data_start = (written == 0) ? offset32 : page_start;
   1748 		/* Find the data_end addr */
   1749 		data_end = (page_end > offset32 + len32) ?
   1750 		    (offset32 + len32) : page_end;
   1751 
   1752 		/* Request access to the flash interface. */
   1753 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1754 			goto nvram_write_end;
   1755 
   1756 		/* Enable access to flash interface */
   1757 		bnx_enable_nvram_access(sc);
   1758 
   1759 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1760 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1761 			int j;
   1762 
   1763 			/* Read the whole page into the buffer
   1764 			 * (non-buffer flash only) */
   1765 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1766 				if (j == (sc->bnx_flash_info->page_size - 4))
   1767 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1768 
   1769 				rc = bnx_nvram_read_dword(sc,
   1770 					page_start + j,
   1771 					&flash_buffer[j],
   1772 					cmd_flags);
   1773 
   1774 				if (rc)
   1775 					goto nvram_write_end;
   1776 
   1777 				cmd_flags = 0;
   1778 			}
   1779 		}
   1780 
   1781 		/* Enable writes to flash interface (unlock write-protect) */
   1782 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1783 			goto nvram_write_end;
   1784 
   1785 		/* Erase the page */
   1786 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1787 			goto nvram_write_end;
   1788 
   1789 		/* Re-enable the write again for the actual write */
   1790 		bnx_enable_nvram_write(sc);
   1791 
   1792 		/* Loop to write back the buffer data from page_start to
   1793 		 * data_start */
   1794 		i = 0;
   1795 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1796 			for (addr = page_start; addr < data_start;
   1797 				addr += 4, i += 4) {
   1798 
   1799 				rc = bnx_nvram_write_dword(sc, addr,
   1800 				    &flash_buffer[i], cmd_flags);
   1801 
   1802 				if (rc != 0)
   1803 					goto nvram_write_end;
   1804 
   1805 				cmd_flags = 0;
   1806 			}
   1807 		}
   1808 
   1809 		/* Loop to write the new data from data_start to data_end */
   1810 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1811 			if ((addr == page_end - 4) ||
   1812 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   1813 			    && (addr == data_end - 4))) {
   1814 
   1815 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1816 			}
   1817 
   1818 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1819 
   1820 			if (rc != 0)
   1821 				goto nvram_write_end;
   1822 
   1823 			cmd_flags = 0;
   1824 			buf += 4;
   1825 		}
   1826 
   1827 		/* Loop to write back the buffer data from data_end
   1828 		 * to page_end */
   1829 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1830 			for (addr = data_end; addr < page_end;
   1831 			    addr += 4, i += 4) {
   1832 
   1833 				if (addr == page_end-4)
   1834 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1835 
   1836 				rc = bnx_nvram_write_dword(sc, addr,
   1837 				    &flash_buffer[i], cmd_flags);
   1838 
   1839 				if (rc != 0)
   1840 					goto nvram_write_end;
   1841 
   1842 				cmd_flags = 0;
   1843 			}
   1844 		}
   1845 
   1846 		/* Disable writes to flash interface (lock write-protect) */
   1847 		bnx_disable_nvram_write(sc);
   1848 
   1849 		/* Disable access to flash interface */
   1850 		bnx_disable_nvram_access(sc);
   1851 		bnx_release_nvram_lock(sc);
   1852 
   1853 		/* Increment written */
   1854 		written += data_end - data_start;
   1855 	}
   1856 
   1857 nvram_write_end:
   1858 	if (align_start || align_end)
   1859 		free(buf, M_DEVBUF);
   1860 
   1861 	return (rc);
   1862 }
   1863 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1864 
   1865 /****************************************************************************/
   1866 /* Verifies that NVRAM is accessible and contains valid data.               */
   1867 /*                                                                          */
   1868 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   1869 /* correct.                                                                 */
   1870 /*                                                                          */
   1871 /* Returns:                                                                 */
   1872 /*   0 on success, positive value on failure.                               */
   1873 /****************************************************************************/
   1874 int
   1875 bnx_nvram_test(struct bnx_softc *sc)
   1876 {
   1877 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
   1878 	u_int8_t		*data = (u_int8_t *) buf;
   1879 	int			rc = 0;
   1880 	u_int32_t		magic, csum;
   1881 
   1882 	/*
   1883 	 * Check that the device NVRAM is valid by reading
   1884 	 * the magic value at offset 0.
   1885 	 */
   1886 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   1887 		goto bnx_nvram_test_done;
   1888 
   1889 	magic = bnx_be32toh(buf[0]);
   1890 	if (magic != BNX_NVRAM_MAGIC) {
   1891 		rc = ENODEV;
   1892 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   1893 		    "Expected: 0x%08X, Found: 0x%08X\n",
   1894 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   1895 		goto bnx_nvram_test_done;
   1896 	}
   1897 
   1898 	/*
   1899 	 * Verify that the device NVRAM includes valid
   1900 	 * configuration data.
   1901 	 */
   1902 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   1903 		goto bnx_nvram_test_done;
   1904 
   1905 	csum = ether_crc32_le(data, 0x100);
   1906 	if (csum != BNX_CRC32_RESIDUAL) {
   1907 		rc = ENODEV;
   1908 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   1909 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   1910 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1911 		goto bnx_nvram_test_done;
   1912 	}
   1913 
   1914 	csum = ether_crc32_le(data + 0x100, 0x100);
   1915 	if (csum != BNX_CRC32_RESIDUAL) {
   1916 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   1917 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   1918 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1919 		rc = ENODEV;
   1920 	}
   1921 
   1922 bnx_nvram_test_done:
   1923 	return (rc);
   1924 }
   1925 
   1926 /****************************************************************************/
   1927 /* Identifies the current media type of the controller and sets the PHY     */
   1928 /* address.                                                                 */
   1929 /*                                                                          */
   1930 /* Returns:                                                                 */
   1931 /*   Nothing.                                                               */
   1932 /****************************************************************************/
   1933 void
   1934 bnx_get_media(struct bnx_softc *sc)
   1935 {
   1936 	sc->bnx_phy_addr = 1;
   1937 
   1938 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1939 		u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   1940 		u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   1941 		u_int32_t strap;
   1942 
   1943 		/*
   1944 		 * The BCM5709S is software configurable
   1945 		 * for Copper or SerDes operation.
   1946 		 */
   1947 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   1948 			DBPRINT(sc, BNX_INFO_LOAD,
   1949 			    "5709 bonded for copper.\n");
   1950 			goto bnx_get_media_exit;
   1951 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   1952 			DBPRINT(sc, BNX_INFO_LOAD,
   1953 			    "5709 bonded for dual media.\n");
   1954 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   1955 			goto bnx_get_media_exit;
   1956 		}
   1957 
   1958 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   1959 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   1960 		else {
   1961 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   1962 			    >> 8;
   1963 		}
   1964 
   1965 		if (sc->bnx_pa.pa_function == 0) {
   1966 			switch (strap) {
   1967 			case 0x4:
   1968 			case 0x5:
   1969 			case 0x6:
   1970 				DBPRINT(sc, BNX_INFO_LOAD,
   1971 					"BCM5709 s/w configured for SerDes.\n");
   1972 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   1973 			default:
   1974 				DBPRINT(sc, BNX_INFO_LOAD,
   1975 					"BCM5709 s/w configured for Copper.\n");
   1976 			}
   1977 		} else {
   1978 			switch (strap) {
   1979 			case 0x1:
   1980 			case 0x2:
   1981 			case 0x4:
   1982 				DBPRINT(sc, BNX_INFO_LOAD,
   1983 					"BCM5709 s/w configured for SerDes.\n");
   1984 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   1985 			default:
   1986 				DBPRINT(sc, BNX_INFO_LOAD,
   1987 					"BCM5709 s/w configured for Copper.\n");
   1988 			}
   1989 		}
   1990 
   1991 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   1992 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   1993 
   1994 	if (sc->bnx_phy_flags && BNX_PHY_SERDES_FLAG) {
   1995 		u_int32_t val;
   1996 
   1997 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   1998 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1999 			sc->bnx_phy_addr = 2;
   2000 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2001 				 BNX_SHARED_HW_CFG_CONFIG);
   2002 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2003 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2004 				DBPRINT(sc, BNX_INFO_LOAD,
   2005 				    "Found 2.5Gb capable adapter\n");
   2006 			}
   2007 		}
   2008 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2009 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2010 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2011 
   2012 bnx_get_media_exit:
   2013 	DBPRINT(sc, (BNX_INFO_LOAD),
   2014 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2015 }
   2016 
   2017 /****************************************************************************/
   2018 /* Free any DMA memory owned by the driver.                                 */
   2019 /*                                                                          */
   2020 /* Scans through each data structre that requires DMA memory and frees      */
   2021 /* the memory if allocated.                                                 */
   2022 /*                                                                          */
   2023 /* Returns:                                                                 */
   2024 /*   Nothing.                                                               */
   2025 /****************************************************************************/
   2026 void
   2027 bnx_dma_free(struct bnx_softc *sc)
   2028 {
   2029 	int			i;
   2030 
   2031 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2032 
   2033 	/* Destroy the status block. */
   2034 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2035 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2036 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2037 		    BNX_STATUS_BLK_SZ);
   2038 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2039 		    sc->status_rseg);
   2040 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2041 		sc->status_block = NULL;
   2042 		sc->status_map = NULL;
   2043 	}
   2044 
   2045 	/* Destroy the statistics block. */
   2046 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2047 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2048 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2049 		    BNX_STATS_BLK_SZ);
   2050 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2051 		    sc->stats_rseg);
   2052 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2053 		sc->stats_block = NULL;
   2054 		sc->stats_map = NULL;
   2055 	}
   2056 
   2057 	/* Free, unmap and destroy all context memory pages. */
   2058 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2059 		for (i = 0; i < sc->ctx_pages; i++) {
   2060 			if (sc->ctx_block[i] != NULL) {
   2061 				bus_dmamap_unload(sc->bnx_dmatag,
   2062 				    sc->ctx_map[i]);
   2063 				bus_dmamem_unmap(sc->bnx_dmatag,
   2064 				    (void *)sc->ctx_block[i],
   2065 				    BCM_PAGE_SIZE);
   2066 				bus_dmamem_free(sc->bnx_dmatag,
   2067 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2068 				bus_dmamap_destroy(sc->bnx_dmatag,
   2069 				    sc->ctx_map[i]);
   2070 				sc->ctx_block[i] = NULL;
   2071 			}
   2072 		}
   2073 	}
   2074 
   2075 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2076 	for (i = 0; i < TX_PAGES; i++ ) {
   2077 		if (sc->tx_bd_chain[i] != NULL &&
   2078 		    sc->tx_bd_chain_map[i] != NULL) {
   2079 			bus_dmamap_unload(sc->bnx_dmatag,
   2080 			    sc->tx_bd_chain_map[i]);
   2081 			bus_dmamem_unmap(sc->bnx_dmatag,
   2082 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2083 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2084 			    sc->tx_bd_chain_rseg[i]);
   2085 			bus_dmamap_destroy(sc->bnx_dmatag,
   2086 			    sc->tx_bd_chain_map[i]);
   2087 			sc->tx_bd_chain[i] = NULL;
   2088 			sc->tx_bd_chain_map[i] = NULL;
   2089 		}
   2090 	}
   2091 
   2092 	/* Destroy the TX dmamaps. */
   2093 	/* This isn't necessary since we dont allocate them up front */
   2094 
   2095 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2096 	for (i = 0; i < RX_PAGES; i++ ) {
   2097 		if (sc->rx_bd_chain[i] != NULL &&
   2098 		    sc->rx_bd_chain_map[i] != NULL) {
   2099 			bus_dmamap_unload(sc->bnx_dmatag,
   2100 			    sc->rx_bd_chain_map[i]);
   2101 			bus_dmamem_unmap(sc->bnx_dmatag,
   2102 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2103 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2104 			    sc->rx_bd_chain_rseg[i]);
   2105 
   2106 			bus_dmamap_destroy(sc->bnx_dmatag,
   2107 			    sc->rx_bd_chain_map[i]);
   2108 			sc->rx_bd_chain[i] = NULL;
   2109 			sc->rx_bd_chain_map[i] = NULL;
   2110 		}
   2111 	}
   2112 
   2113 	/* Unload and destroy the RX mbuf maps. */
   2114 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2115 		if (sc->rx_mbuf_map[i] != NULL) {
   2116 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2117 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2118 		}
   2119 	}
   2120 
   2121 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2122 }
   2123 
   2124 /****************************************************************************/
   2125 /* Allocate any DMA memory needed by the driver.                            */
   2126 /*                                                                          */
   2127 /* Allocates DMA memory needed for the various global structures needed by  */
   2128 /* hardware.                                                                */
   2129 /*                                                                          */
   2130 /* Returns:                                                                 */
   2131 /*   0 for success, positive value for failure.                             */
   2132 /****************************************************************************/
   2133 int
   2134 bnx_dma_alloc(struct bnx_softc *sc)
   2135 {
   2136 	int			i, rc = 0;
   2137 
   2138 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2139 
   2140 	/*
   2141 	 * Allocate DMA memory for the status block, map the memory into DMA
   2142 	 * space, and fetch the physical address of the block.
   2143 	 */
   2144 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2145 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2146 		aprint_error_dev(sc->bnx_dev,
   2147 		    "Could not create status block DMA map!\n");
   2148 		rc = ENOMEM;
   2149 		goto bnx_dma_alloc_exit;
   2150 	}
   2151 
   2152 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2153 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2154 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2155 		aprint_error_dev(sc->bnx_dev,
   2156 		    "Could not allocate status block DMA memory!\n");
   2157 		rc = ENOMEM;
   2158 		goto bnx_dma_alloc_exit;
   2159 	}
   2160 
   2161 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2162 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2163 		aprint_error_dev(sc->bnx_dev,
   2164 		    "Could not map status block DMA memory!\n");
   2165 		rc = ENOMEM;
   2166 		goto bnx_dma_alloc_exit;
   2167 	}
   2168 
   2169 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2170 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2171 		aprint_error_dev(sc->bnx_dev,
   2172 		    "Could not load status block DMA memory!\n");
   2173 		rc = ENOMEM;
   2174 		goto bnx_dma_alloc_exit;
   2175 	}
   2176 
   2177 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2178 	bzero(sc->status_block, BNX_STATUS_BLK_SZ);
   2179 
   2180 	/* DRC - Fix for 64 bit addresses. */
   2181 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2182 		(u_int32_t) sc->status_block_paddr);
   2183 
   2184 	/* BCM5709 uses host memory as cache for context memory. */
   2185 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2186 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2187 		if (sc->ctx_pages == 0)
   2188 			sc->ctx_pages = 1;
   2189 		if (sc->ctx_pages > 4) /* XXX */
   2190 			sc->ctx_pages = 4;
   2191 
   2192 		DBRUNIF((sc->ctx_pages > 512),
   2193 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2194 				__FILE__, __LINE__, sc->ctx_pages));
   2195 
   2196 
   2197 		for (i = 0; i < sc->ctx_pages; i++) {
   2198 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2199 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2200 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2201 			    &sc->ctx_map[i]) != 0) {
   2202 				rc = ENOMEM;
   2203 				goto bnx_dma_alloc_exit;
   2204 			}
   2205 
   2206 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2207 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2208 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2209 				rc = ENOMEM;
   2210 				goto bnx_dma_alloc_exit;
   2211 			}
   2212 
   2213 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2214 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2215 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2216 				rc = ENOMEM;
   2217 				goto bnx_dma_alloc_exit;
   2218 			}
   2219 
   2220 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2221 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2222 			    BUS_DMA_NOWAIT) != 0) {
   2223 				rc = ENOMEM;
   2224 				goto bnx_dma_alloc_exit;
   2225 			}
   2226 
   2227 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2228 		}
   2229 	}
   2230 
   2231 	/*
   2232 	 * Allocate DMA memory for the statistics block, map the memory into
   2233 	 * DMA space, and fetch the physical address of the block.
   2234 	 */
   2235 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2236 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2237 		aprint_error_dev(sc->bnx_dev,
   2238 		    "Could not create stats block DMA map!\n");
   2239 		rc = ENOMEM;
   2240 		goto bnx_dma_alloc_exit;
   2241 	}
   2242 
   2243 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2244 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2245 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2246 		aprint_error_dev(sc->bnx_dev,
   2247 		    "Could not allocate stats block DMA memory!\n");
   2248 		rc = ENOMEM;
   2249 		goto bnx_dma_alloc_exit;
   2250 	}
   2251 
   2252 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2253 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2254 		aprint_error_dev(sc->bnx_dev,
   2255 		    "Could not map stats block DMA memory!\n");
   2256 		rc = ENOMEM;
   2257 		goto bnx_dma_alloc_exit;
   2258 	}
   2259 
   2260 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2261 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2262 		aprint_error_dev(sc->bnx_dev,
   2263 		    "Could not load status block DMA memory!\n");
   2264 		rc = ENOMEM;
   2265 		goto bnx_dma_alloc_exit;
   2266 	}
   2267 
   2268 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2269 	bzero(sc->stats_block, BNX_STATS_BLK_SZ);
   2270 
   2271 	/* DRC - Fix for 64 bit address. */
   2272 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2273 	    (u_int32_t) sc->stats_block_paddr);
   2274 
   2275 	/*
   2276 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2277 	 * and fetch the physical address of the block.
