Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.4
      1 /*	$NetBSD: if_bnx.c,v 1.4 2007/04/09 14:23:03 bouyer Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.43 2007/01/30 03:21:10 krw Exp $	*/
      3 
      4 /*-
      5  * Copyright (c) 2006 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.4 2007/04/09 14:23:03 bouyer Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5708C B1
     44  *
     45  * The following controllers are not supported by this driver:
     46  * (These are not "Production" versions of the controller.)
     47  *
     48  *   BCM5706C A0, A1
     49  *   BCM5706S A0, A1, A2, A3
     50  *   BCM5708C A0, B0
     51  *   BCM5708S A0, B0, B1
     52  */
     53 
     54 #include <sys/callout.h>
     55 
     56 #include <dev/pci/if_bnxreg.h>
     57 #include <dev/microcode/bnx/bnxfw.h>
     58 
     59 /****************************************************************************/
     60 /* BNX Driver Version                                                       */
     61 /****************************************************************************/
     62 const char bnx_driver_version[] = "v0.9.6";
     63 
     64 /****************************************************************************/
     65 /* BNX Debug Options                                                        */
     66 /****************************************************************************/
     67 #ifdef BNX_DEBUG
     68 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     69 
     70 	/*          0 = Never              */
     71 	/*          1 = 1 in 2,147,483,648 */
     72 	/*        256 = 1 in     8,388,608 */
     73 	/*       2048 = 1 in     1,048,576 */
     74 	/*      65536 = 1 in        32,768 */
     75 	/*    1048576 = 1 in         2,048 */
     76 	/*  268435456 =	1 in             8 */
     77 	/*  536870912 = 1 in             4 */
     78 	/* 1073741824 = 1 in             2 */
     79 
     80 	/* Controls how often the l2_fhdr frame error check will fail. */
     81 	int bnx_debug_l2fhdr_status_check = 0;
     82 
     83 	/* Controls how often the unexpected attention check will fail. */
     84 	int bnx_debug_unexpected_attention = 0;
     85 
     86 	/* Controls how often to simulate an mbuf allocation failure. */
     87 	int bnx_debug_mbuf_allocation_failure = 0;
     88 
     89 	/* Controls how often to simulate a DMA mapping failure. */
     90 	int bnx_debug_dma_map_addr_failure = 0;
     91 
     92 	/* Controls how often to simulate a bootcode failure. */
     93 	int bnx_debug_bootcode_running_failure = 0;
     94 #endif
     95 
     96 /****************************************************************************/
     97 /* PCI Device ID Table                                                      */
     98 /*                                                                          */
     99 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    100 /****************************************************************************/
    101 static const struct bnx_product {
    102 	pci_vendor_id_t		bp_vendor;
    103 	pci_product_id_t	bp_product;
    104 	pci_vendor_id_t		bp_subvendor;
    105 	pci_product_id_t	bp_subproduct;
    106 	const char		*bp_name;
    107 } bnx_devices[] = {
    108 #ifdef PCI_SUBPRODUCT_HP_NC370T
    109 	{
    110 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    111 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    112 	  "HP NC370T Multifunction Gigabit Server Adapter"
    113 	},
    114 #endif
    115 #ifdef PCI_SUBPRODUCT_HP_NC370i
    116 	{
    117 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    118 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    119 	  "HP NC370i Multifunction Gigabit Server Adapter"
    120 	},
    121 #endif
    122 	{
    123 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    124 	  0, 0,
    125 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    126 	},
    127 #ifdef PCI_SUBPRODUCT_HP_NC370F
    128 	{
    129 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    130 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    131 	  "HP NC370F Multifunction Gigabit Server Adapter"
    132 	},
    133 #endif
    134 	{
    135 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    136 	  0, 0,
    137 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    138 	},
    139 	{
    140 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    141 	  0, 0,
    142 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    143 	},
    144 	{
    145 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    146 	  0, 0,
    147 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    148 	},
    149 };
    150 
    151 /****************************************************************************/
    152 /* Supported Flash NVRAM device data.                                       */
    153 /****************************************************************************/
    154 static struct flash_spec flash_table[] =
    155 {
    156 	/* Slow EEPROM */
    157 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    158 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    159 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    160 	 "EEPROM - slow"},
    161 	/* Expansion entry 0001 */
    162 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    163 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    164 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    165 	 "Entry 0001"},
    166 	/* Saifun SA25F010 (non-buffered flash) */
    167 	/* strap, cfg1, & write1 need updates */
    168 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    169 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    170 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    171 	 "Non-buffered flash (128kB)"},
    172 	/* Saifun SA25F020 (non-buffered flash) */
    173 	/* strap, cfg1, & write1 need updates */
    174 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    175 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    176 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    177 	 "Non-buffered flash (256kB)"},
    178 	/* Expansion entry 0100 */
    179 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    180 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    181 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    182 	 "Entry 0100"},
    183 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    184 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    185 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    186 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    187 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    188 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    189 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    190 	 0, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    191 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    192 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    193 	/* Saifun SA25F005 (non-buffered flash) */
    194 	/* strap, cfg1, & write1 need updates */
    195 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    196 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    197 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    198 	 "Non-buffered flash (64kB)"},
    199 	/* Fast EEPROM */
    200 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    201 	 1, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    202 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    203 	 "EEPROM - fast"},
    204 	/* Expansion entry 1001 */
    205 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    206 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    207 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    208 	 "Entry 1001"},
    209 	/* Expansion entry 1010 */
    210 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    211 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    213 	 "Entry 1010"},
    214 	/* ATMEL AT45DB011B (buffered flash) */
    215 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    216 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    217 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    218 	 "Buffered flash (128kB)"},
    219 	/* Expansion entry 1100 */
    220 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    221 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    222 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    223 	 "Entry 1100"},
    224 	/* Expansion entry 1101 */
    225 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    226 	 0, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    228 	 "Entry 1101"},
    229 	/* Ateml Expansion entry 1110 */
    230 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    231 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    232 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    233 	 "Entry 1110 (Atmel)"},
    234 	/* ATMEL AT45DB021B (buffered flash) */
    235 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    236 	 1, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    237 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    238 	 "Buffered flash (256kB)"},
    239 };
    240 
    241 /****************************************************************************/
    242 /* OpenBSD device entry points.                                             */
    243 /****************************************************************************/
    244 static int	bnx_probe(device_t, cfdata_t, void *);
    245 void	bnx_attach(struct device *, struct device *, void *);
    246 #if 0
    247 void	bnx_detach(void *);
    248 #endif
    249 void	bnx_shutdown(void *);
    250 
    251 /****************************************************************************/
    252 /* BNX Debug Data Structure Dump Routines                                   */
    253 /****************************************************************************/
    254 #ifdef BNX_DEBUG
    255 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    256 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    257 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    258 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    259 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    260 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    261 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    262 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    263 void	bnx_dump_status_block(struct bnx_softc *);
    264 void	bnx_dump_stats_block(struct bnx_softc *);
    265 void	bnx_dump_driver_state(struct bnx_softc *);
    266 void	bnx_dump_hw_state(struct bnx_softc *);
    267 void	bnx_breakpoint(struct bnx_softc *);
    268 #endif
    269 
    270 /****************************************************************************/
    271 /* BNX Register/Memory Access Routines                                      */
    272 /****************************************************************************/
    273 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
    274 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
    275 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
    276 int	bnx_miibus_read_reg(struct device *, int, int);
    277 void	bnx_miibus_write_reg(struct device *, int, int, int);
    278 void	bnx_miibus_statchg(struct device *);
    279 
    280 /****************************************************************************/
    281 /* BNX NVRAM Access Routines                                                */
    282 /****************************************************************************/
    283 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    284 int	bnx_release_nvram_lock(struct bnx_softc *);
    285 void	bnx_enable_nvram_access(struct bnx_softc *);
    286 void	bnx_disable_nvram_access(struct bnx_softc *);
    287 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    288 	    u_int32_t);
    289 int	bnx_init_nvram(struct bnx_softc *);
    290 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    291 int	bnx_nvram_test(struct bnx_softc *);
    292 #ifdef BNX_NVRAM_WRITE_SUPPORT
    293 int	bnx_enable_nvram_write(struct bnx_softc *);
    294 void	bnx_disable_nvram_write(struct bnx_softc *);
    295 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
    296 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    297 	    u_int32_t);
    298 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    299 #endif
    300 
    301 /****************************************************************************/
    302 /*                                                                          */
    303 /****************************************************************************/
    304 int	bnx_dma_alloc(struct bnx_softc *);
    305 void	bnx_dma_free(struct bnx_softc *);
    306 void	bnx_release_resources(struct bnx_softc *);
    307 
    308 /****************************************************************************/
    309 /* BNX Firmware Synchronization and Load                                    */
    310 /****************************************************************************/
    311 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
    312 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
    313 	    u_int32_t);
    314 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    315 	    struct fw_info *);
    316 void	bnx_init_cpus(struct bnx_softc *);
    317 
    318 void	bnx_stop(struct bnx_softc *);
    319 int	bnx_reset(struct bnx_softc *, u_int32_t);
    320 int	bnx_chipinit(struct bnx_softc *);
    321 int	bnx_blockinit(struct bnx_softc *);
    322 int	bnx_get_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
    323 	    u_int16_t *, u_int32_t *);
    324 
    325 int	bnx_init_tx_chain(struct bnx_softc *);
    326 int	bnx_init_rx_chain(struct bnx_softc *);
    327 void	bnx_free_rx_chain(struct bnx_softc *);
    328 void	bnx_free_tx_chain(struct bnx_softc *);
    329 
    330 int	bnx_tx_encap(struct bnx_softc *, struct mbuf **);
    331 void	bnx_start(struct ifnet *);
    332 int	bnx_ioctl(struct ifnet *, u_long, void *);
    333 void	bnx_watchdog(struct ifnet *);
    334 int	bnx_ifmedia_upd(struct ifnet *);
    335 void	bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    336 int	bnx_init(struct ifnet *);
    337 
    338 void	bnx_init_context(struct bnx_softc *);
    339 void	bnx_get_mac_addr(struct bnx_softc *);
    340 void	bnx_set_mac_addr(struct bnx_softc *);
    341 void	bnx_phy_intr(struct bnx_softc *);
    342 void	bnx_rx_intr(struct bnx_softc *);
    343 void	bnx_tx_intr(struct bnx_softc *);
    344 void	bnx_disable_intr(struct bnx_softc *);
    345 void	bnx_enable_intr(struct bnx_softc *);
    346 
    347 int	bnx_intr(void *);
    348 void	bnx_set_rx_mode(struct bnx_softc *);
    349 void	bnx_stats_update(struct bnx_softc *);
    350 void	bnx_tick(void *);
    351 
    352 /****************************************************************************/
    353 /* OpenBSD device dispatch table.                                           */
    354 /****************************************************************************/
    355 CFATTACH_DECL(bnx, sizeof(struct bnx_softc),
    356     bnx_probe, bnx_attach, NULL, NULL);
    357 
    358 /****************************************************************************/
    359 /* Device probe function.                                                   */
    360 /*                                                                          */
    361 /* Compares the device to the driver's list of supported devices and        */
    362 /* reports back to the OS whether this is the right driver for the device.  */
    363 /*                                                                          */
    364 /* Returns:                                                                 */
    365 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    366 /****************************************************************************/
    367 static const struct bnx_product *
    368 bnx_lookup(const struct pci_attach_args *pa)
    369 {
    370 	int i;
    371 	pcireg_t subid;
    372 
    373 	for (i = 0; i < sizeof(bnx_devices)/sizeof(struct bnx_product); i++) {
    374 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    375 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    376 			continue;
    377 		if (!bnx_devices[i].bp_subvendor)
    378 			return &bnx_devices[i];
    379 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    380 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    381 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    382 			return &bnx_devices[i];
    383 	}
    384 
    385 	return NULL;
    386 }
    387 static int
    388 bnx_probe(device_t parent, cfdata_t match, void *aux)
    389 {
    390 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    391 
    392 	if (bnx_lookup(pa) != NULL)
    393 		return (1);
    394 
    395 	return (0);
    396 }
    397 
    398 /****************************************************************************/
    399 /* Device attach function.                                                  */
    400 /*                                                                          */
    401 /* Allocates device resources, performs secondary chip identification,      */
    402 /* resets and initializes the hardware, and initializes driver instance     */
    403 /* variables.                                                               */
    404 /*                                                                          */
    405 /* Returns:                                                                 */
    406 /*   0 on success, positive value on failure.                               */
    407 /****************************************************************************/
    408 void
    409 bnx_attach(struct device *parent, struct device *self, void *aux)
    410 {
    411 	const struct bnx_product *bp;
    412 	struct bnx_softc	*sc = (struct bnx_softc *)self;
    413 	struct pci_attach_args	*pa = aux;
    414 	pci_chipset_tag_t	pc = pa->pa_pc;
    415 	pci_intr_handle_t	ih;
    416 	const char 		*intrstr = NULL;
    417 	u_int32_t		command;
    418 	struct ifnet		*ifp;
    419 	u_int32_t		val;
    420 	pcireg_t		memtype;
    421 
    422 	bp = bnx_lookup(pa);
    423 	if (bp == NULL)
    424 		panic("unknown device");
    425 
    426 	aprint_naive("\n");
    427 	aprint_normal(": %s", bp->bp_name);
    428 
    429 	sc->bnx_pa = *pa;
    430 
    431 	/*
    432 	 * Map control/status registers.
    433 	*/
    434 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    435 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    436 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    437 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    438 
    439 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    440 		aprint_error("%s: failed to enable memory mapping!\n",
    441 		    sc->bnx_dev.dv_xname);
    442 		return;
    443 	}
    444 
    445 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    446 	switch (memtype) {
    447 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_32BIT:
    448 	case PCI_MAPREG_TYPE_MEM | PCI_MAPREG_MEM_TYPE_64BIT:
    449 		if (pci_mapreg_map(pa, BNX_PCI_BAR0,
    450 		    memtype, 0, &sc->bnx_btag, &sc->bnx_bhandle,
    451 		    NULL, &sc->bnx_size) == 0)
    452 			break;
    453 	default:
    454 		aprint_error("%s: can't find mem space\n",
    455 		    sc->bnx_dev.dv_xname);
    456 		return;
    457 	}
    458 
    459 	if (pci_intr_map(pa, &ih)) {
    460 		aprint_error("%s: couldn't map interrupt\n",
    461 		    sc->bnx_dev.dv_xname);
    462 		goto bnx_attach_fail;
    463 	}
    464 
    465 	intrstr = pci_intr_string(pc, ih);
    466 
    467 	/*
    468 	 * Configure byte swap and enable indirect register access.
    469 	 * Rely on CPU to do target byte swapping on big endian systems.
    470 	 * Access to registers outside of PCI configurtion space are not
    471 	 * valid until this is done.
    472 	 */
    473 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    474 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    475 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    476 
    477 	/* Save ASIC revsion info. */
    478 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    479 
    480 	/* Weed out any non-production controller revisions. */
    481 	switch(BNX_CHIP_ID(sc)) {
    482 	case BNX_CHIP_ID_5706_A0:
    483 	case BNX_CHIP_ID_5706_A1:
    484 	case BNX_CHIP_ID_5708_A0:
    485 	case BNX_CHIP_ID_5708_B0:
    486 		aprint_error("%s: unsupported controller revision (%c%d)!\n",
    487 		    sc->bnx_dev.dv_xname,
    488 		    ((PCI_REVISION(pa->pa_class) & 0xf0) >> 4) + 'A',
    489 		    PCI_REVISION(pa->pa_class) & 0x0f);
    490 		goto bnx_attach_fail;
    491 	}
    492 
    493 	if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
    494 		aprint_error("%s: SerDes controllers are not supported!\n",
    495 		    sc->bnx_dev.dv_xname);
    496 		goto bnx_attach_fail;
    497 	}
    498 
    499 	/*
    500 	 * Find the base address for shared memory access.
    501 	 * Newer versions of bootcode use a signature and offset
    502 	 * while older versions use a fixed address.
    503 	 */
    504 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    505 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    506 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0);
    507 	else
    508 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    509 
    510 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    511 
    512 	/* Set initial device and PHY flags */
    513 	sc->bnx_flags = 0;
    514 	sc->bnx_phy_flags = 0;
    515 
    516 	/* Get PCI bus information (speed and type). */
    517 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    518 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    519 		u_int32_t clkreg;
    520 
    521 		sc->bnx_flags |= BNX_PCIX_FLAG;
    522 
    523 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    524 
    525 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    526 		switch (clkreg) {
    527 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    528 			sc->bus_speed_mhz = 133;
    529 			break;
    530 
    531 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    532 			sc->bus_speed_mhz = 100;
    533 			break;
    534 
    535 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    536 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    537 			sc->bus_speed_mhz = 66;
    538 			break;
    539 
    540 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    541 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    542 			sc->bus_speed_mhz = 50;
    543 			break;
    544 
    545 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    546 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    547 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    548 			sc->bus_speed_mhz = 33;
    549 			break;
    550 		}
    551 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    552 			sc->bus_speed_mhz = 66;
    553 		else
    554 			sc->bus_speed_mhz = 33;
    555 
    556 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    557 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    558 
    559 	/* Reset the controller. */
    560 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    561 		goto bnx_attach_fail;
    562 
    563 	/* Initialize the controller. */
    564 	if (bnx_chipinit(sc)) {
    565 		aprint_error("%s: Controller initialization failed!\n",
    566 		    sc->bnx_dev.dv_xname);
    567 		goto bnx_attach_fail;
    568 	}
    569 
    570 	/* Perform NVRAM test. */
    571 	if (bnx_nvram_test(sc)) {
    572 		aprint_error("%s: NVRAM test failed!\n", sc->bnx_dev.dv_xname);
    573 		goto bnx_attach_fail;
    574 	}
    575 
    576 	/* Fetch the permanent Ethernet MAC address. */
    577 	bnx_get_mac_addr(sc);
    578 	aprint_normal("%s: Ethernet address %s\n", sc->bnx_dev.dv_xname,
    579 	    ether_sprintf(sc->eaddr));
    580 
    581 	/*
    582 	 * Trip points control how many BDs
    583 	 * should be ready before generating an
    584 	 * interrupt while ticks control how long
    585 	 * a BD can sit in the chain before
    586 	 * generating an interrupt.  Set the default
    587 	 * values for the RX and TX rings.
    588 	 */
    589 
    590 #ifdef BNX_DEBUG
    591 	/* Force more frequent interrupts. */
    592 	sc->bnx_tx_quick_cons_trip_int = 1;
    593 	sc->bnx_tx_quick_cons_trip     = 1;
    594 	sc->bnx_tx_ticks_int           = 0;
    595 	sc->bnx_tx_ticks               = 0;
    596 
    597 	sc->bnx_rx_quick_cons_trip_int = 1;
    598 	sc->bnx_rx_quick_cons_trip     = 1;
    599 	sc->bnx_rx_ticks_int           = 0;
    600 	sc->bnx_rx_ticks               = 0;
    601 #else
    602 	sc->bnx_tx_quick_cons_trip_int = 20;
    603 	sc->bnx_tx_quick_cons_trip     = 20;
    604 	sc->bnx_tx_ticks_int           = 80;
    605 	sc->bnx_tx_ticks               = 80;
    606 
    607 	sc->bnx_rx_quick_cons_trip_int = 6;
    608 	sc->bnx_rx_quick_cons_trip     = 6;
    609 	sc->bnx_rx_ticks_int           = 18;
    610 	sc->bnx_rx_ticks               = 18;
    611 #endif
    612 
    613 	/* Update statistics once every second. */
    614 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    615 
    616 	/*
    617 	 * The copper based NetXtreme II controllers
    618 	 * use an integrated PHY at address 1 while
    619 	 * the SerDes controllers use a PHY at
    620 	 * address 2.
