Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.36
      1 /*	$NetBSD: if_bnx.c,v 1.36 2010/12/09 22:34:37 jym Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
      3 
      4 /*-
      5  * Copyright (c) 2006 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.36 2010/12/09 22:34:37 jym Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5716  C0
     48  *
     49  * The following controllers are not supported by this driver:
     50  *
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, A1, B0, B1, B2, C0 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/pci/if_bnxvar.h>
     64 
     65 #include <dev/microcode/bnx/bnxfw.h>
     66 
     67 /****************************************************************************/
     68 /* BNX Driver Version                                                       */
     69 /****************************************************************************/
     70 #define BNX_DRIVER_VERSION	"v0.9.6"
     71 
     72 /****************************************************************************/
     73 /* BNX Debug Options                                                        */
     74 /****************************************************************************/
     75 #ifdef BNX_DEBUG
     76 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     77 
     78 	/*          0 = Never              */
     79 	/*          1 = 1 in 2,147,483,648 */
     80 	/*        256 = 1 in     8,388,608 */
     81 	/*       2048 = 1 in     1,048,576 */
     82 	/*      65536 = 1 in        32,768 */
     83 	/*    1048576 = 1 in         2,048 */
     84 	/*  268435456 =	1 in             8 */
     85 	/*  536870912 = 1 in             4 */
     86 	/* 1073741824 = 1 in             2 */
     87 
     88 	/* Controls how often the l2_fhdr frame error check will fail. */
     89 	int bnx_debug_l2fhdr_status_check = 0;
     90 
     91 	/* Controls how often the unexpected attention check will fail. */
     92 	int bnx_debug_unexpected_attention = 0;
     93 
     94 	/* Controls how often to simulate an mbuf allocation failure. */
     95 	int bnx_debug_mbuf_allocation_failure = 0;
     96 
     97 	/* Controls how often to simulate a DMA mapping failure. */
     98 	int bnx_debug_dma_map_addr_failure = 0;
     99 
    100 	/* Controls how often to simulate a bootcode failure. */
    101 	int bnx_debug_bootcode_running_failure = 0;
    102 #endif
    103 
    104 /****************************************************************************/
    105 /* PCI Device ID Table                                                      */
    106 /*                                                                          */
    107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    108 /****************************************************************************/
    109 static const struct bnx_product {
    110 	pci_vendor_id_t		bp_vendor;
    111 	pci_product_id_t	bp_product;
    112 	pci_vendor_id_t		bp_subvendor;
    113 	pci_product_id_t	bp_subproduct;
    114 	const char		*bp_name;
    115 } bnx_devices[] = {
    116 #ifdef PCI_SUBPRODUCT_HP_NC370T
    117 	{
    118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    120 	  "HP NC370T Multifunction Gigabit Server Adapter"
    121 	},
    122 #endif
    123 #ifdef PCI_SUBPRODUCT_HP_NC370i
    124 	{
    125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    127 	  "HP NC370i Multifunction Gigabit Server Adapter"
    128 	},
    129 #endif
    130 	{
    131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    132 	  0, 0,
    133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    134 	},
    135 #ifdef PCI_SUBPRODUCT_HP_NC370F
    136 	{
    137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    139 	  "HP NC370F Multifunction Gigabit Server Adapter"
    140 	},
    141 #endif
    142 	{
    143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    144 	  0, 0,
    145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    146 	},
    147 	{
    148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    149 	  0, 0,
    150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    151 	},
    152 	{
    153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    154 	  0, 0,
    155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    156 	},
    157 	{
    158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    159 	  0, 0,
    160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    161 	},
    162 	{
    163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    164 	  0, 0,
    165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    166 	},
    167 	{
    168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    169 	  0, 0,
    170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    171 	},
    172 	{
    173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    174 	  0, 0,
    175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    176 	},
    177 };
    178 
    179 /****************************************************************************/
    180 /* Supported Flash NVRAM device data.                                       */
    181 /****************************************************************************/
    182 static struct flash_spec flash_table[] =
    183 {
    184 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    185 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    186 	/* Slow EEPROM */
    187 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    188 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    189 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    190 	 "EEPROM - slow"},
    191 	/* Expansion entry 0001 */
    192 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    195 	 "Entry 0001"},
    196 	/* Saifun SA25F010 (non-buffered flash) */
    197 	/* strap, cfg1, & write1 need updates */
    198 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    199 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    200 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    201 	 "Non-buffered flash (128kB)"},
    202 	/* Saifun SA25F020 (non-buffered flash) */
    203 	/* strap, cfg1, & write1 need updates */
    204 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    205 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    206 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    207 	 "Non-buffered flash (256kB)"},
    208 	/* Expansion entry 0100 */
    209 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    210 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    211 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    212 	 "Entry 0100"},
    213 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    214 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    215 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    216 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    217 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    218 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    219 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    220 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    221 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    222 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    223 	/* Saifun SA25F005 (non-buffered flash) */
    224 	/* strap, cfg1, & write1 need updates */
    225 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    228 	 "Non-buffered flash (64kB)"},
    229 	/* Fast EEPROM */
    230 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    231 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    232 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    233 	 "EEPROM - fast"},
    234 	/* Expansion entry 1001 */
    235 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    236 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    237 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    238 	 "Entry 1001"},
    239 	/* Expansion entry 1010 */
    240 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    241 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    242 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    243 	 "Entry 1010"},
    244 	/* ATMEL AT45DB011B (buffered flash) */
    245 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    246 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    247 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    248 	 "Buffered flash (128kB)"},
    249 	/* Expansion entry 1100 */
    250 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    251 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    252 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    253 	 "Entry 1100"},
    254 	/* Expansion entry 1101 */
    255 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    256 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    257 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    258 	 "Entry 1101"},
    259 	/* Ateml Expansion entry 1110 */
    260 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    261 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    262 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    263 	 "Entry 1110 (Atmel)"},
    264 	/* ATMEL AT45DB021B (buffered flash) */
    265 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    266 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    267 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    268 	 "Buffered flash (256kB)"},
    269 };
    270 
    271 /*
    272  * The BCM5709 controllers transparently handle the
    273  * differences between Atmel 264 byte pages and all
    274  * flash devices which use 256 byte pages, so no
    275  * logical-to-physical mapping is required in the
    276  * driver.
    277  */
    278 static struct flash_spec flash_5709 = {
    279 	.flags		= BNX_NV_BUFFERED,
    280 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    281 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    282 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    283 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    284 	.name		= "5709 buffered flash (256kB)",
    285 };
    286 
    287 /****************************************************************************/
    288 /* OpenBSD device entry points.                                             */
    289 /****************************************************************************/
    290 static int	bnx_probe(device_t, cfdata_t, void *);
    291 void	bnx_attach(device_t, device_t, void *);
    292 int	bnx_detach(device_t, int);
    293 
    294 /****************************************************************************/
    295 /* BNX Debug Data Structure Dump Routines                                   */
    296 /****************************************************************************/
    297 #ifdef BNX_DEBUG
    298 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    299 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    300 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    301 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    302 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    303 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    304 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    305 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    306 void	bnx_dump_status_block(struct bnx_softc *);
    307 void	bnx_dump_stats_block(struct bnx_softc *);
    308 void	bnx_dump_driver_state(struct bnx_softc *);
    309 void	bnx_dump_hw_state(struct bnx_softc *);
    310 void	bnx_breakpoint(struct bnx_softc *);
    311 #endif
    312 
    313 /****************************************************************************/
    314 /* BNX Register/Memory Access Routines                                      */
    315 /****************************************************************************/
    316 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
    317 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
    318 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
    319 int	bnx_miibus_read_reg(device_t, int, int);
    320 void	bnx_miibus_write_reg(device_t, int, int, int);
    321 void	bnx_miibus_statchg(device_t);
    322 
    323 /****************************************************************************/
    324 /* BNX NVRAM Access Routines                                                */
    325 /****************************************************************************/
    326 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    327 int	bnx_release_nvram_lock(struct bnx_softc *);
    328 void	bnx_enable_nvram_access(struct bnx_softc *);
    329 void	bnx_disable_nvram_access(struct bnx_softc *);
    330 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    331 	    u_int32_t);
    332 int	bnx_init_nvram(struct bnx_softc *);
    333 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    334 int	bnx_nvram_test(struct bnx_softc *);
    335 #ifdef BNX_NVRAM_WRITE_SUPPORT
    336 int	bnx_enable_nvram_write(struct bnx_softc *);
    337 void	bnx_disable_nvram_write(struct bnx_softc *);
    338 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
    339 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    340 	    u_int32_t);
    341 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    342 #endif
    343 
    344 /****************************************************************************/
    345 /*                                                                          */
    346 /****************************************************************************/
    347 void	bnx_get_media(struct bnx_softc *);
    348 int	bnx_dma_alloc(struct bnx_softc *);
    349 void	bnx_dma_free(struct bnx_softc *);
    350 void	bnx_release_resources(struct bnx_softc *);
    351 
    352 /****************************************************************************/
    353 /* BNX Firmware Synchronization and Load                                    */
    354 /****************************************************************************/
    355 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
    356 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
    357 	    u_int32_t);
    358 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    359 	    struct fw_info *);
    360 void	bnx_init_cpus(struct bnx_softc *);
    361 
    362 void	bnx_stop(struct ifnet *, int);
    363 int	bnx_reset(struct bnx_softc *, u_int32_t);
    364 int	bnx_chipinit(struct bnx_softc *);
    365 int	bnx_blockinit(struct bnx_softc *);
    366 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
    367 	    u_int16_t *, u_int32_t *);
    368 int	bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
    369 
    370 int	bnx_init_tx_chain(struct bnx_softc *);
    371 void	bnx_init_tx_context(struct bnx_softc *);
    372 int	bnx_init_rx_chain(struct bnx_softc *);
    373 void	bnx_init_rx_context(struct bnx_softc *);
    374 void	bnx_free_rx_chain(struct bnx_softc *);
    375 void	bnx_free_tx_chain(struct bnx_softc *);
    376 
    377 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    378 void	bnx_start(struct ifnet *);
    379 int	bnx_ioctl(struct ifnet *, u_long, void *);
    380 void	bnx_watchdog(struct ifnet *);
    381 int	bnx_init(struct ifnet *);
    382 
    383 void	bnx_init_context(struct bnx_softc *);
    384 void	bnx_get_mac_addr(struct bnx_softc *);
    385 void	bnx_set_mac_addr(struct bnx_softc *);
    386 void	bnx_phy_intr(struct bnx_softc *);
    387 void	bnx_rx_intr(struct bnx_softc *);
    388 void	bnx_tx_intr(struct bnx_softc *);
    389 void	bnx_disable_intr(struct bnx_softc *);
    390 void	bnx_enable_intr(struct bnx_softc *);
    391 
    392 int	bnx_intr(void *);
    393 void	bnx_iff(struct bnx_softc *);
    394 void	bnx_stats_update(struct bnx_softc *);
    395 void	bnx_tick(void *);
    396 
    397 struct pool *bnx_tx_pool = NULL;
    398 int	bnx_alloc_pkts(struct bnx_softc *);
    399 
    400 /****************************************************************************/
    401 /* OpenBSD device dispatch table.                                           */
    402 /****************************************************************************/
    403 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    404     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    405 
    406 /****************************************************************************/
    407 /* Device probe function.                                                   */
    408 /*                                                                          */
    409 /* Compares the device to the driver's list of supported devices and        */
    410 /* reports back to the OS whether this is the right driver for the device.  */
    411 /*                                                                          */
    412 /* Returns:                                                                 */
    413 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    414 /****************************************************************************/
    415 static const struct bnx_product *
    416 bnx_lookup(const struct pci_attach_args *pa)
    417 {
    418 	int i;
    419 	pcireg_t subid;
    420 
    421 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    422 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    423 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    424 			continue;
    425 		if (!bnx_devices[i].bp_subvendor)
    426 			return &bnx_devices[i];
    427 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    428 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    429 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    430 			return &bnx_devices[i];
    431 	}
    432 
    433 	return NULL;
    434 }
    435 static int
    436 bnx_probe(device_t parent, cfdata_t match, void *aux)
    437 {
    438 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    439 
    440 	if (bnx_lookup(pa) != NULL)
    441 		return (1);
    442 
    443 	return (0);
    444 }
    445 
    446 /****************************************************************************/
    447 /* Device attach function.                                                  */
    448 /*                                                                          */
    449 /* Allocates device resources, performs secondary chip identification,      */
    450 /* resets and initializes the hardware, and initializes driver instance     */
    451 /* variables.                                                               */
    452 /*                                                                          */
    453 /* Returns:                                                                 */
    454 /*   0 on success, positive value on failure.                               */
    455 /****************************************************************************/
    456 void
    457 bnx_attach(device_t parent, device_t self, void *aux)
    458 {
    459 	const struct bnx_product *bp;
    460 	struct bnx_softc	*sc = device_private(self);
    461 	struct pci_attach_args	*pa = aux;
    462 	pci_chipset_tag_t	pc = pa->pa_pc;
    463 	pci_intr_handle_t	ih;
    464 	const char 		*intrstr = NULL;
    465 	u_int32_t		command;
    466 	struct ifnet		*ifp;
    467 	u_int32_t		val;
    468 	int			mii_flags = MIIF_FORCEANEG;
    469 	pcireg_t		memtype;
    470 
    471 	if (bnx_tx_pool == NULL) {
    472 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    473 		if (bnx_tx_pool != NULL) {
    474 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    475 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    476 		} else {
    477 			aprint_error(": can't alloc bnx_tx_pool\n");
    478 			return;
    479 		}
    480 	}
    481 
    482 	bp = bnx_lookup(pa);
    483 	if (bp == NULL)
    484 		panic("unknown device");
    485 
    486 	sc->bnx_dev = self;
    487 
    488 	aprint_naive("\n");
    489 	aprint_normal(": %s\n", bp->bp_name);
    490 
    491 	sc->bnx_pa = *pa;
    492 
    493 	/*
    494 	 * Map control/status registers.
    495 	*/
    496 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    497 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    498 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    499 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    500 
    501 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    502 		aprint_error_dev(sc->bnx_dev,
    503 		    "failed to enable memory mapping!\n");
    504 		return;
    505 	}
    506 
    507 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    508 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    509 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    510 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    511 		return;
    512 	}
    513 
    514 	if (pci_intr_map(pa, &ih)) {
    515 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    516 		goto bnx_attach_fail;
    517 	}
    518 
    519 	intrstr = pci_intr_string(pc, ih);
    520 
    521 	/*
    522 	 * Configure byte swap and enable indirect register access.
    523 	 * Rely on CPU to do target byte swapping on big endian systems.
    524 	 * Access to registers outside of PCI configurtion space are not
    525 	 * valid until this is done.
    526 	 */
    527 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    528 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    529 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    530 
    531 	/* Save ASIC revsion info. */
    532 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    533 
    534 	/*
    535 	 * Find the base address for shared memory access.
    536 	 * Newer versions of bootcode use a signature and offset
    537 	 * while older versions use a fixed address.
    538 	 */
    539 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    540 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    541 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    542 		    (sc->bnx_pa.pa_function << 2));
    543 	else
    544 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    545 
    546 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    547 
    548 	/* Set initial device and PHY flags */
    549 	sc->bnx_flags = 0;
    550 	sc->bnx_phy_flags = 0;
    551 
    552 	/* Get PCI bus information (speed and type). */
    553 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    554 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    555 		u_int32_t clkreg;
    556 
    557 		sc->bnx_flags |= BNX_PCIX_FLAG;
    558 
    559 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    560 
    561 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    562 		switch (clkreg) {
    563 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    564 			sc->bus_speed_mhz = 133;
    565 			break;
    566 
    567 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    568 			sc->bus_speed_mhz = 100;
    569 			break;
    570 
    571 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    572 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    573 			sc->bus_speed_mhz = 66;
    574 			break;
    575 
    576 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    577 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    578 			sc->bus_speed_mhz = 50;
    579 			break;
    580 
    581 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    582 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    583 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    584 			sc->bus_speed_mhz = 33;
    585 			break;
    586 		}
    587 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    588 			sc->bus_speed_mhz = 66;
    589 		else
    590 			sc->bus_speed_mhz = 33;
    591 
    592 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    593 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    594 
    595 	/* Reset the controller. */
    596 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    597 		goto bnx_attach_fail;
    598 
    599 	/* Initialize the controller. */
    600 	if (bnx_chipinit(sc)) {
    601 		aprint_error_dev(sc->bnx_dev,
    602 		    "Controller initialization failed!\n");
    603 		goto bnx_attach_fail;
    604 	}
    605 
    606 	/* Perform NVRAM test. */
    607 	if (bnx_nvram_test(sc)) {
    608 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    609 		goto bnx_attach_fail;
    610 	}
    611 
    612 	/* Fetch the permanent Ethernet MAC address. */
    613 	bnx_get_mac_addr(sc);
    614 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    615 	    ether_sprintf(sc->eaddr));
    616 
    617 	/*
    618 	 * Trip points control how many BDs
    619 	 * should be ready before generating an
    620 	 * interrupt while ticks control how long
    621 	 * a BD can sit in the chain before
    622 	 * generating an interrupt.  Set the default
    623 	 * values for the RX and TX rings.