   2278 	 */
   2279 	for (i = 0; i < TX_PAGES; i++) {
   2280 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2281 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2282 		    &sc->tx_bd_chain_map[i])) {
   2283 			aprint_error_dev(sc->bnx_dev,
   2284 			    "Could not create Tx desc %d DMA map!\n", i);
   2285 			rc = ENOMEM;
   2286 			goto bnx_dma_alloc_exit;
   2287 		}
   2288 
   2289 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2290 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2291 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2292 			aprint_error_dev(sc->bnx_dev,
   2293 			    "Could not allocate TX desc %d DMA memory!\n",
   2294 			    i);
   2295 			rc = ENOMEM;
   2296 			goto bnx_dma_alloc_exit;
   2297 		}
   2298 
   2299 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2300 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2301 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2302 			aprint_error_dev(sc->bnx_dev,
   2303 			    "Could not map TX desc %d DMA memory!\n", i);
   2304 			rc = ENOMEM;
   2305 			goto bnx_dma_alloc_exit;
   2306 		}
   2307 
   2308 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2309 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2310 		    BUS_DMA_NOWAIT)) {
   2311 			aprint_error_dev(sc->bnx_dev,
   2312 			    "Could not load TX desc %d DMA memory!\n", i);
   2313 			rc = ENOMEM;
   2314 			goto bnx_dma_alloc_exit;
   2315 		}
   2316 
   2317 		sc->tx_bd_chain_paddr[i] =
   2318 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2319 
   2320 		/* DRC - Fix for 64 bit systems. */
   2321 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2322 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
   2323 	}
   2324 
   2325 	/*
   2326 	 * Create lists to hold TX mbufs.
   2327 	 */
   2328 	TAILQ_INIT(&sc->tx_free_pkts);
   2329 	TAILQ_INIT(&sc->tx_used_pkts);
   2330 	sc->tx_pkt_count = 0;
   2331 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2332 
   2333 	/*
   2334 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2335 	 * and fetch the physical address of the block.
   2336 	 */
   2337 	for (i = 0; i < RX_PAGES; i++) {
   2338 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2339 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2340 		    &sc->rx_bd_chain_map[i])) {
   2341 			aprint_error_dev(sc->bnx_dev,
   2342 			    "Could not create Rx desc %d DMA map!\n", i);
   2343 			rc = ENOMEM;
   2344 			goto bnx_dma_alloc_exit;
   2345 		}
   2346 
   2347 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2348 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2349 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2350 			aprint_error_dev(sc->bnx_dev,
   2351 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2352 			rc = ENOMEM;
   2353 			goto bnx_dma_alloc_exit;
   2354 		}
   2355 
   2356 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2357 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2358 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2359 			aprint_error_dev(sc->bnx_dev,
   2360 			    "Could not map Rx desc %d DMA memory!\n", i);
   2361 			rc = ENOMEM;
   2362 			goto bnx_dma_alloc_exit;
   2363 		}
   2364 
   2365 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2366 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2367 		    BUS_DMA_NOWAIT)) {
   2368 			aprint_error_dev(sc->bnx_dev,
   2369 			    "Could not load Rx desc %d DMA memory!\n", i);
   2370 			rc = ENOMEM;
   2371 			goto bnx_dma_alloc_exit;
   2372 		}
   2373 
   2374 		bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2375 		sc->rx_bd_chain_paddr[i] =
   2376 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2377 
   2378 		/* DRC - Fix for 64 bit systems. */
   2379 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2380 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
   2381 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2382 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2383 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2384 	}
   2385 
   2386 	/*
   2387 	 * Create DMA maps for the Rx buffer mbufs.
   2388 	 */
   2389 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2390 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
   2391 		    BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
   2392 		    &sc->rx_mbuf_map[i])) {
   2393 			aprint_error_dev(sc->bnx_dev,
   2394 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2395 			rc = ENOMEM;
   2396 			goto bnx_dma_alloc_exit;
   2397 		}
   2398 	}
   2399 
   2400  bnx_dma_alloc_exit:
   2401 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2402 
   2403 	return(rc);
   2404 }
   2405 
   2406 /****************************************************************************/
   2407 /* Release all resources used by the driver.                                */
   2408 /*                                                                          */
   2409 /* Releases all resources acquired by the driver including interrupts,      */
   2410 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2411 /*                                                                          */
   2412 /* Returns:                                                                 */
   2413 /*   Nothing.                                                               */
   2414 /****************************************************************************/
   2415 void
   2416 bnx_release_resources(struct bnx_softc *sc)
   2417 {
   2418 	int i;
   2419 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2420 
   2421 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2422 
   2423 	bnx_dma_free(sc);
   2424 
   2425 	if (sc->bnx_intrhand != NULL)
   2426 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2427 
   2428 	if (sc->bnx_size)
   2429 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2430 
   2431 	for (i = 0; i < TOTAL_RX_BD; i++)
   2432 		if (sc->rx_mbuf_map[i])
   2433 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2434 
   2435 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2436 }
   2437 
   2438 /****************************************************************************/
   2439 /* Firmware synchronization.                                                */
   2440 /*                                                                          */
   2441 /* Before performing certain events such as a chip reset, synchronize with  */
   2442 /* the firmware first.                                                      */
   2443 /*                                                                          */
   2444 /* Returns:                                                                 */
   2445 /*   0 for success, positive value for failure.                             */
   2446 /****************************************************************************/
   2447 int
   2448 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
   2449 {
   2450 	int			i, rc = 0;
   2451 	u_int32_t		val;
   2452 
   2453 	/* Don't waste any time if we've timed out before. */
   2454 	if (sc->bnx_fw_timed_out) {
   2455 		rc = EBUSY;
   2456 		goto bnx_fw_sync_exit;
   2457 	}
   2458 
   2459 	/* Increment the message sequence number. */
   2460 	sc->bnx_fw_wr_seq++;
   2461 	msg_data |= sc->bnx_fw_wr_seq;
   2462 
   2463  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2464 	    msg_data);
   2465 
   2466 	/* Send the message to the bootcode driver mailbox. */
   2467 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2468 
   2469 	/* Wait for the bootcode to acknowledge the message. */
   2470 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2471 		/* Check for a response in the bootcode firmware mailbox. */
   2472 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2473 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2474 			break;
   2475 		DELAY(1000);
   2476 	}
   2477 
   2478 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2479 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2480 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2481 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2482 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2483 
   2484 		msg_data &= ~BNX_DRV_MSG_CODE;
   2485 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2486 
   2487 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2488 
   2489 		sc->bnx_fw_timed_out = 1;
   2490 		rc = EBUSY;
   2491 	}
   2492 
   2493 bnx_fw_sync_exit:
   2494 	return (rc);
   2495 }
   2496 
   2497 /****************************************************************************/
   2498 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2499 /*                                                                          */
   2500 /* Returns:                                                                 */
   2501 /*   Nothing.                                                               */
   2502 /****************************************************************************/
   2503 void
   2504 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
   2505     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
   2506 {
   2507 	int			i;
   2508 	u_int32_t		val;
   2509 
   2510 	/* Set the page size used by RV2P. */
   2511 	if (rv2p_proc == RV2P_PROC2) {
   2512 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2513 		    USABLE_RX_BD_PER_PAGE);
   2514 	}
   2515 
   2516 	for (i = 0; i < rv2p_code_len; i += 8) {
   2517 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2518 		rv2p_code++;
   2519 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2520 		rv2p_code++;
   2521 
   2522 		if (rv2p_proc == RV2P_PROC1) {
   2523 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2524 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2525 		} else {
   2526 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2527 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2528 		}
   2529 	}
   2530 
   2531 	/* Reset the processor, un-stall is done later. */
   2532 	if (rv2p_proc == RV2P_PROC1)
   2533 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2534 	else
   2535 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2536 }
   2537 
   2538 /****************************************************************************/
   2539 /* Load RISC processor firmware.                                            */
   2540 /*                                                                          */
   2541 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2542 /* associated with a particular processor.                                  */
   2543 /*                                                                          */
   2544 /* Returns:                                                                 */
   2545 /*   Nothing.                                                               */
   2546 /****************************************************************************/
   2547 void
   2548 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2549     struct fw_info *fw)
   2550 {
   2551 	u_int32_t		offset;
   2552 	u_int32_t		val;
   2553 
   2554 	/* Halt the CPU. */
   2555 	val = REG_RD_IND(sc, cpu_reg->mode);
   2556 	val |= cpu_reg->mode_value_halt;
   2557 	REG_WR_IND(sc, cpu_reg->mode, val);
   2558 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2559 
   2560 	/* Load the Text area. */
   2561 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2562 	if (fw->text) {
   2563 		int j;
   2564 
   2565 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2566 			REG_WR_IND(sc, offset, fw->text[j]);
   2567 	}
   2568 
   2569 	/* Load the Data area. */
   2570 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2571 	if (fw->data) {
   2572 		int j;
   2573 
   2574 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2575 			REG_WR_IND(sc, offset, fw->data[j]);
   2576 	}
   2577 
   2578 	/* Load the SBSS area. */
   2579 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2580 	if (fw->sbss) {
   2581 		int j;
   2582 
   2583 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2584 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2585 	}
   2586 
   2587 	/* Load the BSS area. */
   2588 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2589 	if (fw->bss) {
   2590 		int j;
   2591 
   2592 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2593 			REG_WR_IND(sc, offset, fw->bss[j]);
   2594 	}
   2595 
   2596 	/* Load the Read-Only area. */
   2597 	offset = cpu_reg->spad_base +
   2598 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2599 	if (fw->rodata) {
   2600 		int j;
   2601 
   2602 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2603 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2604 	}
   2605 
   2606 	/* Clear the pre-fetch instruction. */
   2607 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2608 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2609 
   2610 	/* Start the CPU. */
   2611 	val = REG_RD_IND(sc, cpu_reg->mode);
   2612 	val &= ~cpu_reg->mode_value_halt;
   2613 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2614 	REG_WR_IND(sc, cpu_reg->mode, val);
   2615 }
   2616 
   2617 /****************************************************************************/
   2618 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2619 /*                                                                          */
   2620 /* Loads the firmware for each CPU and starts the CPU.                      */
   2621 /*                                                                          */
   2622 /* Returns:                                                                 */
   2623 /*   Nothing.                                                               */
   2624 /****************************************************************************/
   2625 void
   2626 bnx_init_cpus(struct bnx_softc *sc)
   2627 {
   2628 	struct cpu_reg cpu_reg;
   2629 	struct fw_info fw;
   2630 
   2631 	switch(BNX_CHIP_NUM(sc)) {
   2632 	case BNX_CHIP_NUM_5709:
   2633 		/* Initialize the RV2P processor. */
   2634 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2635 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2636 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2637 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2638 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2639 		} else {
   2640 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2641 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2642 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2643 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2644 		}
   2645 
   2646 		/* Initialize the RX Processor. */
   2647 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2648 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2649 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2650 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2651 		cpu_reg.state_value_clear = 0xffffff;
   2652 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2653 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2654 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2655 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2656 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2657 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2658 		cpu_reg.mips_view_base = 0x8000000;
   2659 
   2660 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2661 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2662 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2663 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2664 
   2665 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2666 		fw.text_len = bnx_RXP_b09FwTextLen;
   2667 		fw.text_index = 0;
   2668 		fw.text = bnx_RXP_b09FwText;
   2669 
   2670 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2671 		fw.data_len = bnx_RXP_b09FwDataLen;
   2672 		fw.data_index = 0;
   2673 		fw.data = bnx_RXP_b09FwData;
   2674 
   2675 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2676 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2677 		fw.sbss_index = 0;
   2678 		fw.sbss = bnx_RXP_b09FwSbss;
   2679 
   2680 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2681 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2682 		fw.bss_index = 0;
   2683 		fw.bss = bnx_RXP_b09FwBss;
   2684 
   2685 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2686 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2687 		fw.rodata_index = 0;
   2688 		fw.rodata = bnx_RXP_b09FwRodata;
   2689 
   2690 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2691 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2692 
   2693 		/* Initialize the TX Processor. */
   2694 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2695 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2696 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2697 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2698 		cpu_reg.state_value_clear = 0xffffff;
   2699 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2700 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2701 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2702 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2703 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2704 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2705 		cpu_reg.mips_view_base = 0x8000000;
   2706 
   2707 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2708 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2709 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2710 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2711 
   2712 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2713 		fw.text_len = bnx_TXP_b09FwTextLen;
   2714 		fw.text_index = 0;
   2715 		fw.text = bnx_TXP_b09FwText;
   2716 
   2717 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   2718 		fw.data_len = bnx_TXP_b09FwDataLen;
   2719 		fw.data_index = 0;
   2720 		fw.data = bnx_TXP_b09FwData;
   2721 
   2722 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   2723 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   2724 		fw.sbss_index = 0;
   2725 		fw.sbss = bnx_TXP_b09FwSbss;
   2726 
   2727 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   2728 		fw.bss_len = bnx_TXP_b09FwBssLen;
   2729 		fw.bss_index = 0;
   2730 		fw.bss = bnx_TXP_b09FwBss;
   2731 
   2732 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   2733 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   2734 		fw.rodata_index = 0;
   2735 		fw.rodata = bnx_TXP_b09FwRodata;
   2736 
   2737 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2738 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2739 
   2740 		/* Initialize the TX Patch-up Processor. */
   2741 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2742 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2743 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2744 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2745 		cpu_reg.state_value_clear = 0xffffff;
   2746 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2747 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2748 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2749 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2750 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2751 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2752 		cpu_reg.mips_view_base = 0x8000000;
   2753 
   2754 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   2755 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   2756 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   2757 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   2758 
   2759 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   2760 		fw.text_len = bnx_TPAT_b09FwTextLen;
   2761 		fw.text_index = 0;
   2762 		fw.text = bnx_TPAT_b09FwText;
   2763 
   2764 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   2765 		fw.data_len = bnx_TPAT_b09FwDataLen;
   2766 		fw.data_index = 0;
   2767 		fw.data = bnx_TPAT_b09FwData;
   2768 
   2769 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   2770 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   2771 		fw.sbss_index = 0;
   2772 		fw.sbss = bnx_TPAT_b09FwSbss;
   2773 
   2774 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   2775 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   2776 		fw.bss_index = 0;
   2777 		fw.bss = bnx_TPAT_b09FwBss;
   2778 
   2779 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   2780 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   2781 		fw.rodata_index = 0;
   2782 		fw.rodata = bnx_TPAT_b09FwRodata;
   2783 
   2784 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2785 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2786 
   2787 		/* Initialize the Completion Processor. */
   2788 		cpu_reg.mode = BNX_COM_CPU_MODE;
   2789 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2790 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2791 		cpu_reg.state = BNX_COM_CPU_STATE;
   2792 		cpu_reg.state_value_clear = 0xffffff;
   2793 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2794 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2795 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2796 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2797 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2798 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   2799 		cpu_reg.mips_view_base = 0x8000000;
   2800 
   2801 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   2802 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   2803 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   2804 		fw.start_addr = bnx_COM_b09FwStartAddr;
   2805 
   2806 		fw.text_addr = bnx_COM_b09FwTextAddr;
   2807 		fw.text_len = bnx_COM_b09FwTextLen;
   2808 		fw.text_index = 0;
   2809 		fw.text = bnx_COM_b09FwText;
   2810 
   2811 		fw.data_addr = bnx_COM_b09FwDataAddr;
   2812 		fw.data_len = bnx_COM_b09FwDataLen;
   2813 		fw.data_index = 0;
   2814 		fw.data = bnx_COM_b09FwData;
   2815 
