Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.33
      1 /*	$NetBSD: if_bnx.c,v 1.33 2010/04/05 07:20:25 joerg Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
      3 
      4 /*-
      5  * Copyright (c) 2006 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.33 2010/04/05 07:20:25 joerg Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5716  C0
     48  *
     49  * The following controllers are not supported by this driver:
     50  *
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, A1, B0, B1, B2, C0 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/microcode/bnx/bnxfw.h>
     64 
     65 /****************************************************************************/
     66 /* BNX Driver Version                                                       */
     67 /****************************************************************************/
     68 #define BNX_DRIVER_VERSION	"v0.9.6"
     69 
     70 /****************************************************************************/
     71 /* BNX Debug Options                                                        */
     72 /****************************************************************************/
     73 #ifdef BNX_DEBUG
     74 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     75 
     76 	/*          0 = Never              */
     77 	/*          1 = 1 in 2,147,483,648 */
     78 	/*        256 = 1 in     8,388,608 */
     79 	/*       2048 = 1 in     1,048,576 */
     80 	/*      65536 = 1 in        32,768 */
     81 	/*    1048576 = 1 in         2,048 */
     82 	/*  268435456 =	1 in             8 */
     83 	/*  536870912 = 1 in             4 */
     84 	/* 1073741824 = 1 in             2 */
     85 
     86 	/* Controls how often the l2_fhdr frame error check will fail. */
     87 	int bnx_debug_l2fhdr_status_check = 0;
     88 
     89 	/* Controls how often the unexpected attention check will fail. */
     90 	int bnx_debug_unexpected_attention = 0;
     91 
     92 	/* Controls how often to simulate an mbuf allocation failure. */
     93 	int bnx_debug_mbuf_allocation_failure = 0;
     94 
     95 	/* Controls how often to simulate a DMA mapping failure. */
     96 	int bnx_debug_dma_map_addr_failure = 0;
     97 
     98 	/* Controls how often to simulate a bootcode failure. */
     99 	int bnx_debug_bootcode_running_failure = 0;
    100 #endif
    101 
    102 /****************************************************************************/
    103 /* PCI Device ID Table                                                      */
    104 /*                                                                          */
    105 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    106 /****************************************************************************/
    107 static const struct bnx_product {
    108 	pci_vendor_id_t		bp_vendor;
    109 	pci_product_id_t	bp_product;
    110 	pci_vendor_id_t		bp_subvendor;
    111 	pci_product_id_t	bp_subproduct;
    112 	const char		*bp_name;
    113 } bnx_devices[] = {
    114 #ifdef PCI_SUBPRODUCT_HP_NC370T
    115 	{
    116 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    117 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    118 	  "HP NC370T Multifunction Gigabit Server Adapter"
    119 	},
    120 #endif
    121 #ifdef PCI_SUBPRODUCT_HP_NC370i
    122 	{
    123 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    124 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    125 	  "HP NC370i Multifunction Gigabit Server Adapter"
    126 	},
    127 #endif
    128 	{
    129 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    130 	  0, 0,
    131 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    132 	},
    133 #ifdef PCI_SUBPRODUCT_HP_NC370F
    134 	{
    135 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    136 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    137 	  "HP NC370F Multifunction Gigabit Server Adapter"
    138 	},
    139 #endif
    140 	{
    141 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    142 	  0, 0,
    143 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    144 	},
    145 	{
    146 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    147 	  0, 0,
    148 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    149 	},
    150 	{
    151 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    152 	  0, 0,
    153 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    154 	},
    155 	{
    156 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    157 	  0, 0,
    158 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    159 	},
    160 	{
    161 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    162 	  0, 0,
    163 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    164 	},
    165 	{
    166 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    167 	  0, 0,
    168 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    169 	},
    170 	{
    171 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    172 	  0, 0,
    173 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    174 	},
    175 };
    176 
    177 /****************************************************************************/
    178 /* Supported Flash NVRAM device data.                                       */
    179 /****************************************************************************/
    180 static struct flash_spec flash_table[] =
    181 {
    182 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    183 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    184 	/* Slow EEPROM */
    185 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    186 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    187 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    188 	 "EEPROM - slow"},
    189 	/* Expansion entry 0001 */
    190 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    191 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    192 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    193 	 "Entry 0001"},
    194 	/* Saifun SA25F010 (non-buffered flash) */
    195 	/* strap, cfg1, & write1 need updates */
    196 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    197 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    198 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    199 	 "Non-buffered flash (128kB)"},
    200 	/* Saifun SA25F020 (non-buffered flash) */
    201 	/* strap, cfg1, & write1 need updates */
    202 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    203 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    204 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    205 	 "Non-buffered flash (256kB)"},
    206 	/* Expansion entry 0100 */
    207 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    208 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    209 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    210 	 "Entry 0100"},
    211 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    212 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    213 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    214 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    215 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    216 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    217 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    218 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    219 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    220 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    221 	/* Saifun SA25F005 (non-buffered flash) */
    222 	/* strap, cfg1, & write1 need updates */
    223 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    224 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    225 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    226 	 "Non-buffered flash (64kB)"},
    227 	/* Fast EEPROM */
    228 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    229 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    230 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    231 	 "EEPROM - fast"},
    232 	/* Expansion entry 1001 */
    233 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    234 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    235 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    236 	 "Entry 1001"},
    237 	/* Expansion entry 1010 */
    238 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    239 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    240 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    241 	 "Entry 1010"},
    242 	/* ATMEL AT45DB011B (buffered flash) */
    243 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    244 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    245 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    246 	 "Buffered flash (128kB)"},
    247 	/* Expansion entry 1100 */
    248 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    249 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    250 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    251 	 "Entry 1100"},
    252 	/* Expansion entry 1101 */
    253 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    254 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    255 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    256 	 "Entry 1101"},
    257 	/* Ateml Expansion entry 1110 */
    258 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    259 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    260 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    261 	 "Entry 1110 (Atmel)"},
    262 	/* ATMEL AT45DB021B (buffered flash) */
    263 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    264 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    265 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    266 	 "Buffered flash (256kB)"},
    267 };
    268 
    269 /*
    270  * The BCM5709 controllers transparently handle the
    271  * differences between Atmel 264 byte pages and all
    272  * flash devices which use 256 byte pages, so no
    273  * logical-to-physical mapping is required in the
    274  * driver.
    275  */
    276 static struct flash_spec flash_5709 = {
    277 	.flags		= BNX_NV_BUFFERED,
    278 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    279 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    280 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    281 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    282 	.name		= "5709 buffered flash (256kB)",
    283 };
    284 
    285 /****************************************************************************/
    286 /* OpenBSD device entry points.                                             */
    287 /****************************************************************************/
    288 static int	bnx_probe(device_t, cfdata_t, void *);
    289 void	bnx_attach(device_t, device_t, void *);
    290 int	bnx_detach(device_t, int);
    291 
    292 /****************************************************************************/
    293 /* BNX Debug Data Structure Dump Routines                                   */
    294 /****************************************************************************/
    295 #ifdef BNX_DEBUG
    296 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    297 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    298 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    299 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    300 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    301 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    302 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    303 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    304 void	bnx_dump_status_block(struct bnx_softc *);
    305 void	bnx_dump_stats_block(struct bnx_softc *);
    306 void	bnx_dump_driver_state(struct bnx_softc *);
    307 void	bnx_dump_hw_state(struct bnx_softc *);
    308 void	bnx_breakpoint(struct bnx_softc *);
    309 #endif
    310 
    311 /****************************************************************************/
    312 /* BNX Register/Memory Access Routines                                      */
    313 /****************************************************************************/
    314 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
    315 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
    316 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
    317 int	bnx_miibus_read_reg(device_t, int, int);
    318 void	bnx_miibus_write_reg(device_t, int, int, int);
    319 void	bnx_miibus_statchg(device_t);
    320 
    321 /****************************************************************************/
    322 /* BNX NVRAM Access Routines                                                */
    323 /****************************************************************************/
    324 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    325 int	bnx_release_nvram_lock(struct bnx_softc *);
    326 void	bnx_enable_nvram_access(struct bnx_softc *);
    327 void	bnx_disable_nvram_access(struct bnx_softc *);
    328 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    329 	    u_int32_t);
    330 int	bnx_init_nvram(struct bnx_softc *);
    331 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    332 int	bnx_nvram_test(struct bnx_softc *);
    333 #ifdef BNX_NVRAM_WRITE_SUPPORT
    334 int	bnx_enable_nvram_write(struct bnx_softc *);
    335 void	bnx_disable_nvram_write(struct bnx_softc *);
    336 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
    337 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    338 	    u_int32_t);
    339 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    340 #endif
    341 
    342 /****************************************************************************/
    343 /*                                                                          */
    344 /****************************************************************************/
    345 void	bnx_get_media(struct bnx_softc *);
    346 int	bnx_dma_alloc(struct bnx_softc *);
    347 void	bnx_dma_free(struct bnx_softc *);
    348 void	bnx_release_resources(struct bnx_softc *);
    349 
    350 /****************************************************************************/
    351 /* BNX Firmware Synchronization and Load                                    */
    352 /****************************************************************************/
    353 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
    354 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
    355 	    u_int32_t);
    356 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    357 	    struct fw_info *);
    358 void	bnx_init_cpus(struct bnx_softc *);
    359 
    360 void	bnx_stop(struct ifnet *, int);
    361 int	bnx_reset(struct bnx_softc *, u_int32_t);
    362 int	bnx_chipinit(struct bnx_softc *);
    363 int	bnx_blockinit(struct bnx_softc *);
    364 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
    365 	    u_int16_t *, u_int32_t *);
    366 int	bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
    367 
    368 int	bnx_init_tx_chain(struct bnx_softc *);
    369 void	bnx_init_tx_context(struct bnx_softc *);
    370 int	bnx_init_rx_chain(struct bnx_softc *);
    371 void	bnx_init_rx_context(struct bnx_softc *);
    372 void	bnx_free_rx_chain(struct bnx_softc *);
    373 void	bnx_free_tx_chain(struct bnx_softc *);
    374 
    375 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    376 void	bnx_start(struct ifnet *);
    377 int	bnx_ioctl(struct ifnet *, u_long, void *);
    378 void	bnx_watchdog(struct ifnet *);
    379 int	bnx_init(struct ifnet *);
    380 
    381 void	bnx_init_context(struct bnx_softc *);
    382 void	bnx_get_mac_addr(struct bnx_softc *);
    383 void	bnx_set_mac_addr(struct bnx_softc *);
    384 void	bnx_phy_intr(struct bnx_softc *);
    385 void	bnx_rx_intr(struct bnx_softc *);
    386 void	bnx_tx_intr(struct bnx_softc *);
    387 void	bnx_disable_intr(struct bnx_softc *);
    388 void	bnx_enable_intr(struct bnx_softc *);
    389 
    390 int	bnx_intr(void *);
    391 void	bnx_iff(struct bnx_softc *);
    392 void	bnx_stats_update(struct bnx_softc *);
    393 void	bnx_tick(void *);
    394 
    395 struct pool *bnx_tx_pool = NULL;
    396 int	bnx_alloc_pkts(struct bnx_softc *);
    397 
    398 /****************************************************************************/
    399 /* OpenBSD device dispatch table.                                           */
    400 /****************************************************************************/
    401 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    402     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    403 
    404 /****************************************************************************/
    405 /* Device probe function.                                                   */
    406 /*                                                                          */
    407 /* Compares the device to the driver's list of supported devices and        */
    408 /* reports back to the OS whether this is the right driver for the device.  */
    409 /*                                                                          */
    410 /* Returns:                                                                 */
    411 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    412 /****************************************************************************/
    413 static const struct bnx_product *
    414 bnx_lookup(const struct pci_attach_args *pa)
    415 {
    416 	int i;
    417 	pcireg_t subid;
    418 
    419 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    420 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    421 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    422 			continue;
    423 		if (!bnx_devices[i].bp_subvendor)
    424 			return &bnx_devices[i];
    425 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    426 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    427 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    428 			return &bnx_devices[i];
    429 	}
    430 
    431 	return NULL;
    432 }
    433 static int
    434 bnx_probe(device_t parent, cfdata_t match, void *aux)
    435 {
    436 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    437 
    438 	if (bnx_lookup(pa) != NULL)
    439 		return (1);
    440 
    441 	return (0);
    442 }
    443 
    444 /****************************************************************************/
    445 /* Device attach function.                                                  */
    446 /*                                                                          */
    447 /* Allocates device resources, performs secondary chip identification,      */
    448 /* resets and initializes the hardware, and initializes driver instance     */
    449 /* variables.                                                               */
    450 /*                                                                          */
    451 /* Returns:                                                                 */
    452 /*   0 on success, positive value on failure.                               */
    453 /****************************************************************************/
    454 void
    455 bnx_attach(device_t parent, device_t self, void *aux)
    456 {
    457 	const struct bnx_product *bp;
    458 	struct bnx_softc	*sc = device_private(self);
    459 	struct pci_attach_args	*pa = aux;
    460 	pci_chipset_tag_t	pc = pa->pa_pc;
    461 	pci_intr_handle_t	ih;
    462 	const char 		*intrstr = NULL;
    463 	u_int32_t		command;
    464 	struct ifnet		*ifp;
    465 	u_int32_t		val;
    466 	int			mii_flags = MIIF_FORCEANEG;
    467 	pcireg_t		memtype;
    468 
    469 	if (bnx_tx_pool == NULL) {
    470 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    471 		if (bnx_tx_pool != NULL) {
    472 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    473 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    474 		} else {
    475 			aprint_error(": can't alloc bnx_tx_pool\n");
    476 			return;
    477 		}
    478 	}
    479 
    480 	bp = bnx_lookup(pa);
    481 	if (bp == NULL)
    482 		panic("unknown device");
    483 
    484 	sc->bnx_dev = self;
    485 
    486 	aprint_naive("\n");
    487 	aprint_normal(": %s\n", bp->bp_name);
    488 
    489 	sc->bnx_pa = *pa;
    490 
    491 	/*
    492 	 * Map control/status registers.
    493 	*/
    494 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    495 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    496 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    497 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    498 
    499 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    500 		aprint_error_dev(sc->bnx_dev,
    501 		    "failed to enable memory mapping!\n");
    502 		return;
    503 	}
    504 
    505 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    506 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    507 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    508 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    509 		return;
    510 	}
    511 
    512 	if (pci_intr_map(pa, &ih)) {
    513 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    514 		goto bnx_attach_fail;
    515 	}
    516 
    517 	intrstr = pci_intr_string(pc, ih);
    518 
    519 	/*
    520 	 * Configure byte swap and enable indirect register access.
    521 	 * Rely on CPU to do target byte swapping on big endian systems.
    522 	 * Access to registers outside of PCI configurtion space are not
    523 	 * valid until this is done.
    524 	 */
    525 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    526 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    527 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    528 
    529 	/* Save ASIC revsion info. */
    530 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    531 
    532 	/*
    533 	 * Find the base address for shared memory access.
    534 	 * Newer versions of bootcode use a signature and offset
    535 	 * while older versions use a fixed address.
    536 	 */
    537 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    538 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    539 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    540 		    (sc->bnx_pa.pa_function << 2));
    541 	else
    542 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    543 
    544 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    545 
    546 	/* Set initial device and PHY flags */
    547 	sc->bnx_flags = 0;
    548 	sc->bnx_phy_flags = 0;
    549 
    550 	/* Get PCI bus information (speed and type). */
    551 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    552 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    553 		u_int32_t clkreg;
    554 
    555 		sc->bnx_flags |= BNX_PCIX_FLAG;
    556 
    557 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    558 
    559 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    560 		switch (clkreg) {
    561 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    562 			sc->bus_speed_mhz = 133;
    563 			break;
    564 
    565 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    566 			sc->bus_speed_mhz = 100;
    567 			break;
    568 
    569 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    570 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    571 			sc->bus_speed_mhz = 66;
    572 			break;
    573 
    574 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    575 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    576 			sc->bus_speed_mhz = 50;
    577 			break;
    578 
    579 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    580 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    581 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    582 			sc->bus_speed_mhz = 33;
    583 			break;
    584 		}
    585 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    586 			sc->bus_speed_mhz = 66;
    587 		else
    588 			sc->bus_speed_mhz = 33;
    589 
    590 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    591 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    592 
    593 	/* Reset the controller. */
    594 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    595 		goto bnx_attach_fail;
    596 
    597 	/* Initialize the controller. */
    598 	if (bnx_chipinit(sc)) {
    599 		aprint_error_dev(sc->bnx_dev,
    600 		    "Controller initialization failed!\n");
    601 		goto bnx_attach_fail;
    602 	}
    603 
    604 	/* Perform NVRAM test. */
    605 	if (bnx_nvram_test(sc)) {
    606 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    607 		goto bnx_attach_fail;
    608 	}
    609 
    610 	/* Fetch the permanent Ethernet MAC address. */
    611 	bnx_get_mac_addr(sc);
    612 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    613 	    ether_sprintf(sc->eaddr));
    614 
    615 	/*
    616 	 * Trip points control how many BDs
    617 	 * should be ready before generating an
    618 	 * interrupt while ticks control how long
    619 	 * a BD can sit in the chain before
    620 	 * generating an interrupt.  Set the default
    621 	 * values for the RX and TX rings.