    621 	 */
    622 	sc->bnx_phy_addr = 1;
    623 
    624 	if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT) {
    625 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
    626 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
    627 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708) {
    628 			sc->bnx_phy_addr = 2;
    629 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
    630 					 BNX_SHARED_HW_CFG_CONFIG);
    631 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G)
    632 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
    633 		}
    634 	}
    635 
    636 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
    637 		aprint_error("%s: SerDes is not supported by this driver!\n",
    638 		    sc->bnx_dev.dv_xname);
    639 		goto bnx_attach_fail;
    640 	}
    641 
    642 	/* Allocate DMA memory resources. */
    643 	sc->bnx_dmatag = pa->pa_dmat;
    644 	if (bnx_dma_alloc(sc)) {
    645 		aprint_error("%s: DMA resource allocation failed!\n",
    646 		    sc->bnx_dev.dv_xname);
    647 		goto bnx_attach_fail;
    648 	}
    649 
    650 	/* Initialize the ifnet interface. */
    651 	ifp = &sc->ethercom.ec_if;
    652 	ifp->if_softc = sc;
    653 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    654 	ifp->if_ioctl = bnx_ioctl;
    655 	ifp->if_start = bnx_start;
    656 	ifp->if_init = bnx_init;
    657 	ifp->if_timer = 0;
    658 	ifp->if_watchdog = bnx_watchdog;
    659         if (sc->bnx_phy_flags & BNX_PHY_2_5G_CAPABLE_FLAG)
    660                 ifp->if_baudrate = IF_Gbps(2.5);
    661         else
    662                 ifp->if_baudrate = IF_Gbps(1);
    663 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    664 	IFQ_SET_READY(&ifp->if_snd);
    665 	bcopy(sc->bnx_dev.dv_xname, ifp->if_xname, IFNAMSIZ);
    666 
    667 	sc->ethercom.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    668 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    669 
    670 	ifp->if_capabilities |=
    671 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    672 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    673 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    674 
    675 	sc->mbuf_alloc_size = BNX_MAX_MRU;
    676 
    677 	/* Hookup IRQ last. */
    678 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    679 	if (sc->bnx_intrhand == NULL) {
    680 		aprint_error("%s: couldn't establish interrupt",
    681 		    sc->bnx_dev.dv_xname);
    682 		if (intrstr != NULL)
    683 			aprint_error(" at %s", intrstr);
    684 		aprint_error("\n");
    685 		goto bnx_attach_fail;
    686 	}
    687 
    688 	sc->bnx_mii.mii_ifp = ifp;
    689 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    690 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    691 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    692 
    693 	/* Look for our PHY. */
    694 	ifmedia_init(&sc->bnx_mii.mii_media, 0, bnx_ifmedia_upd,
    695 	    bnx_ifmedia_sts);
    696 	mii_attach(&sc->bnx_dev, &sc->bnx_mii, 0xffffffff,
    697 	    MII_PHY_ANY, MII_OFFSET_ANY, 0);
    698 
    699 	if (LIST_FIRST(&sc->bnx_mii.mii_phys) == NULL) {
    700 		aprint_error("%s: no PHY found!\n", sc->bnx_dev.dv_xname);
    701 		ifmedia_add(&sc->bnx_mii.mii_media,
    702 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    703 		ifmedia_set(&sc->bnx_mii.mii_media,
    704 		    IFM_ETHER|IFM_MANUAL);
    705 	} else {
    706 		ifmedia_set(&sc->bnx_mii.mii_media,
    707 		    IFM_ETHER|IFM_AUTO);
    708 	}
    709 
    710 	/* Attach to the Ethernet interface list. */
    711 	if_attach(ifp);
    712 	ether_ifattach(ifp,sc->eaddr);
    713 
    714 	callout_init(&sc->bnx_timeout);
    715 
    716 	/* Print some important debugging info. */
    717 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    718 
    719 	goto bnx_attach_exit;
    720 
    721 bnx_attach_fail:
    722 	bnx_release_resources(sc);
    723 
    724 bnx_attach_exit:
    725 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
    726 }
    727 
    728 /****************************************************************************/
    729 /* Device detach function.                                                  */
    730 /*                                                                          */
    731 /* Stops the controller, resets the controller, and releases resources.     */
    732 /*                                                                          */
    733 /* Returns:                                                                 */
    734 /*   0 on success, positive value on failure.                               */
    735 /****************************************************************************/
    736 #if 0
    737 void
    738 bnx_detach(void *xsc)
    739 {
    740 	struct bnx_softc *sc;
    741 	struct ifnet *ifp = &sc->arpcom.ac_if;
    742 
    743 	sc = device_get_softc(dev);
    744 
    745 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
    746 
    747 	/* Stop and reset the controller. */
    748 	bnx_stop(sc);
    749 	bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
    750 
    751 	ether_ifdetach(ifp);
    752 
    753 	/* If we have a child device on the MII bus remove it too. */
    754 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
    755 		ifmedia_removeall(&sc->bnx_ifmedia);
    756 	} else {
    757 		bus_generic_detach(dev);
    758 		device_delete_child(dev, sc->bnx_mii);
    759 	}
    760 
    761 	/* Release all remaining resources. */
    762 	bnx_release_resources(sc);
    763 
    764 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
    765 
    766 	return(0);
    767 }
    768 #endif
    769 
    770 /****************************************************************************/
    771 /* Device shutdown function.                                                */
    772 /*                                                                          */
    773 /* Stops and resets the controller.                                         */
    774 /*                                                                          */
    775 /* Returns:                                                                 */
    776 /*   Nothing                                                                */
    777 /****************************************************************************/
    778 void
    779 bnx_shutdown(void *xsc)
    780 {
    781 	struct bnx_softc	*sc = (struct bnx_softc *)xsc;
    782 
    783 	bnx_stop(sc);
    784 	bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
    785 }
    786 
    787 /****************************************************************************/
    788 /* Indirect register read.                                                  */
    789 /*                                                                          */
    790 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    791 /* configuration space.  Using this mechanism avoids issues with posted     */
    792 /* reads but is much slower than memory-mapped I/O.                         */
    793 /*                                                                          */
    794 /* Returns:                                                                 */
    795 /*   The value of the register.                                             */
    796 /****************************************************************************/
    797 u_int32_t
    798 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
    799 {
    800 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    801 
    802 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    803 	    offset);
    804 #ifdef BNX_DEBUG
    805 	{
    806 		u_int32_t val;
    807 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    808 		    BNX_PCICFG_REG_WINDOW);
    809 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    810 		    "val = 0x%08X\n", __FUNCTION__, offset, val);
    811 		return (val);
    812 	}
    813 #else
    814 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    815 #endif
    816 }
    817 
    818 /****************************************************************************/
    819 /* Indirect register write.                                                 */
    820 /*                                                                          */
    821 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    822 /* configuration space.  Using this mechanism avoids issues with posted     */
    823 /* writes but is muchh slower than memory-mapped I/O.                       */
    824 /*                                                                          */
    825 /* Returns:                                                                 */
    826 /*   Nothing.                                                               */
    827 /****************************************************************************/
    828 void
    829 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
    830 {
    831 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    832 
    833 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    834 		__FUNCTION__, offset, val);
    835 
    836 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    837 	    offset);
    838 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    839 }
    840 
    841 /****************************************************************************/
    842 /* Context memory write.                                                    */
    843 /*                                                                          */
    844 /* The NetXtreme II controller uses context memory to track connection      */
    845 /* information for L2 and higher network protocols.                         */
    846 /*                                                                          */
    847 /* Returns:                                                                 */
    848 /*   Nothing.                                                               */
    849 /****************************************************************************/
    850 void
    851 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t offset,
    852     u_int32_t val)
    853 {
    854 
    855 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); cid_addr = 0x%08X, offset = 0x%08X, "
    856 		"val = 0x%08X\n", __FUNCTION__, cid_addr, offset, val);
    857 
    858 	offset += cid_addr;
    859 	REG_WR(sc, BNX_CTX_DATA_ADR, offset);
    860 	REG_WR(sc, BNX_CTX_DATA, val);
    861 }
    862 
    863 /****************************************************************************/
    864 /* PHY register read.                                                       */
    865 /*                                                                          */
    866 /* Implements register reads on the MII bus.                                */
    867 /*                                                                          */
    868 /* Returns:                                                                 */
    869 /*   The value of the register.                                             */
    870 /****************************************************************************/
    871 int
    872 bnx_miibus_read_reg(struct device *dev, int phy, int reg)
    873 {
    874 	struct bnx_softc	*sc = (struct bnx_softc *)dev;
    875 	u_int32_t		val;
    876 	int			i;
    877 
    878 	/* Make sure we are accessing the correct PHY address. */
    879 	if (phy != sc->bnx_phy_addr) {
    880 		DBPRINT(sc, BNX_VERBOSE,
    881 		    "Invalid PHY address %d for PHY read!\n", phy);
    882 		return(0);
    883 	}
    884 
    885 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    886 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    887 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    888 
    889 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    890 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    891 
    892 		DELAY(40);
    893 	}
    894 
    895 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
    896 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
    897 	    BNX_EMAC_MDIO_COMM_START_BUSY;
    898 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
    899 
    900 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    901 		DELAY(10);
    902 
    903 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    904 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    905 			DELAY(5);
    906 
    907 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    908 			val &= BNX_EMAC_MDIO_COMM_DATA;
    909 
    910 			break;
    911 		}
    912 	}
    913 
    914 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
    915 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
    916 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
    917 		val = 0x0;
    918 	} else
    919 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    920 
    921 	DBPRINT(sc, BNX_EXCESSIVE,
    922 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __FUNCTION__, phy,
    923 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    924 
    925 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    926 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    927 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    928 
    929 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    930 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    931 
    932 		DELAY(40);
    933 	}
    934 
    935 	return (val & 0xffff);
    936 }
    937 
    938 /****************************************************************************/
    939 /* PHY register write.                                                      */
    940 /*                                                                          */
    941 /* Implements register writes on the MII bus.                               */
    942 /*                                                                          */
    943 /* Returns:                                                                 */
    944 /*   The value of the register.                                             */
    945 /****************************************************************************/
    946 void
    947 bnx_miibus_write_reg(struct device *dev, int phy, int reg, int val)
    948 {
    949 	struct bnx_softc	*sc = (struct bnx_softc *)dev;
    950 	u_int32_t		val1;
    951 	int			i;
    952 
    953 	/* Make sure we are accessing the correct PHY address. */
    954 	if (phy != sc->bnx_phy_addr) {
    955 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
    956 		    phy);
    957 		return;
    958 	}
    959 
    960 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
    961 	    "val = 0x%04X\n", __FUNCTION__,
    962 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    963 
    964 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    965 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    966 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    967 
    968 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
    969 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    970 
    971 		DELAY(40);
    972 	}
    973 
    974 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
    975 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
    976 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
    977 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
    978 
    979 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    980 		DELAY(10);
    981 
    982 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    983 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    984 			DELAY(5);
    985 			break;
    986 		}
    987 	}
    988 
    989 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
    990 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
    991 		    __LINE__);
    992 	}
    993 
    994 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    995 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    996 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    997 
    998 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
    999 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1000 
   1001 		DELAY(40);
   1002 	}
   1003 }
   1004 
   1005 /****************************************************************************/
   1006 /* MII bus status change.                                                   */
   1007 /*                                                                          */
   1008 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1009 /* MAC interface registers.                                                 */
   1010 /*                                                                          */
   1011 /* Returns:                                                                 */
   1012 /*   Nothing.                                                               */
   1013 /****************************************************************************/
   1014 void
   1015 bnx_miibus_statchg(struct device *dev)
   1016 {
   1017 	struct bnx_softc	*sc = (struct bnx_softc *)dev;
   1018 	struct mii_data		*mii = &sc->bnx_mii;
   1019 
   1020 	BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT);
   1021 
   1022 	/* Set MII or GMII inerface based on the speed negotiated by the PHY. */
   1023 	if (IFM_SUBTYPE(mii->mii_media_active) == IFM_1000_T) {
   1024 		DBPRINT(sc, BNX_INFO, "Setting GMII interface.\n");
   1025 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_GMII);
   1026 	} else {
   1027 		DBPRINT(sc, BNX_INFO, "Setting MII interface.\n");
   1028 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_PORT_MII);
   1029 	}
   1030 
   1031 	/* Set half or full duplex based on the duplicity
   1032 	 * negotiated by the PHY.
   1033 	 */
   1034 	if ((mii->mii_media_active & IFM_GMASK) == IFM_FDX) {
   1035 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1036 		BNX_CLRBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
   1037 	} else {
   1038 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1039 		BNX_SETBIT(sc, BNX_EMAC_MODE, BNX_EMAC_MODE_HALF_DUPLEX);
   1040 	}
   1041 }
   1042 
   1043 /****************************************************************************/
   1044 /* Acquire NVRAM lock.                                                      */
   1045 /*                                                                          */
   1046 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1047 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1048 /* for use by the driver.                                                   */
   1049 /*                                                                          */
   1050 /* Returns:                                                                 */
   1051 /*   0 on success, positive value on failure.                               */
   1052 /****************************************************************************/
   1053 int
   1054 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1055 {
   1056 	u_int32_t		val;
   1057 	int			j;
   1058 
   1059 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1060 
   1061 	/* Request access to the flash interface. */
   1062 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1063 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1064 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1065 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1066 			break;
   1067 
   1068 		DELAY(5);
   1069 	}
   1070 
   1071 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1072 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1073 		return (EBUSY);
   1074 	}
   1075 
   1076 	return (0);
   1077 }
   1078 
   1079 /****************************************************************************/
   1080 /* Release NVRAM lock.                                                      */
   1081 /*                                                                          */
   1082 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1083 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1084 /* for use by the driver.                                                   */
   1085 /*                                                                          */
   1086 /* Returns:                                                                 */
   1087 /*   0 on success, positive value on failure.                               */
   1088 /****************************************************************************/
   1089 int
   1090 bnx_release_nvram_lock(struct bnx_softc *sc)
   1091 {
   1092 	int			j;
   1093 	u_int32_t		val;
   1094 
   1095 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1096 
   1097 	/* Relinquish nvram interface. */
   1098 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1099 
   1100 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1101 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1102 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1103 			break;
   1104 
   1105 		DELAY(5);
   1106 	}
   1107 
   1108 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1109 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1110 		return (EBUSY);
   1111 	}
   1112 
   1113 	return (0);
   1114 }
   1115 
   1116 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1117 /****************************************************************************/
   1118 /* Enable NVRAM write access.                                               */
   1119 /*                                                                          */
   1120 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1121 /*                                                                          */
   1122 /* Returns:                                                                 */
   1123 /*   0 on success, positive value on failure.                               */
   1124 /****************************************************************************/
   1125 int
   1126 bnx_enable_nvram_write(struct bnx_softc *sc)
   1127 {
   1128 	u_int32_t		val;
   1129 
   1130 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1131 
   1132 	val = REG_RD(sc, BNX_MISC_CFG);
   1133 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1134 
   1135 	if (!sc->bnx_flash_info->buffered) {
   1136 		int j;
   1137 
   1138 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1139 		REG_WR(sc, BNX_NVM_COMMAND,
   1140 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1141 
   1142 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1143 			DELAY(5);
   1144 
   1145 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1146 			if (val & BNX_NVM_COMMAND_DONE)
   1147 				break;
   1148 		}
   1149 
   1150 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1151 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1152 			return (EBUSY);
   1153 		}
   1154 	}
   1155 
   1156 	return (0);
   1157 }
   1158 
   1159 /****************************************************************************/
   1160 /* Disable NVRAM write access.                                              */
   1161 /*                                                                          */
   1162 /* When the caller is finished writing to NVRAM write access must be        */
   1163 /* disabled.                                                                */
   1164 /*                                                                          */
   1165 /* Returns:                                                                 */
   1166 /*   Nothing.                                                               */
   1167 /****************************************************************************/
   1168 void
   1169 bnx_disable_nvram_write(struct bnx_softc *sc)
   1170 {
   1171 	u_int32_t		val;
   1172 
   1173 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1174 
   1175 	val = REG_RD(sc, BNX_MISC_CFG);
   1176 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1177 }
   1178 #endif
   1179 
   1180 /****************************************************************************/
   1181 /* Enable NVRAM access.                                                     */
   1182 /*                                                                          */
   1183 /* Before accessing NVRAM for read or write operations the caller must      */
   1184 /* enabled NVRAM access.                                                    */
   1185 /*                                                                          */
   1186 /* Returns:                                                                 */
   1187 /*   Nothing.                                                               */
   1188 /****************************************************************************/
   1189 void
   1190 bnx_enable_nvram_access(struct bnx_softc *sc)
   1191 {
   1192 	u_int32_t		val;
   1193 
   1194 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1195 
   1196 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1197 	/* Enable both bits, even on read. */
   1198 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1199 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1200 }
   1201 
   1202 /****************************************************************************/
   1203 /* Disable NVRAM access.                                                    */
   1204 /*                                                                          */
   1205 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1206 /*                                                                          */
   1207 /* Returns:                                                                 */
   1208 /*   Nothing.                                                               */
   1209 /****************************************************************************/
   1210 void
   1211 bnx_disable_nvram_access(struct bnx_softc *sc)
   1212 {
   1213 	u_int32_t		val;
   1214 
   1215 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1216 
   1217 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1218 
   1219 	/* Disable both bits, even after read. */
   1220 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1221 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1222 }
   1223 
   1224 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1225 /****************************************************************************/
   1226 /* Erase NVRAM page before writing.                                         */
   1227 /*                                                                          */
   1228 /* Non-buffered flash parts require that a page be erased before it is      */
   1229 /* written.                                                                 */
   1230 /*                                                                          */
   1231 /* Returns:                                                                 */
   1232 /*   0 on success, positive value on failure.                               */
   1233 /****************************************************************************/
   1234 int
   1235 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
   1236 {
   1237 	u_int32_t		cmd;
   1238 	int			j;
   1239 
   1240 	/* Buffered flash doesn't require an erase. */
   1241 	if (sc->bnx_flash_info->buffered)
   1242 		return (0);
   1243 
   1244 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1245 
   1246 	/* Build an erase command. */
   1247 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1248 	    BNX_NVM_COMMAND_DOIT;
   1249 
   1250 	/*
   1251 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
   1252 	 * and issue the erase command.
   1253 	 */
   1254 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1255 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1256 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1257 
   1258 	/* Wait for completion. */
   1259 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1260 		u_int32_t val;
   1261 
   1262 		DELAY(5);
   1263 
   1264 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1265 		if (val & BNX_NVM_COMMAND_DONE)
   1266 			break;
   1267 	}
   1268 
   1269 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1270 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1271 		return (EBUSY);
   1272 	}
   1273 
   1274 	return (0);
   1275 }
   1276 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1277 
   1278 /****************************************************************************/
   1279 /* Read a dword (32 bits) from NVRAM.                                       */
   1280 /*                                                                          */
   1281 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1282 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1283 /*                                                                          */
   1284 /* Returns:                                                                 */
   1285 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1286 /****************************************************************************/
   1287 int
   1288 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
   1289     u_int8_t *ret_val, u_int32_t cmd_flags)
   1290 {
   1291 	u_int32_t		cmd;
   1292 	int			i, rc = 0;
   1293 
   1294 	/* Build the command word. */
   1295 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1296 
   1297 	/* Calculate the offset for buffered flash. */
   1298 	if (sc->bnx_flash_info->buffered)
   1299 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1300 		    sc->bnx_flash_info->page_bits) +
   1301 		    (offset % sc->bnx_flash_info->page_size);
   1302 
   1303 	/*
   1304 	 * Clear the DONE bit separately, set the address to read,
   1305 	 * and issue the read.
   1306 	 */
   1307 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1308 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1309 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1310 
   1311 	/* Wait for completion. */
   1312 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1313 		u_int32_t val;
   1314 
   1315 		DELAY(5);
   1316 
   1317 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1318 		if (val & BNX_NVM_COMMAND_DONE) {
   1319 			val = REG_RD(sc, BNX_NVM_READ);
   1320 
   1321 			val = bnx_be32toh(val);
   1322 			memcpy(ret_val, &val, 4);
   1323 			break;
   1324 		}
   1325 	}
   1326 
   1327 	/* Check for errors. */
   1328 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1329 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1330 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1331 		rc = EBUSY;
   1332 	}
   1333 
   1334 	return(rc);
   1335 }
   1336 
   1337 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1338 /****************************************************************************/
   1339 /* Write a dword (32 bits) to NVRAM.                                        */
   1340 /*                                                                          */
   1341 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1342 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1343 /* enabled NVRAM write access.                                              */
   1344 /*                                                                          */
   1345 /* Returns:                                                                 */
   1346 /*   0 on success, positive value on failure.                               */
   1347 /****************************************************************************/
   1348 int
   1349 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
   1350     u_int32_t cmd_flags)
   1351 {
   1352 	u_int32_t		cmd, val32;
   1353 	int			j;
   1354 
   1355 	/* Build the command word. */
   1356 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1357 
   1358 	/* Calculate the offset for buffered flash. */
   1359 	if (sc->bnx_flash_info->buffered)
   1360 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1361 		    sc->bnx_flash_info->page_bits) +
   1362 		    (offset % sc->bnx_flash_info->page_size);
   1363 
   1364 	/*
   1365 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1366 	 * set the NVRAM address to write, and issue the write command
   1367 	 */
   1368 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1369 	memcpy(&val32, val, 4);
   1370 	val32 = htobe32(val32);
   1371 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1372 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1373 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1374 
   1375 	/* Wait for completion. */
   1376 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1377 		DELAY(5);
   1378 
   1379 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1380 			break;
   1381 	}
   1382 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1383 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1384 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1385 		return (EBUSY);
   1386 	}
   1387 
   1388 	return (0);
   1389 }
   1390 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1391 
   1392 /****************************************************************************/
   1393 /* Initialize NVRAM access.                                                 */
   1394 /*                                                                          */
   1395 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1396 /* access that device.                                                      */
   1397 /*                                                                          */
   1398 /* Returns:                                                                 */
   1399 /*   0 on success, positive value on failure.                               */
   1400 /****************************************************************************/
   1401 int
   1402 bnx_init_nvram(struct bnx_softc *sc)
   1403 {
   1404 	u_int32_t		val;
   1405 	int			j, entry_count, rc;
   1406 	struct flash_spec	*flash;
   1407 
   1408 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   1409 
   1410 	/* Determine the selected interface. */
   1411 	val = REG_RD(sc, BNX_NVM_CFG1);
   1412 
   1413 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1414 
   1415 	rc = 0;
   1416 
   1417 	/*
   1418 	 * Flash reconfiguration is required to support additional
   1419 	 * NVRAM devices not directly supported in hardware.
   1420 	 * Check if the flash interface was reconfigured
   1421 	 * by the bootcode.