   2816 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   2817 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   2818 		fw.sbss_index = 0;
   2819 		fw.sbss = bnx_COM_b09FwSbss;
   2820 
   2821 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   2822 		fw.bss_len = bnx_COM_b09FwBssLen;
   2823 		fw.bss_index = 0;
   2824 		fw.bss = bnx_COM_b09FwBss;
   2825 
   2826 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   2827 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   2828 		fw.rodata_index = 0;
   2829 		fw.rodata = bnx_COM_b09FwRodata;
   2830 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   2831 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2832 		break;
   2833 	default:
   2834 		/* Initialize the RV2P processor. */
   2835 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   2836 		    RV2P_PROC1);
   2837 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   2838 		    RV2P_PROC2);
   2839 
   2840 		/* Initialize the RX Processor. */
   2841 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2842 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2843 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2844 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2845 		cpu_reg.state_value_clear = 0xffffff;
   2846 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2847 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2848 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2849 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2850 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2851 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2852 		cpu_reg.mips_view_base = 0x8000000;
   2853 
   2854 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   2855 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   2856 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   2857 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   2858 
   2859 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   2860 		fw.text_len = bnx_RXP_b06FwTextLen;
   2861 		fw.text_index = 0;
   2862 		fw.text = bnx_RXP_b06FwText;
   2863 
   2864 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   2865 		fw.data_len = bnx_RXP_b06FwDataLen;
   2866 		fw.data_index = 0;
   2867 		fw.data = bnx_RXP_b06FwData;
   2868 
   2869 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   2870 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   2871 		fw.sbss_index = 0;
   2872 		fw.sbss = bnx_RXP_b06FwSbss;
   2873 
   2874 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   2875 		fw.bss_len = bnx_RXP_b06FwBssLen;
   2876 		fw.bss_index = 0;
   2877 		fw.bss = bnx_RXP_b06FwBss;
   2878 
   2879 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   2880 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   2881 		fw.rodata_index = 0;
   2882 		fw.rodata = bnx_RXP_b06FwRodata;
   2883 
   2884 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2885 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2886 
   2887 		/* Initialize the TX Processor. */
   2888 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2889 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2890 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2891 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2892 		cpu_reg.state_value_clear = 0xffffff;
   2893 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2894 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2895 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2896 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2897 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2898 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2899 		cpu_reg.mips_view_base = 0x8000000;
   2900 
   2901 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   2902 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   2903 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   2904 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   2905 
   2906 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   2907 		fw.text_len = bnx_TXP_b06FwTextLen;
   2908 		fw.text_index = 0;
   2909 		fw.text = bnx_TXP_b06FwText;
   2910 
   2911 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   2912 		fw.data_len = bnx_TXP_b06FwDataLen;
   2913 		fw.data_index = 0;
   2914 		fw.data = bnx_TXP_b06FwData;
   2915 
   2916 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   2917 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   2918 		fw.sbss_index = 0;
   2919 		fw.sbss = bnx_TXP_b06FwSbss;
   2920 
   2921 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   2922 		fw.bss_len = bnx_TXP_b06FwBssLen;
   2923 		fw.bss_index = 0;
   2924 		fw.bss = bnx_TXP_b06FwBss;
   2925 
   2926 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   2927 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   2928 		fw.rodata_index = 0;
   2929 		fw.rodata = bnx_TXP_b06FwRodata;
   2930 
   2931 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2932 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2933 
   2934 		/* Initialize the TX Patch-up Processor. */
   2935 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2936 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2937 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2938 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2939 		cpu_reg.state_value_clear = 0xffffff;
   2940 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2941 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2942 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2943 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2944 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2945 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2946 		cpu_reg.mips_view_base = 0x8000000;
   2947 
   2948 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   2949 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   2950 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   2951 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   2952 
   2953 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   2954 		fw.text_len = bnx_TPAT_b06FwTextLen;
   2955 		fw.text_index = 0;
   2956 		fw.text = bnx_TPAT_b06FwText;
   2957 
   2958 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   2959 		fw.data_len = bnx_TPAT_b06FwDataLen;
   2960 		fw.data_index = 0;
   2961 		fw.data = bnx_TPAT_b06FwData;
   2962 
   2963 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   2964 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   2965 		fw.sbss_index = 0;
   2966 		fw.sbss = bnx_TPAT_b06FwSbss;
   2967 
   2968 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   2969 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   2970 		fw.bss_index = 0;
   2971 		fw.bss = bnx_TPAT_b06FwBss;
   2972 
   2973 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   2974 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   2975 		fw.rodata_index = 0;
   2976 		fw.rodata = bnx_TPAT_b06FwRodata;
   2977 
   2978 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2979 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2980 
   2981 		/* Initialize the Completion Processor. */
   2982 		cpu_reg.mode = BNX_COM_CPU_MODE;
   2983 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2984 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2985 		cpu_reg.state = BNX_COM_CPU_STATE;
   2986 		cpu_reg.state_value_clear = 0xffffff;
   2987 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2988 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2989 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2990 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2991 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2992 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   2993 		cpu_reg.mips_view_base = 0x8000000;
   2994 
   2995 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   2996 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   2997 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   2998 		fw.start_addr = bnx_COM_b06FwStartAddr;
   2999 
   3000 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3001 		fw.text_len = bnx_COM_b06FwTextLen;
   3002 		fw.text_index = 0;
   3003 		fw.text = bnx_COM_b06FwText;
   3004 
   3005 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3006 		fw.data_len = bnx_COM_b06FwDataLen;
   3007 		fw.data_index = 0;
   3008 		fw.data = bnx_COM_b06FwData;
   3009 
   3010 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3011 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3012 		fw.sbss_index = 0;
   3013 		fw.sbss = bnx_COM_b06FwSbss;
   3014 
   3015 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3016 		fw.bss_len = bnx_COM_b06FwBssLen;
   3017 		fw.bss_index = 0;
   3018 		fw.bss = bnx_COM_b06FwBss;
   3019 
   3020 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3021 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3022 		fw.rodata_index = 0;
   3023 		fw.rodata = bnx_COM_b06FwRodata;
   3024 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3025 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3026 		break;
   3027 	}
   3028 }
   3029 
   3030 /****************************************************************************/
   3031 /* Initialize context memory.                                               */
   3032 /*                                                                          */
   3033 /* Clears the memory associated with each Context ID (CID).                 */
   3034 /*                                                                          */
   3035 /* Returns:                                                                 */
   3036 /*   Nothing.                                                               */
   3037 /****************************************************************************/
   3038 void
   3039 bnx_init_context(struct bnx_softc *sc)
   3040 {
   3041 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3042 		/* DRC: Replace this constant value with a #define. */
   3043 		int i, retry_cnt = 10;
   3044 		u_int32_t val;
   3045 
   3046 		/*
   3047 		 * BCM5709 context memory may be cached
   3048 		 * in host memory so prepare the host memory
   3049 		 * for access.
   3050 		 */
   3051 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3052 		    | (1 << 12);
   3053 		val |= (BCM_PAGE_BITS - 8) << 16;
   3054 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3055 
   3056 		/* Wait for mem init command to complete. */
   3057 		for (i = 0; i < retry_cnt; i++) {
   3058 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3059 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3060 				break;
   3061 			DELAY(2);
   3062 		}
   3063 
   3064 
   3065 		/* ToDo: Consider returning an error here. */
   3066 
   3067 		for (i = 0; i < sc->ctx_pages; i++) {
   3068 			int j;
   3069 
   3070 
   3071 			/* Set the physaddr of the context memory cache. */
   3072 			val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
   3073 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3074 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3075 			val = (u_int32_t)
   3076 			    ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
   3077 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3078 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3079 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3080 
   3081 
   3082 			/* Verify that the context memory write was successful. */
   3083 			for (j = 0; j < retry_cnt; j++) {
   3084 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3085 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3086 					break;
   3087 				DELAY(5);
   3088 			}
   3089 
   3090 			/* ToDo: Consider returning an error here. */
   3091 		}
   3092 	} else {
   3093 		u_int32_t vcid_addr, offset;
   3094 
   3095 		/*
   3096 		 * For the 5706/5708, context memory is local to
   3097 		 * the controller, so initialize the controller
   3098 		 * context memory.
   3099 		 */
   3100 
   3101 		vcid_addr = GET_CID_ADDR(96);
   3102 		while (vcid_addr) {
   3103 
   3104 			vcid_addr -= PHY_CTX_SIZE;
   3105 
   3106 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3107 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3108 
   3109 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
   3110 				CTX_WR(sc, 0x00, offset, 0);
   3111 			}
   3112 
   3113 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3114 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3115 		}
   3116 	}
   3117 }
   3118 
   3119 /****************************************************************************/
   3120 /* Fetch the permanent MAC address of the controller.                       */
   3121 /*                                                                          */
   3122 /* Returns:                                                                 */
   3123 /*   Nothing.                                                               */
   3124 /****************************************************************************/
   3125 void
   3126 bnx_get_mac_addr(struct bnx_softc *sc)
   3127 {
   3128 	u_int32_t		mac_lo = 0, mac_hi = 0;
   3129 
   3130 	/*
   3131 	 * The NetXtreme II bootcode populates various NIC
   3132 	 * power-on and runtime configuration items in a
   3133 	 * shared memory area.  The factory configured MAC
   3134 	 * address is available from both NVRAM and the
   3135 	 * shared memory area so we'll read the value from
   3136 	 * shared memory for speed.
   3137 	 */
   3138 
   3139 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3140 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3141 
   3142 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3143 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3144 		    __FILE__, __LINE__);
   3145 	} else {
   3146 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3147 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3148 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3149 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3150 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3151 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3152 	}
   3153 
   3154 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3155 	    "%s\n", ether_sprintf(sc->eaddr));
   3156 }
   3157 
   3158 /****************************************************************************/
   3159 /* Program the MAC address.                                                 */
   3160 /*                                                                          */
   3161 /* Returns:                                                                 */
   3162 /*   Nothing.                                                               */
   3163 /****************************************************************************/
   3164 void
   3165 bnx_set_mac_addr(struct bnx_softc *sc)
   3166 {
   3167 	u_int32_t		val;
   3168 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3169 
   3170 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3171 	    "%s\n", ether_sprintf(sc->eaddr));
   3172 
   3173 	val = (mac_addr[0] << 8) | mac_addr[1];
   3174 
   3175 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3176 
   3177 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3178 		(mac_addr[4] << 8) | mac_addr[5];
   3179 
   3180 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3181 }
   3182 
   3183 /****************************************************************************/
   3184 /* Stop the controller.                                                     */
   3185 /*                                                                          */
   3186 /* Returns:                                                                 */
   3187 /*   Nothing.                                                               */
   3188 /****************************************************************************/
   3189 void
   3190 bnx_stop(struct ifnet *ifp, int disable)
   3191 {
   3192 	struct bnx_softc *sc = ifp->if_softc;
   3193 
   3194 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3195 
   3196 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   3197 		return;
   3198 
   3199 	callout_stop(&sc->bnx_timeout);
   3200 
   3201 	mii_down(&sc->bnx_mii);
   3202 
   3203 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3204 
   3205 	/* Disable the transmit/receive blocks. */
   3206 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3207 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3208 	DELAY(20);
   3209 
   3210 	bnx_disable_intr(sc);
   3211 
   3212 	/* Tell firmware that the driver is going away. */
   3213 	if (disable)
   3214 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3215 	else
   3216 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3217 
   3218 	/* Free RX buffers. */
   3219 	bnx_free_rx_chain(sc);
   3220 
   3221 	/* Free TX buffers. */
   3222 	bnx_free_tx_chain(sc);
   3223 
   3224 	ifp->if_timer = 0;
   3225 
   3226 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3227 
   3228 }
   3229 
   3230 int
   3231 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
   3232 {
   3233 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3234 	u_int32_t		val;
   3235 	int			i, rc = 0;
   3236 
   3237 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3238 
   3239 	/* Wait for pending PCI transactions to complete. */
   3240 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3241 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3242 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3243 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3244 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3245 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3246 	DELAY(5);
   3247 
   3248 	/* Disable DMA */
   3249 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3250 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3251 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3252 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3253 	}
   3254 
   3255 	/* Assume bootcode is running. */
   3256 	sc->bnx_fw_timed_out = 0;
   3257 
   3258 	/* Give the firmware a chance to prepare for the reset. */
   3259 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3260 	if (rc)
   3261 		goto bnx_reset_exit;
   3262 
   3263 	/* Set a firmware reminder that this is a soft reset. */
   3264 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3265 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3266 
   3267 	/* Dummy read to force the chip to complete all current transactions. */
   3268 	val = REG_RD(sc, BNX_MISC_ID);
   3269 
   3270 	/* Chip reset. */
   3271 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3272 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3273 		REG_RD(sc, BNX_MISC_COMMAND);
   3274 		DELAY(5);
   3275 
   3276 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3277 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3278 
   3279 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3280 		    val);
   3281 	} else {
   3282 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3283 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3284 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3285 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3286 
   3287 		/* Allow up to 30us for reset to complete. */
   3288 		for (i = 0; i < 10; i++) {
   3289 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3290 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3291 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3292 				break;
   3293 			}
   3294 			DELAY(10);
   3295 		}
   3296 
   3297 		/* Check that reset completed successfully. */
   3298 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3299 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3300 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3301 			    __FILE__, __LINE__);
   3302 			rc = EBUSY;
   3303 			goto bnx_reset_exit;
   3304 		}
   3305 	}
   3306 
   3307 	/* Make sure byte swapping is properly configured. */
   3308 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3309 	if (val != 0x01020304) {
   3310 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3311 		    __FILE__, __LINE__);
   3312 		rc = ENODEV;
   3313 		goto bnx_reset_exit;
   3314 	}
   3315 
   3316 	/* Just completed a reset, assume that firmware is running again. */
   3317 	sc->bnx_fw_timed_out = 0;
   3318 
   3319 	/* Wait for the firmware to finish its initialization. */
   3320 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3321 	if (rc)
   3322 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3323 		    "initialization!\n", __FILE__, __LINE__);
   3324 
   3325 bnx_reset_exit:
   3326 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3327 
   3328 	return (rc);
   3329 }
   3330 
   3331 int
   3332 bnx_chipinit(struct bnx_softc *sc)
   3333 {
   3334 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3335 	u_int32_t		val;
   3336 	int			rc = 0;
   3337 
   3338 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3339 
   3340 	/* Make sure the interrupt is not active. */
   3341 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3342 
   3343 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3344 	/* channels and PCI clock compensation delay.                      */
   3345 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3346 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3347 #if BYTE_ORDER == BIG_ENDIAN
   3348 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3349 #endif
   3350 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3351 	    DMA_READ_CHANS << 12 |
   3352 	    DMA_WRITE_CHANS << 16;
   3353 
   3354 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3355 
   3356 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3357 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3358 
   3359 	/*
   3360 	 * This setting resolves a problem observed on certain Intel PCI
   3361 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3362 	 * See errata E9_5706A1_65.
