Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.3
      1 /*	$NetBSD: if_bnx.c,v 1.3 2007/03/04 06:02:19 christos Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.21 2006/08/21 03:32:11 brad Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2006 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.3 2007/03/04 06:02:19 christos Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5708C B1
     44  *
     45  * The following controllers are not supported by this driver:
     46  * (These are not "Production" versions of the controller.)
     47  *
     48  *   BCM5706C A0, A1
     49  *   BCM5706S A0, A1, A2, A3
     50  *   BCM5708C A0, B0
     51  *   BCM5708S A0, B0, B1
     52  */
     53 
     54 #include <sys/callout.h>
     55 
     56 #include <dev/pci/if_bnxreg.h>
     57 #include <dev/microcode/bnx/bnxfw.h>
     58 
     59 /****************************************************************************/
     60 /* BNX Driver Version                                                       */
     61 /****************************************************************************/
     62 const char bnx_driver_version[] = "v0.9.6";
     63 
     64 /****************************************************************************/
     65 /* BNX Debug Options                                                        */
     66 /****************************************************************************/
     67 #ifdef BNX_DEBUG
     68 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     69 
     70 	/*          0 = Never              */
     71 	/*          1 = 1 in 2,147,483,648 */
     72 	/*        256 = 1 in     8,388,608 */
     73 	/*       2048 = 1 in     1,048,576 */
     74 	/*      65536 = 1 in        32,768 */
     75 	/*    1048576 = 1 in         2,048 */
     76 	/*  268435456 =	1 in             8 */
     77 	/*  536870912 = 1 in             4 */
     78 	/* 1073741824 = 1 in             2 */
     79 
     80 	/* Controls how often the l2_fhdr frame error check will fail. */
     81 	int bnx_debug_l2fhdr_status_check = 0;
     82 
     83 	/* Controls how often the unexpected attention check will fail. */
     84 	int bnx_debug_unexpected_attention = 0;
     85 
     86 	/* Controls how often to simulate an mbuf allocation failure. */
     87 	int bnx_debug_mbuf_allocation_failure = 0;
     88 
     89 	/* Controls how often to simulate a DMA mapping failure. */
     90 	int bnx_debug_dma_map_addr_failure = 0;
     91 
     92 	/* Controls how often to simulate a bootcode failure. */
     93 	int bnx_debug_bootcode_running_failure = 0;
     94 #endif
     95 
     96 /****************************************************************************/
     97 /* PCI Device ID Table                                                      */
     98 /*                                                                          */
     99 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    100 /****************************************************************************/
    101 static const struct bnx_product {
    102 	pci_vendor_id_t		bp_vendor;
    103 	pci_product_id_t	bp_product;
    104 	pci_vendor_id_t		bp_subvendor;
    105 	pci_product_id_t	bp_subproduct;
    106 	const char		*bp_name;
    107 } bnx_devices[] = {
    108 #ifdef PCI_SUBPRODUCT_HP_NC370T
    109 	{
    110 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    111 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    112 	  "HP NC370T Multifunction Gigabit Server Adapter"
    113 	},
    114 #endif
    115 #ifdef PCI_SUBPRODUCT_HP_NC370i
    116 	{
    117 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    118 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    119 	  "HP NC370i Multifunction Gigabit Server Adapter"
    120 	},
    121 #endif
    122 	{
    123 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    124 	  0, 0,
    125 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    126 	},
    127 #ifdef PCI_SUBPRODUCT_HP_NC370F
    128 	{
    129 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    130 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    131 	  "HP NC370F Multifunction Gigabit Server Adapter"
    132 	},
    133 #endif
    134 	{
    135 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    136 	  0, 0,
    137 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    138 	},
    139 	{
    140 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    141 	  0, 0,
    142 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    143 	},
    144 	{
    145 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    146 	  0, 0,
    147 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    148 	},
    149 };
    150 
    151 /****************************************************************************/
    152 /* Supported Flash NVRAM device data.                                       */
    153 /****************************************************************************/
    154 static struct flash_spec flash_table[] =
    155 {
    156 	/* Slow EEPROM */
    157 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    158 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    159 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    160 	 "EEPROM - slow"},
    161 	/* Expansion entry 0001 */
    162 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    163 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    164 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    165 	 "Entry 0001"},
    166 	/* Saifun SA25F010 (non-buffered flash) */
    167 	/* strap, cfg1, & write1 need updates */
    168 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    169 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    170 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    171 	 "Non-buffered flash (128kB)"},
    172 	/* Saifun SA25F020 (non-buffered flash) */
    173 	/* strap, cfg1, & write1 need updates */
    174 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    175 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    176 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    177 	 "Non-buffered flash (256kB)"},
    178 	/* Expansion entry 0100 */
    179 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    180 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    181 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    182 	 "Entry 0100"},
    183 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    184 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    185 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    186 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    187 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    188 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    189 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    190 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    191 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    192 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    193 	/* Saifun SA25F005 (non-buffered flash) */
    194 	/* strap, cfg1, & write1 need updates */
    195 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    196 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    197 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    198 	 "Non-buffered flash (64kB)"},
    199 	/* Fast EEPROM */
    200 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    201 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    202 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    203 	 "EEPROM - fast"},
    204 	/* Expansion entry 1001 */
    205 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    206 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    207 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    208 	 "Entry 1001"},
    209 	/* Expansion entry 1010 */
    210 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    211 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    213 	 "Entry 1010"},
    214 	/* ATMEL AT45DB011B (buffered flash) */
    215 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    216 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    217 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    218 	 "Buffered flash (128kB)"},
    219 	/* Expansion entry 1100 */
    220 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    221 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    222 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    223 	 "Entry 1100"},
    224 	/* Expansion entry 1101 */
    225 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    226 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    228 	 "Entry 1101"},
    229 	/* Ateml Expansion entry 1110 */
    230 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    231 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    232 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    233 	 "Entry 1110 (Atmel)"},
    234 	/* ATMEL AT45DB021B (buffered flash) */
    235 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    236 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    237 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    238 	 "Buffered flash (256kB)"},
    239 };
    240 
    241 /****************************************************************************/
    242 /* OpenBSD device entry points.                                             */
    243 /****************************************************************************/
    244 static int	bnx_probe(device_t, cfdata_t, void *);
    245 void	bnx_attach(struct device *, struct device *, void *);
    246 #if 0
    247 void	bnx_detach(void *);
    248 #endif
    249 void	bnx_shutdown(void *);
    250 
    251 /****************************************************************************/
    252 /* BNX Debug Data Structure Dump Routines                                   */
    253 /****************************************************************************/
    254 #ifdef BNX_DEBUG
    255 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    256 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    257 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    258 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    259 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    260 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    261 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    262 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    263 void	bnx_dump_status_block(struct bnx_softc *);
    264 void	bnx_dump_stats_block(struct bnx_softc *);
    265 void	bnx_dump_driver_state(struct bnx_softc *);
    266 void	bnx_dump_hw_state(struct bnx_softc *);
    267 void	bnx_breakpoint(struct bnx_softc *);
    268 #endif
    269 
    270 /****************************************************************************/
    271 /* BNX Register/Memory Access Routines                                      */
    272 /****************************************************************************/
    273 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
    274 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
    275 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
    276 int	bnx_miibus_read_reg(struct device *, int, int);
    277 void	bnx_miibus_write_reg(struct device *, int, int, int);
    278 void	bnx_miibus_statchg(struct device *);
    279 
    280 /****************************************************************************/
    281 /* BNX NVRAM Access Routines                                                */
    282 /****************************************************************************/
    283 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    284 int	bnx_release_nvram_lock(struct bnx_softc *);
    285 void	bnx_enable_nvram_access(struct bnx_softc *);
    286 void	bnx_disable_nvram_access(struct bnx_softc *);
    287 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    288 	    u_int32_t);
    289 int	bnx_init_nvram(struct bnx_softc *);
    290 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    291 int	bnx_nvram_test(struct bnx_softc *);
    292 #ifdef BNX_NVRAM_WRITE_SUPPORT
    293 int	bnx_enable_nvram_write(struct bnx_softc *);
    294 void	bnx_disable_nvram_write(struct bnx_softc *);
    295 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
    296 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    297 	    u_int32_t);
    298 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    299 #endif
    300 
    301 /****************************************************************************/
    302 /*                                                                          */
    303 /****************************************************************************/
    304 int	bnx_dma_alloc(struct bnx_softc *);
    305 void	bnx_dma_free(struct bnx_softc *);
    306 void	bnx_release_resources(struct bnx_softc *);
    307 void	bnx_dma_map_tx_desc(void *, bus_dmamap_t);
    308 
    309 /****************************************************************************/
    310 /* BNX Firmware Synchronization and Load                                    */
    311 /****************************************************************************/
    312 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
    313 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
    314 	    u_int32_t);
    315 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    316 	    struct fw_info *);
    317 void	bnx_init_cpus(struct bnx_softc *);
    318 
    319 void	bnx_stop(struct bnx_softc *);
    320 int	bnx_reset(struct bnx_softc *, u_int32_t);
    321 int	bnx_chipinit(struct bnx_softc *);
    322 int	bnx_blockinit(struct bnx_softc *);
    323 int	bnx_get_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
    324 	    u_int16_t *, u_int32_t *);
    325 
    326 int	bnx_init_tx_chain(struct bnx_softc *);
    327 int	bnx_init_rx_chain(struct bnx_softc *);
    328 void	bnx_free_rx_chain(struct bnx_softc *);
    329 void	bnx_free_tx_chain(struct bnx_softc *);
    330 
    331 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *, u_int16_t *,
    332 	    u_int16_t *, u_int32_t *);
    333 void	bnx_start(struct ifnet *);
    334 int	bnx_ioctl(struct ifnet *, u_long, void *);
    335 void	bnx_watchdog(struct ifnet *);
    336 int	bnx_ifmedia_upd(struct ifnet *);
    337 void	bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    338 int	bnx_init(struct ifnet *);
    339 
    340 void	bnx_init_context(struct bnx_softc *);
    341 void	bnx_get_mac_addr(struct bnx_softc *);
    342 void	bnx_set_mac_addr(struct bnx_softc *);
    343 void	bnx_phy_intr(struct bnx_softc *);
    344 void	bnx_rx_intr(struct bnx_softc *);
    345 void	bnx_tx_intr(struct bnx_softc *);
    346 void	bnx_disable_intr(struct bnx_softc *);
    347 void	bnx_enable_intr(struct bnx_softc *);
    348 
    349 int	bnx_intr(void *);
    350 void	bnx_set_rx_mode(struct bnx_softc *);
    351 void	bnx_stats_update(struct bnx_softc *);
    352 void	bnx_tick(void *);
    353 
    354 /****************************************************************************/
    355 /* OpenBSD device dispatch table.                                           */
    356 /****************************************************************************/
    357 CFATTACH_DECL(bnx, sizeof(struct bnx_softc),
    358     bnx_probe, bnx_attach, NULL, NULL);
    359 
    360 /****************************************************************************/
    361 /* Device probe function.                                                   */
    362 /*                                                                          */
    363 /* Compares the device to the driver's list of supported devices and        */
    364 /* reports back to the OS whether this is the right driver for the device.  */
    365 /*                                                                          */
    366 /* Returns:                                                                 */
    367 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    368 /****************************************************************************/
    369 static const struct bnx_product *
    370 bnx_lookup(const struct pci_attach_args *pa)
    371 {
    372 	int i;
    373 	pcireg_t subid;
    374 
    375 	for (i = 0; i < sizeof(bnx_devices)/sizeof(struct bnx_product); i++) {
    376 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    377 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    378 			continue;
    379 		if (!bnx_devices[i].bp_subvendor)
    380 			return &bnx_devices[i];
    381 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    382 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    383 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    384 			return &bnx_devices[i];
    385 	}
    386 
    387 	return NULL;
    388 }
    389 static int
    390 bnx_probe(device_t parent, cfdata_t match, void *aux)
    391 {
    392 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    393 
    394 	if (bnx_lookup(pa) != NULL)
    395 		return (1);
    396 
    397 	return (0);
    398 }
    399 
    400 /****************************************************************************/
    401 /* Device attach function.                                                  */
    402 /*                                                                          */
    403 /* Allocates device resources, performs secondary chip identification,      */
    404 /* resets and initializes the hardware, and initializes driver instance     */
    405 /* variables.                                                               */
    406 /*                                                                          */
    407 /* Returns:                                                                 */
    408 /*   0 on success, positive value on failure.                               */
    409 /****************************************************************************/
    410 void
    411 bnx_attach(struct device *parent, struct device *self, void *aux)
    412 {
    413 	const struct bnx_product *bp;
    414 	struct bnx_softc	*sc = (struct bnx_softc *)self;
    415 	struct pci_attach_args	*pa = aux;
    416 	pci_chipset_tag_t	pc = pa->pa_pc;
    417 	pci_intr_handle_t	ih;
    418 	const char 		*intrstr = NULL;
    419 	u_int32_t		command;
    420 	struct ifnet		*ifp;
    421 	u_int32_t		val;
    422 	pcireg_t		memtype;
    423 
    424 	bp = bnx_lookup(pa);
    425 	if (bp == NULL)
    426 		panic("unknown device");
    427 
    428 	aprint_naive("\n");
    429 	aprint_normal(": %s", bp->bp_name);
    430 
    431 	sc->bnx_pa = *pa;
    432 
    433 	/*
    434 	 * Map control/status registers.
    435 	*/
    436 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    437 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    438 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    439 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    440 
    441 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    442 		aprint_error("%s: failed to enable memory mapping!\n",
    443 		    sc->bnx_dev.dv_xname);
    444 		return;
    445 	}
    446 
    447 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    448 	switch (memtype) {
    449 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    450 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    451 		if (pci_mapreg_map(pa, BNX_PCI_BAR0,
    452 		    memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
    453 		    NULL, &sc->bnx_size) == 0)
    454 			break;
    455 	default:
    456 		aprint_error("%s: can't find mem space\n",
    457 		    sc->bnx_dev.dv_xname);
    458 		return;
    459 	}
    460 
    461 	if (pci_intr_map(pa, &ih)) {
    462 		aprint_error("%s: couldn't map interrupt\n",
    463 		    sc->bnx_dev.dv_xname);
    464 		goto bnx_attach_fail;
    465 	}
    466 
    467 	intrstr = pci_intr_string(pc, ih);
    468 
    469 	/*
    470 	 * Configure byte swap and enable indirect register access.
    471 	 * Rely on CPU to do target byte swapping on big endian systems.
    472 	 * Access to registers outside of PCI configurtion space are not
    473 	 * valid until this is done.
    474 	 */
    475 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    476 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    477 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    478 
    479 	/* Save ASIC revsion info. */
    480 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    481 
    482 	/* Weed out any non-production controller revisions. */
    483 	switch(BNX_CHIP_ID(sc)) {
    484 	case BNX_CHIP_ID_5706_A0:
    485 	case BNX_CHIP_ID_5706_A1:
    486 	case BNX_CHIP_ID_5708_A0:
    487 	case BNX_CHIP_ID_5708_B0:
    488 		aprint_error("%s: unsupported controller revision (%c%d)!\n",
    489 		    sc->bnx_dev.dv_xname,
    490 		    ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
    491 		    PCI_REVISION(pa->pa_class) & 0x0f);
    492 		goto bnx_attach_fail;
    493 	}
    494 
    495 	if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
    496 		aprint_error("%s: SerDes controllers are not supported!\n",
    497 		    sc->bnx_dev.dv_xname);
    498 		goto bnx_attach_fail;
    499 	}
    500 
    501 	/*
    502 	 * Find the base address for shared memory access.
    503 	 * Newer versions of bootcode use a signature and offset
    504 	 * while older versions use a fixed address.
    505 	 */
    506 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    507 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    508 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
    509 	else
    510 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    511 
    512 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    513 
    514 	/* Set initial device and PHY flags */
    515 	sc->bnx_flags = 0;
    516 	sc->bnx_phy_flags = 0;
    517 
    518 	/* Get PCI bus information (speed and type). */
    519 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    520 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    521 		u_int32_t clkreg;
    522 
    523 		sc->bnx_flags |= BNX_PCIX_FLAG;
    524 
    525 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    526 
    527 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    528 		switch (clkreg) {
    529 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    530 			sc->bus_speed_mhz = 133;
    531 			break;
    532 
    533 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    534 			sc->bus_speed_mhz = 100;
    535 			break;
    536 
    537 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    538 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    539 			sc->bus_speed_mhz = 66;
    540 			break;
    541 
    542 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    543 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    544 			sc->bus_speed_mhz = 50;
    545 			break;
    546 
    547 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    548 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    549 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    550 			sc->bus_speed_mhz = 33;
    551 			break;
    552 		}
    553 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    554 			sc->bus_speed_mhz = 66;
    555 		else
    556 			sc->bus_speed_mhz = 33;
    557 
    558 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    559 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    560 
    561 	/* Reset the controller. */
    562 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    563 		goto bnx_attach_fail;
    564 
    565 	/* Initialize the controller. */
    566 	if (bnx_chipinit(sc)) {
    567 		aprint_error("%s: Controller initialization failed!\n",
    568 		    sc->bnx_dev.dv_xname);
    569 		goto bnx_attach_fail;
    570 	}
    571 
    572 	/* Perform NVRAM test. */
    573 	if (bnx_nvram_test(sc)) {
    574 		aprint_error("%s: NVRAM test failed!\n", sc->bnx_dev.dv_xname);
    575 		goto bnx_attach_fail;
    576 	}
    577 
    578 	/* Fetch the permanent Ethernet MAC address. */
    579 	bnx_get_mac_addr(sc);
    580 	aprint_normal("%s: Ethernet address %s\n", sc->bnx_dev.dv_xname,
    581 	    ether_sprintf(sc->eaddr));
    582 
    583 	/*
    584 	 * Trip points control how many BDs
    585 	 * should be ready before generating an
    586 	 * interrupt while ticks control how long
    587 	 * a BD can sit in the chain before
    588 	 * generating an interrupt.  Set the default
    589 	 * values for the RX and TX rings.
    590 	 */
    591 
    592 #ifdef BNX_DEBUG
    593 	/* Force more frequent interrupts. */
    594 	sc->bnx_tx_quick_cons_trip_int = 1;
    595 	sc->bnx_tx_quick_cons_trip     = 1;
    596 	sc->bnx_tx_ticks_int           = 0;
    597 	sc->bnx_tx_ticks               = 0;
    598 
    599 	sc->bnx_rx_quick_cons_trip_int = 1;
    600 	sc->bnx_rx_quick_cons_trip     = 1;
    601 	sc->bnx_rx_ticks_int           = 0;
    602 	sc->bnx_rx_ticks               = 0;
    603 #else
    604 	sc->bnx_tx_quick_cons_trip_int = 20;
    605 	sc->bnx_tx_quick_cons_trip     = 20;
    606 	sc->bnx_tx_ticks_int           = 80;
    607 	sc->bnx_tx_ticks               = 80;
    608 
    609 	sc->bnx_rx_quick_cons_trip_int = 6;
    610 	sc->bnx_rx_quick_cons_trip     = 6;
    611 	sc->bnx_rx_ticks_int           = 18;
    612 	sc->bnx_rx_ticks               = 18;
    613 #endif
    614 
    615 	/* Update statistics once every second. */
    616 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    617 
    618 	/*
    619 	 * The copper based NetXtreme II controllers
    620 	 * use an integrated PHY at address 1 while
    621 	 * the SerDes controllers use a PHY at
    622 	 * address 2.
