if_bnx.c revision 1.42 1 /* $NetBSD: if_bnx.c,v 1.42 2011/01/26 00:09:27 dyoung Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.42 2011/01/26 00:09:27 dyoung Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 *
52 * BCM5706C A0, A1
53 * BCM5706S A0, A1
54 * BCM5708C A0, B0
55 * BCM5708S A0, B0
56 * BCM5709C A0 B0, B1, B2 (pre-production)
57 * BCM5709S A0, B0, B1, B2 (pre-production)
58 */
59
60 #include <sys/callout.h>
61 #include <sys/mutex.h>
62
63 #include <dev/pci/if_bnxreg.h>
64 #include <dev/pci/if_bnxvar.h>
65
66 #include <dev/microcode/bnx/bnxfw.h>
67
68 /****************************************************************************/
69 /* BNX Driver Version */
70 /****************************************************************************/
71 #define BNX_DRIVER_VERSION "v0.9.6"
72
73 /****************************************************************************/
74 /* BNX Debug Options */
75 /****************************************************************************/
76 #ifdef BNX_DEBUG
77 u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
78
79 /* 0 = Never */
80 /* 1 = 1 in 2,147,483,648 */
81 /* 256 = 1 in 8,388,608 */
82 /* 2048 = 1 in 1,048,576 */
83 /* 65536 = 1 in 32,768 */
84 /* 1048576 = 1 in 2,048 */
85 /* 268435456 = 1 in 8 */
86 /* 536870912 = 1 in 4 */
87 /* 1073741824 = 1 in 2 */
88
89 /* Controls how often the l2_fhdr frame error check will fail. */
90 int bnx_debug_l2fhdr_status_check = 0;
91
92 /* Controls how often the unexpected attention check will fail. */
93 int bnx_debug_unexpected_attention = 0;
94
95 /* Controls how often to simulate an mbuf allocation failure. */
96 int bnx_debug_mbuf_allocation_failure = 0;
97
98 /* Controls how often to simulate a DMA mapping failure. */
99 int bnx_debug_dma_map_addr_failure = 0;
100
101 /* Controls how often to simulate a bootcode failure. */
102 int bnx_debug_bootcode_running_failure = 0;
103 #endif
104
105 /****************************************************************************/
106 /* PCI Device ID Table */
107 /* */
108 /* Used by bnx_probe() to identify the devices supported by this driver. */
109 /****************************************************************************/
110 static const struct bnx_product {
111 pci_vendor_id_t bp_vendor;
112 pci_product_id_t bp_product;
113 pci_vendor_id_t bp_subvendor;
114 pci_product_id_t bp_subproduct;
115 const char *bp_name;
116 } bnx_devices[] = {
117 #ifdef PCI_SUBPRODUCT_HP_NC370T
118 {
119 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
120 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
121 "HP NC370T Multifunction Gigabit Server Adapter"
122 },
123 #endif
124 #ifdef PCI_SUBPRODUCT_HP_NC370i
125 {
126 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
127 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
128 "HP NC370i Multifunction Gigabit Server Adapter"
129 },
130 #endif
131 {
132 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
133 0, 0,
134 "Broadcom NetXtreme II BCM5706 1000Base-T"
135 },
136 #ifdef PCI_SUBPRODUCT_HP_NC370F
137 {
138 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
139 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
140 "HP NC370F Multifunction Gigabit Server Adapter"
141 },
142 #endif
143 {
144 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
145 0, 0,
146 "Broadcom NetXtreme II BCM5706 1000Base-SX"
147 },
148 {
149 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
150 0, 0,
151 "Broadcom NetXtreme II BCM5708 1000Base-T"
152 },
153 {
154 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
155 0, 0,
156 "Broadcom NetXtreme II BCM5708 1000Base-SX"
157 },
158 {
159 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
160 0, 0,
161 "Broadcom NetXtreme II BCM5709 1000Base-T"
162 },
163 {
164 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
165 0, 0,
166 "Broadcom NetXtreme II BCM5709 1000Base-SX"
167 },
168 {
169 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
170 0, 0,
171 "Broadcom NetXtreme II BCM5716 1000Base-T"
172 },
173 {
174 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
175 0, 0,
176 "Broadcom NetXtreme II BCM5716 1000Base-SX"
177 },
178 };
179
180 /****************************************************************************/
181 /* Supported Flash NVRAM device data. */
182 /****************************************************************************/
183 static struct flash_spec flash_table[] =
184 {
185 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
187 /* Slow EEPROM */
188 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
189 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
190 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
191 "EEPROM - slow"},
192 /* Expansion entry 0001 */
193 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
194 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
196 "Entry 0001"},
197 /* Saifun SA25F010 (non-buffered flash) */
198 /* strap, cfg1, & write1 need updates */
199 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
200 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
201 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
202 "Non-buffered flash (128kB)"},
203 /* Saifun SA25F020 (non-buffered flash) */
204 /* strap, cfg1, & write1 need updates */
205 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
206 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
208 "Non-buffered flash (256kB)"},
209 /* Expansion entry 0100 */
210 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
211 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 "Entry 0100"},
214 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
215 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
216 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
217 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
218 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
219 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
220 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
221 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
222 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
223 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
224 /* Saifun SA25F005 (non-buffered flash) */
225 /* strap, cfg1, & write1 need updates */
226 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
227 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
228 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
229 "Non-buffered flash (64kB)"},
230 /* Fast EEPROM */
231 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
232 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
233 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
234 "EEPROM - fast"},
235 /* Expansion entry 1001 */
236 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
237 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
238 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
239 "Entry 1001"},
240 /* Expansion entry 1010 */
241 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
242 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
243 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
244 "Entry 1010"},
245 /* ATMEL AT45DB011B (buffered flash) */
246 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
247 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
248 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
249 "Buffered flash (128kB)"},
250 /* Expansion entry 1100 */
251 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
252 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
253 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
254 "Entry 1100"},
255 /* Expansion entry 1101 */
256 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
257 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
258 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
259 "Entry 1101"},
260 /* Ateml Expansion entry 1110 */
261 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
262 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
263 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
264 "Entry 1110 (Atmel)"},
265 /* ATMEL AT45DB021B (buffered flash) */
266 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
267 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
268 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
269 "Buffered flash (256kB)"},
270 };
271
272 /*
273 * The BCM5709 controllers transparently handle the
274 * differences between Atmel 264 byte pages and all
275 * flash devices which use 256 byte pages, so no
276 * logical-to-physical mapping is required in the
277 * driver.
278 */
279 static struct flash_spec flash_5709 = {
280 .flags = BNX_NV_BUFFERED,
281 .page_bits = BCM5709_FLASH_PAGE_BITS,
282 .page_size = BCM5709_FLASH_PAGE_SIZE,
283 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
284 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
285 .name = "5709 buffered flash (256kB)",
286 };
287
288 /****************************************************************************/
289 /* OpenBSD device entry points. */
290 /****************************************************************************/
291 static int bnx_probe(device_t, cfdata_t, void *);
292 void bnx_attach(device_t, device_t, void *);
293 int bnx_detach(device_t, int);
294
295 /****************************************************************************/
296 /* BNX Debug Data Structure Dump Routines */
297 /****************************************************************************/
298 #ifdef BNX_DEBUG
299 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
300 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
301 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
302 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
303 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
304 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
305 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
306 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
307 void bnx_dump_status_block(struct bnx_softc *);
308 void bnx_dump_stats_block(struct bnx_softc *);
309 void bnx_dump_driver_state(struct bnx_softc *);
310 void bnx_dump_hw_state(struct bnx_softc *);
311 void bnx_breakpoint(struct bnx_softc *);
312 #endif
313
314 /****************************************************************************/
315 /* BNX Register/Memory Access Routines */
316 /****************************************************************************/
317 u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
318 void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
319 void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
320 int bnx_miibus_read_reg(device_t, int, int);
321 void bnx_miibus_write_reg(device_t, int, int, int);
322 void bnx_miibus_statchg(device_t);
323
324 /****************************************************************************/
325 /* BNX NVRAM Access Routines */
326 /****************************************************************************/
327 int bnx_acquire_nvram_lock(struct bnx_softc *);
328 int bnx_release_nvram_lock(struct bnx_softc *);
329 void bnx_enable_nvram_access(struct bnx_softc *);
330 void bnx_disable_nvram_access(struct bnx_softc *);
331 int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
332 u_int32_t);
333 int bnx_init_nvram(struct bnx_softc *);
334 int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
335 int bnx_nvram_test(struct bnx_softc *);
336 #ifdef BNX_NVRAM_WRITE_SUPPORT
337 int bnx_enable_nvram_write(struct bnx_softc *);
338 void bnx_disable_nvram_write(struct bnx_softc *);
339 int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
340 int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
341 u_int32_t);
342 int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
343 #endif
344
345 /****************************************************************************/
346 /* */
347 /****************************************************************************/
348 void bnx_get_media(struct bnx_softc *);
349 void bnx_init_media(struct bnx_softc *);
350 int bnx_dma_alloc(struct bnx_softc *);
351 void bnx_dma_free(struct bnx_softc *);
352 void bnx_release_resources(struct bnx_softc *);
353
354 /****************************************************************************/
355 /* BNX Firmware Synchronization and Load */
356 /****************************************************************************/
357 int bnx_fw_sync(struct bnx_softc *, u_int32_t);
358 void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
359 u_int32_t);
360 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 struct fw_info *);
362 void bnx_init_cpus(struct bnx_softc *);
363
364 void bnx_stop(struct ifnet *, int);
365 int bnx_reset(struct bnx_softc *, u_int32_t);
366 int bnx_chipinit(struct bnx_softc *);
367 int bnx_blockinit(struct bnx_softc *);
368 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
369 u_int16_t *, u_int32_t *);
370 int bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
371
372 int bnx_init_tx_chain(struct bnx_softc *);
373 void bnx_init_tx_context(struct bnx_softc *);
374 int bnx_init_rx_chain(struct bnx_softc *);
375 void bnx_init_rx_context(struct bnx_softc *);
376 void bnx_free_rx_chain(struct bnx_softc *);
377 void bnx_free_tx_chain(struct bnx_softc *);
378
379 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
380 void bnx_start(struct ifnet *);
381 int bnx_ioctl(struct ifnet *, u_long, void *);
382 void bnx_watchdog(struct ifnet *);
383 int bnx_init(struct ifnet *);
384
385 void bnx_init_context(struct bnx_softc *);
386 void bnx_get_mac_addr(struct bnx_softc *);
387 void bnx_set_mac_addr(struct bnx_softc *);
388 void bnx_phy_intr(struct bnx_softc *);
389 void bnx_rx_intr(struct bnx_softc *);
390 void bnx_tx_intr(struct bnx_softc *);
391 void bnx_disable_intr(struct bnx_softc *);
392 void bnx_enable_intr(struct bnx_softc *);
393
394 int bnx_intr(void *);
395 void bnx_iff(struct bnx_softc *);
396 void bnx_stats_update(struct bnx_softc *);
397 void bnx_tick(void *);
398
399 struct pool *bnx_tx_pool = NULL;
400 int bnx_alloc_pkts(struct bnx_softc *);
401
402 /****************************************************************************/
403 /* OpenBSD device dispatch table. */
404 /****************************************************************************/
405 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
406 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
407
408 /****************************************************************************/
409 /* Device probe function. */
410 /* */
411 /* Compares the device to the driver's list of supported devices and */
412 /* reports back to the OS whether this is the right driver for the device. */
413 /* */
414 /* Returns: */
415 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
416 /****************************************************************************/
417 static const struct bnx_product *
418 bnx_lookup(const struct pci_attach_args *pa)
419 {
420 int i;
421 pcireg_t subid;
422
423 for (i = 0; i < __arraycount(bnx_devices); i++) {
424 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
425 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
426 continue;
427 if (!bnx_devices[i].bp_subvendor)
428 return &bnx_devices[i];
429 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
430 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
431 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
432 return &bnx_devices[i];
433 }
434
435 return NULL;
436 }
437 static int
438 bnx_probe(device_t parent, cfdata_t match, void *aux)
439 {
440 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
441
442 if (bnx_lookup(pa) != NULL)
443 return (1);
444
445 return (0);
446 }
447
448 /****************************************************************************/
449 /* Device attach function. */
450 /* */
451 /* Allocates device resources, performs secondary chip identification, */
452 /* resets and initializes the hardware, and initializes driver instance */
453 /* variables. */
454 /* */
455 /* Returns: */
456 /* 0 on success, positive value on failure. */
457 /****************************************************************************/
458 void
459 bnx_attach(device_t parent, device_t self, void *aux)
460 {
461 const struct bnx_product *bp;
462 struct bnx_softc *sc = device_private(self);
463 prop_dictionary_t dict;
464 struct pci_attach_args *pa = aux;
465 pci_chipset_tag_t pc = pa->pa_pc;
466 pci_intr_handle_t ih;
467 const char *intrstr = NULL;
468 u_int32_t command;
469 struct ifnet *ifp;
470 u_int32_t val;
471 int mii_flags = MIIF_FORCEANEG;
472 pcireg_t memtype;
473
474 if (bnx_tx_pool == NULL) {
475 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
476 if (bnx_tx_pool != NULL) {
477 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
478 0, 0, 0, "bnxpkts", NULL, IPL_NET);
479 } else {
480 aprint_error(": can't alloc bnx_tx_pool\n");
481 return;
482 }
483 }
484
485 bp = bnx_lookup(pa);
486 if (bp == NULL)
487 panic("unknown device");
488
489 sc->bnx_dev = self;
490
491 aprint_naive("\n");
492 aprint_normal(": %s\n", bp->bp_name);
493
494 sc->bnx_pa = *pa;
495
496 /*
497 * Map control/status registers.