   3363 	 */
   3364 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3365 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3366 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3367 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3368 
   3369 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3370 
   3371 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3372 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3373 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3374 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3375 		    val & ~0x20000);
   3376 	}
   3377 
   3378 	/* Enable the RX_V2P and Context state machines before access. */
   3379 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3380 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3381 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3382 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3383 
   3384 	/* Initialize context mapping and zero out the quick contexts. */
   3385 	bnx_init_context(sc);
   3386 
   3387 	/* Initialize the on-boards CPUs */
   3388 	bnx_init_cpus(sc);
   3389 
   3390 	/* Prepare NVRAM for access. */
   3391 	if (bnx_init_nvram(sc)) {
   3392 		rc = ENODEV;
   3393 		goto bnx_chipinit_exit;
   3394 	}
   3395 
   3396 	/* Set the kernel bypass block size */
   3397 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3398 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3399 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3400 
   3401 	/* Enable bins used on the 5709. */
   3402 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3403 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3404 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3405 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3406 	}
   3407 
   3408 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3409 
   3410 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
   3411 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3412 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3413 
   3414 	val = (BCM_PAGE_BITS - 8) << 24;
   3415 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3416 
   3417 	/* Configure page size. */
   3418 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3419 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3420 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3421 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3422 
   3423 #if 0
   3424 	/* Set the perfect match control register to default. */
   3425 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3426 #endif
   3427 
   3428 bnx_chipinit_exit:
   3429 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3430 
   3431 	return(rc);
   3432 }
   3433 
   3434 /****************************************************************************/
   3435 /* Initialize the controller in preparation to send/receive traffic.        */
   3436 /*                                                                          */
   3437 /* Returns:                                                                 */
   3438 /*   0 for success, positive value for failure.                             */
   3439 /****************************************************************************/
   3440 int
   3441 bnx_blockinit(struct bnx_softc *sc)
   3442 {
   3443 	u_int32_t		reg, val;
   3444 	int 			rc = 0;
   3445 
   3446 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3447 
   3448 	/* Load the hardware default MAC address. */
   3449 	bnx_set_mac_addr(sc);
   3450 
   3451 	/* Set the Ethernet backoff seed value */
   3452 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3453 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3454 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3455 
   3456 	sc->last_status_idx = 0;
   3457 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3458 
   3459 	/* Set up link change interrupt generation. */
   3460 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3461 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3462 
   3463 	/* Program the physical address of the status block. */
   3464 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
   3465 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3466 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
   3467 
   3468 	/* Program the physical address of the statistics block. */
   3469 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3470 	    (u_int32_t)(sc->stats_block_paddr));
   3471 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3472 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
   3473 
   3474 	/* Program various host coalescing parameters. */
   3475 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3476 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3477 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3478 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3479 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3480 	    sc->bnx_comp_prod_trip);
   3481 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3482 	    sc->bnx_tx_ticks);
   3483 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3484 	    sc->bnx_rx_ticks);
   3485 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3486 	    sc->bnx_com_ticks);
   3487 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3488 	    sc->bnx_cmd_ticks);
   3489 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3490 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3491 	REG_WR(sc, BNX_HC_CONFIG,
   3492 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3493 	    BNX_HC_CONFIG_COLLECT_STATS));
   3494 
   3495 	/* Clear the internal statistics counters. */
   3496 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3497 
   3498 	/* Verify that bootcode is running. */
   3499 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3500 
   3501 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3502 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3503 	    __FILE__, __LINE__); reg = 0);
   3504 
   3505 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3506 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3507 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3508 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3509 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3510 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3511 		rc = ENODEV;
   3512 		goto bnx_blockinit_exit;
   3513 	}
   3514 
   3515 	/* Check if any management firmware is running. */
   3516 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3517 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3518 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3519 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3520 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3521 	}
   3522 
   3523 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3524 	    BNX_DEV_INFO_BC_REV);
   3525 
   3526 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3527 
   3528 	/* Enable DMA */
   3529 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3530 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3531 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3532 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3533 	}
   3534 
   3535 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3536 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3537 
   3538 	/* Enable link state change interrupt generation. */
   3539 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3540 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3541 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3542 	} else
   3543 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3544 
   3545 	/* Enable all remaining blocks in the MAC. */
   3546 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3547 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3548 	DELAY(20);
   3549 
   3550 bnx_blockinit_exit:
   3551 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3552 
   3553 	return (rc);
   3554 }
   3555 
   3556 static int
   3557 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
   3558     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3559 {
   3560 	bus_dmamap_t		map;
   3561 	struct rx_bd		*rxbd;
   3562 	u_int32_t		addr;
   3563 	int i;
   3564 #ifdef BNX_DEBUG
   3565 	u_int16_t debug_chain_prod =	*chain_prod;
   3566 #endif
   3567 	u_int16_t first_chain_prod;
   3568 
   3569 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3570 
   3571 	/* Map the mbuf cluster into device memory. */
   3572 	map = sc->rx_mbuf_map[*chain_prod];
   3573 	first_chain_prod = *chain_prod;
   3574 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3575 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3576 		    __FILE__, __LINE__);
   3577 
   3578 		m_freem(m_new);
   3579 
   3580 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3581 
   3582 		return ENOBUFS;
   3583 	}
   3584 	/* Make sure there is room in the receive chain. */
   3585 	if (map->dm_nsegs > sc->free_rx_bd) {
   3586 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3587 		m_freem(m_new);
   3588 		return EFBIG;
   3589 	}
   3590 #ifdef BNX_DEBUG
   3591 	/* Track the distribution of buffer segments. */
   3592 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3593 #endif
   3594 
   3595 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3596 	    BUS_DMASYNC_PREREAD);
   3597 
   3598 	/* Update some debug statistics counters */
   3599 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3600 	    sc->rx_low_watermark = sc->free_rx_bd);
   3601 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3602 
   3603 	/*
   3604 	 * Setup the rx_bd for the first segment
   3605 	 */
   3606 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3607 
   3608 	addr = (u_int32_t)(map->dm_segs[0].ds_addr);
   3609 	rxbd->rx_bd_haddr_lo = htole32(addr);
   3610 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
   3611 	rxbd->rx_bd_haddr_hi = htole32(addr);
   3612 	rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
   3613 	rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
   3614 	*prod_bseq += map->dm_segs[0].ds_len;
   3615 	bus_dmamap_sync(sc->bnx_dmatag,
   3616 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3617 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3618 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3619 
   3620 	for (i = 1; i < map->dm_nsegs; i++) {
   3621 		*prod = NEXT_RX_BD(*prod);
   3622 		*chain_prod = RX_CHAIN_IDX(*prod);
   3623 
   3624 		rxbd =
   3625 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3626 
   3627 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   3628 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3629 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   3630 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3631 		rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
   3632 		rxbd->rx_bd_flags = 0;
   3633 		*prod_bseq += map->dm_segs[i].ds_len;
   3634 		bus_dmamap_sync(sc->bnx_dmatag,
   3635 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3636 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3637 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3638 	}
   3639 
   3640 	rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
   3641 	bus_dmamap_sync(sc->bnx_dmatag,
   3642 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3643 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3644 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3645 
   3646 	/*
   3647 	 * Save the mbuf, ajust the map pointer (swap map for first and
   3648 	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
   3649 	 * and update counter.
   3650 	 */
   3651 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3652 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3653 	sc->rx_mbuf_map[*chain_prod] = map;
   3654 	sc->free_rx_bd -= map->dm_nsegs;
   3655 
   3656 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3657 	    map->dm_nsegs));
   3658 	*prod = NEXT_RX_BD(*prod);
   3659 	*chain_prod = RX_CHAIN_IDX(*prod);
   3660 
   3661 	return 0;
   3662 }
   3663 
   3664 /****************************************************************************/
   3665 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3666 /*                                                                          */
   3667 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3668 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3669 /* necessary.                                                               */
   3670 /*                                                                          */
   3671 /* Returns:                                                                 */
   3672 /*   0 for success, positive value for failure.                             */
   3673 /****************************************************************************/
   3674 int
   3675 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
   3676     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3677 {
   3678 	struct mbuf 		*m_new = NULL;
   3679 	int			rc = 0;
   3680 	u_int16_t min_free_bd;
   3681 
   3682 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3683 	    __func__);
   3684 
   3685 	/* Make sure the inputs are valid. */
   3686 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3687 	    aprint_error_dev(sc->bnx_dev,
   3688 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3689 		*chain_prod, (u_int16_t)MAX_RX_BD));
   3690 
   3691 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3692 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3693 	    *prod_bseq);
   3694 
   3695 	/* try to get in as many mbufs as possible */
   3696 	if (sc->mbuf_alloc_size == MCLBYTES)
   3697 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3698 	else
   3699 		min_free_bd = (BNX_MAX_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3700 	while (sc->free_rx_bd >= min_free_bd) {
   3701 		/* Simulate an mbuf allocation failure. */
   3702 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3703 		    aprint_error_dev(sc->bnx_dev,
   3704 		    "Simulating mbuf allocation failure.\n");
   3705 			sc->mbuf_sim_alloc_failed++;
   3706 			rc = ENOBUFS;
   3707 			goto bnx_get_buf_exit);
   3708 
   3709 		/* This is a new mbuf allocation. */
   3710 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3711 		if (m_new == NULL) {
   3712 			DBPRINT(sc, BNX_WARN,
   3713 			    "%s(%d): RX mbuf header allocation failed!\n",
   3714 			    __FILE__, __LINE__);
   3715 
   3716 			sc->mbuf_alloc_failed++;
   3717 
   3718 			rc = ENOBUFS;
   3719 			goto bnx_get_buf_exit;
   3720 		}
   3721 
   3722 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3723 
   3724 		/* Simulate an mbuf cluster allocation failure. */
   3725 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3726 			m_freem(m_new);
   3727 			sc->rx_mbuf_alloc--;
   3728 			sc->mbuf_alloc_failed++;
   3729 			sc->mbuf_sim_alloc_failed++;
   3730 			rc = ENOBUFS;
   3731 			goto bnx_get_buf_exit);
   3732 
   3733 		if (sc->mbuf_alloc_size == MCLBYTES)
   3734 			MCLGET(m_new, M_DONTWAIT);
   3735 		else
   3736 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3737 			    M_DONTWAIT);
   3738 		if (!(m_new->m_flags & M_EXT)) {
   3739 			DBPRINT(sc, BNX_WARN,
   3740 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3741 			    __FILE__, __LINE__);
   3742 
   3743 			m_freem(m_new);
   3744 
   3745 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3746 			sc->mbuf_alloc_failed++;
   3747 
   3748 			rc = ENOBUFS;
   3749 			goto bnx_get_buf_exit;
   3750 		}
   3751 
   3752 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3753 		if (rc != 0)
   3754 			goto bnx_get_buf_exit;
   3755 	}
   3756 
   3757 bnx_get_buf_exit:
   3758 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3759 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3760 	    *chain_prod, *prod_bseq);
   3761 
   3762 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3763 	    __func__);
   3764 
   3765 	return(rc);
   3766 }
   3767 
   3768 int
   3769 bnx_alloc_pkts(struct bnx_softc *sc)
   3770 {
   3771 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   3772 	struct bnx_pkt *pkt;
   3773 	int i;
   3774 
   3775 	for (i = 0; i < 4; i++) { /* magic! */
   3776 		pkt = pool_get(bnx_tx_pool, PR_NOWAIT);
   3777 		if (pkt == NULL)
   3778 			break;
   3779 
   3780 		if (bus_dmamap_create(sc->bnx_dmatag,
   3781 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   3782 		    MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   3783 		    &pkt->pkt_dmamap) != 0)
   3784 			goto put;
   3785 
   3786 		if (!ISSET(ifp->if_flags, IFF_UP))
   3787 			goto stopping;
   3788 
   3789 		mutex_enter(&sc->tx_pkt_mtx);
   3790 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   3791 		sc->tx_pkt_count++;
   3792 		mutex_exit(&sc->tx_pkt_mtx);
   3793 	}
   3794 
   3795 	return (i == 0) ? ENOMEM : 0;
   3796 
   3797 stopping:
   3798 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   3799 put:
   3800 	pool_put(bnx_tx_pool, pkt);
   3801 	return (i == 0) ? ENOMEM : 0;
   3802 }
   3803 
   3804 /****************************************************************************/
   3805 /* Initialize the TX context memory.                                        */
   3806 /*                                                                          */
   3807 /* Returns:                                                                 */
   3808 /*   Nothing                                                                */
   3809 /****************************************************************************/
   3810 void
   3811 bnx_init_tx_context(struct bnx_softc *sc)
   3812 {
   3813 	u_int32_t val;
   3814 
   3815 	/* Initialize the context ID for an L2 TX chain. */
   3816 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3817 		/* Set the CID type to support an L2 connection. */
   3818 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3819 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   3820 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3821 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   3822 
   3823 		/* Point the hardware to the first page in the chain. */
   3824 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3825 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   3826 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   3827 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3828 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   3829 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   3830 	} else {
   3831 		/* Set the CID type to support an L2 connection. */
   3832 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3833 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   3834 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3835 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   3836 
   3837 		/* Point the hardware to the first page in the chain. */
   3838 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3839 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   3840 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3841 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   3842 	}
   3843 }
   3844 
   3845 
   3846 /****************************************************************************/
   3847 /* Allocate memory and initialize the TX data structures.                   */
   3848 /*                                                                          */
   3849 /* Returns:                                                                 */
   3850 /*   0 for success, positive value for failure.                             */
   3851 /****************************************************************************/
   3852 int
   3853 bnx_init_tx_chain(struct bnx_softc *sc)
   3854 {
   3855 	struct tx_bd		*txbd;
   3856 	u_int32_t		addr;
   3857 	int			i, rc = 0;
   3858 
   3859 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3860 
   3861 	/* Force an allocation of some dmamaps for tx up front */
   3862 	bnx_alloc_pkts(sc);
   3863 
   3864 	/* Set the initial TX producer/consumer indices. */
   3865 	sc->tx_prod = 0;
   3866 	sc->tx_cons = 0;
   3867 	sc->tx_prod_bseq = 0;
   3868 	sc->used_tx_bd = 0;
   3869 	sc->max_tx_bd = USABLE_TX_BD;
   3870 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   3871 	DBRUNIF(1, sc->tx_full_count = 0);
   3872 
   3873 	/*
   3874 	 * The NetXtreme II supports a linked-list structure called
   3875 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   3876 	 * consists of a series of 1 or more chain pages, each of which
   3877 	 * consists of a fixed number of BD entries.
   3878 	 * The last BD entry on each page is a pointer to the next page
   3879 	 * in the chain, and the last pointer in the BD chain
   3880 	 * points back to the beginning of the chain.
   3881 	 */
   3882 
   3883 	/* Set the TX next pointer chain entries. */
   3884 	for (i = 0; i < TX_PAGES; i++) {
   3885 		int j;
   3886 
   3887 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   3888 
   3889 		/* Check if we've reached the last page. */
   3890 		if (i == (TX_PAGES - 1))
   3891 			j = 0;
   3892 		else
   3893 			j = i + 1;
   3894 
   3895 		addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
   3896 		txbd->tx_bd_haddr_lo = htole32(addr);
   3897 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
   3898 		txbd->tx_bd_haddr_hi = htole32(addr);
   3899 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3900 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3901 	}
   3902 
   3903 	/*
   3904 	 * Initialize the context ID for an L2 TX chain.
   3905 	 */
   3906 	bnx_init_tx_context(sc);
   3907 
   3908 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3909 
   3910 	return(rc);
   3911 }
   3912 
   3913 /****************************************************************************/
   3914 /* Free memory and clear the TX data structures.                            */
   3915 /*                                                                          */
   3916 /* Returns:                                                                 */
   3917 /*   Nothing.                                                               */
   3918 /****************************************************************************/
   3919 void
   3920 bnx_free_tx_chain(struct bnx_softc *sc)
   3921 {
   3922 	struct bnx_pkt		*pkt;
   3923 	int			i;
   3924 
   3925 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3926 
   3927 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   3928 	mutex_enter(&sc->tx_pkt_mtx);
   3929 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   3930 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   3931 		mutex_exit(&sc->tx_pkt_mtx);
   3932 
   3933 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   3934 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3935 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   3936 
   3937 		m_freem(pkt->pkt_mbuf);
   3938 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   3939 
   3940 		mutex_enter(&sc->tx_pkt_mtx);
   3941 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   3942         }
   3943 
   3944 	/* Destroy all the dmamaps we allocated for TX */
   3945 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   3946 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   3947 		sc->tx_pkt_count--;
   3948 		mutex_exit(&sc->tx_pkt_mtx);
   3949 
   3950 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   3951 		pool_put(bnx_tx_pool, pkt);
   3952 
   3953 		mutex_enter(&sc->tx_pkt_mtx);
   3954 	}
   3955 	mutex_exit(&sc->tx_pkt_mtx);
   3956 
   3957 
   3958 
   3959 	/* Clear each TX chain page. */
   3960 	for (i = 0; i < TX_PAGES; i++) {
   3961 		bzero((char *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   3962 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3963 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3964 	}
   3965 
   3966 	sc->used_tx_bd = 0;
   3967 
