if_bnx.c revision 1.25 1 /* $NetBSD: if_bnx.c,v 1.25 2009/04/07 18:07:10 dyoung Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.43 2007/01/30 03:21:10 krw Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.25 2009/04/07 18:07:10 dyoung Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5708C B1, B2
44 *
45 * The following controllers are not supported by this driver:
46 * (These are not "Production" versions of the controller.)
47 *
48 * BCM5706C A0, A1
49 * BCM5706S A0, A1, A2, A3
50 * BCM5708C A0, B0
51 * BCM5708S A0, B0, B1
52 */
53
54 #include <sys/callout.h>
55
56 #include <dev/pci/if_bnxreg.h>
57 #include <dev/microcode/bnx/bnxfw.h>
58
59 /****************************************************************************/
60 /* BNX Driver Version */
61 /****************************************************************************/
62 const char bnx_driver_version[] = "v0.9.6";
63
64 /****************************************************************************/
65 /* BNX Debug Options */
66 /****************************************************************************/
67 #ifdef BNX_DEBUG
68 u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
69
70 /* 0 = Never */
71 /* 1 = 1 in 2,147,483,648 */
72 /* 256 = 1 in 8,388,608 */
73 /* 2048 = 1 in 1,048,576 */
74 /* 65536 = 1 in 32,768 */
75 /* 1048576 = 1 in 2,048 */
76 /* 268435456 = 1 in 8 */
77 /* 536870912 = 1 in 4 */
78 /* 1073741824 = 1 in 2 */
79
80 /* Controls how often the l2_fhdr frame error check will fail. */
81 int bnx_debug_l2fhdr_status_check = 0;
82
83 /* Controls how often the unexpected attention check will fail. */
84 int bnx_debug_unexpected_attention = 0;
85
86 /* Controls how often to simulate an mbuf allocation failure. */
87 int bnx_debug_mbuf_allocation_failure = 0;
88
89 /* Controls how often to simulate a DMA mapping failure. */
90 int bnx_debug_dma_map_addr_failure = 0;
91
92 /* Controls how often to simulate a bootcode failure. */
93 int bnx_debug_bootcode_running_failure = 0;
94 #endif
95
96 /****************************************************************************/
97 /* PCI Device ID Table */
98 /* */
99 /* Used by bnx_probe() to identify the devices supported by this driver. */
100 /****************************************************************************/
101 static const struct bnx_product {
102 pci_vendor_id_t bp_vendor;
103 pci_product_id_t bp_product;
104 pci_vendor_id_t bp_subvendor;
105 pci_product_id_t bp_subproduct;
106 const char *bp_name;
107 } bnx_devices[] = {
108 #ifdef PCI_SUBPRODUCT_HP_NC370T
109 {
110 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
111 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
112 "HP NC370T Multifunction Gigabit Server Adapter"
113 },
114 #endif
115 #ifdef PCI_SUBPRODUCT_HP_NC370i
116 {
117 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
118 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
119 "HP NC370i Multifunction Gigabit Server Adapter"
120 },
121 #endif
122 {
123 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
124 0, 0,
125 "Broadcom NetXtreme II BCM5706 1000Base-T"
126 },
127 #ifdef PCI_SUBPRODUCT_HP_NC370F
128 {
129 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
130 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
131 "HP NC370F Multifunction Gigabit Server Adapter"
132 },
133 #endif
134 {
135 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
136 0, 0,
137 "Broadcom NetXtreme II BCM5706 1000Base-SX"
138 },
139 {
140 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
141 0, 0,
142 "Broadcom NetXtreme II BCM5708 1000Base-T"
143 },
144 {
145 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
146 0, 0,
147 "Broadcom NetXtreme II BCM5708 1000Base-SX"
148 },
149 };
150
151 /****************************************************************************/
152 /* Supported Flash NVRAM device data. */
153 /****************************************************************************/
154 static struct flash_spec flash_table[] =
155 {
156 /* Slow EEPROM */
157 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
158 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
159 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
160 "EEPROM - slow"},
161 /* Expansion entry 0001 */
162 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
163 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
164 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
165 "Entry 0001"},
166 /* Saifun SA25F010 (non-buffered flash) */
167 /* strap, cfg1, & write1 need updates */
168 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
169 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
170 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
171 "Non-buffered flash (128kB)"},
172 /* Saifun SA25F020 (non-buffered flash) */
173 /* strap, cfg1, & write1 need updates */
174 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
175 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
176 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
177 "Non-buffered flash (256kB)"},
178 /* Expansion entry 0100 */
179 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
180 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
181 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
182 "Entry 0100"},
183 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
184 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
185 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
186 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
187 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
188 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
189 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
190 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
191 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
192 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
193 /* Saifun SA25F005 (non-buffered flash) */
194 /* strap, cfg1, & write1 need updates */
195 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
196 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
197 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
198 "Non-buffered flash (64kB)"},
199 /* Fast EEPROM */
200 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
201 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
202 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
203 "EEPROM - fast"},
204 /* Expansion entry 1001 */
205 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
206 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
208 "Entry 1001"},
209 /* Expansion entry 1010 */
210 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
211 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 "Entry 1010"},
214 /* ATMEL AT45DB011B (buffered flash) */
215 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
216 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
217 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
218 "Buffered flash (128kB)"},
219 /* Expansion entry 1100 */
220 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
221 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
222 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
223 "Entry 1100"},
224 /* Expansion entry 1101 */
225 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
226 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
228 "Entry 1101"},
229 /* Ateml Expansion entry 1110 */
230 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
231 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
232 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
233 "Entry 1110 (Atmel)"},
234 /* ATMEL AT45DB021B (buffered flash) */
235 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
236 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
237 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
238 "Buffered flash (256kB)"},
239 };
240
241 /****************************************************************************/
242 /* OpenBSD device entry points. */
243 /****************************************************************************/
244 static int bnx_probe(device_t, cfdata_t, void *);
245 void bnx_attach(device_t, device_t, void *);
246 int bnx_detach(device_t, int);
247
248 /****************************************************************************/
249 /* BNX Debug Data Structure Dump Routines */
250 /****************************************************************************/
251 #ifdef BNX_DEBUG
252 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
253 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
254 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
255 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
256 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
257 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
258 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
259 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
260 void bnx_dump_status_block(struct bnx_softc *);
261 void bnx_dump_stats_block(struct bnx_softc *);
262 void bnx_dump_driver_state(struct bnx_softc *);
263 void bnx_dump_hw_state(struct bnx_softc *);
264 void bnx_breakpoint(struct bnx_softc *);
265 #endif
266
267 /****************************************************************************/
268 /* BNX Register/Memory Access Routines */
269 /****************************************************************************/
270 u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
271 void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
272 void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
273 int bnx_miibus_read_reg(device_t, int, int);
274 void bnx_miibus_write_reg(device_t, int, int, int);
275 void bnx_miibus_statchg(device_t);
276
277 /****************************************************************************/
278 /* BNX NVRAM Access Routines */
279 /****************************************************************************/
280 int bnx_acquire_nvram_lock(struct bnx_softc *);
281 int bnx_release_nvram_lock(struct bnx_softc *);
282 void bnx_enable_nvram_access(struct bnx_softc *);
283 void bnx_disable_nvram_access(struct bnx_softc *);
284 int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
285 u_int32_t);
286 int bnx_init_nvram(struct bnx_softc *);
287 int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
288 int bnx_nvram_test(struct bnx_softc *);
289 #ifdef BNX_NVRAM_WRITE_SUPPORT
290 int bnx_enable_nvram_write(struct bnx_softc *);
291 void bnx_disable_nvram_write(struct bnx_softc *);
292 int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
293 int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
294 u_int32_t);
295 int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
296 #endif
297
298 /****************************************************************************/
299 /* */
300 /****************************************************************************/
301 int bnx_dma_alloc(struct bnx_softc *);
302 void bnx_dma_free(struct bnx_softc *);
303 void bnx_release_resources(struct bnx_softc *);
304
305 /****************************************************************************/
306 /* BNX Firmware Synchronization and Load */
307 /****************************************************************************/
308 int bnx_fw_sync(struct bnx_softc *, u_int32_t);
309 void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
310 u_int32_t);
311 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
312 struct fw_info *);
313 void bnx_init_cpus(struct bnx_softc *);
314
315 void bnx_stop(struct ifnet *, int);
316 int bnx_reset(struct bnx_softc *, u_int32_t);
317 int bnx_chipinit(struct bnx_softc *);
318 int bnx_blockinit(struct bnx_softc *);
319 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
320 u_int16_t *, u_int32_t *);
321 int bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
322
323 int bnx_init_tx_chain(struct bnx_softc *);
324 int bnx_init_rx_chain(struct bnx_softc *);
325 void bnx_free_rx_chain(struct bnx_softc *);
326 void bnx_free_tx_chain(struct bnx_softc *);
327
328 int bnx_tx_encap(struct bnx_softc *, struct mbuf **);
329 void bnx_start(struct ifnet *);
330 int bnx_ioctl(struct ifnet *, u_long, void *);
331 void bnx_watchdog(struct ifnet *);
332 int bnx_init(struct ifnet *);
333
334 void bnx_init_context(struct bnx_softc *);
335 void bnx_get_mac_addr(struct bnx_softc *);
336 void bnx_set_mac_addr(struct bnx_softc *);
337 void bnx_phy_intr(struct bnx_softc *);
338 void bnx_rx_intr(struct bnx_softc *);
339 void bnx_tx_intr(struct bnx_softc *);
340 void bnx_disable_intr(struct bnx_softc *);
341 void bnx_enable_intr(struct bnx_softc *);
342
343 int bnx_intr(void *);
344 void bnx_set_rx_mode(struct bnx_softc *);
345 void bnx_stats_update(struct bnx_softc *);
346 void bnx_tick(void *);
347
348 /****************************************************************************/
349 /* OpenBSD device dispatch table. */
350 /****************************************************************************/
351 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
352 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
353
354 /****************************************************************************/
355 /* Device probe function. */
356 /* */
357 /* Compares the device to the driver's list of supported devices and */
358 /* reports back to the OS whether this is the right driver for the device. */
359 /* */
360 /* Returns: */
361 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
362 /****************************************************************************/
363 static const struct bnx_product *
364 bnx_lookup(const struct pci_attach_args *pa)
365 {
366 int i;
367 pcireg_t subid;
368
369 for (i = 0; i < __arraycount(bnx_devices); i++) {
370 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
371 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
372 continue;
373 if (!bnx_devices[i].bp_subvendor)
374 return &bnx_devices[i];
375 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
376 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
377 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
378 return &bnx_devices[i];
379 }
380
381 return NULL;
382 }
383 static int
384 bnx_probe(device_t parent, cfdata_t match, void *aux)
385 {
386 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
387
388 if (bnx_lookup(pa) != NULL)
389 return (1);
390
391 return (0);
392 }
393
394 /****************************************************************************/
395 /* Device attach function. */
396 /* */
397 /* Allocates device resources, performs secondary chip identification, */
398 /* resets and initializes the hardware, and initializes driver instance */
399 /* variables. */
400 /* */
401 /* Returns: */
402 /* 0 on success, positive value on failure. */
403 /****************************************************************************/
404 void
405 bnx_attach(device_t parent, device_t self, void *aux)
406 {
407 const struct bnx_product *bp;
408 struct bnx_softc *sc = device_private(self);
409 struct pci_attach_args *pa = aux;
410 pci_chipset_tag_t pc = pa->pa_pc;
411 pci_intr_handle_t ih;
412 const char *intrstr = NULL;
413 u_int32_t command;
414 struct ifnet *ifp;
415 u_int32_t val;
416 int mii_flags = MIIF_FORCEANEG;
417 pcireg_t memtype;
418
419 bp = bnx_lookup(pa);
420 if (bp == NULL)
421 panic("unknown device");
422
423 sc->bnx_dev = self;
424
425 aprint_naive("\n");
426 aprint_normal(": %s\n", bp->bp_name);
427
428 sc->bnx_pa = *pa;
429
430 /*
431 * Map control/status registers.
432 */
433 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
434 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
435 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
436 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
437
438 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
439 aprint_error_dev(sc->bnx_dev,
440 "failed to enable memory mapping!\n");
441 return;
442 }
443
444 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
445 switch (memtype) {
446 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
447 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
448 if (pci_mapreg_map(pa, BNX_PCI_BAR0,
449 memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
450 NULL, &sc->bnx_size) == 0)
451 break;
452 default:
453 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
454 return;
455 }
456
457 if (pci_intr_map(pa, &ih)) {
458 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
459 goto bnx_attach_fail;
460 }
461
462 intrstr = pci_intr_string(pc, ih);
463
464 /*
465 * Configure byte swap and enable indirect register access.
466 * Rely on CPU to do target byte swapping on big endian systems.
467 * Access to registers outside of PCI configurtion space are not
468 * valid until this is done.
469 */
470 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
471 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
472 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
473
474 /* Save ASIC revsion info. */
475 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
476
477 /* Weed out any non-production controller revisions. */
478 switch(BNX_CHIP_ID(sc)) {
479 case BNX_CHIP_ID_5706_A0:
480 case BNX_CHIP_ID_5706_A1:
481 case BNX_CHIP_ID_5708_A0:
482 case BNX_CHIP_ID_5708_B0:
483 aprint_error_dev(sc->bnx_dev,
484 "unsupported controller revision (%c%d)!\n",
485 ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
486 PCI_REVISION(pa->pa_class) & 0x0f);
487 goto bnx_attach_fail;
488 }
489
490 /*
491 * Find the base address for shared memory access.
492 * Newer versions of bootcode use a signature and offset
493 * while older versions use a fixed address.
494 */
495 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
496 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
497 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
498 else
499 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
500
501 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
502
503 /* Set initial device and PHY flags */
504 sc->bnx_flags = 0;
505 sc->bnx_phy_flags = 0;
506
507 /* Get PCI bus information (speed and type). */
508 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
509 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
510 u_int32_t clkreg;
511
512 sc->bnx_flags |= BNX_PCIX_FLAG;
513
514 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
515
516 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
517 switch (clkreg) {
518 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
519 sc->bus_speed_mhz = 133;
520 break;
521
522 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
523 sc->bus_speed_mhz = 100;
524 break;
525
526 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
527 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
528 sc->bus_speed_mhz = 66;
529 break;
530
531 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
532 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
533 sc->bus_speed_mhz = 50;
534 break;
535
536 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
537 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
538 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
539 sc->bus_speed_mhz = 33;
540 break;
541 }
542 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
543 sc->bus_speed_mhz = 66;
544 else
545 sc->bus_speed_mhz = 33;
546
547 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
548 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
549
550 /* Reset the controller. */
551 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
552 goto bnx_attach_fail;
553
554 /* Initialize the controller. */
555 if (bnx_chipinit(sc)) {
556 aprint_error_dev(sc->bnx_dev,
557 "Controller initialization failed!\n");
558 goto bnx_attach_fail;
559 }
560
561 /* Perform NVRAM test. */
562 if (bnx_nvram_test(sc)) {
563 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
564 goto bnx_attach_fail;
565 }
566
567 /* Fetch the permanent Ethernet MAC address. */
568 bnx_get_mac_addr(sc);
569 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
570 ether_sprintf(sc->eaddr));
571
572 /*
573 * Trip points control how many BDs
574 * should be ready before generating an
575 * interrupt while ticks control how long
576 * a BD can sit in the chain before
577 * generating an interrupt. Set the default
578 * values for the RX and TX rings.
579 */
580
581 #ifdef BNX_DEBUG
582 /* Force more frequent interrupts. */
583 sc->bnx_tx_quick_cons_trip_int = 1;
584 sc->bnx_tx_quick_cons_trip = 1;
585 sc->bnx_tx_ticks_int = 0;
586 sc->bnx_tx_ticks = 0;
587
588 sc->bnx_rx_quick_cons_trip_int = 1;
589 sc->bnx_rx_quick_cons_trip = 1;
590 sc->bnx_rx_ticks_int = 0;
591 sc->bnx_rx_ticks = 0;
592 #else
593 sc->bnx_tx_quick_cons_trip_int = 20;
594 sc->bnx_tx_quick_cons_trip = 20;
595 sc->bnx_tx_ticks_int = 80;
596 sc->bnx_tx_ticks = 80;
597
598 sc->bnx_rx_quick_cons_trip_int = 6;
599 sc->bnx_rx_quick_cons_trip = 6;
600 sc->bnx_rx_ticks_int = 18;
601 sc->bnx_rx_ticks = 18;
602 #endif
603
604 /* Update statistics once every second. */
605 sc->bnx_stats_ticks = 1000000 & 0xffff00;
606
607 /*
608 * The copper based NetXtreme II controllers
609 * that support 2.5Gb operation (currently
610 * 5708S) use a PHY at address 2, otherwise
611 * the PHY is present at address 1.
