if_bnx.c revision 1.4 1 /* $NetBSD: if_bnx.c,v 1.4 2007/04/09 14:23:03 bouyer Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.43 2007/01/30 03:21:10 krw Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.4 2007/04/09 14:23:03 bouyer Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5708C B1
44 *
45 * The following controllers are not supported by this driver:
46 * (These are not "Production" versions of the controller.)
47 *
48 * BCM5706C A0, A1
49 * BCM5706S A0, A1, A2, A3
50 * BCM5708C A0, B0
51 * BCM5708S A0, B0, B1
52 */
53
54 #include <sys/callout.h>
55
56 #include <dev/pci/if_bnxreg.h>
57 #include <dev/microcode/bnx/bnxfw.h>
58
59 /****************************************************************************/
60 /* BNX Driver Version */
61 /****************************************************************************/
62 const char bnx_driver_version[] = "v0.9.6";
63
64 /****************************************************************************/
65 /* BNX Debug Options */
66 /****************************************************************************/
67 #ifdef BNX_DEBUG
68 u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
69
70 /* 0 = Never */
71 /* 1 = 1 in 2,147,483,648 */
72 /* 256 = 1 in 8,388,608 */
73 /* 2048 = 1 in 1,048,576 */
74 /* 65536 = 1 in 32,768 */
75 /* 1048576 = 1 in 2,048 */
76 /* 268435456 = 1 in 8 */
77 /* 536870912 = 1 in 4 */
78 /* 1073741824 = 1 in 2 */
79
80 /* Controls how often the l2_fhdr frame error check will fail. */
81 int bnx_debug_l2fhdr_status_check = 0;
82
83 /* Controls how often the unexpected attention check will fail. */
84 int bnx_debug_unexpected_attention = 0;
85
86 /* Controls how often to simulate an mbuf allocation failure. */
87 int bnx_debug_mbuf_allocation_failure = 0;
88
89 /* Controls how often to simulate a DMA mapping failure. */
90 int bnx_debug_dma_map_addr_failure = 0;
91
92 /* Controls how often to simulate a bootcode failure. */
93 int bnx_debug_bootcode_running_failure = 0;
94 #endif
95
96 /****************************************************************************/
97 /* PCI Device ID Table */
98 /* */
99 /* Used by bnx_probe() to identify the devices supported by this driver. */
100 /****************************************************************************/
101 static const struct bnx_product {
102 pci_vendor_id_t bp_vendor;
103 pci_product_id_t bp_product;
104 pci_vendor_id_t bp_subvendor;
105 pci_product_id_t bp_subproduct;
106 const char *bp_name;
107 } bnx_devices[] = {
108 #ifdef PCI_SUBPRODUCT_HP_NC370T
109 {
110 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
111 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
112 "HP NC370T Multifunction Gigabit Server Adapter"
113 },
114 #endif
115 #ifdef PCI_SUBPRODUCT_HP_NC370i
116 {
117 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
118 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
119 "HP NC370i Multifunction Gigabit Server Adapter"
120 },
121 #endif
122 {
123 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
124 0, 0,
125 "Broadcom NetXtreme II BCM5706 1000Base-T"
126 },
127 #ifdef PCI_SUBPRODUCT_HP_NC370F
128 {
129 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
130 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
131 "HP NC370F Multifunction Gigabit Server Adapter"
132 },
133 #endif
134 {
135 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
136 0, 0,
137 "Broadcom NetXtreme II BCM5706 1000Base-SX"
138 },
139 {
140 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
141 0, 0,
142 "Broadcom NetXtreme II BCM5708 1000Base-T"
143 },
144 {
145 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
146 0, 0,
147 "Broadcom NetXtreme II BCM5708 1000Base-SX"
148 },
149 };
150
151 /****************************************************************************/
152 /* Supported Flash NVRAM device data. */
153 /****************************************************************************/
154 static struct flash_spec flash_table[] =
155 {
156 /* Slow EEPROM */
157 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
158 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
159 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
160 "EEPROM - slow"},
161 /* Expansion entry 0001 */
162 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
163 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
164 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
165 "Entry 0001"},
166 /* Saifun SA25F010 (non-buffered flash) */
167 /* strap, cfg1, & write1 need updates */
168 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
169 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
170 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
171 "Non-buffered flash (128kB)"},
172 /* Saifun SA25F020 (non-buffered flash) */
173 /* strap, cfg1, & write1 need updates */
174 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
175 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
176 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
177 "Non-buffered flash (256kB)"},
178 /* Expansion entry 0100 */
179 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
180 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
181 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
182 "Entry 0100"},
183 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
184 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
185 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
186 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
187 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
188 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
189 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
190 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
191 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
192 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
193 /* Saifun SA25F005 (non-buffered flash) */
194 /* strap, cfg1, & write1 need updates */
195 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
196 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
197 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
198 "Non-buffered flash (64kB)"},
199 /* Fast EEPROM */
200 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
201 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
202 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
203 "EEPROM - fast"},
204 /* Expansion entry 1001 */
205 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
206 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
208 "Entry 1001"},
209 /* Expansion entry 1010 */
210 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
211 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 "Entry 1010"},
214 /* ATMEL AT45DB011B (buffered flash) */
215 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
216 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
217 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
218 "Buffered flash (128kB)"},
219 /* Expansion entry 1100 */
220 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
221 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
222 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
223 "Entry 1100"},
224 /* Expansion entry 1101 */
225 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
226 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
228 "Entry 1101"},
229 /* Ateml Expansion entry 1110 */
230 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
231 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
232 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
233 "Entry 1110 (Atmel)"},
234 /* ATMEL AT45DB021B (buffered flash) */
235 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
236 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
237 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
238 "Buffered flash (256kB)"},
239 };
240
241 /****************************************************************************/
242 /* OpenBSD device entry points. */
243 /****************************************************************************/
244 static int bnx_probe(device_t, cfdata_t, void *);
245 void bnx_attach(struct device *, struct device *, void *);
246 #if 0
247 void bnx_detach(void *);
248 #endif
249 void bnx_shutdown(void *);
250
251 /****************************************************************************/
252 /* BNX Debug Data Structure Dump Routines */
253 /****************************************************************************/
254 #ifdef BNX_DEBUG
255 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
256 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
257 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
258 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
259 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
260 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
261 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
262 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
263 void bnx_dump_status_block(struct bnx_softc *);
264 void bnx_dump_stats_block(struct bnx_softc *);
265 void bnx_dump_driver_state(struct bnx_softc *);
266 void bnx_dump_hw_state(struct bnx_softc *);
267 void bnx_breakpoint(struct bnx_softc *);
268 #endif
269
270 /****************************************************************************/
271 /* BNX Register/Memory Access Routines */
272 /****************************************************************************/
273 u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
274 void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
275 void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
276 int bnx_miibus_read_reg(struct device *, int, int);
277 void bnx_miibus_write_reg(struct device *, int, int, int);
278 void bnx_miibus_statchg(struct device *);
279
280 /****************************************************************************/
281 /* BNX NVRAM Access Routines */
282 /****************************************************************************/
283 int bnx_acquire_nvram_lock(struct bnx_softc *);
284 int bnx_release_nvram_lock(struct bnx_softc *);
285 void bnx_enable_nvram_access(struct bnx_softc *);
286 void bnx_disable_nvram_access(struct bnx_softc *);
287 int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
288 u_int32_t);
289 int bnx_init_nvram(struct bnx_softc *);
290 int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
291 int bnx_nvram_test(struct bnx_softc *);
292 #ifdef BNX_NVRAM_WRITE_SUPPORT
293 int bnx_enable_nvram_write(struct bnx_softc *);
294 void bnx_disable_nvram_write(struct bnx_softc *);
295 int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
296 int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
297 u_int32_t);
298 int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
299 #endif
300
301 /****************************************************************************/
302 /* */
303 /****************************************************************************/
304 int bnx_dma_alloc(struct bnx_softc *);
305 void bnx_dma_free(struct bnx_softc *);
306 void bnx_release_resources(struct bnx_softc *);
307
308 /****************************************************************************/
309 /* BNX Firmware Synchronization and Load */
310 /****************************************************************************/
311 int bnx_fw_sync(struct bnx_softc *, u_int32_t);
312 void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
313 u_int32_t);
314 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
315 struct fw_info *);
316 void bnx_init_cpus(struct bnx_softc *);
317
318 void bnx_stop(struct bnx_softc *);
319 int bnx_reset(struct bnx_softc *, u_int32_t);
320 int bnx_chipinit(struct bnx_softc *);
321 int bnx_blockinit(struct bnx_softc *);
322 int bnx_get_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
323 u_int16_t *, u_int32_t *);
324
325 int bnx_init_tx_chain(struct bnx_softc *);
326 int bnx_init_rx_chain(struct bnx_softc *);
327 void bnx_free_rx_chain(struct bnx_softc *);
328 void bnx_free_tx_chain(struct bnx_softc *);
329
330 int bnx_tx_encap(struct bnx_softc *, struct mbuf **);
331 void bnx_start(struct ifnet *);
332 int bnx_ioctl(struct ifnet *, u_long, void *);
333 void bnx_watchdog(struct ifnet *);
334 int bnx_ifmedia_upd(struct ifnet *);
335 void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
336 int bnx_init(struct ifnet *);
337
338 void bnx_init_context(struct bnx_softc *);
339 void bnx_get_mac_addr(struct bnx_softc *);
340 void bnx_set_mac_addr(struct bnx_softc *);
341 void bnx_phy_intr(struct bnx_softc *);
342 void bnx_rx_intr(struct bnx_softc *);
343 void bnx_tx_intr(struct bnx_softc *);
344 void bnx_disable_intr(struct bnx_softc *);
345 void bnx_enable_intr(struct bnx_softc *);
346
347 int bnx_intr(void *);
348 void bnx_set_rx_mode(struct bnx_softc *);
349 void bnx_stats_update(struct bnx_softc *);
350 void bnx_tick(void *);
351
352 /****************************************************************************/
353 /* OpenBSD device dispatch table. */
354 /****************************************************************************/
355 CFATTACH_DECL(bnx, sizeof(struct bnx_softc),
356 bnx_probe, bnx_attach, NULL, NULL);
357
358 /****************************************************************************/
359 /* Device probe function. */
360 /* */
361 /* Compares the device to the driver's list of supported devices and */
362 /* reports back to the OS whether this is the right driver for the device. */
363 /* */
364 /* Returns: */
365 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
366 /****************************************************************************/
367 static const struct bnx_product *
368 bnx_lookup(const struct pci_attach_args *pa)
369 {
370 int i;
371 pcireg_t subid;
372
373 for (i = 0; i < sizeof(bnx_devices)/sizeof(struct bnx_product); i++) {
374 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
375 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
376 continue;
377 if (!bnx_devices[i].bp_subvendor)
378 return &bnx_devices[i];
379 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
380 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
381 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
382 return &bnx_devices[i];
383 }
384
385 return NULL;
386 }
387 static int
388 bnx_probe(device_t parent, cfdata_t match, void *aux)
389 {
390 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
391
392 if (bnx_lookup(pa) != NULL)
393 return (1);
394
395 return (0);
396 }
397
398 /****************************************************************************/
399 /* Device attach function. */
400 /* */
401 /* Allocates device resources, performs secondary chip identification, */
402 /* resets and initializes the hardware, and initializes driver instance */
403 /* variables. */
404 /* */
405 /* Returns: */
406 /* 0 on success, positive value on failure. */
407 /****************************************************************************/
408 void
409 bnx_attach(struct device *parent, struct device *self, void *aux)
410 {
411 const struct bnx_product *bp;
412 struct bnx_softc *sc = (struct bnx_softc *)self;
413 struct pci_attach_args *pa = aux;
414 pci_chipset_tag_t pc = pa->pa_pc;
415 pci_intr_handle_t ih;
416 const char *intrstr = NULL;
417 u_int32_t command;
418 struct ifnet *ifp;
419 u_int32_t val;
420 pcireg_t memtype;
421
422 bp = bnx_lookup(pa);
423 if (bp == NULL)
424 panic("unknown device");
425
426 aprint_naive("\n");
427 aprint_normal(": %s", bp->bp_name);
428
429 sc->bnx_pa = *pa;
430
431 /*
432 * Map control/status registers.
433 */
434 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
435 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
436 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
437 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
438
439 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
440 aprint_error("%s: failed to enable memory mapping!\n",
441 sc->bnx_dev.dv_xname);
442 return;
443 }
444
445 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
446 switch (memtype) {
447 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
448 case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
449 if (pci_mapreg_map(pa, BNX_PCI_BAR0,
450 memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
451 NULL, &sc->bnx_size) == 0)
452 break;
453 default:
454 aprint_error("%s: can't find mem space\n",
455 sc->bnx_dev.dv_xname);
456 return;
457 }
458
459 if (pci_intr_map(pa, &ih)) {
460 aprint_error("%s: couldn't map interrupt\n",
461 sc->bnx_dev.dv_xname);
462 goto bnx_attach_fail;
463 }
464
465 intrstr = pci_intr_string(pc, ih);
466
467 /*
468 * Configure byte swap and enable indirect register access.
469 * Rely on CPU to do target byte swapping on big endian systems.
470 * Access to registers outside of PCI configurtion space are not
471 * valid until this is done.
472 */
473 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
474 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
475 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
476
477 /* Save ASIC revsion info. */
478 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
479
480 /* Weed out any non-production controller revisions. */
481 switch(BNX_CHIP_ID(sc)) {
482 case BNX_CHIP_ID_5706_A0:
483 case BNX_CHIP_ID_5706_A1:
484 case BNX_CHIP_ID_5708_A0:
485 case BNX_CHIP_ID_5708_B0:
486 aprint_error("%s: unsupported controller revision (%c%d)!\n",
487 sc->bnx_dev.dv_xname,
488 ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
489 PCI_REVISION(pa->pa_class) & 0x0f);
490 goto bnx_attach_fail;
491 }
492
493 if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
494 aprint_error("%s: SerDes controllers are not supported!\n",
495 sc->bnx_dev.dv_xname);
496 goto bnx_attach_fail;
497 }
498
499 /*
500 * Find the base address for shared memory access.
501 * Newer versions of bootcode use a signature and offset
502 * while older versions use a fixed address.
503 */
504 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
505 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
506 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
507 else
508 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
509
510 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
511
512 /* Set initial device and PHY flags */
513 sc->bnx_flags = 0;
514 sc->bnx_phy_flags = 0;
515
516 /* Get PCI bus information (speed and type). */
517 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
518 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
519 u_int32_t clkreg;
520
521 sc->bnx_flags |= BNX_PCIX_FLAG;
522
523 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
524
525 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
526 switch (clkreg) {
527 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
528 sc->bus_speed_mhz = 133;
529 break;
530
531 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
532 sc->bus_speed_mhz = 100;
533 break;
534
535 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
536 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
537 sc->bus_speed_mhz = 66;
538 break;
539
540 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
541 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
542 sc->bus_speed_mhz = 50;
543 break;
544
545 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
546 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
547 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
548 sc->bus_speed_mhz = 33;
549 break;
550 }
551 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
552 sc->bus_speed_mhz = 66;
553 else
554 sc->bus_speed_mhz = 33;
555
556 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
557 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
558
559 /* Reset the controller. */
560 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
561 goto bnx_attach_fail;
562
563 /* Initialize the controller. */
564 if (bnx_chipinit(sc)) {
565 aprint_error("%s: Controller initialization failed!\n",
566 sc->bnx_dev.dv_xname);
567 goto bnx_attach_fail;
568 }
569
570 /* Perform NVRAM test. */
571 if (bnx_nvram_test(sc)) {
572 aprint_error("%s: NVRAM test failed!\n", sc->bnx_dev.dv_xname);
573 goto bnx_attach_fail;
574 }
575
576 /* Fetch the permanent Ethernet MAC address. */
577 bnx_get_mac_addr(sc);
578 aprint_normal("%s: Ethernet address %s\n", sc->bnx_dev.dv_xname,
579 ether_sprintf(sc->eaddr));
580
581 /*
582 * Trip points control how many BDs
583 * should be ready before generating an
584 * interrupt while ticks control how long
585 * a BD can sit in the chain before
586 * generating an interrupt. Set the default
587 * values for the RX and TX rings.
588 */
589
590 #ifdef BNX_DEBUG
591 /* Force more frequent interrupts. */
592 sc->bnx_tx_quick_cons_trip_int = 1;
593 sc->bnx_tx_quick_cons_trip = 1;
594 sc->bnx_tx_ticks_int = 0;
595 sc->bnx_tx_ticks = 0;
596
597 sc->bnx_rx_quick_cons_trip_int = 1;
598 sc->bnx_rx_quick_cons_trip = 1;
599 sc->bnx_rx_ticks_int = 0;
600 sc->bnx_rx_ticks = 0;
601 #else
602 sc->bnx_tx_quick_cons_trip_int = 20;
603 sc->bnx_tx_quick_cons_trip = 20;
604 sc->bnx_tx_ticks_int = 80;
605 sc->bnx_tx_ticks = 80;
606
607 sc->bnx_rx_quick_cons_trip_int = 6;
608 sc->bnx_rx_quick_cons_trip = 6;
609 sc->bnx_rx_ticks_int = 18;
610 sc->bnx_rx_ticks = 18;
611 #endif
612
613 /* Update statistics once every second. */
614 sc->bnx_stats_ticks = 1000000 & 0xffff00;
615
616 /*
617 * The copper based NetXtreme II controllers
618 * use an integrated PHY at address 1 while
619 * the SerDes controllers use a PHY at
620 * address 2.
