if_bnx.c revision 1.36 1 /* $NetBSD: if_bnx.c,v 1.36 2010/12/09 22:34:37 jym Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.36 2010/12/09 22:34:37 jym Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5716 C0
48 *
49 * The following controllers are not supported by this driver:
50 *
51 * BCM5706C A0, A1
52 * BCM5706S A0, A1
53 * BCM5708C A0, B0
54 * BCM5708S A0, B0
55 * BCM5709C A0 B0, B1, B2 (pre-production)
56 * BCM5709S A0, A1, B0, B1, B2, C0 (pre-production)
57 */
58
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64
65 #include <dev/microcode/bnx/bnxfw.h>
66
67 /****************************************************************************/
68 /* BNX Driver Version */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION "v0.9.6"
71
72 /****************************************************************************/
73 /* BNX Debug Options */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77
78 /* 0 = Never */
79 /* 1 = 1 in 2,147,483,648 */
80 /* 256 = 1 in 8,388,608 */
81 /* 2048 = 1 in 1,048,576 */
82 /* 65536 = 1 in 32,768 */
83 /* 1048576 = 1 in 2,048 */
84 /* 268435456 = 1 in 8 */
85 /* 536870912 = 1 in 4 */
86 /* 1073741824 = 1 in 2 */
87
88 /* Controls how often the l2_fhdr frame error check will fail. */
89 int bnx_debug_l2fhdr_status_check = 0;
90
91 /* Controls how often the unexpected attention check will fail. */
92 int bnx_debug_unexpected_attention = 0;
93
94 /* Controls how often to simulate an mbuf allocation failure. */
95 int bnx_debug_mbuf_allocation_failure = 0;
96
97 /* Controls how often to simulate a DMA mapping failure. */
98 int bnx_debug_dma_map_addr_failure = 0;
99
100 /* Controls how often to simulate a bootcode failure. */
101 int bnx_debug_bootcode_running_failure = 0;
102 #endif
103
104 /****************************************************************************/
105 /* PCI Device ID Table */
106 /* */
107 /* Used by bnx_probe() to identify the devices supported by this driver. */
108 /****************************************************************************/
109 static const struct bnx_product {
110 pci_vendor_id_t bp_vendor;
111 pci_product_id_t bp_product;
112 pci_vendor_id_t bp_subvendor;
113 pci_product_id_t bp_subproduct;
114 const char *bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 {
118 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 "HP NC370T Multifunction Gigabit Server Adapter"
121 },
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 {
125 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 "HP NC370i Multifunction Gigabit Server Adapter"
128 },
129 #endif
130 {
131 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 0, 0,
133 "Broadcom NetXtreme II BCM5706 1000Base-T"
134 },
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 {
137 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 "HP NC370F Multifunction Gigabit Server Adapter"
140 },
141 #endif
142 {
143 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 0, 0,
145 "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 },
147 {
148 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 0, 0,
150 "Broadcom NetXtreme II BCM5708 1000Base-T"
151 },
152 {
153 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 0, 0,
155 "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 },
157 {
158 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 0, 0,
160 "Broadcom NetXtreme II BCM5709 1000Base-T"
161 },
162 {
163 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 0, 0,
165 "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 },
167 {
168 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 0, 0,
170 "Broadcom NetXtreme II BCM5716 1000Base-T"
171 },
172 {
173 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 0, 0,
175 "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 },
177 };
178
179 /****************************************************************************/
180 /* Supported Flash NVRAM device data. */
181 /****************************************************************************/
182 static struct flash_spec flash_table[] =
183 {
184 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
185 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
186 /* Slow EEPROM */
187 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
188 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
189 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
190 "EEPROM - slow"},
191 /* Expansion entry 0001 */
192 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
193 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 "Entry 0001"},
196 /* Saifun SA25F010 (non-buffered flash) */
197 /* strap, cfg1, & write1 need updates */
198 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
199 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
200 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
201 "Non-buffered flash (128kB)"},
202 /* Saifun SA25F020 (non-buffered flash) */
203 /* strap, cfg1, & write1 need updates */
204 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
205 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
206 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
207 "Non-buffered flash (256kB)"},
208 /* Expansion entry 0100 */
209 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
210 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
211 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
212 "Entry 0100"},
213 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
214 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
215 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
216 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
217 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
218 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
219 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
220 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
221 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
222 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
223 /* Saifun SA25F005 (non-buffered flash) */
224 /* strap, cfg1, & write1 need updates */
225 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
226 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
228 "Non-buffered flash (64kB)"},
229 /* Fast EEPROM */
230 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
231 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
232 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
233 "EEPROM - fast"},
234 /* Expansion entry 1001 */
235 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
236 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
237 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
238 "Entry 1001"},
239 /* Expansion entry 1010 */
240 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
241 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
242 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
243 "Entry 1010"},
244 /* ATMEL AT45DB011B (buffered flash) */
245 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
246 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
247 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
248 "Buffered flash (128kB)"},
249 /* Expansion entry 1100 */
250 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
251 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
252 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
253 "Entry 1100"},
254 /* Expansion entry 1101 */
255 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
256 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
257 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
258 "Entry 1101"},
259 /* Ateml Expansion entry 1110 */
260 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
261 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
262 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
263 "Entry 1110 (Atmel)"},
264 /* ATMEL AT45DB021B (buffered flash) */
265 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
266 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
267 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
268 "Buffered flash (256kB)"},
269 };
270
271 /*
272 * The BCM5709 controllers transparently handle the
273 * differences between Atmel 264 byte pages and all
274 * flash devices which use 256 byte pages, so no
275 * logical-to-physical mapping is required in the
276 * driver.
277 */
278 static struct flash_spec flash_5709 = {
279 .flags = BNX_NV_BUFFERED,
280 .page_bits = BCM5709_FLASH_PAGE_BITS,
281 .page_size = BCM5709_FLASH_PAGE_SIZE,
282 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
283 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
284 .name = "5709 buffered flash (256kB)",
285 };
286
287 /****************************************************************************/
288 /* OpenBSD device entry points. */
289 /****************************************************************************/
290 static int bnx_probe(device_t, cfdata_t, void *);
291 void bnx_attach(device_t, device_t, void *);
292 int bnx_detach(device_t, int);
293
294 /****************************************************************************/
295 /* BNX Debug Data Structure Dump Routines */
296 /****************************************************************************/
297 #ifdef BNX_DEBUG
298 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
299 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
300 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
301 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
302 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
303 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
304 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
305 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
306 void bnx_dump_status_block(struct bnx_softc *);
307 void bnx_dump_stats_block(struct bnx_softc *);
308 void bnx_dump_driver_state(struct bnx_softc *);
309 void bnx_dump_hw_state(struct bnx_softc *);
310 void bnx_breakpoint(struct bnx_softc *);
311 #endif
312
313 /****************************************************************************/
314 /* BNX Register/Memory Access Routines */
315 /****************************************************************************/
316 u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
317 void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
318 void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
319 int bnx_miibus_read_reg(device_t, int, int);
320 void bnx_miibus_write_reg(device_t, int, int, int);
321 void bnx_miibus_statchg(device_t);
322
323 /****************************************************************************/
324 /* BNX NVRAM Access Routines */
325 /****************************************************************************/
326 int bnx_acquire_nvram_lock(struct bnx_softc *);
327 int bnx_release_nvram_lock(struct bnx_softc *);
328 void bnx_enable_nvram_access(struct bnx_softc *);
329 void bnx_disable_nvram_access(struct bnx_softc *);
330 int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
331 u_int32_t);
332 int bnx_init_nvram(struct bnx_softc *);
333 int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
334 int bnx_nvram_test(struct bnx_softc *);
335 #ifdef BNX_NVRAM_WRITE_SUPPORT
336 int bnx_enable_nvram_write(struct bnx_softc *);
337 void bnx_disable_nvram_write(struct bnx_softc *);
338 int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
339 int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
340 u_int32_t);
341 int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
342 #endif
343
344 /****************************************************************************/
345 /* */
346 /****************************************************************************/
347 void bnx_get_media(struct bnx_softc *);
348 int bnx_dma_alloc(struct bnx_softc *);
349 void bnx_dma_free(struct bnx_softc *);
350 void bnx_release_resources(struct bnx_softc *);
351
352 /****************************************************************************/
353 /* BNX Firmware Synchronization and Load */
354 /****************************************************************************/
355 int bnx_fw_sync(struct bnx_softc *, u_int32_t);
356 void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
357 u_int32_t);
358 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
359 struct fw_info *);
360 void bnx_init_cpus(struct bnx_softc *);
361
362 void bnx_stop(struct ifnet *, int);
363 int bnx_reset(struct bnx_softc *, u_int32_t);
364 int bnx_chipinit(struct bnx_softc *);
365 int bnx_blockinit(struct bnx_softc *);
366 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
367 u_int16_t *, u_int32_t *);
368 int bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
369
370 int bnx_init_tx_chain(struct bnx_softc *);
371 void bnx_init_tx_context(struct bnx_softc *);
372 int bnx_init_rx_chain(struct bnx_softc *);
373 void bnx_init_rx_context(struct bnx_softc *);
374 void bnx_free_rx_chain(struct bnx_softc *);
375 void bnx_free_tx_chain(struct bnx_softc *);
376
377 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
378 void bnx_start(struct ifnet *);
379 int bnx_ioctl(struct ifnet *, u_long, void *);
380 void bnx_watchdog(struct ifnet *);
381 int bnx_init(struct ifnet *);
382
383 void bnx_init_context(struct bnx_softc *);
384 void bnx_get_mac_addr(struct bnx_softc *);
385 void bnx_set_mac_addr(struct bnx_softc *);
386 void bnx_phy_intr(struct bnx_softc *);
387 void bnx_rx_intr(struct bnx_softc *);
388 void bnx_tx_intr(struct bnx_softc *);
389 void bnx_disable_intr(struct bnx_softc *);
390 void bnx_enable_intr(struct bnx_softc *);
391
392 int bnx_intr(void *);
393 void bnx_iff(struct bnx_softc *);
394 void bnx_stats_update(struct bnx_softc *);
395 void bnx_tick(void *);
396
397 struct pool *bnx_tx_pool = NULL;
398 int bnx_alloc_pkts(struct bnx_softc *);
399
400 /****************************************************************************/
401 /* OpenBSD device dispatch table. */
402 /****************************************************************************/
403 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
404 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
405
406 /****************************************************************************/
407 /* Device probe function. */
408 /* */
409 /* Compares the device to the driver's list of supported devices and */
410 /* reports back to the OS whether this is the right driver for the device. */
411 /* */
412 /* Returns: */
413 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
414 /****************************************************************************/
415 static const struct bnx_product *
416 bnx_lookup(const struct pci_attach_args *pa)
417 {
418 int i;
419 pcireg_t subid;
420
421 for (i = 0; i < __arraycount(bnx_devices); i++) {
422 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
423 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
424 continue;
425 if (!bnx_devices[i].bp_subvendor)
426 return &bnx_devices[i];
427 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
428 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
429 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
430 return &bnx_devices[i];
431 }
432
433 return NULL;
434 }
435 static int
436 bnx_probe(device_t parent, cfdata_t match, void *aux)
437 {
438 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
439
440 if (bnx_lookup(pa) != NULL)
441 return (1);
442
443 return (0);
444 }
445
446 /****************************************************************************/
447 /* Device attach function. */
448 /* */
449 /* Allocates device resources, performs secondary chip identification, */
450 /* resets and initializes the hardware, and initializes driver instance */
451 /* variables. */
452 /* */
453 /* Returns: */
454 /* 0 on success, positive value on failure. */
455 /****************************************************************************/
456 void
457 bnx_attach(device_t parent, device_t self, void *aux)
458 {
459 const struct bnx_product *bp;
460 struct bnx_softc *sc = device_private(self);
461 struct pci_attach_args *pa = aux;
462 pci_chipset_tag_t pc = pa->pa_pc;
463 pci_intr_handle_t ih;
464 const char *intrstr = NULL;
465 u_int32_t command;
466 struct ifnet *ifp;
467 u_int32_t val;
468 int mii_flags = MIIF_FORCEANEG;
469 pcireg_t memtype;
470
471 if (bnx_tx_pool == NULL) {
472 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
473 if (bnx_tx_pool != NULL) {
474 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
475 0, 0, 0, "bnxpkts", NULL, IPL_NET);
476 } else {
477 aprint_error(": can't alloc bnx_tx_pool\n");
478 return;
479 }
480 }
481
482 bp = bnx_lookup(pa);
483 if (bp == NULL)
484 panic("unknown device");
485
486 sc->bnx_dev = self;
487
488 aprint_naive("\n");
489 aprint_normal(": %s\n", bp->bp_name);
490
491 sc->bnx_pa = *pa;
492
493 /*
494 * Map control/status registers.
495 */
496 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
497 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
498 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
499 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
500
501 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
502 aprint_error_dev(sc->bnx_dev,
503 "failed to enable memory mapping!\n");
504 return;
505 }
506
507 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
508 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
509 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
510 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
511 return;
512 }
513
514 if (pci_intr_map(pa, &ih)) {
515 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
516 goto bnx_attach_fail;
517 }
518
519 intrstr = pci_intr_string(pc, ih);
520
521 /*
522 * Configure byte swap and enable indirect register access.
523 * Rely on CPU to do target byte swapping on big endian systems.
524 * Access to registers outside of PCI configurtion space are not
525 * valid until this is done.
526 */
527 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
528 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
529 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
530
531 /* Save ASIC revsion info. */
532 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
533
534 /*
535 * Find the base address for shared memory access.
536 * Newer versions of bootcode use a signature and offset
537 * while older versions use a fixed address.
538 */
539 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
540 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
541 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
542 (sc->bnx_pa.pa_function << 2));
543 else
544 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
545
546 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
547
548 /* Set initial device and PHY flags */
549 sc->bnx_flags = 0;
550 sc->bnx_phy_flags = 0;
551
552 /* Get PCI bus information (speed and type). */
553 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
554 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
555 u_int32_t clkreg;
556
557 sc->bnx_flags |= BNX_PCIX_FLAG;
558
559 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
560
561 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
562 switch (clkreg) {
563 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
564 sc->bus_speed_mhz = 133;
565 break;
566
567 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
568 sc->bus_speed_mhz = 100;
569 break;
570
571 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
572 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
573 sc->bus_speed_mhz = 66;
574 break;
575
576 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
577 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
578 sc->bus_speed_mhz = 50;
579 break;
580
581 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
582 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
583 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
584 sc->bus_speed_mhz = 33;
585 break;
586 }
587 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
588 sc->bus_speed_mhz = 66;
589 else
590 sc->bus_speed_mhz = 33;
591
592 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
593 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
594
595 /* Reset the controller. */
596 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
597 goto bnx_attach_fail;
598
599 /* Initialize the controller. */
600 if (bnx_chipinit(sc)) {
601 aprint_error_dev(sc->bnx_dev,
602 "Controller initialization failed!\n");
603 goto bnx_attach_fail;
604 }
605
606 /* Perform NVRAM test. */
607 if (bnx_nvram_test(sc)) {
608 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
609 goto bnx_attach_fail;
610 }
611
612 /* Fetch the permanent Ethernet MAC address. */
613 bnx_get_mac_addr(sc);
614 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
615 ether_sprintf(sc->eaddr));
616
617 /*
618 * Trip points control how many BDs
619 * should be ready before generating an
620 * interrupt while ticks control how long
621 * a BD can sit in the chain before
622 * generating an interrupt. Set the default
623 * values for the RX and TX rings.
624 */
625
626 #ifdef BNX_DEBUG
627 /* Force more frequent interrupts. */
628 sc->bnx_tx_quick_cons_trip_int = 1;
629 sc->bnx_tx_quick_cons_trip = 1;
630 sc->bnx_tx_ticks_int = 0;
631 sc->bnx_tx_ticks = 0;
632
633 sc->bnx_rx_quick_cons_trip_int = 1;
634 sc->bnx_rx_quick_cons_trip = 1;
635 sc->bnx_rx_ticks_int = 0;
636 sc->bnx_rx_ticks = 0;
637 #else
638 sc->bnx_tx_quick_cons_trip_int = 20;
639 sc->bnx_tx_quick_cons_trip = 20;
640 sc->bnx_tx_ticks_int = 80;
641 sc->bnx_tx_ticks = 80;
642
643 sc->bnx_rx_quick_cons_trip_int = 6;
644 sc->bnx_rx_quick_cons_trip = 6;
645 sc->bnx_rx_ticks_int = 18;
646 sc->bnx_rx_ticks = 18;
647 #endif
648
649 /* Update statistics once every second. */
650 sc->bnx_stats_ticks = 1000000 & 0xffff00;
651
652 /* Find the media type for the adapter. */
653 bnx_get_media(sc);
654
655 /*
656 * Store config data needed by the PHY driver for
657 * backplane applications
658 */
659 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
660 BNX_SHARED_HW_CFG_CONFIG);
661 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
662 BNX_PORT_HW_CFG_CONFIG);
663
664 /* Allocate DMA memory resources. */
665 sc->bnx_dmatag = pa->pa_dmat;
666 if (bnx_dma_alloc(sc)) {
667 aprint_error_dev(sc->bnx_dev,
668 "DMA resource allocation failed!\n");
669 goto bnx_attach_fail;
670 }
671
672 /* Initialize the ifnet interface. */
673 ifp = &sc->bnx_ec.ec_if;
674 ifp->if_softc = sc;
675 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
676 ifp->if_ioctl = bnx_ioctl;
677 ifp->if_stop = bnx_stop;
678 ifp->if_start = bnx_start;
679 ifp->if_init = bnx_init;
680 ifp->if_timer = 0;
681 ifp->if_watchdog = bnx_watchdog;
682 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
683 IFQ_SET_READY(&ifp->if_snd);
684 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
685
686 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
687 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
688
689 ifp->if_capabilities |=
690 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
691 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
692 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
693
694 /* Hookup IRQ last. */
695 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
696 if (sc->bnx_intrhand == NULL) {
697 aprint_error_dev(self, "couldn't establish interrupt");
698 if (intrstr != NULL)
699 aprint_error(" at %s", intrstr);
700 aprint_error("\n");
701 goto bnx_attach_fail;
702 }
703 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
704
705 sc->bnx_mii.mii_ifp = ifp;
706 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
707 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
708 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
709
710 sc->bnx_ec.ec_mii = &sc->bnx_mii;
711 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
712 ether_mediastatus);
713 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
714 mii_flags |= MIIF_HAVEFIBER;
715 mii_attach(self, &sc->bnx_mii, 0xffffffff,
716 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
717
718 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
719 aprint_error_dev(self, "no PHY found!\n");
720 ifmedia_add(&sc->bnx_mii.mii_media,
721 IFM_ETHER|IFM_MANUAL, 0, NULL);
722 ifmedia_set(&sc->bnx_mii.mii_media,
723 IFM_ETHER|IFM_MANUAL);
724 } else {
725 ifmedia_set(&sc->bnx_mii.mii_media,
726 IFM_ETHER|IFM_AUTO);
727 }
728
729 /* Attach to the Ethernet interface list. */
730 if_attach(ifp);
731 ether_ifattach(ifp,sc->eaddr);
732
733 callout_init(&sc->bnx_timeout, 0);
734
735 if (pmf_device_register(self, NULL, NULL))
736 pmf_class_network_register(self, ifp);
737 else
738 aprint_error_dev(self, "couldn't establish power handler\n");
739
740 /* Print some important debugging info. */
741 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
742
743 goto bnx_attach_exit;
744
745 bnx_attach_fail:
746 bnx_release_resources(sc);
747
748 bnx_attach_exit:
749 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
750 }
751
752 /****************************************************************************/
753 /* Device detach function. */
754 /* */
755 /* Stops the controller, resets the controller, and releases resources. */
756 /* */
757 /* Returns: */
758 /* 0 on success, positive value on failure. */
759 /****************************************************************************/
760 int
761 bnx_detach(device_t dev, int flags)
762 {
763 int s;
764 struct bnx_softc *sc;
765 struct ifnet *ifp;
766
767 sc = device_private(dev);
768 ifp = &sc->bnx_ec.ec_if;
769
770 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
771
772 /* Stop and reset the controller. */
773 s = splnet();
774 if (ifp->if_flags & IFF_RUNNING)
775 bnx_stop(ifp, 1);
776 else {
777 /* Disable the transmit/receive blocks. */
778 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
779 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
780 DELAY(20);
781 bnx_disable_intr(sc);
782 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
783 }
784
785 splx(s);
786
787 pmf_device_deregister(dev);
788 callout_destroy(&sc->bnx_timeout);
789 ether_ifdetach(ifp);
790
791 /* Delete all remaining media. */
792 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
793
794 if_detach(ifp);
795 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
796
797 /* Release all remaining resources. */
798 bnx_release_resources(sc);
799
800 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
801
802 return(0);
803 }
804
805 /****************************************************************************/
806 /* Indirect register read. */
807 /* */
808 /* Reads NetXtreme II registers using an index/data register pair in PCI */
809 /* configuration space. Using this mechanism avoids issues with posted */
810 /* reads but is much slower than memory-mapped I/O. */
811 /* */
812 /* Returns: */
813 /* The value of the register. */
814 /****************************************************************************/
815 u_int32_t
816 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
817 {
818 struct pci_attach_args *pa = &(sc->bnx_pa);
819
820 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
821 offset);
822 #ifdef BNX_DEBUG
823 {
824 u_int32_t val;
825 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
826 BNX_PCICFG_REG_WINDOW);
827 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
828 "val = 0x%08X\n", __func__, offset, val);
829 return (val);
830 }
831 #else
832 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
833 #endif
834 }
835
836 /****************************************************************************/
837 /* Indirect register write. */
838 /* */
839 /* Writes NetXtreme II registers using an index/data register pair in PCI */
840 /* configuration space. Using this mechanism avoids issues with posted */
841 /* writes but is muchh slower than memory-mapped I/O. */
842 /* */
843 /* Returns: */
844 /* Nothing. */
845 /****************************************************************************/
846 void
847 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
848 {
849 struct pci_attach_args *pa = &(sc->bnx_pa);
850
851 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
852 __func__, offset, val);
853
854 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
855 offset);
856 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
857 }
858
859 /****************************************************************************/
860 /* Context memory write. */
861 /* */
862 /* The NetXtreme II controller uses context memory to track connection */
863 /* information for L2 and higher network protocols. */
864 /* */
865 /* Returns: */
866 /* Nothing. */
867 /****************************************************************************/
868 void
869 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
870 u_int32_t ctx_val)
871 {
872 u_int32_t idx, offset = ctx_offset + cid_addr;
873 u_int32_t val, retry_cnt = 5;
874
875 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
876 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
877 REG_WR(sc, BNX_CTX_CTX_CTRL,
878 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
879
880 for (idx = 0; idx < retry_cnt; idx++) {
881 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
882 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
883 break;
884 DELAY(5);
885 }
886
887 #if 0
888 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
889 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
890 "cid_addr = 0x%08X, offset = 0x%08X!\n",
891 __FILE__, __LINE__, cid_addr, ctx_offset);
892 #endif
893
894 } else {
895 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
896 REG_WR(sc, BNX_CTX_DATA, ctx_val);
897 }
898 }
899
900 /****************************************************************************/
901 /* PHY register read. */
902 /* */
903 /* Implements register reads on the MII bus. */
904 /* */
905 /* Returns: */
906 /* The value of the register. */
907 /****************************************************************************/
908 int
909 bnx_miibus_read_reg(device_t dev, int phy, int reg)
910 {
911 struct bnx_softc *sc = device_private(dev);
912 u_int32_t val;
913 int i;
914
915 /* Make sure we are accessing the correct PHY address. */
916 if (phy != sc->bnx_phy_addr) {
917 DBPRINT(sc, BNX_VERBOSE,
918 "Invalid PHY address %d for PHY read!\n", phy);
919 return(0);
920 }
921
922 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
923 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
924 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
925
926 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
927 REG_RD(sc, BNX_EMAC_MDIO_MODE);
928
929 DELAY(40);
930 }
931
932 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
933 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
934 BNX_EMAC_MDIO_COMM_START_BUSY;
935 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
936
937 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
938 DELAY(10);
939
940 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
941 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
942 DELAY(5);
943
944 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
945 val &= BNX_EMAC_MDIO_COMM_DATA;
946
947 break;
948 }
949 }
950
951 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
952 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
953 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
954 val = 0x0;
955 } else
956 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
957
958 DBPRINT(sc, BNX_EXCESSIVE,
959 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
960 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
961
962 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
963 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
964 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
965
966 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
967 REG_RD(sc, BNX_EMAC_MDIO_MODE);
968
969 DELAY(40);
970 }
971
972 return (val & 0xffff);
973 }
974
975 /****************************************************************************/
976 /* PHY register write. */
977 /* */
978 /* Implements register writes on the MII bus. */
979 /* */
980 /* Returns: */
981 /* The value of the register. */
982 /****************************************************************************/
983 void
984 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
985 {
986 struct bnx_softc *sc = device_private(dev);
987 u_int32_t val1;
988 int i;
989
990 /* Make sure we are accessing the correct PHY address. */
991 if (phy != sc->bnx_phy_addr) {
992 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
993 phy);
994 return;
995 }
996
997 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
998 "val = 0x%04X\n", __func__,
999 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
1000
1001 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1002 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1003 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1004
1005 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1006 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1007
1008 DELAY(40);
1009 }
1010
1011 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1012 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1013 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1014 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1015
1016 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1017 DELAY(10);
1018
1019 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1020 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1021 DELAY(5);
1022 break;
1023 }
1024 }
1025
1026 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1027 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1028 __LINE__);
1029 }
1030
1031 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1032 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1033 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1034
1035 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1036 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1037
1038 DELAY(40);
1039 }
1040 }
1041
1042 /****************************************************************************/
1043 /* MII bus status change. */
1044 /* */
1045 /* Called by the MII bus driver when the PHY establishes link to set the */
1046 /* MAC interface registers. */
1047 /* */
1048 /* Returns: */
1049 /* Nothing. */
1050 /****************************************************************************/
1051 void
1052 bnx_miibus_statchg(device_t dev)
1053 {
1054 struct bnx_softc *sc = device_private(dev);
1055 struct mii_data *mii = &sc->bnx_mii;
1056 int val;
1057
1058 val = REG_RD(sc, BNX_EMAC_MODE);
1059 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1060 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1061 BNX_EMAC_MODE_25G);
1062
1063 /* Set MII or GMII interface based on the speed
1064 * negotiated by the PHY.