    624 	 */
    625 
    626 #ifdef BNX_DEBUG
    627 	/* Force more frequent interrupts. */
    628 	sc->bnx_tx_quick_cons_trip_int = 1;
    629 	sc->bnx_tx_quick_cons_trip     = 1;
    630 	sc->bnx_tx_ticks_int           = 0;
    631 	sc->bnx_tx_ticks               = 0;
    632 
    633 	sc->bnx_rx_quick_cons_trip_int = 1;
    634 	sc->bnx_rx_quick_cons_trip     = 1;
    635 	sc->bnx_rx_ticks_int           = 0;
    636 	sc->bnx_rx_ticks               = 0;
    637 #else
    638 	sc->bnx_tx_quick_cons_trip_int = 20;
    639 	sc->bnx_tx_quick_cons_trip     = 20;
    640 	sc->bnx_tx_ticks_int           = 80;
    641 	sc->bnx_tx_ticks               = 80;
    642 
    643 	sc->bnx_rx_quick_cons_trip_int = 6;
    644 	sc->bnx_rx_quick_cons_trip     = 6;
    645 	sc->bnx_rx_ticks_int           = 18;
    646 	sc->bnx_rx_ticks               = 18;
    647 #endif
    648 
    649 	/* Update statistics once every second. */
    650 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    651 
    652 	/* Find the media type for the adapter. */
    653 	bnx_get_media(sc);
    654 
    655 	/*
    656 	 * Store config data needed by the PHY driver for
    657 	 * backplane applications
    658 	 */
    659 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    660 	    BNX_SHARED_HW_CFG_CONFIG);
    661 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    662 	    BNX_PORT_HW_CFG_CONFIG);
    663 
    664 	/* Allocate DMA memory resources. */
    665 	sc->bnx_dmatag = pa->pa_dmat;
    666 	if (bnx_dma_alloc(sc)) {
    667 		aprint_error_dev(sc->bnx_dev,
    668 		    "DMA resource allocation failed!\n");
    669 		goto bnx_attach_fail;
    670 	}
    671 
    672 	/* Initialize the ifnet interface. */
    673 	ifp = &sc->bnx_ec.ec_if;
    674 	ifp->if_softc = sc;
    675 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    676 	ifp->if_ioctl = bnx_ioctl;
    677 	ifp->if_stop = bnx_stop;
    678 	ifp->if_start = bnx_start;
    679 	ifp->if_init = bnx_init;
    680 	ifp->if_timer = 0;
    681 	ifp->if_watchdog = bnx_watchdog;
    682 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    683 	IFQ_SET_READY(&ifp->if_snd);
    684 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    685 
    686 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    687 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    688 
    689 	ifp->if_capabilities |=
    690 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    691 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    692 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    693 
    694 	/* Hookup IRQ last. */
    695 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    696 	if (sc->bnx_intrhand == NULL) {
    697 		aprint_error_dev(self, "couldn't establish interrupt");
    698 		if (intrstr != NULL)
    699 			aprint_error(" at %s", intrstr);
    700 		aprint_error("\n");
    701 		goto bnx_attach_fail;
    702 	}
    703 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    704 
    705 	sc->bnx_mii.mii_ifp = ifp;
    706 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    707 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    708 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    709 
    710 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    711 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    712 	    ether_mediastatus);
    713 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    714 		mii_flags |= MIIF_HAVEFIBER;
    715 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    716 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    717 
    718 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    719 		aprint_error_dev(self, "no PHY found!\n");
    720 		ifmedia_add(&sc->bnx_mii.mii_media,
    721 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    722 		ifmedia_set(&sc->bnx_mii.mii_media,
    723 		    IFM_ETHER|IFM_MANUAL);
    724 	} else {
    725 		ifmedia_set(&sc->bnx_mii.mii_media,
    726 		    IFM_ETHER|IFM_AUTO);
    727 	}
    728 
    729 	/* Attach to the Ethernet interface list. */
    730 	if_attach(ifp);
    731 	ether_ifattach(ifp,sc->eaddr);
    732 
    733 	callout_init(&sc->bnx_timeout, 0);
    734 
    735 	if (pmf_device_register(self, NULL, NULL))
    736 		pmf_class_network_register(self, ifp);
    737 	else
    738 		aprint_error_dev(self, "couldn't establish power handler\n");
    739 
    740 	/* Print some important debugging info. */
    741 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    742 
    743 	goto bnx_attach_exit;
    744 
    745 bnx_attach_fail:
    746 	bnx_release_resources(sc);
    747 
    748 bnx_attach_exit:
    749 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    750 }
    751 
    752 /****************************************************************************/
    753 /* Device detach function.                                                  */
    754 /*                                                                          */
    755 /* Stops the controller, resets the controller, and releases resources.     */
    756 /*                                                                          */
    757 /* Returns:                                                                 */
    758 /*   0 on success, positive value on failure.                               */
    759 /****************************************************************************/
    760 int
    761 bnx_detach(device_t dev, int flags)
    762 {
    763 	int s;
    764 	struct bnx_softc *sc;
    765 	struct ifnet *ifp;
    766 
    767 	sc = device_private(dev);
    768 	ifp = &sc->bnx_ec.ec_if;
    769 
    770 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    771 
    772 	/* Stop and reset the controller. */
    773 	s = splnet();
    774 	if (ifp->if_flags & IFF_RUNNING)
    775 		bnx_stop(ifp, 1);
    776 	else {
    777 		/* Disable the transmit/receive blocks. */
    778 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
    779 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
    780 		DELAY(20);
    781 		bnx_disable_intr(sc);
    782 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
    783 	}
    784 
    785 	splx(s);
    786 
    787 	pmf_device_deregister(dev);
    788 	callout_destroy(&sc->bnx_timeout);
    789 	ether_ifdetach(ifp);
    790 
    791 	/* Delete all remaining media. */
    792 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    793 
    794 	if_detach(ifp);
    795 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    796 
    797 	/* Release all remaining resources. */
    798 	bnx_release_resources(sc);
    799 
    800 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    801 
    802 	return(0);
    803 }
    804 
    805 /****************************************************************************/
    806 /* Indirect register read.                                                  */
    807 /*                                                                          */
    808 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    809 /* configuration space.  Using this mechanism avoids issues with posted     */
    810 /* reads but is much slower than memory-mapped I/O.                         */
    811 /*                                                                          */
    812 /* Returns:                                                                 */
    813 /*   The value of the register.                                             */
    814 /****************************************************************************/
    815 u_int32_t
    816 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
    817 {
    818 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    819 
    820 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    821 	    offset);
    822 #ifdef BNX_DEBUG
    823 	{
    824 		u_int32_t val;
    825 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    826 		    BNX_PCICFG_REG_WINDOW);
    827 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    828 		    "val = 0x%08X\n", __func__, offset, val);
    829 		return (val);
    830 	}
    831 #else
    832 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    833 #endif
    834 }
    835 
    836 /****************************************************************************/
    837 /* Indirect register write.                                                 */
    838 /*                                                                          */
    839 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    840 /* configuration space.  Using this mechanism avoids issues with posted     */
    841 /* writes but is muchh slower than memory-mapped I/O.                       */
    842 /*                                                                          */
    843 /* Returns:                                                                 */
    844 /*   Nothing.                                                               */
    845 /****************************************************************************/
    846 void
    847 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
    848 {
    849 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    850 
    851 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    852 		__func__, offset, val);
    853 
    854 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    855 	    offset);
    856 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    857 }
    858 
    859 /****************************************************************************/
    860 /* Context memory write.                                                    */
    861 /*                                                                          */
    862 /* The NetXtreme II controller uses context memory to track connection      */
    863 /* information for L2 and higher network protocols.                         */
    864 /*                                                                          */
    865 /* Returns:                                                                 */
    866 /*   Nothing.                                                               */
    867 /****************************************************************************/
    868 void
    869 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
    870     u_int32_t ctx_val)
    871 {
    872 	u_int32_t idx, offset = ctx_offset + cid_addr;
    873 	u_int32_t val, retry_cnt = 5;
    874 
    875 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
    876 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
    877 		REG_WR(sc, BNX_CTX_CTX_CTRL,
    878 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
    879 
    880 		for (idx = 0; idx < retry_cnt; idx++) {
    881 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
    882 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
    883 				break;
    884 			DELAY(5);
    885 		}
    886 
    887 #if 0
    888 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
    889 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
    890 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
    891 				__FILE__, __LINE__, cid_addr, ctx_offset);
    892 #endif
    893 
    894 	} else {
    895 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
    896 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
    897 	}
    898 }
    899 
    900 /****************************************************************************/
    901 /* PHY register read.                                                       */
    902 /*                                                                          */
    903 /* Implements register reads on the MII bus.                                */
    904 /*                                                                          */
    905 /* Returns:                                                                 */
    906 /*   The value of the register.                                             */
    907 /****************************************************************************/
    908 int
    909 bnx_miibus_read_reg(device_t dev, int phy, int reg)
    910 {
    911 	struct bnx_softc	*sc = device_private(dev);
    912 	u_int32_t		val;
    913 	int			i;
    914 
    915 	/* Make sure we are accessing the correct PHY address. */
    916 	if (phy != sc->bnx_phy_addr) {
    917 		DBPRINT(sc, BNX_VERBOSE,
    918 		    "Invalid PHY address %d for PHY read!\n", phy);
    919 		return(0);
    920 	}
    921 
    922 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    923 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    924 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    925 
    926 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    927 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    928 
    929 		DELAY(40);
    930 	}
    931 
    932 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
    933 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
    934 	    BNX_EMAC_MDIO_COMM_START_BUSY;
    935 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
    936 
    937 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    938 		DELAY(10);
    939 
    940 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    941 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    942 			DELAY(5);
    943 
    944 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    945 			val &= BNX_EMAC_MDIO_COMM_DATA;
    946 
    947 			break;
    948 		}
    949 	}
    950 
    951 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
    952 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
    953 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
    954 		val = 0x0;
    955 	} else
    956 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    957 
    958 	DBPRINT(sc, BNX_EXCESSIVE,
    959 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
    960 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    961 
    962 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    963 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    964 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    965 
    966 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    967 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    968 
    969 		DELAY(40);
    970 	}
    971 
    972 	return (val & 0xffff);
    973 }
    974 
    975 /****************************************************************************/
    976 /* PHY register write.                                                      */
    977 /*                                                                          */
    978 /* Implements register writes on the MII bus.                               */
    979 /*                                                                          */
    980 /* Returns:                                                                 */
    981 /*   The value of the register.                                             */
    982 /****************************************************************************/
    983 void
    984 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
    985 {
    986 	struct bnx_softc	*sc = device_private(dev);
    987 	u_int32_t		val1;
    988 	int			i;
    989 
    990 	/* Make sure we are accessing the correct PHY address. */
    991 	if (phy != sc->bnx_phy_addr) {
    992 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
    993 		    phy);
    994 		return;
    995 	}
    996 
    997 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
    998 	    "val = 0x%04X\n", __func__,
    999 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
   1000 
   1001 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1002 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1003 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1004 
   1005 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1006 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1007 
   1008 		DELAY(40);
   1009 	}
   1010 
   1011 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1012 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1013 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1014 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1015 
   1016 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1017 		DELAY(10);
   1018 
   1019 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1020 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1021 			DELAY(5);
   1022 			break;
   1023 		}
   1024 	}
   1025 
   1026 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1027 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1028 		    __LINE__);
   1029 	}
   1030 
   1031 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1032 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1033 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1034 
   1035 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1036 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1037 
   1038 		DELAY(40);
   1039 	}
   1040 }
   1041 
   1042 /****************************************************************************/
   1043 /* MII bus status change.                                                   */
   1044 /*                                                                          */
   1045 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1046 /* MAC interface registers.                                                 */
   1047 /*                                                                          */
   1048 /* Returns:                                                                 */
   1049 /*   Nothing.                                                               */
   1050 /****************************************************************************/
   1051 void
   1052 bnx_miibus_statchg(device_t dev)
   1053 {
   1054 	struct bnx_softc	*sc = device_private(dev);
   1055 	struct mii_data		*mii = &sc->bnx_mii;
   1056 	int			val;
   1057 
   1058 	val = REG_RD(sc, BNX_EMAC_MODE);
   1059 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1060 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1061 	    BNX_EMAC_MODE_25G);
   1062 
   1063 	/* Set MII or GMII interface based on the speed
   1064 	 * negotiated by the PHY.
   1065 	 */
   1066 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1067 	case IFM_10_T:
   1068 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1069 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1070 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1071 			break;
   1072 		}
   1073 		/* FALLTHROUGH */
   1074 	case IFM_100_TX:
   1075 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1076 		val |= BNX_EMAC_MODE_PORT_MII;
   1077 		break;
   1078 	case IFM_2500_SX:
   1079 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1080 		val |= BNX_EMAC_MODE_25G;
   1081 		/* FALLTHROUGH */
   1082 	case IFM_1000_T:
   1083 	case IFM_1000_SX:
   1084 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1085 		val |= BNX_EMAC_MODE_PORT_GMII;
   1086 		break;
   1087 	default:
   1088 		val |= BNX_EMAC_MODE_PORT_GMII;
   1089 		break;
   1090 	}
   1091 
   1092 	/* Set half or full duplex based on the duplicity
   1093 	 * negotiated by the PHY.
   1094 	 */
   1095 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1096 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1097 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1098 	} else {
   1099 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1100 	}
   1101 
   1102 	REG_WR(sc, BNX_EMAC_MODE, val);
   1103 }
   1104 
   1105 /****************************************************************************/
   1106 /* Acquire NVRAM lock.                                                      */
   1107 /*                                                                          */
   1108 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1109 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1110 /* for use by the driver.                                                   */
   1111 /*                                                                          */
   1112 /* Returns:                                                                 */
   1113 /*   0 on success, positive value on failure.                               */
   1114 /****************************************************************************/
   1115 int
   1116 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1117 {
   1118 	u_int32_t		val;
   1119 	int			j;
   1120 
   1121 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1122 
   1123 	/* Request access to the flash interface. */
   1124 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1125 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1126 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1127 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1128 			break;
   1129 
   1130 		DELAY(5);
   1131 	}
   1132 
   1133 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1134 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1135 		return (EBUSY);
   1136 	}
   1137 
   1138 	return (0);
   1139 }
   1140 
   1141 /****************************************************************************/
   1142 /* Release NVRAM lock.                                                      */
   1143 /*                                                                          */
   1144 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1145 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1146 /* for use by the driver.                                                   */
   1147 /*                                                                          */
   1148 /* Returns:                                                                 */
   1149 /*   0 on success, positive value on failure.                               */
   1150 /****************************************************************************/
   1151 int
   1152 bnx_release_nvram_lock(struct bnx_softc *sc)
   1153 {
   1154 	int			j;
   1155 	u_int32_t		val;
   1156 
   1157 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1158 
   1159 	/* Relinquish nvram interface. */
   1160 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1161 
   1162 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1163 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1164 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1165 			break;
   1166 
   1167 		DELAY(5);
   1168 	}
   1169 
   1170 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1171 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1172 		return (EBUSY);
   1173 	}
   1174 
   1175 	return (0);
   1176 }
   1177 
   1178 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1179 /****************************************************************************/
   1180 /* Enable NVRAM write access.                                               */
   1181 /*                                                                          */
   1182 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1183 /*                                                                          */
   1184 /* Returns:                                                                 */
   1185 /*   0 on success, positive value on failure.                               */
   1186 /****************************************************************************/
   1187 int
   1188 bnx_enable_nvram_write(struct bnx_softc *sc)
   1189 {
   1190 	u_int32_t		val;
   1191 
   1192 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1193 
   1194 	val = REG_RD(sc, BNX_MISC_CFG);
   1195 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1196 
   1197 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1198 		int j;
   1199 
   1200 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1201 		REG_WR(sc, BNX_NVM_COMMAND,
   1202 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1203 
   1204 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1205 			DELAY(5);
   1206 
   1207 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1208 			if (val & BNX_NVM_COMMAND_DONE)
   1209 				break;
   1210 		}
   1211 
   1212 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1213 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1214 			return (EBUSY);
   1215 		}
   1216 	}
   1217 
   1218 	return (0);
   1219 }
   1220 
   1221 /****************************************************************************/
   1222 /* Disable NVRAM write access.                                              */
   1223 /*                                                                          */
   1224 /* When the caller is finished writing to NVRAM write access must be        */
   1225 /* disabled.                                                                */
   1226 /*                                                                          */
   1227 /* Returns:                                                                 */
   1228 /*   Nothing.                                                               */
   1229 /****************************************************************************/
   1230 void
   1231 bnx_disable_nvram_write(struct bnx_softc *sc)
   1232 {
   1233 	u_int32_t		val;
   1234 
   1235 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1236 
   1237 	val = REG_RD(sc, BNX_MISC_CFG);
   1238 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1239 }
   1240 #endif
   1241 
   1242 /****************************************************************************/
   1243 /* Enable NVRAM access.                                                     */
   1244 /*                                                                          */
   1245 /* Before accessing NVRAM for read or write operations the caller must      */
   1246 /* enabled NVRAM access.                                                    */
   1247 /*                                                                          */
   1248 /* Returns:                                                                 */
   1249 /*   Nothing.                                                               */
   1250 /****************************************************************************/
   1251 void
   1252 bnx_enable_nvram_access(struct bnx_softc *sc)
   1253 {
   1254 	u_int32_t		val;
   1255 
   1256 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1257 
   1258 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1259 	/* Enable both bits, even on read. */
   1260 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1261 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1262 }
   1263 
   1264 /****************************************************************************/
   1265 /* Disable NVRAM access.                                                    */
   1266 /*                                                                          */
   1267 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1268 /*                                                                          */
   1269 /* Returns:                                                                 */
   1270 /*   Nothing.                                                               */
   1271 /****************************************************************************/
   1272 void
   1273 bnx_disable_nvram_access(struct bnx_softc *sc)
   1274 {
   1275 	u_int32_t		val;
   1276 
   1277 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1278 
   1279 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1280 
   1281 	/* Disable both bits, even after read. */
   1282 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1283 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1284 }
   1285 
   1286 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1287 /****************************************************************************/
   1288 /* Erase NVRAM page before writing.                                         */
   1289 /*                                                                          */
   1290 /* Non-buffered flash parts require that a page be erased before it is      */
   1291 /* written.                                                                 */
   1292 /*                                                                          */
   1293 /* Returns:                                                                 */
   1294 /*   0 on success, positive value on failure.                               */
   1295 /****************************************************************************/
   1296 int
   1297 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
   1298 {
   1299 	u_int32_t		cmd;
   1300 	int			j;
   1301 
   1302 	/* Buffered flash doesn't require an erase. */
   1303 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1304 		return (0);
   1305 
   1306 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1307 
   1308 	/* Build an erase command. */
   1309 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1310 	    BNX_NVM_COMMAND_DOIT;
   1311 
   1312 	/*
   1313 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
   1314 	 * and issue the erase command.
   1315 	 */
   1316 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1317 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1318 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1319 
   1320 	/* Wait for completion. */
   1321 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1322 		u_int32_t val;
   1323 
   1324 		DELAY(5);
   1325 
   1326 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1327 		if (val & BNX_NVM_COMMAND_DONE)
   1328 			break;
   1329 	}
   1330 
   1331 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1332 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1333 		return (EBUSY);
   1334 	}
   1335 
   1336 	return (0);
   1337 }
   1338 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1339 
   1340 /****************************************************************************/
   1341 /* Read a dword (32 bits) from NVRAM.                                       */
   1342 /*                                                                          */
   1343 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1344 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1345 /*                                                                          */
   1346 /* Returns:                                                                 */
   1347 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1348 /****************************************************************************/
   1349 int
   1350 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
   1351     u_int8_t *ret_val, u_int32_t cmd_flags)
   1352 {
   1353 	u_int32_t		cmd;
   1354 	int			i, rc = 0;
   1355 
   1356 	/* Build the command word. */
   1357 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1358 
   1359 	/* Calculate the offset for buffered flash if translation is used. */
   1360 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1361 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1362 		    sc->bnx_flash_info->page_bits) +
   1363 		    (offset % sc->bnx_flash_info->page_size);
   1364 	}
   1365 
   1366 	/*
   1367 	 * Clear the DONE bit separately, set the address to read,
   1368 	 * and issue the read.
   1369 	 */
   1370 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1371 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1372 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1373 
   1374 	/* Wait for completion. */
   1375 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1376 		u_int32_t val;
   1377 
   1378 		DELAY(5);
   1379 
   1380 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1381 		if (val & BNX_NVM_COMMAND_DONE) {
   1382 			val = REG_RD(sc, BNX_NVM_READ);
   1383 
   1384 			val = bnx_be32toh(val);
   1385 			memcpy(ret_val, &val, 4);
   1386 			break;
   1387 		}
   1388 	}
   1389 
   1390 	/* Check for errors. */
   1391 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1392 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1393 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1394 		rc = EBUSY;
   1395 	}
   1396 
   1397 	return(rc);
   1398 }
   1399 
   1400 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1401 /****************************************************************************/
   1402 /* Write a dword (32 bits) to NVRAM.                                        */
   1403 /*                                                                          */
   1404 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1405 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1406 /* enabled NVRAM write access.                                              */
   1407 /*                                                                          */
   1408 /* Returns:                                                                 */
   1409 /*   0 on success, positive value on failure.                               */
   1410 /****************************************************************************/
   1411 int
   1412 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
   1413     u_int32_t cmd_flags)
   1414 {
   1415 	u_int32_t		cmd, val32;
   1416 	int			j;
   1417 
   1418 	/* Build the command word. */
   1419 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1420 
   1421 	/* Calculate the offset for buffered flash if translation is used. */
   1422 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1423 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1424 		    sc->bnx_flash_info->page_bits) +
   1425 		    (offset % sc->bnx_flash_info->page_size);
   1426 	}
   1427 
   1428 	/*
   1429 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1430 	 * set the NVRAM address to write, and issue the write command
   1431 	 */
   1432 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1433 	memcpy(&val32, val, 4);
   1434 	val32 = htobe32(val32);
   1435 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1436 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1437 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1438 
   1439 	/* Wait for completion. */
   1440 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1441 		DELAY(5);
   1442 
   1443 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1444 			break;
   1445 	}
   1446 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1447 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1448 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1449 		return (EBUSY);
   1450 	}
   1451 
   1452 	return (0);
   1453 }
   1454 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1455 
   1456 /****************************************************************************/
   1457 /* Initialize NVRAM access.                                                 */
   1458 /*                                                                          */
   1459 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1460 /* access that device.                                                      */
   1461 /*                                                                          */
   1462 /* Returns:                                                                 */
   1463 /*   0 on success, positive value on failure.                               */
   1464 /****************************************************************************/
   1465 int
   1466 bnx_init_nvram(struct bnx_softc *sc)
   1467 {
   1468 	u_int32_t		val;
   1469 	int			j, entry_count, rc = 0;
   1470 	struct flash_spec	*flash;
   1471 
   1472 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1473 
   1474 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1475 		sc->bnx_flash_info = &flash_5709;
   1476 		goto bnx_init_nvram_get_flash_size;
   1477 	}
   1478 
   1479 	/* Determine the selected interface. */
   1480 	val = REG_RD(sc, BNX_NVM_CFG1);
   1481 
   1482 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1483 
   1484 	/*
   1485 	 * Flash reconfiguration is required to support additional
   1486 	 * NVRAM devices not directly supported in hardware.
   1487 	 * Check if the flash interface was reconfigured
   1488 	 * by the bootcode.
   1489 	 */
   1490 
   1491 	if (val & 0x40000000) {
   1492 		/* Flash interface reconfigured by bootcode. */
   1493 
   1494 		DBPRINT(sc,BNX_INFO_LOAD,
   1495 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1496 
   1497 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1498 		     j++, flash++) {
   1499 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1500 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1501 				sc->bnx_flash_info = flash;
   1502 				break;
   1503 			}
   1504 		}
   1505 	} else {
   1506 		/* Flash interface not yet reconfigured. */
   1507 		u_int32_t mask;
   1508 
   1509 		DBPRINT(sc,BNX_INFO_LOAD,
   1510 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1511 
   1512 		if (val & (1 << 23))
   1513 			mask = FLASH_BACKUP_STRAP_MASK;
   1514 		else
   1515 			mask = FLASH_STRAP_MASK;
   1516 
   1517 		/* Look for the matching NVRAM device configuration data. */
   1518 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1519 		    j++, flash++) {
   1520 			/* Check if the dev matches any of the known devices. */
   1521 			if ((val & mask) == (flash->strapping & mask)) {
   1522 				/* Found a device match. */
   1523 				sc->bnx_flash_info = flash;
   1524 
   1525 				/* Request access to the flash interface. */
   1526 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1527 					return (rc);
   1528 
   1529 				/* Reconfigure the flash interface. */
   1530 				bnx_enable_nvram_access(sc);
   1531 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1532 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1533 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1534 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1535 				bnx_disable_nvram_access(sc);
   1536 				bnx_release_nvram_lock(sc);
   1537 
   1538 				break;
   1539 			}
   1540 		}
   1541 	}
   1542 
   1543 	/* Check if a matching device was found. */
   1544 	if (j == entry_count) {
   1545 		sc->bnx_flash_info = NULL;
   1546 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1547 			__FILE__, __LINE__);
   1548 		rc = ENODEV;
   1549 	}
   1550 
   1551 bnx_init_nvram_get_flash_size:
   1552 	/* Write the flash config data to the shared memory interface. */
   1553 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1554 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1555 	if (val)
   1556 		sc->bnx_flash_size = val;
   1557 	else
   1558 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1559 
   1560 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1561 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1562 
   1563 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1564 
   1565 	return (rc);
   1566 }
   1567 
   1568 /****************************************************************************/
   1569 /* Read an arbitrary range of data from NVRAM.                              */
   1570 /*                                                                          */
   1571 /* Prepares the NVRAM interface for access and reads the requested data     */
   1572 /* into the supplied buffer.                                                */
   1573 /*                                                                          */
   1574 /* Returns:                                                                 */
   1575 /*   0 on success and the data read, positive value on failure.             */
   1576 /****************************************************************************/
   1577 int
   1578 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
   1579     int buf_size)
   1580 {
   1581 	int			rc = 0;
   1582 	u_int32_t		cmd_flags, offset32, len32, extra;
   1583 
   1584 	if (buf_size == 0)
   1585 		return (0);
   1586 
   1587 	/* Request access to the flash interface. */
   1588 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1589 		return (rc);
   1590 
   1591 	/* Enable access to flash interface */
   1592 	bnx_enable_nvram_access(sc);
   1593 
   1594 	len32 = buf_size;
   1595 	offset32 = offset;
   1596 	extra = 0;
   1597 
   1598 	cmd_flags = 0;
   1599 
   1600 	if (offset32 & 3) {
   1601 		u_int8_t buf[4];
   1602 		u_int32_t pre_len;
   1603 
   1604 		offset32 &= ~3;
   1605 		pre_len = 4 - (offset & 3);
   1606 
   1607 		if (pre_len >= len32) {
   1608 			pre_len = len32;
   1609 			cmd_flags =
   1610 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1611 		} else
   1612 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1613 
   1614 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1615 
   1616 		if (rc)
   1617 			return (rc);
   1618 
   1619 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1620 
   1621 		offset32 += 4;
   1622 		ret_buf += pre_len;
   1623 		len32 -= pre_len;
   1624 	}
   1625 
   1626 	if (len32 & 3) {
   1627 		extra = 4 - (len32 & 3);
   1628 		len32 = (len32 + 4) & ~3;
   1629 	}
   1630 
   1631 	if (len32 == 4) {
   1632 		u_int8_t buf[4];
   1633 
   1634 		if (cmd_flags)
   1635 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1636 		else
   1637 			cmd_flags =
   1638 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1639 
   1640 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1641 
   1642 		memcpy(ret_buf, buf, 4 - extra);
   1643 	} else if (len32 > 0) {
   1644 		u_int8_t buf[4];
   1645 
   1646 		/* Read the first word. */
   1647 		if (cmd_flags)
   1648 			cmd_flags = 0;
   1649 		else
   1650 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1651 
   1652 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1653 
   1654 		/* Advance to the next dword. */
   1655 		offset32 += 4;
   1656 		ret_buf += 4;
   1657 		len32 -= 4;
   1658 
   1659 		while (len32 > 4 && rc == 0) {
   1660 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1661 
   1662 			/* Advance to the next dword. */
   1663 			offset32 += 4;
   1664 			ret_buf += 4;
   1665 			len32 -= 4;
   1666 		}
   1667 
   1668 		if (rc)
   1669 			return (rc);
   1670 
   1671 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1672 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1673 
   1674 		memcpy(ret_buf, buf, 4 - extra);
   1675 	}
   1676 
   1677 	/* Disable access to flash interface and release the lock. */
   1678 	bnx_disable_nvram_access(sc);
   1679 	bnx_release_nvram_lock(sc);
   1680 
   1681 	return (rc);
   1682 }
   1683 
   1684 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1685 /****************************************************************************/
   1686 /* Write an arbitrary range of data from NVRAM.                             */
   1687 /*                                                                          */
   1688 /* Prepares the NVRAM interface for write access and writes the requested   */
   1689 /* data from the supplied buffer.  The caller is responsible for            */
   1690 /* calculating any appropriate CRCs.                                        */
   1691 /*                                                                          */
   1692 /* Returns:                                                                 */
   1693 /*   0 on success, positive value on failure.                               */
   1694 /****************************************************************************/
   1695 int
   1696 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
   1697     int buf_size)
   1698 {
   1699 	u_int32_t		written, offset32, len32;
   1700 	u_int8_t		*buf, start[4], end[4];
   1701 	int			rc = 0;
   1702 	int			align_start, align_end;
   1703 
   1704 	buf = data_buf;
   1705 	offset32 = offset;
   1706 	len32 = buf_size;
   1707 	align_start = align_end = 0;
   1708 
   1709 	if ((align_start = (offset32 & 3))) {
   1710 		offset32 &= ~3;
   1711 		len32 += align_start;
   1712 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1713 			return (rc);
   1714 	}
   1715 
   1716 	if (len32 & 3) {
   1717 	       	if ((len32 > 4) || !align_start) {
   1718 			align_end = 4 - (len32 & 3);
   1719 			len32 += align_end;
   1720 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1721 			    end, 4))) {
   1722 				return (rc);
   1723 			}
   1724 		}
   1725 	}
   1726 
   1727 	if (align_start || align_end) {
   1728 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1729 		if (buf == 0)
   1730 			return (ENOMEM);
   1731 
   1732 		if (align_start)
   1733 			memcpy(buf, start, 4);
   1734 
   1735 		if (align_end)
   1736 			memcpy(buf + len32 - 4, end, 4);
   1737 
   1738 		memcpy(buf + align_start, data_buf, buf_size);
   1739 	}
   1740 
   1741 	written = 0;
   1742 	while ((written < len32) && (rc == 0)) {
   1743 		u_int32_t page_start, page_end, data_start, data_end;
   1744 		u_int32_t addr, cmd_flags;
   1745 		int i;
   1746 		u_int8_t flash_buffer[264];
   1747 
   1748 	    /* Find the page_start addr */
   1749 		page_start = offset32 + written;
   1750 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1751 		/* Find the page_end addr */
   1752 		page_end = page_start + sc->bnx_flash_info->page_size;
   1753 		/* Find the data_start addr */
   1754 		data_start = (written == 0) ? offset32 : page_start;
   1755 		/* Find the data_end addr */
   1756 		data_end = (page_end > offset32 + len32) ?