621 */
622 sc->bnx_phy_addr = 1;
623
624 if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
625 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
626 sc->bnx_flags |= BNX_NO_WOL_FLAG;
627 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708) {
628 sc->bnx_phy_addr = 2;
629 val = REG_RD_IND(sc, sc->bnx_shmem_base +
630 BNX_SHARED_HW_CFG_CONFIG);
631 if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
632 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
633 }
634 }
635
636 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
637 aprint_error("%s: SerDes is not supported by this driver!\n",
638 sc->bnx_dev.dv_xname);
639 goto bnx_attach_fail;
640 }
641
642 /* Allocate DMA memory resources. */
643 sc->bnx_dmatag = pa->pa_dmat;
644 if (bnx_dma_alloc(sc)) {
645 aprint_error("%s: DMA resource allocation failed!\n",
646 sc->bnx_dev.dv_xname);
647 goto bnx_attach_fail;
648 }
649
650 /* Initialize the ifnet interface. */
651 ifp = &sc->ethercom.ec_if;
652 ifp->if_softc = sc;
653 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
654 ifp->if_ioctl = bnx_ioctl;
655 ifp->if_start = bnx_start;
656 ifp->if_init = bnx_init;
657 ifp->if_timer = 0;
658 ifp->if_watchdog = bnx_watchdog;
659 if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG)
660 ifp->if_baudrate = IF_Gbps(2.5);
661 else
662 ifp->if_baudrate = IF_Gbps(1);
663 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
664 IFQ_SET_READY(&ifp->if_snd);
665 bcopy(sc->bnx_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
666
667 sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU |
668 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
669
670 ifp->if_capabilities |=
671 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
672 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
673 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
674
675 sc->mbuf_alloc_size = BNX_MAX_MRU;
676
677 /* Hookup IRQ last. */
678 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
679 if (sc->bnx_intrhand == NULL) {
680 aprint_error("%s: couldn't establish interrupt",
681 sc->bnx_dev.dv_xname);
682 if (intrstr != NULL)
683 aprint_error(" at %s", intrstr);
684 aprint_error("\n");
685 goto bnx_attach_fail;
686 }
687
688 sc->bnx_mii.mii_ifp = ifp;
689 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
690 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
691 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
692
693 /* Look for our PHY. */
694 ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd,
695 bnx_ifmedia_sts);
696 mii_attach(&sc->bnx_dev, &sc->bnx_mii, 0xffffffff,
697 MII_PHY_ANY, MII_OFFSET_ANY, 0);
698
699 if (LIST_FIRST(&sc->bnx_mii.mii_phys) == NULL) {
700 aprint_error("%s: no PHY found!\n", sc->bnx_dev.dv_xname);
701 ifmedia_add(&sc->bnx_mii.mii_media,
702 IFM_ETHER|IFM_MANUAL, 0, NULL);
703 ifmedia_set(&sc->bnx_mii.mii_media,
704 IFM_ETHER|IFM_MANUAL);
705 } else {
706 ifmedia_set(&sc->bnx_mii.mii_media,
707 IFM_ETHER|IFM_AUTO);
708 }
709
710 /* Attach to the Ethernet interface list. */
711 if_attach(ifp);
712 ether_ifattach(ifp,sc->eaddr);
713
714 callout_init(&sc->bnx_timeout);
715
716 /* Print some important debugging info. */
717 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
718
719 goto bnx_attach_exit;
720
721 bnx_attach_fail:
722 bnx_release_resources(sc);
723
724 bnx_attach_exit:
725 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
726 }
727
728 /****************************************************************************/
729 /* Device detach function. */
730 /* */
731 /* Stops the controller, resets the controller, and releases resources. */
732 /* */
733 /* Returns: */
734 /* 0 on success, positive value on failure. */
735 /****************************************************************************/
736 #if 0
737 void
738 bnx_detach(void *xsc)
739 {
740 struct bnx_softc *sc;
741 struct ifnet *ifp = &sc->arpcom.ac_if;
742
743 sc = device_get_softc(dev);
744
745 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
746
747 /* Stop and reset the controller. */
748 bnx_stop(sc);
749 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
750
751 ether_ifdetach(ifp);
752
753 /* If we have a child device on the MII bus remove it too. */
754 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
755 ifmedia_removeall(&sc->bnx_ifmedia);
756 } else {
757 bus_generic_detach(dev);
758 device_delete_child(dev, sc->bnx_mii);
759 }
760
761 /* Release all remaining resources. */
762 bnx_release_resources(sc);
763
764 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
765
766 return(0);
767 }
768 #endif
769
770 /****************************************************************************/
771 /* Device shutdown function. */
772 /* */
773 /* Stops and resets the controller. */
774 /* */
775 /* Returns: */
776 /* Nothing */
777 /****************************************************************************/
778 void
779 bnx_shutdown(void *xsc)
780 {
781 struct bnx_softc *sc = (struct bnx_softc *)xsc;
782
783 bnx_stop(sc);
784 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
785 }
786
787 /****************************************************************************/
788 /* Indirect register read. */
789 /* */
790 /* Reads NetXtreme II registers using an index/data register pair in PCI */
791 /* configuration space. Using this mechanism avoids issues with posted */
792 /* reads but is much slower than memory-mapped I/O. */
793 /* */
794 /* Returns: */
795 /* The value of the register. */
796 /****************************************************************************/
797 u_int32_t
798 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
799 {
800 struct pci_attach_args *pa = &(sc->bnx_pa);
801
802 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
803 offset);
804 #ifdef BNX_DEBUG
805 {
806 u_int32_t val;
807 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
808 BNX_PCICFG_REG_WINDOW);
809 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
810 "val = 0x%08X\n", __FUNCTION__, offset, val);
811 return (val);
812 }
813 #else
814 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
815 #endif
816 }
817
818 /****************************************************************************/
819 /* Indirect register write. */
820 /* */
821 /* Writes NetXtreme II registers using an index/data register pair in PCI */
822 /* configuration space. Using this mechanism avoids issues with posted */
823 /* writes but is muchh slower than memory-mapped I/O. */
824 /* */
825 /* Returns: */
826 /* Nothing. */
827 /****************************************************************************/
828 void
829 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
830 {
831 struct pci_attach_args *pa = &(sc->bnx_pa);
832
833 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
834 __FUNCTION__, offset, val);
835
836 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
837 offset);
838 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
839 }
840
841 /****************************************************************************/
842 /* Context memory write. */
843 /* */
844 /* The NetXtreme II controller uses context memory to track connection */
845 /* information for L2 and higher network protocols. */
846 /* */
847 /* Returns: */
848 /* Nothing. */
849 /****************************************************************************/
850 void
851 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
852 u_int32_t val)
853 {
854
855 DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
856 "val = 0x%08X\n", __FUNCTION__, cid_addr, offset, val);
857
858 offset += cid_addr;
859 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
860 REG_WR(sc, BNX_CTX_DATA, val);
861 }
862
863 /****************************************************************************/
864 /* PHY register read. */
865 /* */
866 /* Implements register reads on the MII bus. */
867 /* */
868 /* Returns: */
869 /* The value of the register. */
870 /****************************************************************************/
871 int
872 bnx_miibus_read_reg(struct device *dev, int phy, int reg)
873 {
874 struct bnx_softc *sc = (struct bnx_softc *)dev;
875 u_int32_t val;
876 int i;
877
878 /* Make sure we are accessing the correct PHY address. */
879 if (phy != sc->bnx_phy_addr) {
880 DBPRINT(sc, BNX_VERBOSE,
881 "Invalid PHY address %d for PHY read!\n", phy);
882 return(0);
883 }
884
885 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
886 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
887 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
888
889 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
890 REG_RD(sc, BNX_EMAC_MDIO_MODE);
891
892 DELAY(40);
893 }
894
895 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
896 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
897 BNX_EMAC_MDIO_COMM_START_BUSY;
898 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
899
900 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
901 DELAY(10);
902
903 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
904 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
905 DELAY(5);
906
907 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
908 val &= BNX_EMAC_MDIO_COMM_DATA;
909
910 break;
911 }
912 }
913
914 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
915 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
916 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
917 val = 0x0;
918 } else
919 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
920
921 DBPRINT(sc, BNX_EXCESSIVE,
922 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __FUNCTION__, phy,
923 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
924
925 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
926 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
927 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
928
929 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
930 REG_RD(sc, BNX_EMAC_MDIO_MODE);
931
932 DELAY(40);
933 }
934
935 return (val & 0xffff);
936 }
937
938 /****************************************************************************/
939 /* PHY register write. */
940 /* */
941 /* Implements register writes on the MII bus. */
942 /* */
943 /* Returns: */
944 /* The value of the register. */
945 /****************************************************************************/
946 void
947 bnx_miibus_write_reg(struct device *dev, int phy, int reg, int val)
948 {
949 struct bnx_softc *sc = (struct bnx_softc *)dev;
950 u_int32_t val1;
951 int i;
952
953 /* Make sure we are accessing the correct PHY address. */
954 if (phy != sc->bnx_phy_addr) {
955 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
956 phy);
957 return;
958 }
959
960 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
961 "val = 0x%04X\n", __FUNCTION__,
962 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
963
964 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
965 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
966 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
967
968 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
969 REG_RD(sc, BNX_EMAC_MDIO_MODE);
970
971 DELAY(40);
972 }
973
974 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
975 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
976 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
977 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
978
979 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
980 DELAY(10);
981
982 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
983 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
984 DELAY(5);
985 break;
986 }
987 }
988
989 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
990 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
991 __LINE__);
992 }
993
994 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
995 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
996 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
997
998 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
999 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1000
1001 DELAY(40);
1002 }
1003 }
1004
1005 /****************************************************************************/
1006 /* MII bus status change. */
1007 /* */
1008 /* Called by the MII bus driver when the PHY establishes link to set the */
1009 /* MAC interface registers. */
1010 /* */
1011 /* Returns: */
1012 /* Nothing. */
1013 /****************************************************************************/
1014 void
1015 bnx_miibus_statchg(struct device *dev)
1016 {
1017 struct bnx_softc *sc = (struct bnx_softc *)dev;
1018 struct mii_data *mii = &sc->bnx_mii;
1019
1020 BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT);
1021
1022 /* Set MII or GMII inerface based on the speed negotiated by the PHY. */
1023 if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
1024 DBPRINT(sc, BNX_INFO, "Setting GMII interface.\n");
1025 BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_GMII);
1026 } else {
1027 DBPRINT(sc, BNX_INFO, "Setting MII interface.\n");
1028 BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_MII);
1029 }
1030
1031 /* Set half or full duplex based on the duplicity
1032 * negotiated by the PHY.
1033 */
1034 if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
1035 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1036 BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
1037 } else {
1038 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1039 BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
1040 }
1041 }
1042
1043 /****************************************************************************/
1044 /* Acquire NVRAM lock. */
1045 /* */
1046 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1047 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1048 /* for use by the driver. */
1049 /* */
1050 /* Returns: */
1051 /* 0 on success, positive value on failure. */
1052 /****************************************************************************/
1053 int
1054 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1055 {
1056 u_int32_t val;
1057 int j;
1058
1059 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1060
1061 /* Request access to the flash interface. */
1062 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1063 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1064 val = REG_RD(sc, BNX_NVM_SW_ARB);
1065 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1066 break;
1067
1068 DELAY(5);
1069 }
1070
1071 if (j >= NVRAM_TIMEOUT_COUNT) {
1072 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1073 return (EBUSY);
1074 }
1075
1076 return (0);
1077 }
1078
1079 /****************************************************************************/
1080 /* Release NVRAM lock. */
1081 /* */
1082 /* When the caller is finished accessing NVRAM the lock must be released. */
1083 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1084 /* for use by the driver. */
1085 /* */
1086 /* Returns: */
1087 /* 0 on success, positive value on failure. */
1088 /****************************************************************************/
1089 int
1090 bnx_release_nvram_lock(struct bnx_softc *sc)
1091 {
1092 int j;
1093 u_int32_t val;
1094
1095 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1096
1097 /* Relinquish nvram interface. */
1098 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1099
1100 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1101 val = REG_RD(sc, BNX_NVM_SW_ARB);
1102 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1103 break;
1104
1105 DELAY(5);
1106 }
1107
1108 if (j >= NVRAM_TIMEOUT_COUNT) {
1109 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1110 return (EBUSY);
1111 }
1112
1113 return (0);
1114 }
1115
1116 #ifdef BNX_NVRAM_WRITE_SUPPORT
1117 /****************************************************************************/
1118 /* Enable NVRAM write access. */
1119 /* */
1120 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1121 /* */
1122 /* Returns: */
1123 /* 0 on success, positive value on failure. */
1124 /****************************************************************************/
1125 int
1126 bnx_enable_nvram_write(struct bnx_softc *sc)
1127 {
1128 u_int32_t val;
1129
1130 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1131
1132 val = REG_RD(sc, BNX_MISC_CFG);
1133 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1134
1135 if (!sc->bnx_flash_info->buffered) {
1136 int j;
1137
1138 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1139 REG_WR(sc, BNX_NVM_COMMAND,
1140 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1141
1142 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1143 DELAY(5);
1144
1145 val = REG_RD(sc, BNX_NVM_COMMAND);
1146 if (val & BNX_NVM_COMMAND_DONE)
1147 break;
1148 }
1149
1150 if (j >= NVRAM_TIMEOUT_COUNT) {
1151 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1152 return (EBUSY);
1153 }
1154 }
1155
1156 return (0);
1157 }
1158
1159 /****************************************************************************/
1160 /* Disable NVRAM write access. */
1161 /* */
1162 /* When the caller is finished writing to NVRAM write access must be */
1163 /* disabled. */
1164 /* */
1165 /* Returns: */
1166 /* Nothing. */
1167 /****************************************************************************/
1168 void
1169 bnx_disable_nvram_write(struct bnx_softc *sc)
1170 {
1171 u_int32_t val;
1172
1173 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1174
1175 val = REG_RD(sc, BNX_MISC_CFG);
1176 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1177 }
1178 #endif
1179
1180 /****************************************************************************/
1181 /* Enable NVRAM access. */
1182 /* */
1183 /* Before accessing NVRAM for read or write operations the caller must */
1184 /* enabled NVRAM access. */
1185 /* */
1186 /* Returns: */
1187 /* Nothing. */
1188 /****************************************************************************/
1189 void
1190 bnx_enable_nvram_access(struct bnx_softc *sc)
1191 {
1192 u_int32_t val;
1193
1194 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1195
1196 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1197 /* Enable both bits, even on read. */
1198 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1199 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1200 }
1201
1202 /****************************************************************************/
1203 /* Disable NVRAM access. */
1204 /* */
1205 /* When the caller is finished accessing NVRAM access must be disabled. */
1206 /* */
1207 /* Returns: */
1208 /* Nothing. */
1209 /****************************************************************************/
1210 void
1211 bnx_disable_nvram_access(struct bnx_softc *sc)
1212 {
1213 u_int32_t val;
1214
1215 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1216
1217 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1218
1219 /* Disable both bits, even after read. */
1220 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1221 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1222 }
1223
1224 #ifdef BNX_NVRAM_WRITE_SUPPORT
1225 /****************************************************************************/
1226 /* Erase NVRAM page before writing. */
1227 /* */
1228 /* Non-buffered flash parts require that a page be erased before it is */
1229 /* written. */
1230 /* */
1231 /* Returns: */
1232 /* 0 on success, positive value on failure. */
1233 /****************************************************************************/
1234 int
1235 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1236 {
1237 u_int32_t cmd;
1238 int j;
1239
1240 /* Buffered flash doesn't require an erase. */
1241 if (sc->bnx_flash_info->buffered)
1242 return (0);
1243
1244 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1245
1246 /* Build an erase command. */
1247 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1248 BNX_NVM_COMMAND_DOIT;
1249
1250 /*
1251 * Clear the DONE bit separately, set the NVRAM adress to erase,
1252 * and issue the erase command.
1253 */
1254 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1255 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1256 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1257
1258 /* Wait for completion. */
1259 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1260 u_int32_t val;
1261
1262 DELAY(5);
1263
1264 val = REG_RD(sc, BNX_NVM_COMMAND);
1265 if (val & BNX_NVM_COMMAND_DONE)
1266 break;
1267 }
1268
1269 if (j >= NVRAM_TIMEOUT_COUNT) {
1270 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1271 return (EBUSY);
1272 }
1273
1274 return (0);
1275 }
1276 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1277
1278 /****************************************************************************/
1279 /* Read a dword (32 bits) from NVRAM. */
1280 /* */
1281 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1282 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1283 /* */
1284 /* Returns: */
1285 /* 0 on success and the 32 bit value read, positive value on failure. */
1286 /****************************************************************************/
1287 int
1288 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1289 u_int8_t *ret_val, u_int32_t cmd_flags)
1290 {
1291 u_int32_t cmd;
1292 int i, rc = 0;
1293
1294 /* Build the command word. */
1295 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1296
1297 /* Calculate the offset for buffered flash. */
1298 if (sc->bnx_flash_info->buffered)
1299 offset = ((offset / sc->bnx_flash_info->page_size) <<
1300 sc->bnx_flash_info->page_bits) +
1301 (offset % sc->bnx_flash_info->page_size);
1302
1303 /*
1304 * Clear the DONE bit separately, set the address to read,
1305 * and issue the read.
1306 */
1307 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1308 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1309 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1310
1311 /* Wait for completion. */
1312 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1313 u_int32_t val;
1314
1315 DELAY(5);
1316
1317 val = REG_RD(sc, BNX_NVM_COMMAND);
1318 if (val & BNX_NVM_COMMAND_DONE) {
1319 val = REG_RD(sc, BNX_NVM_READ);
1320
1321 val = bnx_be32toh(val);
1322 memcpy(ret_val, &val, 4);
1323 break;
1324 }
1325 }
1326
1327 /* Check for errors. */
1328 if (i >= NVRAM_TIMEOUT_COUNT) {
1329 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1330 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1331 rc = EBUSY;
1332 }
1333
1334 return(rc);
1335 }
1336
1337 #ifdef BNX_NVRAM_WRITE_SUPPORT
1338 /****************************************************************************/
1339 /* Write a dword (32 bits) to NVRAM. */
1340 /* */
1341 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1342 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1343 /* enabled NVRAM write access. */
1344 /* */
1345 /* Returns: */
1346 /* 0 on success, positive value on failure. */
1347 /****************************************************************************/
1348 int
1349 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1350 u_int32_t cmd_flags)
1351 {
1352 u_int32_t cmd, val32;
1353 int j;
1354
1355 /* Build the command word. */
1356 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1357
1358 /* Calculate the offset for buffered flash. */
1359 if (sc->bnx_flash_info->buffered)
1360 offset = ((offset / sc->bnx_flash_info->page_size) <<
1361 sc->bnx_flash_info->page_bits) +
1362 (offset % sc->bnx_flash_info->page_size);
1363
1364 /*
1365 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1366 * set the NVRAM address to write, and issue the write command
1367 */
1368 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1369 memcpy(&val32, val, 4);
1370 val32 = htobe32(val32);
1371 REG_WR(sc, BNX_NVM_WRITE, val32);
1372 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1373 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1374
1375 /* Wait for completion. */
1376 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1377 DELAY(5);
1378
1379 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1380 break;
1381 }
1382 if (j >= NVRAM_TIMEOUT_COUNT) {
1383 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1384 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1385 return (EBUSY);
1386 }
1387
1388 return (0);
1389 }
1390 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1391
1392 /****************************************************************************/
1393 /* Initialize NVRAM access. */
1394 /* */
1395 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1396 /* access that device. */
1397 /* */
1398 /* Returns: */
1399 /* 0 on success, positive value on failure. */
1400 /****************************************************************************/
1401 int
1402 bnx_init_nvram(struct bnx_softc *sc)
1403 {
1404 u_int32_t val;
1405 int j, entry_count, rc;
1406 struct flash_spec *flash;
1407
1408 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
1409
1410 /* Determine the selected interface. */
1411 val = REG_RD(sc, BNX_NVM_CFG1);
1412
1413 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1414
1415 rc = 0;
1416
1417 /*
1418 * Flash reconfiguration is required to support additional
1419 * NVRAM devices not directly supported in hardware.
1420 * Check if the flash interface was reconfigured
1421 * by the bootcode.