1065 */
1066 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1067 case IFM_10_T:
1068 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1069 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1070 val |= BNX_EMAC_MODE_PORT_MII_10;
1071 break;
1072 }
1073 /* FALLTHROUGH */
1074 case IFM_100_TX:
1075 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1076 val |= BNX_EMAC_MODE_PORT_MII;
1077 break;
1078 case IFM_2500_SX:
1079 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1080 val |= BNX_EMAC_MODE_25G;
1081 /* FALLTHROUGH */
1082 case IFM_1000_T:
1083 case IFM_1000_SX:
1084 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1085 val |= BNX_EMAC_MODE_PORT_GMII;
1086 break;
1087 default:
1088 val |= BNX_EMAC_MODE_PORT_GMII;
1089 break;
1090 }
1091
1092 /* Set half or full duplex based on the duplicity
1093 * negotiated by the PHY.
1094 */
1095 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1096 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1097 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1098 } else {
1099 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1100 }
1101
1102 REG_WR(sc, BNX_EMAC_MODE, val);
1103 }
1104
1105 /****************************************************************************/
1106 /* Acquire NVRAM lock. */
1107 /* */
1108 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1109 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1110 /* for use by the driver. */
1111 /* */
1112 /* Returns: */
1113 /* 0 on success, positive value on failure. */
1114 /****************************************************************************/
1115 int
1116 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1117 {
1118 u_int32_t val;
1119 int j;
1120
1121 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1122
1123 /* Request access to the flash interface. */
1124 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1125 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1126 val = REG_RD(sc, BNX_NVM_SW_ARB);
1127 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1128 break;
1129
1130 DELAY(5);
1131 }
1132
1133 if (j >= NVRAM_TIMEOUT_COUNT) {
1134 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1135 return (EBUSY);
1136 }
1137
1138 return (0);
1139 }
1140
1141 /****************************************************************************/
1142 /* Release NVRAM lock. */
1143 /* */
1144 /* When the caller is finished accessing NVRAM the lock must be released. */
1145 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1146 /* for use by the driver. */
1147 /* */
1148 /* Returns: */
1149 /* 0 on success, positive value on failure. */
1150 /****************************************************************************/
1151 int
1152 bnx_release_nvram_lock(struct bnx_softc *sc)
1153 {
1154 int j;
1155 u_int32_t val;
1156
1157 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1158
1159 /* Relinquish nvram interface. */
1160 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1161
1162 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1163 val = REG_RD(sc, BNX_NVM_SW_ARB);
1164 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1165 break;
1166
1167 DELAY(5);
1168 }
1169
1170 if (j >= NVRAM_TIMEOUT_COUNT) {
1171 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1172 return (EBUSY);
1173 }
1174
1175 return (0);
1176 }
1177
1178 #ifdef BNX_NVRAM_WRITE_SUPPORT
1179 /****************************************************************************/
1180 /* Enable NVRAM write access. */
1181 /* */
1182 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1183 /* */
1184 /* Returns: */
1185 /* 0 on success, positive value on failure. */
1186 /****************************************************************************/
1187 int
1188 bnx_enable_nvram_write(struct bnx_softc *sc)
1189 {
1190 u_int32_t val;
1191
1192 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1193
1194 val = REG_RD(sc, BNX_MISC_CFG);
1195 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1196
1197 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1198 int j;
1199
1200 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1201 REG_WR(sc, BNX_NVM_COMMAND,
1202 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1203
1204 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1205 DELAY(5);
1206
1207 val = REG_RD(sc, BNX_NVM_COMMAND);
1208 if (val & BNX_NVM_COMMAND_DONE)
1209 break;
1210 }
1211
1212 if (j >= NVRAM_TIMEOUT_COUNT) {
1213 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1214 return (EBUSY);
1215 }
1216 }
1217
1218 return (0);
1219 }
1220
1221 /****************************************************************************/
1222 /* Disable NVRAM write access. */
1223 /* */
1224 /* When the caller is finished writing to NVRAM write access must be */
1225 /* disabled. */
1226 /* */
1227 /* Returns: */
1228 /* Nothing. */
1229 /****************************************************************************/
1230 void
1231 bnx_disable_nvram_write(struct bnx_softc *sc)
1232 {
1233 u_int32_t val;
1234
1235 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1236
1237 val = REG_RD(sc, BNX_MISC_CFG);
1238 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1239 }
1240 #endif
1241
1242 /****************************************************************************/
1243 /* Enable NVRAM access. */
1244 /* */
1245 /* Before accessing NVRAM for read or write operations the caller must */
1246 /* enabled NVRAM access. */
1247 /* */
1248 /* Returns: */
1249 /* Nothing. */
1250 /****************************************************************************/
1251 void
1252 bnx_enable_nvram_access(struct bnx_softc *sc)
1253 {
1254 u_int32_t val;
1255
1256 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1257
1258 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1259 /* Enable both bits, even on read. */
1260 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1261 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1262 }
1263
1264 /****************************************************************************/
1265 /* Disable NVRAM access. */
1266 /* */
1267 /* When the caller is finished accessing NVRAM access must be disabled. */
1268 /* */
1269 /* Returns: */
1270 /* Nothing. */
1271 /****************************************************************************/
1272 void
1273 bnx_disable_nvram_access(struct bnx_softc *sc)
1274 {
1275 u_int32_t val;
1276
1277 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1278
1279 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1280
1281 /* Disable both bits, even after read. */
1282 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1283 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1284 }
1285
1286 #ifdef BNX_NVRAM_WRITE_SUPPORT
1287 /****************************************************************************/
1288 /* Erase NVRAM page before writing. */
1289 /* */
1290 /* Non-buffered flash parts require that a page be erased before it is */
1291 /* written. */
1292 /* */
1293 /* Returns: */
1294 /* 0 on success, positive value on failure. */
1295 /****************************************************************************/
1296 int
1297 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1298 {
1299 u_int32_t cmd;
1300 int j;
1301
1302 /* Buffered flash doesn't require an erase. */
1303 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1304 return (0);
1305
1306 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1307
1308 /* Build an erase command. */
1309 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1310 BNX_NVM_COMMAND_DOIT;
1311
1312 /*
1313 * Clear the DONE bit separately, set the NVRAM adress to erase,
1314 * and issue the erase command.
1315 */
1316 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1317 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1318 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1319
1320 /* Wait for completion. */
1321 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1322 u_int32_t val;
1323
1324 DELAY(5);
1325
1326 val = REG_RD(sc, BNX_NVM_COMMAND);
1327 if (val & BNX_NVM_COMMAND_DONE)
1328 break;
1329 }
1330
1331 if (j >= NVRAM_TIMEOUT_COUNT) {
1332 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1333 return (EBUSY);
1334 }
1335
1336 return (0);
1337 }
1338 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1339
1340 /****************************************************************************/
1341 /* Read a dword (32 bits) from NVRAM. */
1342 /* */
1343 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1344 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1345 /* */
1346 /* Returns: */
1347 /* 0 on success and the 32 bit value read, positive value on failure. */
1348 /****************************************************************************/
1349 int
1350 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1351 u_int8_t *ret_val, u_int32_t cmd_flags)
1352 {
1353 u_int32_t cmd;
1354 int i, rc = 0;
1355
1356 /* Build the command word. */
1357 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1358
1359 /* Calculate the offset for buffered flash if translation is used. */
1360 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1361 offset = ((offset / sc->bnx_flash_info->page_size) <<
1362 sc->bnx_flash_info->page_bits) +
1363 (offset % sc->bnx_flash_info->page_size);
1364 }
1365
1366 /*
1367 * Clear the DONE bit separately, set the address to read,
1368 * and issue the read.
1369 */
1370 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1371 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1372 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1373
1374 /* Wait for completion. */
1375 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1376 u_int32_t val;
1377
1378 DELAY(5);
1379
1380 val = REG_RD(sc, BNX_NVM_COMMAND);
1381 if (val & BNX_NVM_COMMAND_DONE) {
1382 val = REG_RD(sc, BNX_NVM_READ);
1383
1384 val = bnx_be32toh(val);
1385 memcpy(ret_val, &val, 4);
1386 break;
1387 }
1388 }
1389
1390 /* Check for errors. */
1391 if (i >= NVRAM_TIMEOUT_COUNT) {
1392 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1393 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1394 rc = EBUSY;
1395 }
1396
1397 return(rc);
1398 }
1399
1400 #ifdef BNX_NVRAM_WRITE_SUPPORT
1401 /****************************************************************************/
1402 /* Write a dword (32 bits) to NVRAM. */
1403 /* */
1404 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1405 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1406 /* enabled NVRAM write access. */
1407 /* */
1408 /* Returns: */
1409 /* 0 on success, positive value on failure. */
1410 /****************************************************************************/
1411 int
1412 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1413 u_int32_t cmd_flags)
1414 {
1415 u_int32_t cmd, val32;
1416 int j;
1417
1418 /* Build the command word. */
1419 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1420
1421 /* Calculate the offset for buffered flash if translation is used. */
1422 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1423 offset = ((offset / sc->bnx_flash_info->page_size) <<
1424 sc->bnx_flash_info->page_bits) +
1425 (offset % sc->bnx_flash_info->page_size);
1426 }
1427
1428 /*
1429 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1430 * set the NVRAM address to write, and issue the write command
1431 */
1432 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1433 memcpy(&val32, val, 4);
1434 val32 = htobe32(val32);
1435 REG_WR(sc, BNX_NVM_WRITE, val32);
1436 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1437 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1438
1439 /* Wait for completion. */
1440 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1441 DELAY(5);
1442
1443 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1444 break;
1445 }
1446 if (j >= NVRAM_TIMEOUT_COUNT) {
1447 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1448 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1449 return (EBUSY);
1450 }
1451
1452 return (0);
1453 }
1454 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1455
1456 /****************************************************************************/
1457 /* Initialize NVRAM access. */
1458 /* */
1459 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1460 /* access that device. */
1461 /* */
1462 /* Returns: */
1463 /* 0 on success, positive value on failure. */
1464 /****************************************************************************/
1465 int
1466 bnx_init_nvram(struct bnx_softc *sc)
1467 {
1468 u_int32_t val;
1469 int j, entry_count, rc = 0;
1470 struct flash_spec *flash;
1471
1472 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1473
1474 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1475 sc->bnx_flash_info = &flash_5709;
1476 goto bnx_init_nvram_get_flash_size;
1477 }
1478
1479 /* Determine the selected interface. */
1480 val = REG_RD(sc, BNX_NVM_CFG1);
1481
1482 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1483
1484 /*
1485 * Flash reconfiguration is required to support additional
1486 * NVRAM devices not directly supported in hardware.
1487 * Check if the flash interface was reconfigured
1488 * by the bootcode.
1489 */
1490
1491 if (val & 0x40000000) {
1492 /* Flash interface reconfigured by bootcode. */
1493
1494 DBPRINT(sc,BNX_INFO_LOAD,
1495 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1496
1497 for (j = 0, flash = &flash_table[0]; j < entry_count;
1498 j++, flash++) {
1499 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1500 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1501 sc->bnx_flash_info = flash;
1502 break;
1503 }
1504 }
1505 } else {
1506 /* Flash interface not yet reconfigured. */
1507 u_int32_t mask;
1508
1509 DBPRINT(sc,BNX_INFO_LOAD,
1510 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1511
1512 if (val & (1 << 23))
1513 mask = FLASH_BACKUP_STRAP_MASK;
1514 else
1515 mask = FLASH_STRAP_MASK;
1516
1517 /* Look for the matching NVRAM device configuration data. */
1518 for (j = 0, flash = &flash_table[0]; j < entry_count;
1519 j++, flash++) {
1520 /* Check if the dev matches any of the known devices. */
1521 if ((val & mask) == (flash->strapping & mask)) {
1522 /* Found a device match. */
1523 sc->bnx_flash_info = flash;
1524
1525 /* Request access to the flash interface. */
1526 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1527 return (rc);
1528
1529 /* Reconfigure the flash interface. */
1530 bnx_enable_nvram_access(sc);
1531 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1532 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1533 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1534 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1535 bnx_disable_nvram_access(sc);
1536 bnx_release_nvram_lock(sc);
1537
1538 break;
1539 }
1540 }
1541 }
1542
1543 /* Check if a matching device was found. */
1544 if (j == entry_count) {
1545 sc->bnx_flash_info = NULL;
1546 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1547 __FILE__, __LINE__);
1548 rc = ENODEV;
1549 }
1550
1551 bnx_init_nvram_get_flash_size:
1552 /* Write the flash config data to the shared memory interface. */
1553 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1554 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1555 if (val)
1556 sc->bnx_flash_size = val;
1557 else
1558 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1559
1560 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1561 "0x%08X\n", sc->bnx_flash_info->total_size);
1562
1563 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1564
1565 return (rc);
1566 }
1567
1568 /****************************************************************************/
1569 /* Read an arbitrary range of data from NVRAM. */
1570 /* */
1571 /* Prepares the NVRAM interface for access and reads the requested data */
1572 /* into the supplied buffer. */
1573 /* */
1574 /* Returns: */
1575 /* 0 on success and the data read, positive value on failure. */
1576 /****************************************************************************/
1577 int
1578 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1579 int buf_size)
1580 {
1581 int rc = 0;
1582 u_int32_t cmd_flags, offset32, len32, extra;
1583
1584 if (buf_size == 0)
1585 return (0);
1586
1587 /* Request access to the flash interface. */
1588 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1589 return (rc);
1590
1591 /* Enable access to flash interface */
1592 bnx_enable_nvram_access(sc);
1593
1594 len32 = buf_size;
1595 offset32 = offset;
1596 extra = 0;
1597
1598 cmd_flags = 0;
1599
1600 if (offset32 & 3) {
1601 u_int8_t buf[4];
1602 u_int32_t pre_len;
1603
1604 offset32 &= ~3;
1605 pre_len = 4 - (offset & 3);
1606
1607 if (pre_len >= len32) {
1608 pre_len = len32;
1609 cmd_flags =
1610 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1611 } else
1612 cmd_flags = BNX_NVM_COMMAND_FIRST;
1613
1614 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1615
1616 if (rc)
1617 return (rc);
1618
1619 memcpy(ret_buf, buf + (offset & 3), pre_len);
1620
1621 offset32 += 4;
1622 ret_buf += pre_len;
1623 len32 -= pre_len;
1624 }
1625
1626 if (len32 & 3) {
1627 extra = 4 - (len32 & 3);
1628 len32 = (len32 + 4) & ~3;
1629 }
1630
1631 if (len32 == 4) {
1632 u_int8_t buf[4];
1633
1634 if (cmd_flags)
1635 cmd_flags = BNX_NVM_COMMAND_LAST;
1636 else
1637 cmd_flags =
1638 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1639
1640 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1641
1642 memcpy(ret_buf, buf, 4 - extra);
1643 } else if (len32 > 0) {
1644 u_int8_t buf[4];
1645
1646 /* Read the first word. */
1647 if (cmd_flags)
1648 cmd_flags = 0;
1649 else
1650 cmd_flags = BNX_NVM_COMMAND_FIRST;
1651
1652 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1653
1654 /* Advance to the next dword. */
1655 offset32 += 4;
1656 ret_buf += 4;
1657 len32 -= 4;
1658
1659 while (len32 > 4 && rc == 0) {
1660 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1661
1662 /* Advance to the next dword. */
1663 offset32 += 4;
1664 ret_buf += 4;
1665 len32 -= 4;
1666 }
1667
1668 if (rc)
1669 return (rc);
1670
1671 cmd_flags = BNX_NVM_COMMAND_LAST;
1672 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1673
1674 memcpy(ret_buf, buf, 4 - extra);
1675 }
1676
1677 /* Disable access to flash interface and release the lock. */
1678 bnx_disable_nvram_access(sc);
1679 bnx_release_nvram_lock(sc);
1680
1681 return (rc);
1682 }
1683
1684 #ifdef BNX_NVRAM_WRITE_SUPPORT
1685 /****************************************************************************/
1686 /* Write an arbitrary range of data from NVRAM. */
1687 /* */
1688 /* Prepares the NVRAM interface for write access and writes the requested */
1689 /* data from the supplied buffer. The caller is responsible for */
1690 /* calculating any appropriate CRCs. */
1691 /* */
1692 /* Returns: */
1693 /* 0 on success, positive value on failure. */
1694 /****************************************************************************/
1695 int
1696 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1697 int buf_size)
1698 {
1699 u_int32_t written, offset32, len32;
1700 u_int8_t *buf, start[4], end[4];
1701 int rc = 0;
1702 int align_start, align_end;
1703
1704 buf = data_buf;
1705 offset32 = offset;
1706 len32 = buf_size;
1707 align_start = align_end = 0;
1708
1709 if ((align_start = (offset32 & 3))) {
1710 offset32 &= ~3;
1711 len32 += align_start;
1712 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1713 return (rc);
1714 }
1715
1716 if (len32 & 3) {
1717 if ((len32 > 4) || !align_start) {
1718 align_end = 4 - (len32 & 3);
1719 len32 += align_end;
1720 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1721 end, 4))) {
1722 return (rc);
1723 }
1724 }
1725 }
1726
1727 if (align_start || align_end) {
1728 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1729 if (buf == 0)
1730 return (ENOMEM);
1731
1732 if (align_start)
1733 memcpy(buf, start, 4);
1734
1735 if (align_end)
1736 memcpy(buf + len32 - 4, end, 4);
1737
1738 memcpy(buf + align_start, data_buf, buf_size);
1739 }
1740
1741 written = 0;
1742 while ((written < len32) && (rc == 0)) {
1743 u_int32_t page_start, page_end, data_start, data_end;
1744 u_int32_t addr, cmd_flags;
1745 int i;
1746 u_int8_t flash_buffer[264];
1747
1748 /* Find the page_start addr */
1749 page_start = offset32 + written;
1750 page_start -= (page_start % sc->bnx_flash_info->page_size);
1751 /* Find the page_end addr */
1752 page_end = page_start + sc->bnx_flash_info->page_size;
1753 /* Find the data_start addr */
1754 data_start = (written == 0) ? offset32 : page_start;
1755 /* Find the data_end addr */
1756 data_end = (page_end > offset32 + len32) ?
