Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.42
      1 /*	$NetBSD: if_bnx.c,v 1.42 2011/01/26 00:09:27 dyoung Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
      3 
      4 /*-
      5  * Copyright (c) 2006 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.42 2011/01/26 00:09:27 dyoung Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *
     52  *   BCM5706C A0, A1
     53  *   BCM5706S A0, A1
     54  *   BCM5708C A0, B0
     55  *   BCM5708S A0, B0
     56  *   BCM5709C A0  B0, B1, B2 (pre-production)
     57  *   BCM5709S A0, B0, B1, B2 (pre-production)
     58  */
     59 
     60 #include <sys/callout.h>
     61 #include <sys/mutex.h>
     62 
     63 #include <dev/pci/if_bnxreg.h>
     64 #include <dev/pci/if_bnxvar.h>
     65 
     66 #include <dev/microcode/bnx/bnxfw.h>
     67 
     68 /****************************************************************************/
     69 /* BNX Driver Version                                                       */
     70 /****************************************************************************/
     71 #define BNX_DRIVER_VERSION	"v0.9.6"
     72 
     73 /****************************************************************************/
     74 /* BNX Debug Options                                                        */
     75 /****************************************************************************/
     76 #ifdef BNX_DEBUG
     77 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     78 
     79 	/*          0 = Never              */
     80 	/*          1 = 1 in 2,147,483,648 */
     81 	/*        256 = 1 in     8,388,608 */
     82 	/*       2048 = 1 in     1,048,576 */
     83 	/*      65536 = 1 in        32,768 */
     84 	/*    1048576 = 1 in         2,048 */
     85 	/*  268435456 =	1 in             8 */
     86 	/*  536870912 = 1 in             4 */
     87 	/* 1073741824 = 1 in             2 */
     88 
     89 	/* Controls how often the l2_fhdr frame error check will fail. */
     90 	int bnx_debug_l2fhdr_status_check = 0;
     91 
     92 	/* Controls how often the unexpected attention check will fail. */
     93 	int bnx_debug_unexpected_attention = 0;
     94 
     95 	/* Controls how often to simulate an mbuf allocation failure. */
     96 	int bnx_debug_mbuf_allocation_failure = 0;
     97 
     98 	/* Controls how often to simulate a DMA mapping failure. */
     99 	int bnx_debug_dma_map_addr_failure = 0;
    100 
    101 	/* Controls how often to simulate a bootcode failure. */
    102 	int bnx_debug_bootcode_running_failure = 0;
    103 #endif
    104 
    105 /****************************************************************************/
    106 /* PCI Device ID Table                                                      */
    107 /*                                                                          */
    108 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    109 /****************************************************************************/
    110 static const struct bnx_product {
    111 	pci_vendor_id_t		bp_vendor;
    112 	pci_product_id_t	bp_product;
    113 	pci_vendor_id_t		bp_subvendor;
    114 	pci_product_id_t	bp_subproduct;
    115 	const char		*bp_name;
    116 } bnx_devices[] = {
    117 #ifdef PCI_SUBPRODUCT_HP_NC370T
    118 	{
    119 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    120 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    121 	  "HP NC370T Multifunction Gigabit Server Adapter"
    122 	},
    123 #endif
    124 #ifdef PCI_SUBPRODUCT_HP_NC370i
    125 	{
    126 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    127 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    128 	  "HP NC370i Multifunction Gigabit Server Adapter"
    129 	},
    130 #endif
    131 	{
    132 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    133 	  0, 0,
    134 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    135 	},
    136 #ifdef PCI_SUBPRODUCT_HP_NC370F
    137 	{
    138 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    139 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    140 	  "HP NC370F Multifunction Gigabit Server Adapter"
    141 	},
    142 #endif
    143 	{
    144 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    145 	  0, 0,
    146 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    147 	},
    148 	{
    149 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    150 	  0, 0,
    151 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    152 	},
    153 	{
    154 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    155 	  0, 0,
    156 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    157 	},
    158 	{
    159 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    160 	  0, 0,
    161 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    162 	},
    163 	{
    164 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    165 	  0, 0,
    166 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    167 	},
    168 	{
    169 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    170 	  0, 0,
    171 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    172 	},
    173 	{
    174 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    175 	  0, 0,
    176 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    177 	},
    178 };
    179 
    180 /****************************************************************************/
    181 /* Supported Flash NVRAM device data.                                       */
    182 /****************************************************************************/
    183 static struct flash_spec flash_table[] =
    184 {
    185 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    186 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    187 	/* Slow EEPROM */
    188 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    189 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    190 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    191 	 "EEPROM - slow"},
    192 	/* Expansion entry 0001 */
    193 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    194 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    195 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    196 	 "Entry 0001"},
    197 	/* Saifun SA25F010 (non-buffered flash) */
    198 	/* strap, cfg1, & write1 need updates */
    199 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    200 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    201 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    202 	 "Non-buffered flash (128kB)"},
    203 	/* Saifun SA25F020 (non-buffered flash) */
    204 	/* strap, cfg1, & write1 need updates */
    205 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    206 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    207 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    208 	 "Non-buffered flash (256kB)"},
    209 	/* Expansion entry 0100 */
    210 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    211 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    213 	 "Entry 0100"},
    214 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    215 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    216 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    217 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    218 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    219 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    220 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    221 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    222 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    223 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    224 	/* Saifun SA25F005 (non-buffered flash) */
    225 	/* strap, cfg1, & write1 need updates */
    226 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    227 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    228 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    229 	 "Non-buffered flash (64kB)"},
    230 	/* Fast EEPROM */
    231 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    232 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    233 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    234 	 "EEPROM - fast"},
    235 	/* Expansion entry 1001 */
    236 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    237 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    238 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    239 	 "Entry 1001"},
    240 	/* Expansion entry 1010 */
    241 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    242 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    243 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    244 	 "Entry 1010"},
    245 	/* ATMEL AT45DB011B (buffered flash) */
    246 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    247 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    248 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    249 	 "Buffered flash (128kB)"},
    250 	/* Expansion entry 1100 */
    251 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    252 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    253 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    254 	 "Entry 1100"},
    255 	/* Expansion entry 1101 */
    256 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    257 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    258 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    259 	 "Entry 1101"},
    260 	/* Ateml Expansion entry 1110 */
    261 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    262 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    263 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    264 	 "Entry 1110 (Atmel)"},
    265 	/* ATMEL AT45DB021B (buffered flash) */
    266 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    267 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    268 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    269 	 "Buffered flash (256kB)"},
    270 };
    271 
    272 /*
    273  * The BCM5709 controllers transparently handle the
    274  * differences between Atmel 264 byte pages and all
    275  * flash devices which use 256 byte pages, so no
    276  * logical-to-physical mapping is required in the
    277  * driver.
    278  */
    279 static struct flash_spec flash_5709 = {
    280 	.flags		= BNX_NV_BUFFERED,
    281 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    282 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    283 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    284 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    285 	.name		= "5709 buffered flash (256kB)",
    286 };
    287 
    288 /****************************************************************************/
    289 /* OpenBSD device entry points.                                             */
    290 /****************************************************************************/
    291 static int	bnx_probe(device_t, cfdata_t, void *);
    292 void	bnx_attach(device_t, device_t, void *);
    293 int	bnx_detach(device_t, int);
    294 
    295 /****************************************************************************/
    296 /* BNX Debug Data Structure Dump Routines                                   */
    297 /****************************************************************************/
    298 #ifdef BNX_DEBUG
    299 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    300 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    301 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    302 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    303 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    304 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    305 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    306 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    307 void	bnx_dump_status_block(struct bnx_softc *);
    308 void	bnx_dump_stats_block(struct bnx_softc *);
    309 void	bnx_dump_driver_state(struct bnx_softc *);
    310 void	bnx_dump_hw_state(struct bnx_softc *);
    311 void	bnx_breakpoint(struct bnx_softc *);
    312 #endif
    313 
    314 /****************************************************************************/
    315 /* BNX Register/Memory Access Routines                                      */
    316 /****************************************************************************/
    317 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
    318 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
    319 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
    320 int	bnx_miibus_read_reg(device_t, int, int);
    321 void	bnx_miibus_write_reg(device_t, int, int, int);
    322 void	bnx_miibus_statchg(device_t);
    323 
    324 /****************************************************************************/
    325 /* BNX NVRAM Access Routines                                                */
    326 /****************************************************************************/
    327 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    328 int	bnx_release_nvram_lock(struct bnx_softc *);
    329 void	bnx_enable_nvram_access(struct bnx_softc *);
    330 void	bnx_disable_nvram_access(struct bnx_softc *);
    331 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    332 	    u_int32_t);
    333 int	bnx_init_nvram(struct bnx_softc *);
    334 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    335 int	bnx_nvram_test(struct bnx_softc *);
    336 #ifdef BNX_NVRAM_WRITE_SUPPORT
    337 int	bnx_enable_nvram_write(struct bnx_softc *);
    338 void	bnx_disable_nvram_write(struct bnx_softc *);
    339 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
    340 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    341 	    u_int32_t);
    342 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    343 #endif
    344 
    345 /****************************************************************************/
    346 /*                                                                          */
    347 /****************************************************************************/
    348 void	bnx_get_media(struct bnx_softc *);
    349 void	bnx_init_media(struct bnx_softc *);
    350 int	bnx_dma_alloc(struct bnx_softc *);
    351 void	bnx_dma_free(struct bnx_softc *);
    352 void	bnx_release_resources(struct bnx_softc *);
    353 
    354 /****************************************************************************/
    355 /* BNX Firmware Synchronization and Load                                    */
    356 /****************************************************************************/
    357 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
    358 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
    359 	    u_int32_t);
    360 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    361 	    struct fw_info *);
    362 void	bnx_init_cpus(struct bnx_softc *);
    363 
    364 void	bnx_stop(struct ifnet *, int);
    365 int	bnx_reset(struct bnx_softc *, u_int32_t);
    366 int	bnx_chipinit(struct bnx_softc *);
    367 int	bnx_blockinit(struct bnx_softc *);
    368 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
    369 	    u_int16_t *, u_int32_t *);
    370 int	bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
    371 
    372 int	bnx_init_tx_chain(struct bnx_softc *);
    373 void	bnx_init_tx_context(struct bnx_softc *);
    374 int	bnx_init_rx_chain(struct bnx_softc *);
    375 void	bnx_init_rx_context(struct bnx_softc *);
    376 void	bnx_free_rx_chain(struct bnx_softc *);
    377 void	bnx_free_tx_chain(struct bnx_softc *);
    378 
    379 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    380 void	bnx_start(struct ifnet *);
    381 int	bnx_ioctl(struct ifnet *, u_long, void *);
    382 void	bnx_watchdog(struct ifnet *);
    383 int	bnx_init(struct ifnet *);
    384 
    385 void	bnx_init_context(struct bnx_softc *);
    386 void	bnx_get_mac_addr(struct bnx_softc *);
    387 void	bnx_set_mac_addr(struct bnx_softc *);
    388 void	bnx_phy_intr(struct bnx_softc *);
    389 void	bnx_rx_intr(struct bnx_softc *);
    390 void	bnx_tx_intr(struct bnx_softc *);
    391 void	bnx_disable_intr(struct bnx_softc *);
    392 void	bnx_enable_intr(struct bnx_softc *);
    393 
    394 int	bnx_intr(void *);
    395 void	bnx_iff(struct bnx_softc *);
    396 void	bnx_stats_update(struct bnx_softc *);
    397 void	bnx_tick(void *);
    398 
    399 struct pool *bnx_tx_pool = NULL;
    400 int	bnx_alloc_pkts(struct bnx_softc *);
    401 
    402 /****************************************************************************/
    403 /* OpenBSD device dispatch table.                                           */
    404 /****************************************************************************/
    405 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    406     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    407 
    408 /****************************************************************************/
    409 /* Device probe function.                                                   */
    410 /*                                                                          */
    411 /* Compares the device to the driver's list of supported devices and        */
    412 /* reports back to the OS whether this is the right driver for the device.  */
    413 /*                                                                          */
    414 /* Returns:                                                                 */
    415 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    416 /****************************************************************************/
    417 static const struct bnx_product *
    418 bnx_lookup(const struct pci_attach_args *pa)
    419 {
    420 	int i;
    421 	pcireg_t subid;
    422 
    423 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    424 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    425 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    426 			continue;
    427 		if (!bnx_devices[i].bp_subvendor)
    428 			return &bnx_devices[i];
    429 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    430 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    431 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    432 			return &bnx_devices[i];
    433 	}
    434 
    435 	return NULL;
    436 }
    437 static int
    438 bnx_probe(device_t parent, cfdata_t match, void *aux)
    439 {
    440 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    441 
    442 	if (bnx_lookup(pa) != NULL)
    443 		return (1);
    444 
    445 	return (0);
    446 }
    447 
    448 /****************************************************************************/
    449 /* Device attach function.                                                  */
    450 /*                                                                          */
    451 /* Allocates device resources, performs secondary chip identification,      */
    452 /* resets and initializes the hardware, and initializes driver instance     */
    453 /* variables.                                                               */
    454 /*                                                                          */
    455 /* Returns:                                                                 */
    456 /*   0 on success, positive value on failure.                               */
    457 /****************************************************************************/
    458 void
    459 bnx_attach(device_t parent, device_t self, void *aux)
    460 {
    461 	const struct bnx_product *bp;
    462 	struct bnx_softc	*sc = device_private(self);
    463 	prop_dictionary_t	dict;
    464 	struct pci_attach_args	*pa = aux;
    465 	pci_chipset_tag_t	pc = pa->pa_pc;
    466 	pci_intr_handle_t	ih;
    467 	const char 		*intrstr = NULL;
    468 	u_int32_t		command;
    469 	struct ifnet		*ifp;
    470 	u_int32_t		val;
    471 	int			mii_flags = MIIF_FORCEANEG;
    472 	pcireg_t		memtype;
    473 
    474 	if (bnx_tx_pool == NULL) {
    475 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    476 		if (bnx_tx_pool != NULL) {
    477 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    478 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    479 		} else {
    480 			aprint_error(": can't alloc bnx_tx_pool\n");
    481 			return;
    482 		}
    483 	}
    484 
    485 	bp = bnx_lookup(pa);
    486 	if (bp == NULL)
    487 		panic("unknown device");
    488 
    489 	sc->bnx_dev = self;
    490 
    491 	aprint_naive("\n");
    492 	aprint_normal(": %s\n", bp->bp_name);
    493 
    494 	sc->bnx_pa = *pa;
    495 
    496 	/*
    497 	 * Map control/status registers.
    498 	*/
    499 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    500 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    501 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    502 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    503 
    504 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    505 		aprint_error_dev(sc->bnx_dev,
    506 		    "failed to enable memory mapping!\n");
    507 		return;
    508 	}
    509 
    510 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    511 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    512 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    513 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    514 		return;
    515 	}
    516 
    517 	if (pci_intr_map(pa, &ih)) {
    518 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    519 		goto bnx_attach_fail;
    520 	}
    521 
    522 	intrstr = pci_intr_string(pc, ih);
    523 
    524 	/*
    525 	 * Configure byte swap and enable indirect register access.
    526 	 * Rely on CPU to do target byte swapping on big endian systems.
    527 	 * Access to registers outside of PCI configurtion space are not
    528 	 * valid until this is done.
    529 	 */
    530 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    531 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    532 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    533 
    534 	/* Save ASIC revsion info. */
    535 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    536 
    537 	/*
    538 	 * Find the base address for shared memory access.
    539 	 * Newer versions of bootcode use a signature and offset
    540 	 * while older versions use a fixed address.
    541 	 */
    542 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    543 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    544 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    545 		    (sc->bnx_pa.pa_function << 2));
    546 	else
    547 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    548 
    549 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    550 
    551 	/* Set initial device and PHY flags */
    552 	sc->bnx_flags = 0;
    553 	sc->bnx_phy_flags = 0;
    554 
    555 	/* Get PCI bus information (speed and type). */
    556 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    557 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    558 		u_int32_t clkreg;
    559 
    560 		sc->bnx_flags |= BNX_PCIX_FLAG;
    561 
    562 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    563 
    564 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    565 		switch (clkreg) {
    566 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    567 			sc->bus_speed_mhz = 133;
    568 			break;
    569 
    570 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    571 			sc->bus_speed_mhz = 100;
    572 			break;
    573 
    574 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    575 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    576 			sc->bus_speed_mhz = 66;
    577 			break;
    578 
    579 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    580 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    581 			sc->bus_speed_mhz = 50;
    582 			break;
    583 
    584 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    585 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    586 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    587 			sc->bus_speed_mhz = 33;
    588 			break;
    589 		}
    590 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    591 			sc->bus_speed_mhz = 66;
    592 		else
    593 			sc->bus_speed_mhz = 33;
    594 
    595 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    596 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    597 
    598 	/* Reset the controller. */
    599 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    600 		goto bnx_attach_fail;
    601 
    602 	/* Initialize the controller. */
    603 	if (bnx_chipinit(sc)) {
    604 		aprint_error_dev(sc->bnx_dev,
    605 		    "Controller initialization failed!\n");
    606 		goto bnx_attach_fail;
    607 	}
    608 
    609 	/* Perform NVRAM test. */
    610 	if (bnx_nvram_test(sc)) {
    611 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    612 		goto bnx_attach_fail;
    613 	}
    614 
    615 	/* Fetch the permanent Ethernet MAC address. */
    616 	bnx_get_mac_addr(sc);
    617 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    618 	    ether_sprintf(sc->eaddr));
    619 
    620 	/*
    621 	 * Trip points control how many BDs
    622 	 * should be ready before generating an
    623 	 * interrupt while ticks control how long
    624 	 * a BD can sit in the chain before
    625 	 * generating an interrupt.  Set the default
    626 	 * values for the RX and TX rings.
    627 	 */
    628 
    629 #ifdef BNX_DEBUG
    630 	/* Force more frequent interrupts. */
    631 	sc->bnx_tx_quick_cons_trip_int = 1;
    632 	sc->bnx_tx_quick_cons_trip     = 1;
    633 	sc->bnx_tx_ticks_int           = 0;
    634 	sc->bnx_tx_ticks               = 0;
    635 
    636 	sc->bnx_rx_quick_cons_trip_int = 1;
    637 	sc->bnx_rx_quick_cons_trip     = 1;
    638 	sc->bnx_rx_ticks_int           = 0;
    639 	sc->bnx_rx_ticks               = 0;
    640 #else
    641 	sc->bnx_tx_quick_cons_trip_int = 20;
    642 	sc->bnx_tx_quick_cons_trip     = 20;
    643 	sc->bnx_tx_ticks_int           = 80;
    644 	sc->bnx_tx_ticks               = 80;
    645 
    646 	sc->bnx_rx_quick_cons_trip_int = 6;
    647 	sc->bnx_rx_quick_cons_trip     = 6;
    648 	sc->bnx_rx_ticks_int           = 18;
    649 	sc->bnx_rx_ticks               = 18;
    650 #endif
    651 
    652 	/* Update statistics once every second. */
    653 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    654 
    655 	/* Find the media type for the adapter. */
    656 	bnx_get_media(sc);
    657 
    658 	/*
    659 	 * Store config data needed by the PHY driver for
    660 	 * backplane applications
    661 	 */
    662 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    663 	    BNX_SHARED_HW_CFG_CONFIG);
    664 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    665 	    BNX_PORT_HW_CFG_CONFIG);
    666 
    667 	/* Allocate DMA memory resources. */
    668 	sc->bnx_dmatag = pa->pa_dmat;
    669 	if (bnx_dma_alloc(sc)) {
    670 		aprint_error_dev(sc->bnx_dev,
    671 		    "DMA resource allocation failed!\n");
    672 		goto bnx_attach_fail;
    673 	}
    674 
    675 	/* Initialize the ifnet interface. */
    676 	ifp = &sc->bnx_ec.ec_if;
    677 	ifp->if_softc = sc;
    678 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    679 	ifp->if_ioctl = bnx_ioctl;
    680 	ifp->if_stop = bnx_stop;
    681 	ifp->if_start = bnx_start;
    682 	ifp->if_init = bnx_init;
    683 	ifp->if_timer = 0;
    684 	ifp->if_watchdog = bnx_watchdog;
    685 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    686 	IFQ_SET_READY(&ifp->if_snd);
    687 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    688 
    689 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    690 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    691 
    692 	ifp->if_capabilities |=
    693 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    694 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    695 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    696 
    697 	/* Hookup IRQ last. */
    698 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    699 	if (sc->bnx_intrhand == NULL) {
    700 		aprint_error_dev(self, "couldn't establish interrupt");
    701 		if (intrstr != NULL)
    702 			aprint_error(" at %s", intrstr);
    703 		aprint_error("\n");
    704 		goto bnx_attach_fail;
    705 	}
    706 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    707 
    708 	sc->bnx_mii.mii_ifp = ifp;
    709 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    710 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    711 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    712 
    713 	/* Handle any special PHY initialization for SerDes PHYs. */
    714 	bnx_init_media(sc);
    715 
    716 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    717 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    718 	    ether_mediastatus);
    719 
    720 	/* set phyflags before mii_attach() */
    721 	dict = device_properties(self);
    722 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    723 
    724 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    725 		mii_flags |= MIIF_HAVEFIBER;
    726 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    727 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    728 
    729 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    730 		aprint_error_dev(self, "no PHY found!\n");
    731 		ifmedia_add(&sc->bnx_mii.mii_media,
    732 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    733 		ifmedia_set(&sc->bnx_mii.mii_media,
    734 		    IFM_ETHER|IFM_MANUAL);
    735 	} else {
    736 		ifmedia_set(&sc->bnx_mii.mii_media,
    737 		    IFM_ETHER|IFM_AUTO);
    738 	}
    739 
    740 	/* Attach to the Ethernet interface list. */
    741 	if_attach(ifp);
    742 	ether_ifattach(ifp,sc->eaddr);
    743 
    744 	callout_init(&sc->bnx_timeout, 0);
    745 
    746 	if (pmf_device_register(self, NULL, NULL))
    747 		pmf_class_network_register(self, ifp);
    748 	else
    749 		aprint_error_dev(self, "couldn't establish power handler\n");
    750 
    751 	/* Print some important debugging info. */
    752 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    753 
    754 	goto bnx_attach_exit;
    755 
    756 bnx_attach_fail:
    757 	bnx_release_resources(sc);
    758 
    759 bnx_attach_exit:
    760 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    761 }
    762 
    763 /****************************************************************************/
    764 /* Device detach function.                                                  */
    765 /*                                                                          */
    766 /* Stops the controller, resets the controller, and releases resources.     */
    767 /*                                                                          */
    768 /* Returns:                                                                 */
    769 /*   0 on success, positive value on failure.                               */
    770 /****************************************************************************/
    771 int
    772 bnx_detach(device_t dev, int flags)
    773 {
    774 	int s;
    775 	struct bnx_softc *sc;
    776 	struct ifnet *ifp;
    777 
    778 	sc = device_private(dev);
    779 	ifp = &sc->bnx_ec.ec_if;
    780 
    781 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    782 
    783 	/* Stop and reset the controller. */
    784 	s = splnet();
    785 	if (ifp->if_flags & IFF_RUNNING)
    786 		bnx_stop(ifp, 1);
    787 	else {
    788 		/* Disable the transmit/receive blocks. */
    789 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
    790 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
    791 		DELAY(20);
    792 		bnx_disable_intr(sc);
    793 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
    794 	}
    795 
    796 	splx(s);
    797 
    798 	pmf_device_deregister(dev);
    799 	callout_destroy(&sc->bnx_timeout);
    800 	ether_ifdetach(ifp);
    801 
    802 	/* Delete all remaining media. */
    803 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    804 
    805 	if_detach(ifp);
    806 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    807 
    808 	/* Release all remaining resources. */
    809 	bnx_release_resources(sc);
    810 
    811 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    812 
    813 	return(0);
    814 }
    815 
    816 /****************************************************************************/
    817 /* Indirect register read.                                                  */
    818 /*                                                                          */
    819 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    820 /* configuration space.  Using this mechanism avoids issues with posted     */
    821 /* reads but is much slower than memory-mapped I/O.                         */
    822 /*                                                                          */
    823 /* Returns:                                                                 */
    824 /*   The value of the register.                                             */
    825 /****************************************************************************/
    826 u_int32_t
    827 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
    828 {
    829 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    830 
    831 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    832 	    offset);
    833 #ifdef BNX_DEBUG
    834 	{
    835 		u_int32_t val;
    836 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    837 		    BNX_PCICFG_REG_WINDOW);
    838 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    839 		    "val = 0x%08X\n", __func__, offset, val);
    840 		return (val);
    841 	}
    842 #else
    843 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    844 #endif
    845 }
    846 
    847 /****************************************************************************/
    848 /* Indirect register write.                                                 */
    849 /*                                                                          */
    850 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    851 /* configuration space.  Using this mechanism avoids issues with posted     */
    852 /* writes but is muchh slower than memory-mapped I/O.                       */
    853 /*                                                                          */
    854 /* Returns:                                                                 */
    855 /*   Nothing.                                                               */
    856 /****************************************************************************/
    857 void
    858 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
    859 {
    860 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    861 
    862 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    863 		__func__, offset, val);
    864 
    865 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    866 	    offset);
    867 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    868 }
    869 
    870 /****************************************************************************/
    871 /* Context memory write.                                                    */
    872 /*                                                                          */
    873 /* The NetXtreme II controller uses context memory to track connection      */
    874 /* information for L2 and higher network protocols.                         */
    875 /*                                                                          */
    876 /* Returns:                                                                 */
    877 /*   Nothing.                                                               */
    878 /****************************************************************************/
    879 void
    880 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
    881     u_int32_t ctx_val)
    882 {
    883 	u_int32_t idx, offset = ctx_offset + cid_addr;
    884 	u_int32_t val, retry_cnt = 5;
    885 
    886 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
    887 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
    888 		REG_WR(sc, BNX_CTX_CTX_CTRL,
    889 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
    890 
    891 		for (idx = 0; idx < retry_cnt; idx++) {
    892 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
    893 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
    894 				break;
    895 			DELAY(5);
    896 		}
    897 
    898 #if 0
    899 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
    900 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
    901 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
    902 				__FILE__, __LINE__, cid_addr, ctx_offset);
    903 #endif
    904 
    905 	} else {
    906 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
    907 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
    908 	}
    909 }
    910 
    911 /****************************************************************************/
    912 /* PHY register read.                                                       */
    913 /*                                                                          */
    914 /* Implements register reads on the MII bus.                                */
    915 /*                                                                          */
    916 /* Returns:                                                                 */
    917 /*   The value of the register.                                             */
    918 /****************************************************************************/
    919 int
    920 bnx_miibus_read_reg(device_t dev, int phy, int reg)
    921 {
    922 	struct bnx_softc	*sc = device_private(dev);
    923 	u_int32_t		val;
    924 	int			i;
    925 
    926 	/* Make sure we are accessing the correct PHY address. */
    927 	if (phy != sc->bnx_phy_addr) {
    928 		DBPRINT(sc, BNX_VERBOSE,
    929 		    "Invalid PHY address %d for PHY read!\n", phy);
    930 		return(0);
    931 	}
    932 
    933 	/*
    934 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
    935 	 * with special mappings to work with IEEE
    936 	 * Clause 22 register accesses.
