Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.23
      1 /*	$NetBSD: if_bnx.c,v 1.23 2009/03/18 16:00:19 cegger Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.43 2007/01/30 03:21:10 krw Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2006 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.23 2009/03/18 16:00:19 cegger Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5708C B1, B2
     44  *
     45  * The following controllers are not supported by this driver:
     46  * (These are not "Production" versions of the controller.)
     47  *
     48  *   BCM5706C A0, A1
     49  *   BCM5706S A0, A1, A2, A3
     50  *   BCM5708C A0, B0
     51  *   BCM5708S A0, B0, B1
     52  */
     53 
     54 #include <sys/callout.h>
     55 
     56 #include <dev/pci/if_bnxreg.h>
     57 #include <dev/microcode/bnx/bnxfw.h>
     58 
     59 /****************************************************************************/
     60 /* BNX Driver Version                                                       */
     61 /****************************************************************************/
     62 const char bnx_driver_version[] = "v0.9.6";
     63 
     64 /****************************************************************************/
     65 /* BNX Debug Options                                                        */
     66 /****************************************************************************/
     67 #ifdef BNX_DEBUG
     68 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     69 
     70 	/*          0 = Never              */
     71 	/*          1 = 1 in 2,147,483,648 */
     72 	/*        256 = 1 in     8,388,608 */
     73 	/*       2048 = 1 in     1,048,576 */
     74 	/*      65536 = 1 in        32,768 */
     75 	/*    1048576 = 1 in         2,048 */
     76 	/*  268435456 =	1 in             8 */
     77 	/*  536870912 = 1 in             4 */
     78 	/* 1073741824 = 1 in             2 */
     79 
     80 	/* Controls how often the l2_fhdr frame error check will fail. */
     81 	int bnx_debug_l2fhdr_status_check = 0;
     82 
     83 	/* Controls how often the unexpected attention check will fail. */
     84 	int bnx_debug_unexpected_attention = 0;
     85 
     86 	/* Controls how often to simulate an mbuf allocation failure. */
     87 	int bnx_debug_mbuf_allocation_failure = 0;
     88 
     89 	/* Controls how often to simulate a DMA mapping failure. */
     90 	int bnx_debug_dma_map_addr_failure = 0;
     91 
     92 	/* Controls how often to simulate a bootcode failure. */
     93 	int bnx_debug_bootcode_running_failure = 0;
     94 #endif
     95 
     96 /****************************************************************************/
     97 /* PCI Device ID Table                                                      */
     98 /*                                                                          */
     99 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    100 /****************************************************************************/
    101 static const struct bnx_product {
    102 	pci_vendor_id_t		bp_vendor;
    103 	pci_product_id_t	bp_product;
    104 	pci_vendor_id_t		bp_subvendor;
    105 	pci_product_id_t	bp_subproduct;
    106 	const char		*bp_name;
    107 } bnx_devices[] = {
    108 #ifdef PCI_SUBPRODUCT_HP_NC370T
    109 	{
    110 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    111 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    112 	  "HP NC370T Multifunction Gigabit Server Adapter"
    113 	},
    114 #endif
    115 #ifdef PCI_SUBPRODUCT_HP_NC370i
    116 	{
    117 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    118 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    119 	  "HP NC370i Multifunction Gigabit Server Adapter"
    120 	},
    121 #endif
    122 	{
    123 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    124 	  0, 0,
    125 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    126 	},
    127 #ifdef PCI_SUBPRODUCT_HP_NC370F
    128 	{
    129 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    130 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    131 	  "HP NC370F Multifunction Gigabit Server Adapter"
    132 	},
    133 #endif
    134 	{
    135 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    136 	  0, 0,
    137 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    138 	},
    139 	{
    140 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    141 	  0, 0,
    142 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    143 	},
    144 	{
    145 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    146 	  0, 0,
    147 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    148 	},
    149 };
    150 
    151 /****************************************************************************/
    152 /* Supported Flash NVRAM device data.                                       */
    153 /****************************************************************************/
    154 static struct flash_spec flash_table[] =
    155 {
    156 	/* Slow EEPROM */
    157 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    158 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    159 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    160 	 "EEPROM - slow"},
    161 	/* Expansion entry 0001 */
    162 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    163 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    164 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    165 	 "Entry 0001"},
    166 	/* Saifun SA25F010 (non-buffered flash) */
    167 	/* strap, cfg1, & write1 need updates */
    168 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    169 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    170 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    171 	 "Non-buffered flash (128kB)"},
    172 	/* Saifun SA25F020 (non-buffered flash) */
    173 	/* strap, cfg1, & write1 need updates */
    174 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    175 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    176 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    177 	 "Non-buffered flash (256kB)"},
    178 	/* Expansion entry 0100 */
    179 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    180 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    181 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    182 	 "Entry 0100"},
    183 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    184 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    185 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    186 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    187 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    188 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    189 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    190 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    191 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    192 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    193 	/* Saifun SA25F005 (non-buffered flash) */
    194 	/* strap, cfg1, & write1 need updates */
    195 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    196 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    197 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    198 	 "Non-buffered flash (64kB)"},
    199 	/* Fast EEPROM */
    200 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    201 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    202 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    203 	 "EEPROM - fast"},
    204 	/* Expansion entry 1001 */
    205 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    206 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    207 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    208 	 "Entry 1001"},
    209 	/* Expansion entry 1010 */
    210 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    211 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    213 	 "Entry 1010"},
    214 	/* ATMEL AT45DB011B (buffered flash) */
    215 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    216 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    217 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    218 	 "Buffered flash (128kB)"},
    219 	/* Expansion entry 1100 */
    220 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    221 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    222 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    223 	 "Entry 1100"},
    224 	/* Expansion entry 1101 */
    225 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    226 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    228 	 "Entry 1101"},
    229 	/* Ateml Expansion entry 1110 */
    230 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    231 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    232 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    233 	 "Entry 1110 (Atmel)"},
    234 	/* ATMEL AT45DB021B (buffered flash) */
    235 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    236 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    237 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    238 	 "Buffered flash (256kB)"},
    239 };
    240 
    241 /****************************************************************************/
    242 /* OpenBSD device entry points.                                             */
    243 /****************************************************************************/
    244 static int	bnx_probe(device_t, cfdata_t, void *);
    245 void	bnx_attach(device_t, device_t, void *);
    246 int	bnx_detach(device_t, int);
    247 
    248 /****************************************************************************/
    249 /* BNX Debug Data Structure Dump Routines                                   */
    250 /****************************************************************************/
    251 #ifdef BNX_DEBUG
    252 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    253 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    254 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    255 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    256 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    257 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    258 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    259 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    260 void	bnx_dump_status_block(struct bnx_softc *);
    261 void	bnx_dump_stats_block(struct bnx_softc *);
    262 void	bnx_dump_driver_state(struct bnx_softc *);
    263 void	bnx_dump_hw_state(struct bnx_softc *);
    264 void	bnx_breakpoint(struct bnx_softc *);
    265 #endif
    266 
    267 /****************************************************************************/
    268 /* BNX Register/Memory Access Routines                                      */
    269 /****************************************************************************/
    270 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
    271 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
    272 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
    273 int	bnx_miibus_read_reg(device_t, int, int);
    274 void	bnx_miibus_write_reg(device_t, int, int, int);
    275 void	bnx_miibus_statchg(device_t);
    276 
    277 /****************************************************************************/
    278 /* BNX NVRAM Access Routines                                                */
    279 /****************************************************************************/
    280 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    281 int	bnx_release_nvram_lock(struct bnx_softc *);
    282 void	bnx_enable_nvram_access(struct bnx_softc *);
    283 void	bnx_disable_nvram_access(struct bnx_softc *);
    284 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    285 	    u_int32_t);
    286 int	bnx_init_nvram(struct bnx_softc *);
    287 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    288 int	bnx_nvram_test(struct bnx_softc *);
    289 #ifdef BNX_NVRAM_WRITE_SUPPORT
    290 int	bnx_enable_nvram_write(struct bnx_softc *);
    291 void	bnx_disable_nvram_write(struct bnx_softc *);
    292 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
    293 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    294 	    u_int32_t);
    295 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    296 #endif
    297 
    298 /****************************************************************************/
    299 /*                                                                          */
    300 /****************************************************************************/
    301 int	bnx_dma_alloc(struct bnx_softc *);
    302 void	bnx_dma_free(struct bnx_softc *);
    303 void	bnx_release_resources(struct bnx_softc *);
    304 
    305 /****************************************************************************/
    306 /* BNX Firmware Synchronization and Load                                    */
    307 /****************************************************************************/
    308 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
    309 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
    310 	    u_int32_t);
    311 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    312 	    struct fw_info *);
    313 void	bnx_init_cpus(struct bnx_softc *);
    314 
    315 void	bnx_stop(struct ifnet *, int);
    316 int	bnx_reset(struct bnx_softc *, u_int32_t);
    317 int	bnx_chipinit(struct bnx_softc *);
    318 int	bnx_blockinit(struct bnx_softc *);
    319 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
    320 	    u_int16_t *, u_int32_t *);
    321 int	bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
    322 
    323 int	bnx_init_tx_chain(struct bnx_softc *);
    324 int	bnx_init_rx_chain(struct bnx_softc *);
    325 void	bnx_free_rx_chain(struct bnx_softc *);
    326 void	bnx_free_tx_chain(struct bnx_softc *);
    327 
    328 int	bnx_tx_encap(struct bnx_softc *, struct mbuf **);
    329 void	bnx_start(struct ifnet *);
    330 int	bnx_ioctl(struct ifnet *, u_long, void *);
    331 void	bnx_watchdog(struct ifnet *);
    332 int	bnx_init(struct ifnet *);
    333 
    334 void	bnx_init_context(struct bnx_softc *);
    335 void	bnx_get_mac_addr(struct bnx_softc *);
    336 void	bnx_set_mac_addr(struct bnx_softc *);
    337 void	bnx_phy_intr(struct bnx_softc *);
    338 void	bnx_rx_intr(struct bnx_softc *);
    339 void	bnx_tx_intr(struct bnx_softc *);
    340 void	bnx_disable_intr(struct bnx_softc *);
    341 void	bnx_enable_intr(struct bnx_softc *);
    342 
    343 int	bnx_intr(void *);
    344 void	bnx_set_rx_mode(struct bnx_softc *);
    345 void	bnx_stats_update(struct bnx_softc *);
    346 void	bnx_tick(void *);
    347 
    348 /****************************************************************************/
    349 /* OpenBSD device dispatch table.                                           */
    350 /****************************************************************************/
    351 CFATTACH_DECL_NEW(bnx, sizeof(struct bnx_softc),
    352     bnx_probe, bnx_attach, bnx_detach, NULL);
    353 
    354 /****************************************************************************/
    355 /* Device probe function.                                                   */
    356 /*                                                                          */
    357 /* Compares the device to the driver's list of supported devices and        */
    358 /* reports back to the OS whether this is the right driver for the device.  */
    359 /*                                                                          */
    360 /* Returns:                                                                 */
    361 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    362 /****************************************************************************/
    363 static const struct bnx_product *
    364 bnx_lookup(const struct pci_attach_args *pa)
    365 {
    366 	int i;
    367 	pcireg_t subid;
    368 
    369 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    370 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    371 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    372 			continue;
    373 		if (!bnx_devices[i].bp_subvendor)
    374 			return &bnx_devices[i];
    375 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    376 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    377 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    378 			return &bnx_devices[i];
    379 	}
    380 
    381 	return NULL;
    382 }
    383 static int
    384 bnx_probe(device_t parent, cfdata_t match, void *aux)
    385 {
    386 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    387 
    388 	if (bnx_lookup(pa) != NULL)
    389 		return (1);
    390 
    391 	return (0);
    392 }
    393 
    394 /****************************************************************************/
    395 /* Device attach function.                                                  */
    396 /*                                                                          */
    397 /* Allocates device resources, performs secondary chip identification,      */
    398 /* resets and initializes the hardware, and initializes driver instance     */
    399 /* variables.                                                               */
    400 /*                                                                          */
    401 /* Returns:                                                                 */
    402 /*   0 on success, positive value on failure.                               */
    403 /****************************************************************************/
    404 void
    405 bnx_attach(device_t parent, device_t self, void *aux)
    406 {
    407 	const struct bnx_product *bp;
    408 	struct bnx_softc	*sc = device_private(self);
    409 	struct pci_attach_args	*pa = aux;
    410 	pci_chipset_tag_t	pc = pa->pa_pc;
    411 	pci_intr_handle_t	ih;
    412 	const char 		*intrstr = NULL;
    413 	u_int32_t		command;
    414 	struct ifnet		*ifp;
    415 	u_int32_t		val;
    416 	int			mii_flags = MIIF_FORCEANEG;
    417 	pcireg_t		memtype;
    418 
    419 	bp = bnx_lookup(pa);
    420 	if (bp == NULL)
    421 		panic("unknown device");
    422 
    423 	sc->bnx_dev = self;
    424 
    425 	aprint_naive("\n");
    426 	aprint_normal(": %s\n", bp->bp_name);
    427 
    428 	sc->bnx_pa = *pa;
    429 
    430 	/*
    431 	 * Map control/status registers.
    432 	*/
    433 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    434 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    435 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    436 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    437 
    438 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    439 		aprint_error_dev(sc->bnx_dev,
    440 		    "failed to enable memory mapping!\n");
    441 		return;
    442 	}
    443 
    444 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    445 	switch (memtype) {
    446 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    447 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    448 		if (pci_mapreg_map(pa, BNX_PCI_BAR0,
    449 		    memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
    450 		    NULL, &sc->bnx_size) == 0)
    451 			break;
    452 	default:
    453 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    454 		return;
    455 	}
    456 
    457 	if (pci_intr_map(pa, &ih)) {
    458 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    459 		goto bnx_attach_fail;
    460 	}
    461 
    462 	intrstr = pci_intr_string(pc, ih);
    463 
    464 	/*
    465 	 * Configure byte swap and enable indirect register access.
    466 	 * Rely on CPU to do target byte swapping on big endian systems.
    467 	 * Access to registers outside of PCI configurtion space are not
    468 	 * valid until this is done.
    469 	 */
    470 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    471 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    472 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    473 
    474 	/* Save ASIC revsion info. */
    475 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    476 
    477 	/* Weed out any non-production controller revisions. */
    478 	switch(BNX_CHIP_ID(sc)) {
    479 	case BNX_CHIP_ID_5706_A0:
    480 	case BNX_CHIP_ID_5706_A1:
    481 	case BNX_CHIP_ID_5708_A0:
    482 	case BNX_CHIP_ID_5708_B0:
    483 		aprint_error_dev(sc->bnx_dev,
    484 		    "unsupported controller revision (%c%d)!\n",
    485 		    ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
    486 		    PCI_REVISION(pa->pa_class) & 0x0f);
    487 		goto bnx_attach_fail;
    488 	}
    489 
    490 	/*
    491 	 * Find the base address for shared memory access.
    492 	 * Newer versions of bootcode use a signature and offset
    493 	 * while older versions use a fixed address.
    494 	 */
    495 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    496 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    497 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
    498 	else
    499 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    500 
    501 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    502 
    503 	/* Set initial device and PHY flags */
    504 	sc->bnx_flags = 0;
    505 	sc->bnx_phy_flags = 0;
    506 
    507 	/* Get PCI bus information (speed and type). */
    508 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    509 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    510 		u_int32_t clkreg;
    511 
    512 		sc->bnx_flags |= BNX_PCIX_FLAG;
    513 
    514 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    515 
    516 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    517 		switch (clkreg) {
    518 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    519 			sc->bus_speed_mhz = 133;
    520 			break;
    521 
    522 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    523 			sc->bus_speed_mhz = 100;
    524 			break;
    525 
    526 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    527 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    528 			sc->bus_speed_mhz = 66;
    529 			break;
    530 
    531 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    532 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    533 			sc->bus_speed_mhz = 50;
    534 			break;
    535 
    536 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    537 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    538 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    539 			sc->bus_speed_mhz = 33;
    540 			break;
    541 		}
    542 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    543 			sc->bus_speed_mhz = 66;
    544 		else
    545 			sc->bus_speed_mhz = 33;
    546 
    547 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    548 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    549 
    550 	/* Reset the controller. */
    551 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    552 		goto bnx_attach_fail;
    553 
    554 	/* Initialize the controller. */
    555 	if (bnx_chipinit(sc)) {
    556 		aprint_error_dev(sc->bnx_dev,
    557 		    "Controller initialization failed!\n");
    558 		goto bnx_attach_fail;
    559 	}
    560 
    561 	/* Perform NVRAM test. */
    562 	if (bnx_nvram_test(sc)) {
    563 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    564 		goto bnx_attach_fail;
    565 	}
    566 
    567 	/* Fetch the permanent Ethernet MAC address. */
    568 	bnx_get_mac_addr(sc);
    569 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    570 	    ether_sprintf(sc->eaddr));
    571 
    572 	/*
    573 	 * Trip points control how many BDs
    574 	 * should be ready before generating an
    575 	 * interrupt while ticks control how long
    576 	 * a BD can sit in the chain before
    577 	 * generating an interrupt.  Set the default
    578 	 * values for the RX and TX rings.
    579 	 */
    580 
    581 #ifdef BNX_DEBUG
    582 	/* Force more frequent interrupts. */
    583 	sc->bnx_tx_quick_cons_trip_int = 1;
    584 	sc->bnx_tx_quick_cons_trip     = 1;
    585 	sc->bnx_tx_ticks_int           = 0;
    586 	sc->bnx_tx_ticks               = 0;
    587 
    588 	sc->bnx_rx_quick_cons_trip_int = 1;
    589 	sc->bnx_rx_quick_cons_trip     = 1;
    590 	sc->bnx_rx_ticks_int           = 0;
    591 	sc->bnx_rx_ticks               = 0;
    592 #else
    593 	sc->bnx_tx_quick_cons_trip_int = 20;
    594 	sc->bnx_tx_quick_cons_trip     = 20;
    595 	sc->bnx_tx_ticks_int           = 80;
    596 	sc->bnx_tx_ticks               = 80;
    597 
    598 	sc->bnx_rx_quick_cons_trip_int = 6;
    599 	sc->bnx_rx_quick_cons_trip     = 6;
    600 	sc->bnx_rx_ticks_int           = 18;
    601 	sc->bnx_rx_ticks               = 18;
    602 #endif
    603 
    604 	/* Update statistics once every second. */
    605 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    606 
    607 	/*
    608 	 * The copper based NetXtreme II controllers
    609 	 * that support 2.5Gb operation (currently
    610 	 * 5708S) use a PHY at address 2, otherwise
    611 	 * the PHY is present at address 1.