498 */
499 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
500 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
501 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
502 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
503
504 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
505 aprint_error_dev(sc->bnx_dev,
506 "failed to enable memory mapping!\n");
507 return;
508 }
509
510 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
511 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
512 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
513 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
514 return;
515 }
516
517 if (pci_intr_map(pa, &ih)) {
518 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
519 goto bnx_attach_fail;
520 }
521
522 intrstr = pci_intr_string(pc, ih);
523
524 /*
525 * Configure byte swap and enable indirect register access.
526 * Rely on CPU to do target byte swapping on big endian systems.
527 * Access to registers outside of PCI configurtion space are not
528 * valid until this is done.
529 */
530 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
531 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
532 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
533
534 /* Save ASIC revsion info. */
535 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
536
537 /*
538 * Find the base address for shared memory access.
539 * Newer versions of bootcode use a signature and offset
540 * while older versions use a fixed address.
541 */
542 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
543 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
544 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
545 (sc->bnx_pa.pa_function << 2));
546 else
547 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
548
549 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
550
551 /* Set initial device and PHY flags */
552 sc->bnx_flags = 0;
553 sc->bnx_phy_flags = 0;
554
555 /* Get PCI bus information (speed and type). */
556 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
557 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
558 u_int32_t clkreg;
559
560 sc->bnx_flags |= BNX_PCIX_FLAG;
561
562 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
563
564 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
565 switch (clkreg) {
566 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
567 sc->bus_speed_mhz = 133;
568 break;
569
570 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
571 sc->bus_speed_mhz = 100;
572 break;
573
574 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
575 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
576 sc->bus_speed_mhz = 66;
577 break;
578
579 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
580 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
581 sc->bus_speed_mhz = 50;
582 break;
583
584 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
585 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
586 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
587 sc->bus_speed_mhz = 33;
588 break;
589 }
590 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
591 sc->bus_speed_mhz = 66;
592 else
593 sc->bus_speed_mhz = 33;
594
595 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
596 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
597
598 /* Reset the controller. */
599 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
600 goto bnx_attach_fail;
601
602 /* Initialize the controller. */
603 if (bnx_chipinit(sc)) {
604 aprint_error_dev(sc->bnx_dev,
605 "Controller initialization failed!\n");
606 goto bnx_attach_fail;
607 }
608
609 /* Perform NVRAM test. */
610 if (bnx_nvram_test(sc)) {
611 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
612 goto bnx_attach_fail;
613 }
614
615 /* Fetch the permanent Ethernet MAC address. */
616 bnx_get_mac_addr(sc);
617 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
618 ether_sprintf(sc->eaddr));
619
620 /*
621 * Trip points control how many BDs
622 * should be ready before generating an
623 * interrupt while ticks control how long
624 * a BD can sit in the chain before
625 * generating an interrupt. Set the default
626 * values for the RX and TX rings.
627 */
628
629 #ifdef BNX_DEBUG
630 /* Force more frequent interrupts. */
631 sc->bnx_tx_quick_cons_trip_int = 1;
632 sc->bnx_tx_quick_cons_trip = 1;
633 sc->bnx_tx_ticks_int = 0;
634 sc->bnx_tx_ticks = 0;
635
636 sc->bnx_rx_quick_cons_trip_int = 1;
637 sc->bnx_rx_quick_cons_trip = 1;
638 sc->bnx_rx_ticks_int = 0;
639 sc->bnx_rx_ticks = 0;
640 #else
641 sc->bnx_tx_quick_cons_trip_int = 20;
642 sc->bnx_tx_quick_cons_trip = 20;
643 sc->bnx_tx_ticks_int = 80;
644 sc->bnx_tx_ticks = 80;
645
646 sc->bnx_rx_quick_cons_trip_int = 6;
647 sc->bnx_rx_quick_cons_trip = 6;
648 sc->bnx_rx_ticks_int = 18;
649 sc->bnx_rx_ticks = 18;
650 #endif
651
652 /* Update statistics once every second. */
653 sc->bnx_stats_ticks = 1000000 & 0xffff00;
654
655 /* Find the media type for the adapter. */
656 bnx_get_media(sc);
657
658 /*
659 * Store config data needed by the PHY driver for
660 * backplane applications
661 */
662 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
663 BNX_SHARED_HW_CFG_CONFIG);
664 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
665 BNX_PORT_HW_CFG_CONFIG);
666
667 /* Allocate DMA memory resources. */
668 sc->bnx_dmatag = pa->pa_dmat;
669 if (bnx_dma_alloc(sc)) {
670 aprint_error_dev(sc->bnx_dev,
671 "DMA resource allocation failed!\n");
672 goto bnx_attach_fail;
673 }
674
675 /* Initialize the ifnet interface. */
676 ifp = &sc->bnx_ec.ec_if;
677 ifp->if_softc = sc;
678 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
679 ifp->if_ioctl = bnx_ioctl;
680 ifp->if_stop = bnx_stop;
681 ifp->if_start = bnx_start;
682 ifp->if_init = bnx_init;
683 ifp->if_timer = 0;
684 ifp->if_watchdog = bnx_watchdog;
685 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
686 IFQ_SET_READY(&ifp->if_snd);
687 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
688
689 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
690 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
691
692 ifp->if_capabilities |=
693 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
694 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
695 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
696
697 /* Hookup IRQ last. */
698 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
699 if (sc->bnx_intrhand == NULL) {
700 aprint_error_dev(self, "couldn't establish interrupt");
701 if (intrstr != NULL)
702 aprint_error(" at %s", intrstr);
703 aprint_error("\n");
704 goto bnx_attach_fail;
705 }
706 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
707
708 sc->bnx_mii.mii_ifp = ifp;
709 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
710 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
711 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
712
713 /* Handle any special PHY initialization for SerDes PHYs. */
714 bnx_init_media(sc);
715
716 sc->bnx_ec.ec_mii = &sc->bnx_mii;
717 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
718 ether_mediastatus);
719
720 /* set phyflags before mii_attach() */
721 dict = device_properties(self);
722 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
723
724 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
725 mii_flags |= MIIF_HAVEFIBER;
726 mii_attach(self, &sc->bnx_mii, 0xffffffff,
727 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
728
729 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
730 aprint_error_dev(self, "no PHY found!\n");
731 ifmedia_add(&sc->bnx_mii.mii_media,
732 IFM_ETHER|IFM_MANUAL, 0, NULL);
733 ifmedia_set(&sc->bnx_mii.mii_media,
734 IFM_ETHER|IFM_MANUAL);
735 } else {
736 ifmedia_set(&sc->bnx_mii.mii_media,
737 IFM_ETHER|IFM_AUTO);
738 }
739
740 /* Attach to the Ethernet interface list. */
741 if_attach(ifp);
742 ether_ifattach(ifp,sc->eaddr);
743
744 callout_init(&sc->bnx_timeout, 0);
745
746 if (pmf_device_register(self, NULL, NULL))
747 pmf_class_network_register(self, ifp);
748 else
749 aprint_error_dev(self, "couldn't establish power handler\n");
750
751 /* Print some important debugging info. */
752 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
753
754 goto bnx_attach_exit;
755
756 bnx_attach_fail:
757 bnx_release_resources(sc);
758
759 bnx_attach_exit:
760 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
761 }
762
763 /****************************************************************************/
764 /* Device detach function. */
765 /* */
766 /* Stops the controller, resets the controller, and releases resources. */
767 /* */
768 /* Returns: */
769 /* 0 on success, positive value on failure. */
770 /****************************************************************************/
771 int
772 bnx_detach(device_t dev, int flags)
773 {
774 int s;
775 struct bnx_softc *sc;
776 struct ifnet *ifp;
777
778 sc = device_private(dev);
779 ifp = &sc->bnx_ec.ec_if;
780
781 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
782
783 /* Stop and reset the controller. */
784 s = splnet();
785 if (ifp->if_flags & IFF_RUNNING)
786 bnx_stop(ifp, 1);
787 else {
788 /* Disable the transmit/receive blocks. */
789 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
790 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
791 DELAY(20);
792 bnx_disable_intr(sc);
793 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
794 }
795
796 splx(s);
797
798 pmf_device_deregister(dev);
799 callout_destroy(&sc->bnx_timeout);
800 ether_ifdetach(ifp);
801
802 /* Delete all remaining media. */
803 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
804
805 if_detach(ifp);
806 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
807
808 /* Release all remaining resources. */
809 bnx_release_resources(sc);
810
811 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
812
813 return(0);
814 }
815
816 /****************************************************************************/
817 /* Indirect register read. */
818 /* */
819 /* Reads NetXtreme II registers using an index/data register pair in PCI */
820 /* configuration space. Using this mechanism avoids issues with posted */
821 /* reads but is much slower than memory-mapped I/O. */
822 /* */
823 /* Returns: */
824 /* The value of the register. */
825 /****************************************************************************/
826 u_int32_t
827 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
828 {
829 struct pci_attach_args *pa = &(sc->bnx_pa);
830
831 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
832 offset);
833 #ifdef BNX_DEBUG
834 {
835 u_int32_t val;
836 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
837 BNX_PCICFG_REG_WINDOW);
838 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
839 "val = 0x%08X\n", __func__, offset, val);
840 return (val);
841 }
842 #else
843 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
844 #endif
845 }
846
847 /****************************************************************************/
848 /* Indirect register write. */
849 /* */
850 /* Writes NetXtreme II registers using an index/data register pair in PCI */
851 /* configuration space. Using this mechanism avoids issues with posted */
852 /* writes but is muchh slower than memory-mapped I/O. */
853 /* */
854 /* Returns: */
855 /* Nothing. */
856 /****************************************************************************/
857 void
858 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
859 {
860 struct pci_attach_args *pa = &(sc->bnx_pa);
861
862 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
863 __func__, offset, val);
864
865 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
866 offset);
867 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
868 }
869
870 /****************************************************************************/
871 /* Context memory write. */
872 /* */
873 /* The NetXtreme II controller uses context memory to track connection */
874 /* information for L2 and higher network protocols. */
875 /* */
876 /* Returns: */
877 /* Nothing. */
878 /****************************************************************************/
879 void
880 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
881 u_int32_t ctx_val)
882 {
883 u_int32_t idx, offset = ctx_offset + cid_addr;
884 u_int32_t val, retry_cnt = 5;
885
886 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
887 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
888 REG_WR(sc, BNX_CTX_CTX_CTRL,
889 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
890
891 for (idx = 0; idx < retry_cnt; idx++) {
892 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
893 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
894 break;
895 DELAY(5);
896 }
897
898 #if 0
899 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
900 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
901 "cid_addr = 0x%08X, offset = 0x%08X!\n",
902 __FILE__, __LINE__, cid_addr, ctx_offset);
903 #endif
904
905 } else {
906 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
907 REG_WR(sc, BNX_CTX_DATA, ctx_val);
908 }
909 }
910
911 /****************************************************************************/
912 /* PHY register read. */
913 /* */
914 /* Implements register reads on the MII bus. */
915 /* */
916 /* Returns: */
917 /* The value of the register. */
918 /****************************************************************************/
919 int
920 bnx_miibus_read_reg(device_t dev, int phy, int reg)
921 {
922 struct bnx_softc *sc = device_private(dev);
923 u_int32_t val;
924 int i;
925
926 /* Make sure we are accessing the correct PHY address. */
927 if (phy != sc->bnx_phy_addr) {
928 DBPRINT(sc, BNX_VERBOSE,
929 "Invalid PHY address %d for PHY read!\n", phy);
930 return(0);
931 }
932
933 /*
934 * The BCM5709S PHY is an IEEE Clause 45 PHY
935 * with special mappings to work with IEEE
936 * Clause 22 register accesses.
937 */
938 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
939 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
940 reg += 0x10;
941 }
942
943 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
944 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
945 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
946
947 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
948 REG_RD(sc, BNX_EMAC_MDIO_MODE);
949
950 DELAY(40);
951 }
952
953 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
954 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
955 BNX_EMAC_MDIO_COMM_START_BUSY;
956 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
957
958 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
959 DELAY(10);
960
961 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
962 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
963 DELAY(5);
964
965 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
966 val &= BNX_EMAC_MDIO_COMM_DATA;
967
968 break;
969 }
970 }
971
972 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
973 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
974 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
975 val = 0x0;
976 } else
977 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
978
979 DBPRINT(sc, BNX_EXCESSIVE,
980 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
981 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
982
983 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
984 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
985 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
986
987 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
988 REG_RD(sc, BNX_EMAC_MDIO_MODE);
989
990 DELAY(40);
991 }
992
993 return (val & 0xffff);
994 }
995
996 /****************************************************************************/
997 /* PHY register write. */
998 /* */
999 /* Implements register writes on the MII bus. */
1000 /* */
1001 /* Returns: */
1002 /* The value of the register. */
1003 /****************************************************************************/
1004 void
1005 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1006 {
1007 struct bnx_softc *sc = device_private(dev);
1008 u_int32_t val1;
1009 int i;
1010
1011 /* Make sure we are accessing the correct PHY address. */
1012 if (phy != sc->bnx_phy_addr) {
1013 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1014 phy);
1015 return;
1016 }
1017
1018 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1019 "val = 0x%04X\n", __func__,
1020 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
1021
1022 /*
1023 * The BCM5709S PHY is an IEEE Clause 45 PHY
1024 * with special mappings to work with IEEE
1025 * Clause 22 register accesses.