   1757 		    (offset32 + len32) : page_end;
   1758 
   1759 		/* Request access to the flash interface. */
   1760 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1761 			goto nvram_write_end;
   1762 
   1763 		/* Enable access to flash interface */
   1764 		bnx_enable_nvram_access(sc);
   1765 
   1766 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1767 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1768 			int j;
   1769 
   1770 			/* Read the whole page into the buffer
   1771 			 * (non-buffer flash only) */
   1772 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1773 				if (j == (sc->bnx_flash_info->page_size - 4))
   1774 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1775 
   1776 				rc = bnx_nvram_read_dword(sc,
   1777 					page_start + j,
   1778 					&flash_buffer[j],
   1779 					cmd_flags);
   1780 
   1781 				if (rc)
   1782 					goto nvram_write_end;
   1783 
   1784 				cmd_flags = 0;
   1785 			}
   1786 		}
   1787 
   1788 		/* Enable writes to flash interface (unlock write-protect) */
   1789 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1790 			goto nvram_write_end;
   1791 
   1792 		/* Erase the page */
   1793 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1794 			goto nvram_write_end;
   1795 
   1796 		/* Re-enable the write again for the actual write */
   1797 		bnx_enable_nvram_write(sc);
   1798 
   1799 		/* Loop to write back the buffer data from page_start to
   1800 		 * data_start */
   1801 		i = 0;
   1802 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1803 			for (addr = page_start; addr < data_start;
   1804 				addr += 4, i += 4) {
   1805 
   1806 				rc = bnx_nvram_write_dword(sc, addr,
   1807 				    &flash_buffer[i], cmd_flags);
   1808 
   1809 				if (rc != 0)
   1810 					goto nvram_write_end;
   1811 
   1812 				cmd_flags = 0;
   1813 			}
   1814 		}
   1815 
   1816 		/* Loop to write the new data from data_start to data_end */
   1817 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1818 			if ((addr == page_end - 4) ||
   1819 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   1820 			    && (addr == data_end - 4))) {
   1821 
   1822 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1823 			}
   1824 
   1825 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1826 
   1827 			if (rc != 0)
   1828 				goto nvram_write_end;
   1829 
   1830 			cmd_flags = 0;
   1831 			buf += 4;
   1832 		}
   1833 
   1834 		/* Loop to write back the buffer data from data_end
   1835 		 * to page_end */
   1836 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1837 			for (addr = data_end; addr < page_end;
   1838 			    addr += 4, i += 4) {
   1839 
   1840 				if (addr == page_end-4)
   1841 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1842 
   1843 				rc = bnx_nvram_write_dword(sc, addr,
   1844 				    &flash_buffer[i], cmd_flags);
   1845 
   1846 				if (rc != 0)
   1847 					goto nvram_write_end;
   1848 
   1849 				cmd_flags = 0;
   1850 			}
   1851 		}
   1852 
   1853 		/* Disable writes to flash interface (lock write-protect) */
   1854 		bnx_disable_nvram_write(sc);
   1855 
   1856 		/* Disable access to flash interface */
   1857 		bnx_disable_nvram_access(sc);
   1858 		bnx_release_nvram_lock(sc);
   1859 
   1860 		/* Increment written */
   1861 		written += data_end - data_start;
   1862 	}
   1863 
   1864 nvram_write_end:
   1865 	if (align_start || align_end)
   1866 		free(buf, M_DEVBUF);
   1867 
   1868 	return (rc);
   1869 }
   1870 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1871 
   1872 /****************************************************************************/
   1873 /* Verifies that NVRAM is accessible and contains valid data.               */
   1874 /*                                                                          */
   1875 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   1876 /* correct.                                                                 */
   1877 /*                                                                          */
   1878 /* Returns:                                                                 */
   1879 /*   0 on success, positive value on failure.                               */
   1880 /****************************************************************************/
   1881 int
   1882 bnx_nvram_test(struct bnx_softc *sc)
   1883 {
   1884 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
   1885 	u_int8_t		*data = (u_int8_t *) buf;
   1886 	int			rc = 0;
   1887 	u_int32_t		magic, csum;
   1888 
   1889 	/*
   1890 	 * Check that the device NVRAM is valid by reading
   1891 	 * the magic value at offset 0.
   1892 	 */
   1893 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   1894 		goto bnx_nvram_test_done;
   1895 
   1896 	magic = bnx_be32toh(buf[0]);
   1897 	if (magic != BNX_NVRAM_MAGIC) {
   1898 		rc = ENODEV;
   1899 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   1900 		    "Expected: 0x%08X, Found: 0x%08X\n",
   1901 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   1902 		goto bnx_nvram_test_done;
   1903 	}
   1904 
   1905 	/*
   1906 	 * Verify that the device NVRAM includes valid
   1907 	 * configuration data.
   1908 	 */
   1909 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   1910 		goto bnx_nvram_test_done;
   1911 
   1912 	csum = ether_crc32_le(data, 0x100);
   1913 	if (csum != BNX_CRC32_RESIDUAL) {
   1914 		rc = ENODEV;
   1915 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   1916 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   1917 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1918 		goto bnx_nvram_test_done;
   1919 	}
   1920 
   1921 	csum = ether_crc32_le(data + 0x100, 0x100);
   1922 	if (csum != BNX_CRC32_RESIDUAL) {
   1923 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   1924 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   1925 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1926 		rc = ENODEV;
   1927 	}
   1928 
   1929 bnx_nvram_test_done:
   1930 	return (rc);
   1931 }
   1932 
   1933 /****************************************************************************/
   1934 /* Identifies the current media type of the controller and sets the PHY     */
   1935 /* address.                                                                 */
   1936 /*                                                                          */
   1937 /* Returns:                                                                 */
   1938 /*   Nothing.                                                               */
   1939 /****************************************************************************/
   1940 void
   1941 bnx_get_media(struct bnx_softc *sc)
   1942 {
   1943 	sc->bnx_phy_addr = 1;
   1944 
   1945 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1946 		u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   1947 		u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   1948 		u_int32_t strap;
   1949 
   1950 		/*
   1951 		 * The BCM5709S is software configurable
   1952 		 * for Copper or SerDes operation.
   1953 		 */
   1954 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   1955 			DBPRINT(sc, BNX_INFO_LOAD,
   1956 			    "5709 bonded for copper.\n");
   1957 			goto bnx_get_media_exit;
   1958 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   1959 			DBPRINT(sc, BNX_INFO_LOAD,
   1960 			    "5709 bonded for dual media.\n");
   1961 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   1962 			goto bnx_get_media_exit;
   1963 		}
   1964 
   1965 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   1966 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   1967 		else {
   1968 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   1969 			    >> 8;
   1970 		}
   1971 
   1972 		if (sc->bnx_pa.pa_function == 0) {
   1973 			switch (strap) {
   1974 			case 0x4:
   1975 			case 0x5:
   1976 			case 0x6:
   1977 				DBPRINT(sc, BNX_INFO_LOAD,
   1978 					"BCM5709 s/w configured for SerDes.\n");
   1979 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   1980 				break;
   1981 			default:
   1982 				DBPRINT(sc, BNX_INFO_LOAD,
   1983 					"BCM5709 s/w configured for Copper.\n");
   1984 			}
   1985 		} else {
   1986 			switch (strap) {
   1987 			case 0x1:
   1988 			case 0x2:
   1989 			case 0x4:
   1990 				DBPRINT(sc, BNX_INFO_LOAD,
   1991 					"BCM5709 s/w configured for SerDes.\n");
   1992 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   1993 				break;
   1994 			default:
   1995 				DBPRINT(sc, BNX_INFO_LOAD,
   1996 					"BCM5709 s/w configured for Copper.\n");
   1997 			}
   1998 		}
   1999 
   2000 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2001 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2002 
   2003 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2004 		u_int32_t val;
   2005 
   2006 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2007 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2008 			sc->bnx_phy_addr = 2;
   2009 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2010 				 BNX_SHARED_HW_CFG_CONFIG);
   2011 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2012 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2013 				DBPRINT(sc, BNX_INFO_LOAD,
   2014 				    "Found 2.5Gb capable adapter\n");
   2015 			}
   2016 		}
   2017 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2018 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2019 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2020 
   2021 bnx_get_media_exit:
   2022 	DBPRINT(sc, (BNX_INFO_LOAD),
   2023 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2024 }
   2025 
   2026 /****************************************************************************/
   2027 /* Free any DMA memory owned by the driver.                                 */
   2028 /*                                                                          */
   2029 /* Scans through each data structre that requires DMA memory and frees      */
   2030 /* the memory if allocated.                                                 */
   2031 /*                                                                          */
   2032 /* Returns:                                                                 */
   2033 /*   Nothing.                                                               */
   2034 /****************************************************************************/
   2035 void
   2036 bnx_dma_free(struct bnx_softc *sc)
   2037 {
   2038 	int			i;
   2039 
   2040 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2041 
   2042 	/* Destroy the status block. */
   2043 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2044 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2045 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2046 		    BNX_STATUS_BLK_SZ);
   2047 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2048 		    sc->status_rseg);
   2049 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2050 		sc->status_block = NULL;
   2051 		sc->status_map = NULL;
   2052 	}
   2053 
   2054 	/* Destroy the statistics block. */
   2055 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2056 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2057 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2058 		    BNX_STATS_BLK_SZ);
   2059 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2060 		    sc->stats_rseg);
   2061 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2062 		sc->stats_block = NULL;
   2063 		sc->stats_map = NULL;
   2064 	}
   2065 
   2066 	/* Free, unmap and destroy all context memory pages. */
   2067 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2068 		for (i = 0; i < sc->ctx_pages; i++) {
   2069 			if (sc->ctx_block[i] != NULL) {
   2070 				bus_dmamap_unload(sc->bnx_dmatag,
   2071 				    sc->ctx_map[i]);
   2072 				bus_dmamem_unmap(sc->bnx_dmatag,
   2073 				    (void *)sc->ctx_block[i],
   2074 				    BCM_PAGE_SIZE);
   2075 				bus_dmamem_free(sc->bnx_dmatag,
   2076 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2077 				bus_dmamap_destroy(sc->bnx_dmatag,
   2078 				    sc->ctx_map[i]);
   2079 				sc->ctx_block[i] = NULL;
   2080 			}
   2081 		}
   2082 	}
   2083 
   2084 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2085 	for (i = 0; i < TX_PAGES; i++ ) {
   2086 		if (sc->tx_bd_chain[i] != NULL &&
   2087 		    sc->tx_bd_chain_map[i] != NULL) {
   2088 			bus_dmamap_unload(sc->bnx_dmatag,
   2089 			    sc->tx_bd_chain_map[i]);
   2090 			bus_dmamem_unmap(sc->bnx_dmatag,
   2091 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2092 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2093 			    sc->tx_bd_chain_rseg[i]);
   2094 			bus_dmamap_destroy(sc->bnx_dmatag,
   2095 			    sc->tx_bd_chain_map[i]);
   2096 			sc->tx_bd_chain[i] = NULL;
   2097 			sc->tx_bd_chain_map[i] = NULL;
   2098 		}
   2099 	}
   2100 
   2101 	/* Destroy the TX dmamaps. */
   2102 	/* This isn't necessary since we dont allocate them up front */
   2103 
   2104 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2105 	for (i = 0; i < RX_PAGES; i++ ) {
   2106 		if (sc->rx_bd_chain[i] != NULL &&
   2107 		    sc->rx_bd_chain_map[i] != NULL) {
   2108 			bus_dmamap_unload(sc->bnx_dmatag,
   2109 			    sc->rx_bd_chain_map[i]);
   2110 			bus_dmamem_unmap(sc->bnx_dmatag,
   2111 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2112 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2113 			    sc->rx_bd_chain_rseg[i]);
   2114 
   2115 			bus_dmamap_destroy(sc->bnx_dmatag,
   2116 			    sc->rx_bd_chain_map[i]);
   2117 			sc->rx_bd_chain[i] = NULL;
   2118 			sc->rx_bd_chain_map[i] = NULL;
   2119 		}
   2120 	}
   2121 
   2122 	/* Unload and destroy the RX mbuf maps. */
   2123 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2124 		if (sc->rx_mbuf_map[i] != NULL) {
   2125 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2126 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2127 		}
   2128 	}
   2129 
   2130 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2131 }
   2132 
   2133 /****************************************************************************/
   2134 /* Allocate any DMA memory needed by the driver.                            */
   2135 /*                                                                          */
   2136 /* Allocates DMA memory needed for the various global structures needed by  */
   2137 /* hardware.                                                                */
   2138 /*                                                                          */
   2139 /* Returns:                                                                 */
   2140 /*   0 for success, positive value for failure.                             */
   2141 /****************************************************************************/
   2142 int
   2143 bnx_dma_alloc(struct bnx_softc *sc)
   2144 {
   2145 	int			i, rc = 0;
   2146 
   2147 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2148 
   2149 	/*
   2150 	 * Allocate DMA memory for the status block, map the memory into DMA
   2151 	 * space, and fetch the physical address of the block.
   2152 	 */
   2153 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2154 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2155 		aprint_error_dev(sc->bnx_dev,
   2156 		    "Could not create status block DMA map!\n");
   2157 		rc = ENOMEM;
   2158 		goto bnx_dma_alloc_exit;
   2159 	}
   2160 
   2161 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2162 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2163 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2164 		aprint_error_dev(sc->bnx_dev,
   2165 		    "Could not allocate status block DMA memory!\n");
   2166 		rc = ENOMEM;
   2167 		goto bnx_dma_alloc_exit;
   2168 	}
   2169 
   2170 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2171 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2172 		aprint_error_dev(sc->bnx_dev,
   2173 		    "Could not map status block DMA memory!\n");
   2174 		rc = ENOMEM;
   2175 		goto bnx_dma_alloc_exit;
   2176 	}
   2177 
   2178 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2179 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2180 		aprint_error_dev(sc->bnx_dev,
   2181 		    "Could not load status block DMA memory!\n");
   2182 		rc = ENOMEM;
   2183 		goto bnx_dma_alloc_exit;
   2184 	}
   2185 
   2186 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2187 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2188 
   2189 	/* DRC - Fix for 64 bit addresses. */
   2190 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2191 		(u_int32_t) sc->status_block_paddr);
   2192 
   2193 	/* BCM5709 uses host memory as cache for context memory. */
   2194 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2195 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2196 		if (sc->ctx_pages == 0)
   2197 			sc->ctx_pages = 1;
   2198 		if (sc->ctx_pages > 4) /* XXX */
   2199 			sc->ctx_pages = 4;
   2200 
   2201 		DBRUNIF((sc->ctx_pages > 512),
   2202 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2203 				__FILE__, __LINE__, sc->ctx_pages));
   2204 
   2205 
   2206 		for (i = 0; i < sc->ctx_pages; i++) {
   2207 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2208 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2209 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2210 			    &sc->ctx_map[i]) != 0) {
   2211 				rc = ENOMEM;
   2212 				goto bnx_dma_alloc_exit;
   2213 			}
   2214 
   2215 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2216 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2217 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2218 				rc = ENOMEM;
   2219 				goto bnx_dma_alloc_exit;
   2220 			}
   2221 
   2222 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2223 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2224 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2225 				rc = ENOMEM;
   2226 				goto bnx_dma_alloc_exit;
   2227 			}
   2228 
   2229 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2230 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2231 			    BUS_DMA_NOWAIT) != 0) {
   2232 				rc = ENOMEM;
   2233 				goto bnx_dma_alloc_exit;
   2234 			}
   2235 
   2236 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2237 		}
   2238 	}
   2239 
   2240 	/*
   2241 	 * Allocate DMA memory for the statistics block, map the memory into
   2242 	 * DMA space, and fetch the physical address of the block.
   2243 	 */
   2244 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2245 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2246 		aprint_error_dev(sc->bnx_dev,
   2247 		    "Could not create stats block DMA map!\n");
   2248 		rc = ENOMEM;
   2249 		goto bnx_dma_alloc_exit;
   2250 	}
   2251 
   2252 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2253 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2254 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2255 		aprint_error_dev(sc->bnx_dev,
   2256 		    "Could not allocate stats block DMA memory!\n");
   2257 		rc = ENOMEM;
   2258 		goto bnx_dma_alloc_exit;
   2259 	}
   2260 
   2261 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2262 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2263 		aprint_error_dev(sc->bnx_dev,
   2264 		    "Could not map stats block DMA memory!\n");
   2265 		rc = ENOMEM;
   2266 		goto bnx_dma_alloc_exit;
   2267 	}
   2268 
   2269 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2270 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2271 		aprint_error_dev(sc->bnx_dev,
   2272 		    "Could not load status block DMA memory!\n");
   2273 		rc = ENOMEM;
   2274 		goto bnx_dma_alloc_exit;
   2275 	}
   2276 
   2277 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2278 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2279 
   2280 	/* DRC - Fix for 64 bit address. */
   2281 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2282 	    (u_int32_t) sc->stats_block_paddr);
   2283 
   2284 	/*
   2285 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2286 	 * and fetch the physical address of the block.
   2287 	 */
   2288 	for (i = 0; i < TX_PAGES; i++) {
   2289 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2290 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2291 		    &sc->tx_bd_chain_map[i])) {
   2292 			aprint_error_dev(sc->bnx_dev,
   2293 			    "Could not create Tx desc %d DMA map!\n", i);
   2294 			rc = ENOMEM;
   2295 			goto bnx_dma_alloc_exit;
   2296 		}
   2297 
   2298 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2299 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2300 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2301 			aprint_error_dev(sc->bnx_dev,
   2302 			    "Could not allocate TX desc %d DMA memory!\n",
   2303 			    i);
   2304 			rc = ENOMEM;
   2305 			goto bnx_dma_alloc_exit;
   2306 		}
   2307 
   2308 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2309 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2310 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2311 			aprint_error_dev(sc->bnx_dev,
   2312 			    "Could not map TX desc %d DMA memory!\n", i);
   2313 			rc = ENOMEM;
   2314 			goto bnx_dma_alloc_exit;
   2315 		}
   2316 
   2317 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2318 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2319 		    BUS_DMA_NOWAIT)) {
   2320 			aprint_error_dev(sc->bnx_dev,
   2321 			    "Could not load TX desc %d DMA memory!\n", i);
   2322 			rc = ENOMEM;
   2323 			goto bnx_dma_alloc_exit;
   2324 		}
   2325 
   2326 		sc->tx_bd_chain_paddr[i] =
   2327 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2328 
   2329 		/* DRC - Fix for 64 bit systems. */
   2330 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2331 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
   2332 	}
   2333 
   2334 	/*
   2335 	 * Create lists to hold TX mbufs.
   2336 	 */
   2337 	TAILQ_INIT(&sc->tx_free_pkts);
   2338 	TAILQ_INIT(&sc->tx_used_pkts);
   2339 	sc->tx_pkt_count = 0;
   2340 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2341 
   2342 	/*
   2343 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2344 	 * and fetch the physical address of the block.
   2345 	 */
   2346 	for (i = 0; i < RX_PAGES; i++) {
   2347 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2348 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2349 		    &sc->rx_bd_chain_map[i])) {
   2350 			aprint_error_dev(sc->bnx_dev,
   2351 			    "Could not create Rx desc %d DMA map!\n", i);
   2352 			rc = ENOMEM;
   2353 			goto bnx_dma_alloc_exit;
   2354 		}
   2355 
   2356 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2357 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2358 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2359 			aprint_error_dev(sc->bnx_dev,
   2360 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2361 			rc = ENOMEM;
   2362 			goto bnx_dma_alloc_exit;
   2363 		}
   2364 
   2365 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2366 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2367 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2368 			aprint_error_dev(sc->bnx_dev,
   2369 			    "Could not map Rx desc %d DMA memory!\n", i);
   2370 			rc = ENOMEM;
   2371 			goto bnx_dma_alloc_exit;
   2372 		}
   2373 
   2374 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2375 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2376 		    BUS_DMA_NOWAIT)) {
   2377 			aprint_error_dev(sc->bnx_dev,
   2378 			    "Could not load Rx desc %d DMA memory!\n", i);
   2379 			rc = ENOMEM;
   2380 			goto bnx_dma_alloc_exit;
   2381 		}
   2382 
   2383 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2384 		sc->rx_bd_chain_paddr[i] =
   2385 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2386 
   2387 		/* DRC - Fix for 64 bit systems. */
   2388 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2389 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
   2390 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2391 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2392 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2393 	}
   2394 
   2395 	/*
   2396 	 * Create DMA maps for the Rx buffer mbufs.