    937 	 */
    938 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
    939 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
    940 			reg += 0x10;
    941 	}
    942 
    943 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    944 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    945 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    946 
    947 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    948 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    949 
    950 		DELAY(40);
    951 	}
    952 
    953 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
    954 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
    955 	    BNX_EMAC_MDIO_COMM_START_BUSY;
    956 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
    957 
    958 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    959 		DELAY(10);
    960 
    961 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    962 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    963 			DELAY(5);
    964 
    965 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    966 			val &= BNX_EMAC_MDIO_COMM_DATA;
    967 
    968 			break;
    969 		}
    970 	}
    971 
    972 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
    973 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
    974 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
    975 		val = 0x0;
    976 	} else
    977 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    978 
    979 	DBPRINT(sc, BNX_EXCESSIVE,
    980 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
    981 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    982 
    983 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    984 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    985 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    986 
    987 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    988 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    989 
    990 		DELAY(40);
    991 	}
    992 
    993 	return (val & 0xffff);
    994 }
    995 
    996 /****************************************************************************/
    997 /* PHY register write.                                                      */
    998 /*                                                                          */
    999 /* Implements register writes on the MII bus.                               */
   1000 /*                                                                          */
   1001 /* Returns:                                                                 */
   1002 /*   The value of the register.                                             */
   1003 /****************************************************************************/
   1004 void
   1005 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
   1006 {
   1007 	struct bnx_softc	*sc = device_private(dev);
   1008 	u_int32_t		val1;
   1009 	int			i;
   1010 
   1011 	/* Make sure we are accessing the correct PHY address. */
   1012 	if (phy != sc->bnx_phy_addr) {
   1013 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
   1014 		    phy);
   1015 		return;
   1016 	}
   1017 
   1018 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1019 	    "val = 0x%04X\n", __func__,
   1020 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
   1021 
   1022 	/*
   1023 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1024 	 * with special mappings to work with IEEE
   1025 	 * Clause 22 register accesses.
   1026 	 */
   1027 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1028 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1029 			reg += 0x10;
   1030 	}
   1031 
   1032 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1033 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1034 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1035 
   1036 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1037 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1038 
   1039 		DELAY(40);
   1040 	}
   1041 
   1042 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1043 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1044 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1045 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1046 
   1047 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1048 		DELAY(10);
   1049 
   1050 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1051 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1052 			DELAY(5);
   1053 			break;
   1054 		}
   1055 	}
   1056 
   1057 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1058 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1059 		    __LINE__);
   1060 	}
   1061 
   1062 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1063 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1064 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1065 
   1066 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1067 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1068 
   1069 		DELAY(40);
   1070 	}
   1071 }
   1072 
   1073 /****************************************************************************/
   1074 /* MII bus status change.                                                   */
   1075 /*                                                                          */
   1076 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1077 /* MAC interface registers.                                                 */
   1078 /*                                                                          */
   1079 /* Returns:                                                                 */
   1080 /*   Nothing.                                                               */
   1081 /****************************************************************************/
   1082 void
   1083 bnx_miibus_statchg(device_t dev)
   1084 {
   1085 	struct bnx_softc	*sc = device_private(dev);
   1086 	struct mii_data		*mii = &sc->bnx_mii;
   1087 	int			val;
   1088 
   1089 	val = REG_RD(sc, BNX_EMAC_MODE);
   1090 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1091 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1092 	    BNX_EMAC_MODE_25G);
   1093 
   1094 	/* Set MII or GMII interface based on the speed
   1095 	 * negotiated by the PHY.
   1096 	 */
   1097 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1098 	case IFM_10_T:
   1099 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1100 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1101 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1102 			break;
   1103 		}
   1104 		/* FALLTHROUGH */
   1105 	case IFM_100_TX:
   1106 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1107 		val |= BNX_EMAC_MODE_PORT_MII;
   1108 		break;
   1109 	case IFM_2500_SX:
   1110 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1111 		val |= BNX_EMAC_MODE_25G;
   1112 		/* FALLTHROUGH */
   1113 	case IFM_1000_T:
   1114 	case IFM_1000_SX:
   1115 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1116 		val |= BNX_EMAC_MODE_PORT_GMII;
   1117 		break;
   1118 	default:
   1119 		val |= BNX_EMAC_MODE_PORT_GMII;
   1120 		break;
   1121 	}
   1122 
   1123 	/* Set half or full duplex based on the duplicity
   1124 	 * negotiated by the PHY.
   1125 	 */
   1126 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1127 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1128 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1129 	} else {
   1130 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1131 	}
   1132 
   1133 	REG_WR(sc, BNX_EMAC_MODE, val);
   1134 }
   1135 
   1136 /****************************************************************************/
   1137 /* Acquire NVRAM lock.                                                      */
   1138 /*                                                                          */
   1139 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1140 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1141 /* for use by the driver.                                                   */
   1142 /*                                                                          */
   1143 /* Returns:                                                                 */
   1144 /*   0 on success, positive value on failure.                               */
   1145 /****************************************************************************/
   1146 int
   1147 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1148 {
   1149 	u_int32_t		val;
   1150 	int			j;
   1151 
   1152 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1153 
   1154 	/* Request access to the flash interface. */
   1155 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1156 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1157 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1158 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1159 			break;
   1160 
   1161 		DELAY(5);
   1162 	}
   1163 
   1164 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1165 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1166 		return (EBUSY);
   1167 	}
   1168 
   1169 	return (0);
   1170 }
   1171 
   1172 /****************************************************************************/
   1173 /* Release NVRAM lock.                                                      */
   1174 /*                                                                          */
   1175 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1176 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1177 /* for use by the driver.                                                   */
   1178 /*                                                                          */
   1179 /* Returns:                                                                 */
   1180 /*   0 on success, positive value on failure.                               */
   1181 /****************************************************************************/
   1182 int
   1183 bnx_release_nvram_lock(struct bnx_softc *sc)
   1184 {
   1185 	int			j;
   1186 	u_int32_t		val;
   1187 
   1188 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1189 
   1190 	/* Relinquish nvram interface. */
   1191 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1192 
   1193 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1194 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1195 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1196 			break;
   1197 
   1198 		DELAY(5);
   1199 	}
   1200 
   1201 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1202 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1203 		return (EBUSY);
   1204 	}
   1205 
   1206 	return (0);
   1207 }
   1208 
   1209 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1210 /****************************************************************************/
   1211 /* Enable NVRAM write access.                                               */
   1212 /*                                                                          */
   1213 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1214 /*                                                                          */
   1215 /* Returns:                                                                 */
   1216 /*   0 on success, positive value on failure.                               */
   1217 /****************************************************************************/
   1218 int
   1219 bnx_enable_nvram_write(struct bnx_softc *sc)
   1220 {
   1221 	u_int32_t		val;
   1222 
   1223 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1224 
   1225 	val = REG_RD(sc, BNX_MISC_CFG);
   1226 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1227 
   1228 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1229 		int j;
   1230 
   1231 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1232 		REG_WR(sc, BNX_NVM_COMMAND,
   1233 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1234 
   1235 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1236 			DELAY(5);
   1237 
   1238 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1239 			if (val & BNX_NVM_COMMAND_DONE)
   1240 				break;
   1241 		}
   1242 
   1243 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1244 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1245 			return (EBUSY);
   1246 		}
   1247 	}
   1248 
   1249 	return (0);
   1250 }
   1251 
   1252 /****************************************************************************/
   1253 /* Disable NVRAM write access.                                              */
   1254 /*                                                                          */
   1255 /* When the caller is finished writing to NVRAM write access must be        */
   1256 /* disabled.                                                                */
   1257 /*                                                                          */
   1258 /* Returns:                                                                 */
   1259 /*   Nothing.                                                               */
   1260 /****************************************************************************/
   1261 void
   1262 bnx_disable_nvram_write(struct bnx_softc *sc)
   1263 {
   1264 	u_int32_t		val;
   1265 
   1266 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1267 
   1268 	val = REG_RD(sc, BNX_MISC_CFG);
   1269 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1270 }
   1271 #endif
   1272 
   1273 /****************************************************************************/
   1274 /* Enable NVRAM access.                                                     */
   1275 /*                                                                          */
   1276 /* Before accessing NVRAM for read or write operations the caller must      */
   1277 /* enabled NVRAM access.                                                    */
   1278 /*                                                                          */
   1279 /* Returns:                                                                 */
   1280 /*   Nothing.                                                               */
   1281 /****************************************************************************/
   1282 void
   1283 bnx_enable_nvram_access(struct bnx_softc *sc)
   1284 {
   1285 	u_int32_t		val;
   1286 
   1287 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1288 
   1289 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1290 	/* Enable both bits, even on read. */
   1291 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1292 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1293 }
   1294 
   1295 /****************************************************************************/
   1296 /* Disable NVRAM access.                                                    */
   1297 /*                                                                          */
   1298 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1299 /*                                                                          */
   1300 /* Returns:                                                                 */
   1301 /*   Nothing.                                                               */
   1302 /****************************************************************************/
   1303 void
   1304 bnx_disable_nvram_access(struct bnx_softc *sc)
   1305 {
   1306 	u_int32_t		val;
   1307 
   1308 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1309 
   1310 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1311 
   1312 	/* Disable both bits, even after read. */
   1313 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1314 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1315 }
   1316 
   1317 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1318 /****************************************************************************/
   1319 /* Erase NVRAM page before writing.                                         */
   1320 /*                                                                          */
   1321 /* Non-buffered flash parts require that a page be erased before it is      */
   1322 /* written.                                                                 */
   1323 /*                                                                          */
   1324 /* Returns:                                                                 */
   1325 /*   0 on success, positive value on failure.                               */
   1326 /****************************************************************************/
   1327 int
   1328 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
   1329 {
   1330 	u_int32_t		cmd;
   1331 	int			j;
   1332 
   1333 	/* Buffered flash doesn't require an erase. */
   1334 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1335 		return (0);
   1336 
   1337 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1338 
   1339 	/* Build an erase command. */
   1340 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1341 	    BNX_NVM_COMMAND_DOIT;
   1342 
   1343 	/*
   1344 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
   1345 	 * and issue the erase command.
   1346 	 */
   1347 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1348 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1349 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1350 
   1351 	/* Wait for completion. */
   1352 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1353 		u_int32_t val;
   1354 
   1355 		DELAY(5);
   1356 
   1357 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1358 		if (val & BNX_NVM_COMMAND_DONE)
   1359 			break;
   1360 	}
   1361 
   1362 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1363 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1364 		return (EBUSY);
   1365 	}
   1366 
   1367 	return (0);
   1368 }
   1369 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1370 
   1371 /****************************************************************************/
   1372 /* Read a dword (32 bits) from NVRAM.                                       */
   1373 /*                                                                          */
   1374 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1375 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1376 /*                                                                          */
   1377 /* Returns:                                                                 */
   1378 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1379 /****************************************************************************/
   1380 int
   1381 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
   1382     u_int8_t *ret_val, u_int32_t cmd_flags)
   1383 {
   1384 	u_int32_t		cmd;
   1385 	int			i, rc = 0;
   1386 
   1387 	/* Build the command word. */
   1388 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1389 
   1390 	/* Calculate the offset for buffered flash if translation is used. */
   1391 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1392 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1393 		    sc->bnx_flash_info->page_bits) +
   1394 		    (offset % sc->bnx_flash_info->page_size);
   1395 	}
   1396 
   1397 	/*
   1398 	 * Clear the DONE bit separately, set the address to read,
   1399 	 * and issue the read.
   1400 	 */
   1401 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1402 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1403 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1404 
   1405 	/* Wait for completion. */
   1406 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1407 		u_int32_t val;
   1408 
   1409 		DELAY(5);
   1410 
   1411 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1412 		if (val & BNX_NVM_COMMAND_DONE) {
   1413 			val = REG_RD(sc, BNX_NVM_READ);
   1414 
   1415 			val = bnx_be32toh(val);
   1416 			memcpy(ret_val, &val, 4);
   1417 			break;
   1418 		}
   1419 	}
   1420 
   1421 	/* Check for errors. */
   1422 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1423 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1424 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1425 		rc = EBUSY;
   1426 	}
   1427 
   1428 	return(rc);
   1429 }
   1430 
   1431 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1432 /****************************************************************************/
   1433 /* Write a dword (32 bits) to NVRAM.                                        */
   1434 /*                                                                          */
   1435 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1436 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1437 /* enabled NVRAM write access.                                              */
   1438 /*                                                                          */
   1439 /* Returns:                                                                 */
   1440 /*   0 on success, positive value on failure.                               */
   1441 /****************************************************************************/
   1442 int
   1443 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
   1444     u_int32_t cmd_flags)
   1445 {
   1446 	u_int32_t		cmd, val32;
   1447 	int			j;
   1448 
   1449 	/* Build the command word. */
   1450 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1451 
   1452 	/* Calculate the offset for buffered flash if translation is used. */
   1453 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1454 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1455 		    sc->bnx_flash_info->page_bits) +
   1456 		    (offset % sc->bnx_flash_info->page_size);
   1457 	}
   1458 
   1459 	/*
   1460 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1461 	 * set the NVRAM address to write, and issue the write command
   1462 	 */
   1463 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1464 	memcpy(&val32, val, 4);
   1465 	val32 = htobe32(val32);
   1466 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1467 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1468 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1469 
   1470 	/* Wait for completion. */
   1471 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1472 		DELAY(5);
   1473 
   1474 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1475 			break;
   1476 	}
   1477 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1478 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1479 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1480 		return (EBUSY);
   1481 	}
   1482 
   1483 	return (0);
   1484 }
   1485 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1486 
   1487 /****************************************************************************/
   1488 /* Initialize NVRAM access.                                                 */
   1489 /*                                                                          */
   1490 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1491 /* access that device.                                                      */
   1492 /*                                                                          */
   1493 /* Returns:                                                                 */
   1494 /*   0 on success, positive value on failure.                               */
   1495 /****************************************************************************/
   1496 int
   1497 bnx_init_nvram(struct bnx_softc *sc)
   1498 {
   1499 	u_int32_t		val;
   1500 	int			j, entry_count, rc = 0;
   1501 	struct flash_spec	*flash;
   1502 
   1503 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1504 
   1505 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1506 		sc->bnx_flash_info = &flash_5709;
   1507 		goto bnx_init_nvram_get_flash_size;
   1508 	}
   1509 
   1510 	/* Determine the selected interface. */
   1511 	val = REG_RD(sc, BNX_NVM_CFG1);
   1512 
   1513 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1514 
   1515 	/*
   1516 	 * Flash reconfiguration is required to support additional
   1517 	 * NVRAM devices not directly supported in hardware.
   1518 	 * Check if the flash interface was reconfigured
   1519 	 * by the bootcode.
   1520 	 */
   1521 
   1522 	if (val & 0x40000000) {
   1523 		/* Flash interface reconfigured by bootcode. */
   1524 
   1525 		DBPRINT(sc,BNX_INFO_LOAD,
   1526 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1527 
   1528 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1529 		     j++, flash++) {
   1530 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1531 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1532 				sc->bnx_flash_info = flash;
   1533 				break;
   1534 			}
   1535 		}
   1536 	} else {
   1537 		/* Flash interface not yet reconfigured. */
   1538 		u_int32_t mask;
   1539 
   1540 		DBPRINT(sc,BNX_INFO_LOAD,
   1541 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1542 
   1543 		if (val & (1 << 23))
   1544 			mask = FLASH_BACKUP_STRAP_MASK;
   1545 		else
   1546 			mask = FLASH_STRAP_MASK;
   1547 
   1548 		/* Look for the matching NVRAM device configuration data. */
   1549 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1550 		    j++, flash++) {
   1551 			/* Check if the dev matches any of the known devices. */
   1552 			if ((val & mask) == (flash->strapping & mask)) {
   1553 				/* Found a device match. */
   1554 				sc->bnx_flash_info = flash;
   1555 
   1556 				/* Request access to the flash interface. */
   1557 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1558 					return (rc);
   1559 
   1560 				/* Reconfigure the flash interface. */
   1561 				bnx_enable_nvram_access(sc);
   1562 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1563 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1564 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1565 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1566 				bnx_disable_nvram_access(sc);
   1567 				bnx_release_nvram_lock(sc);
   1568 
   1569 				break;
   1570 			}
   1571 		}
   1572 	}
   1573 
   1574 	/* Check if a matching device was found. */
   1575 	if (j == entry_count) {
   1576 		sc->bnx_flash_info = NULL;
   1577 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1578 			__FILE__, __LINE__);
   1579 		rc = ENODEV;
   1580 	}
   1581 
   1582 bnx_init_nvram_get_flash_size:
   1583 	/* Write the flash config data to the shared memory interface. */
   1584 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1585 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1586 	if (val)
   1587 		sc->bnx_flash_size = val;
   1588 	else
   1589 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1590 
   1591 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1592 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1593 
   1594 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1595 
   1596 	return (rc);
   1597 }
   1598 
   1599 /****************************************************************************/
   1600 /* Read an arbitrary range of data from NVRAM.                              */
   1601 /*                                                                          */
   1602 /* Prepares the NVRAM interface for access and reads the requested data     */
   1603 /* into the supplied buffer.                                                */
   1604 /*                                                                          */
   1605 /* Returns:                                                                 */
   1606 /*   0 on success and the data read, positive value on failure.             */
   1607 /****************************************************************************/
   1608 int
   1609 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
   1610     int buf_size)
   1611 {
   1612 	int			rc = 0;
   1613 	u_int32_t		cmd_flags, offset32, len32, extra;
   1614 
   1615 	if (buf_size == 0)
   1616 		return (0);
   1617 
   1618 	/* Request access to the flash interface. */
   1619 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1620 		return (rc);
   1621 
   1622 	/* Enable access to flash interface */
   1623 	bnx_enable_nvram_access(sc);
   1624 
   1625 	len32 = buf_size;
   1626 	offset32 = offset;
   1627 	extra = 0;
   1628 
   1629 	cmd_flags = 0;
   1630 
   1631 	if (offset32 & 3) {
   1632 		u_int8_t buf[4];
   1633 		u_int32_t pre_len;
   1634 
   1635 		offset32 &= ~3;
   1636 		pre_len = 4 - (offset & 3);
   1637 
   1638 		if (pre_len >= len32) {
   1639 			pre_len = len32;
   1640 			cmd_flags =
   1641 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1642 		} else
   1643 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1644 
   1645 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1646 
   1647 		if (rc)
   1648 			return (rc);
   1649 
   1650 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1651 
   1652 		offset32 += 4;
   1653 		ret_buf += pre_len;
   1654 		len32 -= pre_len;
   1655 	}
   1656 
   1657 	if (len32 & 3) {
   1658 		extra = 4 - (len32 & 3);
   1659 		len32 = (len32 + 4) & ~3;
   1660 	}
   1661 
   1662 	if (len32 == 4) {
   1663 		u_int8_t buf[4];
   1664 
   1665 		if (cmd_flags)
   1666 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1667 		else
   1668 			cmd_flags =
   1669 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1670 
   1671 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1672 
   1673 		memcpy(ret_buf, buf, 4 - extra);
   1674 	} else if (len32 > 0) {
   1675 		u_int8_t buf[4];
   1676 
   1677 		/* Read the first word. */
   1678 		if (cmd_flags)
   1679 			cmd_flags = 0;
   1680 		else
   1681 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1682 
   1683 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1684 
   1685 		/* Advance to the next dword. */
   1686 		offset32 += 4;
   1687 		ret_buf += 4;
   1688 		len32 -= 4;
   1689 
   1690 		while (len32 > 4 && rc == 0) {
   1691 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1692 
   1693 			/* Advance to the next dword. */
   1694 			offset32 += 4;
   1695 			ret_buf += 4;
   1696 			len32 -= 4;
   1697 		}
   1698 
   1699 		if (rc)
   1700 			return (rc);
   1701 
   1702 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1703 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1704 
   1705 		memcpy(ret_buf, buf, 4 - extra);
   1706 	}
   1707 
   1708 	/* Disable access to flash interface and release the lock. */
   1709 	bnx_disable_nvram_access(sc);
   1710 	bnx_release_nvram_lock(sc);
   1711 
   1712 	return (rc);
   1713 }
   1714 
   1715 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1716 /****************************************************************************/
   1717 /* Write an arbitrary range of data from NVRAM.                             */
   1718 /*                                                                          */
   1719 /* Prepares the NVRAM interface for write access and writes the requested   */
   1720 /* data from the supplied buffer.  The caller is responsible for            */
   1721 /* calculating any appropriate CRCs.                                        */
   1722 /*                                                                          */
   1723 /* Returns:                                                                 */
   1724 /*   0 on success, positive value on failure.                               */
   1725 /****************************************************************************/
   1726 int
   1727 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
   1728     int buf_size)
   1729 {
   1730 	u_int32_t		written, offset32, len32;
   1731 	u_int8_t		*buf, start[4], end[4];
   1732 	int			rc = 0;
   1733 	int			align_start, align_end;
   1734 
   1735 	buf = data_buf;
   1736 	offset32 = offset;
   1737 	len32 = buf_size;
   1738 	align_start = align_end = 0;
   1739 
   1740 	if ((align_start = (offset32 & 3))) {
   1741 		offset32 &= ~3;
   1742 		len32 += align_start;
   1743 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1744 			return (rc);
   1745 	}
   1746 
   1747 	if (len32 & 3) {
   1748 	       	if ((len32 > 4) || !align_start) {
   1749 			align_end = 4 - (len32 & 3);
   1750 			len32 += align_end;
   1751 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1752 			    end, 4))) {
   1753 				return (rc);
   1754 			}
   1755 		}
   1756 	}
   1757 
   1758 	if (align_start || align_end) {
   1759 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1760 		if (buf == 0)
   1761 			return (ENOMEM);
   1762 
   1763 		if (align_start)
   1764 			memcpy(buf, start, 4);
   1765 
   1766 		if (align_end)
   1767 			memcpy(buf + len32 - 4, end, 4);
   1768 
   1769 		memcpy(buf + align_start, data_buf, buf_size);
   1770 	}
   1771 
   1772 	written = 0;
   1773 	while ((written < len32) && (rc == 0)) {
   1774 		u_int32_t page_start, page_end, data_start, data_end;
   1775 		u_int32_t addr, cmd_flags;
   1776 		int i;
   1777 		u_int8_t flash_buffer[264];
   1778 
   1779 	    /* Find the page_start addr */
   1780 		page_start = offset32 + written;
   1781 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1782 		/* Find the page_end addr */
   1783 		page_end = page_start + sc->bnx_flash_info->page_size;
   1784 		/* Find the data_start addr */
   1785 		data_start = (written == 0) ? offset32 : page_start;
   1786 		/* Find the data_end addr */
   1787 		data_end = (page_end > offset32 + len32) ?