1757 (offset32 + len32) : page_end;
1758
1759 /* Request access to the flash interface. */
1760 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1761 goto nvram_write_end;
1762
1763 /* Enable access to flash interface */
1764 bnx_enable_nvram_access(sc);
1765
1766 cmd_flags = BNX_NVM_COMMAND_FIRST;
1767 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1768 int j;
1769
1770 /* Read the whole page into the buffer
1771 * (non-buffer flash only) */
1772 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1773 if (j == (sc->bnx_flash_info->page_size - 4))
1774 cmd_flags |= BNX_NVM_COMMAND_LAST;
1775
1776 rc = bnx_nvram_read_dword(sc,
1777 page_start + j,
1778 &flash_buffer[j],
1779 cmd_flags);
1780
1781 if (rc)
1782 goto nvram_write_end;
1783
1784 cmd_flags = 0;
1785 }
1786 }
1787
1788 /* Enable writes to flash interface (unlock write-protect) */
1789 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1790 goto nvram_write_end;
1791
1792 /* Erase the page */
1793 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1794 goto nvram_write_end;
1795
1796 /* Re-enable the write again for the actual write */
1797 bnx_enable_nvram_write(sc);
1798
1799 /* Loop to write back the buffer data from page_start to
1800 * data_start */
1801 i = 0;
1802 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1803 for (addr = page_start; addr < data_start;
1804 addr += 4, i += 4) {
1805
1806 rc = bnx_nvram_write_dword(sc, addr,
1807 &flash_buffer[i], cmd_flags);
1808
1809 if (rc != 0)
1810 goto nvram_write_end;
1811
1812 cmd_flags = 0;
1813 }
1814 }
1815
1816 /* Loop to write the new data from data_start to data_end */
1817 for (addr = data_start; addr < data_end; addr += 4, i++) {
1818 if ((addr == page_end - 4) ||
1819 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1820 && (addr == data_end - 4))) {
1821
1822 cmd_flags |= BNX_NVM_COMMAND_LAST;
1823 }
1824
1825 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1826
1827 if (rc != 0)
1828 goto nvram_write_end;
1829
1830 cmd_flags = 0;
1831 buf += 4;
1832 }
1833
1834 /* Loop to write back the buffer data from data_end
1835 * to page_end */
1836 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1837 for (addr = data_end; addr < page_end;
1838 addr += 4, i += 4) {
1839
1840 if (addr == page_end-4)
1841 cmd_flags = BNX_NVM_COMMAND_LAST;
1842
1843 rc = bnx_nvram_write_dword(sc, addr,
1844 &flash_buffer[i], cmd_flags);
1845
1846 if (rc != 0)
1847 goto nvram_write_end;
1848
1849 cmd_flags = 0;
1850 }
1851 }
1852
1853 /* Disable writes to flash interface (lock write-protect) */
1854 bnx_disable_nvram_write(sc);
1855
1856 /* Disable access to flash interface */
1857 bnx_disable_nvram_access(sc);
1858 bnx_release_nvram_lock(sc);
1859
1860 /* Increment written */
1861 written += data_end - data_start;
1862 }
1863
1864 nvram_write_end:
1865 if (align_start || align_end)
1866 free(buf, M_DEVBUF);
1867
1868 return (rc);
1869 }
1870 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1871
1872 /****************************************************************************/
1873 /* Verifies that NVRAM is accessible and contains valid data. */
1874 /* */
1875 /* Reads the configuration data from NVRAM and verifies that the CRC is */
1876 /* correct. */
1877 /* */
1878 /* Returns: */
1879 /* 0 on success, positive value on failure. */
1880 /****************************************************************************/
1881 int
1882 bnx_nvram_test(struct bnx_softc *sc)
1883 {
1884 u_int32_t buf[BNX_NVRAM_SIZE / 4];
1885 u_int8_t *data = (u_int8_t *) buf;
1886 int rc = 0;
1887 u_int32_t magic, csum;
1888
1889 /*
1890 * Check that the device NVRAM is valid by reading
1891 * the magic value at offset 0.
1892 */
1893 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1894 goto bnx_nvram_test_done;
1895
1896 magic = bnx_be32toh(buf[0]);
1897 if (magic != BNX_NVRAM_MAGIC) {
1898 rc = ENODEV;
1899 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1900 "Expected: 0x%08X, Found: 0x%08X\n",
1901 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1902 goto bnx_nvram_test_done;
1903 }
1904
1905 /*
1906 * Verify that the device NVRAM includes valid
1907 * configuration data.
1908 */
1909 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1910 goto bnx_nvram_test_done;
1911
1912 csum = ether_crc32_le(data, 0x100);
1913 if (csum != BNX_CRC32_RESIDUAL) {
1914 rc = ENODEV;
1915 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1916 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1917 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1918 goto bnx_nvram_test_done;
1919 }
1920
1921 csum = ether_crc32_le(data + 0x100, 0x100);
1922 if (csum != BNX_CRC32_RESIDUAL) {
1923 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1924 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1925 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1926 rc = ENODEV;
1927 }
1928
1929 bnx_nvram_test_done:
1930 return (rc);
1931 }
1932
1933 /****************************************************************************/
1934 /* Identifies the current media type of the controller and sets the PHY */
1935 /* address. */
1936 /* */
1937 /* Returns: */
1938 /* Nothing. */
1939 /****************************************************************************/
1940 void
1941 bnx_get_media(struct bnx_softc *sc)
1942 {
1943 sc->bnx_phy_addr = 1;
1944
1945 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1946 u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
1947 u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1948 u_int32_t strap;
1949
1950 /*
1951 * The BCM5709S is software configurable
1952 * for Copper or SerDes operation.
1953 */
1954 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1955 DBPRINT(sc, BNX_INFO_LOAD,
1956 "5709 bonded for copper.\n");
1957 goto bnx_get_media_exit;
1958 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1959 DBPRINT(sc, BNX_INFO_LOAD,
1960 "5709 bonded for dual media.\n");
1961 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
1962 goto bnx_get_media_exit;
1963 }
1964
1965 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
1966 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
1967 else {
1968 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
1969 >> 8;
1970 }
1971
1972 if (sc->bnx_pa.pa_function == 0) {
1973 switch (strap) {
1974 case 0x4:
1975 case 0x5:
1976 case 0x6:
1977 DBPRINT(sc, BNX_INFO_LOAD,
1978 "BCM5709 s/w configured for SerDes.\n");
1979 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
1980 break;
1981 default:
1982 DBPRINT(sc, BNX_INFO_LOAD,
1983 "BCM5709 s/w configured for Copper.\n");
1984 }
1985 } else {
1986 switch (strap) {
1987 case 0x1:
1988 case 0x2:
1989 case 0x4:
1990 DBPRINT(sc, BNX_INFO_LOAD,
1991 "BCM5709 s/w configured for SerDes.\n");
1992 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
1993 break;
1994 default:
1995 DBPRINT(sc, BNX_INFO_LOAD,
1996 "BCM5709 s/w configured for Copper.\n");
1997 }
1998 }
1999
2000 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2001 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2002
2003 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2004 u_int32_t val;
2005
2006 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2007 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2008 sc->bnx_phy_addr = 2;
2009 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2010 BNX_SHARED_HW_CFG_CONFIG);
2011 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2012 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2013 DBPRINT(sc, BNX_INFO_LOAD,
2014 "Found 2.5Gb capable adapter\n");
2015 }
2016 }
2017 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2018 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2019 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2020
2021 bnx_get_media_exit:
2022 DBPRINT(sc, (BNX_INFO_LOAD),
2023 "Using PHY address %d.\n", sc->bnx_phy_addr);
2024 }
2025
2026 /****************************************************************************/
2027 /* Free any DMA memory owned by the driver. */
2028 /* */
2029 /* Scans through each data structre that requires DMA memory and frees */
2030 /* the memory if allocated. */
2031 /* */
2032 /* Returns: */
2033 /* Nothing. */
2034 /****************************************************************************/
2035 void
2036 bnx_dma_free(struct bnx_softc *sc)
2037 {
2038 int i;
2039
2040 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2041
2042 /* Destroy the status block. */
2043 if (sc->status_block != NULL && sc->status_map != NULL) {
2044 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2045 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2046 BNX_STATUS_BLK_SZ);
2047 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2048 sc->status_rseg);
2049 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2050 sc->status_block = NULL;
2051 sc->status_map = NULL;
2052 }
2053
2054 /* Destroy the statistics block. */
2055 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2056 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2057 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2058 BNX_STATS_BLK_SZ);
2059 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2060 sc->stats_rseg);
2061 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2062 sc->stats_block = NULL;
2063 sc->stats_map = NULL;
2064 }
2065
2066 /* Free, unmap and destroy all context memory pages. */
2067 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2068 for (i = 0; i < sc->ctx_pages; i++) {
2069 if (sc->ctx_block[i] != NULL) {
2070 bus_dmamap_unload(sc->bnx_dmatag,
2071 sc->ctx_map[i]);
2072 bus_dmamem_unmap(sc->bnx_dmatag,
2073 (void *)sc->ctx_block[i],
2074 BCM_PAGE_SIZE);
2075 bus_dmamem_free(sc->bnx_dmatag,
2076 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2077 bus_dmamap_destroy(sc->bnx_dmatag,
2078 sc->ctx_map[i]);
2079 sc->ctx_block[i] = NULL;
2080 }
2081 }
2082 }
2083
2084 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2085 for (i = 0; i < TX_PAGES; i++ ) {
2086 if (sc->tx_bd_chain[i] != NULL &&
2087 sc->tx_bd_chain_map[i] != NULL) {
2088 bus_dmamap_unload(sc->bnx_dmatag,
2089 sc->tx_bd_chain_map[i]);
2090 bus_dmamem_unmap(sc->bnx_dmatag,
2091 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2092 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2093 sc->tx_bd_chain_rseg[i]);
2094 bus_dmamap_destroy(sc->bnx_dmatag,
2095 sc->tx_bd_chain_map[i]);
2096 sc->tx_bd_chain[i] = NULL;
2097 sc->tx_bd_chain_map[i] = NULL;
2098 }
2099 }
2100
2101 /* Destroy the TX dmamaps. */
2102 /* This isn't necessary since we dont allocate them up front */
2103
2104 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2105 for (i = 0; i < RX_PAGES; i++ ) {
2106 if (sc->rx_bd_chain[i] != NULL &&
2107 sc->rx_bd_chain_map[i] != NULL) {
2108 bus_dmamap_unload(sc->bnx_dmatag,
2109 sc->rx_bd_chain_map[i]);
2110 bus_dmamem_unmap(sc->bnx_dmatag,
2111 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2112 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2113 sc->rx_bd_chain_rseg[i]);
2114
2115 bus_dmamap_destroy(sc->bnx_dmatag,
2116 sc->rx_bd_chain_map[i]);
2117 sc->rx_bd_chain[i] = NULL;
2118 sc->rx_bd_chain_map[i] = NULL;
2119 }
2120 }
2121
2122 /* Unload and destroy the RX mbuf maps. */
2123 for (i = 0; i < TOTAL_RX_BD; i++) {
2124 if (sc->rx_mbuf_map[i] != NULL) {
2125 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2126 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2127 }
2128 }
2129
2130 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2131 }
2132
2133 /****************************************************************************/
2134 /* Allocate any DMA memory needed by the driver. */
2135 /* */
2136 /* Allocates DMA memory needed for the various global structures needed by */
2137 /* hardware. */
2138 /* */
2139 /* Returns: */
2140 /* 0 for success, positive value for failure. */
2141 /****************************************************************************/
2142 int
2143 bnx_dma_alloc(struct bnx_softc *sc)
2144 {
2145 int i, rc = 0;
2146
2147 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2148
2149 /*
2150 * Allocate DMA memory for the status block, map the memory into DMA
2151 * space, and fetch the physical address of the block.
2152 */
2153 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2154 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2155 aprint_error_dev(sc->bnx_dev,
2156 "Could not create status block DMA map!\n");
2157 rc = ENOMEM;
2158 goto bnx_dma_alloc_exit;
2159 }
2160
2161 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2162 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2163 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2164 aprint_error_dev(sc->bnx_dev,
2165 "Could not allocate status block DMA memory!\n");
2166 rc = ENOMEM;
2167 goto bnx_dma_alloc_exit;
2168 }
2169
2170 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2171 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2172 aprint_error_dev(sc->bnx_dev,
2173 "Could not map status block DMA memory!\n");
2174 rc = ENOMEM;
2175 goto bnx_dma_alloc_exit;
2176 }
2177
2178 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2179 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2180 aprint_error_dev(sc->bnx_dev,
2181 "Could not load status block DMA memory!\n");
2182 rc = ENOMEM;
2183 goto bnx_dma_alloc_exit;
2184 }
2185
2186 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2187 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2188
2189 /* DRC - Fix for 64 bit addresses. */
2190 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2191 (u_int32_t) sc->status_block_paddr);
2192
2193 /* BCM5709 uses host memory as cache for context memory. */
2194 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2195 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2196 if (sc->ctx_pages == 0)
2197 sc->ctx_pages = 1;
2198 if (sc->ctx_pages > 4) /* XXX */
2199 sc->ctx_pages = 4;
2200
2201 DBRUNIF((sc->ctx_pages > 512),
2202 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2203 __FILE__, __LINE__, sc->ctx_pages));
2204
2205
2206 for (i = 0; i < sc->ctx_pages; i++) {
2207 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2208 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2209 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2210 &sc->ctx_map[i]) != 0) {
2211 rc = ENOMEM;
2212 goto bnx_dma_alloc_exit;
2213 }
2214
2215 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2216 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2217 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2218 rc = ENOMEM;
2219 goto bnx_dma_alloc_exit;
2220 }
2221
2222 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2223 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2224 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2225 rc = ENOMEM;
2226 goto bnx_dma_alloc_exit;
2227 }
2228
2229 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2230 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2231 BUS_DMA_NOWAIT) != 0) {
2232 rc = ENOMEM;
2233 goto bnx_dma_alloc_exit;
2234 }
2235
2236 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2237 }
2238 }
2239
2240 /*
2241 * Allocate DMA memory for the statistics block, map the memory into
2242 * DMA space, and fetch the physical address of the block.
2243 */
2244 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2245 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2246 aprint_error_dev(sc->bnx_dev,
2247 "Could not create stats block DMA map!\n");
2248 rc = ENOMEM;
2249 goto bnx_dma_alloc_exit;
2250 }
2251
2252 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2253 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2254 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2255 aprint_error_dev(sc->bnx_dev,
2256 "Could not allocate stats block DMA memory!\n");
2257 rc = ENOMEM;
2258 goto bnx_dma_alloc_exit;
2259 }
2260
2261 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2262 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2263 aprint_error_dev(sc->bnx_dev,
2264 "Could not map stats block DMA memory!\n");
2265 rc = ENOMEM;
2266 goto bnx_dma_alloc_exit;
2267 }
2268
2269 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2270 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2271 aprint_error_dev(sc->bnx_dev,
2272 "Could not load status block DMA memory!\n");
2273 rc = ENOMEM;
2274 goto bnx_dma_alloc_exit;
2275 }
2276
2277 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2278 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2279
2280 /* DRC - Fix for 64 bit address. */
2281 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2282 (u_int32_t) sc->stats_block_paddr);
2283
2284 /*
2285 * Allocate DMA memory for the TX buffer descriptor chain,
2286 * and fetch the physical address of the block.
2287 */
2288 for (i = 0; i < TX_PAGES; i++) {
2289 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2290 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2291 &sc->tx_bd_chain_map[i])) {
2292 aprint_error_dev(sc->bnx_dev,
2293 "Could not create Tx desc %d DMA map!\n", i);
2294 rc = ENOMEM;
2295 goto bnx_dma_alloc_exit;
2296 }
2297
2298 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2299 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2300 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2301 aprint_error_dev(sc->bnx_dev,
2302 "Could not allocate TX desc %d DMA memory!\n",
2303 i);
2304 rc = ENOMEM;
2305 goto bnx_dma_alloc_exit;
2306 }
2307
2308 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2309 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2310 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2311 aprint_error_dev(sc->bnx_dev,
2312 "Could not map TX desc %d DMA memory!\n", i);
2313 rc = ENOMEM;
2314 goto bnx_dma_alloc_exit;
2315 }
2316
2317 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2318 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2319 BUS_DMA_NOWAIT)) {
2320 aprint_error_dev(sc->bnx_dev,
2321 "Could not load TX desc %d DMA memory!\n", i);
2322 rc = ENOMEM;
2323 goto bnx_dma_alloc_exit;
2324 }
2325
2326 sc->tx_bd_chain_paddr[i] =
2327 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2328
2329 /* DRC - Fix for 64 bit systems. */
2330 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2331 i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2332 }
2333
2334 /*
2335 * Create lists to hold TX mbufs.
2336 */
2337 TAILQ_INIT(&sc->tx_free_pkts);
2338 TAILQ_INIT(&sc->tx_used_pkts);
2339 sc->tx_pkt_count = 0;
2340 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2341
2342 /*
2343 * Allocate DMA memory for the Rx buffer descriptor chain,
2344 * and fetch the physical address of the block.
2345 */
2346 for (i = 0; i < RX_PAGES; i++) {
2347 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2348 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2349 &sc->rx_bd_chain_map[i])) {
2350 aprint_error_dev(sc->bnx_dev,
2351 "Could not create Rx desc %d DMA map!\n", i);
2352 rc = ENOMEM;
2353 goto bnx_dma_alloc_exit;
2354 }
2355
2356 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2357 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2358 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2359 aprint_error_dev(sc->bnx_dev,
2360 "Could not allocate Rx desc %d DMA memory!\n", i);
2361 rc = ENOMEM;
2362 goto bnx_dma_alloc_exit;
2363 }
2364
2365 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2366 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2367 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2368 aprint_error_dev(sc->bnx_dev,
2369 "Could not map Rx desc %d DMA memory!\n", i);
2370 rc = ENOMEM;
2371 goto bnx_dma_alloc_exit;
2372 }
2373
2374 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2375 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2376 BUS_DMA_NOWAIT)) {
2377 aprint_error_dev(sc->bnx_dev,
2378 "Could not load Rx desc %d DMA memory!\n", i);
2379 rc = ENOMEM;
2380 goto bnx_dma_alloc_exit;
2381 }
2382
2383 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2384 sc->rx_bd_chain_paddr[i] =
2385 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2386
2387 /* DRC - Fix for 64 bit systems. */
2388 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2389 i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2390 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2391 0, BNX_RX_CHAIN_PAGE_SZ,
2392 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2393 }
2394
2395 /*
2396 * Create DMA maps for the Rx buffer mbufs.