1422 */
1423
1424 if (val & 0x40000000) {
1425 /* Flash interface reconfigured by bootcode. */
1426
1427 DBPRINT(sc,BNX_INFO_LOAD,
1428 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1429
1430 for (j = 0, flash = &flash_table[0]; j < entry_count;
1431 j++, flash++) {
1432 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1433 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1434 sc->bnx_flash_info = flash;
1435 break;
1436 }
1437 }
1438 } else {
1439 /* Flash interface not yet reconfigured. */
1440 u_int32_t mask;
1441
1442 DBPRINT(sc,BNX_INFO_LOAD,
1443 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1444
1445 if (val & (1 << 23))
1446 mask = FLASH_BACKUP_STRAP_MASK;
1447 else
1448 mask = FLASH_STRAP_MASK;
1449
1450 /* Look for the matching NVRAM device configuration data. */
1451 for (j = 0, flash = &flash_table[0]; j < entry_count;
1452 j++, flash++) {
1453 /* Check if the dev matches any of the known devices. */
1454 if ((val & mask) == (flash->strapping & mask)) {
1455 /* Found a device match. */
1456 sc->bnx_flash_info = flash;
1457
1458 /* Request access to the flash interface. */
1459 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1460 return (rc);
1461
1462 /* Reconfigure the flash interface. */
1463 bnx_enable_nvram_access(sc);
1464 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1465 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1466 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1467 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1468 bnx_disable_nvram_access(sc);
1469 bnx_release_nvram_lock(sc);
1470
1471 break;
1472 }
1473 }
1474 }
1475
1476 /* Check if a matching device was found. */
1477 if (j == entry_count) {
1478 sc->bnx_flash_info = NULL;
1479 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1480 __FILE__, __LINE__);
1481 rc = ENODEV;
1482 }
1483
1484 /* Write the flash config data to the shared memory interface. */
1485 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1486 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1487 if (val)
1488 sc->bnx_flash_size = val;
1489 else
1490 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1491
1492 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1493 "0x%08X\n", sc->bnx_flash_info->total_size);
1494
1495 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
1496
1497 return (rc);
1498 }
1499
1500 /****************************************************************************/
1501 /* Read an arbitrary range of data from NVRAM. */
1502 /* */
1503 /* Prepares the NVRAM interface for access and reads the requested data */
1504 /* into the supplied buffer. */
1505 /* */
1506 /* Returns: */
1507 /* 0 on success and the data read, positive value on failure. */
1508 /****************************************************************************/
1509 int
1510 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1511 int buf_size)
1512 {
1513 int rc = 0;
1514 u_int32_t cmd_flags, offset32, len32, extra;
1515
1516 if (buf_size == 0)
1517 return (0);
1518
1519 /* Request access to the flash interface. */
1520 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1521 return (rc);
1522
1523 /* Enable access to flash interface */
1524 bnx_enable_nvram_access(sc);
1525
1526 len32 = buf_size;
1527 offset32 = offset;
1528 extra = 0;
1529
1530 cmd_flags = 0;
1531
1532 if (offset32 & 3) {
1533 u_int8_t buf[4];
1534 u_int32_t pre_len;
1535
1536 offset32 &= ~3;
1537 pre_len = 4 - (offset & 3);
1538
1539 if (pre_len >= len32) {
1540 pre_len = len32;
1541 cmd_flags =
1542 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1543 } else
1544 cmd_flags = BNX_NVM_COMMAND_FIRST;
1545
1546 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1547
1548 if (rc)
1549 return (rc);
1550
1551 memcpy(ret_buf, buf + (offset & 3), pre_len);
1552
1553 offset32 += 4;
1554 ret_buf += pre_len;
1555 len32 -= pre_len;
1556 }
1557
1558 if (len32 & 3) {
1559 extra = 4 - (len32 & 3);
1560 len32 = (len32 + 4) & ~3;
1561 }
1562
1563 if (len32 == 4) {
1564 u_int8_t buf[4];
1565
1566 if (cmd_flags)
1567 cmd_flags = BNX_NVM_COMMAND_LAST;
1568 else
1569 cmd_flags =
1570 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1571
1572 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1573
1574 memcpy(ret_buf, buf, 4 - extra);
1575 } else if (len32 > 0) {
1576 u_int8_t buf[4];
1577
1578 /* Read the first word. */
1579 if (cmd_flags)
1580 cmd_flags = 0;
1581 else
1582 cmd_flags = BNX_NVM_COMMAND_FIRST;
1583
1584 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1585
1586 /* Advance to the next dword. */
1587 offset32 += 4;
1588 ret_buf += 4;
1589 len32 -= 4;
1590
1591 while (len32 > 4 && rc == 0) {
1592 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1593
1594 /* Advance to the next dword. */
1595 offset32 += 4;
1596 ret_buf += 4;
1597 len32 -= 4;
1598 }
1599
1600 if (rc)
1601 return (rc);
1602
1603 cmd_flags = BNX_NVM_COMMAND_LAST;
1604 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1605
1606 memcpy(ret_buf, buf, 4 - extra);
1607 }
1608
1609 /* Disable access to flash interface and release the lock. */
1610 bnx_disable_nvram_access(sc);
1611 bnx_release_nvram_lock(sc);
1612
1613 return (rc);
1614 }
1615
1616 #ifdef BNX_NVRAM_WRITE_SUPPORT
1617 /****************************************************************************/
1618 /* Write an arbitrary range of data from NVRAM. */
1619 /* */
1620 /* Prepares the NVRAM interface for write access and writes the requested */
1621 /* data from the supplied buffer. The caller is responsible for */
1622 /* calculating any appropriate CRCs. */
1623 /* */
1624 /* Returns: */
1625 /* 0 on success, positive value on failure. */
1626 /****************************************************************************/
1627 int
1628 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1629 int buf_size)
1630 {
1631 u_int32_t written, offset32, len32;
1632 u_int8_t *buf, start[4], end[4];
1633 int rc = 0;
1634 int align_start, align_end;
1635
1636 buf = data_buf;
1637 offset32 = offset;
1638 len32 = buf_size;
1639 align_start = align_end = 0;
1640
1641 if ((align_start = (offset32 & 3))) {
1642 offset32 &= ~3;
1643 len32 += align_start;
1644 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1645 return (rc);
1646 }
1647
1648 if (len32 & 3) {
1649 if ((len32 > 4) || !align_start) {
1650 align_end = 4 - (len32 & 3);
1651 len32 += align_end;
1652 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1653 end, 4))) {
1654 return (rc);
1655 }
1656 }
1657 }
1658
1659 if (align_start || align_end) {
1660 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1661 if (buf == 0)
1662 return (ENOMEM);
1663
1664 if (align_start)
1665 memcpy(buf, start, 4);
1666
1667 if (align_end)
1668 memcpy(buf + len32 - 4, end, 4);
1669
1670 memcpy(buf + align_start, data_buf, buf_size);
1671 }
1672
1673 written = 0;
1674 while ((written < len32) && (rc == 0)) {
1675 u_int32_t page_start, page_end, data_start, data_end;
1676 u_int32_t addr, cmd_flags;
1677 int i;
1678 u_int8_t flash_buffer[264];
1679
1680 /* Find the page_start addr */
1681 page_start = offset32 + written;
1682 page_start -= (page_start % sc->bnx_flash_info->page_size);
1683 /* Find the page_end addr */
1684 page_end = page_start + sc->bnx_flash_info->page_size;
1685 /* Find the data_start addr */
1686 data_start = (written == 0) ? offset32 : page_start;
1687 /* Find the data_end addr */
1688 data_end = (page_end > offset32 + len32) ?
1689 (offset32 + len32) : page_end;
1690
1691 /* Request access to the flash interface. */
1692 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1693 goto nvram_write_end;
1694
1695 /* Enable access to flash interface */
1696 bnx_enable_nvram_access(sc);
1697
1698 cmd_flags = BNX_NVM_COMMAND_FIRST;
1699 if (sc->bnx_flash_info->buffered == 0) {
1700 int j;
1701
1702 /* Read the whole page into the buffer
1703 * (non-buffer flash only) */
1704 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1705 if (j == (sc->bnx_flash_info->page_size - 4))
1706 cmd_flags |= BNX_NVM_COMMAND_LAST;
1707
1708 rc = bnx_nvram_read_dword(sc,
1709 page_start + j,
1710 &flash_buffer[j],
1711 cmd_flags);
1712
1713 if (rc)
1714 goto nvram_write_end;
1715
1716 cmd_flags = 0;
1717 }
1718 }
1719
1720 /* Enable writes to flash interface (unlock write-protect) */
1721 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1722 goto nvram_write_end;
1723
1724 /* Erase the page */
1725 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1726 goto nvram_write_end;
1727
1728 /* Re-enable the write again for the actual write */
1729 bnx_enable_nvram_write(sc);
1730
1731 /* Loop to write back the buffer data from page_start to
1732 * data_start */
1733 i = 0;
1734 if (sc->bnx_flash_info->buffered == 0) {
1735 for (addr = page_start; addr < data_start;
1736 addr += 4, i += 4) {
1737
1738 rc = bnx_nvram_write_dword(sc, addr,
1739 &flash_buffer[i], cmd_flags);
1740
1741 if (rc != 0)
1742 goto nvram_write_end;
1743
1744 cmd_flags = 0;
1745 }
1746 }
1747
1748 /* Loop to write the new data from data_start to data_end */
1749 for (addr = data_start; addr < data_end; addr += 4, i++) {
1750 if ((addr == page_end - 4) ||
1751 ((sc->bnx_flash_info->buffered) &&
1752 (addr == data_end - 4))) {
1753
1754 cmd_flags |= BNX_NVM_COMMAND_LAST;
1755 }
1756
1757 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1758
1759 if (rc != 0)
1760 goto nvram_write_end;
1761
1762 cmd_flags = 0;
1763 buf += 4;
1764 }
1765
1766 /* Loop to write back the buffer data from data_end
1767 * to page_end */
1768 if (sc->bnx_flash_info->buffered == 0) {
1769 for (addr = data_end; addr < page_end;
1770 addr += 4, i += 4) {
1771
1772 if (addr == page_end-4)
1773 cmd_flags = BNX_NVM_COMMAND_LAST;
1774
1775 rc = bnx_nvram_write_dword(sc, addr,
1776 &flash_buffer[i], cmd_flags);
1777
1778 if (rc != 0)
1779 goto nvram_write_end;
1780
1781 cmd_flags = 0;
1782 }
1783 }
1784
1785 /* Disable writes to flash interface (lock write-protect) */
1786 bnx_disable_nvram_write(sc);
1787
1788 /* Disable access to flash interface */
1789 bnx_disable_nvram_access(sc);
1790 bnx_release_nvram_lock(sc);
1791
1792 /* Increment written */
1793 written += data_end - data_start;
1794 }
1795
1796 nvram_write_end:
1797 if (align_start || align_end)
1798 free(buf, M_DEVBUF);
1799
1800 return (rc);
1801 }
1802 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1803
1804 /****************************************************************************/
1805 /* Verifies that NVRAM is accessible and contains valid data. */
1806 /* */
1807 /* Reads the configuration data from NVRAM and verifies that the CRC is */
1808 /* correct. */
1809 /* */
1810 /* Returns: */
1811 /* 0 on success, positive value on failure. */
1812 /****************************************************************************/
1813 int
1814 bnx_nvram_test(struct bnx_softc *sc)
1815 {
1816 u_int32_t buf[BNX_NVRAM_SIZE / 4];
1817 u_int8_t *data = (u_int8_t *) buf;
1818 int rc = 0;
1819 u_int32_t magic, csum;
1820
1821 /*
1822 * Check that the device NVRAM is valid by reading
1823 * the magic value at offset 0.
1824 */
1825 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1826 goto bnx_nvram_test_done;
1827
1828 magic = bnx_be32toh(buf[0]);
1829 if (magic != BNX_NVRAM_MAGIC) {
1830 rc = ENODEV;
1831 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1832 "Expected: 0x%08X, Found: 0x%08X\n",
1833 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1834 goto bnx_nvram_test_done;
1835 }
1836
1837 /*
1838 * Verify that the device NVRAM includes valid
1839 * configuration data.
1840 */
1841 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1842 goto bnx_nvram_test_done;
1843
1844 csum = ether_crc32_le(data, 0x100);
1845 if (csum != BNX_CRC32_RESIDUAL) {
1846 rc = ENODEV;
1847 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1848 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1849 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1850 goto bnx_nvram_test_done;
1851 }
1852
1853 csum = ether_crc32_le(data + 0x100, 0x100);
1854 if (csum != BNX_CRC32_RESIDUAL) {
1855 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1856 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1857 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1858 rc = ENODEV;
1859 }
1860
1861 bnx_nvram_test_done:
1862 return (rc);
1863 }
1864
1865 /****************************************************************************/
1866 /* Free any DMA memory owned by the driver. */
1867 /* */
1868 /* Scans through each data structre that requires DMA memory and frees */
1869 /* the memory if allocated. */
1870 /* */
1871 /* Returns: */
1872 /* Nothing. */
1873 /****************************************************************************/
1874 void
1875 bnx_dma_free(struct bnx_softc *sc)
1876 {
1877 int i;
1878
1879 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
1880
1881 /* Destroy the status block. */
1882 if (sc->status_block != NULL && sc->status_map != NULL) {
1883 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
1884 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
1885 BNX_STATUS_BLK_SZ);
1886 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
1887 sc->status_rseg);
1888 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
1889 sc->status_block = NULL;
1890 sc->status_map = NULL;
1891 }
1892
1893 /* Destroy the statistics block. */
1894 if (sc->stats_block != NULL && sc->stats_map != NULL) {
1895 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
1896 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
1897 BNX_STATS_BLK_SZ);
1898 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
1899 sc->stats_rseg);
1900 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
1901 sc->stats_block = NULL;
1902 sc->stats_map = NULL;
1903 }
1904
1905 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
1906 for (i = 0; i < TX_PAGES; i++ ) {
1907 if (sc->tx_bd_chain[i] != NULL &&
1908 sc->tx_bd_chain_map[i] != NULL) {
1909 bus_dmamap_unload(sc->bnx_dmatag,
1910 sc->tx_bd_chain_map[i]);
1911 bus_dmamem_unmap(sc->bnx_dmatag,
1912 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
1913 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
1914 sc->tx_bd_chain_rseg[i]);
1915 bus_dmamap_destroy(sc->bnx_dmatag,
1916 sc->tx_bd_chain_map[i]);
1917 sc->tx_bd_chain[i] = NULL;
1918 sc->tx_bd_chain_map[i] = NULL;
1919 }
1920 }
1921
1922 /* Unload and destroy the TX mbuf maps. */
1923 for (i = 0; i < TOTAL_TX_BD; i++) {
1924 if (sc->tx_mbuf_map[i] != NULL) {
1925 bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1926 bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
1927 }
1928 }
1929
1930 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
1931 for (i = 0; i < RX_PAGES; i++ ) {
1932 if (sc->rx_bd_chain[i] != NULL &&
1933 sc->rx_bd_chain_map[i] != NULL) {
1934 bus_dmamap_unload(sc->bnx_dmatag,
1935 sc->rx_bd_chain_map[i]);
1936 bus_dmamem_unmap(sc->bnx_dmatag,
1937 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
1938 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
1939 sc->rx_bd_chain_rseg[i]);
1940
1941 bus_dmamap_destroy(sc->bnx_dmatag,
1942 sc->rx_bd_chain_map[i]);
1943 sc->rx_bd_chain[i] = NULL;
1944 sc->rx_bd_chain_map[i] = NULL;
1945 }
1946 }
1947
1948 /* Unload and destroy the RX mbuf maps. */
1949 for (i = 0; i < TOTAL_RX_BD; i++) {
1950 if (sc->rx_mbuf_map[i] != NULL) {
1951 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1952 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
1953 }
1954 }
1955
1956 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
1957 }
1958
1959 /****************************************************************************/
1960 /* Allocate any DMA memory needed by the driver. */
1961 /* */
1962 /* Allocates DMA memory needed for the various global structures needed by */
1963 /* hardware. */
1964 /* */
1965 /* Returns: */
1966 /* 0 for success, positive value for failure. */
1967 /****************************************************************************/
1968 int
1969 bnx_dma_alloc(struct bnx_softc *sc)
1970 {
1971 int i, rc = 0;
1972
1973 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
1974
1975 /*
1976 * Allocate DMA memory for the status block, map the memory into DMA
1977 * space, and fetch the physical address of the block.
1978 */
1979 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
1980 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
1981 aprint_error("%s: Could not create status block DMA map!\n",
1982 sc->bnx_dev.dv_xname);
1983 rc = ENOMEM;
1984 goto bnx_dma_alloc_exit;
1985 }
1986
1987 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
1988 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
1989 &sc->status_rseg, BUS_DMA_NOWAIT)) {
1990 aprint_error(
1991 "%s: Could not allocate status block DMA memory!\n",
1992 sc->bnx_dev.dv_xname);
1993 rc = ENOMEM;
1994 goto bnx_dma_alloc_exit;
1995 }
1996
1997 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
1998 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
1999 aprint_error("%s: Could not map status block DMA memory!\n",
2000 sc->bnx_dev.dv_xname);
2001 rc = ENOMEM;
2002 goto bnx_dma_alloc_exit;
2003 }
2004
2005 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2006 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2007 aprint_error("%s: Could not load status block DMA memory!\n",
2008 sc->bnx_dev.dv_xname);
2009 rc = ENOMEM;
2010 goto bnx_dma_alloc_exit;
2011 }
2012
2013 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2014 bzero(sc->status_block, BNX_STATUS_BLK_SZ);
2015
2016 /* DRC - Fix for 64 bit addresses. */
2017 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2018 (u_int32_t) sc->status_block_paddr);
2019
2020 /*
2021 * Allocate DMA memory for the statistics block, map the memory into
2022 * DMA space, and fetch the physical address of the block.
2023 */
2024 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2025 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2026 aprint_error("%s: Could not create stats block DMA map!\n",
2027 sc->bnx_dev.dv_xname);
2028 rc = ENOMEM;
2029 goto bnx_dma_alloc_exit;
2030 }
2031
2032 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2033 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2034 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2035 aprint_error("%s: Could not allocate stats block DMA memory!\n",
2036 sc->bnx_dev.dv_xname);
2037 rc = ENOMEM;
2038 goto bnx_dma_alloc_exit;
2039 }
2040
2041 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2042 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2043 aprint_error("%s: Could not map stats block DMA memory!\n",
2044 sc->bnx_dev.dv_xname);
2045 rc = ENOMEM;
2046 goto bnx_dma_alloc_exit;
2047 }
2048
2049 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2050 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2051 aprint_error("%s: Could not load status block DMA memory!\n",
2052 sc->bnx_dev.dv_xname);
2053 rc = ENOMEM;
2054 goto bnx_dma_alloc_exit;
2055 }
2056
2057 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2058 bzero(sc->stats_block, BNX_STATS_BLK_SZ);
2059
2060 /* DRC - Fix for 64 bit address. */
2061 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2062 (u_int32_t) sc->stats_block_paddr);
2063
2064 /*
2065 * Allocate DMA memory for the TX buffer descriptor chain,
2066 * and fetch the physical address of the block.
2067 */
2068 for (i = 0; i < TX_PAGES; i++) {
2069 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2070 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2071 &sc->tx_bd_chain_map[i])) {
2072 aprint_error(
2073 "%s: Could not create Tx desc %d DMA map!\n",
2074 sc->bnx_dev.dv_xname, i);
2075 rc = ENOMEM;
2076 goto bnx_dma_alloc_exit;
2077 }
2078
2079 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2080 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2081 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2082 aprint_error(
2083 "%s: Could not allocate TX desc %d DMA memory!\n",
2084 sc->bnx_dev.dv_xname, i);
2085 rc = ENOMEM;
2086 goto bnx_dma_alloc_exit;
2087 }
2088
2089 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2090 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2091 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2092 aprint_error(
2093 "%s: Could not map TX desc %d DMA memory!\n",
2094 sc->bnx_dev.dv_xname, i);
2095 rc = ENOMEM;
2096 goto bnx_dma_alloc_exit;
2097 }
2098
2099 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2100 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2101 BUS_DMA_NOWAIT)) {
2102 aprint_error(
2103 "%s: Could not load TX desc %d DMA memory!\n",
2104 sc->bnx_dev.dv_xname, i);
2105 rc = ENOMEM;
2106 goto bnx_dma_alloc_exit;
2107 }
2108
2109 sc->tx_bd_chain_paddr[i] =
2110 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2111
2112 /* DRC - Fix for 64 bit systems. */
2113 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2114 i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2115 }
2116
2117 /*
2118 * Create DMA maps for the TX buffer mbufs.
2119 */
2120 for (i = 0; i < TOTAL_TX_BD; i++) {
2121 if (bus_dmamap_create(sc->bnx_dmatag,
2122 MCLBYTES * BNX_MAX_SEGMENTS,
2123 USABLE_TX_BD - BNX_TX_SLACK_SPACE,
2124 MCLBYTES, 0, BUS_DMA_NOWAIT,
2125 &sc->tx_mbuf_map[i])) {
2126 aprint_error(
2127 "%s: Could not create Tx mbuf %d DMA map!\n",
2128 sc->bnx_dev.dv_xname, i);
2129 rc = ENOMEM;
2130 goto bnx_dma_alloc_exit;
2131 }
2132 }
2133
2134 /*
2135 * Allocate DMA memory for the Rx buffer descriptor chain,
2136 * and fetch the physical address of the block.
2137 */
2138 for (i = 0; i < RX_PAGES; i++) {
2139 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2140 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2141 &sc->rx_bd_chain_map[i])) {
2142 aprint_error(
2143 "%s: Could not create Rx desc %d DMA map!\n",
2144 sc->bnx_dev.dv_xname, i);
2145 rc = ENOMEM;
2146 goto bnx_dma_alloc_exit;
2147 }
2148
2149 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2150 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2151 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2152 aprint_error(
2153 "%s: Could not allocate Rx desc %d DMA memory!\n",
2154 sc->bnx_dev.dv_xname, i);
2155 rc = ENOMEM;
2156 goto bnx_dma_alloc_exit;
2157 }
2158
2159 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2160 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2161 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2162 aprint_error(
2163 "%s: Could not map Rx desc %d DMA memory!\n",
2164 sc->bnx_dev.dv_xname, i);
2165 rc = ENOMEM;
2166 goto bnx_dma_alloc_exit;
2167 }
2168
2169 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2170 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2171 BUS_DMA_NOWAIT)) {
2172 aprint_error(
2173 "%s: Could not load Rx desc %d DMA memory!\n",
2174 sc->bnx_dev.dv_xname, i);
2175 rc = ENOMEM;
2176 goto bnx_dma_alloc_exit;
2177 }
2178
2179 bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2180 sc->rx_bd_chain_paddr[i] =
2181 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2182
2183 /* DRC - Fix for 64 bit systems. */
2184 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2185 i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2186 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2187 0, BNX_RX_CHAIN_PAGE_SZ,
2188 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2189 }
2190
2191 /*
2192 * Create DMA maps for the Rx buffer mbufs.