   1788 		    (offset32 + len32) : page_end;
   1789 
   1790 		/* Request access to the flash interface. */
   1791 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1792 			goto nvram_write_end;
   1793 
   1794 		/* Enable access to flash interface */
   1795 		bnx_enable_nvram_access(sc);
   1796 
   1797 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1798 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1799 			int j;
   1800 
   1801 			/* Read the whole page into the buffer
   1802 			 * (non-buffer flash only) */
   1803 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1804 				if (j == (sc->bnx_flash_info->page_size - 4))
   1805 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1806 
   1807 				rc = bnx_nvram_read_dword(sc,
   1808 					page_start + j,
   1809 					&flash_buffer[j],
   1810 					cmd_flags);
   1811 
   1812 				if (rc)
   1813 					goto nvram_write_end;
   1814 
   1815 				cmd_flags = 0;
   1816 			}
   1817 		}
   1818 
   1819 		/* Enable writes to flash interface (unlock write-protect) */
   1820 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1821 			goto nvram_write_end;
   1822 
   1823 		/* Erase the page */
   1824 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1825 			goto nvram_write_end;
   1826 
   1827 		/* Re-enable the write again for the actual write */
   1828 		bnx_enable_nvram_write(sc);
   1829 
   1830 		/* Loop to write back the buffer data from page_start to
   1831 		 * data_start */
   1832 		i = 0;
   1833 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1834 			for (addr = page_start; addr < data_start;
   1835 				addr += 4, i += 4) {
   1836 
   1837 				rc = bnx_nvram_write_dword(sc, addr,
   1838 				    &flash_buffer[i], cmd_flags);
   1839 
   1840 				if (rc != 0)
   1841 					goto nvram_write_end;
   1842 
   1843 				cmd_flags = 0;
   1844 			}
   1845 		}
   1846 
   1847 		/* Loop to write the new data from data_start to data_end */
   1848 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1849 			if ((addr == page_end - 4) ||
   1850 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   1851 			    && (addr == data_end - 4))) {
   1852 
   1853 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1854 			}
   1855 
   1856 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1857 
   1858 			if (rc != 0)
   1859 				goto nvram_write_end;
   1860 
   1861 			cmd_flags = 0;
   1862 			buf += 4;
   1863 		}
   1864 
   1865 		/* Loop to write back the buffer data from data_end
   1866 		 * to page_end */
   1867 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1868 			for (addr = data_end; addr < page_end;
   1869 			    addr += 4, i += 4) {
   1870 
   1871 				if (addr == page_end-4)
   1872 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1873 
   1874 				rc = bnx_nvram_write_dword(sc, addr,
   1875 				    &flash_buffer[i], cmd_flags);
   1876 
   1877 				if (rc != 0)
   1878 					goto nvram_write_end;
   1879 
   1880 				cmd_flags = 0;
   1881 			}
   1882 		}
   1883 
   1884 		/* Disable writes to flash interface (lock write-protect) */
   1885 		bnx_disable_nvram_write(sc);
   1886 
   1887 		/* Disable access to flash interface */
   1888 		bnx_disable_nvram_access(sc);
   1889 		bnx_release_nvram_lock(sc);
   1890 
   1891 		/* Increment written */
   1892 		written += data_end - data_start;
   1893 	}
   1894 
   1895 nvram_write_end:
   1896 	if (align_start || align_end)
   1897 		free(buf, M_DEVBUF);
   1898 
   1899 	return (rc);
   1900 }
   1901 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1902 
   1903 /****************************************************************************/
   1904 /* Verifies that NVRAM is accessible and contains valid data.               */
   1905 /*                                                                          */
   1906 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   1907 /* correct.                                                                 */
   1908 /*                                                                          */
   1909 /* Returns:                                                                 */
   1910 /*   0 on success, positive value on failure.                               */
   1911 /****************************************************************************/
   1912 int
   1913 bnx_nvram_test(struct bnx_softc *sc)
   1914 {
   1915 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
   1916 	u_int8_t		*data = (u_int8_t *) buf;
   1917 	int			rc = 0;
   1918 	u_int32_t		magic, csum;
   1919 
   1920 	/*
   1921 	 * Check that the device NVRAM is valid by reading
   1922 	 * the magic value at offset 0.
   1923 	 */
   1924 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   1925 		goto bnx_nvram_test_done;
   1926 
   1927 	magic = bnx_be32toh(buf[0]);
   1928 	if (magic != BNX_NVRAM_MAGIC) {
   1929 		rc = ENODEV;
   1930 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   1931 		    "Expected: 0x%08X, Found: 0x%08X\n",
   1932 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   1933 		goto bnx_nvram_test_done;
   1934 	}
   1935 
   1936 	/*
   1937 	 * Verify that the device NVRAM includes valid
   1938 	 * configuration data.
   1939 	 */
   1940 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   1941 		goto bnx_nvram_test_done;
   1942 
   1943 	csum = ether_crc32_le(data, 0x100);
   1944 	if (csum != BNX_CRC32_RESIDUAL) {
   1945 		rc = ENODEV;
   1946 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   1947 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   1948 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1949 		goto bnx_nvram_test_done;
   1950 	}
   1951 
   1952 	csum = ether_crc32_le(data + 0x100, 0x100);
   1953 	if (csum != BNX_CRC32_RESIDUAL) {
   1954 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   1955 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   1956 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1957 		rc = ENODEV;
   1958 	}
   1959 
   1960 bnx_nvram_test_done:
   1961 	return (rc);
   1962 }
   1963 
   1964 /****************************************************************************/
   1965 /* Identifies the current media type of the controller and sets the PHY     */
   1966 /* address.                                                                 */
   1967 /*                                                                          */
   1968 /* Returns:                                                                 */
   1969 /*   Nothing.                                                               */
   1970 /****************************************************************************/
   1971 void
   1972 bnx_get_media(struct bnx_softc *sc)
   1973 {
   1974 	sc->bnx_phy_addr = 1;
   1975 
   1976 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1977 		u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   1978 		u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   1979 		u_int32_t strap;
   1980 
   1981 		/*
   1982 		 * The BCM5709S is software configurable
   1983 		 * for Copper or SerDes operation.
   1984 		 */
   1985 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   1986 			DBPRINT(sc, BNX_INFO_LOAD,
   1987 			    "5709 bonded for copper.\n");
   1988 			goto bnx_get_media_exit;
   1989 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   1990 			DBPRINT(sc, BNX_INFO_LOAD,
   1991 			    "5709 bonded for dual media.\n");
   1992 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   1993 			goto bnx_get_media_exit;
   1994 		}
   1995 
   1996 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   1997 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   1998 		else {
   1999 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2000 			    >> 8;
   2001 		}
   2002 
   2003 		if (sc->bnx_pa.pa_function == 0) {
   2004 			switch (strap) {
   2005 			case 0x4:
   2006 			case 0x5:
   2007 			case 0x6:
   2008 				DBPRINT(sc, BNX_INFO_LOAD,
   2009 					"BCM5709 s/w configured for SerDes.\n");
   2010 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2011 				break;
   2012 			default:
   2013 				DBPRINT(sc, BNX_INFO_LOAD,
   2014 					"BCM5709 s/w configured for Copper.\n");
   2015 			}
   2016 		} else {
   2017 			switch (strap) {
   2018 			case 0x1:
   2019 			case 0x2:
   2020 			case 0x4:
   2021 				DBPRINT(sc, BNX_INFO_LOAD,
   2022 					"BCM5709 s/w configured for SerDes.\n");
   2023 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2024 				break;
   2025 			default:
   2026 				DBPRINT(sc, BNX_INFO_LOAD,
   2027 					"BCM5709 s/w configured for Copper.\n");
   2028 			}
   2029 		}
   2030 
   2031 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2032 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2033 
   2034 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2035 		u_int32_t val;
   2036 
   2037 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2038 
   2039 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2040 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2041 
   2042 		/*
   2043 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2044 		 * separate PHY for SerDes.
   2045 		 */
   2046 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2047 			sc->bnx_phy_addr = 2;
   2048 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2049 				 BNX_SHARED_HW_CFG_CONFIG);
   2050 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2051 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2052 				DBPRINT(sc, BNX_INFO_LOAD,
   2053 				    "Found 2.5Gb capable adapter\n");
   2054 			}
   2055 		}
   2056 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2057 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2058 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2059 
   2060 bnx_get_media_exit:
   2061 	DBPRINT(sc, (BNX_INFO_LOAD),
   2062 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2063 }
   2064 
   2065 /****************************************************************************/
   2066 /* Performs PHY initialization required before MII drivers access the       */
   2067 /* device.                                                                  */
   2068 /*                                                                          */
   2069 /* Returns:                                                                 */
   2070 /*   Nothing.                                                               */
   2071 /****************************************************************************/
   2072 void
   2073 bnx_init_media(struct bnx_softc *sc)
   2074 {
   2075 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2076 		/*
   2077 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2078 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2079 		 * the PHY to the mii(4) layer. PHY specific configuration
   2080 		 * is done by the mii(4) layer.
   2081 		 */
   2082 
   2083 		/* Select auto-negotiation MMD of the PHY. */
   2084 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2085 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2086 
   2087 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2088 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2089 
   2090 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2091 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2092 	}
   2093 }
   2094 
   2095 /****************************************************************************/
   2096 /* Free any DMA memory owned by the driver.                                 */
   2097 /*                                                                          */
   2098 /* Scans through each data structre that requires DMA memory and frees      */
   2099 /* the memory if allocated.                                                 */
   2100 /*                                                                          */
   2101 /* Returns:                                                                 */
   2102 /*   Nothing.                                                               */
   2103 /****************************************************************************/
   2104 void
   2105 bnx_dma_free(struct bnx_softc *sc)
   2106 {
   2107 	int			i;
   2108 
   2109 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2110 
   2111 	/* Destroy the status block. */
   2112 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2113 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2114 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2115 		    BNX_STATUS_BLK_SZ);
   2116 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2117 		    sc->status_rseg);
   2118 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2119 		sc->status_block = NULL;
   2120 		sc->status_map = NULL;
   2121 	}
   2122 
   2123 	/* Destroy the statistics block. */
   2124 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2125 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2126 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2127 		    BNX_STATS_BLK_SZ);
   2128 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2129 		    sc->stats_rseg);
   2130 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2131 		sc->stats_block = NULL;
   2132 		sc->stats_map = NULL;
   2133 	}
   2134 
   2135 	/* Free, unmap and destroy all context memory pages. */
   2136 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2137 		for (i = 0; i < sc->ctx_pages; i++) {
   2138 			if (sc->ctx_block[i] != NULL) {
   2139 				bus_dmamap_unload(sc->bnx_dmatag,
   2140 				    sc->ctx_map[i]);
   2141 				bus_dmamem_unmap(sc->bnx_dmatag,
   2142 				    (void *)sc->ctx_block[i],
   2143 				    BCM_PAGE_SIZE);
   2144 				bus_dmamem_free(sc->bnx_dmatag,
   2145 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2146 				bus_dmamap_destroy(sc->bnx_dmatag,
   2147 				    sc->ctx_map[i]);
   2148 				sc->ctx_block[i] = NULL;
   2149 			}
   2150 		}
   2151 	}
   2152 
   2153 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2154 	for (i = 0; i < TX_PAGES; i++ ) {
   2155 		if (sc->tx_bd_chain[i] != NULL &&
   2156 		    sc->tx_bd_chain_map[i] != NULL) {
   2157 			bus_dmamap_unload(sc->bnx_dmatag,
   2158 			    sc->tx_bd_chain_map[i]);
   2159 			bus_dmamem_unmap(sc->bnx_dmatag,
   2160 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2161 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2162 			    sc->tx_bd_chain_rseg[i]);
   2163 			bus_dmamap_destroy(sc->bnx_dmatag,
   2164 			    sc->tx_bd_chain_map[i]);
   2165 			sc->tx_bd_chain[i] = NULL;
   2166 			sc->tx_bd_chain_map[i] = NULL;
   2167 		}
   2168 	}
   2169 
   2170 	/* Destroy the TX dmamaps. */
   2171 	/* This isn't necessary since we dont allocate them up front */
   2172 
   2173 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2174 	for (i = 0; i < RX_PAGES; i++ ) {
   2175 		if (sc->rx_bd_chain[i] != NULL &&
   2176 		    sc->rx_bd_chain_map[i] != NULL) {
   2177 			bus_dmamap_unload(sc->bnx_dmatag,
   2178 			    sc->rx_bd_chain_map[i]);
   2179 			bus_dmamem_unmap(sc->bnx_dmatag,
   2180 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2181 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2182 			    sc->rx_bd_chain_rseg[i]);
   2183 
   2184 			bus_dmamap_destroy(sc->bnx_dmatag,
   2185 			    sc->rx_bd_chain_map[i]);
   2186 			sc->rx_bd_chain[i] = NULL;
   2187 			sc->rx_bd_chain_map[i] = NULL;
   2188 		}
   2189 	}
   2190 
   2191 	/* Unload and destroy the RX mbuf maps. */
   2192 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2193 		if (sc->rx_mbuf_map[i] != NULL) {
   2194 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2195 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2196 		}
   2197 	}
   2198 
   2199 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2200 }
   2201 
   2202 /****************************************************************************/
   2203 /* Allocate any DMA memory needed by the driver.                            */
   2204 /*                                                                          */
   2205 /* Allocates DMA memory needed for the various global structures needed by  */
   2206 /* hardware.                                                                */
   2207 /*                                                                          */
   2208 /* Returns:                                                                 */
   2209 /*   0 for success, positive value for failure.                             */
   2210 /****************************************************************************/
   2211 int
   2212 bnx_dma_alloc(struct bnx_softc *sc)
   2213 {
   2214 	int			i, rc = 0;
   2215 
   2216 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2217 
   2218 	/*
   2219 	 * Allocate DMA memory for the status block, map the memory into DMA
   2220 	 * space, and fetch the physical address of the block.
   2221 	 */
   2222 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2223 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2224 		aprint_error_dev(sc->bnx_dev,
   2225 		    "Could not create status block DMA map!\n");
   2226 		rc = ENOMEM;
   2227 		goto bnx_dma_alloc_exit;
   2228 	}
   2229 
   2230 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2231 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2232 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2233 		aprint_error_dev(sc->bnx_dev,
   2234 		    "Could not allocate status block DMA memory!\n");
   2235 		rc = ENOMEM;
   2236 		goto bnx_dma_alloc_exit;
   2237 	}
   2238 
   2239 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2240 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2241 		aprint_error_dev(sc->bnx_dev,
   2242 		    "Could not map status block DMA memory!\n");
   2243 		rc = ENOMEM;
   2244 		goto bnx_dma_alloc_exit;
   2245 	}
   2246 
   2247 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2248 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2249 		aprint_error_dev(sc->bnx_dev,
   2250 		    "Could not load status block DMA memory!\n");
   2251 		rc = ENOMEM;
   2252 		goto bnx_dma_alloc_exit;
   2253 	}
   2254 
   2255 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2256 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2257 
   2258 	/* DRC - Fix for 64 bit addresses. */
   2259 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2260 		(u_int32_t) sc->status_block_paddr);
   2261 
   2262 	/* BCM5709 uses host memory as cache for context memory. */
   2263 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2264 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2265 		if (sc->ctx_pages == 0)
   2266 			sc->ctx_pages = 1;
   2267 		if (sc->ctx_pages > 4) /* XXX */
   2268 			sc->ctx_pages = 4;
   2269 
   2270 		DBRUNIF((sc->ctx_pages > 512),
   2271 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2272 				__FILE__, __LINE__, sc->ctx_pages));
   2273 
   2274 
   2275 		for (i = 0; i < sc->ctx_pages; i++) {
   2276 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2277 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2278 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2279 			    &sc->ctx_map[i]) != 0) {
   2280 				rc = ENOMEM;
   2281 				goto bnx_dma_alloc_exit;
   2282 			}
   2283 
   2284 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2285 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2286 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2287 				rc = ENOMEM;
   2288 				goto bnx_dma_alloc_exit;
   2289 			}
   2290 
   2291 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2292 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2293 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2294 				rc = ENOMEM;
   2295 				goto bnx_dma_alloc_exit;
   2296 			}
   2297 
   2298 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2299 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2300 			    BUS_DMA_NOWAIT) != 0) {
   2301 				rc = ENOMEM;
   2302 				goto bnx_dma_alloc_exit;
   2303 			}
   2304 
   2305 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2306 		}
   2307 	}
   2308 
   2309 	/*
   2310 	 * Allocate DMA memory for the statistics block, map the memory into
   2311 	 * DMA space, and fetch the physical address of the block.
   2312 	 */
   2313 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2314 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2315 		aprint_error_dev(sc->bnx_dev,
   2316 		    "Could not create stats block DMA map!\n");
   2317 		rc = ENOMEM;
   2318 		goto bnx_dma_alloc_exit;
   2319 	}
   2320 
   2321 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2322 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2323 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2324 		aprint_error_dev(sc->bnx_dev,
   2325 		    "Could not allocate stats block DMA memory!\n");
   2326 		rc = ENOMEM;
   2327 		goto bnx_dma_alloc_exit;
   2328 	}
   2329 
   2330 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2331 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2332 		aprint_error_dev(sc->bnx_dev,
   2333 		    "Could not map stats block DMA memory!\n");
   2334 		rc = ENOMEM;
   2335 		goto bnx_dma_alloc_exit;
   2336 	}
   2337 
   2338 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2339 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2340 		aprint_error_dev(sc->bnx_dev,
   2341 		    "Could not load status block DMA memory!\n");
   2342 		rc = ENOMEM;
   2343 		goto bnx_dma_alloc_exit;
   2344 	}
   2345 
   2346 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2347 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2348 
   2349 	/* DRC - Fix for 64 bit address. */
   2350 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2351 	    (u_int32_t) sc->stats_block_paddr);
   2352 
   2353 	/*
   2354 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2355 	 * and fetch the physical address of the block.
   2356 	 */
   2357 	for (i = 0; i < TX_PAGES; i++) {
   2358 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2359 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2360 		    &sc->tx_bd_chain_map[i])) {
   2361 			aprint_error_dev(sc->bnx_dev,
   2362 			    "Could not create Tx desc %d DMA map!\n", i);
   2363 			rc = ENOMEM;
   2364 			goto bnx_dma_alloc_exit;
   2365 		}
   2366 
   2367 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2368 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2369 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2370 			aprint_error_dev(sc->bnx_dev,
   2371 			    "Could not allocate TX desc %d DMA memory!\n",
   2372 			    i);
   2373 			rc = ENOMEM;
   2374 			goto bnx_dma_alloc_exit;
   2375 		}
   2376 
   2377 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2378 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2379 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2380 			aprint_error_dev(sc->bnx_dev,
   2381 			    "Could not map TX desc %d DMA memory!\n", i);
   2382 			rc = ENOMEM;
   2383 			goto bnx_dma_alloc_exit;
   2384 		}
   2385 
   2386 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2387 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2388 		    BUS_DMA_NOWAIT)) {
   2389 			aprint_error_dev(sc->bnx_dev,
   2390 			    "Could not load TX desc %d DMA memory!\n", i);
   2391 			rc = ENOMEM;
   2392 			goto bnx_dma_alloc_exit;
   2393 		}
   2394 
   2395 		sc->tx_bd_chain_paddr[i] =
   2396 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2397 
   2398 		/* DRC - Fix for 64 bit systems. */
   2399 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2400 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
   2401 	}
   2402 
   2403 	/*
   2404 	 * Create lists to hold TX mbufs.
   2405 	 */
   2406 	TAILQ_INIT(&sc->tx_free_pkts);
   2407 	TAILQ_INIT(&sc->tx_used_pkts);
   2408 	sc->tx_pkt_count = 0;
   2409 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2410 
   2411 	/*
   2412 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2413 	 * and fetch the physical address of the block.