   1422 	 */
   1423 
   1424 	if (val & 0x40000000) {
   1425 		/* Flash interface reconfigured by bootcode. */
   1426 
   1427 		DBPRINT(sc,BNX_INFO_LOAD,
   1428 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1429 
   1430 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1431 		     j++, flash++) {
   1432 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1433 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1434 				sc->bnx_flash_info = flash;
   1435 				break;
   1436 			}
   1437 		}
   1438 	} else {
   1439 		/* Flash interface not yet reconfigured. */
   1440 		u_int32_t mask;
   1441 
   1442 		DBPRINT(sc,BNX_INFO_LOAD,
   1443 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1444 
   1445 		if (val & (1 << 23))
   1446 			mask = FLASH_BACKUP_STRAP_MASK;
   1447 		else
   1448 			mask = FLASH_STRAP_MASK;
   1449 
   1450 		/* Look for the matching NVRAM device configuration data. */
   1451 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1452 		    j++, flash++) {
   1453 			/* Check if the dev matches any of the known devices. */
   1454 			if ((val & mask) == (flash->strapping & mask)) {
   1455 				/* Found a device match. */
   1456 				sc->bnx_flash_info = flash;
   1457 
   1458 				/* Request access to the flash interface. */
   1459 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1460 					return (rc);
   1461 
   1462 				/* Reconfigure the flash interface. */
   1463 				bnx_enable_nvram_access(sc);
   1464 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1465 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1466 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1467 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1468 				bnx_disable_nvram_access(sc);
   1469 				bnx_release_nvram_lock(sc);
   1470 
   1471 				break;
   1472 			}
   1473 		}
   1474 	}
   1475 
   1476 	/* Check if a matching device was found. */
   1477 	if (j == entry_count) {
   1478 		sc->bnx_flash_info = NULL;
   1479 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1480 			__FILE__, __LINE__);
   1481 		rc = ENODEV;
   1482 	}
   1483 
   1484 	/* Write the flash config data to the shared memory interface. */
   1485 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1486 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1487 	if (val)
   1488 		sc->bnx_flash_size = val;
   1489 	else
   1490 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1491 
   1492 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1493 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1494 
   1495 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   1496 
   1497 	return (rc);
   1498 }
   1499 
   1500 /****************************************************************************/
   1501 /* Read an arbitrary range of data from NVRAM.                              */
   1502 /*                                                                          */
   1503 /* Prepares the NVRAM interface for access and reads the requested data     */
   1504 /* into the supplied buffer.                                                */
   1505 /*                                                                          */
   1506 /* Returns:                                                                 */
   1507 /*   0 on success and the data read, positive value on failure.             */
   1508 /****************************************************************************/
   1509 int
   1510 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
   1511     int buf_size)
   1512 {
   1513 	int			rc = 0;
   1514 	u_int32_t		cmd_flags, offset32, len32, extra;
   1515 
   1516 	if (buf_size == 0)
   1517 		return (0);
   1518 
   1519 	/* Request access to the flash interface. */
   1520 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1521 		return (rc);
   1522 
   1523 	/* Enable access to flash interface */
   1524 	bnx_enable_nvram_access(sc);
   1525 
   1526 	len32 = buf_size;
   1527 	offset32 = offset;
   1528 	extra = 0;
   1529 
   1530 	cmd_flags = 0;
   1531 
   1532 	if (offset32 & 3) {
   1533 		u_int8_t buf[4];
   1534 		u_int32_t pre_len;
   1535 
   1536 		offset32 &= ~3;
   1537 		pre_len = 4 - (offset & 3);
   1538 
   1539 		if (pre_len >= len32) {
   1540 			pre_len = len32;
   1541 			cmd_flags =
   1542 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1543 		} else
   1544 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1545 
   1546 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1547 
   1548 		if (rc)
   1549 			return (rc);
   1550 
   1551 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1552 
   1553 		offset32 += 4;
   1554 		ret_buf += pre_len;
   1555 		len32 -= pre_len;
   1556 	}
   1557 
   1558 	if (len32 & 3) {
   1559 		extra = 4 - (len32 & 3);
   1560 		len32 = (len32 + 4) & ~3;
   1561 	}
   1562 
   1563 	if (len32 == 4) {
   1564 		u_int8_t buf[4];
   1565 
   1566 		if (cmd_flags)
   1567 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1568 		else
   1569 			cmd_flags =
   1570 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1571 
   1572 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1573 
   1574 		memcpy(ret_buf, buf, 4 - extra);
   1575 	} else if (len32 > 0) {
   1576 		u_int8_t buf[4];
   1577 
   1578 		/* Read the first word. */
   1579 		if (cmd_flags)
   1580 			cmd_flags = 0;
   1581 		else
   1582 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1583 
   1584 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1585 
   1586 		/* Advance to the next dword. */
   1587 		offset32 += 4;
   1588 		ret_buf += 4;
   1589 		len32 -= 4;
   1590 
   1591 		while (len32 > 4 && rc == 0) {
   1592 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1593 
   1594 			/* Advance to the next dword. */
   1595 			offset32 += 4;
   1596 			ret_buf += 4;
   1597 			len32 -= 4;
   1598 		}
   1599 
   1600 		if (rc)
   1601 			return (rc);
   1602 
   1603 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1604 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1605 
   1606 		memcpy(ret_buf, buf, 4 - extra);
   1607 	}
   1608 
   1609 	/* Disable access to flash interface and release the lock. */
   1610 	bnx_disable_nvram_access(sc);
   1611 	bnx_release_nvram_lock(sc);
   1612 
   1613 	return (rc);
   1614 }
   1615 
   1616 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1617 /****************************************************************************/
   1618 /* Write an arbitrary range of data from NVRAM.                             */
   1619 /*                                                                          */
   1620 /* Prepares the NVRAM interface for write access and writes the requested   */
   1621 /* data from the supplied buffer.  The caller is responsible for            */
   1622 /* calculating any appropriate CRCs.                                        */
   1623 /*                                                                          */
   1624 /* Returns:                                                                 */
   1625 /*   0 on success, positive value on failure.                               */
   1626 /****************************************************************************/
   1627 int
   1628 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
   1629     int buf_size)
   1630 {
   1631 	u_int32_t		written, offset32, len32;
   1632 	u_int8_t		*buf, start[4], end[4];
   1633 	int			rc = 0;
   1634 	int			align_start, align_end;
   1635 
   1636 	buf = data_buf;
   1637 	offset32 = offset;
   1638 	len32 = buf_size;
   1639 	align_start = align_end = 0;
   1640 
   1641 	if ((align_start = (offset32 & 3))) {
   1642 		offset32 &= ~3;
   1643 		len32 += align_start;
   1644 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1645 			return (rc);
   1646 	}
   1647 
   1648 	if (len32 & 3) {
   1649 	       	if ((len32 > 4) || !align_start) {
   1650 			align_end = 4 - (len32 & 3);
   1651 			len32 += align_end;
   1652 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1653 			    end, 4))) {
   1654 				return (rc);
   1655 			}
   1656 		}
   1657 	}
   1658 
   1659 	if (align_start || align_end) {
   1660 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1661 		if (buf == 0)
   1662 			return (ENOMEM);
   1663 
   1664 		if (align_start)
   1665 			memcpy(buf, start, 4);
   1666 
   1667 		if (align_end)
   1668 			memcpy(buf + len32 - 4, end, 4);
   1669 
   1670 		memcpy(buf + align_start, data_buf, buf_size);
   1671 	}
   1672 
   1673 	written = 0;
   1674 	while ((written < len32) && (rc == 0)) {
   1675 		u_int32_t page_start, page_end, data_start, data_end;
   1676 		u_int32_t addr, cmd_flags;
   1677 		int i;
   1678 		u_int8_t flash_buffer[264];
   1679 
   1680 	    /* Find the page_start addr */
   1681 		page_start = offset32 + written;
   1682 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1683 		/* Find the page_end addr */
   1684 		page_end = page_start + sc->bnx_flash_info->page_size;
   1685 		/* Find the data_start addr */
   1686 		data_start = (written == 0) ? offset32 : page_start;
   1687 		/* Find the data_end addr */
   1688 		data_end = (page_end > offset32 + len32) ?
   1689 		    (offset32 + len32) : page_end;
   1690 
   1691 		/* Request access to the flash interface. */
   1692 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1693 			goto nvram_write_end;
   1694 
   1695 		/* Enable access to flash interface */
   1696 		bnx_enable_nvram_access(sc);
   1697 
   1698 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1699 		if (sc->bnx_flash_info->buffered == 0) {
   1700 			int j;
   1701 
   1702 			/* Read the whole page into the buffer
   1703 			 * (non-buffer flash only) */
   1704 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1705 				if (j == (sc->bnx_flash_info->page_size - 4))
   1706 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1707 
   1708 				rc = bnx_nvram_read_dword(sc,
   1709 					page_start + j,
   1710 					&flash_buffer[j],
   1711 					cmd_flags);
   1712 
   1713 				if (rc)
   1714 					goto nvram_write_end;
   1715 
   1716 				cmd_flags = 0;
   1717 			}
   1718 		}
   1719 
   1720 		/* Enable writes to flash interface (unlock write-protect) */
   1721 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1722 			goto nvram_write_end;
   1723 
   1724 		/* Erase the page */
   1725 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1726 			goto nvram_write_end;
   1727 
   1728 		/* Re-enable the write again for the actual write */
   1729 		bnx_enable_nvram_write(sc);
   1730 
   1731 		/* Loop to write back the buffer data from page_start to
   1732 		 * data_start */
   1733 		i = 0;
   1734 		if (sc->bnx_flash_info->buffered == 0) {
   1735 			for (addr = page_start; addr < data_start;
   1736 				addr += 4, i += 4) {
   1737 
   1738 				rc = bnx_nvram_write_dword(sc, addr,
   1739 				    &flash_buffer[i], cmd_flags);
   1740 
   1741 				if (rc != 0)
   1742 					goto nvram_write_end;
   1743 
   1744 				cmd_flags = 0;
   1745 			}
   1746 		}
   1747 
   1748 		/* Loop to write the new data from data_start to data_end */
   1749 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1750 			if ((addr == page_end - 4) ||
   1751 			    ((sc->bnx_flash_info->buffered) &&
   1752 			    (addr == data_end - 4))) {
   1753 
   1754 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1755 			}
   1756 
   1757 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1758 
   1759 			if (rc != 0)
   1760 				goto nvram_write_end;
   1761 
   1762 			cmd_flags = 0;
   1763 			buf += 4;
   1764 		}
   1765 
   1766 		/* Loop to write back the buffer data from data_end
   1767 		 * to page_end */
   1768 		if (sc->bnx_flash_info->buffered == 0) {
   1769 			for (addr = data_end; addr < page_end;
   1770 			    addr += 4, i += 4) {
   1771 
   1772 				if (addr == page_end-4)
   1773 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1774 
   1775 				rc = bnx_nvram_write_dword(sc, addr,
   1776 				    &flash_buffer[i], cmd_flags);
   1777 
   1778 				if (rc != 0)
   1779 					goto nvram_write_end;
   1780 
   1781 				cmd_flags = 0;
   1782 			}
   1783 		}
   1784 
   1785 		/* Disable writes to flash interface (lock write-protect) */
   1786 		bnx_disable_nvram_write(sc);
   1787 
   1788 		/* Disable access to flash interface */
   1789 		bnx_disable_nvram_access(sc);
   1790 		bnx_release_nvram_lock(sc);
   1791 
   1792 		/* Increment written */
   1793 		written += data_end - data_start;
   1794 	}
   1795 
   1796 nvram_write_end:
   1797 	if (align_start || align_end)
   1798 		free(buf, M_DEVBUF);
   1799 
   1800 	return (rc);
   1801 }
   1802 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1803 
   1804 /****************************************************************************/
   1805 /* Verifies that NVRAM is accessible and contains valid data.               */
   1806 /*                                                                          */
   1807 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   1808 /* correct.                                                                 */
   1809 /*                                                                          */
   1810 /* Returns:                                                                 */
   1811 /*   0 on success, positive value on failure.                               */
   1812 /****************************************************************************/
   1813 int
   1814 bnx_nvram_test(struct bnx_softc *sc)
   1815 {
   1816 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
   1817 	u_int8_t		*data = (u_int8_t *) buf;
   1818 	int			rc = 0;
   1819 	u_int32_t		magic, csum;
   1820 
   1821 	/*
   1822 	 * Check that the device NVRAM is valid by reading
   1823 	 * the magic value at offset 0.
   1824 	 */
   1825 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   1826 		goto bnx_nvram_test_done;
   1827 
   1828 	magic = bnx_be32toh(buf[0]);
   1829 	if (magic != BNX_NVRAM_MAGIC) {
   1830 		rc = ENODEV;
   1831 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   1832 		    "Expected: 0x%08X, Found: 0x%08X\n",
   1833 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   1834 		goto bnx_nvram_test_done;
   1835 	}
   1836 
   1837 	/*
   1838 	 * Verify that the device NVRAM includes valid
   1839 	 * configuration data.
   1840 	 */
   1841 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   1842 		goto bnx_nvram_test_done;
   1843 
   1844 	csum = ether_crc32_le(data, 0x100);
   1845 	if (csum != BNX_CRC32_RESIDUAL) {
   1846 		rc = ENODEV;
   1847 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   1848 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   1849 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1850 		goto bnx_nvram_test_done;
   1851 	}
   1852 
   1853 	csum = ether_crc32_le(data + 0x100, 0x100);
   1854 	if (csum != BNX_CRC32_RESIDUAL) {
   1855 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   1856 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   1857 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1858 		rc = ENODEV;
   1859 	}
   1860 
   1861 bnx_nvram_test_done:
   1862 	return (rc);
   1863 }
   1864 
   1865 /****************************************************************************/
   1866 /* Free any DMA memory owned by the driver.                                 */
   1867 /*                                                                          */
   1868 /* Scans through each data structre that requires DMA memory and frees      */
   1869 /* the memory if allocated.                                                 */
   1870 /*                                                                          */
   1871 /* Returns:                                                                 */
   1872 /*   Nothing.                                                               */
   1873 /****************************************************************************/
   1874 void
   1875 bnx_dma_free(struct bnx_softc *sc)
   1876 {
   1877 	int			i;
   1878 
   1879 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   1880 
   1881 	/* Destroy the status block. */
   1882 	if (sc->status_block != NULL && sc->status_map != NULL) {
   1883 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   1884 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   1885 		    BNX_STATUS_BLK_SZ);
   1886 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   1887 		    sc->status_rseg);
   1888 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   1889 		sc->status_block = NULL;
   1890 		sc->status_map = NULL;
   1891 	}
   1892 
   1893 	/* Destroy the statistics block. */
   1894 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   1895 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   1896 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   1897 		    BNX_STATS_BLK_SZ);
   1898 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   1899 		    sc->stats_rseg);
   1900 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   1901 		sc->stats_block = NULL;
   1902 		sc->stats_map = NULL;
   1903 	}
   1904 
   1905 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   1906 	for (i = 0; i < TX_PAGES; i++ ) {
   1907 		if (sc->tx_bd_chain[i] != NULL &&
   1908 		    sc->tx_bd_chain_map[i] != NULL) {
   1909 			bus_dmamap_unload(sc->bnx_dmatag,
   1910 			    sc->tx_bd_chain_map[i]);
   1911 			bus_dmamem_unmap(sc->bnx_dmatag,
   1912 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   1913 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   1914 			    sc->tx_bd_chain_rseg[i]);
   1915 			bus_dmamap_destroy(sc->bnx_dmatag,
   1916 			    sc->tx_bd_chain_map[i]);
   1917 			sc->tx_bd_chain[i] = NULL;
   1918 			sc->tx_bd_chain_map[i] = NULL;
   1919 		}
   1920 	}
   1921 
   1922 	/* Unload and destroy the TX mbuf maps. */
   1923 	for (i = 0; i < TOTAL_TX_BD; i++) {
   1924 		if (sc->tx_mbuf_map[i] != NULL) {
   1925 			bus_dmamap_unload(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
   1926 			bus_dmamap_destroy(sc->bnx_dmatag, sc->tx_mbuf_map[i]);
   1927 		}
   1928 	}
   1929 
   1930 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   1931 	for (i = 0; i < RX_PAGES; i++ ) {
   1932 		if (sc->rx_bd_chain[i] != NULL &&
   1933 		    sc->rx_bd_chain_map[i] != NULL) {
   1934 			bus_dmamap_unload(sc->bnx_dmatag,
   1935 			    sc->rx_bd_chain_map[i]);
   1936 			bus_dmamem_unmap(sc->bnx_dmatag,
   1937 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   1938 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   1939 			    sc->rx_bd_chain_rseg[i]);
   1940 
   1941 			bus_dmamap_destroy(sc->bnx_dmatag,
   1942 			    sc->rx_bd_chain_map[i]);
   1943 			sc->rx_bd_chain[i] = NULL;
   1944 			sc->rx_bd_chain_map[i] = NULL;
   1945 		}
   1946 	}
   1947 
   1948 	/* Unload and destroy the RX mbuf maps. */
   1949 	for (i = 0; i < TOTAL_RX_BD; i++) {
   1950 		if (sc->rx_mbuf_map[i] != NULL) {
   1951 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   1952 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   1953 		}
   1954 	}
   1955 
   1956 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   1957 }
   1958 
   1959 /****************************************************************************/
   1960 /* Allocate any DMA memory needed by the driver.                            */
   1961 /*                                                                          */
   1962 /* Allocates DMA memory needed for the various global structures needed by  */
   1963 /* hardware.                                                                */
   1964 /*                                                                          */
   1965 /* Returns:                                                                 */
   1966 /*   0 for success, positive value for failure.                             */
   1967 /****************************************************************************/
   1968 int
   1969 bnx_dma_alloc(struct bnx_softc *sc)
   1970 {
   1971 	int			i, rc = 0;
   1972 
   1973 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   1974 
   1975 	/*
   1976 	 * Allocate DMA memory for the status block, map the memory into DMA
   1977 	 * space, and fetch the physical address of the block.
   1978 	 */
   1979 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   1980 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   1981 		aprint_error("%s: Could not create status block DMA map!\n",
   1982 		    sc->bnx_dev.dv_xname);
   1983 		rc = ENOMEM;
   1984 		goto bnx_dma_alloc_exit;
   1985 	}
   1986 
   1987 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   1988 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   1989 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   1990 		aprint_error(
   1991 		    "%s: Could not allocate status block DMA memory!\n",
   1992 		    sc->bnx_dev.dv_xname);
   1993 		rc = ENOMEM;
   1994 		goto bnx_dma_alloc_exit;
   1995 	}
   1996 
   1997 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   1998 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   1999 		aprint_error("%s: Could not map status block DMA memory!\n",
   2000 		    sc->bnx_dev.dv_xname);
   2001 		rc = ENOMEM;
   2002 		goto bnx_dma_alloc_exit;
   2003 	}
   2004 
   2005 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2006 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2007 		aprint_error("%s: Could not load status block DMA memory!\n",
   2008 		    sc->bnx_dev.dv_xname);
   2009 		rc = ENOMEM;
   2010 		goto bnx_dma_alloc_exit;
   2011 	}
   2012 
   2013 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2014 	bzero(sc->status_block, BNX_STATUS_BLK_SZ);
   2015 
   2016 	/* DRC - Fix for 64 bit addresses. */
   2017 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2018 		(u_int32_t) sc->status_block_paddr);
   2019 
   2020 	/*
   2021 	 * Allocate DMA memory for the statistics block, map the memory into
   2022 	 * DMA space, and fetch the physical address of the block.
   2023 	 */
   2024 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2025 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2026 		aprint_error("%s: Could not create stats block DMA map!\n",
   2027 		    sc->bnx_dev.dv_xname);
   2028 		rc = ENOMEM;
   2029 		goto bnx_dma_alloc_exit;
   2030 	}
   2031 
   2032 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2033 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2034 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2035 		aprint_error("%s: Could not allocate stats block DMA memory!\n",
   2036 		    sc->bnx_dev.dv_xname);
   2037 		rc = ENOMEM;
   2038 		goto bnx_dma_alloc_exit;
   2039 	}
   2040 
   2041 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2042 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2043 		aprint_error("%s: Could not map stats block DMA memory!\n",
   2044 		    sc->bnx_dev.dv_xname);
   2045 		rc = ENOMEM;
   2046 		goto bnx_dma_alloc_exit;
   2047 	}
   2048 
   2049 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2050 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2051 		aprint_error("%s: Could not load status block DMA memory!\n",
   2052 		    sc->bnx_dev.dv_xname);
   2053 		rc = ENOMEM;
   2054 		goto bnx_dma_alloc_exit;
   2055 	}
   2056 
   2057 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2058 	bzero(sc->stats_block, BNX_STATS_BLK_SZ);
   2059 
   2060 	/* DRC - Fix for 64 bit address. */
   2061 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2062 	    (u_int32_t) sc->stats_block_paddr);
   2063 
   2064 	/*
   2065 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2066 	 * and fetch the physical address of the block.
   2067 	 */
   2068 	for (i = 0; i < TX_PAGES; i++) {
   2069 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2070 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2071 		    &sc->tx_bd_chain_map[i])) {
   2072 			aprint_error(
   2073 			    "%s: Could not create Tx desc %d DMA map!\n",
   2074 			    sc->bnx_dev.dv_xname, i);
   2075 			rc = ENOMEM;
   2076 			goto bnx_dma_alloc_exit;
   2077 		}
   2078 
   2079 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2080 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2081 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2082 			aprint_error(
   2083 			    "%s: Could not allocate TX desc %d DMA memory!\n",
   2084 			    sc->bnx_dev.dv_xname, i);
   2085 			rc = ENOMEM;
   2086 			goto bnx_dma_alloc_exit;
   2087 		}
   2088 
   2089 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2090 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2091 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2092 			aprint_error(
   2093 			    "%s: Could not map TX desc %d DMA memory!\n",
   2094 			    sc->bnx_dev.dv_xname, i);
   2095 			rc = ENOMEM;
   2096 			goto bnx_dma_alloc_exit;
   2097 		}
   2098 
   2099 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2100 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2101 		    BUS_DMA_NOWAIT)) {
   2102 			aprint_error(
   2103 			    "%s: Could not load TX desc %d DMA memory!\n",
   2104 			    sc->bnx_dev.dv_xname, i);
   2105 			rc = ENOMEM;
   2106 			goto bnx_dma_alloc_exit;
   2107 		}
   2108 
   2109 		sc->tx_bd_chain_paddr[i] =
   2110 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2111 
   2112 		/* DRC - Fix for 64 bit systems. */
   2113 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2114 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
   2115 	}
   2116 
   2117 	/*
   2118 	 * Create DMA maps for the TX buffer mbufs.
   2119 	 */
   2120 	for (i = 0; i < TOTAL_TX_BD; i++) {
   2121 		if (bus_dmamap_create(sc->bnx_dmatag,
   2122 		    MCLBYTES * BNX_MAX_SEGMENTS,
   2123 		    USABLE_TX_BD - BNX_TX_SLACK_SPACE,
   2124 		    MCLBYTES, 0, BUS_DMA_NOWAIT,
   2125 		    &sc->tx_mbuf_map[i])) {
   2126 			aprint_error(
   2127 			    "%s: Could not create Tx mbuf %d DMA map!\n",
   2128 			    sc->bnx_dev.dv_xname, i);
   2129 			rc = ENOMEM;
   2130 			goto bnx_dma_alloc_exit;
   2131 		}
   2132 	}
   2133 
   2134 	/*
   2135 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2136 	 * and fetch the physical address of the block.
   2137 	 */
   2138 	for (i = 0; i < RX_PAGES; i++) {
   2139 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2140 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2141 		    &sc->rx_bd_chain_map[i])) {
   2142 			aprint_error(
   2143 			    "%s: Could not create Rx desc %d DMA map!\n",
   2144 			    sc->bnx_dev.dv_xname, i);
   2145 			rc = ENOMEM;
   2146 			goto bnx_dma_alloc_exit;
   2147 		}
   2148 
   2149 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2150 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2151 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2152 			aprint_error(
   2153 			    "%s: Could not allocate Rx desc %d DMA memory!\n",
   2154 			    sc->bnx_dev.dv_xname, i);
   2155 			rc = ENOMEM;
   2156 			goto bnx_dma_alloc_exit;
   2157 		}
   2158 
   2159 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2160 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2161 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2162 			aprint_error(
   2163 			    "%s: Could not map Rx desc %d DMA memory!\n",
   2164 			    sc->bnx_dev.dv_xname, i);
   2165 			rc = ENOMEM;
   2166 			goto bnx_dma_alloc_exit;
   2167 		}
   2168 
   2169 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2170 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2171 		    BUS_DMA_NOWAIT)) {
   2172 			aprint_error(
   2173 			    "%s: Could not load Rx desc %d DMA memory!\n",
   2174 			    sc->bnx_dev.dv_xname, i);
   2175 			rc = ENOMEM;
   2176 			goto bnx_dma_alloc_exit;
   2177 		}
   2178 
   2179 		bzero(sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2180 		sc->rx_bd_chain_paddr[i] =
   2181 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2182 
   2183 		/* DRC - Fix for 64 bit systems. */
   2184 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2185 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
   2186 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2187 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2188 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2189 	}
   2190 
   2191 	/*
   2192 	 * Create DMA maps for the Rx buffer mbufs.