    623 	 */
    624 	sc->bnx_phy_addr = 1;
    625 
    626 	if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
    627 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
    628 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
    629 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708) {
    630 			sc->bnx_phy_addr = 2;
    631 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
    632 					 BNX_SHARED_HW_CFG_CONFIG);
    633 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
    634 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
    635 		}
    636 	}
    637 
    638 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
    639 		aprint_error("%s: SerDes is not supported by this driver!\n",
    640 		    sc->bnx_dev.dv_xname);
    641 		goto bnx_attach_fail;
    642 	}
    643 
    644 	/* Allocate DMA memory resources. */
    645 	sc->bnx_dmatag = pa->pa_dmat;
    646 	if (bnx_dma_alloc(sc)) {
    647 		aprint_error("%s: DMA resource allocation failed!\n",
    648 		    sc->bnx_dev.dv_xname);
    649 		goto bnx_attach_fail;
    650 	}
    651 
    652 	/* Initialize the ifnet interface. */
    653 	ifp = &sc->ethercom.ec_if;
    654 	ifp->if_softc = sc;
    655 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    656 	ifp->if_ioctl = bnx_ioctl;
    657 	ifp->if_start = bnx_start;
    658 	ifp->if_init = bnx_init;
    659 	ifp->if_timer = 0;
    660 	ifp->if_watchdog = bnx_watchdog;
    661         if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG)
    662                 ifp->if_baudrate = IF_Gbps(2.5);
    663         else
    664                 ifp->if_baudrate = IF_Gbps(1);
    665 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD);
    666 	IFQ_SET_READY(&ifp->if_snd);
    667 	bcopy(sc->bnx_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    668 
    669 	sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    670 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    671 
    672 	ifp->if_capabilities |=
    673 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    674 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    675 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    676 
    677 	sc->mbuf_alloc_size = BNX_MAX_MRU;
    678 
    679 	/* Hookup IRQ last. */
    680 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    681 	if (sc->bnx_intrhand == NULL) {
    682 		aprint_error("%s: couldn't establish interrupt",
    683 		    sc->bnx_dev.dv_xname);
    684 		if (intrstr != NULL)
    685 			aprint_error(" at %s", intrstr);
    686 		aprint_error("\n");
    687 		goto bnx_attach_fail;
    688 	}
    689 
    690 	sc->bnx_mii.mii_ifp = ifp;
    691 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    692 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    693 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    694 
    695 	/* Look for our PHY. */
    696 	ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd,
    697 	    bnx_ifmedia_sts);
    698 	mii_attach(&sc->bnx_dev, &sc->bnx_mii, 0xffffffff,
    699 	    MII_PHY_ANY, MII_OFFSET_ANY, 0);
    700 
    701 	if (LIST_FIRST(&sc->bnx_mii.mii_phys) == NULL) {
    702 		aprint_error("%s: no PHY found!\n", sc->bnx_dev.dv_xname);
    703 		ifmedia_add(&sc->bnx_mii.mii_media,
    704 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    705 		ifmedia_set(&sc->bnx_mii.mii_media,
    706 		    IFM_ETHER|IFM_MANUAL);
    707 	} else {
    708 		ifmedia_set(&sc->bnx_mii.mii_media,
    709 		    IFM_ETHER|IFM_AUTO);
    710 	}
    711 
    712 	/* Attach to the Ethernet interface list. */
    713 	if_attach(ifp);
    714 	ether_ifattach(ifp,sc->eaddr);
    715 
    716 	callout_init(&sc->bnx_timeout);
    717 
    718 	/* Print some important debugging info. */
    719 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    720 
    721 	goto bnx_attach_exit;
    722 
    723 bnx_attach_fail:
    724 	bnx_release_resources(sc);
    725 
    726 bnx_attach_exit:
    727 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
    728 }
    729 
    730 /****************************************************************************/
    731 /* Device detach function.                                                  */
    732 /*                                                                          */
    733 /* Stops the controller, resets the controller, and releases resources.     */
    734 /*                                                                          */
    735 /* Returns:                                                                 */
    736 /*   0 on success, positive value on failure.                               */
    737 /****************************************************************************/
    738 #if 0
    739 void
    740 bnx_detach(void *xsc)
    741 {
    742 	struct bnx_softc *sc;
    743 	struct ifnet *ifp = &sc->arpcom.ac_if;
    744 
    745 	sc = device_get_softc(dev);
    746 
    747 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
    748 
    749 	/* Stop and reset the controller. */
    750 	bnx_stop(sc);
    751 	bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
    752 
    753 	ether_ifdetach(ifp);
    754 
    755 	/* If we have a child device on the MII bus remove it too. */
    756 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
    757 		ifmedia_removeall(&sc->bnx_ifmedia);
    758 	} else {
    759 		bus_generic_detach(dev);
    760 		device_delete_child(dev, sc->bnx_mii);
    761 	}
    762 
    763 	/* Release all remaining resources. */
    764 	bnx_release_resources(sc);
    765 
    766 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
    767 
    768 	return(0);
    769 }
    770 #endif
    771 
    772 /****************************************************************************/
    773 /* Device shutdown function.                                                */
    774 /*                                                                          */
    775 /* Stops and resets the controller.                                         */
    776 /*                                                                          */
    777 /* Returns:                                                                 */
    778 /*   Nothing                                                                */
    779 /****************************************************************************/
    780 void
    781 bnx_shutdown(void *xsc)
    782 {
    783 	struct bnx_softc	*sc = (struct bnx_softc *)xsc;
    784 
    785 	bnx_stop(sc);
    786 	bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
    787 }
    788 
    789 /****************************************************************************/
    790 /* Indirect register read.                                                  */
    791 /*                                                                          */
    792 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    793 /* configuration space.  Using this mechanism avoids issues with posted     */
    794 /* reads but is much slower than memory-mapped I/O.                         */
    795 /*                                                                          */
    796 /* Returns:                                                                 */
    797 /*   The value of the register.                                             */
    798 /****************************************************************************/
    799 u_int32_t
    800 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
    801 {
    802 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    803 
    804 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    805 	    offset);
    806 #ifdef BNX_DEBUG
    807 	{
    808 		u_int32_t val;
    809 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    810 		    BNX_PCICFG_REG_WINDOW);
    811 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    812 		    "val = 0x%08X\n", __FUNCTION__, offset, val);
    813 		return (val);
    814 	}
    815 #else
    816 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    817 #endif
    818 }
    819 
    820 /****************************************************************************/
    821 /* Indirect register write.                                                 */
    822 /*                                                                          */
    823 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    824 /* configuration space.  Using this mechanism avoids issues with posted     */
    825 /* writes but is muchh slower than memory-mapped I/O.                       */
    826 /*                                                                          */
    827 /* Returns:                                                                 */
    828 /*   Nothing.                                                               */
    829 /****************************************************************************/
    830 void
    831 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
    832 {
    833 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    834 
    835 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    836 		__FUNCTION__, offset, val);
    837 
    838 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    839 	    offset);
    840 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    841 }
    842 
    843 /****************************************************************************/
    844 /* Context memory write.                                                    */
    845 /*                                                                          */
    846 /* The NetXtreme II controller uses context memory to track connection      */
    847 /* information for L2 and higher network protocols.                         */
    848 /*                                                                          */
    849 /* Returns:                                                                 */
    850 /*   Nothing.                                                               */
    851 /****************************************************************************/
    852 void
    853 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
    854     u_int32_t val)
    855 {
    856 
    857 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
    858 		"val = 0x%08X\n", __FUNCTION__, cid_addr, offset, val);
    859 
    860 	offset += cid_addr;
    861 	REG_WR(sc, BNX_CTX_DATA_ADR, offset);
    862 	REG_WR(sc, BNX_CTX_DATA, val);
    863 }
    864 
    865 /****************************************************************************/
    866 /* PHY register read.                                                       */
    867 /*                                                                          */
    868 /* Implements register reads on the MII bus.                                */
    869 /*                                                                          */
    870 /* Returns:                                                                 */
    871 /*   The value of the register.                                             */
    872 /****************************************************************************/
    873 int
    874 bnx_miibus_read_reg(struct device *dev, int phy, int reg)
    875 {
    876 	struct bnx_softc	*sc = (struct bnx_softc *)dev;
    877 	u_int32_t		val;
    878 	int			i;
    879 
    880 	/* Make sure we are accessing the correct PHY address. */
    881 	if (phy != sc->bnx_phy_addr) {
    882 		DBPRINT(sc, BNX_VERBOSE,
    883 		    "Invalid PHY address %d for PHY read!\n", phy);
    884 		return(0);
    885 	}
    886 
    887 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    888 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    889 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    890 
    891 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    892 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    893 
    894 		DELAY(40);
    895 	}
    896 
    897 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
    898 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
    899 	    BNX_EMAC_MDIO_COMM_START_BUSY;
    900 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
    901 
    902 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    903 		DELAY(10);
    904 
    905 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    906 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    907 			DELAY(5);
    908 
    909 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    910 			val &= BNX_EMAC_MDIO_COMM_DATA;
    911 
    912 			break;
    913 		}
    914 	}
    915 
    916 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
    917 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
    918 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
    919 		val = 0x0;
    920 	} else
    921 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    922 
    923 	DBPRINT(sc, BNX_EXCESSIVE,
    924 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __FUNCTION__, phy,
    925 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    926 
    927 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    928 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    929 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    930 
    931 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    932 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    933 
    934 		DELAY(40);
    935 	}
    936 
    937 	return (val & 0xffff);
    938 }
    939 
    940 /****************************************************************************/
    941 /* PHY register write.                                                      */
    942 /*                                                                          */
    943 /* Implements register writes on the MII bus.                               */
    944 /*                                                                          */
    945 /* Returns:                                                                 */
    946 /*   The value of the register.                                             */
    947 /****************************************************************************/
    948 void
    949 bnx_miibus_write_reg(struct device *dev, int phy, int reg, int val)
    950 {
    951 	struct bnx_softc	*sc = (struct bnx_softc *)dev;
    952 	u_int32_t		val1;
    953 	int			i;
    954 
    955 	/* Make sure we are accessing the correct PHY address. */
    956 	if (phy != sc->bnx_phy_addr) {
    957 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
    958 		    phy);
    959 		return;
    960 	}
    961 
    962 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
    963 	    "val = 0x%04X\n", __FUNCTION__,
    964 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    965 
    966 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    967 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    968 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    969 
    970 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
    971 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    972 
    973 		DELAY(40);
    974 	}
    975 
    976 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
    977 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
    978 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
    979 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
    980 
    981 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    982 		DELAY(10);
    983 
    984 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    985 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    986 			DELAY(5);
    987 			break;
    988 		}
    989 	}
    990 
    991 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
    992 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
    993 		    __LINE__);
    994 	}
    995 
    996 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    997 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    998 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    999 
   1000 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1001 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1002 
   1003 		DELAY(40);
   1004 	}
   1005 }
   1006 
   1007 /****************************************************************************/
   1008 /* MII bus status change.                                                   */
   1009 /*                                                                          */
   1010 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1011 /* MAC interface registers.                                                 */
   1012 /*                                                                          */
   1013 /* Returns:                                                                 */
   1014 /*   Nothing.                                                               */
   1015 /****************************************************************************/
   1016 void
   1017 bnx_miibus_statchg(struct device *dev)
   1018 {
   1019 	struct bnx_softc	*sc = (struct bnx_softc *)dev;
   1020 	struct mii_data		*mii = &sc->bnx_mii;
   1021 
   1022 	BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT);
   1023 
   1024 	/* Set MII or GMII inerface based on the speed negotiated by the PHY. */
   1025 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
   1026 		DBPRINT(sc, BNX_INFO, "Setting GMII interface.\n");
   1027 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_GMII);
   1028 	} else {
   1029 		DBPRINT(sc, BNX_INFO, "Setting MII interface.\n");
   1030 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_MII);
   1031 	}
   1032 
   1033 	/* Set half or full duplex based on the duplicity
   1034 	 * negotiated by the PHY.
   1035 	 */
   1036 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
   1037 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1038 		BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
   1039 	} else {
   1040 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1041 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
   1042 	}
   1043 }
   1044 
   1045 /****************************************************************************/
   1046 /* Acquire NVRAM lock.                                                      */
   1047 /*                                                                          */
   1048 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1049 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1050 /* for use by the driver.                                                   */
   1051 /*                                                                          */
   1052 /* Returns:                                                                 */
   1053 /*   0 on success, positive value on failure.                               */
   1054 /****************************************************************************/
   1055 int
   1056 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1057 {
   1058 	u_int32_t		val;
   1059 	int			j;
   1060 
   1061 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1062 
   1063 	/* Request access to the flash interface. */
   1064 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1065 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1066 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1067 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1068 			break;
   1069 
   1070 		DELAY(5);
   1071 	}
   1072 
   1073 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1074 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1075 		return (EBUSY);
   1076 	}
   1077 
   1078 	return (0);
   1079 }
   1080 
   1081 /****************************************************************************/
   1082 /* Release NVRAM lock.                                                      */
   1083 /*                                                                          */
   1084 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1085 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1086 /* for use by the driver.                                                   */
   1087 /*                                                                          */
   1088 /* Returns:                                                                 */
   1089 /*   0 on success, positive value on failure.                               */
   1090 /****************************************************************************/
   1091 int
   1092 bnx_release_nvram_lock(struct bnx_softc *sc)
   1093 {
   1094 	int			j;
   1095 	u_int32_t		val;
   1096 
   1097 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1098 
   1099 	/* Relinquish nvram interface. */
   1100 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1101 
   1102 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1103 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1104 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1105 			break;
   1106 
   1107 		DELAY(5);
   1108 	}
   1109 
   1110 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1111 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1112 		return (EBUSY);
   1113 	}
   1114 
   1115 	return (0);
   1116 }
   1117 
   1118 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1119 /****************************************************************************/
   1120 /* Enable NVRAM write access.                                               */
   1121 /*                                                                          */
   1122 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1123 /*                                                                          */
   1124 /* Returns:                                                                 */
   1125 /*   0 on success, positive value on failure.                               */
   1126 /****************************************************************************/
   1127 int
   1128 bnx_enable_nvram_write(struct bnx_softc *sc)
   1129 {
   1130 	u_int32_t		val;
   1131 
   1132 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1133 
   1134 	val = REG_RD(sc, BNX_MISC_CFG);
   1135 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1136 
   1137 	if (!sc->bnx_flash_info->buffered) {
   1138 		int j;
   1139 
   1140 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1141 		REG_WR(sc, BNX_NVM_COMMAND,
   1142 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1143 
   1144 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1145 			DELAY(5);
   1146 
   1147 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1148 			if (val & BNX_NVM_COMMAND_DONE)
   1149 				break;
   1150 		}
   1151 
   1152 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1153 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1154 			return (EBUSY);
   1155 		}
   1156 	}
   1157 
   1158 	return (0);
   1159 }
   1160 
   1161 /****************************************************************************/
   1162 /* Disable NVRAM write access.                                              */
   1163 /*                                                                          */
   1164 /* When the caller is finished writing to NVRAM write access must be        */
   1165 /* disabled.                                                                */
   1166 /*                                                                          */
   1167 /* Returns:                                                                 */
   1168 /*   Nothing.                                                               */
   1169 /****************************************************************************/
   1170 void
   1171 bnx_disable_nvram_write(struct bnx_softc *sc)
   1172 {
   1173 	u_int32_t		val;
   1174 
   1175 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1176 
   1177 	val = REG_RD(sc, BNX_MISC_CFG);
   1178 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1179 }
   1180 #endif
   1181 
   1182 /****************************************************************************/
   1183 /* Enable NVRAM access.                                                     */
   1184 /*                                                                          */
   1185 /* Before accessing NVRAM for read or write operations the caller must      */
   1186 /* enabled NVRAM access.                                                    */
   1187 /*                                                                          */
   1188 /* Returns:                                                                 */
   1189 /*   Nothing.                                                               */
   1190 /****************************************************************************/
   1191 void
   1192 bnx_enable_nvram_access(struct bnx_softc *sc)
   1193 {
   1194 	u_int32_t		val;
   1195 
   1196 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1197 
   1198 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1199 	/* Enable both bits, even on read. */
   1200 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1201 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1202 }
   1203 
   1204 /****************************************************************************/
   1205 /* Disable NVRAM access.                                                    */
   1206 /*                                                                          */
   1207 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1208 /*                                                                          */
   1209 /* Returns:                                                                 */
   1210 /*   Nothing.                                                               */
   1211 /****************************************************************************/
   1212 void
   1213 bnx_disable_nvram_access(struct bnx_softc *sc)
   1214 {
   1215 	u_int32_t		val;
   1216 
   1217 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1218 
   1219 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1220 
   1221 	/* Disable both bits, even after read. */
   1222 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1223 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1224 }
   1225 
   1226 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1227 /****************************************************************************/
   1228 /* Erase NVRAM page before writing.                                         */
   1229 /*                                                                          */
   1230 /* Non-buffered flash parts require that a page be erased before it is      */
   1231 /* written.                                                                 */
   1232 /*                                                                          */
   1233 /* Returns:                                                                 */
   1234 /*   0 on success, positive value on failure.                               */
   1235 /****************************************************************************/
   1236 int
   1237 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
   1238 {
   1239 	u_int32_t		cmd;
   1240 	int			j;
   1241 
   1242 	/* Buffered flash doesn't require an erase. */
   1243 	if (sc->bnx_flash_info->buffered)
   1244 		return (0);
   1245 
   1246 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1247 
   1248 	/* Build an erase command. */
   1249 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1250 	    BNX_NVM_COMMAND_DOIT;
   1251 
   1252 	/*
   1253 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
   1254 	 * and issue the erase command.
   1255 	 */
   1256 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1257 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1258 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1259 
   1260 	/* Wait for completion. */
   1261 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1262 		u_int32_t val;
   1263 
   1264 		DELAY(5);
   1265 
   1266 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1267 		if (val & BNX_NVM_COMMAND_DONE)
   1268 			break;
   1269 	}
   1270 
   1271 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1272 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1273 		return (EBUSY);
   1274 	}
   1275 
   1276 	return (0);
   1277 }
   1278 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1279 
   1280 /****************************************************************************/
   1281 /* Read a dword (32 bits) from NVRAM.                                       */
   1282 /*                                                                          */
   1283 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1284 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1285 /*                                                                          */
   1286 /* Returns:                                                                 */
   1287 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1288 /****************************************************************************/
   1289 int
   1290 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
   1291     u_int8_t *ret_val, u_int32_t cmd_flags)
   1292 {
   1293 	u_int32_t		cmd;
   1294 	int			i, rc = 0;
   1295 
   1296 	/* Build the command word. */
   1297 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1298 
   1299 	/* Calculate the offset for buffered flash. */
   1300 	if (sc->bnx_flash_info->buffered)
   1301 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1302 		    sc->bnx_flash_info->page_bits) +
   1303 		    (offset % sc->bnx_flash_info->page_size);
   1304 
   1305 	/*
   1306 	 * Clear the DONE bit separately, set the address to read,
   1307 	 * and issue the read.
   1308 	 */
   1309 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1310 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1311 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1312 
   1313 	/* Wait for completion. */
   1314 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1315 		u_int32_t val;
   1316 
   1317 		DELAY(5);
   1318 
   1319 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1320 		if (val & BNX_NVM_COMMAND_DONE) {
   1321 			val = REG_RD(sc, BNX_NVM_READ);
   1322 
   1323 			val = bnx_be32toh(val);
   1324 			memcpy(ret_val, &val, 4);
   1325 			break;
   1326 		}
   1327 	}
   1328 
   1329 	/* Check for errors. */
   1330 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1331 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1332 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1333 		rc = EBUSY;
   1334 	}
   1335 
   1336 	return(rc);
   1337 }
   1338 
   1339 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1340 /****************************************************************************/
   1341 /* Write a dword (32 bits) to NVRAM.                                        */
   1342 /*                                                                          */
   1343 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1344 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1345 /* enabled NVRAM write access.                                              */
   1346 /*                                                                          */
   1347 /* Returns:                                                                 */
   1348 /*   0 on success, positive value on failure.                               */
   1349 /****************************************************************************/
   1350 int
   1351 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
   1352     u_int32_t cmd_flags)
   1353 {
   1354 	u_int32_t		cmd, val32;
   1355 	int			j;
   1356 
   1357 	/* Build the command word. */
   1358 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1359 
   1360 	/* Calculate the offset for buffered flash. */
   1361 	if (sc->bnx_flash_info->buffered)
   1362 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1363 		    sc->bnx_flash_info->page_bits) +
   1364 		    (offset % sc->bnx_flash_info->page_size);
   1365 
   1366 	/*
   1367 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1368 	 * set the NVRAM address to write, and issue the write command
   1369 	 */
   1370 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1371 	memcpy(&val32, val, 4);
   1372 	val32 = htobe32(val32);
   1373 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1374 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1375 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1376 
   1377 	/* Wait for completion. */
   1378 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1379 		DELAY(5);
   1380 
   1381 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1382 			break;
   1383 	}
   1384 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1385 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1386 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1387 		return (EBUSY);
   1388 	}
   1389 
   1390 	return (0);
   1391 }
   1392 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1393 
   1394 /****************************************************************************/
   1395 /* Initialize NVRAM access.                                                 */
   1396 /*                                                                          */
   1397 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1398 /* access that device.                                                      */
   1399 /*                                                                          */
   1400 /* Returns:                                                                 */
   1401 /*   0 on success, positive value on failure.                               */
   1402 /****************************************************************************/
   1403 int
   1404 bnx_init_nvram(struct bnx_softc *sc)
   1405 {
   1406 	u_int32_t		val;
   1407 	int			j, entry_count, rc;
   1408 	struct flash_spec	*flash;
   1409 
   1410 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   1411 
   1412 	/* Determine the selected interface. */
   1413 	val = REG_RD(sc, BNX_NVM_CFG1);
   1414 
   1415 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1416 
   1417 	rc = 0;
   1418 
   1419 	/*
   1420 	 * Flash reconfiguration is required to support additional
   1421 	 * NVRAM devices not directly supported in hardware.
   1422 	 * Check if the flash interface was reconfigured
   1423 	 * by the bootcode.
   1424 	 */
   1425 
   1426 	if (val & 0x40000000) {
   1427 		/* Flash interface reconfigured by bootcode. */
   1428 
   1429 		DBPRINT(sc,BNX_INFO_LOAD,
   1430 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1431 
   1432 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1433 		     j++, flash++) {
   1434 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1435 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1436 				sc->bnx_flash_info = flash;
   1437 				break;
   1438 			}
   1439 		}
   1440 	} else {
   1441 		/* Flash interface not yet reconfigured. */
   1442 		u_int32_t mask;
   1443 
   1444 		DBPRINT(sc,BNX_INFO_LOAD,
   1445 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1446 
   1447 		if (val & (1 << 23))
   1448 			mask = FLASH_BACKUP_STRAP_MASK;
   1449 		else
   1450 			mask = FLASH_STRAP_MASK;
   1451 
   1452 		/* Look for the matching NVRAM device configuration data. */
   1453 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1454 		    j++, flash++) {
   1455 			/* Check if the dev matches any of the known devices. */
   1456 			if ((val & mask) == (flash->strapping & mask)) {
   1457 				/* Found a device match. */
   1458 				sc->bnx_flash_info = flash;
   1459 
   1460 				/* Request access to the flash interface. */
   1461 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1462 					return (rc);
   1463 
   1464 				/* Reconfigure the flash interface. */
   1465 				bnx_enable_nvram_access(sc);
   1466 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1467 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1468 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1469 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1470 				bnx_disable_nvram_access(sc);
   1471 				bnx_release_nvram_lock(sc);
   1472 
   1473 				break;
   1474 			}
   1475 		}
   1476 	}
   1477 
   1478 	/* Check if a matching device was found. */
   1479 	if (j == entry_count) {
   1480 		sc->bnx_flash_info = NULL;
   1481 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1482 			__FILE__, __LINE__);
   1483 		rc = ENODEV;
   1484 	}
   1485 
   1486 	/* Write the flash config data to the shared memory interface. */
   1487 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1488 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1489 	if (val)
   1490 		sc->bnx_flash_size = val;
   1491 	else
   1492 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1493 
   1494 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1495 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1496 
   1497 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   1498 
   1499 	return (rc);
   1500 }
   1501 
   1502 /****************************************************************************/
   1503 /* Read an arbitrary range of data from NVRAM.                              */
   1504 /*                                                                          */
   1505 /* Prepares the NVRAM interface for access and reads the requested data     */
   1506 /* into the supplied buffer.                                                */
   1507 /*                                                                          */
   1508 /* Returns:                                                                 */
   1509 /*   0 on success and the data read, positive value on failure.             */
   1510 /****************************************************************************/
   1511 int
   1512 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
   1513     int buf_size)
   1514 {
   1515 	int			rc = 0;
   1516 	u_int32_t		cmd_flags, offset32, len32, extra;
   1517 
   1518 	if (buf_size == 0)
   1519 		return (0);
   1520 
   1521 	/* Request access to the flash interface. */
   1522 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1523 		return (rc);
   1524 
   1525 	/* Enable access to flash interface */
   1526 	bnx_enable_nvram_access(sc);
   1527 
   1528 	len32 = buf_size;
   1529 	offset32 = offset;
   1530 	extra = 0;
   1531 
   1532 	cmd_flags = 0;
   1533 
   1534 	if (offset32 & 3) {
   1535 		u_int8_t buf[4];
   1536 		u_int32_t pre_len;
   1537 
   1538 		offset32 &= ~3;
   1539 		pre_len = 4 - (offset & 3);
   1540 
   1541 		if (pre_len >= len32) {
   1542 			pre_len = len32;
   1543 			cmd_flags =
   1544 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1545 		} else
   1546 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1547 
   1548 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1549 
   1550 		if (rc)
   1551 			return (rc);
   1552 
   1553 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1554 
   1555 		offset32 += 4;
   1556 		ret_buf += pre_len;
   1557 		len32 -= pre_len;
   1558 	}
   1559 
   1560 	if (len32 & 3) {
   1561 		extra = 4 - (len32 & 3);
   1562 		len32 = (len32 + 4) & ~3;
   1563 	}
   1564 
   1565 	if (len32 == 4) {
   1566 		u_int8_t buf[4];
   1567 
   1568 		if (cmd_flags)
   1569 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1570 		else
   1571 			cmd_flags =
   1572 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1573 
   1574 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1575 
   1576 		memcpy(ret_buf, buf, 4 - extra);
   1577 	} else if (len32 > 0) {
   1578 		u_int8_t buf[4];
   1579 
   1580 		/* Read the first word. */
   1581 		if (cmd_flags)
   1582 			cmd_flags = 0;
   1583 		else
   1584 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1585 
   1586 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1587 
   1588 		/* Advance to the next dword. */
   1589 		offset32 += 4;
   1590 		ret_buf += 4;
   1591 		len32 -= 4;
   1592 
   1593 		while (len32 > 4 && rc == 0) {
   1594 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1595 
   1596 			/* Advance to the next dword. */
   1597 			offset32 += 4;
   1598 			ret_buf += 4;
   1599 			len32 -= 4;
   1600 		}
   1601 
   1602 		if (rc)
   1603 			return (rc);
   1604 
   1605 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1606 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1607 
   1608 		memcpy(ret_buf, buf, 4 - extra);
   1609 	}
   1610 
   1611 	/* Disable access to flash interface and release the lock. */
   1612 	bnx_disable_nvram_access(sc);
   1613 	bnx_release_nvram_lock(sc);
   1614 
   1615 	return (rc);
   1616 }
   1617 
   1618 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1619 /****************************************************************************/
   1620 /* Write an arbitrary range of data from NVRAM.                             */
   1621 /*                                                                          */
   1622 /* Prepares the NVRAM interface for write access and writes the requested   */
   1623 /* data from the supplied buffer.  The caller is responsible for            */
   1624 /* calculating any appropriate CRCs.                                        */
   1625 /*                                                                          */
   1626 /* Returns:                                                                 */
   1627 /*   0 on success, positive value on failure.                               */
   1628 /****************************************************************************/
   1629 int
   1630 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
   1631     int buf_size)
   1632 {
   1633 	u_int32_t		written, offset32, len32;
   1634 	u_int8_t		*buf, start[4], end[4];
   1635 	int			rc = 0;
   1636 	int			align_start, align_end;
   1637 
   1638 	buf = data_buf;
   1639 	offset32 = offset;
   1640 	len32 = buf_size;
   1641 	align_start = align_end = 0;
   1642 
   1643 	if ((align_start = (offset32 & 3))) {
   1644 		offset32 &= ~3;
   1645 		len32 += align_start;
   1646 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1647 			return (rc);
   1648 	}
   1649 
   1650 	if (len32 & 3) {
   1651 	       	if ((len32 > 4) || !align_start) {
   1652 			align_end = 4 - (len32 & 3);
   1653 			len32 += align_end;
   1654 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1655 			    end, 4))) {
   1656 				return (rc);
   1657 			}
   1658 		}
   1659 	}
   1660 
   1661 	if (align_start || align_end) {
   1662 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1663 		if (buf == 0)
   1664 			return (ENOMEM);
   1665 
   1666 		if (align_start)
   1667 			memcpy(buf, start, 4);
   1668 
   1669 		if (align_end)
   1670 			memcpy(buf + len32 - 4, end, 4);
   1671 
   1672 		memcpy(buf + align_start, data_buf, buf_size);
   1673 	}
   1674 
   1675 	written = 0;
   1676 	while ((written < len32) && (rc == 0)) {
   1677 		u_int32_t page_start, page_end, data_start, data_end;
   1678 		u_int32_t addr, cmd_flags;
   1679 		int i;
   1680 		u_int8_t flash_buffer[264];
   1681 
   1682 	    /* Find the page_start addr */
   1683 		page_start = offset32 + written;
   1684 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1685 		/* Find the page_end addr */
   1686 		page_end = page_start + sc->bnx_flash_info->page_size;
   1687 		/* Find the data_start addr */
   1688 		data_start = (written == 0) ? offset32 : page_start;
   1689 		/* Find the data_end addr */
   1690 		data_end = (page_end > offset32 + len32) ?