612 */
613 sc->bnx_phy_addr = 1;
614
615 if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
616 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
617 sc->bnx_flags |= BNX_NO_WOL_FLAG;
618 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
619 sc->bnx_phy_addr = 2;
620 val = REG_RD_IND(sc, sc->bnx_shmem_base +
621 BNX_SHARED_HW_CFG_CONFIG);
622 if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
623 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
624 }
625 }
626
627 /* Allocate DMA memory resources. */
628 sc->bnx_dmatag = pa->pa_dmat;
629 if (bnx_dma_alloc(sc)) {
630 aprint_error_dev(sc->bnx_dev,
631 "DMA resource allocation failed!\n");
632 goto bnx_attach_fail;
633 }
634
635 /* Initialize the ifnet interface. */
636 ifp = &sc->bnx_ec.ec_if;
637 ifp->if_softc = sc;
638 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
639 ifp->if_ioctl = bnx_ioctl;
640 ifp->if_stop = bnx_stop;
641 ifp->if_start = bnx_start;
642 ifp->if_init = bnx_init;
643 ifp->if_timer = 0;
644 ifp->if_watchdog = bnx_watchdog;
645 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
646 IFQ_SET_READY(&ifp->if_snd);
647 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
648
649 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
650 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
651
652 ifp->if_capabilities |=
653 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
654 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
655 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
656
657 /* Hookup IRQ last. */
658 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
659 if (sc->bnx_intrhand == NULL) {
660 aprint_error_dev(self, "couldn't establish interrupt");
661 if (intrstr != NULL)
662 aprint_error(" at %s", intrstr);
663 aprint_error("\n");
664 goto bnx_attach_fail;
665 }
666
667 sc->bnx_mii.mii_ifp = ifp;
668 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
669 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
670 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
671
672 sc->bnx_ec.ec_mii = &sc->bnx_mii;
673 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
674 ether_mediastatus);
675 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
676 mii_flags |= MIIF_HAVEFIBER;
677 mii_attach(self, &sc->bnx_mii, 0xffffffff,
678 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
679
680 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
681 aprint_error_dev(self, "no PHY found!\n");
682 ifmedia_add(&sc->bnx_mii.mii_media,
683 IFM_ETHER|IFM_MANUAL, 0, NULL);
684 ifmedia_set(&sc->bnx_mii.mii_media,
685 IFM_ETHER|IFM_MANUAL);
686 } else {
687 ifmedia_set(&sc->bnx_mii.mii_media,
688 IFM_ETHER|IFM_AUTO);
689 }
690
691 /* Attach to the Ethernet interface list. */
692 if_attach(ifp);
693 ether_ifattach(ifp,sc->eaddr);
694
695 callout_init(&sc->bnx_timeout, 0);
696
697 if (!pmf_device_register(self, NULL, NULL))
698 aprint_error_dev(self, "couldn't establish power handler\n");
699 else
700 pmf_class_network_register(self, ifp);
701
702 /* Print some important debugging info. */
703 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
704
705 goto bnx_attach_exit;
706
707 bnx_attach_fail:
708 bnx_release_resources(sc);
709
710 bnx_attach_exit:
711 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
712 }
713
714 /****************************************************************************/
715 /* Device detach function. */
716 /* */
717 /* Stops the controller, resets the controller, and releases resources. */
718 /* */
719 /* Returns: */
720 /* 0 on success, positive value on failure. */
721 /****************************************************************************/
722 int
723 bnx_detach(device_t dev, int flags)
724 {
725 int s;
726 struct bnx_softc *sc;
727 struct ifnet *ifp;
728
729 sc = device_private(dev);
730 ifp = &sc->bnx_ec.ec_if;
731
732 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
733
734 /* Stop and reset the controller. */
735 s = splnet();
736 if (ifp->if_flags & IFF_RUNNING)
737 bnx_stop(ifp, 1);
738 splx(s);
739
740 pmf_device_deregister(dev);
741 callout_destroy(&sc->bnx_timeout);
742 ether_ifdetach(ifp);
743 if_detach(ifp);
744 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
745
746 /* Release all remaining resources. */
747 bnx_release_resources(sc);
748
749 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
750
751 return(0);
752 }
753
754 /****************************************************************************/
755 /* Indirect register read. */
756 /* */
757 /* Reads NetXtreme II registers using an index/data register pair in PCI */
758 /* configuration space. Using this mechanism avoids issues with posted */
759 /* reads but is much slower than memory-mapped I/O. */
760 /* */
761 /* Returns: */
762 /* The value of the register. */
763 /****************************************************************************/
764 u_int32_t
765 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
766 {
767 struct pci_attach_args *pa = &(sc->bnx_pa);
768
769 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
770 offset);
771 #ifdef BNX_DEBUG
772 {
773 u_int32_t val;
774 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
775 BNX_PCICFG_REG_WINDOW);
776 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
777 "val = 0x%08X\n", __func__, offset, val);
778 return (val);
779 }
780 #else
781 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
782 #endif
783 }
784
785 /****************************************************************************/
786 /* Indirect register write. */
787 /* */
788 /* Writes NetXtreme II registers using an index/data register pair in PCI */
789 /* configuration space. Using this mechanism avoids issues with posted */
790 /* writes but is muchh slower than memory-mapped I/O. */
791 /* */
792 /* Returns: */
793 /* Nothing. */
794 /****************************************************************************/
795 void
796 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
797 {
798 struct pci_attach_args *pa = &(sc->bnx_pa);
799
800 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
801 __func__, offset, val);
802
803 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
804 offset);
805 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
806 }
807
808 /****************************************************************************/
809 /* Context memory write. */
810 /* */
811 /* The NetXtreme II controller uses context memory to track connection */
812 /* information for L2 and higher network protocols. */
813 /* */
814 /* Returns: */
815 /* Nothing. */
816 /****************************************************************************/
817 void
818 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
819 u_int32_t val)
820 {
821
822 DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
823 "val = 0x%08X\n", __func__, cid_addr, offset, val);
824
825 offset += cid_addr;
826 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
827 REG_WR(sc, BNX_CTX_DATA, val);
828 }
829
830 /****************************************************************************/
831 /* PHY register read. */
832 /* */
833 /* Implements register reads on the MII bus. */
834 /* */
835 /* Returns: */
836 /* The value of the register. */
837 /****************************************************************************/
838 int
839 bnx_miibus_read_reg(device_t dev, int phy, int reg)
840 {
841 struct bnx_softc *sc = device_private(dev);
842 u_int32_t val;
843 int i;
844
845 /* Make sure we are accessing the correct PHY address. */
846 if (phy != sc->bnx_phy_addr) {
847 DBPRINT(sc, BNX_VERBOSE,
848 "Invalid PHY address %d for PHY read!\n", phy);
849 return(0);
850 }
851
852 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
853 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
854 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
855
856 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
857 REG_RD(sc, BNX_EMAC_MDIO_MODE);
858
859 DELAY(40);
860 }
861
862 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
863 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
864 BNX_EMAC_MDIO_COMM_START_BUSY;
865 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
866
867 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
868 DELAY(10);
869
870 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
871 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
872 DELAY(5);
873
874 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
875 val &= BNX_EMAC_MDIO_COMM_DATA;
876
877 break;
878 }
879 }
880
881 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
882 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
883 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
884 val = 0x0;
885 } else
886 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
887
888 DBPRINT(sc, BNX_EXCESSIVE,
889 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
890 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
891
892 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
893 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
894 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
895
896 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
897 REG_RD(sc, BNX_EMAC_MDIO_MODE);
898
899 DELAY(40);
900 }
901
902 return (val & 0xffff);
903 }
904
905 /****************************************************************************/
906 /* PHY register write. */
907 /* */
908 /* Implements register writes on the MII bus. */
909 /* */
910 /* Returns: */
911 /* The value of the register. */
912 /****************************************************************************/
913 void
914 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
915 {
916 struct bnx_softc *sc = device_private(dev);
917 u_int32_t val1;
918 int i;
919
920 /* Make sure we are accessing the correct PHY address. */
921 if (phy != sc->bnx_phy_addr) {
922 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
923 phy);
924 return;
925 }
926
927 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
928 "val = 0x%04X\n", __func__,
929 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
930
931 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
932 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
933 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
934
935 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
936 REG_RD(sc, BNX_EMAC_MDIO_MODE);
937
938 DELAY(40);
939 }
940
941 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
942 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
943 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
944 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
945
946 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
947 DELAY(10);
948
949 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
950 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
951 DELAY(5);
952 break;
953 }
954 }
955
956 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
957 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
958 __LINE__);
959 }
960
961 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
962 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
963 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
964
965 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
966 REG_RD(sc, BNX_EMAC_MDIO_MODE);
967
968 DELAY(40);
969 }
970 }
971
972 /****************************************************************************/
973 /* MII bus status change. */
974 /* */
975 /* Called by the MII bus driver when the PHY establishes link to set the */
976 /* MAC interface registers. */
977 /* */
978 /* Returns: */
979 /* Nothing. */
980 /****************************************************************************/
981 void
982 bnx_miibus_statchg(device_t dev)
983 {
984 struct bnx_softc *sc = device_private(dev);
985 struct mii_data *mii = &sc->bnx_mii;
986 int val;
987
988 val = REG_RD(sc, BNX_EMAC_MODE);
989 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
990 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
991 BNX_EMAC_MODE_25G);
992
993 /* Set MII or GMII interface based on the speed
994 * negotiated by the PHY.
995 */
996 switch (IFM_SUBTYPE(mii->mii_media_active)) {
997 case IFM_10_T:
998 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
999 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1000 val |= BNX_EMAC_MODE_PORT_MII_10;
1001 break;
1002 }
1003 /* FALLTHROUGH */
1004 case IFM_100_TX:
1005 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1006 val |= BNX_EMAC_MODE_PORT_MII;
1007 break;
1008 case IFM_2500_SX:
1009 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1010 val |= BNX_EMAC_MODE_25G;
1011 /* FALLTHROUGH */
1012 case IFM_1000_T:
1013 case IFM_1000_SX:
1014 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1015 val |= BNX_EMAC_MODE_PORT_GMII;
1016 break;
1017 default:
1018 val |= BNX_EMAC_MODE_PORT_GMII;
1019 break;
1020 }
1021
1022 /* Set half or full duplex based on the duplicity
1023 * negotiated by the PHY.
1024 */
1025 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1026 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1027 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1028 } else {
1029 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1030 }
1031
1032 REG_WR(sc, BNX_EMAC_MODE, val);
1033 }
1034
1035 /****************************************************************************/
1036 /* Acquire NVRAM lock. */
1037 /* */
1038 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1039 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1040 /* for use by the driver. */
1041 /* */
1042 /* Returns: */
1043 /* 0 on success, positive value on failure. */
1044 /****************************************************************************/
1045 int
1046 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1047 {
1048 u_int32_t val;
1049 int j;
1050
1051 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1052
1053 /* Request access to the flash interface. */
1054 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1055 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1056 val = REG_RD(sc, BNX_NVM_SW_ARB);
1057 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1058 break;
1059
1060 DELAY(5);
1061 }
1062
1063 if (j >= NVRAM_TIMEOUT_COUNT) {
1064 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1065 return (EBUSY);
1066 }
1067
1068 return (0);
1069 }
1070
1071 /****************************************************************************/
1072 /* Release NVRAM lock. */
1073 /* */
1074 /* When the caller is finished accessing NVRAM the lock must be released. */
1075 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1076 /* for use by the driver. */
1077 /* */
1078 /* Returns: */
1079 /* 0 on success, positive value on failure. */
1080 /****************************************************************************/
1081 int
1082 bnx_release_nvram_lock(struct bnx_softc *sc)
1083 {
1084 int j;
1085 u_int32_t val;
1086
1087 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1088
1089 /* Relinquish nvram interface. */
1090 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1091
1092 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1093 val = REG_RD(sc, BNX_NVM_SW_ARB);
1094 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1095 break;
1096
1097 DELAY(5);
1098 }
1099
1100 if (j >= NVRAM_TIMEOUT_COUNT) {
1101 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1102 return (EBUSY);
1103 }
1104
1105 return (0);
1106 }
1107
1108 #ifdef BNX_NVRAM_WRITE_SUPPORT
1109 /****************************************************************************/
1110 /* Enable NVRAM write access. */
1111 /* */
1112 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1113 /* */
1114 /* Returns: */
1115 /* 0 on success, positive value on failure. */
1116 /****************************************************************************/
1117 int
1118 bnx_enable_nvram_write(struct bnx_softc *sc)
1119 {
1120 u_int32_t val;
1121
1122 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1123
1124 val = REG_RD(sc, BNX_MISC_CFG);
1125 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1126
1127 if (!sc->bnx_flash_info->buffered) {
1128 int j;
1129
1130 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1131 REG_WR(sc, BNX_NVM_COMMAND,
1132 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1133
1134 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1135 DELAY(5);
1136
1137 val = REG_RD(sc, BNX_NVM_COMMAND);
1138 if (val & BNX_NVM_COMMAND_DONE)
1139 break;
1140 }
1141
1142 if (j >= NVRAM_TIMEOUT_COUNT) {
1143 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1144 return (EBUSY);
1145 }
1146 }
1147
1148 return (0);
1149 }
1150
1151 /****************************************************************************/
1152 /* Disable NVRAM write access. */
1153 /* */
1154 /* When the caller is finished writing to NVRAM write access must be */
1155 /* disabled. */
1156 /* */
1157 /* Returns: */
1158 /* Nothing. */
1159 /****************************************************************************/
1160 void
1161 bnx_disable_nvram_write(struct bnx_softc *sc)
1162 {
1163 u_int32_t val;
1164
1165 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1166
1167 val = REG_RD(sc, BNX_MISC_CFG);
1168 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1169 }
1170 #endif
1171
1172 /****************************************************************************/
1173 /* Enable NVRAM access. */
1174 /* */
1175 /* Before accessing NVRAM for read or write operations the caller must */
1176 /* enabled NVRAM access. */
1177 /* */
1178 /* Returns: */
1179 /* Nothing. */
1180 /****************************************************************************/
1181 void
1182 bnx_enable_nvram_access(struct bnx_softc *sc)
1183 {
1184 u_int32_t val;
1185
1186 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1187
1188 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1189 /* Enable both bits, even on read. */
1190 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1191 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1192 }
1193
1194 /****************************************************************************/
1195 /* Disable NVRAM access. */
1196 /* */
1197 /* When the caller is finished accessing NVRAM access must be disabled. */
1198 /* */
1199 /* Returns: */
1200 /* Nothing. */
1201 /****************************************************************************/
1202 void
1203 bnx_disable_nvram_access(struct bnx_softc *sc)
1204 {
1205 u_int32_t val;
1206
1207 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1208
1209 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1210
1211 /* Disable both bits, even after read. */
1212 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1213 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1214 }
1215
1216 #ifdef BNX_NVRAM_WRITE_SUPPORT
1217 /****************************************************************************/
1218 /* Erase NVRAM page before writing. */
1219 /* */
1220 /* Non-buffered flash parts require that a page be erased before it is */
1221 /* written. */
1222 /* */
1223 /* Returns: */
1224 /* 0 on success, positive value on failure. */
1225 /****************************************************************************/
1226 int
1227 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1228 {
1229 u_int32_t cmd;
1230 int j;
1231
1232 /* Buffered flash doesn't require an erase. */
1233 if (sc->bnx_flash_info->buffered)
1234 return (0);
1235
1236 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1237
1238 /* Build an erase command. */
1239 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1240 BNX_NVM_COMMAND_DOIT;
1241
1242 /*
1243 * Clear the DONE bit separately, set the NVRAM adress to erase,
1244 * and issue the erase command.
1245 */
1246 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1247 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1248 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1249
1250 /* Wait for completion. */
1251 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1252 u_int32_t val;
1253
1254 DELAY(5);
1255
1256 val = REG_RD(sc, BNX_NVM_COMMAND);
1257 if (val & BNX_NVM_COMMAND_DONE)
1258 break;
1259 }
1260
1261 if (j >= NVRAM_TIMEOUT_COUNT) {
1262 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1263 return (EBUSY);
1264 }
1265
1266 return (0);
1267 }
1268 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1269
1270 /****************************************************************************/
1271 /* Read a dword (32 bits) from NVRAM. */
1272 /* */
1273 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1274 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1275 /* */
1276 /* Returns: */
1277 /* 0 on success and the 32 bit value read, positive value on failure. */
1278 /****************************************************************************/
1279 int
1280 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1281 u_int8_t *ret_val, u_int32_t cmd_flags)
1282 {
1283 u_int32_t cmd;
1284 int i, rc = 0;
1285
1286 /* Build the command word. */
1287 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1288
1289 /* Calculate the offset for buffered flash. */
1290 if (sc->bnx_flash_info->buffered)
1291 offset = ((offset / sc->bnx_flash_info->page_size) <<
1292 sc->bnx_flash_info->page_bits) +
1293 (offset % sc->bnx_flash_info->page_size);
1294
1295 /*
1296 * Clear the DONE bit separately, set the address to read,
1297 * and issue the read.
1298 */
1299 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1300 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1301 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1302
1303 /* Wait for completion. */
1304 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1305 u_int32_t val;
1306
1307 DELAY(5);
1308
1309 val = REG_RD(sc, BNX_NVM_COMMAND);
1310 if (val & BNX_NVM_COMMAND_DONE) {
1311 val = REG_RD(sc, BNX_NVM_READ);
1312
1313 val = bnx_be32toh(val);
1314 memcpy(ret_val, &val, 4);
1315 break;
1316 }
1317 }
1318
1319 /* Check for errors. */
1320 if (i >= NVRAM_TIMEOUT_COUNT) {
1321 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1322 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1323 rc = EBUSY;
1324 }
1325
1326 return(rc);
1327 }
1328
1329 #ifdef BNX_NVRAM_WRITE_SUPPORT
1330 /****************************************************************************/
1331 /* Write a dword (32 bits) to NVRAM. */
1332 /* */
1333 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1334 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1335 /* enabled NVRAM write access. */
1336 /* */
1337 /* Returns: */
1338 /* 0 on success, positive value on failure. */
1339 /****************************************************************************/
1340 int
1341 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1342 u_int32_t cmd_flags)
1343 {
1344 u_int32_t cmd, val32;
1345 int j;
1346
1347 /* Build the command word. */
1348 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1349
1350 /* Calculate the offset for buffered flash. */
1351 if (sc->bnx_flash_info->buffered)
1352 offset = ((offset / sc->bnx_flash_info->page_size) <<
1353 sc->bnx_flash_info->page_bits) +
1354 (offset % sc->bnx_flash_info->page_size);
1355
1356 /*
1357 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1358 * set the NVRAM address to write, and issue the write command
1359 */
1360 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1361 memcpy(&val32, val, 4);
1362 val32 = htobe32(val32);
1363 REG_WR(sc, BNX_NVM_WRITE, val32);
1364 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1365 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1366
1367 /* Wait for completion. */
1368 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1369 DELAY(5);
1370
1371 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1372 break;
1373 }
1374 if (j >= NVRAM_TIMEOUT_COUNT) {
1375 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1376 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1377 return (EBUSY);
1378 }
1379
1380 return (0);
1381 }
1382 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1383
1384 /****************************************************************************/
1385 /* Initialize NVRAM access. */
1386 /* */
1387 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1388 /* access that device. */
1389 /* */
1390 /* Returns: */
1391 /* 0 on success, positive value on failure. */
1392 /****************************************************************************/
1393 int
1394 bnx_init_nvram(struct bnx_softc *sc)
1395 {
1396 u_int32_t val;
1397 int j, entry_count, rc;
1398 struct flash_spec *flash;
1399
1400 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1401
1402 /* Determine the selected interface. */
1403 val = REG_RD(sc, BNX_NVM_CFG1);
1404
1405 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1406
1407 rc = 0;
1408
1409 /*
1410 * Flash reconfiguration is required to support additional
1411 * NVRAM devices not directly supported in hardware.
1412 * Check if the flash interface was reconfigured
1413 * by the bootcode.