    612 	 */
    613 	sc->bnx_phy_addr = 1;
    614 
    615 	if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
    616 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
    617 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
    618 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
    619 			sc->bnx_phy_addr = 2;
    620 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
    621 					 BNX_SHARED_HW_CFG_CONFIG);
    622 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
    623 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
    624 		}
    625 	}
    626 
    627 	/* Allocate DMA memory resources. */
    628 	sc->bnx_dmatag = pa->pa_dmat;
    629 	if (bnx_dma_alloc(sc)) {
    630 		aprint_error_dev(sc->bnx_dev,
    631 		    "DMA resource allocation failed!\n");
    632 		goto bnx_attach_fail;
    633 	}
    634 
    635 	/* Initialize the ifnet interface. */
    636 	ifp = &sc->bnx_ec.ec_if;
    637 	ifp->if_softc = sc;
    638 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    639 	ifp->if_ioctl = bnx_ioctl;
    640 	ifp->if_stop = bnx_stop;
    641 	ifp->if_start = bnx_start;
    642 	ifp->if_init = bnx_init;
    643 	ifp->if_timer = 0;
    644 	ifp->if_watchdog = bnx_watchdog;
    645 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    646 	IFQ_SET_READY(&ifp->if_snd);
    647 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    648 
    649 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    650 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    651 
    652 	ifp->if_capabilities |=
    653 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    654 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    655 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    656 
    657 	/* Hookup IRQ last. */
    658 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    659 	if (sc->bnx_intrhand == NULL) {
    660 		aprint_error_dev(self, "couldn't establish interrupt");
    661 		if (intrstr != NULL)
    662 			aprint_error(" at %s", intrstr);
    663 		aprint_error("\n");
    664 		goto bnx_attach_fail;
    665 	}
    666 
    667 	sc->bnx_mii.mii_ifp = ifp;
    668 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    669 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    670 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    671 
    672 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    673 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    674 	    ether_mediastatus);
    675 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    676 		mii_flags |= MIIF_HAVEFIBER;
    677 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    678 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    679 
    680 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    681 		aprint_error_dev(self, "no PHY found!\n");
    682 		ifmedia_add(&sc->bnx_mii.mii_media,
    683 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    684 		ifmedia_set(&sc->bnx_mii.mii_media,
    685 		    IFM_ETHER|IFM_MANUAL);
    686 	} else {
    687 		ifmedia_set(&sc->bnx_mii.mii_media,
    688 		    IFM_ETHER|IFM_AUTO);
    689 	}
    690 
    691 	/* Attach to the Ethernet interface list. */
    692 	if_attach(ifp);
    693 	ether_ifattach(ifp,sc->eaddr);
    694 
    695 	callout_init(&sc->bnx_timeout, 0);
    696 
    697 	if (!pmf_device_register(self, NULL, NULL))
    698 		aprint_error_dev(self, "couldn't establish power handler\n");
    699 	else
    700 		pmf_class_network_register(self, ifp);
    701 
    702 	/* Print some important debugging info. */
    703 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    704 
    705 	goto bnx_attach_exit;
    706 
    707 bnx_attach_fail:
    708 	bnx_release_resources(sc);
    709 
    710 bnx_attach_exit:
    711 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    712 }
    713 
    714 /****************************************************************************/
    715 /* Device detach function.                                                  */
    716 /*                                                                          */
    717 /* Stops the controller, resets the controller, and releases resources.     */
    718 /*                                                                          */
    719 /* Returns:                                                                 */
    720 /*   0 on success, positive value on failure.                               */
    721 /****************************************************************************/
    722 int
    723 bnx_detach(device_t dev, int flags)
    724 {
    725 	int s;
    726 	struct bnx_softc *sc;
    727 	struct ifnet *ifp;
    728 
    729 	sc = device_private(dev);
    730 	ifp = &sc->bnx_ec.ec_if;
    731 
    732 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    733 
    734 	/* Stop and reset the controller. */
    735 	s = splnet();
    736 	if (ifp->if_flags & IFF_RUNNING)
    737 		bnx_stop(ifp, 1);
    738 	splx(s);
    739 
    740 	pmf_device_deregister(dev);
    741 	ether_ifdetach(ifp);
    742 	if_detach(ifp);
    743 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    744 
    745 	/* Release all remaining resources. */
    746 	bnx_release_resources(sc);
    747 
    748 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    749 
    750 	return(0);
    751 }
    752 
    753 /****************************************************************************/
    754 /* Indirect register read.                                                  */
    755 /*                                                                          */
    756 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    757 /* configuration space.  Using this mechanism avoids issues with posted     */
    758 /* reads but is much slower than memory-mapped I/O.                         */
    759 /*                                                                          */
    760 /* Returns:                                                                 */
    761 /*   The value of the register.                                             */
    762 /****************************************************************************/
    763 u_int32_t
    764 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
    765 {
    766 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    767 
    768 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    769 	    offset);
    770 #ifdef BNX_DEBUG
    771 	{
    772 		u_int32_t val;
    773 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    774 		    BNX_PCICFG_REG_WINDOW);
    775 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    776 		    "val = 0x%08X\n", __func__, offset, val);
    777 		return (val);
    778 	}
    779 #else
    780 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    781 #endif
    782 }
    783 
    784 /****************************************************************************/
    785 /* Indirect register write.                                                 */
    786 /*                                                                          */
    787 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    788 /* configuration space.  Using this mechanism avoids issues with posted     */
    789 /* writes but is muchh slower than memory-mapped I/O.                       */
    790 /*                                                                          */
    791 /* Returns:                                                                 */
    792 /*   Nothing.                                                               */
    793 /****************************************************************************/
    794 void
    795 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
    796 {
    797 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    798 
    799 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    800 		__func__, offset, val);
    801 
    802 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    803 	    offset);
    804 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    805 }
    806 
    807 /****************************************************************************/
    808 /* Context memory write.                                                    */
    809 /*                                                                          */
    810 /* The NetXtreme II controller uses context memory to track connection      */
    811 /* information for L2 and higher network protocols.                         */
    812 /*                                                                          */
    813 /* Returns:                                                                 */
    814 /*   Nothing.                                                               */
    815 /****************************************************************************/
    816 void
    817 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
    818     u_int32_t val)
    819 {
    820 
    821 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
    822 		"val = 0x%08X\n", __func__, cid_addr, offset, val);
    823 
    824 	offset += cid_addr;
    825 	REG_WR(sc, BNX_CTX_DATA_ADR, offset);
    826 	REG_WR(sc, BNX_CTX_DATA, val);
    827 }
    828 
    829 /****************************************************************************/
    830 /* PHY register read.                                                       */
    831 /*                                                                          */
    832 /* Implements register reads on the MII bus.                                */
    833 /*                                                                          */
    834 /* Returns:                                                                 */
    835 /*   The value of the register.                                             */
    836 /****************************************************************************/
    837 int
    838 bnx_miibus_read_reg(device_t dev, int phy, int reg)
    839 {
    840 	struct bnx_softc	*sc = device_private(dev);
    841 	u_int32_t		val;
    842 	int			i;
    843 
    844 	/* Make sure we are accessing the correct PHY address. */
    845 	if (phy != sc->bnx_phy_addr) {
    846 		DBPRINT(sc, BNX_VERBOSE,
    847 		    "Invalid PHY address %d for PHY read!\n", phy);
    848 		return(0);
    849 	}
    850 
    851 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    852 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    853 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    854 
    855 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    856 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    857 
    858 		DELAY(40);
    859 	}
    860 
    861 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
    862 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
    863 	    BNX_EMAC_MDIO_COMM_START_BUSY;
    864 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
    865 
    866 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    867 		DELAY(10);
    868 
    869 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    870 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    871 			DELAY(5);
    872 
    873 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    874 			val &= BNX_EMAC_MDIO_COMM_DATA;
    875 
    876 			break;
    877 		}
    878 	}
    879 
    880 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
    881 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
    882 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
    883 		val = 0x0;
    884 	} else
    885 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    886 
    887 	DBPRINT(sc, BNX_EXCESSIVE,
    888 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
    889 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    890 
    891 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    892 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    893 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    894 
    895 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    896 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    897 
    898 		DELAY(40);
    899 	}
    900 
    901 	return (val & 0xffff);
    902 }
    903 
    904 /****************************************************************************/
    905 /* PHY register write.                                                      */
    906 /*                                                                          */
    907 /* Implements register writes on the MII bus.                               */
    908 /*                                                                          */
    909 /* Returns:                                                                 */
    910 /*   The value of the register.                                             */
    911 /****************************************************************************/
    912 void
    913 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
    914 {
    915 	struct bnx_softc	*sc = device_private(dev);
    916 	u_int32_t		val1;
    917 	int			i;
    918 
    919 	/* Make sure we are accessing the correct PHY address. */
    920 	if (phy != sc->bnx_phy_addr) {
    921 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
    922 		    phy);
    923 		return;
    924 	}
    925 
    926 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
    927 	    "val = 0x%04X\n", __func__,
    928 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    929 
    930 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    931 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    932 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    933 
    934 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
    935 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    936 
    937 		DELAY(40);
    938 	}
    939 
    940 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
    941 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
    942 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
    943 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
    944 
    945 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    946 		DELAY(10);
    947 
    948 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    949 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    950 			DELAY(5);
    951 			break;
    952 		}
    953 	}
    954 
    955 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
    956 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
    957 		    __LINE__);
    958 	}
    959 
    960 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    961 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    962 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    963 
    964 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
    965 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    966 
    967 		DELAY(40);
    968 	}
    969 }
    970 
    971 /****************************************************************************/
    972 /* MII bus status change.                                                   */
    973 /*                                                                          */
    974 /* Called by the MII bus driver when the PHY establishes link to set the    */
    975 /* MAC interface registers.                                                 */
    976 /*                                                                          */
    977 /* Returns:                                                                 */
    978 /*   Nothing.                                                               */
    979 /****************************************************************************/
    980 void
    981 bnx_miibus_statchg(device_t dev)
    982 {
    983 	struct bnx_softc	*sc = device_private(dev);
    984 	struct mii_data		*mii = &sc->bnx_mii;
    985 	int			val;
    986 
    987 	val = REG_RD(sc, BNX_EMAC_MODE);
    988 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
    989 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
    990 	    BNX_EMAC_MODE_25G);
    991 
    992 	/* Set MII or GMII interface based on the speed
    993 	 * negotiated by the PHY.
    994 	 */
    995 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
    996 	case IFM_10_T:
    997 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
    998 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
    999 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1000 			break;
   1001 		}
   1002 		/* FALLTHROUGH */
   1003 	case IFM_100_TX:
   1004 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1005 		val |= BNX_EMAC_MODE_PORT_MII;
   1006 		break;
   1007 	case IFM_2500_SX:
   1008 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1009 		val |= BNX_EMAC_MODE_25G;
   1010 		/* FALLTHROUGH */
   1011 	case IFM_1000_T:
   1012 	case IFM_1000_SX:
   1013 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1014 		val |= BNX_EMAC_MODE_PORT_GMII;
   1015 		break;
   1016 	default:
   1017 		val |= BNX_EMAC_MODE_PORT_GMII;
   1018 		break;
   1019 	}
   1020 
   1021 	/* Set half or full duplex based on the duplicity
   1022 	 * negotiated by the PHY.
   1023 	 */
   1024 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1025 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1026 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1027 	} else {
   1028 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1029 	}
   1030 
   1031 	REG_WR(sc, BNX_EMAC_MODE, val);
   1032 }
   1033 
   1034 /****************************************************************************/
   1035 /* Acquire NVRAM lock.                                                      */
   1036 /*                                                                          */
   1037 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1038 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1039 /* for use by the driver.                                                   */
   1040 /*                                                                          */
   1041 /* Returns:                                                                 */
   1042 /*   0 on success, positive value on failure.                               */
   1043 /****************************************************************************/
   1044 int
   1045 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1046 {
   1047 	u_int32_t		val;
   1048 	int			j;
   1049 
   1050 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1051 
   1052 	/* Request access to the flash interface. */
   1053 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1054 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1055 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1056 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1057 			break;
   1058 
   1059 		DELAY(5);
   1060 	}
   1061 
   1062 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1063 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1064 		return (EBUSY);
   1065 	}
   1066 
   1067 	return (0);
   1068 }
   1069 
   1070 /****************************************************************************/
   1071 /* Release NVRAM lock.                                                      */
   1072 /*                                                                          */
   1073 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1074 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1075 /* for use by the driver.                                                   */
   1076 /*                                                                          */
   1077 /* Returns:                                                                 */
   1078 /*   0 on success, positive value on failure.                               */
   1079 /****************************************************************************/
   1080 int
   1081 bnx_release_nvram_lock(struct bnx_softc *sc)
   1082 {
   1083 	int			j;
   1084 	u_int32_t		val;
   1085 
   1086 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1087 
   1088 	/* Relinquish nvram interface. */
   1089 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1090 
   1091 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1092 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1093 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1094 			break;
   1095 
   1096 		DELAY(5);
   1097 	}
   1098 
   1099 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1100 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1101 		return (EBUSY);
   1102 	}
   1103 
   1104 	return (0);
   1105 }
   1106 
   1107 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1108 /****************************************************************************/
   1109 /* Enable NVRAM write access.                                               */
   1110 /*                                                                          */
   1111 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1112 /*                                                                          */
   1113 /* Returns:                                                                 */
   1114 /*   0 on success, positive value on failure.                               */
   1115 /****************************************************************************/
   1116 int
   1117 bnx_enable_nvram_write(struct bnx_softc *sc)
   1118 {
   1119 	u_int32_t		val;
   1120 
   1121 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1122 
   1123 	val = REG_RD(sc, BNX_MISC_CFG);
   1124 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1125 
   1126 	if (!sc->bnx_flash_info->buffered) {
   1127 		int j;
   1128 
   1129 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1130 		REG_WR(sc, BNX_NVM_COMMAND,
   1131 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1132 
   1133 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1134 			DELAY(5);
   1135 
   1136 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1137 			if (val & BNX_NVM_COMMAND_DONE)
   1138 				break;
   1139 		}
   1140 
   1141 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1142 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1143 			return (EBUSY);
   1144 		}
   1145 	}
   1146 
   1147 	return (0);
   1148 }
   1149 
   1150 /****************************************************************************/
   1151 /* Disable NVRAM write access.                                              */
   1152 /*                                                                          */
   1153 /* When the caller is finished writing to NVRAM write access must be        */
   1154 /* disabled.                                                                */
   1155 /*                                                                          */
   1156 /* Returns:                                                                 */
   1157 /*   Nothing.                                                               */
   1158 /****************************************************************************/
   1159 void
   1160 bnx_disable_nvram_write(struct bnx_softc *sc)
   1161 {
   1162 	u_int32_t		val;
   1163 
   1164 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1165 
   1166 	val = REG_RD(sc, BNX_MISC_CFG);
   1167 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1168 }
   1169 #endif
   1170 
   1171 /****************************************************************************/
   1172 /* Enable NVRAM access.                                                     */
   1173 /*                                                                          */
   1174 /* Before accessing NVRAM for read or write operations the caller must      */
   1175 /* enabled NVRAM access.                                                    */
   1176 /*                                                                          */
   1177 /* Returns:                                                                 */
   1178 /*   Nothing.                                                               */
   1179 /****************************************************************************/
   1180 void
   1181 bnx_enable_nvram_access(struct bnx_softc *sc)
   1182 {
   1183 	u_int32_t		val;
   1184 
   1185 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1186 
   1187 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1188 	/* Enable both bits, even on read. */
   1189 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1190 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1191 }
   1192 
   1193 /****************************************************************************/
   1194 /* Disable NVRAM access.                                                    */
   1195 /*                                                                          */
   1196 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1197 /*                                                                          */
   1198 /* Returns:                                                                 */
   1199 /*   Nothing.                                                               */
   1200 /****************************************************************************/
   1201 void
   1202 bnx_disable_nvram_access(struct bnx_softc *sc)
   1203 {
   1204 	u_int32_t		val;
   1205 
   1206 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1207 
   1208 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1209 
   1210 	/* Disable both bits, even after read. */
   1211 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1212 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1213 }
   1214 
   1215 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1216 /****************************************************************************/
   1217 /* Erase NVRAM page before writing.                                         */
   1218 /*                                                                          */
   1219 /* Non-buffered flash parts require that a page be erased before it is      */
   1220 /* written.                                                                 */
   1221 /*                                                                          */
   1222 /* Returns:                                                                 */
   1223 /*   0 on success, positive value on failure.                               */
   1224 /****************************************************************************/
   1225 int
   1226 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
   1227 {
   1228 	u_int32_t		cmd;
   1229 	int			j;
   1230 
   1231 	/* Buffered flash doesn't require an erase. */
   1232 	if (sc->bnx_flash_info->buffered)
   1233 		return (0);
   1234 
   1235 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1236 
   1237 	/* Build an erase command. */
   1238 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1239 	    BNX_NVM_COMMAND_DOIT;
   1240 
   1241 	/*
   1242 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
   1243 	 * and issue the erase command.
   1244 	 */
   1245 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1246 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1247 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1248 
   1249 	/* Wait for completion. */
   1250 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1251 		u_int32_t val;
   1252 
   1253 		DELAY(5);
   1254 
   1255 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1256 		if (val & BNX_NVM_COMMAND_DONE)
   1257 			break;
   1258 	}
   1259 
   1260 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1261 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1262 		return (EBUSY);
   1263 	}
   1264 
   1265 	return (0);
   1266 }
   1267 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1268 
   1269 /****************************************************************************/
   1270 /* Read a dword (32 bits) from NVRAM.                                       */
   1271 /*                                                                          */
   1272 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1273 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1274 /*                                                                          */
   1275 /* Returns:                                                                 */
   1276 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1277 /****************************************************************************/
   1278 int
   1279 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
   1280     u_int8_t *ret_val, u_int32_t cmd_flags)
   1281 {
   1282 	u_int32_t		cmd;
   1283 	int			i, rc = 0;
   1284 
   1285 	/* Build the command word. */
   1286 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1287 
   1288 	/* Calculate the offset for buffered flash. */
   1289 	if (sc->bnx_flash_info->buffered)
   1290 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1291 		    sc->bnx_flash_info->page_bits) +
   1292 		    (offset % sc->bnx_flash_info->page_size);
   1293 
   1294 	/*
   1295 	 * Clear the DONE bit separately, set the address to read,
   1296 	 * and issue the read.
   1297 	 */
   1298 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1299 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1300 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1301 
   1302 	/* Wait for completion. */
   1303 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1304 		u_int32_t val;
   1305 
   1306 		DELAY(5);
   1307 
   1308 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1309 		if (val & BNX_NVM_COMMAND_DONE) {
   1310 			val = REG_RD(sc, BNX_NVM_READ);
   1311 
   1312 			val = bnx_be32toh(val);
   1313 			memcpy(ret_val, &val, 4);
   1314 			break;
   1315 		}
   1316 	}
   1317 
   1318 	/* Check for errors. */
   1319 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1320 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1321 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1322 		rc = EBUSY;
   1323 	}
   1324 
   1325 	return(rc);
   1326 }
   1327 
   1328 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1329 /****************************************************************************/
   1330 /* Write a dword (32 bits) to NVRAM.                                        */
   1331 /*                                                                          */
   1332 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1333 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1334 /* enabled NVRAM write access.                                              */
   1335 /*                                                                          */
   1336 /* Returns:                                                                 */
   1337 /*   0 on success, positive value on failure.                               */
   1338 /****************************************************************************/
   1339 int
   1340 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
   1341     u_int32_t cmd_flags)
   1342 {
   1343 	u_int32_t		cmd, val32;
   1344 	int			j;
   1345 
   1346 	/* Build the command word. */
   1347 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1348 
   1349 	/* Calculate the offset for buffered flash. */
   1350 	if (sc->bnx_flash_info->buffered)
   1351 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1352 		    sc->bnx_flash_info->page_bits) +
   1353 		    (offset % sc->bnx_flash_info->page_size);
   1354 
   1355 	/*
   1356 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1357 	 * set the NVRAM address to write, and issue the write command
   1358 	 */
   1359 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1360 	memcpy(&val32, val, 4);
   1361 	val32 = htobe32(val32);
   1362 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1363 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1364 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1365 
   1366 	/* Wait for completion. */
   1367 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1368 		DELAY(5);
   1369 
   1370 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1371 			break;
   1372 	}
   1373 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1374 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1375 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1376 		return (EBUSY);
   1377 	}
   1378 
   1379 	return (0);
   1380 }
   1381 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1382 
   1383 /****************************************************************************/
   1384 /* Initialize NVRAM access.                                                 */
   1385 /*                                                                          */
   1386 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1387 /* access that device.                                                      */
   1388 /*                                                                          */
   1389 /* Returns:                                                                 */
   1390 /*   0 on success, positive value on failure.                               */
   1391 /****************************************************************************/
   1392 int
   1393 bnx_init_nvram(struct bnx_softc *sc)
   1394 {
   1395 	u_int32_t		val;
   1396 	int			j, entry_count, rc;
   1397 	struct flash_spec	*flash;
   1398 
   1399 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1400 
   1401 	/* Determine the selected interface. */
   1402 	val = REG_RD(sc, BNX_NVM_CFG1);
   1403 
   1404 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1405 
   1406 	rc = 0;
   1407 
   1408 	/*
   1409 	 * Flash reconfiguration is required to support additional
   1410 	 * NVRAM devices not directly supported in hardware.
   1411 	 * Check if the flash interface was reconfigured
   1412 	 * by the bootcode.