   1691 		    (offset32 + len32) : page_end;
   1692 
   1693 		/* Request access to the flash interface. */
   1694 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1695 			goto nvram_write_end;
   1696 
   1697 		/* Enable access to flash interface */
   1698 		bnx_enable_nvram_access(sc);
   1699 
   1700 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1701 		if (sc->bnx_flash_info->buffered == 0) {
   1702 			int j;
   1703 
   1704 			/* Read the whole page into the buffer
   1705 			 * (non-buffer flash only) */
   1706 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1707 				if (j == (sc->bnx_flash_info->page_size - 4))
   1708 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1709 
   1710 				rc = bnx_nvram_read_dword(sc,
   1711 					page_start + j,
   1712 					&flash_buffer[j],
   1713 					cmd_flags);
   1714 
   1715 				if (rc)
   1716 					goto nvram_write_end;
   1717 
   1718 				cmd_flags = 0;
   1719 			}
   1720 		}
   1721 
   1722 		/* Enable writes to flash interface (unlock write-protect) */
   1723 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1724 			goto nvram_write_end;
   1725 
   1726 		/* Erase the page */
   1727 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1728 			goto nvram_write_end;
   1729 
   1730 		/* Re-enable the write again for the actual write */
   1731 		bnx_enable_nvram_write(sc);
   1732 
   1733 		/* Loop to write back the buffer data from page_start to
   1734 		 * data_start */
   1735 		i = 0;
   1736 		if (sc->bnx_flash_info->buffered == 0) {
   1737 			for (addr = page_start; addr < data_start;
   1738 				addr += 4, i += 4) {
   1739 
   1740 				rc = bnx_nvram_write_dword(sc, addr,
   1741 				    &flash_buffer[i], cmd_flags);
   1742 
   1743 				if (rc != 0)
   1744 					goto nvram_write_end;
   1745 
   1746 				cmd_flags = 0;
   1747 			}
   1748 		}
   1749 
   1750 		/* Loop to write the new data from data_start to data_end */
   1751 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1752 			if ((addr == page_end - 4) ||
   1753 			    ((sc->bnx_flash_info->buffered) &&
   1754 			    (addr == data_end - 4))) {
   1755 
   1756 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1757 			}
   1758 
   1759 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1760 
   1761 			if (rc != 0)
   1762 				goto nvram_write_end;
   1763 
   1764 			cmd_flags = 0;
   1765 			buf += 4;
   1766 		}
   1767 
   1768 		/* Loop to write back the buffer data from data_end
   1769 		 * to page_end */
   1770 		if (sc->bnx_flash_info->buffered == 0) {
   1771 			for (addr = data_end; addr < page_end;
   1772 			    addr += 4, i += 4) {
   1773 
   1774 				if (addr == page_end-4)
   1775 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1776 
   1777 				rc = bnx_nvram_write_dword(sc, addr,
   1778 				    &flash_buffer[i], cmd_flags);
   1779 
   1780 				if (rc != 0)
   1781 					goto nvram_write_end;
   1782 
   1783 				cmd_flags = 0;
   1784 			}
   1785 		}
   1786 
   1787 		/* Disable writes to flash interface (lock write-protect) */
   1788 		bnx_disable_nvram_write(sc);
   1789 
   1790 		/* Disable access to flash interface */
   1791 		bnx_disable_nvram_access(sc);
   1792 		bnx_release_nvram_lock(sc);
   1793 
   1794 		/* Increment written */
   1795 		written += data_end - data_start;
   1796 	}
   1797 
   1798 nvram_write_end:
   1799 	if (align_start || align_end)
   1800 		free(buf, M_DEVBUF);
   1801 
   1802 	return (rc);
   1803 }
   1804 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1805 
   1806 /****************************************************************************/
   1807 /* Verifies that NVRAM is accessible and contains valid data.               */
   1808 /*                                                                          */
   1809 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   1810 /* correct.                                                                 */
   1811 /*                                                                          */
   1812 /* Returns:                                                                 */
   1813 /*   0 on success, positive value on failure.                               */
   1814 /****************************************************************************/
   1815 int
   1816 bnx_nvram_test(struct bnx_softc *sc)
   1817 {
   1818 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
   1819 	u_int8_t		*data = (u_int8_t *) buf;
   1820 	int			rc = 0;
   1821 	u_int32_t		magic, csum;
   1822 
   1823 	/*
   1824 	 * Check that the device NVRAM is valid by reading
   1825 	 * the magic value at offset 0.
   1826 	 */
   1827 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   1828 		goto bnx_nvram_test_done;
   1829 
   1830 	magic = bnx_be32toh(buf[0]);
   1831 	if (magic != BNX_NVRAM_MAGIC) {
   1832 		rc = ENODEV;
   1833 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   1834 		    "Expected: 0x%08X, Found: 0x%08X\n",
   1835 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   1836 		goto bnx_nvram_test_done;
   1837 	}
   1838 
   1839 	/*
   1840 	 * Verify that the device NVRAM includes valid
   1841 	 * configuration data.
   1842 	 */
   1843 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   1844 		goto bnx_nvram_test_done;
   1845 
   1846 	csum = ether_crc32_le(data, 0x100);
   1847 	if (csum != BNX_CRC32_RESIDUAL) {
   1848 		rc = ENODEV;
   1849 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   1850 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   1851 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1852 		goto bnx_nvram_test_done;
   1853 	}
   1854 
   1855 	csum = ether_crc32_le(data + 0x100, 0x100);
   1856 	if (csum != BNX_CRC32_RESIDUAL) {
   1857 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   1858 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   1859 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1860 		rc = ENODEV;
   1861 	}
   1862 
   1863 bnx_nvram_test_done:
   1864 	return (rc);
   1865 }
   1866 
   1867 /****************************************************************************/
   1868 /* Free any DMA memory owned by the driver.                                 */
   1869 /*                                                                          */
   1870 /* Scans through each data structre that requires DMA memory and frees      */
   1871 /* the memory if allocated.                                                 */
   1872 /*                                                                          */
   1873 /* Returns:                                                                 */
   1874 /*   Nothing.                                                               */
   1875 /****************************************************************************/
   1876 void
   1877 bnx_dma_free(struct bnx_softc *sc)
   1878 {
   1879 	int			i;
   1880 
   1881 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   1882 
   1883 	/* Destroy the status block. */
   1884 	if (sc->status_block != NULL && sc->status_map != NULL) {
   1885 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   1886 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   1887 		    BNX_STATUS_BLK_SZ);
   1888 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   1889 		    sc->status_rseg);
   1890 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   1891 		sc->status_block = NULL;
   1892 		sc->status_map = NULL;
   1893 	}
   1894 
   1895 	/* Destroy the statistics block. */
   1896 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   1897 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   1898 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   1899 		    BNX_STATS_BLK_SZ);
   1900 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   1901 		    sc->stats_rseg);
   1902 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   1903 		sc->stats_block = NULL;
   1904 		sc->stats_map = NULL;
   1905 	}
   1906 
   1907 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   1908 	for (i = 0; i < TX_PAGES; i++ ) {
   1909 		if (sc->tx_bd_chain[i] != NULL &&
   1910 		    sc->tx_bd_chain_map[i] != NULL) {
   1911 			bus_dmamap_unload(sc->bnx_dmatag,
   1912 			    sc->tx_bd_chain_map[i]);
   1913 			bus_dmamem_unmap(sc->bnx_dmatag,
   1914 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   1915 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   1916 			    sc->tx_bd_chain_rseg[i]);
   1917 			bus_dmamap_destroy(sc->bnx_dmatag,
   1918 			    sc->tx_bd_chain_map[i]);
   1919 			sc->tx_bd_chain[i] = NULL;
   1920 			sc->tx_bd_chain_map[i] = NULL;
   1921 		}
   1922 	}
   1923 
   1924 	/* Unload and destroy the TX mbuf maps. */
   1925 	for (i = 0; i < TOTAL_TX_BD; i++) {
   1926 		if (sc->tx_mbuf_map[i] != NULL) {
   1927 			bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
   1928 			bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
   1929 		}
   1930 	}
   1931 
   1932 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   1933 	for (i = 0; i < RX_PAGES; i++ ) {
   1934 		if (sc->rx_bd_chain[i] != NULL &&
   1935 		    sc->rx_bd_chain_map[i] != NULL) {
   1936 			bus_dmamap_unload(sc->bnx_dmatag,
   1937 			    sc->rx_bd_chain_map[i]);
   1938 			bus_dmamem_unmap(sc->bnx_dmatag,
   1939 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   1940 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   1941 			    sc->rx_bd_chain_rseg[i]);
   1942 
   1943 			bus_dmamap_destroy(sc->bnx_dmatag,
   1944 			    sc->rx_bd_chain_map[i]);
   1945 			sc->rx_bd_chain[i] = NULL;
   1946 			sc->rx_bd_chain_map[i] = NULL;
   1947 		}
   1948 	}
   1949 
   1950 	/* Unload and destroy the RX mbuf maps. */
   1951 	for (i = 0; i < TOTAL_RX_BD; i++) {
   1952 		if (sc->rx_mbuf_map[i] != NULL) {
   1953 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   1954 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   1955 		}
   1956 	}
   1957 
   1958 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   1959 }
   1960 
   1961 /****************************************************************************/
   1962 /* Map TX buffers into TX buffer descriptors.                               */
   1963 /*                                                                          */
   1964 /* Given a series of DMA memory containting an outgoing frame, map the      */
   1965 /* segments into the tx_bd structure used by the hardware.                  */
   1966 /*                                                                          */
   1967 /* Returns:                                                                 */
   1968 /*   Nothing.                                                               */
   1969 /****************************************************************************/
   1970 void
   1971 bnx_dma_map_tx_desc(void *arg, bus_dmamap_t map)
   1972 {
   1973 	struct bnx_dmamap_arg	*map_arg;
   1974 	struct bnx_softc	*sc;
   1975 	struct tx_bd		*txbd = NULL;
   1976 	int			i = 0, nseg;
   1977 	u_int16_t		prod, chain_prod;
   1978 	u_int32_t		prod_bseq, addr;
   1979 #ifdef BNX_DEBUG
   1980 	u_int16_t		debug_prod;
   1981 #endif
   1982 
   1983 	map_arg = arg;
   1984 	sc = map_arg->sc;
   1985 	nseg = map->dm_nsegs;
   1986 
   1987 	/* Signal error to caller if there's too many segments */
   1988 	if (nseg > map_arg->maxsegs) {
   1989 		DBPRINT(sc, BNX_WARN, "%s(): Mapped TX descriptors: max segs "
   1990 		    "= %d, " "actual segs = %d\n",
   1991 		    __FUNCTION__, map_arg->maxsegs, nseg);
   1992 
   1993 		map_arg->maxsegs = 0;
   1994 		return;
   1995 	}
   1996 
   1997 	/* prod points to an empty tx_bd at this point. */
   1998 	prod = map_arg->prod;
   1999 	chain_prod = map_arg->chain_prod;
   2000 	prod_bseq = map_arg->prod_bseq;
   2001 
   2002 #ifdef BNX_DEBUG
   2003 	debug_prod = chain_prod;
   2004 #endif
   2005 
   2006 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: prod = 0x%04X, chain_prod "
   2007 	    "= %04X, " "prod_bseq = 0x%08X\n",
   2008 	    __FUNCTION__, prod, chain_prod, prod_bseq);
   2009 
   2010 	/*
   2011 	 * Cycle through each mbuf segment that makes up
   2012 	 * the outgoing frame, gathering the mapping info
   2013 	 * for that segment and creating a tx_bd for the
   2014 	 * mbuf.
   2015 	 */
   2016 
   2017 	txbd = &map_arg->tx_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   2018 
   2019 	/* Setup the first tx_bd for the first segment. */
   2020 	addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   2021 	txbd->tx_bd_haddr_lo = htole32(addr);
   2022 	addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   2023 	txbd->tx_bd_haddr_hi = htole32(addr);
   2024 	txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
   2025 	txbd->tx_bd_vlan_tag_flags = htole16(map_arg->tx_flags |
   2026 	    TX_BD_FLAGS_START);
   2027 	prod_bseq += map->dm_segs[i].ds_len;
   2028 
   2029 	bus_dmamap_sync(sc->bnx_dmatag,
   2030 	    sc->tx_bd_chain_map[TX_PAGE(chain_prod)],
   2031 	    sizeof(struct tx_bd) * TX_IDX(chain_prod),
   2032 	    sizeof(struct tx_bd), BUS_DMASYNC_PREWRITE);
   2033 
   2034 	/* Setup any remaing segments. */
   2035 	for (i = 1; i < nseg; i++) {
   2036 		prod = NEXT_TX_BD(prod);
   2037 		chain_prod = TX_CHAIN_IDX(prod);
   2038 
   2039 		txbd =
   2040 		    &map_arg->tx_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   2041 
   2042 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   2043 		txbd->tx_bd_haddr_lo = htole32(addr);
   2044 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   2045 		txbd->tx_bd_haddr_hi = htole32(addr);
   2046 		txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
   2047 		txbd->tx_bd_vlan_tag_flags = htole16(map_arg->tx_flags);
   2048 
   2049 		prod_bseq += map->dm_segs[i].ds_len;
   2050 		bus_dmamap_sync(sc->bnx_dmatag,
   2051 		    sc->tx_bd_chain_map[TX_PAGE(chain_prod)],
   2052 		    sizeof(struct tx_bd) * TX_IDX(chain_prod),
   2053 		    sizeof(struct tx_bd), BUS_DMASYNC_PREWRITE);
   2054 	}
   2055 
   2056 	/* Set the END flag on the last TX buffer descriptor. */
   2057 	txbd->tx_bd_vlan_tag_flags |= htole16(TX_BD_FLAGS_END);
   2058 	bus_dmamap_sync(sc->bnx_dmatag,
   2059 	    sc->tx_bd_chain_map[TX_PAGE(chain_prod)],
   2060 	    sizeof(struct tx_bd) * TX_IDX(chain_prod),
   2061 	    sizeof(struct tx_bd), BUS_DMASYNC_PREWRITE);
   2062 
   2063 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
   2064 
   2065 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: prod = 0x%04X, chain_prod "
   2066 	    "= %04X, " "prod_bseq = 0x%08X\n",
   2067 	    __FUNCTION__, prod, chain_prod, prod_bseq);
   2068 
   2069 	/* prod points to the last tx_bd at this point. */
   2070 	map_arg->maxsegs = nseg;
   2071 	map_arg->prod = prod;
   2072 	map_arg->chain_prod = chain_prod;
   2073 	map_arg->prod_bseq = prod_bseq;
   2074 }
   2075 
   2076 /****************************************************************************/
   2077 /* Allocate any DMA memory needed by the driver.                            */
   2078 /*                                                                          */
   2079 /* Allocates DMA memory needed for the various global structures needed by  */
   2080 /* hardware.                                                                */
   2081 /*                                                                          */
   2082 /* Returns:                                                                 */
   2083 /*   0 for success, positive value for failure.                             */
   2084 /****************************************************************************/
   2085 int
   2086 bnx_dma_alloc(struct bnx_softc *sc)
   2087 {
   2088 	int			i, rc = 0;
   2089 
   2090 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   2091 
   2092 	/*
   2093 	 * Allocate DMA memory for the status block, map the memory into DMA
   2094 	 * space, and fetch the physical address of the block.
   2095 	 */
   2096 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2097 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2098 		aprint_error("%s: Could not create status block DMA map!\n",
   2099 		    sc->bnx_dev.dv_xname);
   2100 		rc = ENOMEM;
   2101 		goto bnx_dma_alloc_exit;
   2102 	}
   2103 
   2104 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2105 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2106 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2107 		aprint_error(
   2108 		    "%s: Could not allocate status block DMA memory!\n",
   2109 		    sc->bnx_dev.dv_xname);
   2110 		rc = ENOMEM;
   2111 		goto bnx_dma_alloc_exit;
   2112 	}
   2113 
   2114 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2115 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2116 		aprint_error("%s: Could not map status block DMA memory!\n",
   2117 		    sc->bnx_dev.dv_xname);
   2118 		rc = ENOMEM;
   2119 		goto bnx_dma_alloc_exit;
   2120 	}
   2121 
   2122 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2123 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2124 		aprint_error("%s: Could not load status block DMA memory!\n",
   2125 		    sc->bnx_dev.dv_xname);
   2126 		rc = ENOMEM;
   2127 		goto bnx_dma_alloc_exit;
   2128 	}
   2129 
   2130 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2131 	bzero(sc->status_block, BNX_STATUS_BLK_SZ);
   2132 
   2133 	/* DRC - Fix for 64 bit addresses. */
   2134 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2135 		(u_int32_t) sc->status_block_paddr);
   2136 
   2137 	/*
   2138 	 * Allocate DMA memory for the statistics block, map the memory into
   2139 	 * DMA space, and fetch the physical address of the block.
   2140 	 */
   2141 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2142 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2143 		aprint_error("%s: Could not create stats block DMA map!\n",
   2144 		    sc->bnx_dev.dv_xname);
   2145 		rc = ENOMEM;
   2146 		goto bnx_dma_alloc_exit;
   2147 	}
   2148 
   2149 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2150 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2151 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2152 		aprint_error("%s: Could not allocate stats block DMA memory!\n",
   2153 		    sc->bnx_dev.dv_xname);
   2154 		rc = ENOMEM;
   2155 		goto bnx_dma_alloc_exit;
   2156 	}
   2157 
   2158 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2159 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2160 		aprint_error("%s: Could not map stats block DMA memory!\n",
   2161 		    sc->bnx_dev.dv_xname);
   2162 		rc = ENOMEM;
   2163 		goto bnx_dma_alloc_exit;
   2164 	}
   2165 
   2166 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2167 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2168 		aprint_error("%s: Could not load status block DMA memory!\n",
   2169 		    sc->bnx_dev.dv_xname);
   2170 		rc = ENOMEM;
   2171 		goto bnx_dma_alloc_exit;
   2172 	}
   2173 
   2174 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2175 	bzero(sc->stats_block, BNX_STATS_BLK_SZ);
   2176 
   2177 	/* DRC - Fix for 64 bit address. */
   2178 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2179 	    (u_int32_t) sc->stats_block_paddr);
   2180 
   2181 	/*
   2182 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2183 	 * and fetch the physical address of the block.