    622 	 */
    623 
    624 #ifdef BNX_DEBUG
    625 	/* Force more frequent interrupts. */
    626 	sc->bnx_tx_quick_cons_trip_int = 1;
    627 	sc->bnx_tx_quick_cons_trip     = 1;
    628 	sc->bnx_tx_ticks_int           = 0;
    629 	sc->bnx_tx_ticks               = 0;
    630 
    631 	sc->bnx_rx_quick_cons_trip_int = 1;
    632 	sc->bnx_rx_quick_cons_trip     = 1;
    633 	sc->bnx_rx_ticks_int           = 0;
    634 	sc->bnx_rx_ticks               = 0;
    635 #else
    636 	sc->bnx_tx_quick_cons_trip_int = 20;
    637 	sc->bnx_tx_quick_cons_trip     = 20;
    638 	sc->bnx_tx_ticks_int           = 80;
    639 	sc->bnx_tx_ticks               = 80;
    640 
    641 	sc->bnx_rx_quick_cons_trip_int = 6;
    642 	sc->bnx_rx_quick_cons_trip     = 6;
    643 	sc->bnx_rx_ticks_int           = 18;
    644 	sc->bnx_rx_ticks               = 18;
    645 #endif
    646 
    647 	/* Update statistics once every second. */
    648 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    649 
    650 	/* Find the media type for the adapter. */
    651 	bnx_get_media(sc);
    652 
    653 	/*
    654 	 * Store config data needed by the PHY driver for
    655 	 * backplane applications
    656 	 */
    657 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    658 	    BNX_SHARED_HW_CFG_CONFIG);
    659 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    660 	    BNX_PORT_HW_CFG_CONFIG);
    661 
    662 	/* Allocate DMA memory resources. */
    663 	sc->bnx_dmatag = pa->pa_dmat;
    664 	if (bnx_dma_alloc(sc)) {
    665 		aprint_error_dev(sc->bnx_dev,
    666 		    "DMA resource allocation failed!\n");
    667 		goto bnx_attach_fail;
    668 	}
    669 
    670 	/* Initialize the ifnet interface. */
    671 	ifp = &sc->bnx_ec.ec_if;
    672 	ifp->if_softc = sc;
    673 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    674 	ifp->if_ioctl = bnx_ioctl;
    675 	ifp->if_stop = bnx_stop;
    676 	ifp->if_start = bnx_start;
    677 	ifp->if_init = bnx_init;
    678 	ifp->if_timer = 0;
    679 	ifp->if_watchdog = bnx_watchdog;
    680 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    681 	IFQ_SET_READY(&ifp->if_snd);
    682 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    683 
    684 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    685 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    686 
    687 	ifp->if_capabilities |=
    688 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    689 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    690 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    691 
    692 	/* Hookup IRQ last. */
    693 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    694 	if (sc->bnx_intrhand == NULL) {
    695 		aprint_error_dev(self, "couldn't establish interrupt");
    696 		if (intrstr != NULL)
    697 			aprint_error(" at %s", intrstr);
    698 		aprint_error("\n");
    699 		goto bnx_attach_fail;
    700 	}
    701 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    702 
    703 	sc->bnx_mii.mii_ifp = ifp;
    704 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    705 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    706 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    707 
    708 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    709 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    710 	    ether_mediastatus);
    711 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    712 		mii_flags |= MIIF_HAVEFIBER;
    713 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    714 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    715 
    716 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    717 		aprint_error_dev(self, "no PHY found!\n");
    718 		ifmedia_add(&sc->bnx_mii.mii_media,
    719 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    720 		ifmedia_set(&sc->bnx_mii.mii_media,
    721 		    IFM_ETHER|IFM_MANUAL);
    722 	} else {
    723 		ifmedia_set(&sc->bnx_mii.mii_media,
    724 		    IFM_ETHER|IFM_AUTO);
    725 	}
    726 
    727 	/* Attach to the Ethernet interface list. */
    728 	if_attach(ifp);
    729 	ether_ifattach(ifp,sc->eaddr);
    730 
    731 	callout_init(&sc->bnx_timeout, 0);
    732 
    733 	if (pmf_device_register(self, NULL, NULL))
    734 		pmf_class_network_register(self, ifp);
    735 	else
    736 		aprint_error_dev(self, "couldn't establish power handler\n");
    737 
    738 	/* Print some important debugging info. */
    739 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    740 
    741 	goto bnx_attach_exit;
    742 
    743 bnx_attach_fail:
    744 	bnx_release_resources(sc);
    745 
    746 bnx_attach_exit:
    747 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    748 }
    749 
    750 /****************************************************************************/
    751 /* Device detach function.                                                  */
    752 /*                                                                          */
    753 /* Stops the controller, resets the controller, and releases resources.     */
    754 /*                                                                          */
    755 /* Returns:                                                                 */
    756 /*   0 on success, positive value on failure.                               */
    757 /****************************************************************************/
    758 int
    759 bnx_detach(device_t dev, int flags)
    760 {
    761 	int s;
    762 	struct bnx_softc *sc;
    763 	struct ifnet *ifp;
    764 
    765 	sc = device_private(dev);
    766 	ifp = &sc->bnx_ec.ec_if;
    767 
    768 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    769 
    770 	/* Stop and reset the controller. */
    771 	s = splnet();
    772 	if (ifp->if_flags & IFF_RUNNING)
    773 		bnx_stop(ifp, 1);
    774 	else {
    775 		/* Disable the transmit/receive blocks. */
    776 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
    777 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
    778 		DELAY(20);
    779 		bnx_disable_intr(sc);
    780 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
    781 	}
    782 
    783 	splx(s);
    784 
    785 	pmf_device_deregister(dev);
    786 	callout_destroy(&sc->bnx_timeout);
    787 	ether_ifdetach(ifp);
    788 
    789 	/* Delete all remaining media. */
    790 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    791 
    792 	if_detach(ifp);
    793 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    794 
    795 	/* Release all remaining resources. */
    796 	bnx_release_resources(sc);
    797 
    798 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    799 
    800 	return(0);
    801 }
    802 
    803 /****************************************************************************/
    804 /* Indirect register read.                                                  */
    805 /*                                                                          */
    806 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    807 /* configuration space.  Using this mechanism avoids issues with posted     */
    808 /* reads but is much slower than memory-mapped I/O.                         */
    809 /*                                                                          */
    810 /* Returns:                                                                 */
    811 /*   The value of the register.                                             */
    812 /****************************************************************************/
    813 u_int32_t
    814 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
    815 {
    816 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    817 
    818 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    819 	    offset);
    820 #ifdef BNX_DEBUG
    821 	{
    822 		u_int32_t val;
    823 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    824 		    BNX_PCICFG_REG_WINDOW);
    825 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    826 		    "val = 0x%08X\n", __func__, offset, val);
    827 		return (val);
    828 	}
    829 #else
    830 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    831 #endif
    832 }
    833 
    834 /****************************************************************************/
    835 /* Indirect register write.                                                 */
    836 /*                                                                          */
    837 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    838 /* configuration space.  Using this mechanism avoids issues with posted     */
    839 /* writes but is muchh slower than memory-mapped I/O.                       */
    840 /*                                                                          */
    841 /* Returns:                                                                 */
    842 /*   Nothing.                                                               */
    843 /****************************************************************************/
    844 void
    845 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
    846 {
    847 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    848 
    849 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    850 		__func__, offset, val);
    851 
    852 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    853 	    offset);
    854 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    855 }
    856 
    857 /****************************************************************************/
    858 /* Context memory write.                                                    */
    859 /*                                                                          */
    860 /* The NetXtreme II controller uses context memory to track connection      */
    861 /* information for L2 and higher network protocols.                         */
    862 /*                                                                          */
    863 /* Returns:                                                                 */
    864 /*   Nothing.                                                               */
    865 /****************************************************************************/
    866 void
    867 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
    868     u_int32_t ctx_val)
    869 {
    870 	u_int32_t idx, offset = ctx_offset + cid_addr;
    871 	u_int32_t val, retry_cnt = 5;
    872 
    873 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
    874 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
    875 		REG_WR(sc, BNX_CTX_CTX_CTRL,
    876 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
    877 
    878 		for (idx = 0; idx < retry_cnt; idx++) {
    879 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
    880 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
    881 				break;
    882 			DELAY(5);
    883 		}
    884 
    885 #if 0
    886 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
    887 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
    888 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
    889 				__FILE__, __LINE__, cid_addr, ctx_offset);
    890 #endif
    891 
    892 	} else {
    893 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
    894 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
    895 	}
    896 }
    897 
    898 /****************************************************************************/
    899 /* PHY register read.                                                       */
    900 /*                                                                          */
    901 /* Implements register reads on the MII bus.                                */
    902 /*                                                                          */
    903 /* Returns:                                                                 */
    904 /*   The value of the register.                                             */
    905 /****************************************************************************/
    906 int
    907 bnx_miibus_read_reg(device_t dev, int phy, int reg)
    908 {
    909 	struct bnx_softc	*sc = device_private(dev);
    910 	u_int32_t		val;
    911 	int			i;
    912 
    913 	/* Make sure we are accessing the correct PHY address. */
    914 	if (phy != sc->bnx_phy_addr) {
    915 		DBPRINT(sc, BNX_VERBOSE,
    916 		    "Invalid PHY address %d for PHY read!\n", phy);
    917 		return(0);
    918 	}
    919 
    920 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    921 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    922 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    923 
    924 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    925 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    926 
    927 		DELAY(40);
    928 	}
    929 
    930 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
    931 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
    932 	    BNX_EMAC_MDIO_COMM_START_BUSY;
    933 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
    934 
    935 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    936 		DELAY(10);
    937 
    938 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    939 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    940 			DELAY(5);
    941 
    942 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    943 			val &= BNX_EMAC_MDIO_COMM_DATA;
    944 
    945 			break;
    946 		}
    947 	}
    948 
    949 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
    950 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
    951 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
    952 		val = 0x0;
    953 	} else
    954 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    955 
    956 	DBPRINT(sc, BNX_EXCESSIVE,
    957 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
    958 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    959 
    960 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    961 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    962 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    963 
    964 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    965 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    966 
    967 		DELAY(40);
    968 	}
    969 
    970 	return (val & 0xffff);
    971 }
    972 
    973 /****************************************************************************/
    974 /* PHY register write.                                                      */
    975 /*                                                                          */
    976 /* Implements register writes on the MII bus.                               */
    977 /*                                                                          */
    978 /* Returns:                                                                 */
    979 /*   The value of the register.                                             */
    980 /****************************************************************************/
    981 void
    982 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
    983 {
    984 	struct bnx_softc	*sc = device_private(dev);
    985 	u_int32_t		val1;
    986 	int			i;
    987 
    988 	/* Make sure we are accessing the correct PHY address. */
    989 	if (phy != sc->bnx_phy_addr) {
    990 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
    991 		    phy);
    992 		return;
    993 	}
    994 
    995 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
    996 	    "val = 0x%04X\n", __func__,
    997 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    998 
    999 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1000 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1001 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1002 
   1003 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1004 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1005 
   1006 		DELAY(40);
   1007 	}
   1008 
   1009 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1010 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1011 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1012 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1013 
   1014 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1015 		DELAY(10);
   1016 
   1017 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1018 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1019 			DELAY(5);
   1020 			break;
   1021 		}
   1022 	}
   1023 
   1024 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1025 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1026 		    __LINE__);
   1027 	}
   1028 
   1029 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1030 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1031 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1032 
   1033 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1034 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1035 
   1036 		DELAY(40);
   1037 	}
   1038 }
   1039 
   1040 /****************************************************************************/
   1041 /* MII bus status change.                                                   */
   1042 /*                                                                          */
   1043 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1044 /* MAC interface registers.                                                 */
   1045 /*                                                                          */
   1046 /* Returns:                                                                 */
   1047 /*   Nothing.                                                               */
   1048 /****************************************************************************/
   1049 void
   1050 bnx_miibus_statchg(device_t dev)
   1051 {
   1052 	struct bnx_softc	*sc = device_private(dev);
   1053 	struct mii_data		*mii = &sc->bnx_mii;
   1054 	int			val;
   1055 
   1056 	val = REG_RD(sc, BNX_EMAC_MODE);
   1057 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1058 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1059 	    BNX_EMAC_MODE_25G);
   1060 
   1061 	/* Set MII or GMII interface based on the speed
   1062 	 * negotiated by the PHY.
   1063 	 */
   1064 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1065 	case IFM_10_T:
   1066 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1067 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1068 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1069 			break;
   1070 		}
   1071 		/* FALLTHROUGH */
   1072 	case IFM_100_TX:
   1073 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1074 		val |= BNX_EMAC_MODE_PORT_MII;
   1075 		break;
   1076 	case IFM_2500_SX:
   1077 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1078 		val |= BNX_EMAC_MODE_25G;
   1079 		/* FALLTHROUGH */
   1080 	case IFM_1000_T:
   1081 	case IFM_1000_SX:
   1082 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1083 		val |= BNX_EMAC_MODE_PORT_GMII;
   1084 		break;
   1085 	default:
   1086 		val |= BNX_EMAC_MODE_PORT_GMII;
   1087 		break;
   1088 	}
   1089 
   1090 	/* Set half or full duplex based on the duplicity
   1091 	 * negotiated by the PHY.
   1092 	 */
   1093 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1094 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1095 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1096 	} else {
   1097 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1098 	}
   1099 
   1100 	REG_WR(sc, BNX_EMAC_MODE, val);
   1101 }
   1102 
   1103 /****************************************************************************/
   1104 /* Acquire NVRAM lock.                                                      */
   1105 /*                                                                          */
   1106 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1107 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1108 /* for use by the driver.                                                   */
   1109 /*                                                                          */
   1110 /* Returns:                                                                 */
   1111 /*   0 on success, positive value on failure.                               */
   1112 /****************************************************************************/
   1113 int
   1114 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1115 {
   1116 	u_int32_t		val;
   1117 	int			j;
   1118 
   1119 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1120 
   1121 	/* Request access to the flash interface. */
   1122 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1123 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1124 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1125 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1126 			break;
   1127 
   1128 		DELAY(5);
   1129 	}
   1130 
   1131 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1132 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1133 		return (EBUSY);
   1134 	}
   1135 
   1136 	return (0);
   1137 }
   1138 
   1139 /****************************************************************************/
   1140 /* Release NVRAM lock.                                                      */
   1141 /*                                                                          */
   1142 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1143 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1144 /* for use by the driver.                                                   */
   1145 /*                                                                          */
   1146 /* Returns:                                                                 */
   1147 /*   0 on success, positive value on failure.                               */
   1148 /****************************************************************************/
   1149 int
   1150 bnx_release_nvram_lock(struct bnx_softc *sc)
   1151 {
   1152 	int			j;
   1153 	u_int32_t		val;
   1154 
   1155 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1156 
   1157 	/* Relinquish nvram interface. */
   1158 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1159 
   1160 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1161 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1162 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1163 			break;
   1164 
   1165 		DELAY(5);
   1166 	}
   1167 
   1168 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1169 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1170 		return (EBUSY);
   1171 	}
   1172 
   1173 	return (0);
   1174 }
   1175 
   1176 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1177 /****************************************************************************/
   1178 /* Enable NVRAM write access.                                               */
   1179 /*                                                                          */
   1180 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1181 /*                                                                          */
   1182 /* Returns:                                                                 */
   1183 /*   0 on success, positive value on failure.                               */
   1184 /****************************************************************************/
   1185 int
   1186 bnx_enable_nvram_write(struct bnx_softc *sc)
   1187 {
   1188 	u_int32_t		val;
   1189 
   1190 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1191 
   1192 	val = REG_RD(sc, BNX_MISC_CFG);
   1193 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1194 
   1195 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1196 		int j;
   1197 
   1198 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1199 		REG_WR(sc, BNX_NVM_COMMAND,
   1200 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1201 
   1202 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1203 			DELAY(5);
   1204 
   1205 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1206 			if (val & BNX_NVM_COMMAND_DONE)
   1207 				break;
   1208 		}
   1209 
   1210 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1211 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1212 			return (EBUSY);
   1213 		}
   1214 	}
   1215 
   1216 	return (0);
   1217 }
   1218 
   1219 /****************************************************************************/
   1220 /* Disable NVRAM write access.                                              */
   1221 /*                                                                          */
   1222 /* When the caller is finished writing to NVRAM write access must be        */
   1223 /* disabled.                                                                */
   1224 /*                                                                          */
   1225 /* Returns:                                                                 */
   1226 /*   Nothing.                                                               */
   1227 /****************************************************************************/
   1228 void
   1229 bnx_disable_nvram_write(struct bnx_softc *sc)
   1230 {
   1231 	u_int32_t		val;
   1232 
   1233 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1234 
   1235 	val = REG_RD(sc, BNX_MISC_CFG);
   1236 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1237 }
   1238 #endif
   1239 
   1240 /****************************************************************************/
   1241 /* Enable NVRAM access.                                                     */
   1242 /*                                                                          */
   1243 /* Before accessing NVRAM for read or write operations the caller must      */
   1244 /* enabled NVRAM access.                                                    */
   1245 /*                                                                          */
   1246 /* Returns:                                                                 */
   1247 /*   Nothing.                                                               */
   1248 /****************************************************************************/
   1249 void
   1250 bnx_enable_nvram_access(struct bnx_softc *sc)
   1251 {
   1252 	u_int32_t		val;
   1253 
   1254 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1255 
   1256 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1257 	/* Enable both bits, even on read. */
   1258 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1259 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1260 }
   1261 
   1262 /****************************************************************************/
   1263 /* Disable NVRAM access.                                                    */
   1264 /*                                                                          */
   1265 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1266 /*                                                                          */
   1267 /* Returns:                                                                 */
   1268 /*   Nothing.                                                               */
   1269 /****************************************************************************/
   1270 void
   1271 bnx_disable_nvram_access(struct bnx_softc *sc)
   1272 {
   1273 	u_int32_t		val;
   1274 
   1275 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1276 
   1277 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1278 
   1279 	/* Disable both bits, even after read. */
   1280 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1281 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1282 }
   1283 
   1284 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1285 /****************************************************************************/
   1286 /* Erase NVRAM page before writing.                                         */
   1287 /*                                                                          */
   1288 /* Non-buffered flash parts require that a page be erased before it is      */
   1289 /* written.                                                                 */
   1290 /*                                                                          */
   1291 /* Returns:                                                                 */
   1292 /*   0 on success, positive value on failure.                               */
   1293 /****************************************************************************/
   1294 int
   1295 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
   1296 {
   1297 	u_int32_t		cmd;
   1298 	int			j;
   1299 
   1300 	/* Buffered flash doesn't require an erase. */
   1301 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1302 		return (0);
   1303 
   1304 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1305 
   1306 	/* Build an erase command. */
   1307 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1308 	    BNX_NVM_COMMAND_DOIT;
   1309 
   1310 	/*
   1311 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
   1312 	 * and issue the erase command.
   1313 	 */
   1314 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1315 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1316 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1317 
   1318 	/* Wait for completion. */
   1319 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1320 		u_int32_t val;
   1321 
   1322 		DELAY(5);
   1323 
   1324 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1325 		if (val & BNX_NVM_COMMAND_DONE)
   1326 			break;
   1327 	}
   1328 
   1329 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1330 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1331 		return (EBUSY);
   1332 	}
   1333 
   1334 	return (0);
   1335 }
   1336 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1337 
   1338 /****************************************************************************/
   1339 /* Read a dword (32 bits) from NVRAM.                                       */
   1340 /*                                                                          */
   1341 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1342 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1343 /*                                                                          */
   1344 /* Returns:                                                                 */
   1345 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1346 /****************************************************************************/
   1347 int
   1348 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
   1349     u_int8_t *ret_val, u_int32_t cmd_flags)
   1350 {
   1351 	u_int32_t		cmd;
   1352 	int			i, rc = 0;
   1353 
   1354 	/* Build the command word. */
   1355 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1356 
   1357 	/* Calculate the offset for buffered flash if translation is used. */
   1358 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1359 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1360 		    sc->bnx_flash_info->page_bits) +
   1361 		    (offset % sc->bnx_flash_info->page_size);
   1362 	}
   1363 
   1364 	/*
   1365 	 * Clear the DONE bit separately, set the address to read,
   1366 	 * and issue the read.
   1367 	 */
   1368 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1369 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1370 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1371 
   1372 	/* Wait for completion. */
   1373 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1374 		u_int32_t val;
   1375 
   1376 		DELAY(5);
   1377 
   1378 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1379 		if (val & BNX_NVM_COMMAND_DONE) {
   1380 			val = REG_RD(sc, BNX_NVM_READ);
   1381 
   1382 			val = bnx_be32toh(val);
   1383 			memcpy(ret_val, &val, 4);
   1384 			break;
   1385 		}
   1386 	}
   1387 
   1388 	/* Check for errors. */
   1389 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1390 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1391 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1392 		rc = EBUSY;
   1393 	}
   1394 
   1395 	return(rc);
   1396 }
   1397 
   1398 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1399 /****************************************************************************/
   1400 /* Write a dword (32 bits) to NVRAM.                                        */
   1401 /*                                                                          */
   1402 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1403 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1404 /* enabled NVRAM write access.                                              */
   1405 /*                                                                          */
   1406 /* Returns:                                                                 */
   1407 /*   0 on success, positive value on failure.                               */
   1408 /****************************************************************************/
   1409 int
   1410 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
   1411     u_int32_t cmd_flags)
   1412 {
   1413 	u_int32_t		cmd, val32;
   1414 	int			j;
   1415 
   1416 	/* Build the command word. */
   1417 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1418 
   1419 	/* Calculate the offset for buffered flash if translation is used. */
   1420 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1421 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1422 		    sc->bnx_flash_info->page_bits) +
   1423 		    (offset % sc->bnx_flash_info->page_size);
   1424 	}
   1425 
   1426 	/*
   1427 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1428 	 * set the NVRAM address to write, and issue the write command
   1429 	 */
   1430 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1431 	memcpy(&val32, val, 4);
   1432 	val32 = htobe32(val32);
   1433 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1434 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1435 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1436 
   1437 	/* Wait for completion. */
   1438 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1439 		DELAY(5);
   1440 
   1441 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1442 			break;
   1443 	}
   1444 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1445 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1446 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1447 		return (EBUSY);
   1448 	}
   1449 
   1450 	return (0);
   1451 }
   1452 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1453 
   1454 /****************************************************************************/
   1455 /* Initialize NVRAM access.                                                 */
   1456 /*                                                                          */
   1457 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1458 /* access that device.                                                      */
   1459 /*                                                                          */
   1460 /* Returns:                                                                 */
   1461 /*   0 on success, positive value on failure.                               */
   1462 /****************************************************************************/
   1463 int
   1464 bnx_init_nvram(struct bnx_softc *sc)
   1465 {
   1466 	u_int32_t		val;
   1467 	int			j, entry_count, rc = 0;
   1468 	struct flash_spec	*flash;
   1469 
   1470 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1471 
   1472 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1473 		sc->bnx_flash_info = &flash_5709;
   1474 		goto bnx_init_nvram_get_flash_size;
   1475 	}
   1476 
   1477 	/* Determine the selected interface. */
   1478 	val = REG_RD(sc, BNX_NVM_CFG1);
   1479 
   1480 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1481 
   1482 	/*
   1483 	 * Flash reconfiguration is required to support additional
   1484 	 * NVRAM devices not directly supported in hardware.
   1485 	 * Check if the flash interface was reconfigured
   1486 	 * by the bootcode.
   1487 	 */
   1488 
   1489 	if (val & 0x40000000) {
   1490 		/* Flash interface reconfigured by bootcode. */
   1491 
   1492 		DBPRINT(sc,BNX_INFO_LOAD,
   1493 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1494 
   1495 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1496 		     j++, flash++) {
   1497 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1498 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1499 				sc->bnx_flash_info = flash;
   1500 				break;
   1501 			}
   1502 		}
   1503 	} else {
   1504 		/* Flash interface not yet reconfigured. */
   1505 		u_int32_t mask;
   1506 
   1507 		DBPRINT(sc,BNX_INFO_LOAD,
   1508 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1509 
   1510 		if (val & (1 << 23))
   1511 			mask = FLASH_BACKUP_STRAP_MASK;
   1512 		else
   1513 			mask = FLASH_STRAP_MASK;
   1514 
   1515 		/* Look for the matching NVRAM device configuration data. */
   1516 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1517 		    j++, flash++) {
   1518 			/* Check if the dev matches any of the known devices. */
   1519 			if ((val & mask) == (flash->strapping & mask)) {
   1520 				/* Found a device match. */
   1521 				sc->bnx_flash_info = flash;
   1522 
   1523 				/* Request access to the flash interface. */
   1524 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1525 					return (rc);
   1526 
   1527 				/* Reconfigure the flash interface. */
   1528 				bnx_enable_nvram_access(sc);
   1529 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1530 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1531 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1532 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1533 				bnx_disable_nvram_access(sc);
   1534 				bnx_release_nvram_lock(sc);
   1535 
   1536 				break;
   1537 			}
   1538 		}
   1539 	}
   1540 
   1541 	/* Check if a matching device was found. */
   1542 	if (j == entry_count) {
   1543 		sc->bnx_flash_info = NULL;
   1544 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1545 			__FILE__, __LINE__);
   1546 		rc = ENODEV;
   1547 	}
   1548 
   1549 bnx_init_nvram_get_flash_size:
   1550 	/* Write the flash config data to the shared memory interface. */
   1551 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1552 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1553 	if (val)
   1554 		sc->bnx_flash_size = val;
   1555 	else
   1556 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1557 
   1558 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1559 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1560 
   1561 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1562 
   1563 	return (rc);
   1564 }
   1565 
   1566 /****************************************************************************/
   1567 /* Read an arbitrary range of data from NVRAM.                              */
   1568 /*                                                                          */
   1569 /* Prepares the NVRAM interface for access and reads the requested data     */
   1570 /* into the supplied buffer.                                                */
   1571 /*                                                                          */
   1572 /* Returns:                                                                 */
   1573 /*   0 on success and the data read, positive value on failure.             */
   1574 /****************************************************************************/
   1575 int
   1576 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
   1577     int buf_size)
   1578 {
   1579 	int			rc = 0;
   1580 	u_int32_t		cmd_flags, offset32, len32, extra;
   1581 
   1582 	if (buf_size == 0)
   1583 		return (0);
   1584 
   1585 	/* Request access to the flash interface. */
   1586 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1587 		return (rc);
   1588 
   1589 	/* Enable access to flash interface */
   1590 	bnx_enable_nvram_access(sc);
   1591 
   1592 	len32 = buf_size;
   1593 	offset32 = offset;
   1594 	extra = 0;
   1595 
   1596 	cmd_flags = 0;
   1597 
   1598 	if (offset32 & 3) {
   1599 		u_int8_t buf[4];
   1600 		u_int32_t pre_len;
   1601 
   1602 		offset32 &= ~3;
   1603 		pre_len = 4 - (offset & 3);
   1604 
   1605 		if (pre_len >= len32) {
   1606 			pre_len = len32;
   1607 			cmd_flags =
   1608 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1609 		} else
   1610 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1611 
   1612 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1613 
   1614 		if (rc)
   1615 			return (rc);
   1616 
   1617 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1618 
   1619 		offset32 += 4;
   1620 		ret_buf += pre_len;
   1621 		len32 -= pre_len;
   1622 	}
   1623 
   1624 	if (len32 & 3) {
   1625 		extra = 4 - (len32 & 3);
   1626 		len32 = (len32 + 4) & ~3;
   1627 	}
   1628 
   1629 	if (len32 == 4) {
   1630 		u_int8_t buf[4];
   1631 
   1632 		if (cmd_flags)
   1633 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1634 		else
   1635 			cmd_flags =
   1636 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1637 
   1638 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1639 
   1640 		memcpy(ret_buf, buf, 4 - extra);
   1641 	} else if (len32 > 0) {
   1642 		u_int8_t buf[4];
   1643 
   1644 		/* Read the first word. */
   1645 		if (cmd_flags)
   1646 			cmd_flags = 0;
   1647 		else
   1648 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1649 
   1650 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1651 
   1652 		/* Advance to the next dword. */
   1653 		offset32 += 4;
   1654 		ret_buf += 4;
   1655 		len32 -= 4;
   1656 
   1657 		while (len32 > 4 && rc == 0) {
   1658 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1659 
   1660 			/* Advance to the next dword. */
   1661 			offset32 += 4;
   1662 			ret_buf += 4;
   1663 			len32 -= 4;
   1664 		}
   1665 
   1666 		if (rc)
   1667 			return (rc);
   1668 
   1669 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1670 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1671 
   1672 		memcpy(ret_buf, buf, 4 - extra);
   1673 	}
   1674 
   1675 	/* Disable access to flash interface and release the lock. */
   1676 	bnx_disable_nvram_access(sc);
   1677 	bnx_release_nvram_lock(sc);
   1678 
   1679 	return (rc);
   1680 }
   1681 
   1682 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1683 /****************************************************************************/
   1684 /* Write an arbitrary range of data from NVRAM.                             */
   1685 /*                                                                          */
   1686 /* Prepares the NVRAM interface for write access and writes the requested   */
   1687 /* data from the supplied buffer.  The caller is responsible for            */
   1688 /* calculating any appropriate CRCs.                                        */
   1689 /*                                                                          */
   1690 /* Returns:                                                                 */
   1691 /*   0 on success, positive value on failure.                               */
   1692 /****************************************************************************/
   1693 int
   1694 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
   1695     int buf_size)
   1696 {
   1697 	u_int32_t		written, offset32, len32;
   1698 	u_int8_t		*buf, start[4], end[4];
   1699 	int			rc = 0;
   1700 	int			align_start, align_end;
   1701 
   1702 	buf = data_buf;
   1703 	offset32 = offset;
   1704 	len32 = buf_size;
   1705 	align_start = align_end = 0;
   1706 
   1707 	if ((align_start = (offset32 & 3))) {
   1708 		offset32 &= ~3;
   1709 		len32 += align_start;
   1710 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1711 			return (rc);
   1712 	}
   1713 
   1714 	if (len32 & 3) {
   1715 	       	if ((len32 > 4) || !align_start) {
   1716 			align_end = 4 - (len32 & 3);
   1717 			len32 += align_end;
   1718 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1719 			    end, 4))) {
   1720 				return (rc);
   1721 			}
   1722 		}
   1723 	}
   1724 
   1725 	if (align_start || align_end) {
   1726 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1727 		if (buf == 0)
   1728 			return (ENOMEM);
   1729 
   1730 		if (align_start)
   1731 			memcpy(buf, start, 4);
   1732 
   1733 		if (align_end)
   1734 			memcpy(buf + len32 - 4, end, 4);
   1735 
   1736 		memcpy(buf + align_start, data_buf, buf_size);
   1737 	}
   1738 
   1739 	written = 0;
   1740 	while ((written < len32) && (rc == 0)) {
   1741 		u_int32_t page_start, page_end, data_start, data_end;
   1742 		u_int32_t addr, cmd_flags;
   1743 		int i;
   1744 		u_int8_t flash_buffer[264];
   1745 
   1746 	    /* Find the page_start addr */
   1747 		page_start = offset32 + written;
   1748 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1749 		/* Find the page_end addr */
   1750 		page_end = page_start + sc->bnx_flash_info->page_size;
   1751 		/* Find the data_start addr */
   1752 		data_start = (written == 0) ? offset32 : page_start;
   1753 		/* Find the data_end addr */
   1754 		data_end = (page_end > offset32 + len32) ?