   2397 	 */
   2398 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2399 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2400 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2401 		    &sc->rx_mbuf_map[i])) {
   2402 			aprint_error_dev(sc->bnx_dev,
   2403 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2404 			rc = ENOMEM;
   2405 			goto bnx_dma_alloc_exit;
   2406 		}
   2407 	}
   2408 
   2409  bnx_dma_alloc_exit:
   2410 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2411 
   2412 	return(rc);
   2413 }
   2414 
   2415 /****************************************************************************/
   2416 /* Release all resources used by the driver.                                */
   2417 /*                                                                          */
   2418 /* Releases all resources acquired by the driver including interrupts,      */
   2419 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2420 /*                                                                          */
   2421 /* Returns:                                                                 */
   2422 /*   Nothing.                                                               */
   2423 /****************************************************************************/
   2424 void
   2425 bnx_release_resources(struct bnx_softc *sc)
   2426 {
   2427 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2428 
   2429 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2430 
   2431 	bnx_dma_free(sc);
   2432 
   2433 	if (sc->bnx_intrhand != NULL)
   2434 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2435 
   2436 	if (sc->bnx_size)
   2437 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2438 
   2439 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2440 }
   2441 
   2442 /****************************************************************************/
   2443 /* Firmware synchronization.                                                */
   2444 /*                                                                          */
   2445 /* Before performing certain events such as a chip reset, synchronize with  */
   2446 /* the firmware first.                                                      */
   2447 /*                                                                          */
   2448 /* Returns:                                                                 */
   2449 /*   0 for success, positive value for failure.                             */
   2450 /****************************************************************************/
   2451 int
   2452 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
   2453 {
   2454 	int			i, rc = 0;
   2455 	u_int32_t		val;
   2456 
   2457 	/* Don't waste any time if we've timed out before. */
   2458 	if (sc->bnx_fw_timed_out) {
   2459 		rc = EBUSY;
   2460 		goto bnx_fw_sync_exit;
   2461 	}
   2462 
   2463 	/* Increment the message sequence number. */
   2464 	sc->bnx_fw_wr_seq++;
   2465 	msg_data |= sc->bnx_fw_wr_seq;
   2466 
   2467  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2468 	    msg_data);
   2469 
   2470 	/* Send the message to the bootcode driver mailbox. */
   2471 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2472 
   2473 	/* Wait for the bootcode to acknowledge the message. */
   2474 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2475 		/* Check for a response in the bootcode firmware mailbox. */
   2476 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2477 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2478 			break;
   2479 		DELAY(1000);
   2480 	}
   2481 
   2482 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2483 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2484 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2485 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2486 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2487 
   2488 		msg_data &= ~BNX_DRV_MSG_CODE;
   2489 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2490 
   2491 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2492 
   2493 		sc->bnx_fw_timed_out = 1;
   2494 		rc = EBUSY;
   2495 	}
   2496 
   2497 bnx_fw_sync_exit:
   2498 	return (rc);
   2499 }
   2500 
   2501 /****************************************************************************/
   2502 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2503 /*                                                                          */
   2504 /* Returns:                                                                 */
   2505 /*   Nothing.                                                               */
   2506 /****************************************************************************/
   2507 void
   2508 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
   2509     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
   2510 {
   2511 	int			i;
   2512 	u_int32_t		val;
   2513 
   2514 	/* Set the page size used by RV2P. */
   2515 	if (rv2p_proc == RV2P_PROC2) {
   2516 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2517 		    USABLE_RX_BD_PER_PAGE);
   2518 	}
   2519 
   2520 	for (i = 0; i < rv2p_code_len; i += 8) {
   2521 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2522 		rv2p_code++;
   2523 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2524 		rv2p_code++;
   2525 
   2526 		if (rv2p_proc == RV2P_PROC1) {
   2527 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2528 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2529 		} else {
   2530 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2531 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2532 		}
   2533 	}
   2534 
   2535 	/* Reset the processor, un-stall is done later. */
   2536 	if (rv2p_proc == RV2P_PROC1)
   2537 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2538 	else
   2539 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2540 }
   2541 
   2542 /****************************************************************************/
   2543 /* Load RISC processor firmware.                                            */
   2544 /*                                                                          */
   2545 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2546 /* associated with a particular processor.                                  */
   2547 /*                                                                          */
   2548 /* Returns:                                                                 */
   2549 /*   Nothing.                                                               */
   2550 /****************************************************************************/
   2551 void
   2552 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2553     struct fw_info *fw)
   2554 {
   2555 	u_int32_t		offset;
   2556 	u_int32_t		val;
   2557 
   2558 	/* Halt the CPU. */
   2559 	val = REG_RD_IND(sc, cpu_reg->mode);
   2560 	val |= cpu_reg->mode_value_halt;
   2561 	REG_WR_IND(sc, cpu_reg->mode, val);
   2562 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2563 
   2564 	/* Load the Text area. */
   2565 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2566 	if (fw->text) {
   2567 		int j;
   2568 
   2569 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2570 			REG_WR_IND(sc, offset, fw->text[j]);
   2571 	}
   2572 
   2573 	/* Load the Data area. */
   2574 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2575 	if (fw->data) {
   2576 		int j;
   2577 
   2578 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2579 			REG_WR_IND(sc, offset, fw->data[j]);
   2580 	}
   2581 
   2582 	/* Load the SBSS area. */
   2583 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2584 	if (fw->sbss) {
   2585 		int j;
   2586 
   2587 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2588 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2589 	}
   2590 
   2591 	/* Load the BSS area. */
   2592 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2593 	if (fw->bss) {
   2594 		int j;
   2595 
   2596 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2597 			REG_WR_IND(sc, offset, fw->bss[j]);
   2598 	}
   2599 
   2600 	/* Load the Read-Only area. */
   2601 	offset = cpu_reg->spad_base +
   2602 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2603 	if (fw->rodata) {
   2604 		int j;
   2605 
   2606 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2607 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2608 	}
   2609 
   2610 	/* Clear the pre-fetch instruction. */
   2611 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2612 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2613 
   2614 	/* Start the CPU. */
   2615 	val = REG_RD_IND(sc, cpu_reg->mode);
   2616 	val &= ~cpu_reg->mode_value_halt;
   2617 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2618 	REG_WR_IND(sc, cpu_reg->mode, val);
   2619 }
   2620 
   2621 /****************************************************************************/
   2622 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2623 /*                                                                          */
   2624 /* Loads the firmware for each CPU and starts the CPU.                      */
   2625 /*                                                                          */
   2626 /* Returns:                                                                 */
   2627 /*   Nothing.                                                               */
   2628 /****************************************************************************/
   2629 void
   2630 bnx_init_cpus(struct bnx_softc *sc)
   2631 {
   2632 	struct cpu_reg cpu_reg;
   2633 	struct fw_info fw;
   2634 
   2635 	switch(BNX_CHIP_NUM(sc)) {
   2636 	case BNX_CHIP_NUM_5709:
   2637 		/* Initialize the RV2P processor. */
   2638 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2639 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2640 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2641 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2642 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2643 		} else {
   2644 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2645 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2646 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2647 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2648 		}
   2649 
   2650 		/* Initialize the RX Processor. */
   2651 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2652 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2653 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2654 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2655 		cpu_reg.state_value_clear = 0xffffff;
   2656 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2657 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2658 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2659 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2660 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2661 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2662 		cpu_reg.mips_view_base = 0x8000000;
   2663 
   2664 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2665 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2666 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2667 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2668 
   2669 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2670 		fw.text_len = bnx_RXP_b09FwTextLen;
   2671 		fw.text_index = 0;
   2672 		fw.text = bnx_RXP_b09FwText;
   2673 
   2674 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2675 		fw.data_len = bnx_RXP_b09FwDataLen;
   2676 		fw.data_index = 0;
   2677 		fw.data = bnx_RXP_b09FwData;
   2678 
   2679 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2680 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2681 		fw.sbss_index = 0;
   2682 		fw.sbss = bnx_RXP_b09FwSbss;
   2683 
   2684 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2685 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2686 		fw.bss_index = 0;
   2687 		fw.bss = bnx_RXP_b09FwBss;
   2688 
   2689 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2690 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2691 		fw.rodata_index = 0;
   2692 		fw.rodata = bnx_RXP_b09FwRodata;
   2693 
   2694 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2695 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2696 
   2697 		/* Initialize the TX Processor. */
   2698 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2699 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2700 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2701 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2702 		cpu_reg.state_value_clear = 0xffffff;
   2703 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2704 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2705 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2706 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2707 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2708 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2709 		cpu_reg.mips_view_base = 0x8000000;
   2710 
   2711 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2712 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2713 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2714 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2715 
   2716 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2717 		fw.text_len = bnx_TXP_b09FwTextLen;
   2718 		fw.text_index = 0;
   2719 		fw.text = bnx_TXP_b09FwText;
   2720 
   2721 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   2722 		fw.data_len = bnx_TXP_b09FwDataLen;
   2723 		fw.data_index = 0;
   2724 		fw.data = bnx_TXP_b09FwData;
   2725 
   2726 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   2727 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   2728 		fw.sbss_index = 0;
   2729 		fw.sbss = bnx_TXP_b09FwSbss;
   2730 
   2731 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   2732 		fw.bss_len = bnx_TXP_b09FwBssLen;
   2733 		fw.bss_index = 0;
   2734 		fw.bss = bnx_TXP_b09FwBss;
   2735 
   2736 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   2737 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   2738 		fw.rodata_index = 0;
   2739 		fw.rodata = bnx_TXP_b09FwRodata;
   2740 
   2741 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2742 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2743 
   2744 		/* Initialize the TX Patch-up Processor. */
   2745 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2746 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2747 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2748 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2749 		cpu_reg.state_value_clear = 0xffffff;
   2750 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2751 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2752 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2753 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2754 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2755 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2756 		cpu_reg.mips_view_base = 0x8000000;
   2757 
   2758 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   2759 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   2760 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   2761 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   2762 
   2763 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   2764 		fw.text_len = bnx_TPAT_b09FwTextLen;
   2765 		fw.text_index = 0;
   2766 		fw.text = bnx_TPAT_b09FwText;
   2767 
   2768 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   2769 		fw.data_len = bnx_TPAT_b09FwDataLen;
   2770 		fw.data_index = 0;
   2771 		fw.data = bnx_TPAT_b09FwData;
   2772 
   2773 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   2774 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   2775 		fw.sbss_index = 0;
   2776 		fw.sbss = bnx_TPAT_b09FwSbss;
   2777 
   2778 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   2779 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   2780 		fw.bss_index = 0;
   2781 		fw.bss = bnx_TPAT_b09FwBss;
   2782 
   2783 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   2784 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   2785 		fw.rodata_index = 0;
   2786 		fw.rodata = bnx_TPAT_b09FwRodata;
   2787 
   2788 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2789 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2790 
   2791 		/* Initialize the Completion Processor. */
   2792 		cpu_reg.mode = BNX_COM_CPU_MODE;
   2793 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2794 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2795 		cpu_reg.state = BNX_COM_CPU_STATE;
   2796 		cpu_reg.state_value_clear = 0xffffff;
   2797 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2798 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2799 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2800 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2801 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2802 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   2803 		cpu_reg.mips_view_base = 0x8000000;
   2804 
   2805 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   2806 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   2807 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   2808 		fw.start_addr = bnx_COM_b09FwStartAddr;
   2809 
   2810 		fw.text_addr = bnx_COM_b09FwTextAddr;
   2811 		fw.text_len = bnx_COM_b09FwTextLen;
   2812 		fw.text_index = 0;
   2813 		fw.text = bnx_COM_b09FwText;
   2814 
   2815 		fw.data_addr = bnx_COM_b09FwDataAddr;
   2816 		fw.data_len = bnx_COM_b09FwDataLen;
   2817 		fw.data_index = 0;
   2818 		fw.data = bnx_COM_b09FwData;
   2819 
   2820 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   2821 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   2822 		fw.sbss_index = 0;
   2823 		fw.sbss = bnx_COM_b09FwSbss;
   2824 
   2825 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   2826 		fw.bss_len = bnx_COM_b09FwBssLen;
   2827 		fw.bss_index = 0;
   2828 		fw.bss = bnx_COM_b09FwBss;
   2829 
   2830 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   2831 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   2832 		fw.rodata_index = 0;
   2833 		fw.rodata = bnx_COM_b09FwRodata;
   2834 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   2835 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2836 		break;
   2837 	default:
   2838 		/* Initialize the RV2P processor. */
   2839 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   2840 		    RV2P_PROC1);
   2841 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   2842 		    RV2P_PROC2);
   2843 
   2844 		/* Initialize the RX Processor. */
   2845 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2846 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2847 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2848 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2849 		cpu_reg.state_value_clear = 0xffffff;
   2850 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2851 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2852 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2853 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2854 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2855 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2856 		cpu_reg.mips_view_base = 0x8000000;
   2857 
   2858 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   2859 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   2860 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   2861 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   2862 
   2863 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   2864 		fw.text_len = bnx_RXP_b06FwTextLen;
   2865 		fw.text_index = 0;
   2866 		fw.text = bnx_RXP_b06FwText;
   2867 
   2868 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   2869 		fw.data_len = bnx_RXP_b06FwDataLen;
   2870 		fw.data_index = 0;
   2871 		fw.data = bnx_RXP_b06FwData;
   2872 
   2873 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   2874 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   2875 		fw.sbss_index = 0;
   2876 		fw.sbss = bnx_RXP_b06FwSbss;
   2877 
   2878 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   2879 		fw.bss_len = bnx_RXP_b06FwBssLen;
   2880 		fw.bss_index = 0;
   2881 		fw.bss = bnx_RXP_b06FwBss;
   2882 
   2883 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   2884 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   2885 		fw.rodata_index = 0;
   2886 		fw.rodata = bnx_RXP_b06FwRodata;
   2887 
   2888 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2889 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2890 
   2891 		/* Initialize the TX Processor. */
   2892 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2893 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2894 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2895 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2896 		cpu_reg.state_value_clear = 0xffffff;
   2897 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2898 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2899 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2900 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2901 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2902 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2903 		cpu_reg.mips_view_base = 0x8000000;
   2904 
   2905 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   2906 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   2907 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   2908 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   2909 
   2910 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   2911 		fw.text_len = bnx_TXP_b06FwTextLen;
   2912 		fw.text_index = 0;
   2913 		fw.text = bnx_TXP_b06FwText;
   2914 
   2915 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   2916 		fw.data_len = bnx_TXP_b06FwDataLen;
   2917 		fw.data_index = 0;
   2918 		fw.data = bnx_TXP_b06FwData;
   2919 
   2920 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   2921 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   2922 		fw.sbss_index = 0;
   2923 		fw.sbss = bnx_TXP_b06FwSbss;
   2924 
   2925 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   2926 		fw.bss_len = bnx_TXP_b06FwBssLen;
   2927 		fw.bss_index = 0;
   2928 		fw.bss = bnx_TXP_b06FwBss;
   2929 
   2930 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   2931 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   2932 		fw.rodata_index = 0;
   2933 		fw.rodata = bnx_TXP_b06FwRodata;
   2934 
   2935 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2936 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2937 
   2938 		/* Initialize the TX Patch-up Processor. */
   2939 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2940 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2941 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2942 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2943 		cpu_reg.state_value_clear = 0xffffff;
   2944 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2945 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2946 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2947 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2948 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2949 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2950 		cpu_reg.mips_view_base = 0x8000000;
   2951 
   2952 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   2953 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   2954 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   2955 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   2956 
   2957 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   2958 		fw.text_len = bnx_TPAT_b06FwTextLen;
   2959 		fw.text_index = 0;
   2960 		fw.text = bnx_TPAT_b06FwText;
   2961 
   2962 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   2963 		fw.data_len = bnx_TPAT_b06FwDataLen;
   2964 		fw.data_index = 0;
   2965 		fw.data = bnx_TPAT_b06FwData;
   2966 
   2967 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   2968 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   2969 		fw.sbss_index = 0;
   2970 		fw.sbss = bnx_TPAT_b06FwSbss;
   2971 
   2972 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   2973 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   2974 		fw.bss_index = 0;
   2975 		fw.bss = bnx_TPAT_b06FwBss;
   2976 
   2977 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   2978 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   2979 		fw.rodata_index = 0;
   2980 		fw.rodata = bnx_TPAT_b06FwRodata;
   2981 
   2982 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2983 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2984 
   2985 		/* Initialize the Completion Processor. */
   2986 		cpu_reg.mode = BNX_COM_CPU_MODE;
   2987 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2988 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2989 		cpu_reg.state = BNX_COM_CPU_STATE;
   2990 		cpu_reg.state_value_clear = 0xffffff;
   2991 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2992 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2993 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2994 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2995 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2996 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   2997 		cpu_reg.mips_view_base = 0x8000000;
   2998 
   2999 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3000 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3001 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3002 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3003 
   3004 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3005 		fw.text_len = bnx_COM_b06FwTextLen;
   3006 		fw.text_index = 0;
   3007 		fw.text = bnx_COM_b06FwText;
   3008 
   3009 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3010 		fw.data_len = bnx_COM_b06FwDataLen;
   3011 		fw.data_index = 0;
   3012 		fw.data = bnx_COM_b06FwData;
   3013 
   3014 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3015 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3016 		fw.sbss_index = 0;
   3017 		fw.sbss = bnx_COM_b06FwSbss;
   3018 
   3019 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3020 		fw.bss_len = bnx_COM_b06FwBssLen;
   3021 		fw.bss_index = 0;
   3022 		fw.bss = bnx_COM_b06FwBss;
   3023 
   3024 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3025 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3026 		fw.rodata_index = 0;
   3027 		fw.rodata = bnx_COM_b06FwRodata;
   3028 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3029 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3030 		break;
   3031 	}
   3032 }
   3033 
   3034 /****************************************************************************/
   3035 /* Initialize context memory.                                               */
   3036 /*                                                                          */
   3037 /* Clears the memory associated with each Context ID (CID).                 */
   3038 /*                                                                          */
   3039 /* Returns:                                                                 */
   3040 /*   Nothing.                                                               */
   3041 /****************************************************************************/
   3042 void
   3043 bnx_init_context(struct bnx_softc *sc)
   3044 {
   3045 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3046 		/* DRC: Replace this constant value with a #define. */
   3047 		int i, retry_cnt = 10;
   3048 		u_int32_t val;
   3049 
   3050 		/*
   3051 		 * BCM5709 context memory may be cached
   3052 		 * in host memory so prepare the host memory
   3053 		 * for access.
   3054 		 */
   3055 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3056 		    | (1 << 12);
   3057 		val |= (BCM_PAGE_BITS - 8) << 16;
   3058 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3059 
   3060 		/* Wait for mem init command to complete. */
   3061 		for (i = 0; i < retry_cnt; i++) {
   3062 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3063 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3064 				break;
   3065 			DELAY(2);
   3066 		}
   3067 
   3068 
   3069 		/* ToDo: Consider returning an error here. */
   3070 
   3071 		for (i = 0; i < sc->ctx_pages; i++) {
   3072 			int j;
   3073 
   3074 
   3075 			/* Set the physaddr of the context memory cache. */
   3076 			val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
   3077 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3078 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3079 			val = (u_int32_t)
   3080 			    ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
   3081 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3082 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3083 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3084 
   3085 
   3086 			/* Verify that the context memory write was successful. */
   3087 			for (j = 0; j < retry_cnt; j++) {
   3088 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3089 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3090 					break;
   3091 				DELAY(5);
   3092 			}
   3093 
   3094 			/* ToDo: Consider returning an error here. */
   3095 		}
   3096 	} else {
   3097 		u_int32_t vcid_addr, offset;
   3098 
   3099 		/*
   3100 		 * For the 5706/5708, context memory is local to
   3101 		 * the controller, so initialize the controller
   3102 		 * context memory.
   3103 		 */
   3104 
   3105 		vcid_addr = GET_CID_ADDR(96);
   3106 		while (vcid_addr) {
   3107 
   3108 			vcid_addr -= PHY_CTX_SIZE;
   3109 
   3110 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3111 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3112 
   3113 			for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
   3114 				CTX_WR(sc, 0x00, offset, 0);
   3115 			}
   3116 
   3117 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3118 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3119 		}
   3120 	}
   3121 }
   3122 
   3123 /****************************************************************************/
   3124 /* Fetch the permanent MAC address of the controller.                       */
   3125 /*                                                                          */
   3126 /* Returns:                                                                 */
   3127 /*   Nothing.                                                               */
   3128 /****************************************************************************/
   3129 void
   3130 bnx_get_mac_addr(struct bnx_softc *sc)
   3131 {
   3132 	u_int32_t		mac_lo = 0, mac_hi = 0;
   3133 
   3134 	/*
   3135 	 * The NetXtreme II bootcode populates various NIC
   3136 	 * power-on and runtime configuration items in a
   3137 	 * shared memory area.  The factory configured MAC
   3138 	 * address is available from both NVRAM and the
   3139 	 * shared memory area so we'll read the value from
   3140 	 * shared memory for speed.