   2184 	 */
   2185 	for (i = 0; i < TX_PAGES; i++) {
   2186 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2187 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2188 		    &sc->tx_bd_chain_map[i])) {
   2189 			aprint_error(
   2190 			    "%s: Could not create Tx desc %d DMA map!\n",
   2191 			    sc->bnx_dev.dv_xname, i);
   2192 			rc = ENOMEM;
   2193 			goto bnx_dma_alloc_exit;
   2194 		}
   2195 
   2196 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2197 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2198 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2199 			aprint_error(
   2200 			    "%s: Could not allocate TX desc %d DMA memory!\n",
   2201 			    sc->bnx_dev.dv_xname, i);
   2202 			rc = ENOMEM;
   2203 			goto bnx_dma_alloc_exit;
   2204 		}
   2205 
   2206 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2207 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2208 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2209 			aprint_error(
   2210 			    "%s: Could not map TX desc %d DMA memory!\n",
   2211 			    sc->bnx_dev.dv_xname, i);
   2212 			rc = ENOMEM;
   2213 			goto bnx_dma_alloc_exit;
   2214 		}
   2215 
   2216 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2217 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2218 		    BUS_DMA_NOWAIT)) {
   2219 			aprint_error(
   2220 			    "%s: Could not load TX desc %d DMA memory!\n",
   2221 			    sc->bnx_dev.dv_xname, i);
   2222 			rc = ENOMEM;
   2223 			goto bnx_dma_alloc_exit;
   2224 		}
   2225 
   2226 		sc->tx_bd_chain_paddr[i] =
   2227 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2228 
   2229 		/* DRC - Fix for 64 bit systems. */
   2230 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2231 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
   2232 	}
   2233 
   2234 	/*
   2235 	 * Create DMA maps for the TX buffer mbufs.
   2236 	 */
   2237 	for (i = 0; i < TOTAL_TX_BD; i++) {
   2238 		if (bus_dmamap_create(sc->bnx_dmatag,
   2239 		    MCLBYTES * BNX_MAX_SEGMENTS,
   2240 		    USABLE_TX_BD - BNX_TX_SLACK_SPACE,
   2241 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
   2242 		    &sc->tx_mbuf_map[i])) {
   2243 			aprint_error(
   2244 			    "%s: Could not create Tx mbuf %d DMA map!\n",
   2245 			    sc->bnx_dev.dv_xname, i);
   2246 			rc = ENOMEM;
   2247 			goto bnx_dma_alloc_exit;
   2248 		}
   2249 	}
   2250 
   2251 	/*
   2252 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2253 	 * and fetch the physical address of the block.
   2254 	 */
   2255 	for (i = 0; i < RX_PAGES; i++) {
   2256 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2257 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2258 		    &sc->rx_bd_chain_map[i])) {
   2259 			aprint_error(
   2260 			    "%s: Could not create Rx desc %d DMA map!\n",
   2261 			    sc->bnx_dev.dv_xname, i);
   2262 			rc = ENOMEM;
   2263 			goto bnx_dma_alloc_exit;
   2264 		}
   2265 
   2266 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2267 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2268 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2269 			aprint_error(
   2270 			    "%s: Could not allocate Rx desc %d DMA memory!\n",
   2271 			    sc->bnx_dev.dv_xname, i);
   2272 			rc = ENOMEM;
   2273 			goto bnx_dma_alloc_exit;
   2274 		}
   2275 
   2276 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2277 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2278 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2279 			aprint_error(
   2280 			    "%s: Could not map Rx desc %d DMA memory!\n",
   2281 			    sc->bnx_dev.dv_xname, i);
   2282 			rc = ENOMEM;
   2283 			goto bnx_dma_alloc_exit;
   2284 		}
   2285 
   2286 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2287 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2288 		    BUS_DMA_NOWAIT)) {
   2289 			aprint_error(
   2290 			    "%s: Could not load Rx desc %d DMA memory!\n",
   2291 			    sc->bnx_dev.dv_xname, i);
   2292 			rc = ENOMEM;
   2293 			goto bnx_dma_alloc_exit;
   2294 		}
   2295 
   2296 		bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2297 		sc->rx_bd_chain_paddr[i] =
   2298 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2299 
   2300 		/* DRC - Fix for 64 bit systems. */
   2301 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2302 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
   2303 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2304 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2305 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2306 	}
   2307 
   2308 	/*
   2309 	 * Create DMA maps for the Rx buffer mbufs.
   2310 	 */
   2311 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2312 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
   2313 		    BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
   2314 		    &sc->rx_mbuf_map[i])) {
   2315 			aprint_error(
   2316 			    "%s: Could not create Rx mbuf %d DMA map!\n",
   2317 			    sc->bnx_dev.dv_xname, i);
   2318 			rc = ENOMEM;
   2319 			goto bnx_dma_alloc_exit;
   2320 		}
   2321 	}
   2322 
   2323  bnx_dma_alloc_exit:
   2324 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   2325 
   2326 	return(rc);
   2327 }
   2328 
   2329 /****************************************************************************/
   2330 /* Release all resources used by the driver.                                */
   2331 /*                                                                          */
   2332 /* Releases all resources acquired by the driver including interrupts,      */
   2333 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2334 /*                                                                          */
   2335 /* Returns:                                                                 */
   2336 /*   Nothing.                                                               */
   2337 /****************************************************************************/
   2338 void
   2339 bnx_release_resources(struct bnx_softc *sc)
   2340 {
   2341 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2342 
   2343 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   2344 
   2345 	bnx_dma_free(sc);
   2346 
   2347 	if (sc->bnx_intrhand != NULL)
   2348 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2349 
   2350 	if (sc->bnx_size)
   2351 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2352 
   2353 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   2354 }
   2355 
   2356 /****************************************************************************/
   2357 /* Firmware synchronization.                                                */
   2358 /*                                                                          */
   2359 /* Before performing certain events such as a chip reset, synchronize with  */
   2360 /* the firmware first.                                                      */
   2361 /*                                                                          */
   2362 /* Returns:                                                                 */
   2363 /*   0 for success, positive value for failure.                             */
   2364 /****************************************************************************/
   2365 int
   2366 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
   2367 {
   2368 	int			i, rc = 0;
   2369 	u_int32_t		val;
   2370 
   2371 	/* Don't waste any time if we've timed out before. */
   2372 	if (sc->bnx_fw_timed_out) {
   2373 		rc = EBUSY;
   2374 		goto bnx_fw_sync_exit;
   2375 	}
   2376 
   2377 	/* Increment the message sequence number. */
   2378 	sc->bnx_fw_wr_seq++;
   2379 	msg_data |= sc->bnx_fw_wr_seq;
   2380 
   2381  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2382 	    msg_data);
   2383 
   2384 	/* Send the message to the bootcode driver mailbox. */
   2385 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2386 
   2387 	/* Wait for the bootcode to acknowledge the message. */
   2388 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2389 		/* Check for a response in the bootcode firmware mailbox. */
   2390 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2391 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2392 			break;
   2393 		DELAY(1000);
   2394 	}
   2395 
   2396 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2397 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2398 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2399 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2400 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2401 
   2402 		msg_data &= ~BNX_DRV_MSG_CODE;
   2403 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2404 
   2405 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2406 
   2407 		sc->bnx_fw_timed_out = 1;
   2408 		rc = EBUSY;
   2409 	}
   2410 
   2411 bnx_fw_sync_exit:
   2412 	return (rc);
   2413 }
   2414 
   2415 /****************************************************************************/
   2416 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2417 /*                                                                          */
   2418 /* Returns:                                                                 */
   2419 /*   Nothing.                                                               */
   2420 /****************************************************************************/
   2421 void
   2422 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
   2423     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
   2424 {
   2425 	int			i;
   2426 	u_int32_t		val;
   2427 
   2428 	for (i = 0; i < rv2p_code_len; i += 8) {
   2429 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2430 		rv2p_code++;
   2431 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2432 		rv2p_code++;
   2433 
   2434 		if (rv2p_proc == RV2P_PROC1) {
   2435 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2436 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2437 		}
   2438 		else {
   2439 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2440 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2441 		}
   2442 	}
   2443 
   2444 	/* Reset the processor, un-stall is done later. */
   2445 	if (rv2p_proc == RV2P_PROC1)
   2446 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2447 	else
   2448 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2449 }
   2450 
   2451 /****************************************************************************/
   2452 /* Load RISC processor firmware.                                            */
   2453 /*                                                                          */
   2454 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2455 /* associated with a particular processor.                                  */
   2456 /*                                                                          */
   2457 /* Returns:                                                                 */
   2458 /*   Nothing.                                                               */
   2459 /****************************************************************************/
   2460 void
   2461 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2462     struct fw_info *fw)
   2463 {
   2464 	u_int32_t		offset;
   2465 	u_int32_t		val;
   2466 
   2467 	/* Halt the CPU. */
   2468 	val = REG_RD_IND(sc, cpu_reg->mode);
   2469 	val |= cpu_reg->mode_value_halt;
   2470 	REG_WR_IND(sc, cpu_reg->mode, val);
   2471 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2472 
   2473 	/* Load the Text area. */
   2474 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2475 	if (fw->text) {
   2476 		int j;
   2477 
   2478 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2479 			REG_WR_IND(sc, offset, fw->text[j]);
   2480 	}
   2481 
   2482 	/* Load the Data area. */
   2483 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2484 	if (fw->data) {
   2485 		int j;
   2486 
   2487 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2488 			REG_WR_IND(sc, offset, fw->data[j]);
   2489 	}
   2490 
   2491 	/* Load the SBSS area. */
   2492 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2493 	if (fw->sbss) {
   2494 		int j;
   2495 
   2496 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2497 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2498 	}
   2499 
   2500 	/* Load the BSS area. */
   2501 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2502 	if (fw->bss) {
   2503 		int j;
   2504 
   2505 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2506 			REG_WR_IND(sc, offset, fw->bss[j]);
   2507 	}
   2508 
   2509 	/* Load the Read-Only area. */
   2510 	offset = cpu_reg->spad_base +
   2511 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2512 	if (fw->rodata) {
   2513 		int j;
   2514 
   2515 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2516 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2517 	}
   2518 
   2519 	/* Clear the pre-fetch instruction. */
   2520 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2521 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2522 
   2523 	/* Start the CPU. */
   2524 	val = REG_RD_IND(sc, cpu_reg->mode);
   2525 	val &= ~cpu_reg->mode_value_halt;
   2526 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2527 	REG_WR_IND(sc, cpu_reg->mode, val);
   2528 }
   2529 
   2530 /****************************************************************************/
   2531 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2532 /*                                                                          */
   2533 /* Loads the firmware for each CPU and starts the CPU.                      */
   2534 /*                                                                          */
   2535 /* Returns:                                                                 */
   2536 /*   Nothing.                                                               */
   2537 /****************************************************************************/
   2538 void
   2539 bnx_init_cpus(struct bnx_softc *sc)
   2540 {
   2541 	struct cpu_reg cpu_reg;
   2542 	struct fw_info fw;
   2543 
   2544 	/* Initialize the RV2P processor. */
   2545 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   2546 	    RV2P_PROC1);
   2547 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   2548 	    RV2P_PROC2);
   2549 
   2550 	/* Initialize the RX Processor. */
   2551 	cpu_reg.mode = BNX_RXP_CPU_MODE;
   2552 	cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2553 	cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2554 	cpu_reg.state = BNX_RXP_CPU_STATE;
   2555 	cpu_reg.state_value_clear = 0xffffff;
   2556 	cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2557 	cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2558 	cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2559 	cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2560 	cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2561 	cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2562 	cpu_reg.mips_view_base = 0x8000000;
   2563 
   2564 	fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   2565 	fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   2566 	fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   2567 	fw.start_addr = bnx_RXP_b06FwStartAddr;
   2568 
   2569 	fw.text_addr = bnx_RXP_b06FwTextAddr;
   2570 	fw.text_len = bnx_RXP_b06FwTextLen;
   2571 	fw.text_index = 0;
   2572 	fw.text = bnx_RXP_b06FwText;
   2573 
   2574 	fw.data_addr = bnx_RXP_b06FwDataAddr;
   2575 	fw.data_len = bnx_RXP_b06FwDataLen;
   2576 	fw.data_index = 0;
   2577 	fw.data = bnx_RXP_b06FwData;
   2578 
   2579 	fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   2580 	fw.sbss_len = bnx_RXP_b06FwSbssLen;
   2581 	fw.sbss_index = 0;
   2582 	fw.sbss = bnx_RXP_b06FwSbss;
   2583 
   2584 	fw.bss_addr = bnx_RXP_b06FwBssAddr;
   2585 	fw.bss_len = bnx_RXP_b06FwBssLen;
   2586 	fw.bss_index = 0;
   2587 	fw.bss = bnx_RXP_b06FwBss;
   2588 
   2589 	fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   2590 	fw.rodata_len = bnx_RXP_b06FwRodataLen;
   2591 	fw.rodata_index = 0;
   2592 	fw.rodata = bnx_RXP_b06FwRodata;
   2593 
   2594 	DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2595 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2596 
   2597 	/* Initialize the TX Processor. */
   2598 	cpu_reg.mode = BNX_TXP_CPU_MODE;
   2599 	cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2600 	cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2601 	cpu_reg.state = BNX_TXP_CPU_STATE;
   2602 	cpu_reg.state_value_clear = 0xffffff;
   2603 	cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2604 	cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2605 	cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2606 	cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2607 	cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2608 	cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2609 	cpu_reg.mips_view_base = 0x8000000;
   2610 
   2611 	fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   2612 	fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   2613 	fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   2614 	fw.start_addr = bnx_TXP_b06FwStartAddr;
   2615 
   2616 	fw.text_addr = bnx_TXP_b06FwTextAddr;
   2617 	fw.text_len = bnx_TXP_b06FwTextLen;
   2618 	fw.text_index = 0;
   2619 	fw.text = bnx_TXP_b06FwText;
   2620 
   2621 	fw.data_addr = bnx_TXP_b06FwDataAddr;
   2622 	fw.data_len = bnx_TXP_b06FwDataLen;
   2623 	fw.data_index = 0;
   2624 	fw.data = bnx_TXP_b06FwData;
   2625 
   2626 	fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   2627 	fw.sbss_len = bnx_TXP_b06FwSbssLen;
   2628 	fw.sbss_index = 0;
   2629 	fw.sbss = bnx_TXP_b06FwSbss;
   2630 
   2631 	fw.bss_addr = bnx_TXP_b06FwBssAddr;
   2632 	fw.bss_len = bnx_TXP_b06FwBssLen;
   2633 	fw.bss_index = 0;
   2634 	fw.bss = bnx_TXP_b06FwBss;
   2635 
   2636 	fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   2637 	fw.rodata_len = bnx_TXP_b06FwRodataLen;
   2638 	fw.rodata_index = 0;
   2639 	fw.rodata = bnx_TXP_b06FwRodata;
   2640 
   2641 	DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2642 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2643 
   2644 	/* Initialize the TX Patch-up Processor. */
   2645 	cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2646 	cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2647 	cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2648 	cpu_reg.state = BNX_TPAT_CPU_STATE;
   2649 	cpu_reg.state_value_clear = 0xffffff;
   2650 	cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2651 	cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2652 	cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2653 	cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2654 	cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2655 	cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2656 	cpu_reg.mips_view_base = 0x8000000;
   2657 
   2658 	fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   2659 	fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   2660 	fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   2661 	fw.start_addr = bnx_TPAT_b06FwStartAddr;
   2662 
   2663 	fw.text_addr = bnx_TPAT_b06FwTextAddr;
   2664 	fw.text_len = bnx_TPAT_b06FwTextLen;
   2665 	fw.text_index = 0;
   2666 	fw.text = bnx_TPAT_b06FwText;
   2667 
   2668 	fw.data_addr = bnx_TPAT_b06FwDataAddr;
   2669 	fw.data_len = bnx_TPAT_b06FwDataLen;
   2670 	fw.data_index = 0;
   2671 	fw.data = bnx_TPAT_b06FwData;
   2672 
   2673 	fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   2674 	fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   2675 	fw.sbss_index = 0;
   2676 	fw.sbss = bnx_TPAT_b06FwSbss;
   2677 
   2678 	fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   2679 	fw.bss_len = bnx_TPAT_b06FwBssLen;
   2680 	fw.bss_index = 0;
   2681 	fw.bss = bnx_TPAT_b06FwBss;
   2682 
   2683 	fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   2684 	fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   2685 	fw.rodata_index = 0;
   2686 	fw.rodata = bnx_TPAT_b06FwRodata;
   2687 
   2688 	DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2689 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2690 
   2691 	/* Initialize the Completion Processor. */
   2692 	cpu_reg.mode = BNX_COM_CPU_MODE;
   2693 	cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2694 	cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2695 	cpu_reg.state = BNX_COM_CPU_STATE;
   2696 	cpu_reg.state_value_clear = 0xffffff;
   2697 	cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2698 	cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2699 	cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2700 	cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2701 	cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2702 	cpu_reg.spad_base = BNX_COM_SCRATCH;
   2703 	cpu_reg.mips_view_base = 0x8000000;
   2704 
   2705 	fw.ver_major = bnx_COM_b06FwReleaseMajor;
   2706 	fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   2707 	fw.ver_fix = bnx_COM_b06FwReleaseFix;
   2708 	fw.start_addr = bnx_COM_b06FwStartAddr;
   2709 
   2710 	fw.text_addr = bnx_COM_b06FwTextAddr;
   2711 	fw.text_len = bnx_COM_b06FwTextLen;
   2712 	fw.text_index = 0;
   2713 	fw.text = bnx_COM_b06FwText;
   2714 
   2715 	fw.data_addr = bnx_COM_b06FwDataAddr;
   2716 	fw.data_len = bnx_COM_b06FwDataLen;
   2717 	fw.data_index = 0;
   2718 	fw.data = bnx_COM_b06FwData;
   2719 
   2720 	fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   2721 	fw.sbss_len = bnx_COM_b06FwSbssLen;
   2722 	fw.sbss_index = 0;
   2723 	fw.sbss = bnx_COM_b06FwSbss;
   2724 
   2725 	fw.bss_addr = bnx_COM_b06FwBssAddr;
   2726 	fw.bss_len = bnx_COM_b06FwBssLen;
   2727 	fw.bss_index = 0;
   2728 	fw.bss = bnx_COM_b06FwBss;
   2729 
   2730 	fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   2731 	fw.rodata_len = bnx_COM_b06FwRodataLen;
   2732 	fw.rodata_index = 0;
   2733 	fw.rodata = bnx_COM_b06FwRodata;
   2734 
   2735 	DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   2736 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2737 }
   2738 
   2739 /****************************************************************************/
   2740 /* Initialize context memory.                                               */
   2741 /*                                                                          */
   2742 /* Clears the memory associated with each Context ID (CID).                 */
   2743 /*                                                                          */
   2744 /* Returns:                                                                 */
   2745 /*   Nothing.                                                               */
   2746 /****************************************************************************/
   2747 void
   2748 bnx_init_context(struct bnx_softc *sc)
   2749 {
   2750 	u_int32_t		vcid;
   2751 
   2752 	vcid = 96;
   2753 	while (vcid) {
   2754 		u_int32_t vcid_addr, pcid_addr, offset;
   2755 
   2756 		vcid--;
   2757 
   2758    		vcid_addr = GET_CID_ADDR(vcid);
   2759 		pcid_addr = vcid_addr;
   2760 
   2761 		REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
   2762 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
   2763 
   2764 		/* Zero out the context. */
   2765 		for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
   2766 			CTX_WR(sc, 0x00, offset, 0);
   2767 
   2768 		REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   2769 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
   2770 	}
   2771 }
   2772 
   2773 /****************************************************************************/
   2774 /* Fetch the permanent MAC address of the controller.                       */
   2775 /*                                                                          */
   2776 /* Returns:                                                                 */
   2777 /*   Nothing.                                                               */
   2778 /****************************************************************************/
   2779 void
   2780 bnx_get_mac_addr(struct bnx_softc *sc)
   2781 {
   2782 	u_int32_t		mac_lo = 0, mac_hi = 0;
   2783 
   2784 	/*
   2785 	 * The NetXtreme II bootcode populates various NIC
   2786 	 * power-on and runtime configuration items in a
   2787 	 * shared memory area.  The factory configured MAC
   2788 	 * address is available from both NVRAM and the
   2789 	 * shared memory area so we'll read the value from
   2790 	 * shared memory for speed.
   2791 	 */
   2792 
   2793 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   2794 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   2795 
   2796 	if ((mac_lo == 0) && (mac_hi == 0)) {
   2797 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   2798 		    __FILE__, __LINE__);
   2799 	} else {
   2800 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   2801 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   2802 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   2803 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   2804 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   2805 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   2806 	}
   2807 
   2808 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   2809 	    "%s\n", ether_sprintf(sc->eaddr));
   2810 }
   2811 
   2812 /****************************************************************************/
   2813 /* Program the MAC address.                                                 */
   2814 /*                                                                          */
   2815 /* Returns:                                                                 */
   2816 /*   Nothing.                                                               */
   2817 /****************************************************************************/
   2818 void
   2819 bnx_set_mac_addr(struct bnx_softc *sc)
   2820 {
   2821 	u_int32_t		val;
   2822 	u_int8_t		*mac_addr = LLADDR(sc->ethercom.ec_if.if_sadl);
   2823 
   2824 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   2825 	    "%s\n", ether_sprintf(sc->eaddr));
   2826 
   2827 	val = (mac_addr[0] << 8) | mac_addr[1];
   2828 
   2829 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   2830 
   2831 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   2832 		(mac_addr[4] << 8) | mac_addr[5];
   2833 
   2834 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   2835 }
   2836 
   2837 /****************************************************************************/
   2838 /* Stop the controller.                                                     */
   2839 /*                                                                          */
   2840 /* Returns:                                                                 */
   2841 /*   Nothing.                                                               */
   2842 /****************************************************************************/
   2843 void
   2844 bnx_stop(struct bnx_softc *sc)
   2845 {
   2846 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   2847 	struct mii_data		*mii = NULL;
   2848 
   2849 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   2850 
   2851 	mii = &sc->bnx_mii;
   2852 
   2853 	callout_stop(&sc->bnx_timeout);
   2854 
   2855 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2856 
   2857 	/* Disable the transmit/receive blocks. */
   2858 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   2859 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   2860 	DELAY(20);
   2861 
   2862 	bnx_disable_intr(sc);
   2863 
   2864 	/* Tell firmware that the driver is going away. */
   2865 	bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   2866 
   2867 	/* Free the RX lists. */
   2868 	bnx_free_rx_chain(sc);
   2869 
   2870 	/* Free TX buffers. */
   2871 	bnx_free_tx_chain(sc);
   2872 
   2873 	ifp->if_timer = 0;
   2874 
   2875 	sc->bnx_link = 0;
   2876 
   2877 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   2878 
   2879 }
   2880 
   2881 int
   2882 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
   2883 {
   2884 	u_int32_t		val;
   2885 	int			i, rc = 0;
   2886 
   2887 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   2888 
   2889 	/* Wait for pending PCI transactions to complete. */
   2890 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   2891 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   2892 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   2893 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   2894 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   2895 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   2896 	DELAY(5);
   2897 
   2898 	/* Assume bootcode is running. */
   2899 	sc->bnx_fw_timed_out = 0;
   2900 
   2901 	/* Give the firmware a chance to prepare for the reset. */
   2902 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   2903 	if (rc)
   2904 		goto bnx_reset_exit;
   2905 
   2906 	/* Set a firmware reminder that this is a soft reset. */
   2907 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   2908 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   2909 
   2910 	/* Dummy read to force the chip to complete all current transactions. */
   2911 	val = REG_RD(sc, BNX_MISC_ID);
   2912 
   2913 	/* Chip reset. */
   2914 	val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2915 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   2916 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   2917 	REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   2918 
   2919 	/* Allow up to 30us for reset to complete. */
   2920 	for (i = 0; i < 10; i++) {
   2921 		val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   2922 		if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2923 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
   2924 			break;
   2925 
   2926 		DELAY(10);
   2927 	}
   2928 
   2929 	/* Check that reset completed successfully. */
   2930 	if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2931 	    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   2932 		BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
   2933 		rc = EBUSY;
   2934 		goto bnx_reset_exit;
   2935 	}
   2936 
   2937 	/* Make sure byte swapping is properly configured. */
   2938 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   2939 	if (val != 0x01020304) {
   2940 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   2941 		    __FILE__, __LINE__);
   2942 		rc = ENODEV;
   2943 		goto bnx_reset_exit;
   2944 	}
   2945 
   2946 	/* Just completed a reset, assume that firmware is running again. */
   2947 	sc->bnx_fw_timed_out = 0;
   2948 
   2949 	/* Wait for the firmware to finish its initialization. */
   2950 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   2951 	if (rc)
   2952 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   2953 		    "initialization!\n", __FILE__, __LINE__);
   2954 
   2955 bnx_reset_exit:
   2956 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   2957 
   2958 	return (rc);
   2959 }
   2960 
   2961 int
   2962 bnx_chipinit(struct bnx_softc *sc)
   2963 {
   2964 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2965 	u_int32_t		val;
   2966 	int			rc = 0;
   2967 
   2968 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   2969 
   2970 	/* Make sure the interrupt is not active. */
   2971 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   2972 
   2973 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   2974 	/* channels and PCI clock compensation delay.                      */
   2975 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   2976 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   2977 #if BYTE_ORDER == BIG_ENDIAN
   2978 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   2979 #endif
   2980 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   2981 	    DMA_READ_CHANS << 12 |
   2982 	    DMA_WRITE_CHANS << 16;
   2983 
   2984 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   2985 
   2986 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   2987 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   2988 
   2989 	/*
   2990 	 * This setting resolves a problem observed on certain Intel PCI
   2991 	 * chipsets that cannot handle multiple outstanding DMA operations.