   2193 	 */
   2194 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2195 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_MRU,
   2196 		    BNX_MAX_SEGMENTS, BNX_MAX_MRU, 0, BUS_DMA_NOWAIT,
   2197 		    &sc->rx_mbuf_map[i])) {
   2198 			aprint_error(
   2199 			    "%s: Could not create Rx mbuf %d DMA map!\n",
   2200 			    sc->bnx_dev.dv_xname, i);
   2201 			rc = ENOMEM;
   2202 			goto bnx_dma_alloc_exit;
   2203 		}
   2204 	}
   2205 
   2206  bnx_dma_alloc_exit:
   2207 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   2208 
   2209 	return(rc);
   2210 }
   2211 
   2212 /****************************************************************************/
   2213 /* Release all resources used by the driver.                                */
   2214 /*                                                                          */
   2215 /* Releases all resources acquired by the driver including interrupts,      */
   2216 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2217 /*                                                                          */
   2218 /* Returns:                                                                 */
   2219 /*   Nothing.                                                               */
   2220 /****************************************************************************/
   2221 void
   2222 bnx_release_resources(struct bnx_softc *sc)
   2223 {
   2224 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2225 
   2226 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   2227 
   2228 	bnx_dma_free(sc);
   2229 
   2230 	if (sc->bnx_intrhand != NULL)
   2231 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2232 
   2233 	if (sc->bnx_size)
   2234 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2235 
   2236 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   2237 }
   2238 
   2239 /****************************************************************************/
   2240 /* Firmware synchronization.                                                */
   2241 /*                                                                          */
   2242 /* Before performing certain events such as a chip reset, synchronize with  */
   2243 /* the firmware first.                                                      */
   2244 /*                                                                          */
   2245 /* Returns:                                                                 */
   2246 /*   0 for success, positive value for failure.                             */
   2247 /****************************************************************************/
   2248 int
   2249 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
   2250 {
   2251 	int			i, rc = 0;
   2252 	u_int32_t		val;
   2253 
   2254 	/* Don't waste any time if we've timed out before. */
   2255 	if (sc->bnx_fw_timed_out) {
   2256 		rc = EBUSY;
   2257 		goto bnx_fw_sync_exit;
   2258 	}
   2259 
   2260 	/* Increment the message sequence number. */
   2261 	sc->bnx_fw_wr_seq++;
   2262 	msg_data |= sc->bnx_fw_wr_seq;
   2263 
   2264  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2265 	    msg_data);
   2266 
   2267 	/* Send the message to the bootcode driver mailbox. */
   2268 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2269 
   2270 	/* Wait for the bootcode to acknowledge the message. */
   2271 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2272 		/* Check for a response in the bootcode firmware mailbox. */
   2273 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2274 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2275 			break;
   2276 		DELAY(1000);
   2277 	}
   2278 
   2279 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2280 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2281 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2282 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2283 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2284 
   2285 		msg_data &= ~BNX_DRV_MSG_CODE;
   2286 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2287 
   2288 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2289 
   2290 		sc->bnx_fw_timed_out = 1;
   2291 		rc = EBUSY;
   2292 	}
   2293 
   2294 bnx_fw_sync_exit:
   2295 	return (rc);
   2296 }
   2297 
   2298 /****************************************************************************/
   2299 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2300 /*                                                                          */
   2301 /* Returns:                                                                 */
   2302 /*   Nothing.                                                               */
   2303 /****************************************************************************/
   2304 void
   2305 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
   2306     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
   2307 {
   2308 	int			i;
   2309 	u_int32_t		val;
   2310 
   2311 	for (i = 0; i < rv2p_code_len; i += 8) {
   2312 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2313 		rv2p_code++;
   2314 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2315 		rv2p_code++;
   2316 
   2317 		if (rv2p_proc == RV2P_PROC1) {
   2318 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2319 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2320 		}
   2321 		else {
   2322 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2323 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2324 		}
   2325 	}
   2326 
   2327 	/* Reset the processor, un-stall is done later. */
   2328 	if (rv2p_proc == RV2P_PROC1)
   2329 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2330 	else
   2331 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2332 }
   2333 
   2334 /****************************************************************************/
   2335 /* Load RISC processor firmware.                                            */
   2336 /*                                                                          */
   2337 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2338 /* associated with a particular processor.                                  */
   2339 /*                                                                          */
   2340 /* Returns:                                                                 */
   2341 /*   Nothing.                                                               */
   2342 /****************************************************************************/
   2343 void
   2344 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2345     struct fw_info *fw)
   2346 {
   2347 	u_int32_t		offset;
   2348 	u_int32_t		val;
   2349 
   2350 	/* Halt the CPU. */
   2351 	val = REG_RD_IND(sc, cpu_reg->mode);
   2352 	val |= cpu_reg->mode_value_halt;
   2353 	REG_WR_IND(sc, cpu_reg->mode, val);
   2354 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2355 
   2356 	/* Load the Text area. */
   2357 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2358 	if (fw->text) {
   2359 		int j;
   2360 
   2361 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2362 			REG_WR_IND(sc, offset, fw->text[j]);
   2363 	}
   2364 
   2365 	/* Load the Data area. */
   2366 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2367 	if (fw->data) {
   2368 		int j;
   2369 
   2370 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2371 			REG_WR_IND(sc, offset, fw->data[j]);
   2372 	}
   2373 
   2374 	/* Load the SBSS area. */
   2375 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2376 	if (fw->sbss) {
   2377 		int j;
   2378 
   2379 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2380 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2381 	}
   2382 
   2383 	/* Load the BSS area. */
   2384 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2385 	if (fw->bss) {
   2386 		int j;
   2387 
   2388 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2389 			REG_WR_IND(sc, offset, fw->bss[j]);
   2390 	}
   2391 
   2392 	/* Load the Read-Only area. */
   2393 	offset = cpu_reg->spad_base +
   2394 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2395 	if (fw->rodata) {
   2396 		int j;
   2397 
   2398 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2399 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2400 	}
   2401 
   2402 	/* Clear the pre-fetch instruction. */
   2403 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2404 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2405 
   2406 	/* Start the CPU. */
   2407 	val = REG_RD_IND(sc, cpu_reg->mode);
   2408 	val &= ~cpu_reg->mode_value_halt;
   2409 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2410 	REG_WR_IND(sc, cpu_reg->mode, val);
   2411 }
   2412 
   2413 /****************************************************************************/
   2414 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2415 /*                                                                          */
   2416 /* Loads the firmware for each CPU and starts the CPU.                      */
   2417 /*                                                                          */
   2418 /* Returns:                                                                 */
   2419 /*   Nothing.                                                               */
   2420 /****************************************************************************/
   2421 void
   2422 bnx_init_cpus(struct bnx_softc *sc)
   2423 {
   2424 	struct cpu_reg cpu_reg;
   2425 	struct fw_info fw;
   2426 
   2427 	/* Initialize the RV2P processor. */
   2428 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   2429 	    RV2P_PROC1);
   2430 	bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   2431 	    RV2P_PROC2);
   2432 
   2433 	/* Initialize the RX Processor. */
   2434 	cpu_reg.mode = BNX_RXP_CPU_MODE;
   2435 	cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2436 	cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2437 	cpu_reg.state = BNX_RXP_CPU_STATE;
   2438 	cpu_reg.state_value_clear = 0xffffff;
   2439 	cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2440 	cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2441 	cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2442 	cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2443 	cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2444 	cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2445 	cpu_reg.mips_view_base = 0x8000000;
   2446 
   2447 	fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   2448 	fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   2449 	fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   2450 	fw.start_addr = bnx_RXP_b06FwStartAddr;
   2451 
   2452 	fw.text_addr = bnx_RXP_b06FwTextAddr;
   2453 	fw.text_len = bnx_RXP_b06FwTextLen;
   2454 	fw.text_index = 0;
   2455 	fw.text = bnx_RXP_b06FwText;
   2456 
   2457 	fw.data_addr = bnx_RXP_b06FwDataAddr;
   2458 	fw.data_len = bnx_RXP_b06FwDataLen;
   2459 	fw.data_index = 0;
   2460 	fw.data = bnx_RXP_b06FwData;
   2461 
   2462 	fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   2463 	fw.sbss_len = bnx_RXP_b06FwSbssLen;
   2464 	fw.sbss_index = 0;
   2465 	fw.sbss = bnx_RXP_b06FwSbss;
   2466 
   2467 	fw.bss_addr = bnx_RXP_b06FwBssAddr;
   2468 	fw.bss_len = bnx_RXP_b06FwBssLen;
   2469 	fw.bss_index = 0;
   2470 	fw.bss = bnx_RXP_b06FwBss;
   2471 
   2472 	fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   2473 	fw.rodata_len = bnx_RXP_b06FwRodataLen;
   2474 	fw.rodata_index = 0;
   2475 	fw.rodata = bnx_RXP_b06FwRodata;
   2476 
   2477 	DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2478 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2479 
   2480 	/* Initialize the TX Processor. */
   2481 	cpu_reg.mode = BNX_TXP_CPU_MODE;
   2482 	cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2483 	cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2484 	cpu_reg.state = BNX_TXP_CPU_STATE;
   2485 	cpu_reg.state_value_clear = 0xffffff;
   2486 	cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2487 	cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2488 	cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2489 	cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2490 	cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2491 	cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2492 	cpu_reg.mips_view_base = 0x8000000;
   2493 
   2494 	fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   2495 	fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   2496 	fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   2497 	fw.start_addr = bnx_TXP_b06FwStartAddr;
   2498 
   2499 	fw.text_addr = bnx_TXP_b06FwTextAddr;
   2500 	fw.text_len = bnx_TXP_b06FwTextLen;
   2501 	fw.text_index = 0;
   2502 	fw.text = bnx_TXP_b06FwText;
   2503 
   2504 	fw.data_addr = bnx_TXP_b06FwDataAddr;
   2505 	fw.data_len = bnx_TXP_b06FwDataLen;
   2506 	fw.data_index = 0;
   2507 	fw.data = bnx_TXP_b06FwData;
   2508 
   2509 	fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   2510 	fw.sbss_len = bnx_TXP_b06FwSbssLen;
   2511 	fw.sbss_index = 0;
   2512 	fw.sbss = bnx_TXP_b06FwSbss;
   2513 
   2514 	fw.bss_addr = bnx_TXP_b06FwBssAddr;
   2515 	fw.bss_len = bnx_TXP_b06FwBssLen;
   2516 	fw.bss_index = 0;
   2517 	fw.bss = bnx_TXP_b06FwBss;
   2518 
   2519 	fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   2520 	fw.rodata_len = bnx_TXP_b06FwRodataLen;
   2521 	fw.rodata_index = 0;
   2522 	fw.rodata = bnx_TXP_b06FwRodata;
   2523 
   2524 	DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2525 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2526 
   2527 	/* Initialize the TX Patch-up Processor. */
   2528 	cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2529 	cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2530 	cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2531 	cpu_reg.state = BNX_TPAT_CPU_STATE;
   2532 	cpu_reg.state_value_clear = 0xffffff;
   2533 	cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2534 	cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2535 	cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2536 	cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2537 	cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2538 	cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2539 	cpu_reg.mips_view_base = 0x8000000;
   2540 
   2541 	fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   2542 	fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   2543 	fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   2544 	fw.start_addr = bnx_TPAT_b06FwStartAddr;
   2545 
   2546 	fw.text_addr = bnx_TPAT_b06FwTextAddr;
   2547 	fw.text_len = bnx_TPAT_b06FwTextLen;
   2548 	fw.text_index = 0;
   2549 	fw.text = bnx_TPAT_b06FwText;
   2550 
   2551 	fw.data_addr = bnx_TPAT_b06FwDataAddr;
   2552 	fw.data_len = bnx_TPAT_b06FwDataLen;
   2553 	fw.data_index = 0;
   2554 	fw.data = bnx_TPAT_b06FwData;
   2555 
   2556 	fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   2557 	fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   2558 	fw.sbss_index = 0;
   2559 	fw.sbss = bnx_TPAT_b06FwSbss;
   2560 
   2561 	fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   2562 	fw.bss_len = bnx_TPAT_b06FwBssLen;
   2563 	fw.bss_index = 0;
   2564 	fw.bss = bnx_TPAT_b06FwBss;
   2565 
   2566 	fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   2567 	fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   2568 	fw.rodata_index = 0;
   2569 	fw.rodata = bnx_TPAT_b06FwRodata;
   2570 
   2571 	DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2572 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2573 
   2574 	/* Initialize the Completion Processor. */
   2575 	cpu_reg.mode = BNX_COM_CPU_MODE;
   2576 	cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2577 	cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2578 	cpu_reg.state = BNX_COM_CPU_STATE;
   2579 	cpu_reg.state_value_clear = 0xffffff;
   2580 	cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2581 	cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2582 	cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2583 	cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2584 	cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2585 	cpu_reg.spad_base = BNX_COM_SCRATCH;
   2586 	cpu_reg.mips_view_base = 0x8000000;
   2587 
   2588 	fw.ver_major = bnx_COM_b06FwReleaseMajor;
   2589 	fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   2590 	fw.ver_fix = bnx_COM_b06FwReleaseFix;
   2591 	fw.start_addr = bnx_COM_b06FwStartAddr;
   2592 
   2593 	fw.text_addr = bnx_COM_b06FwTextAddr;
   2594 	fw.text_len = bnx_COM_b06FwTextLen;
   2595 	fw.text_index = 0;
   2596 	fw.text = bnx_COM_b06FwText;
   2597 
   2598 	fw.data_addr = bnx_COM_b06FwDataAddr;
   2599 	fw.data_len = bnx_COM_b06FwDataLen;
   2600 	fw.data_index = 0;
   2601 	fw.data = bnx_COM_b06FwData;
   2602 
   2603 	fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   2604 	fw.sbss_len = bnx_COM_b06FwSbssLen;
   2605 	fw.sbss_index = 0;
   2606 	fw.sbss = bnx_COM_b06FwSbss;
   2607 
   2608 	fw.bss_addr = bnx_COM_b06FwBssAddr;
   2609 	fw.bss_len = bnx_COM_b06FwBssLen;
   2610 	fw.bss_index = 0;
   2611 	fw.bss = bnx_COM_b06FwBss;
   2612 
   2613 	fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   2614 	fw.rodata_len = bnx_COM_b06FwRodataLen;
   2615 	fw.rodata_index = 0;
   2616 	fw.rodata = bnx_COM_b06FwRodata;
   2617 
   2618 	DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   2619 	bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2620 }
   2621 
   2622 /****************************************************************************/
   2623 /* Initialize context memory.                                               */
   2624 /*                                                                          */
   2625 /* Clears the memory associated with each Context ID (CID).                 */
   2626 /*                                                                          */
   2627 /* Returns:                                                                 */
   2628 /*   Nothing.                                                               */
   2629 /****************************************************************************/
   2630 void
   2631 bnx_init_context(struct bnx_softc *sc)
   2632 {
   2633 	u_int32_t		vcid;
   2634 
   2635 	vcid = 96;
   2636 	while (vcid) {
   2637 		u_int32_t vcid_addr, pcid_addr, offset;
   2638 
   2639 		vcid--;
   2640 
   2641    		vcid_addr = GET_CID_ADDR(vcid);
   2642 		pcid_addr = vcid_addr;
   2643 
   2644 		REG_WR(sc, BNX_CTX_VIRT_ADDR, 0x00);
   2645 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
   2646 
   2647 		/* Zero out the context. */
   2648 		for (offset = 0; offset < PHY_CTX_SIZE; offset += 4)
   2649 			CTX_WR(sc, 0x00, offset, 0);
   2650 
   2651 		REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   2652 		REG_WR(sc, BNX_CTX_PAGE_TBL, pcid_addr);
   2653 	}
   2654 }
   2655 
   2656 /****************************************************************************/
   2657 /* Fetch the permanent MAC address of the controller.                       */
   2658 /*                                                                          */
   2659 /* Returns:                                                                 */
   2660 /*   Nothing.                                                               */
   2661 /****************************************************************************/
   2662 void
   2663 bnx_get_mac_addr(struct bnx_softc *sc)
   2664 {
   2665 	u_int32_t		mac_lo = 0, mac_hi = 0;
   2666 
   2667 	/*
   2668 	 * The NetXtreme II bootcode populates various NIC
   2669 	 * power-on and runtime configuration items in a
   2670 	 * shared memory area.  The factory configured MAC
   2671 	 * address is available from both NVRAM and the
   2672 	 * shared memory area so we'll read the value from
   2673 	 * shared memory for speed.
   2674 	 */
   2675 
   2676 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   2677 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   2678 
   2679 	if ((mac_lo == 0) && (mac_hi == 0)) {
   2680 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   2681 		    __FILE__, __LINE__);
   2682 	} else {
   2683 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   2684 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   2685 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   2686 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   2687 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   2688 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   2689 	}
   2690 
   2691 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   2692 	    "%s\n", ether_sprintf(sc->eaddr));
   2693 }
   2694 
   2695 /****************************************************************************/
   2696 /* Program the MAC address.                                                 */
   2697 /*                                                                          */
   2698 /* Returns:                                                                 */
   2699 /*   Nothing.                                                               */
   2700 /****************************************************************************/
   2701 void
   2702 bnx_set_mac_addr(struct bnx_softc *sc)
   2703 {
   2704 	u_int32_t		val;
   2705 	u_int8_t		*mac_addr = LLADDR(sc->ethercom.ec_if.if_sadl);
   2706 
   2707 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   2708 	    "%s\n", ether_sprintf(sc->eaddr));
   2709 
   2710 	val = (mac_addr[0] << 8) | mac_addr[1];
   2711 
   2712 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   2713 
   2714 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   2715 		(mac_addr[4] << 8) | mac_addr[5];
   2716 
   2717 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   2718 }
   2719 
   2720 /****************************************************************************/
   2721 /* Stop the controller.                                                     */
   2722 /*                                                                          */
   2723 /* Returns:                                                                 */
   2724 /*   Nothing.                                                               */
   2725 /****************************************************************************/
   2726 void
   2727 bnx_stop(struct bnx_softc *sc)
   2728 {
   2729 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   2730 	struct mii_data		*mii = NULL;
   2731 
   2732 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   2733 
   2734 	mii = &sc->bnx_mii;
   2735 
   2736 	callout_stop(&sc->bnx_timeout);
   2737 
   2738 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   2739 
   2740 	/* Disable the transmit/receive blocks. */
   2741 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   2742 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   2743 	DELAY(20);
   2744 
   2745 	bnx_disable_intr(sc);
   2746 
   2747 	/* Tell firmware that the driver is going away. */
   2748 	bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   2749 
   2750 	/* Free the RX lists. */
   2751 	bnx_free_rx_chain(sc);
   2752 
   2753 	/* Free TX buffers. */
   2754 	bnx_free_tx_chain(sc);
   2755 
   2756 	ifp->if_timer = 0;
   2757 
   2758 	sc->bnx_link = 0;
   2759 
   2760 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   2761 
   2762 }
   2763 
   2764 int
   2765 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
   2766 {
   2767 	u_int32_t		val;
   2768 	int			i, rc = 0;
   2769 
   2770 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   2771 
   2772 	/* Wait for pending PCI transactions to complete. */
   2773 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   2774 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   2775 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   2776 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   2777 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   2778 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   2779 	DELAY(5);
   2780 
   2781 	/* Assume bootcode is running. */
   2782 	sc->bnx_fw_timed_out = 0;
   2783 
   2784 	/* Give the firmware a chance to prepare for the reset. */
   2785 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   2786 	if (rc)
   2787 		goto bnx_reset_exit;
   2788 
   2789 	/* Set a firmware reminder that this is a soft reset. */
   2790 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   2791 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   2792 
   2793 	/* Dummy read to force the chip to complete all current transactions. */
   2794 	val = REG_RD(sc, BNX_MISC_ID);
   2795 
   2796 	/* Chip reset. */
   2797 	val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2798 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   2799 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   2800 	REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   2801 
   2802 	/* Allow up to 30us for reset to complete. */
   2803 	for (i = 0; i < 10; i++) {
   2804 		val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   2805 		if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2806 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0)
   2807 			break;
   2808 
   2809 		DELAY(10);
   2810 	}
   2811 
   2812 	/* Check that reset completed successfully. */
   2813 	if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   2814 	    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   2815 		BNX_PRINTF(sc, "%s(%d): Reset failed!\n", __FILE__, __LINE__);
   2816 		rc = EBUSY;
   2817 		goto bnx_reset_exit;
   2818 	}
   2819 
   2820 	/* Make sure byte swapping is properly configured. */
   2821 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   2822 	if (val != 0x01020304) {
   2823 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   2824 		    __FILE__, __LINE__);
   2825 		rc = ENODEV;
   2826 		goto bnx_reset_exit;
   2827 	}
   2828 
   2829 	/* Just completed a reset, assume that firmware is running again. */
   2830 	sc->bnx_fw_timed_out = 0;
   2831 
   2832 	/* Wait for the firmware to finish its initialization. */
   2833 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   2834 	if (rc)
   2835 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   2836 		    "initialization!\n", __FILE__, __LINE__);
   2837 
   2838 bnx_reset_exit:
   2839 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   2840 
   2841 	return (rc);
   2842 }
   2843 
   2844 int
   2845 bnx_chipinit(struct bnx_softc *sc)
   2846 {
   2847 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2848 	u_int32_t		val;
   2849 	int			rc = 0;
   2850 
   2851 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   2852 
   2853 	/* Make sure the interrupt is not active. */
   2854 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   2855 
   2856 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   2857 	/* channels and PCI clock compensation delay.                      */
   2858 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   2859 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   2860 #if BYTE_ORDER == BIG_ENDIAN
   2861 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   2862 #endif
   2863 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   2864 	    DMA_READ_CHANS << 12 |
   2865 	    DMA_WRITE_CHANS << 16;
   2866 
   2867 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   2868 
   2869 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   2870 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   2871 
   2872 	/*
   2873 	 * This setting resolves a problem observed on certain Intel PCI
   2874 	 * chipsets that cannot handle multiple outstanding DMA operations.
   2875 	 * See errata E9_5706A1_65.