   3968 	/* Check if we lost any mbufs in the process. */
   3969 	DBRUNIF((sc->tx_mbuf_alloc),
   3970 	    aprint_error_dev(sc->bnx_dev,
   3971 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   3972 		sc->tx_mbuf_alloc));
   3973 
   3974 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3975 }
   3976 
   3977 /****************************************************************************/
   3978 /* Initialize the RX context memory.                                        */
   3979 /*                                                                          */
   3980 /* Returns:                                                                 */
   3981 /*   Nothing                                                                */
   3982 /****************************************************************************/
   3983 void
   3984 bnx_init_rx_context(struct bnx_softc *sc)
   3985 {
   3986 	u_int32_t val;
   3987 
   3988 	/* Initialize the context ID for an L2 RX chain. */
   3989 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   3990 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   3991 
   3992 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3993 		u_int32_t lo_water, hi_water;
   3994 
   3995 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
   3996 		hi_water = USABLE_RX_BD / 4;
   3997 
   3998 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
   3999 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
   4000 
   4001 		if (hi_water > 0xf)
   4002 			hi_water = 0xf;
   4003 		else if (hi_water == 0)
   4004 			lo_water = 0;
   4005 		val |= lo_water |
   4006 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
   4007 	}
   4008 
   4009  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4010 
   4011 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4012 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4013 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4014 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4015 	}
   4016 
   4017 	/* Point the hardware to the first page in the chain. */
   4018 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4019 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4020 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
   4021 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4022 }
   4023 
   4024 /****************************************************************************/
   4025 /* Allocate memory and initialize the RX data structures.                   */
   4026 /*                                                                          */
   4027 /* Returns:                                                                 */
   4028 /*   0 for success, positive value for failure.                             */
   4029 /****************************************************************************/
   4030 int
   4031 bnx_init_rx_chain(struct bnx_softc *sc)
   4032 {
   4033 	struct rx_bd		*rxbd;
   4034 	int			i, rc = 0;
   4035 	u_int16_t		prod, chain_prod;
   4036 	u_int32_t		prod_bseq, addr;
   4037 
   4038 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4039 
   4040 	/* Initialize the RX producer and consumer indices. */
   4041 	sc->rx_prod = 0;
   4042 	sc->rx_cons = 0;
   4043 	sc->rx_prod_bseq = 0;
   4044 	sc->free_rx_bd = USABLE_RX_BD;
   4045 	sc->max_rx_bd = USABLE_RX_BD;
   4046 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4047 	DBRUNIF(1, sc->rx_empty_count = 0);
   4048 
   4049 	/* Initialize the RX next pointer chain entries. */
   4050 	for (i = 0; i < RX_PAGES; i++) {
   4051 		int j;
   4052 
   4053 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4054 
   4055 		/* Check if we've reached the last page. */
   4056 		if (i == (RX_PAGES - 1))
   4057 			j = 0;
   4058 		else
   4059 			j = i + 1;
   4060 
   4061 		/* Setup the chain page pointers. */
   4062 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4063 		rxbd->rx_bd_haddr_hi = htole32(addr);
   4064 		addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
   4065 		rxbd->rx_bd_haddr_lo = htole32(addr);
   4066 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4067 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4068 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4069 	}
   4070 
   4071 	/* Allocate mbuf clusters for the rx_bd chain. */
   4072 	prod = prod_bseq = 0;
   4073 	chain_prod = RX_CHAIN_IDX(prod);
   4074 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4075 		BNX_PRINTF(sc,
   4076 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4077 	}
   4078 
   4079 	/* Save the RX chain producer index. */
   4080 	sc->rx_prod = prod;
   4081 	sc->rx_prod_bseq = prod_bseq;
   4082 
   4083 	for (i = 0; i < RX_PAGES; i++)
   4084 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4085 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4086 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4087 
   4088 	/* Tell the chip about the waiting rx_bd's. */
   4089 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4090 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4091 
   4092 	bnx_init_rx_context(sc);
   4093 
   4094 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4095 
   4096 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4097 
   4098 	return(rc);
   4099 }
   4100 
   4101 /****************************************************************************/
   4102 /* Free memory and clear the RX data structures.                            */
   4103 /*                                                                          */
   4104 /* Returns:                                                                 */
   4105 /*   Nothing.                                                               */
   4106 /****************************************************************************/
   4107 void
   4108 bnx_free_rx_chain(struct bnx_softc *sc)
   4109 {
   4110 	int			i;
   4111 
   4112 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4113 
   4114 	/* Free any mbufs still in the RX mbuf chain. */
   4115 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4116 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4117 			if (sc->rx_mbuf_map[i] != NULL) {
   4118 				bus_dmamap_sync(sc->bnx_dmatag,
   4119 				    sc->rx_mbuf_map[i],	0,
   4120 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4121 				    BUS_DMASYNC_POSTREAD);
   4122 				bus_dmamap_unload(sc->bnx_dmatag,
   4123 				    sc->rx_mbuf_map[i]);
   4124 			}
   4125 			m_freem(sc->rx_mbuf_ptr[i]);
   4126 			sc->rx_mbuf_ptr[i] = NULL;
   4127 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4128 		}
   4129 	}
   4130 
   4131 	/* Clear each RX chain page. */
   4132 	for (i = 0; i < RX_PAGES; i++)
   4133 		bzero((char *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   4134 
   4135 	sc->free_rx_bd = sc->max_rx_bd;
   4136 
   4137 	/* Check if we lost any mbufs in the process. */
   4138 	DBRUNIF((sc->rx_mbuf_alloc),
   4139 	    aprint_error_dev(sc->bnx_dev,
   4140 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   4141 		sc->rx_mbuf_alloc));
   4142 
   4143 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4144 }
   4145 
   4146 /****************************************************************************/
   4147 /* Handles PHY generated interrupt events.                                  */
   4148 /*                                                                          */
   4149 /* Returns:                                                                 */
   4150 /*   Nothing.                                                               */
   4151 /****************************************************************************/
   4152 void
   4153 bnx_phy_intr(struct bnx_softc *sc)
   4154 {
   4155 	u_int32_t		new_link_state, old_link_state;
   4156 
   4157 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4158 	    BUS_DMASYNC_POSTREAD);
   4159 	new_link_state = sc->status_block->status_attn_bits &
   4160 	    STATUS_ATTN_BITS_LINK_STATE;
   4161 	old_link_state = sc->status_block->status_attn_bits_ack &
   4162 	    STATUS_ATTN_BITS_LINK_STATE;
   4163 
   4164 	/* Handle any changes if the link state has changed. */
   4165 	if (new_link_state != old_link_state) {
   4166 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4167 
   4168 		callout_stop(&sc->bnx_timeout);
   4169 		bnx_tick(sc);
   4170 
   4171 		/* Update the status_attn_bits_ack field in the status block. */
   4172 		if (new_link_state) {
   4173 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4174 			    STATUS_ATTN_BITS_LINK_STATE);
   4175 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4176 		} else {
   4177 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4178 			    STATUS_ATTN_BITS_LINK_STATE);
   4179 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4180 		}
   4181 	}
   4182 
   4183 	/* Acknowledge the link change interrupt. */
   4184 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4185 }
   4186 
   4187 /****************************************************************************/
   4188 /* Handles received frame interrupt events.                                 */
   4189 /*                                                                          */
   4190 /* Returns:                                                                 */
   4191 /*   Nothing.                                                               */
   4192 /****************************************************************************/
   4193 void
   4194 bnx_rx_intr(struct bnx_softc *sc)
   4195 {
   4196 	struct status_block	*sblk = sc->status_block;
   4197 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4198 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
   4199 	u_int16_t		sw_prod, sw_chain_prod;
   4200 	u_int32_t		sw_prod_bseq;
   4201 	struct l2_fhdr		*l2fhdr;
   4202 	int			i;
   4203 
   4204 	DBRUNIF(1, sc->rx_interrupts++);
   4205 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4206 	    BUS_DMASYNC_POSTREAD);
   4207 
   4208 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4209 	for (i = 0; i < RX_PAGES; i++)
   4210 		bus_dmamap_sync(sc->bnx_dmatag,
   4211 		    sc->rx_bd_chain_map[i], 0,
   4212 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4213 		    BUS_DMASYNC_POSTWRITE);
   4214 
   4215 	/* Get the hardware's view of the RX consumer index. */
   4216 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4217 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4218 		hw_cons++;
   4219 
   4220 	/* Get working copies of the driver's view of the RX indices. */
   4221 	sw_cons = sc->rx_cons;
   4222 	sw_prod = sc->rx_prod;
   4223 	sw_prod_bseq = sc->rx_prod_bseq;
   4224 
   4225 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4226 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4227 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4228 
   4229 	/* Prevent speculative reads from getting ahead of the status block. */
   4230 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4231 	    BUS_SPACE_BARRIER_READ);
   4232 
   4233 	/* Update some debug statistics counters */
   4234 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4235 	    sc->rx_low_watermark = sc->free_rx_bd);
   4236 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4237 
   4238 	/*
   4239 	 * Scan through the receive chain as long
   4240 	 * as there is work to do.
   4241 	 */
   4242 	while (sw_cons != hw_cons) {
   4243 		struct mbuf *m;
   4244 		struct rx_bd *rxbd;
   4245 		unsigned int len;
   4246 		u_int32_t status;
   4247 
   4248 		/* Convert the producer/consumer indices to an actual
   4249 		 * rx_bd index.
   4250 		 */
   4251 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4252 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4253 
   4254 		/* Get the used rx_bd. */
   4255 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4256 		sc->free_rx_bd++;
   4257 
   4258 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4259 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4260 
   4261 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4262 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4263 #ifdef DIAGNOSTIC
   4264 			/* Validate that this is the last rx_bd. */
   4265 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4266 			    printf("%s: Unexpected mbuf found in "
   4267 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4268 			        sw_chain_cons);
   4269 			}
   4270 #endif
   4271 
   4272 			/* DRC - ToDo: If the received packet is small, say less
   4273 			 *             than 128 bytes, allocate a new mbuf here,
   4274 			 *             copy the data to that mbuf, and recycle
   4275 			 *             the mapped jumbo frame.
   4276 			 */
   4277 
   4278 			/* Unmap the mbuf from DMA space. */
   4279 #ifdef DIAGNOSTIC
   4280 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4281 				printf("invalid map sw_cons 0x%x "
   4282 				"sw_prod 0x%x "
   4283 				"sw_chain_cons 0x%x "
   4284 				"sw_chain_prod 0x%x "
   4285 				"hw_cons 0x%x "
   4286 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4287 				"TOTAL_RX_BD 0x%x\n",
   4288 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4289 				hw_cons,
   4290 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4291 			}
   4292 #endif
   4293 			bus_dmamap_sync(sc->bnx_dmatag,
   4294 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4295 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4296 			    BUS_DMASYNC_POSTREAD);
   4297 			bus_dmamap_unload(sc->bnx_dmatag,
   4298 			    sc->rx_mbuf_map[sw_chain_cons]);
   4299 
   4300 			/* Remove the mbuf from the driver's chain. */
   4301 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4302 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4303 
   4304 			/*
   4305 			 * Frames received on the NetXteme II are prepended
   4306 			 * with the l2_fhdr structure which provides status
   4307 			 * information about the received frame (including
   4308 			 * VLAN tags and checksum info) and are also
   4309 			 * automatically adjusted to align the IP header
   4310 			 * (i.e. two null bytes are inserted before the
   4311 			 * Ethernet header).
   4312 			 */
   4313 			l2fhdr = mtod(m, struct l2_fhdr *);
   4314 
   4315 			len    = l2fhdr->l2_fhdr_pkt_len;
   4316 			status = l2fhdr->l2_fhdr_status;
   4317 
   4318 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4319 			    aprint_error("Simulating l2_fhdr status error.\n");
   4320 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4321 
   4322 			/* Watch for unusual sized frames. */
   4323 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4324 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4325 			    aprint_error_dev(sc->bnx_dev,
   4326 			        "Unusual frame size found. "
   4327 				"Min(%d), Actual(%d), Max(%d)\n",
   4328 				(int)BNX_MIN_MTU, len,
   4329 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4330 
   4331 			bnx_dump_mbuf(sc, m);
   4332 			bnx_breakpoint(sc));
   4333 
   4334 			len -= ETHER_CRC_LEN;
   4335 
   4336 			/* Check the received frame for errors. */
   4337 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4338 			    L2_FHDR_ERRORS_PHY_DECODE |
   4339 			    L2_FHDR_ERRORS_ALIGNMENT |
   4340 			    L2_FHDR_ERRORS_TOO_SHORT |
   4341 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4342 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4343 			    len >
   4344 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4345 				ifp->if_ierrors++;
   4346 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4347 
   4348 				/* Reuse the mbuf for a new frame. */
   4349 				if (bnx_add_buf(sc, m, &sw_prod,
   4350 				    &sw_chain_prod, &sw_prod_bseq)) {
   4351 					DBRUNIF(1, bnx_breakpoint(sc));
   4352 					panic("%s: Can't reuse RX mbuf!\n",
   4353 					    device_xname(sc->bnx_dev));
   4354 				}
   4355 				continue;
   4356 			}
   4357 
   4358 			/*
   4359 			 * Get a new mbuf for the rx_bd.   If no new
   4360 			 * mbufs are available then reuse the current mbuf,
   4361 			 * log an ierror on the interface, and generate
   4362 			 * an error in the system log.
   4363 			 */
   4364 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4365 			    &sw_prod_bseq)) {
   4366 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4367 				    "Failed to allocate "
   4368 				    "new mbuf, incoming frame dropped!\n"));
   4369 
   4370 				ifp->if_ierrors++;
   4371 
   4372 				/* Try and reuse the exisitng mbuf. */
   4373 				if (bnx_add_buf(sc, m, &sw_prod,
   4374 				    &sw_chain_prod, &sw_prod_bseq)) {
   4375 					DBRUNIF(1, bnx_breakpoint(sc));
   4376 					panic("%s: Double mbuf allocation "
   4377 					    "failure!",
   4378 					    device_xname(sc->bnx_dev));
   4379 				}
   4380 				continue;
   4381 			}
   4382 
   4383 			/* Skip over the l2_fhdr when passing the data up
   4384 			 * the stack.
   4385 			 */
   4386 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4387 
   4388 			/* Adjust the pckt length to match the received data. */
   4389 			m->m_pkthdr.len = m->m_len = len;
   4390 
   4391 			/* Send the packet to the appropriate interface. */
   4392 			m->m_pkthdr.rcvif = ifp;
   4393 
   4394 			DBRUN(BNX_VERBOSE_RECV,
   4395 			    struct ether_header *eh;
   4396 			    eh = mtod(m, struct ether_header *);
   4397 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4398 			    __func__, ether_sprintf(eh->ether_dhost),
   4399 			    ether_sprintf(eh->ether_shost),
   4400 			    htons(eh->ether_type)));
   4401 
   4402 			/* Validate the checksum. */
   4403 
   4404 			/* Check for an IP datagram. */
   4405 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4406 				/* Check if the IP checksum is valid. */
   4407 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   4408 				    == 0)
   4409 					m->m_pkthdr.csum_flags |=
   4410 					    M_CSUM_IPv4;
   4411 #ifdef BNX_DEBUG
   4412 				else
   4413 					DBPRINT(sc, BNX_WARN_SEND,
   4414 					    "%s(): Invalid IP checksum "
   4415 					        "= 0x%04X!\n",
   4416 						__func__,
   4417 						l2fhdr->l2_fhdr_ip_xsum
   4418 						);
   4419 #endif
   4420 			}
   4421 
   4422 			/* Check for a valid TCP/UDP frame. */
   4423 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4424 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4425 				/* Check for a good TCP/UDP checksum. */
   4426 				if ((status &
   4427 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4428 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4429 					m->m_pkthdr.csum_flags |=
   4430 					    M_CSUM_TCPv4 |
   4431 					    M_CSUM_UDPv4;
   4432 				} else {
   4433 					DBPRINT(sc, BNX_WARN_SEND,
   4434 					    "%s(): Invalid TCP/UDP "
   4435 					    "checksum = 0x%04X!\n",
   4436 					    __func__,
   4437 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4438 				}
   4439 			}
   4440 
   4441 			/*
   4442 			 * If we received a packet with a vlan tag,
   4443 			 * attach that information to the packet.
   4444 			 */
   4445 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4446 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4447 				VLAN_INPUT_TAG(ifp, m,
   4448 				    l2fhdr->l2_fhdr_vlan_tag,
   4449 				    continue);
   4450 			}
   4451 
   4452 #if NBPFILTER > 0
   4453 			/*
   4454 			 * Handle BPF listeners. Let the BPF
   4455 			 * user see the packet.
   4456 			 */
   4457 			if (ifp->if_bpf)
   4458 				bpf_mtap(ifp->if_bpf, m);
   4459 #endif
   4460 
   4461 			/* Pass the mbuf off to the upper layers. */
   4462 			ifp->if_ipackets++;
   4463 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4464 			    "%s(): Passing received frame up.\n", __func__);
   4465 			(*ifp->if_input)(ifp, m);
   4466 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4467 
   4468 		}
   4469 
   4470 		sw_cons = NEXT_RX_BD(sw_cons);
   4471 
   4472 		/* Refresh hw_cons to see if there's new work */
   4473 		if (sw_cons == hw_cons) {
   4474 			hw_cons = sc->hw_rx_cons =
   4475 			    sblk->status_rx_quick_consumer_index0;
   4476 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4477 			    USABLE_RX_BD_PER_PAGE)
   4478 				hw_cons++;
   4479 		}
   4480 
   4481 		/* Prevent speculative reads from getting ahead of
   4482 		 * the status block.
   4483 		 */
   4484 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4485 		    BUS_SPACE_BARRIER_READ);
   4486 	}
   4487 
   4488 	for (i = 0; i < RX_PAGES; i++)
   4489 		bus_dmamap_sync(sc->bnx_dmatag,
   4490 		    sc->rx_bd_chain_map[i], 0,
   4491 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4492 		    BUS_DMASYNC_PREWRITE);
   4493 
   4494 	sc->rx_cons = sw_cons;
   4495 	sc->rx_prod = sw_prod;
   4496 	sc->rx_prod_bseq = sw_prod_bseq;
   4497 
   4498 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4499 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4500 
   4501 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4502 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4503 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4504 }
   4505 
   4506 /****************************************************************************/
   4507 /* Handles transmit completion interrupt events.                            */
   4508 /*                                                                          */
   4509 /* Returns:                                                                 */
   4510 /*   Nothing.                                                               */
   4511 /****************************************************************************/
   4512 void
   4513 bnx_tx_intr(struct bnx_softc *sc)
   4514 {
   4515 	struct status_block	*sblk = sc->status_block;
   4516 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4517 	struct bnx_pkt		*pkt;
   4518 	bus_dmamap_t		map;
   4519 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4520 
   4521 	DBRUNIF(1, sc->tx_interrupts++);
   4522 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4523 	    BUS_DMASYNC_POSTREAD);
   4524 
   4525 	/* Get the hardware's view of the TX consumer index. */
   4526 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4527 
   4528 	/* Skip to the next entry if this is a chain page pointer. */
   4529 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4530 		hw_tx_cons++;
   4531 
   4532 	sw_tx_cons = sc->tx_cons;
   4533 
   4534 	/* Prevent speculative reads from getting ahead of the status block. */
   4535 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4536 	    BUS_SPACE_BARRIER_READ);
   4537 
   4538 	/* Cycle through any completed TX chain page entries. */
   4539 	while (sw_tx_cons != hw_tx_cons) {
   4540 #ifdef BNX_DEBUG
   4541 		struct tx_bd *txbd = NULL;
   4542 #endif
   4543 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4544 
   4545 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4546 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4547 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4548 
   4549 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4550 		    aprint_error_dev(sc->bnx_dev,
   4551 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4552 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4553 
   4554 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4555 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4556 
   4557 		DBRUNIF((txbd == NULL),
   4558 		    aprint_error_dev(sc->bnx_dev,
   4559 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4560 		    bnx_breakpoint(sc));
   4561 
   4562 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4563 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4564 
   4565 
   4566 		mutex_enter(&sc->tx_pkt_mtx);
   4567 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4568 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4569 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4570 			mutex_exit(&sc->tx_pkt_mtx);
   4571 			/*
   4572 			 * Free the associated mbuf. Remember
   4573 			 * that only the last tx_bd of a packet
   4574 			 * has an mbuf pointer and DMA map.