   3141 	 */
   3142 
   3143 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3144 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3145 
   3146 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3147 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3148 		    __FILE__, __LINE__);
   3149 	} else {
   3150 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3151 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3152 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3153 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3154 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3155 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3156 	}
   3157 
   3158 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3159 	    "%s\n", ether_sprintf(sc->eaddr));
   3160 }
   3161 
   3162 /****************************************************************************/
   3163 /* Program the MAC address.                                                 */
   3164 /*                                                                          */
   3165 /* Returns:                                                                 */
   3166 /*   Nothing.                                                               */
   3167 /****************************************************************************/
   3168 void
   3169 bnx_set_mac_addr(struct bnx_softc *sc)
   3170 {
   3171 	u_int32_t		val;
   3172 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3173 
   3174 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3175 	    "%s\n", ether_sprintf(sc->eaddr));
   3176 
   3177 	val = (mac_addr[0] << 8) | mac_addr[1];
   3178 
   3179 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3180 
   3181 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3182 		(mac_addr[4] << 8) | mac_addr[5];
   3183 
   3184 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3185 }
   3186 
   3187 /****************************************************************************/
   3188 /* Stop the controller.                                                     */
   3189 /*                                                                          */
   3190 /* Returns:                                                                 */
   3191 /*   Nothing.                                                               */
   3192 /****************************************************************************/
   3193 void
   3194 bnx_stop(struct ifnet *ifp, int disable)
   3195 {
   3196 	struct bnx_softc *sc = ifp->if_softc;
   3197 
   3198 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3199 
   3200 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   3201 		return;
   3202 
   3203 	callout_stop(&sc->bnx_timeout);
   3204 
   3205 	mii_down(&sc->bnx_mii);
   3206 
   3207 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3208 
   3209 	/* Disable the transmit/receive blocks. */
   3210 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3211 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3212 	DELAY(20);
   3213 
   3214 	bnx_disable_intr(sc);
   3215 
   3216 	/* Tell firmware that the driver is going away. */
   3217 	if (disable)
   3218 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3219 	else
   3220 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3221 
   3222 	/* Free RX buffers. */
   3223 	bnx_free_rx_chain(sc);
   3224 
   3225 	/* Free TX buffers. */
   3226 	bnx_free_tx_chain(sc);
   3227 
   3228 	ifp->if_timer = 0;
   3229 
   3230 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3231 
   3232 }
   3233 
   3234 int
   3235 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
   3236 {
   3237 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3238 	u_int32_t		val;
   3239 	int			i, rc = 0;
   3240 
   3241 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3242 
   3243 	/* Wait for pending PCI transactions to complete. */
   3244 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3245 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3246 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3247 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3248 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3249 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3250 	DELAY(5);
   3251 
   3252 	/* Disable DMA */
   3253 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3254 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3255 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3256 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3257 	}
   3258 
   3259 	/* Assume bootcode is running. */
   3260 	sc->bnx_fw_timed_out = 0;
   3261 
   3262 	/* Give the firmware a chance to prepare for the reset. */
   3263 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3264 	if (rc)
   3265 		goto bnx_reset_exit;
   3266 
   3267 	/* Set a firmware reminder that this is a soft reset. */
   3268 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3269 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3270 
   3271 	/* Dummy read to force the chip to complete all current transactions. */
   3272 	val = REG_RD(sc, BNX_MISC_ID);
   3273 
   3274 	/* Chip reset. */
   3275 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3276 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3277 		REG_RD(sc, BNX_MISC_COMMAND);
   3278 		DELAY(5);
   3279 
   3280 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3281 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3282 
   3283 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3284 		    val);
   3285 	} else {
   3286 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3287 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3288 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3289 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3290 
   3291 		/* Allow up to 30us for reset to complete. */
   3292 		for (i = 0; i < 10; i++) {
   3293 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3294 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3295 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3296 				break;
   3297 			}
   3298 			DELAY(10);
   3299 		}
   3300 
   3301 		/* Check that reset completed successfully. */
   3302 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3303 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3304 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3305 			    __FILE__, __LINE__);
   3306 			rc = EBUSY;
   3307 			goto bnx_reset_exit;
   3308 		}
   3309 	}
   3310 
   3311 	/* Make sure byte swapping is properly configured. */
   3312 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3313 	if (val != 0x01020304) {
   3314 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3315 		    __FILE__, __LINE__);
   3316 		rc = ENODEV;
   3317 		goto bnx_reset_exit;
   3318 	}
   3319 
   3320 	/* Just completed a reset, assume that firmware is running again. */
   3321 	sc->bnx_fw_timed_out = 0;
   3322 
   3323 	/* Wait for the firmware to finish its initialization. */
   3324 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3325 	if (rc)
   3326 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3327 		    "initialization!\n", __FILE__, __LINE__);
   3328 
   3329 bnx_reset_exit:
   3330 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3331 
   3332 	return (rc);
   3333 }
   3334 
   3335 int
   3336 bnx_chipinit(struct bnx_softc *sc)
   3337 {
   3338 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3339 	u_int32_t		val;
   3340 	int			rc = 0;
   3341 
   3342 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3343 
   3344 	/* Make sure the interrupt is not active. */
   3345 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3346 
   3347 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3348 	/* channels and PCI clock compensation delay.                      */
   3349 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3350 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3351 #if BYTE_ORDER == BIG_ENDIAN
   3352 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3353 #endif
   3354 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3355 	    DMA_READ_CHANS << 12 |
   3356 	    DMA_WRITE_CHANS << 16;
   3357 
   3358 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3359 
   3360 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3361 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3362 
   3363 	/*
   3364 	 * This setting resolves a problem observed on certain Intel PCI
   3365 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3366 	 * See errata E9_5706A1_65.
   3367 	 */
   3368 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3369 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3370 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3371 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3372 
   3373 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3374 
   3375 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3376 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3377 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3378 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3379 		    val & ~0x20000);
   3380 	}
   3381 
   3382 	/* Enable the RX_V2P and Context state machines before access. */
   3383 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3384 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3385 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3386 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3387 
   3388 	/* Initialize context mapping and zero out the quick contexts. */
   3389 	bnx_init_context(sc);
   3390 
   3391 	/* Initialize the on-boards CPUs */
   3392 	bnx_init_cpus(sc);
   3393 
   3394 	/* Prepare NVRAM for access. */
   3395 	if (bnx_init_nvram(sc)) {
   3396 		rc = ENODEV;
   3397 		goto bnx_chipinit_exit;
   3398 	}
   3399 
   3400 	/* Set the kernel bypass block size */
   3401 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3402 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3403 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3404 
   3405 	/* Enable bins used on the 5709. */
   3406 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3407 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3408 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3409 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3410 	}
   3411 
   3412 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3413 
   3414 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
   3415 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3416 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3417 
   3418 	val = (BCM_PAGE_BITS - 8) << 24;
   3419 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3420 
   3421 	/* Configure page size. */
   3422 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3423 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3424 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3425 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3426 
   3427 #if 0
   3428 	/* Set the perfect match control register to default. */
   3429 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3430 #endif
   3431 
   3432 bnx_chipinit_exit:
   3433 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3434 
   3435 	return(rc);
   3436 }
   3437 
   3438 /****************************************************************************/
   3439 /* Initialize the controller in preparation to send/receive traffic.        */
   3440 /*                                                                          */
   3441 /* Returns:                                                                 */
   3442 /*   0 for success, positive value for failure.                             */
   3443 /****************************************************************************/
   3444 int
   3445 bnx_blockinit(struct bnx_softc *sc)
   3446 {
   3447 	u_int32_t		reg, val;
   3448 	int 			rc = 0;
   3449 
   3450 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3451 
   3452 	/* Load the hardware default MAC address. */
   3453 	bnx_set_mac_addr(sc);
   3454 
   3455 	/* Set the Ethernet backoff seed value */
   3456 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3457 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3458 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3459 
   3460 	sc->last_status_idx = 0;
   3461 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3462 
   3463 	/* Set up link change interrupt generation. */
   3464 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3465 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3466 
   3467 	/* Program the physical address of the status block. */
   3468 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
   3469 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3470 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
   3471 
   3472 	/* Program the physical address of the statistics block. */
   3473 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3474 	    (u_int32_t)(sc->stats_block_paddr));
   3475 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3476 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
   3477 
   3478 	/* Program various host coalescing parameters. */
   3479 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3480 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3481 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3482 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3483 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3484 	    sc->bnx_comp_prod_trip);
   3485 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3486 	    sc->bnx_tx_ticks);
   3487 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3488 	    sc->bnx_rx_ticks);
   3489 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3490 	    sc->bnx_com_ticks);
   3491 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3492 	    sc->bnx_cmd_ticks);
   3493 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3494 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3495 	REG_WR(sc, BNX_HC_CONFIG,
   3496 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3497 	    BNX_HC_CONFIG_COLLECT_STATS));
   3498 
   3499 	/* Clear the internal statistics counters. */
   3500 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3501 
   3502 	/* Verify that bootcode is running. */
   3503 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3504 
   3505 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3506 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3507 	    __FILE__, __LINE__); reg = 0);
   3508 
   3509 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3510 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3511 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3512 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3513 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3514 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3515 		rc = ENODEV;
   3516 		goto bnx_blockinit_exit;
   3517 	}
   3518 
   3519 	/* Check if any management firmware is running. */
   3520 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3521 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3522 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3523 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3524 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3525 	}
   3526 
   3527 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3528 	    BNX_DEV_INFO_BC_REV);
   3529 
   3530 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3531 
   3532 	/* Enable DMA */
   3533 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3534 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3535 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3536 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3537 	}
   3538 
   3539 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3540 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3541 
   3542 	/* Enable link state change interrupt generation. */
   3543 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3544 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3545 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3546 	} else
   3547 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3548 
   3549 	/* Enable all remaining blocks in the MAC. */
   3550 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3551 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3552 	DELAY(20);
   3553 
   3554 bnx_blockinit_exit:
   3555 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3556 
   3557 	return (rc);
   3558 }
   3559 
   3560 static int
   3561 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
   3562     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3563 {
   3564 	bus_dmamap_t		map;
   3565 	struct rx_bd		*rxbd;
   3566 	u_int32_t		addr;
   3567 	int i;
   3568 #ifdef BNX_DEBUG
   3569 	u_int16_t debug_chain_prod =	*chain_prod;
   3570 #endif
   3571 	u_int16_t first_chain_prod;
   3572 
   3573 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3574 
   3575 	/* Map the mbuf cluster into device memory. */
   3576 	map = sc->rx_mbuf_map[*chain_prod];
   3577 	first_chain_prod = *chain_prod;
   3578 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3579 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3580 		    __FILE__, __LINE__);
   3581 
   3582 		m_freem(m_new);
   3583 
   3584 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3585 
   3586 		return ENOBUFS;
   3587 	}
   3588 	/* Make sure there is room in the receive chain. */
   3589 	if (map->dm_nsegs > sc->free_rx_bd) {
   3590 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3591 		m_freem(m_new);
   3592 		return EFBIG;
   3593 	}
   3594 #ifdef BNX_DEBUG
   3595 	/* Track the distribution of buffer segments. */
   3596 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3597 #endif
   3598 
   3599 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3600 	    BUS_DMASYNC_PREREAD);
   3601 
   3602 	/* Update some debug statistics counters */
   3603 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3604 	    sc->rx_low_watermark = sc->free_rx_bd);
   3605 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3606 
   3607 	/*
   3608 	 * Setup the rx_bd for the first segment
   3609 	 */
   3610 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3611 
   3612 	addr = (u_int32_t)(map->dm_segs[0].ds_addr);
   3613 	rxbd->rx_bd_haddr_lo = htole32(addr);
   3614 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
   3615 	rxbd->rx_bd_haddr_hi = htole32(addr);
   3616 	rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
   3617 	rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
   3618 	*prod_bseq += map->dm_segs[0].ds_len;
   3619 	bus_dmamap_sync(sc->bnx_dmatag,
   3620 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3621 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3622 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3623 
   3624 	for (i = 1; i < map->dm_nsegs; i++) {
   3625 		*prod = NEXT_RX_BD(*prod);
   3626 		*chain_prod = RX_CHAIN_IDX(*prod);
   3627 
   3628 		rxbd =
   3629 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3630 
   3631 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   3632 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3633 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   3634 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3635 		rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
   3636 		rxbd->rx_bd_flags = 0;
   3637 		*prod_bseq += map->dm_segs[i].ds_len;
   3638 		bus_dmamap_sync(sc->bnx_dmatag,
   3639 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3640 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3641 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3642 	}
   3643 
   3644 	rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
   3645 	bus_dmamap_sync(sc->bnx_dmatag,
   3646 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3647 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3648 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3649 
   3650 	/*
   3651 	 * Save the mbuf, ajust the map pointer (swap map for first and
   3652 	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
   3653 	 * and update counter.
   3654 	 */
   3655 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3656 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3657 	sc->rx_mbuf_map[*chain_prod] = map;
   3658 	sc->free_rx_bd -= map->dm_nsegs;
   3659 
   3660 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3661 	    map->dm_nsegs));
   3662 	*prod = NEXT_RX_BD(*prod);
   3663 	*chain_prod = RX_CHAIN_IDX(*prod);
   3664 
   3665 	return 0;
   3666 }
   3667 
   3668 /****************************************************************************/
   3669 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3670 /*                                                                          */
   3671 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3672 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3673 /* necessary.                                                               */
   3674 /*                                                                          */
   3675 /* Returns:                                                                 */
   3676 /*   0 for success, positive value for failure.                             */
   3677 /****************************************************************************/
   3678 int
   3679 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
   3680     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3681 {
   3682 	struct mbuf 		*m_new = NULL;
   3683 	int			rc = 0;
   3684 	u_int16_t min_free_bd;
   3685 
   3686 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3687 	    __func__);
   3688 
   3689 	/* Make sure the inputs are valid. */
   3690 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3691 	    aprint_error_dev(sc->bnx_dev,
   3692 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3693 		*chain_prod, (u_int16_t)MAX_RX_BD));
   3694 
   3695 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3696 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3697 	    *prod_bseq);
   3698 
   3699 	/* try to get in as many mbufs as possible */
   3700 	if (sc->mbuf_alloc_size == MCLBYTES)
   3701 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3702 	else
   3703 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3704 	while (sc->free_rx_bd >= min_free_bd) {
   3705 		/* Simulate an mbuf allocation failure. */
   3706 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3707 		    aprint_error_dev(sc->bnx_dev,
   3708 		    "Simulating mbuf allocation failure.\n");
   3709 			sc->mbuf_sim_alloc_failed++;
   3710 			rc = ENOBUFS;
   3711 			goto bnx_get_buf_exit);
   3712 
   3713 		/* This is a new mbuf allocation. */
   3714 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3715 		if (m_new == NULL) {
   3716 			DBPRINT(sc, BNX_WARN,
   3717 			    "%s(%d): RX mbuf header allocation failed!\n",
   3718 			    __FILE__, __LINE__);
   3719 
   3720 			sc->mbuf_alloc_failed++;
   3721 
   3722 			rc = ENOBUFS;
   3723 			goto bnx_get_buf_exit;
   3724 		}
   3725 
   3726 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3727 
   3728 		/* Simulate an mbuf cluster allocation failure. */
   3729 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3730 			m_freem(m_new);
   3731 			sc->rx_mbuf_alloc--;
   3732 			sc->mbuf_alloc_failed++;
   3733 			sc->mbuf_sim_alloc_failed++;
   3734 			rc = ENOBUFS;
   3735 			goto bnx_get_buf_exit);
   3736 
   3737 		if (sc->mbuf_alloc_size == MCLBYTES)
   3738 			MCLGET(m_new, M_DONTWAIT);
   3739 		else
   3740 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3741 			    M_DONTWAIT);
   3742 		if (!(m_new->m_flags & M_EXT)) {
   3743 			DBPRINT(sc, BNX_WARN,
   3744 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3745 			    __FILE__, __LINE__);
   3746 
   3747 			m_freem(m_new);
   3748 
   3749 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3750 			sc->mbuf_alloc_failed++;
   3751 
   3752 			rc = ENOBUFS;
   3753 			goto bnx_get_buf_exit;
   3754 		}
   3755 
   3756 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3757 		if (rc != 0)
   3758 			goto bnx_get_buf_exit;
   3759 	}
   3760 
   3761 bnx_get_buf_exit:
   3762 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3763 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3764 	    *chain_prod, *prod_bseq);
   3765 
   3766 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3767 	    __func__);
   3768 
   3769 	return(rc);
   3770 }
   3771 
   3772 int
   3773 bnx_alloc_pkts(struct bnx_softc *sc)
   3774 {
   3775 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   3776 	struct bnx_pkt *pkt;
   3777 	int i;
   3778 
   3779 	for (i = 0; i < 4; i++) { /* magic! */
   3780 		pkt = pool_get(bnx_tx_pool, PR_NOWAIT);
   3781 		if (pkt == NULL)
   3782 			break;
   3783 
   3784 		if (bus_dmamap_create(sc->bnx_dmatag,
   3785 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   3786 		    MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   3787 		    &pkt->pkt_dmamap) != 0)
   3788 			goto put;
   3789 
   3790 		if (!ISSET(ifp->if_flags, IFF_UP))
   3791 			goto stopping;
   3792 
   3793 		mutex_enter(&sc->tx_pkt_mtx);
   3794 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   3795 		sc->tx_pkt_count++;
   3796 		mutex_exit(&sc->tx_pkt_mtx);
   3797 	}
   3798 
   3799 	return (i == 0) ? ENOMEM : 0;
   3800 
   3801 stopping:
   3802 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   3803 put:
   3804 	pool_put(bnx_tx_pool, pkt);
   3805 	return (i == 0) ? ENOMEM : 0;
   3806 }
   3807 
   3808 /****************************************************************************/
   3809 /* Initialize the TX context memory.                                        */
   3810 /*                                                                          */
   3811 /* Returns:                                                                 */
   3812 /*   Nothing                                                                */
   3813 /****************************************************************************/
   3814 void
   3815 bnx_init_tx_context(struct bnx_softc *sc)
   3816 {
   3817 	u_int32_t val;
   3818 
   3819 	/* Initialize the context ID for an L2 TX chain. */
   3820 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3821 		/* Set the CID type to support an L2 connection. */
   3822 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3823 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   3824 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3825 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   3826 
   3827 		/* Point the hardware to the first page in the chain. */
   3828 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3829 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   3830 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   3831 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3832 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   3833 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   3834 	} else {
   3835 		/* Set the CID type to support an L2 connection. */
   3836 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3837 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   3838 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3839 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   3840 
   3841 		/* Point the hardware to the first page in the chain. */
   3842 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3843 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   3844 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3845 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   3846 	}
   3847 }
   3848 
   3849 
   3850 /****************************************************************************/
   3851 /* Allocate memory and initialize the TX data structures.                   */
   3852 /*                                                                          */
   3853 /* Returns:                                                                 */
   3854 /*   0 for success, positive value for failure.                             */
   3855 /****************************************************************************/
   3856 int
   3857 bnx_init_tx_chain(struct bnx_softc *sc)
   3858 {
   3859 	struct tx_bd		*txbd;
   3860 	u_int32_t		addr;
   3861 	int			i, rc = 0;
   3862 
   3863 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3864 
   3865 	/* Force an allocation of some dmamaps for tx up front */
   3866 	bnx_alloc_pkts(sc);
   3867 
   3868 	/* Set the initial TX producer/consumer indices. */
   3869 	sc->tx_prod = 0;
   3870 	sc->tx_cons = 0;
   3871 	sc->tx_prod_bseq = 0;
   3872 	sc->used_tx_bd = 0;
   3873 	sc->max_tx_bd = USABLE_TX_BD;
   3874 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   3875 	DBRUNIF(1, sc->tx_full_count = 0);
   3876 
   3877 	/*
   3878 	 * The NetXtreme II supports a linked-list structure called
   3879 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   3880 	 * consists of a series of 1 or more chain pages, each of which
   3881 	 * consists of a fixed number of BD entries.
   3882 	 * The last BD entry on each page is a pointer to the next page
   3883 	 * in the chain, and the last pointer in the BD chain
   3884 	 * points back to the beginning of the chain.
   3885 	 */
   3886 
   3887 	/* Set the TX next pointer chain entries. */
   3888 	for (i = 0; i < TX_PAGES; i++) {
   3889 		int j;
   3890 
   3891 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   3892 
   3893 		/* Check if we've reached the last page. */
   3894 		if (i == (TX_PAGES - 1))
   3895 			j = 0;
   3896 		else
   3897 			j = i + 1;
   3898 
   3899 		addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
   3900 		txbd->tx_bd_haddr_lo = htole32(addr);
   3901 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
   3902 		txbd->tx_bd_haddr_hi = htole32(addr);
   3903 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3904 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3905 	}
   3906 
   3907 	/*
   3908 	 * Initialize the context ID for an L2 TX chain.