   1413 	 */
   1414 
   1415 	if (val & 0x40000000) {
   1416 		/* Flash interface reconfigured by bootcode. */
   1417 
   1418 		DBPRINT(sc,BNX_INFO_LOAD,
   1419 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1420 
   1421 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1422 		     j++, flash++) {
   1423 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1424 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1425 				sc->bnx_flash_info = flash;
   1426 				break;
   1427 			}
   1428 		}
   1429 	} else {
   1430 		/* Flash interface not yet reconfigured. */
   1431 		u_int32_t mask;
   1432 
   1433 		DBPRINT(sc,BNX_INFO_LOAD,
   1434 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1435 
   1436 		if (val & (1 << 23))
   1437 			mask = FLASH_BACKUP_STRAP_MASK;
   1438 		else
   1439 			mask = FLASH_STRAP_MASK;
   1440 
   1441 		/* Look for the matching NVRAM device configuration data. */
   1442 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1443 		    j++, flash++) {
   1444 			/* Check if the dev matches any of the known devices. */
   1445 			if ((val & mask) == (flash->strapping & mask)) {
   1446 				/* Found a device match. */
   1447 				sc->bnx_flash_info = flash;
   1448 
   1449 				/* Request access to the flash interface. */
   1450 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1451 					return (rc);
   1452 
   1453 				/* Reconfigure the flash interface. */
   1454 				bnx_enable_nvram_access(sc);
   1455 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1456 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1457 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1458 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1459 				bnx_disable_nvram_access(sc);
   1460 				bnx_release_nvram_lock(sc);
   1461 
   1462 				break;
   1463 			}
   1464 		}
   1465 	}
   1466 
   1467 	/* Check if a matching device was found. */
   1468 	if (j == entry_count) {
   1469 		sc->bnx_flash_info = NULL;
   1470 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1471 			__FILE__, __LINE__);
   1472 		rc = ENODEV;
   1473 	}
   1474 
   1475 	/* Write the flash config data to the shared memory interface. */
   1476 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1477 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1478 	if (val)
   1479 		sc->bnx_flash_size = val;
   1480 	else
   1481 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1482 
   1483 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1484 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1485 
   1486 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1487 
   1488 	return (rc);
   1489 }
   1490 
   1491 /****************************************************************************/
   1492 /* Read an arbitrary range of data from NVRAM.                              */
   1493 /*                                                                          */
   1494 /* Prepares the NVRAM interface for access and reads the requested data     */
   1495 /* into the supplied buffer.                                                */
   1496 /*                                                                          */
   1497 /* Returns:                                                                 */
   1498 /*   0 on success and the data read, positive value on failure.             */
   1499 /****************************************************************************/
   1500 int
   1501 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
   1502     int buf_size)
   1503 {
   1504 	int			rc = 0;
   1505 	u_int32_t		cmd_flags, offset32, len32, extra;
   1506 
   1507 	if (buf_size == 0)
   1508 		return (0);
   1509 
   1510 	/* Request access to the flash interface. */
   1511 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1512 		return (rc);
   1513 
   1514 	/* Enable access to flash interface */
   1515 	bnx_enable_nvram_access(sc);
   1516 
   1517 	len32 = buf_size;
   1518 	offset32 = offset;
   1519 	extra = 0;
   1520 
   1521 	cmd_flags = 0;
   1522 
   1523 	if (offset32 & 3) {
   1524 		u_int8_t buf[4];
   1525 		u_int32_t pre_len;
   1526 
   1527 		offset32 &= ~3;
   1528 		pre_len = 4 - (offset & 3);
   1529 
   1530 		if (pre_len >= len32) {
   1531 			pre_len = len32;
   1532 			cmd_flags =
   1533 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1534 		} else
   1535 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1536 
   1537 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1538 
   1539 		if (rc)
   1540 			return (rc);
   1541 
   1542 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1543 
   1544 		offset32 += 4;
   1545 		ret_buf += pre_len;
   1546 		len32 -= pre_len;
   1547 	}
   1548 
   1549 	if (len32 & 3) {
   1550 		extra = 4 - (len32 & 3);
   1551 		len32 = (len32 + 4) & ~3;
   1552 	}
   1553 
   1554 	if (len32 == 4) {
   1555 		u_int8_t buf[4];
   1556 
   1557 		if (cmd_flags)
   1558 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1559 		else
   1560 			cmd_flags =
   1561 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1562 
   1563 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1564 
   1565 		memcpy(ret_buf, buf, 4 - extra);
   1566 	} else if (len32 > 0) {
   1567 		u_int8_t buf[4];
   1568 
   1569 		/* Read the first word. */
   1570 		if (cmd_flags)
   1571 			cmd_flags = 0;
   1572 		else
   1573 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1574 
   1575 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1576 
   1577 		/* Advance to the next dword. */
   1578 		offset32 += 4;
   1579 		ret_buf += 4;
   1580 		len32 -= 4;
   1581 
   1582 		while (len32 > 4 && rc == 0) {
   1583 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1584 
   1585 			/* Advance to the next dword. */
   1586 			offset32 += 4;
   1587 			ret_buf += 4;
   1588 			len32 -= 4;
   1589 		}
   1590 
   1591 		if (rc)
   1592 			return (rc);
   1593 
   1594 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1595 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1596 
   1597 		memcpy(ret_buf, buf, 4 - extra);
   1598 	}
   1599 
   1600 	/* Disable access to flash interface and release the lock. */
   1601 	bnx_disable_nvram_access(sc);
   1602 	bnx_release_nvram_lock(sc);
   1603 
   1604 	return (rc);
   1605 }
   1606 
   1607 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1608 /****************************************************************************/
   1609 /* Write an arbitrary range of data from NVRAM.                             */
   1610 /*                                                                          */
   1611 /* Prepares the NVRAM interface for write access and writes the requested   */
   1612 /* data from the supplied buffer.  The caller is responsible for            */
   1613 /* calculating any appropriate CRCs.                                        */
   1614 /*                                                                          */
   1615 /* Returns:                                                                 */
   1616 /*   0 on success, positive value on failure.                               */
   1617 /****************************************************************************/
   1618 int
   1619 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
   1620     int buf_size)
   1621 {
   1622 	u_int32_t		written, offset32, len32;
   1623 	u_int8_t		*buf, start[4], end[4];
   1624 	int			rc = 0;
   1625 	int			align_start, align_end;
   1626 
   1627 	buf = data_buf;
   1628 	offset32 = offset;
   1629 	len32 = buf_size;
   1630 	align_start = align_end = 0;
   1631 
   1632 	if ((align_start = (offset32 & 3))) {
   1633 		offset32 &= ~3;
   1634 		len32 += align_start;
   1635 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1636 			return (rc);
   1637 	}
   1638 
   1639 	if (len32 & 3) {
   1640 	       	if ((len32 > 4) || !align_start) {
   1641 			align_end = 4 - (len32 & 3);
   1642 			len32 += align_end;
   1643 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1644 			    end, 4))) {
   1645 				return (rc);
   1646 			}
   1647 		}
   1648 	}
   1649 
   1650 	if (align_start || align_end) {
   1651 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1652 		if (buf == 0)
   1653 			return (ENOMEM);
   1654 
   1655 		if (align_start)
   1656 			memcpy(buf, start, 4);
   1657 
   1658 		if (align_end)
   1659 			memcpy(buf + len32 - 4, end, 4);
   1660 
   1661 		memcpy(buf + align_start, data_buf, buf_size);
   1662 	}
   1663 
   1664 	written = 0;
   1665 	while ((written < len32) && (rc == 0)) {
   1666 		u_int32_t page_start, page_end, data_start, data_end;
   1667 		u_int32_t addr, cmd_flags;
   1668 		int i;
   1669 		u_int8_t flash_buffer[264];
   1670 
   1671 	    /* Find the page_start addr */
   1672 		page_start = offset32 + written;
   1673 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1674 		/* Find the page_end addr */
   1675 		page_end = page_start + sc->bnx_flash_info->page_size;
   1676 		/* Find the data_start addr */
   1677 		data_start = (written == 0) ? offset32 : page_start;
   1678 		/* Find the data_end addr */
   1679 		data_end = (page_end > offset32 + len32) ?
   1680 		    (offset32 + len32) : page_end;
   1681 
   1682 		/* Request access to the flash interface. */
   1683 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1684 			goto nvram_write_end;
   1685 
   1686 		/* Enable access to flash interface */
   1687 		bnx_enable_nvram_access(sc);
   1688 
   1689 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1690 		if (sc->bnx_flash_info->buffered == 0) {
   1691 			int j;
   1692 
   1693 			/* Read the whole page into the buffer
   1694 			 * (non-buffer flash only) */
   1695 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1696 				if (j == (sc->bnx_flash_info->page_size - 4))
   1697 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1698 
   1699 				rc = bnx_nvram_read_dword(sc,
   1700 					page_start + j,
   1701 					&flash_buffer[j],
   1702 					cmd_flags);
   1703 
   1704 				if (rc)
   1705 					goto nvram_write_end;
   1706 
   1707 				cmd_flags = 0;
   1708 			}
   1709 		}
   1710 
   1711 		/* Enable writes to flash interface (unlock write-protect) */
   1712 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1713 			goto nvram_write_end;
   1714 
   1715 		/* Erase the page */
   1716 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1717 			goto nvram_write_end;
   1718 
   1719 		/* Re-enable the write again for the actual write */
   1720 		bnx_enable_nvram_write(sc);
   1721 
   1722 		/* Loop to write back the buffer data from page_start to
   1723 		 * data_start */
   1724 		i = 0;
   1725 		if (sc->bnx_flash_info->buffered == 0) {
   1726 			for (addr = page_start; addr < data_start;
   1727 				addr += 4, i += 4) {
   1728 
   1729 				rc = bnx_nvram_write_dword(sc, addr,
   1730 				    &flash_buffer[i], cmd_flags);
   1731 
   1732 				if (rc != 0)
   1733 					goto nvram_write_end;
   1734 
   1735 				cmd_flags = 0;
   1736 			}
   1737 		}
   1738 
   1739 		/* Loop to write the new data from data_start to data_end */
   1740 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1741 			if ((addr == page_end - 4) ||
   1742 			    ((sc->bnx_flash_info->buffered) &&
   1743 			    (addr == data_end - 4))) {
   1744 
   1745 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1746 			}
   1747 
   1748 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1749 
   1750 			if (rc != 0)
   1751 				goto nvram_write_end;
   1752 
   1753 			cmd_flags = 0;
   1754 			buf += 4;
   1755 		}
   1756 
   1757 		/* Loop to write back the buffer data from data_end
   1758 		 * to page_end */
   1759 		if (sc->bnx_flash_info->buffered == 0) {
   1760 			for (addr = data_end; addr < page_end;
   1761 			    addr += 4, i += 4) {
   1762 
   1763 				if (addr == page_end-4)
   1764 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1765 
   1766 				rc = bnx_nvram_write_dword(sc, addr,
   1767 				    &flash_buffer[i], cmd_flags);
   1768 
   1769 				if (rc != 0)
   1770 					goto nvram_write_end;
   1771 
   1772 				cmd_flags = 0;
   1773 			}
   1774 		}
   1775 
   1776 		/* Disable writes to flash interface (lock write-protect) */
   1777 		bnx_disable_nvram_write(sc);
   1778 
   1779 		/* Disable access to flash interface */
   1780 		bnx_disable_nvram_access(sc);
   1781 		bnx_release_nvram_lock(sc);
   1782 
   1783 		/* Increment written */
   1784 		written += data_end - data_start;
   1785 	}
   1786 
   1787 nvram_write_end:
   1788 	if (align_start || align_end)
   1789 		free(buf, M_DEVBUF);
   1790 
   1791 	return (rc);
   1792 }
   1793 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1794 
   1795 /****************************************************************************/
   1796 /* Verifies that NVRAM is accessible and contains valid data.               */
   1797 /*                                                                          */
   1798 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   1799 /* correct.                                                                 */
   1800 /*                                                                          */
   1801 /* Returns:                                                                 */
   1802 /*   0 on success, positive value on failure.                               */
   1803 /****************************************************************************/
   1804 int
   1805 bnx_nvram_test(struct bnx_softc *sc)
   1806 {
   1807 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
   1808 	u_int8_t		*data = (u_int8_t *) buf;
   1809 	int			rc = 0;
   1810 	u_int32_t		magic, csum;
   1811 
   1812 	/*
   1813 	 * Check that the device NVRAM is valid by reading
   1814 	 * the magic value at offset 0.
   1815 	 */
   1816 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   1817 		goto bnx_nvram_test_done;
   1818 
   1819 	magic = bnx_be32toh(buf[0]);
   1820 	if (magic != BNX_NVRAM_MAGIC) {
   1821 		rc = ENODEV;
   1822 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   1823 		    "Expected: 0x%08X, Found: 0x%08X\n",
   1824 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   1825 		goto bnx_nvram_test_done;
   1826 	}
   1827 
   1828 	/*
   1829 	 * Verify that the device NVRAM includes valid
   1830 	 * configuration data.
   1831 	 */
   1832 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   1833 		goto bnx_nvram_test_done;
   1834 
   1835 	csum = ether_crc32_le(data, 0x100);
   1836 	if (csum != BNX_CRC32_RESIDUAL) {
   1837 		rc = ENODEV;
   1838 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   1839 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   1840 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1841 		goto bnx_nvram_test_done;
   1842 	}
   1843 
   1844 	csum = ether_crc32_le(data + 0x100, 0x100);
   1845 	if (csum != BNX_CRC32_RESIDUAL) {
   1846 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   1847 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   1848 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1849 		rc = ENODEV;
   1850 	}
   1851 
   1852 bnx_nvram_test_done:
   1853 	return (rc);
   1854 }
   1855 
   1856 /****************************************************************************/
   1857 /* Free any DMA memory owned by the driver.                                 */
   1858 /*                                                                          */
   1859 /* Scans through each data structre that requires DMA memory and frees      */
   1860 /* the memory if allocated.                                                 */
   1861 /*                                                                          */
   1862 /* Returns:                                                                 */
   1863 /*   Nothing.                                                               */
   1864 /****************************************************************************/
   1865 void
   1866 bnx_dma_free(struct bnx_softc *sc)
   1867 {
   1868 	int			i;
   1869 
   1870 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1871 
   1872 	/* Destroy the status block. */
   1873 	if (sc->status_block != NULL && sc->status_map != NULL) {
   1874 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   1875 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   1876 		    BNX_STATUS_BLK_SZ);
   1877 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   1878 		    sc->status_rseg);
   1879 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   1880 		sc->status_block = NULL;
   1881 		sc->status_map = NULL;
   1882 	}
   1883 
   1884 	/* Destroy the statistics block. */
   1885 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   1886 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   1887 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   1888 		    BNX_STATS_BLK_SZ);
   1889 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   1890 		    sc->stats_rseg);
   1891 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   1892 		sc->stats_block = NULL;
   1893 		sc->stats_map = NULL;
   1894 	}
   1895 
   1896 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   1897 	for (i = 0; i < TX_PAGES; i++ ) {
   1898 		if (sc->tx_bd_chain[i] != NULL &&
   1899 		    sc->tx_bd_chain_map[i] != NULL) {
   1900 			bus_dmamap_unload(sc->bnx_dmatag,
   1901 			    sc->tx_bd_chain_map[i]);
   1902 			bus_dmamem_unmap(sc->bnx_dmatag,
   1903 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   1904 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   1905 			    sc->tx_bd_chain_rseg[i]);
   1906 			bus_dmamap_destroy(sc->bnx_dmatag,
   1907 			    sc->tx_bd_chain_map[i]);
   1908 			sc->tx_bd_chain[i] = NULL;
   1909 			sc->tx_bd_chain_map[i] = NULL;
   1910 		}
   1911 	}
   1912 
   1913 	/* Unload and destroy the TX mbuf maps. */
   1914 	for (i = 0; i < TOTAL_TX_BD; i++) {
   1915 		if (sc->tx_mbuf_map[i] != NULL) {
   1916 			bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
   1917 			bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
   1918 		}
   1919 	}
   1920 
   1921 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   1922 	for (i = 0; i < RX_PAGES; i++ ) {
   1923 		if (sc->rx_bd_chain[i] != NULL &&
   1924 		    sc->rx_bd_chain_map[i] != NULL) {
   1925 			bus_dmamap_unload(sc->bnx_dmatag,
   1926 			    sc->rx_bd_chain_map[i]);
   1927 			bus_dmamem_unmap(sc->bnx_dmatag,
   1928 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   1929 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   1930 			    sc->rx_bd_chain_rseg[i]);
   1931 
   1932 			bus_dmamap_destroy(sc->bnx_dmatag,
   1933 			    sc->rx_bd_chain_map[i]);
   1934 			sc->rx_bd_chain[i] = NULL;
   1935 			sc->rx_bd_chain_map[i] = NULL;
   1936 		}
   1937 	}
   1938 
   1939 	/* Unload and destroy the RX mbuf maps. */
   1940 	for (i = 0; i < TOTAL_RX_BD; i++) {
   1941 		if (sc->rx_mbuf_map[i] != NULL) {
   1942 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   1943 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   1944 		}
   1945 	}
   1946 
   1947 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1948 }
   1949 
   1950 /****************************************************************************/
   1951 /* Allocate any DMA memory needed by the driver.                            */
   1952 /*                                                                          */
   1953 /* Allocates DMA memory needed for the various global structures needed by  */
   1954 /* hardware.                                                                */
   1955 /*                                                                          */
   1956 /* Returns:                                                                 */
   1957 /*   0 for success, positive value for failure.                             */
   1958 /****************************************************************************/
   1959 int
   1960 bnx_dma_alloc(struct bnx_softc *sc)
   1961 {
   1962 	int			i, rc = 0;
   1963 
   1964 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1965 
   1966 	/*
   1967 	 * Allocate DMA memory for the status block, map the memory into DMA
   1968 	 * space, and fetch the physical address of the block.
   1969 	 */
   1970 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   1971 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   1972 		aprint_error_dev(sc->bnx_dev,
   1973 		    "Could not create status block DMA map!\n");
   1974 		rc = ENOMEM;
   1975 		goto bnx_dma_alloc_exit;
   1976 	}
   1977 
   1978 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   1979 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   1980 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   1981 		aprint_error_dev(sc->bnx_dev,
   1982 		    "Could not allocate status block DMA memory!\n");
   1983 		rc = ENOMEM;
   1984 		goto bnx_dma_alloc_exit;
   1985 	}
   1986 
   1987 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   1988 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   1989 		aprint_error_dev(sc->bnx_dev,
   1990 		    "Could not map status block DMA memory!\n");
   1991 		rc = ENOMEM;
   1992 		goto bnx_dma_alloc_exit;
   1993 	}
   1994 
   1995 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   1996 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   1997 		aprint_error_dev(sc->bnx_dev,
   1998 		    "Could not load status block DMA memory!\n");
   1999 		rc = ENOMEM;
   2000 		goto bnx_dma_alloc_exit;
   2001 	}
   2002 
   2003 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2004 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2005 
   2006 	/* DRC - Fix for 64 bit addresses. */
   2007 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2008 		(u_int32_t) sc->status_block_paddr);
   2009 
   2010 	/*
   2011 	 * Allocate DMA memory for the statistics block, map the memory into
   2012 	 * DMA space, and fetch the physical address of the block.
   2013 	 */
   2014 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2015 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2016 		aprint_error_dev(sc->bnx_dev,
   2017 		    "Could not create stats block DMA map!\n");
   2018 		rc = ENOMEM;
   2019 		goto bnx_dma_alloc_exit;
   2020 	}
   2021 
   2022 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2023 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2024 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2025 		aprint_error_dev(sc->bnx_dev,
   2026 		    "Could not allocate stats block DMA memory!\n");
   2027 		rc = ENOMEM;
   2028 		goto bnx_dma_alloc_exit;
   2029 	}
   2030 
   2031 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2032 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2033 		aprint_error_dev(sc->bnx_dev,
   2034 		    "Could not map stats block DMA memory!\n");
   2035 		rc = ENOMEM;
   2036 		goto bnx_dma_alloc_exit;
   2037 	}
   2038 
   2039 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2040 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2041 		aprint_error_dev(sc->bnx_dev,
   2042 		    "Could not load status block DMA memory!\n");
   2043 		rc = ENOMEM;
   2044 		goto bnx_dma_alloc_exit;
   2045 	}
   2046 
   2047 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2048 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2049 
   2050 	/* DRC - Fix for 64 bit address. */
   2051 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2052 	    (u_int32_t) sc->stats_block_paddr);
   2053 
   2054 	/*
   2055 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2056 	 * and fetch the physical address of the block.
   2057 	 */
   2058 	for (i = 0; i < TX_PAGES; i++) {
   2059 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2060 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2061 		    &sc->tx_bd_chain_map[i])) {
   2062 			aprint_error_dev(sc->bnx_dev,
   2063 			    "Could not create Tx desc %d DMA map!\n", i);
   2064 			rc = ENOMEM;
   2065 			goto bnx_dma_alloc_exit;
   2066 		}
   2067 
   2068 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2069 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2070 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2071 			aprint_error_dev(sc->bnx_dev,
   2072 			    "Could not allocate TX desc %d DMA memory!\n",
   2073 			    i);
   2074 			rc = ENOMEM;
   2075 			goto bnx_dma_alloc_exit;
   2076 		}
   2077 
   2078 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2079 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2080 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2081 			aprint_error_dev(sc->bnx_dev,
   2082 			    "Could not map TX desc %d DMA memory!\n", i);
   2083 			rc = ENOMEM;
   2084 			goto bnx_dma_alloc_exit;
   2085 		}
   2086 
   2087 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2088 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2089 		    BUS_DMA_NOWAIT)) {
   2090 			aprint_error_dev(sc->bnx_dev,
   2091 			    "Could not load TX desc %d DMA memory!\n", i);
   2092 			rc = ENOMEM;
   2093 			goto bnx_dma_alloc_exit;
   2094 		}
   2095 
   2096 		sc->tx_bd_chain_paddr[i] =
   2097 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2098 
   2099 		/* DRC - Fix for 64 bit systems. */
   2100 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2101 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
   2102 	}
   2103 
   2104 	/*
   2105 	 * Create DMA maps for the TX buffer mbufs.
   2106 	 */
   2107 	for (i = 0; i < TOTAL_TX_BD; i++) {
   2108 		if (bus_dmamap_create(sc->bnx_dmatag,
   2109 		    MCLBYTES * BNX_MAX_SEGMENTS,
   2110 		    USABLE_TX_BD - BNX_TX_SLACK_SPACE,
   2111 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
   2112 		    &sc->tx_mbuf_map[i])) {
   2113 			aprint_error_dev(sc->bnx_dev,
   2114 			    "Could not create Tx mbuf %d DMA map!\n", i);
   2115 			rc = ENOMEM;
   2116 			goto bnx_dma_alloc_exit;
   2117 		}
   2118 	}
   2119 
   2120 	/*
   2121 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2122 	 * and fetch the physical address of the block.
   2123 	 */
   2124 	for (i = 0; i < RX_PAGES; i++) {
   2125 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2126 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2127 		    &sc->rx_bd_chain_map[i])) {
   2128 			aprint_error_dev(sc->bnx_dev,
   2129 			    "Could not create Rx desc %d DMA map!\n", i);
   2130 			rc = ENOMEM;
   2131 			goto bnx_dma_alloc_exit;
   2132 		}
   2133 
   2134 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2135 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2136 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2137 			aprint_error_dev(sc->bnx_dev,
   2138 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2139 			rc = ENOMEM;
   2140 			goto bnx_dma_alloc_exit;
   2141 		}
   2142 
   2143 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2144 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2145 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2146 			aprint_error_dev(sc->bnx_dev,
   2147 			    "Could not map Rx desc %d DMA memory!\n", i);
   2148 			rc = ENOMEM;
   2149 			goto bnx_dma_alloc_exit;
   2150 		}
   2151 
   2152 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2153 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2154 		    BUS_DMA_NOWAIT)) {
   2155 			aprint_error_dev(sc->bnx_dev,
   2156 			    "Could not load Rx desc %d DMA memory!\n", i);
   2157 			rc = ENOMEM;
   2158 			goto bnx_dma_alloc_exit;
   2159 		}
   2160 
   2161 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2162 		sc->rx_bd_chain_paddr[i] =
   2163 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2164 
   2165 		/* DRC - Fix for 64 bit systems. */
   2166 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2167 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
   2168 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2169 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2170 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2171 	}
   2172 
   2173 	/*
   2174 	 * Create DMA maps for the Rx buffer mbufs.