   1755 		    (offset32 + len32) : page_end;
   1756 
   1757 		/* Request access to the flash interface. */
   1758 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1759 			goto nvram_write_end;
   1760 
   1761 		/* Enable access to flash interface */
   1762 		bnx_enable_nvram_access(sc);
   1763 
   1764 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1765 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1766 			int j;
   1767 
   1768 			/* Read the whole page into the buffer
   1769 			 * (non-buffer flash only) */
   1770 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1771 				if (j == (sc->bnx_flash_info->page_size - 4))
   1772 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1773 
   1774 				rc = bnx_nvram_read_dword(sc,
   1775 					page_start + j,
   1776 					&flash_buffer[j],
   1777 					cmd_flags);
   1778 
   1779 				if (rc)
   1780 					goto nvram_write_end;
   1781 
   1782 				cmd_flags = 0;
   1783 			}
   1784 		}
   1785 
   1786 		/* Enable writes to flash interface (unlock write-protect) */
   1787 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1788 			goto nvram_write_end;
   1789 
   1790 		/* Erase the page */
   1791 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1792 			goto nvram_write_end;
   1793 
   1794 		/* Re-enable the write again for the actual write */
   1795 		bnx_enable_nvram_write(sc);
   1796 
   1797 		/* Loop to write back the buffer data from page_start to
   1798 		 * data_start */
   1799 		i = 0;
   1800 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1801 			for (addr = page_start; addr < data_start;
   1802 				addr += 4, i += 4) {
   1803 
   1804 				rc = bnx_nvram_write_dword(sc, addr,
   1805 				    &flash_buffer[i], cmd_flags);
   1806 
   1807 				if (rc != 0)
   1808 					goto nvram_write_end;
   1809 
   1810 				cmd_flags = 0;
   1811 			}
   1812 		}
   1813 
   1814 		/* Loop to write the new data from data_start to data_end */
   1815 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1816 			if ((addr == page_end - 4) ||
   1817 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   1818 			    && (addr == data_end - 4))) {
   1819 
   1820 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1821 			}
   1822 
   1823 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1824 
   1825 			if (rc != 0)
   1826 				goto nvram_write_end;
   1827 
   1828 			cmd_flags = 0;
   1829 			buf += 4;
   1830 		}
   1831 
   1832 		/* Loop to write back the buffer data from data_end
   1833 		 * to page_end */
   1834 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1835 			for (addr = data_end; addr < page_end;
   1836 			    addr += 4, i += 4) {
   1837 
   1838 				if (addr == page_end-4)
   1839 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1840 
   1841 				rc = bnx_nvram_write_dword(sc, addr,
   1842 				    &flash_buffer[i], cmd_flags);
   1843 
   1844 				if (rc != 0)
   1845 					goto nvram_write_end;
   1846 
   1847 				cmd_flags = 0;
   1848 			}
   1849 		}
   1850 
   1851 		/* Disable writes to flash interface (lock write-protect) */
   1852 		bnx_disable_nvram_write(sc);
   1853 
   1854 		/* Disable access to flash interface */
   1855 		bnx_disable_nvram_access(sc);
   1856 		bnx_release_nvram_lock(sc);
   1857 
   1858 		/* Increment written */
   1859 		written += data_end - data_start;
   1860 	}
   1861 
   1862 nvram_write_end:
   1863 	if (align_start || align_end)
   1864 		free(buf, M_DEVBUF);
   1865 
   1866 	return (rc);
   1867 }
   1868 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1869 
   1870 /****************************************************************************/
   1871 /* Verifies that NVRAM is accessible and contains valid data.               */
   1872 /*                                                                          */
   1873 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   1874 /* correct.                                                                 */
   1875 /*                                                                          */
   1876 /* Returns:                                                                 */
   1877 /*   0 on success, positive value on failure.                               */
   1878 /****************************************************************************/
   1879 int
   1880 bnx_nvram_test(struct bnx_softc *sc)
   1881 {
   1882 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
   1883 	u_int8_t		*data = (u_int8_t *) buf;
   1884 	int			rc = 0;
   1885 	u_int32_t		magic, csum;
   1886 
   1887 	/*
   1888 	 * Check that the device NVRAM is valid by reading
   1889 	 * the magic value at offset 0.
   1890 	 */
   1891 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   1892 		goto bnx_nvram_test_done;
   1893 
   1894 	magic = bnx_be32toh(buf[0]);
   1895 	if (magic != BNX_NVRAM_MAGIC) {
   1896 		rc = ENODEV;
   1897 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   1898 		    "Expected: 0x%08X, Found: 0x%08X\n",
   1899 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   1900 		goto bnx_nvram_test_done;
   1901 	}
   1902 
   1903 	/*
   1904 	 * Verify that the device NVRAM includes valid
   1905 	 * configuration data.
   1906 	 */
   1907 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   1908 		goto bnx_nvram_test_done;
   1909 
   1910 	csum = ether_crc32_le(data, 0x100);
   1911 	if (csum != BNX_CRC32_RESIDUAL) {
   1912 		rc = ENODEV;
   1913 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   1914 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   1915 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1916 		goto bnx_nvram_test_done;
   1917 	}
   1918 
   1919 	csum = ether_crc32_le(data + 0x100, 0x100);
   1920 	if (csum != BNX_CRC32_RESIDUAL) {
   1921 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   1922 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   1923 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1924 		rc = ENODEV;
   1925 	}
   1926 
   1927 bnx_nvram_test_done:
   1928 	return (rc);
   1929 }
   1930 
   1931 /****************************************************************************/
   1932 /* Identifies the current media type of the controller and sets the PHY     */
   1933 /* address.                                                                 */
   1934 /*                                                                          */
   1935 /* Returns:                                                                 */
   1936 /*   Nothing.                                                               */
   1937 /****************************************************************************/
   1938 void
   1939 bnx_get_media(struct bnx_softc *sc)
   1940 {
   1941 	sc->bnx_phy_addr = 1;
   1942 
   1943 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1944 		u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   1945 		u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   1946 		u_int32_t strap;
   1947 
   1948 		/*
   1949 		 * The BCM5709S is software configurable
   1950 		 * for Copper or SerDes operation.
   1951 		 */
   1952 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   1953 			DBPRINT(sc, BNX_INFO_LOAD,
   1954 			    "5709 bonded for copper.\n");
   1955 			goto bnx_get_media_exit;
   1956 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   1957 			DBPRINT(sc, BNX_INFO_LOAD,
   1958 			    "5709 bonded for dual media.\n");
   1959 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   1960 			goto bnx_get_media_exit;
   1961 		}
   1962 
   1963 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   1964 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   1965 		else {
   1966 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   1967 			    >> 8;
   1968 		}
   1969 
   1970 		if (sc->bnx_pa.pa_function == 0) {
   1971 			switch (strap) {
   1972 			case 0x4:
   1973 			case 0x5:
   1974 			case 0x6:
   1975 				DBPRINT(sc, BNX_INFO_LOAD,
   1976 					"BCM5709 s/w configured for SerDes.\n");
   1977 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   1978 			default:
   1979 				DBPRINT(sc, BNX_INFO_LOAD,
   1980 					"BCM5709 s/w configured for Copper.\n");
   1981 			}
   1982 		} else {
   1983 			switch (strap) {
   1984 			case 0x1:
   1985 			case 0x2:
   1986 			case 0x4:
   1987 				DBPRINT(sc, BNX_INFO_LOAD,
   1988 					"BCM5709 s/w configured for SerDes.\n");
   1989 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   1990 			default:
   1991 				DBPRINT(sc, BNX_INFO_LOAD,
   1992 					"BCM5709 s/w configured for Copper.\n");
   1993 			}
   1994 		}
   1995 
   1996 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   1997 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   1998 
   1999 	if (sc->bnx_phy_flags && BNX_PHY_SERDES_FLAG) {
   2000 		u_int32_t val;
   2001 
   2002 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2003 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2004 			sc->bnx_phy_addr = 2;
   2005 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2006 				 BNX_SHARED_HW_CFG_CONFIG);
   2007 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2008 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2009 				DBPRINT(sc, BNX_INFO_LOAD,
   2010 				    "Found 2.5Gb capable adapter\n");
   2011 			}
   2012 		}
   2013 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2014 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2015 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2016 
   2017 bnx_get_media_exit:
   2018 	DBPRINT(sc, (BNX_INFO_LOAD),
   2019 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2020 }
   2021 
   2022 /****************************************************************************/
   2023 /* Free any DMA memory owned by the driver.                                 */
   2024 /*                                                                          */
   2025 /* Scans through each data structre that requires DMA memory and frees      */
   2026 /* the memory if allocated.                                                 */
   2027 /*                                                                          */
   2028 /* Returns:                                                                 */
   2029 /*   Nothing.                                                               */
   2030 /****************************************************************************/
   2031 void
   2032 bnx_dma_free(struct bnx_softc *sc)
   2033 {
   2034 	int			i;
   2035 
   2036 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2037 
   2038 	/* Destroy the status block. */
   2039 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2040 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2041 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2042 		    BNX_STATUS_BLK_SZ);
   2043 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2044 		    sc->status_rseg);
   2045 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2046 		sc->status_block = NULL;
   2047 		sc->status_map = NULL;
   2048 	}
   2049 
   2050 	/* Destroy the statistics block. */
   2051 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2052 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2053 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2054 		    BNX_STATS_BLK_SZ);
   2055 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2056 		    sc->stats_rseg);
   2057 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2058 		sc->stats_block = NULL;
   2059 		sc->stats_map = NULL;
   2060 	}
   2061 
   2062 	/* Free, unmap and destroy all context memory pages. */
   2063 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2064 		for (i = 0; i < sc->ctx_pages; i++) {
   2065 			if (sc->ctx_block[i] != NULL) {
   2066 				bus_dmamap_unload(sc->bnx_dmatag,
   2067 				    sc->ctx_map[i]);
   2068 				bus_dmamem_unmap(sc->bnx_dmatag,
   2069 				    (void *)sc->ctx_block[i],
   2070 				    BCM_PAGE_SIZE);
   2071 				bus_dmamem_free(sc->bnx_dmatag,
   2072 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2073 				bus_dmamap_destroy(sc->bnx_dmatag,
   2074 				    sc->ctx_map[i]);
   2075 				sc->ctx_block[i] = NULL;
   2076 			}
   2077 		}
   2078 	}
   2079 
   2080 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2081 	for (i = 0; i < TX_PAGES; i++ ) {
   2082 		if (sc->tx_bd_chain[i] != NULL &&
   2083 		    sc->tx_bd_chain_map[i] != NULL) {
   2084 			bus_dmamap_unload(sc->bnx_dmatag,
   2085 			    sc->tx_bd_chain_map[i]);
   2086 			bus_dmamem_unmap(sc->bnx_dmatag,
   2087 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2088 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2089 			    sc->tx_bd_chain_rseg[i]);
   2090 			bus_dmamap_destroy(sc->bnx_dmatag,
   2091 			    sc->tx_bd_chain_map[i]);
   2092 			sc->tx_bd_chain[i] = NULL;
   2093 			sc->tx_bd_chain_map[i] = NULL;
   2094 		}
   2095 	}
   2096 
   2097 	/* Destroy the TX dmamaps. */
   2098 	/* This isn't necessary since we dont allocate them up front */
   2099 
   2100 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2101 	for (i = 0; i < RX_PAGES; i++ ) {
   2102 		if (sc->rx_bd_chain[i] != NULL &&
   2103 		    sc->rx_bd_chain_map[i] != NULL) {
   2104 			bus_dmamap_unload(sc->bnx_dmatag,
   2105 			    sc->rx_bd_chain_map[i]);
   2106 			bus_dmamem_unmap(sc->bnx_dmatag,
   2107 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2108 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2109 			    sc->rx_bd_chain_rseg[i]);
   2110 
   2111 			bus_dmamap_destroy(sc->bnx_dmatag,
   2112 			    sc->rx_bd_chain_map[i]);
   2113 			sc->rx_bd_chain[i] = NULL;
   2114 			sc->rx_bd_chain_map[i] = NULL;
   2115 		}
   2116 	}
   2117 
   2118 	/* Unload and destroy the RX mbuf maps. */
   2119 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2120 		if (sc->rx_mbuf_map[i] != NULL) {
   2121 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2122 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2123 		}
   2124 	}
   2125 
   2126 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2127 }
   2128 
   2129 /****************************************************************************/
   2130 /* Allocate any DMA memory needed by the driver.                            */
   2131 /*                                                                          */
   2132 /* Allocates DMA memory needed for the various global structures needed by  */
   2133 /* hardware.                                                                */
   2134 /*                                                                          */
   2135 /* Returns:                                                                 */
   2136 /*   0 for success, positive value for failure.                             */
   2137 /****************************************************************************/
   2138 int
   2139 bnx_dma_alloc(struct bnx_softc *sc)
   2140 {
   2141 	int			i, rc = 0;
   2142 
   2143 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2144 
   2145 	/*
   2146 	 * Allocate DMA memory for the status block, map the memory into DMA
   2147 	 * space, and fetch the physical address of the block.
   2148 	 */
   2149 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2150 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2151 		aprint_error_dev(sc->bnx_dev,
   2152 		    "Could not create status block DMA map!\n");
   2153 		rc = ENOMEM;
   2154 		goto bnx_dma_alloc_exit;
   2155 	}
   2156 
   2157 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2158 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2159 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2160 		aprint_error_dev(sc->bnx_dev,
   2161 		    "Could not allocate status block DMA memory!\n");
   2162 		rc = ENOMEM;
   2163 		goto bnx_dma_alloc_exit;
   2164 	}
   2165 
   2166 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2167 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2168 		aprint_error_dev(sc->bnx_dev,
   2169 		    "Could not map status block DMA memory!\n");
   2170 		rc = ENOMEM;
   2171 		goto bnx_dma_alloc_exit;
   2172 	}
   2173 
   2174 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2175 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2176 		aprint_error_dev(sc->bnx_dev,
   2177 		    "Could not load status block DMA memory!\n");
   2178 		rc = ENOMEM;
   2179 		goto bnx_dma_alloc_exit;
   2180 	}
   2181 
   2182 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2183 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2184 
   2185 	/* DRC - Fix for 64 bit addresses. */
   2186 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2187 		(u_int32_t) sc->status_block_paddr);
   2188 
   2189 	/* BCM5709 uses host memory as cache for context memory. */
   2190 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2191 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2192 		if (sc->ctx_pages == 0)
   2193 			sc->ctx_pages = 1;
   2194 		if (sc->ctx_pages > 4) /* XXX */
   2195 			sc->ctx_pages = 4;
   2196 
   2197 		DBRUNIF((sc->ctx_pages > 512),
   2198 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2199 				__FILE__, __LINE__, sc->ctx_pages));
   2200 
   2201 
   2202 		for (i = 0; i < sc->ctx_pages; i++) {
   2203 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2204 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2205 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2206 			    &sc->ctx_map[i]) != 0) {
   2207 				rc = ENOMEM;
   2208 				goto bnx_dma_alloc_exit;
   2209 			}
   2210 
   2211 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2212 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2213 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2214 				rc = ENOMEM;
   2215 				goto bnx_dma_alloc_exit;
   2216 			}
   2217 
   2218 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2219 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2220 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2221 				rc = ENOMEM;
   2222 				goto bnx_dma_alloc_exit;
   2223 			}
   2224 
   2225 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2226 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2227 			    BUS_DMA_NOWAIT) != 0) {
   2228 				rc = ENOMEM;
   2229 				goto bnx_dma_alloc_exit;
   2230 			}
   2231 
   2232 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2233 		}
   2234 	}
   2235 
   2236 	/*
   2237 	 * Allocate DMA memory for the statistics block, map the memory into
   2238 	 * DMA space, and fetch the physical address of the block.
   2239 	 */
   2240 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2241 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2242 		aprint_error_dev(sc->bnx_dev,
   2243 		    "Could not create stats block DMA map!\n");
   2244 		rc = ENOMEM;
   2245 		goto bnx_dma_alloc_exit;
   2246 	}
   2247 
   2248 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2249 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2250 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2251 		aprint_error_dev(sc->bnx_dev,
   2252 		    "Could not allocate stats block DMA memory!\n");
   2253 		rc = ENOMEM;
   2254 		goto bnx_dma_alloc_exit;
   2255 	}
   2256 
   2257 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2258 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2259 		aprint_error_dev(sc->bnx_dev,
   2260 		    "Could not map stats block DMA memory!\n");
   2261 		rc = ENOMEM;
   2262 		goto bnx_dma_alloc_exit;
   2263 	}
   2264 
   2265 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2266 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2267 		aprint_error_dev(sc->bnx_dev,
   2268 		    "Could not load status block DMA memory!\n");
   2269 		rc = ENOMEM;
   2270 		goto bnx_dma_alloc_exit;
   2271 	}
   2272 
   2273 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2274 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2275 
   2276 	/* DRC - Fix for 64 bit address. */
   2277 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2278 	    (u_int32_t) sc->stats_block_paddr);
   2279 
   2280 	/*
   2281 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2282 	 * and fetch the physical address of the block.
   2283 	 */
   2284 	for (i = 0; i < TX_PAGES; i++) {
   2285 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2286 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2287 		    &sc->tx_bd_chain_map[i])) {
   2288 			aprint_error_dev(sc->bnx_dev,
   2289 			    "Could not create Tx desc %d DMA map!\n", i);
   2290 			rc = ENOMEM;
   2291 			goto bnx_dma_alloc_exit;
   2292 		}
   2293 
   2294 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2295 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2296 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2297 			aprint_error_dev(sc->bnx_dev,
   2298 			    "Could not allocate TX desc %d DMA memory!\n",
   2299 			    i);
   2300 			rc = ENOMEM;
   2301 			goto bnx_dma_alloc_exit;
   2302 		}
   2303 
   2304 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2305 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2306 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2307 			aprint_error_dev(sc->bnx_dev,
   2308 			    "Could not map TX desc %d DMA memory!\n", i);
   2309 			rc = ENOMEM;
   2310 			goto bnx_dma_alloc_exit;
   2311 		}
   2312 
   2313 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2314 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2315 		    BUS_DMA_NOWAIT)) {
   2316 			aprint_error_dev(sc->bnx_dev,
   2317 			    "Could not load TX desc %d DMA memory!\n", i);
   2318 			rc = ENOMEM;
   2319 			goto bnx_dma_alloc_exit;
   2320 		}
   2321 
   2322 		sc->tx_bd_chain_paddr[i] =
   2323 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2324 
   2325 		/* DRC - Fix for 64 bit systems. */
   2326 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2327 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
   2328 	}
   2329 
   2330 	/*
   2331 	 * Create lists to hold TX mbufs.
   2332 	 */
   2333 	TAILQ_INIT(&sc->tx_free_pkts);
   2334 	TAILQ_INIT(&sc->tx_used_pkts);
   2335 	sc->tx_pkt_count = 0;
   2336 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2337 
   2338 	/*
   2339 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2340 	 * and fetch the physical address of the block.
   2341 	 */
   2342 	for (i = 0; i < RX_PAGES; i++) {
   2343 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2344 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2345 		    &sc->rx_bd_chain_map[i])) {
   2346 			aprint_error_dev(sc->bnx_dev,
   2347 			    "Could not create Rx desc %d DMA map!\n", i);
   2348 			rc = ENOMEM;
   2349 			goto bnx_dma_alloc_exit;
   2350 		}
   2351 
   2352 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2353 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2354 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2355 			aprint_error_dev(sc->bnx_dev,
   2356 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2357 			rc = ENOMEM;
   2358 			goto bnx_dma_alloc_exit;
   2359 		}
   2360 
   2361 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2362 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2363 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2364 			aprint_error_dev(sc->bnx_dev,
   2365 			    "Could not map Rx desc %d DMA memory!\n", i);
   2366 			rc = ENOMEM;
   2367 			goto bnx_dma_alloc_exit;
   2368 		}
   2369 
   2370 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2371 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2372 		    BUS_DMA_NOWAIT)) {
   2373 			aprint_error_dev(sc->bnx_dev,
   2374 			    "Could not load Rx desc %d DMA memory!\n", i);
   2375 			rc = ENOMEM;
   2376 			goto bnx_dma_alloc_exit;
   2377 		}
   2378 
   2379 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2380 		sc->rx_bd_chain_paddr[i] =
   2381 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2382 
   2383 		/* DRC - Fix for 64 bit systems. */
   2384 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2385 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
   2386 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2387 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2388 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2389 	}
   2390 
   2391 	/*
   2392 	 * Create DMA maps for the Rx buffer mbufs.