2193 */
2194 for (i = 0; i < TOTAL_RX_BD; i++) {
2195 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
2196 BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
2197 &sc->rx_mbuf_map[i])) {
2198 aprint_error(
2199 "%s: Could not create Rx mbuf %d DMA map!\n",
2200 sc->bnx_dev.dv_xname, i);
2201 rc = ENOMEM;
2202 goto bnx_dma_alloc_exit;
2203 }
2204 }
2205
2206 bnx_dma_alloc_exit:
2207 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
2208
2209 return(rc);
2210 }
2211
2212 /****************************************************************************/
2213 /* Release all resources used by the driver. */
2214 /* */
2215 /* Releases all resources acquired by the driver including interrupts, */
2216 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2217 /* */
2218 /* Returns: */
2219 /* Nothing. */
2220 /****************************************************************************/
2221 void
2222 bnx_release_resources(struct bnx_softc *sc)
2223 {
2224 struct pci_attach_args *pa = &(sc->bnx_pa);
2225
2226 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
2227
2228 bnx_dma_free(sc);
2229
2230 if (sc->bnx_intrhand != NULL)
2231 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2232
2233 if (sc->bnx_size)
2234 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2235
2236 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
2237 }
2238
2239 /****************************************************************************/
2240 /* Firmware synchronization. */
2241 /* */
2242 /* Before performing certain events such as a chip reset, synchronize with */
2243 /* the firmware first. */
2244 /* */
2245 /* Returns: */
2246 /* 0 for success, positive value for failure. */
2247 /****************************************************************************/
2248 int
2249 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2250 {
2251 int i, rc = 0;
2252 u_int32_t val;
2253
2254 /* Don't waste any time if we've timed out before. */
2255 if (sc->bnx_fw_timed_out) {
2256 rc = EBUSY;
2257 goto bnx_fw_sync_exit;
2258 }
2259
2260 /* Increment the message sequence number. */
2261 sc->bnx_fw_wr_seq++;
2262 msg_data |= sc->bnx_fw_wr_seq;
2263
2264 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2265 msg_data);
2266
2267 /* Send the message to the bootcode driver mailbox. */
2268 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2269
2270 /* Wait for the bootcode to acknowledge the message. */
2271 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2272 /* Check for a response in the bootcode firmware mailbox. */
2273 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2274 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2275 break;
2276 DELAY(1000);
2277 }
2278
2279 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2280 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2281 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2282 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2283 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2284
2285 msg_data &= ~BNX_DRV_MSG_CODE;
2286 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2287
2288 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2289
2290 sc->bnx_fw_timed_out = 1;
2291 rc = EBUSY;
2292 }
2293
2294 bnx_fw_sync_exit:
2295 return (rc);
2296 }
2297
2298 /****************************************************************************/
2299 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2300 /* */
2301 /* Returns: */
2302 /* Nothing. */
2303 /****************************************************************************/
2304 void
2305 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2306 u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2307 {
2308 int i;
2309 u_int32_t val;
2310
2311 for (i = 0; i < rv2p_code_len; i += 8) {
2312 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2313 rv2p_code++;
2314 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2315 rv2p_code++;
2316
2317 if (rv2p_proc == RV2P_PROC1) {
2318 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2319 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2320 }
2321 else {
2322 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2323 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2324 }
2325 }
2326
2327 /* Reset the processor, un-stall is done later. */
2328 if (rv2p_proc == RV2P_PROC1)
2329 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2330 else
2331 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2332 }
2333
2334 /****************************************************************************/
2335 /* Load RISC processor firmware. */
2336 /* */
2337 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2338 /* associated with a particular processor. */
2339 /* */
2340 /* Returns: */
2341 /* Nothing. */
2342 /****************************************************************************/
2343 void
2344 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2345 struct fw_info *fw)
2346 {
2347 u_int32_t offset;
2348 u_int32_t val;
2349
2350 /* Halt the CPU. */
2351 val = REG_RD_IND(sc, cpu_reg->mode);
2352 val |= cpu_reg->mode_value_halt;
2353 REG_WR_IND(sc, cpu_reg->mode, val);
2354 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2355
2356 /* Load the Text area. */
2357 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2358 if (fw->text) {
2359 int j;
2360
2361 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2362 REG_WR_IND(sc, offset, fw->text[j]);
2363 }
2364
2365 /* Load the Data area. */
2366 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2367 if (fw->data) {
2368 int j;
2369
2370 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2371 REG_WR_IND(sc, offset, fw->data[j]);
2372 }
2373
2374 /* Load the SBSS area. */
2375 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2376 if (fw->sbss) {
2377 int j;
2378
2379 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2380 REG_WR_IND(sc, offset, fw->sbss[j]);
2381 }
2382
2383 /* Load the BSS area. */
2384 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2385 if (fw->bss) {
2386 int j;
2387
2388 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2389 REG_WR_IND(sc, offset, fw->bss[j]);
2390 }
2391
2392 /* Load the Read-Only area. */
2393 offset = cpu_reg->spad_base +
2394 (fw->rodata_addr - cpu_reg->mips_view_base);
2395 if (fw->rodata) {
2396 int j;
2397
2398 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2399 REG_WR_IND(sc, offset, fw->rodata[j]);
2400 }
2401
2402 /* Clear the pre-fetch instruction. */
2403 REG_WR_IND(sc, cpu_reg->inst, 0);
2404 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2405
2406 /* Start the CPU. */
2407 val = REG_RD_IND(sc, cpu_reg->mode);
2408 val &= ~cpu_reg->mode_value_halt;
2409 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2410 REG_WR_IND(sc, cpu_reg->mode, val);
2411 }
2412
2413 /****************************************************************************/
2414 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2415 /* */
2416 /* Loads the firmware for each CPU and starts the CPU. */
2417 /* */
2418 /* Returns: */
2419 /* Nothing. */
2420 /****************************************************************************/
2421 void
2422 bnx_init_cpus(struct bnx_softc *sc)
2423 {
2424 struct cpu_reg cpu_reg;
2425 struct fw_info fw;
2426
2427 /* Initialize the RV2P processor. */
2428 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2429 RV2P_PROC1);
2430 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2431 RV2P_PROC2);
2432
2433 /* Initialize the RX Processor. */
2434 cpu_reg.mode = BNX_RXP_CPU_MODE;
2435 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2436 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2437 cpu_reg.state = BNX_RXP_CPU_STATE;
2438 cpu_reg.state_value_clear = 0xffffff;
2439 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2440 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2441 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2442 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2443 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2444 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2445 cpu_reg.mips_view_base = 0x8000000;
2446
2447 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2448 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2449 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2450 fw.start_addr = bnx_RXP_b06FwStartAddr;
2451
2452 fw.text_addr = bnx_RXP_b06FwTextAddr;
2453 fw.text_len = bnx_RXP_b06FwTextLen;
2454 fw.text_index = 0;
2455 fw.text = bnx_RXP_b06FwText;
2456
2457 fw.data_addr = bnx_RXP_b06FwDataAddr;
2458 fw.data_len = bnx_RXP_b06FwDataLen;
2459 fw.data_index = 0;
2460 fw.data = bnx_RXP_b06FwData;
2461
2462 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2463 fw.sbss_len = bnx_RXP_b06FwSbssLen;
2464 fw.sbss_index = 0;
2465 fw.sbss = bnx_RXP_b06FwSbss;
2466
2467 fw.bss_addr = bnx_RXP_b06FwBssAddr;
2468 fw.bss_len = bnx_RXP_b06FwBssLen;
2469 fw.bss_index = 0;
2470 fw.bss = bnx_RXP_b06FwBss;
2471
2472 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2473 fw.rodata_len = bnx_RXP_b06FwRodataLen;
2474 fw.rodata_index = 0;
2475 fw.rodata = bnx_RXP_b06FwRodata;
2476
2477 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2478 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2479
2480 /* Initialize the TX Processor. */
2481 cpu_reg.mode = BNX_TXP_CPU_MODE;
2482 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2483 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2484 cpu_reg.state = BNX_TXP_CPU_STATE;
2485 cpu_reg.state_value_clear = 0xffffff;
2486 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2487 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2488 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2489 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2490 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2491 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2492 cpu_reg.mips_view_base = 0x8000000;
2493
2494 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2495 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2496 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2497 fw.start_addr = bnx_TXP_b06FwStartAddr;
2498
2499 fw.text_addr = bnx_TXP_b06FwTextAddr;
2500 fw.text_len = bnx_TXP_b06FwTextLen;
2501 fw.text_index = 0;
2502 fw.text = bnx_TXP_b06FwText;
2503
2504 fw.data_addr = bnx_TXP_b06FwDataAddr;
2505 fw.data_len = bnx_TXP_b06FwDataLen;
2506 fw.data_index = 0;
2507 fw.data = bnx_TXP_b06FwData;
2508
2509 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2510 fw.sbss_len = bnx_TXP_b06FwSbssLen;
2511 fw.sbss_index = 0;
2512 fw.sbss = bnx_TXP_b06FwSbss;
2513
2514 fw.bss_addr = bnx_TXP_b06FwBssAddr;
2515 fw.bss_len = bnx_TXP_b06FwBssLen;
2516 fw.bss_index = 0;
2517 fw.bss = bnx_TXP_b06FwBss;
2518
2519 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
2520 fw.rodata_len = bnx_TXP_b06FwRodataLen;
2521 fw.rodata_index = 0;
2522 fw.rodata = bnx_TXP_b06FwRodata;
2523
2524 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2525 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2526
2527 /* Initialize the TX Patch-up Processor. */
2528 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2529 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2530 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2531 cpu_reg.state = BNX_TPAT_CPU_STATE;
2532 cpu_reg.state_value_clear = 0xffffff;
2533 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2534 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2535 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2536 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2537 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2538 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2539 cpu_reg.mips_view_base = 0x8000000;
2540
2541 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
2542 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
2543 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
2544 fw.start_addr = bnx_TPAT_b06FwStartAddr;
2545
2546 fw.text_addr = bnx_TPAT_b06FwTextAddr;
2547 fw.text_len = bnx_TPAT_b06FwTextLen;
2548 fw.text_index = 0;
2549 fw.text = bnx_TPAT_b06FwText;
2550
2551 fw.data_addr = bnx_TPAT_b06FwDataAddr;
2552 fw.data_len = bnx_TPAT_b06FwDataLen;
2553 fw.data_index = 0;
2554 fw.data = bnx_TPAT_b06FwData;
2555
2556 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
2557 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
2558 fw.sbss_index = 0;
2559 fw.sbss = bnx_TPAT_b06FwSbss;
2560
2561 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
2562 fw.bss_len = bnx_TPAT_b06FwBssLen;
2563 fw.bss_index = 0;
2564 fw.bss = bnx_TPAT_b06FwBss;
2565
2566 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
2567 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
2568 fw.rodata_index = 0;
2569 fw.rodata = bnx_TPAT_b06FwRodata;
2570
2571 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2572 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2573
2574 /* Initialize the Completion Processor. */
2575 cpu_reg.mode = BNX_COM_CPU_MODE;
2576 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2577 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2578 cpu_reg.state = BNX_COM_CPU_STATE;
2579 cpu_reg.state_value_clear = 0xffffff;
2580 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2581 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2582 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2583 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2584 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2585 cpu_reg.spad_base = BNX_COM_SCRATCH;
2586 cpu_reg.mips_view_base = 0x8000000;
2587
2588 fw.ver_major = bnx_COM_b06FwReleaseMajor;
2589 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
2590 fw.ver_fix = bnx_COM_b06FwReleaseFix;
2591 fw.start_addr = bnx_COM_b06FwStartAddr;
2592
2593 fw.text_addr = bnx_COM_b06FwTextAddr;
2594 fw.text_len = bnx_COM_b06FwTextLen;
2595 fw.text_index = 0;
2596 fw.text = bnx_COM_b06FwText;
2597
2598 fw.data_addr = bnx_COM_b06FwDataAddr;
2599 fw.data_len = bnx_COM_b06FwDataLen;
2600 fw.data_index = 0;
2601 fw.data = bnx_COM_b06FwData;
2602
2603 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
2604 fw.sbss_len = bnx_COM_b06FwSbssLen;
2605 fw.sbss_index = 0;
2606 fw.sbss = bnx_COM_b06FwSbss;
2607
2608 fw.bss_addr = bnx_COM_b06FwBssAddr;
2609 fw.bss_len = bnx_COM_b06FwBssLen;
2610 fw.bss_index = 0;
2611 fw.bss = bnx_COM_b06FwBss;
2612
2613 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
2614 fw.rodata_len = bnx_COM_b06FwRodataLen;
2615 fw.rodata_index = 0;
2616 fw.rodata = bnx_COM_b06FwRodata;
2617
2618 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2619 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2620 }
2621
2622 /****************************************************************************/
2623 /* Initialize context memory. */
2624 /* */
2625 /* Clears the memory associated with each Context ID (CID). */
2626 /* */
2627 /* Returns: */
2628 /* Nothing. */
2629 /****************************************************************************/
2630 void
2631 bnx_init_context(struct bnx_softc *sc)
2632 {
2633 u_int32_t vcid;
2634
2635 vcid = 96;
2636 while (vcid) {
2637 u_int32_t vcid_addr, pcid_addr, offset;
2638
2639 vcid--;
2640
2641 vcid_addr = GET_CID_ADDR(vcid);
2642 pcid_addr = vcid_addr;
2643
2644 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
2645 REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2646
2647 /* Zero out the context. */
2648 for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
2649 CTX_WR(sc, 0x00, offset, 0);
2650
2651 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
2652 REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
2653 }
2654 }
2655
2656 /****************************************************************************/
2657 /* Fetch the permanent MAC address of the controller. */
2658 /* */
2659 /* Returns: */
2660 /* Nothing. */
2661 /****************************************************************************/
2662 void
2663 bnx_get_mac_addr(struct bnx_softc *sc)
2664 {
2665 u_int32_t mac_lo = 0, mac_hi = 0;
2666
2667 /*
2668 * The NetXtreme II bootcode populates various NIC
2669 * power-on and runtime configuration items in a
2670 * shared memory area. The factory configured MAC
2671 * address is available from both NVRAM and the
2672 * shared memory area so we'll read the value from
2673 * shared memory for speed.
2674 */
2675
2676 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
2677 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
2678
2679 if ((mac_lo == 0) && (mac_hi == 0)) {
2680 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
2681 __FILE__, __LINE__);
2682 } else {
2683 sc->eaddr[0] = (u_char)(mac_hi >> 8);
2684 sc->eaddr[1] = (u_char)(mac_hi >> 0);
2685 sc->eaddr[2] = (u_char)(mac_lo >> 24);
2686 sc->eaddr[3] = (u_char)(mac_lo >> 16);
2687 sc->eaddr[4] = (u_char)(mac_lo >> 8);
2688 sc->eaddr[5] = (u_char)(mac_lo >> 0);
2689 }
2690
2691 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
2692 "%s\n", ether_sprintf(sc->eaddr));
2693 }
2694
2695 /****************************************************************************/
2696 /* Program the MAC address. */
2697 /* */
2698 /* Returns: */
2699 /* Nothing. */
2700 /****************************************************************************/
2701 void
2702 bnx_set_mac_addr(struct bnx_softc *sc)
2703 {
2704 u_int32_t val;
2705 u_int8_t *mac_addr = LLADDR(sc->ethercom.ec_if.if_sadl);
2706
2707 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
2708 "%s\n", ether_sprintf(sc->eaddr));
2709
2710 val = (mac_addr[0] << 8) | mac_addr[1];
2711
2712 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
2713
2714 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
2715 (mac_addr[4] << 8) | mac_addr[5];
2716
2717 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
2718 }
2719
2720 /****************************************************************************/
2721 /* Stop the controller. */
2722 /* */
2723 /* Returns: */
2724 /* Nothing. */
2725 /****************************************************************************/
2726 void
2727 bnx_stop(struct bnx_softc *sc)
2728 {
2729 struct ifnet *ifp = &sc->ethercom.ec_if;
2730 struct mii_data *mii = NULL;
2731
2732 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
2733
2734 mii = &sc->bnx_mii;
2735
2736 callout_stop(&sc->bnx_timeout);
2737
2738 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
2739
2740 /* Disable the transmit/receive blocks. */
2741 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
2742 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2743 DELAY(20);
2744
2745 bnx_disable_intr(sc);
2746
2747 /* Tell firmware that the driver is going away. */
2748 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
2749
2750 /* Free the RX lists. */
2751 bnx_free_rx_chain(sc);
2752
2753 /* Free TX buffers. */
2754 bnx_free_tx_chain(sc);
2755
2756 ifp->if_timer = 0;
2757
2758 sc->bnx_link = 0;
2759
2760 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
2761
2762 }
2763
2764 int
2765 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
2766 {
2767 u_int32_t val;
2768 int i, rc = 0;
2769
2770 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
2771
2772 /* Wait for pending PCI transactions to complete. */
2773 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
2774 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
2775 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
2776 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
2777 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
2778 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
2779 DELAY(5);
2780
2781 /* Assume bootcode is running. */
2782 sc->bnx_fw_timed_out = 0;
2783
2784 /* Give the firmware a chance to prepare for the reset. */
2785 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
2786 if (rc)
2787 goto bnx_reset_exit;
2788
2789 /* Set a firmware reminder that this is a soft reset. */
2790 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
2791 BNX_DRV_RESET_SIGNATURE_MAGIC);
2792
2793 /* Dummy read to force the chip to complete all current transactions. */
2794 val = REG_RD(sc, BNX_MISC_ID);
2795
2796 /* Chip reset. */
2797 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2798 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
2799 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
2800 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
2801
2802 /* Allow up to 30us for reset to complete. */
2803 for (i = 0; i < 10; i++) {
2804 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
2805 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2806 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
2807 break;
2808
2809 DELAY(10);
2810 }
2811
2812 /* Check that reset completed successfully. */
2813 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
2814 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
2815 BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
2816 rc = EBUSY;
2817 goto bnx_reset_exit;
2818 }
2819
2820 /* Make sure byte swapping is properly configured. */
2821 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
2822 if (val != 0x01020304) {
2823 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
2824 __FILE__, __LINE__);
2825 rc = ENODEV;
2826 goto bnx_reset_exit;
2827 }
2828
2829 /* Just completed a reset, assume that firmware is running again. */
2830 sc->bnx_fw_timed_out = 0;
2831
2832 /* Wait for the firmware to finish its initialization. */
2833 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
2834 if (rc)
2835 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
2836 "initialization!\n", __FILE__, __LINE__);
2837
2838 bnx_reset_exit:
2839 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
2840
2841 return (rc);
2842 }
2843
2844 int
2845 bnx_chipinit(struct bnx_softc *sc)
2846 {
2847 struct pci_attach_args *pa = &(sc->bnx_pa);
2848 u_int32_t val;
2849 int rc = 0;
2850
2851 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
2852
2853 /* Make sure the interrupt is not active. */
2854 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
2855
2856 /* Initialize DMA byte/word swapping, configure the number of DMA */
2857 /* channels and PCI clock compensation delay. */
2858 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
2859 BNX_DMA_CONFIG_DATA_WORD_SWAP |
2860 #if BYTE_ORDER == BIG_ENDIAN
2861 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
2862 #endif
2863 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
2864 DMA_READ_CHANS << 12 |
2865 DMA_WRITE_CHANS << 16;
2866
2867 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
2868
2869 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
2870 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
2871
2872 /*
2873 * This setting resolves a problem observed on certain Intel PCI
2874 * chipsets that cannot handle multiple outstanding DMA operations.
2875 * See errata E9_5706A1_65.