1414 */
1415
1416 if (val & 0x40000000) {
1417 /* Flash interface reconfigured by bootcode. */
1418
1419 DBPRINT(sc,BNX_INFO_LOAD,
1420 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1421
1422 for (j = 0, flash = &flash_table[0]; j < entry_count;
1423 j++, flash++) {
1424 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1425 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1426 sc->bnx_flash_info = flash;
1427 break;
1428 }
1429 }
1430 } else {
1431 /* Flash interface not yet reconfigured. */
1432 u_int32_t mask;
1433
1434 DBPRINT(sc,BNX_INFO_LOAD,
1435 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1436
1437 if (val & (1 << 23))
1438 mask = FLASH_BACKUP_STRAP_MASK;
1439 else
1440 mask = FLASH_STRAP_MASK;
1441
1442 /* Look for the matching NVRAM device configuration data. */
1443 for (j = 0, flash = &flash_table[0]; j < entry_count;
1444 j++, flash++) {
1445 /* Check if the dev matches any of the known devices. */
1446 if ((val & mask) == (flash->strapping & mask)) {
1447 /* Found a device match. */
1448 sc->bnx_flash_info = flash;
1449
1450 /* Request access to the flash interface. */
1451 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1452 return (rc);
1453
1454 /* Reconfigure the flash interface. */
1455 bnx_enable_nvram_access(sc);
1456 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1457 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1458 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1459 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1460 bnx_disable_nvram_access(sc);
1461 bnx_release_nvram_lock(sc);
1462
1463 break;
1464 }
1465 }
1466 }
1467
1468 /* Check if a matching device was found. */
1469 if (j == entry_count) {
1470 sc->bnx_flash_info = NULL;
1471 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1472 __FILE__, __LINE__);
1473 rc = ENODEV;
1474 }
1475
1476 /* Write the flash config data to the shared memory interface. */
1477 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1478 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1479 if (val)
1480 sc->bnx_flash_size = val;
1481 else
1482 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1483
1484 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1485 "0x%08X\n", sc->bnx_flash_info->total_size);
1486
1487 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1488
1489 return (rc);
1490 }
1491
1492 /****************************************************************************/
1493 /* Read an arbitrary range of data from NVRAM. */
1494 /* */
1495 /* Prepares the NVRAM interface for access and reads the requested data */
1496 /* into the supplied buffer. */
1497 /* */
1498 /* Returns: */
1499 /* 0 on success and the data read, positive value on failure. */
1500 /****************************************************************************/
1501 int
1502 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1503 int buf_size)
1504 {
1505 int rc = 0;
1506 u_int32_t cmd_flags, offset32, len32, extra;
1507
1508 if (buf_size == 0)
1509 return (0);
1510
1511 /* Request access to the flash interface. */
1512 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1513 return (rc);
1514
1515 /* Enable access to flash interface */
1516 bnx_enable_nvram_access(sc);
1517
1518 len32 = buf_size;
1519 offset32 = offset;
1520 extra = 0;
1521
1522 cmd_flags = 0;
1523
1524 if (offset32 & 3) {
1525 u_int8_t buf[4];
1526 u_int32_t pre_len;
1527
1528 offset32 &= ~3;
1529 pre_len = 4 - (offset & 3);
1530
1531 if (pre_len >= len32) {
1532 pre_len = len32;
1533 cmd_flags =
1534 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1535 } else
1536 cmd_flags = BNX_NVM_COMMAND_FIRST;
1537
1538 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1539
1540 if (rc)
1541 return (rc);
1542
1543 memcpy(ret_buf, buf + (offset & 3), pre_len);
1544
1545 offset32 += 4;
1546 ret_buf += pre_len;
1547 len32 -= pre_len;
1548 }
1549
1550 if (len32 & 3) {
1551 extra = 4 - (len32 & 3);
1552 len32 = (len32 + 4) & ~3;
1553 }
1554
1555 if (len32 == 4) {
1556 u_int8_t buf[4];
1557
1558 if (cmd_flags)
1559 cmd_flags = BNX_NVM_COMMAND_LAST;
1560 else
1561 cmd_flags =
1562 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1563
1564 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1565
1566 memcpy(ret_buf, buf, 4 - extra);
1567 } else if (len32 > 0) {
1568 u_int8_t buf[4];
1569
1570 /* Read the first word. */
1571 if (cmd_flags)
1572 cmd_flags = 0;
1573 else
1574 cmd_flags = BNX_NVM_COMMAND_FIRST;
1575
1576 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1577
1578 /* Advance to the next dword. */
1579 offset32 += 4;
1580 ret_buf += 4;
1581 len32 -= 4;
1582
1583 while (len32 > 4 && rc == 0) {
1584 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1585
1586 /* Advance to the next dword. */
1587 offset32 += 4;
1588 ret_buf += 4;
1589 len32 -= 4;
1590 }
1591
1592 if (rc)
1593 return (rc);
1594
1595 cmd_flags = BNX_NVM_COMMAND_LAST;
1596 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1597
1598 memcpy(ret_buf, buf, 4 - extra);
1599 }
1600
1601 /* Disable access to flash interface and release the lock. */
1602 bnx_disable_nvram_access(sc);
1603 bnx_release_nvram_lock(sc);
1604
1605 return (rc);
1606 }
1607
1608 #ifdef BNX_NVRAM_WRITE_SUPPORT
1609 /****************************************************************************/
1610 /* Write an arbitrary range of data from NVRAM. */
1611 /* */
1612 /* Prepares the NVRAM interface for write access and writes the requested */
1613 /* data from the supplied buffer. The caller is responsible for */
1614 /* calculating any appropriate CRCs. */
1615 /* */
1616 /* Returns: */
1617 /* 0 on success, positive value on failure. */
1618 /****************************************************************************/
1619 int
1620 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1621 int buf_size)
1622 {
1623 u_int32_t written, offset32, len32;
1624 u_int8_t *buf, start[4], end[4];
1625 int rc = 0;
1626 int align_start, align_end;
1627
1628 buf = data_buf;
1629 offset32 = offset;
1630 len32 = buf_size;
1631 align_start = align_end = 0;
1632
1633 if ((align_start = (offset32 & 3))) {
1634 offset32 &= ~3;
1635 len32 += align_start;
1636 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1637 return (rc);
1638 }
1639
1640 if (len32 & 3) {
1641 if ((len32 > 4) || !align_start) {
1642 align_end = 4 - (len32 & 3);
1643 len32 += align_end;
1644 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1645 end, 4))) {
1646 return (rc);
1647 }
1648 }
1649 }
1650
1651 if (align_start || align_end) {
1652 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1653 if (buf == 0)
1654 return (ENOMEM);
1655
1656 if (align_start)
1657 memcpy(buf, start, 4);
1658
1659 if (align_end)
1660 memcpy(buf + len32 - 4, end, 4);
1661
1662 memcpy(buf + align_start, data_buf, buf_size);
1663 }
1664
1665 written = 0;
1666 while ((written < len32) && (rc == 0)) {
1667 u_int32_t page_start, page_end, data_start, data_end;
1668 u_int32_t addr, cmd_flags;
1669 int i;
1670 u_int8_t flash_buffer[264];
1671
1672 /* Find the page_start addr */
1673 page_start = offset32 + written;
1674 page_start -= (page_start % sc->bnx_flash_info->page_size);
1675 /* Find the page_end addr */
1676 page_end = page_start + sc->bnx_flash_info->page_size;
1677 /* Find the data_start addr */
1678 data_start = (written == 0) ? offset32 : page_start;
1679 /* Find the data_end addr */
1680 data_end = (page_end > offset32 + len32) ?
1681 (offset32 + len32) : page_end;
1682
1683 /* Request access to the flash interface. */
1684 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1685 goto nvram_write_end;
1686
1687 /* Enable access to flash interface */
1688 bnx_enable_nvram_access(sc);
1689
1690 cmd_flags = BNX_NVM_COMMAND_FIRST;
1691 if (sc->bnx_flash_info->buffered == 0) {
1692 int j;
1693
1694 /* Read the whole page into the buffer
1695 * (non-buffer flash only) */
1696 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1697 if (j == (sc->bnx_flash_info->page_size - 4))
1698 cmd_flags |= BNX_NVM_COMMAND_LAST;
1699
1700 rc = bnx_nvram_read_dword(sc,
1701 page_start + j,
1702 &flash_buffer[j],
1703 cmd_flags);
1704
1705 if (rc)
1706 goto nvram_write_end;
1707
1708 cmd_flags = 0;
1709 }
1710 }
1711
1712 /* Enable writes to flash interface (unlock write-protect) */
1713 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1714 goto nvram_write_end;
1715
1716 /* Erase the page */
1717 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1718 goto nvram_write_end;
1719
1720 /* Re-enable the write again for the actual write */
1721 bnx_enable_nvram_write(sc);
1722
1723 /* Loop to write back the buffer data from page_start to
1724 * data_start */
1725 i = 0;
1726 if (sc->bnx_flash_info->buffered == 0) {
1727 for (addr = page_start; addr < data_start;
1728 addr += 4, i += 4) {
1729
1730 rc = bnx_nvram_write_dword(sc, addr,
1731 &flash_buffer[i], cmd_flags);
1732
1733 if (rc != 0)
1734 goto nvram_write_end;
1735
1736 cmd_flags = 0;
1737 }
1738 }
1739
1740 /* Loop to write the new data from data_start to data_end */
1741 for (addr = data_start; addr < data_end; addr += 4, i++) {
1742 if ((addr == page_end - 4) ||
1743 ((sc->bnx_flash_info->buffered) &&
1744 (addr == data_end - 4))) {
1745
1746 cmd_flags |= BNX_NVM_COMMAND_LAST;
1747 }
1748
1749 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1750
1751 if (rc != 0)
1752 goto nvram_write_end;
1753
1754 cmd_flags = 0;
1755 buf += 4;
1756 }
1757
1758 /* Loop to write back the buffer data from data_end
1759 * to page_end */
1760 if (sc->bnx_flash_info->buffered == 0) {
1761 for (addr = data_end; addr < page_end;
1762 addr += 4, i += 4) {
1763
1764 if (addr == page_end-4)
1765 cmd_flags = BNX_NVM_COMMAND_LAST;
1766
1767 rc = bnx_nvram_write_dword(sc, addr,
1768 &flash_buffer[i], cmd_flags);
1769
1770 if (rc != 0)
1771 goto nvram_write_end;
1772
1773 cmd_flags = 0;
1774 }
1775 }
1776
1777 /* Disable writes to flash interface (lock write-protect) */
1778 bnx_disable_nvram_write(sc);
1779
1780 /* Disable access to flash interface */
1781 bnx_disable_nvram_access(sc);
1782 bnx_release_nvram_lock(sc);
1783
1784 /* Increment written */
1785 written += data_end - data_start;
1786 }
1787
1788 nvram_write_end:
1789 if (align_start || align_end)
1790 free(buf, M_DEVBUF);
1791
1792 return (rc);
1793 }
1794 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1795
1796 /****************************************************************************/
1797 /* Verifies that NVRAM is accessible and contains valid data. */
1798 /* */
1799 /* Reads the configuration data from NVRAM and verifies that the CRC is */
1800 /* correct. */
1801 /* */
1802 /* Returns: */
1803 /* 0 on success, positive value on failure. */
1804 /****************************************************************************/
1805 int
1806 bnx_nvram_test(struct bnx_softc *sc)
1807 {
1808 u_int32_t buf[BNX_NVRAM_SIZE / 4];
1809 u_int8_t *data = (u_int8_t *) buf;
1810 int rc = 0;
1811 u_int32_t magic, csum;
1812
1813 /*
1814 * Check that the device NVRAM is valid by reading
1815 * the magic value at offset 0.
1816 */
1817 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1818 goto bnx_nvram_test_done;
1819
1820 magic = bnx_be32toh(buf[0]);
1821 if (magic != BNX_NVRAM_MAGIC) {
1822 rc = ENODEV;
1823 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1824 "Expected: 0x%08X, Found: 0x%08X\n",
1825 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1826 goto bnx_nvram_test_done;
1827 }
1828
1829 /*
1830 * Verify that the device NVRAM includes valid
1831 * configuration data.
1832 */
1833 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1834 goto bnx_nvram_test_done;
1835
1836 csum = ether_crc32_le(data, 0x100);
1837 if (csum != BNX_CRC32_RESIDUAL) {
1838 rc = ENODEV;
1839 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1840 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1841 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1842 goto bnx_nvram_test_done;
1843 }
1844
1845 csum = ether_crc32_le(data + 0x100, 0x100);
1846 if (csum != BNX_CRC32_RESIDUAL) {
1847 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1848 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1849 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1850 rc = ENODEV;
1851 }
1852
1853 bnx_nvram_test_done:
1854 return (rc);
1855 }
1856
1857 /****************************************************************************/
1858 /* Free any DMA memory owned by the driver. */
1859 /* */
1860 /* Scans through each data structre that requires DMA memory and frees */
1861 /* the memory if allocated. */
1862 /* */
1863 /* Returns: */
1864 /* Nothing. */
1865 /****************************************************************************/
1866 void
1867 bnx_dma_free(struct bnx_softc *sc)
1868 {
1869 int i;
1870
1871 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1872
1873 /* Destroy the status block. */
1874 if (sc->status_block != NULL && sc->status_map != NULL) {
1875 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
1876 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
1877 BNX_STATUS_BLK_SZ);
1878 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
1879 sc->status_rseg);
1880 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
1881 sc->status_block = NULL;
1882 sc->status_map = NULL;
1883 }
1884
1885 /* Destroy the statistics block. */
1886 if (sc->stats_block != NULL && sc->stats_map != NULL) {
1887 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
1888 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
1889 BNX_STATS_BLK_SZ);
1890 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
1891 sc->stats_rseg);
1892 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
1893 sc->stats_block = NULL;
1894 sc->stats_map = NULL;
1895 }
1896
1897 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
1898 for (i = 0; i < TX_PAGES; i++ ) {
1899 if (sc->tx_bd_chain[i] != NULL &&
1900 sc->tx_bd_chain_map[i] != NULL) {
1901 bus_dmamap_unload(sc->bnx_dmatag,
1902 sc->tx_bd_chain_map[i]);
1903 bus_dmamem_unmap(sc->bnx_dmatag,
1904 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
1905 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
1906 sc->tx_bd_chain_rseg[i]);
1907 bus_dmamap_destroy(sc->bnx_dmatag,
1908 sc->tx_bd_chain_map[i]);
1909 sc->tx_bd_chain[i] = NULL;
1910 sc->tx_bd_chain_map[i] = NULL;
1911 }
1912 }
1913
1914 /* Unload and destroy the TX mbuf maps. */
1915 for (i = 0; i < TOTAL_TX_BD; i++) {
1916 if (sc->tx_mbuf_map[i] != NULL) {
1917 bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1918 bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1919 }
1920 }
1921
1922 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
1923 for (i = 0; i < RX_PAGES; i++ ) {
1924 if (sc->rx_bd_chain[i] != NULL &&
1925 sc->rx_bd_chain_map[i] != NULL) {
1926 bus_dmamap_unload(sc->bnx_dmatag,
1927 sc->rx_bd_chain_map[i]);
1928 bus_dmamem_unmap(sc->bnx_dmatag,
1929 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
1930 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
1931 sc->rx_bd_chain_rseg[i]);
1932
1933 bus_dmamap_destroy(sc->bnx_dmatag,
1934 sc->rx_bd_chain_map[i]);
1935 sc->rx_bd_chain[i] = NULL;
1936 sc->rx_bd_chain_map[i] = NULL;
1937 }
1938 }
1939
1940 /* Unload and destroy the RX mbuf maps. */
1941 for (i = 0; i < TOTAL_RX_BD; i++) {
1942 if (sc->rx_mbuf_map[i] != NULL) {
1943 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1944 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1945 }
1946 }
1947
1948 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1949 }
1950
1951 /****************************************************************************/
1952 /* Allocate any DMA memory needed by the driver. */
1953 /* */
1954 /* Allocates DMA memory needed for the various global structures needed by */
1955 /* hardware. */
1956 /* */
1957 /* Returns: */
1958 /* 0 for success, positive value for failure. */
1959 /****************************************************************************/
1960 int
1961 bnx_dma_alloc(struct bnx_softc *sc)
1962 {
1963 int i, rc = 0;
1964
1965 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1966
1967 /*
1968 * Allocate DMA memory for the status block, map the memory into DMA
1969 * space, and fetch the physical address of the block.
1970 */
1971 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
1972 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
1973 aprint_error_dev(sc->bnx_dev,
1974 "Could not create status block DMA map!\n");
1975 rc = ENOMEM;
1976 goto bnx_dma_alloc_exit;
1977 }
1978
1979 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
1980 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
1981 &sc->status_rseg, BUS_DMA_NOWAIT)) {
1982 aprint_error_dev(sc->bnx_dev,
1983 "Could not allocate status block DMA memory!\n");
1984 rc = ENOMEM;
1985 goto bnx_dma_alloc_exit;
1986 }
1987
1988 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
1989 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
1990 aprint_error_dev(sc->bnx_dev,
1991 "Could not map status block DMA memory!\n");
1992 rc = ENOMEM;
1993 goto bnx_dma_alloc_exit;
1994 }
1995
1996 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
1997 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
1998 aprint_error_dev(sc->bnx_dev,
1999 "Could not load status block DMA memory!\n");
2000 rc = ENOMEM;
2001 goto bnx_dma_alloc_exit;
2002 }
2003
2004 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2005 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2006
2007 /* DRC - Fix for 64 bit addresses. */
2008 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2009 (u_int32_t) sc->status_block_paddr);
2010
2011 /*
2012 * Allocate DMA memory for the statistics block, map the memory into
2013 * DMA space, and fetch the physical address of the block.
2014 */
2015 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2016 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2017 aprint_error_dev(sc->bnx_dev,
2018 "Could not create stats block DMA map!\n");
2019 rc = ENOMEM;
2020 goto bnx_dma_alloc_exit;
2021 }
2022
2023 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2024 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2025 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2026 aprint_error_dev(sc->bnx_dev,
2027 "Could not allocate stats block DMA memory!\n");
2028 rc = ENOMEM;
2029 goto bnx_dma_alloc_exit;
2030 }
2031
2032 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2033 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2034 aprint_error_dev(sc->bnx_dev,
2035 "Could not map stats block DMA memory!\n");
2036 rc = ENOMEM;
2037 goto bnx_dma_alloc_exit;
2038 }
2039
2040 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2041 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2042 aprint_error_dev(sc->bnx_dev,
2043 "Could not load status block DMA memory!\n");
2044 rc = ENOMEM;
2045 goto bnx_dma_alloc_exit;
2046 }
2047
2048 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2049 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2050
2051 /* DRC - Fix for 64 bit address. */
2052 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2053 (u_int32_t) sc->stats_block_paddr);
2054
2055 /*
2056 * Allocate DMA memory for the TX buffer descriptor chain,
2057 * and fetch the physical address of the block.
2058 */
2059 for (i = 0; i < TX_PAGES; i++) {
2060 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2061 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2062 &sc->tx_bd_chain_map[i])) {
2063 aprint_error_dev(sc->bnx_dev,
2064 "Could not create Tx desc %d DMA map!\n", i);
2065 rc = ENOMEM;
2066 goto bnx_dma_alloc_exit;
2067 }
2068
2069 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2070 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2071 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2072 aprint_error_dev(sc->bnx_dev,
2073 "Could not allocate TX desc %d DMA memory!\n",
2074 i);
2075 rc = ENOMEM;
2076 goto bnx_dma_alloc_exit;
2077 }
2078
2079 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2080 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2081 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2082 aprint_error_dev(sc->bnx_dev,
2083 "Could not map TX desc %d DMA memory!\n", i);
2084 rc = ENOMEM;
2085 goto bnx_dma_alloc_exit;
2086 }
2087
2088 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2089 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2090 BUS_DMA_NOWAIT)) {
2091 aprint_error_dev(sc->bnx_dev,
2092 "Could not load TX desc %d DMA memory!\n", i);
2093 rc = ENOMEM;
2094 goto bnx_dma_alloc_exit;
2095 }
2096
2097 sc->tx_bd_chain_paddr[i] =
2098 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2099
2100 /* DRC - Fix for 64 bit systems. */
2101 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2102 i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2103 }
2104
2105 /*
2106 * Create DMA maps for the TX buffer mbufs.
2107 */
2108 for (i = 0; i < TOTAL_TX_BD; i++) {
2109 if (bus_dmamap_create(sc->bnx_dmatag,
2110 MCLBYTES * BNX_MAX_SEGMENTS,
2111 USABLE_TX_BD - BNX_TX_SLACK_SPACE,
2112 MCLBYTES, 0, BUS_DMA_NOWAIT,
2113 &sc->tx_mbuf_map[i])) {
2114 aprint_error_dev(sc->bnx_dev,
2115 "Could not create Tx mbuf %d DMA map!\n", i);
2116 rc = ENOMEM;
2117 goto bnx_dma_alloc_exit;
2118 }
2119 }
2120
2121 /*
2122 * Allocate DMA memory for the Rx buffer descriptor chain,
2123 * and fetch the physical address of the block.
2124 */
2125 for (i = 0; i < RX_PAGES; i++) {
2126 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2127 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2128 &sc->rx_bd_chain_map[i])) {
2129 aprint_error_dev(sc->bnx_dev,
2130 "Could not create Rx desc %d DMA map!\n", i);
2131 rc = ENOMEM;
2132 goto bnx_dma_alloc_exit;
2133 }
2134
2135 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2136 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2137 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2138 aprint_error_dev(sc->bnx_dev,
2139 "Could not allocate Rx desc %d DMA memory!\n", i);
2140 rc = ENOMEM;
2141 goto bnx_dma_alloc_exit;
2142 }
2143
2144 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2145 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2146 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2147 aprint_error_dev(sc->bnx_dev,
2148 "Could not map Rx desc %d DMA memory!\n", i);
2149 rc = ENOMEM;
2150 goto bnx_dma_alloc_exit;
2151 }
2152
2153 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2154 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2155 BUS_DMA_NOWAIT)) {
2156 aprint_error_dev(sc->bnx_dev,
2157 "Could not load Rx desc %d DMA memory!\n", i);
2158 rc = ENOMEM;
2159 goto bnx_dma_alloc_exit;
2160 }
2161
2162 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2163 sc->rx_bd_chain_paddr[i] =
2164 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2165
2166 /* DRC - Fix for 64 bit systems. */
2167 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2168 i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2169 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2170 0, BNX_RX_CHAIN_PAGE_SZ,
2171 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2172 }
2173
2174 /*
2175 * Create DMA maps for the Rx buffer mbufs.