2397 */
2398 for (i = 0; i < TOTAL_RX_BD; i++) {
2399 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2400 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2401 &sc->rx_mbuf_map[i])) {
2402 aprint_error_dev(sc->bnx_dev,
2403 "Could not create Rx mbuf %d DMA map!\n", i);
2404 rc = ENOMEM;
2405 goto bnx_dma_alloc_exit;
2406 }
2407 }
2408
2409 bnx_dma_alloc_exit:
2410 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2411
2412 return(rc);
2413 }
2414
2415 /****************************************************************************/
2416 /* Release all resources used by the driver. */
2417 /* */
2418 /* Releases all resources acquired by the driver including interrupts, */
2419 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2420 /* */
2421 /* Returns: */
2422 /* Nothing. */
2423 /****************************************************************************/
2424 void
2425 bnx_release_resources(struct bnx_softc *sc)
2426 {
2427 struct pci_attach_args *pa = &(sc->bnx_pa);
2428
2429 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2430
2431 bnx_dma_free(sc);
2432
2433 if (sc->bnx_intrhand != NULL)
2434 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2435
2436 if (sc->bnx_size)
2437 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2438
2439 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2440 }
2441
2442 /****************************************************************************/
2443 /* Firmware synchronization. */
2444 /* */
2445 /* Before performing certain events such as a chip reset, synchronize with */
2446 /* the firmware first. */
2447 /* */
2448 /* Returns: */
2449 /* 0 for success, positive value for failure. */
2450 /****************************************************************************/
2451 int
2452 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2453 {
2454 int i, rc = 0;
2455 u_int32_t val;
2456
2457 /* Don't waste any time if we've timed out before. */
2458 if (sc->bnx_fw_timed_out) {
2459 rc = EBUSY;
2460 goto bnx_fw_sync_exit;
2461 }
2462
2463 /* Increment the message sequence number. */
2464 sc->bnx_fw_wr_seq++;
2465 msg_data |= sc->bnx_fw_wr_seq;
2466
2467 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2468 msg_data);
2469
2470 /* Send the message to the bootcode driver mailbox. */
2471 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2472
2473 /* Wait for the bootcode to acknowledge the message. */
2474 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2475 /* Check for a response in the bootcode firmware mailbox. */
2476 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2477 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2478 break;
2479 DELAY(1000);
2480 }
2481
2482 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2483 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2484 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2485 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2486 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2487
2488 msg_data &= ~BNX_DRV_MSG_CODE;
2489 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2490
2491 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2492
2493 sc->bnx_fw_timed_out = 1;
2494 rc = EBUSY;
2495 }
2496
2497 bnx_fw_sync_exit:
2498 return (rc);
2499 }
2500
2501 /****************************************************************************/
2502 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2503 /* */
2504 /* Returns: */
2505 /* Nothing. */
2506 /****************************************************************************/
2507 void
2508 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2509 u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2510 {
2511 int i;
2512 u_int32_t val;
2513
2514 /* Set the page size used by RV2P. */
2515 if (rv2p_proc == RV2P_PROC2) {
2516 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2517 USABLE_RX_BD_PER_PAGE);
2518 }
2519
2520 for (i = 0; i < rv2p_code_len; i += 8) {
2521 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2522 rv2p_code++;
2523 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2524 rv2p_code++;
2525
2526 if (rv2p_proc == RV2P_PROC1) {
2527 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2528 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2529 } else {
2530 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2531 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2532 }
2533 }
2534
2535 /* Reset the processor, un-stall is done later. */
2536 if (rv2p_proc == RV2P_PROC1)
2537 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2538 else
2539 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2540 }
2541
2542 /****************************************************************************/
2543 /* Load RISC processor firmware. */
2544 /* */
2545 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2546 /* associated with a particular processor. */
2547 /* */
2548 /* Returns: */
2549 /* Nothing. */
2550 /****************************************************************************/
2551 void
2552 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2553 struct fw_info *fw)
2554 {
2555 u_int32_t offset;
2556 u_int32_t val;
2557
2558 /* Halt the CPU. */
2559 val = REG_RD_IND(sc, cpu_reg->mode);
2560 val |= cpu_reg->mode_value_halt;
2561 REG_WR_IND(sc, cpu_reg->mode, val);
2562 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2563
2564 /* Load the Text area. */
2565 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2566 if (fw->text) {
2567 int j;
2568
2569 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2570 REG_WR_IND(sc, offset, fw->text[j]);
2571 }
2572
2573 /* Load the Data area. */
2574 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2575 if (fw->data) {
2576 int j;
2577
2578 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2579 REG_WR_IND(sc, offset, fw->data[j]);
2580 }
2581
2582 /* Load the SBSS area. */
2583 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2584 if (fw->sbss) {
2585 int j;
2586
2587 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2588 REG_WR_IND(sc, offset, fw->sbss[j]);
2589 }
2590
2591 /* Load the BSS area. */
2592 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2593 if (fw->bss) {
2594 int j;
2595
2596 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2597 REG_WR_IND(sc, offset, fw->bss[j]);
2598 }
2599
2600 /* Load the Read-Only area. */
2601 offset = cpu_reg->spad_base +
2602 (fw->rodata_addr - cpu_reg->mips_view_base);
2603 if (fw->rodata) {
2604 int j;
2605
2606 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2607 REG_WR_IND(sc, offset, fw->rodata[j]);
2608 }
2609
2610 /* Clear the pre-fetch instruction. */
2611 REG_WR_IND(sc, cpu_reg->inst, 0);
2612 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2613
2614 /* Start the CPU. */
2615 val = REG_RD_IND(sc, cpu_reg->mode);
2616 val &= ~cpu_reg->mode_value_halt;
2617 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2618 REG_WR_IND(sc, cpu_reg->mode, val);
2619 }
2620
2621 /****************************************************************************/
2622 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2623 /* */
2624 /* Loads the firmware for each CPU and starts the CPU. */
2625 /* */
2626 /* Returns: */
2627 /* Nothing. */
2628 /****************************************************************************/
2629 void
2630 bnx_init_cpus(struct bnx_softc *sc)
2631 {
2632 struct cpu_reg cpu_reg;
2633 struct fw_info fw;
2634
2635 switch(BNX_CHIP_NUM(sc)) {
2636 case BNX_CHIP_NUM_5709:
2637 /* Initialize the RV2P processor. */
2638 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2639 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2640 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2641 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2642 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2643 } else {
2644 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2645 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2646 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2647 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2648 }
2649
2650 /* Initialize the RX Processor. */
2651 cpu_reg.mode = BNX_RXP_CPU_MODE;
2652 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2653 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2654 cpu_reg.state = BNX_RXP_CPU_STATE;
2655 cpu_reg.state_value_clear = 0xffffff;
2656 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2657 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2658 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2659 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2660 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2661 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2662 cpu_reg.mips_view_base = 0x8000000;
2663
2664 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2665 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2666 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2667 fw.start_addr = bnx_RXP_b09FwStartAddr;
2668
2669 fw.text_addr = bnx_RXP_b09FwTextAddr;
2670 fw.text_len = bnx_RXP_b09FwTextLen;
2671 fw.text_index = 0;
2672 fw.text = bnx_RXP_b09FwText;
2673
2674 fw.data_addr = bnx_RXP_b09FwDataAddr;
2675 fw.data_len = bnx_RXP_b09FwDataLen;
2676 fw.data_index = 0;
2677 fw.data = bnx_RXP_b09FwData;
2678
2679 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2680 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2681 fw.sbss_index = 0;
2682 fw.sbss = bnx_RXP_b09FwSbss;
2683
2684 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2685 fw.bss_len = bnx_RXP_b09FwBssLen;
2686 fw.bss_index = 0;
2687 fw.bss = bnx_RXP_b09FwBss;
2688
2689 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2690 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2691 fw.rodata_index = 0;
2692 fw.rodata = bnx_RXP_b09FwRodata;
2693
2694 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2695 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2696
2697 /* Initialize the TX Processor. */
2698 cpu_reg.mode = BNX_TXP_CPU_MODE;
2699 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2700 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2701 cpu_reg.state = BNX_TXP_CPU_STATE;
2702 cpu_reg.state_value_clear = 0xffffff;
2703 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2704 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2705 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2706 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2707 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2708 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2709 cpu_reg.mips_view_base = 0x8000000;
2710
2711 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2712 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2713 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2714 fw.start_addr = bnx_TXP_b09FwStartAddr;
2715
2716 fw.text_addr = bnx_TXP_b09FwTextAddr;
2717 fw.text_len = bnx_TXP_b09FwTextLen;
2718 fw.text_index = 0;
2719 fw.text = bnx_TXP_b09FwText;
2720
2721 fw.data_addr = bnx_TXP_b09FwDataAddr;
2722 fw.data_len = bnx_TXP_b09FwDataLen;
2723 fw.data_index = 0;
2724 fw.data = bnx_TXP_b09FwData;
2725
2726 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2727 fw.sbss_len = bnx_TXP_b09FwSbssLen;
2728 fw.sbss_index = 0;
2729 fw.sbss = bnx_TXP_b09FwSbss;
2730
2731 fw.bss_addr = bnx_TXP_b09FwBssAddr;
2732 fw.bss_len = bnx_TXP_b09FwBssLen;
2733 fw.bss_index = 0;
2734 fw.bss = bnx_TXP_b09FwBss;
2735
2736 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2737 fw.rodata_len = bnx_TXP_b09FwRodataLen;
2738 fw.rodata_index = 0;
2739 fw.rodata = bnx_TXP_b09FwRodata;
2740
2741 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2742 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2743
2744 /* Initialize the TX Patch-up Processor. */
2745 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2746 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2747 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2748 cpu_reg.state = BNX_TPAT_CPU_STATE;
2749 cpu_reg.state_value_clear = 0xffffff;
2750 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2751 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2752 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2753 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2754 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2755 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2756 cpu_reg.mips_view_base = 0x8000000;
2757
2758 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2759 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2760 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2761 fw.start_addr = bnx_TPAT_b09FwStartAddr;
2762
2763 fw.text_addr = bnx_TPAT_b09FwTextAddr;
2764 fw.text_len = bnx_TPAT_b09FwTextLen;
2765 fw.text_index = 0;
2766 fw.text = bnx_TPAT_b09FwText;
2767
2768 fw.data_addr = bnx_TPAT_b09FwDataAddr;
2769 fw.data_len = bnx_TPAT_b09FwDataLen;
2770 fw.data_index = 0;
2771 fw.data = bnx_TPAT_b09FwData;
2772
2773 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2774 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2775 fw.sbss_index = 0;
2776 fw.sbss = bnx_TPAT_b09FwSbss;
2777
2778 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2779 fw.bss_len = bnx_TPAT_b09FwBssLen;
2780 fw.bss_index = 0;
2781 fw.bss = bnx_TPAT_b09FwBss;
2782
2783 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2784 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2785 fw.rodata_index = 0;
2786 fw.rodata = bnx_TPAT_b09FwRodata;
2787
2788 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2789 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2790
2791 /* Initialize the Completion Processor. */
2792 cpu_reg.mode = BNX_COM_CPU_MODE;
2793 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2794 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2795 cpu_reg.state = BNX_COM_CPU_STATE;
2796 cpu_reg.state_value_clear = 0xffffff;
2797 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2798 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2799 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2800 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2801 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2802 cpu_reg.spad_base = BNX_COM_SCRATCH;
2803 cpu_reg.mips_view_base = 0x8000000;
2804
2805 fw.ver_major = bnx_COM_b09FwReleaseMajor;
2806 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2807 fw.ver_fix = bnx_COM_b09FwReleaseFix;
2808 fw.start_addr = bnx_COM_b09FwStartAddr;
2809
2810 fw.text_addr = bnx_COM_b09FwTextAddr;
2811 fw.text_len = bnx_COM_b09FwTextLen;
2812 fw.text_index = 0;
2813 fw.text = bnx_COM_b09FwText;
2814
2815 fw.data_addr = bnx_COM_b09FwDataAddr;
2816 fw.data_len = bnx_COM_b09FwDataLen;
2817 fw.data_index = 0;
2818 fw.data = bnx_COM_b09FwData;
2819
2820 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2821 fw.sbss_len = bnx_COM_b09FwSbssLen;
2822 fw.sbss_index = 0;
2823 fw.sbss = bnx_COM_b09FwSbss;
2824
2825 fw.bss_addr = bnx_COM_b09FwBssAddr;
2826 fw.bss_len = bnx_COM_b09FwBssLen;
2827 fw.bss_index = 0;
2828 fw.bss = bnx_COM_b09FwBss;
2829
2830 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
2831 fw.rodata_len = bnx_COM_b09FwRodataLen;
2832 fw.rodata_index = 0;
2833 fw.rodata = bnx_COM_b09FwRodata;
2834 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2835 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2836 break;
2837 default:
2838 /* Initialize the RV2P processor. */
2839 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2840 RV2P_PROC1);
2841 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2842 RV2P_PROC2);
2843
2844 /* Initialize the RX Processor. */
2845 cpu_reg.mode = BNX_RXP_CPU_MODE;
2846 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2847 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2848 cpu_reg.state = BNX_RXP_CPU_STATE;
2849 cpu_reg.state_value_clear = 0xffffff;
2850 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2851 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2852 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2853 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2854 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2855 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2856 cpu_reg.mips_view_base = 0x8000000;
2857
2858 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2859 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2860 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2861 fw.start_addr = bnx_RXP_b06FwStartAddr;
2862
2863 fw.text_addr = bnx_RXP_b06FwTextAddr;
2864 fw.text_len = bnx_RXP_b06FwTextLen;
2865 fw.text_index = 0;
2866 fw.text = bnx_RXP_b06FwText;
2867
2868 fw.data_addr = bnx_RXP_b06FwDataAddr;
2869 fw.data_len = bnx_RXP_b06FwDataLen;
2870 fw.data_index = 0;
2871 fw.data = bnx_RXP_b06FwData;
2872
2873 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2874 fw.sbss_len = bnx_RXP_b06FwSbssLen;
2875 fw.sbss_index = 0;
2876 fw.sbss = bnx_RXP_b06FwSbss;
2877
2878 fw.bss_addr = bnx_RXP_b06FwBssAddr;
2879 fw.bss_len = bnx_RXP_b06FwBssLen;
2880 fw.bss_index = 0;
2881 fw.bss = bnx_RXP_b06FwBss;
2882
2883 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2884 fw.rodata_len = bnx_RXP_b06FwRodataLen;
2885 fw.rodata_index = 0;
2886 fw.rodata = bnx_RXP_b06FwRodata;
2887
2888 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2889 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2890
2891 /* Initialize the TX Processor. */
2892 cpu_reg.mode = BNX_TXP_CPU_MODE;
2893 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2894 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2895 cpu_reg.state = BNX_TXP_CPU_STATE;
2896 cpu_reg.state_value_clear = 0xffffff;
2897 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2898 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2899 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2900 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2901 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2902 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2903 cpu_reg.mips_view_base = 0x8000000;
2904
2905 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2906 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2907 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2908 fw.start_addr = bnx_TXP_b06FwStartAddr;
2909
2910 fw.text_addr = bnx_TXP_b06FwTextAddr;
2911 fw.text_len = bnx_TXP_b06FwTextLen;
2912 fw.text_index = 0;
2913 fw.text = bnx_TXP_b06FwText;
2914
2915 fw.data_addr = bnx_TXP_b06FwDataAddr;
2916 fw.data_len = bnx_TXP_b06FwDataLen;
2917 fw.data_index = 0;
2918 fw.data = bnx_TXP_b06FwData;
2919
2920 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2921 fw.sbss_len = bnx_TXP_b06FwSbssLen;
2922 fw.sbss_index = 0;
2923 fw.sbss = bnx_TXP_b06FwSbss;
2924
2925 fw.bss_addr = bnx_TXP_b06FwBssAddr;
2926 fw.bss_len = bnx_TXP_b06FwBssLen;
2927 fw.bss_index = 0;
2928 fw.bss = bnx_TXP_b06FwBss;
2929
2930 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
2931 fw.rodata_len = bnx_TXP_b06FwRodataLen;
2932 fw.rodata_index = 0;
2933 fw.rodata = bnx_TXP_b06FwRodata;
2934
2935 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2936 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2937
2938 /* Initialize the TX Patch-up Processor. */
2939 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2940 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2941 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2942 cpu_reg.state = BNX_TPAT_CPU_STATE;
2943 cpu_reg.state_value_clear = 0xffffff;
2944 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2945 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2946 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2947 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2948 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2949 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2950 cpu_reg.mips_view_base = 0x8000000;
2951
2952 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
2953 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
2954 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
2955 fw.start_addr = bnx_TPAT_b06FwStartAddr;
2956
2957 fw.text_addr = bnx_TPAT_b06FwTextAddr;
2958 fw.text_len = bnx_TPAT_b06FwTextLen;
2959 fw.text_index = 0;
2960 fw.text = bnx_TPAT_b06FwText;
2961
2962 fw.data_addr = bnx_TPAT_b06FwDataAddr;
2963 fw.data_len = bnx_TPAT_b06FwDataLen;
2964 fw.data_index = 0;
2965 fw.data = bnx_TPAT_b06FwData;
2966
2967 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
2968 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
2969 fw.sbss_index = 0;
2970 fw.sbss = bnx_TPAT_b06FwSbss;
2971
2972 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
2973 fw.bss_len = bnx_TPAT_b06FwBssLen;
2974 fw.bss_index = 0;
2975 fw.bss = bnx_TPAT_b06FwBss;
2976
2977 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
2978 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
2979 fw.rodata_index = 0;
2980 fw.rodata = bnx_TPAT_b06FwRodata;
2981
2982 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2983 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2984
2985 /* Initialize the Completion Processor. */
2986 cpu_reg.mode = BNX_COM_CPU_MODE;
2987 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2988 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2989 cpu_reg.state = BNX_COM_CPU_STATE;
2990 cpu_reg.state_value_clear = 0xffffff;
2991 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2992 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2993 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2994 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2995 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2996 cpu_reg.spad_base = BNX_COM_SCRATCH;
2997 cpu_reg.mips_view_base = 0x8000000;
2998
2999 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3000 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3001 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3002 fw.start_addr = bnx_COM_b06FwStartAddr;
3003
3004 fw.text_addr = bnx_COM_b06FwTextAddr;
3005 fw.text_len = bnx_COM_b06FwTextLen;
3006 fw.text_index = 0;
3007 fw.text = bnx_COM_b06FwText;
3008
3009 fw.data_addr = bnx_COM_b06FwDataAddr;
3010 fw.data_len = bnx_COM_b06FwDataLen;
3011 fw.data_index = 0;
3012 fw.data = bnx_COM_b06FwData;
3013
3014 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3015 fw.sbss_len = bnx_COM_b06FwSbssLen;
3016 fw.sbss_index = 0;
3017 fw.sbss = bnx_COM_b06FwSbss;
3018
3019 fw.bss_addr = bnx_COM_b06FwBssAddr;
3020 fw.bss_len = bnx_COM_b06FwBssLen;
3021 fw.bss_index = 0;
3022 fw.bss = bnx_COM_b06FwBss;
3023
3024 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3025 fw.rodata_len = bnx_COM_b06FwRodataLen;
3026 fw.rodata_index = 0;
3027 fw.rodata = bnx_COM_b06FwRodata;
3028 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3029 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3030 break;
3031 }
3032 }
3033
3034 /****************************************************************************/
3035 /* Initialize context memory. */
3036 /* */
3037 /* Clears the memory associated with each Context ID (CID). */
3038 /* */
3039 /* Returns: */
3040 /* Nothing. */
3041 /****************************************************************************/
3042 void
3043 bnx_init_context(struct bnx_softc *sc)
3044 {
3045 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3046 /* DRC: Replace this constant value with a #define. */
3047 int i, retry_cnt = 10;
3048 u_int32_t val;
3049
3050 /*
3051 * BCM5709 context memory may be cached
3052 * in host memory so prepare the host memory
3053 * for access.
3054 */
3055 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3056 | (1 << 12);
3057 val |= (BCM_PAGE_BITS - 8) << 16;
3058 REG_WR(sc, BNX_CTX_COMMAND, val);
3059
3060 /* Wait for mem init command to complete. */
3061 for (i = 0; i < retry_cnt; i++) {
3062 val = REG_RD(sc, BNX_CTX_COMMAND);
3063 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3064 break;
3065 DELAY(2);
3066 }
3067
3068
3069 /* ToDo: Consider returning an error here. */
3070
3071 for (i = 0; i < sc->ctx_pages; i++) {
3072 int j;
3073
3074
3075 /* Set the physaddr of the context memory cache. */
3076 val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
3077 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3078 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3079 val = (u_int32_t)
3080 ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
3081 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3082 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3083 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3084
3085
3086 /* Verify that the context memory write was successful. */
3087 for (j = 0; j < retry_cnt; j++) {
3088 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3089 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3090 break;
3091 DELAY(5);
3092 }
3093
3094 /* ToDo: Consider returning an error here. */
3095 }
3096 } else {
3097 u_int32_t vcid_addr, offset;
3098
3099 /*
3100 * For the 5706/5708, context memory is local to
3101 * the controller, so initialize the controller
3102 * context memory.
3103 */
3104
3105 vcid_addr = GET_CID_ADDR(96);
3106 while (vcid_addr) {
3107
3108 vcid_addr -= PHY_CTX_SIZE;
3109
3110 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3111 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3112
3113 for(offset = 0; offset < PHY_CTX_SIZE; offset += 4) {
3114 CTX_WR(sc, 0x00, offset, 0);
3115 }
3116
3117 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3118 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3119 }
3120 }
3121 }
3122
3123 /****************************************************************************/
3124 /* Fetch the permanent MAC address of the controller. */
3125 /* */
3126 /* Returns: */
3127 /* Nothing. */
3128 /****************************************************************************/
3129 void
3130 bnx_get_mac_addr(struct bnx_softc *sc)
3131 {
3132 u_int32_t mac_lo = 0, mac_hi = 0;
3133
3134 /*
3135 * The NetXtreme II bootcode populates various NIC
3136 * power-on and runtime configuration items in a
3137 * shared memory area. The factory configured MAC
3138 * address is available from both NVRAM and the
3139 * shared memory area so we'll read the value from
3140 * shared memory for speed.