   2992 	 * See errata E9_5706A1_65.
   2993 	 */
   2994 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   2995 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   2996 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   2997 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   2998 
   2999 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3000 
   3001 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3002 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3003 		u_int16_t nval;
   3004 
   3005 		nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3006 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3007 		    nval & ~0x2);
   3008 	}
   3009 
   3010 	/* Enable the RX_V2P and Context state machines before access. */
   3011 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3012 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3013 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3014 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3015 
   3016 	/* Initialize context mapping and zero out the quick contexts. */
   3017 	bnx_init_context(sc);
   3018 
   3019 	/* Initialize the on-boards CPUs */
   3020 	bnx_init_cpus(sc);
   3021 
   3022 	/* Prepare NVRAM for access. */
   3023 	if (bnx_init_nvram(sc)) {
   3024 		rc = ENODEV;
   3025 		goto bnx_chipinit_exit;
   3026 	}
   3027 
   3028 	/* Set the kernel bypass block size */
   3029 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3030 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3031 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3032 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3033 
   3034 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
   3035 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3036 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3037 
   3038 	val = (BCM_PAGE_BITS - 8) << 24;
   3039 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3040 
   3041 	/* Configure page size. */
   3042 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3043 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3044 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3045 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3046 
   3047 bnx_chipinit_exit:
   3048 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   3049 
   3050 	return(rc);
   3051 }
   3052 
   3053 /****************************************************************************/
   3054 /* Initialize the controller in preparation to send/receive traffic.        */
   3055 /*                                                                          */
   3056 /* Returns:                                                                 */
   3057 /*   0 for success, positive value for failure.                             */
   3058 /****************************************************************************/
   3059 int
   3060 bnx_blockinit(struct bnx_softc *sc)
   3061 {
   3062 	u_int32_t		reg, val;
   3063 	int 			rc = 0;
   3064 
   3065 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   3066 
   3067 	/* Load the hardware default MAC address. */
   3068 	bnx_set_mac_addr(sc);
   3069 
   3070 	/* Set the Ethernet backoff seed value */
   3071 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3072 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3073 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3074 
   3075 	sc->last_status_idx = 0;
   3076 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3077 
   3078 	/* Set up link change interrupt generation. */
   3079 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3080 
   3081 	/* Program the physical address of the status block. */
   3082 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
   3083 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3084 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
   3085 
   3086 	/* Program the physical address of the statistics block. */
   3087 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3088 	    (u_int32_t)(sc->stats_block_paddr));
   3089 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3090 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
   3091 
   3092 	/* Program various host coalescing parameters. */
   3093 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3094 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3095 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3096 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3097 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3098 	    sc->bnx_comp_prod_trip);
   3099 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3100 	    sc->bnx_tx_ticks);
   3101 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3102 	    sc->bnx_rx_ticks);
   3103 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3104 	    sc->bnx_com_ticks);
   3105 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3106 	    sc->bnx_cmd_ticks);
   3107 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3108 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3109 	REG_WR(sc, BNX_HC_CONFIG,
   3110 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3111 	    BNX_HC_CONFIG_COLLECT_STATS));
   3112 
   3113 	/* Clear the internal statistics counters. */
   3114 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3115 
   3116 	/* Verify that bootcode is running. */
   3117 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3118 
   3119 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3120 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3121 	    __FILE__, __LINE__); reg = 0);
   3122 
   3123 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3124 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3125 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3126 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3127 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3128 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3129 		rc = ENODEV;
   3130 		goto bnx_blockinit_exit;
   3131 	}
   3132 
   3133 	/* Check if any management firmware is running. */
   3134 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3135 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3136 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3137 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3138 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3139 	}
   3140 
   3141 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3142 	    BNX_DEV_INFO_BC_REV);
   3143 
   3144 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3145 
   3146 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3147 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3148 
   3149 	/* Enable link state change interrupt generation. */
   3150 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3151 
   3152 	/* Enable all remaining blocks in the MAC. */
   3153 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3154 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3155 	DELAY(20);
   3156 
   3157 bnx_blockinit_exit:
   3158 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   3159 
   3160 	return (rc);
   3161 }
   3162 
   3163 /****************************************************************************/
   3164 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3165 /*                                                                          */
   3166 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3167 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3168 /* necessary.                                                               */
   3169 /*                                                                          */
   3170 /* Returns:                                                                 */
   3171 /*   0 for success, positive value for failure.                             */
   3172 /****************************************************************************/
   3173 int
   3174 bnx_get_buf(struct bnx_softc *sc, struct mbuf *m, u_int16_t *prod,
   3175     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3176 {
   3177 	bus_dmamap_t		map;
   3178 	struct mbuf 		*m_new = NULL;
   3179 	struct rx_bd		*rxbd;
   3180 	int			i, rc = 0;
   3181 	u_int32_t		addr;
   3182 #ifdef BNX_DEBUG
   3183 	u_int16_t debug_chain_prod =	*chain_prod;
   3184 #endif
   3185 	u_int16_t first_chain_prod;
   3186 
   3187 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3188 	    __FUNCTION__);
   3189 
   3190 	/* Make sure the inputs are valid. */
   3191 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3192 	    aprint_error("%s: RX producer out of range: 0x%04X > 0x%04X\n",
   3193 	    sc->bnx_dev.dv_xname, *chain_prod, (u_int16_t) MAX_RX_BD));
   3194 
   3195 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3196 	    "0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod,
   3197 	    *prod_bseq);
   3198 
   3199 	if (m == NULL) {
   3200 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3201 		    BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
   3202 
   3203 			sc->mbuf_alloc_failed++;
   3204 			rc = ENOBUFS;
   3205 			goto bnx_get_buf_exit);
   3206 
   3207 		/* This is a new mbuf allocation. */
   3208 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3209 		if (m_new == NULL) {
   3210 			DBPRINT(sc, BNX_WARN,
   3211 			    "%s(%d): RX mbuf header allocation failed!\n",
   3212 			    __FILE__, __LINE__);
   3213 
   3214 			DBRUNIF(1, sc->mbuf_alloc_failed++);
   3215 
   3216 			rc = ENOBUFS;
   3217 			goto bnx_get_buf_exit;
   3218 		}
   3219 
   3220 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3221 		MEXTMALLOC(m_new, sc->mbuf_alloc_size, M_DONTWAIT);
   3222 		if (!(m_new->m_flags & M_EXT)) {
   3223 			DBPRINT(sc, BNX_WARN,
   3224 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3225 			    __FILE__, __LINE__);
   3226 
   3227 			m_freem(m_new);
   3228 
   3229 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3230 			DBRUNIF(1, sc->mbuf_alloc_failed++);
   3231 
   3232 			rc = ENOBUFS;
   3233 			goto bnx_get_buf_exit;
   3234 		}
   3235 
   3236 		m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3237 	} else {
   3238 		m_new = m;
   3239 		m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3240 		m_new->m_data = m_new->m_ext.ext_buf;
   3241 	}
   3242 
   3243 	/* Map the mbuf cluster into device memory. */
   3244 	map = sc->rx_mbuf_map[*chain_prod];
   3245 	first_chain_prod = *chain_prod;
   3246 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3247 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3248 		    __FILE__, __LINE__);
   3249 
   3250 		m_freem(m_new);
   3251 
   3252 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3253 
   3254 		rc = ENOBUFS;
   3255 		goto bnx_get_buf_exit;
   3256 	}
   3257 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3258 	    BUS_DMASYNC_PREREAD);
   3259 
   3260 	/* Watch for overflow. */
   3261 	DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
   3262 	    aprint_error("%s: Too many free rx_bd (0x%04X > 0x%04X)!\n",
   3263 	    sc->bnx_dev.dv_xname,
   3264 	    sc->free_rx_bd, (u_int16_t) USABLE_RX_BD));
   3265 
   3266 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3267 	    sc->rx_low_watermark = sc->free_rx_bd);
   3268 
   3269 	/* Setup the rx_bd for the first segment. */
   3270 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3271 
   3272 	addr = (u_int32_t)(map->dm_segs[0].ds_addr);
   3273 	rxbd->rx_bd_haddr_lo = htole32(addr);
   3274 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
   3275 	rxbd->rx_bd_haddr_hi = htole32(addr);
   3276 	rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
   3277 	rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
   3278 	*prod_bseq += map->dm_segs[0].ds_len;
   3279 	bus_dmamap_sync(sc->bnx_dmatag,
   3280 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3281 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3282 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3283 
   3284 	for (i = 1; i < map->dm_nsegs; i++) {
   3285 		*prod = NEXT_RX_BD(*prod);
   3286 		*chain_prod = RX_CHAIN_IDX(*prod);
   3287 
   3288 		rxbd =
   3289 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3290 
   3291 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   3292 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3293 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   3294 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3295 		rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
   3296 		rxbd->rx_bd_flags = 0;
   3297 		*prod_bseq += map->dm_segs[i].ds_len;
   3298 		bus_dmamap_sync(sc->bnx_dmatag,
   3299 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3300 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3301 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3302 	}
   3303 
   3304 	rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
   3305 	bus_dmamap_sync(sc->bnx_dmatag,
   3306 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3307 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3308 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3309 
   3310 	/*
   3311 	 * Save the mbuf, ajust the map pointer (swap map for first and
   3312 	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
   3313 	 * and update counter.
   3314 	 */
   3315 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3316 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3317 	sc->rx_mbuf_map[*chain_prod] = map;
   3318 	sc->free_rx_bd -= map->dm_nsegs;
   3319 
   3320 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3321 	    map->dm_nsegs));
   3322 
   3323 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3324 	    "= 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, *prod,
   3325 	    *chain_prod, *prod_bseq);
   3326 
   3327 bnx_get_buf_exit:
   3328 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3329 	    __FUNCTION__);
   3330 
   3331 	return(rc);
   3332 }
   3333 
   3334 /****************************************************************************/
   3335 /* Allocate memory and initialize the TX data structures.                   */
   3336 /*                                                                          */
   3337 /* Returns:                                                                 */
   3338 /*   0 for success, positive value for failure.                             */
   3339 /****************************************************************************/
   3340 int
   3341 bnx_init_tx_chain(struct bnx_softc *sc)
   3342 {
   3343 	struct tx_bd		*txbd;
   3344 	u_int32_t		val, addr;
   3345 	int			i, rc = 0;
   3346 
   3347 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   3348 
   3349 	/* Set the initial TX producer/consumer indices. */
   3350 	sc->tx_prod = 0;
   3351 	sc->tx_cons = 0;
   3352 	sc->tx_prod_bseq = 0;
   3353 	sc->used_tx_bd = 0;
   3354 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   3355 
   3356 	/*
   3357 	 * The NetXtreme II supports a linked-list structure called
   3358 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   3359 	 * consists of a series of 1 or more chain pages, each of which
   3360 	 * consists of a fixed number of BD entries.
   3361 	 * The last BD entry on each page is a pointer to the next page
   3362 	 * in the chain, and the last pointer in the BD chain
   3363 	 * points back to the beginning of the chain.
   3364 	 */
   3365 
   3366 	/* Set the TX next pointer chain entries. */
   3367 	for (i = 0; i < TX_PAGES; i++) {
   3368 		int j;
   3369 
   3370 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   3371 
   3372 		/* Check if we've reached the last page. */
   3373 		if (i == (TX_PAGES - 1))
   3374 			j = 0;
   3375 		else
   3376 			j = i + 1;
   3377 
   3378 		addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
   3379 		txbd->tx_bd_haddr_lo = htole32(addr);
   3380 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
   3381 		txbd->tx_bd_haddr_hi = htole32(addr);
   3382 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3383 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3384 	}
   3385 
   3386 	/*
   3387 	 * Initialize the context ID for an L2 TX chain.
   3388 	 */
   3389 	val = BNX_L2CTX_TYPE_TYPE_L2;
   3390 	val |= BNX_L2CTX_TYPE_SIZE_L2;
   3391 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   3392 
   3393 	val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3394 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   3395 
   3396 	/* Point the hardware to the first page in the chain. */
   3397 	val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3398 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   3399 	val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3400 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   3401 
   3402 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
   3403 
   3404 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   3405 
   3406 	return(rc);
   3407 }
   3408 
   3409 /****************************************************************************/
   3410 /* Free memory and clear the TX data structures.                            */
   3411 /*                                                                          */
   3412 /* Returns:                                                                 */
   3413 /*   Nothing.                                                               */
   3414 /****************************************************************************/
   3415 void
   3416 bnx_free_tx_chain(struct bnx_softc *sc)
   3417 {
   3418 	int			i;
   3419 
   3420 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   3421 
   3422 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   3423 	for (i = 0; i < TOTAL_TX_BD; i++) {
   3424 		if (sc->tx_mbuf_ptr[i] != NULL) {
   3425 			if (sc->tx_mbuf_map != NULL)
   3426 				bus_dmamap_sync(sc->bnx_dmatag,
   3427 				    sc->tx_mbuf_map[i], 0,
   3428 				    sc->tx_mbuf_map[i]->dm_mapsize,
   3429 				    BUS_DMASYNC_POSTWRITE);
   3430 			m_freem(sc->tx_mbuf_ptr[i]);
   3431 			sc->tx_mbuf_ptr[i] = NULL;
   3432 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   3433 		}
   3434 	}
   3435 
   3436 	/* Clear each TX chain page. */
   3437 	for (i = 0; i < TX_PAGES; i++) {
   3438 		bzero((char *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   3439 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3440 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3441 	}
   3442 
   3443 	/* Check if we lost any mbufs in the process. */
   3444 	DBRUNIF((sc->tx_mbuf_alloc),
   3445 	    aprint_error("%s: Memory leak! Lost %d mbufs from tx chain!\n",
   3446 	    sc->bnx_dev.dv_xname, sc->tx_mbuf_alloc));
   3447 
   3448 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   3449 }
   3450 
   3451 /****************************************************************************/
   3452 /* Allocate memory and initialize the RX data structures.                   */
   3453 /*                                                                          */
   3454 /* Returns:                                                                 */
   3455 /*   0 for success, positive value for failure.                             */
   3456 /****************************************************************************/
   3457 int
   3458 bnx_init_rx_chain(struct bnx_softc *sc)
   3459 {
   3460 	struct rx_bd		*rxbd;
   3461 	int			i, rc = 0;
   3462 	u_int16_t		prod, chain_prod;
   3463 	u_int32_t		prod_bseq, val, addr;
   3464 
   3465 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   3466 
   3467 	/* Initialize the RX producer and consumer indices. */
   3468 	sc->rx_prod = 0;
   3469 	sc->rx_cons = 0;
   3470 	sc->rx_prod_bseq = 0;
   3471 	sc->free_rx_bd = BNX_RX_SLACK_SPACE;
   3472 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   3473 
   3474 	/* Initialize the RX next pointer chain entries. */
   3475 	for (i = 0; i < RX_PAGES; i++) {
   3476 		int j;
   3477 
   3478 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   3479 
   3480 		/* Check if we've reached the last page. */
   3481 		if (i == (RX_PAGES - 1))
   3482 			j = 0;
   3483 		else
   3484 			j = i + 1;
   3485 
   3486 		/* Setup the chain page pointers. */
   3487 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
   3488 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3489 		addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
   3490 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3491 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   3492 		    0, BNX_RX_CHAIN_PAGE_SZ,
   3493 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3494 	}
   3495 
   3496 	/* Initialize the context ID for an L2 RX chain. */
   3497 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
   3498 	val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
   3499 	val |= 0x02 << 8;
   3500 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   3501 
   3502 	/* Point the hardware to the first page in the chain. */
   3503 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
   3504 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   3505 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
   3506 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   3507 
   3508 	/* Allocate mbuf clusters for the rx_bd chain. */
   3509 	prod = prod_bseq = 0;
   3510 	while (prod < BNX_RX_SLACK_SPACE) {
   3511 		chain_prod = RX_CHAIN_IDX(prod);
   3512 		if (bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq)) {
   3513 			BNX_PRINTF(sc,
   3514 			    "Error filling RX chain: rx_bd[0x%04X]!\n",
   3515 			    chain_prod);
   3516 			rc = ENOBUFS;
   3517 			break;
   3518 		}
   3519 		prod = NEXT_RX_BD(prod);
   3520 	}
   3521 
   3522 	/* Save the RX chain producer index. */
   3523 	sc->rx_prod = prod;
   3524 	sc->rx_prod_bseq = prod_bseq;
   3525 
   3526 	for (i = 0; i < RX_PAGES; i++)
   3527 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   3528 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3529 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3530 
   3531 	/* Tell the chip about the waiting rx_bd's. */
   3532 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   3533 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   3534 
   3535 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   3536 
   3537 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   3538 
   3539 	return(rc);
   3540 }
   3541 
   3542 /****************************************************************************/
   3543 /* Free memory and clear the RX data structures.                            */
   3544 /*                                                                          */
   3545 /* Returns:                                                                 */
   3546 /*   Nothing.                                                               */
   3547 /****************************************************************************/
   3548 void
   3549 bnx_free_rx_chain(struct bnx_softc *sc)
   3550 {
   3551 	int			i;
   3552 
   3553 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   3554 
   3555 	/* Free any mbufs still in the RX mbuf chain. */
   3556 	for (i = 0; i < TOTAL_RX_BD; i++) {
   3557 		if (sc->rx_mbuf_ptr[i] != NULL) {
   3558 			if (sc->rx_mbuf_map[i] != NULL)
   3559 				bus_dmamap_sync(sc->bnx_dmatag,
   3560 				    sc->rx_mbuf_map[i],	0,
   3561 				    sc->rx_mbuf_map[i]->dm_mapsize,
   3562 				    BUS_DMASYNC_POSTREAD);
   3563 			m_freem(sc->rx_mbuf_ptr[i]);
   3564 			sc->rx_mbuf_ptr[i] = NULL;
   3565 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3566 		}
   3567 	}
   3568 
   3569 	/* Clear each RX chain page. */
   3570 	for (i = 0; i < RX_PAGES; i++)
   3571 		bzero((char *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   3572 
   3573 	/* Check if we lost any mbufs in the process. */
   3574 	DBRUNIF((sc->rx_mbuf_alloc),
   3575 	    aprint_error("%s: Memory leak! Lost %d mbufs from rx chain!\n",
   3576 	    sc->bnx_dev.dv_xname, sc->rx_mbuf_alloc));
   3577 
   3578 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   3579 }
   3580 
   3581 /****************************************************************************/
   3582 /* Set media options.                                                       */
   3583 /*                                                                          */
   3584 /* Returns:                                                                 */
   3585 /*   0 for success, positive value for failure.                             */
   3586 /****************************************************************************/
   3587 int
   3588 bnx_ifmedia_upd(struct ifnet *ifp)
   3589 {
   3590 	struct bnx_softc	*sc;
   3591 	struct mii_data		*mii;
   3592 	struct ifmedia		*ifm;
   3593 	int			rc = 0;
   3594 
   3595 	sc = ifp->if_softc;
   3596 	ifm = &sc->bnx_ifmedia;
   3597 
   3598 	/* DRC - ToDo: Add SerDes support. */
   3599 
   3600 	mii = &sc->bnx_mii;
   3601 	sc->bnx_link = 0;
   3602 	if (mii->mii_instance) {
   3603 		struct mii_softc *miisc;
   3604 		for (miisc = LIST_FIRST(&mii->mii_phys); miisc != NULL;
   3605 		    miisc = LIST_NEXT(miisc, mii_list))
   3606 			mii_phy_reset(miisc);
   3607 	}
   3608 	mii_mediachg(mii);
   3609 
   3610 	return(rc);
   3611 }
   3612 
   3613 /****************************************************************************/
   3614 /* Reports current media status.                                            */
   3615 /*                                                                          */
   3616 /* Returns:                                                                 */
   3617 /*   Nothing.                                                               */
   3618 /****************************************************************************/
   3619 void
   3620 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   3621 {
   3622 	struct bnx_softc	*sc;
   3623 	struct mii_data		*mii;
   3624 	int			s;
   3625 
   3626 	sc = ifp->if_softc;
   3627 
   3628 	s = splnet();
   3629 
   3630 	mii = &sc->bnx_mii;
   3631 
   3632 	/* DRC - ToDo: Add SerDes support. */
   3633 
   3634 	mii_pollstat(mii);
   3635 	ifmr->ifm_active = mii->mii_media_active;
   3636 	ifmr->ifm_status = mii->mii_media_status;
   3637 
   3638 	splx(s);
   3639 }
   3640 
   3641 /****************************************************************************/
   3642 /* Handles PHY generated interrupt events.                                  */
   3643 /*                                                                          */
   3644 /* Returns:                                                                 */
   3645 /*   Nothing.                                                               */
   3646 /****************************************************************************/
   3647 void
   3648 bnx_phy_intr(struct bnx_softc *sc)
   3649 {
   3650 	u_int32_t		new_link_state, old_link_state;
   3651 
   3652 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3653 	    BUS_DMASYNC_POSTREAD);
   3654 	new_link_state = sc->status_block->status_attn_bits &
   3655 	    STATUS_ATTN_BITS_LINK_STATE;
   3656 	old_link_state = sc->status_block->status_attn_bits_ack &
   3657 	    STATUS_ATTN_BITS_LINK_STATE;
   3658 
   3659 	/* Handle any changes if the link state has changed. */
   3660 	if (new_link_state != old_link_state) {
   3661 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   3662 
   3663 		sc->bnx_link = 0;
   3664 		callout_stop(&sc->bnx_timeout);
   3665 		bnx_tick(sc);
   3666 
   3667 		/* Update the status_attn_bits_ack field in the status block. */
   3668 		if (new_link_state) {
   3669 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   3670 			    STATUS_ATTN_BITS_LINK_STATE);
   3671 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   3672 		} else {
   3673 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   3674 			    STATUS_ATTN_BITS_LINK_STATE);
   3675 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   3676 		}
   3677 	}
   3678 
   3679 	/* Acknowledge the link change interrupt. */
   3680 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   3681 }
   3682 
   3683 /****************************************************************************/
   3684 /* Handles received frame interrupt events.                                 */
   3685 /*                                                                          */
   3686 /* Returns:                                                                 */
   3687 /*   Nothing.                                                               */
   3688 /****************************************************************************/
   3689 void
   3690 bnx_rx_intr(struct bnx_softc *sc)
   3691 {
   3692 	struct status_block	*sblk = sc->status_block;
   3693 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   3694 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
   3695 	u_int16_t		sw_prod, sw_chain_prod;
   3696 	u_int32_t		sw_prod_bseq;
   3697 	struct l2_fhdr		*l2fhdr;
   3698 	int			i;
   3699 
   3700 	DBRUNIF(1, sc->rx_interrupts++);
   3701 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3702 	    BUS_DMASYNC_POSTREAD);
   3703 
   3704 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   3705 	for (i = 0; i < RX_PAGES; i++)
   3706 		bus_dmamap_sync(sc->bnx_dmatag,
   3707 		    sc->rx_bd_chain_map[i], 0,
   3708 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3709 		    BUS_DMASYNC_POSTWRITE);
   3710 
   3711 	/* Get the hardware's view of the RX consumer index. */
   3712 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   3713 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   3714 		hw_cons++;
   3715 
   3716 	/* Get working copies of the driver's view of the RX indices. */
   3717 	sw_cons = sc->rx_cons;
   3718 	sw_prod = sc->rx_prod;
   3719 	sw_prod_bseq = sc->rx_prod_bseq;
   3720 
   3721 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   3722 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   3723 	    __FUNCTION__, sw_prod, sw_cons, sw_prod_bseq);
   3724 
   3725 	/* Prevent speculative reads from getting ahead of the status block. */
   3726 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3727 	    BUS_SPACE_BARRIER_READ);
   3728 
   3729 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3730 	    sc->rx_low_watermark = sc->free_rx_bd);
   3731 
   3732 	/*
   3733 	 * Scan through the receive chain as long
   3734 	 * as there is work to do.