2176 */
2177 for (i = 0; i < TOTAL_RX_BD; i++) {
2178 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
2179 BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
2180 &sc->rx_mbuf_map[i])) {
2181 aprint_error_dev(sc->bnx_dev,
2182 "Could not create Rx mbuf %d DMA map!\n", i);
2183 rc = ENOMEM;
2184 goto bnx_dma_alloc_exit;
2185 }
2186 }
2187
2188 bnx_dma_alloc_exit:
2189 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2190
2191 return(rc);
2192 }
2193
2194 /****************************************************************************/
2195 /* Release all resources used by the driver. */
2196 /* */
2197 /* Releases all resources acquired by the driver including interrupts, */
2198 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2199 /* */
2200 /* Returns: */
2201 /* Nothing. */
2202 /****************************************************************************/
2203 void
2204 bnx_release_resources(struct bnx_softc *sc)
2205 {
2206 int i;
2207 struct pci_attach_args *pa = &(sc->bnx_pa);
2208
2209 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2210
2211 bnx_dma_free(sc);
2212
2213 if (sc->bnx_intrhand != NULL)
2214 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2215
2216 if (sc->bnx_size)
2217 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2218
2219 for (i = 0; i < TOTAL_RX_BD; i++)
2220 if (sc->rx_mbuf_map[i])
2221 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2222
2223 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2224 }
2225
2226 /****************************************************************************/
2227 /* Firmware synchronization. */
2228 /* */
2229 /* Before performing certain events such as a chip reset, synchronize with */
2230 /* the firmware first. */
2231 /* */
2232 /* Returns: */
2233 /* 0 for success, positive value for failure. */
2234 /****************************************************************************/
2235 int
2236 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2237 {
2238 int i, rc = 0;
2239 u_int32_t val;
2240
2241 /* Don't waste any time if we've timed out before. */
2242 if (sc->bnx_fw_timed_out) {
2243 rc = EBUSY;
2244 goto bnx_fw_sync_exit;
2245 }
2246
2247 /* Increment the message sequence number. */
2248 sc->bnx_fw_wr_seq++;
2249 msg_data |= sc->bnx_fw_wr_seq;
2250
2251 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2252 msg_data);
2253
2254 /* Send the message to the bootcode driver mailbox. */
2255 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2256
2257 /* Wait for the bootcode to acknowledge the message. */
2258 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2259 /* Check for a response in the bootcode firmware mailbox. */
2260 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2261 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2262 break;
2263 DELAY(1000);
2264 }
2265
2266 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2267 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2268 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2269 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2270 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2271
2272 msg_data &= ~BNX_DRV_MSG_CODE;
2273 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2274
2275 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2276
2277 sc->bnx_fw_timed_out = 1;
2278 rc = EBUSY;
2279 }
2280
2281 bnx_fw_sync_exit:
2282 return (rc);
2283 }
2284
2285 /****************************************************************************/
2286 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2287 /* */
2288 /* Returns: */
2289 /* Nothing. */
2290 /****************************************************************************/
2291 void
2292 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2293 u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2294 {
2295 int i;
2296 u_int32_t val;
2297
2298 for (i = 0; i < rv2p_code_len; i += 8) {
2299 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2300 rv2p_code++;
2301 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2302 rv2p_code++;
2303
2304 if (rv2p_proc == RV2P_PROC1) {
2305 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2306 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2307 }
2308 else {
2309 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2310 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2311 }
2312 }
2313
2314 /* Reset the processor, un-stall is done later. */
2315 if (rv2p_proc == RV2P_PROC1)
2316 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2317 else
2318 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2319 }
2320
2321 /****************************************************************************/
2322 /* Load RISC processor firmware. */
2323 /* */
2324 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2325 /* associated with a particular processor. */
2326 /* */
2327 /* Returns: */
2328 /* Nothing. */
2329 /****************************************************************************/
2330 void
2331 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2332 struct fw_info *fw)
2333 {
2334 u_int32_t offset;
2335 u_int32_t val;
2336
2337 /* Halt the CPU. */
2338 val = REG_RD_IND(sc, cpu_reg->mode);
2339 val |= cpu_reg->mode_value_halt;
2340 REG_WR_IND(sc, cpu_reg->mode, val);
2341 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2342
2343 /* Load the Text area. */
2344 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2345 if (fw->text) {
2346 int j;
2347
2348 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2349 REG_WR_IND(sc, offset, fw->text[j]);
2350 }
2351
2352 /* Load the Data area. */
2353 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2354 if (fw->data) {
2355 int j;
2356
2357 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2358 REG_WR_IND(sc, offset, fw->data[j]);
2359 }
2360
2361 /* Load the SBSS area. */
2362 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2363 if (fw->sbss) {
2364 int j;
2365
2366 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2367 REG_WR_IND(sc, offset, fw->sbss[j]);
2368 }
2369
2370 /* Load the BSS area. */
2371 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2372 if (fw->bss) {
2373 int j;
2374
2375 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2376 REG_WR_IND(sc, offset, fw->bss[j]);
2377 }
2378
2379 /* Load the Read-Only area. */
2380 offset = cpu_reg->spad_base +
2381 (fw->rodata_addr - cpu_reg->mips_view_base);
2382 if (fw->rodata) {
2383 int j;
2384
2385 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2386 REG_WR_IND(sc, offset, fw->rodata[j]);
2387 }
2388
2389 /* Clear the pre-fetch instruction. */
2390 REG_WR_IND(sc, cpu_reg->inst, 0);
2391 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2392
2393 /* Start the CPU. */
2394 val = REG_RD_IND(sc, cpu_reg->mode);
2395 val &= ~cpu_reg->mode_value_halt;
2396 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2397 REG_WR_IND(sc, cpu_reg->mode, val);
2398 }
2399
2400 /****************************************************************************/
2401 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2402 /* */
2403 /* Loads the firmware for each CPU and starts the CPU. */
2404 /* */
2405 /* Returns: */
2406 /* Nothing. */
2407 /****************************************************************************/
2408 void
2409 bnx_init_cpus(struct bnx_softc *sc)
2410 {
2411 struct cpu_reg cpu_reg;
2412 struct fw_info fw;
2413
2414 /* Initialize the RV2P processor. */
2415 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2416 RV2P_PROC1);
2417 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2418 RV2P_PROC2);
2419
2420 /* Initialize the RX Processor. */
2421 cpu_reg.mode = BNX_RXP_CPU_MODE;
2422 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2423 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2424 cpu_reg.state = BNX_RXP_CPU_STATE;
2425 cpu_reg.state_value_clear = 0xffffff;
2426 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2427 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2428 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2429 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2430 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2431 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2432 cpu_reg.mips_view_base = 0x8000000;
2433
2434 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2435 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2436 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2437 fw.start_addr = bnx_RXP_b06FwStartAddr;
2438
2439 fw.text_addr = bnx_RXP_b06FwTextAddr;
2440 fw.text_len = bnx_RXP_b06FwTextLen;
2441 fw.text_index = 0;
2442 fw.text = bnx_RXP_b06FwText;
2443
2444 fw.data_addr = bnx_RXP_b06FwDataAddr;
2445 fw.data_len = bnx_RXP_b06FwDataLen;
2446 fw.data_index = 0;
2447 fw.data = bnx_RXP_b06FwData;
2448
2449 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2450 fw.sbss_len = bnx_RXP_b06FwSbssLen;
2451 fw.sbss_index = 0;
2452 fw.sbss = bnx_RXP_b06FwSbss;
2453
2454 fw.bss_addr = bnx_RXP_b06FwBssAddr;
2455 fw.bss_len = bnx_RXP_b06FwBssLen;
2456 fw.bss_index = 0;
2457 fw.bss = bnx_RXP_b06FwBss;
2458
2459 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2460 fw.rodata_len = bnx_RXP_b06FwRodataLen;
2461 fw.rodata_index = 0;
2462 fw.rodata = bnx_RXP_b06FwRodata;
2463
2464 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2465 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2466
2467 /* Initialize the TX Processor. */
2468 cpu_reg.mode = BNX_TXP_CPU_MODE;
2469 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2470 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2471 cpu_reg.state = BNX_TXP_CPU_STATE;
2472 cpu_reg.state_value_clear = 0xffffff;
2473 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2474 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2475 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2476 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2477 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2478 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2479 cpu_reg.mips_view_base = 0x8000000;
2480
2481 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2482 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2483 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2484 fw.start_addr = bnx_TXP_b06FwStartAddr;
2485
2486 fw.text_addr = bnx_TXP_b06FwTextAddr;
2487 fw.text_len = bnx_TXP_b06FwTextLen;
2488 fw.text_index = 0;
2489 fw.text = bnx_TXP_b06FwText;
2490
2491 fw.data_addr = bnx_TXP_b06FwDataAddr;
2492 fw.data_len = bnx_TXP_b06FwDataLen;
2493 fw.data_index = 0;
2494 fw.data = bnx_TXP_b06FwData;
2495
2496 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2497 fw.sbss_len = bnx_TXP_b06FwSbssLen;
2498 fw.sbss_index = 0;
2499 fw.sbss = bnx_TXP_b06FwSbss;
2500
2501 fw.bss_addr = bnx_TXP_b06FwBssAddr;
2502 fw.bss_len = bnx_TXP_b06FwBssLen;
2503 fw.bss_index = 0;
2504 fw.bss = bnx_TXP_b06FwBss;
2505
2506 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
2507 fw.rodata_len = bnx_TXP_b06FwRodataLen;
2508 fw.rodata_index = 0;
2509 fw.rodata = bnx_TXP_b06FwRodata;
2510
2511 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2512 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2513
2514 /* Initialize the TX Patch-up Processor. */
2515 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2516 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2517 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2518 cpu_reg.state = BNX_TPAT_CPU_STATE;
2519 cpu_reg.state_value_clear = 0xffffff;
2520 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2521 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2522 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2523 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2524 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2525 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2526 cpu_reg.mips_view_base = 0x8000000;
2527
2528 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
2529 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
2530 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
2531 fw.start_addr = bnx_TPAT_b06FwStartAddr;
2532
2533 fw.text_addr = bnx_TPAT_b06FwTextAddr;
2534 fw.text_len = bnx_TPAT_b06FwTextLen;
2535 fw.text_index = 0;
2536 fw.text = bnx_TPAT_b06FwText;
2537
2538 fw.data_addr = bnx_TPAT_b06FwDataAddr;
2539 fw.data_len = bnx_TPAT_b06FwDataLen;
2540 fw.data_index = 0;
2541 fw.data = bnx_TPAT_b06FwData;
2542
2543 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
2544 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
2545 fw.sbss_index = 0;
2546 fw.sbss = bnx_TPAT_b06FwSbss;
2547
2548 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
2549 fw.bss_len = bnx_TPAT_b06FwBssLen;
2550 fw.bss_index = 0;
2551 fw.bss = bnx_TPAT_b06FwBss;
2552
2553 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
2554 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
2555 fw.rodata_index = 0;
2556 fw.rodata = bnx_TPAT_b06FwRodata;
2557
2558 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2559 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2560
2561 /* Initialize the Completion Processor. */
2562 cpu_reg.mode = BNX_COM_CPU_MODE;
2563 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2564 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2565 cpu_reg.state = BNX_COM_CPU_STATE;
2566 cpu_reg.state_value_clear = 0xffffff;
2567 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2568 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2569 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2570 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2571 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2572 cpu_reg.spad_base = BNX_COM_SCRATCH;
2573 cpu_reg.mips_view_base = 0x8000000;
2574
2575 fw.ver_major = bnx_COM_b06FwReleaseMajor;
2576 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
2577 fw.ver_fix = bnx_COM_b06FwReleaseFix;
2578 fw.start_addr = bnx_COM_b06FwStartAddr;
2579
2580 fw.text_addr = bnx_COM_b06FwTextAddr;
2581 fw.text_len = bnx_COM_b06FwTextLen;
2582 fw.text_index = 0;
2583 fw.text = bnx_COM_b06FwText;
2584
2585 fw.data_addr = bnx_COM_b06FwDataAddr;
2586 fw.data_len = bnx_COM_b06FwDataLen;
2587 fw.data_index = 0;
2588 fw.data = bnx_COM_b06FwData;
2589
2590 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
2591 fw.sbss_len = bnx_COM_b06FwSbssLen;
2592 fw.sbss_index = 0;
2593 fw.sbss = bnx_COM_b06FwSbss;
2594
2595 fw.bss_addr = bnx_COM_b06FwBssAddr;
2596 fw.bss_len = bnx_COM_b06FwBssLen;
2597 fw.bss_index = 0;
2598 fw.bss = bnx_COM_b06FwBss;
2599
2600 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
2601 fw.rodata_len = bnx_COM_b06FwRodataLen;
2602 fw.rodata_index = 0;
2603 fw.rodata = bnx_COM_b06FwRodata;
2604
2605 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2606 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2607 }
2608
2609 /****************************************************************************/
2610 /* Initialize context memory. */
2611 /* */
2612 /* Clears the memory associated with each Context ID (CID). */
2613 /* */
2614 /* Returns: */
2615 /* Nothing. */
2616 /****************************************************************************/
2617 void
2618 bnx_init_context(struct bnx_softc *sc)
2619 {
2620 u_int32_t vcid;
2621
2622 vcid = 96;
2623 while (vcid) {
2624 u_int32_t vcid_addr, pcid_addr, offset;
2625
2626 vcid--;
2627
2628 vcid_addr = GET_CID_ADDR(vcid);
2629 pcid_addr = vcid_addr;
2630
2631 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
2632 REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2633
2634 /* Zero out the context. */
2635 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2636 CTX_WR(sc, 0x00, offset, 0);
2637
2638 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
2639 REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2640 }
2641 }
2642
2643 /****************************************************************************/
2644 /* Fetch the permanent MAC address of the controller. */
2645 /* */
2646 /* Returns: */
2647 /* Nothing. */
2648 /****************************************************************************/
2649 void
2650 bnx_get_mac_addr(struct bnx_softc *sc)
2651 {
2652 u_int32_t mac_lo = 0, mac_hi = 0;
2653
2654 /*
2655 * The NetXtreme II bootcode populates various NIC
2656 * power-on and runtime configuration items in a
2657 * shared memory area. The factory configured MAC
2658 * address is available from both NVRAM and the
2659 * shared memory area so we'll read the value from
2660 * shared memory for speed.
2661 */
2662
2663 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
2664 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
2665
2666 if ((mac_lo == 0) && (mac_hi == 0)) {
2667 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
2668 __FILE__, __LINE__);
2669 } else {
2670 sc->eaddr[0] = (u_char)(mac_hi >> 8);
2671 sc->eaddr[1] = (u_char)(mac_hi >> 0);
2672 sc->eaddr[2] = (u_char)(mac_lo >> 24);
2673 sc->eaddr[3] = (u_char)(mac_lo >> 16);
2674 sc->eaddr[4] = (u_char)(mac_lo >> 8);
2675 sc->eaddr[5] = (u_char)(mac_lo >> 0);
2676 }
2677
2678 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
2679 "%s\n", ether_sprintf(sc->eaddr));
2680 }
2681
2682 /****************************************************************************/
2683 /* Program the MAC address. */
2684 /* */
2685 /* Returns: */
2686 /* Nothing. */
2687 /****************************************************************************/
2688 void
2689 bnx_set_mac_addr(struct bnx_softc *sc)
2690 {
2691 u_int32_t val;
2692 const u_int8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
2693
2694 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
2695 "%s\n", ether_sprintf(sc->eaddr));
2696
2697 val = (mac_addr[0] << 8) | mac_addr[1];
2698
2699 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
2700
2701 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2702 (mac_addr[4] << 8) | mac_addr[5];
2703
2704 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
2705 }
2706
2707 /****************************************************************************/
2708 /* Stop the controller. */
2709 /* */
2710 /* Returns: */
2711 /* Nothing. */
2712 /****************************************************************************/
2713 void
2714 bnx_stop(struct ifnet *ifp, int disable)
2715 {
2716 struct bnx_softc *sc = ifp->if_softc;
2717
2718 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2719
2720 if ((ifp->if_flags & IFF_RUNNING) == 0)
2721 return;
2722
2723 callout_stop(&sc->bnx_timeout);
2724
2725 mii_down(&sc->bnx_mii);
2726
2727 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2728
2729 /* Disable the transmit/receive blocks. */
2730 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
2731 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2732 DELAY(20);
2733
2734 bnx_disable_intr(sc);
2735
2736 /* Tell firmware that the driver is going away. */
2737 if (disable)
2738 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
2739 else
2740 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
2741
2742 /* Free the RX lists. */
2743 bnx_free_rx_chain(sc);
2744
2745 /* Free TX buffers. */
2746 bnx_free_tx_chain(sc);
2747
2748 ifp->if_timer = 0;
2749
2750 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2751
2752 }
2753
2754 int
2755 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
2756 {
2757 u_int32_t val;
2758 int i, rc = 0;
2759
2760 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2761
2762 /* Wait for pending PCI transactions to complete. */
2763 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
2764 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
2765 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
2766 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
2767 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
2768 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2769 DELAY(5);
2770
2771 /* Assume bootcode is running. */
2772 sc->bnx_fw_timed_out = 0;
2773
2774 /* Give the firmware a chance to prepare for the reset. */
2775 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
2776 if (rc)
2777 goto bnx_reset_exit;
2778
2779 /* Set a firmware reminder that this is a soft reset. */
2780 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
2781 BNX_DRV_RESET_SIGNATURE_MAGIC);
2782
2783 /* Dummy read to force the chip to complete all current transactions. */
2784 val = REG_RD(sc, BNX_MISC_ID);
2785
2786 /* Chip reset. */
2787 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2788 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
2789 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
2790 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
2791
2792 /* Allow up to 30us for reset to complete. */
2793 for (i = 0; i < 10; i++) {
2794 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
2795 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2796 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
2797 break;
2798
2799 DELAY(10);
2800 }
2801
2802 /* Check that reset completed successfully. */
2803 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2804 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
2805 BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
2806 rc = EBUSY;
2807 goto bnx_reset_exit;
2808 }
2809
2810 /* Make sure byte swapping is properly configured. */
2811 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
2812 if (val != 0x01020304) {
2813 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
2814 __FILE__, __LINE__);
2815 rc = ENODEV;
2816 goto bnx_reset_exit;
2817 }
2818
2819 /* Just completed a reset, assume that firmware is running again. */
2820 sc->bnx_fw_timed_out = 0;
2821
2822 /* Wait for the firmware to finish its initialization. */
2823 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
2824 if (rc)
2825 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
2826 "initialization!\n", __FILE__, __LINE__);
2827
2828 bnx_reset_exit:
2829 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2830
2831 return (rc);
2832 }
2833
2834 int
2835 bnx_chipinit(struct bnx_softc *sc)
2836 {
2837 struct pci_attach_args *pa = &(sc->bnx_pa);
2838 u_int32_t val;
2839 int rc = 0;
2840
2841 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2842
2843 /* Make sure the interrupt is not active. */
2844 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
2845
2846 /* Initialize DMA byte/word swapping, configure the number of DMA */
2847 /* channels and PCI clock compensation delay. */
2848 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
2849 BNX_DMA_CONFIG_DATA_WORD_SWAP |
2850 #if BYTE_ORDER == BIG_ENDIAN
2851 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
2852 #endif
2853 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
2854 DMA_READ_CHANS << 12 |
2855 DMA_WRITE_CHANS << 16;
2856
2857 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
2858
2859 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
2860 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
2861
2862 /*
2863 * This setting resolves a problem observed on certain Intel PCI
2864 * chipsets that cannot handle multiple outstanding DMA operations.
2865 * See errata E9_5706A1_65.