   2876 	 */
   2877 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   2878 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   2879 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   2880 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   2881 
   2882 	REG_WR(sc, BNX_DMA_CONFIG, val);
   2883 
   2884 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   2885 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   2886 		u_int16_t nval;
   2887 
   2888 		nval = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   2889 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   2890 		    nval & ~0x2);
   2891 	}
   2892 
   2893 	/* Enable the RX_V2P and Context state machines before access. */
   2894 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   2895 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   2896 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   2897 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   2898 
   2899 	/* Initialize context mapping and zero out the quick contexts. */
   2900 	bnx_init_context(sc);
   2901 
   2902 	/* Initialize the on-boards CPUs */
   2903 	bnx_init_cpus(sc);
   2904 
   2905 	/* Prepare NVRAM for access. */
   2906 	if (bnx_init_nvram(sc)) {
   2907 		rc = ENODEV;
   2908 		goto bnx_chipinit_exit;
   2909 	}
   2910 
   2911 	/* Set the kernel bypass block size */
   2912 	val = REG_RD(sc, BNX_MQ_CONFIG);
   2913 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   2914 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   2915 	REG_WR(sc, BNX_MQ_CONFIG, val);
   2916 
   2917 	val = 0x10000 + (MAX_CID_CNT * MB_KERNEL_CTX_SIZE);
   2918 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   2919 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   2920 
   2921 	val = (BCM_PAGE_BITS - 8) << 24;
   2922 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   2923 
   2924 	/* Configure page size. */
   2925 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   2926 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   2927 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   2928 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   2929 
   2930 bnx_chipinit_exit:
   2931 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   2932 
   2933 	return(rc);
   2934 }
   2935 
   2936 /****************************************************************************/
   2937 /* Initialize the controller in preparation to send/receive traffic.        */
   2938 /*                                                                          */
   2939 /* Returns:                                                                 */
   2940 /*   0 for success, positive value for failure.                             */
   2941 /****************************************************************************/
   2942 int
   2943 bnx_blockinit(struct bnx_softc *sc)
   2944 {
   2945 	u_int32_t		reg, val;
   2946 	int 			rc = 0;
   2947 
   2948 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   2949 
   2950 	/* Load the hardware default MAC address. */
   2951 	bnx_set_mac_addr(sc);
   2952 
   2953 	/* Set the Ethernet backoff seed value */
   2954 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   2955 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   2956 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   2957 
   2958 	sc->last_status_idx = 0;
   2959 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   2960 
   2961 	/* Set up link change interrupt generation. */
   2962 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   2963 
   2964 	/* Program the physical address of the status block. */
   2965 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
   2966 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   2967 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
   2968 
   2969 	/* Program the physical address of the statistics block. */
   2970 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   2971 	    (u_int32_t)(sc->stats_block_paddr));
   2972 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   2973 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
   2974 
   2975 	/* Program various host coalescing parameters. */
   2976 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   2977 	    << 16) | sc->bnx_tx_quick_cons_trip);
   2978 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   2979 	    << 16) | sc->bnx_rx_quick_cons_trip);
   2980 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   2981 	    sc->bnx_comp_prod_trip);
   2982 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   2983 	    sc->bnx_tx_ticks);
   2984 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   2985 	    sc->bnx_rx_ticks);
   2986 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   2987 	    sc->bnx_com_ticks);
   2988 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   2989 	    sc->bnx_cmd_ticks);
   2990 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   2991 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   2992 	REG_WR(sc, BNX_HC_CONFIG,
   2993 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   2994 	    BNX_HC_CONFIG_COLLECT_STATS));
   2995 
   2996 	/* Clear the internal statistics counters. */
   2997 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   2998 
   2999 	/* Verify that bootcode is running. */
   3000 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3001 
   3002 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3003 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3004 	    __FILE__, __LINE__); reg = 0);
   3005 
   3006 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3007 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3008 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3009 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3010 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3011 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3012 		rc = ENODEV;
   3013 		goto bnx_blockinit_exit;
   3014 	}
   3015 
   3016 	/* Check if any management firmware is running. */
   3017 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3018 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3019 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3020 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3021 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3022 	}
   3023 
   3024 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3025 	    BNX_DEV_INFO_BC_REV);
   3026 
   3027 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3028 
   3029 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3030 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3031 
   3032 	/* Enable link state change interrupt generation. */
   3033 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3034 
   3035 	/* Enable all remaining blocks in the MAC. */
   3036 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3037 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3038 	DELAY(20);
   3039 
   3040 bnx_blockinit_exit:
   3041 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   3042 
   3043 	return (rc);
   3044 }
   3045 
   3046 /****************************************************************************/
   3047 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3048 /*                                                                          */
   3049 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3050 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3051 /* necessary.                                                               */
   3052 /*                                                                          */
   3053 /* Returns:                                                                 */
   3054 /*   0 for success, positive value for failure.                             */
   3055 /****************************************************************************/
   3056 int
   3057 bnx_get_buf(struct bnx_softc *sc, struct mbuf *m, u_int16_t *prod,
   3058     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3059 {
   3060 	bus_dmamap_t		map;
   3061 	struct mbuf 		*m_new = NULL;
   3062 	struct rx_bd		*rxbd;
   3063 	int			i, rc = 0;
   3064 	u_int32_t		addr;
   3065 #ifdef BNX_DEBUG
   3066 	u_int16_t debug_chain_prod =	*chain_prod;
   3067 #endif
   3068 	u_int16_t first_chain_prod;
   3069 
   3070 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3071 	    __FUNCTION__);
   3072 
   3073 	/* Make sure the inputs are valid. */
   3074 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3075 	    aprint_error("%s: RX producer out of range: 0x%04X > 0x%04X\n",
   3076 	    sc->bnx_dev.dv_xname, *chain_prod, (u_int16_t) MAX_RX_BD));
   3077 
   3078 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3079 	    "0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, *prod, *chain_prod,
   3080 	    *prod_bseq);
   3081 
   3082 	if (m == NULL) {
   3083 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3084 		    BNX_PRINTF(sc, "Simulating mbuf allocation failure.\n");
   3085 
   3086 			sc->mbuf_alloc_failed++;
   3087 			rc = ENOBUFS;
   3088 			goto bnx_get_buf_exit);
   3089 
   3090 		/* This is a new mbuf allocation. */
   3091 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3092 		if (m_new == NULL) {
   3093 			DBPRINT(sc, BNX_WARN,
   3094 			    "%s(%d): RX mbuf header allocation failed!\n",
   3095 			    __FILE__, __LINE__);
   3096 
   3097 			DBRUNIF(1, sc->mbuf_alloc_failed++);
   3098 
   3099 			rc = ENOBUFS;
   3100 			goto bnx_get_buf_exit;
   3101 		}
   3102 
   3103 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3104 		MEXTMALLOC(m_new, sc->mbuf_alloc_size, M_DONTWAIT);
   3105 		if (!(m_new->m_flags & M_EXT)) {
   3106 			DBPRINT(sc, BNX_WARN,
   3107 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3108 			    __FILE__, __LINE__);
   3109 
   3110 			m_freem(m_new);
   3111 
   3112 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3113 			DBRUNIF(1, sc->mbuf_alloc_failed++);
   3114 
   3115 			rc = ENOBUFS;
   3116 			goto bnx_get_buf_exit;
   3117 		}
   3118 
   3119 		m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3120 	} else {
   3121 		m_new = m;
   3122 		m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3123 		m_new->m_data = m_new->m_ext.ext_buf;
   3124 	}
   3125 
   3126 	/* Map the mbuf cluster into device memory. */
   3127 	map = sc->rx_mbuf_map[*chain_prod];
   3128 	first_chain_prod = *chain_prod;
   3129 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3130 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3131 		    __FILE__, __LINE__);
   3132 
   3133 		m_freem(m_new);
   3134 
   3135 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3136 
   3137 		rc = ENOBUFS;
   3138 		goto bnx_get_buf_exit;
   3139 	}
   3140 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3141 	    BUS_DMASYNC_PREREAD);
   3142 
   3143 	/* Watch for overflow. */
   3144 	DBRUNIF((sc->free_rx_bd > USABLE_RX_BD),
   3145 	    aprint_error("%s: Too many free rx_bd (0x%04X > 0x%04X)!\n",
   3146 	    sc->bnx_dev.dv_xname,
   3147 	    sc->free_rx_bd, (u_int16_t) USABLE_RX_BD));
   3148 
   3149 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3150 	    sc->rx_low_watermark = sc->free_rx_bd);
   3151 
   3152 	/* Setup the rx_bd for the first segment. */
   3153 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3154 
   3155 	addr = (u_int32_t)(map->dm_segs[0].ds_addr);
   3156 	rxbd->rx_bd_haddr_lo = htole32(addr);
   3157 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
   3158 	rxbd->rx_bd_haddr_hi = htole32(addr);
   3159 	rxbd->rx_bd_len = htole32(map->dm_segs[0].ds_len);
   3160 	rxbd->rx_bd_flags = htole32(RX_BD_FLAGS_START);
   3161 	*prod_bseq += map->dm_segs[0].ds_len;
   3162 	bus_dmamap_sync(sc->bnx_dmatag,
   3163 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3164 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3165 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3166 
   3167 	for (i = 1; i < map->dm_nsegs; i++) {
   3168 		*prod = NEXT_RX_BD(*prod);
   3169 		*chain_prod = RX_CHAIN_IDX(*prod);
   3170 
   3171 		rxbd =
   3172 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3173 
   3174 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   3175 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3176 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   3177 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3178 		rxbd->rx_bd_len = htole32(map->dm_segs[i].ds_len);
   3179 		rxbd->rx_bd_flags = 0;
   3180 		*prod_bseq += map->dm_segs[i].ds_len;
   3181 		bus_dmamap_sync(sc->bnx_dmatag,
   3182 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3183 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3184 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3185 	}
   3186 
   3187 	rxbd->rx_bd_flags |= htole32(RX_BD_FLAGS_END);
   3188 	bus_dmamap_sync(sc->bnx_dmatag,
   3189 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3190 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3191 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3192 
   3193 	/*
   3194 	 * Save the mbuf, ajust the map pointer (swap map for first and
   3195 	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
   3196 	 * and update counter.
   3197 	 */
   3198 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3199 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3200 	sc->rx_mbuf_map[*chain_prod] = map;
   3201 	sc->free_rx_bd -= map->dm_nsegs;
   3202 
   3203 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3204 	    map->dm_nsegs));
   3205 
   3206 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3207 	    "= 0x%04X, prod_bseq = 0x%08X\n", __FUNCTION__, *prod,
   3208 	    *chain_prod, *prod_bseq);
   3209 
   3210 bnx_get_buf_exit:
   3211 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3212 	    __FUNCTION__);
   3213 
   3214 	return(rc);
   3215 }
   3216 
   3217 /****************************************************************************/
   3218 /* Allocate memory and initialize the TX data structures.                   */
   3219 /*                                                                          */
   3220 /* Returns:                                                                 */
   3221 /*   0 for success, positive value for failure.                             */
   3222 /****************************************************************************/
   3223 int
   3224 bnx_init_tx_chain(struct bnx_softc *sc)
   3225 {
   3226 	struct tx_bd		*txbd;
   3227 	u_int32_t		val, addr;
   3228 	int			i, rc = 0;
   3229 
   3230 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   3231 
   3232 	/* Set the initial TX producer/consumer indices. */
   3233 	sc->tx_prod = 0;
   3234 	sc->tx_cons = 0;
   3235 	sc->tx_prod_bseq = 0;
   3236 	sc->used_tx_bd = 0;
   3237 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   3238 
   3239 	/*
   3240 	 * The NetXtreme II supports a linked-list structure called
   3241 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   3242 	 * consists of a series of 1 or more chain pages, each of which
   3243 	 * consists of a fixed number of BD entries.
   3244 	 * The last BD entry on each page is a pointer to the next page
   3245 	 * in the chain, and the last pointer in the BD chain
   3246 	 * points back to the beginning of the chain.
   3247 	 */
   3248 
   3249 	/* Set the TX next pointer chain entries. */
   3250 	for (i = 0; i < TX_PAGES; i++) {
   3251 		int j;
   3252 
   3253 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   3254 
   3255 		/* Check if we've reached the last page. */
   3256 		if (i == (TX_PAGES - 1))
   3257 			j = 0;
   3258 		else
   3259 			j = i + 1;
   3260 
   3261 		addr = (u_int32_t)(sc->tx_bd_chain_paddr[j]);
   3262 		txbd->tx_bd_haddr_lo = htole32(addr);
   3263 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
   3264 		txbd->tx_bd_haddr_hi = htole32(addr);
   3265 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3266 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3267 	}
   3268 
   3269 	/*
   3270 	 * Initialize the context ID for an L2 TX chain.
   3271 	 */
   3272 	val = BNX_L2CTX_TYPE_TYPE_L2;
   3273 	val |= BNX_L2CTX_TYPE_SIZE_L2;
   3274 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   3275 
   3276 	val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3277 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   3278 
   3279 	/* Point the hardware to the first page in the chain. */
   3280 	val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3281 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   3282 	val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3283 	CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   3284 
   3285 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_chain(sc, 0, TOTAL_TX_BD));
   3286 
   3287 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   3288 
   3289 	return(rc);
   3290 }
   3291 
   3292 /****************************************************************************/
   3293 /* Free memory and clear the TX data structures.                            */
   3294 /*                                                                          */
   3295 /* Returns:                                                                 */
   3296 /*   Nothing.                                                               */
   3297 /****************************************************************************/
   3298 void
   3299 bnx_free_tx_chain(struct bnx_softc *sc)
   3300 {
   3301 	int			i;
   3302 
   3303 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   3304 
   3305 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   3306 	for (i = 0; i < TOTAL_TX_BD; i++) {
   3307 		if (sc->tx_mbuf_ptr[i] != NULL) {
   3308 			if (sc->tx_mbuf_map != NULL)
   3309 				bus_dmamap_sync(sc->bnx_dmatag,
   3310 				    sc->tx_mbuf_map[i], 0,
   3311 				    sc->tx_mbuf_map[i]->dm_mapsize,
   3312 				    BUS_DMASYNC_POSTWRITE);
   3313 			m_freem(sc->tx_mbuf_ptr[i]);
   3314 			sc->tx_mbuf_ptr[i] = NULL;
   3315 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   3316 		}
   3317 	}
   3318 
   3319 	/* Clear each TX chain page. */
   3320 	for (i = 0; i < TX_PAGES; i++) {
   3321 		bzero((char *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   3322 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3323 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3324 	}
   3325 
   3326 	/* Check if we lost any mbufs in the process. */
   3327 	DBRUNIF((sc->tx_mbuf_alloc),
   3328 	    aprint_error("%s: Memory leak! Lost %d mbufs from tx chain!\n",
   3329 	    sc->bnx_dev.dv_xname, sc->tx_mbuf_alloc));
   3330 
   3331 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   3332 }
   3333 
   3334 /****************************************************************************/
   3335 /* Allocate memory and initialize the RX data structures.                   */
   3336 /*                                                                          */
   3337 /* Returns:                                                                 */
   3338 /*   0 for success, positive value for failure.                             */
   3339 /****************************************************************************/
   3340 int
   3341 bnx_init_rx_chain(struct bnx_softc *sc)
   3342 {
   3343 	struct rx_bd		*rxbd;
   3344 	int			i, rc = 0;
   3345 	u_int16_t		prod, chain_prod;
   3346 	u_int32_t		prod_bseq, val, addr;
   3347 
   3348 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   3349 
   3350 	/* Initialize the RX producer and consumer indices. */
   3351 	sc->rx_prod = 0;
   3352 	sc->rx_cons = 0;
   3353 	sc->rx_prod_bseq = 0;
   3354 	sc->free_rx_bd = BNX_RX_SLACK_SPACE;
   3355 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   3356 
   3357 	/* Initialize the RX next pointer chain entries. */
   3358 	for (i = 0; i < RX_PAGES; i++) {
   3359 		int j;
   3360 
   3361 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   3362 
   3363 		/* Check if we've reached the last page. */
   3364 		if (i == (RX_PAGES - 1))
   3365 			j = 0;
   3366 		else
   3367 			j = i + 1;
   3368 
   3369 		/* Setup the chain page pointers. */
   3370 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
   3371 		rxbd->rx_bd_haddr_hi = htole32(addr);
   3372 		addr = (u_int32_t)(sc->rx_bd_chain_paddr[j]);
   3373 		rxbd->rx_bd_haddr_lo = htole32(addr);
   3374 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   3375 		    0, BNX_RX_CHAIN_PAGE_SZ,
   3376 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3377 	}
   3378 
   3379 	/* Initialize the context ID for an L2 RX chain. */
   3380 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE;
   3381 	val |= BNX_L2CTX_CTX_TYPE_SIZE_L2;
   3382 	val |= 0x02 << 8;
   3383 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   3384 
   3385 	/* Point the hardware to the first page in the chain. */
   3386 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
   3387 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   3388 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
   3389 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   3390 
   3391 	/* Allocate mbuf clusters for the rx_bd chain. */
   3392 	prod = prod_bseq = 0;
   3393 	while (prod < BNX_RX_SLACK_SPACE) {
   3394 		chain_prod = RX_CHAIN_IDX(prod);
   3395 		if (bnx_get_buf(sc, NULL, &prod, &chain_prod, &prod_bseq)) {
   3396 			BNX_PRINTF(sc,
   3397 			    "Error filling RX chain: rx_bd[0x%04X]!\n",
   3398 			    chain_prod);
   3399 			rc = ENOBUFS;
   3400 			break;
   3401 		}
   3402 		prod = NEXT_RX_BD(prod);
   3403 	}
   3404 
   3405 	/* Save the RX chain producer index. */
   3406 	sc->rx_prod = prod;
   3407 	sc->rx_prod_bseq = prod_bseq;
   3408 
   3409 	for (i = 0; i < RX_PAGES; i++)
   3410 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   3411 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3412 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3413 
   3414 	/* Tell the chip about the waiting rx_bd's. */
   3415 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   3416 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   3417 
   3418 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   3419 
   3420 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   3421 
   3422 	return(rc);
   3423 }
   3424 
   3425 /****************************************************************************/
   3426 /* Free memory and clear the RX data structures.                            */
   3427 /*                                                                          */
   3428 /* Returns:                                                                 */
   3429 /*   Nothing.                                                               */
   3430 /****************************************************************************/
   3431 void
   3432 bnx_free_rx_chain(struct bnx_softc *sc)
   3433 {
   3434 	int			i;
   3435 
   3436 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   3437 
   3438 	/* Free any mbufs still in the RX mbuf chain. */
   3439 	for (i = 0; i < TOTAL_RX_BD; i++) {
   3440 		if (sc->rx_mbuf_ptr[i] != NULL) {
   3441 			if (sc->rx_mbuf_map[i] != NULL)
   3442 				bus_dmamap_sync(sc->bnx_dmatag,
   3443 				    sc->rx_mbuf_map[i],	0,
   3444 				    sc->rx_mbuf_map[i]->dm_mapsize,
   3445 				    BUS_DMASYNC_POSTREAD);
   3446 			m_freem(sc->rx_mbuf_ptr[i]);
   3447 			sc->rx_mbuf_ptr[i] = NULL;
   3448 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3449 		}
   3450 	}
   3451 
   3452 	/* Clear each RX chain page. */
   3453 	for (i = 0; i < RX_PAGES; i++)
   3454 		bzero((char *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   3455 
   3456 	/* Check if we lost any mbufs in the process. */
   3457 	DBRUNIF((sc->rx_mbuf_alloc),
   3458 	    aprint_error("%s: Memory leak! Lost %d mbufs from rx chain!\n",
   3459 	    sc->bnx_dev.dv_xname, sc->rx_mbuf_alloc));
   3460 
   3461 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   3462 }
   3463 
   3464 /****************************************************************************/
   3465 /* Set media options.                                                       */
   3466 /*                                                                          */
   3467 /* Returns:                                                                 */
   3468 /*   0 for success, positive value for failure.                             */
   3469 /****************************************************************************/
   3470 int
   3471 bnx_ifmedia_upd(struct ifnet *ifp)
   3472 {
   3473 	struct bnx_softc	*sc;
   3474 	struct mii_data		*mii;
   3475 	struct ifmedia		*ifm;
   3476 	int			rc = 0;
   3477 
   3478 	sc = ifp->if_softc;
   3479 	ifm = &sc->bnx_ifmedia;
   3480 
   3481 	/* DRC - ToDo: Add SerDes support. */
   3482 
   3483 	mii = &sc->bnx_mii;
   3484 	sc->bnx_link = 0;
   3485 	if (mii->mii_instance) {
   3486 		struct mii_softc *miisc;
   3487 		LIST_FOREACH(miisc, &mii->mii_phys, mii_list)
   3488 			mii_phy_reset(miisc);
   3489 	}
   3490 	mii_mediachg(mii);
   3491 
   3492 	return(rc);
   3493 }
   3494 
   3495 /****************************************************************************/
   3496 /* Reports current media status.                                            */
   3497 /*                                                                          */
   3498 /* Returns:                                                                 */
   3499 /*   Nothing.                                                               */
   3500 /****************************************************************************/
   3501 void
   3502 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   3503 {
   3504 	struct bnx_softc	*sc;
   3505 	struct mii_data		*mii;
   3506 	int			s;
   3507 
   3508 	sc = ifp->if_softc;
   3509 
   3510 	s = splnet();
   3511 
   3512 	mii = &sc->bnx_mii;
   3513 
   3514 	/* DRC - ToDo: Add SerDes support. */
   3515 
   3516 	mii_pollstat(mii);
   3517 	ifmr->ifm_active = mii->mii_media_active;
   3518 	ifmr->ifm_status = mii->mii_media_status;
   3519 
   3520 	splx(s);
   3521 }
   3522 
   3523 /****************************************************************************/
   3524 /* Handles PHY generated interrupt events.                                  */
   3525 /*                                                                          */
   3526 /* Returns:                                                                 */
   3527 /*   Nothing.                                                               */
   3528 /****************************************************************************/
   3529 void
   3530 bnx_phy_intr(struct bnx_softc *sc)
   3531 {
   3532 	u_int32_t		new_link_state, old_link_state;
   3533 
   3534 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3535 	    BUS_DMASYNC_POSTREAD);
   3536 	new_link_state = sc->status_block->status_attn_bits &
   3537 	    STATUS_ATTN_BITS_LINK_STATE;
   3538 	old_link_state = sc->status_block->status_attn_bits_ack &
   3539 	    STATUS_ATTN_BITS_LINK_STATE;
   3540 
   3541 	/* Handle any changes if the link state has changed. */
   3542 	if (new_link_state != old_link_state) {
   3543 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   3544 
   3545 		sc->bnx_link = 0;
   3546 		callout_stop(&sc->bnx_timeout);
   3547 		bnx_tick(sc);
   3548 
   3549 		/* Update the status_attn_bits_ack field in the status block. */
   3550 		if (new_link_state) {
   3551 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   3552 			    STATUS_ATTN_BITS_LINK_STATE);
   3553 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   3554 		} else {
   3555 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   3556 			    STATUS_ATTN_BITS_LINK_STATE);
   3557 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   3558 		}
   3559 	}
   3560 
   3561 	/* Acknowledge the link change interrupt. */
   3562 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   3563 }
   3564 
   3565 /****************************************************************************/
   3566 /* Handles received frame interrupt events.                                 */
   3567 /*                                                                          */
   3568 /* Returns:                                                                 */
   3569 /*   Nothing.                                                               */
   3570 /****************************************************************************/
   3571 void
   3572 bnx_rx_intr(struct bnx_softc *sc)
   3573 {
   3574 	struct status_block	*sblk = sc->status_block;
   3575 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   3576 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
   3577 	u_int16_t		sw_prod, sw_chain_prod;
   3578 	u_int32_t		sw_prod_bseq;
   3579 	struct l2_fhdr		*l2fhdr;
   3580 	int			i;
   3581 
   3582 	DBRUNIF(1, sc->rx_interrupts++);
   3583 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3584 	    BUS_DMASYNC_POSTREAD);
   3585 
   3586 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   3587 	for (i = 0; i < RX_PAGES; i++)
   3588 		bus_dmamap_sync(sc->bnx_dmatag,
   3589 		    sc->rx_bd_chain_map[i], 0,
   3590 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3591 		    BUS_DMASYNC_POSTWRITE);
   3592 
   3593 	/* Get the hardware's view of the RX consumer index. */
   3594 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   3595 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   3596 		hw_cons++;
   3597 
   3598 	/* Get working copies of the driver's view of the RX indices. */
   3599 	sw_cons = sc->rx_cons;
   3600 	sw_prod = sc->rx_prod;
   3601 	sw_prod_bseq = sc->rx_prod_bseq;
   3602 
   3603 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   3604 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   3605 	    __FUNCTION__, sw_prod, sw_cons, sw_prod_bseq);
   3606 
   3607 	/* Prevent speculative reads from getting ahead of the status block. */
   3608 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3609 	    BUS_SPACE_BARRIER_READ);
   3610 
   3611 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3612 	    sc->rx_low_watermark = sc->free_rx_bd);
   3613 
   3614 	/*
   3615 	 * Scan through the receive chain as long
   3616 	 * as there is work to do.