   2175 	 */
   2176 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2177 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
   2178 		    BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
   2179 		    &sc->rx_mbuf_map[i])) {
   2180 			aprint_error_dev(sc->bnx_dev,
   2181 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2182 			rc = ENOMEM;
   2183 			goto bnx_dma_alloc_exit;
   2184 		}
   2185 	}
   2186 
   2187  bnx_dma_alloc_exit:
   2188 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2189 
   2190 	return(rc);
   2191 }
   2192 
   2193 /****************************************************************************/
   2194 /* Release all resources used by the driver.                                */
   2195 /*                                                                          */
   2196 /* Releases all resources acquired by the driver including interrupts,      */
   2197 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2198 /*                                                                          */
   2199 /* Returns:                                                                 */
   2200 /*   Nothing.                                                               */
   2201 /****************************************************************************/
   2202 void
   2203 bnx_release_resources(struct bnx_softc *sc)
   2204 {
   2205 	int i;
   2206 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2207 
   2208 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2209 
   2210 	bnx_dma_free(sc);
   2211 
   2212 	if (sc->bnx_intrhand != NULL)
   2213 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2214 
   2215 	if (sc->bnx_size)
   2216 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2217 
   2218 	for (i = 0; i < TOTAL_RX_BD; i++)
   2219 		if (sc->rx_mbuf_map[i])
   2220 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2221 
   2222 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2223 }
   2224 
   2225 /****************************************************************************/
   2226 /* Firmware synchronization.                                                */
   2227 /*                                                                          */
   2228 /* Before performing certain events such as a chip reset, synchronize with  */
   2229 /* the firmware first.                                                      */
   2230 /*                                                                          */
   2231 /* Returns:                                                                 */
   2232 /*   0 for success, positive value for failure.                             */
   2233 /****************************************************************************/
   2234 int
   2235 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
   2236 {
   2237 	int			i, rc = 0;
   2238 	u_int32_t		val;
   2239 
   2240 	/* Don't waste any time if we've timed out before. */
   2241 	if (sc->bnx_fw_timed_out) {
   2242 		rc = EBUSY;
   2243 		goto bnx_fw_sync_exit;
   2244 	}
   2245 
   2246 	/* Increment the message sequence number. */
   2247 	sc->bnx_fw_wr_seq++;
   2248 	msg_data |= sc->bnx_fw_wr_seq;
   2249 
   2250  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2251 	    msg_data);
   2252 
   2253 	/* Send the message to the bootcode driver mailbox. */
   2254 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2255 
   2256 	/* Wait for the bootcode to acknowledge the message. */
   2257 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2258 		/* Check for a response in the bootcode firmware mailbox. */
   2259 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2260 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2261 			break;
   2262 		DELAY(1000);
   2263 	}
   2264 
   2265 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2266 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2267 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2268 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2269 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2270 
   2271 		msg_data &= ~BNX_DRV_MSG_CODE;
   2272 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2273 
   2274 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2275 
   2276 		sc->bnx_fw_timed_out = 1;
   2277 		rc = EBUSY;
   2278 	}
   2279 
   2280 bnx_fw_sync_exit:
   2281 	return (rc);
   2282 }
   2283 
   2284 /****************************************************************************/
   2285 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2286 /*                                                                          */
   2287 /* Returns:                                                                 */
   2288 /*   Nothing.                                                               */
   2289 /****************************************************************************/
   2290 void
   2291 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
   2292     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
   2293 {
   2294 	int			i;
   2295 	u_int32_t		val;
   2296 
   2297 	for (i = 0; i < rv2p_code_len; i += 8) {
   2298 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2299 		rv2p_code++;
   2300 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2301 		rv2p_code++;
   2302 
   2303 		if (rv2p_proc == RV2P_PROC1) {
   2304 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2305 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2306 		}
   2307 		else {
   2308 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2309 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2310 		}
   2311 	}
   2312 
   2313 	/* Reset the processor, un-stall is done later. */
   2314 	if (rv2p_proc == RV2P_PROC1)
   2315 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2316 	else
   2317 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2318 }
   2319 
   2320 /****************************************************************************/
   2321 /* Load RISC processor firmware.                                            */
   2322 /*                                                                          */
   2323 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2324 /* associated with a particular processor.                                  */
   2325 /*                                                                          */
   2326 /* Returns:                                                                 */
   2327 /*   Nothing.                                                               */
   2328 /****************************************************************************/
   2329 void
   2330 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2331     struct fw_info *fw)
   2332 {
   2333 	u_int32_t		offset;
   2334 	u_int32_t		val;
   2335 
   2336 	/* Halt the CPU. */
   2337 	val = REG_RD_IND(sc, cpu_reg->mode);
   2338 	val |= cpu_reg->mode_value_halt;
   2339 	REG_WR_IND(sc, cpu_reg->mode, val);
   2340 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2341 
   2342 	/* Load the Text area. */
   2343 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2344 	if (fw->text) {
   2345 		int j;
   2346 
   2347 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2348 			REG_WR_IND(sc, offset, fw->text[j]);
   2349 	}
   2350 
   2351 	/* Load the Data area. */
   2352 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2353 	if (fw->data) {
   2354 		int j;
   2355 
   2356 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2357 			REG_WR_IND(sc, offset, fw->data[j]);
   2358 	}
   2359 
   2360 	/* Load the SBSS area. */
   2361 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2362 	if (fw->sbss) {
   2363 		int j;
   2364 
   2365 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2366 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2367 	}
   2368 
   2369 	/* Load the BSS area. */
   2370 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2371 	if (fw->bss) {
   2372 		int j;
   2373 
   2374 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2375 			REG_WR_IND(sc, offset, fw->bss[j]);
   2376 	}
   2377 
   2378 	/* Load the Read-Only area. */
   2379 	offset = cpu_reg->spad_base +
   2380 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2381 	if (fw->rodata) {
   2382 		int j;
   2383 
   2384 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2385 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2386 	}
   2387 
   2388 	/* Clear the pre-fetch instruction. */
   2389 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2390 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2391 
   2392 	/* Start the CPU. */
   2393 	val = REG_RD_IND(sc, cpu_reg->mode);
   2394 	val &= ~cpu_reg->mode_value_halt;
   2395 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2396 	REG_WR_IND(sc, cpu_reg->mode, val);
   2397 }
   2398 
   2399 /****************************************************************************/
   2400 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2401 /*                                                                          */
   2402 /* Loads the firmware for each CPU and starts the CPU.                      */
   2403 /*                                                                          */
   2404 /* Returns:                                                                 */
   2405 /*   Nothing.                                                               */
   2406 /****************************************************************************/
   2407 void
   2408 bnx_init_cpus(struct bnx_softc *sc)
   2409 {
   2410 	struct cpu_reg cpu_reg;
   2411 	struct fw_info fw;
   2412 
   2413 	/* Initialize the RV2P processor. */
   2414 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   2415 	    RV2P_PROC1);
   2416 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   2417 	    RV2P_PROC2);
   2418 
   2419 	/* Initialize the RX Processor. */
   2420 	cpu_reg.mode = BNX_RXP_CPU_MODE;
   2421 	cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2422 	cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2423 	cpu_reg.state = BNX_RXP_CPU_STATE;
   2424 	cpu_reg.state_value_clear = 0xffffff;
   2425 	cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2426 	cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2427 	cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2428 	cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2429 	cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2430 	cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2431 	cpu_reg.mips_view_base = 0x8000000;
   2432 
   2433 	fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   2434 	fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   2435 	fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   2436 	fw.start_addr = bnx_RXP_b06FwStartAddr;
   2437 
   2438 	fw.text_addr = bnx_RXP_b06FwTextAddr;
   2439 	fw.text_len = bnx_RXP_b06FwTextLen;
   2440 	fw.text_index = 0;
   2441 	fw.text = bnx_RXP_b06FwText;
   2442 
   2443 	fw.data_addr = bnx_RXP_b06FwDataAddr;
   2444 	fw.data_len = bnx_RXP_b06FwDataLen;
   2445 	fw.data_index = 0;
   2446 	fw.data = bnx_RXP_b06FwData;
   2447 
   2448 	fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   2449 	fw.sbss_len = bnx_RXP_b06FwSbssLen;
   2450 	fw.sbss_index = 0;
   2451 	fw.sbss = bnx_RXP_b06FwSbss;
   2452 
   2453 	fw.bss_addr = bnx_RXP_b06FwBssAddr;
   2454 	fw.bss_len = bnx_RXP_b06FwBssLen;
   2455 	fw.bss_index = 0;
   2456 	fw.bss = bnx_RXP_b06FwBss;
   2457 
   2458 	fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   2459 	fw.rodata_len = bnx_RXP_b06FwRodataLen;
   2460 	fw.rodata_index = 0;
   2461 	fw.rodata = bnx_RXP_b06FwRodata;
   2462 
   2463 	DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2464 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2465 
   2466 	/* Initialize the TX Processor. */
   2467 	cpu_reg.mode = BNX_TXP_CPU_MODE;
   2468 	cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2469 	cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2470 	cpu_reg.state = BNX_TXP_CPU_STATE;
   2471 	cpu_reg.state_value_clear = 0xffffff;
   2472 	cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2473 	cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2474 	cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2475 	cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2476 	cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2477 	cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2478 	cpu_reg.mips_view_base = 0x8000000;
   2479 
   2480 	fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   2481 	fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   2482 	fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   2483 	fw.start_addr = bnx_TXP_b06FwStartAddr;
   2484 
   2485 	fw.text_addr = bnx_TXP_b06FwTextAddr;
   2486 	fw.text_len = bnx_TXP_b06FwTextLen;
   2487 	fw.text_index = 0;
   2488 	fw.text = bnx_TXP_b06FwText;
   2489 
   2490 	fw.data_addr = bnx_TXP_b06FwDataAddr;
   2491 	fw.data_len = bnx_TXP_b06FwDataLen;
   2492 	fw.data_index = 0;
   2493 	fw.data = bnx_TXP_b06FwData;
   2494 
   2495 	fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   2496 	fw.sbss_len = bnx_TXP_b06FwSbssLen;
   2497 	fw.sbss_index = 0;
   2498 	fw.sbss = bnx_TXP_b06FwSbss;
   2499 
   2500 	fw.bss_addr = bnx_TXP_b06FwBssAddr;
   2501 	fw.bss_len = bnx_TXP_b06FwBssLen;
   2502 	fw.bss_index = 0;
   2503 	fw.bss = bnx_TXP_b06FwBss;
   2504 
   2505 	fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   2506 	fw.rodata_len = bnx_TXP_b06FwRodataLen;
   2507 	fw.rodata_index = 0;
   2508 	fw.rodata = bnx_TXP_b06FwRodata;
   2509 
   2510 	DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2511 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2512 
   2513 	/* Initialize the TX Patch-up Processor. */
   2514 	cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2515 	cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2516 	cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2517 	cpu_reg.state = BNX_TPAT_CPU_STATE;
   2518 	cpu_reg.state_value_clear = 0xffffff;
   2519 	cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2520 	cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2521 	cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2522 	cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2523 	cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2524 	cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2525 	cpu_reg.mips_view_base = 0x8000000;
   2526 
   2527 	fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   2528 	fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   2529 	fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   2530 	fw.start_addr = bnx_TPAT_b06FwStartAddr;
   2531 
   2532 	fw.text_addr = bnx_TPAT_b06FwTextAddr;
   2533 	fw.text_len = bnx_TPAT_b06FwTextLen;
   2534 	fw.text_index = 0;
   2535 	fw.text = bnx_TPAT_b06FwText;
   2536 
   2537 	fw.data_addr = bnx_TPAT_b06FwDataAddr;
   2538 	fw.data_len = bnx_TPAT_b06FwDataLen;
   2539 	fw.data_index = 0;
   2540 	fw.data = bnx_TPAT_b06FwData;
   2541 
   2542 	fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   2543 	fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   2544 	fw.sbss_index = 0;
   2545 	fw.sbss = bnx_TPAT_b06FwSbss;
   2546 
   2547 	fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   2548 	fw.bss_len = bnx_TPAT_b06FwBssLen;
   2549 	fw.bss_index = 0;
   2550 	fw.bss = bnx_TPAT_b06FwBss;
   2551 
   2552 	fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   2553 	fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   2554 	fw.rodata_index = 0;
   2555 	fw.rodata = bnx_TPAT_b06FwRodata;
   2556 
   2557 	DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2558 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2559 
   2560 	/* Initialize the Completion Processor. */
   2561 	cpu_reg.mode = BNX_COM_CPU_MODE;
   2562 	cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2563 	cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2564 	cpu_reg.state = BNX_COM_CPU_STATE;
   2565 	cpu_reg.state_value_clear = 0xffffff;
   2566 	cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2567 	cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2568 	cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2569 	cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2570 	cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2571 	cpu_reg.spad_base = BNX_COM_SCRATCH;
   2572 	cpu_reg.mips_view_base = 0x8000000;
   2573 
   2574 	fw.ver_major = bnx_COM_b06FwReleaseMajor;
   2575 	fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   2576 	fw.ver_fix = bnx_COM_b06FwReleaseFix;
   2577 	fw.start_addr = bnx_COM_b06FwStartAddr;
   2578 
   2579 	fw.text_addr = bnx_COM_b06FwTextAddr;
   2580 	fw.text_len = bnx_COM_b06FwTextLen;
   2581 	fw.text_index = 0;
   2582 	fw.text = bnx_COM_b06FwText;
   2583 
   2584 	fw.data_addr = bnx_COM_b06FwDataAddr;
   2585 	fw.data_len = bnx_COM_b06FwDataLen;
   2586 	fw.data_index = 0;
   2587 	fw.data = bnx_COM_b06FwData;
   2588 
   2589 	fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   2590 	fw.sbss_len = bnx_COM_b06FwSbssLen;
   2591 	fw.sbss_index = 0;
   2592 	fw.sbss = bnx_COM_b06FwSbss;
   2593 
   2594 	fw.bss_addr = bnx_COM_b06FwBssAddr;
   2595 	fw.bss_len = bnx_COM_b06FwBssLen;
   2596 	fw.bss_index = 0;
   2597 	fw.bss = bnx_COM_b06FwBss;
   2598 
   2599 	fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   2600 	fw.rodata_len = bnx_COM_b06FwRodataLen;
   2601 	fw.rodata_index = 0;
   2602 	fw.rodata = bnx_COM_b06FwRodata;
   2603 
   2604 	DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   2605 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2606 }
   2607 
   2608 /****************************************************************************/
   2609 /* Initialize context memory.                                               */
   2610 /*                                                                          */
   2611 /* Clears the memory associated with each Context ID (CID).                 */
   2612 /*                                                                          */
   2613 /* Returns:                                                                 */
   2614 /*   Nothing.                                                               */
   2615 /****************************************************************************/
   2616 void
   2617 bnx_init_context(struct bnx_softc *sc)
   2618 {
   2619 	u_int32_t		vcid;
   2620 
   2621 	vcid = 96;
   2622 	while (vcid) {
   2623 		u_int32_t vcid_addr, pcid_addr, offset;
   2624 
   2625 		vcid--;
   2626 
   2627    		vcid_addr = GET_CID_ADDR(vcid);
   2628 		pcid_addr = vcid_addr;
   2629 
   2630 		REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
   2631 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
   2632 
   2633 		/* Zero out the context. */
   2634 		for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
   2635 			CTX_WR(sc, 0x00, offset, 0);
   2636 
   2637 		REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   2638 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
   2639 	}
   2640 }
   2641 
   2642 /****************************************************************************/
   2643 /* Fetch the permanent MAC address of the controller.                       */
   2644 /*                                                                          */
   2645 /* Returns:                                                                 */
   2646 /*   Nothing.                                                               */
   2647 /****************************************************************************/
   2648 void
   2649 bnx_get_mac_addr(struct bnx_softc *sc)
   2650 {
   2651 	u_int32_t		mac_lo = 0, mac_hi = 0;
   2652 
   2653 	/*
   2654 	 * The NetXtreme II bootcode populates various NIC
   2655 	 * power-on and runtime configuration items in a
   2656 	 * shared memory area.  The factory configured MAC
   2657 	 * address is available from both NVRAM and the
   2658 	 * shared memory area so we'll read the value from
   2659 	 * shared memory for speed.
   2660 	 */
   2661 
   2662 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   2663 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   2664 
   2665 	if ((mac_lo == 0) && (mac_hi == 0)) {
   2666 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   2667 		    __FILE__, __LINE__);
   2668 	} else {
   2669 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   2670 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   2671 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   2672 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   2673 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   2674 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   2675 	}
   2676 
   2677 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   2678 	    "%s\n", ether_sprintf(sc->eaddr));
   2679 }
   2680 
   2681 /****************************************************************************/
   2682 /* Program the MAC address.                                                 */
   2683 /*                                                                          */
   2684 /* Returns:                                                                 */
   2685 /*   Nothing.                                                               */
   2686 /****************************************************************************/
   2687 void
   2688 bnx_set_mac_addr(struct bnx_softc *sc)
   2689 {
   2690 	u_int32_t		val;
   2691 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   2692 
   2693 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   2694 	    "%s\n", ether_sprintf(sc->eaddr));
   2695 
   2696 	val = (mac_addr[0] << 8) | mac_addr[1];
   2697 
   2698 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   2699 
   2700 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   2701 		(mac_addr[4] << 8) | mac_addr[5];
   2702 
   2703 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   2704 }
   2705 
   2706 /****************************************************************************/
   2707 /* Stop the controller.                                                     */
   2708 /*                                                                          */
   2709 /* Returns:                                                                 */
   2710 /*   Nothing.                                                               */
   2711 /****************************************************************************/
   2712 void
   2713 bnx_stop(struct ifnet *ifp, int disable)
   2714 {
   2715 	struct bnx_softc *sc = ifp->if_softc;
   2716 
   2717 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2718 
   2719 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   2720 		return;
   2721 
   2722 	callout_stop(&sc->bnx_timeout);
   2723 
   2724 	mii_down(&sc->bnx_mii);
   2725 
   2726 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2727 
   2728 	/* Disable the transmit/receive blocks. */
   2729 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   2730 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   2731 	DELAY(20);
   2732 
   2733 	bnx_disable_intr(sc);
   2734 
   2735 	/* Tell firmware that the driver is going away. */
   2736 	if (disable)
   2737 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   2738 	else
   2739 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   2740 
   2741 	/* Free the RX lists. */
   2742 	bnx_free_rx_chain(sc);
   2743 
   2744 	/* Free TX buffers. */
   2745 	bnx_free_tx_chain(sc);
   2746 
   2747 	ifp->if_timer = 0;
   2748 
   2749 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2750 
   2751 }
   2752 
   2753 int
   2754 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
   2755 {
   2756 	u_int32_t		val;
   2757 	int			i, rc = 0;
   2758 
   2759 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2760 
   2761 	/* Wait for pending PCI transactions to complete. */
   2762 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   2763 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   2764 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   2765 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   2766 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   2767 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   2768 	DELAY(5);
   2769 
   2770 	/* Assume bootcode is running. */
   2771 	sc->bnx_fw_timed_out = 0;
   2772 
   2773 	/* Give the firmware a chance to prepare for the reset. */
   2774 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   2775 	if (rc)
   2776 		goto bnx_reset_exit;
   2777 
   2778 	/* Set a firmware reminder that this is a soft reset. */
   2779 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   2780 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   2781 
   2782 	/* Dummy read to force the chip to complete all current transactions. */
   2783 	val = REG_RD(sc, BNX_MISC_ID);
   2784 
   2785 	/* Chip reset. */
   2786 	val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2787 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   2788 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   2789 	REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   2790 
   2791 	/* Allow up to 30us for reset to complete. */
   2792 	for (i = 0; i < 10; i++) {
   2793 		val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   2794 		if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2795 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
   2796 			break;
   2797 
   2798 		DELAY(10);
   2799 	}
   2800 
   2801 	/* Check that reset completed successfully. */
   2802 	if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2803 	    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   2804 		BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
   2805 		rc = EBUSY;
   2806 		goto bnx_reset_exit;
   2807 	}
   2808 
   2809 	/* Make sure byte swapping is properly configured. */
   2810 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   2811 	if (val != 0x01020304) {
   2812 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   2813 		    __FILE__, __LINE__);
   2814 		rc = ENODEV;
   2815 		goto bnx_reset_exit;
   2816 	}
   2817 
   2818 	/* Just completed a reset, assume that firmware is running again. */
   2819 	sc->bnx_fw_timed_out = 0;
   2820 
   2821 	/* Wait for the firmware to finish its initialization. */
   2822 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   2823 	if (rc)
   2824 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   2825 		    "initialization!\n", __FILE__, __LINE__);
   2826 
   2827 bnx_reset_exit:
   2828 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2829 
   2830 	return (rc);
   2831 }
   2832 
   2833 int
   2834 bnx_chipinit(struct bnx_softc *sc)
   2835 {
   2836 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2837 	u_int32_t		val;
   2838 	int			rc = 0;
   2839 
   2840 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2841 
   2842 	/* Make sure the interrupt is not active. */
   2843 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   2844 
   2845 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   2846 	/* channels and PCI clock compensation delay.                      */
   2847 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   2848 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   2849 #if BYTE_ORDER == BIG_ENDIAN
   2850 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   2851 #endif
   2852 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   2853 	    DMA_READ_CHANS << 12 |
   2854 	    DMA_WRITE_CHANS << 16;
   2855 
   2856 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   2857 
   2858 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   2859 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   2860 
   2861 	/*
   2862 	 * This setting resolves a problem observed on certain Intel PCI
   2863 	 * chipsets that cannot handle multiple outstanding DMA operations.
   2864 	 * See errata E9_5706A1_65.