2866 */
2867 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
2868 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
2869 !(sc->bnx_flags & BNX_PCIX_FLAG))
2870 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
2871
2872 REG_WR(sc, BNX_DMA_CONFIG, val);
2873
2874 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
2875 if (sc->bnx_flags & BNX_PCIX_FLAG) {
2876 u_int16_t nval;
2877
2878 nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
2879 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
2880 nval & ~0x20000);
2881 }
2882
2883 /* Enable the RX_V2P and Context state machines before access. */
2884 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
2885 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
2886 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
2887 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
2888
2889 /* Initialize context mapping and zero out the quick contexts. */
2890 bnx_init_context(sc);
2891
2892 /* Initialize the on-boards CPUs */
2893 bnx_init_cpus(sc);
2894
2895 /* Prepare NVRAM for access. */
2896 if (bnx_init_nvram(sc)) {
2897 rc = ENODEV;
2898 goto bnx_chipinit_exit;
2899 }
2900
2901 /* Set the kernel bypass block size */
2902 val = REG_RD(sc, BNX_MQ_CONFIG);
2903 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
2904 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
2905 REG_WR(sc, BNX_MQ_CONFIG, val);
2906
2907 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
2908 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
2909 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
2910
2911 val = (BCM_PAGE_BITS - 8) << 24;
2912 REG_WR(sc, BNX_RV2P_CONFIG, val);
2913
2914 /* Configure page size. */
2915 val = REG_RD(sc, BNX_TBDR_CONFIG);
2916 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
2917 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
2918 REG_WR(sc, BNX_TBDR_CONFIG, val);
2919
2920 bnx_chipinit_exit:
2921 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2922
2923 return(rc);
2924 }
2925
2926 /****************************************************************************/
2927 /* Initialize the controller in preparation to send/receive traffic. */
2928 /* */
2929 /* Returns: */
2930 /* 0 for success, positive value for failure. */
2931 /****************************************************************************/
2932 int
2933 bnx_blockinit(struct bnx_softc *sc)
2934 {
2935 u_int32_t reg, val;
2936 int rc = 0;
2937
2938 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2939
2940 /* Load the hardware default MAC address. */
2941 bnx_set_mac_addr(sc);
2942
2943 /* Set the Ethernet backoff seed value */
2944 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
2945 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
2946 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
2947
2948 sc->last_status_idx = 0;
2949 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
2950
2951 /* Set up link change interrupt generation. */
2952 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
2953
2954 /* Program the physical address of the status block. */
2955 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
2956 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
2957 (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
2958
2959 /* Program the physical address of the statistics block. */
2960 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
2961 (u_int32_t)(sc->stats_block_paddr));
2962 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
2963 (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
2964
2965 /* Program various host coalescing parameters. */
2966 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
2967 << 16) | sc->bnx_tx_quick_cons_trip);
2968 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
2969 << 16) | sc->bnx_rx_quick_cons_trip);
2970 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
2971 sc->bnx_comp_prod_trip);
2972 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
2973 sc->bnx_tx_ticks);
2974 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
2975 sc->bnx_rx_ticks);
2976 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
2977 sc->bnx_com_ticks);
2978 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
2979 sc->bnx_cmd_ticks);
2980 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
2981 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
2982 REG_WR(sc, BNX_HC_CONFIG,
2983 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
2984 BNX_HC_CONFIG_COLLECT_STATS));
2985
2986 /* Clear the internal statistics counters. */
2987 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
2988
2989 /* Verify that bootcode is running. */
2990 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
2991
2992 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
2993 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
2994 __FILE__, __LINE__); reg = 0);
2995
2996 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
2997 BNX_DEV_INFO_SIGNATURE_MAGIC) {
2998 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
2999 "Expected: 08%08X\n", __FILE__, __LINE__,
3000 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3001 BNX_DEV_INFO_SIGNATURE_MAGIC);
3002 rc = ENODEV;
3003 goto bnx_blockinit_exit;
3004 }
3005
3006 /* Check if any management firmware is running. */
3007 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3008 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3009 BNX_PORT_FEATURE_IMD_ENABLED)) {
3010 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3011 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3012 }
3013
3014 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3015 BNX_DEV_INFO_BC_REV);
3016
3017 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3018
3019 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3020 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3021
3022 /* Enable link state change interrupt generation. */
3023 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3024
3025 /* Enable all remaining blocks in the MAC. */
3026 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3027 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3028 DELAY(20);
3029
3030 bnx_blockinit_exit:
3031 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3032
3033 return (rc);
3034 }
3035
3036 static int
3037 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
3038 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3039 {
3040 bus_dmamap_t map;
3041 struct rx_bd *rxbd;
3042 u_int32_t addr;
3043 int i;
3044 #ifdef BNX_DEBUG
3045 u_int16_t debug_chain_prod = *chain_prod;
3046 #endif
3047 u_int16_t first_chain_prod;
3048
3049 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3050
3051 /* Map the mbuf cluster into device memory. */
3052 map = sc->rx_mbuf_map[*chain_prod];
3053 first_chain_prod = *chain_prod;
3054 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3055 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3056 __FILE__, __LINE__);
3057
3058 m_freem(m_new);
3059
3060 DBRUNIF(1, sc->rx_mbuf_alloc--);
3061
3062 return ENOBUFS;
3063 }
3064 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3065 BUS_DMASYNC_PREREAD);
3066
3067 /* Watch for overflow. */
3068 DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
3069 aprint_error_dev(sc->bnx_dev,
3070 "Too many free rx_bd (0x%04X > 0x%04X)!\n",
3071 sc->free_rx_bd, (u_int16_t)USABLE_RX_BD));
3072
3073 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3074 sc->rx_low_watermark = sc->free_rx_bd);
3075
3076 /*
3077 * Setup the rx_bd for the first segment
3078 */
3079 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3080
3081 addr = (u_int32_t)(map->dm_segs[0].ds_addr);
3082 rxbd->rx_bd_haddr_lo = htole32(addr);
3083 addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3084 rxbd->rx_bd_haddr_hi = htole32(addr);
3085 rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
3086 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3087 *prod_bseq += map->dm_segs[0].ds_len;
3088 bus_dmamap_sync(sc->bnx_dmatag,
3089 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3090 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3091 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3092
3093 for (i = 1; i < map->dm_nsegs; i++) {
3094 *prod = NEXT_RX_BD(*prod);
3095 *chain_prod = RX_CHAIN_IDX(*prod);
3096
3097 rxbd =
3098 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3099
3100 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
3101 rxbd->rx_bd_haddr_lo = htole32(addr);
3102 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3103 rxbd->rx_bd_haddr_hi = htole32(addr);
3104 rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
3105 rxbd->rx_bd_flags = 0;
3106 *prod_bseq += map->dm_segs[i].ds_len;
3107 bus_dmamap_sync(sc->bnx_dmatag,
3108 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3109 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3110 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3111 }
3112
3113 rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3114 bus_dmamap_sync(sc->bnx_dmatag,
3115 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3116 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3117 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3118
3119 /*
3120 * Save the mbuf, ajust the map pointer (swap map for first and
3121 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3122 * and update counter.
3123 */
3124 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3125 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3126 sc->rx_mbuf_map[*chain_prod] = map;
3127 sc->free_rx_bd -= map->dm_nsegs;
3128
3129 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3130 map->dm_nsegs));
3131 *prod = NEXT_RX_BD(*prod);
3132 *chain_prod = RX_CHAIN_IDX(*prod);
3133
3134 return 0;
3135 }
3136
3137 /****************************************************************************/
3138 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3139 /* */
3140 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3141 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3142 /* necessary. */
3143 /* */
3144 /* Returns: */
3145 /* 0 for success, positive value for failure. */
3146 /****************************************************************************/
3147 int
3148 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
3149 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3150 {
3151 struct mbuf *m_new = NULL;
3152 int rc = 0;
3153 u_int16_t min_free_bd;
3154
3155 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3156 __func__);
3157
3158 /* Make sure the inputs are valid. */
3159 DBRUNIF((*chain_prod > MAX_RX_BD),
3160 aprint_error_dev(sc->bnx_dev,
3161 "RX producer out of range: 0x%04X > 0x%04X\n",
3162 *chain_prod, (u_int16_t)MAX_RX_BD));
3163
3164 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3165 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3166 *prod_bseq);
3167
3168 /* try to get in as many mbufs as possible */
3169 if (sc->mbuf_alloc_size == MCLBYTES)
3170 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3171 else
3172 min_free_bd = (BNX_MAX_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3173 while (sc->free_rx_bd >= min_free_bd) {
3174 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3175 BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
3176
3177 sc->mbuf_alloc_failed++;
3178 rc = ENOBUFS;
3179 goto bnx_get_buf_exit);
3180
3181 /* This is a new mbuf allocation. */
3182 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3183 if (m_new == NULL) {
3184 DBPRINT(sc, BNX_WARN,
3185 "%s(%d): RX mbuf header allocation failed!\n",
3186 __FILE__, __LINE__);
3187
3188 DBRUNIF(1, sc->mbuf_alloc_failed++);
3189
3190 rc = ENOBUFS;
3191 goto bnx_get_buf_exit;
3192 }
3193
3194 DBRUNIF(1, sc->rx_mbuf_alloc++);
3195 if (sc->mbuf_alloc_size == MCLBYTES)
3196 MCLGET(m_new, M_DONTWAIT);
3197 else
3198 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3199 M_DONTWAIT);
3200 if (!(m_new->m_flags & M_EXT)) {
3201 DBPRINT(sc, BNX_WARN,
3202 "%s(%d): RX mbuf chain allocation failed!\n",
3203 __FILE__, __LINE__);
3204
3205 m_freem(m_new);
3206
3207 DBRUNIF(1, sc->rx_mbuf_alloc--);
3208 DBRUNIF(1, sc->mbuf_alloc_failed++);
3209
3210 rc = ENOBUFS;
3211 goto bnx_get_buf_exit;
3212 }
3213
3214 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3215 if (rc != 0)
3216 goto bnx_get_buf_exit;
3217 }
3218
3219 bnx_get_buf_exit:
3220 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3221 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3222 *chain_prod, *prod_bseq);
3223
3224 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3225 __func__);
3226
3227 return(rc);
3228 }
3229
3230 /****************************************************************************/
3231 /* Allocate memory and initialize the TX data structures. */
3232 /* */
3233 /* Returns: */
3234 /* 0 for success, positive value for failure. */
3235 /****************************************************************************/
3236 int
3237 bnx_init_tx_chain(struct bnx_softc *sc)
3238 {
3239 struct tx_bd *txbd;
3240 u_int32_t val, addr;
3241 int i, rc = 0;
3242
3243 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3244
3245 /* Set the initial TX producer/consumer indices. */
3246 sc->tx_prod = 0;
3247 sc->tx_cons = 0;
3248 sc->tx_prod_bseq = 0;
3249 sc->used_tx_bd = 0;
3250 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3251
3252 /*
3253 * The NetXtreme II supports a linked-list structure called
3254 * a Buffer Descriptor Chain (or BD chain). A BD chain
3255 * consists of a series of 1 or more chain pages, each of which
3256 * consists of a fixed number of BD entries.
3257 * The last BD entry on each page is a pointer to the next page
3258 * in the chain, and the last pointer in the BD chain
3259 * points back to the beginning of the chain.
3260 */
3261
3262 /* Set the TX next pointer chain entries. */
3263 for (i = 0; i < TX_PAGES; i++) {
3264 int j;
3265
3266 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3267
3268 /* Check if we've reached the last page. */
3269 if (i == (TX_PAGES - 1))
3270 j = 0;
3271 else
3272 j = i + 1;
3273
3274 addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
3275 txbd->tx_bd_haddr_lo = htole32(addr);
3276 addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3277 txbd->tx_bd_haddr_hi = htole32(addr);
3278 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3279 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3280 }
3281
3282 /*
3283 * Initialize the context ID for an L2 TX chain.
3284 */
3285 val = BNX_L2CTX_TYPE_TYPE_L2;
3286 val |= BNX_L2CTX_TYPE_SIZE_L2;
3287 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3288
3289 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3290 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3291
3292 /* Point the hardware to the first page in the chain. */
3293 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3294 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3295 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3296 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3297
3298 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
3299
3300 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3301
3302 return(rc);
3303 }
3304
3305 /****************************************************************************/
3306 /* Free memory and clear the TX data structures. */
3307 /* */
3308 /* Returns: */
3309 /* Nothing. */
3310 /****************************************************************************/
3311 void
3312 bnx_free_tx_chain(struct bnx_softc *sc)
3313 {
3314 int i;
3315
3316 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3317
3318 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
3319 for (i = 0; i < TOTAL_TX_BD; i++) {
3320 if (sc->tx_mbuf_ptr[i] != NULL) {
3321 if (sc->tx_mbuf_map != NULL)
3322 bus_dmamap_sync(sc->bnx_dmatag,
3323 sc->tx_mbuf_map[i], 0,
3324 sc->tx_mbuf_map[i]->dm_mapsize,
3325 BUS_DMASYNC_POSTWRITE);
3326 m_freem(sc->tx_mbuf_ptr[i]);
3327 sc->tx_mbuf_ptr[i] = NULL;
3328 DBRUNIF(1, sc->tx_mbuf_alloc--);
3329 }
3330 }
3331
3332 /* Clear each TX chain page. */
3333 for (i = 0; i < TX_PAGES; i++) {
3334 memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
3335 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3336 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3337 }
3338
3339 /* Check if we lost any mbufs in the process. */
3340 DBRUNIF((sc->tx_mbuf_alloc),
3341 aprint_error_dev(sc->bnx_dev,
3342 "Memory leak! Lost %d mbufs from tx chain!\n",
3343 sc->tx_mbuf_alloc));
3344
3345 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3346 }
3347
3348 /****************************************************************************/
3349 /* Allocate memory and initialize the RX data structures. */
3350 /* */
3351 /* Returns: */
3352 /* 0 for success, positive value for failure. */
3353 /****************************************************************************/
3354 int
3355 bnx_init_rx_chain(struct bnx_softc *sc)
3356 {
3357 struct rx_bd *rxbd;
3358 int i, rc = 0;
3359 u_int16_t prod, chain_prod;
3360 u_int32_t prod_bseq, val, addr;
3361
3362 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3363
3364 /* Initialize the RX producer and consumer indices. */
3365 sc->rx_prod = 0;
3366 sc->rx_cons = 0;
3367 sc->rx_prod_bseq = 0;
3368 sc->free_rx_bd = BNX_RX_SLACK_SPACE;
3369 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
3370
3371 /* Initialize the RX next pointer chain entries. */
3372 for (i = 0; i < RX_PAGES; i++) {
3373 int j;
3374
3375 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
3376
3377 /* Check if we've reached the last page. */
3378 if (i == (RX_PAGES - 1))
3379 j = 0;
3380 else
3381 j = i + 1;
3382
3383 /* Setup the chain page pointers. */
3384 addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
3385 rxbd->rx_bd_haddr_hi = htole32(addr);
3386 addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
3387 rxbd->rx_bd_haddr_lo = htole32(addr);
3388 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
3389 0, BNX_RX_CHAIN_PAGE_SZ,
3390 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3391 }
3392
3393 /* Initialize the context ID for an L2 RX chain. */
3394 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
3395 val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
3396 val |= 0x02 << 8;
3397 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
3398
3399 /* Point the hardware to the first page in the chain. */
3400 val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
3401 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
3402 val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
3403 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
3404
3405 /* Allocate mbuf clusters for the rx_bd chain. */
3406 prod = prod_bseq = 0;
3407 chain_prod = RX_CHAIN_IDX(prod);
3408 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
3409 BNX_PRINTF(sc,
3410 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
3411 }
3412
3413 /* Save the RX chain producer index. */
3414 sc->rx_prod = prod;
3415 sc->rx_prod_bseq = prod_bseq;
3416
3417 for (i = 0; i < RX_PAGES; i++)
3418 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
3419 sc->rx_bd_chain_map[i]->dm_mapsize,
3420 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3421
3422 /* Tell the chip about the waiting rx_bd's. */
3423 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3424 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3425
3426 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
3427
3428 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3429
3430 return(rc);
3431 }
3432
3433 /****************************************************************************/
3434 /* Free memory and clear the RX data structures. */
3435 /* */
3436 /* Returns: */
3437 /* Nothing. */
3438 /****************************************************************************/
3439 void
3440 bnx_free_rx_chain(struct bnx_softc *sc)
3441 {
3442 int i;
3443
3444 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3445
3446 /* Free any mbufs still in the RX mbuf chain. */
3447 for (i = 0; i < TOTAL_RX_BD; i++) {
3448 if (sc->rx_mbuf_ptr[i] != NULL) {
3449 if (sc->rx_mbuf_map[i] != NULL)
3450 bus_dmamap_sync(sc->bnx_dmatag,
3451 sc->rx_mbuf_map[i], 0,
3452 sc->rx_mbuf_map[i]->dm_mapsize,
3453 BUS_DMASYNC_POSTREAD);
3454 m_freem(sc->rx_mbuf_ptr[i]);
3455 sc->rx_mbuf_ptr[i] = NULL;
3456 DBRUNIF(1, sc->rx_mbuf_alloc--);
3457 }
3458 }
3459
3460 /* Clear each RX chain page. */
3461 for (i = 0; i < RX_PAGES; i++)
3462 memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
3463
3464 /* Check if we lost any mbufs in the process. */
3465 DBRUNIF((sc->rx_mbuf_alloc),
3466 aprint_error_dev(sc->bnx_dev,
3467 "Memory leak! Lost %d mbufs from rx chain!\n",
3468 sc->rx_mbuf_alloc));
3469
3470 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3471 }
3472
3473 /****************************************************************************/
3474 /* Handles PHY generated interrupt events. */
3475 /* */
3476 /* Returns: */
3477 /* Nothing. */
3478 /****************************************************************************/
3479 void
3480 bnx_phy_intr(struct bnx_softc *sc)
3481 {
3482 u_int32_t new_link_state, old_link_state;
3483
3484 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3485 BUS_DMASYNC_POSTREAD);
3486 new_link_state = sc->status_block->status_attn_bits &
3487 STATUS_ATTN_BITS_LINK_STATE;
3488 old_link_state = sc->status_block->status_attn_bits_ack &
3489 STATUS_ATTN_BITS_LINK_STATE;
3490
3491 /* Handle any changes if the link state has changed. */
3492 if (new_link_state != old_link_state) {
3493 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
3494
3495 callout_stop(&sc->bnx_timeout);
3496 bnx_tick(sc);
3497
3498 /* Update the status_attn_bits_ack field in the status block. */
3499 if (new_link_state) {
3500 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
3501 STATUS_ATTN_BITS_LINK_STATE);
3502 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
3503 } else {
3504 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
3505 STATUS_ATTN_BITS_LINK_STATE);
3506 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
3507 }
3508 }
3509
3510 /* Acknowledge the link change interrupt. */
3511 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
3512 }
3513
3514 /****************************************************************************/
3515 /* Handles received frame interrupt events. */
3516 /* */
3517 /* Returns: */
3518 /* Nothing. */
3519 /****************************************************************************/
3520 void
3521 bnx_rx_intr(struct bnx_softc *sc)
3522 {
3523 struct status_block *sblk = sc->status_block;
3524 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3525 u_int16_t hw_cons, sw_cons, sw_chain_cons;
3526 u_int16_t sw_prod, sw_chain_prod;
3527 u_int32_t sw_prod_bseq;
3528 struct l2_fhdr *l2fhdr;
3529 int i;
3530
3531 DBRUNIF(1, sc->rx_interrupts++);
3532 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3533 BUS_DMASYNC_POSTREAD);
3534
3535 /* Prepare the RX chain pages to be accessed by the host CPU. */
3536 for (i = 0; i < RX_PAGES; i++)
3537 bus_dmamap_sync(sc->bnx_dmatag,
3538 sc->rx_bd_chain_map[i], 0,
3539 sc->rx_bd_chain_map[i]->dm_mapsize,
3540 BUS_DMASYNC_POSTWRITE);
3541
3542 /* Get the hardware's view of the RX consumer index. */
3543 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
3544 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
3545 hw_cons++;
3546
3547 /* Get working copies of the driver's view of the RX indices. */
3548 sw_cons = sc->rx_cons;
3549 sw_prod = sc->rx_prod;
3550 sw_prod_bseq = sc->rx_prod_bseq;
3551
3552 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
3553 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
3554 __func__, sw_prod, sw_cons, sw_prod_bseq);
3555
3556 /* Prevent speculative reads from getting ahead of the status block. */
3557 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3558 BUS_SPACE_BARRIER_READ);
3559
3560 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3561 sc->rx_low_watermark = sc->free_rx_bd);
3562
3563 /*
3564 * Scan through the receive chain as long
3565 * as there is work to do.
3566 */
3567 while (sw_cons != hw_cons) {
3568 struct mbuf *m;
3569 struct rx_bd *rxbd;
3570 unsigned int len;
3571 u_int32_t status;
3572
3573 /* Convert the producer/consumer indices to an actual
3574 * rx_bd index.
3575 */
3576 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
3577 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
3578
3579 /* Get the used rx_bd. */
3580 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
3581 sc->free_rx_bd++;
3582
3583 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
3584 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
3585
3586 /* The mbuf is stored with the last rx_bd entry of a packet. */
3587 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
3588 #ifdef DIAGNOSTIC
3589 /* Validate that this is the last rx_bd. */
3590 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
3591 printf("%s: Unexpected mbuf found in "
3592 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
3593 sw_chain_cons);
3594 }
3595 #endif
3596
3597 /* DRC - ToDo: If the received packet is small, say less
3598 * than 128 bytes, allocate a new mbuf here,
3599 * copy the data to that mbuf, and recycle
3600 * the mapped jumbo frame.