3141 */
3142
3143 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3144 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3145
3146 if ((mac_lo == 0) && (mac_hi == 0)) {
3147 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3148 __FILE__, __LINE__);
3149 } else {
3150 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3151 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3152 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3153 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3154 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3155 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3156 }
3157
3158 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3159 "%s\n", ether_sprintf(sc->eaddr));
3160 }
3161
3162 /****************************************************************************/
3163 /* Program the MAC address. */
3164 /* */
3165 /* Returns: */
3166 /* Nothing. */
3167 /****************************************************************************/
3168 void
3169 bnx_set_mac_addr(struct bnx_softc *sc)
3170 {
3171 u_int32_t val;
3172 const u_int8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3173
3174 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3175 "%s\n", ether_sprintf(sc->eaddr));
3176
3177 val = (mac_addr[0] << 8) | mac_addr[1];
3178
3179 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3180
3181 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3182 (mac_addr[4] << 8) | mac_addr[5];
3183
3184 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3185 }
3186
3187 /****************************************************************************/
3188 /* Stop the controller. */
3189 /* */
3190 /* Returns: */
3191 /* Nothing. */
3192 /****************************************************************************/
3193 void
3194 bnx_stop(struct ifnet *ifp, int disable)
3195 {
3196 struct bnx_softc *sc = ifp->if_softc;
3197
3198 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3199
3200 if ((ifp->if_flags & IFF_RUNNING) == 0)
3201 return;
3202
3203 callout_stop(&sc->bnx_timeout);
3204
3205 mii_down(&sc->bnx_mii);
3206
3207 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3208
3209 /* Disable the transmit/receive blocks. */
3210 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3211 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3212 DELAY(20);
3213
3214 bnx_disable_intr(sc);
3215
3216 /* Tell firmware that the driver is going away. */
3217 if (disable)
3218 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3219 else
3220 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3221
3222 /* Free RX buffers. */
3223 bnx_free_rx_chain(sc);
3224
3225 /* Free TX buffers. */
3226 bnx_free_tx_chain(sc);
3227
3228 ifp->if_timer = 0;
3229
3230 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3231
3232 }
3233
3234 int
3235 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
3236 {
3237 struct pci_attach_args *pa = &(sc->bnx_pa);
3238 u_int32_t val;
3239 int i, rc = 0;
3240
3241 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3242
3243 /* Wait for pending PCI transactions to complete. */
3244 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3245 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3246 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3247 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3248 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3249 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3250 DELAY(5);
3251
3252 /* Disable DMA */
3253 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3254 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3255 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3256 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3257 }
3258
3259 /* Assume bootcode is running. */
3260 sc->bnx_fw_timed_out = 0;
3261
3262 /* Give the firmware a chance to prepare for the reset. */
3263 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3264 if (rc)
3265 goto bnx_reset_exit;
3266
3267 /* Set a firmware reminder that this is a soft reset. */
3268 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3269 BNX_DRV_RESET_SIGNATURE_MAGIC);
3270
3271 /* Dummy read to force the chip to complete all current transactions. */
3272 val = REG_RD(sc, BNX_MISC_ID);
3273
3274 /* Chip reset. */
3275 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3276 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3277 REG_RD(sc, BNX_MISC_COMMAND);
3278 DELAY(5);
3279
3280 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3281 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3282
3283 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3284 val);
3285 } else {
3286 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3287 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3288 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3289 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3290
3291 /* Allow up to 30us for reset to complete. */
3292 for (i = 0; i < 10; i++) {
3293 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3294 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3295 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3296 break;
3297 }
3298 DELAY(10);
3299 }
3300
3301 /* Check that reset completed successfully. */
3302 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3303 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3304 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3305 __FILE__, __LINE__);
3306 rc = EBUSY;
3307 goto bnx_reset_exit;
3308 }
3309 }
3310
3311 /* Make sure byte swapping is properly configured. */
3312 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3313 if (val != 0x01020304) {
3314 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3315 __FILE__, __LINE__);
3316 rc = ENODEV;
3317 goto bnx_reset_exit;
3318 }
3319
3320 /* Just completed a reset, assume that firmware is running again. */
3321 sc->bnx_fw_timed_out = 0;
3322
3323 /* Wait for the firmware to finish its initialization. */
3324 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3325 if (rc)
3326 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3327 "initialization!\n", __FILE__, __LINE__);
3328
3329 bnx_reset_exit:
3330 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3331
3332 return (rc);
3333 }
3334
3335 int
3336 bnx_chipinit(struct bnx_softc *sc)
3337 {
3338 struct pci_attach_args *pa = &(sc->bnx_pa);
3339 u_int32_t val;
3340 int rc = 0;
3341
3342 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3343
3344 /* Make sure the interrupt is not active. */
3345 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3346
3347 /* Initialize DMA byte/word swapping, configure the number of DMA */
3348 /* channels and PCI clock compensation delay. */
3349 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3350 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3351 #if BYTE_ORDER == BIG_ENDIAN
3352 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3353 #endif
3354 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3355 DMA_READ_CHANS << 12 |
3356 DMA_WRITE_CHANS << 16;
3357
3358 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3359
3360 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3361 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3362
3363 /*
3364 * This setting resolves a problem observed on certain Intel PCI
3365 * chipsets that cannot handle multiple outstanding DMA operations.
3366 * See errata E9_5706A1_65.
3367 */
3368 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3369 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3370 !(sc->bnx_flags & BNX_PCIX_FLAG))
3371 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3372
3373 REG_WR(sc, BNX_DMA_CONFIG, val);
3374
3375 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3376 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3377 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3378 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3379 val & ~0x20000);
3380 }
3381
3382 /* Enable the RX_V2P and Context state machines before access. */
3383 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3384 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3385 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3386 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3387
3388 /* Initialize context mapping and zero out the quick contexts. */
3389 bnx_init_context(sc);
3390
3391 /* Initialize the on-boards CPUs */
3392 bnx_init_cpus(sc);
3393
3394 /* Prepare NVRAM for access. */
3395 if (bnx_init_nvram(sc)) {
3396 rc = ENODEV;
3397 goto bnx_chipinit_exit;
3398 }
3399
3400 /* Set the kernel bypass block size */
3401 val = REG_RD(sc, BNX_MQ_CONFIG);
3402 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3403 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3404
3405 /* Enable bins used on the 5709. */
3406 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3407 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3408 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3409 val |= BNX_MQ_CONFIG_HALT_DIS;
3410 }
3411
3412 REG_WR(sc, BNX_MQ_CONFIG, val);
3413
3414 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
3415 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3416 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3417
3418 val = (BCM_PAGE_BITS - 8) << 24;
3419 REG_WR(sc, BNX_RV2P_CONFIG, val);
3420
3421 /* Configure page size. */
3422 val = REG_RD(sc, BNX_TBDR_CONFIG);
3423 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3424 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3425 REG_WR(sc, BNX_TBDR_CONFIG, val);
3426
3427 #if 0
3428 /* Set the perfect match control register to default. */
3429 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3430 #endif
3431
3432 bnx_chipinit_exit:
3433 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3434
3435 return(rc);
3436 }
3437
3438 /****************************************************************************/
3439 /* Initialize the controller in preparation to send/receive traffic. */
3440 /* */
3441 /* Returns: */
3442 /* 0 for success, positive value for failure. */
3443 /****************************************************************************/
3444 int
3445 bnx_blockinit(struct bnx_softc *sc)
3446 {
3447 u_int32_t reg, val;
3448 int rc = 0;
3449
3450 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3451
3452 /* Load the hardware default MAC address. */
3453 bnx_set_mac_addr(sc);
3454
3455 /* Set the Ethernet backoff seed value */
3456 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3457 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3458 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3459
3460 sc->last_status_idx = 0;
3461 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3462
3463 /* Set up link change interrupt generation. */
3464 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3465 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3466
3467 /* Program the physical address of the status block. */
3468 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
3469 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3470 (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
3471
3472 /* Program the physical address of the statistics block. */
3473 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3474 (u_int32_t)(sc->stats_block_paddr));
3475 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3476 (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
3477
3478 /* Program various host coalescing parameters. */
3479 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3480 << 16) | sc->bnx_tx_quick_cons_trip);
3481 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3482 << 16) | sc->bnx_rx_quick_cons_trip);
3483 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3484 sc->bnx_comp_prod_trip);
3485 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3486 sc->bnx_tx_ticks);
3487 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3488 sc->bnx_rx_ticks);
3489 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3490 sc->bnx_com_ticks);
3491 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3492 sc->bnx_cmd_ticks);
3493 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3494 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3495 REG_WR(sc, BNX_HC_CONFIG,
3496 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3497 BNX_HC_CONFIG_COLLECT_STATS));
3498
3499 /* Clear the internal statistics counters. */
3500 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3501
3502 /* Verify that bootcode is running. */
3503 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3504
3505 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3506 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3507 __FILE__, __LINE__); reg = 0);
3508
3509 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3510 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3511 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3512 "Expected: 08%08X\n", __FILE__, __LINE__,
3513 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3514 BNX_DEV_INFO_SIGNATURE_MAGIC);
3515 rc = ENODEV;
3516 goto bnx_blockinit_exit;
3517 }
3518
3519 /* Check if any management firmware is running. */
3520 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3521 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3522 BNX_PORT_FEATURE_IMD_ENABLED)) {
3523 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3524 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3525 }
3526
3527 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3528 BNX_DEV_INFO_BC_REV);
3529
3530 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3531
3532 /* Enable DMA */
3533 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3534 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3535 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3536 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3537 }
3538
3539 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3540 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3541
3542 /* Enable link state change interrupt generation. */
3543 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3544 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3545 BNX_MISC_ENABLE_DEFAULT_XI);
3546 } else
3547 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3548
3549 /* Enable all remaining blocks in the MAC. */
3550 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3551 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3552 DELAY(20);
3553
3554 bnx_blockinit_exit:
3555 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3556
3557 return (rc);
3558 }
3559
3560 static int
3561 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
3562 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3563 {
3564 bus_dmamap_t map;
3565 struct rx_bd *rxbd;
3566 u_int32_t addr;
3567 int i;
3568 #ifdef BNX_DEBUG
3569 u_int16_t debug_chain_prod = *chain_prod;
3570 #endif
3571 u_int16_t first_chain_prod;
3572
3573 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3574
3575 /* Map the mbuf cluster into device memory. */
3576 map = sc->rx_mbuf_map[*chain_prod];
3577 first_chain_prod = *chain_prod;
3578 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3579 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3580 __FILE__, __LINE__);
3581
3582 m_freem(m_new);
3583
3584 DBRUNIF(1, sc->rx_mbuf_alloc--);
3585
3586 return ENOBUFS;
3587 }
3588 /* Make sure there is room in the receive chain. */
3589 if (map->dm_nsegs > sc->free_rx_bd) {
3590 bus_dmamap_unload(sc->bnx_dmatag, map);
3591 m_freem(m_new);
3592 return EFBIG;
3593 }
3594 #ifdef BNX_DEBUG
3595 /* Track the distribution of buffer segments. */
3596 sc->rx_mbuf_segs[map->dm_nsegs]++;
3597 #endif
3598
3599 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3600 BUS_DMASYNC_PREREAD);
3601
3602 /* Update some debug statistics counters */
3603 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3604 sc->rx_low_watermark = sc->free_rx_bd);
3605 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3606
3607 /*
3608 * Setup the rx_bd for the first segment
3609 */
3610 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3611
3612 addr = (u_int32_t)(map->dm_segs[0].ds_addr);
3613 rxbd->rx_bd_haddr_lo = htole32(addr);
3614 addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3615 rxbd->rx_bd_haddr_hi = htole32(addr);
3616 rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
3617 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3618 *prod_bseq += map->dm_segs[0].ds_len;
3619 bus_dmamap_sync(sc->bnx_dmatag,
3620 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3621 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3622 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3623
3624 for (i = 1; i < map->dm_nsegs; i++) {
3625 *prod = NEXT_RX_BD(*prod);
3626 *chain_prod = RX_CHAIN_IDX(*prod);
3627
3628 rxbd =
3629 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3630
3631 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
3632 rxbd->rx_bd_haddr_lo = htole32(addr);
3633 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3634 rxbd->rx_bd_haddr_hi = htole32(addr);
3635 rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
3636 rxbd->rx_bd_flags = 0;
3637 *prod_bseq += map->dm_segs[i].ds_len;
3638 bus_dmamap_sync(sc->bnx_dmatag,
3639 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3640 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3641 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3642 }
3643
3644 rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3645 bus_dmamap_sync(sc->bnx_dmatag,
3646 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3647 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3648 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3649
3650 /*
3651 * Save the mbuf, ajust the map pointer (swap map for first and
3652 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3653 * and update counter.
3654 */
3655 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3656 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3657 sc->rx_mbuf_map[*chain_prod] = map;
3658 sc->free_rx_bd -= map->dm_nsegs;
3659
3660 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3661 map->dm_nsegs));
3662 *prod = NEXT_RX_BD(*prod);
3663 *chain_prod = RX_CHAIN_IDX(*prod);
3664
3665 return 0;
3666 }
3667
3668 /****************************************************************************/
3669 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3670 /* */
3671 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3672 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3673 /* necessary. */
3674 /* */
3675 /* Returns: */
3676 /* 0 for success, positive value for failure. */
3677 /****************************************************************************/
3678 int
3679 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
3680 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3681 {
3682 struct mbuf *m_new = NULL;
3683 int rc = 0;
3684 u_int16_t min_free_bd;
3685
3686 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3687 __func__);
3688
3689 /* Make sure the inputs are valid. */
3690 DBRUNIF((*chain_prod > MAX_RX_BD),
3691 aprint_error_dev(sc->bnx_dev,
3692 "RX producer out of range: 0x%04X > 0x%04X\n",
3693 *chain_prod, (u_int16_t)MAX_RX_BD));
3694
3695 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3696 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3697 *prod_bseq);
3698
3699 /* try to get in as many mbufs as possible */
3700 if (sc->mbuf_alloc_size == MCLBYTES)
3701 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3702 else
3703 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3704 while (sc->free_rx_bd >= min_free_bd) {
3705 /* Simulate an mbuf allocation failure. */
3706 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3707 aprint_error_dev(sc->bnx_dev,
3708 "Simulating mbuf allocation failure.\n");
3709 sc->mbuf_sim_alloc_failed++;
3710 rc = ENOBUFS;
3711 goto bnx_get_buf_exit);
3712
3713 /* This is a new mbuf allocation. */
3714 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3715 if (m_new == NULL) {
3716 DBPRINT(sc, BNX_WARN,
3717 "%s(%d): RX mbuf header allocation failed!\n",
3718 __FILE__, __LINE__);
3719
3720 sc->mbuf_alloc_failed++;
3721
3722 rc = ENOBUFS;
3723 goto bnx_get_buf_exit;
3724 }
3725
3726 DBRUNIF(1, sc->rx_mbuf_alloc++);
3727
3728 /* Simulate an mbuf cluster allocation failure. */
3729 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3730 m_freem(m_new);
3731 sc->rx_mbuf_alloc--;
3732 sc->mbuf_alloc_failed++;
3733 sc->mbuf_sim_alloc_failed++;
3734 rc = ENOBUFS;
3735 goto bnx_get_buf_exit);
3736
3737 if (sc->mbuf_alloc_size == MCLBYTES)
3738 MCLGET(m_new, M_DONTWAIT);
3739 else
3740 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3741 M_DONTWAIT);
3742 if (!(m_new->m_flags & M_EXT)) {
3743 DBPRINT(sc, BNX_WARN,
3744 "%s(%d): RX mbuf chain allocation failed!\n",
3745 __FILE__, __LINE__);
3746
3747 m_freem(m_new);
3748
3749 DBRUNIF(1, sc->rx_mbuf_alloc--);
3750 sc->mbuf_alloc_failed++;
3751
3752 rc = ENOBUFS;
3753 goto bnx_get_buf_exit;
3754 }
3755
3756 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3757 if (rc != 0)
3758 goto bnx_get_buf_exit;
3759 }
3760
3761 bnx_get_buf_exit:
3762 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3763 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3764 *chain_prod, *prod_bseq);
3765
3766 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3767 __func__);
3768
3769 return(rc);
3770 }
3771
3772 int
3773 bnx_alloc_pkts(struct bnx_softc *sc)
3774 {
3775 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3776 struct bnx_pkt *pkt;
3777 int i;
3778
3779 for (i = 0; i < 4; i++) { /* magic! */
3780 pkt = pool_get(bnx_tx_pool, PR_NOWAIT);
3781 if (pkt == NULL)
3782 break;
3783
3784 if (bus_dmamap_create(sc->bnx_dmatag,
3785 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3786 MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
3787 &pkt->pkt_dmamap) != 0)
3788 goto put;
3789
3790 if (!ISSET(ifp->if_flags, IFF_UP))
3791 goto stopping;
3792
3793 mutex_enter(&sc->tx_pkt_mtx);
3794 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3795 sc->tx_pkt_count++;
3796 mutex_exit(&sc->tx_pkt_mtx);
3797 }
3798
3799 return (i == 0) ? ENOMEM : 0;
3800
3801 stopping:
3802 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3803 put:
3804 pool_put(bnx_tx_pool, pkt);
3805 return (i == 0) ? ENOMEM : 0;
3806 }
3807
3808 /****************************************************************************/
3809 /* Initialize the TX context memory. */
3810 /* */
3811 /* Returns: */
3812 /* Nothing */
3813 /****************************************************************************/
3814 void
3815 bnx_init_tx_context(struct bnx_softc *sc)
3816 {
3817 u_int32_t val;
3818
3819 /* Initialize the context ID for an L2 TX chain. */
3820 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3821 /* Set the CID type to support an L2 connection. */
3822 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3823 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
3824 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3825 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
3826
3827 /* Point the hardware to the first page in the chain. */
3828 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3829 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3830 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
3831 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3832 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3833 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
3834 } else {
3835 /* Set the CID type to support an L2 connection. */
3836 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3837 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3838 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3839 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3840
3841 /* Point the hardware to the first page in the chain. */
3842 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3843 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3844 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3845 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3846 }
3847 }
3848
3849
3850 /****************************************************************************/
3851 /* Allocate memory and initialize the TX data structures. */
3852 /* */
3853 /* Returns: */
3854 /* 0 for success, positive value for failure. */
3855 /****************************************************************************/
3856 int
3857 bnx_init_tx_chain(struct bnx_softc *sc)
3858 {
3859 struct tx_bd *txbd;
3860 u_int32_t addr;
3861 int i, rc = 0;
3862
3863 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3864
3865 /* Force an allocation of some dmamaps for tx up front */
3866 bnx_alloc_pkts(sc);
3867
3868 /* Set the initial TX producer/consumer indices. */
3869 sc->tx_prod = 0;
3870 sc->tx_cons = 0;
3871 sc->tx_prod_bseq = 0;
3872 sc->used_tx_bd = 0;
3873 sc->max_tx_bd = USABLE_TX_BD;
3874 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3875 DBRUNIF(1, sc->tx_full_count = 0);
3876
3877 /*
3878 * The NetXtreme II supports a linked-list structure called
3879 * a Buffer Descriptor Chain (or BD chain). A BD chain
3880 * consists of a series of 1 or more chain pages, each of which
3881 * consists of a fixed number of BD entries.
3882 * The last BD entry on each page is a pointer to the next page
3883 * in the chain, and the last pointer in the BD chain
3884 * points back to the beginning of the chain.
3885 */
3886
3887 /* Set the TX next pointer chain entries. */
3888 for (i = 0; i < TX_PAGES; i++) {
3889 int j;
3890
3891 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3892
3893 /* Check if we've reached the last page. */
3894 if (i == (TX_PAGES - 1))
3895 j = 0;
3896 else
3897 j = i + 1;
3898
3899 addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
3900 txbd->tx_bd_haddr_lo = htole32(addr);
3901 addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3902 txbd->tx_bd_haddr_hi = htole32(addr);
3903 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3904 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3905 }
3906
3907 /*
3908 * Initialize the context ID for an L2 TX chain.