2876 */
2877 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
2878 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
2879 !(sc->bnx_flags & BNX_PCIX_FLAG))
2880 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
2881
2882 REG_WR(sc, BNX_DMA_CONFIG, val);
2883
2884 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
2885 if (sc->bnx_flags & BNX_PCIX_FLAG) {
2886 u_int16_t nval;
2887
2888 nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
2889 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
2890 nval & ~0x2);
2891 }
2892
2893 /* Enable the RX_V2P and Context state machines before access. */
2894 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
2895 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
2896 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
2897 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
2898
2899 /* Initialize context mapping and zero out the quick contexts. */
2900 bnx_init_context(sc);
2901
2902 /* Initialize the on-boards CPUs */
2903 bnx_init_cpus(sc);
2904
2905 /* Prepare NVRAM for access. */
2906 if (bnx_init_nvram(sc)) {
2907 rc = ENODEV;
2908 goto bnx_chipinit_exit;
2909 }
2910
2911 /* Set the kernel bypass block size */
2912 val = REG_RD(sc, BNX_MQ_CONFIG);
2913 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
2914 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
2915 REG_WR(sc, BNX_MQ_CONFIG, val);
2916
2917 val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
2918 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
2919 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
2920
2921 val = (BCM_PAGE_BITS - 8) << 24;
2922 REG_WR(sc, BNX_RV2P_CONFIG, val);
2923
2924 /* Configure page size. */
2925 val = REG_RD(sc, BNX_TBDR_CONFIG);
2926 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
2927 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
2928 REG_WR(sc, BNX_TBDR_CONFIG, val);
2929
2930 bnx_chipinit_exit:
2931 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
2932
2933 return(rc);
2934 }
2935
2936 /****************************************************************************/
2937 /* Initialize the controller in preparation to send/receive traffic. */
2938 /* */
2939 /* Returns: */
2940 /* 0 for success, positive value for failure. */
2941 /****************************************************************************/
2942 int
2943 bnx_blockinit(struct bnx_softc *sc)
2944 {
2945 u_int32_t reg, val;
2946 int rc = 0;
2947
2948 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
2949
2950 /* Load the hardware default MAC address. */
2951 bnx_set_mac_addr(sc);
2952
2953 /* Set the Ethernet backoff seed value */
2954 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
2955 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
2956 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
2957
2958 sc->last_status_idx = 0;
2959 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
2960
2961 /* Set up link change interrupt generation. */
2962 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
2963
2964 /* Program the physical address of the status block. */
2965 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
2966 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
2967 (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
2968
2969 /* Program the physical address of the statistics block. */
2970 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
2971 (u_int32_t)(sc->stats_block_paddr));
2972 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
2973 (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
2974
2975 /* Program various host coalescing parameters. */
2976 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
2977 << 16) | sc->bnx_tx_quick_cons_trip);
2978 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
2979 << 16) | sc->bnx_rx_quick_cons_trip);
2980 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
2981 sc->bnx_comp_prod_trip);
2982 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
2983 sc->bnx_tx_ticks);
2984 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
2985 sc->bnx_rx_ticks);
2986 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
2987 sc->bnx_com_ticks);
2988 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
2989 sc->bnx_cmd_ticks);
2990 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
2991 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
2992 REG_WR(sc, BNX_HC_CONFIG,
2993 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
2994 BNX_HC_CONFIG_COLLECT_STATS));
2995
2996 /* Clear the internal statistics counters. */
2997 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
2998
2999 /* Verify that bootcode is running. */
3000 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3001
3002 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3003 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3004 __FILE__, __LINE__); reg = 0);
3005
3006 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3007 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3008 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3009 "Expected: 08%08X\n", __FILE__, __LINE__,
3010 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3011 BNX_DEV_INFO_SIGNATURE_MAGIC);
3012 rc = ENODEV;
3013 goto bnx_blockinit_exit;
3014 }
3015
3016 /* Check if any management firmware is running. */
3017 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3018 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3019 BNX_PORT_FEATURE_IMD_ENABLED)) {
3020 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3021 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3022 }
3023
3024 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3025 BNX_DEV_INFO_BC_REV);
3026
3027 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3028
3029 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3030 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3031
3032 /* Enable link state change interrupt generation. */
3033 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3034
3035 /* Enable all remaining blocks in the MAC. */
3036 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3037 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3038 DELAY(20);
3039
3040 bnx_blockinit_exit:
3041 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3042
3043 return (rc);
3044 }
3045
3046 /****************************************************************************/
3047 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3048 /* */
3049 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3050 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3051 /* necessary. */
3052 /* */
3053 /* Returns: */
3054 /* 0 for success, positive value for failure. */
3055 /****************************************************************************/
3056 int
3057 bnx_get_buf(struct bnx_softc *sc, struct mbuf *m, u_int16_t *prod,
3058 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3059 {
3060 bus_dmamap_t map;
3061 struct mbuf *m_new = NULL;
3062 struct rx_bd *rxbd;
3063 int i, rc = 0;
3064 u_int32_t addr;
3065 #ifdef BNX_DEBUG
3066 u_int16_t debug_chain_prod = *chain_prod;
3067 #endif
3068 u_int16_t first_chain_prod;
3069
3070 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3071 __FUNCTION__);
3072
3073 /* Make sure the inputs are valid. */
3074 DBRUNIF((*chain_prod > MAX_RX_BD),
3075 aprint_error("%s: RX producer out of range: 0x%04X > 0x%04X\n",
3076 sc->bnx_dev.dv_xname, *chain_prod, (u_int16_t) MAX_RX_BD));
3077
3078 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3079 "0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod,
3080 *prod_bseq);
3081
3082 if (m == NULL) {
3083 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3084 BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
3085
3086 sc->mbuf_alloc_failed++;
3087 rc = ENOBUFS;
3088 goto bnx_get_buf_exit);
3089
3090 /* This is a new mbuf allocation. */
3091 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3092 if (m_new == NULL) {
3093 DBPRINT(sc, BNX_WARN,
3094 "%s(%d): RX mbuf header allocation failed!\n",
3095 __FILE__, __LINE__);
3096
3097 DBRUNIF(1, sc->mbuf_alloc_failed++);
3098
3099 rc = ENOBUFS;
3100 goto bnx_get_buf_exit;
3101 }
3102
3103 DBRUNIF(1, sc->rx_mbuf_alloc++);
3104 MEXTMALLOC(m_new, sc->mbuf_alloc_size, M_DONTWAIT);
3105 if (!(m_new->m_flags & M_EXT)) {
3106 DBPRINT(sc, BNX_WARN,
3107 "%s(%d): RX mbuf chain allocation failed!\n",
3108 __FILE__, __LINE__);
3109
3110 m_freem(m_new);
3111
3112 DBRUNIF(1, sc->rx_mbuf_alloc--);
3113 DBRUNIF(1, sc->mbuf_alloc_failed++);
3114
3115 rc = ENOBUFS;
3116 goto bnx_get_buf_exit;
3117 }
3118
3119 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3120 } else {
3121 m_new = m;
3122 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3123 m_new->m_data = m_new->m_ext.ext_buf;
3124 }
3125
3126 /* Map the mbuf cluster into device memory. */
3127 map = sc->rx_mbuf_map[*chain_prod];
3128 first_chain_prod = *chain_prod;
3129 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3130 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3131 __FILE__, __LINE__);
3132
3133 m_freem(m_new);
3134
3135 DBRUNIF(1, sc->rx_mbuf_alloc--);
3136
3137 rc = ENOBUFS;
3138 goto bnx_get_buf_exit;
3139 }
3140 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3141 BUS_DMASYNC_PREREAD);
3142
3143 /* Watch for overflow. */
3144 DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
3145 aprint_error("%s: Too many free rx_bd (0x%04X > 0x%04X)!\n",
3146 sc->bnx_dev.dv_xname,
3147 sc->free_rx_bd, (u_int16_t) USABLE_RX_BD));
3148
3149 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3150 sc->rx_low_watermark = sc->free_rx_bd);
3151
3152 /* Setup the rx_bd for the first segment. */
3153 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3154
3155 addr = (u_int32_t)(map->dm_segs[0].ds_addr);
3156 rxbd->rx_bd_haddr_lo = htole32(addr);
3157 addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3158 rxbd->rx_bd_haddr_hi = htole32(addr);
3159 rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
3160 rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
3161 *prod_bseq += map->dm_segs[0].ds_len;
3162 bus_dmamap_sync(sc->bnx_dmatag,
3163 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3164 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3165 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3166
3167 for (i = 1; i < map->dm_nsegs; i++) {
3168 *prod = NEXT_RX_BD(*prod);
3169 *chain_prod = RX_CHAIN_IDX(*prod);
3170
3171 rxbd =
3172 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3173
3174 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
3175 rxbd->rx_bd_haddr_lo = htole32(addr);
3176 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3177 rxbd->rx_bd_haddr_hi = htole32(addr);
3178 rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
3179 rxbd->rx_bd_flags = 0;
3180 *prod_bseq += map->dm_segs[i].ds_len;
3181 bus_dmamap_sync(sc->bnx_dmatag,
3182 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3183 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3184 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3185 }
3186
3187 rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
3188 bus_dmamap_sync(sc->bnx_dmatag,
3189 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3190 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3191 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3192
3193 /*
3194 * Save the mbuf, ajust the map pointer (swap map for first and
3195 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3196 * and update counter.
3197 */
3198 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3199 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3200 sc->rx_mbuf_map[*chain_prod] = map;
3201 sc->free_rx_bd -= map->dm_nsegs;
3202
3203 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3204 map->dm_nsegs));
3205
3206 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3207 "= 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, *prod,
3208 *chain_prod, *prod_bseq);
3209
3210 bnx_get_buf_exit:
3211 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3212 __FUNCTION__);
3213
3214 return(rc);
3215 }
3216
3217 /****************************************************************************/
3218 /* Allocate memory and initialize the TX data structures. */
3219 /* */
3220 /* Returns: */
3221 /* 0 for success, positive value for failure. */
3222 /****************************************************************************/
3223 int
3224 bnx_init_tx_chain(struct bnx_softc *sc)
3225 {
3226 struct tx_bd *txbd;
3227 u_int32_t val, addr;
3228 int i, rc = 0;
3229
3230 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3231
3232 /* Set the initial TX producer/consumer indices. */
3233 sc->tx_prod = 0;
3234 sc->tx_cons = 0;
3235 sc->tx_prod_bseq = 0;
3236 sc->used_tx_bd = 0;
3237 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3238
3239 /*
3240 * The NetXtreme II supports a linked-list structure called
3241 * a Buffer Descriptor Chain (or BD chain). A BD chain
3242 * consists of a series of 1 or more chain pages, each of which
3243 * consists of a fixed number of BD entries.
3244 * The last BD entry on each page is a pointer to the next page
3245 * in the chain, and the last pointer in the BD chain
3246 * points back to the beginning of the chain.
3247 */
3248
3249 /* Set the TX next pointer chain entries. */
3250 for (i = 0; i < TX_PAGES; i++) {
3251 int j;
3252
3253 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3254
3255 /* Check if we've reached the last page. */
3256 if (i == (TX_PAGES - 1))
3257 j = 0;
3258 else
3259 j = i + 1;
3260
3261 addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
3262 txbd->tx_bd_haddr_lo = htole32(addr);
3263 addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3264 txbd->tx_bd_haddr_hi = htole32(addr);
3265 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3266 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3267 }
3268
3269 /*
3270 * Initialize the context ID for an L2 TX chain.
3271 */
3272 val = BNX_L2CTX_TYPE_TYPE_L2;
3273 val |= BNX_L2CTX_TYPE_SIZE_L2;
3274 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3275
3276 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3277 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3278
3279 /* Point the hardware to the first page in the chain. */
3280 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3281 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3282 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3283 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3284
3285 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
3286
3287 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3288
3289 return(rc);
3290 }
3291
3292 /****************************************************************************/
3293 /* Free memory and clear the TX data structures. */
3294 /* */
3295 /* Returns: */
3296 /* Nothing. */
3297 /****************************************************************************/
3298 void
3299 bnx_free_tx_chain(struct bnx_softc *sc)
3300 {
3301 int i;
3302
3303 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3304
3305 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
3306 for (i = 0; i < TOTAL_TX_BD; i++) {
3307 if (sc->tx_mbuf_ptr[i] != NULL) {
3308 if (sc->tx_mbuf_map != NULL)
3309 bus_dmamap_sync(sc->bnx_dmatag,
3310 sc->tx_mbuf_map[i], 0,
3311 sc->tx_mbuf_map[i]->dm_mapsize,
3312 BUS_DMASYNC_POSTWRITE);
3313 m_freem(sc->tx_mbuf_ptr[i]);
3314 sc->tx_mbuf_ptr[i] = NULL;
3315 DBRUNIF(1, sc->tx_mbuf_alloc--);
3316 }
3317 }
3318
3319 /* Clear each TX chain page. */
3320 for (i = 0; i < TX_PAGES; i++) {
3321 bzero((char *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
3322 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3323 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3324 }
3325
3326 /* Check if we lost any mbufs in the process. */
3327 DBRUNIF((sc->tx_mbuf_alloc),
3328 aprint_error("%s: Memory leak! Lost %d mbufs from tx chain!\n",
3329 sc->bnx_dev.dv_xname, sc->tx_mbuf_alloc));
3330
3331 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3332 }
3333
3334 /****************************************************************************/
3335 /* Allocate memory and initialize the RX data structures. */
3336 /* */
3337 /* Returns: */
3338 /* 0 for success, positive value for failure. */
3339 /****************************************************************************/
3340 int
3341 bnx_init_rx_chain(struct bnx_softc *sc)
3342 {
3343 struct rx_bd *rxbd;
3344 int i, rc = 0;
3345 u_int16_t prod, chain_prod;
3346 u_int32_t prod_bseq, val, addr;
3347
3348 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3349
3350 /* Initialize the RX producer and consumer indices. */
3351 sc->rx_prod = 0;
3352 sc->rx_cons = 0;
3353 sc->rx_prod_bseq = 0;
3354 sc->free_rx_bd = BNX_RX_SLACK_SPACE;
3355 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
3356
3357 /* Initialize the RX next pointer chain entries. */
3358 for (i = 0; i < RX_PAGES; i++) {
3359 int j;
3360
3361 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
3362
3363 /* Check if we've reached the last page. */
3364 if (i == (RX_PAGES - 1))
3365 j = 0;
3366 else
3367 j = i + 1;
3368
3369 /* Setup the chain page pointers. */
3370 addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
3371 rxbd->rx_bd_haddr_hi = htole32(addr);
3372 addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
3373 rxbd->rx_bd_haddr_lo = htole32(addr);
3374 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
3375 0, BNX_RX_CHAIN_PAGE_SZ,
3376 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3377 }
3378
3379 /* Initialize the context ID for an L2 RX chain. */
3380 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
3381 val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
3382 val |= 0x02 << 8;
3383 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
3384
3385 /* Point the hardware to the first page in the chain. */
3386 val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
3387 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
3388 val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
3389 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
3390
3391 /* Allocate mbuf clusters for the rx_bd chain. */
3392 prod = prod_bseq = 0;
3393 while (prod < BNX_RX_SLACK_SPACE) {
3394 chain_prod = RX_CHAIN_IDX(prod);
3395 if (bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq)) {
3396 BNX_PRINTF(sc,
3397 "Error filling RX chain: rx_bd[0x%04X]!\n",
3398 chain_prod);
3399 rc = ENOBUFS;
3400 break;
3401 }
3402 prod = NEXT_RX_BD(prod);
3403 }
3404
3405 /* Save the RX chain producer index. */
3406 sc->rx_prod = prod;
3407 sc->rx_prod_bseq = prod_bseq;
3408
3409 for (i = 0; i < RX_PAGES; i++)
3410 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
3411 sc->rx_bd_chain_map[i]->dm_mapsize,
3412 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3413
3414 /* Tell the chip about the waiting rx_bd's. */
3415 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3416 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3417
3418 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
3419
3420 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3421
3422 return(rc);
3423 }
3424
3425 /****************************************************************************/
3426 /* Free memory and clear the RX data structures. */
3427 /* */
3428 /* Returns: */
3429 /* Nothing. */
3430 /****************************************************************************/
3431 void
3432 bnx_free_rx_chain(struct bnx_softc *sc)
3433 {
3434 int i;
3435
3436 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
3437
3438 /* Free any mbufs still in the RX mbuf chain. */
3439 for (i = 0; i < TOTAL_RX_BD; i++) {
3440 if (sc->rx_mbuf_ptr[i] != NULL) {
3441 if (sc->rx_mbuf_map[i] != NULL)
3442 bus_dmamap_sync(sc->bnx_dmatag,
3443 sc->rx_mbuf_map[i], 0,
3444 sc->rx_mbuf_map[i]->dm_mapsize,
3445 BUS_DMASYNC_POSTREAD);
3446 m_freem(sc->rx_mbuf_ptr[i]);
3447 sc->rx_mbuf_ptr[i] = NULL;
3448 DBRUNIF(1, sc->rx_mbuf_alloc--);
3449 }
3450 }
3451
3452 /* Clear each RX chain page. */
3453 for (i = 0; i < RX_PAGES; i++)
3454 bzero((char *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
3455
3456 /* Check if we lost any mbufs in the process. */
3457 DBRUNIF((sc->rx_mbuf_alloc),
3458 aprint_error("%s: Memory leak! Lost %d mbufs from rx chain!\n",
3459 sc->bnx_dev.dv_xname, sc->rx_mbuf_alloc));
3460
3461 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
3462 }
3463
3464 /****************************************************************************/
3465 /* Set media options. */
3466 /* */
3467 /* Returns: */
3468 /* 0 for success, positive value for failure. */
3469 /****************************************************************************/
3470 int
3471 bnx_ifmedia_upd(struct ifnet *ifp)
3472 {
3473 struct bnx_softc *sc;
3474 struct mii_data *mii;
3475 struct ifmedia *ifm;
3476 int rc = 0;
3477
3478 sc = ifp->if_softc;
3479 ifm = &sc->bnx_ifmedia;
3480
3481 /* DRC - ToDo: Add SerDes support. */
3482
3483 mii = &sc->bnx_mii;
3484 sc->bnx_link = 0;
3485 if (mii->mii_instance) {
3486 struct mii_softc *miisc;
3487 LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
3488 mii_phy_reset(miisc);
3489 }
3490 mii_mediachg(mii);
3491
3492 return(rc);
3493 }
3494
3495 /****************************************************************************/
3496 /* Reports current media status. */
3497 /* */
3498 /* Returns: */
3499 /* Nothing. */
3500 /****************************************************************************/
3501 void
3502 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
3503 {
3504 struct bnx_softc *sc;
3505 struct mii_data *mii;
3506 int s;
3507
3508 sc = ifp->if_softc;
3509
3510 s = splnet();
3511
3512 mii = &sc->bnx_mii;
3513
3514 /* DRC - ToDo: Add SerDes support. */
3515
3516 mii_pollstat(mii);
3517 ifmr->ifm_active = mii->mii_media_active;
3518 ifmr->ifm_status = mii->mii_media_status;
3519
3520 splx(s);
3521 }
3522
3523 /****************************************************************************/
3524 /* Handles PHY generated interrupt events. */
3525 /* */
3526 /* Returns: */
3527 /* Nothing. */
3528 /****************************************************************************/
3529 void
3530 bnx_phy_intr(struct bnx_softc *sc)
3531 {
3532 u_int32_t new_link_state, old_link_state;
3533
3534 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3535 BUS_DMASYNC_POSTREAD);
3536 new_link_state = sc->status_block->status_attn_bits &
3537 STATUS_ATTN_BITS_LINK_STATE;
3538 old_link_state = sc->status_block->status_attn_bits_ack &
3539 STATUS_ATTN_BITS_LINK_STATE;
3540
3541 /* Handle any changes if the link state has changed. */
3542 if (new_link_state != old_link_state) {
3543 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
3544
3545 sc->bnx_link = 0;
3546 callout_stop(&sc->bnx_timeout);
3547 bnx_tick(sc);
3548
3549 /* Update the status_attn_bits_ack field in the status block. */
3550 if (new_link_state) {
3551 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
3552 STATUS_ATTN_BITS_LINK_STATE);
3553 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
3554 } else {
3555 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
3556 STATUS_ATTN_BITS_LINK_STATE);
3557 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
3558 }
3559 }
3560
3561 /* Acknowledge the link change interrupt. */
3562 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
3563 }
3564
3565 /****************************************************************************/
3566 /* Handles received frame interrupt events. */
3567 /* */
3568 /* Returns: */
3569 /* Nothing. */
3570 /****************************************************************************/
3571 void
3572 bnx_rx_intr(struct bnx_softc *sc)
3573 {
3574 struct status_block *sblk = sc->status_block;
3575 struct ifnet *ifp = &sc->ethercom.ec_if;
3576 u_int16_t hw_cons, sw_cons, sw_chain_cons;
3577 u_int16_t sw_prod, sw_chain_prod;
3578 u_int32_t sw_prod_bseq;
3579 struct l2_fhdr *l2fhdr;
3580 int i;
3581
3582 DBRUNIF(1, sc->rx_interrupts++);
3583 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3584 BUS_DMASYNC_POSTREAD);
3585
3586 /* Prepare the RX chain pages to be accessed by the host CPU. */
3587 for (i = 0; i < RX_PAGES; i++)
3588 bus_dmamap_sync(sc->bnx_dmatag,
3589 sc->rx_bd_chain_map[i], 0,
3590 sc->rx_bd_chain_map[i]->dm_mapsize,
3591 BUS_DMASYNC_POSTWRITE);
3592
3593 /* Get the hardware's view of the RX consumer index. */
3594 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
3595 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
3596 hw_cons++;
3597
3598 /* Get working copies of the driver's view of the RX indices. */
3599 sw_cons = sc->rx_cons;
3600 sw_prod = sc->rx_prod;
3601 sw_prod_bseq = sc->rx_prod_bseq;
3602
3603 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
3604 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
3605 __FUNCTION__, sw_prod, sw_cons, sw_prod_bseq);
3606
3607 /* Prevent speculative reads from getting ahead of the status block. */
3608 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3609 BUS_SPACE_BARRIER_READ);
3610
3611 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3612 sc->rx_low_watermark = sc->free_rx_bd);
3613
3614 /*
3615 * Scan through the receive chain as long
3616 * as there is work to do.