   2414 	 */
   2415 	for (i = 0; i < RX_PAGES; i++) {
   2416 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2417 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2418 		    &sc->rx_bd_chain_map[i])) {
   2419 			aprint_error_dev(sc->bnx_dev,
   2420 			    "Could not create Rx desc %d DMA map!\n", i);
   2421 			rc = ENOMEM;
   2422 			goto bnx_dma_alloc_exit;
   2423 		}
   2424 
   2425 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2426 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2427 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2428 			aprint_error_dev(sc->bnx_dev,
   2429 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2430 			rc = ENOMEM;
   2431 			goto bnx_dma_alloc_exit;
   2432 		}
   2433 
   2434 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2435 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2436 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2437 			aprint_error_dev(sc->bnx_dev,
   2438 			    "Could not map Rx desc %d DMA memory!\n", i);
   2439 			rc = ENOMEM;
   2440 			goto bnx_dma_alloc_exit;
   2441 		}
   2442 
   2443 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2444 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2445 		    BUS_DMA_NOWAIT)) {
   2446 			aprint_error_dev(sc->bnx_dev,
   2447 			    "Could not load Rx desc %d DMA memory!\n", i);
   2448 			rc = ENOMEM;
   2449 			goto bnx_dma_alloc_exit;
   2450 		}
   2451 
   2452 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2453 		sc->rx_bd_chain_paddr[i] =
   2454 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2455 
   2456 		/* DRC - Fix for 64 bit systems. */
   2457 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2458 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
   2459 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2460 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2461 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2462 	}
   2463 
   2464 	/*
   2465 	 * Create DMA maps for the Rx buffer mbufs.
   2466 	 */
   2467 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2468 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2469 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2470 		    &sc->rx_mbuf_map[i])) {
   2471 			aprint_error_dev(sc->bnx_dev,
   2472 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2473 			rc = ENOMEM;
   2474 			goto bnx_dma_alloc_exit;
   2475 		}
   2476 	}
   2477 
   2478  bnx_dma_alloc_exit:
   2479 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2480 
   2481 	return(rc);
   2482 }
   2483 
   2484 /****************************************************************************/
   2485 /* Release all resources used by the driver.                                */
   2486 /*                                                                          */
   2487 /* Releases all resources acquired by the driver including interrupts,      */
   2488 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2489 /*                                                                          */
   2490 /* Returns:                                                                 */
   2491 /*   Nothing.                                                               */
   2492 /****************************************************************************/
   2493 void
   2494 bnx_release_resources(struct bnx_softc *sc)
   2495 {
   2496 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2497 
   2498 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2499 
   2500 	bnx_dma_free(sc);
   2501 
   2502 	if (sc->bnx_intrhand != NULL)
   2503 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2504 
   2505 	if (sc->bnx_size)
   2506 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2507 
   2508 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2509 }
   2510 
   2511 /****************************************************************************/
   2512 /* Firmware synchronization.                                                */
   2513 /*                                                                          */
   2514 /* Before performing certain events such as a chip reset, synchronize with  */
   2515 /* the firmware first.                                                      */
   2516 /*                                                                          */
   2517 /* Returns:                                                                 */
   2518 /*   0 for success, positive value for failure.                             */
   2519 /****************************************************************************/
   2520 int
   2521 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
   2522 {
   2523 	int			i, rc = 0;
   2524 	u_int32_t		val;
   2525 
   2526 	/* Don't waste any time if we've timed out before. */
   2527 	if (sc->bnx_fw_timed_out) {
   2528 		rc = EBUSY;
   2529 		goto bnx_fw_sync_exit;
   2530 	}
   2531 
   2532 	/* Increment the message sequence number. */
   2533 	sc->bnx_fw_wr_seq++;
   2534 	msg_data |= sc->bnx_fw_wr_seq;
   2535 
   2536  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2537 	    msg_data);
   2538 
   2539 	/* Send the message to the bootcode driver mailbox. */
   2540 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2541 
   2542 	/* Wait for the bootcode to acknowledge the message. */
   2543 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2544 		/* Check for a response in the bootcode firmware mailbox. */
   2545 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2546 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2547 			break;
   2548 		DELAY(1000);
   2549 	}
   2550 
   2551 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2552 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2553 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2554 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2555 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2556 
   2557 		msg_data &= ~BNX_DRV_MSG_CODE;
   2558 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2559 
   2560 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2561 
   2562 		sc->bnx_fw_timed_out = 1;
   2563 		rc = EBUSY;
   2564 	}
   2565 
   2566 bnx_fw_sync_exit:
   2567 	return (rc);
   2568 }
   2569 
   2570 /****************************************************************************/
   2571 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2572 /*                                                                          */
   2573 /* Returns:                                                                 */
   2574 /*   Nothing.                                                               */
   2575 /****************************************************************************/
   2576 void
   2577 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
   2578     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
   2579 {
   2580 	int			i;
   2581 	u_int32_t		val;
   2582 
   2583 	/* Set the page size used by RV2P. */
   2584 	if (rv2p_proc == RV2P_PROC2) {
   2585 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2586 		    USABLE_RX_BD_PER_PAGE);
   2587 	}
   2588 
   2589 	for (i = 0; i < rv2p_code_len; i += 8) {
   2590 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2591 		rv2p_code++;
   2592 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2593 		rv2p_code++;
   2594 
   2595 		if (rv2p_proc == RV2P_PROC1) {
   2596 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2597 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2598 		} else {
   2599 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2600 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2601 		}
   2602 	}
   2603 
   2604 	/* Reset the processor, un-stall is done later. */
   2605 	if (rv2p_proc == RV2P_PROC1)
   2606 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2607 	else
   2608 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2609 }
   2610 
   2611 /****************************************************************************/
   2612 /* Load RISC processor firmware.                                            */
   2613 /*                                                                          */
   2614 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2615 /* associated with a particular processor.                                  */
   2616 /*                                                                          */
   2617 /* Returns:                                                                 */
   2618 /*   Nothing.                                                               */
   2619 /****************************************************************************/
   2620 void
   2621 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2622     struct fw_info *fw)
   2623 {
   2624 	u_int32_t		offset;
   2625 	u_int32_t		val;
   2626 
   2627 	/* Halt the CPU. */
   2628 	val = REG_RD_IND(sc, cpu_reg->mode);
   2629 	val |= cpu_reg->mode_value_halt;
   2630 	REG_WR_IND(sc, cpu_reg->mode, val);
   2631 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2632 
   2633 	/* Load the Text area. */
   2634 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2635 	if (fw->text) {
   2636 		int j;
   2637 
   2638 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2639 			REG_WR_IND(sc, offset, fw->text[j]);
   2640 	}
   2641 
   2642 	/* Load the Data area. */
   2643 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2644 	if (fw->data) {
   2645 		int j;
   2646 
   2647 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2648 			REG_WR_IND(sc, offset, fw->data[j]);
   2649 	}
   2650 
   2651 	/* Load the SBSS area. */
   2652 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2653 	if (fw->sbss) {
   2654 		int j;
   2655 
   2656 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2657 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2658 	}
   2659 
   2660 	/* Load the BSS area. */
   2661 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2662 	if (fw->bss) {
   2663 		int j;
   2664 
   2665 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2666 			REG_WR_IND(sc, offset, fw->bss[j]);
   2667 	}
   2668 
   2669 	/* Load the Read-Only area. */
   2670 	offset = cpu_reg->spad_base +
   2671 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2672 	if (fw->rodata) {
   2673 		int j;
   2674 
   2675 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2676 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2677 	}
   2678 
   2679 	/* Clear the pre-fetch instruction. */
   2680 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2681 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2682 
   2683 	/* Start the CPU. */
   2684 	val = REG_RD_IND(sc, cpu_reg->mode);
   2685 	val &= ~cpu_reg->mode_value_halt;
   2686 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2687 	REG_WR_IND(sc, cpu_reg->mode, val);
   2688 }
   2689 
   2690 /****************************************************************************/
   2691 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2692 /*                                                                          */
   2693 /* Loads the firmware for each CPU and starts the CPU.                      */
   2694 /*                                                                          */
   2695 /* Returns:                                                                 */
   2696 /*   Nothing.                                                               */
   2697 /****************************************************************************/
   2698 void
   2699 bnx_init_cpus(struct bnx_softc *sc)
   2700 {
   2701 	struct cpu_reg cpu_reg;
   2702 	struct fw_info fw;
   2703 
   2704 	switch(BNX_CHIP_NUM(sc)) {
   2705 	case BNX_CHIP_NUM_5709:
   2706 		/* Initialize the RV2P processor. */
   2707 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2708 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2709 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2710 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2711 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2712 		} else {
   2713 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2714 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2715 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2716 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2717 		}
   2718 
   2719 		/* Initialize the RX Processor. */
   2720 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2721 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2722 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2723 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2724 		cpu_reg.state_value_clear = 0xffffff;
   2725 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2726 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2727 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2728 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2729 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2730 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2731 		cpu_reg.mips_view_base = 0x8000000;
   2732 
   2733 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2734 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2735 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2736 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2737 
   2738 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2739 		fw.text_len = bnx_RXP_b09FwTextLen;
   2740 		fw.text_index = 0;
   2741 		fw.text = bnx_RXP_b09FwText;
   2742 
   2743 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2744 		fw.data_len = bnx_RXP_b09FwDataLen;
   2745 		fw.data_index = 0;
   2746 		fw.data = bnx_RXP_b09FwData;
   2747 
   2748 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2749 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2750 		fw.sbss_index = 0;
   2751 		fw.sbss = bnx_RXP_b09FwSbss;
   2752 
   2753 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2754 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2755 		fw.bss_index = 0;
   2756 		fw.bss = bnx_RXP_b09FwBss;
   2757 
   2758 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2759 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2760 		fw.rodata_index = 0;
   2761 		fw.rodata = bnx_RXP_b09FwRodata;
   2762 
   2763 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2764 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2765 
   2766 		/* Initialize the TX Processor. */
   2767 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2768 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2769 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2770 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2771 		cpu_reg.state_value_clear = 0xffffff;
   2772 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2773 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2774 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2775 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2776 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2777 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2778 		cpu_reg.mips_view_base = 0x8000000;
   2779 
   2780 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2781 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2782 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2783 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2784 
   2785 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2786 		fw.text_len = bnx_TXP_b09FwTextLen;
   2787 		fw.text_index = 0;
   2788 		fw.text = bnx_TXP_b09FwText;
   2789 
   2790 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   2791 		fw.data_len = bnx_TXP_b09FwDataLen;
   2792 		fw.data_index = 0;
   2793 		fw.data = bnx_TXP_b09FwData;
   2794 
   2795 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   2796 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   2797 		fw.sbss_index = 0;
   2798 		fw.sbss = bnx_TXP_b09FwSbss;
   2799 
   2800 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   2801 		fw.bss_len = bnx_TXP_b09FwBssLen;
   2802 		fw.bss_index = 0;
   2803 		fw.bss = bnx_TXP_b09FwBss;
   2804 
   2805 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   2806 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   2807 		fw.rodata_index = 0;
   2808 		fw.rodata = bnx_TXP_b09FwRodata;
   2809 
   2810 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2811 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2812 
   2813 		/* Initialize the TX Patch-up Processor. */
   2814 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2815 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2816 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2817 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2818 		cpu_reg.state_value_clear = 0xffffff;
   2819 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2820 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2821 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2822 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2823 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2824 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2825 		cpu_reg.mips_view_base = 0x8000000;
   2826 
   2827 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   2828 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   2829 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   2830 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   2831 
   2832 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   2833 		fw.text_len = bnx_TPAT_b09FwTextLen;
   2834 		fw.text_index = 0;
   2835 		fw.text = bnx_TPAT_b09FwText;
   2836 
   2837 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   2838 		fw.data_len = bnx_TPAT_b09FwDataLen;
   2839 		fw.data_index = 0;
   2840 		fw.data = bnx_TPAT_b09FwData;
   2841 
   2842 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   2843 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   2844 		fw.sbss_index = 0;
   2845 		fw.sbss = bnx_TPAT_b09FwSbss;
   2846 
   2847 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   2848 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   2849 		fw.bss_index = 0;
   2850 		fw.bss = bnx_TPAT_b09FwBss;
   2851 
   2852 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   2853 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   2854 		fw.rodata_index = 0;
   2855 		fw.rodata = bnx_TPAT_b09FwRodata;
   2856 
   2857 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2858 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2859 
   2860 		/* Initialize the Completion Processor. */
   2861 		cpu_reg.mode = BNX_COM_CPU_MODE;
   2862 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2863 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2864 		cpu_reg.state = BNX_COM_CPU_STATE;
   2865 		cpu_reg.state_value_clear = 0xffffff;
   2866 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2867 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2868 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2869 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2870 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2871 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   2872 		cpu_reg.mips_view_base = 0x8000000;
   2873 
   2874 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   2875 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   2876 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   2877 		fw.start_addr = bnx_COM_b09FwStartAddr;
   2878 
   2879 		fw.text_addr = bnx_COM_b09FwTextAddr;
   2880 		fw.text_len = bnx_COM_b09FwTextLen;
   2881 		fw.text_index = 0;
   2882 		fw.text = bnx_COM_b09FwText;
   2883 
   2884 		fw.data_addr = bnx_COM_b09FwDataAddr;
   2885 		fw.data_len = bnx_COM_b09FwDataLen;
   2886 		fw.data_index = 0;
   2887 		fw.data = bnx_COM_b09FwData;
   2888 
   2889 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   2890 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   2891 		fw.sbss_index = 0;
   2892 		fw.sbss = bnx_COM_b09FwSbss;
   2893 
   2894 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   2895 		fw.bss_len = bnx_COM_b09FwBssLen;
   2896 		fw.bss_index = 0;
   2897 		fw.bss = bnx_COM_b09FwBss;
   2898 
   2899 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   2900 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   2901 		fw.rodata_index = 0;
   2902 		fw.rodata = bnx_COM_b09FwRodata;
   2903 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   2904 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2905 		break;
   2906 	default:
   2907 		/* Initialize the RV2P processor. */
   2908 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   2909 		    RV2P_PROC1);
   2910 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   2911 		    RV2P_PROC2);
   2912 
   2913 		/* Initialize the RX Processor. */
   2914 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2915 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2916 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2917 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2918 		cpu_reg.state_value_clear = 0xffffff;
   2919 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2920 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2921 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2922 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2923 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2924 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2925 		cpu_reg.mips_view_base = 0x8000000;
   2926 
   2927 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   2928 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   2929 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   2930 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   2931 
   2932 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   2933 		fw.text_len = bnx_RXP_b06FwTextLen;
   2934 		fw.text_index = 0;
   2935 		fw.text = bnx_RXP_b06FwText;
   2936 
   2937 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   2938 		fw.data_len = bnx_RXP_b06FwDataLen;
   2939 		fw.data_index = 0;
   2940 		fw.data = bnx_RXP_b06FwData;
   2941 
   2942 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   2943 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   2944 		fw.sbss_index = 0;
   2945 		fw.sbss = bnx_RXP_b06FwSbss;
   2946 
   2947 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   2948 		fw.bss_len = bnx_RXP_b06FwBssLen;
   2949 		fw.bss_index = 0;
   2950 		fw.bss = bnx_RXP_b06FwBss;
   2951 
   2952 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   2953 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   2954 		fw.rodata_index = 0;
   2955 		fw.rodata = bnx_RXP_b06FwRodata;
   2956 
   2957 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2958 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2959 
   2960 		/* Initialize the TX Processor. */
   2961 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2962 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2963 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2964 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2965 		cpu_reg.state_value_clear = 0xffffff;
   2966 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2967 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2968 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2969 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2970 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2971 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2972 		cpu_reg.mips_view_base = 0x8000000;
   2973 
   2974 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   2975 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   2976 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   2977 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   2978 
   2979 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   2980 		fw.text_len = bnx_TXP_b06FwTextLen;
   2981 		fw.text_index = 0;
   2982 		fw.text = bnx_TXP_b06FwText;
   2983 
   2984 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   2985 		fw.data_len = bnx_TXP_b06FwDataLen;
   2986 		fw.data_index = 0;
   2987 		fw.data = bnx_TXP_b06FwData;
   2988 
   2989 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   2990 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   2991 		fw.sbss_index = 0;
   2992 		fw.sbss = bnx_TXP_b06FwSbss;
   2993 
   2994 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   2995 		fw.bss_len = bnx_TXP_b06FwBssLen;
   2996 		fw.bss_index = 0;
   2997 		fw.bss = bnx_TXP_b06FwBss;
   2998 
   2999 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3000 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3001 		fw.rodata_index = 0;
   3002 		fw.rodata = bnx_TXP_b06FwRodata;
   3003 
   3004 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3005 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3006 
   3007 		/* Initialize the TX Patch-up Processor. */
   3008 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3009 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3010 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3011 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3012 		cpu_reg.state_value_clear = 0xffffff;
   3013 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3014 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3015 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3016 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3017 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3018 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3019 		cpu_reg.mips_view_base = 0x8000000;
   3020 
   3021 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3022 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3023 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3024 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3025 
   3026 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3027 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3028 		fw.text_index = 0;
   3029 		fw.text = bnx_TPAT_b06FwText;
   3030 
   3031 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3032 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3033 		fw.data_index = 0;
   3034 		fw.data = bnx_TPAT_b06FwData;
   3035 
   3036 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3037 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3038 		fw.sbss_index = 0;
   3039 		fw.sbss = bnx_TPAT_b06FwSbss;
   3040 
   3041 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3042 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3043 		fw.bss_index = 0;
   3044 		fw.bss = bnx_TPAT_b06FwBss;
   3045 
   3046 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3047 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3048 		fw.rodata_index = 0;
   3049 		fw.rodata = bnx_TPAT_b06FwRodata;
   3050 
   3051 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3052 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3053 
   3054 		/* Initialize the Completion Processor. */
   3055 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3056 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3057 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3058 		cpu_reg.state = BNX_COM_CPU_STATE;
   3059 		cpu_reg.state_value_clear = 0xffffff;
   3060 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3061 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3062 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3063 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3064 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3065 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3066 		cpu_reg.mips_view_base = 0x8000000;
   3067 
   3068 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3069 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3070 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3071 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3072 
   3073 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3074 		fw.text_len = bnx_COM_b06FwTextLen;
   3075 		fw.text_index = 0;
   3076 		fw.text = bnx_COM_b06FwText;
   3077 
   3078 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3079 		fw.data_len = bnx_COM_b06FwDataLen;
   3080 		fw.data_index = 0;
   3081 		fw.data = bnx_COM_b06FwData;
   3082 
   3083 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3084 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3085 		fw.sbss_index = 0;
   3086 		fw.sbss = bnx_COM_b06FwSbss;
   3087 
   3088 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3089 		fw.bss_len = bnx_COM_b06FwBssLen;
   3090 		fw.bss_index = 0;
   3091 		fw.bss = bnx_COM_b06FwBss;
   3092 
   3093 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3094 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3095 		fw.rodata_index = 0;
   3096 		fw.rodata = bnx_COM_b06FwRodata;
   3097 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3098 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3099 		break;
   3100 	}
   3101 }
   3102 
   3103 /****************************************************************************/
   3104 /* Initialize context memory.                                               */
   3105 /*                                                                          */
   3106 /* Clears the memory associated with each Context ID (CID).                 */
   3107 /*                                                                          */
   3108 /* Returns:                                                                 */
   3109 /*   Nothing.                                                               */
   3110 /****************************************************************************/
   3111 void
   3112 bnx_init_context(struct bnx_softc *sc)
   3113 {
   3114 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3115 		/* DRC: Replace this constant value with a #define. */
   3116 		int i, retry_cnt = 10;
   3117 		u_int32_t val;
   3118 
   3119 		/*
   3120 		 * BCM5709 context memory may be cached
   3121 		 * in host memory so prepare the host memory
   3122 		 * for access.
   3123 		 */
   3124 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3125 		    | (1 << 12);
   3126 		val |= (BCM_PAGE_BITS - 8) << 16;
   3127 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3128 
   3129 		/* Wait for mem init command to complete. */
   3130 		for (i = 0; i < retry_cnt; i++) {
   3131 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3132 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3133 				break;
   3134 			DELAY(2);
   3135 		}
   3136 
   3137 
   3138 		/* ToDo: Consider returning an error here. */
   3139 
   3140 		for (i = 0; i < sc->ctx_pages; i++) {
   3141 			int j;
   3142 
   3143 
   3144 			/* Set the physaddr of the context memory cache. */
   3145 			val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
   3146 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3147 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3148 			val = (u_int32_t)
   3149 			    ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
   3150 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3151 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3152 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3153 
   3154 
   3155 			/* Verify that the context memory write was successful. */
   3156 			for (j = 0; j < retry_cnt; j++) {
   3157 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3158 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3159 					break;
   3160 				DELAY(5);
   3161 			}
   3162 
   3163 			/* ToDo: Consider returning an error here. */
   3164 		}
   3165 	} else {
   3166 		u_int32_t vcid_addr, offset;
   3167 
   3168 		/*
   3169 		 * For the 5706/5708, context memory is local to
   3170 		 * the controller, so initialize the controller
   3171 		 * context memory.
   3172 		 */
   3173 
   3174 		vcid_addr = GET_CID_ADDR(96);
   3175 		while (vcid_addr) {
   3176 
   3177 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3178 
   3179 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3180 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3181 
   3182 			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
   3183 				CTX_WR(sc, 0x00, offset, 0);
   3184 			}
   3185 
   3186 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3187 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3188 		}
   3189 	}
   3190 }
   3191 
   3192 /****************************************************************************/
   3193 /* Fetch the permanent MAC address of the controller.                       */
   3194 /*                                                                          */
   3195 /* Returns:                                                                 */
   3196 /*   Nothing.                                                               */
   3197 /****************************************************************************/
   3198 void
   3199 bnx_get_mac_addr(struct bnx_softc *sc)
   3200 {
   3201 	u_int32_t		mac_lo = 0, mac_hi = 0;
   3202 
   3203 	/*
   3204 	 * The NetXtreme II bootcode populates various NIC
   3205 	 * power-on and runtime configuration items in a
   3206 	 * shared memory area.  The factory configured MAC
   3207 	 * address is available from both NVRAM and the
   3208 	 * shared memory area so we'll read the value from
   3209 	 * shared memory for speed.