   2865 	 */
   2866 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   2867 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   2868 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   2869 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   2870 
   2871 	REG_WR(sc, BNX_DMA_CONFIG, val);
   2872 
   2873 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   2874 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   2875 		u_int16_t nval;
   2876 
   2877 		nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   2878 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   2879 		    nval & ~0x20000);
   2880 	}
   2881 
   2882 	/* Enable the RX_V2P and Context state machines before access. */
   2883 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   2884 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   2885 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   2886 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   2887 
   2888 	/* Initialize context mapping and zero out the quick contexts. */
   2889 	bnx_init_context(sc);
   2890 
   2891 	/* Initialize the on-boards CPUs */
   2892 	bnx_init_cpus(sc);
   2893 
   2894 	/* Prepare NVRAM for access. */
   2895 	if (bnx_init_nvram(sc)) {
   2896 		rc = ENODEV;
   2897 		goto bnx_chipinit_exit;
   2898 	}
   2899 
   2900 	/* Set the kernel bypass block size */
   2901 	val = REG_RD(sc, BNX_MQ_CONFIG);
   2902 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   2903 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   2904 	REG_WR(sc, BNX_MQ_CONFIG, val);
   2905 
   2906 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
   2907 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   2908 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   2909 
   2910 	val = (BCM_PAGE_BITS - 8) << 24;
   2911 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   2912 
   2913 	/* Configure page size. */
   2914 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   2915 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   2916 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   2917 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   2918 
   2919 bnx_chipinit_exit:
   2920 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2921 
   2922 	return(rc);
   2923 }
   2924 
   2925 /****************************************************************************/
   2926 /* Initialize the controller in preparation to send/receive traffic.        */
   2927 /*                                                                          */
   2928 /* Returns:                                                                 */
   2929 /*   0 for success, positive value for failure.                             */
   2930 /****************************************************************************/
   2931 int
   2932 bnx_blockinit(struct bnx_softc *sc)
   2933 {
   2934 	u_int32_t		reg, val;
   2935 	int 			rc = 0;
   2936 
   2937 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2938 
   2939 	/* Load the hardware default MAC address. */
   2940 	bnx_set_mac_addr(sc);
   2941 
   2942 	/* Set the Ethernet backoff seed value */
   2943 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   2944 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   2945 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   2946 
   2947 	sc->last_status_idx = 0;
   2948 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   2949 
   2950 	/* Set up link change interrupt generation. */
   2951 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   2952 
   2953 	/* Program the physical address of the status block. */
   2954 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
   2955 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   2956 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
   2957 
   2958 	/* Program the physical address of the statistics block. */
   2959 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   2960 	    (u_int32_t)(sc->stats_block_paddr));
   2961 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   2962 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
   2963 
   2964 	/* Program various host coalescing parameters. */
   2965 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   2966 	    << 16) | sc->bnx_tx_quick_cons_trip);
   2967 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   2968 	    << 16) | sc->bnx_rx_quick_cons_trip);
   2969 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   2970 	    sc->bnx_comp_prod_trip);
   2971 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   2972 	    sc->bnx_tx_ticks);
   2973 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   2974 	    sc->bnx_rx_ticks);
   2975 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   2976 	    sc->bnx_com_ticks);
   2977 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   2978 	    sc->bnx_cmd_ticks);
   2979 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   2980 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   2981 	REG_WR(sc, BNX_HC_CONFIG,
   2982 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   2983 	    BNX_HC_CONFIG_COLLECT_STATS));
   2984 
   2985 	/* Clear the internal statistics counters. */
   2986 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   2987 
   2988 	/* Verify that bootcode is running. */
   2989 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   2990 
   2991 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   2992 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   2993 	    __FILE__, __LINE__); reg = 0);
   2994 
   2995 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   2996 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   2997 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   2998 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   2999 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3000 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3001 		rc = ENODEV;
   3002 		goto bnx_blockinit_exit;
   3003 	}
   3004 
   3005 	/* Check if any management firmware is running. */
   3006 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3007 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3008 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3009 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3010 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3011 	}
   3012 
   3013 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3014 	    BNX_DEV_INFO_BC_REV);
   3015 
   3016 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3017 
   3018 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3019 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3020 
   3021 	/* Enable link state change interrupt generation. */
   3022 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3023 
   3024 	/* Enable all remaining blocks in the MAC. */
   3025 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3026 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3027 	DELAY(20);
   3028 
   3029 bnx_blockinit_exit:
   3030 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3031 
   3032 	return (rc);
   3033 }
   3034 
   3035 static int
   3036 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
   3037     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3038 {
   3039 	bus_dmamap_t		map;
   3040 	struct rx_bd		*rxbd;
   3041 	u_int32_t		addr;
   3042 	int i;
   3043 #ifdef BNX_DEBUG
   3044 	u_int16_t debug_chain_prod =	*chain_prod;
   3045 #endif
   3046 	u_int16_t first_chain_prod;
   3047 
   3048 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3049 
   3050 	/* Map the mbuf cluster into device memory. */
   3051 	map = sc->rx_mbuf_map[*chain_prod];
   3052 	first_chain_prod = *chain_prod;
   3053 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3054 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3055 		    __FILE__, __LINE__);
   3056 
   3057 		m_freem(m_new);
   3058 
   3059 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3060 
   3061 		return ENOBUFS;
   3062 	}
   3063 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3064 	    BUS_DMASYNC_PREREAD);
   3065 
   3066 	/* Watch for overflow. */
   3067 	DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
   3068 	    aprint_error_dev(sc->bnx_dev,
   3069 		"Too many free rx_bd (0x%04X > 0x%04X)!\n",
   3070 		sc->free_rx_bd, (u_int16_t)USABLE_RX_BD));
   3071 
   3072 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3073 	    sc->rx_low_watermark = sc->free_rx_bd);
   3074 
   3075 	/*
   3076 	 * Setup the rx_bd for the first segment
   3077 	 */
   3078 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3079 
   3080 	addr = (u_int32_t)(map->dm_segs[0].ds_addr);
   3081 	rxbd->rx_bd_haddr_lo = htole32(addr);
   3082 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
   3083 	rxbd->rx_bd_haddr_hi = htole32(addr);
   3084 	rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
   3085 	rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
   3086 	*prod_bseq += map->dm_segs[0].ds_len;
   3087 	bus_dmamap_sync(sc->bnx_dmatag,
   3088 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3089 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3090 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3091 
   3092 	for (i = 1; i < map->dm_nsegs; i++) {
   3093 		*prod = NEXT_RX_BD(*prod);
   3094 		*chain_prod = RX_CHAIN_IDX(*prod);
   3095 
   3096 		rxbd =
   3097 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3098 
   3099 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   3100 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3101 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   3102 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3103 		rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
   3104 		rxbd->rx_bd_flags = 0;
   3105 		*prod_bseq += map->dm_segs[i].ds_len;
   3106 		bus_dmamap_sync(sc->bnx_dmatag,
   3107 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3108 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3109 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3110 	}
   3111 
   3112 	rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
   3113 	bus_dmamap_sync(sc->bnx_dmatag,
   3114 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3115 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3116 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3117 
   3118 	/*
   3119 	 * Save the mbuf, ajust the map pointer (swap map for first and
   3120 	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
   3121 	 * and update counter.
   3122 	 */
   3123 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3124 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3125 	sc->rx_mbuf_map[*chain_prod] = map;
   3126 	sc->free_rx_bd -= map->dm_nsegs;
   3127 
   3128 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3129 	    map->dm_nsegs));
   3130 	*prod = NEXT_RX_BD(*prod);
   3131 	*chain_prod = RX_CHAIN_IDX(*prod);
   3132 
   3133 	return 0;
   3134 }
   3135 
   3136 /****************************************************************************/
   3137 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3138 /*                                                                          */
   3139 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3140 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3141 /* necessary.                                                               */
   3142 /*                                                                          */
   3143 /* Returns:                                                                 */
   3144 /*   0 for success, positive value for failure.                             */
   3145 /****************************************************************************/
   3146 int
   3147 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
   3148     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3149 {
   3150 	struct mbuf 		*m_new = NULL;
   3151 	int			rc = 0;
   3152 	u_int16_t min_free_bd;
   3153 
   3154 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3155 	    __func__);
   3156 
   3157 	/* Make sure the inputs are valid. */
   3158 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3159 	    aprint_error_dev(sc->bnx_dev,
   3160 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3161 		*chain_prod, (u_int16_t)MAX_RX_BD));
   3162 
   3163 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3164 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3165 	    *prod_bseq);
   3166 
   3167 	/* try to get in as many mbufs as possible */
   3168 	if (sc->mbuf_alloc_size == MCLBYTES)
   3169 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3170 	else
   3171 		min_free_bd = (BNX_MAX_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3172 	while (sc->free_rx_bd >= min_free_bd) {
   3173 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3174 		    BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
   3175 
   3176 			sc->mbuf_alloc_failed++;
   3177 			rc = ENOBUFS;
   3178 			goto bnx_get_buf_exit);
   3179 
   3180 		/* This is a new mbuf allocation. */
   3181 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3182 		if (m_new == NULL) {
   3183 			DBPRINT(sc, BNX_WARN,
   3184 			    "%s(%d): RX mbuf header allocation failed!\n",
   3185 			    __FILE__, __LINE__);
   3186 
   3187 			DBRUNIF(1, sc->mbuf_alloc_failed++);
   3188 
   3189 			rc = ENOBUFS;
   3190 			goto bnx_get_buf_exit;
   3191 		}
   3192 
   3193 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3194 		if (sc->mbuf_alloc_size == MCLBYTES)
   3195 			MCLGET(m_new, M_DONTWAIT);
   3196 		else
   3197 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3198 			    M_DONTWAIT);
   3199 		if (!(m_new->m_flags & M_EXT)) {
   3200 			DBPRINT(sc, BNX_WARN,
   3201 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3202 			    __FILE__, __LINE__);
   3203 
   3204 			m_freem(m_new);
   3205 
   3206 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3207 			DBRUNIF(1, sc->mbuf_alloc_failed++);
   3208 
   3209 			rc = ENOBUFS;
   3210 			goto bnx_get_buf_exit;
   3211 		}
   3212 
   3213 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3214 		if (rc != 0)
   3215 			goto bnx_get_buf_exit;
   3216 	}
   3217 
   3218 bnx_get_buf_exit:
   3219 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3220 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3221 	    *chain_prod, *prod_bseq);
   3222 
   3223 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3224 	    __func__);
   3225 
   3226 	return(rc);
   3227 }
   3228 
   3229 /****************************************************************************/
   3230 /* Allocate memory and initialize the TX data structures.                   */
   3231 /*                                                                          */
   3232 /* Returns:                                                                 */
   3233 /*   0 for success, positive value for failure.                             */
   3234 /****************************************************************************/
   3235 int
   3236 bnx_init_tx_chain(struct bnx_softc *sc)
   3237 {
   3238 	struct tx_bd		*txbd;
   3239 	u_int32_t		val, addr;
   3240 	int			i, rc = 0;
   3241 
   3242 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3243 
   3244 	/* Set the initial TX producer/consumer indices. */
   3245 	sc->tx_prod = 0;
   3246 	sc->tx_cons = 0;
   3247 	sc->tx_prod_bseq = 0;
   3248 	sc->used_tx_bd = 0;
   3249 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   3250 
   3251 	/*
   3252 	 * The NetXtreme II supports a linked-list structure called
   3253 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   3254 	 * consists of a series of 1 or more chain pages, each of which
   3255 	 * consists of a fixed number of BD entries.
   3256 	 * The last BD entry on each page is a pointer to the next page
   3257 	 * in the chain, and the last pointer in the BD chain
   3258 	 * points back to the beginning of the chain.
   3259 	 */
   3260 
   3261 	/* Set the TX next pointer chain entries. */
   3262 	for (i = 0; i < TX_PAGES; i++) {
   3263 		int j;
   3264 
   3265 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   3266 
   3267 		/* Check if we've reached the last page. */
   3268 		if (i == (TX_PAGES - 1))
   3269 			j = 0;
   3270 		else
   3271 			j = i + 1;
   3272 
   3273 		addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
   3274 		txbd->tx_bd_haddr_lo = htole32(addr);
   3275 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
   3276 		txbd->tx_bd_haddr_hi = htole32(addr);
   3277 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3278 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3279 	}
   3280 
   3281 	/*
   3282 	 * Initialize the context ID for an L2 TX chain.
   3283 	 */
   3284 	val = BNX_L2CTX_TYPE_TYPE_L2;
   3285 	val |= BNX_L2CTX_TYPE_SIZE_L2;
   3286 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   3287 
   3288 	val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3289 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   3290 
   3291 	/* Point the hardware to the first page in the chain. */
   3292 	val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3293 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   3294 	val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3295 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   3296 
   3297 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
   3298 
   3299 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3300 
   3301 	return(rc);
   3302 }
   3303 
   3304 /****************************************************************************/
   3305 /* Free memory and clear the TX data structures.                            */
   3306 /*                                                                          */
   3307 /* Returns:                                                                 */
   3308 /*   Nothing.                                                               */
   3309 /****************************************************************************/
   3310 void
   3311 bnx_free_tx_chain(struct bnx_softc *sc)
   3312 {
   3313 	int			i;
   3314 
   3315 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3316 
   3317 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   3318 	for (i = 0; i < TOTAL_TX_BD; i++) {
   3319 		if (sc->tx_mbuf_ptr[i] != NULL) {
   3320 			if (sc->tx_mbuf_map != NULL)
   3321 				bus_dmamap_sync(sc->bnx_dmatag,
   3322 				    sc->tx_mbuf_map[i], 0,
   3323 				    sc->tx_mbuf_map[i]->dm_mapsize,
   3324 				    BUS_DMASYNC_POSTWRITE);
   3325 			m_freem(sc->tx_mbuf_ptr[i]);
   3326 			sc->tx_mbuf_ptr[i] = NULL;
   3327 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   3328 		}
   3329 	}
   3330 
   3331 	/* Clear each TX chain page. */
   3332 	for (i = 0; i < TX_PAGES; i++) {
   3333 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   3334 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3335 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3336 	}
   3337 
   3338 	/* Check if we lost any mbufs in the process. */
   3339 	DBRUNIF((sc->tx_mbuf_alloc),
   3340 	    aprint_error_dev(sc->bnx_dev,
   3341 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   3342 		sc->tx_mbuf_alloc));
   3343 
   3344 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3345 }
   3346 
   3347 /****************************************************************************/
   3348 /* Allocate memory and initialize the RX data structures.                   */
   3349 /*                                                                          */
   3350 /* Returns:                                                                 */
   3351 /*   0 for success, positive value for failure.                             */
   3352 /****************************************************************************/
   3353 int
   3354 bnx_init_rx_chain(struct bnx_softc *sc)
   3355 {
   3356 	struct rx_bd		*rxbd;
   3357 	int			i, rc = 0;
   3358 	u_int16_t		prod, chain_prod;
   3359 	u_int32_t		prod_bseq, val, addr;
   3360 
   3361 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3362 
   3363 	/* Initialize the RX producer and consumer indices. */
   3364 	sc->rx_prod = 0;
   3365 	sc->rx_cons = 0;
   3366 	sc->rx_prod_bseq = 0;
   3367 	sc->free_rx_bd = BNX_RX_SLACK_SPACE;
   3368 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   3369 
   3370 	/* Initialize the RX next pointer chain entries. */
   3371 	for (i = 0; i < RX_PAGES; i++) {
   3372 		int j;
   3373 
   3374 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   3375 
   3376 		/* Check if we've reached the last page. */
   3377 		if (i == (RX_PAGES - 1))
   3378 			j = 0;
   3379 		else
   3380 			j = i + 1;
   3381 
   3382 		/* Setup the chain page pointers. */
   3383 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
   3384 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3385 		addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
   3386 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3387 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   3388 		    0, BNX_RX_CHAIN_PAGE_SZ,
   3389 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3390 	}
   3391 
   3392 	/* Initialize the context ID for an L2 RX chain. */
   3393 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
   3394 	val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
   3395 	val |= 0x02 << 8;
   3396 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   3397 
   3398 	/* Point the hardware to the first page in the chain. */
   3399 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
   3400 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   3401 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
   3402 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   3403 
   3404 	/* Allocate mbuf clusters for the rx_bd chain. */
   3405 	prod = prod_bseq = 0;
   3406 	chain_prod = RX_CHAIN_IDX(prod);
   3407 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   3408 		BNX_PRINTF(sc,
   3409 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   3410 	}
   3411 
   3412 	/* Save the RX chain producer index. */
   3413 	sc->rx_prod = prod;
   3414 	sc->rx_prod_bseq = prod_bseq;
   3415 
   3416 	for (i = 0; i < RX_PAGES; i++)
   3417 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   3418 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3419 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3420 
   3421 	/* Tell the chip about the waiting rx_bd's. */
   3422 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   3423 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   3424 
   3425 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   3426 
   3427 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3428 
   3429 	return(rc);
   3430 }
   3431 
   3432 /****************************************************************************/
   3433 /* Free memory and clear the RX data structures.                            */
   3434 /*                                                                          */
   3435 /* Returns:                                                                 */
   3436 /*   Nothing.                                                               */
   3437 /****************************************************************************/
   3438 void
   3439 bnx_free_rx_chain(struct bnx_softc *sc)
   3440 {
   3441 	int			i;
   3442 
   3443 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3444 
   3445 	/* Free any mbufs still in the RX mbuf chain. */
   3446 	for (i = 0; i < TOTAL_RX_BD; i++) {
   3447 		if (sc->rx_mbuf_ptr[i] != NULL) {
   3448 			if (sc->rx_mbuf_map[i] != NULL)
   3449 				bus_dmamap_sync(sc->bnx_dmatag,
   3450 				    sc->rx_mbuf_map[i],	0,
   3451 				    sc->rx_mbuf_map[i]->dm_mapsize,
   3452 				    BUS_DMASYNC_POSTREAD);
   3453 			m_freem(sc->rx_mbuf_ptr[i]);
   3454 			sc->rx_mbuf_ptr[i] = NULL;
   3455 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3456 		}
   3457 	}
   3458 
   3459 	/* Clear each RX chain page. */
   3460 	for (i = 0; i < RX_PAGES; i++)
   3461 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   3462 
   3463 	/* Check if we lost any mbufs in the process. */
   3464 	DBRUNIF((sc->rx_mbuf_alloc),
   3465 	    aprint_error_dev(sc->bnx_dev,
   3466 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   3467 		sc->rx_mbuf_alloc));
   3468 
   3469 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3470 }
   3471 
   3472 /****************************************************************************/
   3473 /* Handles PHY generated interrupt events.                                  */
   3474 /*                                                                          */
   3475 /* Returns:                                                                 */
   3476 /*   Nothing.                                                               */
   3477 /****************************************************************************/
   3478 void
   3479 bnx_phy_intr(struct bnx_softc *sc)
   3480 {
   3481 	u_int32_t		new_link_state, old_link_state;
   3482 
   3483 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3484 	    BUS_DMASYNC_POSTREAD);
   3485 	new_link_state = sc->status_block->status_attn_bits &
   3486 	    STATUS_ATTN_BITS_LINK_STATE;
   3487 	old_link_state = sc->status_block->status_attn_bits_ack &
   3488 	    STATUS_ATTN_BITS_LINK_STATE;
   3489 
   3490 	/* Handle any changes if the link state has changed. */
   3491 	if (new_link_state != old_link_state) {
   3492 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   3493 
   3494 		callout_stop(&sc->bnx_timeout);
   3495 		bnx_tick(sc);
   3496 
   3497 		/* Update the status_attn_bits_ack field in the status block. */
   3498 		if (new_link_state) {
   3499 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   3500 			    STATUS_ATTN_BITS_LINK_STATE);
   3501 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   3502 		} else {
   3503 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   3504 			    STATUS_ATTN_BITS_LINK_STATE);
   3505 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   3506 		}
   3507 	}
   3508 
   3509 	/* Acknowledge the link change interrupt. */
   3510 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   3511 }
   3512 
   3513 /****************************************************************************/
   3514 /* Handles received frame interrupt events.                                 */
   3515 /*                                                                          */
   3516 /* Returns:                                                                 */
   3517 /*   Nothing.                                                               */
   3518 /****************************************************************************/
   3519 void
   3520 bnx_rx_intr(struct bnx_softc *sc)
   3521 {
   3522 	struct status_block	*sblk = sc->status_block;
   3523 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   3524 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
   3525 	u_int16_t		sw_prod, sw_chain_prod;
   3526 	u_int32_t		sw_prod_bseq;
   3527 	struct l2_fhdr		*l2fhdr;
   3528 	int			i;
   3529 
   3530 	DBRUNIF(1, sc->rx_interrupts++);
   3531 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3532 	    BUS_DMASYNC_POSTREAD);
   3533 
   3534 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   3535 	for (i = 0; i < RX_PAGES; i++)
   3536 		bus_dmamap_sync(sc->bnx_dmatag,
   3537 		    sc->rx_bd_chain_map[i], 0,
   3538 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3539 		    BUS_DMASYNC_POSTWRITE);
   3540 
   3541 	/* Get the hardware's view of the RX consumer index. */
   3542 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   3543 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   3544 		hw_cons++;
   3545 
   3546 	/* Get working copies of the driver's view of the RX indices. */
   3547 	sw_cons = sc->rx_cons;
   3548 	sw_prod = sc->rx_prod;
   3549 	sw_prod_bseq = sc->rx_prod_bseq;
   3550 
   3551 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   3552 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   3553 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   3554 
   3555 	/* Prevent speculative reads from getting ahead of the status block. */
   3556 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3557 	    BUS_SPACE_BARRIER_READ);
   3558 
   3559 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3560 	    sc->rx_low_watermark = sc->free_rx_bd);
   3561 
   3562 	/*
   3563 	 * Scan through the receive chain as long
   3564 	 * as there is work to do.