3909 */
3910 bnx_init_tx_context(sc);
3911
3912 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3913
3914 return(rc);
3915 }
3916
3917 /****************************************************************************/
3918 /* Free memory and clear the TX data structures. */
3919 /* */
3920 /* Returns: */
3921 /* Nothing. */
3922 /****************************************************************************/
3923 void
3924 bnx_free_tx_chain(struct bnx_softc *sc)
3925 {
3926 struct bnx_pkt *pkt;
3927 int i;
3928
3929 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3930
3931 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
3932 mutex_enter(&sc->tx_pkt_mtx);
3933 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
3934 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
3935 mutex_exit(&sc->tx_pkt_mtx);
3936
3937 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
3938 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
3939 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
3940
3941 m_freem(pkt->pkt_mbuf);
3942 DBRUNIF(1, sc->tx_mbuf_alloc--);
3943
3944 mutex_enter(&sc->tx_pkt_mtx);
3945 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3946 }
3947
3948 /* Destroy all the dmamaps we allocated for TX */
3949 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
3950 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
3951 sc->tx_pkt_count--;
3952 mutex_exit(&sc->tx_pkt_mtx);
3953
3954 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3955 pool_put(bnx_tx_pool, pkt);
3956
3957 mutex_enter(&sc->tx_pkt_mtx);
3958 }
3959 mutex_exit(&sc->tx_pkt_mtx);
3960
3961
3962
3963 /* Clear each TX chain page. */
3964 for (i = 0; i < TX_PAGES; i++) {
3965 memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
3966 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3967 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3968 }
3969
3970 sc->used_tx_bd = 0;
3971
3972 /* Check if we lost any mbufs in the process. */
3973 DBRUNIF((sc->tx_mbuf_alloc),
3974 aprint_error_dev(sc->bnx_dev,
3975 "Memory leak! Lost %d mbufs from tx chain!\n",
3976 sc->tx_mbuf_alloc));
3977
3978 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3979 }
3980
3981 /****************************************************************************/
3982 /* Initialize the RX context memory. */
3983 /* */
3984 /* Returns: */
3985 /* Nothing */
3986 /****************************************************************************/
3987 void
3988 bnx_init_rx_context(struct bnx_softc *sc)
3989 {
3990 u_int32_t val;
3991
3992 /* Initialize the context ID for an L2 RX chain. */
3993 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
3994 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
3995
3996 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3997 u_int32_t lo_water, hi_water;
3998
3999 lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4000 hi_water = USABLE_RX_BD / 4;
4001
4002 lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4003 hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4004
4005 if (hi_water > 0xf)
4006 hi_water = 0xf;
4007 else if (hi_water == 0)
4008 lo_water = 0;
4009 val |= lo_water |
4010 (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4011 }
4012
4013 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4014
4015 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4016 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4017 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4018 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4019 }
4020
4021 /* Point the hardware to the first page in the chain. */
4022 val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
4023 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4024 val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
4025 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4026 }
4027
4028 /****************************************************************************/
4029 /* Allocate memory and initialize the RX data structures. */
4030 /* */
4031 /* Returns: */
4032 /* 0 for success, positive value for failure. */
4033 /****************************************************************************/
4034 int
4035 bnx_init_rx_chain(struct bnx_softc *sc)
4036 {
4037 struct rx_bd *rxbd;
4038 int i, rc = 0;
4039 u_int16_t prod, chain_prod;
4040 u_int32_t prod_bseq, addr;
4041
4042 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4043
4044 /* Initialize the RX producer and consumer indices. */
4045 sc->rx_prod = 0;
4046 sc->rx_cons = 0;
4047 sc->rx_prod_bseq = 0;
4048 sc->free_rx_bd = USABLE_RX_BD;
4049 sc->max_rx_bd = USABLE_RX_BD;
4050 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4051 DBRUNIF(1, sc->rx_empty_count = 0);
4052
4053 /* Initialize the RX next pointer chain entries. */
4054 for (i = 0; i < RX_PAGES; i++) {
4055 int j;
4056
4057 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4058
4059 /* Check if we've reached the last page. */
4060 if (i == (RX_PAGES - 1))
4061 j = 0;
4062 else
4063 j = i + 1;
4064
4065 /* Setup the chain page pointers. */
4066 addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
4067 rxbd->rx_bd_haddr_hi = htole32(addr);
4068 addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
4069 rxbd->rx_bd_haddr_lo = htole32(addr);
4070 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4071 0, BNX_RX_CHAIN_PAGE_SZ,
4072 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4073 }
4074
4075 /* Allocate mbuf clusters for the rx_bd chain. */
4076 prod = prod_bseq = 0;
4077 chain_prod = RX_CHAIN_IDX(prod);
4078 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4079 BNX_PRINTF(sc,
4080 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4081 }
4082
4083 /* Save the RX chain producer index. */
4084 sc->rx_prod = prod;
4085 sc->rx_prod_bseq = prod_bseq;
4086
4087 for (i = 0; i < RX_PAGES; i++)
4088 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4089 sc->rx_bd_chain_map[i]->dm_mapsize,
4090 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4091
4092 /* Tell the chip about the waiting rx_bd's. */
4093 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4094 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4095
4096 bnx_init_rx_context(sc);
4097
4098 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4099
4100 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4101
4102 return(rc);
4103 }
4104
4105 /****************************************************************************/
4106 /* Free memory and clear the RX data structures. */
4107 /* */
4108 /* Returns: */
4109 /* Nothing. */
4110 /****************************************************************************/
4111 void
4112 bnx_free_rx_chain(struct bnx_softc *sc)
4113 {
4114 int i;
4115
4116 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4117
4118 /* Free any mbufs still in the RX mbuf chain. */
4119 for (i = 0; i < TOTAL_RX_BD; i++) {
4120 if (sc->rx_mbuf_ptr[i] != NULL) {
4121 if (sc->rx_mbuf_map[i] != NULL) {
4122 bus_dmamap_sync(sc->bnx_dmatag,
4123 sc->rx_mbuf_map[i], 0,
4124 sc->rx_mbuf_map[i]->dm_mapsize,
4125 BUS_DMASYNC_POSTREAD);
4126 bus_dmamap_unload(sc->bnx_dmatag,
4127 sc->rx_mbuf_map[i]);
4128 }
4129 m_freem(sc->rx_mbuf_ptr[i]);
4130 sc->rx_mbuf_ptr[i] = NULL;
4131 DBRUNIF(1, sc->rx_mbuf_alloc--);
4132 }
4133 }
4134
4135 /* Clear each RX chain page. */
4136 for (i = 0; i < RX_PAGES; i++)
4137 memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4138
4139 sc->free_rx_bd = sc->max_rx_bd;
4140
4141 /* Check if we lost any mbufs in the process. */
4142 DBRUNIF((sc->rx_mbuf_alloc),
4143 aprint_error_dev(sc->bnx_dev,
4144 "Memory leak! Lost %d mbufs from rx chain!\n",
4145 sc->rx_mbuf_alloc));
4146
4147 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4148 }
4149
4150 /****************************************************************************/
4151 /* Handles PHY generated interrupt events. */
4152 /* */
4153 /* Returns: */
4154 /* Nothing. */
4155 /****************************************************************************/
4156 void
4157 bnx_phy_intr(struct bnx_softc *sc)
4158 {
4159 u_int32_t new_link_state, old_link_state;
4160
4161 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4162 BUS_DMASYNC_POSTREAD);
4163 new_link_state = sc->status_block->status_attn_bits &
4164 STATUS_ATTN_BITS_LINK_STATE;
4165 old_link_state = sc->status_block->status_attn_bits_ack &
4166 STATUS_ATTN_BITS_LINK_STATE;
4167
4168 /* Handle any changes if the link state has changed. */
4169 if (new_link_state != old_link_state) {
4170 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4171
4172 callout_stop(&sc->bnx_timeout);
4173 bnx_tick(sc);
4174
4175 /* Update the status_attn_bits_ack field in the status block. */
4176 if (new_link_state) {
4177 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4178 STATUS_ATTN_BITS_LINK_STATE);
4179 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4180 } else {
4181 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4182 STATUS_ATTN_BITS_LINK_STATE);
4183 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4184 }
4185 }
4186
4187 /* Acknowledge the link change interrupt. */
4188 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4189 }
4190
4191 /****************************************************************************/
4192 /* Handles received frame interrupt events. */
4193 /* */
4194 /* Returns: */
4195 /* Nothing. */
4196 /****************************************************************************/
4197 void
4198 bnx_rx_intr(struct bnx_softc *sc)
4199 {
4200 struct status_block *sblk = sc->status_block;
4201 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4202 u_int16_t hw_cons, sw_cons, sw_chain_cons;
4203 u_int16_t sw_prod, sw_chain_prod;
4204 u_int32_t sw_prod_bseq;
4205 struct l2_fhdr *l2fhdr;
4206 int i;
4207
4208 DBRUNIF(1, sc->rx_interrupts++);
4209 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4210 BUS_DMASYNC_POSTREAD);
4211
4212 /* Prepare the RX chain pages to be accessed by the host CPU. */
4213 for (i = 0; i < RX_PAGES; i++)
4214 bus_dmamap_sync(sc->bnx_dmatag,
4215 sc->rx_bd_chain_map[i], 0,
4216 sc->rx_bd_chain_map[i]->dm_mapsize,
4217 BUS_DMASYNC_POSTWRITE);
4218
4219 /* Get the hardware's view of the RX consumer index. */
4220 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4221 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4222 hw_cons++;
4223
4224 /* Get working copies of the driver's view of the RX indices. */
4225 sw_cons = sc->rx_cons;
4226 sw_prod = sc->rx_prod;
4227 sw_prod_bseq = sc->rx_prod_bseq;
4228
4229 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4230 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4231 __func__, sw_prod, sw_cons, sw_prod_bseq);
4232
4233 /* Prevent speculative reads from getting ahead of the status block. */
4234 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4235 BUS_SPACE_BARRIER_READ);
4236
4237 /* Update some debug statistics counters */
4238 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4239 sc->rx_low_watermark = sc->free_rx_bd);
4240 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4241
4242 /*
4243 * Scan through the receive chain as long
4244 * as there is work to do.
4245 */
4246 while (sw_cons != hw_cons) {
4247 struct mbuf *m;
4248 struct rx_bd *rxbd;
4249 unsigned int len;
4250 u_int32_t status;
4251
4252 /* Convert the producer/consumer indices to an actual
4253 * rx_bd index.
4254 */
4255 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4256 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4257
4258 /* Get the used rx_bd. */
4259 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4260 sc->free_rx_bd++;
4261
4262 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4263 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4264
4265 /* The mbuf is stored with the last rx_bd entry of a packet. */
4266 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4267 #ifdef DIAGNOSTIC
4268 /* Validate that this is the last rx_bd. */
4269 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4270 printf("%s: Unexpected mbuf found in "
4271 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4272 sw_chain_cons);
4273 }
4274 #endif
4275
4276 /* DRC - ToDo: If the received packet is small, say less
4277 * than 128 bytes, allocate a new mbuf here,
4278 * copy the data to that mbuf, and recycle
4279 * the mapped jumbo frame.
4280 */
4281
4282 /* Unmap the mbuf from DMA space. */
4283 #ifdef DIAGNOSTIC
4284 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4285 printf("invalid map sw_cons 0x%x "
4286 "sw_prod 0x%x "
4287 "sw_chain_cons 0x%x "
4288 "sw_chain_prod 0x%x "
4289 "hw_cons 0x%x "
4290 "TOTAL_RX_BD_PER_PAGE 0x%x "
4291 "TOTAL_RX_BD 0x%x\n",
4292 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4293 hw_cons,
4294 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4295 }
4296 #endif
4297 bus_dmamap_sync(sc->bnx_dmatag,
4298 sc->rx_mbuf_map[sw_chain_cons], 0,
4299 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4300 BUS_DMASYNC_POSTREAD);
4301 bus_dmamap_unload(sc->bnx_dmatag,
4302 sc->rx_mbuf_map[sw_chain_cons]);
4303
4304 /* Remove the mbuf from the driver's chain. */
4305 m = sc->rx_mbuf_ptr[sw_chain_cons];
4306 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4307
4308 /*
4309 * Frames received on the NetXteme II are prepended
4310 * with the l2_fhdr structure which provides status
4311 * information about the received frame (including
4312 * VLAN tags and checksum info) and are also
4313 * automatically adjusted to align the IP header
4314 * (i.e. two null bytes are inserted before the
4315 * Ethernet header).
4316 */
4317 l2fhdr = mtod(m, struct l2_fhdr *);
4318
4319 len = l2fhdr->l2_fhdr_pkt_len;
4320 status = l2fhdr->l2_fhdr_status;
4321
4322 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4323 aprint_error("Simulating l2_fhdr status error.\n");
4324 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4325
4326 /* Watch for unusual sized frames. */
4327 DBRUNIF(((len < BNX_MIN_MTU) ||
4328 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4329 aprint_error_dev(sc->bnx_dev,
4330 "Unusual frame size found. "
4331 "Min(%d), Actual(%d), Max(%d)\n",
4332 (int)BNX_MIN_MTU, len,
4333 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4334
4335 bnx_dump_mbuf(sc, m);
4336 bnx_breakpoint(sc));
4337
4338 len -= ETHER_CRC_LEN;
4339
4340 /* Check the received frame for errors. */
4341 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4342 L2_FHDR_ERRORS_PHY_DECODE |
4343 L2_FHDR_ERRORS_ALIGNMENT |
4344 L2_FHDR_ERRORS_TOO_SHORT |
4345 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4346 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4347 len >
4348 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4349 ifp->if_ierrors++;
4350 DBRUNIF(1, sc->l2fhdr_status_errors++);
4351
4352 /* Reuse the mbuf for a new frame. */
4353 if (bnx_add_buf(sc, m, &sw_prod,
4354 &sw_chain_prod, &sw_prod_bseq)) {
4355 DBRUNIF(1, bnx_breakpoint(sc));
4356 panic("%s: Can't reuse RX mbuf!\n",
4357 device_xname(sc->bnx_dev));
4358 }
4359 continue;
4360 }
4361
4362 /*
4363 * Get a new mbuf for the rx_bd. If no new
4364 * mbufs are available then reuse the current mbuf,
4365 * log an ierror on the interface, and generate
4366 * an error in the system log.
4367 */
4368 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4369 &sw_prod_bseq)) {
4370 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4371 "Failed to allocate "
4372 "new mbuf, incoming frame dropped!\n"));
4373
4374 ifp->if_ierrors++;
4375
4376 /* Try and reuse the exisitng mbuf. */
4377 if (bnx_add_buf(sc, m, &sw_prod,
4378 &sw_chain_prod, &sw_prod_bseq)) {
4379 DBRUNIF(1, bnx_breakpoint(sc));
4380 panic("%s: Double mbuf allocation "
4381 "failure!",
4382 device_xname(sc->bnx_dev));
4383 }
4384 continue;
4385 }
4386
4387 /* Skip over the l2_fhdr when passing the data up
4388 * the stack.
4389 */
4390 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4391
4392 /* Adjust the pckt length to match the received data. */
4393 m->m_pkthdr.len = m->m_len = len;
4394
4395 /* Send the packet to the appropriate interface. */
4396 m->m_pkthdr.rcvif = ifp;
4397
4398 DBRUN(BNX_VERBOSE_RECV,
4399 struct ether_header *eh;
4400 eh = mtod(m, struct ether_header *);
4401 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4402 __func__, ether_sprintf(eh->ether_dhost),
4403 ether_sprintf(eh->ether_shost),
4404 htons(eh->ether_type)));
4405
4406 /* Validate the checksum. */
4407
4408 /* Check for an IP datagram. */
4409 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4410 /* Check if the IP checksum is valid. */
4411 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4412 == 0)
4413 m->m_pkthdr.csum_flags |=
4414 M_CSUM_IPv4;
4415 #ifdef BNX_DEBUG
4416 else
4417 DBPRINT(sc, BNX_WARN_SEND,
4418 "%s(): Invalid IP checksum "
4419 "= 0x%04X!\n",
4420 __func__,
4421 l2fhdr->l2_fhdr_ip_xsum
4422 );
4423 #endif
4424 }
4425
4426 /* Check for a valid TCP/UDP frame. */
4427 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4428 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4429 /* Check for a good TCP/UDP checksum. */
4430 if ((status &
4431 (L2_FHDR_ERRORS_TCP_XSUM |
4432 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4433 m->m_pkthdr.csum_flags |=
4434 M_CSUM_TCPv4 |
4435 M_CSUM_UDPv4;
4436 } else {
4437 DBPRINT(sc, BNX_WARN_SEND,
4438 "%s(): Invalid TCP/UDP "
4439 "checksum = 0x%04X!\n",
4440 __func__,
4441 l2fhdr->l2_fhdr_tcp_udp_xsum);
4442 }
4443 }
4444
4445 /*
4446 * If we received a packet with a vlan tag,
4447 * attach that information to the packet.
4448 */
4449 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4450 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4451 VLAN_INPUT_TAG(ifp, m,
4452 l2fhdr->l2_fhdr_vlan_tag,
4453 continue);
4454 }
4455
4456 /*
4457 * Handle BPF listeners. Let the BPF
4458 * user see the packet.
4459 */
4460 bpf_mtap(ifp, m);
4461
4462 /* Pass the mbuf off to the upper layers. */
4463 ifp->if_ipackets++;
4464 DBPRINT(sc, BNX_VERBOSE_RECV,
4465 "%s(): Passing received frame up.\n", __func__);
4466 (*ifp->if_input)(ifp, m);
4467 DBRUNIF(1, sc->rx_mbuf_alloc--);
4468
4469 }
4470
4471 sw_cons = NEXT_RX_BD(sw_cons);
4472
4473 /* Refresh hw_cons to see if there's new work */
4474 if (sw_cons == hw_cons) {
4475 hw_cons = sc->hw_rx_cons =
4476 sblk->status_rx_quick_consumer_index0;
4477 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4478 USABLE_RX_BD_PER_PAGE)
4479 hw_cons++;
4480 }
4481
4482 /* Prevent speculative reads from getting ahead of
4483 * the status block.
4484 */
4485 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4486 BUS_SPACE_BARRIER_READ);
4487 }
4488
4489 for (i = 0; i < RX_PAGES; i++)
4490 bus_dmamap_sync(sc->bnx_dmatag,
4491 sc->rx_bd_chain_map[i], 0,
4492 sc->rx_bd_chain_map[i]->dm_mapsize,
4493 BUS_DMASYNC_PREWRITE);
4494
4495 sc->rx_cons = sw_cons;
4496 sc->rx_prod = sw_prod;
4497 sc->rx_prod_bseq = sw_prod_bseq;
4498
4499 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4500 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4501
4502 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4503 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4504 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4505 }
4506
4507 /****************************************************************************/
4508 /* Handles transmit completion interrupt events. */
4509 /* */
4510 /* Returns: */
4511 /* Nothing. */
4512 /****************************************************************************/
4513 void
4514 bnx_tx_intr(struct bnx_softc *sc)
4515 {
4516 struct status_block *sblk = sc->status_block;
4517 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4518 struct bnx_pkt *pkt;
4519 bus_dmamap_t map;
4520 u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4521
4522 DBRUNIF(1, sc->tx_interrupts++);
4523 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4524 BUS_DMASYNC_POSTREAD);
4525
4526 /* Get the hardware's view of the TX consumer index. */
4527 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4528
4529 /* Skip to the next entry if this is a chain page pointer. */
4530 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4531 hw_tx_cons++;
4532
4533 sw_tx_cons = sc->tx_cons;
4534
4535 /* Prevent speculative reads from getting ahead of the status block. */
4536 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4537 BUS_SPACE_BARRIER_READ);
4538
4539 /* Cycle through any completed TX chain page entries. */
4540 while (sw_tx_cons != hw_tx_cons) {
4541 #ifdef BNX_DEBUG
4542 struct tx_bd *txbd = NULL;
4543 #endif
4544 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4545
4546 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4547 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4548 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4549
4550 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4551 aprint_error_dev(sc->bnx_dev,
4552 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4553 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4554
4555 DBRUNIF(1, txbd = &sc->tx_bd_chain
4556 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4557
4558 DBRUNIF((txbd == NULL),
4559 aprint_error_dev(sc->bnx_dev,
4560 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4561 bnx_breakpoint(sc));
4562
4563 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4564 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4565
4566
4567 mutex_enter(&sc->tx_pkt_mtx);
4568 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4569 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4570 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4571 mutex_exit(&sc->tx_pkt_mtx);
4572 /*
4573 * Free the associated mbuf. Remember
4574 * that only the last tx_bd of a packet
4575 * has an mbuf pointer and DMA map.
4576 */
4577 map = pkt->pkt_dmamap;
4578 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4579 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4580 bus_dmamap_unload(sc->bnx_dmatag, map);
4581
4582 m_freem(pkt->pkt_mbuf);
4583 DBRUNIF(1, sc->tx_mbuf_alloc--);
4584
4585 ifp->if_opackets++;
4586
4587 mutex_enter(&sc->tx_pkt_mtx);
4588 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4589 }
4590 mutex_exit(&sc->tx_pkt_mtx);
4591
4592 sc->used_tx_bd--;
4593 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4594 __FILE__, __LINE__, sc->used_tx_bd);
4595
4596 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4597
4598 /* Refresh hw_cons to see if there's new work. */
4599 hw_tx_cons = sc->hw_tx_cons =
4600 sblk->status_tx_quick_consumer_index0;
4601 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4602 USABLE_TX_BD_PER_PAGE)
4603 hw_tx_cons++;
4604
4605 /* Prevent speculative reads from getting ahead of
4606 * the status block.
4607 */
4608 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4609 BUS_SPACE_BARRIER_READ);
4610 }
4611
4612 /* Clear the TX timeout timer. */
4613 ifp->if_timer = 0;
4614
4615 /* Clear the tx hardware queue full flag. */
4616 if (sc->used_tx_bd < sc->max_tx_bd) {
4617 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4618 aprint_debug_dev(sc->bnx_dev,
4619 "Open TX chain! %d/%d (used/total)\n",
4620 sc->used_tx_bd, sc->max_tx_bd));
4621 ifp->if_flags &= ~IFF_OACTIVE;
4622 }
4623
4624 sc->tx_cons = sw_tx_cons;
4625 }
4626
4627 /****************************************************************************/
4628 /* Disables interrupt generation. */
4629 /* */
4630 /* Returns: */
4631 /* Nothing. */
4632 /****************************************************************************/
4633 void
4634 bnx_disable_intr(struct bnx_softc *sc)
4635 {
4636 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4637 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4638 }
4639
4640 /****************************************************************************/
4641 /* Enables interrupt generation. */
4642 /* */
4643 /* Returns: */
4644 /* Nothing. */
4645 /****************************************************************************/
4646 void
4647 bnx_enable_intr(struct bnx_softc *sc)
4648 {
4649 u_int32_t val;
4650
4651 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4652 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4653
4654 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4655 sc->last_status_idx);
4656
4657 val = REG_RD(sc, BNX_HC_COMMAND);
4658 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4659 }
4660
4661 /****************************************************************************/
4662 /* Handles controller initialization. */
4663 /* */
4664 /****************************************************************************/
4665 int
4666 bnx_init(struct ifnet *ifp)
4667 {
4668 struct bnx_softc *sc = ifp->if_softc;
4669 u_int32_t ether_mtu;
4670 int s, error = 0;
4671
4672 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4673
4674 s = splnet();
4675
4676 bnx_stop(ifp, 0);
4677
4678 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4679 aprint_error_dev(sc->bnx_dev,
4680 "Controller reset failed!\n");
4681 goto bnx_init_exit;
4682 }
4683
4684 if ((error = bnx_chipinit(sc)) != 0) {
4685 aprint_error_dev(sc->bnx_dev,
4686 "Controller initialization failed!\n");
4687 goto bnx_init_exit;
4688 }
4689
4690 if ((error = bnx_blockinit(sc)) != 0) {
4691 aprint_error_dev(sc->bnx_dev,
4692 "Block initialization failed!\n");
4693 goto bnx_init_exit;
4694 }
4695
4696 /* Calculate and program the Ethernet MRU size. */
4697 if (ifp->if_mtu <= ETHERMTU) {
4698 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4699 sc->mbuf_alloc_size = MCLBYTES;
4700 } else {
4701 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4702 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4703 }
4704
4705
4706 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4707 __func__, ether_mtu);
4708
4709 /*
4710 * Program the MRU and enable Jumbo frame
4711 * support.