   3210 	 */
   3211 
   3212 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3213 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3214 
   3215 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3216 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3217 		    __FILE__, __LINE__);
   3218 	} else {
   3219 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3220 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3221 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3222 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3223 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3224 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3225 	}
   3226 
   3227 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3228 	    "%s\n", ether_sprintf(sc->eaddr));
   3229 }
   3230 
   3231 /****************************************************************************/
   3232 /* Program the MAC address.                                                 */
   3233 /*                                                                          */
   3234 /* Returns:                                                                 */
   3235 /*   Nothing.                                                               */
   3236 /****************************************************************************/
   3237 void
   3238 bnx_set_mac_addr(struct bnx_softc *sc)
   3239 {
   3240 	u_int32_t		val;
   3241 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3242 
   3243 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3244 	    "%s\n", ether_sprintf(sc->eaddr));
   3245 
   3246 	val = (mac_addr[0] << 8) | mac_addr[1];
   3247 
   3248 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3249 
   3250 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3251 		(mac_addr[4] << 8) | mac_addr[5];
   3252 
   3253 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3254 }
   3255 
   3256 /****************************************************************************/
   3257 /* Stop the controller.                                                     */
   3258 /*                                                                          */
   3259 /* Returns:                                                                 */
   3260 /*   Nothing.                                                               */
   3261 /****************************************************************************/
   3262 void
   3263 bnx_stop(struct ifnet *ifp, int disable)
   3264 {
   3265 	struct bnx_softc *sc = ifp->if_softc;
   3266 
   3267 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3268 
   3269 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   3270 		return;
   3271 
   3272 	callout_stop(&sc->bnx_timeout);
   3273 
   3274 	mii_down(&sc->bnx_mii);
   3275 
   3276 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3277 
   3278 	/* Disable the transmit/receive blocks. */
   3279 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3280 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3281 	DELAY(20);
   3282 
   3283 	bnx_disable_intr(sc);
   3284 
   3285 	/* Tell firmware that the driver is going away. */
   3286 	if (disable)
   3287 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3288 	else
   3289 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3290 
   3291 	/* Free RX buffers. */
   3292 	bnx_free_rx_chain(sc);
   3293 
   3294 	/* Free TX buffers. */
   3295 	bnx_free_tx_chain(sc);
   3296 
   3297 	ifp->if_timer = 0;
   3298 
   3299 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3300 
   3301 }
   3302 
   3303 int
   3304 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
   3305 {
   3306 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3307 	u_int32_t		val;
   3308 	int			i, rc = 0;
   3309 
   3310 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3311 
   3312 	/* Wait for pending PCI transactions to complete. */
   3313 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3314 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3315 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3316 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3317 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3318 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3319 	DELAY(5);
   3320 
   3321 	/* Disable DMA */
   3322 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3323 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3324 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3325 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3326 	}
   3327 
   3328 	/* Assume bootcode is running. */
   3329 	sc->bnx_fw_timed_out = 0;
   3330 
   3331 	/* Give the firmware a chance to prepare for the reset. */
   3332 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3333 	if (rc)
   3334 		goto bnx_reset_exit;
   3335 
   3336 	/* Set a firmware reminder that this is a soft reset. */
   3337 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3338 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3339 
   3340 	/* Dummy read to force the chip to complete all current transactions. */
   3341 	val = REG_RD(sc, BNX_MISC_ID);
   3342 
   3343 	/* Chip reset. */
   3344 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3345 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3346 		REG_RD(sc, BNX_MISC_COMMAND);
   3347 		DELAY(5);
   3348 
   3349 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3350 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3351 
   3352 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3353 		    val);
   3354 	} else {
   3355 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3356 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3357 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3358 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3359 
   3360 		/* Allow up to 30us for reset to complete. */
   3361 		for (i = 0; i < 10; i++) {
   3362 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3363 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3364 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3365 				break;
   3366 			}
   3367 			DELAY(10);
   3368 		}
   3369 
   3370 		/* Check that reset completed successfully. */
   3371 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3372 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3373 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3374 			    __FILE__, __LINE__);
   3375 			rc = EBUSY;
   3376 			goto bnx_reset_exit;
   3377 		}
   3378 	}
   3379 
   3380 	/* Make sure byte swapping is properly configured. */
   3381 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3382 	if (val != 0x01020304) {
   3383 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3384 		    __FILE__, __LINE__);
   3385 		rc = ENODEV;
   3386 		goto bnx_reset_exit;
   3387 	}
   3388 
   3389 	/* Just completed a reset, assume that firmware is running again. */
   3390 	sc->bnx_fw_timed_out = 0;
   3391 
   3392 	/* Wait for the firmware to finish its initialization. */
   3393 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3394 	if (rc)
   3395 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3396 		    "initialization!\n", __FILE__, __LINE__);
   3397 
   3398 bnx_reset_exit:
   3399 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3400 
   3401 	return (rc);
   3402 }
   3403 
   3404 int
   3405 bnx_chipinit(struct bnx_softc *sc)
   3406 {
   3407 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3408 	u_int32_t		val;
   3409 	int			rc = 0;
   3410 
   3411 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3412 
   3413 	/* Make sure the interrupt is not active. */
   3414 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3415 
   3416 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3417 	/* channels and PCI clock compensation delay.                      */
   3418 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3419 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3420 #if BYTE_ORDER == BIG_ENDIAN
   3421 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3422 #endif
   3423 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3424 	    DMA_READ_CHANS << 12 |
   3425 	    DMA_WRITE_CHANS << 16;
   3426 
   3427 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3428 
   3429 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3430 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3431 
   3432 	/*
   3433 	 * This setting resolves a problem observed on certain Intel PCI
   3434 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3435 	 * See errata E9_5706A1_65.
   3436 	 */
   3437 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3438 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3439 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3440 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3441 
   3442 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3443 
   3444 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3445 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3446 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3447 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3448 		    val & ~0x20000);
   3449 	}
   3450 
   3451 	/* Enable the RX_V2P and Context state machines before access. */
   3452 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3453 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3454 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3455 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3456 
   3457 	/* Initialize context mapping and zero out the quick contexts. */
   3458 	bnx_init_context(sc);
   3459 
   3460 	/* Initialize the on-boards CPUs */
   3461 	bnx_init_cpus(sc);
   3462 
   3463 	/* Prepare NVRAM for access. */
   3464 	if (bnx_init_nvram(sc)) {
   3465 		rc = ENODEV;
   3466 		goto bnx_chipinit_exit;
   3467 	}
   3468 
   3469 	/* Set the kernel bypass block size */
   3470 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3471 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3472 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3473 
   3474 	/* Enable bins used on the 5709. */
   3475 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3476 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3477 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3478 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3479 	}
   3480 
   3481 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3482 
   3483 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3484 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3485 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3486 
   3487 	val = (BCM_PAGE_BITS - 8) << 24;
   3488 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3489 
   3490 	/* Configure page size. */
   3491 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3492 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3493 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3494 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3495 
   3496 #if 0
   3497 	/* Set the perfect match control register to default. */
   3498 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3499 #endif
   3500 
   3501 bnx_chipinit_exit:
   3502 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3503 
   3504 	return(rc);
   3505 }
   3506 
   3507 /****************************************************************************/
   3508 /* Initialize the controller in preparation to send/receive traffic.        */
   3509 /*                                                                          */
   3510 /* Returns:                                                                 */
   3511 /*   0 for success, positive value for failure.                             */
   3512 /****************************************************************************/
   3513 int
   3514 bnx_blockinit(struct bnx_softc *sc)
   3515 {
   3516 	u_int32_t		reg, val;
   3517 	int 			rc = 0;
   3518 
   3519 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3520 
   3521 	/* Load the hardware default MAC address. */
   3522 	bnx_set_mac_addr(sc);
   3523 
   3524 	/* Set the Ethernet backoff seed value */
   3525 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3526 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3527 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3528 
   3529 	sc->last_status_idx = 0;
   3530 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3531 
   3532 	/* Set up link change interrupt generation. */
   3533 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3534 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3535 
   3536 	/* Program the physical address of the status block. */
   3537 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
   3538 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3539 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
   3540 
   3541 	/* Program the physical address of the statistics block. */
   3542 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3543 	    (u_int32_t)(sc->stats_block_paddr));
   3544 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3545 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
   3546 
   3547 	/* Program various host coalescing parameters. */
   3548 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3549 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3550 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3551 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3552 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3553 	    sc->bnx_comp_prod_trip);
   3554 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3555 	    sc->bnx_tx_ticks);
   3556 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3557 	    sc->bnx_rx_ticks);
   3558 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3559 	    sc->bnx_com_ticks);
   3560 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3561 	    sc->bnx_cmd_ticks);
   3562 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3563 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3564 	REG_WR(sc, BNX_HC_CONFIG,
   3565 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3566 	    BNX_HC_CONFIG_COLLECT_STATS));
   3567 
   3568 	/* Clear the internal statistics counters. */
   3569 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3570 
   3571 	/* Verify that bootcode is running. */
   3572 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3573 
   3574 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3575 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3576 	    __FILE__, __LINE__); reg = 0);
   3577 
   3578 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3579 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3580 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3581 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3582 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3583 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3584 		rc = ENODEV;
   3585 		goto bnx_blockinit_exit;
   3586 	}
   3587 
   3588 	/* Check if any management firmware is running. */
   3589 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3590 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3591 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3592 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3593 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3594 	}
   3595 
   3596 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3597 	    BNX_DEV_INFO_BC_REV);
   3598 
   3599 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3600 
   3601 	/* Enable DMA */
   3602 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3603 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3604 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3605 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3606 	}
   3607 
   3608 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3609 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3610 
   3611 	/* Enable link state change interrupt generation. */
   3612 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3613 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3614 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3615 	} else
   3616 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3617 
   3618 	/* Enable all remaining blocks in the MAC. */
   3619 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3620 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3621 	DELAY(20);
   3622 
   3623 bnx_blockinit_exit:
   3624 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3625 
   3626 	return (rc);
   3627 }
   3628 
   3629 static int
   3630 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
   3631     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3632 {
   3633 	bus_dmamap_t		map;
   3634 	struct rx_bd		*rxbd;
   3635 	u_int32_t		addr;
   3636 	int i;
   3637 #ifdef BNX_DEBUG
   3638 	u_int16_t debug_chain_prod =	*chain_prod;
   3639 #endif
   3640 	u_int16_t first_chain_prod;
   3641 
   3642 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3643 
   3644 	/* Map the mbuf cluster into device memory. */
   3645 	map = sc->rx_mbuf_map[*chain_prod];
   3646 	first_chain_prod = *chain_prod;
   3647 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3648 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3649 		    __FILE__, __LINE__);
   3650 
   3651 		m_freem(m_new);
   3652 
   3653 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3654 
   3655 		return ENOBUFS;
   3656 	}
   3657 	/* Make sure there is room in the receive chain. */
   3658 	if (map->dm_nsegs > sc->free_rx_bd) {
   3659 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3660 		m_freem(m_new);
   3661 		return EFBIG;
   3662 	}
   3663 #ifdef BNX_DEBUG
   3664 	/* Track the distribution of buffer segments. */
   3665 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3666 #endif
   3667 
   3668 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3669 	    BUS_DMASYNC_PREREAD);
   3670 
   3671 	/* Update some debug statistics counters */
   3672 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3673 	    sc->rx_low_watermark = sc->free_rx_bd);
   3674 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3675 
   3676 	/*
   3677 	 * Setup the rx_bd for the first segment
   3678 	 */
   3679 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3680 
   3681 	addr = (u_int32_t)map->dm_segs[0].ds_addr;
   3682 	rxbd->rx_bd_haddr_lo = addr;
   3683 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
   3684 	rxbd->rx_bd_haddr_hi = addr;
   3685 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3686 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3687 	*prod_bseq += map->dm_segs[0].ds_len;
   3688 	bus_dmamap_sync(sc->bnx_dmatag,
   3689 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3690 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3691 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3692 
   3693 	for (i = 1; i < map->dm_nsegs; i++) {
   3694 		*prod = NEXT_RX_BD(*prod);
   3695 		*chain_prod = RX_CHAIN_IDX(*prod);
   3696 
   3697 		rxbd =
   3698 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3699 
   3700 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
   3701 		rxbd->rx_bd_haddr_lo = addr;
   3702 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   3703 		rxbd->rx_bd_haddr_hi = addr;
   3704 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3705 		rxbd->rx_bd_flags = 0;
   3706 		*prod_bseq += map->dm_segs[i].ds_len;
   3707 		bus_dmamap_sync(sc->bnx_dmatag,
   3708 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3709 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3710 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3711 	}
   3712 
   3713 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3714 	bus_dmamap_sync(sc->bnx_dmatag,
   3715 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3716 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3717 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3718 
   3719 	/*
   3720 	 * Save the mbuf, ajust the map pointer (swap map for first and
   3721 	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
   3722 	 * and update counter.
   3723 	 */
   3724 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3725 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3726 	sc->rx_mbuf_map[*chain_prod] = map;
   3727 	sc->free_rx_bd -= map->dm_nsegs;
   3728 
   3729 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3730 	    map->dm_nsegs));
   3731 	*prod = NEXT_RX_BD(*prod);
   3732 	*chain_prod = RX_CHAIN_IDX(*prod);
   3733 
   3734 	return 0;
   3735 }
   3736 
   3737 /****************************************************************************/
   3738 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3739 /*                                                                          */
   3740 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3741 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3742 /* necessary.                                                               */
   3743 /*                                                                          */
   3744 /* Returns:                                                                 */
   3745 /*   0 for success, positive value for failure.                             */
   3746 /****************************************************************************/
   3747 int
   3748 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
   3749     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3750 {
   3751 	struct mbuf 		*m_new = NULL;
   3752 	int			rc = 0;
   3753 	u_int16_t min_free_bd;
   3754 
   3755 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3756 	    __func__);
   3757 
   3758 	/* Make sure the inputs are valid. */
   3759 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3760 	    aprint_error_dev(sc->bnx_dev,
   3761 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3762 		*chain_prod, (u_int16_t)MAX_RX_BD));
   3763 
   3764 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3765 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3766 	    *prod_bseq);
   3767 
   3768 	/* try to get in as many mbufs as possible */
   3769 	if (sc->mbuf_alloc_size == MCLBYTES)
   3770 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3771 	else
   3772 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3773 	while (sc->free_rx_bd >= min_free_bd) {
   3774 		/* Simulate an mbuf allocation failure. */
   3775 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3776 		    aprint_error_dev(sc->bnx_dev,
   3777 		    "Simulating mbuf allocation failure.\n");
   3778 			sc->mbuf_sim_alloc_failed++;
   3779 			rc = ENOBUFS;
   3780 			goto bnx_get_buf_exit);
   3781 
   3782 		/* This is a new mbuf allocation. */
   3783 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3784 		if (m_new == NULL) {
   3785 			DBPRINT(sc, BNX_WARN,
   3786 			    "%s(%d): RX mbuf header allocation failed!\n",
   3787 			    __FILE__, __LINE__);
   3788 
   3789 			sc->mbuf_alloc_failed++;
   3790 
   3791 			rc = ENOBUFS;
   3792 			goto bnx_get_buf_exit;
   3793 		}
   3794 
   3795 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3796 
   3797 		/* Simulate an mbuf cluster allocation failure. */
   3798 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3799 			m_freem(m_new);
   3800 			sc->rx_mbuf_alloc--;
   3801 			sc->mbuf_alloc_failed++;
   3802 			sc->mbuf_sim_alloc_failed++;
   3803 			rc = ENOBUFS;
   3804 			goto bnx_get_buf_exit);
   3805 
   3806 		if (sc->mbuf_alloc_size == MCLBYTES)
   3807 			MCLGET(m_new, M_DONTWAIT);
   3808 		else
   3809 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3810 			    M_DONTWAIT);
   3811 		if (!(m_new->m_flags & M_EXT)) {
   3812 			DBPRINT(sc, BNX_WARN,
   3813 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3814 			    __FILE__, __LINE__);
   3815 
   3816 			m_freem(m_new);
   3817 
   3818 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3819 			sc->mbuf_alloc_failed++;
   3820 
   3821 			rc = ENOBUFS;
   3822 			goto bnx_get_buf_exit;
   3823 		}
   3824 
   3825 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3826 		if (rc != 0)
   3827 			goto bnx_get_buf_exit;
   3828 	}
   3829 
   3830 bnx_get_buf_exit:
   3831 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3832 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3833 	    *chain_prod, *prod_bseq);
   3834 
   3835 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3836 	    __func__);
   3837 
   3838 	return(rc);
   3839 }
   3840 
   3841 int
   3842 bnx_alloc_pkts(struct bnx_softc *sc)
   3843 {
   3844 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   3845 	struct bnx_pkt *pkt;
   3846 	int i;
   3847 
   3848 	for (i = 0; i < 4; i++) { /* magic! */
   3849 		pkt = pool_get(bnx_tx_pool, PR_NOWAIT);
   3850 		if (pkt == NULL)
   3851 			break;
   3852 
   3853 		if (bus_dmamap_create(sc->bnx_dmatag,
   3854 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   3855 		    MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   3856 		    &pkt->pkt_dmamap) != 0)
   3857 			goto put;
   3858 
   3859 		if (!ISSET(ifp->if_flags, IFF_UP))
   3860 			goto stopping;
   3861 
   3862 		mutex_enter(&sc->tx_pkt_mtx);
   3863 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   3864 		sc->tx_pkt_count++;
   3865 		mutex_exit(&sc->tx_pkt_mtx);
   3866 	}
   3867 
   3868 	return (i == 0) ? ENOMEM : 0;
   3869 
   3870 stopping:
   3871 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   3872 put:
   3873 	pool_put(bnx_tx_pool, pkt);
   3874 	return (i == 0) ? ENOMEM : 0;
   3875 }
   3876 
   3877 /****************************************************************************/
   3878 /* Initialize the TX context memory.                                        */
   3879 /*                                                                          */
   3880 /* Returns:                                                                 */
   3881 /*   Nothing                                                                */
   3882 /****************************************************************************/
   3883 void
   3884 bnx_init_tx_context(struct bnx_softc *sc)
   3885 {
   3886 	u_int32_t val;
   3887 
   3888 	/* Initialize the context ID for an L2 TX chain. */
   3889 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3890 		/* Set the CID type to support an L2 connection. */
   3891 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3892 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   3893 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3894 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   3895 
   3896 		/* Point the hardware to the first page in the chain. */
   3897 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3898 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   3899 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   3900 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3901 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   3902 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   3903 	} else {
   3904 		/* Set the CID type to support an L2 connection. */
   3905 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3906 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   3907 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3908 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   3909 
   3910 		/* Point the hardware to the first page in the chain. */
   3911 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3912 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   3913 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3914 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   3915 	}
   3916 }
   3917 
   3918 
   3919 /****************************************************************************/
   3920 /* Allocate memory and initialize the TX data structures.                   */
   3921 /*                                                                          */
   3922 /* Returns:                                                                 */
   3923 /*   0 for success, positive value for failure.                             */
   3924 /****************************************************************************/
   3925 int
   3926 bnx_init_tx_chain(struct bnx_softc *sc)
   3927 {
   3928 	struct tx_bd		*txbd;
   3929 	u_int32_t		addr;
   3930 	int			i, rc = 0;
   3931 
   3932 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3933 
   3934 	/* Force an allocation of some dmamaps for tx up front */
   3935 	bnx_alloc_pkts(sc);
   3936 
   3937 	/* Set the initial TX producer/consumer indices. */
   3938 	sc->tx_prod = 0;
   3939 	sc->tx_cons = 0;
   3940 	sc->tx_prod_bseq = 0;
   3941 	sc->used_tx_bd = 0;
   3942 	sc->max_tx_bd = USABLE_TX_BD;
   3943 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   3944 	DBRUNIF(1, sc->tx_full_count = 0);
   3945 
   3946 	/*
   3947 	 * The NetXtreme II supports a linked-list structure called
   3948 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   3949 	 * consists of a series of 1 or more chain pages, each of which
   3950 	 * consists of a fixed number of BD entries.
   3951 	 * The last BD entry on each page is a pointer to the next page
   3952 	 * in the chain, and the last pointer in the BD chain
   3953 	 * points back to the beginning of the chain.
   3954 	 */
   3955 
   3956 	/* Set the TX next pointer chain entries. */
   3957 	for (i = 0; i < TX_PAGES; i++) {
   3958 		int j;
   3959 
   3960 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   3961 
   3962 		/* Check if we've reached the last page. */
   3963 		if (i == (TX_PAGES - 1))
   3964 			j = 0;
   3965 		else
   3966 			j = i + 1;
   3967 
   3968 		addr = (u_int32_t)sc->tx_bd_chain_paddr[j];
   3969 		txbd->tx_bd_haddr_lo = addr;
   3970 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
   3971 		txbd->tx_bd_haddr_hi = addr;
   3972 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3973 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3974 	}
   3975 
   3976 	/*
   3977 	 * Initialize the context ID for an L2 TX chain.