3601 */
3602
3603 /* Unmap the mbuf from DMA space. */
3604 #ifdef DIAGNOSTIC
3605 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
3606 printf("invalid map sw_cons 0x%x "
3607 "sw_prod 0x%x "
3608 "sw_chain_cons 0x%x "
3609 "sw_chain_prod 0x%x "
3610 "hw_cons 0x%x "
3611 "TOTAL_RX_BD_PER_PAGE 0x%x "
3612 "TOTAL_RX_BD 0x%x\n",
3613 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
3614 hw_cons,
3615 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
3616 }
3617 #endif
3618 bus_dmamap_sync(sc->bnx_dmatag,
3619 sc->rx_mbuf_map[sw_chain_cons], 0,
3620 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
3621 BUS_DMASYNC_POSTREAD);
3622 bus_dmamap_unload(sc->bnx_dmatag,
3623 sc->rx_mbuf_map[sw_chain_cons]);
3624
3625 /* Remove the mbuf from the driver's chain. */
3626 m = sc->rx_mbuf_ptr[sw_chain_cons];
3627 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
3628
3629 /*
3630 * Frames received on the NetXteme II are prepended
3631 * with the l2_fhdr structure which provides status
3632 * information about the received frame (including
3633 * VLAN tags and checksum info) and are also
3634 * automatically adjusted to align the IP header
3635 * (i.e. two null bytes are inserted before the
3636 * Ethernet header).
3637 */
3638 l2fhdr = mtod(m, struct l2_fhdr *);
3639
3640 len = l2fhdr->l2_fhdr_pkt_len;
3641 status = l2fhdr->l2_fhdr_status;
3642
3643 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
3644 aprint_error("Simulating l2_fhdr status error.\n");
3645 status = status | L2_FHDR_ERRORS_PHY_DECODE);
3646
3647 /* Watch for unusual sized frames. */
3648 DBRUNIF(((len < BNX_MIN_MTU) ||
3649 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
3650 aprint_error_dev(sc->bnx_dev,
3651 "Unusual frame size found. "
3652 "Min(%d), Actual(%d), Max(%d)\n",
3653 (int)BNX_MIN_MTU, len,
3654 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
3655
3656 bnx_dump_mbuf(sc, m);
3657 bnx_breakpoint(sc));
3658
3659 len -= ETHER_CRC_LEN;
3660
3661 /* Check the received frame for errors. */
3662 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
3663 L2_FHDR_ERRORS_PHY_DECODE |
3664 L2_FHDR_ERRORS_ALIGNMENT |
3665 L2_FHDR_ERRORS_TOO_SHORT |
3666 L2_FHDR_ERRORS_GIANT_FRAME)) ||
3667 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
3668 len >
3669 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
3670 ifp->if_ierrors++;
3671 DBRUNIF(1, sc->l2fhdr_status_errors++);
3672
3673 /* Reuse the mbuf for a new frame. */
3674 if (bnx_add_buf(sc, m, &sw_prod,
3675 &sw_chain_prod, &sw_prod_bseq)) {
3676 DBRUNIF(1, bnx_breakpoint(sc));
3677 panic("%s: Can't reuse RX mbuf!\n",
3678 device_xname(sc->bnx_dev));
3679 }
3680 continue;
3681 }
3682
3683 /*
3684 * Get a new mbuf for the rx_bd. If no new
3685 * mbufs are available then reuse the current mbuf,
3686 * log an ierror on the interface, and generate
3687 * an error in the system log.
3688 */
3689 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
3690 &sw_prod_bseq)) {
3691 DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
3692 "new mbuf, incoming frame dropped!\n"));
3693
3694 ifp->if_ierrors++;
3695
3696 /* Try and reuse the exisitng mbuf. */
3697 if (bnx_add_buf(sc, m, &sw_prod,
3698 &sw_chain_prod, &sw_prod_bseq)) {
3699 DBRUNIF(1, bnx_breakpoint(sc));
3700 panic("%s: Double mbuf allocation "
3701 "failure!",
3702 device_xname(sc->bnx_dev));
3703 }
3704 continue;
3705 }
3706
3707 /* Skip over the l2_fhdr when passing the data up
3708 * the stack.
3709 */
3710 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
3711
3712 /* Adjust the pckt length to match the received data. */
3713 m->m_pkthdr.len = m->m_len = len;
3714
3715 /* Send the packet to the appropriate interface. */
3716 m->m_pkthdr.rcvif = ifp;
3717
3718 DBRUN(BNX_VERBOSE_RECV,
3719 struct ether_header *eh;
3720 eh = mtod(m, struct ether_header *);
3721 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
3722 __func__, ether_sprintf(eh->ether_dhost),
3723 ether_sprintf(eh->ether_shost),
3724 htons(eh->ether_type)));
3725
3726 /* Validate the checksum. */
3727
3728 /* Check for an IP datagram. */
3729 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
3730 /* Check if the IP checksum is valid. */
3731 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
3732 == 0)
3733 m->m_pkthdr.csum_flags |=
3734 M_CSUM_IPv4;
3735 #ifdef BNX_DEBUG
3736 else
3737 DBPRINT(sc, BNX_WARN_SEND,
3738 "%s(): Invalid IP checksum "
3739 "= 0x%04X!\n",
3740 __func__,
3741 l2fhdr->l2_fhdr_ip_xsum
3742 );
3743 #endif
3744 }
3745
3746 /* Check for a valid TCP/UDP frame. */
3747 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3748 L2_FHDR_STATUS_UDP_DATAGRAM)) {
3749 /* Check for a good TCP/UDP checksum. */
3750 if ((status &
3751 (L2_FHDR_ERRORS_TCP_XSUM |
3752 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
3753 m->m_pkthdr.csum_flags |=
3754 M_CSUM_TCPv4 |
3755 M_CSUM_UDPv4;
3756 } else {
3757 DBPRINT(sc, BNX_WARN_SEND,
3758 "%s(): Invalid TCP/UDP "
3759 "checksum = 0x%04X!\n",
3760 __func__,
3761 l2fhdr->l2_fhdr_tcp_udp_xsum);
3762 }
3763 }
3764
3765 /*
3766 * If we received a packet with a vlan tag,
3767 * attach that information to the packet.
3768 */
3769 if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
3770 #if 0
3771 struct ether_vlan_header vh;
3772
3773 DBPRINT(sc, BNX_VERBOSE_SEND,
3774 "%s(): VLAN tag = 0x%04X\n",
3775 __func__,
3776 l2fhdr->l2_fhdr_vlan_tag);
3777
3778 if (m->m_pkthdr.len < ETHER_HDR_LEN) {
3779 m_freem(m);
3780 continue;
3781 }
3782 m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh);
3783 vh.evl_proto = vh.evl_encap_proto;
3784 vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag;
3785 vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
3786 m_adj(m, ETHER_HDR_LEN);
3787 if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
3788 continue;
3789 m->m_pkthdr.len += sizeof(vh);
3790 if (m->m_len < sizeof(vh) &&
3791 (m = m_pullup(m, sizeof(vh))) == NULL)
3792 goto bnx_rx_int_next_rx;
3793 m_copyback(m, 0, sizeof(vh), &vh);
3794 #else
3795 VLAN_INPUT_TAG(ifp, m,
3796 l2fhdr->l2_fhdr_vlan_tag,
3797 continue);
3798 #endif
3799 }
3800
3801 #if NBPFILTER > 0
3802 /*
3803 * Handle BPF listeners. Let the BPF
3804 * user see the packet.
3805 */
3806 if (ifp->if_bpf)
3807 bpf_mtap(ifp->if_bpf, m);
3808 #endif
3809
3810 /* Pass the mbuf off to the upper layers. */
3811 ifp->if_ipackets++;
3812 DBPRINT(sc, BNX_VERBOSE_RECV,
3813 "%s(): Passing received frame up.\n", __func__);
3814 (*ifp->if_input)(ifp, m);
3815 DBRUNIF(1, sc->rx_mbuf_alloc--);
3816
3817 }
3818
3819 sw_cons = NEXT_RX_BD(sw_cons);
3820
3821 /* Refresh hw_cons to see if there's new work */
3822 if (sw_cons == hw_cons) {
3823 hw_cons = sc->hw_rx_cons =
3824 sblk->status_rx_quick_consumer_index0;
3825 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
3826 USABLE_RX_BD_PER_PAGE)
3827 hw_cons++;
3828 }
3829
3830 /* Prevent speculative reads from getting ahead of
3831 * the status block.
3832 */
3833 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3834 BUS_SPACE_BARRIER_READ);
3835 }
3836
3837 for (i = 0; i < RX_PAGES; i++)
3838 bus_dmamap_sync(sc->bnx_dmatag,
3839 sc->rx_bd_chain_map[i], 0,
3840 sc->rx_bd_chain_map[i]->dm_mapsize,
3841 BUS_DMASYNC_PREWRITE);
3842
3843 sc->rx_cons = sw_cons;
3844 sc->rx_prod = sw_prod;
3845 sc->rx_prod_bseq = sw_prod_bseq;
3846
3847 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3848 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3849
3850 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
3851 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
3852 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
3853 }
3854
3855 /****************************************************************************/
3856 /* Handles transmit completion interrupt events. */
3857 /* */
3858 /* Returns: */
3859 /* Nothing. */
3860 /****************************************************************************/
3861 void
3862 bnx_tx_intr(struct bnx_softc *sc)
3863 {
3864 struct status_block *sblk = sc->status_block;
3865 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3866 u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
3867
3868 DBRUNIF(1, sc->tx_interrupts++);
3869 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3870 BUS_DMASYNC_POSTREAD);
3871
3872 /* Get the hardware's view of the TX consumer index. */
3873 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
3874
3875 /* Skip to the next entry if this is a chain page pointer. */
3876 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
3877 hw_tx_cons++;
3878
3879 sw_tx_cons = sc->tx_cons;
3880
3881 /* Prevent speculative reads from getting ahead of the status block. */
3882 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3883 BUS_SPACE_BARRIER_READ);
3884
3885 /* Cycle through any completed TX chain page entries. */
3886 while (sw_tx_cons != hw_tx_cons) {
3887 #ifdef BNX_DEBUG
3888 struct tx_bd *txbd = NULL;
3889 #endif
3890 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
3891
3892 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
3893 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
3894 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
3895
3896 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
3897 aprint_error_dev(sc->bnx_dev,
3898 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
3899 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
3900
3901 DBRUNIF(1, txbd = &sc->tx_bd_chain
3902 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
3903
3904 DBRUNIF((txbd == NULL),
3905 aprint_error_dev(sc->bnx_dev,
3906 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
3907 bnx_breakpoint(sc));
3908
3909 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
3910 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
3911
3912 /*
3913 * Free the associated mbuf. Remember
3914 * that only the last tx_bd of a packet
3915 * has an mbuf pointer and DMA map.
3916 */
3917 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
3918 /* Validate that this is the last tx_bd. */
3919 DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
3920 TX_BD_FLAGS_END)),
3921 aprint_error_dev(sc->bnx_dev,
3922 "tx_bd END flag not set but txmbuf == NULL!\n");
3923 bnx_breakpoint(sc));
3924
3925 DBRUN(BNX_INFO_SEND,
3926 aprint_debug("%s: Unloading map/freeing mbuf "
3927 "from tx_bd[0x%04X]\n",
3928 __func__, sw_tx_chain_cons));
3929
3930 /* Unmap the mbuf. */
3931 bus_dmamap_unload(sc->bnx_dmatag,
3932 sc->tx_mbuf_map[sw_tx_chain_cons]);
3933
3934 /* Free the mbuf. */
3935 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
3936 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
3937 DBRUNIF(1, sc->tx_mbuf_alloc--);
3938
3939 ifp->if_opackets++;
3940 }
3941
3942 sc->used_tx_bd--;
3943 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
3944
3945 /* Refresh hw_cons to see if there's new work. */
3946 hw_tx_cons = sc->hw_tx_cons =
3947 sblk->status_tx_quick_consumer_index0;
3948 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
3949 USABLE_TX_BD_PER_PAGE)
3950 hw_tx_cons++;
3951
3952 /* Prevent speculative reads from getting ahead of
3953 * the status block.
3954 */
3955 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3956 BUS_SPACE_BARRIER_READ);
3957 }
3958
3959 /* Clear the TX timeout timer. */
3960 ifp->if_timer = 0;
3961
3962 /* Clear the tx hardware queue full flag. */
3963 if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
3964 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
3965 aprint_debug_dev(sc->bnx_dev,
3966 "TX chain is open for business! Used tx_bd = %d\n",
3967 sc->used_tx_bd));
3968 ifp->if_flags &= ~IFF_OACTIVE;
3969 }
3970
3971 sc->tx_cons = sw_tx_cons;
3972 }
3973
3974 /****************************************************************************/
3975 /* Disables interrupt generation. */
3976 /* */
3977 /* Returns: */
3978 /* Nothing. */
3979 /****************************************************************************/
3980 void
3981 bnx_disable_intr(struct bnx_softc *sc)
3982 {
3983 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3984 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
3985 }
3986
3987 /****************************************************************************/
3988 /* Enables interrupt generation. */
3989 /* */
3990 /* Returns: */
3991 /* Nothing. */
3992 /****************************************************************************/
3993 void
3994 bnx_enable_intr(struct bnx_softc *sc)
3995 {
3996 u_int32_t val;
3997
3998 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
3999 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4000
4001 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4002 sc->last_status_idx);
4003
4004 val = REG_RD(sc, BNX_HC_COMMAND);
4005 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4006 }
4007
4008 /****************************************************************************/
4009 /* Handles controller initialization. */
4010 /* */
4011 /****************************************************************************/
4012 int
4013 bnx_init(struct ifnet *ifp)
4014 {
4015 struct bnx_softc *sc = ifp->if_softc;
4016 u_int32_t ether_mtu;
4017 int s, error = 0;
4018
4019 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4020
4021 s = splnet();
4022
4023 bnx_stop(ifp, 0);
4024
4025 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4026 aprint_error("bnx: Controller reset failed!\n");
4027 goto bnx_init_exit;
4028 }
4029
4030 if ((error = bnx_chipinit(sc)) != 0) {
4031 aprint_error("bnx: Controller initialization failed!\n");
4032 goto bnx_init_exit;
4033 }
4034
4035 if ((error = bnx_blockinit(sc)) != 0) {
4036 aprint_error("bnx: Block initialization failed!\n");
4037 goto bnx_init_exit;
4038 }
4039
4040 /* Calculate and program the Ethernet MRU size. */
4041 if (ifp->if_mtu <= ETHERMTU) {
4042 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4043 sc->mbuf_alloc_size = MCLBYTES;
4044 } else {
4045 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4046 sc->mbuf_alloc_size = BNX_MAX_MRU;
4047 }
4048
4049
4050 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4051 __func__, ether_mtu);
4052
4053 /*
4054 * Program the MRU and enable Jumbo frame
4055 * support.
4056 */
4057 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4058 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4059
4060 /* Calculate the RX Ethernet frame size for rx_bd's. */
4061 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4062
4063 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4064 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4065 sc->mbuf_alloc_size, sc->max_frame_size);
4066
4067 /* Program appropriate promiscuous/multicast filtering. */
4068 bnx_set_rx_mode(sc);
4069
4070 /* Init RX buffer descriptor chain. */
4071 bnx_init_rx_chain(sc);
4072
4073 /* Init TX buffer descriptor chain. */
4074 bnx_init_tx_chain(sc);
4075
4076 /* Enable host interrupts. */
4077 bnx_enable_intr(sc);
4078
4079 if ((error = ether_mediachange(ifp)) != 0)
4080 goto bnx_init_exit;
4081
4082 ifp->if_flags |= IFF_RUNNING;
4083 ifp->if_flags &= ~IFF_OACTIVE;
4084
4085 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4086
4087 bnx_init_exit:
4088 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4089
4090 splx(s);
4091
4092 return(error);
4093 }
4094
4095 /****************************************************************************/
4096 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4097 /* memory visible to the controller. */
4098 /* */
4099 /* Returns: */
4100 /* 0 for success, positive value for failure. */
4101 /****************************************************************************/
4102 int
4103 bnx_tx_encap(struct bnx_softc *sc, struct mbuf **m_head)
4104 {
4105 bus_dmamap_t map;
4106 struct tx_bd *txbd = NULL;
4107 struct mbuf *m0;
4108 u_int16_t vlan_tag = 0, flags = 0;
4109 u_int16_t chain_prod, prod;
4110 #ifdef BNX_DEBUG
4111 u_int16_t debug_prod;
4112 #endif
4113 u_int32_t addr, prod_bseq;
4114 int i, error, rc = 0;
4115 struct m_tag *mtag;
4116
4117 m0 = *m_head;
4118
4119 /* Transfer any checksum offload flags to the bd. */
4120 if (m0->m_pkthdr.csum_flags) {
4121 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
4122 flags |= TX_BD_FLAGS_IP_CKSUM;
4123 if (m0->m_pkthdr.csum_flags &
4124 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4125 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4126 }
4127
4128 /* Transfer any VLAN tags to the bd. */
4129 mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m0);
4130 if (mtag != NULL) {
4131 flags |= TX_BD_FLAGS_VLAN_TAG;
4132 vlan_tag = VLAN_TAG_VALUE(mtag);
4133 }
4134
4135 /* Map the mbuf into DMAable memory. */
4136 prod = sc->tx_prod;
4137 chain_prod = TX_CHAIN_IDX(prod);
4138 map = sc->tx_mbuf_map[chain_prod];
4139
4140 /* Map the mbuf into our DMA address space. */
4141 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m0, BUS_DMA_NOWAIT);
4142 if (error != 0) {
4143 aprint_error_dev(sc->bnx_dev,
4144 "Error mapping mbuf into TX chain!\n");
4145 m_freem(m0);
4146 *m_head = NULL;
4147 return (error);
4148 }
4149 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4150 BUS_DMASYNC_PREWRITE);
4151 /*
4152 * The chip seems to require that at least 16 descriptors be kept
4153 * empty at all times. Make sure we honor that.
4154 * XXX Would it be faster to assume worst case scenario for
4155 * map->dm_nsegs and do this calculation higher up?
4156 */
4157 if (map->dm_nsegs > (USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE)) {
4158 bus_dmamap_unload(sc->bnx_dmatag, map);
4159 return (ENOBUFS);
4160 }
4161
4162 /* prod points to an empty tx_bd at this point. */
4163 prod_bseq = sc->tx_prod_bseq;
4164 #ifdef BNX_DEBUG
4165 debug_prod = chain_prod;
4166 #endif
4167 DBPRINT(sc, BNX_INFO_SEND,
4168 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4169 "prod_bseq = 0x%08X\n",
4170 __func__, *prod, chain_prod, prod_bseq);
4171
4172 /*
4173 * Cycle through each mbuf segment that makes up
4174 * the outgoing frame, gathering the mapping info
4175 * for that segment and creating a tx_bd for the
4176 * mbuf.
4177 */
4178 for (i = 0; i < map->dm_nsegs ; i++) {
4179 chain_prod = TX_CHAIN_IDX(prod);
4180 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4181
4182 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
4183 txbd->tx_bd_haddr_lo = htole32(addr);
4184 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4185 txbd->tx_bd_haddr_hi = htole32(addr);
4186 txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
4187 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
4188 txbd->tx_bd_flags = htole16(flags);
4189 prod_bseq += map->dm_segs[i].ds_len;
4190 if (i == 0)
4191 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
4192 prod = NEXT_TX_BD(prod);
4193 }
4194 /* Set the END flag on the last TX buffer descriptor. */
4195 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
4196
4197 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
4198
4199 DBPRINT(sc, BNX_INFO_SEND,
4200 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
4201 "prod_bseq = 0x%08X\n",
4202 __func__, prod, chain_prod, prod_bseq);
4203
4204 /*
4205 * Ensure that the mbuf pointer for this
4206 * transmission is placed at the array
4207 * index of the last descriptor in this
4208 * chain. This is done because a single
4209 * map is used for all segments of the mbuf
4210 * and we don't want to unload the map before
4211 * all of the segments have been freed.