4712 */
4713 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4714 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4715
4716 /* Calculate the RX Ethernet frame size for rx_bd's. */
4717 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4718
4719 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4720 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4721 sc->mbuf_alloc_size, sc->max_frame_size);
4722
4723 /* Program appropriate promiscuous/multicast filtering. */
4724 bnx_iff(sc);
4725
4726 /* Init RX buffer descriptor chain. */
4727 bnx_init_rx_chain(sc);
4728
4729 /* Init TX buffer descriptor chain. */
4730 bnx_init_tx_chain(sc);
4731
4732 /* Enable host interrupts. */
4733 bnx_enable_intr(sc);
4734
4735 if ((error = ether_mediachange(ifp)) != 0)
4736 goto bnx_init_exit;
4737
4738 ifp->if_flags |= IFF_RUNNING;
4739 ifp->if_flags &= ~IFF_OACTIVE;
4740
4741 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4742
4743 bnx_init_exit:
4744 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4745
4746 splx(s);
4747
4748 return(error);
4749 }
4750
4751 /****************************************************************************/
4752 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4753 /* memory visible to the controller. */
4754 /* */
4755 /* Returns: */
4756 /* 0 for success, positive value for failure. */
4757 /****************************************************************************/
4758 int
4759 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4760 {
4761 struct bnx_pkt *pkt;
4762 bus_dmamap_t map;
4763 struct tx_bd *txbd = NULL;
4764 u_int16_t vlan_tag = 0, flags = 0;
4765 u_int16_t chain_prod, prod;
4766 #ifdef BNX_DEBUG
4767 u_int16_t debug_prod;
4768 #endif
4769 u_int32_t addr, prod_bseq;
4770 int i, error;
4771 struct m_tag *mtag;
4772
4773 again:
4774 mutex_enter(&sc->tx_pkt_mtx);
4775 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4776 if (pkt == NULL) {
4777 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4778 mutex_exit(&sc->tx_pkt_mtx);
4779 return ENETDOWN;
4780 }
4781 if (sc->tx_pkt_count <= TOTAL_TX_BD) {
4782 mutex_exit(&sc->tx_pkt_mtx);
4783 if (bnx_alloc_pkts(sc) == 0)
4784 goto again;
4785 } else {
4786 mutex_exit(&sc->tx_pkt_mtx);
4787 }
4788 return (ENOMEM);
4789 }
4790 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4791 mutex_exit(&sc->tx_pkt_mtx);
4792
4793 /* Transfer any checksum offload flags to the bd. */
4794 if (m->m_pkthdr.csum_flags) {
4795 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4796 flags |= TX_BD_FLAGS_IP_CKSUM;
4797 if (m->m_pkthdr.csum_flags &
4798 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4799 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4800 }
4801
4802 /* Transfer any VLAN tags to the bd. */
4803 mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4804 if (mtag != NULL) {
4805 flags |= TX_BD_FLAGS_VLAN_TAG;
4806 vlan_tag = VLAN_TAG_VALUE(mtag);
4807 }
4808
4809 /* Map the mbuf into DMAable memory. */
4810 prod = sc->tx_prod;
4811 chain_prod = TX_CHAIN_IDX(prod);
4812 map = pkt->pkt_dmamap;
4813
4814 /* Map the mbuf into our DMA address space. */
4815 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4816 if (error != 0) {
4817 aprint_error_dev(sc->bnx_dev,
4818 "Error mapping mbuf into TX chain!\n");
4819 sc->tx_dma_map_failures++;
4820 goto maperr;
4821 }
4822 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4823 BUS_DMASYNC_PREWRITE);
4824 /* Make sure there's room in the chain */
4825 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
4826 goto nospace;
4827
4828 /* prod points to an empty tx_bd at this point. */
4829 prod_bseq = sc->tx_prod_bseq;
4830 #ifdef BNX_DEBUG
4831 debug_prod = chain_prod;
4832 #endif
4833 DBPRINT(sc, BNX_INFO_SEND,
4834 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4835 "prod_bseq = 0x%08X\n",
4836 __func__, prod, chain_prod, prod_bseq);
4837
4838 /*
4839 * Cycle through each mbuf segment that makes up
4840 * the outgoing frame, gathering the mapping info
4841 * for that segment and creating a tx_bd for the
4842 * mbuf.
4843 */
4844 for (i = 0; i < map->dm_nsegs ; i++) {
4845 chain_prod = TX_CHAIN_IDX(prod);
4846 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4847
4848 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
4849 txbd->tx_bd_haddr_lo = htole32(addr);
4850 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4851 txbd->tx_bd_haddr_hi = htole32(addr);
4852 txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
4853 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
4854 txbd->tx_bd_flags = htole16(flags);
4855 prod_bseq += map->dm_segs[i].ds_len;
4856 if (i == 0)
4857 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
4858 prod = NEXT_TX_BD(prod);
4859 }
4860 /* Set the END flag on the last TX buffer descriptor. */
4861 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
4862
4863 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
4864
4865 DBPRINT(sc, BNX_INFO_SEND,
4866 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
4867 "prod_bseq = 0x%08X\n",
4868 __func__, prod, chain_prod, prod_bseq);
4869
4870 pkt->pkt_mbuf = m;
4871 pkt->pkt_end_desc = chain_prod;
4872
4873 mutex_enter(&sc->tx_pkt_mtx);
4874 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
4875 mutex_exit(&sc->tx_pkt_mtx);
4876
4877 sc->used_tx_bd += map->dm_nsegs;
4878 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4879 __FILE__, __LINE__, sc->used_tx_bd);
4880
4881 /* Update some debug statistics counters */
4882 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4883 sc->tx_hi_watermark = sc->used_tx_bd);
4884 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
4885 DBRUNIF(1, sc->tx_mbuf_alloc++);
4886
4887 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4888 map->dm_nsegs));
4889
4890 /* prod points to the next free tx_bd at this point. */
4891 sc->tx_prod = prod;
4892 sc->tx_prod_bseq = prod_bseq;
4893
4894 return (0);
4895
4896
4897 nospace:
4898 bus_dmamap_unload(sc->bnx_dmatag, map);
4899 maperr:
4900 mutex_enter(&sc->tx_pkt_mtx);
4901 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4902 mutex_exit(&sc->tx_pkt_mtx);
4903
4904 return (ENOMEM);
4905 }
4906
4907 /****************************************************************************/
4908 /* Main transmit routine. */
4909 /* */
4910 /* Returns: */
4911 /* Nothing. */
4912 /****************************************************************************/
4913 void
4914 bnx_start(struct ifnet *ifp)
4915 {
4916 struct bnx_softc *sc = ifp->if_softc;
4917 struct mbuf *m_head = NULL;
4918 int count = 0;
4919 u_int16_t tx_prod, tx_chain_prod;
4920
4921 /* If there's no link or the transmit queue is empty then just exit. */
4922 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
4923 DBPRINT(sc, BNX_INFO_SEND,
4924 "%s(): output active or device not running.\n", __func__);
4925 goto bnx_start_exit;
4926 }
4927
4928 /* prod points to the next free tx_bd. */
4929 tx_prod = sc->tx_prod;
4930 tx_chain_prod = TX_CHAIN_IDX(tx_prod);
4931
4932 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
4933 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
4934 "used_tx %d max_tx %d\n",
4935 __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq,
4936 sc->used_tx_bd, sc->max_tx_bd);
4937
4938 /*
4939 * Keep adding entries while there is space in the ring.
4940 */
4941 while (sc->used_tx_bd < sc->max_tx_bd) {
4942 /* Check for any frames to send. */
4943 IFQ_POLL(&ifp->if_snd, m_head);
4944 if (m_head == NULL)
4945 break;
4946
4947 /*
4948 * Pack the data into the transmit ring. If we
4949 * don't have room, set the OACTIVE flag to wait
4950 * for the NIC to drain the chain.
4951 */
4952 if (bnx_tx_encap(sc, m_head)) {
4953 ifp->if_flags |= IFF_OACTIVE;
4954 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
4955 "business! Total tx_bd used = %d\n",
4956 sc->used_tx_bd);
4957 break;
4958 }
4959
4960 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4961 count++;
4962
4963 /* Send a copy of the frame to any BPF listeners. */
4964 bpf_mtap(ifp, m_head);
4965 }
4966
4967 if (count == 0) {
4968 /* no packets were dequeued */
4969 DBPRINT(sc, BNX_VERBOSE_SEND,
4970 "%s(): No packets were dequeued\n", __func__);
4971 goto bnx_start_exit;
4972 }
4973
4974 /* Update the driver's counters. */
4975 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
4976
4977 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
4978 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
4979 tx_chain_prod, sc->tx_prod_bseq);
4980
4981 /* Start the transmit. */
4982 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
4983 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
4984
4985 /* Set the tx timeout. */
4986 ifp->if_timer = BNX_TX_TIMEOUT;
4987
4988 bnx_start_exit:
4989 return;
4990 }
4991
4992 /****************************************************************************/
4993 /* Handles any IOCTL calls from the operating system. */
4994 /* */
4995 /* Returns: */
4996 /* 0 for success, positive value for failure. */
4997 /****************************************************************************/
4998 int
4999 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5000 {
5001 struct bnx_softc *sc = ifp->if_softc;
5002 struct ifreq *ifr = (struct ifreq *) data;
5003 struct mii_data *mii = &sc->bnx_mii;
5004 int s, error = 0;
5005
5006 s = splnet();
5007
5008 switch (command) {
5009 case SIOCSIFFLAGS:
5010 if ((error = ifioctl_common(ifp, command, data)) != 0)
5011 break;
5012 /* XXX set an ifflags callback and let ether_ioctl
5013 * handle all of this.
5014 */
5015 if (ifp->if_flags & IFF_UP) {
5016 if (ifp->if_flags & IFF_RUNNING)
5017 error = ENETRESET;
5018 else
5019 bnx_init(ifp);
5020 } else if (ifp->if_flags & IFF_RUNNING)
5021 bnx_stop(ifp, 1);
5022 break;
5023
5024 case SIOCSIFMEDIA:
5025 case SIOCGIFMEDIA:
5026 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5027 sc->bnx_phy_flags);
5028
5029 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5030 break;
5031
5032 default:
5033 error = ether_ioctl(ifp, command, data);
5034 }
5035
5036 if (error == ENETRESET) {
5037 if (ifp->if_flags & IFF_RUNNING)
5038 bnx_iff(sc);
5039 error = 0;
5040 }
5041
5042 splx(s);
5043 return (error);
5044 }
5045
5046 /****************************************************************************/
5047 /* Transmit timeout handler. */
5048 /* */
5049 /* Returns: */
5050 /* Nothing. */
5051 /****************************************************************************/
5052 void
5053 bnx_watchdog(struct ifnet *ifp)
5054 {
5055 struct bnx_softc *sc = ifp->if_softc;
5056
5057 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5058 bnx_dump_status_block(sc));
5059 /*
5060 * If we are in this routine because of pause frames, then
5061 * don't reset the hardware.
5062 */
5063 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5064 return;
5065
5066 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5067
5068 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5069
5070 bnx_init(ifp);
5071
5072 ifp->if_oerrors++;
5073 }
5074
5075 /*
5076 * Interrupt handler.
5077 */
5078 /****************************************************************************/
5079 /* Main interrupt entry point. Verifies that the controller generated the */
5080 /* interrupt and then calls a separate routine for handle the various */
5081 /* interrupt causes (PHY, TX, RX). */
5082 /* */
5083 /* Returns: */
5084 /* 0 for success, positive value for failure. */
5085 /****************************************************************************/
5086 int
5087 bnx_intr(void *xsc)
5088 {
5089 struct bnx_softc *sc;
5090 struct ifnet *ifp;
5091 u_int32_t status_attn_bits;
5092 const struct status_block *sblk;
5093
5094 sc = xsc;
5095 if (!device_is_active(sc->bnx_dev))
5096 return 0;
5097
5098 ifp = &sc->bnx_ec.ec_if;
5099
5100 DBRUNIF(1, sc->interrupts_generated++);
5101
5102 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5103 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5104
5105 /*
5106 * If the hardware status block index
5107 * matches the last value read by the
5108 * driver and we haven't asserted our
5109 * interrupt then there's nothing to do.
5110 */
5111 if ((sc->status_block->status_idx == sc->last_status_idx) &&
5112 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5113 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5114 return (0);
5115
5116 /* Ack the interrupt and stop others from occuring. */
5117 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5118 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5119 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5120
5121 /* Keep processing data as long as there is work to do. */
5122 for (;;) {
5123 sblk = sc->status_block;
5124 status_attn_bits = sblk->status_attn_bits;
5125
5126 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5127 aprint_debug("Simulating unexpected status attention bit set.");
5128 status_attn_bits = status_attn_bits |
5129 STATUS_ATTN_BITS_PARITY_ERROR);
5130
5131 /* Was it a link change interrupt? */
5132 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5133 (sblk->status_attn_bits_ack &
5134 STATUS_ATTN_BITS_LINK_STATE))
5135 bnx_phy_intr(sc);
5136
5137 /* If any other attention is asserted then the chip is toast. */
5138 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5139 (sblk->status_attn_bits_ack &
5140 ~STATUS_ATTN_BITS_LINK_STATE))) {
5141 DBRUN(1, sc->unexpected_attentions++);
5142
5143 BNX_PRINTF(sc,
5144 "Fatal attention detected: 0x%08X\n",
5145 sblk->status_attn_bits);
5146
5147 DBRUN(BNX_FATAL,
5148 if (bnx_debug_unexpected_attention == 0)
5149 bnx_breakpoint(sc));
5150
5151 bnx_init(ifp);
5152 return (1);
5153 }
5154
5155 /* Check for any completed RX frames. */
5156 if (sblk->status_rx_quick_consumer_index0 !=
5157 sc->hw_rx_cons)
5158 bnx_rx_intr(sc);
5159
5160 /* Check for any completed TX frames. */
5161 if (sblk->status_tx_quick_consumer_index0 !=
5162 sc->hw_tx_cons)
5163 bnx_tx_intr(sc);
5164
5165 /* Save the status block index value for use during the
5166 * next interrupt.
5167 */
5168 sc->last_status_idx = sblk->status_idx;
5169
5170 /* Prevent speculative reads from getting ahead of the
5171 * status block.
5172 */
5173 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5174 BUS_SPACE_BARRIER_READ);
5175
5176 /* If there's no work left then exit the isr. */
5177 if ((sblk->status_rx_quick_consumer_index0 ==
5178 sc->hw_rx_cons) &&
5179 (sblk->status_tx_quick_consumer_index0 ==
5180 sc->hw_tx_cons))
5181 break;
5182 }
5183
5184 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5185 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5186
5187 /* Re-enable interrupts. */
5188 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5189 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5190 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5191 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5192 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5193
5194 /* Handle any frames that arrived while handling the interrupt. */
5195 if (!IFQ_IS_EMPTY(&ifp->if_snd))
5196 bnx_start(ifp);
5197
5198 return (1);
5199 }
5200
5201 /****************************************************************************/
5202 /* Programs the various packet receive modes (broadcast and multicast). */
5203 /* */
5204 /* Returns: */
5205 /* Nothing. */
5206 /****************************************************************************/
5207 void
5208 bnx_iff(struct bnx_softc *sc)
5209 {
5210 struct ethercom *ec = &sc->bnx_ec;
5211 struct ifnet *ifp = &ec->ec_if;
5212 struct ether_multi *enm;
5213 struct ether_multistep step;
5214 u_int32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5215 u_int32_t rx_mode, sort_mode;
5216 int h, i;
5217
5218 /* Initialize receive mode default settings. */
5219 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5220 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5221 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5222 ifp->if_flags &= ~IFF_ALLMULTI;
5223
5224 /*
5225 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5226 * be enbled.
5227 */
5228 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5229 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5230
5231 /*
5232 * Check for promiscuous, all multicast, or selected
5233 * multicast address filtering.
5234 */
5235 if (ifp->if_flags & IFF_PROMISC) {
5236 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5237
5238 ifp->if_flags |= IFF_ALLMULTI;
5239 /* Enable promiscuous mode. */
5240 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5241 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5242 } else if (ifp->if_flags & IFF_ALLMULTI) {
5243 allmulti:
5244 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5245
5246 ifp->if_flags |= IFF_ALLMULTI;
5247 /* Enable all multicast addresses. */
5248 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5249 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5250 0xffffffff);
5251 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5252 } else {
5253 /* Accept one or more multicast(s). */
5254 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5255
5256 ETHER_FIRST_MULTI(step, ec, enm);
5257 while (enm != NULL) {
5258 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5259 ETHER_ADDR_LEN)) {
5260 goto allmulti;
5261 }
5262 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5263 0xFF;
5264 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5265 ETHER_NEXT_MULTI(step, enm);
5266 }
5267
5268 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5269 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5270 hashes[i]);
5271
5272 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5273 }
5274
5275 /* Only make changes if the recive mode has actually changed. */
5276 if (rx_mode != sc->rx_mode) {
5277 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5278 rx_mode);
5279
5280 sc->rx_mode = rx_mode;
5281 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5282 }
5283
5284 /* Disable and clear the exisitng sort before enabling a new sort. */
5285 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5286 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5287 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5288 }
5289
5290 /****************************************************************************/
5291 /* Called periodically to updates statistics from the controllers */
5292 /* statistics block. */
5293 /* */
5294 /* Returns: */
5295 /* Nothing. */
5296 /****************************************************************************/
5297 void
5298 bnx_stats_update(struct bnx_softc *sc)
5299 {
5300 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5301 struct statistics_block *stats;
5302
5303 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5304 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5305 BUS_DMASYNC_POSTREAD);
5306
5307 stats = (struct statistics_block *)sc->stats_block;
5308
5309 /*
5310 * Update the interface statistics from the
5311 * hardware statistics.
5312 */
5313 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5314
5315 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5316 (u_long)stats->stat_EtherStatsOverrsizePkts +
5317 (u_long)stats->stat_IfInMBUFDiscards +
5318 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5319 (u_long)stats->stat_Dot3StatsFCSErrors;
5320
5321 ifp->if_oerrors = (u_long)
5322 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5323 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5324 (u_long)stats->stat_Dot3StatsLateCollisions;
5325
5326 /*
5327 * Certain controllers don't report
5328 * carrier sense errors correctly.
5329 * See errata E11_5708CA0_1165.
5330 */
5331 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5332 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5333 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5334
5335 /*
5336 * Update the sysctl statistics from the
5337 * hardware statistics.
5338 */
5339 sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
5340 (u_int64_t) stats->stat_IfHCInOctets_lo;
5341
5342 sc->stat_IfHCInBadOctets =
5343 ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5344 (u_int64_t) stats->stat_IfHCInBadOctets_lo;
5345
5346 sc->stat_IfHCOutOctets =
5347 ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
5348 (u_int64_t) stats->stat_IfHCOutOctets_lo;
5349
5350 sc->stat_IfHCOutBadOctets =
5351 ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5352 (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
5353
5354 sc->stat_IfHCInUcastPkts =
5355 ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5356 (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
5357
5358 sc->stat_IfHCInMulticastPkts =
5359 ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5360 (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
5361
5362 sc->stat_IfHCInBroadcastPkts =
5363 ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5364 (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
5365
5366 sc->stat_IfHCOutUcastPkts =
5367 ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5368 (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
5369
5370 sc->stat_IfHCOutMulticastPkts =
5371 ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5372 (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
5373
5374 sc->stat_IfHCOutBroadcastPkts =
5375 ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5376 (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5377
5378 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5379 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5380
5381 sc->stat_Dot3StatsCarrierSenseErrors =
5382 stats->stat_Dot3StatsCarrierSenseErrors;
5383
5384 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5385
5386 sc->stat_Dot3StatsAlignmentErrors =
5387 stats->stat_Dot3StatsAlignmentErrors;
5388
5389 sc->stat_Dot3StatsSingleCollisionFrames =
5390 stats->stat_Dot3StatsSingleCollisionFrames;
5391
5392 sc->stat_Dot3StatsMultipleCollisionFrames =
5393 stats->stat_Dot3StatsMultipleCollisionFrames;
5394
5395 sc->stat_Dot3StatsDeferredTransmissions =
5396 stats->stat_Dot3StatsDeferredTransmissions;
5397
5398 sc->stat_Dot3StatsExcessiveCollisions =
5399 stats->stat_Dot3StatsExcessiveCollisions;
5400
5401 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5402
5403 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5404
5405 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5406
5407 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5408
5409 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5410
5411 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5412
5413 sc->stat_EtherStatsPktsRx64Octets =
5414 stats->stat_EtherStatsPktsRx64Octets;
5415
5416 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5417 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5418
5419 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5420 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5421
5422 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5423 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5424
5425 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5426 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5427
5428 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5429 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5430
5431 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5432 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5433
5434 sc->stat_EtherStatsPktsTx64Octets =
5435 stats->stat_EtherStatsPktsTx64Octets;
5436
5437 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5438 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5439
5440 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5441 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5442
5443 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5444 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5445
5446 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5447 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5448
5449 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5450 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5451
5452 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5453 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5454
5455 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5456
5457 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5458
5459 sc->stat_OutXonSent = stats->stat_OutXonSent;
5460
5461 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5462
5463 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5464
5465 sc->stat_MacControlFramesReceived =
5466 stats->stat_MacControlFramesReceived;
5467
5468 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5469
5470 sc->stat_IfInFramesL2FilterDiscards =
5471 stats->stat_IfInFramesL2FilterDiscards;
5472
5473 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5474
5475 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5476
5477 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5478
5479 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5480
5481 sc->stat_CatchupInRuleCheckerDiscards =
5482 stats->stat_CatchupInRuleCheckerDiscards;
5483
5484 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5485
5486 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5487
5488 sc->stat_CatchupInRuleCheckerP4Hit =
5489 stats->stat_CatchupInRuleCheckerP4Hit;
5490
5491 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5492 }
5493
5494 void
5495 bnx_tick(void *xsc)
5496 {
5497 struct bnx_softc *sc = xsc;
5498 struct mii_data *mii;
5499 u_int32_t msg;
5500 u_int16_t prod, chain_prod;
5501 u_int32_t prod_bseq;
5502 int s = splnet();
5503
5504 /* Tell the firmware that the driver is still running. */
5505 #ifdef BNX_DEBUG
5506 msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5507 #else
5508 msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5509 #endif
5510 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5511
5512 /* Update the statistics from the hardware statistics block. */
5513 bnx_stats_update(sc);
5514
5515 /* Schedule the next tick. */
5516 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5517
5518 mii = &sc->bnx_mii;
5519 mii_tick(mii);
5520
5521 /* try to get more RX buffers, just in case */
5522 prod = sc->rx_prod;
5523 prod_bseq = sc->rx_prod_bseq;
5524 chain_prod = RX_CHAIN_IDX(prod);
5525 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5526 sc->rx_prod = prod;
5527 sc->rx_prod_bseq = prod_bseq;
5528 splx(s);
5529 return;
5530 }
5531
5532 /****************************************************************************/
5533 /* BNX Debug Routines */
5534 /****************************************************************************/
5535 #ifdef BNX_DEBUG
5536
5537 /****************************************************************************/
5538 /* Prints out information about an mbuf. */
5539 /* */
5540 /* Returns: */
5541 /* Nothing. */
5542 /****************************************************************************/
5543 void
5544 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5545 {
5546 struct mbuf *mp = m;
5547
5548 if (m == NULL) {
5549 /* Index out of range. */
5550 aprint_error("mbuf ptr is null!\n");
5551 return;
5552 }
5553
5554 while (mp) {
5555 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5556 mp, mp->m_len);
5557
5558 if (mp->m_flags & M_EXT)
5559 aprint_debug("M_EXT ");
5560 if (mp->m_flags & M_PKTHDR)
5561 aprint_debug("M_PKTHDR ");
5562 aprint_debug("\n");
5563
5564 if (mp->m_flags & M_EXT)
5565 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5566 mp, mp->m_ext.ext_size);
5567
5568 mp = mp->m_next;
5569 }
5570 }
5571
5572 /****************************************************************************/
5573 /* Prints out the mbufs in the TX mbuf chain. */
5574 /* */
5575 /* Returns: */
5576 /* Nothing. */
5577 /****************************************************************************/
5578 void
5579 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5580 {
5581 #if 0
5582 struct mbuf *m;
5583 int i;
5584
5585 aprint_debug_dev(sc->bnx_dev,
5586 "----------------------------"
5587 " tx mbuf data "
5588 "----------------------------\n");
5589
5590 for (i = 0; i < count; i++) {
5591 m = sc->tx_mbuf_ptr[chain_prod];
5592 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5593 bnx_dump_mbuf(sc, m);
5594 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5595 }
5596
5597 aprint_debug_dev(sc->bnx_dev,
5598 "--------------------------------------------"
5599 "----------------------------\n");
5600 #endif
5601 }
5602
5603 /*
5604 * This routine prints the RX mbuf chain.