   3565 	 */
   3566 	while (sw_cons != hw_cons) {
   3567 		struct mbuf *m;
   3568 		struct rx_bd *rxbd;
   3569 		unsigned int len;
   3570 		u_int32_t status;
   3571 
   3572 		/* Convert the producer/consumer indices to an actual
   3573 		 * rx_bd index.
   3574 		 */
   3575 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   3576 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   3577 
   3578 		/* Get the used rx_bd. */
   3579 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   3580 		sc->free_rx_bd++;
   3581 
   3582 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   3583 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   3584 
   3585 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   3586 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   3587 #ifdef DIAGNOSTIC
   3588 			/* Validate that this is the last rx_bd. */
   3589 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   3590 			    printf("%s: Unexpected mbuf found in "
   3591 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   3592 			        sw_chain_cons);
   3593 			}
   3594 #endif
   3595 
   3596 			/* DRC - ToDo: If the received packet is small, say less
   3597 			 *             than 128 bytes, allocate a new mbuf here,
   3598 			 *             copy the data to that mbuf, and recycle
   3599 			 *             the mapped jumbo frame.
   3600 			 */
   3601 
   3602 			/* Unmap the mbuf from DMA space. */
   3603 #ifdef DIAGNOSTIC
   3604 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   3605 				printf("invalid map sw_cons 0x%x "
   3606 				"sw_prod 0x%x "
   3607 				"sw_chain_cons 0x%x "
   3608 				"sw_chain_prod 0x%x "
   3609 				"hw_cons 0x%x "
   3610 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   3611 				"TOTAL_RX_BD 0x%x\n",
   3612 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   3613 				hw_cons,
   3614 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   3615 			}
   3616 #endif
   3617 			bus_dmamap_sync(sc->bnx_dmatag,
   3618 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   3619 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   3620 			    BUS_DMASYNC_POSTREAD);
   3621 			bus_dmamap_unload(sc->bnx_dmatag,
   3622 			    sc->rx_mbuf_map[sw_chain_cons]);
   3623 
   3624 			/* Remove the mbuf from the driver's chain. */
   3625 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   3626 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   3627 
   3628 			/*
   3629 			 * Frames received on the NetXteme II are prepended
   3630 			 * with the l2_fhdr structure which provides status
   3631 			 * information about the received frame (including
   3632 			 * VLAN tags and checksum info) and are also
   3633 			 * automatically adjusted to align the IP header
   3634 			 * (i.e. two null bytes are inserted before the
   3635 			 * Ethernet header).
   3636 			 */
   3637 			l2fhdr = mtod(m, struct l2_fhdr *);
   3638 
   3639 			len    = l2fhdr->l2_fhdr_pkt_len;
   3640 			status = l2fhdr->l2_fhdr_status;
   3641 
   3642 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   3643 			    aprint_error("Simulating l2_fhdr status error.\n");
   3644 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   3645 
   3646 			/* Watch for unusual sized frames. */
   3647 			DBRUNIF(((len < BNX_MIN_MTU) ||
   3648 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   3649 			    aprint_error_dev(sc->bnx_dev,
   3650 			        "Unusual frame size found. "
   3651 				"Min(%d), Actual(%d), Max(%d)\n",
   3652 				(int)BNX_MIN_MTU, len,
   3653 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   3654 
   3655 			bnx_dump_mbuf(sc, m);
   3656 			bnx_breakpoint(sc));
   3657 
   3658 			len -= ETHER_CRC_LEN;
   3659 
   3660 			/* Check the received frame for errors. */
   3661 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   3662 			    L2_FHDR_ERRORS_PHY_DECODE |
   3663 			    L2_FHDR_ERRORS_ALIGNMENT |
   3664 			    L2_FHDR_ERRORS_TOO_SHORT |
   3665 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   3666 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   3667 			    len >
   3668 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   3669 				ifp->if_ierrors++;
   3670 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   3671 
   3672 				/* Reuse the mbuf for a new frame. */
   3673 				if (bnx_add_buf(sc, m, &sw_prod,
   3674 				    &sw_chain_prod, &sw_prod_bseq)) {
   3675 					DBRUNIF(1, bnx_breakpoint(sc));
   3676 					panic("%s: Can't reuse RX mbuf!\n",
   3677 					    device_xname(sc->bnx_dev));
   3678 				}
   3679 				continue;
   3680 			}
   3681 
   3682 			/*
   3683 			 * Get a new mbuf for the rx_bd.   If no new
   3684 			 * mbufs are available then reuse the current mbuf,
   3685 			 * log an ierror on the interface, and generate
   3686 			 * an error in the system log.
   3687 			 */
   3688 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   3689 			    &sw_prod_bseq)) {
   3690 				DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
   3691 					"new mbuf, incoming frame dropped!\n"));
   3692 
   3693 				ifp->if_ierrors++;
   3694 
   3695 				/* Try and reuse the exisitng mbuf. */
   3696 				if (bnx_add_buf(sc, m, &sw_prod,
   3697 				    &sw_chain_prod, &sw_prod_bseq)) {
   3698 					DBRUNIF(1, bnx_breakpoint(sc));
   3699 					panic("%s: Double mbuf allocation "
   3700 					    "failure!",
   3701 					    device_xname(sc->bnx_dev));
   3702 				}
   3703 				continue;
   3704 			}
   3705 
   3706 			/* Skip over the l2_fhdr when passing the data up
   3707 			 * the stack.
   3708 			 */
   3709 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   3710 
   3711 			/* Adjust the pckt length to match the received data. */
   3712 			m->m_pkthdr.len = m->m_len = len;
   3713 
   3714 			/* Send the packet to the appropriate interface. */
   3715 			m->m_pkthdr.rcvif = ifp;
   3716 
   3717 			DBRUN(BNX_VERBOSE_RECV,
   3718 			    struct ether_header *eh;
   3719 			    eh = mtod(m, struct ether_header *);
   3720 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   3721 			    __func__, ether_sprintf(eh->ether_dhost),
   3722 			    ether_sprintf(eh->ether_shost),
   3723 			    htons(eh->ether_type)));
   3724 
   3725 			/* Validate the checksum. */
   3726 
   3727 			/* Check for an IP datagram. */
   3728 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   3729 				/* Check if the IP checksum is valid. */
   3730 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   3731 				    == 0)
   3732 					m->m_pkthdr.csum_flags |=
   3733 					    M_CSUM_IPv4;
   3734 #ifdef BNX_DEBUG
   3735 				else
   3736 					DBPRINT(sc, BNX_WARN_SEND,
   3737 					    "%s(): Invalid IP checksum "
   3738 					        "= 0x%04X!\n",
   3739 						__func__,
   3740 						l2fhdr->l2_fhdr_ip_xsum
   3741 						);
   3742 #endif
   3743 			}
   3744 
   3745 			/* Check for a valid TCP/UDP frame. */
   3746 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   3747 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   3748 				/* Check for a good TCP/UDP checksum. */
   3749 				if ((status &
   3750 				    (L2_FHDR_ERRORS_TCP_XSUM |
   3751 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   3752 					m->m_pkthdr.csum_flags |=
   3753 					    M_CSUM_TCPv4 |
   3754 					    M_CSUM_UDPv4;
   3755 				} else {
   3756 					DBPRINT(sc, BNX_WARN_SEND,
   3757 					    "%s(): Invalid TCP/UDP "
   3758 					    "checksum = 0x%04X!\n",
   3759 					    __func__,
   3760 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   3761 				}
   3762 			}
   3763 
   3764 			/*
   3765 			 * If we received a packet with a vlan tag,
   3766 			 * attach that information to the packet.
   3767 			 */
   3768 			if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
   3769 #if 0
   3770 				struct ether_vlan_header vh;
   3771 
   3772 				DBPRINT(sc, BNX_VERBOSE_SEND,
   3773 				    "%s(): VLAN tag = 0x%04X\n",
   3774 				    __func__,
   3775 				    l2fhdr->l2_fhdr_vlan_tag);
   3776 
   3777 				if (m->m_pkthdr.len < ETHER_HDR_LEN) {
   3778 					m_freem(m);
   3779 					continue;
   3780 				}
   3781 				m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh);
   3782 				vh.evl_proto = vh.evl_encap_proto;
   3783 				vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag;
   3784 				vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
   3785 				m_adj(m, ETHER_HDR_LEN);
   3786 				if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
   3787 					continue;
   3788 				m->m_pkthdr.len += sizeof(vh);
   3789 				if (m->m_len < sizeof(vh) &&
   3790 				    (m = m_pullup(m, sizeof(vh))) == NULL)
   3791 					goto bnx_rx_int_next_rx;
   3792 				m_copyback(m, 0, sizeof(vh), &vh);
   3793 #else
   3794 				VLAN_INPUT_TAG(ifp, m,
   3795 				    l2fhdr->l2_fhdr_vlan_tag,
   3796 				    continue);
   3797 #endif
   3798 			}
   3799 
   3800 #if NBPFILTER > 0
   3801 			/*
   3802 			 * Handle BPF listeners. Let the BPF
   3803 			 * user see the packet.
   3804 			 */
   3805 			if (ifp->if_bpf)
   3806 				bpf_mtap(ifp->if_bpf, m);
   3807 #endif
   3808 
   3809 			/* Pass the mbuf off to the upper layers. */
   3810 			ifp->if_ipackets++;
   3811 			DBPRINT(sc, BNX_VERBOSE_RECV,
   3812 			    "%s(): Passing received frame up.\n", __func__);
   3813 			(*ifp->if_input)(ifp, m);
   3814 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3815 
   3816 		}
   3817 
   3818 		sw_cons = NEXT_RX_BD(sw_cons);
   3819 
   3820 		/* Refresh hw_cons to see if there's new work */
   3821 		if (sw_cons == hw_cons) {
   3822 			hw_cons = sc->hw_rx_cons =
   3823 			    sblk->status_rx_quick_consumer_index0;
   3824 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   3825 			    USABLE_RX_BD_PER_PAGE)
   3826 				hw_cons++;
   3827 		}
   3828 
   3829 		/* Prevent speculative reads from getting ahead of
   3830 		 * the status block.
   3831 		 */
   3832 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3833 		    BUS_SPACE_BARRIER_READ);
   3834 	}
   3835 
   3836 	for (i = 0; i < RX_PAGES; i++)
   3837 		bus_dmamap_sync(sc->bnx_dmatag,
   3838 		    sc->rx_bd_chain_map[i], 0,
   3839 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3840 		    BUS_DMASYNC_PREWRITE);
   3841 
   3842 	sc->rx_cons = sw_cons;
   3843 	sc->rx_prod = sw_prod;
   3844 	sc->rx_prod_bseq = sw_prod_bseq;
   3845 
   3846 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   3847 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   3848 
   3849 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   3850 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   3851 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   3852 }
   3853 
   3854 /****************************************************************************/
   3855 /* Handles transmit completion interrupt events.                            */
   3856 /*                                                                          */
   3857 /* Returns:                                                                 */
   3858 /*   Nothing.                                                               */
   3859 /****************************************************************************/
   3860 void
   3861 bnx_tx_intr(struct bnx_softc *sc)
   3862 {
   3863 	struct status_block	*sblk = sc->status_block;
   3864 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   3865 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   3866 
   3867 	DBRUNIF(1, sc->tx_interrupts++);
   3868 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3869 	    BUS_DMASYNC_POSTREAD);
   3870 
   3871 	/* Get the hardware's view of the TX consumer index. */
   3872 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   3873 
   3874 	/* Skip to the next entry if this is a chain page pointer. */
   3875 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   3876 		hw_tx_cons++;
   3877 
   3878 	sw_tx_cons = sc->tx_cons;
   3879 
   3880 	/* Prevent speculative reads from getting ahead of the status block. */
   3881 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3882 	    BUS_SPACE_BARRIER_READ);
   3883 
   3884 	/* Cycle through any completed TX chain page entries. */
   3885 	while (sw_tx_cons != hw_tx_cons) {
   3886 #ifdef BNX_DEBUG
   3887 		struct tx_bd *txbd = NULL;
   3888 #endif
   3889 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   3890 
   3891 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   3892 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   3893 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   3894 
   3895 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   3896 		    aprint_error_dev(sc->bnx_dev,
   3897 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   3898 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   3899 
   3900 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   3901 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   3902 
   3903 		DBRUNIF((txbd == NULL),
   3904 		    aprint_error_dev(sc->bnx_dev,
   3905 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   3906 		    bnx_breakpoint(sc));
   3907 
   3908 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   3909 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   3910 
   3911 		/*
   3912 		 * Free the associated mbuf. Remember
   3913 		 * that only the last tx_bd of a packet
   3914 		 * has an mbuf pointer and DMA map.
   3915 		 */
   3916 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
   3917 			/* Validate that this is the last tx_bd. */
   3918 			DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
   3919 			    TX_BD_FLAGS_END)),
   3920 			    aprint_error_dev(sc->bnx_dev,
   3921 			        "tx_bd END flag not set but txmbuf == NULL!\n");
   3922 			    bnx_breakpoint(sc));
   3923 
   3924 			DBRUN(BNX_INFO_SEND,
   3925 			    aprint_debug("%s: Unloading map/freeing mbuf "
   3926 			    "from tx_bd[0x%04X]\n",
   3927 			    __func__, sw_tx_chain_cons));
   3928 
   3929 			/* Unmap the mbuf. */
   3930 			bus_dmamap_unload(sc->bnx_dmatag,
   3931 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
   3932 
   3933 			/* Free the mbuf. */
   3934 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
   3935 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
   3936 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   3937 
   3938 			ifp->if_opackets++;
   3939 		}
   3940 
   3941 		sc->used_tx_bd--;
   3942 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   3943 
   3944 		/* Refresh hw_cons to see if there's new work. */
   3945 		hw_tx_cons = sc->hw_tx_cons =
   3946 		    sblk->status_tx_quick_consumer_index0;
   3947 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   3948 		    USABLE_TX_BD_PER_PAGE)
   3949 			hw_tx_cons++;
   3950 
   3951 		/* Prevent speculative reads from getting ahead of
   3952 		 * the status block.
   3953 		 */
   3954 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3955 		    BUS_SPACE_BARRIER_READ);
   3956 	}
   3957 
   3958 	/* Clear the TX timeout timer. */
   3959 	ifp->if_timer = 0;
   3960 
   3961 	/* Clear the tx hardware queue full flag. */
   3962 	if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
   3963 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   3964 		    aprint_debug_dev(sc->bnx_dev,
   3965 		        "TX chain is open for business! Used tx_bd = %d\n",
   3966 			sc->used_tx_bd));
   3967 		ifp->if_flags &= ~IFF_OACTIVE;
   3968 	}
   3969 
   3970 	sc->tx_cons = sw_tx_cons;
   3971 }
   3972 
   3973 /****************************************************************************/
   3974 /* Disables interrupt generation.                                           */
   3975 /*                                                                          */
   3976 /* Returns:                                                                 */
   3977 /*   Nothing.                                                               */
   3978 /****************************************************************************/
   3979 void
   3980 bnx_disable_intr(struct bnx_softc *sc)
   3981 {
   3982 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3983 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   3984 }
   3985 
   3986 /****************************************************************************/
   3987 /* Enables interrupt generation.                                            */
   3988 /*                                                                          */
   3989 /* Returns:                                                                 */
   3990 /*   Nothing.                                                               */
   3991 /****************************************************************************/
   3992 void
   3993 bnx_enable_intr(struct bnx_softc *sc)
   3994 {
   3995 	u_int32_t		val;
   3996 
   3997 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   3998 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   3999 
   4000 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4001 	    sc->last_status_idx);
   4002 
   4003 	val = REG_RD(sc, BNX_HC_COMMAND);
   4004 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4005 }
   4006 
   4007 /****************************************************************************/
   4008 /* Handles controller initialization.                                       */
   4009 /*                                                                          */
   4010 /****************************************************************************/
   4011 int
   4012 bnx_init(struct ifnet *ifp)
   4013 {
   4014 	struct bnx_softc	*sc = ifp->if_softc;
   4015 	u_int32_t		ether_mtu;
   4016 	int			s, error = 0;
   4017 
   4018 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4019 
   4020 	s = splnet();
   4021 
   4022 	bnx_stop(ifp, 0);
   4023 
   4024 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4025 		aprint_error("bnx: Controller reset failed!\n");
   4026 		goto bnx_init_exit;
   4027 	}
   4028 
   4029 	if ((error = bnx_chipinit(sc)) != 0) {
   4030 		aprint_error("bnx: Controller initialization failed!\n");
   4031 		goto bnx_init_exit;
   4032 	}
   4033 
   4034 	if ((error = bnx_blockinit(sc)) != 0) {
   4035 		aprint_error("bnx: Block initialization failed!\n");
   4036 		goto bnx_init_exit;
   4037 	}
   4038 
   4039 	/* Calculate and program the Ethernet MRU size. */
   4040 	if (ifp->if_mtu <= ETHERMTU) {
   4041 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4042 		sc->mbuf_alloc_size = MCLBYTES;
   4043 	} else {
   4044 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4045 		sc->mbuf_alloc_size = BNX_MAX_MRU;
   4046 	}
   4047 
   4048 
   4049 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4050 	    __func__, ether_mtu);
   4051 
   4052 	/*
   4053 	 * Program the MRU and enable Jumbo frame
   4054 	 * support.
   4055 	 */
   4056 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4057 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4058 
   4059 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4060 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4061 
   4062 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4063 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4064 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4065 
   4066 	/* Program appropriate promiscuous/multicast filtering. */
   4067 	bnx_set_rx_mode(sc);
   4068 
   4069 	/* Init RX buffer descriptor chain. */
   4070 	bnx_init_rx_chain(sc);
   4071 
   4072 	/* Init TX buffer descriptor chain. */
   4073 	bnx_init_tx_chain(sc);
   4074 
   4075 	/* Enable host interrupts. */
   4076 	bnx_enable_intr(sc);
   4077 
   4078 	if ((error = ether_mediachange(ifp)) != 0)
   4079 		goto bnx_init_exit;
   4080 
   4081 	ifp->if_flags |= IFF_RUNNING;
   4082 	ifp->if_flags &= ~IFF_OACTIVE;
   4083 
   4084 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4085 
   4086 bnx_init_exit:
   4087 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4088 
   4089 	splx(s);
   4090 
   4091 	return(error);
   4092 }
   4093 
   4094 /****************************************************************************/
   4095 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4096 /* memory visible to the controller.                                        */
   4097 /*                                                                          */
   4098 /* Returns:                                                                 */
   4099 /*   0 for success, positive value for failure.                             */
   4100 /****************************************************************************/
   4101 int
   4102 bnx_tx_encap(struct bnx_softc *sc, struct mbuf **m_head)
   4103 {
   4104 	bus_dmamap_t		map;
   4105 	struct tx_bd		*txbd = NULL;
   4106 	struct mbuf		*m0;
   4107 	u_int16_t		vlan_tag = 0, flags = 0;
   4108 	u_int16_t		chain_prod, prod;
   4109 #ifdef BNX_DEBUG
   4110 	u_int16_t		debug_prod;
   4111 #endif
   4112 	u_int32_t		addr, prod_bseq;
   4113 	int			i, error, rc = 0;
   4114 	struct m_tag		*mtag;
   4115 
   4116 	m0 = *m_head;
   4117 
   4118 	/* Transfer any checksum offload flags to the bd. */
   4119 	if (m0->m_pkthdr.csum_flags) {
   4120 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4121 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4122 		if (m0->m_pkthdr.csum_flags &
   4123 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4124 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4125 	}
   4126 
   4127 	/* Transfer any VLAN tags to the bd. */
   4128 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m0);
   4129 	if (mtag != NULL) {
   4130 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4131 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4132 	}
   4133 
   4134 	/* Map the mbuf into DMAable memory. */
   4135 	prod = sc->tx_prod;
   4136 	chain_prod = TX_CHAIN_IDX(prod);
   4137 	map = sc->tx_mbuf_map[chain_prod];
   4138 
   4139 	/* Map the mbuf into our DMA address space. */
   4140 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m0, BUS_DMA_NOWAIT);
   4141 	if (error != 0) {
   4142 		aprint_error_dev(sc->bnx_dev,
   4143 		    "Error mapping mbuf into TX chain!\n");
   4144 		m_freem(m0);
   4145 		*m_head = NULL;
   4146 		return (error);
   4147 	}
   4148 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4149 	    BUS_DMASYNC_PREWRITE);
   4150         /*
   4151          * The chip seems to require that at least 16 descriptors be kept
   4152          * empty at all times.  Make sure we honor that.
   4153          * XXX Would it be faster to assume worst case scenario for
   4154          * map->dm_nsegs and do this calculation higher up?
   4155          */
   4156         if (map->dm_nsegs > (USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE)) {
   4157                 bus_dmamap_unload(sc->bnx_dmatag, map);
   4158                 return (ENOBUFS);
   4159         }
   4160 
   4161 	/* prod points to an empty tx_bd at this point. */
   4162 	prod_bseq = sc->tx_prod_bseq;
   4163 #ifdef BNX_DEBUG
   4164 	debug_prod = chain_prod;
   4165 #endif
   4166 	DBPRINT(sc, BNX_INFO_SEND,
   4167 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   4168 		"prod_bseq = 0x%08X\n",
   4169 		__func__, *prod, chain_prod, prod_bseq);
   4170 
   4171 	/*
   4172 	 * Cycle through each mbuf segment that makes up
   4173 	 * the outgoing frame, gathering the mapping info
   4174 	 * for that segment and creating a tx_bd for the
   4175 	 * mbuf.