   3909 	 */
   3910 	bnx_init_tx_context(sc);
   3911 
   3912 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3913 
   3914 	return(rc);
   3915 }
   3916 
   3917 /****************************************************************************/
   3918 /* Free memory and clear the TX data structures.                            */
   3919 /*                                                                          */
   3920 /* Returns:                                                                 */
   3921 /*   Nothing.                                                               */
   3922 /****************************************************************************/
   3923 void
   3924 bnx_free_tx_chain(struct bnx_softc *sc)
   3925 {
   3926 	struct bnx_pkt		*pkt;
   3927 	int			i;
   3928 
   3929 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3930 
   3931 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   3932 	mutex_enter(&sc->tx_pkt_mtx);
   3933 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   3934 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   3935 		mutex_exit(&sc->tx_pkt_mtx);
   3936 
   3937 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   3938 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   3939 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   3940 
   3941 		m_freem(pkt->pkt_mbuf);
   3942 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   3943 
   3944 		mutex_enter(&sc->tx_pkt_mtx);
   3945 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   3946         }
   3947 
   3948 	/* Destroy all the dmamaps we allocated for TX */
   3949 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   3950 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   3951 		sc->tx_pkt_count--;
   3952 		mutex_exit(&sc->tx_pkt_mtx);
   3953 
   3954 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   3955 		pool_put(bnx_tx_pool, pkt);
   3956 
   3957 		mutex_enter(&sc->tx_pkt_mtx);
   3958 	}
   3959 	mutex_exit(&sc->tx_pkt_mtx);
   3960 
   3961 
   3962 
   3963 	/* Clear each TX chain page. */
   3964 	for (i = 0; i < TX_PAGES; i++) {
   3965 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   3966 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3967 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3968 	}
   3969 
   3970 	sc->used_tx_bd = 0;
   3971 
   3972 	/* Check if we lost any mbufs in the process. */
   3973 	DBRUNIF((sc->tx_mbuf_alloc),
   3974 	    aprint_error_dev(sc->bnx_dev,
   3975 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   3976 		sc->tx_mbuf_alloc));
   3977 
   3978 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3979 }
   3980 
   3981 /****************************************************************************/
   3982 /* Initialize the RX context memory.                                        */
   3983 /*                                                                          */
   3984 /* Returns:                                                                 */
   3985 /*   Nothing                                                                */
   3986 /****************************************************************************/
   3987 void
   3988 bnx_init_rx_context(struct bnx_softc *sc)
   3989 {
   3990 	u_int32_t val;
   3991 
   3992 	/* Initialize the context ID for an L2 RX chain. */
   3993 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   3994 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   3995 
   3996 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3997 		u_int32_t lo_water, hi_water;
   3998 
   3999 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
   4000 		hi_water = USABLE_RX_BD / 4;
   4001 
   4002 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
   4003 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
   4004 
   4005 		if (hi_water > 0xf)
   4006 			hi_water = 0xf;
   4007 		else if (hi_water == 0)
   4008 			lo_water = 0;
   4009 		val |= lo_water |
   4010 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
   4011 	}
   4012 
   4013  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4014 
   4015 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4016 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4017 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4018 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4019 	}
   4020 
   4021 	/* Point the hardware to the first page in the chain. */
   4022 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4023 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4024 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
   4025 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4026 }
   4027 
   4028 /****************************************************************************/
   4029 /* Allocate memory and initialize the RX data structures.                   */
   4030 /*                                                                          */
   4031 /* Returns:                                                                 */
   4032 /*   0 for success, positive value for failure.                             */
   4033 /****************************************************************************/
   4034 int
   4035 bnx_init_rx_chain(struct bnx_softc *sc)
   4036 {
   4037 	struct rx_bd		*rxbd;
   4038 	int			i, rc = 0;
   4039 	u_int16_t		prod, chain_prod;
   4040 	u_int32_t		prod_bseq, addr;
   4041 
   4042 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4043 
   4044 	/* Initialize the RX producer and consumer indices. */
   4045 	sc->rx_prod = 0;
   4046 	sc->rx_cons = 0;
   4047 	sc->rx_prod_bseq = 0;
   4048 	sc->free_rx_bd = USABLE_RX_BD;
   4049 	sc->max_rx_bd = USABLE_RX_BD;
   4050 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4051 	DBRUNIF(1, sc->rx_empty_count = 0);
   4052 
   4053 	/* Initialize the RX next pointer chain entries. */
   4054 	for (i = 0; i < RX_PAGES; i++) {
   4055 		int j;
   4056 
   4057 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4058 
   4059 		/* Check if we've reached the last page. */
   4060 		if (i == (RX_PAGES - 1))
   4061 			j = 0;
   4062 		else
   4063 			j = i + 1;
   4064 
   4065 		/* Setup the chain page pointers. */
   4066 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4067 		rxbd->rx_bd_haddr_hi = htole32(addr);
   4068 		addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
   4069 		rxbd->rx_bd_haddr_lo = htole32(addr);
   4070 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4071 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4072 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4073 	}
   4074 
   4075 	/* Allocate mbuf clusters for the rx_bd chain. */
   4076 	prod = prod_bseq = 0;
   4077 	chain_prod = RX_CHAIN_IDX(prod);
   4078 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4079 		BNX_PRINTF(sc,
   4080 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4081 	}
   4082 
   4083 	/* Save the RX chain producer index. */
   4084 	sc->rx_prod = prod;
   4085 	sc->rx_prod_bseq = prod_bseq;
   4086 
   4087 	for (i = 0; i < RX_PAGES; i++)
   4088 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4089 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4090 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4091 
   4092 	/* Tell the chip about the waiting rx_bd's. */
   4093 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4094 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4095 
   4096 	bnx_init_rx_context(sc);
   4097 
   4098 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4099 
   4100 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4101 
   4102 	return(rc);
   4103 }
   4104 
   4105 /****************************************************************************/
   4106 /* Free memory and clear the RX data structures.                            */
   4107 /*                                                                          */
   4108 /* Returns:                                                                 */
   4109 /*   Nothing.                                                               */
   4110 /****************************************************************************/
   4111 void
   4112 bnx_free_rx_chain(struct bnx_softc *sc)
   4113 {
   4114 	int			i;
   4115 
   4116 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4117 
   4118 	/* Free any mbufs still in the RX mbuf chain. */
   4119 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4120 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4121 			if (sc->rx_mbuf_map[i] != NULL) {
   4122 				bus_dmamap_sync(sc->bnx_dmatag,
   4123 				    sc->rx_mbuf_map[i],	0,
   4124 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4125 				    BUS_DMASYNC_POSTREAD);
   4126 				bus_dmamap_unload(sc->bnx_dmatag,
   4127 				    sc->rx_mbuf_map[i]);
   4128 			}
   4129 			m_freem(sc->rx_mbuf_ptr[i]);
   4130 			sc->rx_mbuf_ptr[i] = NULL;
   4131 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4132 		}
   4133 	}
   4134 
   4135 	/* Clear each RX chain page. */
   4136 	for (i = 0; i < RX_PAGES; i++)
   4137 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4138 
   4139 	sc->free_rx_bd = sc->max_rx_bd;
   4140 
   4141 	/* Check if we lost any mbufs in the process. */
   4142 	DBRUNIF((sc->rx_mbuf_alloc),
   4143 	    aprint_error_dev(sc->bnx_dev,
   4144 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   4145 		sc->rx_mbuf_alloc));
   4146 
   4147 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4148 }
   4149 
   4150 /****************************************************************************/
   4151 /* Handles PHY generated interrupt events.                                  */
   4152 /*                                                                          */
   4153 /* Returns:                                                                 */
   4154 /*   Nothing.                                                               */
   4155 /****************************************************************************/
   4156 void
   4157 bnx_phy_intr(struct bnx_softc *sc)
   4158 {
   4159 	u_int32_t		new_link_state, old_link_state;
   4160 
   4161 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4162 	    BUS_DMASYNC_POSTREAD);
   4163 	new_link_state = sc->status_block->status_attn_bits &
   4164 	    STATUS_ATTN_BITS_LINK_STATE;
   4165 	old_link_state = sc->status_block->status_attn_bits_ack &
   4166 	    STATUS_ATTN_BITS_LINK_STATE;
   4167 
   4168 	/* Handle any changes if the link state has changed. */
   4169 	if (new_link_state != old_link_state) {
   4170 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4171 
   4172 		callout_stop(&sc->bnx_timeout);
   4173 		bnx_tick(sc);
   4174 
   4175 		/* Update the status_attn_bits_ack field in the status block. */
   4176 		if (new_link_state) {
   4177 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4178 			    STATUS_ATTN_BITS_LINK_STATE);
   4179 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4180 		} else {
   4181 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4182 			    STATUS_ATTN_BITS_LINK_STATE);
   4183 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4184 		}
   4185 	}
   4186 
   4187 	/* Acknowledge the link change interrupt. */
   4188 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4189 }
   4190 
   4191 /****************************************************************************/
   4192 /* Handles received frame interrupt events.                                 */
   4193 /*                                                                          */
   4194 /* Returns:                                                                 */
   4195 /*   Nothing.                                                               */
   4196 /****************************************************************************/
   4197 void
   4198 bnx_rx_intr(struct bnx_softc *sc)
   4199 {
   4200 	struct status_block	*sblk = sc->status_block;
   4201 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4202 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
   4203 	u_int16_t		sw_prod, sw_chain_prod;
   4204 	u_int32_t		sw_prod_bseq;
   4205 	struct l2_fhdr		*l2fhdr;
   4206 	int			i;
   4207 
   4208 	DBRUNIF(1, sc->rx_interrupts++);
   4209 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4210 	    BUS_DMASYNC_POSTREAD);
   4211 
   4212 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4213 	for (i = 0; i < RX_PAGES; i++)
   4214 		bus_dmamap_sync(sc->bnx_dmatag,
   4215 		    sc->rx_bd_chain_map[i], 0,
   4216 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4217 		    BUS_DMASYNC_POSTWRITE);
   4218 
   4219 	/* Get the hardware's view of the RX consumer index. */
   4220 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4221 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4222 		hw_cons++;
   4223 
   4224 	/* Get working copies of the driver's view of the RX indices. */
   4225 	sw_cons = sc->rx_cons;
   4226 	sw_prod = sc->rx_prod;
   4227 	sw_prod_bseq = sc->rx_prod_bseq;
   4228 
   4229 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4230 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4231 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4232 
   4233 	/* Prevent speculative reads from getting ahead of the status block. */
   4234 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4235 	    BUS_SPACE_BARRIER_READ);
   4236 
   4237 	/* Update some debug statistics counters */
   4238 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4239 	    sc->rx_low_watermark = sc->free_rx_bd);
   4240 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4241 
   4242 	/*
   4243 	 * Scan through the receive chain as long
   4244 	 * as there is work to do.
   4245 	 */
   4246 	while (sw_cons != hw_cons) {
   4247 		struct mbuf *m;
   4248 		struct rx_bd *rxbd;
   4249 		unsigned int len;
   4250 		u_int32_t status;
   4251 
   4252 		/* Convert the producer/consumer indices to an actual
   4253 		 * rx_bd index.
   4254 		 */
   4255 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4256 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4257 
   4258 		/* Get the used rx_bd. */
   4259 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4260 		sc->free_rx_bd++;
   4261 
   4262 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4263 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4264 
   4265 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4266 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4267 #ifdef DIAGNOSTIC
   4268 			/* Validate that this is the last rx_bd. */
   4269 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4270 			    printf("%s: Unexpected mbuf found in "
   4271 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4272 			        sw_chain_cons);
   4273 			}
   4274 #endif
   4275 
   4276 			/* DRC - ToDo: If the received packet is small, say less
   4277 			 *             than 128 bytes, allocate a new mbuf here,
   4278 			 *             copy the data to that mbuf, and recycle
   4279 			 *             the mapped jumbo frame.
   4280 			 */
   4281 
   4282 			/* Unmap the mbuf from DMA space. */
   4283 #ifdef DIAGNOSTIC
   4284 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4285 				printf("invalid map sw_cons 0x%x "
   4286 				"sw_prod 0x%x "
   4287 				"sw_chain_cons 0x%x "
   4288 				"sw_chain_prod 0x%x "
   4289 				"hw_cons 0x%x "
   4290 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4291 				"TOTAL_RX_BD 0x%x\n",
   4292 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4293 				hw_cons,
   4294 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4295 			}
   4296 #endif
   4297 			bus_dmamap_sync(sc->bnx_dmatag,
   4298 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4299 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4300 			    BUS_DMASYNC_POSTREAD);
   4301 			bus_dmamap_unload(sc->bnx_dmatag,
   4302 			    sc->rx_mbuf_map[sw_chain_cons]);
   4303 
   4304 			/* Remove the mbuf from the driver's chain. */
   4305 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4306 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4307 
   4308 			/*
   4309 			 * Frames received on the NetXteme II are prepended
   4310 			 * with the l2_fhdr structure which provides status
   4311 			 * information about the received frame (including
   4312 			 * VLAN tags and checksum info) and are also
   4313 			 * automatically adjusted to align the IP header
   4314 			 * (i.e. two null bytes are inserted before the
   4315 			 * Ethernet header).
   4316 			 */
   4317 			l2fhdr = mtod(m, struct l2_fhdr *);
   4318 
   4319 			len    = l2fhdr->l2_fhdr_pkt_len;
   4320 			status = l2fhdr->l2_fhdr_status;
   4321 
   4322 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4323 			    aprint_error("Simulating l2_fhdr status error.\n");
   4324 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4325 
   4326 			/* Watch for unusual sized frames. */
   4327 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4328 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4329 			    aprint_error_dev(sc->bnx_dev,
   4330 			        "Unusual frame size found. "
   4331 				"Min(%d), Actual(%d), Max(%d)\n",
   4332 				(int)BNX_MIN_MTU, len,
   4333 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4334 
   4335 			bnx_dump_mbuf(sc, m);
   4336 			bnx_breakpoint(sc));
   4337 
   4338 			len -= ETHER_CRC_LEN;
   4339 
   4340 			/* Check the received frame for errors. */
   4341 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4342 			    L2_FHDR_ERRORS_PHY_DECODE |
   4343 			    L2_FHDR_ERRORS_ALIGNMENT |
   4344 			    L2_FHDR_ERRORS_TOO_SHORT |
   4345 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4346 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4347 			    len >
   4348 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4349 				ifp->if_ierrors++;
   4350 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4351 
   4352 				/* Reuse the mbuf for a new frame. */
   4353 				if (bnx_add_buf(sc, m, &sw_prod,
   4354 				    &sw_chain_prod, &sw_prod_bseq)) {
   4355 					DBRUNIF(1, bnx_breakpoint(sc));
   4356 					panic("%s: Can't reuse RX mbuf!\n",
   4357 					    device_xname(sc->bnx_dev));
   4358 				}
   4359 				continue;
   4360 			}
   4361 
   4362 			/*
   4363 			 * Get a new mbuf for the rx_bd.   If no new
   4364 			 * mbufs are available then reuse the current mbuf,
   4365 			 * log an ierror on the interface, and generate
   4366 			 * an error in the system log.
   4367 			 */
   4368 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4369 			    &sw_prod_bseq)) {
   4370 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4371 				    "Failed to allocate "
   4372 				    "new mbuf, incoming frame dropped!\n"));
   4373 
   4374 				ifp->if_ierrors++;
   4375 
   4376 				/* Try and reuse the exisitng mbuf. */
   4377 				if (bnx_add_buf(sc, m, &sw_prod,
   4378 				    &sw_chain_prod, &sw_prod_bseq)) {
   4379 					DBRUNIF(1, bnx_breakpoint(sc));
   4380 					panic("%s: Double mbuf allocation "
   4381 					    "failure!",
   4382 					    device_xname(sc->bnx_dev));
   4383 				}
   4384 				continue;
   4385 			}
   4386 
   4387 			/* Skip over the l2_fhdr when passing the data up
   4388 			 * the stack.
   4389 			 */
   4390 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4391 
   4392 			/* Adjust the pckt length to match the received data. */
   4393 			m->m_pkthdr.len = m->m_len = len;
   4394 
   4395 			/* Send the packet to the appropriate interface. */
   4396 			m->m_pkthdr.rcvif = ifp;
   4397 
   4398 			DBRUN(BNX_VERBOSE_RECV,
   4399 			    struct ether_header *eh;
   4400 			    eh = mtod(m, struct ether_header *);
   4401 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4402 			    __func__, ether_sprintf(eh->ether_dhost),
   4403 			    ether_sprintf(eh->ether_shost),
   4404 			    htons(eh->ether_type)));
   4405 
   4406 			/* Validate the checksum. */
   4407 
   4408 			/* Check for an IP datagram. */
   4409 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4410 				/* Check if the IP checksum is valid. */
   4411 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   4412 				    == 0)
   4413 					m->m_pkthdr.csum_flags |=
   4414 					    M_CSUM_IPv4;
   4415 #ifdef BNX_DEBUG
   4416 				else
   4417 					DBPRINT(sc, BNX_WARN_SEND,
   4418 					    "%s(): Invalid IP checksum "
   4419 					        "= 0x%04X!\n",
   4420 						__func__,
   4421 						l2fhdr->l2_fhdr_ip_xsum
   4422 						);
   4423 #endif
   4424 			}
   4425 
   4426 			/* Check for a valid TCP/UDP frame. */
   4427 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4428 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4429 				/* Check for a good TCP/UDP checksum. */
   4430 				if ((status &
   4431 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4432 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4433 					m->m_pkthdr.csum_flags |=
   4434 					    M_CSUM_TCPv4 |
   4435 					    M_CSUM_UDPv4;
   4436 				} else {
   4437 					DBPRINT(sc, BNX_WARN_SEND,
   4438 					    "%s(): Invalid TCP/UDP "
   4439 					    "checksum = 0x%04X!\n",
   4440 					    __func__,
   4441 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4442 				}
   4443 			}
   4444 
   4445 			/*
   4446 			 * If we received a packet with a vlan tag,
   4447 			 * attach that information to the packet.
   4448 			 */
   4449 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4450 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4451 				VLAN_INPUT_TAG(ifp, m,
   4452 				    l2fhdr->l2_fhdr_vlan_tag,
   4453 				    continue);
   4454 			}
   4455 
   4456 			/*
   4457 			 * Handle BPF listeners. Let the BPF
   4458 			 * user see the packet.
   4459 			 */
   4460 			bpf_mtap(ifp, m);
   4461 
   4462 			/* Pass the mbuf off to the upper layers. */
   4463 			ifp->if_ipackets++;
   4464 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4465 			    "%s(): Passing received frame up.\n", __func__);
   4466 			(*ifp->if_input)(ifp, m);
   4467 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4468 
   4469 		}
   4470 
   4471 		sw_cons = NEXT_RX_BD(sw_cons);
   4472 
   4473 		/* Refresh hw_cons to see if there's new work */
   4474 		if (sw_cons == hw_cons) {
   4475 			hw_cons = sc->hw_rx_cons =
   4476 			    sblk->status_rx_quick_consumer_index0;
   4477 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4478 			    USABLE_RX_BD_PER_PAGE)
   4479 				hw_cons++;
   4480 		}
   4481 
   4482 		/* Prevent speculative reads from getting ahead of
   4483 		 * the status block.
   4484 		 */
   4485 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4486 		    BUS_SPACE_BARRIER_READ);
   4487 	}
   4488 
   4489 	for (i = 0; i < RX_PAGES; i++)
   4490 		bus_dmamap_sync(sc->bnx_dmatag,
   4491 		    sc->rx_bd_chain_map[i], 0,
   4492 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4493 		    BUS_DMASYNC_PREWRITE);
   4494 
   4495 	sc->rx_cons = sw_cons;
   4496 	sc->rx_prod = sw_prod;
   4497 	sc->rx_prod_bseq = sw_prod_bseq;
   4498 
   4499 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4500 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4501 
   4502 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4503 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4504 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4505 }
   4506 
   4507 /****************************************************************************/
   4508 /* Handles transmit completion interrupt events.                            */
   4509 /*                                                                          */
   4510 /* Returns:                                                                 */
   4511 /*   Nothing.                                                               */
   4512 /****************************************************************************/
   4513 void
   4514 bnx_tx_intr(struct bnx_softc *sc)
   4515 {
   4516 	struct status_block	*sblk = sc->status_block;
   4517 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4518 	struct bnx_pkt		*pkt;
   4519 	bus_dmamap_t		map;
   4520 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4521 
   4522 	DBRUNIF(1, sc->tx_interrupts++);
   4523 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4524 	    BUS_DMASYNC_POSTREAD);
   4525 
   4526 	/* Get the hardware's view of the TX consumer index. */
   4527 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4528 
   4529 	/* Skip to the next entry if this is a chain page pointer. */
   4530 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4531 		hw_tx_cons++;
   4532 
   4533 	sw_tx_cons = sc->tx_cons;
   4534 
   4535 	/* Prevent speculative reads from getting ahead of the status block. */
   4536 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4537 	    BUS_SPACE_BARRIER_READ);
   4538 
   4539 	/* Cycle through any completed TX chain page entries. */
   4540 	while (sw_tx_cons != hw_tx_cons) {
   4541 #ifdef BNX_DEBUG
   4542 		struct tx_bd *txbd = NULL;
   4543 #endif
   4544 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4545 
   4546 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4547 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4548 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4549 
   4550 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4551 		    aprint_error_dev(sc->bnx_dev,
   4552 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4553 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4554 
   4555 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4556 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4557 
   4558 		DBRUNIF((txbd == NULL),
   4559 		    aprint_error_dev(sc->bnx_dev,
   4560 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4561 		    bnx_breakpoint(sc));
   4562 
   4563 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4564 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4565 
   4566 
   4567 		mutex_enter(&sc->tx_pkt_mtx);
   4568 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4569 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4570 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4571 			mutex_exit(&sc->tx_pkt_mtx);
   4572 			/*
   4573 			 * Free the associated mbuf. Remember
   4574 			 * that only the last tx_bd of a packet
   4575 			 * has an mbuf pointer and DMA map.
   4576 			 */
   4577 			map = pkt->pkt_dmamap;
   4578 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4579 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4580 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4581 
   4582 			m_freem(pkt->pkt_mbuf);
   4583 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4584 
   4585 			ifp->if_opackets++;
   4586 
   4587 			mutex_enter(&sc->tx_pkt_mtx);
   4588 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4589 		}
   4590 		mutex_exit(&sc->tx_pkt_mtx);
   4591 
   4592 		sc->used_tx_bd--;
   4593 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4594 			__FILE__, __LINE__, sc->used_tx_bd);
   4595 
   4596 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4597 
   4598 		/* Refresh hw_cons to see if there's new work. */
   4599 		hw_tx_cons = sc->hw_tx_cons =
   4600 		    sblk->status_tx_quick_consumer_index0;
   4601 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4602 		    USABLE_TX_BD_PER_PAGE)
   4603 			hw_tx_cons++;
   4604 
   4605 		/* Prevent speculative reads from getting ahead of
   4606 		 * the status block.
   4607 		 */
   4608 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4609 		    BUS_SPACE_BARRIER_READ);
   4610 	}
   4611 
   4612 	/* Clear the TX timeout timer. */
   4613 	ifp->if_timer = 0;
   4614 
   4615 	/* Clear the tx hardware queue full flag. */
   4616 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4617 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4618 		    aprint_debug_dev(sc->bnx_dev,
   4619 		        "Open TX chain! %d/%d (used/total)\n",
   4620 			sc->used_tx_bd, sc->max_tx_bd));
   4621 		ifp->if_flags &= ~IFF_OACTIVE;
   4622 	}
   4623 
   4624 	sc->tx_cons = sw_tx_cons;
   4625 }
   4626 
   4627 /****************************************************************************/
   4628 /* Disables interrupt generation.                                           */
   4629 /*                                                                          */
   4630 /* Returns:                                                                 */
   4631 /*   Nothing.                                                               */
   4632 /****************************************************************************/
   4633 void
   4634 bnx_disable_intr(struct bnx_softc *sc)
   4635 {
   4636 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4637 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4638 }
   4639 
   4640 /****************************************************************************/
   4641 /* Enables interrupt generation.                                            */
   4642 /*                                                                          */
   4643 /* Returns:                                                                 */
   4644 /*   Nothing.                                                               */
   4645 /****************************************************************************/
   4646 void
   4647 bnx_enable_intr(struct bnx_softc *sc)
   4648 {
   4649 	u_int32_t		val;
   4650 
   4651 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4652 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4653 
   4654 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4655 	    sc->last_status_idx);
   4656 
   4657 	val = REG_RD(sc, BNX_HC_COMMAND);
   4658 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4659 }
   4660 
   4661 /****************************************************************************/
   4662 /* Handles controller initialization.                                       */
   4663 /*                                                                          */
   4664 /****************************************************************************/
   4665 int
   4666 bnx_init(struct ifnet *ifp)
   4667 {
   4668 	struct bnx_softc	*sc = ifp->if_softc;
   4669 	u_int32_t		ether_mtu;
   4670 	int			s, error = 0;
   4671 
   4672 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4673 
   4674 	s = splnet();
   4675 
   4676 	bnx_stop(ifp, 0);
   4677 
   4678 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4679 		aprint_error_dev(sc->bnx_dev,
   4680 		    "Controller reset failed!\n");
   4681 		goto bnx_init_exit;
   4682 	}
   4683 
   4684 	if ((error = bnx_chipinit(sc)) != 0) {
   4685 		aprint_error_dev(sc->bnx_dev,
   4686 		    "Controller initialization failed!\n");
   4687 		goto bnx_init_exit;
   4688 	}
   4689 
   4690 	if ((error = bnx_blockinit(sc)) != 0) {
   4691 		aprint_error_dev(sc->bnx_dev,
   4692 		    "Block initialization failed!\n");
   4693 		goto bnx_init_exit;
   4694 	}
   4695 
   4696 	/* Calculate and program the Ethernet MRU size. */
   4697 	if (ifp->if_mtu <= ETHERMTU) {
   4698 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4699 		sc->mbuf_alloc_size = MCLBYTES;
   4700 	} else {
   4701 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4702 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   4703 	}
   4704 
   4705 
   4706 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4707 	    __func__, ether_mtu);
   4708 
   4709 	/*
   4710 	 * Program the MRU and enable Jumbo frame
   4711 	 * support.