   3735 	 */
   3736 	while (sw_cons != hw_cons) {
   3737 		struct mbuf *m;
   3738 		struct rx_bd *rxbd;
   3739 		unsigned int len;
   3740 		u_int32_t status;
   3741 
   3742 		/* Convert the producer/consumer indices to an actual
   3743 		 * rx_bd index.
   3744 		 */
   3745 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   3746 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   3747 
   3748 		/* Get the used rx_bd. */
   3749 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   3750 		sc->free_rx_bd++;
   3751 
   3752 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __FUNCTION__);
   3753 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   3754 
   3755 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   3756 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   3757 			/* Validate that this is the last rx_bd. */
   3758 			DBRUNIF((!(rxbd->rx_bd_flags & RX_BD_FLAGS_END)),
   3759 			    aprint_error("%s: Unexpected mbuf found in "
   3760 			        "rx_bd[0x%04X]!\n", sc->bnx_dev.dv_xname,
   3761 			        sw_chain_cons);
   3762 				bnx_breakpoint(sc));
   3763 
   3764 			/* DRC - ToDo: If the received packet is small, say less
   3765 			 *             than 128 bytes, allocate a new mbuf here,
   3766 			 *             copy the data to that mbuf, and recycle
   3767 			 *             the mapped jumbo frame.
   3768 			 */
   3769 
   3770 			/* Unmap the mbuf from DMA space. */
   3771 			bus_dmamap_sync(sc->bnx_dmatag,
   3772 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   3773 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   3774 			    BUS_DMASYNC_POSTREAD);
   3775 			bus_dmamap_unload(sc->bnx_dmatag,
   3776 			    sc->rx_mbuf_map[sw_chain_cons]);
   3777 
   3778 			/* Remove the mbuf from the driver's chain. */
   3779 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   3780 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   3781 
   3782 			/*
   3783 			 * Frames received on the NetXteme II are prepended
   3784 			 * with the l2_fhdr structure which provides status
   3785 			 * information about the received frame (including
   3786 			 * VLAN tags and checksum info) and are also
   3787 			 * automatically adjusted to align the IP header
   3788 			 * (i.e. two null bytes are inserted before the
   3789 			 * Ethernet header).
   3790 			 */
   3791 			l2fhdr = mtod(m, struct l2_fhdr *);
   3792 
   3793 			len    = l2fhdr->l2_fhdr_pkt_len;
   3794 			status = l2fhdr->l2_fhdr_status;
   3795 
   3796 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   3797 			    aprint_error("Simulating l2_fhdr status error.\n");
   3798 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   3799 
   3800 			/* Watch for unusual sized frames. */
   3801 			DBRUNIF(((len < BNX_MIN_MTU) ||
   3802 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   3803 			    aprint_error("%s: Unusual frame size found. "
   3804 			    "Min(%d), Actual(%d), Max(%d)\n",
   3805 			    sc->bnx_dev.dv_xname, (int)BNX_MIN_MTU, len,
   3806 			    (int) BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   3807 
   3808 			bnx_dump_mbuf(sc, m);
   3809 			bnx_breakpoint(sc));
   3810 
   3811 			len -= ETHER_CRC_LEN;
   3812 
   3813 			/* Check the received frame for errors. */
   3814 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   3815 			    L2_FHDR_ERRORS_PHY_DECODE |
   3816 			    L2_FHDR_ERRORS_ALIGNMENT |
   3817 			    L2_FHDR_ERRORS_TOO_SHORT |
   3818 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   3819 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   3820 			    len >
   3821 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   3822 				ifp->if_ierrors++;
   3823 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   3824 
   3825 				/* Reuse the mbuf for a new frame. */
   3826 				if (bnx_get_buf(sc, m, &sw_prod,
   3827 				    &sw_chain_prod, &sw_prod_bseq)) {
   3828 					DBRUNIF(1, bnx_breakpoint(sc));
   3829 					panic("%s: Can't reuse RX mbuf!\n",
   3830 					    sc->bnx_dev.dv_xname);
   3831 				}
   3832 				goto bnx_rx_int_next_rx;
   3833 			}
   3834 
   3835 			/*
   3836 			 * Get a new mbuf for the rx_bd.   If no new
   3837 			 * mbufs are available then reuse the current mbuf,
   3838 			 * log an ierror on the interface, and generate
   3839 			 * an error in the system log.
   3840 			 */
   3841 			if (bnx_get_buf(sc, NULL, &sw_prod, &sw_chain_prod,
   3842 			    &sw_prod_bseq)) {
   3843 				DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
   3844 					"new mbuf, incoming frame dropped!\n"));
   3845 
   3846 				ifp->if_ierrors++;
   3847 
   3848 				/* Try and reuse the exisitng mbuf. */
   3849 				if (bnx_get_buf(sc, m, &sw_prod,
   3850 				    &sw_chain_prod, &sw_prod_bseq)) {
   3851 					DBRUNIF(1, bnx_breakpoint(sc));
   3852 					panic("%s: Double mbuf allocation "
   3853 					    "failure!", sc->bnx_dev.dv_xname);
   3854 				}
   3855 				goto bnx_rx_int_next_rx;
   3856 			}
   3857 
   3858 			/* Skip over the l2_fhdr when passing the data up
   3859 			 * the stack.
   3860 			 */
   3861 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   3862 
   3863 			/* Adjust the pckt length to match the received data. */
   3864 			m->m_pkthdr.len = m->m_len = len;
   3865 
   3866 			/* Send the packet to the appropriate interface. */
   3867 			m->m_pkthdr.rcvif = ifp;
   3868 
   3869 			DBRUN(BNX_VERBOSE_RECV,
   3870 			    struct ether_header *eh;
   3871 			    eh = mtod(m, struct ether_header *);
   3872 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   3873 			    __FUNCTION__, ether_sprintf(eh->ether_dhost),
   3874 			    ether_sprintf(eh->ether_shost),
   3875 			    htons(eh->ether_type)));
   3876 
   3877 			/* Validate the checksum. */
   3878 
   3879 			/* Check for an IP datagram. */
   3880 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   3881 				/* Check if the IP checksum is valid. */
   3882 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   3883 				    == 0)
   3884 					m->m_pkthdr.csum_flags |=
   3885 					    M_CSUM_IPv4;
   3886 #ifdef BNX_DEBUG
   3887 				else
   3888 					DBPRINT(sc, BNX_WARN_SEND,
   3889 					    "%s(): Invalid IP checksum "
   3890 					        "= 0x%04X!\n",
   3891 						__FUNCTION__,
   3892 						l2fhdr->l2_fhdr_ip_xsum
   3893 						);
   3894 #endif
   3895 			}
   3896 
   3897 			/* Check for a valid TCP/UDP frame. */
   3898 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   3899 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   3900 				/* Check for a good TCP/UDP checksum. */
   3901 				if ((status &
   3902 				    (L2_FHDR_ERRORS_TCP_XSUM |
   3903 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   3904 					m->m_pkthdr.csum_flags |=
   3905 					    M_CSUM_TCPv4 |
   3906 					    M_CSUM_UDPv4;
   3907 				} else {
   3908 					DBPRINT(sc, BNX_WARN_SEND,
   3909 					    "%s(): Invalid TCP/UDP "
   3910 					    "checksum = 0x%04X!\n",
   3911 					    __FUNCTION__,
   3912 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   3913 				}
   3914 			}
   3915 
   3916 			/*
   3917 			 * If we received a packet with a vlan tag,
   3918 			 * attach that information to the packet.
   3919 			 */
   3920 			if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
   3921 #if 0
   3922 				struct ether_vlan_header vh;
   3923 
   3924 				DBPRINT(sc, BNX_VERBOSE_SEND,
   3925 				    "%s(): VLAN tag = 0x%04X\n",
   3926 				    __FUNCTION__,
   3927 				    l2fhdr->l2_fhdr_vlan_tag);
   3928 
   3929 				if (m->m_pkthdr.len < ETHER_HDR_LEN) {
   3930 					m_freem(m);
   3931 					goto bnx_rx_int_next_rx;
   3932 				}
   3933 				m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh);
   3934 				vh.evl_proto = vh.evl_encap_proto;
   3935 				vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag >> 16;
   3936 				vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
   3937 				m_adj(m, ETHER_HDR_LEN);
   3938 				if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
   3939 					goto bnx_rx_int_next_rx;
   3940 				m->m_pkthdr.len += sizeof(vh);
   3941 				if (m->m_len < sizeof(vh) &&
   3942 				    (m = m_pullup(m, sizeof(vh))) == NULL)
   3943 					goto bnx_rx_int_next_rx;
   3944 				m_copyback(m, 0, sizeof(vh), &vh);
   3945 #else
   3946 				VLAN_INPUT_TAG(ifp, m,
   3947 				    l2fhdr->l2_fhdr_vlan_tag >> 16,
   3948 				    goto bnx_rx_int_next_rx);
   3949 #endif
   3950 			}
   3951 
   3952 #if NBPFILTER > 0
   3953 			/*
   3954 			 * Handle BPF listeners. Let the BPF
   3955 			 * user see the packet.
   3956 			 */
   3957 			if (ifp->if_bpf)
   3958 				bpf_mtap(ifp->if_bpf, m);
   3959 #endif
   3960 
   3961 			/* Pass the mbuf off to the upper layers. */
   3962 			ifp->if_ipackets++;
   3963 			DBPRINT(sc, BNX_VERBOSE_RECV,
   3964 			    "%s(): Passing received frame up.\n", __FUNCTION__);
   3965 			//ether_input_mbuf(ifp, m);
   3966 			(*ifp->if_input)(ifp, m);
   3967 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3968 
   3969 bnx_rx_int_next_rx:
   3970 			sw_prod = NEXT_RX_BD(sw_prod);
   3971 		}
   3972 
   3973 		sw_cons = NEXT_RX_BD(sw_cons);
   3974 
   3975 		/* Refresh hw_cons to see if there's new work */
   3976 		if (sw_cons == hw_cons) {
   3977 			hw_cons = sc->hw_rx_cons =
   3978 			    sblk->status_rx_quick_consumer_index0;
   3979 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   3980 			    USABLE_RX_BD_PER_PAGE)
   3981 				hw_cons++;
   3982 		}
   3983 
   3984 		/* Prevent speculative reads from getting ahead of
   3985 		 * the status block.
   3986 		 */
   3987 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3988 		    BUS_SPACE_BARRIER_READ);
   3989 	}
   3990 
   3991 	for (i = 0; i < RX_PAGES; i++)
   3992 		bus_dmamap_sync(sc->bnx_dmatag,
   3993 		    sc->rx_bd_chain_map[i], 0,
   3994 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3995 		    BUS_DMASYNC_PREWRITE);
   3996 
   3997 	sc->rx_cons = sw_cons;
   3998 	sc->rx_prod = sw_prod;
   3999 	sc->rx_prod_bseq = sw_prod_bseq;
   4000 
   4001 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4002 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4003 
   4004 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4005 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4006 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4007 }
   4008 
   4009 /****************************************************************************/
   4010 /* Handles transmit completion interrupt events.                            */
   4011 /*                                                                          */
   4012 /* Returns:                                                                 */
   4013 /*   Nothing.                                                               */
   4014 /****************************************************************************/
   4015 void
   4016 bnx_tx_intr(struct bnx_softc *sc)
   4017 {
   4018 	struct status_block	*sblk = sc->status_block;
   4019 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   4020 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4021 
   4022 	DBRUNIF(1, sc->tx_interrupts++);
   4023 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4024 	    BUS_DMASYNC_POSTREAD);
   4025 
   4026 	/* Get the hardware's view of the TX consumer index. */
   4027 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4028 
   4029 	/* Skip to the next entry if this is a chain page pointer. */
   4030 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4031 		hw_tx_cons++;
   4032 
   4033 	sw_tx_cons = sc->tx_cons;
   4034 
   4035 	/* Prevent speculative reads from getting ahead of the status block. */
   4036 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4037 	    BUS_SPACE_BARRIER_READ);
   4038 
   4039 	/* Cycle through any completed TX chain page entries. */
   4040 	while (sw_tx_cons != hw_tx_cons) {
   4041 #ifdef BNX_DEBUG
   4042 		struct tx_bd *txbd = NULL;
   4043 #endif
   4044 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4045 
   4046 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4047 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4048 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4049 
   4050 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4051 		    aprint_error("%s: TX chain consumer out of range! "
   4052 		    " 0x%04X > 0x%04X\n", sc->bnx_dev.dv_xname,
   4053 		    sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4054 
   4055 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4056 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4057 
   4058 		DBRUNIF((txbd == NULL),
   4059 		    aprint_error("%s: Unexpected NULL tx_bd[0x%04X]!\n",
   4060 		    sc->bnx_dev.dv_xname, sw_tx_chain_cons);
   4061 		    bnx_breakpoint(sc));
   4062 
   4063 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __FUNCTION__);
   4064 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4065 
   4066 		/*
   4067 		 * Free the associated mbuf. Remember
   4068 		 * that only the last tx_bd of a packet
   4069 		 * has an mbuf pointer and DMA map.
   4070 		 */
   4071 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
   4072 			/* Validate that this is the last tx_bd. */
   4073 			DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
   4074 			    TX_BD_FLAGS_END)),
   4075 			    aprint_error("%s: tx_bd END flag not set but "
   4076 			    "txmbuf == NULL!\n", sc->bnx_dev.dv_xname);
   4077 			    bnx_breakpoint(sc));
   4078 
   4079 			DBRUN(BNX_INFO_SEND,
   4080 			    aprint_debug("%s: Unloading map/freeing mbuf "
   4081 			    "from tx_bd[0x%04X]\n",
   4082 			    __FUNCTION__, sw_tx_chain_cons));
   4083 
   4084 			/* Unmap the mbuf. */
   4085 			bus_dmamap_unload(sc->bnx_dmatag,
   4086 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
   4087 
   4088 			/* Free the mbuf. */
   4089 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
   4090 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
   4091 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4092 
   4093 			ifp->if_opackets++;
   4094 		}
   4095 
   4096 		sc->used_tx_bd--;
   4097 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4098 
   4099 		/* Refresh hw_cons to see if there's new work. */
   4100 		hw_tx_cons = sc->hw_tx_cons =
   4101 		    sblk->status_tx_quick_consumer_index0;
   4102 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4103 		    USABLE_TX_BD_PER_PAGE)
   4104 			hw_tx_cons++;
   4105 
   4106 		/* Prevent speculative reads from getting ahead of
   4107 		 * the status block.
   4108 		 */
   4109 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4110 		    BUS_SPACE_BARRIER_READ);
   4111 	}
   4112 
   4113 	/* Clear the TX timeout timer. */
   4114 	ifp->if_timer = 0;
   4115 
   4116 	/* Clear the tx hardware queue full flag. */
   4117 	if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
   4118 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4119 		    aprint_debug("%s: TX chain is open for business! Used "
   4120 		    "tx_bd = %d\n", sc->bnx_dev.dv_xname,
   4121 		    sc->used_tx_bd));
   4122 		ifp->if_flags &= ~IFF_OACTIVE;
   4123 	}
   4124 
   4125 	sc->tx_cons = sw_tx_cons;
   4126 }
   4127 
   4128 /****************************************************************************/
   4129 /* Disables interrupt generation.                                           */
   4130 /*                                                                          */
   4131 /* Returns:                                                                 */
   4132 /*   Nothing.                                                               */
   4133 /****************************************************************************/
   4134 void
   4135 bnx_disable_intr(struct bnx_softc *sc)
   4136 {
   4137 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4138 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4139 }
   4140 
   4141 /****************************************************************************/
   4142 /* Enables interrupt generation.                                            */
   4143 /*                                                                          */
   4144 /* Returns:                                                                 */
   4145 /*   Nothing.                                                               */
   4146 /****************************************************************************/
   4147 void
   4148 bnx_enable_intr(struct bnx_softc *sc)
   4149 {
   4150 	u_int32_t		val;
   4151 
   4152 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4153 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4154 
   4155 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4156 	    sc->last_status_idx);
   4157 
   4158 	val = REG_RD(sc, BNX_HC_COMMAND);
   4159 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4160 }
   4161 
   4162 /****************************************************************************/
   4163 /* Handles controller initialization.                                       */
   4164 /*                                                                          */
   4165 /****************************************************************************/
   4166 int
   4167 bnx_init(struct ifnet *ifp)
   4168 {
   4169 	struct bnx_softc	*sc = ifp->if_softc;
   4170 	u_int32_t		ether_mtu;
   4171 	int			s, error = 0;
   4172 
   4173 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   4174 
   4175 	s = splnet();
   4176 
   4177 	bnx_stop(sc);
   4178 
   4179 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4180 		aprint_error("bnx: Controller reset failed!\n");
   4181 		goto bnx_init_locked_exit;
   4182 	}
   4183 
   4184 	if ((error = bnx_chipinit(sc)) != 0) {
   4185 		aprint_error("bnx: Controller initialization failed!\n");
   4186 		goto bnx_init_locked_exit;
   4187 	}
   4188 
   4189 	if ((error = bnx_blockinit(sc)) != 0) {
   4190 		aprint_error("bnx: Block initialization failed!\n");
   4191 		goto bnx_init_locked_exit;
   4192 	}
   4193 
   4194 	/* Calculate and program the Ethernet MRU size. */
   4195 	ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4196 
   4197 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4198 	    __FUNCTION__, ether_mtu);
   4199 
   4200 	/*
   4201 	 * Program the MRU and enable Jumbo frame
   4202 	 * support.