4212 */
4213 sc->tx_mbuf_ptr[chain_prod] = m0;
4214 sc->used_tx_bd += map->dm_nsegs;
4215
4216 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4217 sc->tx_hi_watermark = sc->used_tx_bd);
4218
4219 DBRUNIF(1, sc->tx_mbuf_alloc++);
4220
4221 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4222 map_arg.maxsegs));
4223
4224 /* prod points to the next free tx_bd at this point. */
4225 sc->tx_prod = prod;
4226 sc->tx_prod_bseq = prod_bseq;
4227
4228 return (rc);
4229 }
4230
4231 /****************************************************************************/
4232 /* Main transmit routine. */
4233 /* */
4234 /* Returns: */
4235 /* Nothing. */
4236 /****************************************************************************/
4237 void
4238 bnx_start(struct ifnet *ifp)
4239 {
4240 struct bnx_softc *sc = ifp->if_softc;
4241 struct mbuf *m_head = NULL;
4242 int count = 0;
4243 u_int16_t tx_prod, tx_chain_prod;
4244
4245 /* If there's no link or the transmit queue is empty then just exit. */
4246 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
4247 DBPRINT(sc, BNX_INFO_SEND,
4248 "%s(): output active or device not running.\n", __func__);
4249 goto bnx_start_exit;
4250 }
4251
4252 /* prod points to the next free tx_bd. */
4253 tx_prod = sc->tx_prod;
4254 tx_chain_prod = TX_CHAIN_IDX(tx_prod);
4255
4256 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
4257 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
4258 __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
4259
4260 /*
4261 * Keep adding entries while there is space in the ring. We keep
4262 * BNX_TX_SLACK_SPACE entries unused at all times.
4263 */
4264 while (sc->used_tx_bd < USABLE_TX_BD - BNX_TX_SLACK_SPACE) {
4265 /* Check for any frames to send. */
4266 IFQ_POLL(&ifp->if_snd, m_head);
4267 if (m_head == NULL)
4268 break;
4269
4270 /*
4271 * Pack the data into the transmit ring. If we
4272 * don't have room, set the OACTIVE flag to wait
4273 * for the NIC to drain the chain.
4274 */
4275 if (bnx_tx_encap(sc, &m_head)) {
4276 ifp->if_flags |= IFF_OACTIVE;
4277 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
4278 "business! Total tx_bd used = %d\n",
4279 sc->used_tx_bd);
4280 break;
4281 }
4282
4283 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4284 count++;
4285
4286 #if NBPFILTER > 0
4287 /* Send a copy of the frame to any BPF listeners. */
4288 if (ifp->if_bpf)
4289 bpf_mtap(ifp->if_bpf, m_head);
4290 #endif
4291 }
4292
4293 if (count == 0) {
4294 /* no packets were dequeued */
4295 DBPRINT(sc, BNX_VERBOSE_SEND,
4296 "%s(): No packets were dequeued\n", __func__);
4297 goto bnx_start_exit;
4298 }
4299
4300 /* Update the driver's counters. */
4301 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
4302
4303 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
4304 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
4305 tx_chain_prod, sc->tx_prod_bseq);
4306
4307 /* Start the transmit. */
4308 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
4309 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
4310
4311 /* Set the tx timeout. */
4312 ifp->if_timer = BNX_TX_TIMEOUT;
4313
4314 bnx_start_exit:
4315 return;
4316 }
4317
4318 /****************************************************************************/
4319 /* Handles any IOCTL calls from the operating system. */
4320 /* */
4321 /* Returns: */
4322 /* 0 for success, positive value for failure. */
4323 /****************************************************************************/
4324 int
4325 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
4326 {
4327 struct bnx_softc *sc = ifp->if_softc;
4328 struct ifreq *ifr = (struct ifreq *) data;
4329 struct mii_data *mii = &sc->bnx_mii;
4330 int s, error = 0;
4331
4332 s = splnet();
4333
4334 switch (command) {
4335 case SIOCSIFFLAGS:
4336 if ((error = ifioctl_common(ifp, command, data)) != 0)
4337 break;
4338 /* XXX set an ifflags callback and let ether_ioctl
4339 * handle all of this.
4340 */
4341 switch (ifp->if_flags & (IFF_UP|IFF_RUNNING)) {
4342 case IFF_UP|IFF_RUNNING:
4343 if (((ifp->if_flags ^ sc->bnx_if_flags) &
4344 (IFF_ALLMULTI | IFF_PROMISC)) != 0)
4345 bnx_set_rx_mode(sc);
4346 break;
4347 case IFF_UP:
4348 bnx_init(ifp);
4349 break;
4350 case IFF_RUNNING:
4351 bnx_stop(ifp, 1);
4352 break;
4353 case 0:
4354 break;
4355 }
4356
4357 sc->bnx_if_flags = ifp->if_flags;
4358 break;
4359
4360 case SIOCSIFMEDIA:
4361 case SIOCGIFMEDIA:
4362 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
4363 sc->bnx_phy_flags);
4364
4365 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
4366 break;
4367
4368 default:
4369 if ((error = ether_ioctl(ifp, command, data)) != ENETRESET)
4370 break;
4371
4372 error = 0;
4373
4374 if (command != SIOCADDMULTI && command && SIOCDELMULTI)
4375 ;
4376 else if (ifp->if_flags & IFF_RUNNING) {
4377 /* reload packet filter if running */
4378 bnx_set_rx_mode(sc);
4379 }
4380 break;
4381 }
4382
4383 splx(s);
4384
4385 return (error);
4386 }
4387
4388 /****************************************************************************/
4389 /* Transmit timeout handler. */
4390 /* */
4391 /* Returns: */
4392 /* Nothing. */
4393 /****************************************************************************/
4394 void
4395 bnx_watchdog(struct ifnet *ifp)
4396 {
4397 struct bnx_softc *sc = ifp->if_softc;
4398
4399 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
4400 bnx_dump_status_block(sc));
4401
4402 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
4403
4404 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
4405
4406 bnx_init(ifp);
4407
4408 ifp->if_oerrors++;
4409 }
4410
4411 /*
4412 * Interrupt handler.
4413 */
4414 /****************************************************************************/
4415 /* Main interrupt entry point. Verifies that the controller generated the */
4416 /* interrupt and then calls a separate routine for handle the various */
4417 /* interrupt causes (PHY, TX, RX). */
4418 /* */
4419 /* Returns: */
4420 /* 0 for success, positive value for failure. */
4421 /****************************************************************************/
4422 int
4423 bnx_intr(void *xsc)
4424 {
4425 struct bnx_softc *sc;
4426 struct ifnet *ifp;
4427 u_int32_t status_attn_bits;
4428 const struct status_block *sblk;
4429
4430 sc = xsc;
4431 if (!device_is_active(sc->bnx_dev))
4432 return 0;
4433
4434 ifp = &sc->bnx_ec.ec_if;
4435
4436 DBRUNIF(1, sc->interrupts_generated++);
4437
4438 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4439 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4440
4441 /*
4442 * If the hardware status block index
4443 * matches the last value read by the
4444 * driver and we haven't asserted our
4445 * interrupt then there's nothing to do.
4446 */
4447 if ((sc->status_block->status_idx == sc->last_status_idx) &&
4448 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
4449 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
4450 return (0);
4451
4452 /* Ack the interrupt and stop others from occuring. */
4453 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4454 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
4455 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4456
4457 /* Keep processing data as long as there is work to do. */
4458 for (;;) {
4459 sblk = sc->status_block;
4460 status_attn_bits = sblk->status_attn_bits;
4461
4462 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
4463 aprint_debug("Simulating unexpected status attention bit set.");
4464 status_attn_bits = status_attn_bits |
4465 STATUS_ATTN_BITS_PARITY_ERROR);
4466
4467 /* Was it a link change interrupt? */
4468 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
4469 (sblk->status_attn_bits_ack &
4470 STATUS_ATTN_BITS_LINK_STATE))
4471 bnx_phy_intr(sc);
4472
4473 /* If any other attention is asserted then the chip is toast. */
4474 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
4475 (sblk->status_attn_bits_ack &
4476 ~STATUS_ATTN_BITS_LINK_STATE))) {
4477 DBRUN(1, sc->unexpected_attentions++);
4478
4479 aprint_error_dev(sc->bnx_dev,
4480 "Fatal attention detected: 0x%08X\n",
4481 sblk->status_attn_bits);
4482
4483 DBRUN(BNX_FATAL,
4484 if (bnx_debug_unexpected_attention == 0)
4485 bnx_breakpoint(sc));
4486
4487 bnx_init(ifp);
4488 return (1);
4489 }
4490
4491 /* Check for any completed RX frames. */
4492 if (sblk->status_rx_quick_consumer_index0 !=
4493 sc->hw_rx_cons)
4494 bnx_rx_intr(sc);
4495
4496 /* Check for any completed TX frames. */
4497 if (sblk->status_tx_quick_consumer_index0 !=
4498 sc->hw_tx_cons)
4499 bnx_tx_intr(sc);
4500
4501 /* Save the status block index value for use during the
4502 * next interrupt.
4503 */
4504 sc->last_status_idx = sblk->status_idx;
4505
4506 /* Prevent speculative reads from getting ahead of the
4507 * status block.
4508 */
4509 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4510 BUS_SPACE_BARRIER_READ);
4511
4512 /* If there's no work left then exit the isr. */
4513 if ((sblk->status_rx_quick_consumer_index0 ==
4514 sc->hw_rx_cons) &&
4515 (sblk->status_tx_quick_consumer_index0 ==
4516 sc->hw_tx_cons))
4517 break;
4518 }
4519
4520 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4521 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
4522
4523 /* Re-enable interrupts. */
4524 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4525 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
4526 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4527 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4528 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
4529
4530 /* Handle any frames that arrived while handling the interrupt. */
4531 if (!IFQ_IS_EMPTY(&ifp->if_snd))
4532 bnx_start(ifp);
4533
4534 return (1);
4535 }
4536
4537 /****************************************************************************/
4538 /* Programs the various packet receive modes (broadcast and multicast). */
4539 /* */
4540 /* Returns: */
4541 /* Nothing. */
4542 /****************************************************************************/
4543 void
4544 bnx_set_rx_mode(struct bnx_softc *sc)
4545 {
4546 struct ethercom *ec = &sc->bnx_ec;
4547 struct ifnet *ifp = &ec->ec_if;
4548 struct ether_multi *enm;
4549 struct ether_multistep step;
4550 u_int32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
4551 u_int32_t rx_mode, sort_mode;
4552 int h, i;
4553
4554 /* Initialize receive mode default settings. */
4555 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
4556 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
4557 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
4558
4559 /*
4560 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
4561 * be enbled.
4562 */
4563 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
4564 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
4565
4566 /*
4567 * Check for promiscuous, all multicast, or selected
4568 * multicast address filtering.
4569 */
4570 if (ifp->if_flags & IFF_PROMISC) {
4571 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
4572
4573 /* Enable promiscuous mode. */
4574 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
4575 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
4576 } else if (ifp->if_flags & IFF_ALLMULTI) {
4577 allmulti:
4578 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
4579
4580 /* Enable all multicast addresses. */
4581 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4582 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4583 0xffffffff);
4584 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
4585 } else {
4586 /* Accept one or more multicast(s). */
4587 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
4588
4589 ETHER_FIRST_MULTI(step, ec, enm);
4590 while (enm != NULL) {
4591 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
4592 ETHER_ADDR_LEN)) {
4593 ifp->if_flags |= IFF_ALLMULTI;
4594 goto allmulti;
4595 }
4596 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
4597 0xFF;
4598 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
4599 ETHER_NEXT_MULTI(step, enm);
4600 }
4601
4602 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4603 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4604 hashes[i]);
4605
4606 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
4607 }
4608
4609 /* Only make changes if the recive mode has actually changed. */
4610 if (rx_mode != sc->rx_mode) {
4611 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
4612 rx_mode);
4613
4614 sc->rx_mode = rx_mode;
4615 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
4616 }
4617
4618 /* Disable and clear the exisitng sort before enabling a new sort. */
4619 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
4620 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
4621 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
4622 }
4623
4624 /****************************************************************************/
4625 /* Called periodically to updates statistics from the controllers */
4626 /* statistics block. */
4627 /* */
4628 /* Returns: */
4629 /* Nothing. */
4630 /****************************************************************************/
4631 void
4632 bnx_stats_update(struct bnx_softc *sc)
4633 {
4634 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4635 struct statistics_block *stats;
4636
4637 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
4638 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4639 BUS_DMASYNC_POSTREAD);
4640
4641 stats = (struct statistics_block *)sc->stats_block;
4642
4643 /*
4644 * Update the interface statistics from the
4645 * hardware statistics.
4646 */
4647 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
4648
4649 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
4650 (u_long)stats->stat_EtherStatsOverrsizePkts +
4651 (u_long)stats->stat_IfInMBUFDiscards +
4652 (u_long)stats->stat_Dot3StatsAlignmentErrors +
4653 (u_long)stats->stat_Dot3StatsFCSErrors;
4654
4655 ifp->if_oerrors = (u_long)
4656 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
4657 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
4658 (u_long)stats->stat_Dot3StatsLateCollisions;
4659
4660 /*
4661 * Certain controllers don't report
4662 * carrier sense errors correctly.
4663 * See errata E11_5708CA0_1165.
4664 */
4665 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
4666 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
4667 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
4668
4669 /*
4670 * Update the sysctl statistics from the
4671 * hardware statistics.
4672 */
4673 sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
4674 (u_int64_t) stats->stat_IfHCInOctets_lo;
4675
4676 sc->stat_IfHCInBadOctets =
4677 ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
4678 (u_int64_t) stats->stat_IfHCInBadOctets_lo;
4679
4680 sc->stat_IfHCOutOctets =
4681 ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
4682 (u_int64_t) stats->stat_IfHCOutOctets_lo;
4683
4684 sc->stat_IfHCOutBadOctets =
4685 ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
4686 (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
4687
4688 sc->stat_IfHCInUcastPkts =
4689 ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
4690 (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
4691
4692 sc->stat_IfHCInMulticastPkts =
4693 ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
4694 (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
4695
4696 sc->stat_IfHCInBroadcastPkts =
4697 ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
4698 (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
4699
4700 sc->stat_IfHCOutUcastPkts =
4701 ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
4702 (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
4703
4704 sc->stat_IfHCOutMulticastPkts =
4705 ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
4706 (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
4707
4708 sc->stat_IfHCOutBroadcastPkts =
4709 ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
4710 (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
4711
4712 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
4713 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
4714
4715 sc->stat_Dot3StatsCarrierSenseErrors =
4716 stats->stat_Dot3StatsCarrierSenseErrors;
4717
4718 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
4719
4720 sc->stat_Dot3StatsAlignmentErrors =
4721 stats->stat_Dot3StatsAlignmentErrors;
4722
4723 sc->stat_Dot3StatsSingleCollisionFrames =
4724 stats->stat_Dot3StatsSingleCollisionFrames;
4725
4726 sc->stat_Dot3StatsMultipleCollisionFrames =
4727 stats->stat_Dot3StatsMultipleCollisionFrames;
4728
4729 sc->stat_Dot3StatsDeferredTransmissions =
4730 stats->stat_Dot3StatsDeferredTransmissions;
4731
4732 sc->stat_Dot3StatsExcessiveCollisions =
4733 stats->stat_Dot3StatsExcessiveCollisions;
4734
4735 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
4736
4737 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
4738
4739 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
4740
4741 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
4742
4743 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
4744
4745 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
4746
4747 sc->stat_EtherStatsPktsRx64Octets =
4748 stats->stat_EtherStatsPktsRx64Octets;
4749
4750 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
4751 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
4752
4753 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
4754 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
4755
4756 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
4757 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
4758
4759 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
4760 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
4761
4762 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
4763 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
4764
4765 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
4766 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
4767
4768 sc->stat_EtherStatsPktsTx64Octets =
4769 stats->stat_EtherStatsPktsTx64Octets;
4770
4771 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
4772 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
4773
4774 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
4775 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
4776
4777 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
4778 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
4779
4780 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
4781 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
4782
4783 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
4784 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
4785
4786 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
4787 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
4788
4789 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
4790
4791 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
4792
4793 sc->stat_OutXonSent = stats->stat_OutXonSent;
4794
4795 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
4796
4797 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
4798
4799 sc->stat_MacControlFramesReceived =
4800 stats->stat_MacControlFramesReceived;
4801
4802 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
4803
4804 sc->stat_IfInFramesL2FilterDiscards =
4805 stats->stat_IfInFramesL2FilterDiscards;
4806
4807 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
4808
4809 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
4810
4811 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
4812
4813 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
4814
4815 sc->stat_CatchupInRuleCheckerDiscards =
4816 stats->stat_CatchupInRuleCheckerDiscards;
4817
4818 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
4819
4820 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
4821
4822 sc->stat_CatchupInRuleCheckerP4Hit =
4823 stats->stat_CatchupInRuleCheckerP4Hit;
4824
4825 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
4826 }
4827
4828 void
4829 bnx_tick(void *xsc)
4830 {
4831 struct bnx_softc *sc = xsc;
4832 struct mii_data *mii;
4833 u_int32_t msg;
4834 u_int16_t prod, chain_prod;
4835 u_int32_t prod_bseq;
4836 int s = splnet();
4837
4838 /* Tell the firmware that the driver is still running. */
4839 #ifdef BNX_DEBUG
4840 msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
4841 #else
4842 msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
4843 #endif
4844 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
4845
4846 /* Update the statistics from the hardware statistics block. */
4847 bnx_stats_update(sc);
4848
4849 /* Schedule the next tick. */
4850 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4851
4852 mii = &sc->bnx_mii;
4853 mii_tick(mii);
4854
4855 /* try to get more RX buffers, just in case */
4856 prod = sc->rx_prod;
4857 prod_bseq = sc->rx_prod_bseq;
4858 chain_prod = RX_CHAIN_IDX(prod);
4859 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
4860 sc->rx_prod = prod;
4861 sc->rx_prod_bseq = prod_bseq;
4862 splx(s);
4863 return;
4864 }
4865
4866 /****************************************************************************/
4867 /* BNX Debug Routines */
4868 /****************************************************************************/
4869 #ifdef BNX_DEBUG
4870
4871 /****************************************************************************/
4872 /* Prints out information about an mbuf. */
4873 /* */
4874 /* Returns: */
4875 /* Nothing. */
4876 /****************************************************************************/
4877 void
4878 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
4879 {
4880 struct mbuf *mp = m;
4881
4882 if (m == NULL) {
4883 /* Index out of range. */
4884 aprint_error("mbuf ptr is null!\n");
4885 return;
4886 }
4887
4888 while (mp) {
4889 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
4890 mp, mp->m_len);
4891
4892 if (mp->m_flags & M_EXT)
4893 aprint_debug("M_EXT ");
4894 if (mp->m_flags & M_PKTHDR)
4895 aprint_debug("M_PKTHDR ");
4896 aprint_debug("\n");
4897
4898 if (mp->m_flags & M_EXT)
4899 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
4900 mp, mp->m_ext.ext_size);
4901
4902 mp = mp->m_next;
4903 }
4904 }
4905
4906 /****************************************************************************/
4907 /* Prints out the mbufs in the TX mbuf chain. */
4908 /* */
4909 /* Returns: */
4910 /* Nothing. */
4911 /****************************************************************************/
4912 void
4913 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
4914 {
4915 struct mbuf *m;
4916 int i;
4917
4918 BNX_PRINTF(sc,
4919 "----------------------------"
4920 " tx mbuf data "
4921 "----------------------------\n");
4922
4923 for (i = 0; i < count; i++) {
4924 m = sc->tx_mbuf_ptr[chain_prod];
4925 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
4926 bnx_dump_mbuf(sc, m);
4927 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
4928 }
4929
4930 BNX_PRINTF(sc,
4931 "--------------------------------------------"
4932 "----------------------------\n");
4933 }
4934
4935 /*
4936 * This routine prints the RX mbuf chain.