   4575 			 */
   4576 			map = pkt->pkt_dmamap;
   4577 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4578 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4579 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4580 
   4581 			m_freem(pkt->pkt_mbuf);
   4582 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4583 
   4584 			ifp->if_opackets++;
   4585 
   4586 			mutex_enter(&sc->tx_pkt_mtx);
   4587 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4588 		}
   4589 		mutex_exit(&sc->tx_pkt_mtx);
   4590 
   4591 		sc->used_tx_bd--;
   4592 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4593 			__FILE__, __LINE__, sc->used_tx_bd);
   4594 
   4595 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4596 
   4597 		/* Refresh hw_cons to see if there's new work. */
   4598 		hw_tx_cons = sc->hw_tx_cons =
   4599 		    sblk->status_tx_quick_consumer_index0;
   4600 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4601 		    USABLE_TX_BD_PER_PAGE)
   4602 			hw_tx_cons++;
   4603 
   4604 		/* Prevent speculative reads from getting ahead of
   4605 		 * the status block.
   4606 		 */
   4607 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4608 		    BUS_SPACE_BARRIER_READ);
   4609 	}
   4610 
   4611 	/* Clear the TX timeout timer. */
   4612 	ifp->if_timer = 0;
   4613 
   4614 	/* Clear the tx hardware queue full flag. */
   4615 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4616 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4617 		    aprint_debug_dev(sc->bnx_dev,
   4618 		        "Open TX chain! %d/%d (used/total)\n",
   4619 			sc->used_tx_bd, sc->max_tx_bd));
   4620 		ifp->if_flags &= ~IFF_OACTIVE;
   4621 	}
   4622 
   4623 	sc->tx_cons = sw_tx_cons;
   4624 }
   4625 
   4626 /****************************************************************************/
   4627 /* Disables interrupt generation.                                           */
   4628 /*                                                                          */
   4629 /* Returns:                                                                 */
   4630 /*   Nothing.                                                               */
   4631 /****************************************************************************/
   4632 void
   4633 bnx_disable_intr(struct bnx_softc *sc)
   4634 {
   4635 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4636 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4637 }
   4638 
   4639 /****************************************************************************/
   4640 /* Enables interrupt generation.                                            */
   4641 /*                                                                          */
   4642 /* Returns:                                                                 */
   4643 /*   Nothing.                                                               */
   4644 /****************************************************************************/
   4645 void
   4646 bnx_enable_intr(struct bnx_softc *sc)
   4647 {
   4648 	u_int32_t		val;
   4649 
   4650 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4651 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4652 
   4653 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4654 	    sc->last_status_idx);
   4655 
   4656 	val = REG_RD(sc, BNX_HC_COMMAND);
   4657 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4658 }
   4659 
   4660 /****************************************************************************/
   4661 /* Handles controller initialization.                                       */
   4662 /*                                                                          */
   4663 /****************************************************************************/
   4664 int
   4665 bnx_init(struct ifnet *ifp)
   4666 {
   4667 	struct bnx_softc	*sc = ifp->if_softc;
   4668 	u_int32_t		ether_mtu;
   4669 	int			s, error = 0;
   4670 
   4671 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4672 
   4673 	s = splnet();
   4674 
   4675 	bnx_stop(ifp, 0);
   4676 
   4677 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4678 		aprint_error_dev(sc->bnx_dev,
   4679 		    "Controller reset failed!\n");
   4680 		goto bnx_init_exit;
   4681 	}
   4682 
   4683 	if ((error = bnx_chipinit(sc)) != 0) {
   4684 		aprint_error_dev(sc->bnx_dev,
   4685 		    "Controller initialization failed!\n");
   4686 		goto bnx_init_exit;
   4687 	}
   4688 
   4689 	if ((error = bnx_blockinit(sc)) != 0) {
   4690 		aprint_error_dev(sc->bnx_dev,
   4691 		    "Block initialization failed!\n");
   4692 		goto bnx_init_exit;
   4693 	}
   4694 
   4695 	/* Calculate and program the Ethernet MRU size. */
   4696 	if (ifp->if_mtu <= ETHERMTU) {
   4697 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4698 		sc->mbuf_alloc_size = MCLBYTES;
   4699 	} else {
   4700 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4701 		sc->mbuf_alloc_size = BNX_MAX_MRU;
   4702 	}
   4703 
   4704 
   4705 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4706 	    __func__, ether_mtu);
   4707 
   4708 	/*
   4709 	 * Program the MRU and enable Jumbo frame
   4710 	 * support.
   4711 	 */
   4712 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4713 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4714 
   4715 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4716 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4717 
   4718 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4719 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4720 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4721 
   4722 	/* Program appropriate promiscuous/multicast filtering. */
   4723 	bnx_iff(sc);
   4724 
   4725 	/* Init RX buffer descriptor chain. */
   4726 	bnx_init_rx_chain(sc);
   4727 
   4728 	/* Init TX buffer descriptor chain. */
   4729 	bnx_init_tx_chain(sc);
   4730 
   4731 	/* Enable host interrupts. */
   4732 	bnx_enable_intr(sc);
   4733 
   4734 	if ((error = ether_mediachange(ifp)) != 0)
   4735 		goto bnx_init_exit;
   4736 
   4737 	ifp->if_flags |= IFF_RUNNING;
   4738 	ifp->if_flags &= ~IFF_OACTIVE;
   4739 
   4740 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4741 
   4742 bnx_init_exit:
   4743 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4744 
   4745 	splx(s);
   4746 
   4747 	return(error);
   4748 }
   4749 
   4750 /****************************************************************************/
   4751 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4752 /* memory visible to the controller.                                        */
   4753 /*                                                                          */
   4754 /* Returns:                                                                 */
   4755 /*   0 for success, positive value for failure.                             */
   4756 /****************************************************************************/
   4757 int
   4758 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   4759 {
   4760 	struct bnx_pkt		*pkt;
   4761 	bus_dmamap_t		map;
   4762 	struct tx_bd		*txbd = NULL;
   4763 	u_int16_t		vlan_tag = 0, flags = 0;
   4764 	u_int16_t		chain_prod, prod;
   4765 #ifdef BNX_DEBUG
   4766 	u_int16_t		debug_prod;
   4767 #endif
   4768 	u_int32_t		addr, prod_bseq;
   4769 	int			i, error;
   4770 	struct m_tag		*mtag;
   4771 
   4772 again:
   4773 	mutex_enter(&sc->tx_pkt_mtx);
   4774 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   4775 	if (pkt == NULL) {
   4776 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   4777 			mutex_exit(&sc->tx_pkt_mtx);
   4778 			return ENETDOWN;
   4779 		}
   4780 		if (sc->tx_pkt_count <= TOTAL_TX_BD) {
   4781 			mutex_exit(&sc->tx_pkt_mtx);
   4782 			if (bnx_alloc_pkts(sc) == 0)
   4783 				goto again;
   4784 		} else {
   4785 			mutex_exit(&sc->tx_pkt_mtx);
   4786 		}
   4787 		return (ENOMEM);
   4788 	}
   4789 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4790 	mutex_exit(&sc->tx_pkt_mtx);
   4791 
   4792 	/* Transfer any checksum offload flags to the bd. */
   4793 	if (m->m_pkthdr.csum_flags) {
   4794 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4795 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4796 		if (m->m_pkthdr.csum_flags &
   4797 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4798 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4799 	}
   4800 
   4801 	/* Transfer any VLAN tags to the bd. */
   4802 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
   4803 	if (mtag != NULL) {
   4804 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4805 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4806 	}
   4807 
   4808 	/* Map the mbuf into DMAable memory. */
   4809 	prod = sc->tx_prod;
   4810 	chain_prod = TX_CHAIN_IDX(prod);
   4811 	map = pkt->pkt_dmamap;
   4812 
   4813 	/* Map the mbuf into our DMA address space. */
   4814 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   4815 	if (error != 0) {
   4816 		aprint_error_dev(sc->bnx_dev,
   4817 		    "Error mapping mbuf into TX chain!\n");
   4818 		sc->tx_dma_map_failures++;
   4819 		goto maperr;
   4820 	}
   4821 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4822 	    BUS_DMASYNC_PREWRITE);
   4823         /* Make sure there's room in the chain */
   4824 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   4825                 goto nospace;
   4826 
   4827 	/* prod points to an empty tx_bd at this point. */
   4828 	prod_bseq = sc->tx_prod_bseq;
   4829 #ifdef BNX_DEBUG
   4830 	debug_prod = chain_prod;
   4831 #endif
   4832 	DBPRINT(sc, BNX_INFO_SEND,
   4833 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   4834 		"prod_bseq = 0x%08X\n",
   4835 		__func__, prod, chain_prod, prod_bseq);
   4836 
   4837 	/*
   4838 	 * Cycle through each mbuf segment that makes up
   4839 	 * the outgoing frame, gathering the mapping info
   4840 	 * for that segment and creating a tx_bd for the
   4841 	 * mbuf.
   4842 	 */
   4843 	for (i = 0; i < map->dm_nsegs ; i++) {
   4844 		chain_prod = TX_CHAIN_IDX(prod);
   4845 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   4846 
   4847 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   4848 		txbd->tx_bd_haddr_lo = htole32(addr);
   4849 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   4850 		txbd->tx_bd_haddr_hi = htole32(addr);
   4851 		txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
   4852 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
   4853 		txbd->tx_bd_flags = htole16(flags);
   4854 		prod_bseq += map->dm_segs[i].ds_len;
   4855 		if (i == 0)
   4856 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
   4857 		prod = NEXT_TX_BD(prod);
   4858 	}
   4859 	/* Set the END flag on the last TX buffer descriptor. */
   4860 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
   4861 
   4862 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   4863 
   4864 	DBPRINT(sc, BNX_INFO_SEND,
   4865 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   4866 		"prod_bseq = 0x%08X\n",
   4867 		__func__, prod, chain_prod, prod_bseq);
   4868 
   4869 	pkt->pkt_mbuf = m;
   4870 	pkt->pkt_end_desc = chain_prod;
   4871 
   4872 	mutex_enter(&sc->tx_pkt_mtx);
   4873 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   4874 	mutex_exit(&sc->tx_pkt_mtx);
   4875 
   4876 	sc->used_tx_bd += map->dm_nsegs;
   4877 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4878 		__FILE__, __LINE__, sc->used_tx_bd);
   4879 
   4880 	/* Update some debug statistics counters */
   4881 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   4882 	    sc->tx_hi_watermark = sc->used_tx_bd);
   4883 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   4884 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   4885 
   4886 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   4887 	    map->dm_nsegs));
   4888 
   4889 	/* prod points to the next free tx_bd at this point. */
   4890 	sc->tx_prod = prod;
   4891 	sc->tx_prod_bseq = prod_bseq;
   4892 
   4893 	return (0);
   4894 
   4895 
   4896 nospace:
   4897 	bus_dmamap_unload(sc->bnx_dmatag, map);
   4898 maperr:
   4899 	mutex_enter(&sc->tx_pkt_mtx);
   4900 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4901 	mutex_exit(&sc->tx_pkt_mtx);
   4902 
   4903 	return (ENOMEM);
   4904 }
   4905 
   4906 /****************************************************************************/
   4907 /* Main transmit routine.                                                   */
   4908 /*                                                                          */
   4909 /* Returns:                                                                 */
   4910 /*   Nothing.                                                               */
   4911 /****************************************************************************/
   4912 void
   4913 bnx_start(struct ifnet *ifp)
   4914 {
   4915 	struct bnx_softc	*sc = ifp->if_softc;
   4916 	struct mbuf		*m_head = NULL;
   4917 	int			count = 0;
   4918 	u_int16_t		tx_prod, tx_chain_prod;
   4919 
   4920 	/* If there's no link or the transmit queue is empty then just exit. */
   4921 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   4922 		DBPRINT(sc, BNX_INFO_SEND,
   4923 		    "%s(): output active or device not running.\n", __func__);
   4924 		goto bnx_start_exit;
   4925 	}
   4926 
   4927 	/* prod points to the next free tx_bd. */
   4928 	tx_prod = sc->tx_prod;
   4929 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
   4930 
   4931 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   4932 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   4933 	    "used_tx %d max_tx %d\n",
   4934 	    __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   4935 	    sc->used_tx_bd, sc->max_tx_bd);
   4936 
   4937 	/*
   4938 	 * Keep adding entries while there is space in the ring.
   4939 	 */
   4940 	while (sc->used_tx_bd < sc->max_tx_bd) {
   4941 		/* Check for any frames to send. */
   4942 		IFQ_POLL(&ifp->if_snd, m_head);
   4943 		if (m_head == NULL)
   4944 			break;
   4945 
   4946 		/*
   4947 		 * Pack the data into the transmit ring. If we
   4948 		 * don't have room, set the OACTIVE flag to wait
   4949 		 * for the NIC to drain the chain.
   4950 		 */
   4951 		if (bnx_tx_encap(sc, m_head)) {
   4952 			ifp->if_flags |= IFF_OACTIVE;
   4953 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   4954 			    "business! Total tx_bd used = %d\n",
   4955 			    sc->used_tx_bd);
   4956 			break;
   4957 		}
   4958 
   4959 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4960 		count++;
   4961 
   4962 #if NBPFILTER > 0
   4963 		/* Send a copy of the frame to any BPF listeners. */
   4964 		if (ifp->if_bpf)
   4965 			bpf_mtap(ifp->if_bpf, m_head);
   4966 #endif
   4967 	}
   4968 
   4969 	if (count == 0) {
   4970 		/* no packets were dequeued */
   4971 		DBPRINT(sc, BNX_VERBOSE_SEND,
   4972 		    "%s(): No packets were dequeued\n", __func__);
   4973 		goto bnx_start_exit;
   4974 	}
   4975 
   4976 	/* Update the driver's counters. */
   4977 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   4978 
   4979 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   4980 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
   4981 	    tx_chain_prod, sc->tx_prod_bseq);
   4982 
   4983 	/* Start the transmit. */
   4984 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   4985 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   4986 
   4987 	/* Set the tx timeout. */
   4988 	ifp->if_timer = BNX_TX_TIMEOUT;
   4989 
   4990 bnx_start_exit:
   4991 	return;
   4992 }
   4993 
   4994 /****************************************************************************/
   4995 /* Handles any IOCTL calls from the operating system.                       */
   4996 /*                                                                          */
   4997 /* Returns:                                                                 */
   4998 /*   0 for success, positive value for failure.                             */
   4999 /****************************************************************************/
   5000 int
   5001 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5002 {
   5003 	struct bnx_softc	*sc = ifp->if_softc;
   5004 	struct ifreq		*ifr = (struct ifreq *) data;
   5005 	struct mii_data		*mii = &sc->bnx_mii;
   5006 	int			s, error = 0;
   5007 
   5008 	s = splnet();
   5009 
   5010 	switch (command) {
   5011 	case SIOCSIFFLAGS:
   5012 		if (ifp->if_flags & IFF_UP) {
   5013 			if (ifp->if_flags & IFF_RUNNING)
   5014 				error = ENETRESET;
   5015 			else
   5016 			    bnx_init(ifp);
   5017 		} else if (ifp->if_flags & IFF_RUNNING)
   5018 			bnx_stop(ifp, 1);
   5019 		break;
   5020 
   5021 	case SIOCSIFMEDIA:
   5022 	case SIOCGIFMEDIA:
   5023 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5024 		    sc->bnx_phy_flags);
   5025 
   5026 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5027 		break;
   5028 
   5029 	default:
   5030 		error = ether_ioctl(ifp, command, data);
   5031 	}
   5032 
   5033 	if (error == ENETRESET) {
   5034 		if (ifp->if_flags & IFF_RUNNING)
   5035 			bnx_iff(sc);
   5036 		error = 0;
   5037 	}
   5038 
   5039 	splx(s);
   5040 	return (error);
   5041 }
   5042 
   5043 /****************************************************************************/
   5044 /* Transmit timeout handler.                                                */
   5045 /*                                                                          */
   5046 /* Returns:                                                                 */
   5047 /*   Nothing.                                                               */
   5048 /****************************************************************************/
   5049 void
   5050 bnx_watchdog(struct ifnet *ifp)
   5051 {
   5052 	struct bnx_softc	*sc = ifp->if_softc;
   5053 
   5054 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5055 	    bnx_dump_status_block(sc));
   5056 	/*
   5057 	 * If we are in this routine because of pause frames, then
   5058 	 * don't reset the hardware.
   5059 	 */
   5060 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5061 		return;
   5062 
   5063 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5064 
   5065 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5066 
   5067 	bnx_init(ifp);
   5068 
   5069 	ifp->if_oerrors++;
   5070 }
   5071 
   5072 /*
   5073  * Interrupt handler.
   5074  */
   5075 /****************************************************************************/
   5076 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5077 /* interrupt and then calls a separate routine for handle the various       */
   5078 /* interrupt causes (PHY, TX, RX).                                          */
   5079 /*                                                                          */
   5080 /* Returns:                                                                 */
   5081 /*   0 for success, positive value for failure.                             */
   5082 /****************************************************************************/
   5083 int
   5084 bnx_intr(void *xsc)
   5085 {
   5086 	struct bnx_softc	*sc;
   5087 	struct ifnet		*ifp;
   5088 	u_int32_t		status_attn_bits;
   5089 	const struct status_block *sblk;
   5090 
   5091 	sc = xsc;
   5092 	if (!device_is_active(sc->bnx_dev))
   5093 		return 0;
   5094 
   5095 	ifp = &sc->bnx_ec.ec_if;
   5096 
   5097 	DBRUNIF(1, sc->interrupts_generated++);
   5098 
   5099 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5100 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   5101 
   5102 	/*
   5103 	 * If the hardware status block index
   5104 	 * matches the last value read by the
   5105 	 * driver and we haven't asserted our
   5106 	 * interrupt then there's nothing to do.