   4203 	 */
   4204 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4205 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4206 
   4207 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4208 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4209 
   4210 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4211 	    "max_frame_size = %d\n", __FUNCTION__, (int)MCLBYTES,
   4212 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4213 
   4214 	/* Program appropriate promiscuous/multicast filtering. */
   4215 	bnx_set_rx_mode(sc);
   4216 
   4217 	/* Init RX buffer descriptor chain. */
   4218 	bnx_init_rx_chain(sc);
   4219 
   4220 	/* Init TX buffer descriptor chain. */
   4221 	bnx_init_tx_chain(sc);
   4222 
   4223 	/* Enable host interrupts. */
   4224 	bnx_enable_intr(sc);
   4225 
   4226 	bnx_ifmedia_upd(ifp);
   4227 
   4228 	ifp->if_flags |= IFF_RUNNING;
   4229 	ifp->if_flags &= ~IFF_OACTIVE;
   4230 
   4231 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4232 
   4233 bnx_init_locked_exit:
   4234 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   4235 
   4236 	splx(s);
   4237 
   4238 	return(error);
   4239 }
   4240 
   4241 /****************************************************************************/
   4242 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4243 /* memory visible to the controller.                                        */
   4244 /*                                                                          */
   4245 /* Returns:                                                                 */
   4246 /*   0 for success, positive value for failure.                             */
   4247 /****************************************************************************/
   4248 int
   4249 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m_head, u_int16_t *prod,
   4250     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   4251 {
   4252 	u_int32_t		vlan_tag_flags = 0;
   4253 	struct bnx_dmamap_arg	map_arg;
   4254 	bus_dmamap_t		map;
   4255 	int			i, rc = 0;
   4256 	struct m_tag		*mtag;
   4257 
   4258 	/* Transfer any checksum offload flags to the bd. */
   4259 	if (m_head->m_pkthdr.csum_flags) {
   4260 		if (m_head->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4261 			vlan_tag_flags |= TX_BD_FLAGS_IP_CKSUM;
   4262 		if (m_head->m_pkthdr.csum_flags &
   4263 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4264 			vlan_tag_flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4265 	}
   4266 
   4267 	/* Transfer any VLAN tags to the bd. */
   4268 	mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m_head);
   4269 	if (mtag != NULL)
   4270 		vlan_tag_flags |= (TX_BD_FLAGS_VLAN_TAG |
   4271 		    VLAN_TAG_VALUE(mtag));
   4272 
   4273 	/* Map the mbuf into DMAable memory. */
   4274 	map = sc->tx_mbuf_map[*chain_prod];
   4275 	map_arg.sc = sc;
   4276 	map_arg.prod = *prod;
   4277 	map_arg.chain_prod = *chain_prod;
   4278 	map_arg.prod_bseq = *prod_bseq;
   4279 	map_arg.tx_flags = vlan_tag_flags;
   4280 	map_arg.maxsegs = USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE;
   4281 
   4282 #if 0
   4283 	KASSERT(map_arg.maxsegs > 0, ("Invalid TX maxsegs value!"));
   4284 #endif
   4285 
   4286 	for (i = 0; i < TX_PAGES; i++)
   4287 		map_arg.tx_chain[i] = sc->tx_bd_chain[i];
   4288 
   4289 	/* Map the mbuf into our DMA address space. */
   4290 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_head,
   4291 	    BUS_DMA_NOWAIT)) {
   4292 		aprint_error("%s: Error mapping mbuf into TX chain!\n",
   4293 		    sc->bnx_dev.dv_xname);
   4294 		rc = ENOBUFS;
   4295 		goto bnx_tx_encap_exit;
   4296 	}
   4297 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4298 	    BUS_DMASYNC_PREWRITE);
   4299 	bnx_dma_map_tx_desc(&map_arg, map);
   4300 
   4301 	/*
   4302 	 * Ensure that the map for this transmission
   4303 	 * is placed at the array index of the last
   4304 	 * descriptor in this chain.  This is done
   4305 	 * because a single map is used for all
   4306 	 * segments of the mbuf and we don't want to
   4307 	 * delete the map before all of the segments
   4308 	 * have been freed.
   4309 	 */
   4310 	sc->tx_mbuf_map[*chain_prod] = sc->tx_mbuf_map[map_arg.chain_prod];
   4311 	sc->tx_mbuf_map[map_arg.chain_prod] = map;
   4312 	sc->tx_mbuf_ptr[map_arg.chain_prod] = m_head;
   4313 	sc->used_tx_bd += map_arg.maxsegs;
   4314 
   4315 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   4316 	    sc->tx_hi_watermark = sc->used_tx_bd);
   4317 
   4318 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   4319 
   4320 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, *chain_prod,
   4321 	    map_arg.maxsegs));
   4322 
   4323 	/* prod still points the last used tx_bd at this point. */
   4324 	*prod = map_arg.prod;
   4325 	*chain_prod = map_arg.chain_prod;
   4326 	*prod_bseq = map_arg.prod_bseq;
   4327 
   4328 bnx_tx_encap_exit:
   4329 
   4330 	return(rc);
   4331 }
   4332 
   4333 /****************************************************************************/
   4334 /* Main transmit routine.                                                   */
   4335 /*                                                                          */
   4336 /* Returns:                                                                 */
   4337 /*   Nothing.                                                               */
   4338 /****************************************************************************/
   4339 void
   4340 bnx_start(struct ifnet *ifp)
   4341 {
   4342 	struct bnx_softc	*sc = ifp->if_softc;
   4343 	struct mbuf		*m_head = NULL;
   4344 	int			count = 0;
   4345 	u_int16_t		tx_prod, tx_chain_prod;
   4346 	u_int32_t		tx_prod_bseq;
   4347 
   4348 	/* If there's no link or the transmit queue is empty then just exit. */
   4349 	if (!sc->bnx_link || IFQ_IS_EMPTY(&ifp->if_snd)) {
   4350 		DBPRINT(sc, BNX_INFO_SEND,
   4351 		    "%s(): No link or transmit queue empty.\n", __FUNCTION__);
   4352 		goto bnx_start_locked_exit;
   4353 	}
   4354 
   4355 	/* prod points to the next free tx_bd. */
   4356 	tx_prod = sc->tx_prod;
   4357 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
   4358 	tx_prod_bseq = sc->tx_prod_bseq;
   4359 
   4360 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   4361 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
   4362 	    __FUNCTION__, tx_prod, tx_chain_prod, tx_prod_bseq);
   4363 
   4364 	/* Keep adding entries while there is space in the ring. */
   4365 	while (sc->tx_mbuf_ptr[tx_chain_prod] == NULL) {
   4366 		/* Check for any frames to send. */
   4367 		IFQ_POLL(&ifp->if_snd, m_head);
   4368 		if (m_head == NULL)
   4369 			break;
   4370 
   4371 		/*
   4372 		 * Pack the data into the transmit ring. If we
   4373 		 * don't have room, place the mbuf back at the
   4374 		 * head of the queue and set the OACTIVE flag
   4375 		 * to wait for the NIC to drain the chain.
   4376 		 */
   4377 		if (bnx_tx_encap(sc, m_head, &tx_prod, &tx_chain_prod,
   4378 		    &tx_prod_bseq)) {
   4379 			ifp->if_flags |= IFF_OACTIVE;
   4380 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   4381 			    "business! Total tx_bd used = %d\n",
   4382 			    sc->used_tx_bd);
   4383 			break;
   4384 		}
   4385 
   4386 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4387 		count++;
   4388 
   4389 #if NBPFILTER > 0
   4390 		/* Send a copy of the frame to any BPF listeners. */
   4391 		if (ifp->if_bpf)
   4392 			bpf_mtap(ifp->if_bpf, m_head);
   4393 #endif
   4394 		tx_prod = NEXT_TX_BD(tx_prod);
   4395 		tx_chain_prod = TX_CHAIN_IDX(tx_prod);
   4396 	}
   4397 
   4398 	if (count == 0) {
   4399 		/* no packets were dequeued */
   4400 		DBPRINT(sc, BNX_VERBOSE_SEND,
   4401 		    "%s(): No packets were dequeued\n", __FUNCTION__);
   4402 		goto bnx_start_locked_exit;
   4403 	}
   4404 
   4405 	/* Update the driver's counters. */
   4406 	sc->tx_prod = tx_prod;
   4407 	sc->tx_prod_bseq = tx_prod_bseq;
   4408 
   4409 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   4410 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __FUNCTION__, tx_prod,
   4411 	    tx_chain_prod, tx_prod_bseq);
   4412 
   4413 	/* Start the transmit. */
   4414 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   4415 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   4416 
   4417 	/* Set the tx timeout. */
   4418 	ifp->if_timer = BNX_TX_TIMEOUT;
   4419 
   4420 bnx_start_locked_exit:
   4421 	return;
   4422 }
   4423 
   4424 /****************************************************************************/
   4425 /* Handles any IOCTL calls from the operating system.                       */
   4426 /*                                                                          */
   4427 /* Returns:                                                                 */
   4428 /*   0 for success, positive value for failure.                             */
   4429 /****************************************************************************/
   4430 int
   4431 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   4432 {
   4433 	struct bnx_softc	*sc = ifp->if_softc;
   4434 	struct ifreq		*ifr = (struct ifreq *) data;
   4435 	struct mii_data		*mii;
   4436 	int			s, error = 0;
   4437 
   4438 	s = splnet();
   4439 
   4440 	switch (command) {
   4441 	case SIOCSIFFLAGS:
   4442 		if (ifp->if_flags & IFF_UP) {
   4443 			if ((ifp->if_flags & IFF_RUNNING) &&
   4444 			    ((ifp->if_flags ^ sc->bnx_if_flags) &
   4445 			    (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
   4446 				bnx_set_rx_mode(sc);
   4447 			} else if (!(ifp->if_flags & IFF_RUNNING))
   4448 				bnx_init(ifp);
   4449 
   4450                 } else if (ifp->if_flags & IFF_RUNNING)
   4451 			bnx_stop(sc);
   4452 
   4453 		sc->bnx_if_flags = ifp->if_flags;
   4454 		break;
   4455 
   4456 	case SIOCSIFMEDIA:
   4457 	case SIOCGIFMEDIA:
   4458 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   4459 		    sc->bnx_phy_flags);
   4460 
   4461 		if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
   4462 			error = ifmedia_ioctl(ifp, ifr,
   4463 			    &sc->bnx_ifmedia, command);
   4464 		else {
   4465 			mii = &sc->bnx_mii;
   4466 			error = ifmedia_ioctl(ifp, ifr,
   4467 			    &mii->mii_media, command);
   4468 		}
   4469 		break;
   4470 
   4471 	default:
   4472 		error = ether_ioctl(ifp, command, data);
   4473 		if (error == ENETRESET) {
   4474 #if 0
   4475 			if (ifp->if_flags & IFF_RUNNING)
   4476 				/*bnx_setmulti(sc)*/;
   4477 #endif
   4478 			error = 0;
   4479 		}
   4480 		break;
   4481 	}
   4482 
   4483 	splx(s);
   4484 
   4485 	return (error);
   4486 }
   4487 
   4488 /****************************************************************************/
   4489 /* Transmit timeout handler.                                                */
   4490 /*                                                                          */
   4491 /* Returns:                                                                 */
   4492 /*   Nothing.                                                               */
   4493 /****************************************************************************/
   4494 void
   4495 bnx_watchdog(struct ifnet *ifp)
   4496 {
   4497 	struct bnx_softc	*sc = ifp->if_softc;
   4498 
   4499 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   4500 	    bnx_dump_status_block(sc));
   4501 
   4502 	aprint_error("%s: Watchdog timeout -- resetting!\n",
   4503 	    sc->bnx_dev.dv_xname);
   4504 
   4505 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   4506 
   4507 	bnx_init(ifp);
   4508 
   4509 	ifp->if_oerrors++;
   4510 }
   4511 
   4512 /*
   4513  * Interrupt handler.
   4514  */
   4515 /****************************************************************************/
   4516 /* Main interrupt entry point.  Verifies that the controller generated the  */
   4517 /* interrupt and then calls a separate routine for handle the various       */
   4518 /* interrupt causes (PHY, TX, RX).                                          */
   4519 /*                                                                          */
   4520 /* Returns:                                                                 */
   4521 /*   0 for success, positive value for failure.                             */
   4522 /****************************************************************************/
   4523 int
   4524 bnx_intr(void *xsc)
   4525 {
   4526 	struct bnx_softc	*sc;
   4527 	struct ifnet		*ifp;
   4528 	u_int32_t		status_attn_bits;
   4529 
   4530 	sc = xsc;
   4531 	ifp = &sc->ethercom.ec_if;
   4532 
   4533 	DBRUNIF(1, sc->interrupts_generated++);
   4534 
   4535 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   4536 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4537 
   4538 	/*
   4539 	 * If the hardware status block index
   4540 	 * matches the last value read by the
   4541 	 * driver and we haven't asserted our
   4542 	 * interrupt then there's nothing to do.
   4543 	 */
   4544 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   4545 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   4546 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   4547 		return (0);
   4548 
   4549 	/* Ack the interrupt and stop others from occuring. */
   4550 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4551 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   4552 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4553 
   4554 	/* Keep processing data as long as there is work to do. */
   4555 	for (;;) {
   4556 		status_attn_bits = sc->status_block->status_attn_bits;
   4557 
   4558 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   4559 		    aprint_debug("Simulating unexpected status attention bit set.");
   4560 		    status_attn_bits = status_attn_bits |
   4561 		    STATUS_ATTN_BITS_PARITY_ERROR);
   4562 
   4563 		/* Was it a link change interrupt? */
   4564 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   4565 		    (sc->status_block->status_attn_bits_ack &
   4566 		    STATUS_ATTN_BITS_LINK_STATE))
   4567 			bnx_phy_intr(sc);
   4568 
   4569 		/* If any other attention is asserted then the chip is toast. */
   4570 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   4571 		    (sc->status_block->status_attn_bits_ack &
   4572 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   4573 			DBRUN(1, sc->unexpected_attentions++);
   4574 
   4575 			aprint_error("%s: Fatal attention detected: 0x%08X\n",
   4576 			    sc->bnx_dev.dv_xname,
   4577 			    sc->status_block->status_attn_bits);
   4578 
   4579 			DBRUN(BNX_FATAL,
   4580 			    if (bnx_debug_unexpected_attention == 0)
   4581 			    bnx_breakpoint(sc));
   4582 
   4583 			bnx_init(ifp);
   4584 			return (1);
   4585 		}
   4586 
   4587 		/* Check for any completed RX frames. */
   4588 		if (sc->status_block->status_rx_quick_consumer_index0 !=
   4589 		    sc->hw_rx_cons)
   4590 			bnx_rx_intr(sc);
   4591 
   4592 		/* Check for any completed TX frames. */
   4593 		if (sc->status_block->status_tx_quick_consumer_index0 !=
   4594 		    sc->hw_tx_cons)
   4595 			bnx_tx_intr(sc);
   4596 
   4597 		/* Save the status block index value for use during the
   4598 		 * next interrupt.
   4599 		 */
   4600 		sc->last_status_idx = sc->status_block->status_idx;
   4601 
   4602 		/* Prevent speculative reads from getting ahead of the
   4603 		 * status block.
   4604 		 */
   4605 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4606 		    BUS_SPACE_BARRIER_READ);
   4607 
   4608 		/* If there's no work left then exit the isr. */
   4609 		if ((sc->status_block->status_rx_quick_consumer_index0 ==
   4610 		    sc->hw_rx_cons) &&
   4611 		    (sc->status_block->status_tx_quick_consumer_index0 ==
   4612 		    sc->hw_tx_cons))
   4613 			break;
   4614 	}
   4615 
   4616 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   4617 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   4618 
   4619 	/* Re-enable interrupts. */
   4620 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4621 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   4622             BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4623 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4624 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   4625 
   4626 	/* Handle any frames that arrived while handling the interrupt. */
   4627 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   4628 		bnx_start(ifp);
   4629 
   4630 	return (1);
   4631 }
   4632 
   4633 /****************************************************************************/
   4634 /* Programs the various packet receive modes (broadcast and multicast).     */
   4635 /*                                                                          */
   4636 /* Returns:                                                                 */
   4637 /*   Nothing.                                                               */
   4638 /****************************************************************************/
   4639 void
   4640 bnx_set_rx_mode(struct bnx_softc *sc)
   4641 {
   4642 	struct ethercom		*ec = &sc->ethercom;
   4643 	struct ifnet		*ifp = &ec->ec_if;
   4644 	struct ether_multi	*enm;
   4645 	struct ether_multistep	step;
   4646 	u_int32_t		hashes[4] = { 0, 0, 0, 0 };
   4647 	u_int32_t		rx_mode, sort_mode;
   4648 	int			h, i;
   4649 
   4650 	/* Initialize receive mode default settings. */
   4651 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   4652 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   4653 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   4654 
   4655 	/*
   4656 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   4657 	 * be enbled.
   4658 	 */
   4659 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   4660 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   4661 
   4662 	/*
   4663 	 * Check for promiscuous, all multicast, or selected
   4664 	 * multicast address filtering.
   4665 	 */
   4666 	if (ifp->if_flags & IFF_PROMISC) {
   4667 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   4668 
   4669 		/* Enable promiscuous mode. */
   4670 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   4671 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   4672 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   4673 allmulti:
   4674 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   4675 
   4676 		/* Enable all multicast addresses. */
   4677 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   4678 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   4679 			    0xffffffff);
   4680 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   4681 	} else {
   4682 		/* Accept one or more multicast(s). */
   4683 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   4684 
   4685 		ETHER_FIRST_MULTI(step, ec, enm);
   4686 		while (enm != NULL) {
   4687 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
   4688 			    ETHER_ADDR_LEN)) {
   4689 				ifp->if_flags |= IFF_ALLMULTI;
   4690 				goto allmulti;
   4691 			}
   4692 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   4693 			    0x7F;
   4694 			hashes[(h & 0x60) >> 5] |= 1 << (h & 0x1F);
   4695 			ETHER_NEXT_MULTI(step, enm);
   4696 		}
   4697 
   4698 		for (i = 0; i < 4; i++)
   4699 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   4700 			    hashes[i]);
   4701 
   4702 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   4703 	}
   4704 
   4705 	/* Only make changes if the recive mode has actually changed. */
   4706 	if (rx_mode != sc->rx_mode) {
   4707 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   4708 		    rx_mode);
   4709 
   4710 		sc->rx_mode = rx_mode;
   4711 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   4712 	}
   4713 
   4714 	/* Disable and clear the exisitng sort before enabling a new sort. */
   4715 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   4716 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   4717 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   4718 }
   4719 
   4720 /****************************************************************************/
   4721 /* Called periodically to updates statistics from the controllers           */
   4722 /* statistics block.                                                        */
   4723 /*                                                                          */
   4724 /* Returns:                                                                 */
   4725 /*   Nothing.                                                               */
   4726 /****************************************************************************/
   4727 void
   4728 bnx_stats_update(struct bnx_softc *sc)
   4729 {
   4730 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   4731 	struct statistics_block	*stats;
   4732 
   4733 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __FUNCTION__);
   4734 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4735 	    BUS_DMASYNC_POSTREAD);
   4736 
   4737 	stats = (struct statistics_block *)sc->stats_block;
   4738 
   4739 	/*
   4740 	 * Update the interface statistics from the
   4741 	 * hardware statistics.
   4742 	 */
   4743 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   4744 
   4745 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   4746 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   4747 	    (u_long)stats->stat_IfInMBUFDiscards +
   4748 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   4749 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   4750 
   4751 	ifp->if_oerrors = (u_long)
   4752 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   4753 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   4754 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   4755 
   4756 	/*
   4757 	 * Certain controllers don't report
   4758 	 * carrier sense errors correctly.
   4759 	 * See errata E11_5708CA0_1165.
   4760 	 */
   4761 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   4762 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   4763 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   4764 
   4765 	/*
   4766 	 * Update the sysctl statistics from the
   4767 	 * hardware statistics.
   4768 	 */
   4769 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
   4770 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
   4771 
   4772 	sc->stat_IfHCInBadOctets =
   4773 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   4774 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
   4775 
   4776 	sc->stat_IfHCOutOctets =
   4777 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
   4778 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
   4779 
   4780 	sc->stat_IfHCOutBadOctets =
   4781 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   4782 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
   4783 
   4784 	sc->stat_IfHCInUcastPkts =
   4785 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   4786 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
   4787 
   4788 	sc->stat_IfHCInMulticastPkts =
   4789 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   4790 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
   4791 
   4792 	sc->stat_IfHCInBroadcastPkts =
   4793 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   4794 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
   4795 
   4796 	sc->stat_IfHCOutUcastPkts =
   4797 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   4798 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
   4799 
   4800 	sc->stat_IfHCOutMulticastPkts =
   4801 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   4802 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
   4803 
   4804 	sc->stat_IfHCOutBroadcastPkts =
   4805 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   4806 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   4807 
   4808 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   4809 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   4810 
   4811 	sc->stat_Dot3StatsCarrierSenseErrors =
   4812 	    stats->stat_Dot3StatsCarrierSenseErrors;
   4813 
   4814 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   4815 
   4816 	sc->stat_Dot3StatsAlignmentErrors =
   4817 	    stats->stat_Dot3StatsAlignmentErrors;
   4818 
   4819 	sc->stat_Dot3StatsSingleCollisionFrames =
   4820 	    stats->stat_Dot3StatsSingleCollisionFrames;
   4821 
   4822 	sc->stat_Dot3StatsMultipleCollisionFrames =
   4823 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   4824 
   4825 	sc->stat_Dot3StatsDeferredTransmissions =
   4826 	    stats->stat_Dot3StatsDeferredTransmissions;
   4827 
   4828 	sc->stat_Dot3StatsExcessiveCollisions =
   4829 	    stats->stat_Dot3StatsExcessiveCollisions;
   4830 
   4831 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   4832 
   4833 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   4834 
   4835 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   4836 
   4837 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   4838 
   4839 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   4840 
   4841 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   4842 
   4843 	sc->stat_EtherStatsPktsRx64Octets =
   4844 	    stats->stat_EtherStatsPktsRx64Octets;
   4845 
   4846 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   4847 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   4848 
   4849 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   4850 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   4851 
   4852 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   4853 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   4854 
   4855 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   4856 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   4857 
   4858 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   4859 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   4860 
   4861 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   4862 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   4863 
   4864 	sc->stat_EtherStatsPktsTx64Octets =
   4865 	    stats->stat_EtherStatsPktsTx64Octets;
   4866 
   4867 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   4868 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   4869 
   4870 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   4871 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   4872 
   4873 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   4874 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   4875 
   4876 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   4877 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   4878 
   4879 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   4880 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   4881 
   4882 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   4883 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   4884 
   4885 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   4886 
   4887 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   4888 
   4889 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   4890 
   4891 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   4892 
   4893 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   4894 
   4895 	sc->stat_MacControlFramesReceived =
   4896 	    stats->stat_MacControlFramesReceived;
   4897 
   4898 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   4899 
   4900 	sc->stat_IfInFramesL2FilterDiscards =
   4901 	    stats->stat_IfInFramesL2FilterDiscards;
   4902 
   4903 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   4904 
   4905 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   4906 
   4907 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   4908 
   4909 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   4910 
   4911 	sc->stat_CatchupInRuleCheckerDiscards =
   4912 	    stats->stat_CatchupInRuleCheckerDiscards;
   4913 
   4914 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   4915 
   4916 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   4917 
   4918 	sc->stat_CatchupInRuleCheckerP4Hit =
   4919 	    stats->stat_CatchupInRuleCheckerP4Hit;
   4920 
   4921 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __FUNCTION__);
   4922 }
   4923 
   4924 void
   4925 bnx_tick(void *xsc)
   4926 {
   4927 	struct bnx_softc	*sc = xsc;
   4928 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   4929 	struct mii_data		*mii = NULL;
   4930 	u_int32_t		msg;
   4931 
   4932 	/* Tell the firmware that the driver is still running. */
   4933 #ifdef BNX_DEBUG
   4934 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   4935 #else
   4936 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   4937 #endif
   4938 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   4939 
   4940 	/* Update the statistics from the hardware statistics block. */
   4941 	bnx_stats_update(sc);
   4942 
   4943 	/* Schedule the next tick. */
   4944 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4945 
   4946 	/* If link is up already up then we're done. */
   4947 	if (sc->bnx_link)
   4948 		goto bnx_tick_locked_exit;
   4949 
   4950 	/* DRC - ToDo: Add SerDes support and check SerDes link here. */
   4951 
   4952 	mii = &sc->bnx_mii;
   4953 	mii_tick(mii);
   4954 
   4955 	/* Check if the link has come up. */
   4956 	if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
   4957 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   4958 		sc->bnx_link++;
   4959 		/* Now that link is up, handle any outstanding TX traffic. */
   4960 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   4961 			bnx_start(ifp);
   4962 	}
   4963 
   4964 bnx_tick_locked_exit:
   4965 	return;
   4966 }
   4967 
   4968 /****************************************************************************/
   4969 /* BNX Debug Routines                                                       */
   4970 /****************************************************************************/
   4971 #ifdef BNX_DEBUG
   4972 
   4973 /****************************************************************************/
   4974 /* Prints out information about an mbuf.                                    */
   4975 /*                                                                          */
   4976 /* Returns:                                                                 */
   4977 /*   Nothing.                                                               */
   4978 /****************************************************************************/
   4979 void
   4980 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   4981 {
   4982 	struct mbuf		*mp = m;
   4983 
   4984 	if (m == NULL) {
   4985 		/* Index out of range. */
   4986 		aprint_error("mbuf ptr is null!\n");
   4987 		return;
   4988 	}
   4989 
   4990 	while (mp) {
   4991 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   4992 		    mp, mp->m_len);
   4993 
   4994 		if (mp->m_flags & M_EXT)
   4995 			aprint_debug("M_EXT ");
   4996 		if (mp->m_flags & M_PKTHDR)
   4997 			aprint_debug("M_PKTHDR ");
   4998 		aprint_debug("\n");
   4999 
   5000 		if (mp->m_flags & M_EXT)
   5001 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   5002 			    mp, mp->m_ext.ext_size);
   5003 
   5004 		mp = mp->m_next;
   5005 	}
   5006 }
   5007 
   5008 /****************************************************************************/
   5009 /* Prints out the mbufs in the TX mbuf chain.                               */
   5010 /*                                                                          */
   5011 /* Returns:                                                                 */
   5012 /*   Nothing.                                                               */
   5013 /****************************************************************************/
   5014 void
   5015 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5016 {
   5017 	struct mbuf		*m;
   5018 	int			i;
   5019 
   5020 	BNX_PRINTF(sc,
   5021 	    "----------------------------"
   5022 	    "  tx mbuf data  "
   5023 	    "----------------------------\n");
   5024 
   5025 	for (i = 0; i < count; i++) {
   5026 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5027 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5028 		bnx_dump_mbuf(sc, m);
   5029 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5030 	}
   5031 
   5032 	BNX_PRINTF(sc,
   5033 	    "--------------------------------------------"
   5034 	    "----------------------------\n");
   5035 }
   5036 
   5037 /*
   5038  * This routine prints the RX mbuf chain.