1026 */
1027 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1028 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1029 reg += 0x10;
1030 }
1031
1032 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1033 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1034 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1035
1036 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1037 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1038
1039 DELAY(40);
1040 }
1041
1042 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1043 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1044 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1045 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1046
1047 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1048 DELAY(10);
1049
1050 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1051 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1052 DELAY(5);
1053 break;
1054 }
1055 }
1056
1057 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1058 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1059 __LINE__);
1060 }
1061
1062 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1063 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1064 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1065
1066 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1067 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1068
1069 DELAY(40);
1070 }
1071 }
1072
1073 /****************************************************************************/
1074 /* MII bus status change. */
1075 /* */
1076 /* Called by the MII bus driver when the PHY establishes link to set the */
1077 /* MAC interface registers. */
1078 /* */
1079 /* Returns: */
1080 /* Nothing. */
1081 /****************************************************************************/
1082 void
1083 bnx_miibus_statchg(device_t dev)
1084 {
1085 struct bnx_softc *sc = device_private(dev);
1086 struct mii_data *mii = &sc->bnx_mii;
1087 int val;
1088
1089 val = REG_RD(sc, BNX_EMAC_MODE);
1090 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1091 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1092 BNX_EMAC_MODE_25G);
1093
1094 /* Set MII or GMII interface based on the speed
1095 * negotiated by the PHY.
1096 */
1097 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1098 case IFM_10_T:
1099 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1100 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1101 val |= BNX_EMAC_MODE_PORT_MII_10;
1102 break;
1103 }
1104 /* FALLTHROUGH */
1105 case IFM_100_TX:
1106 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1107 val |= BNX_EMAC_MODE_PORT_MII;
1108 break;
1109 case IFM_2500_SX:
1110 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1111 val |= BNX_EMAC_MODE_25G;
1112 /* FALLTHROUGH */
1113 case IFM_1000_T:
1114 case IFM_1000_SX:
1115 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1116 val |= BNX_EMAC_MODE_PORT_GMII;
1117 break;
1118 default:
1119 val |= BNX_EMAC_MODE_PORT_GMII;
1120 break;
1121 }
1122
1123 /* Set half or full duplex based on the duplicity
1124 * negotiated by the PHY.
1125 */
1126 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1127 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1128 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1129 } else {
1130 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1131 }
1132
1133 REG_WR(sc, BNX_EMAC_MODE, val);
1134 }
1135
1136 /****************************************************************************/
1137 /* Acquire NVRAM lock. */
1138 /* */
1139 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1140 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1141 /* for use by the driver. */
1142 /* */
1143 /* Returns: */
1144 /* 0 on success, positive value on failure. */
1145 /****************************************************************************/
1146 int
1147 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1148 {
1149 u_int32_t val;
1150 int j;
1151
1152 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1153
1154 /* Request access to the flash interface. */
1155 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1156 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1157 val = REG_RD(sc, BNX_NVM_SW_ARB);
1158 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1159 break;
1160
1161 DELAY(5);
1162 }
1163
1164 if (j >= NVRAM_TIMEOUT_COUNT) {
1165 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1166 return (EBUSY);
1167 }
1168
1169 return (0);
1170 }
1171
1172 /****************************************************************************/
1173 /* Release NVRAM lock. */
1174 /* */
1175 /* When the caller is finished accessing NVRAM the lock must be released. */
1176 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1177 /* for use by the driver. */
1178 /* */
1179 /* Returns: */
1180 /* 0 on success, positive value on failure. */
1181 /****************************************************************************/
1182 int
1183 bnx_release_nvram_lock(struct bnx_softc *sc)
1184 {
1185 int j;
1186 u_int32_t val;
1187
1188 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1189
1190 /* Relinquish nvram interface. */
1191 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1192
1193 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1194 val = REG_RD(sc, BNX_NVM_SW_ARB);
1195 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1196 break;
1197
1198 DELAY(5);
1199 }
1200
1201 if (j >= NVRAM_TIMEOUT_COUNT) {
1202 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1203 return (EBUSY);
1204 }
1205
1206 return (0);
1207 }
1208
1209 #ifdef BNX_NVRAM_WRITE_SUPPORT
1210 /****************************************************************************/
1211 /* Enable NVRAM write access. */
1212 /* */
1213 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1214 /* */
1215 /* Returns: */
1216 /* 0 on success, positive value on failure. */
1217 /****************************************************************************/
1218 int
1219 bnx_enable_nvram_write(struct bnx_softc *sc)
1220 {
1221 u_int32_t val;
1222
1223 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1224
1225 val = REG_RD(sc, BNX_MISC_CFG);
1226 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1227
1228 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1229 int j;
1230
1231 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1232 REG_WR(sc, BNX_NVM_COMMAND,
1233 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1234
1235 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1236 DELAY(5);
1237
1238 val = REG_RD(sc, BNX_NVM_COMMAND);
1239 if (val & BNX_NVM_COMMAND_DONE)
1240 break;
1241 }
1242
1243 if (j >= NVRAM_TIMEOUT_COUNT) {
1244 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1245 return (EBUSY);
1246 }
1247 }
1248
1249 return (0);
1250 }
1251
1252 /****************************************************************************/
1253 /* Disable NVRAM write access. */
1254 /* */
1255 /* When the caller is finished writing to NVRAM write access must be */
1256 /* disabled. */
1257 /* */
1258 /* Returns: */
1259 /* Nothing. */
1260 /****************************************************************************/
1261 void
1262 bnx_disable_nvram_write(struct bnx_softc *sc)
1263 {
1264 u_int32_t val;
1265
1266 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1267
1268 val = REG_RD(sc, BNX_MISC_CFG);
1269 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1270 }
1271 #endif
1272
1273 /****************************************************************************/
1274 /* Enable NVRAM access. */
1275 /* */
1276 /* Before accessing NVRAM for read or write operations the caller must */
1277 /* enabled NVRAM access. */
1278 /* */
1279 /* Returns: */
1280 /* Nothing. */
1281 /****************************************************************************/
1282 void
1283 bnx_enable_nvram_access(struct bnx_softc *sc)
1284 {
1285 u_int32_t val;
1286
1287 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1288
1289 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1290 /* Enable both bits, even on read. */
1291 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1292 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1293 }
1294
1295 /****************************************************************************/
1296 /* Disable NVRAM access. */
1297 /* */
1298 /* When the caller is finished accessing NVRAM access must be disabled. */
1299 /* */
1300 /* Returns: */
1301 /* Nothing. */
1302 /****************************************************************************/
1303 void
1304 bnx_disable_nvram_access(struct bnx_softc *sc)
1305 {
1306 u_int32_t val;
1307
1308 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1309
1310 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1311
1312 /* Disable both bits, even after read. */
1313 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1314 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1315 }
1316
1317 #ifdef BNX_NVRAM_WRITE_SUPPORT
1318 /****************************************************************************/
1319 /* Erase NVRAM page before writing. */
1320 /* */
1321 /* Non-buffered flash parts require that a page be erased before it is */
1322 /* written. */
1323 /* */
1324 /* Returns: */
1325 /* 0 on success, positive value on failure. */
1326 /****************************************************************************/
1327 int
1328 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1329 {
1330 u_int32_t cmd;
1331 int j;
1332
1333 /* Buffered flash doesn't require an erase. */
1334 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1335 return (0);
1336
1337 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1338
1339 /* Build an erase command. */
1340 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1341 BNX_NVM_COMMAND_DOIT;
1342
1343 /*
1344 * Clear the DONE bit separately, set the NVRAM adress to erase,
1345 * and issue the erase command.
1346 */
1347 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1348 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1349 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1350
1351 /* Wait for completion. */
1352 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1353 u_int32_t val;
1354
1355 DELAY(5);
1356
1357 val = REG_RD(sc, BNX_NVM_COMMAND);
1358 if (val & BNX_NVM_COMMAND_DONE)
1359 break;
1360 }
1361
1362 if (j >= NVRAM_TIMEOUT_COUNT) {
1363 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1364 return (EBUSY);
1365 }
1366
1367 return (0);
1368 }
1369 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1370
1371 /****************************************************************************/
1372 /* Read a dword (32 bits) from NVRAM. */
1373 /* */
1374 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1375 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1376 /* */
1377 /* Returns: */
1378 /* 0 on success and the 32 bit value read, positive value on failure. */
1379 /****************************************************************************/
1380 int
1381 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1382 u_int8_t *ret_val, u_int32_t cmd_flags)
1383 {
1384 u_int32_t cmd;
1385 int i, rc = 0;
1386
1387 /* Build the command word. */
1388 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1389
1390 /* Calculate the offset for buffered flash if translation is used. */
1391 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1392 offset = ((offset / sc->bnx_flash_info->page_size) <<
1393 sc->bnx_flash_info->page_bits) +
1394 (offset % sc->bnx_flash_info->page_size);
1395 }
1396
1397 /*
1398 * Clear the DONE bit separately, set the address to read,
1399 * and issue the read.
1400 */
1401 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1402 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1403 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1404
1405 /* Wait for completion. */
1406 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1407 u_int32_t val;
1408
1409 DELAY(5);
1410
1411 val = REG_RD(sc, BNX_NVM_COMMAND);
1412 if (val & BNX_NVM_COMMAND_DONE) {
1413 val = REG_RD(sc, BNX_NVM_READ);
1414
1415 val = bnx_be32toh(val);
1416 memcpy(ret_val, &val, 4);
1417 break;
1418 }
1419 }
1420
1421 /* Check for errors. */
1422 if (i >= NVRAM_TIMEOUT_COUNT) {
1423 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1424 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1425 rc = EBUSY;
1426 }
1427
1428 return(rc);
1429 }
1430
1431 #ifdef BNX_NVRAM_WRITE_SUPPORT
1432 /****************************************************************************/
1433 /* Write a dword (32 bits) to NVRAM. */
1434 /* */
1435 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1436 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1437 /* enabled NVRAM write access. */
1438 /* */
1439 /* Returns: */
1440 /* 0 on success, positive value on failure. */
1441 /****************************************************************************/
1442 int
1443 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1444 u_int32_t cmd_flags)
1445 {
1446 u_int32_t cmd, val32;
1447 int j;
1448
1449 /* Build the command word. */
1450 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1451
1452 /* Calculate the offset for buffered flash if translation is used. */
1453 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1454 offset = ((offset / sc->bnx_flash_info->page_size) <<
1455 sc->bnx_flash_info->page_bits) +
1456 (offset % sc->bnx_flash_info->page_size);
1457 }
1458
1459 /*
1460 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1461 * set the NVRAM address to write, and issue the write command
1462 */
1463 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1464 memcpy(&val32, val, 4);
1465 val32 = htobe32(val32);
1466 REG_WR(sc, BNX_NVM_WRITE, val32);
1467 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1468 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1469
1470 /* Wait for completion. */
1471 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1472 DELAY(5);
1473
1474 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1475 break;
1476 }
1477 if (j >= NVRAM_TIMEOUT_COUNT) {
1478 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1479 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1480 return (EBUSY);
1481 }
1482
1483 return (0);
1484 }
1485 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1486
1487 /****************************************************************************/
1488 /* Initialize NVRAM access. */
1489 /* */
1490 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1491 /* access that device. */
1492 /* */
1493 /* Returns: */
1494 /* 0 on success, positive value on failure. */
1495 /****************************************************************************/
1496 int
1497 bnx_init_nvram(struct bnx_softc *sc)
1498 {
1499 u_int32_t val;
1500 int j, entry_count, rc = 0;
1501 struct flash_spec *flash;
1502
1503 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1504
1505 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1506 sc->bnx_flash_info = &flash_5709;
1507 goto bnx_init_nvram_get_flash_size;
1508 }
1509
1510 /* Determine the selected interface. */
1511 val = REG_RD(sc, BNX_NVM_CFG1);
1512
1513 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1514
1515 /*
1516 * Flash reconfiguration is required to support additional
1517 * NVRAM devices not directly supported in hardware.
1518 * Check if the flash interface was reconfigured
1519 * by the bootcode.