3617 */
3618 while (sw_cons != hw_cons) {
3619 struct mbuf *m;
3620 struct rx_bd *rxbd;
3621 unsigned int len;
3622 u_int32_t status;
3623
3624 /* Convert the producer/consumer indices to an actual
3625 * rx_bd index.
3626 */
3627 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
3628 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
3629
3630 /* Get the used rx_bd. */
3631 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
3632 sc->free_rx_bd++;
3633
3634 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __FUNCTION__);
3635 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
3636
3637 /* The mbuf is stored with the last rx_bd entry of a packet. */
3638 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
3639 /* Validate that this is the last rx_bd. */
3640 DBRUNIF((!(rxbd->rx_bd_flags & RX_BD_FLAGS_END)),
3641 aprint_error("%s: Unexpected mbuf found in "
3642 "rx_bd[0x%04X]!\n", sc->bnx_dev.dv_xname,
3643 sw_chain_cons);
3644 bnx_breakpoint(sc));
3645
3646 /* DRC - ToDo: If the received packet is small, say less
3647 * than 128 bytes, allocate a new mbuf here,
3648 * copy the data to that mbuf, and recycle
3649 * the mapped jumbo frame.
3650 */
3651
3652 /* Unmap the mbuf from DMA space. */
3653 bus_dmamap_sync(sc->bnx_dmatag,
3654 sc->rx_mbuf_map[sw_chain_cons], 0,
3655 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
3656 BUS_DMASYNC_POSTREAD);
3657 bus_dmamap_unload(sc->bnx_dmatag,
3658 sc->rx_mbuf_map[sw_chain_cons]);
3659
3660 /* Remove the mbuf from the driver's chain. */
3661 m = sc->rx_mbuf_ptr[sw_chain_cons];
3662 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
3663
3664 /*
3665 * Frames received on the NetXteme II are prepended
3666 * with the l2_fhdr structure which provides status
3667 * information about the received frame (including
3668 * VLAN tags and checksum info) and are also
3669 * automatically adjusted to align the IP header
3670 * (i.e. two null bytes are inserted before the
3671 * Ethernet header).
3672 */
3673 l2fhdr = mtod(m, struct l2_fhdr *);
3674
3675 len = l2fhdr->l2_fhdr_pkt_len;
3676 status = l2fhdr->l2_fhdr_status;
3677
3678 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
3679 aprint_error("Simulating l2_fhdr status error.\n");
3680 status = status | L2_FHDR_ERRORS_PHY_DECODE);
3681
3682 /* Watch for unusual sized frames. */
3683 DBRUNIF(((len < BNX_MIN_MTU) ||
3684 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
3685 aprint_error("%s: Unusual frame size found. "
3686 "Min(%d), Actual(%d), Max(%d)\n",
3687 sc->bnx_dev.dv_xname, (int)BNX_MIN_MTU, len,
3688 (int) BNX_MAX_JUMBO_ETHER_MTU_VLAN);
3689
3690 bnx_dump_mbuf(sc, m);
3691 bnx_breakpoint(sc));
3692
3693 len -= ETHER_CRC_LEN;
3694
3695 /* Check the received frame for errors. */
3696 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
3697 L2_FHDR_ERRORS_PHY_DECODE |
3698 L2_FHDR_ERRORS_ALIGNMENT |
3699 L2_FHDR_ERRORS_TOO_SHORT |
3700 L2_FHDR_ERRORS_GIANT_FRAME)) ||
3701 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
3702 len >
3703 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
3704 ifp->if_ierrors++;
3705 DBRUNIF(1, sc->l2fhdr_status_errors++);
3706
3707 /* Reuse the mbuf for a new frame. */
3708 if (bnx_get_buf(sc, m, &sw_prod,
3709 &sw_chain_prod, &sw_prod_bseq)) {
3710 DBRUNIF(1, bnx_breakpoint(sc));
3711 panic("%s: Can't reuse RX mbuf!\n",
3712 sc->bnx_dev.dv_xname);
3713 }
3714 goto bnx_rx_int_next_rx;
3715 }
3716
3717 /*
3718 * Get a new mbuf for the rx_bd. If no new
3719 * mbufs are available then reuse the current mbuf,
3720 * log an ierror on the interface, and generate
3721 * an error in the system log.
3722 */
3723 if (bnx_get_buf(sc, NULL, &sw_prod, &sw_chain_prod,
3724 &sw_prod_bseq)) {
3725 DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
3726 "new mbuf, incoming frame dropped!\n"));
3727
3728 ifp->if_ierrors++;
3729
3730 /* Try and reuse the exisitng mbuf. */
3731 if (bnx_get_buf(sc, m, &sw_prod,
3732 &sw_chain_prod, &sw_prod_bseq)) {
3733 DBRUNIF(1, bnx_breakpoint(sc));
3734 panic("%s: Double mbuf allocation "
3735 "failure!", sc->bnx_dev.dv_xname);
3736 }
3737 goto bnx_rx_int_next_rx;
3738 }
3739
3740 /* Skip over the l2_fhdr when passing the data up
3741 * the stack.
3742 */
3743 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
3744
3745 /* Adjust the pckt length to match the received data. */
3746 m->m_pkthdr.len = m->m_len = len;
3747
3748 /* Send the packet to the appropriate interface. */
3749 m->m_pkthdr.rcvif = ifp;
3750
3751 DBRUN(BNX_VERBOSE_RECV,
3752 struct ether_header *eh;
3753 eh = mtod(m, struct ether_header *);
3754 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
3755 __FUNCTION__, ether_sprintf(eh->ether_dhost),
3756 ether_sprintf(eh->ether_shost),
3757 htons(eh->ether_type)));
3758
3759 /* Validate the checksum. */
3760
3761 /* Check for an IP datagram. */
3762 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
3763 /* Check if the IP checksum is valid. */
3764 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
3765 == 0)
3766 m->m_pkthdr.csum_flags |=
3767 M_CSUM_IPv4;
3768 #ifdef BNX_DEBUG
3769 else
3770 DBPRINT(sc, BNX_WARN_SEND,
3771 "%s(): Invalid IP checksum "
3772 "= 0x%04X!\n",
3773 __FUNCTION__,
3774 l2fhdr->l2_fhdr_ip_xsum
3775 );
3776 #endif
3777 }
3778
3779 /* Check for a valid TCP/UDP frame. */
3780 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
3781 L2_FHDR_STATUS_UDP_DATAGRAM)) {
3782 /* Check for a good TCP/UDP checksum. */
3783 if ((status &
3784 (L2_FHDR_ERRORS_TCP_XSUM |
3785 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
3786 m->m_pkthdr.csum_flags |=
3787 M_CSUM_TCPv4 |
3788 M_CSUM_UDPv4;
3789 } else {
3790 DBPRINT(sc, BNX_WARN_SEND,
3791 "%s(): Invalid TCP/UDP "
3792 "checksum = 0x%04X!\n",
3793 __FUNCTION__,
3794 l2fhdr->l2_fhdr_tcp_udp_xsum);
3795 }
3796 }
3797
3798 /*
3799 * If we received a packet with a vlan tag,
3800 * attach that information to the packet.
3801 */
3802 if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
3803 #if 0
3804 struct ether_vlan_header vh;
3805
3806 DBPRINT(sc, BNX_VERBOSE_SEND,
3807 "%s(): VLAN tag = 0x%04X\n",
3808 __FUNCTION__,
3809 l2fhdr->l2_fhdr_vlan_tag);
3810
3811 if (m->m_pkthdr.len < ETHER_HDR_LEN) {
3812 m_freem(m);
3813 goto bnx_rx_int_next_rx;
3814 }
3815 m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh);
3816 vh.evl_proto = vh.evl_encap_proto;
3817 vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag;
3818 vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
3819 m_adj(m, ETHER_HDR_LEN);
3820 if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
3821 goto bnx_rx_int_next_rx;
3822 m->m_pkthdr.len += sizeof(vh);
3823 if (m->m_len < sizeof(vh) &&
3824 (m = m_pullup(m, sizeof(vh))) == NULL)
3825 goto bnx_rx_int_next_rx;
3826 m_copyback(m, 0, sizeof(vh), &vh);
3827 #else
3828 VLAN_INPUT_TAG(ifp, m,
3829 l2fhdr->l2_fhdr_vlan_tag >> 16,
3830 goto bnx_rx_int_next_rx);
3831 #endif
3832 }
3833
3834 #if NBPFILTER > 0
3835 /*
3836 * Handle BPF listeners. Let the BPF
3837 * user see the packet.
3838 */
3839 if (ifp->if_bpf)
3840 bpf_mtap(ifp->if_bpf, m);
3841 #endif
3842
3843 /* Pass the mbuf off to the upper layers. */
3844 ifp->if_ipackets++;
3845 DBPRINT(sc, BNX_VERBOSE_RECV,
3846 "%s(): Passing received frame up.\n", __FUNCTION__);
3847 //ether_input_mbuf(ifp, m);
3848 (*ifp->if_input)(ifp, m);
3849 DBRUNIF(1, sc->rx_mbuf_alloc--);
3850
3851 bnx_rx_int_next_rx:
3852 sw_prod = NEXT_RX_BD(sw_prod);
3853 }
3854
3855 sw_cons = NEXT_RX_BD(sw_cons);
3856
3857 /* Refresh hw_cons to see if there's new work */
3858 if (sw_cons == hw_cons) {
3859 hw_cons = sc->hw_rx_cons =
3860 sblk->status_rx_quick_consumer_index0;
3861 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
3862 USABLE_RX_BD_PER_PAGE)
3863 hw_cons++;
3864 }
3865
3866 /* Prevent speculative reads from getting ahead of
3867 * the status block.
3868 */
3869 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3870 BUS_SPACE_BARRIER_READ);
3871 }
3872
3873 for (i = 0; i < RX_PAGES; i++)
3874 bus_dmamap_sync(sc->bnx_dmatag,
3875 sc->rx_bd_chain_map[i], 0,
3876 sc->rx_bd_chain_map[i]->dm_mapsize,
3877 BUS_DMASYNC_PREWRITE);
3878
3879 sc->rx_cons = sw_cons;
3880 sc->rx_prod = sw_prod;
3881 sc->rx_prod_bseq = sw_prod_bseq;
3882
3883 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
3884 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
3885
3886 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
3887 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
3888 __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
3889 }
3890
3891 /****************************************************************************/
3892 /* Handles transmit completion interrupt events. */
3893 /* */
3894 /* Returns: */
3895 /* Nothing. */
3896 /****************************************************************************/
3897 void
3898 bnx_tx_intr(struct bnx_softc *sc)
3899 {
3900 struct status_block *sblk = sc->status_block;
3901 struct ifnet *ifp = &sc->ethercom.ec_if;
3902 u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
3903
3904 DBRUNIF(1, sc->tx_interrupts++);
3905 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
3906 BUS_DMASYNC_POSTREAD);
3907
3908 /* Get the hardware's view of the TX consumer index. */
3909 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
3910
3911 /* Skip to the next entry if this is a chain page pointer. */
3912 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
3913 hw_tx_cons++;
3914
3915 sw_tx_cons = sc->tx_cons;
3916
3917 /* Prevent speculative reads from getting ahead of the status block. */
3918 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3919 BUS_SPACE_BARRIER_READ);
3920
3921 /* Cycle through any completed TX chain page entries. */
3922 while (sw_tx_cons != hw_tx_cons) {
3923 #ifdef BNX_DEBUG
3924 struct tx_bd *txbd = NULL;
3925 #endif
3926 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
3927
3928 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
3929 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
3930 __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
3931
3932 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
3933 aprint_error("%s: TX chain consumer out of range! "
3934 " 0x%04X > 0x%04X\n", sc->bnx_dev.dv_xname,
3935 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
3936
3937 DBRUNIF(1, txbd = &sc->tx_bd_chain
3938 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
3939
3940 DBRUNIF((txbd == NULL),
3941 aprint_error("%s: Unexpected NULL tx_bd[0x%04X]!\n",
3942 sc->bnx_dev.dv_xname, sw_tx_chain_cons);
3943 bnx_breakpoint(sc));
3944
3945 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __FUNCTION__);
3946 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
3947
3948 /*
3949 * Free the associated mbuf. Remember
3950 * that only the last tx_bd of a packet
3951 * has an mbuf pointer and DMA map.
3952 */
3953 if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
3954 /* Validate that this is the last tx_bd. */
3955 DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
3956 TX_BD_FLAGS_END)),
3957 aprint_error("%s: tx_bd END flag not set but "
3958 "txmbuf == NULL!\n", sc->bnx_dev.dv_xname);
3959 bnx_breakpoint(sc));
3960
3961 DBRUN(BNX_INFO_SEND,
3962 aprint_debug("%s: Unloading map/freeing mbuf "
3963 "from tx_bd[0x%04X]\n",
3964 __FUNCTION__, sw_tx_chain_cons));
3965
3966 /* Unmap the mbuf. */
3967 bus_dmamap_unload(sc->bnx_dmatag,
3968 sc->tx_mbuf_map[sw_tx_chain_cons]);
3969
3970 /* Free the mbuf. */
3971 m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
3972 sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
3973 DBRUNIF(1, sc->tx_mbuf_alloc--);
3974
3975 ifp->if_opackets++;
3976 }
3977
3978 sc->used_tx_bd--;
3979 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
3980
3981 /* Refresh hw_cons to see if there's new work. */
3982 hw_tx_cons = sc->hw_tx_cons =
3983 sblk->status_tx_quick_consumer_index0;
3984 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
3985 USABLE_TX_BD_PER_PAGE)
3986 hw_tx_cons++;
3987
3988 /* Prevent speculative reads from getting ahead of
3989 * the status block.
3990 */
3991 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
3992 BUS_SPACE_BARRIER_READ);
3993 }
3994
3995 /* Clear the TX timeout timer. */
3996 ifp->if_timer = 0;
3997
3998 /* Clear the tx hardware queue full flag. */
3999 if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
4000 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4001 aprint_debug("%s: TX chain is open for business! Used "
4002 "tx_bd = %d\n", sc->bnx_dev.dv_xname,
4003 sc->used_tx_bd));
4004 ifp->if_flags &= ~IFF_OACTIVE;
4005 }
4006
4007 sc->tx_cons = sw_tx_cons;
4008 }
4009
4010 /****************************************************************************/
4011 /* Disables interrupt generation. */
4012 /* */
4013 /* Returns: */
4014 /* Nothing. */
4015 /****************************************************************************/
4016 void
4017 bnx_disable_intr(struct bnx_softc *sc)
4018 {
4019 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4020 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4021 }
4022
4023 /****************************************************************************/
4024 /* Enables interrupt generation. */
4025 /* */
4026 /* Returns: */
4027 /* Nothing. */
4028 /****************************************************************************/
4029 void
4030 bnx_enable_intr(struct bnx_softc *sc)
4031 {
4032 u_int32_t val;
4033
4034 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4035 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4036
4037 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4038 sc->last_status_idx);
4039
4040 val = REG_RD(sc, BNX_HC_COMMAND);
4041 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4042 }
4043
4044 /****************************************************************************/
4045 /* Handles controller initialization. */
4046 /* */
4047 /****************************************************************************/
4048 int
4049 bnx_init(struct ifnet *ifp)
4050 {
4051 struct bnx_softc *sc = ifp->if_softc;
4052 u_int32_t ether_mtu;
4053 int s, error = 0;
4054
4055 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
4056
4057 s = splnet();
4058
4059 bnx_stop(sc);
4060
4061 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4062 aprint_error("bnx: Controller reset failed!\n");
4063 goto bnx_init_exit;
4064 }
4065
4066 if ((error = bnx_chipinit(sc)) != 0) {
4067 aprint_error("bnx: Controller initialization failed!\n");
4068 goto bnx_init_exit;
4069 }
4070
4071 if ((error = bnx_blockinit(sc)) != 0) {
4072 aprint_error("bnx: Block initialization failed!\n");
4073 goto bnx_init_exit;
4074 }
4075
4076 /* Calculate and program the Ethernet MRU size. */
4077 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4078
4079 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4080 __FUNCTION__, ether_mtu);
4081
4082 /*
4083 * Program the MRU and enable Jumbo frame
4084 * support.
4085 */
4086 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4087 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4088
4089 /* Calculate the RX Ethernet frame size for rx_bd's. */
4090 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4091
4092 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4093 "max_frame_size = %d\n", __FUNCTION__, (int)MCLBYTES,
4094 sc->mbuf_alloc_size, sc->max_frame_size);
4095
4096 /* Program appropriate promiscuous/multicast filtering. */
4097 bnx_set_rx_mode(sc);
4098
4099 /* Init RX buffer descriptor chain. */
4100 bnx_init_rx_chain(sc);
4101
4102 /* Init TX buffer descriptor chain. */
4103 bnx_init_tx_chain(sc);
4104
4105 /* Enable host interrupts. */
4106 bnx_enable_intr(sc);
4107
4108 bnx_ifmedia_upd(ifp);
4109
4110 ifp->if_flags |= IFF_RUNNING;
4111 ifp->if_flags &= ~IFF_OACTIVE;
4112
4113 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4114
4115 bnx_init_exit:
4116 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
4117
4118 splx(s);
4119
4120 return(error);
4121 }
4122
4123 /****************************************************************************/
4124 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4125 /* memory visible to the controller. */
4126 /* */
4127 /* Returns: */
4128 /* 0 for success, positive value for failure. */
4129 /****************************************************************************/
4130 int
4131 bnx_tx_encap(struct bnx_softc *sc, struct mbuf **m_head)
4132 {
4133 bus_dmamap_t map;
4134 struct tx_bd *txbd = NULL;
4135 struct mbuf *m0;
4136 u_int16_t vlan_tag = 0, flags = 0;
4137 u_int16_t chain_prod, prod;
4138 #ifdef BNX_DEBUG
4139 u_int16_t debug_prod;
4140 #endif
4141 u_int32_t addr, prod_bseq;
4142 int i, error, rc = 0;
4143 struct m_tag *mtag;
4144
4145 m0 = *m_head;
4146
4147 /* Transfer any checksum offload flags to the bd. */
4148 if (m0->m_pkthdr.csum_flags) {
4149 if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
4150 flags |= TX_BD_FLAGS_IP_CKSUM;
4151 if (m0->m_pkthdr.csum_flags &
4152 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4153 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4154 }
4155
4156 /* Transfer any VLAN tags to the bd. */
4157 mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m0);
4158 if (mtag != NULL) {
4159 flags |= TX_BD_FLAGS_VLAN_TAG;
4160 vlan_tag = VLAN_TAG_VALUE(mtag);
4161 }
4162
4163 /* Map the mbuf into DMAable memory. */
4164 prod = sc->tx_prod;
4165 chain_prod = TX_CHAIN_IDX(prod);
4166 map = sc->tx_mbuf_map[chain_prod];
4167
4168 /* Map the mbuf into our DMA address space. */
4169 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m0, BUS_DMA_NOWAIT);
4170 if (error != 0) {
4171 aprint_error("%s: Error mapping mbuf into TX chain!\n",
4172 sc->bnx_dev.dv_xname);
4173 m_freem(m0);
4174 *m_head = NULL;
4175 return (error);
4176 }
4177 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4178 BUS_DMASYNC_PREWRITE);
4179 /*
4180 * The chip seems to require that at least 16 descriptors be kept
4181 * empty at all times. Make sure we honor that.
4182 * XXX Would it be faster to assume worst case scenario for
4183 * map->dm_nsegs and do this calculation higher up?
4184 */
4185 if (map->dm_nsegs > (USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE)) {
4186 bus_dmamap_unload(sc->bnx_dmatag, map);
4187 return (ENOBUFS);
4188 }
4189
4190 /* prod points to an empty tx_bd at this point. */
4191 prod_bseq = sc->tx_prod_bseq;
4192 #ifdef BNX_DEBUG
4193 debug_prod = chain_prod;
4194 #endif
4195 DBPRINT(sc, BNX_INFO_SEND,
4196 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4197 "prod_bseq = 0x%08X\n",
4198 __FUNCTION__, *prod, chain_prod, prod_bseq);
4199
4200 /*
4201 * Cycle through each mbuf segment that makes up
4202 * the outgoing frame, gathering the mapping info
4203 * for that segment and creating a tx_bd for the
4204 * mbuf.