   4176 	 */
   4177 	for (i = 0; i < map->dm_nsegs ; i++) {
   4178 		chain_prod = TX_CHAIN_IDX(prod);
   4179 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   4180 
   4181 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   4182 		txbd->tx_bd_haddr_lo = htole32(addr);
   4183 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   4184 		txbd->tx_bd_haddr_hi = htole32(addr);
   4185 		txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
   4186 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
   4187 		txbd->tx_bd_flags = htole16(flags);
   4188 		prod_bseq += map->dm_segs[i].ds_len;
   4189 		if (i == 0)
   4190 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
   4191 		prod = NEXT_TX_BD(prod);
   4192 	}
   4193 	/* Set the END flag on the last TX buffer descriptor. */
   4194 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
   4195 
   4196 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
   4197 
   4198 	DBPRINT(sc, BNX_INFO_SEND,
   4199 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   4200 		"prod_bseq = 0x%08X\n",
   4201 		__func__, prod, chain_prod, prod_bseq);
   4202 
   4203 	/*
   4204 	 * Ensure that the mbuf pointer for this
   4205 	 * transmission is placed at the array
   4206 	 * index of the last descriptor in this
   4207 	 * chain.  This is done because a single
   4208 	 * map is used for all segments of the mbuf
   4209 	 * and we don't want to unload the map before
   4210 	 * all of the segments have been freed.
   4211 	 */
   4212 	sc->tx_mbuf_ptr[chain_prod] = m0;
   4213 	sc->used_tx_bd += map->dm_nsegs;
   4214 
   4215 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   4216 	    sc->tx_hi_watermark = sc->used_tx_bd);
   4217 
   4218 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   4219 
   4220 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   4221 	    map_arg.maxsegs));
   4222 
   4223 	/* prod points to the next free tx_bd at this point. */
   4224 	sc->tx_prod = prod;
   4225 	sc->tx_prod_bseq = prod_bseq;
   4226 
   4227 	return (rc);
   4228 }
   4229 
   4230 /****************************************************************************/
   4231 /* Main transmit routine.                                                   */
   4232 /*                                                                          */
   4233 /* Returns:                                                                 */
   4234 /*   Nothing.                                                               */
   4235 /****************************************************************************/
   4236 void
   4237 bnx_start(struct ifnet *ifp)
   4238 {
   4239 	struct bnx_softc	*sc = ifp->if_softc;
   4240 	struct mbuf		*m_head = NULL;
   4241 	int			count = 0;
   4242 	u_int16_t		tx_prod, tx_chain_prod;
   4243 
   4244 	/* If there's no link or the transmit queue is empty then just exit. */
   4245 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   4246 		DBPRINT(sc, BNX_INFO_SEND,
   4247 		    "%s(): output active or device not running.\n", __func__);
   4248 		goto bnx_start_exit;
   4249 	}
   4250 
   4251 	/* prod points to the next free tx_bd. */
   4252 	tx_prod = sc->tx_prod;
   4253 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
   4254 
   4255 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   4256 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
   4257 	    __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   4258 
   4259 	/*
   4260 	 * Keep adding entries while there is space in the ring.  We keep
   4261 	 * BNX_TX_SLACK_SPACE entries unused at all times.
   4262 	 */
   4263 	while (sc->used_tx_bd < USABLE_TX_BD - BNX_TX_SLACK_SPACE) {
   4264 		/* Check for any frames to send. */
   4265 		IFQ_POLL(&ifp->if_snd, m_head);
   4266 		if (m_head == NULL)
   4267 			break;
   4268 
   4269 		/*
   4270 		 * Pack the data into the transmit ring. If we
   4271 		 * don't have room, set the OACTIVE flag to wait
   4272 		 * for the NIC to drain the chain.
   4273 		 */
   4274 		if (bnx_tx_encap(sc, &m_head)) {
   4275 			ifp->if_flags |= IFF_OACTIVE;
   4276 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   4277 			    "business! Total tx_bd used = %d\n",
   4278 			    sc->used_tx_bd);
   4279 			break;
   4280 		}
   4281 
   4282 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4283 		count++;
   4284 
   4285 #if NBPFILTER > 0
   4286 		/* Send a copy of the frame to any BPF listeners. */
   4287 		if (ifp->if_bpf)
   4288 			bpf_mtap(ifp->if_bpf, m_head);
   4289 #endif
   4290 	}
   4291 
   4292 	if (count == 0) {
   4293 		/* no packets were dequeued */
   4294 		DBPRINT(sc, BNX_VERBOSE_SEND,
   4295 		    "%s(): No packets were dequeued\n", __func__);
   4296 		goto bnx_start_exit;
   4297 	}
   4298 
   4299 	/* Update the driver's counters. */
   4300 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   4301 
   4302 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   4303 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
   4304 	    tx_chain_prod, sc->tx_prod_bseq);
   4305 
   4306 	/* Start the transmit. */
   4307 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   4308 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   4309 
   4310 	/* Set the tx timeout. */
   4311 	ifp->if_timer = BNX_TX_TIMEOUT;
   4312 
   4313 bnx_start_exit:
   4314 	return;
   4315 }
   4316 
   4317 /****************************************************************************/
   4318 /* Handles any IOCTL calls from the operating system.                       */
   4319 /*                                                                          */
   4320 /* Returns:                                                                 */
   4321 /*   0 for success, positive value for failure.                             */
   4322 /****************************************************************************/
   4323 int
   4324 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   4325 {
   4326 	struct bnx_softc	*sc = ifp->if_softc;
   4327 	struct ifreq		*ifr = (struct ifreq *) data;
   4328 	struct mii_data		*mii = &sc->bnx_mii;
   4329 	int			s, error = 0;
   4330 
   4331 	s = splnet();
   4332 
   4333 	switch (command) {
   4334 	case SIOCSIFFLAGS:
   4335 		if (ifp->if_flags & IFF_UP) {
   4336 			if ((ifp->if_flags & IFF_RUNNING) &&
   4337 			    ((ifp->if_flags ^ sc->bnx_if_flags) &
   4338 			    (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
   4339 				bnx_set_rx_mode(sc);
   4340 			} else if (!(ifp->if_flags & IFF_RUNNING))
   4341 				bnx_init(ifp);
   4342 
   4343 		} else if (ifp->if_flags & IFF_RUNNING)
   4344 			bnx_stop(ifp, 1);
   4345 
   4346 		sc->bnx_if_flags = ifp->if_flags;
   4347 		break;
   4348 
   4349 	case SIOCSIFMEDIA:
   4350 	case SIOCGIFMEDIA:
   4351 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   4352 		    sc->bnx_phy_flags);
   4353 
   4354 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   4355 		break;
   4356 
   4357 	default:
   4358 		if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
   4359 			break;
   4360 
   4361 		error = 0;
   4362 
   4363 		if (command != SIOCADDMULTI && command && SIOCDELMULTI)
   4364 			;
   4365 		else if (ifp->if_flags & IFF_RUNNING) {
   4366 			/* reload packet filter if running */
   4367 			bnx_set_rx_mode(sc);
   4368 		}
   4369 		break;
   4370 	}
   4371 
   4372 	splx(s);
   4373 
   4374 	return (error);
   4375 }
   4376 
   4377 /****************************************************************************/
   4378 /* Transmit timeout handler.                                                */
   4379 /*                                                                          */
   4380 /* Returns:                                                                 */
   4381 /*   Nothing.                                                               */
   4382 /****************************************************************************/
   4383 void
   4384 bnx_watchdog(struct ifnet *ifp)
   4385 {
   4386 	struct bnx_softc	*sc = ifp->if_softc;
   4387 
   4388 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   4389 	    bnx_dump_status_block(sc));
   4390 
   4391 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   4392 
   4393 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   4394 
   4395 	bnx_init(ifp);
   4396 
   4397 	ifp->if_oerrors++;
   4398 }
   4399 
   4400 /*
   4401  * Interrupt handler.
   4402  */
   4403 /****************************************************************************/
   4404 /* Main interrupt entry point.  Verifies that the controller generated the  */
   4405 /* interrupt and then calls a separate routine for handle the various       */
   4406 /* interrupt causes (PHY, TX, RX).                                          */
   4407 /*                                                                          */
   4408 /* Returns:                                                                 */
   4409 /*   0 for success, positive value for failure.                             */
   4410 /****************************************************************************/
   4411 int
   4412 bnx_intr(void *xsc)
   4413 {
   4414 	struct bnx_softc	*sc;
   4415 	struct ifnet		*ifp;
   4416 	u_int32_t		status_attn_bits;
   4417 	const struct status_block *sblk;
   4418 
   4419 	sc = xsc;
   4420 	if (!device_is_active(sc->bnx_dev))
   4421 		return 0;
   4422 
   4423 	ifp = &sc->bnx_ec.ec_if;
   4424 
   4425 	DBRUNIF(1, sc->interrupts_generated++);
   4426 
   4427 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   4428 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4429 
   4430 	/*
   4431 	 * If the hardware status block index
   4432 	 * matches the last value read by the
   4433 	 * driver and we haven't asserted our
   4434 	 * interrupt then there's nothing to do.
   4435 	 */
   4436 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   4437 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   4438 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   4439 		return (0);
   4440 
   4441 	/* Ack the interrupt and stop others from occuring. */
   4442 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4443 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   4444 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4445 
   4446 	/* Keep processing data as long as there is work to do. */
   4447 	for (;;) {
   4448 		sblk = sc->status_block;
   4449 		status_attn_bits = sblk->status_attn_bits;
   4450 
   4451 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   4452 		    aprint_debug("Simulating unexpected status attention bit set.");
   4453 		    status_attn_bits = status_attn_bits |
   4454 		    STATUS_ATTN_BITS_PARITY_ERROR);
   4455 
   4456 		/* Was it a link change interrupt? */
   4457 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   4458 		    (sblk->status_attn_bits_ack &
   4459 		    STATUS_ATTN_BITS_LINK_STATE))
   4460 			bnx_phy_intr(sc);
   4461 
   4462 		/* If any other attention is asserted then the chip is toast. */
   4463 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   4464 		    (sblk->status_attn_bits_ack &
   4465 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   4466 			DBRUN(1, sc->unexpected_attentions++);
   4467 
   4468 			aprint_error_dev(sc->bnx_dev,
   4469 			    "Fatal attention detected: 0x%08X\n",
   4470 			    sblk->status_attn_bits);
   4471 
   4472 			DBRUN(BNX_FATAL,
   4473 			    if (bnx_debug_unexpected_attention == 0)
   4474 			    bnx_breakpoint(sc));
   4475 
   4476 			bnx_init(ifp);
   4477 			return (1);
   4478 		}
   4479 
   4480 		/* Check for any completed RX frames. */
   4481 		if (sblk->status_rx_quick_consumer_index0 !=
   4482 		    sc->hw_rx_cons)
   4483 			bnx_rx_intr(sc);
   4484 
   4485 		/* Check for any completed TX frames. */
   4486 		if (sblk->status_tx_quick_consumer_index0 !=
   4487 		    sc->hw_tx_cons)
   4488 			bnx_tx_intr(sc);
   4489 
   4490 		/* Save the status block index value for use during the
   4491 		 * next interrupt.
   4492 		 */
   4493 		sc->last_status_idx = sblk->status_idx;
   4494 
   4495 		/* Prevent speculative reads from getting ahead of the
   4496 		 * status block.
   4497 		 */
   4498 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4499 		    BUS_SPACE_BARRIER_READ);
   4500 
   4501 		/* If there's no work left then exit the isr. */
   4502 		if ((sblk->status_rx_quick_consumer_index0 ==
   4503 		    sc->hw_rx_cons) &&
   4504 		    (sblk->status_tx_quick_consumer_index0 ==
   4505 		    sc->hw_tx_cons))
   4506 			break;
   4507 	}
   4508 
   4509 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   4510 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   4511 
   4512 	/* Re-enable interrupts. */
   4513 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4514 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   4515 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4516 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4517 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   4518 
   4519 	/* Handle any frames that arrived while handling the interrupt. */
   4520 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   4521 		bnx_start(ifp);
   4522 
   4523 	return (1);
   4524 }
   4525 
   4526 /****************************************************************************/
   4527 /* Programs the various packet receive modes (broadcast and multicast).     */
   4528 /*                                                                          */
   4529 /* Returns:                                                                 */
   4530 /*   Nothing.                                                               */
   4531 /****************************************************************************/
   4532 void
   4533 bnx_set_rx_mode(struct bnx_softc *sc)
   4534 {
   4535 	struct ethercom		*ec = &sc->bnx_ec;
   4536 	struct ifnet		*ifp = &ec->ec_if;
   4537 	struct ether_multi	*enm;
   4538 	struct ether_multistep	step;
   4539 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   4540 	u_int32_t		rx_mode, sort_mode;
   4541 	int			h, i;
   4542 
   4543 	/* Initialize receive mode default settings. */
   4544 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   4545 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   4546 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   4547 
   4548 	/*
   4549 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   4550 	 * be enbled.
   4551 	 */
   4552 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   4553 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   4554 
   4555 	/*
   4556 	 * Check for promiscuous, all multicast, or selected
   4557 	 * multicast address filtering.
   4558 	 */
   4559 	if (ifp->if_flags & IFF_PROMISC) {
   4560 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   4561 
   4562 		/* Enable promiscuous mode. */
   4563 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   4564 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   4565 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   4566 allmulti:
   4567 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   4568 
   4569 		/* Enable all multicast addresses. */
   4570 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   4571 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   4572 			    0xffffffff);
   4573 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   4574 	} else {
   4575 		/* Accept one or more multicast(s). */
   4576 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   4577 
   4578 		ETHER_FIRST_MULTI(step, ec, enm);
   4579 		while (enm != NULL) {
   4580 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   4581 			    ETHER_ADDR_LEN)) {
   4582 				ifp->if_flags |= IFF_ALLMULTI;
   4583 				goto allmulti;
   4584 			}
   4585 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   4586 			    0xFF;
   4587 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   4588 			ETHER_NEXT_MULTI(step, enm);
   4589 		}
   4590 
   4591 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   4592 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   4593 			    hashes[i]);
   4594 
   4595 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   4596 	}
   4597 
   4598 	/* Only make changes if the recive mode has actually changed. */
   4599 	if (rx_mode != sc->rx_mode) {
   4600 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   4601 		    rx_mode);
   4602 
   4603 		sc->rx_mode = rx_mode;
   4604 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   4605 	}
   4606 
   4607 	/* Disable and clear the exisitng sort before enabling a new sort. */
   4608 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   4609 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   4610 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   4611 }
   4612 
   4613 /****************************************************************************/
   4614 /* Called periodically to updates statistics from the controllers           */
   4615 /* statistics block.                                                        */
   4616 /*                                                                          */
   4617 /* Returns:                                                                 */
   4618 /*   Nothing.                                                               */
   4619 /****************************************************************************/
   4620 void
   4621 bnx_stats_update(struct bnx_softc *sc)
   4622 {
   4623 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4624 	struct statistics_block	*stats;
   4625 
   4626 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   4627 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4628 	    BUS_DMASYNC_POSTREAD);
   4629 
   4630 	stats = (struct statistics_block *)sc->stats_block;
   4631 
   4632 	/*
   4633 	 * Update the interface statistics from the
   4634 	 * hardware statistics.
   4635 	 */
   4636 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   4637 
   4638 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   4639 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   4640 	    (u_long)stats->stat_IfInMBUFDiscards +
   4641 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   4642 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   4643 
   4644 	ifp->if_oerrors = (u_long)
   4645 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   4646 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   4647 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   4648 
   4649 	/*
   4650 	 * Certain controllers don't report
   4651 	 * carrier sense errors correctly.
   4652 	 * See errata E11_5708CA0_1165.
   4653 	 */
   4654 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   4655 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   4656 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   4657 
   4658 	/*
   4659 	 * Update the sysctl statistics from the
   4660 	 * hardware statistics.
   4661 	 */
   4662 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
   4663 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
   4664 
   4665 	sc->stat_IfHCInBadOctets =
   4666 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   4667 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
   4668 
   4669 	sc->stat_IfHCOutOctets =
   4670 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
   4671 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
   4672 
   4673 	sc->stat_IfHCOutBadOctets =
   4674 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   4675 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
   4676 
   4677 	sc->stat_IfHCInUcastPkts =
   4678 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   4679 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
   4680 
   4681 	sc->stat_IfHCInMulticastPkts =
   4682 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   4683 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
   4684 
   4685 	sc->stat_IfHCInBroadcastPkts =
   4686 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   4687 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
   4688 
   4689 	sc->stat_IfHCOutUcastPkts =
   4690 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   4691 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
   4692 
   4693 	sc->stat_IfHCOutMulticastPkts =
   4694 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   4695 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
   4696 
   4697 	sc->stat_IfHCOutBroadcastPkts =
   4698 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   4699 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   4700 
   4701 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   4702 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   4703 
   4704 	sc->stat_Dot3StatsCarrierSenseErrors =
   4705 	    stats->stat_Dot3StatsCarrierSenseErrors;
   4706 
   4707 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   4708 
   4709 	sc->stat_Dot3StatsAlignmentErrors =
   4710 	    stats->stat_Dot3StatsAlignmentErrors;
   4711 
   4712 	sc->stat_Dot3StatsSingleCollisionFrames =
   4713 	    stats->stat_Dot3StatsSingleCollisionFrames;
   4714 
   4715 	sc->stat_Dot3StatsMultipleCollisionFrames =
   4716 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   4717 
   4718 	sc->stat_Dot3StatsDeferredTransmissions =
   4719 	    stats->stat_Dot3StatsDeferredTransmissions;
   4720 
   4721 	sc->stat_Dot3StatsExcessiveCollisions =
   4722 	    stats->stat_Dot3StatsExcessiveCollisions;
   4723 
   4724 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   4725 
   4726 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   4727 
   4728 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   4729 
   4730 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   4731 
   4732 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   4733 
   4734 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   4735 
   4736 	sc->stat_EtherStatsPktsRx64Octets =
   4737 	    stats->stat_EtherStatsPktsRx64Octets;
   4738 
   4739 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   4740 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   4741 
   4742 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   4743 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   4744 
   4745 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   4746 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   4747 
   4748 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   4749 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   4750 
   4751 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   4752 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   4753 
   4754 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   4755 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   4756 
   4757 	sc->stat_EtherStatsPktsTx64Octets =
   4758 	    stats->stat_EtherStatsPktsTx64Octets;
   4759 
   4760 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   4761 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   4762 
   4763 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   4764 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   4765 
   4766 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   4767 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   4768 
   4769 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   4770 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   4771 
   4772 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   4773 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   4774 
   4775 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   4776 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   4777 
   4778 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   4779 
   4780 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   4781 
   4782 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   4783 
   4784 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   4785 
   4786 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   4787 
   4788 	sc->stat_MacControlFramesReceived =
   4789 	    stats->stat_MacControlFramesReceived;
   4790 
   4791 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   4792 
   4793 	sc->stat_IfInFramesL2FilterDiscards =
   4794 	    stats->stat_IfInFramesL2FilterDiscards;
   4795 
   4796 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   4797 
   4798 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   4799 
   4800 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   4801 
   4802 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   4803 
   4804 	sc->stat_CatchupInRuleCheckerDiscards =
   4805 	    stats->stat_CatchupInRuleCheckerDiscards;
   4806 
   4807 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   4808 
   4809 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   4810 
   4811 	sc->stat_CatchupInRuleCheckerP4Hit =
   4812 	    stats->stat_CatchupInRuleCheckerP4Hit;
   4813 
   4814 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   4815 }
   4816 
   4817 void
   4818 bnx_tick(void *xsc)
   4819 {
   4820 	struct bnx_softc	*sc = xsc;
   4821 	struct mii_data		*mii;
   4822 	u_int32_t		msg;
   4823 	u_int16_t		prod, chain_prod;
   4824 	u_int32_t		prod_bseq;
   4825 	int s = splnet();
   4826 
   4827 	/* Tell the firmware that the driver is still running. */
   4828 #ifdef BNX_DEBUG
   4829 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   4830 #else
   4831 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   4832 #endif
   4833 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   4834 
   4835 	/* Update the statistics from the hardware statistics block. */
   4836 	bnx_stats_update(sc);
   4837 
   4838 	/* Schedule the next tick. */
   4839 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4840 
   4841 	mii = &sc->bnx_mii;
   4842 	mii_tick(mii);
   4843 
   4844 	/* try to get more RX buffers, just in case */
   4845 	prod = sc->rx_prod;
   4846 	prod_bseq = sc->rx_prod_bseq;
   4847 	chain_prod = RX_CHAIN_IDX(prod);
   4848 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   4849 	sc->rx_prod = prod;
   4850 	sc->rx_prod_bseq = prod_bseq;
   4851 	splx(s);
   4852 	return;
   4853 }
   4854 
   4855 /****************************************************************************/
   4856 /* BNX Debug Routines                                                       */
   4857 /****************************************************************************/
   4858 #ifdef BNX_DEBUG
   4859 
   4860 /****************************************************************************/
   4861 /* Prints out information about an mbuf.                                    */
   4862 /*                                                                          */
   4863 /* Returns:                                                                 */
   4864 /*   Nothing.                                                               */
   4865 /****************************************************************************/
   4866 void
   4867 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   4868 {
   4869 	struct mbuf		*mp = m;
   4870 
   4871 	if (m == NULL) {
   4872 		/* Index out of range. */
   4873 		aprint_error("mbuf ptr is null!\n");
   4874 		return;
   4875 	}
   4876 
   4877 	while (mp) {
   4878 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   4879 		    mp, mp->m_len);
   4880 
   4881 		if (mp->m_flags & M_EXT)
   4882 			aprint_debug("M_EXT ");
   4883 		if (mp->m_flags & M_PKTHDR)
   4884 			aprint_debug("M_PKTHDR ");
   4885 		aprint_debug("\n");
   4886 
   4887 		if (mp->m_flags & M_EXT)
   4888 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   4889 			    mp, mp->m_ext.ext_size);
   4890 
   4891 		mp = mp->m_next;
   4892 	}
   4893 }
   4894 
   4895 /****************************************************************************/
   4896 /* Prints out the mbufs in the TX mbuf chain.                               */
   4897 /*                                                                          */
   4898 /* Returns:                                                                 */
   4899 /*   Nothing.                                                               */
   4900 /****************************************************************************/
   4901 void
   4902 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   4903 {
   4904 	struct mbuf		*m;
   4905 	int			i;
   4906 
   4907 	BNX_PRINTF(sc,
   4908 	    "----------------------------"
   4909 	    "  tx mbuf data  "
   4910 	    "----------------------------\n");
   4911 
   4912 	for (i = 0; i < count; i++) {
   4913 	 	m = sc->tx_mbuf_ptr[chain_prod];
   4914 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   4915 		bnx_dump_mbuf(sc, m);
   4916 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   4917 	}
   4918 
   4919 	BNX_PRINTF(sc,
   4920 	    "--------------------------------------------"
   4921 	    "----------------------------\n");
   4922 }
   4923 
   4924 /*
   4925  * This routine prints the RX mbuf chain.