   2393 	 */
   2394 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2395 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2396 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2397 		    &sc->rx_mbuf_map[i])) {
   2398 			aprint_error_dev(sc->bnx_dev,
   2399 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2400 			rc = ENOMEM;
   2401 			goto bnx_dma_alloc_exit;
   2402 		}
   2403 	}
   2404 
   2405  bnx_dma_alloc_exit:
   2406 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2407 
   2408 	return(rc);
   2409 }
   2410 
   2411 /****************************************************************************/
   2412 /* Release all resources used by the driver.                                */
   2413 /*                                                                          */
   2414 /* Releases all resources acquired by the driver including interrupts,      */
   2415 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2416 /*                                                                          */
   2417 /* Returns:                                                                 */
   2418 /*   Nothing.                                                               */
   2419 /****************************************************************************/
   2420 void
   2421 bnx_release_resources(struct bnx_softc *sc)
   2422 {
   2423 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2424 
   2425 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2426 
   2427 	bnx_dma_free(sc);
   2428 
   2429 	if (sc->bnx_intrhand != NULL)
   2430 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2431 
   2432 	if (sc->bnx_size)
   2433 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2434 
   2435 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2436 }
   2437 
   2438 /****************************************************************************/
   2439 /* Firmware synchronization.                                                */
   2440 /*                                                                          */
   2441 /* Before performing certain events such as a chip reset, synchronize with  */
   2442 /* the firmware first.                                                      */
   2443 /*                                                                          */
   2444 /* Returns:                                                                 */
   2445 /*   0 for success, positive value for failure.                             */
   2446 /****************************************************************************/
   2447 int
   2448 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
   2449 {
   2450 	int			i, rc = 0;
   2451 	u_int32_t		val;
   2452 
   2453 	/* Don't waste any time if we've timed out before. */
   2454 	if (sc->bnx_fw_timed_out) {
   2455 		rc = EBUSY;
   2456 		goto bnx_fw_sync_exit;
   2457 	}
   2458 
   2459 	/* Increment the message sequence number. */
   2460 	sc->bnx_fw_wr_seq++;
   2461 	msg_data |= sc->bnx_fw_wr_seq;
   2462 
   2463  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2464 	    msg_data);
   2465 
   2466 	/* Send the message to the bootcode driver mailbox. */
   2467 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2468 
   2469 	/* Wait for the bootcode to acknowledge the message. */
   2470 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2471 		/* Check for a response in the bootcode firmware mailbox. */
   2472 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2473 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2474 			break;
   2475 		DELAY(1000);
   2476 	}
   2477 
   2478 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2479 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2480 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2481 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2482 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2483 
   2484 		msg_data &= ~BNX_DRV_MSG_CODE;
   2485 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2486 
   2487 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2488 
   2489 		sc->bnx_fw_timed_out = 1;
   2490 		rc = EBUSY;
   2491 	}
   2492 
   2493 bnx_fw_sync_exit:
   2494 	return (rc);
   2495 }
   2496 
   2497 /****************************************************************************/
   2498 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2499 /*                                                                          */
   2500 /* Returns:                                                                 */
   2501 /*   Nothing.                                                               */
   2502 /****************************************************************************/
   2503 void
   2504 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
   2505     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
   2506 {
   2507 	int			i;
   2508 	u_int32_t		val;
   2509 
   2510 	/* Set the page size used by RV2P. */
   2511 	if (rv2p_proc == RV2P_PROC2) {
   2512 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2513 		    USABLE_RX_BD_PER_PAGE);
   2514 	}
   2515 
   2516 	for (i = 0; i < rv2p_code_len; i += 8) {
   2517 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2518 		rv2p_code++;
   2519 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2520 		rv2p_code++;
   2521 
   2522 		if (rv2p_proc == RV2P_PROC1) {
   2523 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2524 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2525 		} else {
   2526 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2527 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2528 		}
   2529 	}
   2530 
   2531 	/* Reset the processor, un-stall is done later. */
   2532 	if (rv2p_proc == RV2P_PROC1)
   2533 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2534 	else
   2535 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2536 }
   2537 
   2538 /****************************************************************************/
   2539 /* Load RISC processor firmware.                                            */
   2540 /*                                                                          */
   2541 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2542 /* associated with a particular processor.                                  */
   2543 /*                                                                          */
   2544 /* Returns:                                                                 */
   2545 /*   Nothing.                                                               */
   2546 /****************************************************************************/
   2547 void
   2548 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2549     struct fw_info *fw)
   2550 {
   2551 	u_int32_t		offset;
   2552 	u_int32_t		val;
   2553 
   2554 	/* Halt the CPU. */
   2555 	val = REG_RD_IND(sc, cpu_reg->mode);
   2556 	val |= cpu_reg->mode_value_halt;
   2557 	REG_WR_IND(sc, cpu_reg->mode, val);
   2558 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2559 
   2560 	/* Load the Text area. */
   2561 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2562 	if (fw->text) {
   2563 		int j;
   2564 
   2565 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2566 			REG_WR_IND(sc, offset, fw->text[j]);
   2567 	}
   2568 
   2569 	/* Load the Data area. */
   2570 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2571 	if (fw->data) {
   2572 		int j;
   2573 
   2574 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2575 			REG_WR_IND(sc, offset, fw->data[j]);
   2576 	}
   2577 
   2578 	/* Load the SBSS area. */
   2579 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2580 	if (fw->sbss) {
   2581 		int j;
   2582 
   2583 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2584 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2585 	}
   2586 
   2587 	/* Load the BSS area. */
   2588 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2589 	if (fw->bss) {
   2590 		int j;
   2591 
   2592 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2593 			REG_WR_IND(sc, offset, fw->bss[j]);
   2594 	}
   2595 
   2596 	/* Load the Read-Only area. */
   2597 	offset = cpu_reg->spad_base +
   2598 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2599 	if (fw->rodata) {
   2600 		int j;
   2601 
   2602 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2603 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2604 	}
   2605 
   2606 	/* Clear the pre-fetch instruction. */
   2607 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2608 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2609 
   2610 	/* Start the CPU. */
   2611 	val = REG_RD_IND(sc, cpu_reg->mode);
   2612 	val &= ~cpu_reg->mode_value_halt;
   2613 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2614 	REG_WR_IND(sc, cpu_reg->mode, val);
   2615 }
   2616 
   2617 /****************************************************************************/
   2618 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2619 /*                                                                          */
   2620 /* Loads the firmware for each CPU and starts the CPU.                      */
   2621 /*                                                                          */
   2622 /* Returns:                                                                 */
   2623 /*   Nothing.                                                               */
   2624 /****************************************************************************/
   2625 void
   2626 bnx_init_cpus(struct bnx_softc *sc)
   2627 {
   2628 	struct cpu_reg cpu_reg;
   2629 	struct fw_info fw;
   2630 
   2631 	switch(BNX_CHIP_NUM(sc)) {
   2632 	case BNX_CHIP_NUM_5709:
   2633 		/* Initialize the RV2P processor. */
   2634 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2635 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2636 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2637 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2638 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2639 		} else {
   2640 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2641 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2642 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2643 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2644 		}
   2645 
   2646 		/* Initialize the RX Processor. */
   2647 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2648 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2649 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2650 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2651 		cpu_reg.state_value_clear = 0xffffff;
   2652 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2653 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2654 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2655 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2656 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2657 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2658 		cpu_reg.mips_view_base = 0x8000000;
   2659 
   2660 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2661 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2662 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2663 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2664 
   2665 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2666 		fw.text_len = bnx_RXP_b09FwTextLen;
   2667 		fw.text_index = 0;
   2668 		fw.text = bnx_RXP_b09FwText;
   2669 
   2670 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2671 		fw.data_len = bnx_RXP_b09FwDataLen;
   2672 		fw.data_index = 0;
   2673 		fw.data = bnx_RXP_b09FwData;
   2674 
   2675 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2676 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2677 		fw.sbss_index = 0;
   2678 		fw.sbss = bnx_RXP_b09FwSbss;
   2679 
   2680 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2681 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2682 		fw.bss_index = 0;
   2683 		fw.bss = bnx_RXP_b09FwBss;
   2684 
   2685 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2686 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2687 		fw.rodata_index = 0;
   2688 		fw.rodata = bnx_RXP_b09FwRodata;
   2689 
   2690 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2691 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2692 
   2693 		/* Initialize the TX Processor. */
   2694 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2695 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2696 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2697 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2698 		cpu_reg.state_value_clear = 0xffffff;
   2699 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2700 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2701 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2702 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2703 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2704 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2705 		cpu_reg.mips_view_base = 0x8000000;
   2706 
   2707 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2708 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2709 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2710 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2711 
   2712 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2713 		fw.text_len = bnx_TXP_b09FwTextLen;
   2714 		fw.text_index = 0;
   2715 		fw.text = bnx_TXP_b09FwText;
   2716 
   2717 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   2718 		fw.data_len = bnx_TXP_b09FwDataLen;
   2719 		fw.data_index = 0;
   2720 		fw.data = bnx_TXP_b09FwData;
   2721 
   2722 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   2723 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   2724 		fw.sbss_index = 0;
   2725 		fw.sbss = bnx_TXP_b09FwSbss;
   2726 
   2727 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   2728 		fw.bss_len = bnx_TXP_b09FwBssLen;
   2729 		fw.bss_index = 0;
   2730 		fw.bss = bnx_TXP_b09FwBss;
   2731 
   2732 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   2733 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   2734 		fw.rodata_index = 0;
   2735 		fw.rodata = bnx_TXP_b09FwRodata;
   2736 
   2737 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2738 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2739 
   2740 		/* Initialize the TX Patch-up Processor. */
   2741 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2742 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2743 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2744 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2745 		cpu_reg.state_value_clear = 0xffffff;
   2746 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2747 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2748 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2749 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2750 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2751 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2752 		cpu_reg.mips_view_base = 0x8000000;
   2753 
   2754 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   2755 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   2756 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   2757 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   2758 
   2759 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   2760 		fw.text_len = bnx_TPAT_b09FwTextLen;
   2761 		fw.text_index = 0;
   2762 		fw.text = bnx_TPAT_b09FwText;
   2763 
   2764 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   2765 		fw.data_len = bnx_TPAT_b09FwDataLen;
   2766 		fw.data_index = 0;
   2767 		fw.data = bnx_TPAT_b09FwData;
   2768 
   2769 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   2770 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   2771 		fw.sbss_index = 0;
   2772 		fw.sbss = bnx_TPAT_b09FwSbss;
   2773 
   2774 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   2775 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   2776 		fw.bss_index = 0;
   2777 		fw.bss = bnx_TPAT_b09FwBss;
   2778 
   2779 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   2780 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   2781 		fw.rodata_index = 0;
   2782 		fw.rodata = bnx_TPAT_b09FwRodata;
   2783 
   2784 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2785 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2786 
   2787 		/* Initialize the Completion Processor. */
   2788 		cpu_reg.mode = BNX_COM_CPU_MODE;
   2789 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2790 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2791 		cpu_reg.state = BNX_COM_CPU_STATE;
   2792 		cpu_reg.state_value_clear = 0xffffff;
   2793 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2794 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2795 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2796 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2797 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2798 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   2799 		cpu_reg.mips_view_base = 0x8000000;
   2800 
   2801 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   2802 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   2803 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   2804 		fw.start_addr = bnx_COM_b09FwStartAddr;
   2805 
   2806 		fw.text_addr = bnx_COM_b09FwTextAddr;
   2807 		fw.text_len = bnx_COM_b09FwTextLen;
   2808 		fw.text_index = 0;
   2809 		fw.text = bnx_COM_b09FwText;
   2810 
   2811 		fw.data_addr = bnx_COM_b09FwDataAddr;
   2812 		fw.data_len = bnx_COM_b09FwDataLen;
   2813 		fw.data_index = 0;
   2814 		fw.data = bnx_COM_b09FwData;
   2815 
   2816 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   2817 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   2818 		fw.sbss_index = 0;
   2819 		fw.sbss = bnx_COM_b09FwSbss;
   2820 
   2821 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   2822 		fw.bss_len = bnx_COM_b09FwBssLen;
   2823 		fw.bss_index = 0;
   2824 		fw.bss = bnx_COM_b09FwBss;
   2825 
   2826 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   2827 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   2828 		fw.rodata_index = 0;
   2829 		fw.rodata = bnx_COM_b09FwRodata;
   2830 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   2831 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2832 		break;
   2833 	default:
   2834 		/* Initialize the RV2P processor. */
   2835 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   2836 		    RV2P_PROC1);
   2837 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   2838 		    RV2P_PROC2);
   2839 
   2840 		/* Initialize the RX Processor. */
   2841 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2842 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2843 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2844 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2845 		cpu_reg.state_value_clear = 0xffffff;
   2846 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2847 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2848 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2849 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2850 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2851 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2852 		cpu_reg.mips_view_base = 0x8000000;
   2853 
   2854 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   2855 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   2856 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   2857 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   2858 
   2859 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   2860 		fw.text_len = bnx_RXP_b06FwTextLen;
   2861 		fw.text_index = 0;
   2862 		fw.text = bnx_RXP_b06FwText;
   2863 
   2864 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   2865 		fw.data_len = bnx_RXP_b06FwDataLen;
   2866 		fw.data_index = 0;
   2867 		fw.data = bnx_RXP_b06FwData;
   2868 
   2869 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   2870 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   2871 		fw.sbss_index = 0;
   2872 		fw.sbss = bnx_RXP_b06FwSbss;
   2873 
   2874 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   2875 		fw.bss_len = bnx_RXP_b06FwBssLen;
   2876 		fw.bss_index = 0;
   2877 		fw.bss = bnx_RXP_b06FwBss;
   2878 
   2879 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   2880 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   2881 		fw.rodata_index = 0;
   2882 		fw.rodata = bnx_RXP_b06FwRodata;
   2883 
   2884 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2885 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2886 
   2887 		/* Initialize the TX Processor. */
   2888 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2889 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2890 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2891 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2892 		cpu_reg.state_value_clear = 0xffffff;
   2893 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2894 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2895 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2896 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2897 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2898 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2899 		cpu_reg.mips_view_base = 0x8000000;
   2900 
   2901 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   2902 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   2903 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   2904 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   2905 
   2906 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   2907 		fw.text_len = bnx_TXP_b06FwTextLen;
   2908 		fw.text_index = 0;
   2909 		fw.text = bnx_TXP_b06FwText;
   2910 
   2911 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   2912 		fw.data_len = bnx_TXP_b06FwDataLen;
   2913 		fw.data_index = 0;
   2914 		fw.data = bnx_TXP_b06FwData;
   2915 
   2916 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   2917 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   2918 		fw.sbss_index = 0;
   2919 		fw.sbss = bnx_TXP_b06FwSbss;
   2920 
   2921 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   2922 		fw.bss_len = bnx_TXP_b06FwBssLen;
   2923 		fw.bss_index = 0;
   2924 		fw.bss = bnx_TXP_b06FwBss;
   2925 
   2926 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   2927 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   2928 		fw.rodata_index = 0;
   2929 		fw.rodata = bnx_TXP_b06FwRodata;
   2930 
   2931 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2932 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2933 
   2934 		/* Initialize the TX Patch-up Processor. */
   2935 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2936 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2937 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2938 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2939 		cpu_reg.state_value_clear = 0xffffff;
   2940 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2941 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2942 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2943 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2944 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2945 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2946 		cpu_reg.mips_view_base = 0x8000000;
   2947 
   2948 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   2949 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   2950 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   2951 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   2952 
   2953 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   2954 		fw.text_len = bnx_TPAT_b06FwTextLen;
   2955 		fw.text_index = 0;
   2956 		fw.text = bnx_TPAT_b06FwText;
   2957 
   2958 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   2959 		fw.data_len = bnx_TPAT_b06FwDataLen;
   2960 		fw.data_index = 0;
   2961 		fw.data = bnx_TPAT_b06FwData;
   2962 
   2963 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   2964 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   2965 		fw.sbss_index = 0;
   2966 		fw.sbss = bnx_TPAT_b06FwSbss;
   2967 
   2968 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   2969 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   2970 		fw.bss_index = 0;
   2971 		fw.bss = bnx_TPAT_b06FwBss;
   2972 
   2973 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   2974 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   2975 		fw.rodata_index = 0;
   2976 		fw.rodata = bnx_TPAT_b06FwRodata;
   2977 
   2978 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2979 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2980 
   2981 		/* Initialize the Completion Processor. */
   2982 		cpu_reg.mode = BNX_COM_CPU_MODE;
   2983 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2984 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2985 		cpu_reg.state = BNX_COM_CPU_STATE;
   2986 		cpu_reg.state_value_clear = 0xffffff;
   2987 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2988 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2989 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2990 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2991 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2992 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   2993 		cpu_reg.mips_view_base = 0x8000000;
   2994 
   2995 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   2996 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   2997 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   2998 		fw.start_addr = bnx_COM_b06FwStartAddr;
   2999 
   3000 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3001 		fw.text_len = bnx_COM_b06FwTextLen;
   3002 		fw.text_index = 0;
   3003 		fw.text = bnx_COM_b06FwText;
   3004 
   3005 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3006 		fw.data_len = bnx_COM_b06FwDataLen;
   3007 		fw.data_index = 0;
   3008 		fw.data = bnx_COM_b06FwData;
   3009 
   3010 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3011 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3012 		fw.sbss_index = 0;
   3013 		fw.sbss = bnx_COM_b06FwSbss;
   3014 
   3015 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3016 		fw.bss_len = bnx_COM_b06FwBssLen;
   3017 		fw.bss_index = 0;
   3018 		fw.bss = bnx_COM_b06FwBss;
   3019 
   3020 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3021 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3022 		fw.rodata_index = 0;
   3023 		fw.rodata = bnx_COM_b06FwRodata;
   3024 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3025 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3026 		break;
   3027 	}
   3028 }
   3029 
   3030 /****************************************************************************/
   3031 /* Initialize context memory.                                               */
   3032 /*                                                                          */
   3033 /* Clears the memory associated with each Context ID (CID).                 */
   3034 /*                                                                          */
   3035 /* Returns:                                                                 */
   3036 /*   Nothing.                                                               */
   3037 /****************************************************************************/
   3038 void
   3039 bnx_init_context(struct bnx_softc *sc)
   3040 {
   3041 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3042 		/* DRC: Replace this constant value with a #define. */
   3043 		int i, retry_cnt = 10;
   3044 		u_int32_t val;
   3045 
   3046 		/*
   3047 		 * BCM5709 context memory may be cached
   3048 		 * in host memory so prepare the host memory
   3049 		 * for access.
   3050 		 */
   3051 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3052 		    | (1 << 12);
   3053 		val |= (BCM_PAGE_BITS - 8) << 16;
   3054 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3055 
   3056 		/* Wait for mem init command to complete. */
   3057 		for (i = 0; i < retry_cnt; i++) {
   3058 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3059 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3060 				break;
   3061 			DELAY(2);
   3062 		}
   3063 
   3064 
   3065 		/* ToDo: Consider returning an error here. */
   3066 
   3067 		for (i = 0; i < sc->ctx_pages; i++) {
   3068 			int j;
   3069 
   3070 
   3071 			/* Set the physaddr of the context memory cache. */
   3072 			val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
   3073 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3074 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3075 			val = (u_int32_t)
   3076 			    ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
   3077 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3078 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3079 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3080 
   3081 
   3082 			/* Verify that the context memory write was successful. */
   3083 			for (j = 0; j < retry_cnt; j++) {
   3084 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3085 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3086 					break;
   3087 				DELAY(5);
   3088 			}
   3089 
   3090 			/* ToDo: Consider returning an error here. */
   3091 		}
   3092 	} else {
   3093 		u_int32_t vcid_addr, offset;
   3094 
   3095 		/*
   3096 		 * For the 5706/5708, context memory is local to
   3097 		 * the controller, so initialize the controller
   3098 		 * context memory.
   3099 		 */
   3100 
   3101 		vcid_addr = GET_CID_ADDR(96);
   3102 		while (vcid_addr) {
   3103 
   3104 			vcid_addr -= PHY_CTX_SIZE;
   3105 
   3106 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3107 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3108 
   3109 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
   3110 				CTX_WR(sc, 0x00, offset, 0);
   3111 			}
   3112 
   3113 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3114 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3115 		}
   3116 	}
   3117 }
   3118 
   3119 /****************************************************************************/
   3120 /* Fetch the permanent MAC address of the controller.                       */
   3121 /*                                                                          */
   3122 /* Returns:                                                                 */
   3123 /*   Nothing.                                                               */
   3124 /****************************************************************************/
   3125 void
   3126 bnx_get_mac_addr(struct bnx_softc *sc)
   3127 {
   3128 	u_int32_t		mac_lo = 0, mac_hi = 0;
   3129 
   3130 	/*
   3131 	 * The NetXtreme II bootcode populates various NIC
   3132 	 * power-on and runtime configuration items in a
   3133 	 * shared memory area.  The factory configured MAC
   3134 	 * address is available from both NVRAM and the
   3135 	 * shared memory area so we'll read the value from
   3136 	 * shared memory for speed.