4205 */
4206 for (i = 0; i < map->dm_nsegs ; i++) {
4207 chain_prod = TX_CHAIN_IDX(prod);
4208 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4209
4210 addr = (u_int32_t)(map->dm_segs[i].ds_addr);
4211 txbd->tx_bd_haddr_lo = htole32(addr);
4212 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4213 txbd->tx_bd_haddr_hi = htole32(addr);
4214 txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
4215 txbd->tx_bd_vlan_tag = htole16(vlan_tag);
4216 txbd->tx_bd_flags = htole16(flags);
4217 prod_bseq += map->dm_segs[i].ds_len;
4218 if (i == 0)
4219 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
4220 prod = NEXT_TX_BD(prod);
4221 }
4222 /* Set the END flag on the last TX buffer descriptor. */
4223 txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
4224
4225 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
4226
4227 DBPRINT(sc, BNX_INFO_SEND,
4228 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
4229 "prod_bseq = 0x%08X\n",
4230 __FUNCTION__, prod, chain_prod, prod_bseq);
4231
4232 /*
4233 * Ensure that the mbuf pointer for this
4234 * transmission is placed at the array
4235 * index of the last descriptor in this
4236 * chain. This is done because a single
4237 * map is used for all segments of the mbuf
4238 * and we don't want to unload the map before
4239 * all of the segments have been freed.
4240 */
4241 sc->tx_mbuf_ptr[chain_prod] = m0;
4242 sc->used_tx_bd += map->dm_nsegs;
4243
4244 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4245 sc->tx_hi_watermark = sc->used_tx_bd);
4246
4247 DBRUNIF(1, sc->tx_mbuf_alloc++);
4248
4249 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4250 map_arg.maxsegs));
4251
4252 /* prod points to the next free tx_bd at this point. */
4253 sc->tx_prod = prod;
4254 sc->tx_prod_bseq = prod_bseq;
4255
4256 return (rc);
4257 }
4258
4259 /****************************************************************************/
4260 /* Main transmit routine. */
4261 /* */
4262 /* Returns: */
4263 /* Nothing. */
4264 /****************************************************************************/
4265 void
4266 bnx_start(struct ifnet *ifp)
4267 {
4268 struct bnx_softc *sc = ifp->if_softc;
4269 struct mbuf *m_head = NULL;
4270 int count = 0;
4271 u_int16_t tx_prod, tx_chain_prod;
4272
4273 /* If there's no link or the transmit queue is empty then just exit. */
4274 if (!sc->bnx_link || IFQ_IS_EMPTY(&ifp->if_snd)) {
4275 DBPRINT(sc, BNX_INFO_SEND,
4276 "%s(): No link or transmit queue empty.\n", __FUNCTION__);
4277 goto bnx_start_exit;
4278 }
4279
4280 /* prod points to the next free tx_bd. */
4281 tx_prod = sc->tx_prod;
4282 tx_chain_prod = TX_CHAIN_IDX(tx_prod);
4283
4284 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
4285 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
4286 __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
4287
4288 /*
4289 * Keep adding entries while there is space in the ring. We keep
4290 * BNX_TX_SLACK_SPACE entries unused at all times.
4291 */
4292 while (sc->used_tx_bd < USABLE_TX_BD - BNX_TX_SLACK_SPACE) {
4293 /* Check for any frames to send. */
4294 IFQ_POLL(&ifp->if_snd, m_head);
4295 if (m_head == NULL)
4296 break;
4297
4298 /*
4299 * Pack the data into the transmit ring. If we
4300 * don't have room, set the OACTIVE flag to wait
4301 * for the NIC to drain the chain.
4302 */
4303 if (bnx_tx_encap(sc, &m_head)) {
4304 ifp->if_flags |= IFF_OACTIVE;
4305 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
4306 "business! Total tx_bd used = %d\n",
4307 sc->used_tx_bd);
4308 break;
4309 }
4310
4311 IFQ_DEQUEUE(&ifp->if_snd, m_head);
4312 count++;
4313
4314 #if NBPFILTER > 0
4315 /* Send a copy of the frame to any BPF listeners. */
4316 if (ifp->if_bpf)
4317 bpf_mtap(ifp->if_bpf, m_head);
4318 #endif
4319 }
4320
4321 if (count == 0) {
4322 /* no packets were dequeued */
4323 DBPRINT(sc, BNX_VERBOSE_SEND,
4324 "%s(): No packets were dequeued\n", __FUNCTION__);
4325 goto bnx_start_exit;
4326 }
4327
4328 /* Update the driver's counters. */
4329 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
4330
4331 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
4332 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __FUNCTION__, tx_prod,
4333 tx_chain_prod, sc->tx_prod_bseq);
4334
4335 /* Start the transmit. */
4336 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
4337 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
4338
4339 /* Set the tx timeout. */
4340 ifp->if_timer = BNX_TX_TIMEOUT;
4341
4342 bnx_start_exit:
4343 return;
4344 }
4345
4346 /****************************************************************************/
4347 /* Handles any IOCTL calls from the operating system. */
4348 /* */
4349 /* Returns: */
4350 /* 0 for success, positive value for failure. */
4351 /****************************************************************************/
4352 int
4353 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
4354 {
4355 struct bnx_softc *sc = ifp->if_softc;
4356 struct ifreq *ifr = (struct ifreq *) data;
4357 struct mii_data *mii;
4358 int s, error = 0;
4359
4360 s = splnet();
4361
4362 switch (command) {
4363 case SIOCSIFFLAGS:
4364 if (ifp->if_flags & IFF_UP) {
4365 if ((ifp->if_flags & IFF_RUNNING) &&
4366 ((ifp->if_flags ^ sc->bnx_if_flags) &
4367 (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
4368 bnx_set_rx_mode(sc);
4369 } else if (!(ifp->if_flags & IFF_RUNNING))
4370 bnx_init(ifp);
4371
4372 } else if (ifp->if_flags & IFF_RUNNING)
4373 bnx_stop(sc);
4374
4375 sc->bnx_if_flags = ifp->if_flags;
4376 break;
4377
4378 case SIOCSIFMEDIA:
4379 case SIOCGIFMEDIA:
4380 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
4381 sc->bnx_phy_flags);
4382
4383 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
4384 error = ifmedia_ioctl(ifp, ifr,
4385 &sc->bnx_ifmedia, command);
4386 else {
4387 mii = &sc->bnx_mii;
4388 error = ifmedia_ioctl(ifp, ifr,
4389 &mii->mii_media, command);
4390 }
4391 break;
4392
4393 default:
4394 error = ether_ioctl(ifp, command, data);
4395 if (error == ENETRESET) {
4396 #if 0
4397 if (ifp->if_flags & IFF_RUNNING)
4398 /*bnx_setmulti(sc)*/;
4399 #endif
4400 error = 0;
4401 }
4402 break;
4403 }
4404
4405 splx(s);
4406
4407 return (error);
4408 }
4409
4410 /****************************************************************************/
4411 /* Transmit timeout handler. */
4412 /* */
4413 /* Returns: */
4414 /* Nothing. */
4415 /****************************************************************************/
4416 void
4417 bnx_watchdog(struct ifnet *ifp)
4418 {
4419 struct bnx_softc *sc = ifp->if_softc;
4420
4421 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
4422 bnx_dump_status_block(sc));
4423
4424 aprint_error("%s: Watchdog timeout -- resetting!\n",
4425 sc->bnx_dev.dv_xname);
4426
4427 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
4428
4429 bnx_init(ifp);
4430
4431 ifp->if_oerrors++;
4432 }
4433
4434 /*
4435 * Interrupt handler.
4436 */
4437 /****************************************************************************/
4438 /* Main interrupt entry point. Verifies that the controller generated the */
4439 /* interrupt and then calls a separate routine for handle the various */
4440 /* interrupt causes (PHY, TX, RX). */
4441 /* */
4442 /* Returns: */
4443 /* 0 for success, positive value for failure. */
4444 /****************************************************************************/
4445 int
4446 bnx_intr(void *xsc)
4447 {
4448 struct bnx_softc *sc;
4449 struct ifnet *ifp;
4450 u_int32_t status_attn_bits;
4451
4452 sc = xsc;
4453 ifp = &sc->ethercom.ec_if;
4454
4455 DBRUNIF(1, sc->interrupts_generated++);
4456
4457 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4458 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4459
4460 /*
4461 * If the hardware status block index
4462 * matches the last value read by the
4463 * driver and we haven't asserted our
4464 * interrupt then there's nothing to do.
4465 */
4466 if ((sc->status_block->status_idx == sc->last_status_idx) &&
4467 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
4468 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
4469 return (0);
4470
4471 /* Ack the interrupt and stop others from occuring. */
4472 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4473 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
4474 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4475
4476 /* Keep processing data as long as there is work to do. */
4477 for (;;) {
4478 status_attn_bits = sc->status_block->status_attn_bits;
4479
4480 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
4481 aprint_debug("Simulating unexpected status attention bit set.");
4482 status_attn_bits = status_attn_bits |
4483 STATUS_ATTN_BITS_PARITY_ERROR);
4484
4485 /* Was it a link change interrupt? */
4486 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
4487 (sc->status_block->status_attn_bits_ack &
4488 STATUS_ATTN_BITS_LINK_STATE))
4489 bnx_phy_intr(sc);
4490
4491 /* If any other attention is asserted then the chip is toast. */
4492 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
4493 (sc->status_block->status_attn_bits_ack &
4494 ~STATUS_ATTN_BITS_LINK_STATE))) {
4495 DBRUN(1, sc->unexpected_attentions++);
4496
4497 aprint_error("%s: Fatal attention detected: 0x%08X\n",
4498 sc->bnx_dev.dv_xname,
4499 sc->status_block->status_attn_bits);
4500
4501 DBRUN(BNX_FATAL,
4502 if (bnx_debug_unexpected_attention == 0)
4503 bnx_breakpoint(sc));
4504
4505 bnx_init(ifp);
4506 return (1);
4507 }
4508
4509 /* Check for any completed RX frames. */
4510 if (sc->status_block->status_rx_quick_consumer_index0 !=
4511 sc->hw_rx_cons)
4512 bnx_rx_intr(sc);
4513
4514 /* Check for any completed TX frames. */
4515 if (sc->status_block->status_tx_quick_consumer_index0 !=
4516 sc->hw_tx_cons)
4517 bnx_tx_intr(sc);
4518
4519 /* Save the status block index value for use during the
4520 * next interrupt.
4521 */
4522 sc->last_status_idx = sc->status_block->status_idx;
4523
4524 /* Prevent speculative reads from getting ahead of the
4525 * status block.
4526 */
4527 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4528 BUS_SPACE_BARRIER_READ);
4529
4530 /* If there's no work left then exit the isr. */
4531 if ((sc->status_block->status_rx_quick_consumer_index0 ==
4532 sc->hw_rx_cons) &&
4533 (sc->status_block->status_tx_quick_consumer_index0 ==
4534 sc->hw_tx_cons))
4535 break;
4536 }
4537
4538 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
4539 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
4540
4541 /* Re-enable interrupts. */
4542 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4543 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
4544 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4545 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
4546 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
4547
4548 /* Handle any frames that arrived while handling the interrupt. */
4549 if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
4550 bnx_start(ifp);
4551
4552 return (1);
4553 }
4554
4555 /****************************************************************************/
4556 /* Programs the various packet receive modes (broadcast and multicast). */
4557 /* */
4558 /* Returns: */
4559 /* Nothing. */
4560 /****************************************************************************/
4561 void
4562 bnx_set_rx_mode(struct bnx_softc *sc)
4563 {
4564 struct ethercom *ec = &sc->ethercom;
4565 struct ifnet *ifp = &ec->ec_if;
4566 struct ether_multi *enm;
4567 struct ether_multistep step;
4568 u_int32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
4569 u_int32_t rx_mode, sort_mode;
4570 int h, i;
4571
4572 /* Initialize receive mode default settings. */
4573 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
4574 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
4575 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
4576
4577 /*
4578 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
4579 * be enbled.
4580 */
4581 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
4582 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
4583
4584 /*
4585 * Check for promiscuous, all multicast, or selected
4586 * multicast address filtering.
4587 */
4588 if (ifp->if_flags & IFF_PROMISC) {
4589 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
4590
4591 /* Enable promiscuous mode. */
4592 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
4593 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
4594 } else if (ifp->if_flags & IFF_ALLMULTI) {
4595 allmulti:
4596 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
4597
4598 /* Enable all multicast addresses. */
4599 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4600 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4601 0xffffffff);
4602 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
4603 } else {
4604 /* Accept one or more multicast(s). */
4605 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
4606
4607 ETHER_FIRST_MULTI(step, ec, enm);
4608 while (enm != NULL) {
4609 if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
4610 ETHER_ADDR_LEN)) {
4611 ifp->if_flags |= IFF_ALLMULTI;
4612 goto allmulti;
4613 }
4614 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
4615 0xFF;
4616 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
4617 ETHER_NEXT_MULTI(step, enm);
4618 }
4619
4620 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
4621 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
4622 hashes[i]);
4623
4624 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
4625 }
4626
4627 /* Only make changes if the recive mode has actually changed. */
4628 if (rx_mode != sc->rx_mode) {
4629 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
4630 rx_mode);
4631
4632 sc->rx_mode = rx_mode;
4633 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
4634 }
4635
4636 /* Disable and clear the exisitng sort before enabling a new sort. */
4637 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
4638 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
4639 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
4640 }
4641
4642 /****************************************************************************/
4643 /* Called periodically to updates statistics from the controllers */
4644 /* statistics block. */
4645 /* */
4646 /* Returns: */
4647 /* Nothing. */
4648 /****************************************************************************/
4649 void
4650 bnx_stats_update(struct bnx_softc *sc)
4651 {
4652 struct ifnet *ifp = &sc->ethercom.ec_if;
4653 struct statistics_block *stats;
4654
4655 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __FUNCTION__);
4656 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4657 BUS_DMASYNC_POSTREAD);
4658
4659 stats = (struct statistics_block *)sc->stats_block;
4660
4661 /*
4662 * Update the interface statistics from the
4663 * hardware statistics.
4664 */
4665 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
4666
4667 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
4668 (u_long)stats->stat_EtherStatsOverrsizePkts +
4669 (u_long)stats->stat_IfInMBUFDiscards +
4670 (u_long)stats->stat_Dot3StatsAlignmentErrors +
4671 (u_long)stats->stat_Dot3StatsFCSErrors;
4672
4673 ifp->if_oerrors = (u_long)
4674 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
4675 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
4676 (u_long)stats->stat_Dot3StatsLateCollisions;
4677
4678 /*
4679 * Certain controllers don't report
4680 * carrier sense errors correctly.
4681 * See errata E11_5708CA0_1165.
4682 */
4683 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
4684 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
4685 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
4686
4687 /*
4688 * Update the sysctl statistics from the
4689 * hardware statistics.
4690 */
4691 sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
4692 (u_int64_t) stats->stat_IfHCInOctets_lo;
4693
4694 sc->stat_IfHCInBadOctets =
4695 ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
4696 (u_int64_t) stats->stat_IfHCInBadOctets_lo;
4697
4698 sc->stat_IfHCOutOctets =
4699 ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
4700 (u_int64_t) stats->stat_IfHCOutOctets_lo;
4701
4702 sc->stat_IfHCOutBadOctets =
4703 ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
4704 (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
4705
4706 sc->stat_IfHCInUcastPkts =
4707 ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
4708 (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
4709
4710 sc->stat_IfHCInMulticastPkts =
4711 ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
4712 (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
4713
4714 sc->stat_IfHCInBroadcastPkts =
4715 ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
4716 (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
4717
4718 sc->stat_IfHCOutUcastPkts =
4719 ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
4720 (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
4721
4722 sc->stat_IfHCOutMulticastPkts =
4723 ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
4724 (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
4725
4726 sc->stat_IfHCOutBroadcastPkts =
4727 ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
4728 (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
4729
4730 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
4731 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
4732
4733 sc->stat_Dot3StatsCarrierSenseErrors =
4734 stats->stat_Dot3StatsCarrierSenseErrors;
4735
4736 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
4737
4738 sc->stat_Dot3StatsAlignmentErrors =
4739 stats->stat_Dot3StatsAlignmentErrors;
4740
4741 sc->stat_Dot3StatsSingleCollisionFrames =
4742 stats->stat_Dot3StatsSingleCollisionFrames;
4743
4744 sc->stat_Dot3StatsMultipleCollisionFrames =
4745 stats->stat_Dot3StatsMultipleCollisionFrames;
4746
4747 sc->stat_Dot3StatsDeferredTransmissions =
4748 stats->stat_Dot3StatsDeferredTransmissions;
4749
4750 sc->stat_Dot3StatsExcessiveCollisions =
4751 stats->stat_Dot3StatsExcessiveCollisions;
4752
4753 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
4754
4755 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
4756
4757 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
4758
4759 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
4760
4761 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
4762
4763 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
4764
4765 sc->stat_EtherStatsPktsRx64Octets =
4766 stats->stat_EtherStatsPktsRx64Octets;
4767
4768 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
4769 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
4770
4771 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
4772 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
4773
4774 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
4775 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
4776
4777 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
4778 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
4779
4780 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
4781 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
4782
4783 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
4784 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
4785
4786 sc->stat_EtherStatsPktsTx64Octets =
4787 stats->stat_EtherStatsPktsTx64Octets;
4788
4789 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
4790 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
4791
4792 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
4793 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
4794
4795 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
4796 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
4797
4798 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
4799 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
4800
4801 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
4802 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
4803
4804 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
4805 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
4806
4807 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
4808
4809 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
4810
4811 sc->stat_OutXonSent = stats->stat_OutXonSent;
4812
4813 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
4814
4815 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
4816
4817 sc->stat_MacControlFramesReceived =
4818 stats->stat_MacControlFramesReceived;
4819
4820 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
4821
4822 sc->stat_IfInFramesL2FilterDiscards =
4823 stats->stat_IfInFramesL2FilterDiscards;
4824
4825 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
4826
4827 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
4828
4829 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
4830
4831 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
4832
4833 sc->stat_CatchupInRuleCheckerDiscards =
4834 stats->stat_CatchupInRuleCheckerDiscards;
4835
4836 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
4837
4838 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
4839
4840 sc->stat_CatchupInRuleCheckerP4Hit =
4841 stats->stat_CatchupInRuleCheckerP4Hit;
4842
4843 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __FUNCTION__);
4844 }
4845
4846 void
4847 bnx_tick(void *xsc)
4848 {
4849 struct bnx_softc *sc = xsc;
4850 struct ifnet *ifp = &sc->ethercom.ec_if;
4851 struct mii_data *mii = NULL;
4852 u_int32_t msg;
4853 int s = splnet();
4854
4855 /* Tell the firmware that the driver is still running. */
4856 #ifdef BNX_DEBUG
4857 msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
4858 #else
4859 msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
4860 #endif
4861 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
4862
4863 /* Update the statistics from the hardware statistics block. */
4864 bnx_stats_update(sc);
4865
4866 /* Schedule the next tick. */
4867 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4868
4869 /* If link is up already up then we're done. */
4870 if (sc->bnx_link)
4871 goto bnx_tick_exit;
4872
4873 /* DRC - ToDo: Add SerDes support and check SerDes link here. */
4874
4875 mii = &sc->bnx_mii;
4876 mii_tick(mii);
4877
4878 /* Check if the link has come up. */
4879 if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
4880 IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
4881 sc->bnx_link++;
4882 /* Now that link is up, handle any outstanding TX traffic. */
4883 if (!IFQ_IS_EMPTY(&ifp->if_snd))
4884 bnx_start(ifp);
4885 }
4886
4887 bnx_tick_exit:
4888 splx(s);
4889 return;
4890 }
4891
4892 /****************************************************************************/
4893 /* BNX Debug Routines */
4894 /****************************************************************************/
4895 #ifdef BNX_DEBUG
4896
4897 /****************************************************************************/
4898 /* Prints out information about an mbuf. */
4899 /* */
4900 /* Returns: */
4901 /* Nothing. */
4902 /****************************************************************************/
4903 void
4904 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
4905 {
4906 struct mbuf *mp = m;
4907
4908 if (m == NULL) {
4909 /* Index out of range. */
4910 aprint_error("mbuf ptr is null!\n");
4911 return;
4912 }
4913
4914 while (mp) {
4915 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
4916 mp, mp->m_len);
4917
4918 if (mp->m_flags & M_EXT)
4919 aprint_debug("M_EXT ");
4920 if (mp->m_flags & M_PKTHDR)
4921 aprint_debug("M_PKTHDR ");
4922 aprint_debug("\n");
4923
4924 if (mp->m_flags & M_EXT)
4925 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
4926 mp, mp->m_ext.ext_size);
4927
4928 mp = mp->m_next;
4929 }
4930 }
4931
4932 /****************************************************************************/
4933 /* Prints out the mbufs in the TX mbuf chain. */
4934 /* */
4935 /* Returns: */
4936 /* Nothing. */
4937 /****************************************************************************/
4938 void
4939 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
4940 {
4941 struct mbuf *m;
4942 int i;
4943
4944 BNX_PRINTF(sc,
4945 "----------------------------"
4946 " tx mbuf data "
4947 "----------------------------\n");
4948
4949 for (i = 0; i < count; i++) {
4950 m = sc->tx_mbuf_ptr[chain_prod];
4951 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
4952 bnx_dump_mbuf(sc, m);
4953 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
4954 }
4955
4956 BNX_PRINTF(sc,
4957 "--------------------------------------------"
4958 "----------------------------\n");
4959 }
4960
4961 /*
4962 * This routine prints the RX mbuf chain.