   5107 	 */
   5108 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   5109 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   5110 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   5111 		return (0);
   5112 
   5113 	/* Ack the interrupt and stop others from occuring. */
   5114 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5115 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   5116 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5117 
   5118 	/* Keep processing data as long as there is work to do. */
   5119 	for (;;) {
   5120 		sblk = sc->status_block;
   5121 		status_attn_bits = sblk->status_attn_bits;
   5122 
   5123 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5124 		    aprint_debug("Simulating unexpected status attention bit set.");
   5125 		    status_attn_bits = status_attn_bits |
   5126 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5127 
   5128 		/* Was it a link change interrupt? */
   5129 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5130 		    (sblk->status_attn_bits_ack &
   5131 		    STATUS_ATTN_BITS_LINK_STATE))
   5132 			bnx_phy_intr(sc);
   5133 
   5134 		/* If any other attention is asserted then the chip is toast. */
   5135 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5136 		    (sblk->status_attn_bits_ack &
   5137 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5138 			DBRUN(1, sc->unexpected_attentions++);
   5139 
   5140 			BNX_PRINTF(sc,
   5141 			    "Fatal attention detected: 0x%08X\n",
   5142 			    sblk->status_attn_bits);
   5143 
   5144 			DBRUN(BNX_FATAL,
   5145 			    if (bnx_debug_unexpected_attention == 0)
   5146 			    bnx_breakpoint(sc));
   5147 
   5148 			bnx_init(ifp);
   5149 			return (1);
   5150 		}
   5151 
   5152 		/* Check for any completed RX frames. */
   5153 		if (sblk->status_rx_quick_consumer_index0 !=
   5154 		    sc->hw_rx_cons)
   5155 			bnx_rx_intr(sc);
   5156 
   5157 		/* Check for any completed TX frames. */
   5158 		if (sblk->status_tx_quick_consumer_index0 !=
   5159 		    sc->hw_tx_cons)
   5160 			bnx_tx_intr(sc);
   5161 
   5162 		/* Save the status block index value for use during the
   5163 		 * next interrupt.
   5164 		 */
   5165 		sc->last_status_idx = sblk->status_idx;
   5166 
   5167 		/* Prevent speculative reads from getting ahead of the
   5168 		 * status block.
   5169 		 */
   5170 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   5171 		    BUS_SPACE_BARRIER_READ);
   5172 
   5173 		/* If there's no work left then exit the isr. */
   5174 		if ((sblk->status_rx_quick_consumer_index0 ==
   5175 		    sc->hw_rx_cons) &&
   5176 		    (sblk->status_tx_quick_consumer_index0 ==
   5177 		    sc->hw_tx_cons))
   5178 			break;
   5179 	}
   5180 
   5181 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5182 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   5183 
   5184 	/* Re-enable interrupts. */
   5185 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5186 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   5187 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5188 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5189 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   5190 
   5191 	/* Handle any frames that arrived while handling the interrupt. */
   5192 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   5193 		bnx_start(ifp);
   5194 
   5195 	return (1);
   5196 }
   5197 
   5198 /****************************************************************************/
   5199 /* Programs the various packet receive modes (broadcast and multicast).     */
   5200 /*                                                                          */
   5201 /* Returns:                                                                 */
   5202 /*   Nothing.                                                               */
   5203 /****************************************************************************/
   5204 void
   5205 bnx_iff(struct bnx_softc *sc)
   5206 {
   5207 	struct ethercom		*ec = &sc->bnx_ec;
   5208 	struct ifnet		*ifp = &ec->ec_if;
   5209 	struct ether_multi	*enm;
   5210 	struct ether_multistep	step;
   5211 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5212 	u_int32_t		rx_mode, sort_mode;
   5213 	int			h, i;
   5214 
   5215 	/* Initialize receive mode default settings. */
   5216 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5217 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5218 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5219 	ifp->if_flags &= ~IFF_ALLMULTI;
   5220 
   5221 	/*
   5222 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5223 	 * be enbled.
   5224 	 */
   5225 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5226 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5227 
   5228 	/*
   5229 	 * Check for promiscuous, all multicast, or selected
   5230 	 * multicast address filtering.
   5231 	 */
   5232 	if (ifp->if_flags & IFF_PROMISC) {
   5233 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5234 
   5235 		ifp->if_flags |= IFF_ALLMULTI;
   5236 		/* Enable promiscuous mode. */
   5237 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5238 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5239 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5240 allmulti:
   5241 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5242 
   5243 		ifp->if_flags |= IFF_ALLMULTI;
   5244 		/* Enable all multicast addresses. */
   5245 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5246 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5247 			    0xffffffff);
   5248 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5249 	} else {
   5250 		/* Accept one or more multicast(s). */
   5251 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5252 
   5253 		ETHER_FIRST_MULTI(step, ec, enm);
   5254 		while (enm != NULL) {
   5255 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5256 			    ETHER_ADDR_LEN)) {
   5257 				goto allmulti;
   5258 			}
   5259 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5260 			    0xFF;
   5261 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5262 			ETHER_NEXT_MULTI(step, enm);
   5263 		}
   5264 
   5265 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5266 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5267 			    hashes[i]);
   5268 
   5269 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5270 	}
   5271 
   5272 	/* Only make changes if the recive mode has actually changed. */
   5273 	if (rx_mode != sc->rx_mode) {
   5274 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5275 		    rx_mode);
   5276 
   5277 		sc->rx_mode = rx_mode;
   5278 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5279 	}
   5280 
   5281 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5282 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5283 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5284 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5285 }
   5286 
   5287 /****************************************************************************/
   5288 /* Called periodically to updates statistics from the controllers           */
   5289 /* statistics block.                                                        */
   5290 /*                                                                          */
   5291 /* Returns:                                                                 */
   5292 /*   Nothing.                                                               */
   5293 /****************************************************************************/
   5294 void
   5295 bnx_stats_update(struct bnx_softc *sc)
   5296 {
   5297 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5298 	struct statistics_block	*stats;
   5299 
   5300 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5301 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5302 	    BUS_DMASYNC_POSTREAD);
   5303 
   5304 	stats = (struct statistics_block *)sc->stats_block;
   5305 
   5306 	/*
   5307 	 * Update the interface statistics from the
   5308 	 * hardware statistics.
   5309 	 */
   5310 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5311 
   5312 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5313 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5314 	    (u_long)stats->stat_IfInMBUFDiscards +
   5315 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5316 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5317 
   5318 	ifp->if_oerrors = (u_long)
   5319 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5320 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5321 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5322 
   5323 	/*
   5324 	 * Certain controllers don't report
   5325 	 * carrier sense errors correctly.
   5326 	 * See errata E11_5708CA0_1165.
   5327 	 */
   5328 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5329 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5330 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5331 
   5332 	/*
   5333 	 * Update the sysctl statistics from the
   5334 	 * hardware statistics.
   5335 	 */
   5336 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
   5337 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
   5338 
   5339 	sc->stat_IfHCInBadOctets =
   5340 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5341 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
   5342 
   5343 	sc->stat_IfHCOutOctets =
   5344 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5345 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
   5346 
   5347 	sc->stat_IfHCOutBadOctets =
   5348 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5349 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
   5350 
   5351 	sc->stat_IfHCInUcastPkts =
   5352 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5353 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
   5354 
   5355 	sc->stat_IfHCInMulticastPkts =
   5356 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5357 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
   5358 
   5359 	sc->stat_IfHCInBroadcastPkts =
   5360 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5361 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5362 
   5363 	sc->stat_IfHCOutUcastPkts =
   5364 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5365 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
   5366 
   5367 	sc->stat_IfHCOutMulticastPkts =
   5368 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5369 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5370 
   5371 	sc->stat_IfHCOutBroadcastPkts =
   5372 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5373 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5374 
   5375 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5376 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5377 
   5378 	sc->stat_Dot3StatsCarrierSenseErrors =
   5379 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5380 
   5381 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5382 
   5383 	sc->stat_Dot3StatsAlignmentErrors =
   5384 	    stats->stat_Dot3StatsAlignmentErrors;
   5385 
   5386 	sc->stat_Dot3StatsSingleCollisionFrames =
   5387 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5388 
   5389 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5390 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5391 
   5392 	sc->stat_Dot3StatsDeferredTransmissions =
   5393 	    stats->stat_Dot3StatsDeferredTransmissions;
   5394 
   5395 	sc->stat_Dot3StatsExcessiveCollisions =
   5396 	    stats->stat_Dot3StatsExcessiveCollisions;
   5397 
   5398 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5399 
   5400 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5401 
   5402 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5403 
   5404 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5405 
   5406 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5407 
   5408 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5409 
   5410 	sc->stat_EtherStatsPktsRx64Octets =
   5411 	    stats->stat_EtherStatsPktsRx64Octets;
   5412 
   5413 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5414 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5415 
   5416 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5417 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5418 
   5419 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5420 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5421 
   5422 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5423 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5424 
   5425 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5426 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5427 
   5428 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5429 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5430 
   5431 	sc->stat_EtherStatsPktsTx64Octets =
   5432 	    stats->stat_EtherStatsPktsTx64Octets;
   5433 
   5434 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5435 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5436 
   5437 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5438 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5439 
   5440 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5441 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5442 
   5443 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5444 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5445 
   5446 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5447 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5448 
   5449 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5450 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5451 
   5452 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5453 
   5454 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5455 
   5456 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5457 
   5458 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5459 
   5460 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5461 
   5462 	sc->stat_MacControlFramesReceived =
   5463 	    stats->stat_MacControlFramesReceived;
   5464 
   5465 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5466 
   5467 	sc->stat_IfInFramesL2FilterDiscards =
   5468 	    stats->stat_IfInFramesL2FilterDiscards;
   5469 
   5470 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5471 
   5472 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5473 
   5474 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5475 
   5476 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5477 
   5478 	sc->stat_CatchupInRuleCheckerDiscards =
   5479 	    stats->stat_CatchupInRuleCheckerDiscards;
   5480 
   5481 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5482 
   5483 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5484 
   5485 	sc->stat_CatchupInRuleCheckerP4Hit =
   5486 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5487 
   5488 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5489 }
   5490 
   5491 void
   5492 bnx_tick(void *xsc)
   5493 {
   5494 	struct bnx_softc	*sc = xsc;
   5495 	struct mii_data		*mii;
   5496 	u_int32_t		msg;
   5497 	u_int16_t		prod, chain_prod;
   5498 	u_int32_t		prod_bseq;
   5499 	int s = splnet();
   5500 
   5501 	/* Tell the firmware that the driver is still running. */
   5502 #ifdef BNX_DEBUG
   5503 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5504 #else
   5505 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5506 #endif
   5507 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5508 
   5509 	/* Update the statistics from the hardware statistics block. */
   5510 	bnx_stats_update(sc);
   5511 
   5512 	/* Schedule the next tick. */
   5513 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5514 
   5515 	mii = &sc->bnx_mii;
   5516 	mii_tick(mii);
   5517 
   5518 	/* try to get more RX buffers, just in case */
   5519 	prod = sc->rx_prod;
   5520 	prod_bseq = sc->rx_prod_bseq;
   5521 	chain_prod = RX_CHAIN_IDX(prod);
   5522 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5523 	sc->rx_prod = prod;
   5524 	sc->rx_prod_bseq = prod_bseq;
   5525 	splx(s);
   5526 	return;
   5527 }
   5528 
   5529 /****************************************************************************/
   5530 /* BNX Debug Routines                                                       */
   5531 /****************************************************************************/
   5532 #ifdef BNX_DEBUG
   5533 
   5534 /****************************************************************************/
   5535 /* Prints out information about an mbuf.                                    */
   5536 /*                                                                          */
   5537 /* Returns:                                                                 */
   5538 /*   Nothing.                                                               */
   5539 /****************************************************************************/
   5540 void
   5541 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5542 {
   5543 	struct mbuf		*mp = m;
   5544 
   5545 	if (m == NULL) {
   5546 		/* Index out of range. */
   5547 		aprint_error("mbuf ptr is null!\n");
   5548 		return;
   5549 	}
   5550 
   5551 	while (mp) {
   5552 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5553 		    mp, mp->m_len);
   5554 
   5555 		if (mp->m_flags & M_EXT)
   5556 			aprint_debug("M_EXT ");
   5557 		if (mp->m_flags & M_PKTHDR)
   5558 			aprint_debug("M_PKTHDR ");
   5559 		aprint_debug("\n");
   5560 
   5561 		if (mp->m_flags & M_EXT)
   5562 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   5563 			    mp, mp->m_ext.ext_size);
   5564 
   5565 		mp = mp->m_next;
   5566 	}
   5567 }
   5568 
   5569 /****************************************************************************/
   5570 /* Prints out the mbufs in the TX mbuf chain.                               */
   5571 /*                                                                          */
   5572 /* Returns:                                                                 */
   5573 /*   Nothing.                                                               */
   5574 /****************************************************************************/
   5575 void
   5576 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5577 {
   5578 #if 0
   5579 	struct mbuf		*m;
   5580 	int			i;
   5581 
   5582 	aprint_debug_dev(sc->bnx_dev,
   5583 	    "----------------------------"
   5584 	    "  tx mbuf data  "
   5585 	    "----------------------------\n");
   5586 
   5587 	for (i = 0; i < count; i++) {
   5588 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5589 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5590 		bnx_dump_mbuf(sc, m);
   5591 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5592 	}
   5593 
   5594 	aprint_debug_dev(sc->bnx_dev,
   5595 	    "--------------------------------------------"
   5596 	    "----------------------------\n");
   5597 #endif
   5598 }
   5599 
   5600 /*
   5601  * This routine prints the RX mbuf chain.
   5602  */
   5603 void
   5604 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5605 {
   5606 	struct mbuf		*m;
   5607 	int			i;
   5608 
   5609 	aprint_debug_dev(sc->bnx_dev,
   5610 	    "----------------------------"
   5611 	    "  rx mbuf data  "
   5612 	    "----------------------------\n");
   5613 
   5614 	for (i = 0; i < count; i++) {
   5615 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5616 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5617 		bnx_dump_mbuf(sc, m);
   5618 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5619 	}
   5620 
   5621 
   5622 	aprint_debug_dev(sc->bnx_dev,
   5623 	    "--------------------------------------------"
   5624 	    "----------------------------\n");
   5625 }
   5626 
   5627 void
   5628 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5629 {
   5630 	if (idx > MAX_TX_BD)
   5631 		/* Index out of range. */
   5632 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5633 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5634 		/* TX Chain page pointer. */
   5635 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5636 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5637 		    txbd->tx_bd_haddr_lo);
   5638 	else
   5639 		/* Normal tx_bd entry. */
   5640 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5641 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5642 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5643 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5644 		    txbd->tx_bd_flags);
   5645 }
   5646 
   5647 void
   5648 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5649 {
   5650 	if (idx > MAX_RX_BD)
   5651 		/* Index out of range. */
   5652 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5653 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5654 		/* TX Chain page pointer. */
   5655 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5656 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5657 		    rxbd->rx_bd_haddr_lo);
   5658 	else
   5659 		/* Normal tx_bd entry. */
   5660 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5661 		    "0x%08X, flags = 0x%08X\n", idx,
   5662 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5663 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5664 }
   5665 
   5666 void
   5667 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5668 {
   5669 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5670 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5671 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5672 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5673 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5674 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5675 }
   5676 
   5677 /*
   5678  * This routine prints the TX chain.
   5679  */
   5680 void
   5681 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5682 {
   5683 	struct tx_bd		*txbd;
   5684 	int			i;
   5685 
   5686 	/* First some info about the tx_bd chain structure. */
   5687 	aprint_debug_dev(sc->bnx_dev,
   5688 	    "----------------------------"
   5689 	    "  tx_bd  chain  "
   5690 	    "----------------------------\n");
   5691 
   5692 	BNX_PRINTF(sc,
   5693 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5694 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
   5695 
   5696 	BNX_PRINTF(sc,
   5697 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5698 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
   5699 
   5700 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
   5701 
   5702 	aprint_error_dev(sc->bnx_dev, ""
   5703 	    "-----------------------------"
   5704 	    "   tx_bd data   "
   5705 	    "-----------------------------\n");
   5706 
   5707 	/* Now print out the tx_bd's themselves. */
   5708 	for (i = 0; i < count; i++) {
   5709 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5710 		bnx_dump_txbd(sc, tx_prod, txbd);
   5711 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5712 	}
   5713 
   5714 	aprint_debug_dev(sc->bnx_dev,
   5715 	    "-----------------------------"
   5716 	    "--------------"
   5717 	    "-----------------------------\n");
   5718 }
   5719 
   5720 /*
   5721  * This routine prints the RX chain.