   3137 	 */
   3138 
   3139 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3140 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3141 
   3142 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3143 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3144 		    __FILE__, __LINE__);
   3145 	} else {
   3146 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3147 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3148 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3149 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3150 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3151 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3152 	}
   3153 
   3154 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3155 	    "%s\n", ether_sprintf(sc->eaddr));
   3156 }
   3157 
   3158 /****************************************************************************/
   3159 /* Program the MAC address.                                                 */
   3160 /*                                                                          */
   3161 /* Returns:                                                                 */
   3162 /*   Nothing.                                                               */
   3163 /****************************************************************************/
   3164 void
   3165 bnx_set_mac_addr(struct bnx_softc *sc)
   3166 {
   3167 	u_int32_t		val;
   3168 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3169 
   3170 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3171 	    "%s\n", ether_sprintf(sc->eaddr));
   3172 
   3173 	val = (mac_addr[0] << 8) | mac_addr[1];
   3174 
   3175 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3176 
   3177 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3178 		(mac_addr[4] << 8) | mac_addr[5];
   3179 
   3180 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3181 }
   3182 
   3183 /****************************************************************************/
   3184 /* Stop the controller.                                                     */
   3185 /*                                                                          */
   3186 /* Returns:                                                                 */
   3187 /*   Nothing.                                                               */
   3188 /****************************************************************************/
   3189 void
   3190 bnx_stop(struct ifnet *ifp, int disable)
   3191 {
   3192 	struct bnx_softc *sc = ifp->if_softc;
   3193 
   3194 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3195 
   3196 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   3197 		return;
   3198 
   3199 	callout_stop(&sc->bnx_timeout);
   3200 
   3201 	mii_down(&sc->bnx_mii);
   3202 
   3203 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3204 
   3205 	/* Disable the transmit/receive blocks. */
   3206 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3207 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3208 	DELAY(20);
   3209 
   3210 	bnx_disable_intr(sc);
   3211 
   3212 	/* Tell firmware that the driver is going away. */
   3213 	if (disable)
   3214 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3215 	else
   3216 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3217 
   3218 	/* Free RX buffers. */
   3219 	bnx_free_rx_chain(sc);
   3220 
   3221 	/* Free TX buffers. */
   3222 	bnx_free_tx_chain(sc);
   3223 
   3224 	ifp->if_timer = 0;
   3225 
   3226 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3227 
   3228 }
   3229 
   3230 int
   3231 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
   3232 {
   3233 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3234 	u_int32_t		val;
   3235 	int			i, rc = 0;
   3236 
   3237 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3238 
   3239 	/* Wait for pending PCI transactions to complete. */
   3240 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3241 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3242 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3243 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3244 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3245 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3246 	DELAY(5);
   3247 
   3248 	/* Disable DMA */
   3249 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3250 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3251 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3252 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3253 	}
   3254 
   3255 	/* Assume bootcode is running. */
   3256 	sc->bnx_fw_timed_out = 0;
   3257 
   3258 	/* Give the firmware a chance to prepare for the reset. */
   3259 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3260 	if (rc)
   3261 		goto bnx_reset_exit;
   3262 
   3263 	/* Set a firmware reminder that this is a soft reset. */
   3264 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3265 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3266 
   3267 	/* Dummy read to force the chip to complete all current transactions. */
   3268 	val = REG_RD(sc, BNX_MISC_ID);
   3269 
   3270 	/* Chip reset. */
   3271 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3272 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3273 		REG_RD(sc, BNX_MISC_COMMAND);
   3274 		DELAY(5);
   3275 
   3276 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3277 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3278 
   3279 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3280 		    val);
   3281 	} else {
   3282 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3283 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3284 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3285 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3286 
   3287 		/* Allow up to 30us for reset to complete. */
   3288 		for (i = 0; i < 10; i++) {
   3289 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3290 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3291 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3292 				break;
   3293 			}
   3294 			DELAY(10);
   3295 		}
   3296 
   3297 		/* Check that reset completed successfully. */
   3298 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3299 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3300 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3301 			    __FILE__, __LINE__);
   3302 			rc = EBUSY;
   3303 			goto bnx_reset_exit;
   3304 		}
   3305 	}
   3306 
   3307 	/* Make sure byte swapping is properly configured. */
   3308 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3309 	if (val != 0x01020304) {
   3310 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3311 		    __FILE__, __LINE__);
   3312 		rc = ENODEV;
   3313 		goto bnx_reset_exit;
   3314 	}
   3315 
   3316 	/* Just completed a reset, assume that firmware is running again. */
   3317 	sc->bnx_fw_timed_out = 0;
   3318 
   3319 	/* Wait for the firmware to finish its initialization. */
   3320 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3321 	if (rc)
   3322 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3323 		    "initialization!\n", __FILE__, __LINE__);
   3324 
   3325 bnx_reset_exit:
   3326 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3327 
   3328 	return (rc);
   3329 }
   3330 
   3331 int
   3332 bnx_chipinit(struct bnx_softc *sc)
   3333 {
   3334 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3335 	u_int32_t		val;
   3336 	int			rc = 0;
   3337 
   3338 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3339 
   3340 	/* Make sure the interrupt is not active. */
   3341 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3342 
   3343 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3344 	/* channels and PCI clock compensation delay.                      */
   3345 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3346 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3347 #if BYTE_ORDER == BIG_ENDIAN
   3348 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3349 #endif
   3350 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3351 	    DMA_READ_CHANS << 12 |
   3352 	    DMA_WRITE_CHANS << 16;
   3353 
   3354 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3355 
   3356 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3357 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3358 
   3359 	/*
   3360 	 * This setting resolves a problem observed on certain Intel PCI
   3361 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3362 	 * See errata E9_5706A1_65.
   3363 	 */
   3364 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3365 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3366 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3367 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3368 
   3369 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3370 
   3371 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3372 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3373 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3374 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3375 		    val & ~0x20000);
   3376 	}
   3377 
   3378 	/* Enable the RX_V2P and Context state machines before access. */
   3379 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3380 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3381 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3382 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3383 
   3384 	/* Initialize context mapping and zero out the quick contexts. */
   3385 	bnx_init_context(sc);
   3386 
   3387 	/* Initialize the on-boards CPUs */
   3388 	bnx_init_cpus(sc);
   3389 
   3390 	/* Prepare NVRAM for access. */
   3391 	if (bnx_init_nvram(sc)) {
   3392 		rc = ENODEV;
   3393 		goto bnx_chipinit_exit;
   3394 	}
   3395 
   3396 	/* Set the kernel bypass block size */
   3397 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3398 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3399 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3400 
   3401 	/* Enable bins used on the 5709. */
   3402 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3403 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3404 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3405 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3406 	}
   3407 
   3408 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3409 
   3410 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
   3411 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3412 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3413 
   3414 	val = (BCM_PAGE_BITS - 8) << 24;
   3415 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3416 
   3417 	/* Configure page size. */
   3418 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3419 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3420 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3421 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3422 
   3423 #if 0
   3424 	/* Set the perfect match control register to default. */
   3425 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3426 #endif
   3427 
   3428 bnx_chipinit_exit:
   3429 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3430 
   3431 	return(rc);
   3432 }
   3433 
   3434 /****************************************************************************/
   3435 /* Initialize the controller in preparation to send/receive traffic.        */
   3436 /*                                                                          */
   3437 /* Returns:                                                                 */
   3438 /*   0 for success, positive value for failure.                             */
   3439 /****************************************************************************/
   3440 int
   3441 bnx_blockinit(struct bnx_softc *sc)
   3442 {
   3443 	u_int32_t		reg, val;
   3444 	int 			rc = 0;
   3445 
   3446 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3447 
   3448 	/* Load the hardware default MAC address. */
   3449 	bnx_set_mac_addr(sc);
   3450 
   3451 	/* Set the Ethernet backoff seed value */
   3452 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3453 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3454 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3455 
   3456 	sc->last_status_idx = 0;
   3457 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3458 
   3459 	/* Set up link change interrupt generation. */
   3460 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3461 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3462 
   3463 	/* Program the physical address of the status block. */
   3464 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
   3465 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3466 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
   3467 
   3468 	/* Program the physical address of the statistics block. */
   3469 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3470 	    (u_int32_t)(sc->stats_block_paddr));
   3471 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3472 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
   3473 
   3474 	/* Program various host coalescing parameters. */
   3475 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3476 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3477 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3478 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3479 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3480 	    sc->bnx_comp_prod_trip);
   3481 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3482 	    sc->bnx_tx_ticks);
   3483 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3484 	    sc->bnx_rx_ticks);
   3485 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3486 	    sc->bnx_com_ticks);
   3487 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3488 	    sc->bnx_cmd_ticks);
   3489 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3490 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3491 	REG_WR(sc, BNX_HC_CONFIG,
   3492 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3493 	    BNX_HC_CONFIG_COLLECT_STATS));
   3494 
   3495 	/* Clear the internal statistics counters. */
   3496 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3497 
   3498 	/* Verify that bootcode is running. */
   3499 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3500 
   3501 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3502 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3503 	    __FILE__, __LINE__); reg = 0);
   3504 
   3505 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3506 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3507 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3508 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3509 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3510 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3511 		rc = ENODEV;
   3512 		goto bnx_blockinit_exit;
   3513 	}
   3514 
   3515 	/* Check if any management firmware is running. */
   3516 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3517 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3518 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3519 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3520 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3521 	}
   3522 
   3523 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3524 	    BNX_DEV_INFO_BC_REV);
   3525 
   3526 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3527 
   3528 	/* Enable DMA */
   3529 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3530 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3531 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3532 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3533 	}
   3534 
   3535 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3536 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3537 
   3538 	/* Enable link state change interrupt generation. */
   3539 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3540 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3541 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3542 	} else
   3543 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3544 
   3545 	/* Enable all remaining blocks in the MAC. */
   3546 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3547 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3548 	DELAY(20);
   3549 
   3550 bnx_blockinit_exit:
   3551 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3552 
   3553 	return (rc);
   3554 }
   3555 
   3556 static int
   3557 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
   3558     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3559 {
   3560 	bus_dmamap_t		map;
   3561 	struct rx_bd		*rxbd;
   3562 	u_int32_t		addr;
   3563 	int i;
   3564 #ifdef BNX_DEBUG
   3565 	u_int16_t debug_chain_prod =	*chain_prod;
   3566 #endif
   3567 	u_int16_t first_chain_prod;
   3568 
   3569 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3570 
   3571 	/* Map the mbuf cluster into device memory. */
   3572 	map = sc->rx_mbuf_map[*chain_prod];
   3573 	first_chain_prod = *chain_prod;
   3574 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3575 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3576 		    __FILE__, __LINE__);
   3577 
   3578 		m_freem(m_new);
   3579 
   3580 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3581 
   3582 		return ENOBUFS;
   3583 	}
   3584 	/* Make sure there is room in the receive chain. */
   3585 	if (map->dm_nsegs > sc->free_rx_bd) {
   3586 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3587 		m_freem(m_new);
   3588 		return EFBIG;
   3589 	}
   3590 #ifdef BNX_DEBUG
   3591 	/* Track the distribution of buffer segments. */
   3592 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3593 #endif
   3594 
   3595 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3596 	    BUS_DMASYNC_PREREAD);
   3597 
   3598 	/* Update some debug statistics counters */
   3599 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3600 	    sc->rx_low_watermark = sc->free_rx_bd);
   3601 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3602 
   3603 	/*
   3604 	 * Setup the rx_bd for the first segment
   3605 	 */
   3606 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3607 
   3608 	addr = (u_int32_t)(map->dm_segs[0].ds_addr);
   3609 	rxbd->rx_bd_haddr_lo = htole32(addr);
   3610 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
   3611 	rxbd->rx_bd_haddr_hi = htole32(addr);
   3612 	rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
   3613 	rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
   3614 	*prod_bseq += map->dm_segs[0].ds_len;
   3615 	bus_dmamap_sync(sc->bnx_dmatag,
   3616 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3617 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3618 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3619 
   3620 	for (i = 1; i < map->dm_nsegs; i++) {
   3621 		*prod = NEXT_RX_BD(*prod);
   3622 		*chain_prod = RX_CHAIN_IDX(*prod);
   3623 
   3624 		rxbd =
   3625 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3626 
   3627 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   3628 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3629 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   3630 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3631 		rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
   3632 		rxbd->rx_bd_flags = 0;
   3633 		*prod_bseq += map->dm_segs[i].ds_len;
   3634 		bus_dmamap_sync(sc->bnx_dmatag,
   3635 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3636 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3637 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3638 	}
   3639 
   3640 	rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
   3641 	bus_dmamap_sync(sc->bnx_dmatag,
   3642 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3643 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3644 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3645 
   3646 	/*
   3647 	 * Save the mbuf, ajust the map pointer (swap map for first and
   3648 	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
   3649 	 * and update counter.
   3650 	 */
   3651 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3652 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3653 	sc->rx_mbuf_map[*chain_prod] = map;
   3654 	sc->free_rx_bd -= map->dm_nsegs;
   3655 
   3656 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3657 	    map->dm_nsegs));
   3658 	*prod = NEXT_RX_BD(*prod);
   3659 	*chain_prod = RX_CHAIN_IDX(*prod);
   3660 
   3661 	return 0;
   3662 }
   3663 
   3664 /****************************************************************************/
   3665 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3666 /*                                                                          */
   3667 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3668 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3669 /* necessary.                                                               */
   3670 /*                                                                          */
   3671 /* Returns:                                                                 */
   3672 /*   0 for success, positive value for failure.                             */
   3673 /****************************************************************************/
   3674 int
   3675 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
   3676     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3677 {
   3678 	struct mbuf 		*m_new = NULL;
   3679 	int			rc = 0;
   3680 	u_int16_t min_free_bd;
   3681 
   3682 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3683 	    __func__);
   3684 
   3685 	/* Make sure the inputs are valid. */
   3686 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3687 	    aprint_error_dev(sc->bnx_dev,
   3688 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3689 		*chain_prod, (u_int16_t)MAX_RX_BD));
   3690 
   3691 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3692 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3693 	    *prod_bseq);
   3694 
   3695 	/* try to get in as many mbufs as possible */
   3696 	if (sc->mbuf_alloc_size == MCLBYTES)
   3697 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3698 	else
   3699 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3700 	while (sc->free_rx_bd >= min_free_bd) {
   3701 		/* Simulate an mbuf allocation failure. */
   3702 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3703 		    aprint_error_dev(sc->bnx_dev,
   3704 		    "Simulating mbuf allocation failure.\n");
   3705 			sc->mbuf_sim_alloc_failed++;
   3706 			rc = ENOBUFS;
   3707 			goto bnx_get_buf_exit);
   3708 
   3709 		/* This is a new mbuf allocation. */
   3710 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3711 		if (m_new == NULL) {
   3712 			DBPRINT(sc, BNX_WARN,
   3713 			    "%s(%d): RX mbuf header allocation failed!\n",
   3714 			    __FILE__, __LINE__);
   3715 
   3716 			sc->mbuf_alloc_failed++;
   3717 
   3718 			rc = ENOBUFS;
   3719 			goto bnx_get_buf_exit;
   3720 		}
   3721 
   3722 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3723 
   3724 		/* Simulate an mbuf cluster allocation failure. */
   3725 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3726 			m_freem(m_new);
   3727 			sc->rx_mbuf_alloc--;
   3728 			sc->mbuf_alloc_failed++;
   3729 			sc->mbuf_sim_alloc_failed++;
   3730 			rc = ENOBUFS;
   3731 			goto bnx_get_buf_exit);
   3732 
   3733 		if (sc->mbuf_alloc_size == MCLBYTES)
   3734 			MCLGET(m_new, M_DONTWAIT);
   3735 		else
   3736 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3737 			    M_DONTWAIT);
   3738 		if (!(m_new->m_flags & M_EXT)) {
   3739 			DBPRINT(sc, BNX_WARN,
   3740 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3741 			    __FILE__, __LINE__);
   3742 
   3743 			m_freem(m_new);
   3744 
   3745 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3746 			sc->mbuf_alloc_failed++;
   3747 
   3748 			rc = ENOBUFS;
   3749 			goto bnx_get_buf_exit;
   3750 		}
   3751 
   3752 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3753 		if (rc != 0)
   3754 			goto bnx_get_buf_exit;
   3755 	}
   3756 
   3757 bnx_get_buf_exit:
   3758 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3759 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3760 	    *chain_prod, *prod_bseq);
   3761 
   3762 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3763 	    __func__);
   3764 
   3765 	return(rc);
   3766 }
   3767 
   3768 int
   3769 bnx_alloc_pkts(struct bnx_softc *sc)
   3770 {
   3771 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   3772 	struct bnx_pkt *pkt;
   3773 	int i;
   3774 
   3775 	for (i = 0; i < 4; i++) { /* magic! */
   3776 		pkt = pool_get(bnx_tx_pool, PR_NOWAIT);
   3777 		if (pkt == NULL)
   3778 			break;
   3779 
   3780 		if (bus_dmamap_create(sc->bnx_dmatag,
   3781 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   3782 		    MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   3783 		    &pkt->pkt_dmamap) != 0)
   3784 			goto put;
   3785 
   3786 		if (!ISSET(ifp->if_flags, IFF_UP))
   3787 			goto stopping;
   3788 
   3789 		mutex_enter(&sc->tx_pkt_mtx);
   3790 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   3791 		sc->tx_pkt_count++;
   3792 		mutex_exit(&sc->tx_pkt_mtx);
   3793 	}
   3794 
   3795 	return (i == 0) ? ENOMEM : 0;
   3796 
   3797 stopping:
   3798 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   3799 put:
   3800 	pool_put(bnx_tx_pool, pkt);
   3801 	return (i == 0) ? ENOMEM : 0;
   3802 }
   3803 
   3804 /****************************************************************************/
   3805 /* Initialize the TX context memory.                                        */
   3806 /*                                                                          */
   3807 /* Returns:                                                                 */
   3808 /*   Nothing                                                                */
   3809 /****************************************************************************/
   3810 void
   3811 bnx_init_tx_context(struct bnx_softc *sc)
   3812 {
   3813 	u_int32_t val;
   3814 
   3815 	/* Initialize the context ID for an L2 TX chain. */
   3816 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3817 		/* Set the CID type to support an L2 connection. */
   3818 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3819 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   3820 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3821 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   3822 
   3823 		/* Point the hardware to the first page in the chain. */
   3824 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3825 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   3826 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   3827 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3828 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   3829 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   3830 	} else {
   3831 		/* Set the CID type to support an L2 connection. */
   3832 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3833 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   3834 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3835 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   3836 
   3837 		/* Point the hardware to the first page in the chain. */
   3838 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3839 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   3840 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3841 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   3842 	}
   3843 }
   3844 
   3845 
   3846 /****************************************************************************/
   3847 /* Allocate memory and initialize the TX data structures.                   */
   3848 /*                                                                          */
   3849 /* Returns:                                                                 */
   3850 /*   0 for success, positive value for failure.                             */
   3851 /****************************************************************************/
   3852 int
   3853 bnx_init_tx_chain(struct bnx_softc *sc)
   3854 {
   3855 	struct tx_bd		*txbd;
   3856 	u_int32_t		addr;
   3857 	int			i, rc = 0;
   3858 
   3859 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3860 
   3861 	/* Force an allocation of some dmamaps for tx up front */
   3862 	bnx_alloc_pkts(sc);
   3863 
   3864 	/* Set the initial TX producer/consumer indices. */
   3865 	sc->tx_prod = 0;
   3866 	sc->tx_cons = 0;
   3867 	sc->tx_prod_bseq = 0;
   3868 	sc->used_tx_bd = 0;
   3869 	sc->max_tx_bd = USABLE_TX_BD;
   3870 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   3871 	DBRUNIF(1, sc->tx_full_count = 0);
   3872 
   3873 	/*
   3874 	 * The NetXtreme II supports a linked-list structure called
   3875 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   3876 	 * consists of a series of 1 or more chain pages, each of which
   3877 	 * consists of a fixed number of BD entries.
   3878 	 * The last BD entry on each page is a pointer to the next page
   3879 	 * in the chain, and the last pointer in the BD chain
   3880 	 * points back to the beginning of the chain.
   3881 	 */
   3882 
   3883 	/* Set the TX next pointer chain entries. */
   3884 	for (i = 0; i < TX_PAGES; i++) {
   3885 		int j;
   3886 
   3887 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   3888 
   3889 		/* Check if we've reached the last page. */
   3890 		if (i == (TX_PAGES - 1))
   3891 			j = 0;
   3892 		else
   3893 			j = i + 1;
   3894 
   3895 		addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
   3896 		txbd->tx_bd_haddr_lo = htole32(addr);
   3897 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
   3898 		txbd->tx_bd_haddr_hi = htole32(addr);
   3899 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3900 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3901 	}
   3902 
   3903 	/*
   3904 	 * Initialize the context ID for an L2 TX chain.