4963 */
4964 void
4965 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
4966 {
4967 struct mbuf *m;
4968 int i;
4969
4970 BNX_PRINTF(sc,
4971 "----------------------------"
4972 " rx mbuf data "
4973 "----------------------------\n");
4974
4975 for (i = 0; i < count; i++) {
4976 m = sc->rx_mbuf_ptr[chain_prod];
4977 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
4978 bnx_dump_mbuf(sc, m);
4979 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
4980 }
4981
4982
4983 BNX_PRINTF(sc,
4984 "--------------------------------------------"
4985 "----------------------------\n");
4986 }
4987
4988 void
4989 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
4990 {
4991 if (idx > MAX_TX_BD)
4992 /* Index out of range. */
4993 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
4994 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4995 /* TX Chain page pointer. */
4996 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
4997 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
4998 txbd->tx_bd_haddr_lo);
4999 else
5000 /* Normal tx_bd entry. */
5001 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5002 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5003 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5004 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5005 txbd->tx_bd_flags);
5006 }
5007
5008 void
5009 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5010 {
5011 if (idx > MAX_RX_BD)
5012 /* Index out of range. */
5013 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5014 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5015 /* TX Chain page pointer. */
5016 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5017 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5018 rxbd->rx_bd_haddr_lo);
5019 else
5020 /* Normal tx_bd entry. */
5021 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5022 "0x%08X, flags = 0x%08X\n", idx,
5023 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5024 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5025 }
5026
5027 void
5028 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5029 {
5030 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5031 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5032 "tcp_udp_xsum = 0x%04X\n", idx,
5033 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5034 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5035 l2fhdr->l2_fhdr_tcp_udp_xsum);
5036 }
5037
5038 /*
5039 * This routine prints the TX chain.
5040 */
5041 void
5042 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5043 {
5044 struct tx_bd *txbd;
5045 int i;
5046
5047 /* First some info about the tx_bd chain structure. */
5048 BNX_PRINTF(sc,
5049 "----------------------------"
5050 " tx_bd chain "
5051 "----------------------------\n");
5052
5053 BNX_PRINTF(sc,
5054 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5055 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5056
5057 BNX_PRINTF(sc,
5058 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5059 (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5060
5061 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
5062
5063 BNX_PRINTF(sc, ""
5064 "-----------------------------"
5065 " tx_bd data "
5066 "-----------------------------\n");
5067
5068 /* Now print out the tx_bd's themselves. */
5069 for (i = 0; i < count; i++) {
5070 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5071 bnx_dump_txbd(sc, tx_prod, txbd);
5072 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5073 }
5074
5075 BNX_PRINTF(sc,
5076 "-----------------------------"
5077 "--------------"
5078 "-----------------------------\n");
5079 }
5080
5081 /*
5082 * This routine prints the RX chain.
5083 */
5084 void
5085 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5086 {
5087 struct rx_bd *rxbd;
5088 int i;
5089
5090 /* First some info about the tx_bd chain structure. */
5091 BNX_PRINTF(sc,
5092 "----------------------------"
5093 " rx_bd chain "
5094 "----------------------------\n");
5095
5096 BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
5097
5098 BNX_PRINTF(sc,
5099 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5100 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5101
5102 BNX_PRINTF(sc,
5103 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5104 (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5105
5106 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
5107
5108 BNX_PRINTF(sc,
5109 "----------------------------"
5110 " rx_bd data "
5111 "----------------------------\n");
5112
5113 /* Now print out the rx_bd's themselves. */
5114 for (i = 0; i < count; i++) {
5115 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5116 bnx_dump_rxbd(sc, rx_prod, rxbd);
5117 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5118 }
5119
5120 BNX_PRINTF(sc,
5121 "----------------------------"
5122 "--------------"
5123 "----------------------------\n");
5124 }
5125
5126 /*
5127 * This routine prints the status block.
5128 */
5129 void
5130 bnx_dump_status_block(struct bnx_softc *sc)
5131 {
5132 struct status_block *sblk;
5133 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5134 BUS_DMASYNC_POSTREAD);
5135
5136 sblk = sc->status_block;
5137
5138 BNX_PRINTF(sc, "----------------------------- Status Block "
5139 "-----------------------------\n");
5140
5141 BNX_PRINTF(sc,
5142 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5143 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5144 sblk->status_idx);
5145
5146 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5147 sblk->status_rx_quick_consumer_index0,
5148 sblk->status_tx_quick_consumer_index0);
5149
5150 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5151
5152 /* Theses indices are not used for normal L2 drivers. */
5153 if (sblk->status_rx_quick_consumer_index1 ||
5154 sblk->status_tx_quick_consumer_index1)
5155 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5156 sblk->status_rx_quick_consumer_index1,
5157 sblk->status_tx_quick_consumer_index1);
5158
5159 if (sblk->status_rx_quick_consumer_index2 ||
5160 sblk->status_tx_quick_consumer_index2)
5161 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5162 sblk->status_rx_quick_consumer_index2,
5163 sblk->status_tx_quick_consumer_index2);
5164
5165 if (sblk->status_rx_quick_consumer_index3 ||
5166 sblk->status_tx_quick_consumer_index3)
5167 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5168 sblk->status_rx_quick_consumer_index3,
5169 sblk->status_tx_quick_consumer_index3);
5170
5171 if (sblk->status_rx_quick_consumer_index4 ||
5172 sblk->status_rx_quick_consumer_index5)
5173 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5174 sblk->status_rx_quick_consumer_index4,
5175 sblk->status_rx_quick_consumer_index5);
5176
5177 if (sblk->status_rx_quick_consumer_index6 ||
5178 sblk->status_rx_quick_consumer_index7)
5179 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
5180 sblk->status_rx_quick_consumer_index6,
5181 sblk->status_rx_quick_consumer_index7);
5182
5183 if (sblk->status_rx_quick_consumer_index8 ||
5184 sblk->status_rx_quick_consumer_index9)
5185 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
5186 sblk->status_rx_quick_consumer_index8,
5187 sblk->status_rx_quick_consumer_index9);
5188
5189 if (sblk->status_rx_quick_consumer_index10 ||
5190 sblk->status_rx_quick_consumer_index11)
5191 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
5192 sblk->status_rx_quick_consumer_index10,
5193 sblk->status_rx_quick_consumer_index11);
5194
5195 if (sblk->status_rx_quick_consumer_index12 ||
5196 sblk->status_rx_quick_consumer_index13)
5197 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
5198 sblk->status_rx_quick_consumer_index12,
5199 sblk->status_rx_quick_consumer_index13);
5200
5201 if (sblk->status_rx_quick_consumer_index14 ||
5202 sblk->status_rx_quick_consumer_index15)
5203 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
5204 sblk->status_rx_quick_consumer_index14,
5205 sblk->status_rx_quick_consumer_index15);
5206
5207 if (sblk->status_completion_producer_index ||
5208 sblk->status_cmd_consumer_index)
5209 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
5210 sblk->status_completion_producer_index,
5211 sblk->status_cmd_consumer_index);
5212
5213 BNX_PRINTF(sc, "-------------------------------------------"
5214 "-----------------------------\n");
5215 }
5216
5217 /*
5218 * This routine prints the statistics block.
5219 */
5220 void
5221 bnx_dump_stats_block(struct bnx_softc *sc)
5222 {
5223 struct statistics_block *sblk;
5224 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5225 BUS_DMASYNC_POSTREAD);
5226
5227 sblk = sc->stats_block;
5228
5229 BNX_PRINTF(sc, ""
5230 "-----------------------------"
5231 " Stats Block "
5232 "-----------------------------\n");
5233
5234 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
5235 "IfHcInBadOctets = 0x%08X:%08X\n",
5236 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5237 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5238
5239 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
5240 "IfHcOutBadOctets = 0x%08X:%08X\n",
5241 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5242 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5243
5244 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
5245 "IfHcInMulticastPkts = 0x%08X:%08X\n",
5246 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5247 sblk->stat_IfHCInMulticastPkts_hi,
5248 sblk->stat_IfHCInMulticastPkts_lo);
5249
5250 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
5251 "IfHcOutUcastPkts = 0x%08X:%08X\n",
5252 sblk->stat_IfHCInBroadcastPkts_hi,
5253 sblk->stat_IfHCInBroadcastPkts_lo,
5254 sblk->stat_IfHCOutUcastPkts_hi,
5255 sblk->stat_IfHCOutUcastPkts_lo);
5256
5257 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5258 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5259 sblk->stat_IfHCOutMulticastPkts_hi,
5260 sblk->stat_IfHCOutMulticastPkts_lo,
5261 sblk->stat_IfHCOutBroadcastPkts_hi,
5262 sblk->stat_IfHCOutBroadcastPkts_lo);
5263
5264 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5265 BNX_PRINTF(sc, "0x%08X : "
5266 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5267 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5268
5269 if (sblk->stat_Dot3StatsCarrierSenseErrors)
5270 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5271 sblk->stat_Dot3StatsCarrierSenseErrors);
5272
5273 if (sblk->stat_Dot3StatsFCSErrors)
5274 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5275 sblk->stat_Dot3StatsFCSErrors);
5276
5277 if (sblk->stat_Dot3StatsAlignmentErrors)
5278 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5279 sblk->stat_Dot3StatsAlignmentErrors);
5280
5281 if (sblk->stat_Dot3StatsSingleCollisionFrames)
5282 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5283 sblk->stat_Dot3StatsSingleCollisionFrames);
5284
5285 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
5286 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
5287 sblk->stat_Dot3StatsMultipleCollisionFrames);
5288
5289 if (sblk->stat_Dot3StatsDeferredTransmissions)
5290 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
5291 sblk->stat_Dot3StatsDeferredTransmissions);
5292
5293 if (sblk->stat_Dot3StatsExcessiveCollisions)
5294 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
5295 sblk->stat_Dot3StatsExcessiveCollisions);
5296
5297 if (sblk->stat_Dot3StatsLateCollisions)
5298 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
5299 sblk->stat_Dot3StatsLateCollisions);
5300
5301 if (sblk->stat_EtherStatsCollisions)
5302 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
5303 sblk->stat_EtherStatsCollisions);
5304
5305 if (sblk->stat_EtherStatsFragments)
5306 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
5307 sblk->stat_EtherStatsFragments);
5308
5309 if (sblk->stat_EtherStatsJabbers)
5310 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
5311 sblk->stat_EtherStatsJabbers);
5312
5313 if (sblk->stat_EtherStatsUndersizePkts)
5314 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
5315 sblk->stat_EtherStatsUndersizePkts);
5316
5317 if (sblk->stat_EtherStatsOverrsizePkts)
5318 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
5319 sblk->stat_EtherStatsOverrsizePkts);
5320
5321 if (sblk->stat_EtherStatsPktsRx64Octets)
5322 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
5323 sblk->stat_EtherStatsPktsRx64Octets);
5324
5325 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
5326 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
5327 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
5328
5329 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
5330 BNX_PRINTF(sc, "0x%08X : "
5331 "EtherStatsPktsRx128Octetsto255Octets\n",
5332 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
5333
5334 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
5335 BNX_PRINTF(sc, "0x%08X : "
5336 "EtherStatsPktsRx256Octetsto511Octets\n",
5337 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
5338
5339 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
5340 BNX_PRINTF(sc, "0x%08X : "
5341 "EtherStatsPktsRx512Octetsto1023Octets\n",
5342 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
5343
5344 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
5345 BNX_PRINTF(sc, "0x%08X : "
5346 "EtherStatsPktsRx1024Octetsto1522Octets\n",
5347 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
5348
5349 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
5350 BNX_PRINTF(sc, "0x%08X : "
5351 "EtherStatsPktsRx1523Octetsto9022Octets\n",
5352 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
5353
5354 if (sblk->stat_EtherStatsPktsTx64Octets)
5355 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
5356 sblk->stat_EtherStatsPktsTx64Octets);
5357
5358 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
5359 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
5360 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
5361
5362 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
5363 BNX_PRINTF(sc, "0x%08X : "
5364 "EtherStatsPktsTx128Octetsto255Octets\n",
5365 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
5366
5367 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
5368 BNX_PRINTF(sc, "0x%08X : "
5369 "EtherStatsPktsTx256Octetsto511Octets\n",
5370 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
5371
5372 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
5373 BNX_PRINTF(sc, "0x%08X : "
5374 "EtherStatsPktsTx512Octetsto1023Octets\n",
5375 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
5376
5377 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
5378 BNX_PRINTF(sc, "0x%08X : "
5379 "EtherStatsPktsTx1024Octetsto1522Octets\n",
5380 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
5381
5382 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
5383 BNX_PRINTF(sc, "0x%08X : "
5384 "EtherStatsPktsTx1523Octetsto9022Octets\n",
5385 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
5386
5387 if (sblk->stat_XonPauseFramesReceived)
5388 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
5389 sblk->stat_XonPauseFramesReceived);
5390
5391 if (sblk->stat_XoffPauseFramesReceived)
5392 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
5393 sblk->stat_XoffPauseFramesReceived);
5394
5395 if (sblk->stat_OutXonSent)
5396 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
5397 sblk->stat_OutXonSent);
5398
5399 if (sblk->stat_OutXoffSent)
5400 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
5401 sblk->stat_OutXoffSent);
5402
5403 if (sblk->stat_FlowControlDone)
5404 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
5405 sblk->stat_FlowControlDone);
5406
5407 if (sblk->stat_MacControlFramesReceived)
5408 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
5409 sblk->stat_MacControlFramesReceived);
5410
5411 if (sblk->stat_XoffStateEntered)
5412 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
5413 sblk->stat_XoffStateEntered);
5414
5415 if (sblk->stat_IfInFramesL2FilterDiscards)
5416 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
5417 sblk->stat_IfInFramesL2FilterDiscards);
5418
5419 if (sblk->stat_IfInRuleCheckerDiscards)
5420 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
5421 sblk->stat_IfInRuleCheckerDiscards);
5422
5423 if (sblk->stat_IfInFTQDiscards)
5424 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
5425 sblk->stat_IfInFTQDiscards);
5426
5427 if (sblk->stat_IfInMBUFDiscards)
5428 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
5429 sblk->stat_IfInMBUFDiscards);
5430
5431 if (sblk->stat_IfInRuleCheckerP4Hit)
5432 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
5433 sblk->stat_IfInRuleCheckerP4Hit);
5434
5435 if (sblk->stat_CatchupInRuleCheckerDiscards)
5436 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
5437 sblk->stat_CatchupInRuleCheckerDiscards);
5438
5439 if (sblk->stat_CatchupInFTQDiscards)
5440 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
5441 sblk->stat_CatchupInFTQDiscards);
5442
5443 if (sblk->stat_CatchupInMBUFDiscards)
5444 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
5445 sblk->stat_CatchupInMBUFDiscards);
5446
5447 if (sblk->stat_CatchupInRuleCheckerP4Hit)
5448 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
5449 sblk->stat_CatchupInRuleCheckerP4Hit);
5450
5451 BNX_PRINTF(sc,
5452 "-----------------------------"
5453 "--------------"
5454 "-----------------------------\n");
5455 }
5456
5457 void
5458 bnx_dump_driver_state(struct bnx_softc *sc)
5459 {
5460 BNX_PRINTF(sc,
5461 "-----------------------------"
5462 " Driver State "
5463 "-----------------------------\n");
5464
5465 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
5466 "address\n", sc);
5467
5468 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
5469 sc->status_block);
5470
5471 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
5472 "address\n", sc->stats_block);
5473
5474 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
5475 "adddress\n", sc->tx_bd_chain);
5476
5477 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
5478 sc->rx_bd_chain);
5479
5480 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
5481 sc->tx_mbuf_ptr);
5482
5483 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
5484 sc->rx_mbuf_ptr);
5485
5486 BNX_PRINTF(sc,
5487 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
5488 sc->interrupts_generated);
5489
5490 BNX_PRINTF(sc,
5491 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
5492 sc->rx_interrupts);
5493
5494 BNX_PRINTF(sc,
5495 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
5496 sc->tx_interrupts);
5497
5498 BNX_PRINTF(sc,
5499 " 0x%08X - (sc->last_status_idx) status block index\n",
5500 sc->last_status_idx);
5501
5502 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
5503 sc->tx_prod);
5504
5505 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
5506 sc->tx_cons);
5507
5508 BNX_PRINTF(sc,
5509 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
5510 sc->tx_prod_bseq);
5511
5512 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
5513 sc->rx_prod);
5514
5515 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
5516 sc->rx_cons);
5517
5518 BNX_PRINTF(sc,
5519 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
5520 sc->rx_prod_bseq);
5521
5522 BNX_PRINTF(sc,
5523 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5524 sc->rx_mbuf_alloc);
5525
5526 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
5527 sc->free_rx_bd);
5528
5529 BNX_PRINTF(sc,
5530 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
5531 sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
5532
5533 BNX_PRINTF(sc,
5534 " 0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
5535 sc->tx_mbuf_alloc);
5536
5537 BNX_PRINTF(sc,
5538 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
5539 sc->rx_mbuf_alloc);
5540
5541 BNX_PRINTF(sc, " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
5542 sc->used_tx_bd);
5543
5544 BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
5545 sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
5546
5547 BNX_PRINTF(sc,
5548 " 0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
5549 sc->mbuf_alloc_failed);
5550
5551 BNX_PRINTF(sc, "-------------------------------------------"
5552 "-----------------------------\n");
5553 }
5554
5555 void
5556 bnx_dump_hw_state(struct bnx_softc *sc)
5557 {
5558 u_int32_t val1;
5559 int i;
5560
5561 BNX_PRINTF(sc,
5562 "----------------------------"
5563 " Hardware State "
5564 "----------------------------\n");
5565
5566 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
5567
5568 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
5569 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
5570 val1, BNX_MISC_ENABLE_STATUS_BITS);
5571
5572 val1 = REG_RD(sc, BNX_DMA_STATUS);
5573 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
5574
5575 val1 = REG_RD(sc, BNX_CTX_STATUS);
5576 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
5577
5578 val1 = REG_RD(sc, BNX_EMAC_STATUS);
5579 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
5580 BNX_EMAC_STATUS);
5581
5582 val1 = REG_RD(sc, BNX_RPM_STATUS);
5583 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
5584
5585 val1 = REG_RD(sc, BNX_TBDR_STATUS);
5586 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
5587 BNX_TBDR_STATUS);
5588
5589 val1 = REG_RD(sc, BNX_TDMA_STATUS);
5590 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
5591 BNX_TDMA_STATUS);
5592
5593 val1 = REG_RD(sc, BNX_HC_STATUS);
5594 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
5595
5596 BNX_PRINTF(sc,
5597 "----------------------------"
5598 "----------------"
5599 "----------------------------\n");
5600
5601 BNX_PRINTF(sc,
5602 "----------------------------"
5603 " Register Dump "
5604 "----------------------------\n");
5605
5606 for (i = 0x400; i < 0x8000; i += 0x10)
5607 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
5608 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
5609 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
5610
5611 BNX_PRINTF(sc,
5612 "----------------------------"
5613 "----------------"
5614 "----------------------------\n");
5615 }
5616
5617 void
5618 bnx_breakpoint(struct bnx_softc *sc)
5619 {
5620 /* Unreachable code to shut the compiler up about unused functions. */
5621 if (0) {
5622 bnx_dump_txbd(sc, 0, NULL);
5623 bnx_dump_rxbd(sc, 0, NULL);
5624 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
5625 bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
5626 bnx_dump_l2fhdr(sc, 0, NULL);
5627 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
5628 bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
5629 bnx_dump_status_block(sc);
5630 bnx_dump_stats_block(sc);
5631 bnx_dump_driver_state(sc);
5632 bnx_dump_hw_state(sc);
5633 }
5634
5635 bnx_dump_driver_state(sc);
5636 /* Print the important status block fields. */
5637 bnx_dump_status_block(sc);
5638
5639 #if 0
5640 /* Call the debugger. */
5641 breakpoint();
5642 #endif
5643
5644 return;
5645 }
5646 #endif
5647