1520 */
1521
1522 if (val & 0x40000000) {
1523 /* Flash interface reconfigured by bootcode. */
1524
1525 DBPRINT(sc,BNX_INFO_LOAD,
1526 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1527
1528 for (j = 0, flash = &flash_table[0]; j < entry_count;
1529 j++, flash++) {
1530 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1531 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1532 sc->bnx_flash_info = flash;
1533 break;
1534 }
1535 }
1536 } else {
1537 /* Flash interface not yet reconfigured. */
1538 u_int32_t mask;
1539
1540 DBPRINT(sc,BNX_INFO_LOAD,
1541 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1542
1543 if (val & (1 << 23))
1544 mask = FLASH_BACKUP_STRAP_MASK;
1545 else
1546 mask = FLASH_STRAP_MASK;
1547
1548 /* Look for the matching NVRAM device configuration data. */
1549 for (j = 0, flash = &flash_table[0]; j < entry_count;
1550 j++, flash++) {
1551 /* Check if the dev matches any of the known devices. */
1552 if ((val & mask) == (flash->strapping & mask)) {
1553 /* Found a device match. */
1554 sc->bnx_flash_info = flash;
1555
1556 /* Request access to the flash interface. */
1557 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1558 return (rc);
1559
1560 /* Reconfigure the flash interface. */
1561 bnx_enable_nvram_access(sc);
1562 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1563 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1564 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1565 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1566 bnx_disable_nvram_access(sc);
1567 bnx_release_nvram_lock(sc);
1568
1569 break;
1570 }
1571 }
1572 }
1573
1574 /* Check if a matching device was found. */
1575 if (j == entry_count) {
1576 sc->bnx_flash_info = NULL;
1577 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1578 __FILE__, __LINE__);
1579 rc = ENODEV;
1580 }
1581
1582 bnx_init_nvram_get_flash_size:
1583 /* Write the flash config data to the shared memory interface. */
1584 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1585 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1586 if (val)
1587 sc->bnx_flash_size = val;
1588 else
1589 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1590
1591 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1592 "0x%08X\n", sc->bnx_flash_info->total_size);
1593
1594 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1595
1596 return (rc);
1597 }
1598
1599 /****************************************************************************/
1600 /* Read an arbitrary range of data from NVRAM. */
1601 /* */
1602 /* Prepares the NVRAM interface for access and reads the requested data */
1603 /* into the supplied buffer. */
1604 /* */
1605 /* Returns: */
1606 /* 0 on success and the data read, positive value on failure. */
1607 /****************************************************************************/
1608 int
1609 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1610 int buf_size)
1611 {
1612 int rc = 0;
1613 u_int32_t cmd_flags, offset32, len32, extra;
1614
1615 if (buf_size == 0)
1616 return (0);
1617
1618 /* Request access to the flash interface. */
1619 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1620 return (rc);
1621
1622 /* Enable access to flash interface */
1623 bnx_enable_nvram_access(sc);
1624
1625 len32 = buf_size;
1626 offset32 = offset;
1627 extra = 0;
1628
1629 cmd_flags = 0;
1630
1631 if (offset32 & 3) {
1632 u_int8_t buf[4];
1633 u_int32_t pre_len;
1634
1635 offset32 &= ~3;
1636 pre_len = 4 - (offset & 3);
1637
1638 if (pre_len >= len32) {
1639 pre_len = len32;
1640 cmd_flags =
1641 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1642 } else
1643 cmd_flags = BNX_NVM_COMMAND_FIRST;
1644
1645 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1646
1647 if (rc)
1648 return (rc);
1649
1650 memcpy(ret_buf, buf + (offset & 3), pre_len);
1651
1652 offset32 += 4;
1653 ret_buf += pre_len;
1654 len32 -= pre_len;
1655 }
1656
1657 if (len32 & 3) {
1658 extra = 4 - (len32 & 3);
1659 len32 = (len32 + 4) & ~3;
1660 }
1661
1662 if (len32 == 4) {
1663 u_int8_t buf[4];
1664
1665 if (cmd_flags)
1666 cmd_flags = BNX_NVM_COMMAND_LAST;
1667 else
1668 cmd_flags =
1669 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1670
1671 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1672
1673 memcpy(ret_buf, buf, 4 - extra);
1674 } else if (len32 > 0) {
1675 u_int8_t buf[4];
1676
1677 /* Read the first word. */
1678 if (cmd_flags)
1679 cmd_flags = 0;
1680 else
1681 cmd_flags = BNX_NVM_COMMAND_FIRST;
1682
1683 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1684
1685 /* Advance to the next dword. */
1686 offset32 += 4;
1687 ret_buf += 4;
1688 len32 -= 4;
1689
1690 while (len32 > 4 && rc == 0) {
1691 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1692
1693 /* Advance to the next dword. */
1694 offset32 += 4;
1695 ret_buf += 4;
1696 len32 -= 4;
1697 }
1698
1699 if (rc)
1700 return (rc);
1701
1702 cmd_flags = BNX_NVM_COMMAND_LAST;
1703 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1704
1705 memcpy(ret_buf, buf, 4 - extra);
1706 }
1707
1708 /* Disable access to flash interface and release the lock. */
1709 bnx_disable_nvram_access(sc);
1710 bnx_release_nvram_lock(sc);
1711
1712 return (rc);
1713 }
1714
1715 #ifdef BNX_NVRAM_WRITE_SUPPORT
1716 /****************************************************************************/
1717 /* Write an arbitrary range of data from NVRAM. */
1718 /* */
1719 /* Prepares the NVRAM interface for write access and writes the requested */
1720 /* data from the supplied buffer. The caller is responsible for */
1721 /* calculating any appropriate CRCs. */
1722 /* */
1723 /* Returns: */
1724 /* 0 on success, positive value on failure. */
1725 /****************************************************************************/
1726 int
1727 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1728 int buf_size)
1729 {
1730 u_int32_t written, offset32, len32;
1731 u_int8_t *buf, start[4], end[4];
1732 int rc = 0;
1733 int align_start, align_end;
1734
1735 buf = data_buf;
1736 offset32 = offset;
1737 len32 = buf_size;
1738 align_start = align_end = 0;
1739
1740 if ((align_start = (offset32 & 3))) {
1741 offset32 &= ~3;
1742 len32 += align_start;
1743 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1744 return (rc);
1745 }
1746
1747 if (len32 & 3) {
1748 if ((len32 > 4) || !align_start) {
1749 align_end = 4 - (len32 & 3);
1750 len32 += align_end;
1751 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1752 end, 4))) {
1753 return (rc);
1754 }
1755 }
1756 }
1757
1758 if (align_start || align_end) {
1759 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1760 if (buf == 0)
1761 return (ENOMEM);
1762
1763 if (align_start)
1764 memcpy(buf, start, 4);
1765
1766 if (align_end)
1767 memcpy(buf + len32 - 4, end, 4);
1768
1769 memcpy(buf + align_start, data_buf, buf_size);
1770 }
1771
1772 written = 0;
1773 while ((written < len32) && (rc == 0)) {
1774 u_int32_t page_start, page_end, data_start, data_end;
1775 u_int32_t addr, cmd_flags;
1776 int i;
1777 u_int8_t flash_buffer[264];
1778
1779 /* Find the page_start addr */
1780 page_start = offset32 + written;
1781 page_start -= (page_start % sc->bnx_flash_info->page_size);
1782 /* Find the page_end addr */
1783 page_end = page_start + sc->bnx_flash_info->page_size;
1784 /* Find the data_start addr */
1785 data_start = (written == 0) ? offset32 : page_start;
1786 /* Find the data_end addr */
1787 data_end = (page_end > offset32 + len32) ?
1788 (offset32 + len32) : page_end;
1789
1790 /* Request access to the flash interface. */
1791 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1792 goto nvram_write_end;
1793
1794 /* Enable access to flash interface */
1795 bnx_enable_nvram_access(sc);
1796
1797 cmd_flags = BNX_NVM_COMMAND_FIRST;
1798 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1799 int j;
1800
1801 /* Read the whole page into the buffer
1802 * (non-buffer flash only) */
1803 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1804 if (j == (sc->bnx_flash_info->page_size - 4))
1805 cmd_flags |= BNX_NVM_COMMAND_LAST;
1806
1807 rc = bnx_nvram_read_dword(sc,
1808 page_start + j,
1809 &flash_buffer[j],
1810 cmd_flags);
1811
1812 if (rc)
1813 goto nvram_write_end;
1814
1815 cmd_flags = 0;
1816 }
1817 }
1818
1819 /* Enable writes to flash interface (unlock write-protect) */
1820 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1821 goto nvram_write_end;
1822
1823 /* Erase the page */
1824 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1825 goto nvram_write_end;
1826
1827 /* Re-enable the write again for the actual write */
1828 bnx_enable_nvram_write(sc);
1829
1830 /* Loop to write back the buffer data from page_start to
1831 * data_start */
1832 i = 0;
1833 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1834 for (addr = page_start; addr < data_start;
1835 addr += 4, i += 4) {
1836
1837 rc = bnx_nvram_write_dword(sc, addr,
1838 &flash_buffer[i], cmd_flags);
1839
1840 if (rc != 0)
1841 goto nvram_write_end;
1842
1843 cmd_flags = 0;
1844 }
1845 }
1846
1847 /* Loop to write the new data from data_start to data_end */
1848 for (addr = data_start; addr < data_end; addr += 4, i++) {
1849 if ((addr == page_end - 4) ||
1850 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1851 && (addr == data_end - 4))) {
1852
1853 cmd_flags |= BNX_NVM_COMMAND_LAST;
1854 }
1855
1856 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1857
1858 if (rc != 0)
1859 goto nvram_write_end;
1860
1861 cmd_flags = 0;
1862 buf += 4;
1863 }
1864
1865 /* Loop to write back the buffer data from data_end
1866 * to page_end */
1867 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1868 for (addr = data_end; addr < page_end;
1869 addr += 4, i += 4) {
1870
1871 if (addr == page_end-4)
1872 cmd_flags = BNX_NVM_COMMAND_LAST;
1873
1874 rc = bnx_nvram_write_dword(sc, addr,
1875 &flash_buffer[i], cmd_flags);
1876
1877 if (rc != 0)
1878 goto nvram_write_end;
1879
1880 cmd_flags = 0;
1881 }
1882 }
1883
1884 /* Disable writes to flash interface (lock write-protect) */
1885 bnx_disable_nvram_write(sc);
1886
1887 /* Disable access to flash interface */
1888 bnx_disable_nvram_access(sc);
1889 bnx_release_nvram_lock(sc);
1890
1891 /* Increment written */
1892 written += data_end - data_start;
1893 }
1894
1895 nvram_write_end:
1896 if (align_start || align_end)
1897 free(buf, M_DEVBUF);
1898
1899 return (rc);
1900 }
1901 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1902
1903 /****************************************************************************/
1904 /* Verifies that NVRAM is accessible and contains valid data. */
1905 /* */
1906 /* Reads the configuration data from NVRAM and verifies that the CRC is */
1907 /* correct. */
1908 /* */
1909 /* Returns: */
1910 /* 0 on success, positive value on failure. */
1911 /****************************************************************************/
1912 int
1913 bnx_nvram_test(struct bnx_softc *sc)
1914 {
1915 u_int32_t buf[BNX_NVRAM_SIZE / 4];
1916 u_int8_t *data = (u_int8_t *) buf;
1917 int rc = 0;
1918 u_int32_t magic, csum;
1919
1920 /*
1921 * Check that the device NVRAM is valid by reading
1922 * the magic value at offset 0.
1923 */
1924 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1925 goto bnx_nvram_test_done;
1926
1927 magic = bnx_be32toh(buf[0]);
1928 if (magic != BNX_NVRAM_MAGIC) {
1929 rc = ENODEV;
1930 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1931 "Expected: 0x%08X, Found: 0x%08X\n",
1932 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1933 goto bnx_nvram_test_done;
1934 }
1935
1936 /*
1937 * Verify that the device NVRAM includes valid
1938 * configuration data.
1939 */
1940 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1941 goto bnx_nvram_test_done;
1942
1943 csum = ether_crc32_le(data, 0x100);
1944 if (csum != BNX_CRC32_RESIDUAL) {
1945 rc = ENODEV;
1946 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1947 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1948 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1949 goto bnx_nvram_test_done;
1950 }
1951
1952 csum = ether_crc32_le(data + 0x100, 0x100);
1953 if (csum != BNX_CRC32_RESIDUAL) {
1954 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1955 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1956 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1957 rc = ENODEV;
1958 }
1959
1960 bnx_nvram_test_done:
1961 return (rc);
1962 }
1963
1964 /****************************************************************************/
1965 /* Identifies the current media type of the controller and sets the PHY */
1966 /* address. */
1967 /* */
1968 /* Returns: */
1969 /* Nothing. */
1970 /****************************************************************************/
1971 void
1972 bnx_get_media(struct bnx_softc *sc)
1973 {
1974 sc->bnx_phy_addr = 1;
1975
1976 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1977 u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
1978 u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1979 u_int32_t strap;
1980
1981 /*
1982 * The BCM5709S is software configurable
1983 * for Copper or SerDes operation.