   3905 	 */
   3906 	bnx_init_tx_context(sc);
   3907 
   3908 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3909 
   3910 	return(rc);
   3911 }
   3912 
   3913 /****************************************************************************/
   3914 /* Free memory and clear the TX data structures.                            */
   3915 /*                                                                          */
   3916 /* Returns:                                                                 */
   3917 /*   Nothing.                                                               */
   3918 /****************************************************************************/
   3919 void
   3920 bnx_free_tx_chain(struct bnx_softc *sc)
   3921 {
   3922 	struct bnx_pkt		*pkt;
   3923 	int			i;
   3924 
   3925 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3926 
   3927 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   3928 	mutex_enter(&sc->tx_pkt_mtx);
   3929 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   3930 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   3931 		mutex_exit(&sc->tx_pkt_mtx);
   3932 
   3933 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   3934 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3935 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   3936 
   3937 		m_freem(pkt->pkt_mbuf);
   3938 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   3939 
   3940 		mutex_enter(&sc->tx_pkt_mtx);
   3941 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   3942         }
   3943 
   3944 	/* Destroy all the dmamaps we allocated for TX */
   3945 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   3946 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   3947 		sc->tx_pkt_count--;
   3948 		mutex_exit(&sc->tx_pkt_mtx);
   3949 
   3950 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   3951 		pool_put(bnx_tx_pool, pkt);
   3952 
   3953 		mutex_enter(&sc->tx_pkt_mtx);
   3954 	}
   3955 	mutex_exit(&sc->tx_pkt_mtx);
   3956 
   3957 
   3958 
   3959 	/* Clear each TX chain page. */
   3960 	for (i = 0; i < TX_PAGES; i++) {
   3961 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   3962 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3963 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3964 	}
   3965 
   3966 	sc->used_tx_bd = 0;
   3967 
   3968 	/* Check if we lost any mbufs in the process. */
   3969 	DBRUNIF((sc->tx_mbuf_alloc),
   3970 	    aprint_error_dev(sc->bnx_dev,
   3971 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   3972 		sc->tx_mbuf_alloc));
   3973 
   3974 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3975 }
   3976 
   3977 /****************************************************************************/
   3978 /* Initialize the RX context memory.                                        */
   3979 /*                                                                          */
   3980 /* Returns:                                                                 */
   3981 /*   Nothing                                                                */
   3982 /****************************************************************************/
   3983 void
   3984 bnx_init_rx_context(struct bnx_softc *sc)
   3985 {
   3986 	u_int32_t val;
   3987 
   3988 	/* Initialize the context ID for an L2 RX chain. */
   3989 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   3990 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   3991 
   3992 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3993 		u_int32_t lo_water, hi_water;
   3994 
   3995 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
   3996 		hi_water = USABLE_RX_BD / 4;
   3997 
   3998 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
   3999 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
   4000 
   4001 		if (hi_water > 0xf)
   4002 			hi_water = 0xf;
   4003 		else if (hi_water == 0)
   4004 			lo_water = 0;
   4005 		val |= lo_water |
   4006 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
   4007 	}
   4008 
   4009  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4010 
   4011 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4012 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4013 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4014 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4015 	}
   4016 
   4017 	/* Point the hardware to the first page in the chain. */
   4018 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4019 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4020 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
   4021 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4022 }
   4023 
   4024 /****************************************************************************/
   4025 /* Allocate memory and initialize the RX data structures.                   */
   4026 /*                                                                          */
   4027 /* Returns:                                                                 */
   4028 /*   0 for success, positive value for failure.                             */
   4029 /****************************************************************************/
   4030 int
   4031 bnx_init_rx_chain(struct bnx_softc *sc)
   4032 {
   4033 	struct rx_bd		*rxbd;
   4034 	int			i, rc = 0;
   4035 	u_int16_t		prod, chain_prod;
   4036 	u_int32_t		prod_bseq, addr;
   4037 
   4038 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4039 
   4040 	/* Initialize the RX producer and consumer indices. */
   4041 	sc->rx_prod = 0;
   4042 	sc->rx_cons = 0;
   4043 	sc->rx_prod_bseq = 0;
   4044 	sc->free_rx_bd = USABLE_RX_BD;
   4045 	sc->max_rx_bd = USABLE_RX_BD;
   4046 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4047 	DBRUNIF(1, sc->rx_empty_count = 0);
   4048 
   4049 	/* Initialize the RX next pointer chain entries. */
   4050 	for (i = 0; i < RX_PAGES; i++) {
   4051 		int j;
   4052 
   4053 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4054 
   4055 		/* Check if we've reached the last page. */
   4056 		if (i == (RX_PAGES - 1))
   4057 			j = 0;
   4058 		else
   4059 			j = i + 1;
   4060 
   4061 		/* Setup the chain page pointers. */
   4062 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4063 		rxbd->rx_bd_haddr_hi = htole32(addr);
   4064 		addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
   4065 		rxbd->rx_bd_haddr_lo = htole32(addr);
   4066 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4067 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4068 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4069 	}
   4070 
   4071 	/* Allocate mbuf clusters for the rx_bd chain. */
   4072 	prod = prod_bseq = 0;
   4073 	chain_prod = RX_CHAIN_IDX(prod);
   4074 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4075 		BNX_PRINTF(sc,
   4076 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4077 	}
   4078 
   4079 	/* Save the RX chain producer index. */
   4080 	sc->rx_prod = prod;
   4081 	sc->rx_prod_bseq = prod_bseq;
   4082 
   4083 	for (i = 0; i < RX_PAGES; i++)
   4084 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4085 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4086 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4087 
   4088 	/* Tell the chip about the waiting rx_bd's. */
   4089 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4090 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4091 
   4092 	bnx_init_rx_context(sc);
   4093 
   4094 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4095 
   4096 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4097 
   4098 	return(rc);
   4099 }
   4100 
   4101 /****************************************************************************/
   4102 /* Free memory and clear the RX data structures.                            */
   4103 /*                                                                          */
   4104 /* Returns:                                                                 */
   4105 /*   Nothing.                                                               */
   4106 /****************************************************************************/
   4107 void
   4108 bnx_free_rx_chain(struct bnx_softc *sc)
   4109 {
   4110 	int			i;
   4111 
   4112 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4113 
   4114 	/* Free any mbufs still in the RX mbuf chain. */
   4115 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4116 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4117 			if (sc->rx_mbuf_map[i] != NULL) {
   4118 				bus_dmamap_sync(sc->bnx_dmatag,
   4119 				    sc->rx_mbuf_map[i],	0,
   4120 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4121 				    BUS_DMASYNC_POSTREAD);
   4122 				bus_dmamap_unload(sc->bnx_dmatag,
   4123 				    sc->rx_mbuf_map[i]);
   4124 			}
   4125 			m_freem(sc->rx_mbuf_ptr[i]);
   4126 			sc->rx_mbuf_ptr[i] = NULL;
   4127 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4128 		}
   4129 	}
   4130 
   4131 	/* Clear each RX chain page. */
   4132 	for (i = 0; i < RX_PAGES; i++)
   4133 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4134 
   4135 	sc->free_rx_bd = sc->max_rx_bd;
   4136 
   4137 	/* Check if we lost any mbufs in the process. */
   4138 	DBRUNIF((sc->rx_mbuf_alloc),
   4139 	    aprint_error_dev(sc->bnx_dev,
   4140 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   4141 		sc->rx_mbuf_alloc));
   4142 
   4143 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4144 }
   4145 
   4146 /****************************************************************************/
   4147 /* Handles PHY generated interrupt events.                                  */
   4148 /*                                                                          */
   4149 /* Returns:                                                                 */
   4150 /*   Nothing.                                                               */
   4151 /****************************************************************************/
   4152 void
   4153 bnx_phy_intr(struct bnx_softc *sc)
   4154 {
   4155 	u_int32_t		new_link_state, old_link_state;
   4156 
   4157 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4158 	    BUS_DMASYNC_POSTREAD);
   4159 	new_link_state = sc->status_block->status_attn_bits &
   4160 	    STATUS_ATTN_BITS_LINK_STATE;
   4161 	old_link_state = sc->status_block->status_attn_bits_ack &
   4162 	    STATUS_ATTN_BITS_LINK_STATE;
   4163 
   4164 	/* Handle any changes if the link state has changed. */
   4165 	if (new_link_state != old_link_state) {
   4166 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4167 
   4168 		callout_stop(&sc->bnx_timeout);
   4169 		bnx_tick(sc);
   4170 
   4171 		/* Update the status_attn_bits_ack field in the status block. */
   4172 		if (new_link_state) {
   4173 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4174 			    STATUS_ATTN_BITS_LINK_STATE);
   4175 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4176 		} else {
   4177 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4178 			    STATUS_ATTN_BITS_LINK_STATE);
   4179 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4180 		}
   4181 	}
   4182 
   4183 	/* Acknowledge the link change interrupt. */
   4184 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4185 }
   4186 
   4187 /****************************************************************************/
   4188 /* Handles received frame interrupt events.                                 */
   4189 /*                                                                          */
   4190 /* Returns:                                                                 */
   4191 /*   Nothing.                                                               */
   4192 /****************************************************************************/
   4193 void
   4194 bnx_rx_intr(struct bnx_softc *sc)
   4195 {
   4196 	struct status_block	*sblk = sc->status_block;
   4197 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4198 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
   4199 	u_int16_t		sw_prod, sw_chain_prod;
   4200 	u_int32_t		sw_prod_bseq;
   4201 	struct l2_fhdr		*l2fhdr;
   4202 	int			i;
   4203 
   4204 	DBRUNIF(1, sc->rx_interrupts++);
   4205 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4206 	    BUS_DMASYNC_POSTREAD);
   4207 
   4208 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4209 	for (i = 0; i < RX_PAGES; i++)
   4210 		bus_dmamap_sync(sc->bnx_dmatag,
   4211 		    sc->rx_bd_chain_map[i], 0,
   4212 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4213 		    BUS_DMASYNC_POSTWRITE);
   4214 
   4215 	/* Get the hardware's view of the RX consumer index. */
   4216 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4217 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4218 		hw_cons++;
   4219 
   4220 	/* Get working copies of the driver's view of the RX indices. */
   4221 	sw_cons = sc->rx_cons;
   4222 	sw_prod = sc->rx_prod;
   4223 	sw_prod_bseq = sc->rx_prod_bseq;
   4224 
   4225 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4226 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4227 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4228 
   4229 	/* Prevent speculative reads from getting ahead of the status block. */
   4230 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4231 	    BUS_SPACE_BARRIER_READ);
   4232 
   4233 	/* Update some debug statistics counters */
   4234 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4235 	    sc->rx_low_watermark = sc->free_rx_bd);
   4236 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4237 
   4238 	/*
   4239 	 * Scan through the receive chain as long
   4240 	 * as there is work to do.
   4241 	 */
   4242 	while (sw_cons != hw_cons) {
   4243 		struct mbuf *m;
   4244 		struct rx_bd *rxbd;
   4245 		unsigned int len;
   4246 		u_int32_t status;
   4247 
   4248 		/* Convert the producer/consumer indices to an actual
   4249 		 * rx_bd index.
   4250 		 */
   4251 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4252 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4253 
   4254 		/* Get the used rx_bd. */
   4255 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4256 		sc->free_rx_bd++;
   4257 
   4258 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4259 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4260 
   4261 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4262 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4263 #ifdef DIAGNOSTIC
   4264 			/* Validate that this is the last rx_bd. */
   4265 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4266 			    printf("%s: Unexpected mbuf found in "
   4267 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4268 			        sw_chain_cons);
   4269 			}
   4270 #endif
   4271 
   4272 			/* DRC - ToDo: If the received packet is small, say less
   4273 			 *             than 128 bytes, allocate a new mbuf here,
   4274 			 *             copy the data to that mbuf, and recycle
   4275 			 *             the mapped jumbo frame.
   4276 			 */
   4277 
   4278 			/* Unmap the mbuf from DMA space. */
   4279 #ifdef DIAGNOSTIC
   4280 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4281 				printf("invalid map sw_cons 0x%x "
   4282 				"sw_prod 0x%x "
   4283 				"sw_chain_cons 0x%x "
   4284 				"sw_chain_prod 0x%x "
   4285 				"hw_cons 0x%x "
   4286 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4287 				"TOTAL_RX_BD 0x%x\n",
   4288 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4289 				hw_cons,
   4290 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4291 			}
   4292 #endif
   4293 			bus_dmamap_sync(sc->bnx_dmatag,
   4294 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4295 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4296 			    BUS_DMASYNC_POSTREAD);
   4297 			bus_dmamap_unload(sc->bnx_dmatag,
   4298 			    sc->rx_mbuf_map[sw_chain_cons]);
   4299 
   4300 			/* Remove the mbuf from the driver's chain. */
   4301 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4302 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4303 
   4304 			/*
   4305 			 * Frames received on the NetXteme II are prepended
   4306 			 * with the l2_fhdr structure which provides status
   4307 			 * information about the received frame (including
   4308 			 * VLAN tags and checksum info) and are also
   4309 			 * automatically adjusted to align the IP header
   4310 			 * (i.e. two null bytes are inserted before the
   4311 			 * Ethernet header).
   4312 			 */
   4313 			l2fhdr = mtod(m, struct l2_fhdr *);
   4314 
   4315 			len    = l2fhdr->l2_fhdr_pkt_len;
   4316 			status = l2fhdr->l2_fhdr_status;
   4317 
   4318 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4319 			    aprint_error("Simulating l2_fhdr status error.\n");
   4320 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4321 
   4322 			/* Watch for unusual sized frames. */
   4323 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4324 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4325 			    aprint_error_dev(sc->bnx_dev,
   4326 			        "Unusual frame size found. "
   4327 				"Min(%d), Actual(%d), Max(%d)\n",
   4328 				(int)BNX_MIN_MTU, len,
   4329 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4330 
   4331 			bnx_dump_mbuf(sc, m);
   4332 			bnx_breakpoint(sc));
   4333 
   4334 			len -= ETHER_CRC_LEN;
   4335 
   4336 			/* Check the received frame for errors. */
   4337 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4338 			    L2_FHDR_ERRORS_PHY_DECODE |
   4339 			    L2_FHDR_ERRORS_ALIGNMENT |
   4340 			    L2_FHDR_ERRORS_TOO_SHORT |
   4341 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4342 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4343 			    len >
   4344 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4345 				ifp->if_ierrors++;
   4346 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4347 
   4348 				/* Reuse the mbuf for a new frame. */
   4349 				if (bnx_add_buf(sc, m, &sw_prod,
   4350 				    &sw_chain_prod, &sw_prod_bseq)) {
   4351 					DBRUNIF(1, bnx_breakpoint(sc));
   4352 					panic("%s: Can't reuse RX mbuf!\n",
   4353 					    device_xname(sc->bnx_dev));
   4354 				}
   4355 				continue;
   4356 			}
   4357 
   4358 			/*
   4359 			 * Get a new mbuf for the rx_bd.   If no new
   4360 			 * mbufs are available then reuse the current mbuf,
   4361 			 * log an ierror on the interface, and generate
   4362 			 * an error in the system log.
   4363 			 */
   4364 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4365 			    &sw_prod_bseq)) {
   4366 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4367 				    "Failed to allocate "
   4368 				    "new mbuf, incoming frame dropped!\n"));
   4369 
   4370 				ifp->if_ierrors++;
   4371 
   4372 				/* Try and reuse the exisitng mbuf. */
   4373 				if (bnx_add_buf(sc, m, &sw_prod,
   4374 				    &sw_chain_prod, &sw_prod_bseq)) {
   4375 					DBRUNIF(1, bnx_breakpoint(sc));
   4376 					panic("%s: Double mbuf allocation "
   4377 					    "failure!",
   4378 					    device_xname(sc->bnx_dev));
   4379 				}
   4380 				continue;
   4381 			}
   4382 
   4383 			/* Skip over the l2_fhdr when passing the data up
   4384 			 * the stack.
   4385 			 */
   4386 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4387 
   4388 			/* Adjust the pckt length to match the received data. */
   4389 			m->m_pkthdr.len = m->m_len = len;
   4390 
   4391 			/* Send the packet to the appropriate interface. */
   4392 			m->m_pkthdr.rcvif = ifp;
   4393 
   4394 			DBRUN(BNX_VERBOSE_RECV,
   4395 			    struct ether_header *eh;
   4396 			    eh = mtod(m, struct ether_header *);
   4397 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4398 			    __func__, ether_sprintf(eh->ether_dhost),
   4399 			    ether_sprintf(eh->ether_shost),
   4400 			    htons(eh->ether_type)));
   4401 
   4402 			/* Validate the checksum. */
   4403 
   4404 			/* Check for an IP datagram. */
   4405 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4406 				/* Check if the IP checksum is valid. */
   4407 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   4408 				    == 0)
   4409 					m->m_pkthdr.csum_flags |=
   4410 					    M_CSUM_IPv4;
   4411 #ifdef BNX_DEBUG
   4412 				else
   4413 					DBPRINT(sc, BNX_WARN_SEND,
   4414 					    "%s(): Invalid IP checksum "
   4415 					        "= 0x%04X!\n",
   4416 						__func__,
   4417 						l2fhdr->l2_fhdr_ip_xsum
   4418 						);
   4419 #endif
   4420 			}
   4421 
   4422 			/* Check for a valid TCP/UDP frame. */
   4423 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4424 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4425 				/* Check for a good TCP/UDP checksum. */
   4426 				if ((status &
   4427 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4428 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4429 					m->m_pkthdr.csum_flags |=
   4430 					    M_CSUM_TCPv4 |
   4431 					    M_CSUM_UDPv4;
   4432 				} else {
   4433 					DBPRINT(sc, BNX_WARN_SEND,
   4434 					    "%s(): Invalid TCP/UDP "
   4435 					    "checksum = 0x%04X!\n",
   4436 					    __func__,
   4437 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4438 				}
   4439 			}
   4440 
   4441 			/*
   4442 			 * If we received a packet with a vlan tag,
   4443 			 * attach that information to the packet.
   4444 			 */
   4445 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4446 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4447 				VLAN_INPUT_TAG(ifp, m,
   4448 				    l2fhdr->l2_fhdr_vlan_tag,
   4449 				    continue);
   4450 			}
   4451 
   4452 			/*
   4453 			 * Handle BPF listeners. Let the BPF
   4454 			 * user see the packet.
   4455 			 */
   4456 			bpf_mtap(ifp, m);
   4457 
   4458 			/* Pass the mbuf off to the upper layers. */
   4459 			ifp->if_ipackets++;
   4460 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4461 			    "%s(): Passing received frame up.\n", __func__);
   4462 			(*ifp->if_input)(ifp, m);
   4463 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4464 
   4465 		}
   4466 
   4467 		sw_cons = NEXT_RX_BD(sw_cons);
   4468 
   4469 		/* Refresh hw_cons to see if there's new work */
   4470 		if (sw_cons == hw_cons) {
   4471 			hw_cons = sc->hw_rx_cons =
   4472 			    sblk->status_rx_quick_consumer_index0;
   4473 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4474 			    USABLE_RX_BD_PER_PAGE)
   4475 				hw_cons++;
   4476 		}
   4477 
   4478 		/* Prevent speculative reads from getting ahead of
   4479 		 * the status block.
   4480 		 */
   4481 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4482 		    BUS_SPACE_BARRIER_READ);
   4483 	}
   4484 
   4485 	for (i = 0; i < RX_PAGES; i++)
   4486 		bus_dmamap_sync(sc->bnx_dmatag,
   4487 		    sc->rx_bd_chain_map[i], 0,
   4488 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4489 		    BUS_DMASYNC_PREWRITE);
   4490 
   4491 	sc->rx_cons = sw_cons;
   4492 	sc->rx_prod = sw_prod;
   4493 	sc->rx_prod_bseq = sw_prod_bseq;
   4494 
   4495 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4496 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4497 
   4498 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4499 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4500 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4501 }
   4502 
   4503 /****************************************************************************/
   4504 /* Handles transmit completion interrupt events.                            */
   4505 /*                                                                          */
   4506 /* Returns:                                                                 */
   4507 /*   Nothing.                                                               */
   4508 /****************************************************************************/
   4509 void
   4510 bnx_tx_intr(struct bnx_softc *sc)
   4511 {
   4512 	struct status_block	*sblk = sc->status_block;
   4513 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4514 	struct bnx_pkt		*pkt;
   4515 	bus_dmamap_t		map;
   4516 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4517 
   4518 	DBRUNIF(1, sc->tx_interrupts++);
   4519 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4520 	    BUS_DMASYNC_POSTREAD);
   4521 
   4522 	/* Get the hardware's view of the TX consumer index. */
   4523 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4524 
   4525 	/* Skip to the next entry if this is a chain page pointer. */
   4526 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4527 		hw_tx_cons++;
   4528 
   4529 	sw_tx_cons = sc->tx_cons;
   4530 
   4531 	/* Prevent speculative reads from getting ahead of the status block. */
   4532 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4533 	    BUS_SPACE_BARRIER_READ);
   4534 
   4535 	/* Cycle through any completed TX chain page entries. */
   4536 	while (sw_tx_cons != hw_tx_cons) {
   4537 #ifdef BNX_DEBUG
   4538 		struct tx_bd *txbd = NULL;
   4539 #endif
   4540 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4541 
   4542 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4543 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4544 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4545 
   4546 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4547 		    aprint_error_dev(sc->bnx_dev,
   4548 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4549 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4550 
   4551 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4552 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4553 
   4554 		DBRUNIF((txbd == NULL),
   4555 		    aprint_error_dev(sc->bnx_dev,
   4556 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4557 		    bnx_breakpoint(sc));
   4558 
   4559 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4560 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4561 
   4562 
   4563 		mutex_enter(&sc->tx_pkt_mtx);
   4564 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4565 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4566 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4567 			mutex_exit(&sc->tx_pkt_mtx);
   4568 			/*
   4569 			 * Free the associated mbuf. Remember
   4570 			 * that only the last tx_bd of a packet
   4571 			 * has an mbuf pointer and DMA map.
   4572 			 */
   4573 			map = pkt->pkt_dmamap;
   4574 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4575 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4576 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4577 
   4578 			m_freem(pkt->pkt_mbuf);
   4579 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4580 
   4581 			ifp->if_opackets++;
   4582 
   4583 			mutex_enter(&sc->tx_pkt_mtx);
   4584 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4585 		}
   4586 		mutex_exit(&sc->tx_pkt_mtx);
   4587 
   4588 		sc->used_tx_bd--;
   4589 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4590 			__FILE__, __LINE__, sc->used_tx_bd);
   4591 
   4592 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4593 
   4594 		/* Refresh hw_cons to see if there's new work. */
   4595 		hw_tx_cons = sc->hw_tx_cons =
   4596 		    sblk->status_tx_quick_consumer_index0;
   4597 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4598 		    USABLE_TX_BD_PER_PAGE)
   4599 			hw_tx_cons++;
   4600 
   4601 		/* Prevent speculative reads from getting ahead of
   4602 		 * the status block.
   4603 		 */
   4604 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4605 		    BUS_SPACE_BARRIER_READ);
   4606 	}
   4607 
   4608 	/* Clear the TX timeout timer. */
   4609 	ifp->if_timer = 0;
   4610 
   4611 	/* Clear the tx hardware queue full flag. */
   4612 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4613 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4614 		    aprint_debug_dev(sc->bnx_dev,
   4615 		        "Open TX chain! %d/%d (used/total)\n",
   4616 			sc->used_tx_bd, sc->max_tx_bd));
   4617 		ifp->if_flags &= ~IFF_OACTIVE;
   4618 	}
   4619 
   4620 	sc->tx_cons = sw_tx_cons;
   4621 }
   4622 
   4623 /****************************************************************************/
   4624 /* Disables interrupt generation.                                           */
   4625 /*                                                                          */
   4626 /* Returns:                                                                 */
   4627 /*   Nothing.                                                               */
   4628 /****************************************************************************/
   4629 void
   4630 bnx_disable_intr(struct bnx_softc *sc)
   4631 {
   4632 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4633 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4634 }
   4635 
   4636 /****************************************************************************/
   4637 /* Enables interrupt generation.                                            */
   4638 /*                                                                          */
   4639 /* Returns:                                                                 */
   4640 /*   Nothing.                                                               */
   4641 /****************************************************************************/
   4642 void
   4643 bnx_enable_intr(struct bnx_softc *sc)
   4644 {
   4645 	u_int32_t		val;
   4646 
   4647 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4648 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4649 
   4650 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4651 	    sc->last_status_idx);
   4652 
   4653 	val = REG_RD(sc, BNX_HC_COMMAND);
   4654 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4655 }
   4656 
   4657 /****************************************************************************/
   4658 /* Handles controller initialization.                                       */
   4659 /*                                                                          */
   4660 /****************************************************************************/
   4661 int
   4662 bnx_init(struct ifnet *ifp)
   4663 {
   4664 	struct bnx_softc	*sc = ifp->if_softc;
   4665 	u_int32_t		ether_mtu;
   4666 	int			s, error = 0;
   4667 
   4668 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4669 
   4670 	s = splnet();
   4671 
   4672 	bnx_stop(ifp, 0);
   4673 
   4674 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4675 		aprint_error_dev(sc->bnx_dev,
   4676 		    "Controller reset failed!\n");
   4677 		goto bnx_init_exit;
   4678 	}
   4679 
   4680 	if ((error = bnx_chipinit(sc)) != 0) {
   4681 		aprint_error_dev(sc->bnx_dev,
   4682 		    "Controller initialization failed!\n");
   4683 		goto bnx_init_exit;
   4684 	}
   4685 
   4686 	if ((error = bnx_blockinit(sc)) != 0) {
   4687 		aprint_error_dev(sc->bnx_dev,
   4688 		    "Block initialization failed!\n");
   4689 		goto bnx_init_exit;
   4690 	}
   4691 
   4692 	/* Calculate and program the Ethernet MRU size. */
   4693 	if (ifp->if_mtu <= ETHERMTU) {
   4694 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4695 		sc->mbuf_alloc_size = MCLBYTES;
   4696 	} else {
   4697 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4698 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   4699 	}
   4700 
   4701 
   4702 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4703 	    __func__, ether_mtu);
   4704 
   4705 	/*
   4706 	 * Program the MRU and enable Jumbo frame
   4707 	 * support.