   3978 	 */
   3979 	bnx_init_tx_context(sc);
   3980 
   3981 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3982 
   3983 	return(rc);
   3984 }
   3985 
   3986 /****************************************************************************/
   3987 /* Free memory and clear the TX data structures.                            */
   3988 /*                                                                          */
   3989 /* Returns:                                                                 */
   3990 /*   Nothing.                                                               */
   3991 /****************************************************************************/
   3992 void
   3993 bnx_free_tx_chain(struct bnx_softc *sc)
   3994 {
   3995 	struct bnx_pkt		*pkt;
   3996 	int			i;
   3997 
   3998 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3999 
   4000 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4001 	mutex_enter(&sc->tx_pkt_mtx);
   4002 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4003 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4004 		mutex_exit(&sc->tx_pkt_mtx);
   4005 
   4006 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4007 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4008 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4009 
   4010 		m_freem(pkt->pkt_mbuf);
   4011 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4012 
   4013 		mutex_enter(&sc->tx_pkt_mtx);
   4014 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4015         }
   4016 
   4017 	/* Destroy all the dmamaps we allocated for TX */
   4018 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   4019 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4020 		sc->tx_pkt_count--;
   4021 		mutex_exit(&sc->tx_pkt_mtx);
   4022 
   4023 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4024 		pool_put(bnx_tx_pool, pkt);
   4025 
   4026 		mutex_enter(&sc->tx_pkt_mtx);
   4027 	}
   4028 	mutex_exit(&sc->tx_pkt_mtx);
   4029 
   4030 
   4031 
   4032 	/* Clear each TX chain page. */
   4033 	for (i = 0; i < TX_PAGES; i++) {
   4034 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4035 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4036 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4037 	}
   4038 
   4039 	sc->used_tx_bd = 0;
   4040 
   4041 	/* Check if we lost any mbufs in the process. */
   4042 	DBRUNIF((sc->tx_mbuf_alloc),
   4043 	    aprint_error_dev(sc->bnx_dev,
   4044 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   4045 		sc->tx_mbuf_alloc));
   4046 
   4047 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4048 }
   4049 
   4050 /****************************************************************************/
   4051 /* Initialize the RX context memory.                                        */
   4052 /*                                                                          */
   4053 /* Returns:                                                                 */
   4054 /*   Nothing                                                                */
   4055 /****************************************************************************/
   4056 void
   4057 bnx_init_rx_context(struct bnx_softc *sc)
   4058 {
   4059 	u_int32_t val;
   4060 
   4061 	/* Initialize the context ID for an L2 RX chain. */
   4062 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4063 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4064 
   4065 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4066 		u_int32_t lo_water, hi_water;
   4067 
   4068 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
   4069 		hi_water = USABLE_RX_BD / 4;
   4070 
   4071 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
   4072 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
   4073 
   4074 		if (hi_water > 0xf)
   4075 			hi_water = 0xf;
   4076 		else if (hi_water == 0)
   4077 			lo_water = 0;
   4078 		val |= lo_water |
   4079 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
   4080 	}
   4081 
   4082  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4083 
   4084 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4085 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4086 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4087 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4088 	}
   4089 
   4090 	/* Point the hardware to the first page in the chain. */
   4091 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4092 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4093 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
   4094 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4095 }
   4096 
   4097 /****************************************************************************/
   4098 /* Allocate memory and initialize the RX data structures.                   */
   4099 /*                                                                          */
   4100 /* Returns:                                                                 */
   4101 /*   0 for success, positive value for failure.                             */
   4102 /****************************************************************************/
   4103 int
   4104 bnx_init_rx_chain(struct bnx_softc *sc)
   4105 {
   4106 	struct rx_bd		*rxbd;
   4107 	int			i, rc = 0;
   4108 	u_int16_t		prod, chain_prod;
   4109 	u_int32_t		prod_bseq, addr;
   4110 
   4111 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4112 
   4113 	/* Initialize the RX producer and consumer indices. */
   4114 	sc->rx_prod = 0;
   4115 	sc->rx_cons = 0;
   4116 	sc->rx_prod_bseq = 0;
   4117 	sc->free_rx_bd = USABLE_RX_BD;
   4118 	sc->max_rx_bd = USABLE_RX_BD;
   4119 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4120 	DBRUNIF(1, sc->rx_empty_count = 0);
   4121 
   4122 	/* Initialize the RX next pointer chain entries. */
   4123 	for (i = 0; i < RX_PAGES; i++) {
   4124 		int j;
   4125 
   4126 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4127 
   4128 		/* Check if we've reached the last page. */
   4129 		if (i == (RX_PAGES - 1))
   4130 			j = 0;
   4131 		else
   4132 			j = i + 1;
   4133 
   4134 		/* Setup the chain page pointers. */
   4135 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4136 		rxbd->rx_bd_haddr_hi = addr;
   4137 		addr = (u_int32_t)sc->rx_bd_chain_paddr[j];
   4138 		rxbd->rx_bd_haddr_lo = addr;
   4139 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4140 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4141 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4142 	}
   4143 
   4144 	/* Allocate mbuf clusters for the rx_bd chain. */
   4145 	prod = prod_bseq = 0;
   4146 	chain_prod = RX_CHAIN_IDX(prod);
   4147 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4148 		BNX_PRINTF(sc,
   4149 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4150 	}
   4151 
   4152 	/* Save the RX chain producer index. */
   4153 	sc->rx_prod = prod;
   4154 	sc->rx_prod_bseq = prod_bseq;
   4155 
   4156 	for (i = 0; i < RX_PAGES; i++)
   4157 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4158 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4159 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4160 
   4161 	/* Tell the chip about the waiting rx_bd's. */
   4162 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4163 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4164 
   4165 	bnx_init_rx_context(sc);
   4166 
   4167 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4168 
   4169 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4170 
   4171 	return(rc);
   4172 }
   4173 
   4174 /****************************************************************************/
   4175 /* Free memory and clear the RX data structures.                            */
   4176 /*                                                                          */
   4177 /* Returns:                                                                 */
   4178 /*   Nothing.                                                               */
   4179 /****************************************************************************/
   4180 void
   4181 bnx_free_rx_chain(struct bnx_softc *sc)
   4182 {
   4183 	int			i;
   4184 
   4185 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4186 
   4187 	/* Free any mbufs still in the RX mbuf chain. */
   4188 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4189 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4190 			if (sc->rx_mbuf_map[i] != NULL) {
   4191 				bus_dmamap_sync(sc->bnx_dmatag,
   4192 				    sc->rx_mbuf_map[i],	0,
   4193 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4194 				    BUS_DMASYNC_POSTREAD);
   4195 				bus_dmamap_unload(sc->bnx_dmatag,
   4196 				    sc->rx_mbuf_map[i]);
   4197 			}
   4198 			m_freem(sc->rx_mbuf_ptr[i]);
   4199 			sc->rx_mbuf_ptr[i] = NULL;
   4200 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4201 		}
   4202 	}
   4203 
   4204 	/* Clear each RX chain page. */
   4205 	for (i = 0; i < RX_PAGES; i++)
   4206 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4207 
   4208 	sc->free_rx_bd = sc->max_rx_bd;
   4209 
   4210 	/* Check if we lost any mbufs in the process. */
   4211 	DBRUNIF((sc->rx_mbuf_alloc),
   4212 	    aprint_error_dev(sc->bnx_dev,
   4213 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   4214 		sc->rx_mbuf_alloc));
   4215 
   4216 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4217 }
   4218 
   4219 /****************************************************************************/
   4220 /* Handles PHY generated interrupt events.                                  */
   4221 /*                                                                          */
   4222 /* Returns:                                                                 */
   4223 /*   Nothing.                                                               */
   4224 /****************************************************************************/
   4225 void
   4226 bnx_phy_intr(struct bnx_softc *sc)
   4227 {
   4228 	u_int32_t		new_link_state, old_link_state;
   4229 
   4230 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4231 	    BUS_DMASYNC_POSTREAD);
   4232 	new_link_state = sc->status_block->status_attn_bits &
   4233 	    STATUS_ATTN_BITS_LINK_STATE;
   4234 	old_link_state = sc->status_block->status_attn_bits_ack &
   4235 	    STATUS_ATTN_BITS_LINK_STATE;
   4236 
   4237 	/* Handle any changes if the link state has changed. */
   4238 	if (new_link_state != old_link_state) {
   4239 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4240 
   4241 		callout_stop(&sc->bnx_timeout);
   4242 		bnx_tick(sc);
   4243 
   4244 		/* Update the status_attn_bits_ack field in the status block. */
   4245 		if (new_link_state) {
   4246 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4247 			    STATUS_ATTN_BITS_LINK_STATE);
   4248 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4249 		} else {
   4250 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4251 			    STATUS_ATTN_BITS_LINK_STATE);
   4252 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4253 		}
   4254 	}
   4255 
   4256 	/* Acknowledge the link change interrupt. */
   4257 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4258 }
   4259 
   4260 /****************************************************************************/
   4261 /* Handles received frame interrupt events.                                 */
   4262 /*                                                                          */
   4263 /* Returns:                                                                 */
   4264 /*   Nothing.                                                               */
   4265 /****************************************************************************/
   4266 void
   4267 bnx_rx_intr(struct bnx_softc *sc)
   4268 {
   4269 	struct status_block	*sblk = sc->status_block;
   4270 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4271 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
   4272 	u_int16_t		sw_prod, sw_chain_prod;
   4273 	u_int32_t		sw_prod_bseq;
   4274 	struct l2_fhdr		*l2fhdr;
   4275 	int			i;
   4276 
   4277 	DBRUNIF(1, sc->rx_interrupts++);
   4278 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4279 	    BUS_DMASYNC_POSTREAD);
   4280 
   4281 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4282 	for (i = 0; i < RX_PAGES; i++)
   4283 		bus_dmamap_sync(sc->bnx_dmatag,
   4284 		    sc->rx_bd_chain_map[i], 0,
   4285 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4286 		    BUS_DMASYNC_POSTWRITE);
   4287 
   4288 	/* Get the hardware's view of the RX consumer index. */
   4289 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4290 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4291 		hw_cons++;
   4292 
   4293 	/* Get working copies of the driver's view of the RX indices. */
   4294 	sw_cons = sc->rx_cons;
   4295 	sw_prod = sc->rx_prod;
   4296 	sw_prod_bseq = sc->rx_prod_bseq;
   4297 
   4298 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4299 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4300 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4301 
   4302 	/* Prevent speculative reads from getting ahead of the status block. */
   4303 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4304 	    BUS_SPACE_BARRIER_READ);
   4305 
   4306 	/* Update some debug statistics counters */
   4307 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4308 	    sc->rx_low_watermark = sc->free_rx_bd);
   4309 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4310 
   4311 	/*
   4312 	 * Scan through the receive chain as long
   4313 	 * as there is work to do.
   4314 	 */
   4315 	while (sw_cons != hw_cons) {
   4316 		struct mbuf *m;
   4317 		struct rx_bd *rxbd;
   4318 		unsigned int len;
   4319 		u_int32_t status;
   4320 
   4321 		/* Convert the producer/consumer indices to an actual
   4322 		 * rx_bd index.
   4323 		 */
   4324 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4325 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4326 
   4327 		/* Get the used rx_bd. */
   4328 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4329 		sc->free_rx_bd++;
   4330 
   4331 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4332 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4333 
   4334 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4335 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4336 #ifdef DIAGNOSTIC
   4337 			/* Validate that this is the last rx_bd. */
   4338 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4339 			    printf("%s: Unexpected mbuf found in "
   4340 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4341 			        sw_chain_cons);
   4342 			}
   4343 #endif
   4344 
   4345 			/* DRC - ToDo: If the received packet is small, say less
   4346 			 *             than 128 bytes, allocate a new mbuf here,
   4347 			 *             copy the data to that mbuf, and recycle
   4348 			 *             the mapped jumbo frame.
   4349 			 */
   4350 
   4351 			/* Unmap the mbuf from DMA space. */
   4352 #ifdef DIAGNOSTIC
   4353 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4354 				printf("invalid map sw_cons 0x%x "
   4355 				"sw_prod 0x%x "
   4356 				"sw_chain_cons 0x%x "
   4357 				"sw_chain_prod 0x%x "
   4358 				"hw_cons 0x%x "
   4359 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4360 				"TOTAL_RX_BD 0x%x\n",
   4361 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4362 				hw_cons,
   4363 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4364 			}
   4365 #endif
   4366 			bus_dmamap_sync(sc->bnx_dmatag,
   4367 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4368 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4369 			    BUS_DMASYNC_POSTREAD);
   4370 			bus_dmamap_unload(sc->bnx_dmatag,
   4371 			    sc->rx_mbuf_map[sw_chain_cons]);
   4372 
   4373 			/* Remove the mbuf from the driver's chain. */
   4374 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4375 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4376 
   4377 			/*
   4378 			 * Frames received on the NetXteme II are prepended
   4379 			 * with the l2_fhdr structure which provides status
   4380 			 * information about the received frame (including
   4381 			 * VLAN tags and checksum info) and are also
   4382 			 * automatically adjusted to align the IP header
   4383 			 * (i.e. two null bytes are inserted before the
   4384 			 * Ethernet header).
   4385 			 */
   4386 			l2fhdr = mtod(m, struct l2_fhdr *);
   4387 
   4388 			len    = l2fhdr->l2_fhdr_pkt_len;
   4389 			status = l2fhdr->l2_fhdr_status;
   4390 
   4391 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4392 			    aprint_error("Simulating l2_fhdr status error.\n");
   4393 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4394 
   4395 			/* Watch for unusual sized frames. */
   4396 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4397 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4398 			    aprint_error_dev(sc->bnx_dev,
   4399 			        "Unusual frame size found. "
   4400 				"Min(%d), Actual(%d), Max(%d)\n",
   4401 				(int)BNX_MIN_MTU, len,
   4402 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4403 
   4404 			bnx_dump_mbuf(sc, m);
   4405 			bnx_breakpoint(sc));
   4406 
   4407 			len -= ETHER_CRC_LEN;
   4408 
   4409 			/* Check the received frame for errors. */
   4410 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4411 			    L2_FHDR_ERRORS_PHY_DECODE |
   4412 			    L2_FHDR_ERRORS_ALIGNMENT |
   4413 			    L2_FHDR_ERRORS_TOO_SHORT |
   4414 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4415 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4416 			    len >
   4417 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4418 				ifp->if_ierrors++;
   4419 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4420 
   4421 				/* Reuse the mbuf for a new frame. */
   4422 				if (bnx_add_buf(sc, m, &sw_prod,
   4423 				    &sw_chain_prod, &sw_prod_bseq)) {
   4424 					DBRUNIF(1, bnx_breakpoint(sc));
   4425 					panic("%s: Can't reuse RX mbuf!\n",
   4426 					    device_xname(sc->bnx_dev));
   4427 				}
   4428 				continue;
   4429 			}
   4430 
   4431 			/*
   4432 			 * Get a new mbuf for the rx_bd.   If no new
   4433 			 * mbufs are available then reuse the current mbuf,
   4434 			 * log an ierror on the interface, and generate
   4435 			 * an error in the system log.
   4436 			 */
   4437 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4438 			    &sw_prod_bseq)) {
   4439 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4440 				    "Failed to allocate "
   4441 				    "new mbuf, incoming frame dropped!\n"));
   4442 
   4443 				ifp->if_ierrors++;
   4444 
   4445 				/* Try and reuse the exisitng mbuf. */
   4446 				if (bnx_add_buf(sc, m, &sw_prod,
   4447 				    &sw_chain_prod, &sw_prod_bseq)) {
   4448 					DBRUNIF(1, bnx_breakpoint(sc));
   4449 					panic("%s: Double mbuf allocation "
   4450 					    "failure!",
   4451 					    device_xname(sc->bnx_dev));
   4452 				}
   4453 				continue;
   4454 			}
   4455 
   4456 			/* Skip over the l2_fhdr when passing the data up
   4457 			 * the stack.
   4458 			 */
   4459 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4460 
   4461 			/* Adjust the pckt length to match the received data. */
   4462 			m->m_pkthdr.len = m->m_len = len;
   4463 
   4464 			/* Send the packet to the appropriate interface. */
   4465 			m->m_pkthdr.rcvif = ifp;
   4466 
   4467 			DBRUN(BNX_VERBOSE_RECV,
   4468 			    struct ether_header *eh;
   4469 			    eh = mtod(m, struct ether_header *);
   4470 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4471 			    __func__, ether_sprintf(eh->ether_dhost),
   4472 			    ether_sprintf(eh->ether_shost),
   4473 			    htons(eh->ether_type)));
   4474 
   4475 			/* Validate the checksum. */
   4476 
   4477 			/* Check for an IP datagram. */
   4478 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4479 				/* Check if the IP checksum is valid. */
   4480 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   4481 				    == 0)
   4482 					m->m_pkthdr.csum_flags |=
   4483 					    M_CSUM_IPv4;
   4484 #ifdef BNX_DEBUG
   4485 				else
   4486 					DBPRINT(sc, BNX_WARN_SEND,
   4487 					    "%s(): Invalid IP checksum "
   4488 					        "= 0x%04X!\n",
   4489 						__func__,
   4490 						l2fhdr->l2_fhdr_ip_xsum
   4491 						);
   4492 #endif
   4493 			}
   4494 
   4495 			/* Check for a valid TCP/UDP frame. */
   4496 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4497 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4498 				/* Check for a good TCP/UDP checksum. */
   4499 				if ((status &
   4500 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4501 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4502 					m->m_pkthdr.csum_flags |=
   4503 					    M_CSUM_TCPv4 |
   4504 					    M_CSUM_UDPv4;
   4505 				} else {
   4506 					DBPRINT(sc, BNX_WARN_SEND,
   4507 					    "%s(): Invalid TCP/UDP "
   4508 					    "checksum = 0x%04X!\n",
   4509 					    __func__,
   4510 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4511 				}
   4512 			}
   4513 
   4514 			/*
   4515 			 * If we received a packet with a vlan tag,
   4516 			 * attach that information to the packet.
   4517 			 */
   4518 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4519 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4520 				VLAN_INPUT_TAG(ifp, m,
   4521 				    l2fhdr->l2_fhdr_vlan_tag,
   4522 				    continue);
   4523 			}
   4524 
   4525 			/*
   4526 			 * Handle BPF listeners. Let the BPF
   4527 			 * user see the packet.
   4528 			 */
   4529 			bpf_mtap(ifp, m);
   4530 
   4531 			/* Pass the mbuf off to the upper layers. */
   4532 			ifp->if_ipackets++;
   4533 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4534 			    "%s(): Passing received frame up.\n", __func__);
   4535 			(*ifp->if_input)(ifp, m);
   4536 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4537 
   4538 		}
   4539 
   4540 		sw_cons = NEXT_RX_BD(sw_cons);
   4541 
   4542 		/* Refresh hw_cons to see if there's new work */
   4543 		if (sw_cons == hw_cons) {
   4544 			hw_cons = sc->hw_rx_cons =
   4545 			    sblk->status_rx_quick_consumer_index0;
   4546 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4547 			    USABLE_RX_BD_PER_PAGE)
   4548 				hw_cons++;
   4549 		}
   4550 
   4551 		/* Prevent speculative reads from getting ahead of
   4552 		 * the status block.
   4553 		 */
   4554 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4555 		    BUS_SPACE_BARRIER_READ);
   4556 	}
   4557 
   4558 	for (i = 0; i < RX_PAGES; i++)
   4559 		bus_dmamap_sync(sc->bnx_dmatag,
   4560 		    sc->rx_bd_chain_map[i], 0,
   4561 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4562 		    BUS_DMASYNC_PREWRITE);
   4563 
   4564 	sc->rx_cons = sw_cons;
   4565 	sc->rx_prod = sw_prod;
   4566 	sc->rx_prod_bseq = sw_prod_bseq;
   4567 
   4568 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4569 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4570 
   4571 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4572 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4573 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4574 }
   4575 
   4576 /****************************************************************************/
   4577 /* Handles transmit completion interrupt events.                            */
   4578 /*                                                                          */
   4579 /* Returns:                                                                 */
   4580 /*   Nothing.                                                               */
   4581 /****************************************************************************/
   4582 void
   4583 bnx_tx_intr(struct bnx_softc *sc)
   4584 {
   4585 	struct status_block	*sblk = sc->status_block;
   4586 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4587 	struct bnx_pkt		*pkt;
   4588 	bus_dmamap_t		map;
   4589 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4590 
   4591 	DBRUNIF(1, sc->tx_interrupts++);
   4592 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4593 	    BUS_DMASYNC_POSTREAD);
   4594 
   4595 	/* Get the hardware's view of the TX consumer index. */
   4596 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4597 
   4598 	/* Skip to the next entry if this is a chain page pointer. */
   4599 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4600 		hw_tx_cons++;
   4601 
   4602 	sw_tx_cons = sc->tx_cons;
   4603 
   4604 	/* Prevent speculative reads from getting ahead of the status block. */
   4605 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4606 	    BUS_SPACE_BARRIER_READ);
   4607 
   4608 	/* Cycle through any completed TX chain page entries. */
   4609 	while (sw_tx_cons != hw_tx_cons) {
   4610 #ifdef BNX_DEBUG
   4611 		struct tx_bd *txbd = NULL;
   4612 #endif
   4613 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4614 
   4615 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4616 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4617 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4618 
   4619 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4620 		    aprint_error_dev(sc->bnx_dev,
   4621 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4622 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4623 
   4624 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4625 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4626 
   4627 		DBRUNIF((txbd == NULL),
   4628 		    aprint_error_dev(sc->bnx_dev,
   4629 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4630 		    bnx_breakpoint(sc));
   4631 
   4632 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4633 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4634 
   4635 
   4636 		mutex_enter(&sc->tx_pkt_mtx);
   4637 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4638 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4639 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4640 			mutex_exit(&sc->tx_pkt_mtx);
   4641 			/*
   4642 			 * Free the associated mbuf. Remember
   4643 			 * that only the last tx_bd of a packet
   4644 			 * has an mbuf pointer and DMA map.
   4645 			 */
   4646 			map = pkt->pkt_dmamap;
   4647 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4648 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4649 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4650 
   4651 			m_freem(pkt->pkt_mbuf);
   4652 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4653 
   4654 			ifp->if_opackets++;
   4655 
   4656 			mutex_enter(&sc->tx_pkt_mtx);
   4657 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4658 		}
   4659 		mutex_exit(&sc->tx_pkt_mtx);
   4660 
   4661 		sc->used_tx_bd--;
   4662 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4663 			__FILE__, __LINE__, sc->used_tx_bd);
   4664 
   4665 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4666 
   4667 		/* Refresh hw_cons to see if there's new work. */
   4668 		hw_tx_cons = sc->hw_tx_cons =
   4669 		    sblk->status_tx_quick_consumer_index0;
   4670 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4671 		    USABLE_TX_BD_PER_PAGE)
   4672 			hw_tx_cons++;
   4673 
   4674 		/* Prevent speculative reads from getting ahead of
   4675 		 * the status block.
   4676 		 */
   4677 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4678 		    BUS_SPACE_BARRIER_READ);
   4679 	}
   4680 
   4681 	/* Clear the TX timeout timer. */
   4682 	ifp->if_timer = 0;
   4683 
   4684 	/* Clear the tx hardware queue full flag. */
   4685 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4686 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4687 		    aprint_debug_dev(sc->bnx_dev,
   4688 		        "Open TX chain! %d/%d (used/total)\n",
   4689 			sc->used_tx_bd, sc->max_tx_bd));
   4690 		ifp->if_flags &= ~IFF_OACTIVE;
   4691 	}
   4692 
   4693 	sc->tx_cons = sw_tx_cons;
   4694 }
   4695 
   4696 /****************************************************************************/
   4697 /* Disables interrupt generation.                                           */
   4698 /*                                                                          */
   4699 /* Returns:                                                                 */
   4700 /*   Nothing.                                                               */
   4701 /****************************************************************************/
   4702 void
   4703 bnx_disable_intr(struct bnx_softc *sc)
   4704 {
   4705 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4706 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4707 }
   4708 
   4709 /****************************************************************************/
   4710 /* Enables interrupt generation.                                            */
   4711 /*                                                                          */
   4712 /* Returns:                                                                 */
   4713 /*   Nothing.                                                               */
   4714 /****************************************************************************/
   4715 void
   4716 bnx_enable_intr(struct bnx_softc *sc)
   4717 {
   4718 	u_int32_t		val;
   4719 
   4720 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4721 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4722 
   4723 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4724 	    sc->last_status_idx);
   4725 
   4726 	val = REG_RD(sc, BNX_HC_COMMAND);
   4727 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4728 }
   4729 
   4730 /****************************************************************************/
   4731 /* Handles controller initialization.                                       */
   4732 /*                                                                          */
   4733 /****************************************************************************/
   4734 int
   4735 bnx_init(struct ifnet *ifp)
   4736 {
   4737 	struct bnx_softc	*sc = ifp->if_softc;
   4738 	u_int32_t		ether_mtu;
   4739 	int			s, error = 0;
   4740 
   4741 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4742 
   4743 	s = splnet();
   4744 
   4745 	bnx_stop(ifp, 0);
   4746 
   4747 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4748 		aprint_error_dev(sc->bnx_dev,
   4749 		    "Controller reset failed!\n");
   4750 		goto bnx_init_exit;
   4751 	}
   4752 
   4753 	if ((error = bnx_chipinit(sc)) != 0) {
   4754 		aprint_error_dev(sc->bnx_dev,
   4755 		    "Controller initialization failed!\n");
   4756 		goto bnx_init_exit;
   4757 	}
   4758 
   4759 	if ((error = bnx_blockinit(sc)) != 0) {
   4760 		aprint_error_dev(sc->bnx_dev,
   4761 		    "Block initialization failed!\n");
   4762 		goto bnx_init_exit;
   4763 	}
   4764 
   4765 	/* Calculate and program the Ethernet MRU size. */
   4766 	if (ifp->if_mtu <= ETHERMTU) {
   4767 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4768 		sc->mbuf_alloc_size = MCLBYTES;
   4769 	} else {
   4770 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4771 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   4772 	}
   4773 
   4774 
   4775 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4776 	    __func__, ether_mtu);
   4777 
   4778 	/*
   4779 	 * Program the MRU and enable Jumbo frame
   4780 	 * support.