   4712 	 */
   4713 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4714 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4715 
   4716 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4717 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4718 
   4719 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4720 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4721 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4722 
   4723 	/* Program appropriate promiscuous/multicast filtering. */
   4724 	bnx_iff(sc);
   4725 
   4726 	/* Init RX buffer descriptor chain. */
   4727 	bnx_init_rx_chain(sc);
   4728 
   4729 	/* Init TX buffer descriptor chain. */
   4730 	bnx_init_tx_chain(sc);
   4731 
   4732 	/* Enable host interrupts. */
   4733 	bnx_enable_intr(sc);
   4734 
   4735 	if ((error = ether_mediachange(ifp)) != 0)
   4736 		goto bnx_init_exit;
   4737 
   4738 	ifp->if_flags |= IFF_RUNNING;
   4739 	ifp->if_flags &= ~IFF_OACTIVE;
   4740 
   4741 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4742 
   4743 bnx_init_exit:
   4744 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4745 
   4746 	splx(s);
   4747 
   4748 	return(error);
   4749 }
   4750 
   4751 /****************************************************************************/
   4752 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4753 /* memory visible to the controller.                                        */
   4754 /*                                                                          */
   4755 /* Returns:                                                                 */
   4756 /*   0 for success, positive value for failure.                             */
   4757 /****************************************************************************/
   4758 int
   4759 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   4760 {
   4761 	struct bnx_pkt		*pkt;
   4762 	bus_dmamap_t		map;
   4763 	struct tx_bd		*txbd = NULL;
   4764 	u_int16_t		vlan_tag = 0, flags = 0;
   4765 	u_int16_t		chain_prod, prod;
   4766 #ifdef BNX_DEBUG
   4767 	u_int16_t		debug_prod;
   4768 #endif
   4769 	u_int32_t		addr, prod_bseq;
   4770 	int			i, error;
   4771 	struct m_tag		*mtag;
   4772 
   4773 again:
   4774 	mutex_enter(&sc->tx_pkt_mtx);
   4775 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   4776 	if (pkt == NULL) {
   4777 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   4778 			mutex_exit(&sc->tx_pkt_mtx);
   4779 			return ENETDOWN;
   4780 		}
   4781 		if (sc->tx_pkt_count <= TOTAL_TX_BD) {
   4782 			mutex_exit(&sc->tx_pkt_mtx);
   4783 			if (bnx_alloc_pkts(sc) == 0)
   4784 				goto again;
   4785 		} else {
   4786 			mutex_exit(&sc->tx_pkt_mtx);
   4787 		}
   4788 		return (ENOMEM);
   4789 	}
   4790 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4791 	mutex_exit(&sc->tx_pkt_mtx);
   4792 
   4793 	/* Transfer any checksum offload flags to the bd. */
   4794 	if (m->m_pkthdr.csum_flags) {
   4795 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4796 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4797 		if (m->m_pkthdr.csum_flags &
   4798 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4799 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4800 	}
   4801 
   4802 	/* Transfer any VLAN tags to the bd. */
   4803 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
   4804 	if (mtag != NULL) {
   4805 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4806 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4807 	}
   4808 
   4809 	/* Map the mbuf into DMAable memory. */
   4810 	prod = sc->tx_prod;
   4811 	chain_prod = TX_CHAIN_IDX(prod);
   4812 	map = pkt->pkt_dmamap;
   4813 
   4814 	/* Map the mbuf into our DMA address space. */
   4815 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   4816 	if (error != 0) {
   4817 		aprint_error_dev(sc->bnx_dev,
   4818 		    "Error mapping mbuf into TX chain!\n");
   4819 		sc->tx_dma_map_failures++;
   4820 		goto maperr;
   4821 	}
   4822 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4823 	    BUS_DMASYNC_PREWRITE);
   4824         /* Make sure there's room in the chain */
   4825 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   4826                 goto nospace;
   4827 
   4828 	/* prod points to an empty tx_bd at this point. */
   4829 	prod_bseq = sc->tx_prod_bseq;
   4830 #ifdef BNX_DEBUG
   4831 	debug_prod = chain_prod;
   4832 #endif
   4833 	DBPRINT(sc, BNX_INFO_SEND,
   4834 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   4835 		"prod_bseq = 0x%08X\n",
   4836 		__func__, prod, chain_prod, prod_bseq);
   4837 
   4838 	/*
   4839 	 * Cycle through each mbuf segment that makes up
   4840 	 * the outgoing frame, gathering the mapping info
   4841 	 * for that segment and creating a tx_bd for the
   4842 	 * mbuf.
   4843 	 */
   4844 	for (i = 0; i < map->dm_nsegs ; i++) {
   4845 		chain_prod = TX_CHAIN_IDX(prod);
   4846 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   4847 
   4848 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   4849 		txbd->tx_bd_haddr_lo = htole32(addr);
   4850 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   4851 		txbd->tx_bd_haddr_hi = htole32(addr);
   4852 		txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
   4853 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
   4854 		txbd->tx_bd_flags = htole16(flags);
   4855 		prod_bseq += map->dm_segs[i].ds_len;
   4856 		if (i == 0)
   4857 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
   4858 		prod = NEXT_TX_BD(prod);
   4859 	}
   4860 	/* Set the END flag on the last TX buffer descriptor. */
   4861 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
   4862 
   4863 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   4864 
   4865 	DBPRINT(sc, BNX_INFO_SEND,
   4866 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   4867 		"prod_bseq = 0x%08X\n",
   4868 		__func__, prod, chain_prod, prod_bseq);
   4869 
   4870 	pkt->pkt_mbuf = m;
   4871 	pkt->pkt_end_desc = chain_prod;
   4872 
   4873 	mutex_enter(&sc->tx_pkt_mtx);
   4874 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   4875 	mutex_exit(&sc->tx_pkt_mtx);
   4876 
   4877 	sc->used_tx_bd += map->dm_nsegs;
   4878 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4879 		__FILE__, __LINE__, sc->used_tx_bd);
   4880 
   4881 	/* Update some debug statistics counters */
   4882 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   4883 	    sc->tx_hi_watermark = sc->used_tx_bd);
   4884 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   4885 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   4886 
   4887 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   4888 	    map->dm_nsegs));
   4889 
   4890 	/* prod points to the next free tx_bd at this point. */
   4891 	sc->tx_prod = prod;
   4892 	sc->tx_prod_bseq = prod_bseq;
   4893 
   4894 	return (0);
   4895 
   4896 
   4897 nospace:
   4898 	bus_dmamap_unload(sc->bnx_dmatag, map);
   4899 maperr:
   4900 	mutex_enter(&sc->tx_pkt_mtx);
   4901 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4902 	mutex_exit(&sc->tx_pkt_mtx);
   4903 
   4904 	return (ENOMEM);
   4905 }
   4906 
   4907 /****************************************************************************/
   4908 /* Main transmit routine.                                                   */
   4909 /*                                                                          */
   4910 /* Returns:                                                                 */
   4911 /*   Nothing.                                                               */
   4912 /****************************************************************************/
   4913 void
   4914 bnx_start(struct ifnet *ifp)
   4915 {
   4916 	struct bnx_softc	*sc = ifp->if_softc;
   4917 	struct mbuf		*m_head = NULL;
   4918 	int			count = 0;
   4919 	u_int16_t		tx_prod, tx_chain_prod;
   4920 
   4921 	/* If there's no link or the transmit queue is empty then just exit. */
   4922 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   4923 		DBPRINT(sc, BNX_INFO_SEND,
   4924 		    "%s(): output active or device not running.\n", __func__);
   4925 		goto bnx_start_exit;
   4926 	}
   4927 
   4928 	/* prod points to the next free tx_bd. */
   4929 	tx_prod = sc->tx_prod;
   4930 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
   4931 
   4932 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   4933 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   4934 	    "used_tx %d max_tx %d\n",
   4935 	    __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   4936 	    sc->used_tx_bd, sc->max_tx_bd);
   4937 
   4938 	/*
   4939 	 * Keep adding entries while there is space in the ring.
   4940 	 */
   4941 	while (sc->used_tx_bd < sc->max_tx_bd) {
   4942 		/* Check for any frames to send. */
   4943 		IFQ_POLL(&ifp->if_snd, m_head);
   4944 		if (m_head == NULL)
   4945 			break;
   4946 
   4947 		/*
   4948 		 * Pack the data into the transmit ring. If we
   4949 		 * don't have room, set the OACTIVE flag to wait
   4950 		 * for the NIC to drain the chain.
   4951 		 */
   4952 		if (bnx_tx_encap(sc, m_head)) {
   4953 			ifp->if_flags |= IFF_OACTIVE;
   4954 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   4955 			    "business! Total tx_bd used = %d\n",
   4956 			    sc->used_tx_bd);
   4957 			break;
   4958 		}
   4959 
   4960 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4961 		count++;
   4962 
   4963 		/* Send a copy of the frame to any BPF listeners. */
   4964 		bpf_mtap(ifp, m_head);
   4965 	}
   4966 
   4967 	if (count == 0) {
   4968 		/* no packets were dequeued */
   4969 		DBPRINT(sc, BNX_VERBOSE_SEND,
   4970 		    "%s(): No packets were dequeued\n", __func__);
   4971 		goto bnx_start_exit;
   4972 	}
   4973 
   4974 	/* Update the driver's counters. */
   4975 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   4976 
   4977 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   4978 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
   4979 	    tx_chain_prod, sc->tx_prod_bseq);
   4980 
   4981 	/* Start the transmit. */
   4982 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   4983 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   4984 
   4985 	/* Set the tx timeout. */
   4986 	ifp->if_timer = BNX_TX_TIMEOUT;
   4987 
   4988 bnx_start_exit:
   4989 	return;
   4990 }
   4991 
   4992 /****************************************************************************/
   4993 /* Handles any IOCTL calls from the operating system.                       */
   4994 /*                                                                          */
   4995 /* Returns:                                                                 */
   4996 /*   0 for success, positive value for failure.                             */
   4997 /****************************************************************************/
   4998 int
   4999 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5000 {
   5001 	struct bnx_softc	*sc = ifp->if_softc;
   5002 	struct ifreq		*ifr = (struct ifreq *) data;
   5003 	struct mii_data		*mii = &sc->bnx_mii;
   5004 	int			s, error = 0;
   5005 
   5006 	s = splnet();
   5007 
   5008 	switch (command) {
   5009 	case SIOCSIFFLAGS:
   5010 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5011 			break;
   5012 		/* XXX set an ifflags callback and let ether_ioctl
   5013 		 * handle all of this.
   5014 		 */
   5015 		if (ifp->if_flags & IFF_UP) {
   5016 			if (ifp->if_flags & IFF_RUNNING)
   5017 				error = ENETRESET;
   5018 			else
   5019 				bnx_init(ifp);
   5020 		} else if (ifp->if_flags & IFF_RUNNING)
   5021 			bnx_stop(ifp, 1);
   5022 		break;
   5023 
   5024 	case SIOCSIFMEDIA:
   5025 	case SIOCGIFMEDIA:
   5026 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5027 		    sc->bnx_phy_flags);
   5028 
   5029 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5030 		break;
   5031 
   5032 	default:
   5033 		error = ether_ioctl(ifp, command, data);
   5034 	}
   5035 
   5036 	if (error == ENETRESET) {
   5037 		if (ifp->if_flags & IFF_RUNNING)
   5038 			bnx_iff(sc);
   5039 		error = 0;
   5040 	}
   5041 
   5042 	splx(s);
   5043 	return (error);
   5044 }
   5045 
   5046 /****************************************************************************/
   5047 /* Transmit timeout handler.                                                */
   5048 /*                                                                          */
   5049 /* Returns:                                                                 */
   5050 /*   Nothing.                                                               */
   5051 /****************************************************************************/
   5052 void
   5053 bnx_watchdog(struct ifnet *ifp)
   5054 {
   5055 	struct bnx_softc	*sc = ifp->if_softc;
   5056 
   5057 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5058 	    bnx_dump_status_block(sc));
   5059 	/*
   5060 	 * If we are in this routine because of pause frames, then
   5061 	 * don't reset the hardware.
   5062 	 */
   5063 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5064 		return;
   5065 
   5066 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5067 
   5068 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5069 
   5070 	bnx_init(ifp);
   5071 
   5072 	ifp->if_oerrors++;
   5073 }
   5074 
   5075 /*
   5076  * Interrupt handler.
   5077  */
   5078 /****************************************************************************/
   5079 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5080 /* interrupt and then calls a separate routine for handle the various       */
   5081 /* interrupt causes (PHY, TX, RX).                                          */
   5082 /*                                                                          */
   5083 /* Returns:                                                                 */
   5084 /*   0 for success, positive value for failure.                             */
   5085 /****************************************************************************/
   5086 int
   5087 bnx_intr(void *xsc)
   5088 {
   5089 	struct bnx_softc	*sc;
   5090 	struct ifnet		*ifp;
   5091 	u_int32_t		status_attn_bits;
   5092 	const struct status_block *sblk;
   5093 
   5094 	sc = xsc;
   5095 	if (!device_is_active(sc->bnx_dev))
   5096 		return 0;
   5097 
   5098 	ifp = &sc->bnx_ec.ec_if;
   5099 
   5100 	DBRUNIF(1, sc->interrupts_generated++);
   5101 
   5102 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5103 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   5104 
   5105 	/*
   5106 	 * If the hardware status block index
   5107 	 * matches the last value read by the
   5108 	 * driver and we haven't asserted our
   5109 	 * interrupt then there's nothing to do.
   5110 	 */
   5111 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   5112 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   5113 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   5114 		return (0);
   5115 
   5116 	/* Ack the interrupt and stop others from occuring. */
   5117 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5118 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   5119 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5120 
   5121 	/* Keep processing data as long as there is work to do. */
   5122 	for (;;) {
   5123 		sblk = sc->status_block;
   5124 		status_attn_bits = sblk->status_attn_bits;
   5125 
   5126 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5127 		    aprint_debug("Simulating unexpected status attention bit set.");
   5128 		    status_attn_bits = status_attn_bits |
   5129 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5130 
   5131 		/* Was it a link change interrupt? */
   5132 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5133 		    (sblk->status_attn_bits_ack &
   5134 		    STATUS_ATTN_BITS_LINK_STATE))
   5135 			bnx_phy_intr(sc);
   5136 
   5137 		/* If any other attention is asserted then the chip is toast. */
   5138 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5139 		    (sblk->status_attn_bits_ack &
   5140 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5141 			DBRUN(1, sc->unexpected_attentions++);
   5142 
   5143 			BNX_PRINTF(sc,
   5144 			    "Fatal attention detected: 0x%08X\n",
   5145 			    sblk->status_attn_bits);
   5146 
   5147 			DBRUN(BNX_FATAL,
   5148 			    if (bnx_debug_unexpected_attention == 0)
   5149 			    bnx_breakpoint(sc));
   5150 
   5151 			bnx_init(ifp);
   5152 			return (1);
   5153 		}
   5154 
   5155 		/* Check for any completed RX frames. */
   5156 		if (sblk->status_rx_quick_consumer_index0 !=
   5157 		    sc->hw_rx_cons)
   5158 			bnx_rx_intr(sc);
   5159 
   5160 		/* Check for any completed TX frames. */
   5161 		if (sblk->status_tx_quick_consumer_index0 !=
   5162 		    sc->hw_tx_cons)
   5163 			bnx_tx_intr(sc);
   5164 
   5165 		/* Save the status block index value for use during the
   5166 		 * next interrupt.
   5167 		 */
   5168 		sc->last_status_idx = sblk->status_idx;
   5169 
   5170 		/* Prevent speculative reads from getting ahead of the
   5171 		 * status block.
   5172 		 */
   5173 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   5174 		    BUS_SPACE_BARRIER_READ);
   5175 
   5176 		/* If there's no work left then exit the isr. */
   5177 		if ((sblk->status_rx_quick_consumer_index0 ==
   5178 		    sc->hw_rx_cons) &&
   5179 		    (sblk->status_tx_quick_consumer_index0 ==
   5180 		    sc->hw_tx_cons))
   5181 			break;
   5182 	}
   5183 
   5184 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5185 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   5186 
   5187 	/* Re-enable interrupts. */
   5188 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5189 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   5190 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5191 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5192 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   5193 
   5194 	/* Handle any frames that arrived while handling the interrupt. */
   5195 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   5196 		bnx_start(ifp);
   5197 
   5198 	return (1);
   5199 }
   5200 
   5201 /****************************************************************************/
   5202 /* Programs the various packet receive modes (broadcast and multicast).     */
   5203 /*                                                                          */
   5204 /* Returns:                                                                 */
   5205 /*   Nothing.                                                               */
   5206 /****************************************************************************/
   5207 void
   5208 bnx_iff(struct bnx_softc *sc)
   5209 {
   5210 	struct ethercom		*ec = &sc->bnx_ec;
   5211 	struct ifnet		*ifp = &ec->ec_if;
   5212 	struct ether_multi	*enm;
   5213 	struct ether_multistep	step;
   5214 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5215 	u_int32_t		rx_mode, sort_mode;
   5216 	int			h, i;
   5217 
   5218 	/* Initialize receive mode default settings. */
   5219 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5220 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5221 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5222 	ifp->if_flags &= ~IFF_ALLMULTI;
   5223 
   5224 	/*
   5225 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5226 	 * be enbled.
   5227 	 */
   5228 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5229 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5230 
   5231 	/*
   5232 	 * Check for promiscuous, all multicast, or selected
   5233 	 * multicast address filtering.
   5234 	 */
   5235 	if (ifp->if_flags & IFF_PROMISC) {
   5236 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5237 
   5238 		ifp->if_flags |= IFF_ALLMULTI;
   5239 		/* Enable promiscuous mode. */
   5240 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5241 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5242 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5243 allmulti:
   5244 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5245 
   5246 		ifp->if_flags |= IFF_ALLMULTI;
   5247 		/* Enable all multicast addresses. */
   5248 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5249 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5250 			    0xffffffff);
   5251 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5252 	} else {
   5253 		/* Accept one or more multicast(s). */
   5254 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5255 
   5256 		ETHER_FIRST_MULTI(step, ec, enm);
   5257 		while (enm != NULL) {
   5258 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5259 			    ETHER_ADDR_LEN)) {
   5260 				goto allmulti;
   5261 			}
   5262 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5263 			    0xFF;
   5264 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5265 			ETHER_NEXT_MULTI(step, enm);
   5266 		}
   5267 
   5268 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5269 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5270 			    hashes[i]);
   5271 
   5272 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5273 	}
   5274 
   5275 	/* Only make changes if the recive mode has actually changed. */
   5276 	if (rx_mode != sc->rx_mode) {
   5277 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5278 		    rx_mode);
   5279 
   5280 		sc->rx_mode = rx_mode;
   5281 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5282 	}
   5283 
   5284 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5285 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5286 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5287 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5288 }
   5289 
   5290 /****************************************************************************/
   5291 /* Called periodically to updates statistics from the controllers           */
   5292 /* statistics block.                                                        */
   5293 /*                                                                          */
   5294 /* Returns:                                                                 */
   5295 /*   Nothing.                                                               */
   5296 /****************************************************************************/
   5297 void
   5298 bnx_stats_update(struct bnx_softc *sc)
   5299 {
   5300 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5301 	struct statistics_block	*stats;
   5302 
   5303 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5304 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5305 	    BUS_DMASYNC_POSTREAD);
   5306 
   5307 	stats = (struct statistics_block *)sc->stats_block;
   5308 
   5309 	/*
   5310 	 * Update the interface statistics from the
   5311 	 * hardware statistics.
   5312 	 */
   5313 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5314 
   5315 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5316 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5317 	    (u_long)stats->stat_IfInMBUFDiscards +
   5318 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5319 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5320 
   5321 	ifp->if_oerrors = (u_long)
   5322 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5323 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5324 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5325 
   5326 	/*
   5327 	 * Certain controllers don't report
   5328 	 * carrier sense errors correctly.
   5329 	 * See errata E11_5708CA0_1165.
   5330 	 */
   5331 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5332 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5333 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5334 
   5335 	/*
   5336 	 * Update the sysctl statistics from the
   5337 	 * hardware statistics.
   5338 	 */
   5339 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
   5340 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
   5341 
   5342 	sc->stat_IfHCInBadOctets =
   5343 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5344 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
   5345 
   5346 	sc->stat_IfHCOutOctets =
   5347 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5348 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
   5349 
   5350 	sc->stat_IfHCOutBadOctets =
   5351 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5352 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
   5353 
   5354 	sc->stat_IfHCInUcastPkts =
   5355 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5356 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
   5357 
   5358 	sc->stat_IfHCInMulticastPkts =
   5359 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5360 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
   5361 
   5362 	sc->stat_IfHCInBroadcastPkts =
   5363 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5364 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5365 
   5366 	sc->stat_IfHCOutUcastPkts =
   5367 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5368 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
   5369 
   5370 	sc->stat_IfHCOutMulticastPkts =
   5371 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5372 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5373 
   5374 	sc->stat_IfHCOutBroadcastPkts =
   5375 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5376 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5377 
   5378 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5379 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5380 
   5381 	sc->stat_Dot3StatsCarrierSenseErrors =
   5382 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5383 
   5384 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5385 
   5386 	sc->stat_Dot3StatsAlignmentErrors =
   5387 	    stats->stat_Dot3StatsAlignmentErrors;
   5388 
   5389 	sc->stat_Dot3StatsSingleCollisionFrames =
   5390 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5391 
   5392 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5393 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5394 
   5395 	sc->stat_Dot3StatsDeferredTransmissions =
   5396 	    stats->stat_Dot3StatsDeferredTransmissions;
   5397 
   5398 	sc->stat_Dot3StatsExcessiveCollisions =
   5399 	    stats->stat_Dot3StatsExcessiveCollisions;
   5400 
   5401 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5402 
   5403 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5404 
   5405 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5406 
   5407 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5408 
   5409 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5410 
   5411 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5412 
   5413 	sc->stat_EtherStatsPktsRx64Octets =
   5414 	    stats->stat_EtherStatsPktsRx64Octets;
   5415 
   5416 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5417 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5418 
   5419 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5420 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5421 
   5422 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5423 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5424 
   5425 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5426 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5427 
   5428 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5429 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5430 
   5431 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5432 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5433 
   5434 	sc->stat_EtherStatsPktsTx64Octets =
   5435 	    stats->stat_EtherStatsPktsTx64Octets;
   5436 
   5437 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5438 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5439 
   5440 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5441 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5442 
   5443 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5444 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5445 
   5446 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5447 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5448 
   5449 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5450 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5451 
   5452 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5453 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5454 
   5455 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5456 
   5457 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5458 
   5459 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5460 
   5461 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5462 
   5463 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5464 
   5465 	sc->stat_MacControlFramesReceived =
   5466 	    stats->stat_MacControlFramesReceived;
   5467 
   5468 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5469 
   5470 	sc->stat_IfInFramesL2FilterDiscards =
   5471 	    stats->stat_IfInFramesL2FilterDiscards;
   5472 
   5473 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5474 
   5475 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5476 
   5477 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5478 
   5479 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5480 
   5481 	sc->stat_CatchupInRuleCheckerDiscards =
   5482 	    stats->stat_CatchupInRuleCheckerDiscards;
   5483 
   5484 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5485 
   5486 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5487 
   5488 	sc->stat_CatchupInRuleCheckerP4Hit =
   5489 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5490 
   5491 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5492 }
   5493 
   5494 void
   5495 bnx_tick(void *xsc)
   5496 {
   5497 	struct bnx_softc	*sc = xsc;
   5498 	struct mii_data		*mii;
   5499 	u_int32_t		msg;
   5500 	u_int16_t		prod, chain_prod;
   5501 	u_int32_t		prod_bseq;
   5502 	int s = splnet();
   5503 
   5504 	/* Tell the firmware that the driver is still running. */
   5505 #ifdef BNX_DEBUG
   5506 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5507 #else
   5508 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5509 #endif
   5510 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5511 
   5512 	/* Update the statistics from the hardware statistics block. */
   5513 	bnx_stats_update(sc);
   5514 
   5515 	/* Schedule the next tick. */
   5516 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5517 
   5518 	mii = &sc->bnx_mii;
   5519 	mii_tick(mii);
   5520 
   5521 	/* try to get more RX buffers, just in case */
   5522 	prod = sc->rx_prod;
   5523 	prod_bseq = sc->rx_prod_bseq;
   5524 	chain_prod = RX_CHAIN_IDX(prod);
   5525 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5526 	sc->rx_prod = prod;
   5527 	sc->rx_prod_bseq = prod_bseq;
   5528 	splx(s);
   5529 	return;
   5530 }
   5531 
   5532 /****************************************************************************/
   5533 /* BNX Debug Routines                                                       */
   5534 /****************************************************************************/
   5535 #ifdef BNX_DEBUG
   5536 
   5537 /****************************************************************************/
   5538 /* Prints out information about an mbuf.                                    */
   5539 /*                                                                          */
   5540 /* Returns:                                                                 */
   5541 /*   Nothing.                                                               */
   5542 /****************************************************************************/
   5543 void
   5544 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5545 {
   5546 	struct mbuf		*mp = m;
   5547 
   5548 	if (m == NULL) {
   5549 		/* Index out of range. */
   5550 		aprint_error("mbuf ptr is null!\n");
   5551 		return;
   5552 	}
   5553 
   5554 	while (mp) {
   5555 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5556 		    mp, mp->m_len);
   5557 
   5558 		if (mp->m_flags & M_EXT)
   5559 			aprint_debug("M_EXT ");
   5560 		if (mp->m_flags & M_PKTHDR)
   5561 			aprint_debug("M_PKTHDR ");
   5562 		aprint_debug("\n");
   5563 
   5564 		if (mp->m_flags & M_EXT)
   5565 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   5566 			    mp, mp->m_ext.ext_size);
   5567 
   5568 		mp = mp->m_next;
   5569 	}
   5570 }
   5571 
   5572 /****************************************************************************/
   5573 /* Prints out the mbufs in the TX mbuf chain.                               */
   5574 /*                                                                          */
   5575 /* Returns:                                                                 */
   5576 /*   Nothing.                                                               */
   5577 /****************************************************************************/
   5578 void
   5579 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5580 {
   5581 #if 0
   5582 	struct mbuf		*m;
   5583 	int			i;
   5584 
   5585 	aprint_debug_dev(sc->bnx_dev,
   5586 	    "----------------------------"
   5587 	    "  tx mbuf data  "
   5588 	    "----------------------------\n");
   5589 
   5590 	for (i = 0; i < count; i++) {
   5591 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5592 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5593 		bnx_dump_mbuf(sc, m);
   5594 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5595 	}
   5596 
   5597 	aprint_debug_dev(sc->bnx_dev,
   5598 	    "--------------------------------------------"
   5599 	    "----------------------------\n");
   5600 #endif
   5601 }
   5602 
   5603 /*
   5604  * This routine prints the RX mbuf chain.