4937 */
4938 void
4939 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
4940 {
4941 struct mbuf *m;
4942 int i;
4943
4944 BNX_PRINTF(sc,
4945 "----------------------------"
4946 " rx mbuf data "
4947 "----------------------------\n");
4948
4949 for (i = 0; i < count; i++) {
4950 m = sc->rx_mbuf_ptr[chain_prod];
4951 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
4952 bnx_dump_mbuf(sc, m);
4953 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
4954 }
4955
4956
4957 BNX_PRINTF(sc,
4958 "--------------------------------------------"
4959 "----------------------------\n");
4960 }
4961
4962 void
4963 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
4964 {
4965 if (idx > MAX_TX_BD)
4966 /* Index out of range. */
4967 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
4968 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4969 /* TX Chain page pointer. */
4970 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
4971 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
4972 txbd->tx_bd_haddr_lo);
4973 else
4974 /* Normal tx_bd entry. */
4975 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
4976 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
4977 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
4978 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
4979 txbd->tx_bd_flags);
4980 }
4981
4982 void
4983 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
4984 {
4985 if (idx > MAX_RX_BD)
4986 /* Index out of range. */
4987 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
4988 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4989 /* TX Chain page pointer. */
4990 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
4991 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
4992 rxbd->rx_bd_haddr_lo);
4993 else
4994 /* Normal tx_bd entry. */
4995 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
4996 "0x%08X, flags = 0x%08X\n", idx,
4997 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
4998 rxbd->rx_bd_len, rxbd->rx_bd_flags);
4999 }
5000
5001 void
5002 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5003 {
5004 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5005 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5006 "tcp_udp_xsum = 0x%04X\n", idx,
5007 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5008 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5009 l2fhdr->l2_fhdr_tcp_udp_xsum);
5010 }
5011
5012 /*
5013 * This routine prints the TX chain.
5014 */
5015 void
5016 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5017 {
5018 struct tx_bd *txbd;
5019 int i;
5020
5021 /* First some info about the tx_bd chain structure. */
5022 BNX_PRINTF(sc,
5023 "----------------------------"
5024 " tx_bd chain "
5025 "----------------------------\n");
5026
5027 BNX_PRINTF(sc,
5028 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5029 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5030
5031 BNX_PRINTF(sc,
5032 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5033 (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5034
5035 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
5036
5037 BNX_PRINTF(sc, ""
5038 "-----------------------------"
5039 " tx_bd data "
5040 "-----------------------------\n");
5041
5042 /* Now print out the tx_bd's themselves. */
5043 for (i = 0; i < count; i++) {
5044 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5045 bnx_dump_txbd(sc, tx_prod, txbd);
5046 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5047 }
5048
5049 BNX_PRINTF(sc,
5050 "-----------------------------"
5051 "--------------"
5052 "-----------------------------\n");
5053 }
5054
5055 /*
5056 * This routine prints the RX chain.
5057 */
5058 void
5059 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5060 {
5061 struct rx_bd *rxbd;
5062 int i;
5063
5064 /* First some info about the tx_bd chain structure. */
5065 BNX_PRINTF(sc,
5066 "----------------------------"
5067 " rx_bd chain "
5068 "----------------------------\n");
5069
5070 BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
5071
5072 BNX_PRINTF(sc,
5073 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5074 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5075
5076 BNX_PRINTF(sc,
5077 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5078 (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5079
5080 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
5081
5082 BNX_PRINTF(sc,
5083 "----------------------------"
5084 " rx_bd data "
5085 "----------------------------\n");
5086
5087 /* Now print out the rx_bd's themselves. */
5088 for (i = 0; i < count; i++) {
5089 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5090 bnx_dump_rxbd(sc, rx_prod, rxbd);
5091 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5092 }
5093
5094 BNX_PRINTF(sc,
5095 "----------------------------"
5096 "--------------"
5097 "----------------------------\n");
5098 }
5099
5100 /*
5101 * This routine prints the status block.
5102 */
5103 void
5104 bnx_dump_status_block(struct bnx_softc *sc)
5105 {
5106 struct status_block *sblk;
5107 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5108 BUS_DMASYNC_POSTREAD);
5109
5110 sblk = sc->status_block;
5111
5112 BNX_PRINTF(sc, "----------------------------- Status Block "
5113 "-----------------------------\n");
5114
5115 BNX_PRINTF(sc,
5116 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5117 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5118 sblk->status_idx);
5119
5120 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5121 sblk->status_rx_quick_consumer_index0,
5122 sblk->status_tx_quick_consumer_index0);
5123
5124 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5125
5126 /* Theses indices are not used for normal L2 drivers. */
5127 if (sblk->status_rx_quick_consumer_index1 ||
5128 sblk->status_tx_quick_consumer_index1)
5129 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5130 sblk->status_rx_quick_consumer_index1,
5131 sblk->status_tx_quick_consumer_index1);
5132
5133 if (sblk->status_rx_quick_consumer_index2 ||
5134 sblk->status_tx_quick_consumer_index2)
5135 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5136 sblk->status_rx_quick_consumer_index2,
5137 sblk->status_tx_quick_consumer_index2);
5138
5139 if (sblk->status_rx_quick_consumer_index3 ||
5140 sblk->status_tx_quick_consumer_index3)
5141 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5142 sblk->status_rx_quick_consumer_index3,
5143 sblk->status_tx_quick_consumer_index3);
5144
5145 if (sblk->status_rx_quick_consumer_index4 ||
5146 sblk->status_rx_quick_consumer_index5)
5147 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5148 sblk->status_rx_quick_consumer_index4,
5149 sblk->status_rx_quick_consumer_index5);
5150
5151 if (sblk->status_rx_quick_consumer_index6 ||
5152 sblk->status_rx_quick_consumer_index7)
5153 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
5154 sblk->status_rx_quick_consumer_index6,
5155 sblk->status_rx_quick_consumer_index7);
5156
5157 if (sblk->status_rx_quick_consumer_index8 ||
5158 sblk->status_rx_quick_consumer_index9)
5159 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
5160 sblk->status_rx_quick_consumer_index8,
5161 sblk->status_rx_quick_consumer_index9);
5162
5163 if (sblk->status_rx_quick_consumer_index10 ||
5164 sblk->status_rx_quick_consumer_index11)
5165 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
5166 sblk->status_rx_quick_consumer_index10,
5167 sblk->status_rx_quick_consumer_index11);
5168
5169 if (sblk->status_rx_quick_consumer_index12 ||
5170 sblk->status_rx_quick_consumer_index13)
5171 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
5172 sblk->status_rx_quick_consumer_index12,
5173 sblk->status_rx_quick_consumer_index13);
5174
5175 if (sblk->status_rx_quick_consumer_index14 ||
5176 sblk->status_rx_quick_consumer_index15)
5177 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
5178 sblk->status_rx_quick_consumer_index14,
5179 sblk->status_rx_quick_consumer_index15);
5180
5181 if (sblk->status_completion_producer_index ||
5182 sblk->status_cmd_consumer_index)
5183 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
5184 sblk->status_completion_producer_index,
5185 sblk->status_cmd_consumer_index);
5186
5187 BNX_PRINTF(sc, "-------------------------------------------"
5188 "-----------------------------\n");
5189 }
5190
5191 /*
5192 * This routine prints the statistics block.
5193 */
5194 void
5195 bnx_dump_stats_block(struct bnx_softc *sc)
5196 {
5197 struct statistics_block *sblk;
5198 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5199 BUS_DMASYNC_POSTREAD);
5200
5201 sblk = sc->stats_block;
5202
5203 BNX_PRINTF(sc, ""
5204 "-----------------------------"
5205 " Stats Block "
5206 "-----------------------------\n");
5207
5208 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
5209 "IfHcInBadOctets = 0x%08X:%08X\n",
5210 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5211 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5212
5213 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
5214 "IfHcOutBadOctets = 0x%08X:%08X\n",
5215 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5216 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5217
5218 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
5219 "IfHcInMulticastPkts = 0x%08X:%08X\n",
5220 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5221 sblk->stat_IfHCInMulticastPkts_hi,
5222 sblk->stat_IfHCInMulticastPkts_lo);
5223
5224 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
5225 "IfHcOutUcastPkts = 0x%08X:%08X\n",
5226 sblk->stat_IfHCInBroadcastPkts_hi,
5227 sblk->stat_IfHCInBroadcastPkts_lo,
5228 sblk->stat_IfHCOutUcastPkts_hi,
5229 sblk->stat_IfHCOutUcastPkts_lo);
5230
5231 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5232 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5233 sblk->stat_IfHCOutMulticastPkts_hi,
5234 sblk->stat_IfHCOutMulticastPkts_lo,
5235 sblk->stat_IfHCOutBroadcastPkts_hi,
5236 sblk->stat_IfHCOutBroadcastPkts_lo);
5237
5238 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5239 BNX_PRINTF(sc, "0x%08X : "
5240 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5241 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5242
5243 if (sblk->stat_Dot3StatsCarrierSenseErrors)
5244 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5245 sblk->stat_Dot3StatsCarrierSenseErrors);
5246
5247 if (sblk->stat_Dot3StatsFCSErrors)
5248 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5249 sblk->stat_Dot3StatsFCSErrors);
5250
5251 if (sblk->stat_Dot3StatsAlignmentErrors)
5252 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5253 sblk->stat_Dot3StatsAlignmentErrors);
5254
5255 if (sblk->stat_Dot3StatsSingleCollisionFrames)
5256 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5257 sblk->stat_Dot3StatsSingleCollisionFrames);
5258
5259 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
5260 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
5261 sblk->stat_Dot3StatsMultipleCollisionFrames);
5262
5263 if (sblk->stat_Dot3StatsDeferredTransmissions)
5264 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
5265 sblk->stat_Dot3StatsDeferredTransmissions);
5266
5267 if (sblk->stat_Dot3StatsExcessiveCollisions)
5268 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
5269 sblk->stat_Dot3StatsExcessiveCollisions);
5270
5271 if (sblk->stat_Dot3StatsLateCollisions)
5272 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
5273 sblk->stat_Dot3StatsLateCollisions);
5274
5275 if (sblk->stat_EtherStatsCollisions)
5276 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
5277 sblk->stat_EtherStatsCollisions);
5278
5279 if (sblk->stat_EtherStatsFragments)
5280 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
5281 sblk->stat_EtherStatsFragments);
5282
5283 if (sblk->stat_EtherStatsJabbers)
5284 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
5285 sblk->stat_EtherStatsJabbers);
5286
5287 if (sblk->stat_EtherStatsUndersizePkts)
5288 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
5289 sblk->stat_EtherStatsUndersizePkts);
5290
5291 if (sblk->stat_EtherStatsOverrsizePkts)
5292 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
5293 sblk->stat_EtherStatsOverrsizePkts);
5294
5295 if (sblk->stat_EtherStatsPktsRx64Octets)
5296 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
5297 sblk->stat_EtherStatsPktsRx64Octets);
5298
5299 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
5300 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
5301 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
5302
5303 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
5304 BNX_PRINTF(sc, "0x%08X : "
5305 "EtherStatsPktsRx128Octetsto255Octets\n",
5306 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
5307
5308 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
5309 BNX_PRINTF(sc, "0x%08X : "
5310 "EtherStatsPktsRx256Octetsto511Octets\n",
5311 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
5312
5313 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
5314 BNX_PRINTF(sc, "0x%08X : "
5315 "EtherStatsPktsRx512Octetsto1023Octets\n",
5316 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
5317
5318 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
5319 BNX_PRINTF(sc, "0x%08X : "
5320 "EtherStatsPktsRx1024Octetsto1522Octets\n",
5321 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
5322
5323 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
5324 BNX_PRINTF(sc, "0x%08X : "
5325 "EtherStatsPktsRx1523Octetsto9022Octets\n",
5326 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
5327
5328 if (sblk->stat_EtherStatsPktsTx64Octets)
5329 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
5330 sblk->stat_EtherStatsPktsTx64Octets);
5331
5332 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
5333 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
5334 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
5335
5336 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
5337 BNX_PRINTF(sc, "0x%08X : "
5338 "EtherStatsPktsTx128Octetsto255Octets\n",
5339 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
5340
5341 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
5342 BNX_PRINTF(sc, "0x%08X : "
5343 "EtherStatsPktsTx256Octetsto511Octets\n",
5344 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
5345
5346 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
5347 BNX_PRINTF(sc, "0x%08X : "
5348 "EtherStatsPktsTx512Octetsto1023Octets\n",
5349 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
5350
5351 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
5352 BNX_PRINTF(sc, "0x%08X : "
5353 "EtherStatsPktsTx1024Octetsto1522Octets\n",
5354 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
5355
5356 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
5357 BNX_PRINTF(sc, "0x%08X : "
5358 "EtherStatsPktsTx1523Octetsto9022Octets\n",
5359 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
5360
5361 if (sblk->stat_XonPauseFramesReceived)
5362 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
5363 sblk->stat_XonPauseFramesReceived);
5364
5365 if (sblk->stat_XoffPauseFramesReceived)
5366 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
5367 sblk->stat_XoffPauseFramesReceived);
5368
5369 if (sblk->stat_OutXonSent)
5370 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
5371 sblk->stat_OutXonSent);
5372
5373 if (sblk->stat_OutXoffSent)
5374 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
5375 sblk->stat_OutXoffSent);
5376
5377 if (sblk->stat_FlowControlDone)
5378 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
5379 sblk->stat_FlowControlDone);
5380
5381 if (sblk->stat_MacControlFramesReceived)
5382 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
5383 sblk->stat_MacControlFramesReceived);
5384
5385 if (sblk->stat_XoffStateEntered)
5386 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
5387 sblk->stat_XoffStateEntered);
5388
5389 if (sblk->stat_IfInFramesL2FilterDiscards)
5390 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
5391 sblk->stat_IfInFramesL2FilterDiscards);
5392
5393 if (sblk->stat_IfInRuleCheckerDiscards)
5394 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
5395 sblk->stat_IfInRuleCheckerDiscards);
5396
5397 if (sblk->stat_IfInFTQDiscards)
5398 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
5399 sblk->stat_IfInFTQDiscards);
5400
5401 if (sblk->stat_IfInMBUFDiscards)
5402 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
5403 sblk->stat_IfInMBUFDiscards);
5404
5405 if (sblk->stat_IfInRuleCheckerP4Hit)
5406 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
5407 sblk->stat_IfInRuleCheckerP4Hit);
5408
5409 if (sblk->stat_CatchupInRuleCheckerDiscards)
5410 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
5411 sblk->stat_CatchupInRuleCheckerDiscards);
5412
5413 if (sblk->stat_CatchupInFTQDiscards)
5414 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
5415 sblk->stat_CatchupInFTQDiscards);
5416
5417 if (sblk->stat_CatchupInMBUFDiscards)
5418 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
5419 sblk->stat_CatchupInMBUFDiscards);
5420
5421 if (sblk->stat_CatchupInRuleCheckerP4Hit)
5422 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
5423 sblk->stat_CatchupInRuleCheckerP4Hit);
5424
5425 BNX_PRINTF(sc,
5426 "-----------------------------"
5427 "--------------"
5428 "-----------------------------\n");
5429 }
5430
5431 void
5432 bnx_dump_driver_state(struct bnx_softc *sc)
5433 {
5434 BNX_PRINTF(sc,
5435 "-----------------------------"
5436 " Driver State "
5437 "-----------------------------\n");
5438
5439 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
5440 "address\n", sc);
5441
5442 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
5443 sc->status_block);
5444
5445 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
5446 "address\n", sc->stats_block);
5447
5448 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
5449 "adddress\n", sc->tx_bd_chain);
5450
5451 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
5452 sc->rx_bd_chain);
5453
5454 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
5455 sc->tx_mbuf_ptr);
5456
5457 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
5458 sc->rx_mbuf_ptr);
5459
5460 BNX_PRINTF(sc,
5461 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
5462 sc->interrupts_generated);
5463
5464 BNX_PRINTF(sc,
5465 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
5466 sc->rx_interrupts);
5467
5468 BNX_PRINTF(sc,
5469 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
5470 sc->tx_interrupts);
5471
5472 BNX_PRINTF(sc,
5473 " 0x%08X - (sc->last_status_idx) status block index\n",
5474 sc->last_status_idx);
5475
5476 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
5477 sc->tx_prod);
5478
5479 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
5480 sc->tx_cons);
5481
5482 BNX_PRINTF(sc,
5483 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
5484 sc->tx_prod_bseq);
5485
5486 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
5487 sc->rx_prod);
5488
5489 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
5490 sc->rx_cons);
5491
5492 BNX_PRINTF(sc,
5493 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
5494 sc->rx_prod_bseq);
5495
5496 BNX_PRINTF(sc,
5497 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5498 sc->rx_mbuf_alloc);
5499
5500 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
5501 sc->free_rx_bd);
5502
5503 BNX_PRINTF(sc,
5504 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
5505 sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
5506
5507 BNX_PRINTF(sc,
5508 " 0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
5509 sc->tx_mbuf_alloc);
5510
5511 BNX_PRINTF(sc,
5512 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5513 sc->rx_mbuf_alloc);
5514
5515 BNX_PRINTF(sc, " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
5516 sc->used_tx_bd);
5517
5518 BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
5519 sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
5520
5521 BNX_PRINTF(sc,
5522 " 0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
5523 sc->mbuf_alloc_failed);
5524
5525 BNX_PRINTF(sc, "-------------------------------------------"
5526 "-----------------------------\n");
5527 }
5528
5529 void
5530 bnx_dump_hw_state(struct bnx_softc *sc)
5531 {
5532 u_int32_t val1;
5533 int i;
5534
5535 BNX_PRINTF(sc,
5536 "----------------------------"
5537 " Hardware State "
5538 "----------------------------\n");
5539
5540 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
5541
5542 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
5543 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
5544 val1, BNX_MISC_ENABLE_STATUS_BITS);
5545
5546 val1 = REG_RD(sc, BNX_DMA_STATUS);
5547 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
5548
5549 val1 = REG_RD(sc, BNX_CTX_STATUS);
5550 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
5551
5552 val1 = REG_RD(sc, BNX_EMAC_STATUS);
5553 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
5554 BNX_EMAC_STATUS);
5555
5556 val1 = REG_RD(sc, BNX_RPM_STATUS);
5557 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
5558
5559 val1 = REG_RD(sc, BNX_TBDR_STATUS);
5560 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
5561 BNX_TBDR_STATUS);
5562
5563 val1 = REG_RD(sc, BNX_TDMA_STATUS);
5564 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
5565 BNX_TDMA_STATUS);
5566
5567 val1 = REG_RD(sc, BNX_HC_STATUS);
5568 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
5569
5570 BNX_PRINTF(sc,
5571 "----------------------------"
5572 "----------------"
5573 "----------------------------\n");
5574
5575 BNX_PRINTF(sc,
5576 "----------------------------"
5577 " Register Dump "
5578 "----------------------------\n");
5579
5580 for (i = 0x400; i < 0x8000; i += 0x10)
5581 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
5582 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
5583 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
5584
5585 BNX_PRINTF(sc,
5586 "----------------------------"
5587 "----------------"
5588 "----------------------------\n");
5589 }
5590
5591 void
5592 bnx_breakpoint(struct bnx_softc *sc)
5593 {
5594 /* Unreachable code to shut the compiler up about unused functions. */
5595 if (0) {
5596 bnx_dump_txbd(sc, 0, NULL);
5597 bnx_dump_rxbd(sc, 0, NULL);
5598 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
5599 bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
5600 bnx_dump_l2fhdr(sc, 0, NULL);
5601 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
5602 bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
5603 bnx_dump_status_block(sc);
5604 bnx_dump_stats_block(sc);
5605 bnx_dump_driver_state(sc);
5606 bnx_dump_hw_state(sc);
5607 }
5608
5609 bnx_dump_driver_state(sc);
5610 /* Print the important status block fields. */
5611 bnx_dump_status_block(sc);
5612
5613 #if 0
5614 /* Call the debugger. */
5615 breakpoint();
5616 #endif
5617
5618 return;
5619 }
5620 #endif
5621