   4708 	 */
   4709 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4710 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4711 
   4712 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4713 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4714 
   4715 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4716 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4717 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4718 
   4719 	/* Program appropriate promiscuous/multicast filtering. */
   4720 	bnx_iff(sc);
   4721 
   4722 	/* Init RX buffer descriptor chain. */
   4723 	bnx_init_rx_chain(sc);
   4724 
   4725 	/* Init TX buffer descriptor chain. */
   4726 	bnx_init_tx_chain(sc);
   4727 
   4728 	/* Enable host interrupts. */
   4729 	bnx_enable_intr(sc);
   4730 
   4731 	if ((error = ether_mediachange(ifp)) != 0)
   4732 		goto bnx_init_exit;
   4733 
   4734 	ifp->if_flags |= IFF_RUNNING;
   4735 	ifp->if_flags &= ~IFF_OACTIVE;
   4736 
   4737 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4738 
   4739 bnx_init_exit:
   4740 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4741 
   4742 	splx(s);
   4743 
   4744 	return(error);
   4745 }
   4746 
   4747 /****************************************************************************/
   4748 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4749 /* memory visible to the controller.                                        */
   4750 /*                                                                          */
   4751 /* Returns:                                                                 */
   4752 /*   0 for success, positive value for failure.                             */
   4753 /****************************************************************************/
   4754 int
   4755 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   4756 {
   4757 	struct bnx_pkt		*pkt;
   4758 	bus_dmamap_t		map;
   4759 	struct tx_bd		*txbd = NULL;
   4760 	u_int16_t		vlan_tag = 0, flags = 0;
   4761 	u_int16_t		chain_prod, prod;
   4762 #ifdef BNX_DEBUG
   4763 	u_int16_t		debug_prod;
   4764 #endif
   4765 	u_int32_t		addr, prod_bseq;
   4766 	int			i, error;
   4767 	struct m_tag		*mtag;
   4768 
   4769 again:
   4770 	mutex_enter(&sc->tx_pkt_mtx);
   4771 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   4772 	if (pkt == NULL) {
   4773 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   4774 			mutex_exit(&sc->tx_pkt_mtx);
   4775 			return ENETDOWN;
   4776 		}
   4777 		if (sc->tx_pkt_count <= TOTAL_TX_BD) {
   4778 			mutex_exit(&sc->tx_pkt_mtx);
   4779 			if (bnx_alloc_pkts(sc) == 0)
   4780 				goto again;
   4781 		} else {
   4782 			mutex_exit(&sc->tx_pkt_mtx);
   4783 		}
   4784 		return (ENOMEM);
   4785 	}
   4786 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4787 	mutex_exit(&sc->tx_pkt_mtx);
   4788 
   4789 	/* Transfer any checksum offload flags to the bd. */
   4790 	if (m->m_pkthdr.csum_flags) {
   4791 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4792 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4793 		if (m->m_pkthdr.csum_flags &
   4794 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4795 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4796 	}
   4797 
   4798 	/* Transfer any VLAN tags to the bd. */
   4799 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
   4800 	if (mtag != NULL) {
   4801 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4802 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4803 	}
   4804 
   4805 	/* Map the mbuf into DMAable memory. */
   4806 	prod = sc->tx_prod;
   4807 	chain_prod = TX_CHAIN_IDX(prod);
   4808 	map = pkt->pkt_dmamap;
   4809 
   4810 	/* Map the mbuf into our DMA address space. */
   4811 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   4812 	if (error != 0) {
   4813 		aprint_error_dev(sc->bnx_dev,
   4814 		    "Error mapping mbuf into TX chain!\n");
   4815 		sc->tx_dma_map_failures++;
   4816 		goto maperr;
   4817 	}
   4818 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4819 	    BUS_DMASYNC_PREWRITE);
   4820         /* Make sure there's room in the chain */
   4821 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   4822                 goto nospace;
   4823 
   4824 	/* prod points to an empty tx_bd at this point. */
   4825 	prod_bseq = sc->tx_prod_bseq;
   4826 #ifdef BNX_DEBUG
   4827 	debug_prod = chain_prod;
   4828 #endif
   4829 	DBPRINT(sc, BNX_INFO_SEND,
   4830 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   4831 		"prod_bseq = 0x%08X\n",
   4832 		__func__, prod, chain_prod, prod_bseq);
   4833 
   4834 	/*
   4835 	 * Cycle through each mbuf segment that makes up
   4836 	 * the outgoing frame, gathering the mapping info
   4837 	 * for that segment and creating a tx_bd for the
   4838 	 * mbuf.
   4839 	 */
   4840 	for (i = 0; i < map->dm_nsegs ; i++) {
   4841 		chain_prod = TX_CHAIN_IDX(prod);
   4842 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   4843 
   4844 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   4845 		txbd->tx_bd_haddr_lo = htole32(addr);
   4846 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   4847 		txbd->tx_bd_haddr_hi = htole32(addr);
   4848 		txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
   4849 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
   4850 		txbd->tx_bd_flags = htole16(flags);
   4851 		prod_bseq += map->dm_segs[i].ds_len;
   4852 		if (i == 0)
   4853 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
   4854 		prod = NEXT_TX_BD(prod);
   4855 	}
   4856 	/* Set the END flag on the last TX buffer descriptor. */
   4857 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
   4858 
   4859 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   4860 
   4861 	DBPRINT(sc, BNX_INFO_SEND,
   4862 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   4863 		"prod_bseq = 0x%08X\n",
   4864 		__func__, prod, chain_prod, prod_bseq);
   4865 
   4866 	pkt->pkt_mbuf = m;
   4867 	pkt->pkt_end_desc = chain_prod;
   4868 
   4869 	mutex_enter(&sc->tx_pkt_mtx);
   4870 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   4871 	mutex_exit(&sc->tx_pkt_mtx);
   4872 
   4873 	sc->used_tx_bd += map->dm_nsegs;
   4874 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4875 		__FILE__, __LINE__, sc->used_tx_bd);
   4876 
   4877 	/* Update some debug statistics counters */
   4878 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   4879 	    sc->tx_hi_watermark = sc->used_tx_bd);
   4880 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   4881 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   4882 
   4883 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   4884 	    map->dm_nsegs));
   4885 
   4886 	/* prod points to the next free tx_bd at this point. */
   4887 	sc->tx_prod = prod;
   4888 	sc->tx_prod_bseq = prod_bseq;
   4889 
   4890 	return (0);
   4891 
   4892 
   4893 nospace:
   4894 	bus_dmamap_unload(sc->bnx_dmatag, map);
   4895 maperr:
   4896 	mutex_enter(&sc->tx_pkt_mtx);
   4897 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4898 	mutex_exit(&sc->tx_pkt_mtx);
   4899 
   4900 	return (ENOMEM);
   4901 }
   4902 
   4903 /****************************************************************************/
   4904 /* Main transmit routine.                                                   */
   4905 /*                                                                          */
   4906 /* Returns:                                                                 */
   4907 /*   Nothing.                                                               */
   4908 /****************************************************************************/
   4909 void
   4910 bnx_start(struct ifnet *ifp)
   4911 {
   4912 	struct bnx_softc	*sc = ifp->if_softc;
   4913 	struct mbuf		*m_head = NULL;
   4914 	int			count = 0;
   4915 	u_int16_t		tx_prod, tx_chain_prod;
   4916 
   4917 	/* If there's no link or the transmit queue is empty then just exit. */
   4918 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   4919 		DBPRINT(sc, BNX_INFO_SEND,
   4920 		    "%s(): output active or device not running.\n", __func__);
   4921 		goto bnx_start_exit;
   4922 	}
   4923 
   4924 	/* prod points to the next free tx_bd. */
   4925 	tx_prod = sc->tx_prod;
   4926 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
   4927 
   4928 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   4929 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   4930 	    "used_tx %d max_tx %d\n",
   4931 	    __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   4932 	    sc->used_tx_bd, sc->max_tx_bd);
   4933 
   4934 	/*
   4935 	 * Keep adding entries while there is space in the ring.
   4936 	 */
   4937 	while (sc->used_tx_bd < sc->max_tx_bd) {
   4938 		/* Check for any frames to send. */
   4939 		IFQ_POLL(&ifp->if_snd, m_head);
   4940 		if (m_head == NULL)
   4941 			break;
   4942 
   4943 		/*
   4944 		 * Pack the data into the transmit ring. If we
   4945 		 * don't have room, set the OACTIVE flag to wait
   4946 		 * for the NIC to drain the chain.
   4947 		 */
   4948 		if (bnx_tx_encap(sc, m_head)) {
   4949 			ifp->if_flags |= IFF_OACTIVE;
   4950 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   4951 			    "business! Total tx_bd used = %d\n",
   4952 			    sc->used_tx_bd);
   4953 			break;
   4954 		}
   4955 
   4956 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4957 		count++;
   4958 
   4959 		/* Send a copy of the frame to any BPF listeners. */
   4960 		bpf_mtap(ifp, m_head);
   4961 	}
   4962 
   4963 	if (count == 0) {
   4964 		/* no packets were dequeued */
   4965 		DBPRINT(sc, BNX_VERBOSE_SEND,
   4966 		    "%s(): No packets were dequeued\n", __func__);
   4967 		goto bnx_start_exit;
   4968 	}
   4969 
   4970 	/* Update the driver's counters. */
   4971 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   4972 
   4973 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   4974 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
   4975 	    tx_chain_prod, sc->tx_prod_bseq);
   4976 
   4977 	/* Start the transmit. */
   4978 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   4979 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   4980 
   4981 	/* Set the tx timeout. */
   4982 	ifp->if_timer = BNX_TX_TIMEOUT;
   4983 
   4984 bnx_start_exit:
   4985 	return;
   4986 }
   4987 
   4988 /****************************************************************************/
   4989 /* Handles any IOCTL calls from the operating system.                       */
   4990 /*                                                                          */
   4991 /* Returns:                                                                 */
   4992 /*   0 for success, positive value for failure.                             */
   4993 /****************************************************************************/
   4994 int
   4995 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   4996 {
   4997 	struct bnx_softc	*sc = ifp->if_softc;
   4998 	struct ifreq		*ifr = (struct ifreq *) data;
   4999 	struct mii_data		*mii = &sc->bnx_mii;
   5000 	int			s, error = 0;
   5001 
   5002 	s = splnet();
   5003 
   5004 	switch (command) {
   5005 	case SIOCSIFFLAGS:
   5006 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5007 			break;
   5008 		/* XXX set an ifflags callback and let ether_ioctl
   5009 		 * handle all of this.
   5010 		 */
   5011 		if (ifp->if_flags & IFF_UP) {
   5012 			if (ifp->if_flags & IFF_RUNNING)
   5013 				error = ENETRESET;
   5014 			else
   5015 				bnx_init(ifp);
   5016 		} else if (ifp->if_flags & IFF_RUNNING)
   5017 			bnx_stop(ifp, 1);
   5018 		break;
   5019 
   5020 	case SIOCSIFMEDIA:
   5021 	case SIOCGIFMEDIA:
   5022 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5023 		    sc->bnx_phy_flags);
   5024 
   5025 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5026 		break;
   5027 
   5028 	default:
   5029 		error = ether_ioctl(ifp, command, data);
   5030 	}
   5031 
   5032 	if (error == ENETRESET) {
   5033 		if (ifp->if_flags & IFF_RUNNING)
   5034 			bnx_iff(sc);
   5035 		error = 0;
   5036 	}
   5037 
   5038 	splx(s);
   5039 	return (error);
   5040 }
   5041 
   5042 /****************************************************************************/
   5043 /* Transmit timeout handler.                                                */
   5044 /*                                                                          */
   5045 /* Returns:                                                                 */
   5046 /*   Nothing.                                                               */
   5047 /****************************************************************************/
   5048 void
   5049 bnx_watchdog(struct ifnet *ifp)
   5050 {
   5051 	struct bnx_softc	*sc = ifp->if_softc;
   5052 
   5053 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5054 	    bnx_dump_status_block(sc));
   5055 	/*
   5056 	 * If we are in this routine because of pause frames, then
   5057 	 * don't reset the hardware.
   5058 	 */
   5059 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5060 		return;
   5061 
   5062 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5063 
   5064 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5065 
   5066 	bnx_init(ifp);
   5067 
   5068 	ifp->if_oerrors++;
   5069 }
   5070 
   5071 /*
   5072  * Interrupt handler.
   5073  */
   5074 /****************************************************************************/
   5075 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5076 /* interrupt and then calls a separate routine for handle the various       */
   5077 /* interrupt causes (PHY, TX, RX).                                          */
   5078 /*                                                                          */
   5079 /* Returns:                                                                 */
   5080 /*   0 for success, positive value for failure.                             */
   5081 /****************************************************************************/
   5082 int
   5083 bnx_intr(void *xsc)
   5084 {
   5085 	struct bnx_softc	*sc;
   5086 	struct ifnet		*ifp;
   5087 	u_int32_t		status_attn_bits;
   5088 	const struct status_block *sblk;
   5089 
   5090 	sc = xsc;
   5091 	if (!device_is_active(sc->bnx_dev))
   5092 		return 0;
   5093 
   5094 	ifp = &sc->bnx_ec.ec_if;
   5095 
   5096 	DBRUNIF(1, sc->interrupts_generated++);
   5097 
   5098 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5099 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   5100 
   5101 	/*
   5102 	 * If the hardware status block index
   5103 	 * matches the last value read by the
   5104 	 * driver and we haven't asserted our
   5105 	 * interrupt then there's nothing to do.
   5106 	 */
   5107 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   5108 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   5109 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   5110 		return (0);
   5111 
   5112 	/* Ack the interrupt and stop others from occuring. */
   5113 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5114 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   5115 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5116 
   5117 	/* Keep processing data as long as there is work to do. */
   5118 	for (;;) {
   5119 		sblk = sc->status_block;
   5120 		status_attn_bits = sblk->status_attn_bits;
   5121 
   5122 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5123 		    aprint_debug("Simulating unexpected status attention bit set.");
   5124 		    status_attn_bits = status_attn_bits |
   5125 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5126 
   5127 		/* Was it a link change interrupt? */
   5128 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5129 		    (sblk->status_attn_bits_ack &
   5130 		    STATUS_ATTN_BITS_LINK_STATE))
   5131 			bnx_phy_intr(sc);
   5132 
   5133 		/* If any other attention is asserted then the chip is toast. */
   5134 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5135 		    (sblk->status_attn_bits_ack &
   5136 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5137 			DBRUN(1, sc->unexpected_attentions++);
   5138 
   5139 			BNX_PRINTF(sc,
   5140 			    "Fatal attention detected: 0x%08X\n",
   5141 			    sblk->status_attn_bits);
   5142 
   5143 			DBRUN(BNX_FATAL,
   5144 			    if (bnx_debug_unexpected_attention == 0)
   5145 			    bnx_breakpoint(sc));
   5146 
   5147 			bnx_init(ifp);
   5148 			return (1);
   5149 		}
   5150 
   5151 		/* Check for any completed RX frames. */
   5152 		if (sblk->status_rx_quick_consumer_index0 !=
   5153 		    sc->hw_rx_cons)
   5154 			bnx_rx_intr(sc);
   5155 
   5156 		/* Check for any completed TX frames. */
   5157 		if (sblk->status_tx_quick_consumer_index0 !=
   5158 		    sc->hw_tx_cons)
   5159 			bnx_tx_intr(sc);
   5160 
   5161 		/* Save the status block index value for use during the
   5162 		 * next interrupt.
   5163 		 */
   5164 		sc->last_status_idx = sblk->status_idx;
   5165 
   5166 		/* Prevent speculative reads from getting ahead of the
   5167 		 * status block.
   5168 		 */
   5169 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   5170 		    BUS_SPACE_BARRIER_READ);
   5171 
   5172 		/* If there's no work left then exit the isr. */
   5173 		if ((sblk->status_rx_quick_consumer_index0 ==
   5174 		    sc->hw_rx_cons) &&
   5175 		    (sblk->status_tx_quick_consumer_index0 ==
   5176 		    sc->hw_tx_cons))
   5177 			break;
   5178 	}
   5179 
   5180 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5181 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   5182 
   5183 	/* Re-enable interrupts. */
   5184 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5185 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   5186 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5187 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5188 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   5189 
   5190 	/* Handle any frames that arrived while handling the interrupt. */
   5191 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   5192 		bnx_start(ifp);
   5193 
   5194 	return (1);
   5195 }
   5196 
   5197 /****************************************************************************/
   5198 /* Programs the various packet receive modes (broadcast and multicast).     */
   5199 /*                                                                          */
   5200 /* Returns:                                                                 */
   5201 /*   Nothing.                                                               */
   5202 /****************************************************************************/
   5203 void
   5204 bnx_iff(struct bnx_softc *sc)
   5205 {
   5206 	struct ethercom		*ec = &sc->bnx_ec;
   5207 	struct ifnet		*ifp = &ec->ec_if;
   5208 	struct ether_multi	*enm;
   5209 	struct ether_multistep	step;
   5210 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5211 	u_int32_t		rx_mode, sort_mode;
   5212 	int			h, i;
   5213 
   5214 	/* Initialize receive mode default settings. */
   5215 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5216 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5217 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5218 	ifp->if_flags &= ~IFF_ALLMULTI;
   5219 
   5220 	/*
   5221 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5222 	 * be enbled.
   5223 	 */
   5224 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5225 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5226 
   5227 	/*
   5228 	 * Check for promiscuous, all multicast, or selected
   5229 	 * multicast address filtering.
   5230 	 */
   5231 	if (ifp->if_flags & IFF_PROMISC) {
   5232 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5233 
   5234 		ifp->if_flags |= IFF_ALLMULTI;
   5235 		/* Enable promiscuous mode. */
   5236 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5237 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5238 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5239 allmulti:
   5240 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5241 
   5242 		ifp->if_flags |= IFF_ALLMULTI;
   5243 		/* Enable all multicast addresses. */
   5244 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5245 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5246 			    0xffffffff);
   5247 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5248 	} else {
   5249 		/* Accept one or more multicast(s). */
   5250 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5251 
   5252 		ETHER_FIRST_MULTI(step, ec, enm);
   5253 		while (enm != NULL) {
   5254 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5255 			    ETHER_ADDR_LEN)) {
   5256 				goto allmulti;
   5257 			}
   5258 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5259 			    0xFF;
   5260 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5261 			ETHER_NEXT_MULTI(step, enm);
   5262 		}
   5263 
   5264 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5265 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5266 			    hashes[i]);
   5267 
   5268 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5269 	}
   5270 
   5271 	/* Only make changes if the recive mode has actually changed. */
   5272 	if (rx_mode != sc->rx_mode) {
   5273 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5274 		    rx_mode);
   5275 
   5276 		sc->rx_mode = rx_mode;
   5277 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5278 	}
   5279 
   5280 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5281 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5282 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5283 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5284 }
   5285 
   5286 /****************************************************************************/
   5287 /* Called periodically to updates statistics from the controllers           */
   5288 /* statistics block.                                                        */
   5289 /*                                                                          */
   5290 /* Returns:                                                                 */
   5291 /*   Nothing.                                                               */
   5292 /****************************************************************************/
   5293 void
   5294 bnx_stats_update(struct bnx_softc *sc)
   5295 {
   5296 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5297 	struct statistics_block	*stats;
   5298 
   5299 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5300 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5301 	    BUS_DMASYNC_POSTREAD);
   5302 
   5303 	stats = (struct statistics_block *)sc->stats_block;
   5304 
   5305 	/*
   5306 	 * Update the interface statistics from the
   5307 	 * hardware statistics.
   5308 	 */
   5309 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5310 
   5311 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5312 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5313 	    (u_long)stats->stat_IfInMBUFDiscards +
   5314 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5315 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5316 
   5317 	ifp->if_oerrors = (u_long)
   5318 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5319 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5320 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5321 
   5322 	/*
   5323 	 * Certain controllers don't report
   5324 	 * carrier sense errors correctly.
   5325 	 * See errata E11_5708CA0_1165.
   5326 	 */
   5327 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5328 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5329 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5330 
   5331 	/*
   5332 	 * Update the sysctl statistics from the
   5333 	 * hardware statistics.
   5334 	 */
   5335 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
   5336 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
   5337 
   5338 	sc->stat_IfHCInBadOctets =
   5339 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5340 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
   5341 
   5342 	sc->stat_IfHCOutOctets =
   5343 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5344 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
   5345 
   5346 	sc->stat_IfHCOutBadOctets =
   5347 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5348 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
   5349 
   5350 	sc->stat_IfHCInUcastPkts =
   5351 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5352 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
   5353 
   5354 	sc->stat_IfHCInMulticastPkts =
   5355 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5356 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
   5357 
   5358 	sc->stat_IfHCInBroadcastPkts =
   5359 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5360 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5361 
   5362 	sc->stat_IfHCOutUcastPkts =
   5363 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5364 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
   5365 
   5366 	sc->stat_IfHCOutMulticastPkts =
   5367 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5368 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5369 
   5370 	sc->stat_IfHCOutBroadcastPkts =
   5371 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5372 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5373 
   5374 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5375 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5376 
   5377 	sc->stat_Dot3StatsCarrierSenseErrors =
   5378 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5379 
   5380 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5381 
   5382 	sc->stat_Dot3StatsAlignmentErrors =
   5383 	    stats->stat_Dot3StatsAlignmentErrors;
   5384 
   5385 	sc->stat_Dot3StatsSingleCollisionFrames =
   5386 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5387 
   5388 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5389 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5390 
   5391 	sc->stat_Dot3StatsDeferredTransmissions =
   5392 	    stats->stat_Dot3StatsDeferredTransmissions;
   5393 
   5394 	sc->stat_Dot3StatsExcessiveCollisions =
   5395 	    stats->stat_Dot3StatsExcessiveCollisions;
   5396 
   5397 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5398 
   5399 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5400 
   5401 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5402 
   5403 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5404 
   5405 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5406 
   5407 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5408 
   5409 	sc->stat_EtherStatsPktsRx64Octets =
   5410 	    stats->stat_EtherStatsPktsRx64Octets;
   5411 
   5412 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5413 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5414 
   5415 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5416 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5417 
   5418 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5419 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5420 
   5421 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5422 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5423 
   5424 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5425 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5426 
   5427 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5428 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5429 
   5430 	sc->stat_EtherStatsPktsTx64Octets =
   5431 	    stats->stat_EtherStatsPktsTx64Octets;
   5432 
   5433 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5434 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5435 
   5436 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5437 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5438 
   5439 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5440 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5441 
   5442 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5443 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5444 
   5445 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5446 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5447 
   5448 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5449 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5450 
   5451 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5452 
   5453 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5454 
   5455 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5456 
   5457 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5458 
   5459 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5460 
   5461 	sc->stat_MacControlFramesReceived =
   5462 	    stats->stat_MacControlFramesReceived;
   5463 
   5464 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5465 
   5466 	sc->stat_IfInFramesL2FilterDiscards =
   5467 	    stats->stat_IfInFramesL2FilterDiscards;
   5468 
   5469 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5470 
   5471 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5472 
   5473 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5474 
   5475 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5476 
   5477 	sc->stat_CatchupInRuleCheckerDiscards =
   5478 	    stats->stat_CatchupInRuleCheckerDiscards;
   5479 
   5480 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5481 
   5482 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5483 
   5484 	sc->stat_CatchupInRuleCheckerP4Hit =
   5485 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5486 
   5487 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5488 }
   5489 
   5490 void
   5491 bnx_tick(void *xsc)
   5492 {
   5493 	struct bnx_softc	*sc = xsc;
   5494 	struct mii_data		*mii;
   5495 	u_int32_t		msg;
   5496 	u_int16_t		prod, chain_prod;
   5497 	u_int32_t		prod_bseq;
   5498 	int s = splnet();
   5499 
   5500 	/* Tell the firmware that the driver is still running. */
   5501 #ifdef BNX_DEBUG
   5502 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5503 #else
   5504 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5505 #endif
   5506 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5507 
   5508 	/* Update the statistics from the hardware statistics block. */
   5509 	bnx_stats_update(sc);
   5510 
   5511 	/* Schedule the next tick. */
   5512 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5513 
   5514 	mii = &sc->bnx_mii;
   5515 	mii_tick(mii);
   5516 
   5517 	/* try to get more RX buffers, just in case */
   5518 	prod = sc->rx_prod;
   5519 	prod_bseq = sc->rx_prod_bseq;
   5520 	chain_prod = RX_CHAIN_IDX(prod);
   5521 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5522 	sc->rx_prod = prod;
   5523 	sc->rx_prod_bseq = prod_bseq;
   5524 	splx(s);
   5525 	return;
   5526 }
   5527 
   5528 /****************************************************************************/
   5529 /* BNX Debug Routines                                                       */
   5530 /****************************************************************************/
   5531 #ifdef BNX_DEBUG
   5532 
   5533 /****************************************************************************/
   5534 /* Prints out information about an mbuf.                                    */
   5535 /*                                                                          */
   5536 /* Returns:                                                                 */
   5537 /*   Nothing.                                                               */
   5538 /****************************************************************************/
   5539 void
   5540 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5541 {
   5542 	struct mbuf		*mp = m;
   5543 
   5544 	if (m == NULL) {
   5545 		/* Index out of range. */
   5546 		aprint_error("mbuf ptr is null!\n");
   5547 		return;
   5548 	}
   5549 
   5550 	while (mp) {
   5551 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5552 		    mp, mp->m_len);
   5553 
   5554 		if (mp->m_flags & M_EXT)
   5555 			aprint_debug("M_EXT ");
   5556 		if (mp->m_flags & M_PKTHDR)
   5557 			aprint_debug("M_PKTHDR ");
   5558 		aprint_debug("\n");
   5559 
   5560 		if (mp->m_flags & M_EXT)
   5561 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   5562 			    mp, mp->m_ext.ext_size);
   5563 
   5564 		mp = mp->m_next;
   5565 	}
   5566 }
   5567 
   5568 /****************************************************************************/
   5569 /* Prints out the mbufs in the TX mbuf chain.                               */
   5570 /*                                                                          */
   5571 /* Returns:                                                                 */
   5572 /*   Nothing.                                                               */
   5573 /****************************************************************************/
   5574 void
   5575 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5576 {
   5577 #if 0
   5578 	struct mbuf		*m;
   5579 	int			i;
   5580 
   5581 	aprint_debug_dev(sc->bnx_dev,
   5582 	    "----------------------------"
   5583 	    "  tx mbuf data  "
   5584 	    "----------------------------\n");
   5585 
   5586 	for (i = 0; i < count; i++) {
   5587 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5588 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5589 		bnx_dump_mbuf(sc, m);
   5590 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5591 	}
   5592 
   5593 	aprint_debug_dev(sc->bnx_dev,
   5594 	    "--------------------------------------------"
   5595 	    "----------------------------\n");
   5596 #endif
   5597 }
   5598 
   5599 /*
   5600  * This routine prints the RX mbuf chain.