   3617 	 */
   3618 	while (sw_cons != hw_cons) {
   3619 		struct mbuf *m;
   3620 		struct rx_bd *rxbd;
   3621 		unsigned int len;
   3622 		u_int32_t status;
   3623 
   3624 		/* Convert the producer/consumer indices to an actual
   3625 		 * rx_bd index.
   3626 		 */
   3627 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   3628 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   3629 
   3630 		/* Get the used rx_bd. */
   3631 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   3632 		sc->free_rx_bd++;
   3633 
   3634 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __FUNCTION__);
   3635 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   3636 
   3637 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   3638 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   3639 			/* Validate that this is the last rx_bd. */
   3640 			DBRUNIF((!(rxbd->rx_bd_flags & RX_BD_FLAGS_END)),
   3641 			    aprint_error("%s: Unexpected mbuf found in "
   3642 			        "rx_bd[0x%04X]!\n", sc->bnx_dev.dv_xname,
   3643 			        sw_chain_cons);
   3644 				bnx_breakpoint(sc));
   3645 
   3646 			/* DRC - ToDo: If the received packet is small, say less
   3647 			 *             than 128 bytes, allocate a new mbuf here,
   3648 			 *             copy the data to that mbuf, and recycle
   3649 			 *             the mapped jumbo frame.
   3650 			 */
   3651 
   3652 			/* Unmap the mbuf from DMA space. */
   3653 			bus_dmamap_sync(sc->bnx_dmatag,
   3654 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   3655 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   3656 			    BUS_DMASYNC_POSTREAD);
   3657 			bus_dmamap_unload(sc->bnx_dmatag,
   3658 			    sc->rx_mbuf_map[sw_chain_cons]);
   3659 
   3660 			/* Remove the mbuf from the driver's chain. */
   3661 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   3662 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   3663 
   3664 			/*
   3665 			 * Frames received on the NetXteme II are prepended
   3666 			 * with the l2_fhdr structure which provides status
   3667 			 * information about the received frame (including
   3668 			 * VLAN tags and checksum info) and are also
   3669 			 * automatically adjusted to align the IP header
   3670 			 * (i.e. two null bytes are inserted before the
   3671 			 * Ethernet header).
   3672 			 */
   3673 			l2fhdr = mtod(m, struct l2_fhdr *);
   3674 
   3675 			len    = l2fhdr->l2_fhdr_pkt_len;
   3676 			status = l2fhdr->l2_fhdr_status;
   3677 
   3678 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   3679 			    aprint_error("Simulating l2_fhdr status error.\n");
   3680 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   3681 
   3682 			/* Watch for unusual sized frames. */
   3683 			DBRUNIF(((len < BNX_MIN_MTU) ||
   3684 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   3685 			    aprint_error("%s: Unusual frame size found. "
   3686 			    "Min(%d), Actual(%d), Max(%d)\n",
   3687 			    sc->bnx_dev.dv_xname, (int)BNX_MIN_MTU, len,
   3688 			    (int) BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   3689 
   3690 			bnx_dump_mbuf(sc, m);
   3691 			bnx_breakpoint(sc));
   3692 
   3693 			len -= ETHER_CRC_LEN;
   3694 
   3695 			/* Check the received frame for errors. */
   3696 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   3697 			    L2_FHDR_ERRORS_PHY_DECODE |
   3698 			    L2_FHDR_ERRORS_ALIGNMENT |
   3699 			    L2_FHDR_ERRORS_TOO_SHORT |
   3700 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   3701 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   3702 			    len >
   3703 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   3704 				ifp->if_ierrors++;
   3705 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   3706 
   3707 				/* Reuse the mbuf for a new frame. */
   3708 				if (bnx_get_buf(sc, m, &sw_prod,
   3709 				    &sw_chain_prod, &sw_prod_bseq)) {
   3710 					DBRUNIF(1, bnx_breakpoint(sc));
   3711 					panic("%s: Can't reuse RX mbuf!\n",
   3712 					    sc->bnx_dev.dv_xname);
   3713 				}
   3714 				goto bnx_rx_int_next_rx;
   3715 			}
   3716 
   3717 			/*
   3718 			 * Get a new mbuf for the rx_bd.   If no new
   3719 			 * mbufs are available then reuse the current mbuf,
   3720 			 * log an ierror on the interface, and generate
   3721 			 * an error in the system log.
   3722 			 */
   3723 			if (bnx_get_buf(sc, NULL, &sw_prod, &sw_chain_prod,
   3724 			    &sw_prod_bseq)) {
   3725 				DBRUN(BNX_WARN, BNX_PRINTF(sc, "Failed to allocate "
   3726 					"new mbuf, incoming frame dropped!\n"));
   3727 
   3728 				ifp->if_ierrors++;
   3729 
   3730 				/* Try and reuse the exisitng mbuf. */
   3731 				if (bnx_get_buf(sc, m, &sw_prod,
   3732 				    &sw_chain_prod, &sw_prod_bseq)) {
   3733 					DBRUNIF(1, bnx_breakpoint(sc));
   3734 					panic("%s: Double mbuf allocation "
   3735 					    "failure!", sc->bnx_dev.dv_xname);
   3736 				}
   3737 				goto bnx_rx_int_next_rx;
   3738 			}
   3739 
   3740 			/* Skip over the l2_fhdr when passing the data up
   3741 			 * the stack.
   3742 			 */
   3743 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   3744 
   3745 			/* Adjust the pckt length to match the received data. */
   3746 			m->m_pkthdr.len = m->m_len = len;
   3747 
   3748 			/* Send the packet to the appropriate interface. */
   3749 			m->m_pkthdr.rcvif = ifp;
   3750 
   3751 			DBRUN(BNX_VERBOSE_RECV,
   3752 			    struct ether_header *eh;
   3753 			    eh = mtod(m, struct ether_header *);
   3754 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   3755 			    __FUNCTION__, ether_sprintf(eh->ether_dhost),
   3756 			    ether_sprintf(eh->ether_shost),
   3757 			    htons(eh->ether_type)));
   3758 
   3759 			/* Validate the checksum. */
   3760 
   3761 			/* Check for an IP datagram. */
   3762 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   3763 				/* Check if the IP checksum is valid. */
   3764 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   3765 				    == 0)
   3766 					m->m_pkthdr.csum_flags |=
   3767 					    M_CSUM_IPv4;
   3768 #ifdef BNX_DEBUG
   3769 				else
   3770 					DBPRINT(sc, BNX_WARN_SEND,
   3771 					    "%s(): Invalid IP checksum "
   3772 					        "= 0x%04X!\n",
   3773 						__FUNCTION__,
   3774 						l2fhdr->l2_fhdr_ip_xsum
   3775 						);
   3776 #endif
   3777 			}
   3778 
   3779 			/* Check for a valid TCP/UDP frame. */
   3780 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   3781 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   3782 				/* Check for a good TCP/UDP checksum. */
   3783 				if ((status &
   3784 				    (L2_FHDR_ERRORS_TCP_XSUM |
   3785 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   3786 					m->m_pkthdr.csum_flags |=
   3787 					    M_CSUM_TCPv4 |
   3788 					    M_CSUM_UDPv4;
   3789 				} else {
   3790 					DBPRINT(sc, BNX_WARN_SEND,
   3791 					    "%s(): Invalid TCP/UDP "
   3792 					    "checksum = 0x%04X!\n",
   3793 					    __FUNCTION__,
   3794 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   3795 				}
   3796 			}
   3797 
   3798 			/*
   3799 			 * If we received a packet with a vlan tag,
   3800 			 * attach that information to the packet.
   3801 			 */
   3802 			if (status & L2_FHDR_STATUS_L2_VLAN_TAG) {
   3803 #if 0
   3804 				struct ether_vlan_header vh;
   3805 
   3806 				DBPRINT(sc, BNX_VERBOSE_SEND,
   3807 				    "%s(): VLAN tag = 0x%04X\n",
   3808 				    __FUNCTION__,
   3809 				    l2fhdr->l2_fhdr_vlan_tag);
   3810 
   3811 				if (m->m_pkthdr.len < ETHER_HDR_LEN) {
   3812 					m_freem(m);
   3813 					goto bnx_rx_int_next_rx;
   3814 				}
   3815 				m_copydata(m, 0, ETHER_HDR_LEN, (void *)&vh);
   3816 				vh.evl_proto = vh.evl_encap_proto;
   3817 				vh.evl_tag = l2fhdr->l2_fhdr_vlan_tag;
   3818 				vh.evl_encap_proto = htons(ETHERTYPE_VLAN);
   3819 				m_adj(m, ETHER_HDR_LEN);
   3820 				if ((m = m_prepend(m, sizeof(vh), M_DONTWAIT)) == NULL)
   3821 					goto bnx_rx_int_next_rx;
   3822 				m->m_pkthdr.len += sizeof(vh);
   3823 				if (m->m_len < sizeof(vh) &&
   3824 				    (m = m_pullup(m, sizeof(vh))) == NULL)
   3825 					goto bnx_rx_int_next_rx;
   3826 				m_copyback(m, 0, sizeof(vh), &vh);
   3827 #else
   3828 				VLAN_INPUT_TAG(ifp, m,
   3829 				    l2fhdr->l2_fhdr_vlan_tag >> 16,
   3830 				    goto bnx_rx_int_next_rx);
   3831 #endif
   3832 			}
   3833 
   3834 #if NBPFILTER > 0
   3835 			/*
   3836 			 * Handle BPF listeners. Let the BPF
   3837 			 * user see the packet.
   3838 			 */
   3839 			if (ifp->if_bpf)
   3840 				bpf_mtap(ifp->if_bpf, m);
   3841 #endif
   3842 
   3843 			/* Pass the mbuf off to the upper layers. */
   3844 			ifp->if_ipackets++;
   3845 			DBPRINT(sc, BNX_VERBOSE_RECV,
   3846 			    "%s(): Passing received frame up.\n", __FUNCTION__);
   3847 			//ether_input_mbuf(ifp, m);
   3848 			(*ifp->if_input)(ifp, m);
   3849 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3850 
   3851 bnx_rx_int_next_rx:
   3852 			sw_prod = NEXT_RX_BD(sw_prod);
   3853 		}
   3854 
   3855 		sw_cons = NEXT_RX_BD(sw_cons);
   3856 
   3857 		/* Refresh hw_cons to see if there's new work */
   3858 		if (sw_cons == hw_cons) {
   3859 			hw_cons = sc->hw_rx_cons =
   3860 			    sblk->status_rx_quick_consumer_index0;
   3861 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   3862 			    USABLE_RX_BD_PER_PAGE)
   3863 				hw_cons++;
   3864 		}
   3865 
   3866 		/* Prevent speculative reads from getting ahead of
   3867 		 * the status block.
   3868 		 */
   3869 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3870 		    BUS_SPACE_BARRIER_READ);
   3871 	}
   3872 
   3873 	for (i = 0; i < RX_PAGES; i++)
   3874 		bus_dmamap_sync(sc->bnx_dmatag,
   3875 		    sc->rx_bd_chain_map[i], 0,
   3876 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   3877 		    BUS_DMASYNC_PREWRITE);
   3878 
   3879 	sc->rx_cons = sw_cons;
   3880 	sc->rx_prod = sw_prod;
   3881 	sc->rx_prod_bseq = sw_prod_bseq;
   3882 
   3883 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   3884 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   3885 
   3886 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   3887 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   3888 	    __FUNCTION__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   3889 }
   3890 
   3891 /****************************************************************************/
   3892 /* Handles transmit completion interrupt events.                            */
   3893 /*                                                                          */
   3894 /* Returns:                                                                 */
   3895 /*   Nothing.                                                               */
   3896 /****************************************************************************/
   3897 void
   3898 bnx_tx_intr(struct bnx_softc *sc)
   3899 {
   3900 	struct status_block	*sblk = sc->status_block;
   3901 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   3902 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   3903 
   3904 	DBRUNIF(1, sc->tx_interrupts++);
   3905 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   3906 	    BUS_DMASYNC_POSTREAD);
   3907 
   3908 	/* Get the hardware's view of the TX consumer index. */
   3909 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   3910 
   3911 	/* Skip to the next entry if this is a chain page pointer. */
   3912 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   3913 		hw_tx_cons++;
   3914 
   3915 	sw_tx_cons = sc->tx_cons;
   3916 
   3917 	/* Prevent speculative reads from getting ahead of the status block. */
   3918 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3919 	    BUS_SPACE_BARRIER_READ);
   3920 
   3921 	/* Cycle through any completed TX chain page entries. */
   3922 	while (sw_tx_cons != hw_tx_cons) {
   3923 #ifdef BNX_DEBUG
   3924 		struct tx_bd *txbd = NULL;
   3925 #endif
   3926 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   3927 
   3928 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   3929 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   3930 		    __FUNCTION__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   3931 
   3932 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   3933 		    aprint_error("%s: TX chain consumer out of range! "
   3934 		    " 0x%04X > 0x%04X\n", sc->bnx_dev.dv_xname,
   3935 		    sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   3936 
   3937 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   3938 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   3939 
   3940 		DBRUNIF((txbd == NULL),
   3941 		    aprint_error("%s: Unexpected NULL tx_bd[0x%04X]!\n",
   3942 		    sc->bnx_dev.dv_xname, sw_tx_chain_cons);
   3943 		    bnx_breakpoint(sc));
   3944 
   3945 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __FUNCTION__);
   3946 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   3947 
   3948 		/*
   3949 		 * Free the associated mbuf. Remember
   3950 		 * that only the last tx_bd of a packet
   3951 		 * has an mbuf pointer and DMA map.
   3952 		 */
   3953 		if (sc->tx_mbuf_ptr[sw_tx_chain_cons] != NULL) {
   3954 			/* Validate that this is the last tx_bd. */
   3955 			DBRUNIF((!(txbd->tx_bd_vlan_tag_flags &
   3956 			    TX_BD_FLAGS_END)),
   3957 			    aprint_error("%s: tx_bd END flag not set but "
   3958 			    "txmbuf == NULL!\n", sc->bnx_dev.dv_xname);
   3959 			    bnx_breakpoint(sc));
   3960 
   3961 			DBRUN(BNX_INFO_SEND,
   3962 			    aprint_debug("%s: Unloading map/freeing mbuf "
   3963 			    "from tx_bd[0x%04X]\n",
   3964 			    __FUNCTION__, sw_tx_chain_cons));
   3965 
   3966 			/* Unmap the mbuf. */
   3967 			bus_dmamap_unload(sc->bnx_dmatag,
   3968 			    sc->tx_mbuf_map[sw_tx_chain_cons]);
   3969 
   3970 			/* Free the mbuf. */
   3971 			m_freem(sc->tx_mbuf_ptr[sw_tx_chain_cons]);
   3972 			sc->tx_mbuf_ptr[sw_tx_chain_cons] = NULL;
   3973 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   3974 
   3975 			ifp->if_opackets++;
   3976 		}
   3977 
   3978 		sc->used_tx_bd--;
   3979 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   3980 
   3981 		/* Refresh hw_cons to see if there's new work. */
   3982 		hw_tx_cons = sc->hw_tx_cons =
   3983 		    sblk->status_tx_quick_consumer_index0;
   3984 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   3985 		    USABLE_TX_BD_PER_PAGE)
   3986 			hw_tx_cons++;
   3987 
   3988 		/* Prevent speculative reads from getting ahead of
   3989 		 * the status block.
   3990 		 */
   3991 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   3992 		    BUS_SPACE_BARRIER_READ);
   3993 	}
   3994 
   3995 	/* Clear the TX timeout timer. */
   3996 	ifp->if_timer = 0;
   3997 
   3998 	/* Clear the tx hardware queue full flag. */
   3999 	if ((sc->used_tx_bd + BNX_TX_SLACK_SPACE) < USABLE_TX_BD) {
   4000 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4001 		    aprint_debug("%s: TX chain is open for business! Used "
   4002 		    "tx_bd = %d\n", sc->bnx_dev.dv_xname,
   4003 		    sc->used_tx_bd));
   4004 		ifp->if_flags &= ~IFF_OACTIVE;
   4005 	}
   4006 
   4007 	sc->tx_cons = sw_tx_cons;
   4008 }
   4009 
   4010 /****************************************************************************/
   4011 /* Disables interrupt generation.                                           */
   4012 /*                                                                          */
   4013 /* Returns:                                                                 */
   4014 /*   Nothing.                                                               */
   4015 /****************************************************************************/
   4016 void
   4017 bnx_disable_intr(struct bnx_softc *sc)
   4018 {
   4019 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4020 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4021 }
   4022 
   4023 /****************************************************************************/
   4024 /* Enables interrupt generation.                                            */
   4025 /*                                                                          */
   4026 /* Returns:                                                                 */
   4027 /*   Nothing.                                                               */
   4028 /****************************************************************************/
   4029 void
   4030 bnx_enable_intr(struct bnx_softc *sc)
   4031 {
   4032 	u_int32_t		val;
   4033 
   4034 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4035 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4036 
   4037 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4038 	    sc->last_status_idx);
   4039 
   4040 	val = REG_RD(sc, BNX_HC_COMMAND);
   4041 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4042 }
   4043 
   4044 /****************************************************************************/
   4045 /* Handles controller initialization.                                       */
   4046 /*                                                                          */
   4047 /****************************************************************************/
   4048 int
   4049 bnx_init(struct ifnet *ifp)
   4050 {
   4051 	struct bnx_softc	*sc = ifp->if_softc;
   4052 	u_int32_t		ether_mtu;
   4053 	int			s, error = 0;
   4054 
   4055 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __FUNCTION__);
   4056 
   4057 	s = splnet();
   4058 
   4059 	bnx_stop(sc);
   4060 
   4061 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4062 		aprint_error("bnx: Controller reset failed!\n");
   4063 		goto bnx_init_exit;
   4064 	}
   4065 
   4066 	if ((error = bnx_chipinit(sc)) != 0) {
   4067 		aprint_error("bnx: Controller initialization failed!\n");
   4068 		goto bnx_init_exit;
   4069 	}
   4070 
   4071 	if ((error = bnx_blockinit(sc)) != 0) {
   4072 		aprint_error("bnx: Block initialization failed!\n");
   4073 		goto bnx_init_exit;
   4074 	}
   4075 
   4076 	/* Calculate and program the Ethernet MRU size. */
   4077 	ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4078 
   4079 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4080 	    __FUNCTION__, ether_mtu);
   4081 
   4082 	/*
   4083 	 * Program the MRU and enable Jumbo frame
   4084 	 * support.
   4085 	 */
   4086 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4087 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4088 
   4089 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4090 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4091 
   4092 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4093 	    "max_frame_size = %d\n", __FUNCTION__, (int)MCLBYTES,
   4094 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4095 
   4096 	/* Program appropriate promiscuous/multicast filtering. */
   4097 	bnx_set_rx_mode(sc);
   4098 
   4099 	/* Init RX buffer descriptor chain. */
   4100 	bnx_init_rx_chain(sc);
   4101 
   4102 	/* Init TX buffer descriptor chain. */
   4103 	bnx_init_tx_chain(sc);
   4104 
   4105 	/* Enable host interrupts. */
   4106 	bnx_enable_intr(sc);
   4107 
   4108 	bnx_ifmedia_upd(ifp);
   4109 
   4110 	ifp->if_flags |= IFF_RUNNING;
   4111 	ifp->if_flags &= ~IFF_OACTIVE;
   4112 
   4113 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4114 
   4115 bnx_init_exit:
   4116 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __FUNCTION__);
   4117 
   4118 	splx(s);
   4119 
   4120 	return(error);
   4121 }
   4122 
   4123 /****************************************************************************/
   4124 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4125 /* memory visible to the controller.                                        */
   4126 /*                                                                          */
   4127 /* Returns:                                                                 */
   4128 /*   0 for success, positive value for failure.                             */
   4129 /****************************************************************************/
   4130 int
   4131 bnx_tx_encap(struct bnx_softc *sc, struct mbuf **m_head)
   4132 {
   4133 	bus_dmamap_t		map;
   4134 	struct tx_bd		*txbd = NULL;
   4135 	struct mbuf		*m0;
   4136 	u_int16_t		vlan_tag = 0, flags = 0;
   4137 	u_int16_t		chain_prod, prod;
   4138 #ifdef BNX_DEBUG
   4139 	u_int16_t		debug_prod;
   4140 #endif
   4141 	u_int32_t		addr, prod_bseq;
   4142 	int			i, error, rc = 0;
   4143 	struct m_tag		*mtag;
   4144 
   4145 	m0 = *m_head;
   4146 
   4147 	/* Transfer any checksum offload flags to the bd. */
   4148 	if (m0->m_pkthdr.csum_flags) {
   4149 		if (m0->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4150 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4151 		if (m0->m_pkthdr.csum_flags &
   4152 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4153 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4154 	}
   4155 
   4156 	/* Transfer any VLAN tags to the bd. */
   4157 	mtag = VLAN_OUTPUT_TAG(&sc->ethercom, m0);
   4158 	if (mtag != NULL) {
   4159 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4160 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4161 	}
   4162 
   4163 	/* Map the mbuf into DMAable memory. */
   4164 	prod = sc->tx_prod;
   4165 	chain_prod = TX_CHAIN_IDX(prod);
   4166 	map = sc->tx_mbuf_map[chain_prod];
   4167 
   4168 	/* Map the mbuf into our DMA address space. */
   4169 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m0, BUS_DMA_NOWAIT);
   4170 	if (error != 0) {
   4171 		aprint_error("%s: Error mapping mbuf into TX chain!\n",
   4172 		    sc->bnx_dev.dv_xname);
   4173 		m_freem(m0);
   4174 		*m_head = NULL;
   4175 		return (error);
   4176 	}
   4177 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4178 	    BUS_DMASYNC_PREWRITE);
   4179         /*
   4180          * The chip seems to require that at least 16 descriptors be kept
   4181          * empty at all times.  Make sure we honor that.
   4182          * XXX Would it be faster to assume worst case scenario for
   4183          * map->dm_nsegs and do this calculation higher up?
   4184          */
   4185         if (map->dm_nsegs > (USABLE_TX_BD - sc->used_tx_bd - BNX_TX_SLACK_SPACE)) {
   4186                 bus_dmamap_unload(sc->bnx_dmatag, map);
   4187                 return (ENOBUFS);
   4188         }
   4189 
   4190 	/* prod points to an empty tx_bd at this point. */
   4191 	prod_bseq = sc->tx_prod_bseq;
   4192 #ifdef BNX_DEBUG
   4193 	debug_prod = chain_prod;
   4194 #endif
   4195 	DBPRINT(sc, BNX_INFO_SEND,
   4196 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   4197 		"prod_bseq = 0x%08X\n",
   4198 		__FUNCTION__, *prod, chain_prod, prod_bseq);
   4199 
   4200 	/*
   4201 	 * Cycle through each mbuf segment that makes up
   4202 	 * the outgoing frame, gathering the mapping info
   4203 	 * for that segment and creating a tx_bd for the
   4204 	 * mbuf.