1984 */
1985 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1986 DBPRINT(sc, BNX_INFO_LOAD,
1987 "5709 bonded for copper.\n");
1988 goto bnx_get_media_exit;
1989 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1990 DBPRINT(sc, BNX_INFO_LOAD,
1991 "5709 bonded for dual media.\n");
1992 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
1993 goto bnx_get_media_exit;
1994 }
1995
1996 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
1997 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
1998 else {
1999 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2000 >> 8;
2001 }
2002
2003 if (sc->bnx_pa.pa_function == 0) {
2004 switch (strap) {
2005 case 0x4:
2006 case 0x5:
2007 case 0x6:
2008 DBPRINT(sc, BNX_INFO_LOAD,
2009 "BCM5709 s/w configured for SerDes.\n");
2010 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2011 break;
2012 default:
2013 DBPRINT(sc, BNX_INFO_LOAD,
2014 "BCM5709 s/w configured for Copper.\n");
2015 }
2016 } else {
2017 switch (strap) {
2018 case 0x1:
2019 case 0x2:
2020 case 0x4:
2021 DBPRINT(sc, BNX_INFO_LOAD,
2022 "BCM5709 s/w configured for SerDes.\n");
2023 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2024 break;
2025 default:
2026 DBPRINT(sc, BNX_INFO_LOAD,
2027 "BCM5709 s/w configured for Copper.\n");
2028 }
2029 }
2030
2031 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2032 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2033
2034 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2035 u_int32_t val;
2036
2037 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2038
2039 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2040 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2041
2042 /*
2043 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2044 * separate PHY for SerDes.
2045 */
2046 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2047 sc->bnx_phy_addr = 2;
2048 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2049 BNX_SHARED_HW_CFG_CONFIG);
2050 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2051 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2052 DBPRINT(sc, BNX_INFO_LOAD,
2053 "Found 2.5Gb capable adapter\n");
2054 }
2055 }
2056 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2057 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2058 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2059
2060 bnx_get_media_exit:
2061 DBPRINT(sc, (BNX_INFO_LOAD),
2062 "Using PHY address %d.\n", sc->bnx_phy_addr);
2063 }
2064
2065 /****************************************************************************/
2066 /* Performs PHY initialization required before MII drivers access the */
2067 /* device. */
2068 /* */
2069 /* Returns: */
2070 /* Nothing. */
2071 /****************************************************************************/
2072 void
2073 bnx_init_media(struct bnx_softc *sc)
2074 {
2075 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2076 /*
2077 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2078 * IEEE Clause 22 method. Otherwise we have no way to attach
2079 * the PHY to the mii(4) layer. PHY specific configuration
2080 * is done by the mii(4) layer.
2081 */
2082
2083 /* Select auto-negotiation MMD of the PHY. */
2084 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2085 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2086
2087 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2088 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2089
2090 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2091 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2092 }
2093 }
2094
2095 /****************************************************************************/
2096 /* Free any DMA memory owned by the driver. */
2097 /* */
2098 /* Scans through each data structre that requires DMA memory and frees */
2099 /* the memory if allocated. */
2100 /* */
2101 /* Returns: */
2102 /* Nothing. */
2103 /****************************************************************************/
2104 void
2105 bnx_dma_free(struct bnx_softc *sc)
2106 {
2107 int i;
2108
2109 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2110
2111 /* Destroy the status block. */
2112 if (sc->status_block != NULL && sc->status_map != NULL) {
2113 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2114 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2115 BNX_STATUS_BLK_SZ);
2116 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2117 sc->status_rseg);
2118 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2119 sc->status_block = NULL;
2120 sc->status_map = NULL;
2121 }
2122
2123 /* Destroy the statistics block. */
2124 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2125 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2126 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2127 BNX_STATS_BLK_SZ);
2128 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2129 sc->stats_rseg);
2130 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2131 sc->stats_block = NULL;
2132 sc->stats_map = NULL;
2133 }
2134
2135 /* Free, unmap and destroy all context memory pages. */
2136 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2137 for (i = 0; i < sc->ctx_pages; i++) {
2138 if (sc->ctx_block[i] != NULL) {
2139 bus_dmamap_unload(sc->bnx_dmatag,
2140 sc->ctx_map[i]);
2141 bus_dmamem_unmap(sc->bnx_dmatag,
2142 (void *)sc->ctx_block[i],
2143 BCM_PAGE_SIZE);
2144 bus_dmamem_free(sc->bnx_dmatag,
2145 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2146 bus_dmamap_destroy(sc->bnx_dmatag,
2147 sc->ctx_map[i]);
2148 sc->ctx_block[i] = NULL;
2149 }
2150 }
2151 }
2152
2153 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2154 for (i = 0; i < TX_PAGES; i++ ) {
2155 if (sc->tx_bd_chain[i] != NULL &&
2156 sc->tx_bd_chain_map[i] != NULL) {
2157 bus_dmamap_unload(sc->bnx_dmatag,
2158 sc->tx_bd_chain_map[i]);
2159 bus_dmamem_unmap(sc->bnx_dmatag,
2160 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2161 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2162 sc->tx_bd_chain_rseg[i]);
2163 bus_dmamap_destroy(sc->bnx_dmatag,
2164 sc->tx_bd_chain_map[i]);
2165 sc->tx_bd_chain[i] = NULL;
2166 sc->tx_bd_chain_map[i] = NULL;
2167 }
2168 }
2169
2170 /* Destroy the TX dmamaps. */
2171 /* This isn't necessary since we dont allocate them up front */
2172
2173 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2174 for (i = 0; i < RX_PAGES; i++ ) {
2175 if (sc->rx_bd_chain[i] != NULL &&
2176 sc->rx_bd_chain_map[i] != NULL) {
2177 bus_dmamap_unload(sc->bnx_dmatag,
2178 sc->rx_bd_chain_map[i]);
2179 bus_dmamem_unmap(sc->bnx_dmatag,
2180 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2181 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2182 sc->rx_bd_chain_rseg[i]);
2183
2184 bus_dmamap_destroy(sc->bnx_dmatag,
2185 sc->rx_bd_chain_map[i]);
2186 sc->rx_bd_chain[i] = NULL;
2187 sc->rx_bd_chain_map[i] = NULL;
2188 }
2189 }
2190
2191 /* Unload and destroy the RX mbuf maps. */
2192 for (i = 0; i < TOTAL_RX_BD; i++) {
2193 if (sc->rx_mbuf_map[i] != NULL) {
2194 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2195 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2196 }
2197 }
2198
2199 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2200 }
2201
2202 /****************************************************************************/
2203 /* Allocate any DMA memory needed by the driver. */
2204 /* */
2205 /* Allocates DMA memory needed for the various global structures needed by */
2206 /* hardware. */
2207 /* */
2208 /* Returns: */
2209 /* 0 for success, positive value for failure. */
2210 /****************************************************************************/
2211 int
2212 bnx_dma_alloc(struct bnx_softc *sc)
2213 {
2214 int i, rc = 0;
2215
2216 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2217
2218 /*
2219 * Allocate DMA memory for the status block, map the memory into DMA
2220 * space, and fetch the physical address of the block.
2221 */
2222 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2223 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2224 aprint_error_dev(sc->bnx_dev,
2225 "Could not create status block DMA map!\n");
2226 rc = ENOMEM;
2227 goto bnx_dma_alloc_exit;
2228 }
2229
2230 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2231 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2232 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2233 aprint_error_dev(sc->bnx_dev,
2234 "Could not allocate status block DMA memory!\n");
2235 rc = ENOMEM;
2236 goto bnx_dma_alloc_exit;
2237 }
2238
2239 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2240 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2241 aprint_error_dev(sc->bnx_dev,
2242 "Could not map status block DMA memory!\n");
2243 rc = ENOMEM;
2244 goto bnx_dma_alloc_exit;
2245 }
2246
2247 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2248 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2249 aprint_error_dev(sc->bnx_dev,
2250 "Could not load status block DMA memory!\n");
2251 rc = ENOMEM;
2252 goto bnx_dma_alloc_exit;
2253 }
2254
2255 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2256 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2257
2258 /* DRC - Fix for 64 bit addresses. */
2259 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2260 (u_int32_t) sc->status_block_paddr);
2261
2262 /* BCM5709 uses host memory as cache for context memory. */
2263 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2264 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2265 if (sc->ctx_pages == 0)
2266 sc->ctx_pages = 1;
2267 if (sc->ctx_pages > 4) /* XXX */
2268 sc->ctx_pages = 4;
2269
2270 DBRUNIF((sc->ctx_pages > 512),
2271 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2272 __FILE__, __LINE__, sc->ctx_pages));
2273
2274
2275 for (i = 0; i < sc->ctx_pages; i++) {
2276 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2277 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2278 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2279 &sc->ctx_map[i]) != 0) {
2280 rc = ENOMEM;
2281 goto bnx_dma_alloc_exit;
2282 }
2283
2284 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2285 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2286 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2287 rc = ENOMEM;
2288 goto bnx_dma_alloc_exit;
2289 }
2290
2291 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2292 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2293 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2294 rc = ENOMEM;
2295 goto bnx_dma_alloc_exit;
2296 }
2297
2298 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2299 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2300 BUS_DMA_NOWAIT) != 0) {
2301 rc = ENOMEM;
2302 goto bnx_dma_alloc_exit;
2303 }
2304
2305 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2306 }
2307 }
2308
2309 /*
2310 * Allocate DMA memory for the statistics block, map the memory into
2311 * DMA space, and fetch the physical address of the block.
2312 */
2313 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2314 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2315 aprint_error_dev(sc->bnx_dev,
2316 "Could not create stats block DMA map!\n");
2317 rc = ENOMEM;
2318 goto bnx_dma_alloc_exit;
2319 }
2320
2321 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2322 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2323 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2324 aprint_error_dev(sc->bnx_dev,
2325 "Could not allocate stats block DMA memory!\n");
2326 rc = ENOMEM;
2327 goto bnx_dma_alloc_exit;
2328 }
2329
2330 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2331 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2332 aprint_error_dev(sc->bnx_dev,
2333 "Could not map stats block DMA memory!\n");
2334 rc = ENOMEM;
2335 goto bnx_dma_alloc_exit;
2336 }
2337
2338 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2339 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2340 aprint_error_dev(sc->bnx_dev,
2341 "Could not load status block DMA memory!\n");
2342 rc = ENOMEM;
2343 goto bnx_dma_alloc_exit;
2344 }
2345
2346 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2347 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2348
2349 /* DRC - Fix for 64 bit address. */
2350 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2351 (u_int32_t) sc->stats_block_paddr);
2352
2353 /*
2354 * Allocate DMA memory for the TX buffer descriptor chain,
2355 * and fetch the physical address of the block.
2356 */
2357 for (i = 0; i < TX_PAGES; i++) {
2358 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2359 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2360 &sc->tx_bd_chain_map[i])) {
2361 aprint_error_dev(sc->bnx_dev,
2362 "Could not create Tx desc %d DMA map!\n", i);
2363 rc = ENOMEM;
2364 goto bnx_dma_alloc_exit;
2365 }
2366
2367 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2368 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2369 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2370 aprint_error_dev(sc->bnx_dev,
2371 "Could not allocate TX desc %d DMA memory!\n",
2372 i);
2373 rc = ENOMEM;
2374 goto bnx_dma_alloc_exit;
2375 }
2376
2377 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2378 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2379 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2380 aprint_error_dev(sc->bnx_dev,
2381 "Could not map TX desc %d DMA memory!\n", i);
2382 rc = ENOMEM;
2383 goto bnx_dma_alloc_exit;
2384 }
2385
2386 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2387 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2388 BUS_DMA_NOWAIT)) {
2389 aprint_error_dev(sc->bnx_dev,
2390 "Could not load TX desc %d DMA memory!\n", i);
2391 rc = ENOMEM;
2392 goto bnx_dma_alloc_exit;
2393 }
2394
2395 sc->tx_bd_chain_paddr[i] =
2396 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2397
2398 /* DRC - Fix for 64 bit systems. */
2399 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2400 i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2401 }
2402
2403 /*
2404 * Create lists to hold TX mbufs.
2405 */
2406 TAILQ_INIT(&sc->tx_free_pkts);
2407 TAILQ_INIT(&sc->tx_used_pkts);
2408 sc->tx_pkt_count = 0;
2409 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2410
2411 /*
2412 * Allocate DMA memory for the Rx buffer descriptor chain,
2413 * and fetch the physical address of the block.
2414 */
2415 for (i = 0; i < RX_PAGES; i++) {
2416 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2417 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2418 &sc->rx_bd_chain_map[i])) {
2419 aprint_error_dev(sc->bnx_dev,
2420 "Could not create Rx desc %d DMA map!\n", i);
2421 rc = ENOMEM;
2422 goto bnx_dma_alloc_exit;
2423 }
2424
2425 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2426 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2427 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2428 aprint_error_dev(sc->bnx_dev,
2429 "Could not allocate Rx desc %d DMA memory!\n", i);
2430 rc = ENOMEM;
2431 goto bnx_dma_alloc_exit;
2432 }
2433
2434 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2435 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2436 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2437 aprint_error_dev(sc->bnx_dev,
2438 "Could not map Rx desc %d DMA memory!\n", i);
2439 rc = ENOMEM;
2440 goto bnx_dma_alloc_exit;
2441 }
2442
2443 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2444 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2445 BUS_DMA_NOWAIT)) {
2446 aprint_error_dev(sc->bnx_dev,
2447 "Could not load Rx desc %d DMA memory!\n", i);
2448 rc = ENOMEM;
2449 goto bnx_dma_alloc_exit;
2450 }
2451
2452 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2453 sc->rx_bd_chain_paddr[i] =
2454 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2455
2456 /* DRC - Fix for 64 bit systems. */
2457 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2458 i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2459 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2460 0, BNX_RX_CHAIN_PAGE_SZ,
2461 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2462 }
2463
2464 /*
2465 * Create DMA maps for the Rx buffer mbufs.