   5601  */
   5602 void
   5603 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5604 {
   5605 	struct mbuf		*m;
   5606 	int			i;
   5607 
   5608 	aprint_debug_dev(sc->bnx_dev,
   5609 	    "----------------------------"
   5610 	    "  rx mbuf data  "
   5611 	    "----------------------------\n");
   5612 
   5613 	for (i = 0; i < count; i++) {
   5614 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5615 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5616 		bnx_dump_mbuf(sc, m);
   5617 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5618 	}
   5619 
   5620 
   5621 	aprint_debug_dev(sc->bnx_dev,
   5622 	    "--------------------------------------------"
   5623 	    "----------------------------\n");
   5624 }
   5625 
   5626 void
   5627 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5628 {
   5629 	if (idx > MAX_TX_BD)
   5630 		/* Index out of range. */
   5631 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5632 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5633 		/* TX Chain page pointer. */
   5634 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5635 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5636 		    txbd->tx_bd_haddr_lo);
   5637 	else
   5638 		/* Normal tx_bd entry. */
   5639 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5640 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5641 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5642 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5643 		    txbd->tx_bd_flags);
   5644 }
   5645 
   5646 void
   5647 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5648 {
   5649 	if (idx > MAX_RX_BD)
   5650 		/* Index out of range. */
   5651 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5652 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5653 		/* TX Chain page pointer. */
   5654 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5655 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5656 		    rxbd->rx_bd_haddr_lo);
   5657 	else
   5658 		/* Normal tx_bd entry. */
   5659 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5660 		    "0x%08X, flags = 0x%08X\n", idx,
   5661 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5662 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5663 }
   5664 
   5665 void
   5666 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5667 {
   5668 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5669 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5670 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5671 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5672 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5673 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5674 }
   5675 
   5676 /*
   5677  * This routine prints the TX chain.
   5678  */
   5679 void
   5680 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5681 {
   5682 	struct tx_bd		*txbd;
   5683 	int			i;
   5684 
   5685 	/* First some info about the tx_bd chain structure. */
   5686 	aprint_debug_dev(sc->bnx_dev,
   5687 	    "----------------------------"
   5688 	    "  tx_bd  chain  "
   5689 	    "----------------------------\n");
   5690 
   5691 	BNX_PRINTF(sc,
   5692 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5693 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
   5694 
   5695 	BNX_PRINTF(sc,
   5696 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5697 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
   5698 
   5699 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
   5700 
   5701 	aprint_error_dev(sc->bnx_dev, ""
   5702 	    "-----------------------------"
   5703 	    "   tx_bd data   "
   5704 	    "-----------------------------\n");
   5705 
   5706 	/* Now print out the tx_bd's themselves. */
   5707 	for (i = 0; i < count; i++) {
   5708 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5709 		bnx_dump_txbd(sc, tx_prod, txbd);
   5710 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5711 	}
   5712 
   5713 	aprint_debug_dev(sc->bnx_dev,
   5714 	    "-----------------------------"
   5715 	    "--------------"
   5716 	    "-----------------------------\n");
   5717 }
   5718 
   5719 /*
   5720  * This routine prints the RX chain.
   5721  */
   5722 void
   5723 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5724 {
   5725 	struct rx_bd		*rxbd;
   5726 	int			i;
   5727 
   5728 	/* First some info about the tx_bd chain structure. */
   5729 	aprint_debug_dev(sc->bnx_dev,
   5730 	    "----------------------------"
   5731 	    "  rx_bd  chain  "
   5732 	    "----------------------------\n");
   5733 
   5734 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   5735 
   5736 	BNX_PRINTF(sc,
   5737 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5738 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
   5739 
   5740 	BNX_PRINTF(sc,
   5741 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5742 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
   5743 
   5744 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
   5745 
   5746 	aprint_error_dev(sc->bnx_dev,
   5747 	    "----------------------------"
   5748 	    "   rx_bd data   "
   5749 	    "----------------------------\n");
   5750 
   5751 	/* Now print out the rx_bd's themselves. */
   5752 	for (i = 0; i < count; i++) {
   5753 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5754 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5755 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5756 	}
   5757 
   5758 	aprint_debug_dev(sc->bnx_dev,
   5759 	    "----------------------------"
   5760 	    "--------------"
   5761 	    "----------------------------\n");
   5762 }
   5763 
   5764 /*
   5765  * This routine prints the status block.
   5766  */
   5767 void
   5768 bnx_dump_status_block(struct bnx_softc *sc)
   5769 {
   5770 	struct status_block	*sblk;
   5771 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5772 	    BUS_DMASYNC_POSTREAD);
   5773 
   5774 	sblk = sc->status_block;
   5775 
   5776    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
   5777 	    "-----------------------------\n");
   5778 
   5779 	BNX_PRINTF(sc,
   5780 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5781 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5782 	    sblk->status_idx);
   5783 
   5784 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5785 	    sblk->status_rx_quick_consumer_index0,
   5786 	    sblk->status_tx_quick_consumer_index0);
   5787 
   5788 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5789 
   5790 	/* Theses indices are not used for normal L2 drivers. */
   5791 	if (sblk->status_rx_quick_consumer_index1 ||
   5792 		sblk->status_tx_quick_consumer_index1)
   5793 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5794 		    sblk->status_rx_quick_consumer_index1,
   5795 		    sblk->status_tx_quick_consumer_index1);
   5796 
   5797 	if (sblk->status_rx_quick_consumer_index2 ||
   5798 		sblk->status_tx_quick_consumer_index2)
   5799 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5800 		    sblk->status_rx_quick_consumer_index2,
   5801 		    sblk->status_tx_quick_consumer_index2);
   5802 
   5803 	if (sblk->status_rx_quick_consumer_index3 ||
   5804 		sblk->status_tx_quick_consumer_index3)
   5805 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5806 		    sblk->status_rx_quick_consumer_index3,
   5807 		    sblk->status_tx_quick_consumer_index3);
   5808 
   5809 	if (sblk->status_rx_quick_consumer_index4 ||
   5810 		sblk->status_rx_quick_consumer_index5)
   5811 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5812 		    sblk->status_rx_quick_consumer_index4,
   5813 		    sblk->status_rx_quick_consumer_index5);
   5814 
   5815 	if (sblk->status_rx_quick_consumer_index6 ||
   5816 		sblk->status_rx_quick_consumer_index7)
   5817 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5818 		    sblk->status_rx_quick_consumer_index6,
   5819 		    sblk->status_rx_quick_consumer_index7);
   5820 
   5821 	if (sblk->status_rx_quick_consumer_index8 ||
   5822 		sblk->status_rx_quick_consumer_index9)
   5823 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5824 		    sblk->status_rx_quick_consumer_index8,
   5825 		    sblk->status_rx_quick_consumer_index9);
   5826 
   5827 	if (sblk->status_rx_quick_consumer_index10 ||
   5828 		sblk->status_rx_quick_consumer_index11)
   5829 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   5830 		    sblk->status_rx_quick_consumer_index10,
   5831 		    sblk->status_rx_quick_consumer_index11);
   5832 
   5833 	if (sblk->status_rx_quick_consumer_index12 ||
   5834 		sblk->status_rx_quick_consumer_index13)
   5835 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   5836 		    sblk->status_rx_quick_consumer_index12,
   5837 		    sblk->status_rx_quick_consumer_index13);
   5838 
   5839 	if (sblk->status_rx_quick_consumer_index14 ||
   5840 		sblk->status_rx_quick_consumer_index15)
   5841 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   5842 		    sblk->status_rx_quick_consumer_index14,
   5843 		    sblk->status_rx_quick_consumer_index15);
   5844 
   5845 	if (sblk->status_completion_producer_index ||
   5846 		sblk->status_cmd_consumer_index)
   5847 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   5848 		    sblk->status_completion_producer_index,
   5849 		    sblk->status_cmd_consumer_index);
   5850 
   5851 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   5852 	    "-----------------------------\n");
   5853 }
   5854 
   5855 /*
   5856  * This routine prints the statistics block.
   5857  */
   5858 void
   5859 bnx_dump_stats_block(struct bnx_softc *sc)
   5860 {
   5861 	struct statistics_block	*sblk;
   5862 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5863 	    BUS_DMASYNC_POSTREAD);
   5864 
   5865 	sblk = sc->stats_block;
   5866 
   5867 	aprint_debug_dev(sc->bnx_dev, ""
   5868 	    "-----------------------------"
   5869 	    " Stats  Block "
   5870 	    "-----------------------------\n");
   5871 
   5872 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   5873 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   5874 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   5875 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   5876 
   5877 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   5878 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   5879 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   5880 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   5881 
   5882 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   5883 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   5884 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   5885 	    sblk->stat_IfHCInMulticastPkts_hi,
   5886 	    sblk->stat_IfHCInMulticastPkts_lo);
   5887 
   5888 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   5889 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   5890 	    sblk->stat_IfHCInBroadcastPkts_hi,
   5891 	    sblk->stat_IfHCInBroadcastPkts_lo,
   5892 	    sblk->stat_IfHCOutUcastPkts_hi,
   5893 	    sblk->stat_IfHCOutUcastPkts_lo);
   5894 
   5895 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   5896 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   5897 	    sblk->stat_IfHCOutMulticastPkts_hi,
   5898 	    sblk->stat_IfHCOutMulticastPkts_lo,
   5899 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   5900 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   5901 
   5902 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   5903 		BNX_PRINTF(sc, "0x%08X : "
   5904 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   5905 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   5906 
   5907 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   5908 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   5909 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   5910 
   5911 	if (sblk->stat_Dot3StatsFCSErrors)
   5912 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   5913 		    sblk->stat_Dot3StatsFCSErrors);
   5914 
   5915 	if (sblk->stat_Dot3StatsAlignmentErrors)
   5916 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   5917 		    sblk->stat_Dot3StatsAlignmentErrors);
   5918 
   5919 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   5920 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   5921 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   5922 
   5923 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   5924 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   5925 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   5926 
   5927 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   5928 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   5929 		    sblk->stat_Dot3StatsDeferredTransmissions);
   5930 
   5931 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   5932 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   5933 		    sblk->stat_Dot3StatsExcessiveCollisions);
   5934 
   5935 	if (sblk->stat_Dot3StatsLateCollisions)
   5936 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   5937 		    sblk->stat_Dot3StatsLateCollisions);
   5938 
   5939 	if (sblk->stat_EtherStatsCollisions)
   5940 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   5941 		    sblk->stat_EtherStatsCollisions);
   5942 
   5943 	if (sblk->stat_EtherStatsFragments)
   5944 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   5945 		    sblk->stat_EtherStatsFragments);
   5946 
   5947 	if (sblk->stat_EtherStatsJabbers)
   5948 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   5949 		    sblk->stat_EtherStatsJabbers);
   5950 
   5951 	if (sblk->stat_EtherStatsUndersizePkts)
   5952 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   5953 		    sblk->stat_EtherStatsUndersizePkts);
   5954 
   5955 	if (sblk->stat_EtherStatsOverrsizePkts)
   5956 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   5957 		    sblk->stat_EtherStatsOverrsizePkts);
   5958 
   5959 	if (sblk->stat_EtherStatsPktsRx64Octets)
   5960 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   5961 		    sblk->stat_EtherStatsPktsRx64Octets);
   5962 
   5963 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   5964 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   5965 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   5966 
   5967 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   5968 		BNX_PRINTF(sc, "0x%08X : "
   5969 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   5970 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   5971 
   5972 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   5973 		BNX_PRINTF(sc, "0x%08X : "
   5974 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   5975 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   5976 
   5977 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   5978 		BNX_PRINTF(sc, "0x%08X : "
   5979 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   5980 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   5981 
   5982 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   5983 		BNX_PRINTF(sc, "0x%08X : "
   5984 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   5985 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   5986 
   5987 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   5988 		BNX_PRINTF(sc, "0x%08X : "
   5989 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   5990 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   5991 
   5992 	if (sblk->stat_EtherStatsPktsTx64Octets)
   5993 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   5994 		    sblk->stat_EtherStatsPktsTx64Octets);
   5995 
   5996 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   5997 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   5998 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   5999 
   6000 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6001 		BNX_PRINTF(sc, "0x%08X : "
   6002 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6003 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6004 
   6005 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6006 		BNX_PRINTF(sc, "0x%08X : "
   6007 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6008 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6009 
   6010 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6011 		BNX_PRINTF(sc, "0x%08X : "
   6012 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6013 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6014 
   6015 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6016 		BNX_PRINTF(sc, "0x%08X : "
   6017 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6018 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6019 
   6020 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6021 		BNX_PRINTF(sc, "0x%08X : "
   6022 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6023 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6024 
   6025 	if (sblk->stat_XonPauseFramesReceived)
   6026 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6027 		    sblk->stat_XonPauseFramesReceived);
   6028 
   6029 	if (sblk->stat_XoffPauseFramesReceived)
   6030 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6031 		    sblk->stat_XoffPauseFramesReceived);
   6032 
   6033 	if (sblk->stat_OutXonSent)
   6034 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6035 		    sblk->stat_OutXonSent);
   6036 
   6037 	if (sblk->stat_OutXoffSent)
   6038 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6039 		    sblk->stat_OutXoffSent);
   6040 
   6041 	if (sblk->stat_FlowControlDone)
   6042 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6043 		    sblk->stat_FlowControlDone);
   6044 
   6045 	if (sblk->stat_MacControlFramesReceived)
   6046 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6047 		    sblk->stat_MacControlFramesReceived);
   6048 
   6049 	if (sblk->stat_XoffStateEntered)
   6050 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6051 		    sblk->stat_XoffStateEntered);
   6052 
   6053 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6054 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6055 		    sblk->stat_IfInFramesL2FilterDiscards);
   6056 
   6057 	if (sblk->stat_IfInRuleCheckerDiscards)
   6058 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6059 		    sblk->stat_IfInRuleCheckerDiscards);
   6060 
   6061 	if (sblk->stat_IfInFTQDiscards)
   6062 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6063 		    sblk->stat_IfInFTQDiscards);
   6064 
   6065 	if (sblk->stat_IfInMBUFDiscards)
   6066 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6067 		    sblk->stat_IfInMBUFDiscards);
   6068 
   6069 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6070 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6071 		    sblk->stat_IfInRuleCheckerP4Hit);
   6072 
   6073 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6074 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6075 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6076 
   6077 	if (sblk->stat_CatchupInFTQDiscards)
   6078 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6079 		    sblk->stat_CatchupInFTQDiscards);
   6080 
   6081 	if (sblk->stat_CatchupInMBUFDiscards)
   6082 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6083 		    sblk->stat_CatchupInMBUFDiscards);
   6084 
   6085 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6086 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6087 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6088 
   6089 	aprint_debug_dev(sc->bnx_dev,
   6090 	    "-----------------------------"
   6091 	    "--------------"
   6092 	    "-----------------------------\n");
   6093 }
   6094 
   6095 void
   6096 bnx_dump_driver_state(struct bnx_softc *sc)
   6097 {
   6098 	aprint_debug_dev(sc->bnx_dev,
   6099 	    "-----------------------------"
   6100 	    " Driver State "
   6101 	    "-----------------------------\n");
   6102 
   6103 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6104 	    "address\n", sc);
   6105 
   6106 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6107 	    sc->status_block);
   6108 
   6109 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6110 	    "address\n", sc->stats_block);
   6111 
   6112 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6113 	    "adddress\n", sc->tx_bd_chain);
   6114 
   6115 #if 0
   6116 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6117 	    sc->rx_bd_chain);
   6118 
   6119 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6120 	    sc->tx_mbuf_ptr);
   6121 #endif
   6122 
   6123 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6124 	    sc->rx_mbuf_ptr);
   6125 
   6126 	BNX_PRINTF(sc,
   6127 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6128 	    sc->interrupts_generated);
   6129 
   6130 	BNX_PRINTF(sc,
   6131 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6132 	    sc->rx_interrupts);
   6133 
   6134 	BNX_PRINTF(sc,
   6135 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6136 	    sc->tx_interrupts);
   6137 
   6138 	BNX_PRINTF(sc,
   6139 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6140 	    sc->last_status_idx);
   6141 
   6142 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6143 	    sc->tx_prod);
   6144 
   6145 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6146 	    sc->tx_cons);
   6147 
   6148 	BNX_PRINTF(sc,
   6149 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6150 	    sc->tx_prod_bseq);
   6151 	BNX_PRINTF(sc,
   6152 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6153 	    sc->tx_mbuf_alloc);
   6154 
   6155 	BNX_PRINTF(sc,
   6156 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6157 	    sc->used_tx_bd);
   6158 
   6159 	BNX_PRINTF(sc,
   6160 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6161 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6162 
   6163 
   6164 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6165 	    sc->rx_prod);
   6166 
   6167 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6168 	    sc->rx_cons);
   6169 
   6170 	BNX_PRINTF(sc,
   6171 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6172 	    sc->rx_prod_bseq);
   6173 
   6174 	BNX_PRINTF(sc,
   6175 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6176 	    sc->rx_mbuf_alloc);
   6177 
   6178 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6179 	    sc->free_rx_bd);
   6180 
   6181 	BNX_PRINTF(sc,
   6182 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6183 	    sc->rx_low_watermark, sc->max_rx_bd);
   6184 
   6185 	BNX_PRINTF(sc,
   6186 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6187 	    "mbuf alloc failures\n",
   6188 	    sc->mbuf_alloc_failed);
   6189 
   6190 	BNX_PRINTF(sc,
   6191 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6192 	    "simulated mbuf alloc failures\n",
   6193 	    sc->mbuf_sim_alloc_failed);
   6194 
   6195 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6196 	    "-----------------------------\n");
   6197 }
   6198 
   6199 void
   6200 bnx_dump_hw_state(struct bnx_softc *sc)
   6201 {
   6202 	u_int32_t		val1;
   6203 	int			i;
   6204 
   6205 	aprint_debug_dev(sc->bnx_dev,
   6206 	    "----------------------------"
   6207 	    " Hardware State "
   6208 	    "----------------------------\n");
   6209 
   6210 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   6211 
   6212 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6213 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6214 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6215 
   6216 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6217 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6218 
   6219 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6220 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6221 
   6222 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6223 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6224 	    BNX_EMAC_STATUS);
   6225 
   6226 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6227 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6228 
   6229 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6230 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6231 	    BNX_TBDR_STATUS);
   6232 
   6233 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6234 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6235 	    BNX_TDMA_STATUS);
   6236 
   6237 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6238 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6239 
   6240 	aprint_debug_dev(sc->bnx_dev,
   6241 	    "----------------------------"
   6242 	    "----------------"
   6243 	    "----------------------------\n");
   6244 
   6245 	aprint_debug_dev(sc->bnx_dev,
   6246 	    "----------------------------"
   6247 	    " Register  Dump "
   6248 	    "----------------------------\n");
   6249 
   6250 	for (i = 0x400; i < 0x8000; i += 0x10)
   6251 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6252 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6253 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6254 
   6255 	aprint_debug_dev(sc->bnx_dev,
   6256 	    "----------------------------"
   6257 	    "----------------"
   6258 	    "----------------------------\n");
   6259 }
   6260 
   6261 void
   6262 bnx_breakpoint(struct bnx_softc *sc)
   6263 {
   6264 	/* Unreachable code to shut the compiler up about unused functions. */
   6265 	if (0) {
   6266    		bnx_dump_txbd(sc, 0, NULL);
   6267 		bnx_dump_rxbd(sc, 0, NULL);
   6268 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6269 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6270 		bnx_dump_l2fhdr(sc, 0, NULL);
   6271 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6272 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6273 		bnx_dump_status_block(sc);
   6274 		bnx_dump_stats_block(sc);
   6275 		bnx_dump_driver_state(sc);
   6276 		bnx_dump_hw_state(sc);
   6277 	}
   6278 
   6279 	bnx_dump_driver_state(sc);
   6280 	/* Print the important status block fields. */
   6281 	bnx_dump_status_block(sc);
   6282 
   6283 #if 0
   6284 	/* Call the debugger. */
   6285 	breakpoint();
   6286 #endif
   6287 
   6288 	return;
   6289 }
   6290 #endif
   6291