   5605  */
   5606 void
   5607 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5608 {
   5609 	struct mbuf		*m;
   5610 	int			i;
   5611 
   5612 	aprint_debug_dev(sc->bnx_dev,
   5613 	    "----------------------------"
   5614 	    "  rx mbuf data  "
   5615 	    "----------------------------\n");
   5616 
   5617 	for (i = 0; i < count; i++) {
   5618 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5619 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5620 		bnx_dump_mbuf(sc, m);
   5621 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5622 	}
   5623 
   5624 
   5625 	aprint_debug_dev(sc->bnx_dev,
   5626 	    "--------------------------------------------"
   5627 	    "----------------------------\n");
   5628 }
   5629 
   5630 void
   5631 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5632 {
   5633 	if (idx > MAX_TX_BD)
   5634 		/* Index out of range. */
   5635 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5636 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5637 		/* TX Chain page pointer. */
   5638 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5639 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5640 		    txbd->tx_bd_haddr_lo);
   5641 	else
   5642 		/* Normal tx_bd entry. */
   5643 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5644 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5645 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5646 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5647 		    txbd->tx_bd_flags);
   5648 }
   5649 
   5650 void
   5651 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5652 {
   5653 	if (idx > MAX_RX_BD)
   5654 		/* Index out of range. */
   5655 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5656 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5657 		/* TX Chain page pointer. */
   5658 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5659 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5660 		    rxbd->rx_bd_haddr_lo);
   5661 	else
   5662 		/* Normal tx_bd entry. */
   5663 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5664 		    "0x%08X, flags = 0x%08X\n", idx,
   5665 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5666 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5667 }
   5668 
   5669 void
   5670 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5671 {
   5672 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5673 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5674 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5675 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5676 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5677 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5678 }
   5679 
   5680 /*
   5681  * This routine prints the TX chain.
   5682  */
   5683 void
   5684 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5685 {
   5686 	struct tx_bd		*txbd;
   5687 	int			i;
   5688 
   5689 	/* First some info about the tx_bd chain structure. */
   5690 	aprint_debug_dev(sc->bnx_dev,
   5691 	    "----------------------------"
   5692 	    "  tx_bd  chain  "
   5693 	    "----------------------------\n");
   5694 
   5695 	BNX_PRINTF(sc,
   5696 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5697 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
   5698 
   5699 	BNX_PRINTF(sc,
   5700 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5701 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
   5702 
   5703 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
   5704 
   5705 	aprint_error_dev(sc->bnx_dev, ""
   5706 	    "-----------------------------"
   5707 	    "   tx_bd data   "
   5708 	    "-----------------------------\n");
   5709 
   5710 	/* Now print out the tx_bd's themselves. */
   5711 	for (i = 0; i < count; i++) {
   5712 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5713 		bnx_dump_txbd(sc, tx_prod, txbd);
   5714 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5715 	}
   5716 
   5717 	aprint_debug_dev(sc->bnx_dev,
   5718 	    "-----------------------------"
   5719 	    "--------------"
   5720 	    "-----------------------------\n");
   5721 }
   5722 
   5723 /*
   5724  * This routine prints the RX chain.
   5725  */
   5726 void
   5727 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5728 {
   5729 	struct rx_bd		*rxbd;
   5730 	int			i;
   5731 
   5732 	/* First some info about the tx_bd chain structure. */
   5733 	aprint_debug_dev(sc->bnx_dev,
   5734 	    "----------------------------"
   5735 	    "  rx_bd  chain  "
   5736 	    "----------------------------\n");
   5737 
   5738 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   5739 
   5740 	BNX_PRINTF(sc,
   5741 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5742 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
   5743 
   5744 	BNX_PRINTF(sc,
   5745 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5746 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
   5747 
   5748 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
   5749 
   5750 	aprint_error_dev(sc->bnx_dev,
   5751 	    "----------------------------"
   5752 	    "   rx_bd data   "
   5753 	    "----------------------------\n");
   5754 
   5755 	/* Now print out the rx_bd's themselves. */
   5756 	for (i = 0; i < count; i++) {
   5757 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5758 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5759 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5760 	}
   5761 
   5762 	aprint_debug_dev(sc->bnx_dev,
   5763 	    "----------------------------"
   5764 	    "--------------"
   5765 	    "----------------------------\n");
   5766 }
   5767 
   5768 /*
   5769  * This routine prints the status block.
   5770  */
   5771 void
   5772 bnx_dump_status_block(struct bnx_softc *sc)
   5773 {
   5774 	struct status_block	*sblk;
   5775 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5776 	    BUS_DMASYNC_POSTREAD);
   5777 
   5778 	sblk = sc->status_block;
   5779 
   5780    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
   5781 	    "-----------------------------\n");
   5782 
   5783 	BNX_PRINTF(sc,
   5784 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5785 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5786 	    sblk->status_idx);
   5787 
   5788 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5789 	    sblk->status_rx_quick_consumer_index0,
   5790 	    sblk->status_tx_quick_consumer_index0);
   5791 
   5792 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5793 
   5794 	/* Theses indices are not used for normal L2 drivers. */
   5795 	if (sblk->status_rx_quick_consumer_index1 ||
   5796 		sblk->status_tx_quick_consumer_index1)
   5797 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5798 		    sblk->status_rx_quick_consumer_index1,
   5799 		    sblk->status_tx_quick_consumer_index1);
   5800 
   5801 	if (sblk->status_rx_quick_consumer_index2 ||
   5802 		sblk->status_tx_quick_consumer_index2)
   5803 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5804 		    sblk->status_rx_quick_consumer_index2,
   5805 		    sblk->status_tx_quick_consumer_index2);
   5806 
   5807 	if (sblk->status_rx_quick_consumer_index3 ||
   5808 		sblk->status_tx_quick_consumer_index3)
   5809 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5810 		    sblk->status_rx_quick_consumer_index3,
   5811 		    sblk->status_tx_quick_consumer_index3);
   5812 
   5813 	if (sblk->status_rx_quick_consumer_index4 ||
   5814 		sblk->status_rx_quick_consumer_index5)
   5815 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5816 		    sblk->status_rx_quick_consumer_index4,
   5817 		    sblk->status_rx_quick_consumer_index5);
   5818 
   5819 	if (sblk->status_rx_quick_consumer_index6 ||
   5820 		sblk->status_rx_quick_consumer_index7)
   5821 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5822 		    sblk->status_rx_quick_consumer_index6,
   5823 		    sblk->status_rx_quick_consumer_index7);
   5824 
   5825 	if (sblk->status_rx_quick_consumer_index8 ||
   5826 		sblk->status_rx_quick_consumer_index9)
   5827 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5828 		    sblk->status_rx_quick_consumer_index8,
   5829 		    sblk->status_rx_quick_consumer_index9);
   5830 
   5831 	if (sblk->status_rx_quick_consumer_index10 ||
   5832 		sblk->status_rx_quick_consumer_index11)
   5833 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   5834 		    sblk->status_rx_quick_consumer_index10,
   5835 		    sblk->status_rx_quick_consumer_index11);
   5836 
   5837 	if (sblk->status_rx_quick_consumer_index12 ||
   5838 		sblk->status_rx_quick_consumer_index13)
   5839 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   5840 		    sblk->status_rx_quick_consumer_index12,
   5841 		    sblk->status_rx_quick_consumer_index13);
   5842 
   5843 	if (sblk->status_rx_quick_consumer_index14 ||
   5844 		sblk->status_rx_quick_consumer_index15)
   5845 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   5846 		    sblk->status_rx_quick_consumer_index14,
   5847 		    sblk->status_rx_quick_consumer_index15);
   5848 
   5849 	if (sblk->status_completion_producer_index ||
   5850 		sblk->status_cmd_consumer_index)
   5851 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   5852 		    sblk->status_completion_producer_index,
   5853 		    sblk->status_cmd_consumer_index);
   5854 
   5855 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   5856 	    "-----------------------------\n");
   5857 }
   5858 
   5859 /*
   5860  * This routine prints the statistics block.
   5861  */
   5862 void
   5863 bnx_dump_stats_block(struct bnx_softc *sc)
   5864 {
   5865 	struct statistics_block	*sblk;
   5866 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5867 	    BUS_DMASYNC_POSTREAD);
   5868 
   5869 	sblk = sc->stats_block;
   5870 
   5871 	aprint_debug_dev(sc->bnx_dev, ""
   5872 	    "-----------------------------"
   5873 	    " Stats  Block "
   5874 	    "-----------------------------\n");
   5875 
   5876 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   5877 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   5878 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   5879 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   5880 
   5881 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   5882 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   5883 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   5884 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   5885 
   5886 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   5887 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   5888 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   5889 	    sblk->stat_IfHCInMulticastPkts_hi,
   5890 	    sblk->stat_IfHCInMulticastPkts_lo);
   5891 
   5892 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   5893 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   5894 	    sblk->stat_IfHCInBroadcastPkts_hi,
   5895 	    sblk->stat_IfHCInBroadcastPkts_lo,
   5896 	    sblk->stat_IfHCOutUcastPkts_hi,
   5897 	    sblk->stat_IfHCOutUcastPkts_lo);
   5898 
   5899 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   5900 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   5901 	    sblk->stat_IfHCOutMulticastPkts_hi,
   5902 	    sblk->stat_IfHCOutMulticastPkts_lo,
   5903 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   5904 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   5905 
   5906 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   5907 		BNX_PRINTF(sc, "0x%08X : "
   5908 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   5909 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   5910 
   5911 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   5912 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   5913 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   5914 
   5915 	if (sblk->stat_Dot3StatsFCSErrors)
   5916 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   5917 		    sblk->stat_Dot3StatsFCSErrors);
   5918 
   5919 	if (sblk->stat_Dot3StatsAlignmentErrors)
   5920 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   5921 		    sblk->stat_Dot3StatsAlignmentErrors);
   5922 
   5923 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   5924 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   5925 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   5926 
   5927 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   5928 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   5929 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   5930 
   5931 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   5932 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   5933 		    sblk->stat_Dot3StatsDeferredTransmissions);
   5934 
   5935 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   5936 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   5937 		    sblk->stat_Dot3StatsExcessiveCollisions);
   5938 
   5939 	if (sblk->stat_Dot3StatsLateCollisions)
   5940 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   5941 		    sblk->stat_Dot3StatsLateCollisions);
   5942 
   5943 	if (sblk->stat_EtherStatsCollisions)
   5944 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   5945 		    sblk->stat_EtherStatsCollisions);
   5946 
   5947 	if (sblk->stat_EtherStatsFragments)
   5948 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   5949 		    sblk->stat_EtherStatsFragments);
   5950 
   5951 	if (sblk->stat_EtherStatsJabbers)
   5952 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   5953 		    sblk->stat_EtherStatsJabbers);
   5954 
   5955 	if (sblk->stat_EtherStatsUndersizePkts)
   5956 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   5957 		    sblk->stat_EtherStatsUndersizePkts);
   5958 
   5959 	if (sblk->stat_EtherStatsOverrsizePkts)
   5960 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   5961 		    sblk->stat_EtherStatsOverrsizePkts);
   5962 
   5963 	if (sblk->stat_EtherStatsPktsRx64Octets)
   5964 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   5965 		    sblk->stat_EtherStatsPktsRx64Octets);
   5966 
   5967 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   5968 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   5969 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   5970 
   5971 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   5972 		BNX_PRINTF(sc, "0x%08X : "
   5973 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   5974 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   5975 
   5976 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   5977 		BNX_PRINTF(sc, "0x%08X : "
   5978 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   5979 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   5980 
   5981 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   5982 		BNX_PRINTF(sc, "0x%08X : "
   5983 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   5984 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   5985 
   5986 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   5987 		BNX_PRINTF(sc, "0x%08X : "
   5988 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   5989 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   5990 
   5991 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   5992 		BNX_PRINTF(sc, "0x%08X : "
   5993 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   5994 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   5995 
   5996 	if (sblk->stat_EtherStatsPktsTx64Octets)
   5997 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   5998 		    sblk->stat_EtherStatsPktsTx64Octets);
   5999 
   6000 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6001 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6002 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6003 
   6004 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6005 		BNX_PRINTF(sc, "0x%08X : "
   6006 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6007 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6008 
   6009 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6010 		BNX_PRINTF(sc, "0x%08X : "
   6011 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6012 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6013 
   6014 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6015 		BNX_PRINTF(sc, "0x%08X : "
   6016 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6017 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6018 
   6019 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6020 		BNX_PRINTF(sc, "0x%08X : "
   6021 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6022 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6023 
   6024 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6025 		BNX_PRINTF(sc, "0x%08X : "
   6026 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6027 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6028 
   6029 	if (sblk->stat_XonPauseFramesReceived)
   6030 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6031 		    sblk->stat_XonPauseFramesReceived);
   6032 
   6033 	if (sblk->stat_XoffPauseFramesReceived)
   6034 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6035 		    sblk->stat_XoffPauseFramesReceived);
   6036 
   6037 	if (sblk->stat_OutXonSent)
   6038 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6039 		    sblk->stat_OutXonSent);
   6040 
   6041 	if (sblk->stat_OutXoffSent)
   6042 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6043 		    sblk->stat_OutXoffSent);
   6044 
   6045 	if (sblk->stat_FlowControlDone)
   6046 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6047 		    sblk->stat_FlowControlDone);
   6048 
   6049 	if (sblk->stat_MacControlFramesReceived)
   6050 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6051 		    sblk->stat_MacControlFramesReceived);
   6052 
   6053 	if (sblk->stat_XoffStateEntered)
   6054 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6055 		    sblk->stat_XoffStateEntered);
   6056 
   6057 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6058 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6059 		    sblk->stat_IfInFramesL2FilterDiscards);
   6060 
   6061 	if (sblk->stat_IfInRuleCheckerDiscards)
   6062 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6063 		    sblk->stat_IfInRuleCheckerDiscards);
   6064 
   6065 	if (sblk->stat_IfInFTQDiscards)
   6066 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6067 		    sblk->stat_IfInFTQDiscards);
   6068 
   6069 	if (sblk->stat_IfInMBUFDiscards)
   6070 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6071 		    sblk->stat_IfInMBUFDiscards);
   6072 
   6073 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6074 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6075 		    sblk->stat_IfInRuleCheckerP4Hit);
   6076 
   6077 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6078 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6079 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6080 
   6081 	if (sblk->stat_CatchupInFTQDiscards)
   6082 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6083 		    sblk->stat_CatchupInFTQDiscards);
   6084 
   6085 	if (sblk->stat_CatchupInMBUFDiscards)
   6086 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6087 		    sblk->stat_CatchupInMBUFDiscards);
   6088 
   6089 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6090 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6091 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6092 
   6093 	aprint_debug_dev(sc->bnx_dev,
   6094 	    "-----------------------------"
   6095 	    "--------------"
   6096 	    "-----------------------------\n");
   6097 }
   6098 
   6099 void
   6100 bnx_dump_driver_state(struct bnx_softc *sc)
   6101 {
   6102 	aprint_debug_dev(sc->bnx_dev,
   6103 	    "-----------------------------"
   6104 	    " Driver State "
   6105 	    "-----------------------------\n");
   6106 
   6107 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6108 	    "address\n", sc);
   6109 
   6110 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6111 	    sc->status_block);
   6112 
   6113 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6114 	    "address\n", sc->stats_block);
   6115 
   6116 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6117 	    "adddress\n", sc->tx_bd_chain);
   6118 
   6119 #if 0
   6120 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6121 	    sc->rx_bd_chain);
   6122 
   6123 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6124 	    sc->tx_mbuf_ptr);
   6125 #endif
   6126 
   6127 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6128 	    sc->rx_mbuf_ptr);
   6129 
   6130 	BNX_PRINTF(sc,
   6131 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6132 	    sc->interrupts_generated);
   6133 
   6134 	BNX_PRINTF(sc,
   6135 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6136 	    sc->rx_interrupts);
   6137 
   6138 	BNX_PRINTF(sc,
   6139 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6140 	    sc->tx_interrupts);
   6141 
   6142 	BNX_PRINTF(sc,
   6143 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6144 	    sc->last_status_idx);
   6145 
   6146 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6147 	    sc->tx_prod);
   6148 
   6149 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6150 	    sc->tx_cons);
   6151 
   6152 	BNX_PRINTF(sc,
   6153 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6154 	    sc->tx_prod_bseq);
   6155 	BNX_PRINTF(sc,
   6156 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6157 	    sc->tx_mbuf_alloc);
   6158 
   6159 	BNX_PRINTF(sc,
   6160 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6161 	    sc->used_tx_bd);
   6162 
   6163 	BNX_PRINTF(sc,
   6164 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6165 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6166 
   6167 
   6168 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6169 	    sc->rx_prod);
   6170 
   6171 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6172 	    sc->rx_cons);
   6173 
   6174 	BNX_PRINTF(sc,
   6175 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6176 	    sc->rx_prod_bseq);
   6177 
   6178 	BNX_PRINTF(sc,
   6179 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6180 	    sc->rx_mbuf_alloc);
   6181 
   6182 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6183 	    sc->free_rx_bd);
   6184 
   6185 	BNX_PRINTF(sc,
   6186 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6187 	    sc->rx_low_watermark, sc->max_rx_bd);
   6188 
   6189 	BNX_PRINTF(sc,
   6190 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6191 	    "mbuf alloc failures\n",
   6192 	    sc->mbuf_alloc_failed);
   6193 
   6194 	BNX_PRINTF(sc,
   6195 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6196 	    "simulated mbuf alloc failures\n",
   6197 	    sc->mbuf_sim_alloc_failed);
   6198 
   6199 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6200 	    "-----------------------------\n");
   6201 }
   6202 
   6203 void
   6204 bnx_dump_hw_state(struct bnx_softc *sc)
   6205 {
   6206 	u_int32_t		val1;
   6207 	int			i;
   6208 
   6209 	aprint_debug_dev(sc->bnx_dev,
   6210 	    "----------------------------"
   6211 	    " Hardware State "
   6212 	    "----------------------------\n");
   6213 
   6214 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   6215 
   6216 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6217 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6218 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6219 
   6220 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6221 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6222 
   6223 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6224 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6225 
   6226 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6227 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6228 	    BNX_EMAC_STATUS);
   6229 
   6230 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6231 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6232 
   6233 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6234 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6235 	    BNX_TBDR_STATUS);
   6236 
   6237 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6238 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6239 	    BNX_TDMA_STATUS);
   6240 
   6241 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6242 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6243 
   6244 	aprint_debug_dev(sc->bnx_dev,
   6245 	    "----------------------------"
   6246 	    "----------------"
   6247 	    "----------------------------\n");
   6248 
   6249 	aprint_debug_dev(sc->bnx_dev,
   6250 	    "----------------------------"
   6251 	    " Register  Dump "
   6252 	    "----------------------------\n");
   6253 
   6254 	for (i = 0x400; i < 0x8000; i += 0x10)
   6255 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6256 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6257 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6258 
   6259 	aprint_debug_dev(sc->bnx_dev,
   6260 	    "----------------------------"
   6261 	    "----------------"
   6262 	    "----------------------------\n");
   6263 }
   6264 
   6265 void
   6266 bnx_breakpoint(struct bnx_softc *sc)
   6267 {
   6268 	/* Unreachable code to shut the compiler up about unused functions. */
   6269 	if (0) {
   6270    		bnx_dump_txbd(sc, 0, NULL);
   6271 		bnx_dump_rxbd(sc, 0, NULL);
   6272 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6273 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6274 		bnx_dump_l2fhdr(sc, 0, NULL);
   6275 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6276 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6277 		bnx_dump_status_block(sc);
   6278 		bnx_dump_stats_block(sc);
   6279 		bnx_dump_driver_state(sc);
   6280 		bnx_dump_hw_state(sc);
   6281 	}
   6282 
   6283 	bnx_dump_driver_state(sc);
   6284 	/* Print the important status block fields. */
   6285 	bnx_dump_status_block(sc);
   6286 
   6287 #if 0
   6288 	/* Call the debugger. */
   6289 	breakpoint();
   6290 #endif
   6291 
   6292 	return;
   6293 }
   6294 #endif
   6295