   4205 	 */
   4206 	for (i = 0; i < map->dm_nsegs ; i++) {
   4207 		chain_prod = TX_CHAIN_IDX(prod);
   4208 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   4209 
   4210 		addr = (u_int32_t)(map->dm_segs[i].ds_addr);
   4211 		txbd->tx_bd_haddr_lo = htole32(addr);
   4212 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   4213 		txbd->tx_bd_haddr_hi = htole32(addr);
   4214 		txbd->tx_bd_mss_nbytes = htole16(map->dm_segs[i].ds_len);
   4215 		txbd->tx_bd_vlan_tag = htole16(vlan_tag);
   4216 		txbd->tx_bd_flags = htole16(flags);
   4217 		prod_bseq += map->dm_segs[i].ds_len;
   4218 		if (i == 0)
   4219 			txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_START);
   4220 		prod = NEXT_TX_BD(prod);
   4221 	}
   4222 	/* Set the END flag on the last TX buffer descriptor. */
   4223 	txbd->tx_bd_flags |= htole16(TX_BD_FLAGS_END);
   4224 
   4225 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, nseg));
   4226 
   4227 	DBPRINT(sc, BNX_INFO_SEND,
   4228 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   4229 		"prod_bseq = 0x%08X\n",
   4230 		__FUNCTION__, prod, chain_prod, prod_bseq);
   4231 
   4232 	/*
   4233 	 * Ensure that the mbuf pointer for this
   4234 	 * transmission is placed at the array
   4235 	 * index of the last descriptor in this
   4236 	 * chain.  This is done because a single
   4237 	 * map is used for all segments of the mbuf
   4238 	 * and we don't want to unload the map before
   4239 	 * all of the segments have been freed.
   4240 	 */
   4241 	sc->tx_mbuf_ptr[chain_prod] = m0;
   4242 	sc->used_tx_bd += map->dm_nsegs;
   4243 
   4244 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   4245 	    sc->tx_hi_watermark = sc->used_tx_bd);
   4246 
   4247 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   4248 
   4249 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   4250 	    map_arg.maxsegs));
   4251 
   4252 	/* prod points to the next free tx_bd at this point. */
   4253 	sc->tx_prod = prod;
   4254 	sc->tx_prod_bseq = prod_bseq;
   4255 
   4256 	return (rc);
   4257 }
   4258 
   4259 /****************************************************************************/
   4260 /* Main transmit routine.                                                   */
   4261 /*                                                                          */
   4262 /* Returns:                                                                 */
   4263 /*   Nothing.                                                               */
   4264 /****************************************************************************/
   4265 void
   4266 bnx_start(struct ifnet *ifp)
   4267 {
   4268 	struct bnx_softc	*sc = ifp->if_softc;
   4269 	struct mbuf		*m_head = NULL;
   4270 	int			count = 0;
   4271 	u_int16_t		tx_prod, tx_chain_prod;
   4272 
   4273 	/* If there's no link or the transmit queue is empty then just exit. */
   4274 	if (!sc->bnx_link || IFQ_IS_EMPTY(&ifp->if_snd)) {
   4275 		DBPRINT(sc, BNX_INFO_SEND,
   4276 		    "%s(): No link or transmit queue empty.\n", __FUNCTION__);
   4277 		goto bnx_start_exit;
   4278 	}
   4279 
   4280 	/* prod points to the next free tx_bd. */
   4281 	tx_prod = sc->tx_prod;
   4282 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
   4283 
   4284 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   4285 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X\n",
   4286 	    __FUNCTION__, tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   4287 
   4288 	/*
   4289 	 * Keep adding entries while there is space in the ring.  We keep
   4290 	 * BNX_TX_SLACK_SPACE entries unused at all times.
   4291 	 */
   4292 	while (sc->used_tx_bd < USABLE_TX_BD - BNX_TX_SLACK_SPACE) {
   4293 		/* Check for any frames to send. */
   4294 		IFQ_POLL(&ifp->if_snd, m_head);
   4295 		if (m_head == NULL)
   4296 			break;
   4297 
   4298 		/*
   4299 		 * Pack the data into the transmit ring. If we
   4300 		 * don't have room, set the OACTIVE flag to wait
   4301 		 * for the NIC to drain the chain.
   4302 		 */
   4303 		if (bnx_tx_encap(sc, &m_head)) {
   4304 			ifp->if_flags |= IFF_OACTIVE;
   4305 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   4306 			    "business! Total tx_bd used = %d\n",
   4307 			    sc->used_tx_bd);
   4308 			break;
   4309 		}
   4310 
   4311 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   4312 		count++;
   4313 
   4314 #if NBPFILTER > 0
   4315 		/* Send a copy of the frame to any BPF listeners. */
   4316 		if (ifp->if_bpf)
   4317 			bpf_mtap(ifp->if_bpf, m_head);
   4318 #endif
   4319 	}
   4320 
   4321 	if (count == 0) {
   4322 		/* no packets were dequeued */
   4323 		DBPRINT(sc, BNX_VERBOSE_SEND,
   4324 		    "%s(): No packets were dequeued\n", __FUNCTION__);
   4325 		goto bnx_start_exit;
   4326 	}
   4327 
   4328 	/* Update the driver's counters. */
   4329 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   4330 
   4331 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   4332 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __FUNCTION__, tx_prod,
   4333 	    tx_chain_prod, sc->tx_prod_bseq);
   4334 
   4335 	/* Start the transmit. */
   4336 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   4337 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   4338 
   4339 	/* Set the tx timeout. */
   4340 	ifp->if_timer = BNX_TX_TIMEOUT;
   4341 
   4342 bnx_start_exit:
   4343 	return;
   4344 }
   4345 
   4346 /****************************************************************************/
   4347 /* Handles any IOCTL calls from the operating system.                       */
   4348 /*                                                                          */
   4349 /* Returns:                                                                 */
   4350 /*   0 for success, positive value for failure.                             */
   4351 /****************************************************************************/
   4352 int
   4353 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   4354 {
   4355 	struct bnx_softc	*sc = ifp->if_softc;
   4356 	struct ifreq		*ifr = (struct ifreq *) data;
   4357 	struct mii_data		*mii;
   4358 	int			s, error = 0;
   4359 
   4360 	s = splnet();
   4361 
   4362 	switch (command) {
   4363 	case SIOCSIFFLAGS:
   4364 		if (ifp->if_flags & IFF_UP) {
   4365 			if ((ifp->if_flags & IFF_RUNNING) &&
   4366 			    ((ifp->if_flags ^ sc->bnx_if_flags) &
   4367 			    (IFF_ALLMULTI | IFF_PROMISC)) != 0) {
   4368 				bnx_set_rx_mode(sc);
   4369 			} else if (!(ifp->if_flags & IFF_RUNNING))
   4370 				bnx_init(ifp);
   4371 
   4372 		} else if (ifp->if_flags & IFF_RUNNING)
   4373 			bnx_stop(sc);
   4374 
   4375 		sc->bnx_if_flags = ifp->if_flags;
   4376 		break;
   4377 
   4378 	case SIOCSIFMEDIA:
   4379 	case SIOCGIFMEDIA:
   4380 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   4381 		    sc->bnx_phy_flags);
   4382 
   4383 		if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
   4384 			error = ifmedia_ioctl(ifp, ifr,
   4385 			    &sc->bnx_ifmedia, command);
   4386 		else {
   4387 			mii = &sc->bnx_mii;
   4388 			error = ifmedia_ioctl(ifp, ifr,
   4389 			    &mii->mii_media, command);
   4390 		}
   4391 		break;
   4392 
   4393 	default:
   4394 		error = ether_ioctl(ifp, command, data);
   4395 		if (error == ENETRESET) {
   4396 #if 0
   4397 			if (ifp->if_flags & IFF_RUNNING)
   4398 				/*bnx_setmulti(sc)*/;
   4399 #endif
   4400 			error = 0;
   4401 		}
   4402 		break;
   4403 	}
   4404 
   4405 	splx(s);
   4406 
   4407 	return (error);
   4408 }
   4409 
   4410 /****************************************************************************/
   4411 /* Transmit timeout handler.                                                */
   4412 /*                                                                          */
   4413 /* Returns:                                                                 */
   4414 /*   Nothing.                                                               */
   4415 /****************************************************************************/
   4416 void
   4417 bnx_watchdog(struct ifnet *ifp)
   4418 {
   4419 	struct bnx_softc	*sc = ifp->if_softc;
   4420 
   4421 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   4422 	    bnx_dump_status_block(sc));
   4423 
   4424 	aprint_error("%s: Watchdog timeout -- resetting!\n",
   4425 	    sc->bnx_dev.dv_xname);
   4426 
   4427 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   4428 
   4429 	bnx_init(ifp);
   4430 
   4431 	ifp->if_oerrors++;
   4432 }
   4433 
   4434 /*
   4435  * Interrupt handler.
   4436  */
   4437 /****************************************************************************/
   4438 /* Main interrupt entry point.  Verifies that the controller generated the  */
   4439 /* interrupt and then calls a separate routine for handle the various       */
   4440 /* interrupt causes (PHY, TX, RX).                                          */
   4441 /*                                                                          */
   4442 /* Returns:                                                                 */
   4443 /*   0 for success, positive value for failure.                             */
   4444 /****************************************************************************/
   4445 int
   4446 bnx_intr(void *xsc)
   4447 {
   4448 	struct bnx_softc	*sc;
   4449 	struct ifnet		*ifp;
   4450 	u_int32_t		status_attn_bits;
   4451 
   4452 	sc = xsc;
   4453 	ifp = &sc->ethercom.ec_if;
   4454 
   4455 	DBRUNIF(1, sc->interrupts_generated++);
   4456 
   4457 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   4458 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4459 
   4460 	/*
   4461 	 * If the hardware status block index
   4462 	 * matches the last value read by the
   4463 	 * driver and we haven't asserted our
   4464 	 * interrupt then there's nothing to do.
   4465 	 */
   4466 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   4467 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   4468 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   4469 		return (0);
   4470 
   4471 	/* Ack the interrupt and stop others from occuring. */
   4472 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4473 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   4474 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4475 
   4476 	/* Keep processing data as long as there is work to do. */
   4477 	for (;;) {
   4478 		status_attn_bits = sc->status_block->status_attn_bits;
   4479 
   4480 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   4481 		    aprint_debug("Simulating unexpected status attention bit set.");
   4482 		    status_attn_bits = status_attn_bits |
   4483 		    STATUS_ATTN_BITS_PARITY_ERROR);
   4484 
   4485 		/* Was it a link change interrupt? */
   4486 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   4487 		    (sc->status_block->status_attn_bits_ack &
   4488 		    STATUS_ATTN_BITS_LINK_STATE))
   4489 			bnx_phy_intr(sc);
   4490 
   4491 		/* If any other attention is asserted then the chip is toast. */
   4492 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   4493 		    (sc->status_block->status_attn_bits_ack &
   4494 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   4495 			DBRUN(1, sc->unexpected_attentions++);
   4496 
   4497 			aprint_error("%s: Fatal attention detected: 0x%08X\n",
   4498 			    sc->bnx_dev.dv_xname,
   4499 			    sc->status_block->status_attn_bits);
   4500 
   4501 			DBRUN(BNX_FATAL,
   4502 			    if (bnx_debug_unexpected_attention == 0)
   4503 			    bnx_breakpoint(sc));
   4504 
   4505 			bnx_init(ifp);
   4506 			return (1);
   4507 		}
   4508 
   4509 		/* Check for any completed RX frames. */
   4510 		if (sc->status_block->status_rx_quick_consumer_index0 !=
   4511 		    sc->hw_rx_cons)
   4512 			bnx_rx_intr(sc);
   4513 
   4514 		/* Check for any completed TX frames. */
   4515 		if (sc->status_block->status_tx_quick_consumer_index0 !=
   4516 		    sc->hw_tx_cons)
   4517 			bnx_tx_intr(sc);
   4518 
   4519 		/* Save the status block index value for use during the
   4520 		 * next interrupt.
   4521 		 */
   4522 		sc->last_status_idx = sc->status_block->status_idx;
   4523 
   4524 		/* Prevent speculative reads from getting ahead of the
   4525 		 * status block.
   4526 		 */
   4527 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4528 		    BUS_SPACE_BARRIER_READ);
   4529 
   4530 		/* If there's no work left then exit the isr. */
   4531 		if ((sc->status_block->status_rx_quick_consumer_index0 ==
   4532 		    sc->hw_rx_cons) &&
   4533 		    (sc->status_block->status_tx_quick_consumer_index0 ==
   4534 		    sc->hw_tx_cons))
   4535 			break;
   4536 	}
   4537 
   4538 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   4539 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   4540 
   4541 	/* Re-enable interrupts. */
   4542 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4543 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   4544 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4545 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   4546 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   4547 
   4548 	/* Handle any frames that arrived while handling the interrupt. */
   4549 	if (ifp->if_flags & IFF_RUNNING && !IFQ_IS_EMPTY(&ifp->if_snd))
   4550 		bnx_start(ifp);
   4551 
   4552 	return (1);
   4553 }
   4554 
   4555 /****************************************************************************/
   4556 /* Programs the various packet receive modes (broadcast and multicast).     */
   4557 /*                                                                          */
   4558 /* Returns:                                                                 */
   4559 /*   Nothing.                                                               */
   4560 /****************************************************************************/
   4561 void
   4562 bnx_set_rx_mode(struct bnx_softc *sc)
   4563 {
   4564 	struct ethercom		*ec = &sc->ethercom;
   4565 	struct ifnet		*ifp = &ec->ec_if;
   4566 	struct ether_multi	*enm;
   4567 	struct ether_multistep	step;
   4568 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   4569 	u_int32_t		rx_mode, sort_mode;
   4570 	int			h, i;
   4571 
   4572 	/* Initialize receive mode default settings. */
   4573 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   4574 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   4575 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   4576 
   4577 	/*
   4578 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   4579 	 * be enbled.
   4580 	 */
   4581 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   4582 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   4583 
   4584 	/*
   4585 	 * Check for promiscuous, all multicast, or selected
   4586 	 * multicast address filtering.
   4587 	 */
   4588 	if (ifp->if_flags & IFF_PROMISC) {
   4589 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   4590 
   4591 		/* Enable promiscuous mode. */
   4592 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   4593 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   4594 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   4595 allmulti:
   4596 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   4597 
   4598 		/* Enable all multicast addresses. */
   4599 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   4600 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   4601 			    0xffffffff);
   4602 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   4603 	} else {
   4604 		/* Accept one or more multicast(s). */
   4605 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   4606 
   4607 		ETHER_FIRST_MULTI(step, ec, enm);
   4608 		while (enm != NULL) {
   4609 			if (bcmp(enm->enm_addrlo, enm->enm_addrhi,
   4610 			    ETHER_ADDR_LEN)) {
   4611 				ifp->if_flags |= IFF_ALLMULTI;
   4612 				goto allmulti;
   4613 			}
   4614 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   4615 			    0xFF;
   4616 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   4617 			ETHER_NEXT_MULTI(step, enm);
   4618 		}
   4619 
   4620 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   4621 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   4622 			    hashes[i]);
   4623 
   4624 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   4625 	}
   4626 
   4627 	/* Only make changes if the recive mode has actually changed. */
   4628 	if (rx_mode != sc->rx_mode) {
   4629 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   4630 		    rx_mode);
   4631 
   4632 		sc->rx_mode = rx_mode;
   4633 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   4634 	}
   4635 
   4636 	/* Disable and clear the exisitng sort before enabling a new sort. */
   4637 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   4638 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   4639 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   4640 }
   4641 
   4642 /****************************************************************************/
   4643 /* Called periodically to updates statistics from the controllers           */
   4644 /* statistics block.                                                        */
   4645 /*                                                                          */
   4646 /* Returns:                                                                 */
   4647 /*   Nothing.                                                               */
   4648 /****************************************************************************/
   4649 void
   4650 bnx_stats_update(struct bnx_softc *sc)
   4651 {
   4652 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   4653 	struct statistics_block	*stats;
   4654 
   4655 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __FUNCTION__);
   4656 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4657 	    BUS_DMASYNC_POSTREAD);
   4658 
   4659 	stats = (struct statistics_block *)sc->stats_block;
   4660 
   4661 	/*
   4662 	 * Update the interface statistics from the
   4663 	 * hardware statistics.
   4664 	 */
   4665 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   4666 
   4667 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   4668 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   4669 	    (u_long)stats->stat_IfInMBUFDiscards +
   4670 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   4671 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   4672 
   4673 	ifp->if_oerrors = (u_long)
   4674 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   4675 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   4676 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   4677 
   4678 	/*
   4679 	 * Certain controllers don't report
   4680 	 * carrier sense errors correctly.
   4681 	 * See errata E11_5708CA0_1165.
   4682 	 */
   4683 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   4684 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   4685 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   4686 
   4687 	/*
   4688 	 * Update the sysctl statistics from the
   4689 	 * hardware statistics.
   4690 	 */
   4691 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
   4692 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
   4693 
   4694 	sc->stat_IfHCInBadOctets =
   4695 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   4696 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
   4697 
   4698 	sc->stat_IfHCOutOctets =
   4699 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
   4700 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
   4701 
   4702 	sc->stat_IfHCOutBadOctets =
   4703 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   4704 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
   4705 
   4706 	sc->stat_IfHCInUcastPkts =
   4707 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   4708 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
   4709 
   4710 	sc->stat_IfHCInMulticastPkts =
   4711 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   4712 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
   4713 
   4714 	sc->stat_IfHCInBroadcastPkts =
   4715 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   4716 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
   4717 
   4718 	sc->stat_IfHCOutUcastPkts =
   4719 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   4720 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
   4721 
   4722 	sc->stat_IfHCOutMulticastPkts =
   4723 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   4724 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
   4725 
   4726 	sc->stat_IfHCOutBroadcastPkts =
   4727 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   4728 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   4729 
   4730 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   4731 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   4732 
   4733 	sc->stat_Dot3StatsCarrierSenseErrors =
   4734 	    stats->stat_Dot3StatsCarrierSenseErrors;
   4735 
   4736 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   4737 
   4738 	sc->stat_Dot3StatsAlignmentErrors =
   4739 	    stats->stat_Dot3StatsAlignmentErrors;
   4740 
   4741 	sc->stat_Dot3StatsSingleCollisionFrames =
   4742 	    stats->stat_Dot3StatsSingleCollisionFrames;
   4743 
   4744 	sc->stat_Dot3StatsMultipleCollisionFrames =
   4745 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   4746 
   4747 	sc->stat_Dot3StatsDeferredTransmissions =
   4748 	    stats->stat_Dot3StatsDeferredTransmissions;
   4749 
   4750 	sc->stat_Dot3StatsExcessiveCollisions =
   4751 	    stats->stat_Dot3StatsExcessiveCollisions;
   4752 
   4753 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   4754 
   4755 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   4756 
   4757 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   4758 
   4759 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   4760 
   4761 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   4762 
   4763 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   4764 
   4765 	sc->stat_EtherStatsPktsRx64Octets =
   4766 	    stats->stat_EtherStatsPktsRx64Octets;
   4767 
   4768 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   4769 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   4770 
   4771 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   4772 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   4773 
   4774 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   4775 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   4776 
   4777 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   4778 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   4779 
   4780 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   4781 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   4782 
   4783 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   4784 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   4785 
   4786 	sc->stat_EtherStatsPktsTx64Octets =
   4787 	    stats->stat_EtherStatsPktsTx64Octets;
   4788 
   4789 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   4790 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   4791 
   4792 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   4793 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   4794 
   4795 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   4796 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   4797 
   4798 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   4799 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   4800 
   4801 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   4802 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   4803 
   4804 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   4805 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   4806 
   4807 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   4808 
   4809 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   4810 
   4811 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   4812 
   4813 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   4814 
   4815 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   4816 
   4817 	sc->stat_MacControlFramesReceived =
   4818 	    stats->stat_MacControlFramesReceived;
   4819 
   4820 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   4821 
   4822 	sc->stat_IfInFramesL2FilterDiscards =
   4823 	    stats->stat_IfInFramesL2FilterDiscards;
   4824 
   4825 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   4826 
   4827 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   4828 
   4829 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   4830 
   4831 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   4832 
   4833 	sc->stat_CatchupInRuleCheckerDiscards =
   4834 	    stats->stat_CatchupInRuleCheckerDiscards;
   4835 
   4836 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   4837 
   4838 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   4839 
   4840 	sc->stat_CatchupInRuleCheckerP4Hit =
   4841 	    stats->stat_CatchupInRuleCheckerP4Hit;
   4842 
   4843 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __FUNCTION__);
   4844 }
   4845 
   4846 void
   4847 bnx_tick(void *xsc)
   4848 {
   4849 	struct bnx_softc	*sc = xsc;
   4850 	struct ifnet		*ifp = &sc->ethercom.ec_if;
   4851 	struct mii_data		*mii = NULL;
   4852 	u_int32_t		msg;
   4853 	int s = splnet();
   4854 
   4855 	/* Tell the firmware that the driver is still running. */
   4856 #ifdef BNX_DEBUG
   4857 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   4858 #else
   4859 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   4860 #endif
   4861 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   4862 
   4863 	/* Update the statistics from the hardware statistics block. */
   4864 	bnx_stats_update(sc);
   4865 
   4866 	/* Schedule the next tick. */
   4867 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4868 
   4869 	/* If link is up already up then we're done. */
   4870 	if (sc->bnx_link)
   4871 		goto bnx_tick_exit;
   4872 
   4873 	/* DRC - ToDo: Add SerDes support and check SerDes link here. */
   4874 
   4875 	mii = &sc->bnx_mii;
   4876 	mii_tick(mii);
   4877 
   4878 	/* Check if the link has come up. */
   4879 	if (!sc->bnx_link && mii->mii_media_status & IFM_ACTIVE &&
   4880 	    IFM_SUBTYPE(mii->mii_media_active) != IFM_NONE) {
   4881 		sc->bnx_link++;
   4882 		/* Now that link is up, handle any outstanding TX traffic. */
   4883 		if (!IFQ_IS_EMPTY(&ifp->if_snd))
   4884 			bnx_start(ifp);
   4885 	}
   4886 
   4887 bnx_tick_exit:
   4888 	splx(s);
   4889 	return;
   4890 }
   4891 
   4892 /****************************************************************************/
   4893 /* BNX Debug Routines                                                       */
   4894 /****************************************************************************/
   4895 #ifdef BNX_DEBUG
   4896 
   4897 /****************************************************************************/
   4898 /* Prints out information about an mbuf.                                    */
   4899 /*                                                                          */
   4900 /* Returns:                                                                 */
   4901 /*   Nothing.                                                               */
   4902 /****************************************************************************/
   4903 void
   4904 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   4905 {
   4906 	struct mbuf		*mp = m;
   4907 
   4908 	if (m == NULL) {
   4909 		/* Index out of range. */
   4910 		aprint_error("mbuf ptr is null!\n");
   4911 		return;
   4912 	}
   4913 
   4914 	while (mp) {
   4915 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   4916 		    mp, mp->m_len);
   4917 
   4918 		if (mp->m_flags & M_EXT)
   4919 			aprint_debug("M_EXT ");
   4920 		if (mp->m_flags & M_PKTHDR)
   4921 			aprint_debug("M_PKTHDR ");
   4922 		aprint_debug("\n");
   4923 
   4924 		if (mp->m_flags & M_EXT)
   4925 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   4926 			    mp, mp->m_ext.ext_size);
   4927 
   4928 		mp = mp->m_next;
   4929 	}
   4930 }
   4931 
   4932 /****************************************************************************/
   4933 /* Prints out the mbufs in the TX mbuf chain.                               */
   4934 /*                                                                          */
   4935 /* Returns:                                                                 */
   4936 /*   Nothing.                                                               */
   4937 /****************************************************************************/
   4938 void
   4939 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   4940 {
   4941 	struct mbuf		*m;
   4942 	int			i;
   4943 
   4944 	BNX_PRINTF(sc,
   4945 	    "----------------------------"
   4946 	    "  tx mbuf data  "
   4947 	    "----------------------------\n");
   4948 
   4949 	for (i = 0; i < count; i++) {
   4950 	 	m = sc->tx_mbuf_ptr[chain_prod];
   4951 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   4952 		bnx_dump_mbuf(sc, m);
   4953 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   4954 	}
   4955 
   4956 	BNX_PRINTF(sc,
   4957 	    "--------------------------------------------"
   4958 	    "----------------------------\n");
   4959 }
   4960 
   4961 /*
   4962  * This routine prints the RX mbuf chain.