   4781 	 */
   4782 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4783 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4784 
   4785 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4786 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4787 
   4788 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4789 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4790 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4791 
   4792 	/* Program appropriate promiscuous/multicast filtering. */
   4793 	bnx_iff(sc);
   4794 
   4795 	/* Init RX buffer descriptor chain. */
   4796 	bnx_init_rx_chain(sc);
   4797 
   4798 	/* Init TX buffer descriptor chain. */
   4799 	bnx_init_tx_chain(sc);
   4800 
   4801 	/* Enable host interrupts. */
   4802 	bnx_enable_intr(sc);
   4803 
   4804 	if ((error = ether_mediachange(ifp)) != 0)
   4805 		goto bnx_init_exit;
   4806 
   4807 	ifp->if_flags |= IFF_RUNNING;
   4808 	ifp->if_flags &= ~IFF_OACTIVE;
   4809 
   4810 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4811 
   4812 bnx_init_exit:
   4813 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4814 
   4815 	splx(s);
   4816 
   4817 	return(error);
   4818 }
   4819 
   4820 /****************************************************************************/
   4821 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4822 /* memory visible to the controller.                                        */
   4823 /*                                                                          */
   4824 /* Returns:                                                                 */
   4825 /*   0 for success, positive value for failure.                             */
   4826 /****************************************************************************/
   4827 int
   4828 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   4829 {
   4830 	struct bnx_pkt		*pkt;
   4831 	bus_dmamap_t		map;
   4832 	struct tx_bd		*txbd = NULL;
   4833 	u_int16_t		vlan_tag = 0, flags = 0;
   4834 	u_int16_t		chain_prod, prod;
   4835 #ifdef BNX_DEBUG
   4836 	u_int16_t		debug_prod;
   4837 #endif
   4838 	u_int32_t		addr, prod_bseq;
   4839 	int			i, error;
   4840 	struct m_tag		*mtag;
   4841 
   4842 again:
   4843 	mutex_enter(&sc->tx_pkt_mtx);
   4844 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   4845 	if (pkt == NULL) {
   4846 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   4847 			mutex_exit(&sc->tx_pkt_mtx);
   4848 			return ENETDOWN;
   4849 		}
   4850 		if (sc->tx_pkt_count <= TOTAL_TX_BD) {
   4851 			mutex_exit(&sc->tx_pkt_mtx);
   4852 			if (bnx_alloc_pkts(sc) == 0)
   4853 				goto again;
   4854 		} else {
   4855 			mutex_exit(&sc->tx_pkt_mtx);
   4856 		}
   4857 		return (ENOMEM);
   4858 	}
   4859 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4860 	mutex_exit(&sc->tx_pkt_mtx);
   4861 
   4862 	/* Transfer any checksum offload flags to the bd. */
   4863 	if (m->m_pkthdr.csum_flags) {
   4864 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4865 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4866 		if (m->m_pkthdr.csum_flags &
   4867 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4868 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4869 	}
   4870 
   4871 	/* Transfer any VLAN tags to the bd. */
   4872 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
   4873 	if (mtag != NULL) {
   4874 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4875 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4876 	}
   4877 
   4878 	/* Map the mbuf into DMAable memory. */
   4879 	prod = sc->tx_prod;
   4880 	chain_prod = TX_CHAIN_IDX(prod);
   4881 	map = pkt->pkt_dmamap;
   4882 
   4883 	/* Map the mbuf into our DMA address space. */
   4884 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   4885 	if (error != 0) {
   4886 		aprint_error_dev(sc->bnx_dev,
   4887 		    "Error mapping mbuf into TX chain!\n");
   4888 		sc->tx_dma_map_failures++;
   4889 		goto maperr;
   4890 	}
   4891 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4892 	    BUS_DMASYNC_PREWRITE);
   4893         /* Make sure there's room in the chain */
   4894 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   4895                 goto nospace;
   4896 
   4897 	/* prod points to an empty tx_bd at this point. */
   4898 	prod_bseq = sc->tx_prod_bseq;
   4899 #ifdef BNX_DEBUG
   4900 	debug_prod = chain_prod;
   4901 #endif
   4902 	DBPRINT(sc, BNX_INFO_SEND,
   4903 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   4904 		"prod_bseq = 0x%08X\n",
   4905 		__func__, prod, chain_prod, prod_bseq);
   4906 
   4907 	/*
   4908 	 * Cycle through each mbuf segment that makes up
   4909 	 * the outgoing frame, gathering the mapping info
   4910 	 * for that segment and creating a tx_bd for the
   4911 	 * mbuf.
   4912 	 */
   4913 	for (i = 0; i < map->dm_nsegs ; i++) {
   4914 		chain_prod = TX_CHAIN_IDX(prod);
   4915 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   4916 
   4917 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
   4918 		txbd->tx_bd_haddr_lo = addr;
   4919 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   4920 		txbd->tx_bd_haddr_hi = addr;
   4921 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   4922 		txbd->tx_bd_vlan_tag = vlan_tag;
   4923 		txbd->tx_bd_flags = flags;
   4924 		prod_bseq += map->dm_segs[i].ds_len;
   4925 		if (i == 0)
   4926 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   4927 		prod = NEXT_TX_BD(prod);
   4928 	}
   4929 	/* Set the END flag on the last TX buffer descriptor. */
   4930 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   4931 
   4932 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   4933 
   4934 	DBPRINT(sc, BNX_INFO_SEND,
   4935 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   4936 		"prod_bseq = 0x%08X\n",
   4937 		__func__, prod, chain_prod, prod_bseq);
   4938 
   4939 	pkt->pkt_mbuf = m;
   4940 	pkt->pkt_end_desc = chain_prod;
   4941 
   4942 	mutex_enter(&sc->tx_pkt_mtx);
   4943 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   4944 	mutex_exit(&sc->tx_pkt_mtx);
   4945 
   4946 	sc->used_tx_bd += map->dm_nsegs;
   4947 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4948 		__FILE__, __LINE__, sc->used_tx_bd);
   4949 
   4950 	/* Update some debug statistics counters */
   4951 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   4952 	    sc->tx_hi_watermark = sc->used_tx_bd);
   4953 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   4954 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   4955 
   4956 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   4957 	    map->dm_nsegs));
   4958 
   4959 	/* prod points to the next free tx_bd at this point. */
   4960 	sc->tx_prod = prod;
   4961 	sc->tx_prod_bseq = prod_bseq;
   4962 
   4963 	return (0);
   4964 
   4965 
   4966 nospace:
   4967 	bus_dmamap_unload(sc->bnx_dmatag, map);
   4968 maperr:
   4969 	mutex_enter(&sc->tx_pkt_mtx);
   4970 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4971 	mutex_exit(&sc->tx_pkt_mtx);
   4972 
   4973 	return (ENOMEM);
   4974 }
   4975 
   4976 /****************************************************************************/
   4977 /* Main transmit routine.                                                   */
   4978 /*                                                                          */
   4979 /* Returns:                                                                 */
   4980 /*   Nothing.                                                               */
   4981 /****************************************************************************/
   4982 void
   4983 bnx_start(struct ifnet *ifp)
   4984 {
   4985 	struct bnx_softc	*sc = ifp->if_softc;
   4986 	struct mbuf		*m_head = NULL;
   4987 	int			count = 0;
   4988 	u_int16_t		tx_prod, tx_chain_prod;
   4989 
   4990 	/* If there's no link or the transmit queue is empty then just exit. */
   4991 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   4992 		DBPRINT(sc, BNX_INFO_SEND,
   4993 		    "%s(): output active or device not running.\n", __func__);
   4994 		goto bnx_start_exit;
   4995 	}
   4996 
   4997 	/* prod points to the next free tx_bd. */
   4998 	tx_prod = sc->tx_prod;
   4999 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
   5000 
   5001 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5002 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5003 	    "used_tx %d max_tx %d\n",
   5004 	    __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5005 	    sc->used_tx_bd, sc->max_tx_bd);
   5006 
   5007 	/*
   5008 	 * Keep adding entries while there is space in the ring.
   5009 	 */
   5010 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5011 		/* Check for any frames to send. */
   5012 		IFQ_POLL(&ifp->if_snd, m_head);
   5013 		if (m_head == NULL)
   5014 			break;
   5015 
   5016 		/*
   5017 		 * Pack the data into the transmit ring. If we
   5018 		 * don't have room, set the OACTIVE flag to wait
   5019 		 * for the NIC to drain the chain.
   5020 		 */
   5021 		if (bnx_tx_encap(sc, m_head)) {
   5022 			ifp->if_flags |= IFF_OACTIVE;
   5023 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5024 			    "business! Total tx_bd used = %d\n",
   5025 			    sc->used_tx_bd);
   5026 			break;
   5027 		}
   5028 
   5029 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5030 		count++;
   5031 
   5032 		/* Send a copy of the frame to any BPF listeners. */
   5033 		bpf_mtap(ifp, m_head);
   5034 	}
   5035 
   5036 	if (count == 0) {
   5037 		/* no packets were dequeued */
   5038 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5039 		    "%s(): No packets were dequeued\n", __func__);
   5040 		goto bnx_start_exit;
   5041 	}
   5042 
   5043 	/* Update the driver's counters. */
   5044 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5045 
   5046 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   5047 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
   5048 	    tx_chain_prod, sc->tx_prod_bseq);
   5049 
   5050 	/* Start the transmit. */
   5051 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5052 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5053 
   5054 	/* Set the tx timeout. */
   5055 	ifp->if_timer = BNX_TX_TIMEOUT;
   5056 
   5057 bnx_start_exit:
   5058 	return;
   5059 }
   5060 
   5061 /****************************************************************************/
   5062 /* Handles any IOCTL calls from the operating system.                       */
   5063 /*                                                                          */
   5064 /* Returns:                                                                 */
   5065 /*   0 for success, positive value for failure.                             */
   5066 /****************************************************************************/
   5067 int
   5068 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5069 {
   5070 	struct bnx_softc	*sc = ifp->if_softc;
   5071 	struct ifreq		*ifr = (struct ifreq *) data;
   5072 	struct mii_data		*mii = &sc->bnx_mii;
   5073 	int			s, error = 0;
   5074 
   5075 	s = splnet();
   5076 
   5077 	switch (command) {
   5078 	case SIOCSIFFLAGS:
   5079 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5080 			break;
   5081 		/* XXX set an ifflags callback and let ether_ioctl
   5082 		 * handle all of this.
   5083 		 */
   5084 		if (ifp->if_flags & IFF_UP) {
   5085 			if (ifp->if_flags & IFF_RUNNING)
   5086 				error = ENETRESET;
   5087 			else
   5088 				bnx_init(ifp);
   5089 		} else if (ifp->if_flags & IFF_RUNNING)
   5090 			bnx_stop(ifp, 1);
   5091 		break;
   5092 
   5093 	case SIOCSIFMEDIA:
   5094 	case SIOCGIFMEDIA:
   5095 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5096 		    sc->bnx_phy_flags);
   5097 
   5098 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5099 		break;
   5100 
   5101 	default:
   5102 		error = ether_ioctl(ifp, command, data);
   5103 	}
   5104 
   5105 	if (error == ENETRESET) {
   5106 		if (ifp->if_flags & IFF_RUNNING)
   5107 			bnx_iff(sc);
   5108 		error = 0;
   5109 	}
   5110 
   5111 	splx(s);
   5112 	return (error);
   5113 }
   5114 
   5115 /****************************************************************************/
   5116 /* Transmit timeout handler.                                                */
   5117 /*                                                                          */
   5118 /* Returns:                                                                 */
   5119 /*   Nothing.                                                               */
   5120 /****************************************************************************/
   5121 void
   5122 bnx_watchdog(struct ifnet *ifp)
   5123 {
   5124 	struct bnx_softc	*sc = ifp->if_softc;
   5125 
   5126 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5127 	    bnx_dump_status_block(sc));
   5128 	/*
   5129 	 * If we are in this routine because of pause frames, then
   5130 	 * don't reset the hardware.
   5131 	 */
   5132 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5133 		return;
   5134 
   5135 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5136 
   5137 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5138 
   5139 	bnx_init(ifp);
   5140 
   5141 	ifp->if_oerrors++;
   5142 }
   5143 
   5144 /*
   5145  * Interrupt handler.
   5146  */
   5147 /****************************************************************************/
   5148 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5149 /* interrupt and then calls a separate routine for handle the various       */
   5150 /* interrupt causes (PHY, TX, RX).                                          */
   5151 /*                                                                          */
   5152 /* Returns:                                                                 */
   5153 /*   0 for success, positive value for failure.                             */
   5154 /****************************************************************************/
   5155 int
   5156 bnx_intr(void *xsc)
   5157 {
   5158 	struct bnx_softc	*sc;
   5159 	struct ifnet		*ifp;
   5160 	u_int32_t		status_attn_bits;
   5161 	const struct status_block *sblk;
   5162 
   5163 	sc = xsc;
   5164 
   5165 	ifp = &sc->bnx_ec.ec_if;
   5166 
   5167 	if (!device_is_active(sc->bnx_dev) ||
   5168 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5169 		return 0;
   5170 
   5171 	DBRUNIF(1, sc->interrupts_generated++);
   5172 
   5173 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5174 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   5175 
   5176 	/*
   5177 	 * If the hardware status block index
   5178 	 * matches the last value read by the
   5179 	 * driver and we haven't asserted our
   5180 	 * interrupt then there's nothing to do.
   5181 	 */
   5182 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   5183 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   5184 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   5185 		return (0);
   5186 
   5187 	/* Ack the interrupt and stop others from occuring. */
   5188 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5189 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   5190 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5191 
   5192 	/* Keep processing data as long as there is work to do. */
   5193 	for (;;) {
   5194 		sblk = sc->status_block;
   5195 		status_attn_bits = sblk->status_attn_bits;
   5196 
   5197 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5198 		    aprint_debug("Simulating unexpected status attention bit set.");
   5199 		    status_attn_bits = status_attn_bits |
   5200 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5201 
   5202 		/* Was it a link change interrupt? */
   5203 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5204 		    (sblk->status_attn_bits_ack &
   5205 		    STATUS_ATTN_BITS_LINK_STATE))
   5206 			bnx_phy_intr(sc);
   5207 
   5208 		/* If any other attention is asserted then the chip is toast. */
   5209 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5210 		    (sblk->status_attn_bits_ack &
   5211 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5212 			DBRUN(1, sc->unexpected_attentions++);
   5213 
   5214 			BNX_PRINTF(sc,
   5215 			    "Fatal attention detected: 0x%08X\n",
   5216 			    sblk->status_attn_bits);
   5217 
   5218 			DBRUN(BNX_FATAL,
   5219 			    if (bnx_debug_unexpected_attention == 0)
   5220 			    bnx_breakpoint(sc));
   5221 
   5222 			bnx_init(ifp);
   5223 			return (1);
   5224 		}
   5225 
   5226 		/* Check for any completed RX frames. */
   5227 		if (sblk->status_rx_quick_consumer_index0 !=
   5228 		    sc->hw_rx_cons)
   5229 			bnx_rx_intr(sc);
   5230 
   5231 		/* Check for any completed TX frames. */
   5232 		if (sblk->status_tx_quick_consumer_index0 !=
   5233 		    sc->hw_tx_cons)
   5234 			bnx_tx_intr(sc);
   5235 
   5236 		/* Save the status block index value for use during the
   5237 		 * next interrupt.
   5238 		 */
   5239 		sc->last_status_idx = sblk->status_idx;
   5240 
   5241 		/* Prevent speculative reads from getting ahead of the
   5242 		 * status block.
   5243 		 */
   5244 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   5245 		    BUS_SPACE_BARRIER_READ);
   5246 
   5247 		/* If there's no work left then exit the isr. */
   5248 		if ((sblk->status_rx_quick_consumer_index0 ==
   5249 		    sc->hw_rx_cons) &&
   5250 		    (sblk->status_tx_quick_consumer_index0 ==
   5251 		    sc->hw_tx_cons))
   5252 			break;
   5253 	}
   5254 
   5255 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5256 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   5257 
   5258 	/* Re-enable interrupts. */
   5259 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5260 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   5261 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5262 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5263 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   5264 
   5265 	/* Handle any frames that arrived while handling the interrupt. */
   5266 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   5267 		bnx_start(ifp);
   5268 
   5269 	return (1);
   5270 }
   5271 
   5272 /****************************************************************************/
   5273 /* Programs the various packet receive modes (broadcast and multicast).     */
   5274 /*                                                                          */
   5275 /* Returns:                                                                 */
   5276 /*   Nothing.                                                               */
   5277 /****************************************************************************/
   5278 void
   5279 bnx_iff(struct bnx_softc *sc)
   5280 {
   5281 	struct ethercom		*ec = &sc->bnx_ec;
   5282 	struct ifnet		*ifp = &ec->ec_if;
   5283 	struct ether_multi	*enm;
   5284 	struct ether_multistep	step;
   5285 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5286 	u_int32_t		rx_mode, sort_mode;
   5287 	int			h, i;
   5288 
   5289 	/* Initialize receive mode default settings. */
   5290 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5291 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5292 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5293 	ifp->if_flags &= ~IFF_ALLMULTI;
   5294 
   5295 	/*
   5296 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5297 	 * be enbled.
   5298 	 */
   5299 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5300 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5301 
   5302 	/*
   5303 	 * Check for promiscuous, all multicast, or selected
   5304 	 * multicast address filtering.
   5305 	 */
   5306 	if (ifp->if_flags & IFF_PROMISC) {
   5307 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5308 
   5309 		ifp->if_flags |= IFF_ALLMULTI;
   5310 		/* Enable promiscuous mode. */
   5311 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5312 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5313 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5314 allmulti:
   5315 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5316 
   5317 		ifp->if_flags |= IFF_ALLMULTI;
   5318 		/* Enable all multicast addresses. */
   5319 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5320 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5321 			    0xffffffff);
   5322 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5323 	} else {
   5324 		/* Accept one or more multicast(s). */
   5325 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5326 
   5327 		ETHER_FIRST_MULTI(step, ec, enm);
   5328 		while (enm != NULL) {
   5329 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5330 			    ETHER_ADDR_LEN)) {
   5331 				goto allmulti;
   5332 			}
   5333 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5334 			    0xFF;
   5335 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5336 			ETHER_NEXT_MULTI(step, enm);
   5337 		}
   5338 
   5339 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5340 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5341 			    hashes[i]);
   5342 
   5343 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5344 	}
   5345 
   5346 	/* Only make changes if the recive mode has actually changed. */
   5347 	if (rx_mode != sc->rx_mode) {
   5348 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5349 		    rx_mode);
   5350 
   5351 		sc->rx_mode = rx_mode;
   5352 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5353 	}
   5354 
   5355 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5356 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5357 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5358 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5359 }
   5360 
   5361 /****************************************************************************/
   5362 /* Called periodically to updates statistics from the controllers           */
   5363 /* statistics block.                                                        */
   5364 /*                                                                          */
   5365 /* Returns:                                                                 */
   5366 /*   Nothing.                                                               */
   5367 /****************************************************************************/
   5368 void
   5369 bnx_stats_update(struct bnx_softc *sc)
   5370 {
   5371 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5372 	struct statistics_block	*stats;
   5373 
   5374 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5375 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5376 	    BUS_DMASYNC_POSTREAD);
   5377 
   5378 	stats = (struct statistics_block *)sc->stats_block;
   5379 
   5380 	/*
   5381 	 * Update the interface statistics from the
   5382 	 * hardware statistics.
   5383 	 */
   5384 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5385 
   5386 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5387 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5388 	    (u_long)stats->stat_IfInMBUFDiscards +
   5389 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5390 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5391 
   5392 	ifp->if_oerrors = (u_long)
   5393 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5394 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5395 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5396 
   5397 	/*
   5398 	 * Certain controllers don't report
   5399 	 * carrier sense errors correctly.
   5400 	 * See errata E11_5708CA0_1165.
   5401 	 */
   5402 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5403 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5404 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5405 
   5406 	/*
   5407 	 * Update the sysctl statistics from the
   5408 	 * hardware statistics.