   5722  */
   5723 void
   5724 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5725 {
   5726 	struct rx_bd		*rxbd;
   5727 	int			i;
   5728 
   5729 	/* First some info about the tx_bd chain structure. */
   5730 	aprint_debug_dev(sc->bnx_dev,
   5731 	    "----------------------------"
   5732 	    "  rx_bd  chain  "
   5733 	    "----------------------------\n");
   5734 
   5735 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   5736 
   5737 	BNX_PRINTF(sc,
   5738 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5739 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
   5740 
   5741 	BNX_PRINTF(sc,
   5742 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5743 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
   5744 
   5745 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
   5746 
   5747 	aprint_error_dev(sc->bnx_dev,
   5748 	    "----------------------------"
   5749 	    "   rx_bd data   "
   5750 	    "----------------------------\n");
   5751 
   5752 	/* Now print out the rx_bd's themselves. */
   5753 	for (i = 0; i < count; i++) {
   5754 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5755 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5756 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5757 	}
   5758 
   5759 	aprint_debug_dev(sc->bnx_dev,
   5760 	    "----------------------------"
   5761 	    "--------------"
   5762 	    "----------------------------\n");
   5763 }
   5764 
   5765 /*
   5766  * This routine prints the status block.
   5767  */
   5768 void
   5769 bnx_dump_status_block(struct bnx_softc *sc)
   5770 {
   5771 	struct status_block	*sblk;
   5772 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5773 	    BUS_DMASYNC_POSTREAD);
   5774 
   5775 	sblk = sc->status_block;
   5776 
   5777    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
   5778 	    "-----------------------------\n");
   5779 
   5780 	BNX_PRINTF(sc,
   5781 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5782 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5783 	    sblk->status_idx);
   5784 
   5785 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5786 	    sblk->status_rx_quick_consumer_index0,
   5787 	    sblk->status_tx_quick_consumer_index0);
   5788 
   5789 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5790 
   5791 	/* Theses indices are not used for normal L2 drivers. */
   5792 	if (sblk->status_rx_quick_consumer_index1 ||
   5793 		sblk->status_tx_quick_consumer_index1)
   5794 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5795 		    sblk->status_rx_quick_consumer_index1,
   5796 		    sblk->status_tx_quick_consumer_index1);
   5797 
   5798 	if (sblk->status_rx_quick_consumer_index2 ||
   5799 		sblk->status_tx_quick_consumer_index2)
   5800 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5801 		    sblk->status_rx_quick_consumer_index2,
   5802 		    sblk->status_tx_quick_consumer_index2);
   5803 
   5804 	if (sblk->status_rx_quick_consumer_index3 ||
   5805 		sblk->status_tx_quick_consumer_index3)
   5806 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5807 		    sblk->status_rx_quick_consumer_index3,
   5808 		    sblk->status_tx_quick_consumer_index3);
   5809 
   5810 	if (sblk->status_rx_quick_consumer_index4 ||
   5811 		sblk->status_rx_quick_consumer_index5)
   5812 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5813 		    sblk->status_rx_quick_consumer_index4,
   5814 		    sblk->status_rx_quick_consumer_index5);
   5815 
   5816 	if (sblk->status_rx_quick_consumer_index6 ||
   5817 		sblk->status_rx_quick_consumer_index7)
   5818 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5819 		    sblk->status_rx_quick_consumer_index6,
   5820 		    sblk->status_rx_quick_consumer_index7);
   5821 
   5822 	if (sblk->status_rx_quick_consumer_index8 ||
   5823 		sblk->status_rx_quick_consumer_index9)
   5824 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5825 		    sblk->status_rx_quick_consumer_index8,
   5826 		    sblk->status_rx_quick_consumer_index9);
   5827 
   5828 	if (sblk->status_rx_quick_consumer_index10 ||
   5829 		sblk->status_rx_quick_consumer_index11)
   5830 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   5831 		    sblk->status_rx_quick_consumer_index10,
   5832 		    sblk->status_rx_quick_consumer_index11);
   5833 
   5834 	if (sblk->status_rx_quick_consumer_index12 ||
   5835 		sblk->status_rx_quick_consumer_index13)
   5836 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   5837 		    sblk->status_rx_quick_consumer_index12,
   5838 		    sblk->status_rx_quick_consumer_index13);
   5839 
   5840 	if (sblk->status_rx_quick_consumer_index14 ||
   5841 		sblk->status_rx_quick_consumer_index15)
   5842 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   5843 		    sblk->status_rx_quick_consumer_index14,
   5844 		    sblk->status_rx_quick_consumer_index15);
   5845 
   5846 	if (sblk->status_completion_producer_index ||
   5847 		sblk->status_cmd_consumer_index)
   5848 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   5849 		    sblk->status_completion_producer_index,
   5850 		    sblk->status_cmd_consumer_index);
   5851 
   5852 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   5853 	    "-----------------------------\n");
   5854 }
   5855 
   5856 /*
   5857  * This routine prints the statistics block.
   5858  */
   5859 void
   5860 bnx_dump_stats_block(struct bnx_softc *sc)
   5861 {
   5862 	struct statistics_block	*sblk;
   5863 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5864 	    BUS_DMASYNC_POSTREAD);
   5865 
   5866 	sblk = sc->stats_block;
   5867 
   5868 	aprint_debug_dev(sc->bnx_dev, ""
   5869 	    "-----------------------------"
   5870 	    " Stats  Block "
   5871 	    "-----------------------------\n");
   5872 
   5873 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   5874 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   5875 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   5876 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   5877 
   5878 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   5879 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   5880 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   5881 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   5882 
   5883 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   5884 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   5885 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   5886 	    sblk->stat_IfHCInMulticastPkts_hi,
   5887 	    sblk->stat_IfHCInMulticastPkts_lo);
   5888 
   5889 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   5890 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   5891 	    sblk->stat_IfHCInBroadcastPkts_hi,
   5892 	    sblk->stat_IfHCInBroadcastPkts_lo,
   5893 	    sblk->stat_IfHCOutUcastPkts_hi,
   5894 	    sblk->stat_IfHCOutUcastPkts_lo);
   5895 
   5896 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   5897 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   5898 	    sblk->stat_IfHCOutMulticastPkts_hi,
   5899 	    sblk->stat_IfHCOutMulticastPkts_lo,
   5900 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   5901 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   5902 
   5903 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   5904 		BNX_PRINTF(sc, "0x%08X : "
   5905 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   5906 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   5907 
   5908 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   5909 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   5910 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   5911 
   5912 	if (sblk->stat_Dot3StatsFCSErrors)
   5913 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   5914 		    sblk->stat_Dot3StatsFCSErrors);
   5915 
   5916 	if (sblk->stat_Dot3StatsAlignmentErrors)
   5917 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   5918 		    sblk->stat_Dot3StatsAlignmentErrors);
   5919 
   5920 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   5921 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   5922 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   5923 
   5924 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   5925 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   5926 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   5927 
   5928 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   5929 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   5930 		    sblk->stat_Dot3StatsDeferredTransmissions);
   5931 
   5932 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   5933 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   5934 		    sblk->stat_Dot3StatsExcessiveCollisions);
   5935 
   5936 	if (sblk->stat_Dot3StatsLateCollisions)
   5937 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   5938 		    sblk->stat_Dot3StatsLateCollisions);
   5939 
   5940 	if (sblk->stat_EtherStatsCollisions)
   5941 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   5942 		    sblk->stat_EtherStatsCollisions);
   5943 
   5944 	if (sblk->stat_EtherStatsFragments)
   5945 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   5946 		    sblk->stat_EtherStatsFragments);
   5947 
   5948 	if (sblk->stat_EtherStatsJabbers)
   5949 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   5950 		    sblk->stat_EtherStatsJabbers);
   5951 
   5952 	if (sblk->stat_EtherStatsUndersizePkts)
   5953 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   5954 		    sblk->stat_EtherStatsUndersizePkts);
   5955 
   5956 	if (sblk->stat_EtherStatsOverrsizePkts)
   5957 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   5958 		    sblk->stat_EtherStatsOverrsizePkts);
   5959 
   5960 	if (sblk->stat_EtherStatsPktsRx64Octets)
   5961 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   5962 		    sblk->stat_EtherStatsPktsRx64Octets);
   5963 
   5964 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   5965 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   5966 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   5967 
   5968 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   5969 		BNX_PRINTF(sc, "0x%08X : "
   5970 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   5971 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   5972 
   5973 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   5974 		BNX_PRINTF(sc, "0x%08X : "
   5975 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   5976 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   5977 
   5978 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   5979 		BNX_PRINTF(sc, "0x%08X : "
   5980 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   5981 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   5982 
   5983 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   5984 		BNX_PRINTF(sc, "0x%08X : "
   5985 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   5986 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   5987 
   5988 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   5989 		BNX_PRINTF(sc, "0x%08X : "
   5990 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   5991 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   5992 
   5993 	if (sblk->stat_EtherStatsPktsTx64Octets)
   5994 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   5995 		    sblk->stat_EtherStatsPktsTx64Octets);
   5996 
   5997 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   5998 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   5999 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6000 
   6001 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6002 		BNX_PRINTF(sc, "0x%08X : "
   6003 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6004 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6005 
   6006 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6007 		BNX_PRINTF(sc, "0x%08X : "
   6008 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6009 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6010 
   6011 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6012 		BNX_PRINTF(sc, "0x%08X : "
   6013 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6014 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6015 
   6016 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6017 		BNX_PRINTF(sc, "0x%08X : "
   6018 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6019 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6020 
   6021 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6022 		BNX_PRINTF(sc, "0x%08X : "
   6023 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6024 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6025 
   6026 	if (sblk->stat_XonPauseFramesReceived)
   6027 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6028 		    sblk->stat_XonPauseFramesReceived);
   6029 
   6030 	if (sblk->stat_XoffPauseFramesReceived)
   6031 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6032 		    sblk->stat_XoffPauseFramesReceived);
   6033 
   6034 	if (sblk->stat_OutXonSent)
   6035 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6036 		    sblk->stat_OutXonSent);
   6037 
   6038 	if (sblk->stat_OutXoffSent)
   6039 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6040 		    sblk->stat_OutXoffSent);
   6041 
   6042 	if (sblk->stat_FlowControlDone)
   6043 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6044 		    sblk->stat_FlowControlDone);
   6045 
   6046 	if (sblk->stat_MacControlFramesReceived)
   6047 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6048 		    sblk->stat_MacControlFramesReceived);
   6049 
   6050 	if (sblk->stat_XoffStateEntered)
   6051 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6052 		    sblk->stat_XoffStateEntered);
   6053 
   6054 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6055 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6056 		    sblk->stat_IfInFramesL2FilterDiscards);
   6057 
   6058 	if (sblk->stat_IfInRuleCheckerDiscards)
   6059 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6060 		    sblk->stat_IfInRuleCheckerDiscards);
   6061 
   6062 	if (sblk->stat_IfInFTQDiscards)
   6063 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6064 		    sblk->stat_IfInFTQDiscards);
   6065 
   6066 	if (sblk->stat_IfInMBUFDiscards)
   6067 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6068 		    sblk->stat_IfInMBUFDiscards);
   6069 
   6070 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6071 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6072 		    sblk->stat_IfInRuleCheckerP4Hit);
   6073 
   6074 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6075 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6076 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6077 
   6078 	if (sblk->stat_CatchupInFTQDiscards)
   6079 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6080 		    sblk->stat_CatchupInFTQDiscards);
   6081 
   6082 	if (sblk->stat_CatchupInMBUFDiscards)
   6083 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6084 		    sblk->stat_CatchupInMBUFDiscards);
   6085 
   6086 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6087 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6088 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6089 
   6090 	aprint_debug_dev(sc->bnx_dev,
   6091 	    "-----------------------------"
   6092 	    "--------------"
   6093 	    "-----------------------------\n");
   6094 }
   6095 
   6096 void
   6097 bnx_dump_driver_state(struct bnx_softc *sc)
   6098 {
   6099 	aprint_debug_dev(sc->bnx_dev,
   6100 	    "-----------------------------"
   6101 	    " Driver State "
   6102 	    "-----------------------------\n");
   6103 
   6104 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6105 	    "address\n", sc);
   6106 
   6107 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6108 	    sc->status_block);
   6109 
   6110 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6111 	    "address\n", sc->stats_block);
   6112 
   6113 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6114 	    "adddress\n", sc->tx_bd_chain);
   6115 
   6116 #if 0
   6117 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6118 	    sc->rx_bd_chain);
   6119 
   6120 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6121 	    sc->tx_mbuf_ptr);
   6122 #endif
   6123 
   6124 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6125 	    sc->rx_mbuf_ptr);
   6126 
   6127 	BNX_PRINTF(sc,
   6128 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6129 	    sc->interrupts_generated);
   6130 
   6131 	BNX_PRINTF(sc,
   6132 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6133 	    sc->rx_interrupts);
   6134 
   6135 	BNX_PRINTF(sc,
   6136 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6137 	    sc->tx_interrupts);
   6138 
   6139 	BNX_PRINTF(sc,
   6140 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6141 	    sc->last_status_idx);
   6142 
   6143 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6144 	    sc->tx_prod);
   6145 
   6146 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6147 	    sc->tx_cons);
   6148 
   6149 	BNX_PRINTF(sc,
   6150 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6151 	    sc->tx_prod_bseq);
   6152 	BNX_PRINTF(sc,
   6153 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6154 	    sc->tx_mbuf_alloc);
   6155 
   6156 	BNX_PRINTF(sc,
   6157 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6158 	    sc->used_tx_bd);
   6159 
   6160 	BNX_PRINTF(sc,
   6161 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6162 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6163 
   6164 
   6165 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6166 	    sc->rx_prod);
   6167 
   6168 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6169 	    sc->rx_cons);
   6170 
   6171 	BNX_PRINTF(sc,
   6172 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6173 	    sc->rx_prod_bseq);
   6174 
   6175 	BNX_PRINTF(sc,
   6176 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6177 	    sc->rx_mbuf_alloc);
   6178 
   6179 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6180 	    sc->free_rx_bd);
   6181 
   6182 	BNX_PRINTF(sc,
   6183 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6184 	    sc->rx_low_watermark, sc->max_rx_bd);
   6185 
   6186 	BNX_PRINTF(sc,
   6187 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6188 	    "mbuf alloc failures\n",
   6189 	    sc->mbuf_alloc_failed);
   6190 
   6191 	BNX_PRINTF(sc,
   6192 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6193 	    "simulated mbuf alloc failures\n",
   6194 	    sc->mbuf_sim_alloc_failed);
   6195 
   6196 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6197 	    "-----------------------------\n");
   6198 }
   6199 
   6200 void
   6201 bnx_dump_hw_state(struct bnx_softc *sc)
   6202 {
   6203 	u_int32_t		val1;
   6204 	int			i;
   6205 
   6206 	aprint_debug_dev(sc->bnx_dev,
   6207 	    "----------------------------"
   6208 	    " Hardware State "
   6209 	    "----------------------------\n");
   6210 
   6211 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   6212 
   6213 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6214 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6215 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6216 
   6217 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6218 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6219 
   6220 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6221 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6222 
   6223 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6224 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6225 	    BNX_EMAC_STATUS);
   6226 
   6227 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6228 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6229 
   6230 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6231 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6232 	    BNX_TBDR_STATUS);
   6233 
   6234 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6235 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6236 	    BNX_TDMA_STATUS);
   6237 
   6238 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6239 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6240 
   6241 	aprint_debug_dev(sc->bnx_dev,
   6242 	    "----------------------------"
   6243 	    "----------------"
   6244 	    "----------------------------\n");
   6245 
   6246 	aprint_debug_dev(sc->bnx_dev,
   6247 	    "----------------------------"
   6248 	    " Register  Dump "
   6249 	    "----------------------------\n");
   6250 
   6251 	for (i = 0x400; i < 0x8000; i += 0x10)
   6252 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6253 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6254 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6255 
   6256 	aprint_debug_dev(sc->bnx_dev,
   6257 	    "----------------------------"
   6258 	    "----------------"
   6259 	    "----------------------------\n");
   6260 }
   6261 
   6262 void
   6263 bnx_breakpoint(struct bnx_softc *sc)
   6264 {
   6265 	/* Unreachable code to shut the compiler up about unused functions. */
   6266 	if (0) {
   6267    		bnx_dump_txbd(sc, 0, NULL);
   6268 		bnx_dump_rxbd(sc, 0, NULL);
   6269 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6270 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6271 		bnx_dump_l2fhdr(sc, 0, NULL);
   6272 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6273 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6274 		bnx_dump_status_block(sc);
   6275 		bnx_dump_stats_block(sc);
   6276 		bnx_dump_driver_state(sc);
   6277 		bnx_dump_hw_state(sc);
   6278 	}
   6279 
   6280 	bnx_dump_driver_state(sc);
   6281 	/* Print the important status block fields. */
   6282 	bnx_dump_status_block(sc);
   6283 
   6284 #if 0
   6285 	/* Call the debugger. */
   6286 	breakpoint();
   6287 #endif
   6288 
   6289 	return;
   6290 }
   6291 #endif
   6292