   5039  */
   5040 void
   5041 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5042 {
   5043 	struct mbuf		*m;
   5044 	int			i;
   5045 
   5046 	BNX_PRINTF(sc,
   5047 	    "----------------------------"
   5048 	    "  rx mbuf data  "
   5049 	    "----------------------------\n");
   5050 
   5051 	for (i = 0; i < count; i++) {
   5052 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5053 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5054 		bnx_dump_mbuf(sc, m);
   5055 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5056 	}
   5057 
   5058 
   5059 	BNX_PRINTF(sc,
   5060 	    "--------------------------------------------"
   5061 	    "----------------------------\n");
   5062 }
   5063 
   5064 void
   5065 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5066 {
   5067 	if (idx > MAX_TX_BD)
   5068 		/* Index out of range. */
   5069 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5070 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5071 		/* TX Chain page pointer. */
   5072 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5073 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5074 		    txbd->tx_bd_haddr_lo);
   5075 	else
   5076 		/* Normal tx_bd entry. */
   5077 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5078 		    "0x%08X, flags = 0x%08X\n", idx,
   5079 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5080 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag_flags);
   5081 }
   5082 
   5083 void
   5084 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5085 {
   5086 	if (idx > MAX_RX_BD)
   5087 		/* Index out of range. */
   5088 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5089 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5090 		/* TX Chain page pointer. */
   5091 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5092 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5093 		    rxbd->rx_bd_haddr_lo);
   5094 	else
   5095 		/* Normal tx_bd entry. */
   5096 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5097 		    "0x%08X, flags = 0x%08X\n", idx,
   5098 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5099 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5100 }
   5101 
   5102 void
   5103 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5104 {
   5105 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5106 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5107 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5108 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5109 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5110 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5111 }
   5112 
   5113 /*
   5114  * This routine prints the TX chain.
   5115  */
   5116 void
   5117 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5118 {
   5119 	struct tx_bd		*txbd;
   5120 	int			i;
   5121 
   5122 	/* First some info about the tx_bd chain structure. */
   5123 	BNX_PRINTF(sc,
   5124 	    "----------------------------"
   5125 	    "  tx_bd  chain  "
   5126 	    "----------------------------\n");
   5127 
   5128 	BNX_PRINTF(sc,
   5129 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5130 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
   5131 
   5132 	BNX_PRINTF(sc,
   5133 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5134 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
   5135 
   5136 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
   5137 
   5138 	BNX_PRINTF(sc, ""
   5139 	    "-----------------------------"
   5140 	    "   tx_bd data   "
   5141 	    "-----------------------------\n");
   5142 
   5143 	/* Now print out the tx_bd's themselves. */
   5144 	for (i = 0; i < count; i++) {
   5145 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5146 		bnx_dump_txbd(sc, tx_prod, txbd);
   5147 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5148 	}
   5149 
   5150 	BNX_PRINTF(sc,
   5151 	    "-----------------------------"
   5152 	    "--------------"
   5153 	    "-----------------------------\n");
   5154 }
   5155 
   5156 /*
   5157  * This routine prints the RX chain.
   5158  */
   5159 void
   5160 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5161 {
   5162 	struct rx_bd		*rxbd;
   5163 	int			i;
   5164 
   5165 	/* First some info about the tx_bd chain structure. */
   5166 	BNX_PRINTF(sc,
   5167 	    "----------------------------"
   5168 	    "  rx_bd  chain  "
   5169 	    "----------------------------\n");
   5170 
   5171 	BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
   5172 
   5173 	BNX_PRINTF(sc,
   5174 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5175 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
   5176 
   5177 	BNX_PRINTF(sc,
   5178 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5179 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
   5180 
   5181 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
   5182 
   5183 	BNX_PRINTF(sc,
   5184 	    "----------------------------"
   5185 	    "   rx_bd data   "
   5186 	    "----------------------------\n");
   5187 
   5188 	/* Now print out the rx_bd's themselves. */
   5189 	for (i = 0; i < count; i++) {
   5190 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5191 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5192 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5193 	}
   5194 
   5195 	BNX_PRINTF(sc,
   5196 	    "----------------------------"
   5197 	    "--------------"
   5198 	    "----------------------------\n");
   5199 }
   5200 
   5201 /*
   5202  * This routine prints the status block.
   5203  */
   5204 void
   5205 bnx_dump_status_block(struct bnx_softc *sc)
   5206 {
   5207 	struct status_block	*sblk;
   5208 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5209 	    BUS_DMASYNC_POSTREAD);
   5210 
   5211 	sblk = sc->status_block;
   5212 
   5213    	BNX_PRINTF(sc, "----------------------------- Status Block "
   5214 	    "-----------------------------\n");
   5215 
   5216 	BNX_PRINTF(sc,
   5217 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5218 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5219 	    sblk->status_idx);
   5220 
   5221 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5222 	    sblk->status_rx_quick_consumer_index0,
   5223 	    sblk->status_tx_quick_consumer_index0);
   5224 
   5225 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5226 
   5227 	/* Theses indices are not used for normal L2 drivers. */
   5228 	if (sblk->status_rx_quick_consumer_index1 ||
   5229 		sblk->status_tx_quick_consumer_index1)
   5230 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5231 		    sblk->status_rx_quick_consumer_index1,
   5232 		    sblk->status_tx_quick_consumer_index1);
   5233 
   5234 	if (sblk->status_rx_quick_consumer_index2 ||
   5235 		sblk->status_tx_quick_consumer_index2)
   5236 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5237 		    sblk->status_rx_quick_consumer_index2,
   5238 		    sblk->status_tx_quick_consumer_index2);
   5239 
   5240 	if (sblk->status_rx_quick_consumer_index3 ||
   5241 		sblk->status_tx_quick_consumer_index3)
   5242 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5243 		    sblk->status_rx_quick_consumer_index3,
   5244 		    sblk->status_tx_quick_consumer_index3);
   5245 
   5246 	if (sblk->status_rx_quick_consumer_index4 ||
   5247 		sblk->status_rx_quick_consumer_index5)
   5248 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5249 		    sblk->status_rx_quick_consumer_index4,
   5250 		    sblk->status_rx_quick_consumer_index5);
   5251 
   5252 	if (sblk->status_rx_quick_consumer_index6 ||
   5253 		sblk->status_rx_quick_consumer_index7)
   5254 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5255 		    sblk->status_rx_quick_consumer_index6,
   5256 		    sblk->status_rx_quick_consumer_index7);
   5257 
   5258 	if (sblk->status_rx_quick_consumer_index8 ||
   5259 		sblk->status_rx_quick_consumer_index9)
   5260 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5261 		    sblk->status_rx_quick_consumer_index8,
   5262 		    sblk->status_rx_quick_consumer_index9);
   5263 
   5264 	if (sblk->status_rx_quick_consumer_index10 ||
   5265 		sblk->status_rx_quick_consumer_index11)
   5266 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   5267 		    sblk->status_rx_quick_consumer_index10,
   5268 		    sblk->status_rx_quick_consumer_index11);
   5269 
   5270 	if (sblk->status_rx_quick_consumer_index12 ||
   5271 		sblk->status_rx_quick_consumer_index13)
   5272 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   5273 		    sblk->status_rx_quick_consumer_index12,
   5274 		    sblk->status_rx_quick_consumer_index13);
   5275 
   5276 	if (sblk->status_rx_quick_consumer_index14 ||
   5277 		sblk->status_rx_quick_consumer_index15)
   5278 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   5279 		    sblk->status_rx_quick_consumer_index14,
   5280 		    sblk->status_rx_quick_consumer_index15);
   5281 
   5282 	if (sblk->status_completion_producer_index ||
   5283 		sblk->status_cmd_consumer_index)
   5284 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   5285 		    sblk->status_completion_producer_index,
   5286 		    sblk->status_cmd_consumer_index);
   5287 
   5288 	BNX_PRINTF(sc, "-------------------------------------------"
   5289 	    "-----------------------------\n");
   5290 }
   5291 
   5292 /*
   5293  * This routine prints the statistics block.
   5294  */
   5295 void
   5296 bnx_dump_stats_block(struct bnx_softc *sc)
   5297 {
   5298 	struct statistics_block	*sblk;
   5299 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5300 	    BUS_DMASYNC_POSTREAD);
   5301 
   5302 	sblk = sc->stats_block;
   5303 
   5304 	BNX_PRINTF(sc, ""
   5305 	    "-----------------------------"
   5306 	    " Stats  Block "
   5307 	    "-----------------------------\n");
   5308 
   5309 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   5310 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   5311 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   5312 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   5313 
   5314 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   5315 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   5316 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   5317 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   5318 
   5319 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   5320 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   5321 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   5322 	    sblk->stat_IfHCInMulticastPkts_hi,
   5323 	    sblk->stat_IfHCInMulticastPkts_lo);
   5324 
   5325 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   5326 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   5327 	    sblk->stat_IfHCInBroadcastPkts_hi,
   5328 	    sblk->stat_IfHCInBroadcastPkts_lo,
   5329 	    sblk->stat_IfHCOutUcastPkts_hi,
   5330 	    sblk->stat_IfHCOutUcastPkts_lo);
   5331 
   5332 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   5333 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   5334 	    sblk->stat_IfHCOutMulticastPkts_hi,
   5335 	    sblk->stat_IfHCOutMulticastPkts_lo,
   5336 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   5337 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   5338 
   5339 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   5340 		BNX_PRINTF(sc, "0x%08X : "
   5341 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   5342 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   5343 
   5344 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   5345 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   5346 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   5347 
   5348 	if (sblk->stat_Dot3StatsFCSErrors)
   5349 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   5350 		    sblk->stat_Dot3StatsFCSErrors);
   5351 
   5352 	if (sblk->stat_Dot3StatsAlignmentErrors)
   5353 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   5354 		    sblk->stat_Dot3StatsAlignmentErrors);
   5355 
   5356 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   5357 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   5358 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   5359 
   5360 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   5361 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   5362 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   5363 
   5364 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   5365 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   5366 		    sblk->stat_Dot3StatsDeferredTransmissions);
   5367 
   5368 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   5369 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   5370 		    sblk->stat_Dot3StatsExcessiveCollisions);
   5371 
   5372 	if (sblk->stat_Dot3StatsLateCollisions)
   5373 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   5374 		    sblk->stat_Dot3StatsLateCollisions);
   5375 
   5376 	if (sblk->stat_EtherStatsCollisions)
   5377 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   5378 		    sblk->stat_EtherStatsCollisions);
   5379 
   5380 	if (sblk->stat_EtherStatsFragments)
   5381 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   5382 		    sblk->stat_EtherStatsFragments);
   5383 
   5384 	if (sblk->stat_EtherStatsJabbers)
   5385 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   5386 		    sblk->stat_EtherStatsJabbers);
   5387 
   5388 	if (sblk->stat_EtherStatsUndersizePkts)
   5389 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   5390 		    sblk->stat_EtherStatsUndersizePkts);
   5391 
   5392 	if (sblk->stat_EtherStatsOverrsizePkts)
   5393 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   5394 		    sblk->stat_EtherStatsOverrsizePkts);
   5395 
   5396 	if (sblk->stat_EtherStatsPktsRx64Octets)
   5397 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   5398 		    sblk->stat_EtherStatsPktsRx64Octets);
   5399 
   5400 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   5401 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   5402 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   5403 
   5404 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   5405 		BNX_PRINTF(sc, "0x%08X : "
   5406 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   5407 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   5408 
   5409 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   5410 		BNX_PRINTF(sc, "0x%08X : "
   5411 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   5412 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   5413 
   5414 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   5415 		BNX_PRINTF(sc, "0x%08X : "
   5416 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   5417 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   5418 
   5419 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   5420 		BNX_PRINTF(sc, "0x%08X : "
   5421 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   5422 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   5423 
   5424 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   5425 		BNX_PRINTF(sc, "0x%08X : "
   5426 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   5427 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   5428 
   5429 	if (sblk->stat_EtherStatsPktsTx64Octets)
   5430 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   5431 		    sblk->stat_EtherStatsPktsTx64Octets);
   5432 
   5433 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   5434 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   5435 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   5436 
   5437 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   5438 		BNX_PRINTF(sc, "0x%08X : "
   5439 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   5440 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   5441 
   5442 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   5443 		BNX_PRINTF(sc, "0x%08X : "
   5444 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   5445 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   5446 
   5447 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   5448 		BNX_PRINTF(sc, "0x%08X : "
   5449 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   5450 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   5451 
   5452 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   5453 		BNX_PRINTF(sc, "0x%08X : "
   5454 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   5455 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   5456 
   5457 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   5458 		BNX_PRINTF(sc, "0x%08X : "
   5459 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   5460 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   5461 
   5462 	if (sblk->stat_XonPauseFramesReceived)
   5463 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   5464 		    sblk->stat_XonPauseFramesReceived);
   5465 
   5466 	if (sblk->stat_XoffPauseFramesReceived)
   5467 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   5468 		    sblk->stat_XoffPauseFramesReceived);
   5469 
   5470 	if (sblk->stat_OutXonSent)
   5471 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   5472 		    sblk->stat_OutXonSent);
   5473 
   5474 	if (sblk->stat_OutXoffSent)
   5475 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   5476 		    sblk->stat_OutXoffSent);
   5477 
   5478 	if (sblk->stat_FlowControlDone)
   5479 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   5480 		    sblk->stat_FlowControlDone);
   5481 
   5482 	if (sblk->stat_MacControlFramesReceived)
   5483 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   5484 		    sblk->stat_MacControlFramesReceived);
   5485 
   5486 	if (sblk->stat_XoffStateEntered)
   5487 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   5488 		    sblk->stat_XoffStateEntered);
   5489 
   5490 	if (sblk->stat_IfInFramesL2FilterDiscards)
   5491 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   5492 		    sblk->stat_IfInFramesL2FilterDiscards);
   5493 
   5494 	if (sblk->stat_IfInRuleCheckerDiscards)
   5495 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   5496 		    sblk->stat_IfInRuleCheckerDiscards);
   5497 
   5498 	if (sblk->stat_IfInFTQDiscards)
   5499 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   5500 		    sblk->stat_IfInFTQDiscards);
   5501 
   5502 	if (sblk->stat_IfInMBUFDiscards)
   5503 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   5504 		    sblk->stat_IfInMBUFDiscards);
   5505 
   5506 	if (sblk->stat_IfInRuleCheckerP4Hit)
   5507 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   5508 		    sblk->stat_IfInRuleCheckerP4Hit);
   5509 
   5510 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   5511 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   5512 		    sblk->stat_CatchupInRuleCheckerDiscards);
   5513 
   5514 	if (sblk->stat_CatchupInFTQDiscards)
   5515 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   5516 		    sblk->stat_CatchupInFTQDiscards);
   5517 
   5518 	if (sblk->stat_CatchupInMBUFDiscards)
   5519 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   5520 		    sblk->stat_CatchupInMBUFDiscards);
   5521 
   5522 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   5523 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   5524 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   5525 
   5526 	BNX_PRINTF(sc,
   5527 	    "-----------------------------"
   5528 	    "--------------"
   5529 	    "-----------------------------\n");
   5530 }
   5531 
   5532 void
   5533 bnx_dump_driver_state(struct bnx_softc *sc)
   5534 {
   5535 	BNX_PRINTF(sc,
   5536 	    "-----------------------------"
   5537 	    " Driver State "
   5538 	    "-----------------------------\n");
   5539 
   5540 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   5541 	    "address\n", sc);
   5542 
   5543 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   5544 	    sc->status_block);
   5545 
   5546 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   5547 	    "address\n", sc->stats_block);
   5548 
   5549 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   5550 	    "adddress\n", sc->tx_bd_chain);
   5551 
   5552 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   5553 	    sc->rx_bd_chain);
   5554 
   5555 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   5556 	    sc->tx_mbuf_ptr);
   5557 
   5558 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   5559 	    sc->rx_mbuf_ptr);
   5560 
   5561 	BNX_PRINTF(sc,
   5562 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   5563 	    sc->interrupts_generated);
   5564 
   5565 	BNX_PRINTF(sc,
   5566 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   5567 	    sc->rx_interrupts);
   5568 
   5569 	BNX_PRINTF(sc,
   5570 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   5571 	    sc->tx_interrupts);
   5572 
   5573 	BNX_PRINTF(sc,
   5574 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   5575 	    sc->last_status_idx);
   5576 
   5577 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   5578 	    sc->tx_prod);
   5579 
   5580 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   5581 	    sc->tx_cons);
   5582 
   5583 	BNX_PRINTF(sc,
   5584 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   5585 	    sc->tx_prod_bseq);
   5586 
   5587 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   5588 	    sc->rx_prod);
   5589 
   5590 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   5591 	    sc->rx_cons);
   5592 
   5593 	BNX_PRINTF(sc,
   5594 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   5595 	    sc->rx_prod_bseq);
   5596 
   5597 	BNX_PRINTF(sc,
   5598 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   5599 	    sc->rx_mbuf_alloc);
   5600 
   5601 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   5602 	    sc->free_rx_bd);
   5603 
   5604 	BNX_PRINTF(sc,
   5605 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   5606 	    sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
   5607 
   5608 	BNX_PRINTF(sc,
   5609 	    "         0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
   5610 	    sc->tx_mbuf_alloc);
   5611 
   5612 	BNX_PRINTF(sc,
   5613 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   5614 	    sc->rx_mbuf_alloc);
   5615 
   5616 	BNX_PRINTF(sc, "         0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   5617 	    sc->used_tx_bd);
   5618 
   5619 	BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   5620 	    sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
   5621 
   5622 	BNX_PRINTF(sc,
   5623 	    "         0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
   5624 	    sc->mbuf_alloc_failed);
   5625 
   5626 	BNX_PRINTF(sc, "-------------------------------------------"
   5627 	    "-----------------------------\n");
   5628 }
   5629 
   5630 void
   5631 bnx_dump_hw_state(struct bnx_softc *sc)
   5632 {
   5633 	u_int32_t		val1;
   5634 	int			i;
   5635 
   5636 	BNX_PRINTF(sc,
   5637 	    "----------------------------"
   5638 	    " Hardware State "
   5639 	    "----------------------------\n");
   5640 
   5641 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   5642 
   5643 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   5644 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   5645 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   5646 
   5647 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   5648 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   5649 
   5650 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   5651 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   5652 
   5653 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   5654 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   5655 	    BNX_EMAC_STATUS);
   5656 
   5657 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   5658 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   5659 
   5660 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   5661 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   5662 	    BNX_TBDR_STATUS);
   5663 
   5664 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   5665 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   5666 	    BNX_TDMA_STATUS);
   5667 
   5668 	val1 = REG_RD(sc, BNX_HC_STATUS);
   5669 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   5670 
   5671 	BNX_PRINTF(sc,
   5672 	    "----------------------------"
   5673 	    "----------------"
   5674 	    "----------------------------\n");
   5675 
   5676 	BNX_PRINTF(sc,
   5677 	    "----------------------------"
   5678 	    " Register  Dump "
   5679 	    "----------------------------\n");
   5680 
   5681 	for (i = 0x400; i < 0x8000; i += 0x10)
   5682 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   5683 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   5684 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   5685 
   5686 	BNX_PRINTF(sc,
   5687 	    "----------------------------"
   5688 	    "----------------"
   5689 	    "----------------------------\n");
   5690 }
   5691 
   5692 void
   5693 bnx_breakpoint(struct bnx_softc *sc)
   5694 {
   5695 	/* Unreachable code to shut the compiler up about unused functions. */
   5696 	if (0) {
   5697    		bnx_dump_txbd(sc, 0, NULL);
   5698 		bnx_dump_rxbd(sc, 0, NULL);
   5699 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   5700 		bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
   5701 		bnx_dump_l2fhdr(sc, 0, NULL);
   5702 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   5703 		bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
   5704 		bnx_dump_status_block(sc);
   5705 		bnx_dump_stats_block(sc);
   5706 		bnx_dump_driver_state(sc);
   5707 		bnx_dump_hw_state(sc);
   5708 	}
   5709 
   5710 	bnx_dump_driver_state(sc);
   5711 	/* Print the important status block fields. */
   5712 	bnx_dump_status_block(sc);
   5713 
   5714 #if 0
   5715 	/* Call the debugger. */
   5716 	breakpoint();
   5717 #endif
   5718 
   5719 	return;
   5720 }
   5721 #endif
   5722