2466 */
2467 for (i = 0; i < TOTAL_RX_BD; i++) {
2468 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2469 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2470 &sc->rx_mbuf_map[i])) {
2471 aprint_error_dev(sc->bnx_dev,
2472 "Could not create Rx mbuf %d DMA map!\n", i);
2473 rc = ENOMEM;
2474 goto bnx_dma_alloc_exit;
2475 }
2476 }
2477
2478 bnx_dma_alloc_exit:
2479 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2480
2481 return(rc);
2482 }
2483
2484 /****************************************************************************/
2485 /* Release all resources used by the driver. */
2486 /* */
2487 /* Releases all resources acquired by the driver including interrupts, */
2488 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2489 /* */
2490 /* Returns: */
2491 /* Nothing. */
2492 /****************************************************************************/
2493 void
2494 bnx_release_resources(struct bnx_softc *sc)
2495 {
2496 struct pci_attach_args *pa = &(sc->bnx_pa);
2497
2498 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2499
2500 bnx_dma_free(sc);
2501
2502 if (sc->bnx_intrhand != NULL)
2503 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2504
2505 if (sc->bnx_size)
2506 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2507
2508 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2509 }
2510
2511 /****************************************************************************/
2512 /* Firmware synchronization. */
2513 /* */
2514 /* Before performing certain events such as a chip reset, synchronize with */
2515 /* the firmware first. */
2516 /* */
2517 /* Returns: */
2518 /* 0 for success, positive value for failure. */
2519 /****************************************************************************/
2520 int
2521 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2522 {
2523 int i, rc = 0;
2524 u_int32_t val;
2525
2526 /* Don't waste any time if we've timed out before. */
2527 if (sc->bnx_fw_timed_out) {
2528 rc = EBUSY;
2529 goto bnx_fw_sync_exit;
2530 }
2531
2532 /* Increment the message sequence number. */
2533 sc->bnx_fw_wr_seq++;
2534 msg_data |= sc->bnx_fw_wr_seq;
2535
2536 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2537 msg_data);
2538
2539 /* Send the message to the bootcode driver mailbox. */
2540 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2541
2542 /* Wait for the bootcode to acknowledge the message. */
2543 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2544 /* Check for a response in the bootcode firmware mailbox. */
2545 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2546 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2547 break;
2548 DELAY(1000);
2549 }
2550
2551 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2552 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2553 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2554 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2555 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2556
2557 msg_data &= ~BNX_DRV_MSG_CODE;
2558 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2559
2560 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2561
2562 sc->bnx_fw_timed_out = 1;
2563 rc = EBUSY;
2564 }
2565
2566 bnx_fw_sync_exit:
2567 return (rc);
2568 }
2569
2570 /****************************************************************************/
2571 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2572 /* */
2573 /* Returns: */
2574 /* Nothing. */
2575 /****************************************************************************/
2576 void
2577 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2578 u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2579 {
2580 int i;
2581 u_int32_t val;
2582
2583 /* Set the page size used by RV2P. */
2584 if (rv2p_proc == RV2P_PROC2) {
2585 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2586 USABLE_RX_BD_PER_PAGE);
2587 }
2588
2589 for (i = 0; i < rv2p_code_len; i += 8) {
2590 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2591 rv2p_code++;
2592 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2593 rv2p_code++;
2594
2595 if (rv2p_proc == RV2P_PROC1) {
2596 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2597 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2598 } else {
2599 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2600 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2601 }
2602 }
2603
2604 /* Reset the processor, un-stall is done later. */
2605 if (rv2p_proc == RV2P_PROC1)
2606 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2607 else
2608 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2609 }
2610
2611 /****************************************************************************/
2612 /* Load RISC processor firmware. */
2613 /* */
2614 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2615 /* associated with a particular processor. */
2616 /* */
2617 /* Returns: */
2618 /* Nothing. */
2619 /****************************************************************************/
2620 void
2621 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2622 struct fw_info *fw)
2623 {
2624 u_int32_t offset;
2625 u_int32_t val;
2626
2627 /* Halt the CPU. */
2628 val = REG_RD_IND(sc, cpu_reg->mode);
2629 val |= cpu_reg->mode_value_halt;
2630 REG_WR_IND(sc, cpu_reg->mode, val);
2631 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2632
2633 /* Load the Text area. */
2634 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2635 if (fw->text) {
2636 int j;
2637
2638 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2639 REG_WR_IND(sc, offset, fw->text[j]);
2640 }
2641
2642 /* Load the Data area. */
2643 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2644 if (fw->data) {
2645 int j;
2646
2647 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2648 REG_WR_IND(sc, offset, fw->data[j]);
2649 }
2650
2651 /* Load the SBSS area. */
2652 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2653 if (fw->sbss) {
2654 int j;
2655
2656 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2657 REG_WR_IND(sc, offset, fw->sbss[j]);
2658 }
2659
2660 /* Load the BSS area. */
2661 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2662 if (fw->bss) {
2663 int j;
2664
2665 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2666 REG_WR_IND(sc, offset, fw->bss[j]);
2667 }
2668
2669 /* Load the Read-Only area. */
2670 offset = cpu_reg->spad_base +
2671 (fw->rodata_addr - cpu_reg->mips_view_base);
2672 if (fw->rodata) {
2673 int j;
2674
2675 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2676 REG_WR_IND(sc, offset, fw->rodata[j]);
2677 }
2678
2679 /* Clear the pre-fetch instruction. */
2680 REG_WR_IND(sc, cpu_reg->inst, 0);
2681 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2682
2683 /* Start the CPU. */
2684 val = REG_RD_IND(sc, cpu_reg->mode);
2685 val &= ~cpu_reg->mode_value_halt;
2686 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2687 REG_WR_IND(sc, cpu_reg->mode, val);
2688 }
2689
2690 /****************************************************************************/
2691 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2692 /* */
2693 /* Loads the firmware for each CPU and starts the CPU. */
2694 /* */
2695 /* Returns: */
2696 /* Nothing. */
2697 /****************************************************************************/
2698 void
2699 bnx_init_cpus(struct bnx_softc *sc)
2700 {
2701 struct cpu_reg cpu_reg;
2702 struct fw_info fw;
2703
2704 switch(BNX_CHIP_NUM(sc)) {
2705 case BNX_CHIP_NUM_5709:
2706 /* Initialize the RV2P processor. */
2707 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2708 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2709 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2710 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2711 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2712 } else {
2713 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2714 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2715 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2716 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2717 }
2718
2719 /* Initialize the RX Processor. */
2720 cpu_reg.mode = BNX_RXP_CPU_MODE;
2721 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2722 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2723 cpu_reg.state = BNX_RXP_CPU_STATE;
2724 cpu_reg.state_value_clear = 0xffffff;
2725 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2726 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2727 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2728 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2729 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2730 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2731 cpu_reg.mips_view_base = 0x8000000;
2732
2733 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2734 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2735 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2736 fw.start_addr = bnx_RXP_b09FwStartAddr;
2737
2738 fw.text_addr = bnx_RXP_b09FwTextAddr;
2739 fw.text_len = bnx_RXP_b09FwTextLen;
2740 fw.text_index = 0;
2741 fw.text = bnx_RXP_b09FwText;
2742
2743 fw.data_addr = bnx_RXP_b09FwDataAddr;
2744 fw.data_len = bnx_RXP_b09FwDataLen;
2745 fw.data_index = 0;
2746 fw.data = bnx_RXP_b09FwData;
2747
2748 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2749 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2750 fw.sbss_index = 0;
2751 fw.sbss = bnx_RXP_b09FwSbss;
2752
2753 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2754 fw.bss_len = bnx_RXP_b09FwBssLen;
2755 fw.bss_index = 0;
2756 fw.bss = bnx_RXP_b09FwBss;
2757
2758 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2759 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2760 fw.rodata_index = 0;
2761 fw.rodata = bnx_RXP_b09FwRodata;
2762
2763 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2764 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2765
2766 /* Initialize the TX Processor. */
2767 cpu_reg.mode = BNX_TXP_CPU_MODE;
2768 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2769 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2770 cpu_reg.state = BNX_TXP_CPU_STATE;
2771 cpu_reg.state_value_clear = 0xffffff;
2772 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2773 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2774 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2775 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2776 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2777 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2778 cpu_reg.mips_view_base = 0x8000000;
2779
2780 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2781 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2782 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2783 fw.start_addr = bnx_TXP_b09FwStartAddr;
2784
2785 fw.text_addr = bnx_TXP_b09FwTextAddr;
2786 fw.text_len = bnx_TXP_b09FwTextLen;
2787 fw.text_index = 0;
2788 fw.text = bnx_TXP_b09FwText;
2789
2790 fw.data_addr = bnx_TXP_b09FwDataAddr;
2791 fw.data_len = bnx_TXP_b09FwDataLen;
2792 fw.data_index = 0;
2793 fw.data = bnx_TXP_b09FwData;
2794
2795 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2796 fw.sbss_len = bnx_TXP_b09FwSbssLen;
2797 fw.sbss_index = 0;
2798 fw.sbss = bnx_TXP_b09FwSbss;
2799
2800 fw.bss_addr = bnx_TXP_b09FwBssAddr;
2801 fw.bss_len = bnx_TXP_b09FwBssLen;
2802 fw.bss_index = 0;
2803 fw.bss = bnx_TXP_b09FwBss;
2804
2805 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2806 fw.rodata_len = bnx_TXP_b09FwRodataLen;
2807 fw.rodata_index = 0;
2808 fw.rodata = bnx_TXP_b09FwRodata;
2809
2810 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2811 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2812
2813 /* Initialize the TX Patch-up Processor. */
2814 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2815 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2816 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2817 cpu_reg.state = BNX_TPAT_CPU_STATE;
2818 cpu_reg.state_value_clear = 0xffffff;
2819 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2820 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2821 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2822 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2823 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2824 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2825 cpu_reg.mips_view_base = 0x8000000;
2826
2827 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2828 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2829 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2830 fw.start_addr = bnx_TPAT_b09FwStartAddr;
2831
2832 fw.text_addr = bnx_TPAT_b09FwTextAddr;
2833 fw.text_len = bnx_TPAT_b09FwTextLen;
2834 fw.text_index = 0;
2835 fw.text = bnx_TPAT_b09FwText;
2836
2837 fw.data_addr = bnx_TPAT_b09FwDataAddr;
2838 fw.data_len = bnx_TPAT_b09FwDataLen;
2839 fw.data_index = 0;
2840 fw.data = bnx_TPAT_b09FwData;
2841
2842 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2843 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2844 fw.sbss_index = 0;
2845 fw.sbss = bnx_TPAT_b09FwSbss;
2846
2847 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2848 fw.bss_len = bnx_TPAT_b09FwBssLen;
2849 fw.bss_index = 0;
2850 fw.bss = bnx_TPAT_b09FwBss;
2851
2852 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2853 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2854 fw.rodata_index = 0;
2855 fw.rodata = bnx_TPAT_b09FwRodata;
2856
2857 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2858 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2859
2860 /* Initialize the Completion Processor. */
2861 cpu_reg.mode = BNX_COM_CPU_MODE;
2862 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2863 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2864 cpu_reg.state = BNX_COM_CPU_STATE;
2865 cpu_reg.state_value_clear = 0xffffff;
2866 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2867 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2868 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2869 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2870 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2871 cpu_reg.spad_base = BNX_COM_SCRATCH;
2872 cpu_reg.mips_view_base = 0x8000000;
2873
2874 fw.ver_major = bnx_COM_b09FwReleaseMajor;
2875 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2876 fw.ver_fix = bnx_COM_b09FwReleaseFix;
2877 fw.start_addr = bnx_COM_b09FwStartAddr;
2878
2879 fw.text_addr = bnx_COM_b09FwTextAddr;
2880 fw.text_len = bnx_COM_b09FwTextLen;
2881 fw.text_index = 0;
2882 fw.text = bnx_COM_b09FwText;
2883
2884 fw.data_addr = bnx_COM_b09FwDataAddr;
2885 fw.data_len = bnx_COM_b09FwDataLen;
2886 fw.data_index = 0;
2887 fw.data = bnx_COM_b09FwData;
2888
2889 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2890 fw.sbss_len = bnx_COM_b09FwSbssLen;
2891 fw.sbss_index = 0;
2892 fw.sbss = bnx_COM_b09FwSbss;
2893
2894 fw.bss_addr = bnx_COM_b09FwBssAddr;
2895 fw.bss_len = bnx_COM_b09FwBssLen;
2896 fw.bss_index = 0;
2897 fw.bss = bnx_COM_b09FwBss;
2898
2899 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
2900 fw.rodata_len = bnx_COM_b09FwRodataLen;
2901 fw.rodata_index = 0;
2902 fw.rodata = bnx_COM_b09FwRodata;
2903 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2904 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2905 break;
2906 default:
2907 /* Initialize the RV2P processor. */
2908 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2909 RV2P_PROC1);
2910 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2911 RV2P_PROC2);
2912
2913 /* Initialize the RX Processor. */
2914 cpu_reg.mode = BNX_RXP_CPU_MODE;
2915 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2916 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2917 cpu_reg.state = BNX_RXP_CPU_STATE;
2918 cpu_reg.state_value_clear = 0xffffff;
2919 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2920 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2921 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2922 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2923 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2924 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2925 cpu_reg.mips_view_base = 0x8000000;
2926
2927 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2928 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2929 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2930 fw.start_addr = bnx_RXP_b06FwStartAddr;
2931
2932 fw.text_addr = bnx_RXP_b06FwTextAddr;
2933 fw.text_len = bnx_RXP_b06FwTextLen;
2934 fw.text_index = 0;
2935 fw.text = bnx_RXP_b06FwText;
2936
2937 fw.data_addr = bnx_RXP_b06FwDataAddr;
2938 fw.data_len = bnx_RXP_b06FwDataLen;
2939 fw.data_index = 0;
2940 fw.data = bnx_RXP_b06FwData;
2941
2942 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2943 fw.sbss_len = bnx_RXP_b06FwSbssLen;