   4963  */
   4964 void
   4965 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   4966 {
   4967 	struct mbuf		*m;
   4968 	int			i;
   4969 
   4970 	BNX_PRINTF(sc,
   4971 	    "----------------------------"
   4972 	    "  rx mbuf data  "
   4973 	    "----------------------------\n");
   4974 
   4975 	for (i = 0; i < count; i++) {
   4976 	 	m = sc->rx_mbuf_ptr[chain_prod];
   4977 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   4978 		bnx_dump_mbuf(sc, m);
   4979 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   4980 	}
   4981 
   4982 
   4983 	BNX_PRINTF(sc,
   4984 	    "--------------------------------------------"
   4985 	    "----------------------------\n");
   4986 }
   4987 
   4988 void
   4989 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   4990 {
   4991 	if (idx > MAX_TX_BD)
   4992 		/* Index out of range. */
   4993 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   4994 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4995 		/* TX Chain page pointer. */
   4996 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   4997 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   4998 		    txbd->tx_bd_haddr_lo);
   4999 	else
   5000 		/* Normal tx_bd entry. */
   5001 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5002 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5003 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5004 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5005 		    txbd->tx_bd_flags);
   5006 }
   5007 
   5008 void
   5009 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5010 {
   5011 	if (idx > MAX_RX_BD)
   5012 		/* Index out of range. */
   5013 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5014 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5015 		/* TX Chain page pointer. */
   5016 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5017 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5018 		    rxbd->rx_bd_haddr_lo);
   5019 	else
   5020 		/* Normal tx_bd entry. */
   5021 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5022 		    "0x%08X, flags = 0x%08X\n", idx,
   5023 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5024 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5025 }
   5026 
   5027 void
   5028 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5029 {
   5030 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5031 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5032 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5033 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5034 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5035 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5036 }
   5037 
   5038 /*
   5039  * This routine prints the TX chain.
   5040  */
   5041 void
   5042 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5043 {
   5044 	struct tx_bd		*txbd;
   5045 	int			i;
   5046 
   5047 	/* First some info about the tx_bd chain structure. */
   5048 	BNX_PRINTF(sc,
   5049 	    "----------------------------"
   5050 	    "  tx_bd  chain  "
   5051 	    "----------------------------\n");
   5052 
   5053 	BNX_PRINTF(sc,
   5054 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5055 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
   5056 
   5057 	BNX_PRINTF(sc,
   5058 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5059 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
   5060 
   5061 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", (u_int32_t)TOTAL_TX_BD);
   5062 
   5063 	BNX_PRINTF(sc, ""
   5064 	    "-----------------------------"
   5065 	    "   tx_bd data   "
   5066 	    "-----------------------------\n");
   5067 
   5068 	/* Now print out the tx_bd's themselves. */
   5069 	for (i = 0; i < count; i++) {
   5070 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5071 		bnx_dump_txbd(sc, tx_prod, txbd);
   5072 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5073 	}
   5074 
   5075 	BNX_PRINTF(sc,
   5076 	    "-----------------------------"
   5077 	    "--------------"
   5078 	    "-----------------------------\n");
   5079 }
   5080 
   5081 /*
   5082  * This routine prints the RX chain.
   5083  */
   5084 void
   5085 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5086 {
   5087 	struct rx_bd		*rxbd;
   5088 	int			i;
   5089 
   5090 	/* First some info about the tx_bd chain structure. */
   5091 	BNX_PRINTF(sc,
   5092 	    "----------------------------"
   5093 	    "  rx_bd  chain  "
   5094 	    "----------------------------\n");
   5095 
   5096 	BNX_PRINTF(sc, "----- RX_BD Chain -----\n");
   5097 
   5098 	BNX_PRINTF(sc,
   5099 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5100 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
   5101 
   5102 	BNX_PRINTF(sc,
   5103 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5104 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
   5105 
   5106 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", (u_int32_t)TOTAL_RX_BD);
   5107 
   5108 	BNX_PRINTF(sc,
   5109 	    "----------------------------"
   5110 	    "   rx_bd data   "
   5111 	    "----------------------------\n");
   5112 
   5113 	/* Now print out the rx_bd's themselves. */
   5114 	for (i = 0; i < count; i++) {
   5115 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5116 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5117 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5118 	}
   5119 
   5120 	BNX_PRINTF(sc,
   5121 	    "----------------------------"
   5122 	    "--------------"
   5123 	    "----------------------------\n");
   5124 }
   5125 
   5126 /*
   5127  * This routine prints the status block.
   5128  */
   5129 void
   5130 bnx_dump_status_block(struct bnx_softc *sc)
   5131 {
   5132 	struct status_block	*sblk;
   5133 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5134 	    BUS_DMASYNC_POSTREAD);
   5135 
   5136 	sblk = sc->status_block;
   5137 
   5138    	BNX_PRINTF(sc, "----------------------------- Status Block "
   5139 	    "-----------------------------\n");
   5140 
   5141 	BNX_PRINTF(sc,
   5142 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5143 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5144 	    sblk->status_idx);
   5145 
   5146 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5147 	    sblk->status_rx_quick_consumer_index0,
   5148 	    sblk->status_tx_quick_consumer_index0);
   5149 
   5150 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5151 
   5152 	/* Theses indices are not used for normal L2 drivers. */
   5153 	if (sblk->status_rx_quick_consumer_index1 ||
   5154 		sblk->status_tx_quick_consumer_index1)
   5155 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5156 		    sblk->status_rx_quick_consumer_index1,
   5157 		    sblk->status_tx_quick_consumer_index1);
   5158 
   5159 	if (sblk->status_rx_quick_consumer_index2 ||
   5160 		sblk->status_tx_quick_consumer_index2)
   5161 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5162 		    sblk->status_rx_quick_consumer_index2,
   5163 		    sblk->status_tx_quick_consumer_index2);
   5164 
   5165 	if (sblk->status_rx_quick_consumer_index3 ||
   5166 		sblk->status_tx_quick_consumer_index3)
   5167 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5168 		    sblk->status_rx_quick_consumer_index3,
   5169 		    sblk->status_tx_quick_consumer_index3);
   5170 
   5171 	if (sblk->status_rx_quick_consumer_index4 ||
   5172 		sblk->status_rx_quick_consumer_index5)
   5173 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5174 		    sblk->status_rx_quick_consumer_index4,
   5175 		    sblk->status_rx_quick_consumer_index5);
   5176 
   5177 	if (sblk->status_rx_quick_consumer_index6 ||
   5178 		sblk->status_rx_quick_consumer_index7)
   5179 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5180 		    sblk->status_rx_quick_consumer_index6,
   5181 		    sblk->status_rx_quick_consumer_index7);
   5182 
   5183 	if (sblk->status_rx_quick_consumer_index8 ||
   5184 		sblk->status_rx_quick_consumer_index9)
   5185 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5186 		    sblk->status_rx_quick_consumer_index8,
   5187 		    sblk->status_rx_quick_consumer_index9);
   5188 
   5189 	if (sblk->status_rx_quick_consumer_index10 ||
   5190 		sblk->status_rx_quick_consumer_index11)
   5191 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   5192 		    sblk->status_rx_quick_consumer_index10,
   5193 		    sblk->status_rx_quick_consumer_index11);
   5194 
   5195 	if (sblk->status_rx_quick_consumer_index12 ||
   5196 		sblk->status_rx_quick_consumer_index13)
   5197 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   5198 		    sblk->status_rx_quick_consumer_index12,
   5199 		    sblk->status_rx_quick_consumer_index13);
   5200 
   5201 	if (sblk->status_rx_quick_consumer_index14 ||
   5202 		sblk->status_rx_quick_consumer_index15)
   5203 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   5204 		    sblk->status_rx_quick_consumer_index14,
   5205 		    sblk->status_rx_quick_consumer_index15);
   5206 
   5207 	if (sblk->status_completion_producer_index ||
   5208 		sblk->status_cmd_consumer_index)
   5209 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   5210 		    sblk->status_completion_producer_index,
   5211 		    sblk->status_cmd_consumer_index);
   5212 
   5213 	BNX_PRINTF(sc, "-------------------------------------------"
   5214 	    "-----------------------------\n");
   5215 }
   5216 
   5217 /*
   5218  * This routine prints the statistics block.
   5219  */
   5220 void
   5221 bnx_dump_stats_block(struct bnx_softc *sc)
   5222 {
   5223 	struct statistics_block	*sblk;
   5224 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5225 	    BUS_DMASYNC_POSTREAD);
   5226 
   5227 	sblk = sc->stats_block;
   5228 
   5229 	BNX_PRINTF(sc, ""
   5230 	    "-----------------------------"
   5231 	    " Stats  Block "
   5232 	    "-----------------------------\n");
   5233 
   5234 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   5235 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   5236 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   5237 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   5238 
   5239 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   5240 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   5241 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   5242 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   5243 
   5244 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   5245 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   5246 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   5247 	    sblk->stat_IfHCInMulticastPkts_hi,
   5248 	    sblk->stat_IfHCInMulticastPkts_lo);
   5249 
   5250 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   5251 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   5252 	    sblk->stat_IfHCInBroadcastPkts_hi,
   5253 	    sblk->stat_IfHCInBroadcastPkts_lo,
   5254 	    sblk->stat_IfHCOutUcastPkts_hi,
   5255 	    sblk->stat_IfHCOutUcastPkts_lo);
   5256 
   5257 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   5258 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   5259 	    sblk->stat_IfHCOutMulticastPkts_hi,
   5260 	    sblk->stat_IfHCOutMulticastPkts_lo,
   5261 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   5262 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   5263 
   5264 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   5265 		BNX_PRINTF(sc, "0x%08X : "
   5266 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   5267 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   5268 
   5269 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   5270 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   5271 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   5272 
   5273 	if (sblk->stat_Dot3StatsFCSErrors)
   5274 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   5275 		    sblk->stat_Dot3StatsFCSErrors);
   5276 
   5277 	if (sblk->stat_Dot3StatsAlignmentErrors)
   5278 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   5279 		    sblk->stat_Dot3StatsAlignmentErrors);
   5280 
   5281 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   5282 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   5283 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   5284 
   5285 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   5286 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   5287 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   5288 
   5289 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   5290 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   5291 		    sblk->stat_Dot3StatsDeferredTransmissions);
   5292 
   5293 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   5294 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   5295 		    sblk->stat_Dot3StatsExcessiveCollisions);
   5296 
   5297 	if (sblk->stat_Dot3StatsLateCollisions)
   5298 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   5299 		    sblk->stat_Dot3StatsLateCollisions);
   5300 
   5301 	if (sblk->stat_EtherStatsCollisions)
   5302 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   5303 		    sblk->stat_EtherStatsCollisions);
   5304 
   5305 	if (sblk->stat_EtherStatsFragments)
   5306 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   5307 		    sblk->stat_EtherStatsFragments);
   5308 
   5309 	if (sblk->stat_EtherStatsJabbers)
   5310 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   5311 		    sblk->stat_EtherStatsJabbers);
   5312 
   5313 	if (sblk->stat_EtherStatsUndersizePkts)
   5314 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   5315 		    sblk->stat_EtherStatsUndersizePkts);
   5316 
   5317 	if (sblk->stat_EtherStatsOverrsizePkts)
   5318 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   5319 		    sblk->stat_EtherStatsOverrsizePkts);
   5320 
   5321 	if (sblk->stat_EtherStatsPktsRx64Octets)
   5322 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   5323 		    sblk->stat_EtherStatsPktsRx64Octets);
   5324 
   5325 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   5326 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   5327 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   5328 
   5329 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   5330 		BNX_PRINTF(sc, "0x%08X : "
   5331 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   5332 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   5333 
   5334 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   5335 		BNX_PRINTF(sc, "0x%08X : "
   5336 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   5337 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   5338 
   5339 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   5340 		BNX_PRINTF(sc, "0x%08X : "
   5341 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   5342 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   5343 
   5344 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   5345 		BNX_PRINTF(sc, "0x%08X : "
   5346 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   5347 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   5348 
   5349 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   5350 		BNX_PRINTF(sc, "0x%08X : "
   5351 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   5352 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   5353 
   5354 	if (sblk->stat_EtherStatsPktsTx64Octets)
   5355 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   5356 		    sblk->stat_EtherStatsPktsTx64Octets);
   5357 
   5358 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   5359 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   5360 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   5361 
   5362 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   5363 		BNX_PRINTF(sc, "0x%08X : "
   5364 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   5365 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   5366 
   5367 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   5368 		BNX_PRINTF(sc, "0x%08X : "
   5369 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   5370 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   5371 
   5372 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   5373 		BNX_PRINTF(sc, "0x%08X : "
   5374 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   5375 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   5376 
   5377 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   5378 		BNX_PRINTF(sc, "0x%08X : "
   5379 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   5380 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   5381 
   5382 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   5383 		BNX_PRINTF(sc, "0x%08X : "
   5384 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   5385 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   5386 
   5387 	if (sblk->stat_XonPauseFramesReceived)
   5388 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   5389 		    sblk->stat_XonPauseFramesReceived);
   5390 
   5391 	if (sblk->stat_XoffPauseFramesReceived)
   5392 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   5393 		    sblk->stat_XoffPauseFramesReceived);
   5394 
   5395 	if (sblk->stat_OutXonSent)
   5396 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   5397 		    sblk->stat_OutXonSent);
   5398 
   5399 	if (sblk->stat_OutXoffSent)
   5400 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   5401 		    sblk->stat_OutXoffSent);
   5402 
   5403 	if (sblk->stat_FlowControlDone)
   5404 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   5405 		    sblk->stat_FlowControlDone);
   5406 
   5407 	if (sblk->stat_MacControlFramesReceived)
   5408 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   5409 		    sblk->stat_MacControlFramesReceived);
   5410 
   5411 	if (sblk->stat_XoffStateEntered)
   5412 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   5413 		    sblk->stat_XoffStateEntered);
   5414 
   5415 	if (sblk->stat_IfInFramesL2FilterDiscards)
   5416 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   5417 		    sblk->stat_IfInFramesL2FilterDiscards);
   5418 
   5419 	if (sblk->stat_IfInRuleCheckerDiscards)
   5420 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   5421 		    sblk->stat_IfInRuleCheckerDiscards);
   5422 
   5423 	if (sblk->stat_IfInFTQDiscards)
   5424 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   5425 		    sblk->stat_IfInFTQDiscards);
   5426 
   5427 	if (sblk->stat_IfInMBUFDiscards)
   5428 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   5429 		    sblk->stat_IfInMBUFDiscards);
   5430 
   5431 	if (sblk->stat_IfInRuleCheckerP4Hit)
   5432 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   5433 		    sblk->stat_IfInRuleCheckerP4Hit);
   5434 
   5435 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   5436 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   5437 		    sblk->stat_CatchupInRuleCheckerDiscards);
   5438 
   5439 	if (sblk->stat_CatchupInFTQDiscards)
   5440 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   5441 		    sblk->stat_CatchupInFTQDiscards);
   5442 
   5443 	if (sblk->stat_CatchupInMBUFDiscards)
   5444 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   5445 		    sblk->stat_CatchupInMBUFDiscards);
   5446 
   5447 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   5448 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   5449 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   5450 
   5451 	BNX_PRINTF(sc,
   5452 	    "-----------------------------"
   5453 	    "--------------"
   5454 	    "-----------------------------\n");
   5455 }
   5456 
   5457 void
   5458 bnx_dump_driver_state(struct bnx_softc *sc)
   5459 {
   5460 	BNX_PRINTF(sc,
   5461 	    "-----------------------------"
   5462 	    " Driver State "
   5463 	    "-----------------------------\n");
   5464 
   5465 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   5466 	    "address\n", sc);
   5467 
   5468 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   5469 	    sc->status_block);
   5470 
   5471 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   5472 	    "address\n", sc->stats_block);
   5473 
   5474 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   5475 	    "adddress\n", sc->tx_bd_chain);
   5476 
   5477 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   5478 	    sc->rx_bd_chain);
   5479 
   5480 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   5481 	    sc->tx_mbuf_ptr);
   5482 
   5483 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   5484 	    sc->rx_mbuf_ptr);
   5485 
   5486 	BNX_PRINTF(sc,
   5487 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   5488 	    sc->interrupts_generated);
   5489 
   5490 	BNX_PRINTF(sc,
   5491 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   5492 	    sc->rx_interrupts);
   5493 
   5494 	BNX_PRINTF(sc,
   5495 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   5496 	    sc->tx_interrupts);
   5497 
   5498 	BNX_PRINTF(sc,
   5499 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   5500 	    sc->last_status_idx);
   5501 
   5502 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   5503 	    sc->tx_prod);
   5504 
   5505 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   5506 	    sc->tx_cons);
   5507 
   5508 	BNX_PRINTF(sc,
   5509 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   5510 	    sc->tx_prod_bseq);
   5511 
   5512 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   5513 	    sc->rx_prod);
   5514 
   5515 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   5516 	    sc->rx_cons);
   5517 
   5518 	BNX_PRINTF(sc,
   5519 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   5520 	    sc->rx_prod_bseq);
   5521 
   5522 	BNX_PRINTF(sc,
   5523 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   5524 	    sc->rx_mbuf_alloc);
   5525 
   5526 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   5527 	    sc->free_rx_bd);
   5528 
   5529 	BNX_PRINTF(sc,
   5530 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   5531 	    sc->rx_low_watermark, (u_int32_t) USABLE_RX_BD);
   5532 
   5533 	BNX_PRINTF(sc,
   5534 	    "         0x%08X - (sc->txmbuf_alloc) tx mbufs allocated\n",
   5535 	    sc->tx_mbuf_alloc);
   5536 
   5537 	BNX_PRINTF(sc,
   5538 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   5539 	    sc->rx_mbuf_alloc);
   5540 
   5541 	BNX_PRINTF(sc, "         0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   5542 	    sc->used_tx_bd);
   5543 
   5544 	BNX_PRINTF(sc, "0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   5545 	    sc->tx_hi_watermark, (u_int32_t) USABLE_TX_BD);
   5546 
   5547 	BNX_PRINTF(sc,
   5548 	    "         0x%08X - (sc->mbuf_alloc_failed) failed mbuf alloc\n",
   5549 	    sc->mbuf_alloc_failed);
   5550 
   5551 	BNX_PRINTF(sc, "-------------------------------------------"
   5552 	    "-----------------------------\n");
   5553 }
   5554 
   5555 void
   5556 bnx_dump_hw_state(struct bnx_softc *sc)
   5557 {
   5558 	u_int32_t		val1;
   5559 	int			i;
   5560 
   5561 	BNX_PRINTF(sc,
   5562 	    "----------------------------"
   5563 	    " Hardware State "
   5564 	    "----------------------------\n");
   5565 
   5566 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   5567 
   5568 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   5569 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   5570 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   5571 
   5572 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   5573 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   5574 
   5575 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   5576 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   5577 
   5578 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   5579 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   5580 	    BNX_EMAC_STATUS);
   5581 
   5582 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   5583 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   5584 
   5585 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   5586 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   5587 	    BNX_TBDR_STATUS);
   5588 
   5589 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   5590 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   5591 	    BNX_TDMA_STATUS);
   5592 
   5593 	val1 = REG_RD(sc, BNX_HC_STATUS);
   5594 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   5595 
   5596 	BNX_PRINTF(sc,
   5597 	    "----------------------------"
   5598 	    "----------------"
   5599 	    "----------------------------\n");
   5600 
   5601 	BNX_PRINTF(sc,
   5602 	    "----------------------------"
   5603 	    " Register  Dump "
   5604 	    "----------------------------\n");
   5605 
   5606 	for (i = 0x400; i < 0x8000; i += 0x10)
   5607 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   5608 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   5609 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   5610 
   5611 	BNX_PRINTF(sc,
   5612 	    "----------------------------"
   5613 	    "----------------"
   5614 	    "----------------------------\n");
   5615 }
   5616 
   5617 void
   5618 bnx_breakpoint(struct bnx_softc *sc)
   5619 {
   5620 	/* Unreachable code to shut the compiler up about unused functions. */
   5621 	if (0) {
   5622    		bnx_dump_txbd(sc, 0, NULL);
   5623 		bnx_dump_rxbd(sc, 0, NULL);
   5624 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   5625 		bnx_dump_rx_mbuf_chain(sc, 0, USABLE_RX_BD);
   5626 		bnx_dump_l2fhdr(sc, 0, NULL);
   5627 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   5628 		bnx_dump_rx_chain(sc, 0, USABLE_RX_BD);
   5629 		bnx_dump_status_block(sc);
   5630 		bnx_dump_stats_block(sc);
   5631 		bnx_dump_driver_state(sc);
   5632 		bnx_dump_hw_state(sc);
   5633 	}
   5634 
   5635 	bnx_dump_driver_state(sc);
   5636 	/* Print the important status block fields. */
   5637 	bnx_dump_status_block(sc);
   5638 
   5639 #if 0
   5640 	/* Call the debugger. */
   5641 	breakpoint();
   5642 #endif
   5643 
   5644 	return;
   5645 }
   5646 #endif
   5647