5605 */
5606 void
5607 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5608 {
5609 struct mbuf *m;
5610 int i;
5611
5612 aprint_debug_dev(sc->bnx_dev,
5613 "----------------------------"
5614 " rx mbuf data "
5615 "----------------------------\n");
5616
5617 for (i = 0; i < count; i++) {
5618 m = sc->rx_mbuf_ptr[chain_prod];
5619 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5620 bnx_dump_mbuf(sc, m);
5621 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5622 }
5623
5624
5625 aprint_debug_dev(sc->bnx_dev,
5626 "--------------------------------------------"
5627 "----------------------------\n");
5628 }
5629
5630 void
5631 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5632 {
5633 if (idx > MAX_TX_BD)
5634 /* Index out of range. */
5635 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5636 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5637 /* TX Chain page pointer. */
5638 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5639 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5640 txbd->tx_bd_haddr_lo);
5641 else
5642 /* Normal tx_bd entry. */
5643 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5644 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5645 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5646 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5647 txbd->tx_bd_flags);
5648 }
5649
5650 void
5651 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5652 {
5653 if (idx > MAX_RX_BD)
5654 /* Index out of range. */
5655 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5656 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5657 /* TX Chain page pointer. */
5658 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5659 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5660 rxbd->rx_bd_haddr_lo);
5661 else
5662 /* Normal tx_bd entry. */
5663 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5664 "0x%08X, flags = 0x%08X\n", idx,
5665 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5666 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5667 }
5668
5669 void
5670 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5671 {
5672 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5673 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5674 "tcp_udp_xsum = 0x%04X\n", idx,
5675 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5676 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5677 l2fhdr->l2_fhdr_tcp_udp_xsum);
5678 }
5679
5680 /*
5681 * This routine prints the TX chain.
5682 */
5683 void
5684 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5685 {
5686 struct tx_bd *txbd;
5687 int i;
5688
5689 /* First some info about the tx_bd chain structure. */
5690 aprint_debug_dev(sc->bnx_dev,
5691 "----------------------------"
5692 " tx_bd chain "
5693 "----------------------------\n");
5694
5695 BNX_PRINTF(sc,
5696 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5697 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5698
5699 BNX_PRINTF(sc,
5700 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5701 (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5702
5703 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", TOTAL_TX_BD);
5704
5705 aprint_error_dev(sc->bnx_dev, ""
5706 "-----------------------------"
5707 " tx_bd data "
5708 "-----------------------------\n");
5709
5710 /* Now print out the tx_bd's themselves. */
5711 for (i = 0; i < count; i++) {
5712 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5713 bnx_dump_txbd(sc, tx_prod, txbd);
5714 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5715 }
5716
5717 aprint_debug_dev(sc->bnx_dev,
5718 "-----------------------------"
5719 "--------------"
5720 "-----------------------------\n");
5721 }
5722
5723 /*
5724 * This routine prints the RX chain.
5725 */
5726 void
5727 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5728 {
5729 struct rx_bd *rxbd;
5730 int i;
5731
5732 /* First some info about the tx_bd chain structure. */
5733 aprint_debug_dev(sc->bnx_dev,
5734 "----------------------------"
5735 " rx_bd chain "
5736 "----------------------------\n");
5737
5738 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5739
5740 BNX_PRINTF(sc,
5741 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5742 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5743
5744 BNX_PRINTF(sc,
5745 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5746 (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5747
5748 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", TOTAL_RX_BD);
5749
5750 aprint_error_dev(sc->bnx_dev,
5751 "----------------------------"
5752 " rx_bd data "
5753 "----------------------------\n");
5754
5755 /* Now print out the rx_bd's themselves. */
5756 for (i = 0; i < count; i++) {
5757 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5758 bnx_dump_rxbd(sc, rx_prod, rxbd);
5759 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5760 }
5761
5762 aprint_debug_dev(sc->bnx_dev,
5763 "----------------------------"
5764 "--------------"
5765 "----------------------------\n");
5766 }
5767
5768 /*
5769 * This routine prints the status block.
5770 */
5771 void
5772 bnx_dump_status_block(struct bnx_softc *sc)
5773 {
5774 struct status_block *sblk;
5775 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5776 BUS_DMASYNC_POSTREAD);
5777
5778 sblk = sc->status_block;
5779
5780 aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5781 "-----------------------------\n");
5782
5783 BNX_PRINTF(sc,
5784 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5785 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5786 sblk->status_idx);
5787
5788 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5789 sblk->status_rx_quick_consumer_index0,
5790 sblk->status_tx_quick_consumer_index0);
5791
5792 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5793
5794 /* Theses indices are not used for normal L2 drivers. */
5795 if (sblk->status_rx_quick_consumer_index1 ||
5796 sblk->status_tx_quick_consumer_index1)
5797 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5798 sblk->status_rx_quick_consumer_index1,
5799 sblk->status_tx_quick_consumer_index1);
5800
5801 if (sblk->status_rx_quick_consumer_index2 ||
5802 sblk->status_tx_quick_consumer_index2)
5803 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5804 sblk->status_rx_quick_consumer_index2,
5805 sblk->status_tx_quick_consumer_index2);
5806
5807 if (sblk->status_rx_quick_consumer_index3 ||
5808 sblk->status_tx_quick_consumer_index3)
5809 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5810 sblk->status_rx_quick_consumer_index3,
5811 sblk->status_tx_quick_consumer_index3);
5812
5813 if (sblk->status_rx_quick_consumer_index4 ||
5814 sblk->status_rx_quick_consumer_index5)
5815 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5816 sblk->status_rx_quick_consumer_index4,
5817 sblk->status_rx_quick_consumer_index5);
5818
5819 if (sblk->status_rx_quick_consumer_index6 ||
5820 sblk->status_rx_quick_consumer_index7)
5821 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
5822 sblk->status_rx_quick_consumer_index6,
5823 sblk->status_rx_quick_consumer_index7);
5824
5825 if (sblk->status_rx_quick_consumer_index8 ||
5826 sblk->status_rx_quick_consumer_index9)
5827 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
5828 sblk->status_rx_quick_consumer_index8,
5829 sblk->status_rx_quick_consumer_index9);
5830
5831 if (sblk->status_rx_quick_consumer_index10 ||
5832 sblk->status_rx_quick_consumer_index11)
5833 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
5834 sblk->status_rx_quick_consumer_index10,
5835 sblk->status_rx_quick_consumer_index11);
5836
5837 if (sblk->status_rx_quick_consumer_index12 ||
5838 sblk->status_rx_quick_consumer_index13)
5839 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
5840 sblk->status_rx_quick_consumer_index12,
5841 sblk->status_rx_quick_consumer_index13);
5842
5843 if (sblk->status_rx_quick_consumer_index14 ||
5844 sblk->status_rx_quick_consumer_index15)
5845 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
5846 sblk->status_rx_quick_consumer_index14,
5847 sblk->status_rx_quick_consumer_index15);
5848
5849 if (sblk->status_completion_producer_index ||
5850 sblk->status_cmd_consumer_index)
5851 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
5852 sblk->status_completion_producer_index,
5853 sblk->status_cmd_consumer_index);
5854
5855 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
5856 "-----------------------------\n");
5857 }
5858
5859 /*
5860 * This routine prints the statistics block.
5861 */
5862 void
5863 bnx_dump_stats_block(struct bnx_softc *sc)
5864 {
5865 struct statistics_block *sblk;
5866 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5867 BUS_DMASYNC_POSTREAD);
5868
5869 sblk = sc->stats_block;
5870
5871 aprint_debug_dev(sc->bnx_dev, ""
5872 "-----------------------------"
5873 " Stats Block "
5874 "-----------------------------\n");
5875
5876 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
5877 "IfHcInBadOctets = 0x%08X:%08X\n",
5878 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5879 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5880
5881 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
5882 "IfHcOutBadOctets = 0x%08X:%08X\n",
5883 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5884 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5885
5886 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
5887 "IfHcInMulticastPkts = 0x%08X:%08X\n",
5888 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5889 sblk->stat_IfHCInMulticastPkts_hi,
5890 sblk->stat_IfHCInMulticastPkts_lo);
5891
5892 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
5893 "IfHcOutUcastPkts = 0x%08X:%08X\n",
5894 sblk->stat_IfHCInBroadcastPkts_hi,
5895 sblk->stat_IfHCInBroadcastPkts_lo,
5896 sblk->stat_IfHCOutUcastPkts_hi,
5897 sblk->stat_IfHCOutUcastPkts_lo);
5898
5899 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5900 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5901 sblk->stat_IfHCOutMulticastPkts_hi,
5902 sblk->stat_IfHCOutMulticastPkts_lo,
5903 sblk->stat_IfHCOutBroadcastPkts_hi,
5904 sblk->stat_IfHCOutBroadcastPkts_lo);
5905
5906 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5907 BNX_PRINTF(sc, "0x%08X : "
5908 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5909 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5910
5911 if (sblk->stat_Dot3StatsCarrierSenseErrors)
5912 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5913 sblk->stat_Dot3StatsCarrierSenseErrors);
5914
5915 if (sblk->stat_Dot3StatsFCSErrors)
5916 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5917 sblk->stat_Dot3StatsFCSErrors);
5918
5919 if (sblk->stat_Dot3StatsAlignmentErrors)
5920 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5921 sblk->stat_Dot3StatsAlignmentErrors);
5922
5923 if (sblk->stat_Dot3StatsSingleCollisionFrames)
5924 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5925 sblk->stat_Dot3StatsSingleCollisionFrames);
5926
5927 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
5928 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
5929 sblk->stat_Dot3StatsMultipleCollisionFrames);
5930
5931 if (sblk->stat_Dot3StatsDeferredTransmissions)
5932 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
5933 sblk->stat_Dot3StatsDeferredTransmissions);
5934
5935 if (sblk->stat_Dot3StatsExcessiveCollisions)
5936 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
5937 sblk->stat_Dot3StatsExcessiveCollisions);
5938
5939 if (sblk->stat_Dot3StatsLateCollisions)
5940 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
5941 sblk->stat_Dot3StatsLateCollisions);
5942
5943 if (sblk->stat_EtherStatsCollisions)
5944 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
5945 sblk->stat_EtherStatsCollisions);
5946
5947 if (sblk->stat_EtherStatsFragments)
5948 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
5949 sblk->stat_EtherStatsFragments);
5950
5951 if (sblk->stat_EtherStatsJabbers)
5952 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
5953 sblk->stat_EtherStatsJabbers);
5954
5955 if (sblk->stat_EtherStatsUndersizePkts)
5956 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
5957 sblk->stat_EtherStatsUndersizePkts);
5958
5959 if (sblk->stat_EtherStatsOverrsizePkts)
5960 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
5961 sblk->stat_EtherStatsOverrsizePkts);
5962
5963 if (sblk->stat_EtherStatsPktsRx64Octets)
5964 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
5965 sblk->stat_EtherStatsPktsRx64Octets);
5966
5967 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
5968 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
5969 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
5970
5971 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
5972 BNX_PRINTF(sc, "0x%08X : "
5973 "EtherStatsPktsRx128Octetsto255Octets\n",
5974 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
5975
5976 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
5977 BNX_PRINTF(sc, "0x%08X : "
5978 "EtherStatsPktsRx256Octetsto511Octets\n",
5979 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
5980
5981 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
5982 BNX_PRINTF(sc, "0x%08X : "
5983 "EtherStatsPktsRx512Octetsto1023Octets\n",
5984 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
5985
5986 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
5987 BNX_PRINTF(sc, "0x%08X : "
5988 "EtherStatsPktsRx1024Octetsto1522Octets\n",
5989 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
5990
5991 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
5992 BNX_PRINTF(sc, "0x%08X : "
5993 "EtherStatsPktsRx1523Octetsto9022Octets\n",
5994 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
5995
5996 if (sblk->stat_EtherStatsPktsTx64Octets)
5997 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
5998 sblk->stat_EtherStatsPktsTx64Octets);
5999
6000 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6001 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6002 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6003
6004 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6005 BNX_PRINTF(sc, "0x%08X : "
6006 "EtherStatsPktsTx128Octetsto255Octets\n",
6007 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6008
6009 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6010 BNX_PRINTF(sc, "0x%08X : "
6011 "EtherStatsPktsTx256Octetsto511Octets\n",
6012 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6013
6014 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6015 BNX_PRINTF(sc, "0x%08X : "
6016 "EtherStatsPktsTx512Octetsto1023Octets\n",
6017 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6018
6019 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6020 BNX_PRINTF(sc, "0x%08X : "
6021 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6022 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6023
6024 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6025 BNX_PRINTF(sc, "0x%08X : "
6026 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6027 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6028
6029 if (sblk->stat_XonPauseFramesReceived)
6030 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6031 sblk->stat_XonPauseFramesReceived);
6032
6033 if (sblk->stat_XoffPauseFramesReceived)
6034 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6035 sblk->stat_XoffPauseFramesReceived);
6036
6037 if (sblk->stat_OutXonSent)
6038 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6039 sblk->stat_OutXonSent);
6040
6041 if (sblk->stat_OutXoffSent)
6042 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6043 sblk->stat_OutXoffSent);
6044
6045 if (sblk->stat_FlowControlDone)
6046 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6047 sblk->stat_FlowControlDone);
6048
6049 if (sblk->stat_MacControlFramesReceived)
6050 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6051 sblk->stat_MacControlFramesReceived);
6052
6053 if (sblk->stat_XoffStateEntered)
6054 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6055 sblk->stat_XoffStateEntered);
6056
6057 if (sblk->stat_IfInFramesL2FilterDiscards)
6058 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6059 sblk->stat_IfInFramesL2FilterDiscards);
6060
6061 if (sblk->stat_IfInRuleCheckerDiscards)
6062 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6063 sblk->stat_IfInRuleCheckerDiscards);
6064
6065 if (sblk->stat_IfInFTQDiscards)
6066 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6067 sblk->stat_IfInFTQDiscards);
6068
6069 if (sblk->stat_IfInMBUFDiscards)
6070 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6071 sblk->stat_IfInMBUFDiscards);
6072
6073 if (sblk->stat_IfInRuleCheckerP4Hit)
6074 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6075 sblk->stat_IfInRuleCheckerP4Hit);
6076
6077 if (sblk->stat_CatchupInRuleCheckerDiscards)
6078 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6079 sblk->stat_CatchupInRuleCheckerDiscards);
6080
6081 if (sblk->stat_CatchupInFTQDiscards)
6082 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6083 sblk->stat_CatchupInFTQDiscards);
6084
6085 if (sblk->stat_CatchupInMBUFDiscards)
6086 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6087 sblk->stat_CatchupInMBUFDiscards);
6088
6089 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6090 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6091 sblk->stat_CatchupInRuleCheckerP4Hit);
6092
6093 aprint_debug_dev(sc->bnx_dev,
6094 "-----------------------------"
6095 "--------------"
6096 "-----------------------------\n");
6097 }
6098
6099 void
6100 bnx_dump_driver_state(struct bnx_softc *sc)
6101 {
6102 aprint_debug_dev(sc->bnx_dev,
6103 "-----------------------------"
6104 " Driver State "
6105 "-----------------------------\n");
6106
6107 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6108 "address\n", sc);
6109
6110 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6111 sc->status_block);
6112
6113 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6114 "address\n", sc->stats_block);
6115
6116 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6117 "adddress\n", sc->tx_bd_chain);
6118
6119 #if 0
6120 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6121 sc->rx_bd_chain);
6122
6123 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6124 sc->tx_mbuf_ptr);
6125 #endif
6126
6127 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6128 sc->rx_mbuf_ptr);
6129
6130 BNX_PRINTF(sc,
6131 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6132 sc->interrupts_generated);
6133
6134 BNX_PRINTF(sc,
6135 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6136 sc->rx_interrupts);
6137
6138 BNX_PRINTF(sc,
6139 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6140 sc->tx_interrupts);
6141
6142 BNX_PRINTF(sc,
6143 " 0x%08X - (sc->last_status_idx) status block index\n",
6144 sc->last_status_idx);
6145
6146 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6147 sc->tx_prod);
6148
6149 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6150 sc->tx_cons);
6151
6152 BNX_PRINTF(sc,
6153 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6154 sc->tx_prod_bseq);
6155 BNX_PRINTF(sc,
6156 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6157 sc->tx_mbuf_alloc);
6158
6159 BNX_PRINTF(sc,
6160 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6161 sc->used_tx_bd);
6162
6163 BNX_PRINTF(sc,
6164 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6165 sc->tx_hi_watermark, sc->max_tx_bd);
6166
6167
6168 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6169 sc->rx_prod);
6170
6171 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6172 sc->rx_cons);
6173
6174 BNX_PRINTF(sc,
6175 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6176 sc->rx_prod_bseq);
6177
6178 BNX_PRINTF(sc,
6179 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6180 sc->rx_mbuf_alloc);
6181
6182 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6183 sc->free_rx_bd);
6184
6185 BNX_PRINTF(sc,
6186 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6187 sc->rx_low_watermark, sc->max_rx_bd);
6188
6189 BNX_PRINTF(sc,
6190 " 0x%08X - (sc->mbuf_alloc_failed) "
6191 "mbuf alloc failures\n",
6192 sc->mbuf_alloc_failed);
6193
6194 BNX_PRINTF(sc,
6195 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6196 "simulated mbuf alloc failures\n",
6197 sc->mbuf_sim_alloc_failed);
6198
6199 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6200 "-----------------------------\n");
6201 }
6202
6203 void
6204 bnx_dump_hw_state(struct bnx_softc *sc)
6205 {
6206 u_int32_t val1;
6207 int i;
6208
6209 aprint_debug_dev(sc->bnx_dev,
6210 "----------------------------"
6211 " Hardware State "
6212 "----------------------------\n");
6213
6214 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6215
6216 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6217 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6218 val1, BNX_MISC_ENABLE_STATUS_BITS);
6219
6220 val1 = REG_RD(sc, BNX_DMA_STATUS);
6221 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6222
6223 val1 = REG_RD(sc, BNX_CTX_STATUS);
6224 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6225
6226 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6227 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6228 BNX_EMAC_STATUS);
6229
6230 val1 = REG_RD(sc, BNX_RPM_STATUS);
6231 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6232
6233 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6234 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6235 BNX_TBDR_STATUS);
6236
6237 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6238 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6239 BNX_TDMA_STATUS);
6240
6241 val1 = REG_RD(sc, BNX_HC_STATUS);
6242 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6243
6244 aprint_debug_dev(sc->bnx_dev,
6245 "----------------------------"
6246 "----------------"
6247 "----------------------------\n");
6248
6249 aprint_debug_dev(sc->bnx_dev,
6250 "----------------------------"
6251 " Register Dump "
6252 "----------------------------\n");
6253
6254 for (i = 0x400; i < 0x8000; i += 0x10)
6255 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6256 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6257 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6258
6259 aprint_debug_dev(sc->bnx_dev,
6260 "----------------------------"
6261 "----------------"
6262 "----------------------------\n");
6263 }
6264
6265 void
6266 bnx_breakpoint(struct bnx_softc *sc)
6267 {
6268 /* Unreachable code to shut the compiler up about unused functions. */
6269 if (0) {
6270 bnx_dump_txbd(sc, 0, NULL);
6271 bnx_dump_rxbd(sc, 0, NULL);
6272 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6273 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6274 bnx_dump_l2fhdr(sc, 0, NULL);
6275 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6276 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6277 bnx_dump_status_block(sc);
6278 bnx_dump_stats_block(sc);
6279 bnx_dump_driver_state(sc);
6280 bnx_dump_hw_state(sc);
6281 }
6282
6283 bnx_dump_driver_state(sc);
6284 /* Print the important status block fields. */
6285 bnx_dump_status_block(sc);
6286
6287 #if 0
6288 /* Call the debugger. */
6289 breakpoint();
6290 #endif
6291
6292 return;
6293 }
6294 #endif
6295