2944 fw.sbss_index = 0;
2945 fw.sbss = bnx_RXP_b06FwSbss;
2946
2947 fw.bss_addr = bnx_RXP_b06FwBssAddr;
2948 fw.bss_len = bnx_RXP_b06FwBssLen;
2949 fw.bss_index = 0;
2950 fw.bss = bnx_RXP_b06FwBss;
2951
2952 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2953 fw.rodata_len = bnx_RXP_b06FwRodataLen;
2954 fw.rodata_index = 0;
2955 fw.rodata = bnx_RXP_b06FwRodata;
2956
2957 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2958 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2959
2960 /* Initialize the TX Processor. */
2961 cpu_reg.mode = BNX_TXP_CPU_MODE;
2962 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2963 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2964 cpu_reg.state = BNX_TXP_CPU_STATE;
2965 cpu_reg.state_value_clear = 0xffffff;
2966 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2967 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2968 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2969 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2970 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2971 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2972 cpu_reg.mips_view_base = 0x8000000;
2973
2974 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2975 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2976 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2977 fw.start_addr = bnx_TXP_b06FwStartAddr;
2978
2979 fw.text_addr = bnx_TXP_b06FwTextAddr;
2980 fw.text_len = bnx_TXP_b06FwTextLen;
2981 fw.text_index = 0;
2982 fw.text = bnx_TXP_b06FwText;
2983
2984 fw.data_addr = bnx_TXP_b06FwDataAddr;
2985 fw.data_len = bnx_TXP_b06FwDataLen;
2986 fw.data_index = 0;
2987 fw.data = bnx_TXP_b06FwData;
2988
2989 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2990 fw.sbss_len = bnx_TXP_b06FwSbssLen;
2991 fw.sbss_index = 0;
2992 fw.sbss = bnx_TXP_b06FwSbss;
2993
2994 fw.bss_addr = bnx_TXP_b06FwBssAddr;
2995 fw.bss_len = bnx_TXP_b06FwBssLen;
2996 fw.bss_index = 0;
2997 fw.bss = bnx_TXP_b06FwBss;
2998
2999 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3000 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3001 fw.rodata_index = 0;
3002 fw.rodata = bnx_TXP_b06FwRodata;
3003
3004 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3005 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3006
3007 /* Initialize the TX Patch-up Processor. */
3008 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3009 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3010 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3011 cpu_reg.state = BNX_TPAT_CPU_STATE;
3012 cpu_reg.state_value_clear = 0xffffff;
3013 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3014 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3015 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3016 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3017 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3018 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3019 cpu_reg.mips_view_base = 0x8000000;
3020
3021 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3022 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3023 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3024 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3025
3026 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3027 fw.text_len = bnx_TPAT_b06FwTextLen;
3028 fw.text_index = 0;
3029 fw.text = bnx_TPAT_b06FwText;
3030
3031 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3032 fw.data_len = bnx_TPAT_b06FwDataLen;
3033 fw.data_index = 0;
3034 fw.data = bnx_TPAT_b06FwData;
3035
3036 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3037 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3038 fw.sbss_index = 0;
3039 fw.sbss = bnx_TPAT_b06FwSbss;
3040
3041 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3042 fw.bss_len = bnx_TPAT_b06FwBssLen;
3043 fw.bss_index = 0;
3044 fw.bss = bnx_TPAT_b06FwBss;
3045
3046 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3047 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3048 fw.rodata_index = 0;
3049 fw.rodata = bnx_TPAT_b06FwRodata;
3050
3051 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3052 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3053
3054 /* Initialize the Completion Processor. */
3055 cpu_reg.mode = BNX_COM_CPU_MODE;
3056 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3057 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3058 cpu_reg.state = BNX_COM_CPU_STATE;
3059 cpu_reg.state_value_clear = 0xffffff;
3060 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3061 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3062 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3063 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3064 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3065 cpu_reg.spad_base = BNX_COM_SCRATCH;
3066 cpu_reg.mips_view_base = 0x8000000;
3067
3068 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3069 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3070 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3071 fw.start_addr = bnx_COM_b06FwStartAddr;
3072
3073 fw.text_addr = bnx_COM_b06FwTextAddr;
3074 fw.text_len = bnx_COM_b06FwTextLen;
3075 fw.text_index = 0;
3076 fw.text = bnx_COM_b06FwText;
3077
3078 fw.data_addr = bnx_COM_b06FwDataAddr;
3079 fw.data_len = bnx_COM_b06FwDataLen;
3080 fw.data_index = 0;
3081 fw.data = bnx_COM_b06FwData;
3082
3083 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3084 fw.sbss_len = bnx_COM_b06FwSbssLen;
3085 fw.sbss_index = 0;
3086 fw.sbss = bnx_COM_b06FwSbss;
3087
3088 fw.bss_addr = bnx_COM_b06FwBssAddr;
3089 fw.bss_len = bnx_COM_b06FwBssLen;
3090 fw.bss_index = 0;
3091 fw.bss = bnx_COM_b06FwBss;
3092
3093 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3094 fw.rodata_len = bnx_COM_b06FwRodataLen;
3095 fw.rodata_index = 0;
3096 fw.rodata = bnx_COM_b06FwRodata;
3097 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3098 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3099 break;
3100 }
3101 }
3102
3103 /****************************************************************************/
3104 /* Initialize context memory. */
3105 /* */
3106 /* Clears the memory associated with each Context ID (CID). */
3107 /* */
3108 /* Returns: */
3109 /* Nothing. */
3110 /****************************************************************************/
3111 void
3112 bnx_init_context(struct bnx_softc *sc)
3113 {
3114 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3115 /* DRC: Replace this constant value with a #define. */
3116 int i, retry_cnt = 10;
3117 u_int32_t val;
3118
3119 /*
3120 * BCM5709 context memory may be cached
3121 * in host memory so prepare the host memory
3122 * for access.
3123 */
3124 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3125 | (1 << 12);
3126 val |= (BCM_PAGE_BITS - 8) << 16;
3127 REG_WR(sc, BNX_CTX_COMMAND, val);
3128
3129 /* Wait for mem init command to complete. */
3130 for (i = 0; i < retry_cnt; i++) {
3131 val = REG_RD(sc, BNX_CTX_COMMAND);
3132 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3133 break;
3134 DELAY(2);
3135 }
3136
3137
3138 /* ToDo: Consider returning an error here. */
3139
3140 for (i = 0; i < sc->ctx_pages; i++) {
3141 int j;
3142
3143
3144 /* Set the physaddr of the context memory cache. */
3145 val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
3146 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3147 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3148 val = (u_int32_t)
3149 ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
3150 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3151 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3152 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3153
3154
3155 /* Verify that the context memory write was successful. */
3156 for (j = 0; j < retry_cnt; j++) {
3157 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3158 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3159 break;
3160 DELAY(5);
3161 }
3162
3163 /* ToDo: Consider returning an error here. */
3164 }
3165 } else {
3166 u_int32_t vcid_addr, offset;
3167
3168 /*
3169 * For the 5706/5708, context memory is local to
3170 * the controller, so initialize the controller
3171 * context memory.
3172 */
3173
3174 vcid_addr = GET_CID_ADDR(96);
3175 while (vcid_addr) {
3176
3177 vcid_addr -= BNX_PHY_CTX_SIZE;
3178
3179 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3180 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3181
3182 for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3183 CTX_WR(sc, 0x00, offset, 0);
3184 }
3185
3186 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3187 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3188 }
3189 }
3190 }
3191
3192 /****************************************************************************/
3193 /* Fetch the permanent MAC address of the controller. */
3194 /* */
3195 /* Returns: */
3196 /* Nothing. */
3197 /****************************************************************************/
3198 void
3199 bnx_get_mac_addr(struct bnx_softc *sc)
3200 {
3201 u_int32_t mac_lo = 0, mac_hi = 0;
3202
3203 /*
3204 * The NetXtreme II bootcode populates various NIC
3205 * power-on and runtime configuration items in a
3206 * shared memory area. The factory configured MAC
3207 * address is available from both NVRAM and the
3208 * shared memory area so we'll read the value from
3209 * shared memory for speed.
3210 */
3211
3212 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3213 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3214
3215 if ((mac_lo == 0) && (mac_hi == 0)) {
3216 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3217 __FILE__, __LINE__);
3218 } else {
3219 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3220 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3221 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3222 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3223 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3224 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3225 }
3226
3227 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3228 "%s\n", ether_sprintf(sc->eaddr));
3229 }
3230
3231 /****************************************************************************/
3232 /* Program the MAC address. */
3233 /* */
3234 /* Returns: */
3235 /* Nothing. */
3236 /****************************************************************************/
3237 void
3238 bnx_set_mac_addr(struct bnx_softc *sc)
3239 {
3240 u_int32_t val;
3241 const u_int8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3242
3243 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3244 "%s\n", ether_sprintf(sc->eaddr));
3245
3246 val = (mac_addr[0] << 8) | mac_addr[1];
3247
3248 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3249
3250 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3251 (mac_addr[4] << 8) | mac_addr[5];
3252
3253 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3254 }
3255
3256 /****************************************************************************/
3257 /* Stop the controller. */
3258 /* */
3259 /* Returns: */
3260 /* Nothing. */
3261 /****************************************************************************/
3262 void
3263 bnx_stop(struct ifnet *ifp, int disable)
3264 {
3265 struct bnx_softc *sc = ifp->if_softc;
3266
3267 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3268
3269 if ((ifp->if_flags & IFF_RUNNING) == 0)
3270 return;
3271
3272 callout_stop(&sc->bnx_timeout);
3273
3274 mii_down(&sc->bnx_mii);
3275
3276 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3277
3278 /* Disable the transmit/receive blocks. */
3279 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3280 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3281 DELAY(20);
3282
3283 bnx_disable_intr(sc);
3284
3285 /* Tell firmware that the driver is going away. */
3286 if (disable)
3287 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3288 else
3289 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3290
3291 /* Free RX buffers. */
3292 bnx_free_rx_chain(sc);
3293
3294 /* Free TX buffers. */
3295 bnx_free_tx_chain(sc);
3296
3297 ifp->if_timer = 0;
3298
3299 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3300
3301 }
3302
3303 int
3304 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
3305 {
3306 struct pci_attach_args *pa = &(sc->bnx_pa);
3307 u_int32_t val;
3308 int i, rc = 0;
3309
3310 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3311
3312 /* Wait for pending PCI transactions to complete. */
3313 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3314 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3315 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3316 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3317 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3318 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3319 DELAY(5);
3320
3321 /* Disable DMA */
3322 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3323 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3324 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3325 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3326 }
3327
3328 /* Assume bootcode is running. */
3329 sc->bnx_fw_timed_out = 0;
3330
3331 /* Give the firmware a chance to prepare for the reset. */
3332 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3333 if (rc)
3334 goto bnx_reset_exit;
3335
3336 /* Set a firmware reminder that this is a soft reset. */
3337 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3338 BNX_DRV_RESET_SIGNATURE_MAGIC);
3339
3340 /* Dummy read to force the chip to complete all current transactions. */
3341 val = REG_RD(sc, BNX_MISC_ID);
3342
3343 /* Chip reset. */
3344 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3345 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3346 REG_RD(sc, BNX_MISC_COMMAND);
3347 DELAY(5);
3348
3349 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3350 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3351
3352 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3353 val);
3354 } else {
3355 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3356 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3357 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3358 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3359
3360 /* Allow up to 30us for reset to complete. */
3361 for (i = 0; i < 10; i++) {
3362 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3363 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3364 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3365 break;
3366 }
3367 DELAY(10);
3368 }
3369
3370 /* Check that reset completed successfully. */
3371 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3372 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3373 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3374 __FILE__, __LINE__);
3375 rc = EBUSY;
3376 goto bnx_reset_exit;
3377 }
3378 }
3379
3380 /* Make sure byte swapping is properly configured. */
3381 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3382 if (val != 0x01020304) {
3383 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3384 __FILE__, __LINE__);
3385 rc = ENODEV;
3386 goto bnx_reset_exit;
3387 }
3388
3389 /* Just completed a reset, assume that firmware is running again. */
3390 sc->bnx_fw_timed_out = 0;
3391
3392 /* Wait for the firmware to finish its initialization. */
3393 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3394 if (rc)
3395 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3396 "initialization!\n", __FILE__, __LINE__);
3397
3398 bnx_reset_exit:
3399 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3400
3401 return (rc);
3402 }
3403
3404 int
3405 bnx_chipinit(struct bnx_softc *sc)
3406 {
3407 struct pci_attach_args *pa = &(sc->bnx_pa);
3408 u_int32_t val;
3409 int rc = 0;
3410
3411 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3412
3413 /* Make sure the interrupt is not active. */
3414 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3415
3416 /* Initialize DMA byte/word swapping, configure the number of DMA */
3417 /* channels and PCI clock compensation delay. */
3418 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3419 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3420 #if BYTE_ORDER == BIG_ENDIAN
3421 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3422 #endif
3423 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3424 DMA_READ_CHANS << 12 |
3425 DMA_WRITE_CHANS << 16;
3426
3427 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3428
3429 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3430 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3431
3432 /*
3433 * This setting resolves a problem observed on certain Intel PCI
3434 * chipsets that cannot handle multiple outstanding DMA operations.