   5409 	 */
   5410 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
   5411 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
   5412 
   5413 	sc->stat_IfHCInBadOctets =
   5414 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5415 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
   5416 
   5417 	sc->stat_IfHCOutOctets =
   5418 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5419 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
   5420 
   5421 	sc->stat_IfHCOutBadOctets =
   5422 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5423 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
   5424 
   5425 	sc->stat_IfHCInUcastPkts =
   5426 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5427 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
   5428 
   5429 	sc->stat_IfHCInMulticastPkts =
   5430 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5431 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
   5432 
   5433 	sc->stat_IfHCInBroadcastPkts =
   5434 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5435 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5436 
   5437 	sc->stat_IfHCOutUcastPkts =
   5438 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5439 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
   5440 
   5441 	sc->stat_IfHCOutMulticastPkts =
   5442 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5443 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5444 
   5445 	sc->stat_IfHCOutBroadcastPkts =
   5446 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5447 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5448 
   5449 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5450 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5451 
   5452 	sc->stat_Dot3StatsCarrierSenseErrors =
   5453 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5454 
   5455 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5456 
   5457 	sc->stat_Dot3StatsAlignmentErrors =
   5458 	    stats->stat_Dot3StatsAlignmentErrors;
   5459 
   5460 	sc->stat_Dot3StatsSingleCollisionFrames =
   5461 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5462 
   5463 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5464 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5465 
   5466 	sc->stat_Dot3StatsDeferredTransmissions =
   5467 	    stats->stat_Dot3StatsDeferredTransmissions;
   5468 
   5469 	sc->stat_Dot3StatsExcessiveCollisions =
   5470 	    stats->stat_Dot3StatsExcessiveCollisions;
   5471 
   5472 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5473 
   5474 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5475 
   5476 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5477 
   5478 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5479 
   5480 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5481 
   5482 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5483 
   5484 	sc->stat_EtherStatsPktsRx64Octets =
   5485 	    stats->stat_EtherStatsPktsRx64Octets;
   5486 
   5487 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5488 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5489 
   5490 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5491 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5492 
   5493 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5494 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5495 
   5496 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5497 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5498 
   5499 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5500 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5501 
   5502 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5503 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5504 
   5505 	sc->stat_EtherStatsPktsTx64Octets =
   5506 	    stats->stat_EtherStatsPktsTx64Octets;
   5507 
   5508 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5509 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5510 
   5511 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5512 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5513 
   5514 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5515 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5516 
   5517 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5518 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5519 
   5520 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5521 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5522 
   5523 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5524 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5525 
   5526 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5527 
   5528 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5529 
   5530 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5531 
   5532 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5533 
   5534 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5535 
   5536 	sc->stat_MacControlFramesReceived =
   5537 	    stats->stat_MacControlFramesReceived;
   5538 
   5539 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5540 
   5541 	sc->stat_IfInFramesL2FilterDiscards =
   5542 	    stats->stat_IfInFramesL2FilterDiscards;
   5543 
   5544 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5545 
   5546 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5547 
   5548 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5549 
   5550 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5551 
   5552 	sc->stat_CatchupInRuleCheckerDiscards =
   5553 	    stats->stat_CatchupInRuleCheckerDiscards;
   5554 
   5555 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5556 
   5557 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5558 
   5559 	sc->stat_CatchupInRuleCheckerP4Hit =
   5560 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5561 
   5562 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5563 }
   5564 
   5565 void
   5566 bnx_tick(void *xsc)
   5567 {
   5568 	struct bnx_softc	*sc = xsc;
   5569 	struct mii_data		*mii;
   5570 	u_int32_t		msg;
   5571 	u_int16_t		prod, chain_prod;
   5572 	u_int32_t		prod_bseq;
   5573 	int s = splnet();
   5574 
   5575 	/* Tell the firmware that the driver is still running. */
   5576 #ifdef BNX_DEBUG
   5577 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5578 #else
   5579 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5580 #endif
   5581 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5582 
   5583 	/* Update the statistics from the hardware statistics block. */
   5584 	bnx_stats_update(sc);
   5585 
   5586 	/* Schedule the next tick. */
   5587 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5588 
   5589 	mii = &sc->bnx_mii;
   5590 	mii_tick(mii);
   5591 
   5592 	/* try to get more RX buffers, just in case */
   5593 	prod = sc->rx_prod;
   5594 	prod_bseq = sc->rx_prod_bseq;
   5595 	chain_prod = RX_CHAIN_IDX(prod);
   5596 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5597 	sc->rx_prod = prod;
   5598 	sc->rx_prod_bseq = prod_bseq;
   5599 	splx(s);
   5600 	return;
   5601 }
   5602 
   5603 /****************************************************************************/
   5604 /* BNX Debug Routines                                                       */
   5605 /****************************************************************************/
   5606 #ifdef BNX_DEBUG
   5607 
   5608 /****************************************************************************/
   5609 /* Prints out information about an mbuf.                                    */
   5610 /*                                                                          */
   5611 /* Returns:                                                                 */
   5612 /*   Nothing.                                                               */
   5613 /****************************************************************************/
   5614 void
   5615 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5616 {
   5617 	struct mbuf		*mp = m;
   5618 
   5619 	if (m == NULL) {
   5620 		/* Index out of range. */
   5621 		aprint_error("mbuf ptr is null!\n");
   5622 		return;
   5623 	}
   5624 
   5625 	while (mp) {
   5626 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5627 		    mp, mp->m_len);
   5628 
   5629 		if (mp->m_flags & M_EXT)
   5630 			aprint_debug("M_EXT ");
   5631 		if (mp->m_flags & M_PKTHDR)
   5632 			aprint_debug("M_PKTHDR ");
   5633 		aprint_debug("\n");
   5634 
   5635 		if (mp->m_flags & M_EXT)
   5636 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   5637 			    mp, mp->m_ext.ext_size);
   5638 
   5639 		mp = mp->m_next;
   5640 	}
   5641 }
   5642 
   5643 /****************************************************************************/
   5644 /* Prints out the mbufs in the TX mbuf chain.                               */
   5645 /*                                                                          */
   5646 /* Returns:                                                                 */
   5647 /*   Nothing.                                                               */
   5648 /****************************************************************************/
   5649 void
   5650 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5651 {
   5652 #if 0
   5653 	struct mbuf		*m;
   5654 	int			i;
   5655 
   5656 	aprint_debug_dev(sc->bnx_dev,
   5657 	    "----------------------------"
   5658 	    "  tx mbuf data  "
   5659 	    "----------------------------\n");
   5660 
   5661 	for (i = 0; i < count; i++) {
   5662 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5663 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5664 		bnx_dump_mbuf(sc, m);
   5665 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5666 	}
   5667 
   5668 	aprint_debug_dev(sc->bnx_dev,
   5669 	    "--------------------------------------------"
   5670 	    "----------------------------\n");
   5671 #endif
   5672 }
   5673 
   5674 /*
   5675  * This routine prints the RX mbuf chain.
   5676  */
   5677 void
   5678 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5679 {
   5680 	struct mbuf		*m;
   5681 	int			i;
   5682 
   5683 	aprint_debug_dev(sc->bnx_dev,
   5684 	    "----------------------------"
   5685 	    "  rx mbuf data  "
   5686 	    "----------------------------\n");
   5687 
   5688 	for (i = 0; i < count; i++) {
   5689 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5690 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5691 		bnx_dump_mbuf(sc, m);
   5692 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5693 	}
   5694 
   5695 
   5696 	aprint_debug_dev(sc->bnx_dev,
   5697 	    "--------------------------------------------"
   5698 	    "----------------------------\n");
   5699 }
   5700 
   5701 void
   5702 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5703 {
   5704 	if (idx > MAX_TX_BD)
   5705 		/* Index out of range. */
   5706 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5707 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5708 		/* TX Chain page pointer. */
   5709 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5710 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5711 		    txbd->tx_bd_haddr_lo);
   5712 	else
   5713 		/* Normal tx_bd entry. */
   5714 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5715 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5716 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5717 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5718 		    txbd->tx_bd_flags);
   5719 }
   5720 
   5721 void
   5722 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5723 {
   5724 	if (idx > MAX_RX_BD)
   5725 		/* Index out of range. */
   5726 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5727 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5728 		/* TX Chain page pointer. */
   5729 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5730 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5731 		    rxbd->rx_bd_haddr_lo);
   5732 	else
   5733 		/* Normal tx_bd entry. */
   5734 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5735 		    "0x%08X, flags = 0x%08X\n", idx,
   5736 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5737 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5738 }
   5739 
   5740 void
   5741 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5742 {
   5743 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5744 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5745 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5746 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5747 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5748 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5749 }
   5750 
   5751 /*
   5752  * This routine prints the TX chain.
   5753  */
   5754 void
   5755 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5756 {
   5757 	struct tx_bd		*txbd;
   5758 	int			i;
   5759 
   5760 	/* First some info about the tx_bd chain structure. */
   5761 	aprint_debug_dev(sc->bnx_dev,
   5762 	    "----------------------------"
   5763 	    "  tx_bd  chain  "
   5764 	    "----------------------------\n");
   5765 
   5766 	BNX_PRINTF(sc,
   5767 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5768 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
   5769 
   5770 	BNX_PRINTF(sc,
   5771 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5772 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
   5773 
   5774 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
   5775 
   5776 	aprint_error_dev(sc->bnx_dev, ""
   5777 	    "-----------------------------"
   5778 	    "   tx_bd data   "
   5779 	    "-----------------------------\n");
   5780 
   5781 	/* Now print out the tx_bd's themselves. */
   5782 	for (i = 0; i < count; i++) {
   5783 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5784 		bnx_dump_txbd(sc, tx_prod, txbd);
   5785 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5786 	}
   5787 
   5788 	aprint_debug_dev(sc->bnx_dev,
   5789 	    "-----------------------------"
   5790 	    "--------------"
   5791 	    "-----------------------------\n");
   5792 }
   5793 
   5794 /*
   5795  * This routine prints the RX chain.
   5796  */
   5797 void
   5798 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5799 {
   5800 	struct rx_bd		*rxbd;
   5801 	int			i;
   5802 
   5803 	/* First some info about the tx_bd chain structure. */
   5804 	aprint_debug_dev(sc->bnx_dev,
   5805 	    "----------------------------"
   5806 	    "  rx_bd  chain  "
   5807 	    "----------------------------\n");
   5808 
   5809 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   5810 
   5811 	BNX_PRINTF(sc,
   5812 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5813 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
   5814 
   5815 	BNX_PRINTF(sc,
   5816 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5817 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
   5818 
   5819 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
   5820 
   5821 	aprint_error_dev(sc->bnx_dev,
   5822 	    "----------------------------"
   5823 	    "   rx_bd data   "
   5824 	    "----------------------------\n");
   5825 
   5826 	/* Now print out the rx_bd's themselves. */
   5827 	for (i = 0; i < count; i++) {
   5828 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5829 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5830 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5831 	}
   5832 
   5833 	aprint_debug_dev(sc->bnx_dev,
   5834 	    "----------------------------"
   5835 	    "--------------"
   5836 	    "----------------------------\n");
   5837 }
   5838 
   5839 /*
   5840  * This routine prints the status block.
   5841  */
   5842 void
   5843 bnx_dump_status_block(struct bnx_softc *sc)
   5844 {
   5845 	struct status_block	*sblk;
   5846 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5847 	    BUS_DMASYNC_POSTREAD);
   5848 
   5849 	sblk = sc->status_block;
   5850 
   5851    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
   5852 	    "-----------------------------\n");
   5853 
   5854 	BNX_PRINTF(sc,
   5855 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5856 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5857 	    sblk->status_idx);
   5858 
   5859 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5860 	    sblk->status_rx_quick_consumer_index0,
   5861 	    sblk->status_tx_quick_consumer_index0);
   5862 
   5863 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5864 
   5865 	/* Theses indices are not used for normal L2 drivers. */
   5866 	if (sblk->status_rx_quick_consumer_index1 ||
   5867 		sblk->status_tx_quick_consumer_index1)
   5868 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5869 		    sblk->status_rx_quick_consumer_index1,
   5870 		    sblk->status_tx_quick_consumer_index1);
   5871 
   5872 	if (sblk->status_rx_quick_consumer_index2 ||
   5873 		sblk->status_tx_quick_consumer_index2)
   5874 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5875 		    sblk->status_rx_quick_consumer_index2,
   5876 		    sblk->status_tx_quick_consumer_index2);
   5877 
   5878 	if (sblk->status_rx_quick_consumer_index3 ||
   5879 		sblk->status_tx_quick_consumer_index3)
   5880 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5881 		    sblk->status_rx_quick_consumer_index3,
   5882 		    sblk->status_tx_quick_consumer_index3);
   5883 
   5884 	if (sblk->status_rx_quick_consumer_index4 ||
   5885 		sblk->status_rx_quick_consumer_index5)
   5886 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5887 		    sblk->status_rx_quick_consumer_index4,
   5888 		    sblk->status_rx_quick_consumer_index5);
   5889 
   5890 	if (sblk->status_rx_quick_consumer_index6 ||
   5891 		sblk->status_rx_quick_consumer_index7)
   5892 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5893 		    sblk->status_rx_quick_consumer_index6,
   5894 		    sblk->status_rx_quick_consumer_index7);
   5895 
   5896 	if (sblk->status_rx_quick_consumer_index8 ||
   5897 		sblk->status_rx_quick_consumer_index9)
   5898 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5899 		    sblk->status_rx_quick_consumer_index8,
   5900 		    sblk->status_rx_quick_consumer_index9);
   5901 
   5902 	if (sblk->status_rx_quick_consumer_index10 ||
   5903 		sblk->status_rx_quick_consumer_index11)
   5904 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   5905 		    sblk->status_rx_quick_consumer_index10,
   5906 		    sblk->status_rx_quick_consumer_index11);
   5907 
   5908 	if (sblk->status_rx_quick_consumer_index12 ||
   5909 		sblk->status_rx_quick_consumer_index13)
   5910 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   5911 		    sblk->status_rx_quick_consumer_index12,
   5912 		    sblk->status_rx_quick_consumer_index13);
   5913 
   5914 	if (sblk->status_rx_quick_consumer_index14 ||
   5915 		sblk->status_rx_quick_consumer_index15)
   5916 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   5917 		    sblk->status_rx_quick_consumer_index14,
   5918 		    sblk->status_rx_quick_consumer_index15);
   5919 
   5920 	if (sblk->status_completion_producer_index ||
   5921 		sblk->status_cmd_consumer_index)
   5922 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   5923 		    sblk->status_completion_producer_index,
   5924 		    sblk->status_cmd_consumer_index);
   5925 
   5926 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   5927 	    "-----------------------------\n");
   5928 }
   5929 
   5930 /*
   5931  * This routine prints the statistics block.
   5932  */
   5933 void
   5934 bnx_dump_stats_block(struct bnx_softc *sc)
   5935 {
   5936 	struct statistics_block	*sblk;
   5937 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5938 	    BUS_DMASYNC_POSTREAD);
   5939 
   5940 	sblk = sc->stats_block;
   5941 
   5942 	aprint_debug_dev(sc->bnx_dev, ""
   5943 	    "-----------------------------"
   5944 	    " Stats  Block "
   5945 	    "-----------------------------\n");
   5946 
   5947 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   5948 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   5949 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   5950 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   5951 
   5952 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   5953 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   5954 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   5955 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   5956 
   5957 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   5958 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   5959 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   5960 	    sblk->stat_IfHCInMulticastPkts_hi,
   5961 	    sblk->stat_IfHCInMulticastPkts_lo);
   5962 
   5963 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   5964 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   5965 	    sblk->stat_IfHCInBroadcastPkts_hi,
   5966 	    sblk->stat_IfHCInBroadcastPkts_lo,
   5967 	    sblk->stat_IfHCOutUcastPkts_hi,
   5968 	    sblk->stat_IfHCOutUcastPkts_lo);
   5969 
   5970 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   5971 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   5972 	    sblk->stat_IfHCOutMulticastPkts_hi,
   5973 	    sblk->stat_IfHCOutMulticastPkts_lo,
   5974 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   5975 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   5976 
   5977 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   5978 		BNX_PRINTF(sc, "0x%08X : "
   5979 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   5980 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   5981 
   5982 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   5983 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   5984 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   5985 
   5986 	if (sblk->stat_Dot3StatsFCSErrors)
   5987 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   5988 		    sblk->stat_Dot3StatsFCSErrors);
   5989 
   5990 	if (sblk->stat_Dot3StatsAlignmentErrors)
   5991 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   5992 		    sblk->stat_Dot3StatsAlignmentErrors);
   5993 
   5994 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   5995 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   5996 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   5997 
   5998 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   5999 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6000 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6001 
   6002 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6003 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6004 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6005 
   6006 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6007 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6008 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6009 
   6010 	if (sblk->stat_Dot3StatsLateCollisions)
   6011 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6012 		    sblk->stat_Dot3StatsLateCollisions);
   6013 
   6014 	if (sblk->stat_EtherStatsCollisions)
   6015 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6016 		    sblk->stat_EtherStatsCollisions);
   6017 
   6018 	if (sblk->stat_EtherStatsFragments)
   6019 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6020 		    sblk->stat_EtherStatsFragments);
   6021 
   6022 	if (sblk->stat_EtherStatsJabbers)
   6023 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6024 		    sblk->stat_EtherStatsJabbers);
   6025 
   6026 	if (sblk->stat_EtherStatsUndersizePkts)
   6027 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6028 		    sblk->stat_EtherStatsUndersizePkts);
   6029 
   6030 	if (sblk->stat_EtherStatsOverrsizePkts)
   6031 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6032 		    sblk->stat_EtherStatsOverrsizePkts);
   6033 
   6034 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6035 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6036 		    sblk->stat_EtherStatsPktsRx64Octets);
   6037 
   6038 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6039 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6040 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6041 
   6042 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6043 		BNX_PRINTF(sc, "0x%08X : "
   6044 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6045 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6046 
   6047 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6048 		BNX_PRINTF(sc, "0x%08X : "
   6049 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6050 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6051 
   6052 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6053 		BNX_PRINTF(sc, "0x%08X : "
   6054 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6055 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6056 
   6057 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6058 		BNX_PRINTF(sc, "0x%08X : "
   6059 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6060 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6061 
   6062 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6063 		BNX_PRINTF(sc, "0x%08X : "
   6064 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6065 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6066 
   6067 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6068 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6069 		    sblk->stat_EtherStatsPktsTx64Octets);
   6070 
   6071 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6072 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6073 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6074 
   6075 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6076 		BNX_PRINTF(sc, "0x%08X : "
   6077 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6078 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6079 
   6080 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6081 		BNX_PRINTF(sc, "0x%08X : "
   6082 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6083 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6084 
   6085 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6086 		BNX_PRINTF(sc, "0x%08X : "
   6087 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6088 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6089 
   6090 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6091 		BNX_PRINTF(sc, "0x%08X : "
   6092 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6093 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6094 
   6095 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6096 		BNX_PRINTF(sc, "0x%08X : "
   6097 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6098 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6099 
   6100 	if (sblk->stat_XonPauseFramesReceived)
   6101 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6102 		    sblk->stat_XonPauseFramesReceived);
   6103 
   6104 	if (sblk->stat_XoffPauseFramesReceived)
   6105 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6106 		    sblk->stat_XoffPauseFramesReceived);
   6107 
   6108 	if (sblk->stat_OutXonSent)
   6109 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6110 		    sblk->stat_OutXonSent);
   6111 
   6112 	if (sblk->stat_OutXoffSent)
   6113 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6114 		    sblk->stat_OutXoffSent);
   6115 
   6116 	if (sblk->stat_FlowControlDone)
   6117 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6118 		    sblk->stat_FlowControlDone);
   6119 
   6120 	if (sblk->stat_MacControlFramesReceived)
   6121 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6122 		    sblk->stat_MacControlFramesReceived);
   6123 
   6124 	if (sblk->stat_XoffStateEntered)
   6125 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6126 		    sblk->stat_XoffStateEntered);
   6127 
   6128 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6129 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6130 		    sblk->stat_IfInFramesL2FilterDiscards);
   6131 
   6132 	if (sblk->stat_IfInRuleCheckerDiscards)
   6133 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6134 		    sblk->stat_IfInRuleCheckerDiscards);
   6135 
   6136 	if (sblk->stat_IfInFTQDiscards)
   6137 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6138 		    sblk->stat_IfInFTQDiscards);
   6139 
   6140 	if (sblk->stat_IfInMBUFDiscards)
   6141 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6142 		    sblk->stat_IfInMBUFDiscards);
   6143 
   6144 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6145 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6146 		    sblk->stat_IfInRuleCheckerP4Hit);
   6147 
   6148 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6149 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6150 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6151 
   6152 	if (sblk->stat_CatchupInFTQDiscards)
   6153 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6154 		    sblk->stat_CatchupInFTQDiscards);
   6155 
   6156 	if (sblk->stat_CatchupInMBUFDiscards)
   6157 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6158 		    sblk->stat_CatchupInMBUFDiscards);
   6159 
   6160 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6161 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6162 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6163 
   6164 	aprint_debug_dev(sc->bnx_dev,
   6165 	    "-----------------------------"
   6166 	    "--------------"
   6167 	    "-----------------------------\n");
   6168 }
   6169 
   6170 void
   6171 bnx_dump_driver_state(struct bnx_softc *sc)
   6172 {
   6173 	aprint_debug_dev(sc->bnx_dev,
   6174 	    "-----------------------------"
   6175 	    " Driver State "
   6176 	    "-----------------------------\n");
   6177 
   6178 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6179 	    "address\n", sc);
   6180 
   6181 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6182 	    sc->status_block);
   6183 
   6184 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6185 	    "address\n", sc->stats_block);
   6186 
   6187 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6188 	    "adddress\n", sc->tx_bd_chain);
   6189 
   6190 #if 0
   6191 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6192 	    sc->rx_bd_chain);
   6193 
   6194 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6195 	    sc->tx_mbuf_ptr);
   6196 #endif
   6197 
   6198 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6199 	    sc->rx_mbuf_ptr);
   6200 
   6201 	BNX_PRINTF(sc,
   6202 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6203 	    sc->interrupts_generated);
   6204 
   6205 	BNX_PRINTF(sc,
   6206 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6207 	    sc->rx_interrupts);
   6208 
   6209 	BNX_PRINTF(sc,
   6210 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6211 	    sc->tx_interrupts);
   6212 
   6213 	BNX_PRINTF(sc,
   6214 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6215 	    sc->last_status_idx);
   6216 
   6217 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6218 	    sc->tx_prod);
   6219 
   6220 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6221 	    sc->tx_cons);
   6222 
   6223 	BNX_PRINTF(sc,
   6224 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6225 	    sc->tx_prod_bseq);
   6226 	BNX_PRINTF(sc,
   6227 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6228 	    sc->tx_mbuf_alloc);
   6229 
   6230 	BNX_PRINTF(sc,
   6231 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6232 	    sc->used_tx_bd);
   6233 
   6234 	BNX_PRINTF(sc,
   6235 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6236 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6237 
   6238 
   6239 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6240 	    sc->rx_prod);
   6241 
   6242 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6243 	    sc->rx_cons);
   6244 
   6245 	BNX_PRINTF(sc,
   6246 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6247 	    sc->rx_prod_bseq);
   6248 
   6249 	BNX_PRINTF(sc,
   6250 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6251 	    sc->rx_mbuf_alloc);
   6252 
   6253 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6254 	    sc->free_rx_bd);
   6255 
   6256 	BNX_PRINTF(sc,
   6257 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6258 	    sc->rx_low_watermark, sc->max_rx_bd);
   6259 
   6260 	BNX_PRINTF(sc,
   6261 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6262 	    "mbuf alloc failures\n",
   6263 	    sc->mbuf_alloc_failed);
   6264 
   6265 	BNX_PRINTF(sc,
   6266 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6267 	    "simulated mbuf alloc failures\n",
   6268 	    sc->mbuf_sim_alloc_failed);
   6269 
   6270 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6271 	    "-----------------------------\n");
   6272 }
   6273 
   6274 void
   6275 bnx_dump_hw_state(struct bnx_softc *sc)
   6276 {
   6277 	u_int32_t		val1;
   6278 	int			i;
   6279 
   6280 	aprint_debug_dev(sc->bnx_dev,
   6281 	    "----------------------------"
   6282 	    " Hardware State "
   6283 	    "----------------------------\n");
   6284 
   6285 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   6286 
   6287 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6288 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6289 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6290 
   6291 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6292 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6293 
   6294 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6295 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6296 
   6297 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6298 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6299 	    BNX_EMAC_STATUS);
   6300 
   6301 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6302 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6303 
   6304 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6305 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6306 	    BNX_TBDR_STATUS);
   6307 
   6308 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6309 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6310 	    BNX_TDMA_STATUS);
   6311 
   6312 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6313 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6314 
   6315 	aprint_debug_dev(sc->bnx_dev,
   6316 	    "----------------------------"
   6317 	    "----------------"
   6318 	    "----------------------------\n");
   6319 
   6320 	aprint_debug_dev(sc->bnx_dev,
   6321 	    "----------------------------"
   6322 	    " Register  Dump "
   6323 	    "----------------------------\n");
   6324 
   6325 	for (i = 0x400; i < 0x8000; i += 0x10)
   6326 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6327 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6328 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6329 
   6330 	aprint_debug_dev(sc->bnx_dev,
   6331 	    "----------------------------"
   6332 	    "----------------"
   6333 	    "----------------------------\n");
   6334 }
   6335 
   6336 void
   6337 bnx_breakpoint(struct bnx_softc *sc)
   6338 {
   6339 	/* Unreachable code to shut the compiler up about unused functions. */
   6340 	if (0) {
   6341    		bnx_dump_txbd(sc, 0, NULL);
   6342 		bnx_dump_rxbd(sc, 0, NULL);
   6343 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6344 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6345 		bnx_dump_l2fhdr(sc, 0, NULL);
   6346 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6347 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6348 		bnx_dump_status_block(sc);
   6349 		bnx_dump_stats_block(sc);
   6350 		bnx_dump_driver_state(sc);
   6351 		bnx_dump_hw_state(sc);
   6352 	}
   6353 
   6354 	bnx_dump_driver_state(sc);
   6355 	/* Print the important status block fields. */
   6356 	bnx_dump_status_block(sc);
   6357 
   6358 #if 0
   6359 	/* Call the debugger. */
   6360 	breakpoint();
   6361 #endif
   6362 
   6363 	return;
   6364 }
   6365 #endif
   6366