   4926  */
   4927 void
   4928 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   4929 {
   4930 	struct mbuf		*m;
   4931 	int			i;
   4932 
   4933 	BNX_PRINTF(sc,
   4934 	    "----------------------------"
   4935 	    "  rx mbuf data  "
   4936 	    "----------------------------\n");
   4937 
   4938 	for (i = 0; i < count; i++) {
   4939 	 	m = sc->rx_mbuf_ptr[chain_prod];
   4940 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   4941 		bnx_dump_mbuf(sc, m);
   4942 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   4943 	}
   4944 
   4945 
   4946 	BNX_PRINTF(sc,
   4947 	    "--------------------------------------------"
   4948 	    "----------------------------\n");
   4949 }
   4950 
   4951 void
   4952 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   4953 {
   4954 	if (idx > MAX_TX_BD)
   4955 		/* Index out of range. */
   4956 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   4957 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4958 		/* TX Chain page pointer. */
   4959 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   4960 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   4961 		    txbd->tx_bd_haddr_lo);
   4962 	else
   4963 		/* Normal tx_bd entry. */
   4964 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   4965 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   4966 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   4967 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   4968 		    txbd->tx_bd_flags);
   4969 }
   4970 
   4971 void
   4972 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   4973 {
   4974 	if (idx > MAX_RX_BD)
   4975 		/* Index out of range. */
   4976 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   4977 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4978 		/* TX Chain page pointer. */
   4979 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   4980 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   4981 		    rxbd->rx_bd_haddr_lo);
   4982 	else
   4983 		/* Normal tx_bd entry. */
   4984 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   4985 		    "0x%08X, flags = 0x%08X\n", idx,
   4986 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   4987 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   4988 }
   4989 
   4990 void
   4991 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   4992 {
   4993 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   4994 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   4995 	    "tcp_udp_xsum = 0x%04X\n", idx,
   4996 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   4997 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   4998 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4999 }
   5000 
   5001 /*
   5002  * This routine prints the TX chain.
   5003  */
   5004 void
   5005 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5006 {
   5007 	struct tx_bd		*txbd;
   5008 	int			i;
   5009 
   5010 	/* First some info about the tx_bd chain structure. */
   5011 	BNX_PRINTF(sc,
   5012 	    "----------------------------"
   5013 	    "  tx_bd  chain  "
   5014 	    "----------------------------\n");
   5015 
   5016 	BNX_PRINTF(sc,
   5017 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5018 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
   5019 
   5020 	BNX_PRINTF(sc,
   5021 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5022 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
   5023 
   5024 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
   5025 
   5026 	BNX_PRINTF(sc, ""
   5027 	    "-----------------------------"
   5028 	    "   tx_bd data   "
   5029 	    "-----------------------------\n");
   5030 
   5031 	/* Now print out the tx_bd's themselves. */
   5032 	for (i = 0; i < count; i++) {
   5033 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5034 		bnx_dump_txbd(sc, tx_prod, txbd);
   5035 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5036 	}
   5037 
   5038 	BNX_PRINTF(sc,
   5039 	    "-----------------------------"
   5040 	    "--------------"
   5041 	    "-----------------------------\n");
   5042 }
   5043 
   5044 /*
   5045  * This routine prints the RX chain.
   5046  */
   5047 void
   5048 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5049 {
   5050 	struct rx_bd		*rxbd;
   5051 	int			i;
   5052 
   5053 	/* First some info about the tx_bd chain structure. */
   5054 	BNX_PRINTF(sc,
   5055 	    "----------------------------"
   5056 	    "  rx_bd  chain  "
   5057 	    "----------------------------\n");
   5058 
   5059 	BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
   5060 
   5061 	BNX_PRINTF(sc,
   5062 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5063 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
   5064 
   5065 	BNX_PRINTF(sc,
   5066 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5067 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
   5068 
   5069 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
   5070 
   5071 	BNX_PRINTF(sc,
   5072 	    "----------------------------"
   5073 	    "   rx_bd data   "
   5074 	    "----------------------------\n");
   5075 
   5076 	/* Now print out the rx_bd's themselves. */
   5077 	for (i = 0; i < count; i++) {
   5078 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5079 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5080 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5081 	}
   5082 
   5083 	BNX_PRINTF(sc,
   5084 	    "----------------------------"
   5085 	    "--------------"
   5086 	    "----------------------------\n");
   5087 }
   5088 
   5089 /*
   5090  * This routine prints the status block.
   5091  */
   5092 void
   5093 bnx_dump_status_block(struct bnx_softc *sc)
   5094 {
   5095 	struct status_block	*sblk;
   5096 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5097 	    BUS_DMASYNC_POSTREAD);
   5098 
   5099 	sblk = sc->status_block;
   5100 
   5101    	BNX_PRINTF(sc, "----------------------------- Status Block "
   5102 	    "-----------------------------\n");
   5103 
   5104 	BNX_PRINTF(sc,
   5105 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5106 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5107 	    sblk->status_idx);
   5108 
   5109 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5110 	    sblk->status_rx_quick_consumer_index0,
   5111 	    sblk->status_tx_quick_consumer_index0);
   5112 
   5113 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5114 
   5115 	/* Theses indices are not used for normal L2 drivers. */
   5116 	if (sblk->status_rx_quick_consumer_index1 ||
   5117 		sblk->status_tx_quick_consumer_index1)
   5118 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5119 		    sblk->status_rx_quick_consumer_index1,
   5120 		    sblk->status_tx_quick_consumer_index1);
   5121 
   5122 	if (sblk->status_rx_quick_consumer_index2 ||
   5123 		sblk->status_tx_quick_consumer_index2)
   5124 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5125 		    sblk->status_rx_quick_consumer_index2,
   5126 		    sblk->status_tx_quick_consumer_index2);
   5127 
   5128 	if (sblk->status_rx_quick_consumer_index3 ||
   5129 		sblk->status_tx_quick_consumer_index3)
   5130 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5131 		    sblk->status_rx_quick_consumer_index3,
   5132 		    sblk->status_tx_quick_consumer_index3);
   5133 
   5134 	if (sblk->status_rx_quick_consumer_index4 ||
   5135 		sblk->status_rx_quick_consumer_index5)
   5136 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5137 		    sblk->status_rx_quick_consumer_index4,
   5138 		    sblk->status_rx_quick_consumer_index5);
   5139 
   5140 	if (sblk->status_rx_quick_consumer_index6 ||
   5141 		sblk->status_rx_quick_consumer_index7)
   5142 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5143 		    sblk->status_rx_quick_consumer_index6,
   5144 		    sblk->status_rx_quick_consumer_index7);
   5145 
   5146 	if (sblk->status_rx_quick_consumer_index8 ||
   5147 		sblk->status_rx_quick_consumer_index9)
   5148 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5149 		    sblk->status_rx_quick_consumer_index8,
   5150 		    sblk->status_rx_quick_consumer_index9);
   5151 
   5152 	if (sblk->status_rx_quick_consumer_index10 ||
   5153 		sblk->status_rx_quick_consumer_index11)
   5154 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   5155 		    sblk->status_rx_quick_consumer_index10,
   5156 		    sblk->status_rx_quick_consumer_index11);
   5157 
   5158 	if (sblk->status_rx_quick_consumer_index12 ||
   5159 		sblk->status_rx_quick_consumer_index13)
   5160 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   5161 		    sblk->status_rx_quick_consumer_index12,
   5162 		    sblk->status_rx_quick_consumer_index13);
   5163 
   5164 	if (sblk->status_rx_quick_consumer_index14 ||
   5165 		sblk->status_rx_quick_consumer_index15)
   5166 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   5167 		    sblk->status_rx_quick_consumer_index14,
   5168 		    sblk->status_rx_quick_consumer_index15);
   5169 
   5170 	if (sblk->status_completion_producer_index ||
   5171 		sblk->status_cmd_consumer_index)
   5172 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   5173 		    sblk->status_completion_producer_index,
   5174 		    sblk->status_cmd_consumer_index);
   5175 
   5176 	BNX_PRINTF(sc, "-------------------------------------------"
   5177 	    "-----------------------------\n");
   5178 }
   5179 
   5180 /*
   5181  * This routine prints the statistics block.
   5182  */
   5183 void
   5184 bnx_dump_stats_block(struct bnx_softc *sc)
   5185 {
   5186 	struct statistics_block	*sblk;
   5187 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5188 	    BUS_DMASYNC_POSTREAD);
   5189 
   5190 	sblk = sc->stats_block;
   5191 
   5192 	BNX_PRINTF(sc, ""
   5193 	    "-----------------------------"
   5194 	    " Stats  Block "
   5195 	    "-----------------------------\n");
   5196 
   5197 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   5198 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   5199 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   5200 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   5201 
   5202 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   5203 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   5204 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   5205 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   5206 
   5207 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   5208 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   5209 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   5210 	    sblk->stat_IfHCInMulticastPkts_hi,
   5211 	    sblk->stat_IfHCInMulticastPkts_lo);
   5212 
   5213 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   5214 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   5215 	    sblk->stat_IfHCInBroadcastPkts_hi,
   5216 	    sblk->stat_IfHCInBroadcastPkts_lo,
   5217 	    sblk->stat_IfHCOutUcastPkts_hi,
   5218 	    sblk->stat_IfHCOutUcastPkts_lo);
   5219 
   5220 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   5221 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   5222 	    sblk->stat_IfHCOutMulticastPkts_hi,
   5223 	    sblk->stat_IfHCOutMulticastPkts_lo,
   5224 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   5225 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   5226 
   5227 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   5228 		BNX_PRINTF(sc, "0x%08X : "
   5229 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   5230 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   5231 
   5232 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   5233 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   5234 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   5235 
   5236 	if (sblk->stat_Dot3StatsFCSErrors)
   5237 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   5238 		    sblk->stat_Dot3StatsFCSErrors);
   5239 
   5240 	if (sblk->stat_Dot3StatsAlignmentErrors)
   5241 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   5242 		    sblk->stat_Dot3StatsAlignmentErrors);
   5243 
   5244 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   5245 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   5246 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   5247 
   5248 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   5249 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   5250 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   5251 
   5252 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   5253 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   5254 		    sblk->stat_Dot3StatsDeferredTransmissions);
   5255 
   5256 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   5257 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   5258 		    sblk->stat_Dot3StatsExcessiveCollisions);
   5259 
   5260 	if (sblk->stat_Dot3StatsLateCollisions)
   5261 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   5262 		    sblk->stat_Dot3StatsLateCollisions);
   5263 
   5264 	if (sblk->stat_EtherStatsCollisions)
   5265 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   5266 		    sblk->stat_EtherStatsCollisions);
   5267 
   5268 	if (sblk->stat_EtherStatsFragments)
   5269 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   5270 		    sblk->stat_EtherStatsFragments);
   5271 
   5272 	if (sblk->stat_EtherStatsJabbers)
   5273 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   5274 		    sblk->stat_EtherStatsJabbers);
   5275 
   5276 	if (sblk->stat_EtherStatsUndersizePkts)
   5277 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   5278 		    sblk->stat_EtherStatsUndersizePkts);
   5279 
   5280 	if (sblk->stat_EtherStatsOverrsizePkts)
   5281 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   5282 		    sblk->stat_EtherStatsOverrsizePkts);
   5283 
   5284 	if (sblk->stat_EtherStatsPktsRx64Octets)
   5285 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   5286 		    sblk->stat_EtherStatsPktsRx64Octets);
   5287 
   5288 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   5289 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   5290 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   5291 
   5292 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   5293 		BNX_PRINTF(sc, "0x%08X : "
   5294 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   5295 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   5296 
   5297 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   5298 		BNX_PRINTF(sc, "0x%08X : "
   5299 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   5300 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   5301 
   5302 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   5303 		BNX_PRINTF(sc, "0x%08X : "
   5304 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   5305 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   5306 
   5307 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   5308 		BNX_PRINTF(sc, "0x%08X : "
   5309 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   5310 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   5311 
   5312 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   5313 		BNX_PRINTF(sc, "0x%08X : "
   5314 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   5315 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   5316 
   5317 	if (sblk->stat_EtherStatsPktsTx64Octets)
   5318 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   5319 		    sblk->stat_EtherStatsPktsTx64Octets);
   5320 
   5321 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   5322 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   5323 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   5324 
   5325 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   5326 		BNX_PRINTF(sc, "0x%08X : "
   5327 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   5328 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   5329 
   5330 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   5331 		BNX_PRINTF(sc, "0x%08X : "
   5332 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   5333 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   5334 
   5335 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   5336 		BNX_PRINTF(sc, "0x%08X : "
   5337 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   5338 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   5339 
   5340 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   5341 		BNX_PRINTF(sc, "0x%08X : "
   5342 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   5343 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   5344 
   5345 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   5346 		BNX_PRINTF(sc, "0x%08X : "
   5347 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   5348 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   5349 
   5350 	if (sblk->stat_XonPauseFramesReceived)
   5351 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   5352 		    sblk->stat_XonPauseFramesReceived);
   5353 
   5354 	if (sblk->stat_XoffPauseFramesReceived)
   5355 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   5356 		    sblk->stat_XoffPauseFramesReceived);
   5357 
   5358 	if (sblk->stat_OutXonSent)
   5359 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   5360 		    sblk->stat_OutXonSent);
   5361 
   5362 	if (sblk->stat_OutXoffSent)
   5363 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   5364 		    sblk->stat_OutXoffSent);
   5365 
   5366 	if (sblk->stat_FlowControlDone)
   5367 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   5368 		    sblk->stat_FlowControlDone);
   5369 
   5370 	if (sblk->stat_MacControlFramesReceived)
   5371 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   5372 		    sblk->stat_MacControlFramesReceived);
   5373 
   5374 	if (sblk->stat_XoffStateEntered)
   5375 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   5376 		    sblk->stat_XoffStateEntered);
   5377 
   5378 	if (sblk->stat_IfInFramesL2FilterDiscards)
   5379 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   5380 		    sblk->stat_IfInFramesL2FilterDiscards);
   5381 
   5382 	if (sblk->stat_IfInRuleCheckerDiscards)
   5383 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   5384 		    sblk->stat_IfInRuleCheckerDiscards);
   5385 
   5386 	if (sblk->stat_IfInFTQDiscards)
   5387 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   5388 		    sblk->stat_IfInFTQDiscards);
   5389 
   5390 	if (sblk->stat_IfInMBUFDiscards)
   5391 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   5392 		    sblk->stat_IfInMBUFDiscards);
   5393 
   5394 	if (sblk->stat_IfInRuleCheckerP4Hit)
   5395 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   5396 		    sblk->stat_IfInRuleCheckerP4Hit);
   5397 
   5398 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   5399 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   5400 		    sblk->stat_CatchupInRuleCheckerDiscards);
   5401 
   5402 	if (sblk->stat_CatchupInFTQDiscards)
   5403 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   5404 		    sblk->stat_CatchupInFTQDiscards);
   5405 
   5406 	if (sblk->stat_CatchupInMBUFDiscards)
   5407 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   5408 		    sblk->stat_CatchupInMBUFDiscards);
   5409 
   5410 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   5411 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   5412 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   5413 
   5414 	BNX_PRINTF(sc,
   5415 	    "-----------------------------"
   5416 	    "--------------"
   5417 	    "-----------------------------\n");
   5418 }
   5419 
   5420 void
   5421 bnx_dump_driver_state(struct bnx_softc *sc)
   5422 {
   5423 	BNX_PRINTF(sc,
   5424 	    "-----------------------------"
   5425 	    " Driver State "
   5426 	    "-----------------------------\n");
   5427 
   5428 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   5429 	    "address\n", sc);
   5430 
   5431 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   5432 	    sc->status_block);
   5433 
   5434 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   5435 	    "address\n", sc->stats_block);
   5436 
   5437 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   5438 	    "adddress\n", sc->tx_bd_chain);
   5439 
   5440 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   5441 	    sc->rx_bd_chain);
   5442 
   5443 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   5444 	    sc->tx_mbuf_ptr);
   5445 
   5446 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   5447 	    sc->rx_mbuf_ptr);
   5448 
   5449 	BNX_PRINTF(sc,
   5450 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   5451 	    sc->interrupts_generated);
   5452 
   5453 	BNX_PRINTF(sc,
   5454 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   5455 	    sc->rx_interrupts);
   5456 
   5457 	BNX_PRINTF(sc,
   5458 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   5459 	    sc->tx_interrupts);
   5460 
   5461 	BNX_PRINTF(sc,
   5462 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   5463 	    sc->last_status_idx);
   5464 
   5465 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   5466 	    sc->tx_prod);
   5467 
   5468 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   5469 	    sc->tx_cons);
   5470 
   5471 	BNX_PRINTF(sc,
   5472 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   5473 	    sc->tx_prod_bseq);
   5474 
   5475 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   5476 	    sc->rx_prod);
   5477 
   5478 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   5479 	    sc->rx_cons);
   5480 
   5481 	BNX_PRINTF(sc,
   5482 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   5483 	    sc->rx_prod_bseq);
   5484 
   5485 	BNX_PRINTF(sc,
   5486 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   5487 	    sc->rx_mbuf_alloc);
   5488 
   5489 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   5490 	    sc->free_rx_bd);
   5491 
   5492 	BNX_PRINTF(sc,
   5493 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   5494 	    sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
   5495 
   5496 	BNX_PRINTF(sc,
   5497 	    "         0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
   5498 	    sc->tx_mbuf_alloc);
   5499 
   5500 	BNX_PRINTF(sc,
   5501 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   5502 	    sc->rx_mbuf_alloc);
   5503 
   5504 	BNX_PRINTF(sc, "         0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   5505 	    sc->used_tx_bd);
   5506 
   5507 	BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   5508 	    sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
   5509 
   5510 	BNX_PRINTF(sc,
   5511 	    "         0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
   5512 	    sc->mbuf_alloc_failed);
   5513 
   5514 	BNX_PRINTF(sc, "-------------------------------------------"
   5515 	    "-----------------------------\n");
   5516 }
   5517 
   5518 void
   5519 bnx_dump_hw_state(struct bnx_softc *sc)
   5520 {
   5521 	u_int32_t		val1;
   5522 	int			i;
   5523 
   5524 	BNX_PRINTF(sc,
   5525 	    "----------------------------"
   5526 	    " Hardware State "
   5527 	    "----------------------------\n");
   5528 
   5529 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   5530 
   5531 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   5532 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   5533 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   5534 
   5535 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   5536 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   5537 
   5538 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   5539 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   5540 
   5541 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   5542 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   5543 	    BNX_EMAC_STATUS);
   5544 
   5545 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   5546 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   5547 
   5548 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   5549 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   5550 	    BNX_TBDR_STATUS);
   5551 
   5552 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   5553 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   5554 	    BNX_TDMA_STATUS);
   5555 
   5556 	val1 = REG_RD(sc, BNX_HC_STATUS);
   5557 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   5558 
   5559 	BNX_PRINTF(sc,
   5560 	    "----------------------------"
   5561 	    "----------------"
   5562 	    "----------------------------\n");
   5563 
   5564 	BNX_PRINTF(sc,
   5565 	    "----------------------------"
   5566 	    " Register  Dump "
   5567 	    "----------------------------\n");
   5568 
   5569 	for (i = 0x400; i < 0x8000; i += 0x10)
   5570 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   5571 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   5572 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   5573 
   5574 	BNX_PRINTF(sc,
   5575 	    "----------------------------"
   5576 	    "----------------"
   5577 	    "----------------------------\n");
   5578 }
   5579 
   5580 void
   5581 bnx_breakpoint(struct bnx_softc *sc)
   5582 {
   5583 	/* Unreachable code to shut the compiler up about unused functions. */
   5584 	if (0) {
   5585    		bnx_dump_txbd(sc, 0, NULL);
   5586 		bnx_dump_rxbd(sc, 0, NULL);
   5587 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   5588 		bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
   5589 		bnx_dump_l2fhdr(sc, 0, NULL);
   5590 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   5591 		bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
   5592 		bnx_dump_status_block(sc);
   5593 		bnx_dump_stats_block(sc);
   5594 		bnx_dump_driver_state(sc);
   5595 		bnx_dump_hw_state(sc);
   5596 	}
   5597 
   5598 	bnx_dump_driver_state(sc);
   5599 	/* Print the important status block fields. */
   5600 	bnx_dump_status_block(sc);
   5601 
   5602 #if 0
   5603 	/* Call the debugger. */
   5604 	breakpoint();
   5605 #endif
   5606 
   5607 	return;
   5608 }
   5609 #endif
   5610