3435 * See errata E9_5706A1_65.
3436 */
3437 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3438 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3439 !(sc->bnx_flags & BNX_PCIX_FLAG))
3440 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3441
3442 REG_WR(sc, BNX_DMA_CONFIG, val);
3443
3444 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3445 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3446 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3447 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3448 val & ~0x20000);
3449 }
3450
3451 /* Enable the RX_V2P and Context state machines before access. */
3452 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3453 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3454 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3455 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3456
3457 /* Initialize context mapping and zero out the quick contexts. */
3458 bnx_init_context(sc);
3459
3460 /* Initialize the on-boards CPUs */
3461 bnx_init_cpus(sc);
3462
3463 /* Prepare NVRAM for access. */
3464 if (bnx_init_nvram(sc)) {
3465 rc = ENODEV;
3466 goto bnx_chipinit_exit;
3467 }
3468
3469 /* Set the kernel bypass block size */
3470 val = REG_RD(sc, BNX_MQ_CONFIG);
3471 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3472 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3473
3474 /* Enable bins used on the 5709. */
3475 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3476 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3477 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3478 val |= BNX_MQ_CONFIG_HALT_DIS;
3479 }
3480
3481 REG_WR(sc, BNX_MQ_CONFIG, val);
3482
3483 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3484 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3485 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3486
3487 val = (BCM_PAGE_BITS - 8) << 24;
3488 REG_WR(sc, BNX_RV2P_CONFIG, val);
3489
3490 /* Configure page size. */
3491 val = REG_RD(sc, BNX_TBDR_CONFIG);
3492 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3493 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3494 REG_WR(sc, BNX_TBDR_CONFIG, val);
3495
3496 #if 0
3497 /* Set the perfect match control register to default. */
3498 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3499 #endif
3500
3501 bnx_chipinit_exit:
3502 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3503
3504 return(rc);
3505 }
3506
3507 /****************************************************************************/
3508 /* Initialize the controller in preparation to send/receive traffic. */
3509 /* */
3510 /* Returns: */
3511 /* 0 for success, positive value for failure. */
3512 /****************************************************************************/
3513 int
3514 bnx_blockinit(struct bnx_softc *sc)
3515 {
3516 u_int32_t reg, val;
3517 int rc = 0;
3518
3519 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3520
3521 /* Load the hardware default MAC address. */
3522 bnx_set_mac_addr(sc);
3523
3524 /* Set the Ethernet backoff seed value */
3525 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3526 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3527 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3528
3529 sc->last_status_idx = 0;
3530 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3531
3532 /* Set up link change interrupt generation. */
3533 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3534 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3535
3536 /* Program the physical address of the status block. */
3537 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
3538 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3539 (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
3540
3541 /* Program the physical address of the statistics block. */
3542 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3543 (u_int32_t)(sc->stats_block_paddr));
3544 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3545 (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
3546
3547 /* Program various host coalescing parameters. */
3548 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3549 << 16) | sc->bnx_tx_quick_cons_trip);
3550 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3551 << 16) | sc->bnx_rx_quick_cons_trip);
3552 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3553 sc->bnx_comp_prod_trip);
3554 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3555 sc->bnx_tx_ticks);
3556 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3557 sc->bnx_rx_ticks);
3558 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3559 sc->bnx_com_ticks);
3560 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3561 sc->bnx_cmd_ticks);
3562 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3563 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3564 REG_WR(sc, BNX_HC_CONFIG,
3565 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3566 BNX_HC_CONFIG_COLLECT_STATS));
3567
3568 /* Clear the internal statistics counters. */
3569 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3570
3571 /* Verify that bootcode is running. */
3572 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3573
3574 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3575 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3576 __FILE__, __LINE__); reg = 0);
3577
3578 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3579 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3580 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3581 "Expected: 08%08X\n", __FILE__, __LINE__,
3582 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3583 BNX_DEV_INFO_SIGNATURE_MAGIC);
3584 rc = ENODEV;
3585 goto bnx_blockinit_exit;
3586 }
3587
3588 /* Check if any management firmware is running. */
3589 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3590 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3591 BNX_PORT_FEATURE_IMD_ENABLED)) {
3592 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3593 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3594 }
3595
3596 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3597 BNX_DEV_INFO_BC_REV);
3598
3599 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3600
3601 /* Enable DMA */
3602 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3603 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3604 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3605 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3606 }
3607
3608 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3609 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3610
3611 /* Enable link state change interrupt generation. */
3612 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3613 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3614 BNX_MISC_ENABLE_DEFAULT_XI);
3615 } else
3616 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3617
3618 /* Enable all remaining blocks in the MAC. */
3619 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3620 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3621 DELAY(20);
3622
3623 bnx_blockinit_exit:
3624 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3625
3626 return (rc);
3627 }
3628
3629 static int
3630 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
3631 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3632 {
3633 bus_dmamap_t map;
3634 struct rx_bd *rxbd;
3635 u_int32_t addr;
3636 int i;
3637 #ifdef BNX_DEBUG
3638 u_int16_t debug_chain_prod = *chain_prod;
3639 #endif
3640 u_int16_t first_chain_prod;
3641
3642 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3643
3644 /* Map the mbuf cluster into device memory. */
3645 map = sc->rx_mbuf_map[*chain_prod];
3646 first_chain_prod = *chain_prod;
3647 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3648 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3649 __FILE__, __LINE__);
3650
3651 m_freem(m_new);
3652
3653 DBRUNIF(1, sc->rx_mbuf_alloc--);
3654
3655 return ENOBUFS;
3656 }
3657 /* Make sure there is room in the receive chain. */
3658 if (map->dm_nsegs > sc->free_rx_bd) {
3659 bus_dmamap_unload(sc->bnx_dmatag, map);
3660 m_freem(m_new);
3661 return EFBIG;
3662 }
3663 #ifdef BNX_DEBUG
3664 /* Track the distribution of buffer segments. */
3665 sc->rx_mbuf_segs[map->dm_nsegs]++;
3666 #endif
3667
3668 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3669 BUS_DMASYNC_PREREAD);
3670
3671 /* Update some debug statistics counters */
3672 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3673 sc->rx_low_watermark = sc->free_rx_bd);
3674 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3675
3676 /*
3677 * Setup the rx_bd for the first segment
3678 */
3679 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3680
3681 addr = (u_int32_t)map->dm_segs[0].ds_addr;
3682 rxbd->rx_bd_haddr_lo = addr;
3683 addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3684 rxbd->rx_bd_haddr_hi = addr;
3685 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3686 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3687 *prod_bseq += map->dm_segs[0].ds_len;
3688 bus_dmamap_sync(sc->bnx_dmatag,
3689 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3690 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3691 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3692
3693 for (i = 1; i < map->dm_nsegs; i++) {
3694 *prod = NEXT_RX_BD(*prod);
3695 *chain_prod = RX_CHAIN_IDX(*prod);
3696
3697 rxbd =
3698 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3699
3700 addr = (u_int32_t)map->dm_segs[i].ds_addr;
3701 rxbd->rx_bd_haddr_lo = addr;
3702 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3703 rxbd->rx_bd_haddr_hi = addr;
3704 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3705 rxbd->rx_bd_flags = 0;
3706 *prod_bseq += map->dm_segs[i].ds_len;
3707 bus_dmamap_sync(sc->bnx_dmatag,
3708 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3709 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3710 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3711 }
3712
3713 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3714 bus_dmamap_sync(sc->bnx_dmatag,
3715 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3716 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3717 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3718
3719 /*
3720 * Save the mbuf, ajust the map pointer (swap map for first and
3721 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3722 * and update counter.
3723 */
3724 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3725 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3726 sc->rx_mbuf_map[*chain_prod] = map;
3727 sc->free_rx_bd -= map->dm_nsegs;
3728
3729 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3730 map->dm_nsegs));
3731 *prod = NEXT_RX_BD(*prod);
3732 *chain_prod = RX_CHAIN_IDX(*prod);
3733
3734 return 0;
3735 }
3736
3737 /****************************************************************************/
3738 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3739 /* */
3740 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3741 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3742 /* necessary. */
3743 /* */
3744 /* Returns: */
3745 /* 0 for success, positive value for failure. */
3746 /****************************************************************************/
3747 int
3748 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
3749 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3750 {
3751 struct mbuf *m_new = NULL;
3752 int rc = 0;
3753 u_int16_t min_free_bd;
3754
3755 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3756 __func__);
3757
3758 /* Make sure the inputs are valid. */
3759 DBRUNIF((*chain_prod > MAX_RX_BD),
3760 aprint_error_dev(sc->bnx_dev,
3761 "RX producer out of range: 0x%04X > 0x%04X\n",
3762 *chain_prod, (u_int16_t)MAX_RX_BD));
3763
3764 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3765 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3766 *prod_bseq);
3767
3768 /* try to get in as many mbufs as possible */
3769 if (sc->mbuf_alloc_size == MCLBYTES)
3770 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3771 else
3772 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3773 while (sc->free_rx_bd >= min_free_bd) {
3774 /* Simulate an mbuf allocation failure. */
3775 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3776 aprint_error_dev(sc->bnx_dev,
3777 "Simulating mbuf allocation failure.\n");
3778 sc->mbuf_sim_alloc_failed++;
3779 rc = ENOBUFS;
3780 goto bnx_get_buf_exit);
3781
3782 /* This is a new mbuf allocation. */
3783 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3784 if (m_new == NULL) {
3785 DBPRINT(sc, BNX_WARN,
3786 "%s(%d): RX mbuf header allocation failed!\n",
3787 __FILE__, __LINE__);
3788
3789 sc->mbuf_alloc_failed++;
3790
3791 rc = ENOBUFS;
3792 goto bnx_get_buf_exit;
3793 }
3794
3795 DBRUNIF(1, sc->rx_mbuf_alloc++);
3796
3797 /* Simulate an mbuf cluster allocation failure. */
3798 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3799 m_freem(m_new);
3800 sc->rx_mbuf_alloc--;
3801 sc->mbuf_alloc_failed++;
3802 sc->mbuf_sim_alloc_failed++;
3803 rc = ENOBUFS;
3804 goto bnx_get_buf_exit);
3805
3806 if (sc->mbuf_alloc_size == MCLBYTES)
3807 MCLGET(m_new, M_DONTWAIT);
3808 else
3809 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3810 M_DONTWAIT);
3811 if (!(m_new->m_flags & M_EXT)) {
3812 DBPRINT(sc, BNX_WARN,
3813 "%s(%d): RX mbuf chain allocation failed!\n",
3814 __FILE__, __LINE__);
3815
3816 m_freem(m_new);
3817
3818 DBRUNIF(1, sc->rx_mbuf_alloc--);
3819 sc->mbuf_alloc_failed++;
3820
3821 rc = ENOBUFS;
3822 goto bnx_get_buf_exit;
3823 }
3824
3825 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3826 if (rc != 0)
3827 goto bnx_get_buf_exit;
3828 }
3829
3830 bnx_get_buf_exit:
3831 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3832 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3833 *chain_prod, *prod_bseq);
3834
3835 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3836 __func__);
3837
3838 return(rc);
3839 }
3840
3841 int
3842 bnx_alloc_pkts(struct bnx_softc *sc)
3843 {
3844 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3845 struct bnx_pkt *pkt;
3846 int i;
3847
3848 for (i = 0; i < 4; i++) { /* magic! */
3849 pkt = pool_get(bnx_tx_pool, PR_NOWAIT);
3850 if (pkt == NULL)
3851 break;
3852
3853 if (bus_dmamap_create(sc->bnx_dmatag,
3854 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3855 MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
3856 &pkt->pkt_dmamap) != 0)
3857 goto put;
3858
3859 if (!ISSET(ifp->if_flags, IFF_UP))
3860 goto stopping;
3861
3862 mutex_enter(&sc->tx_pkt_mtx);
3863 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3864 sc->tx_pkt_count++;
3865 mutex_exit(&sc->tx_pkt_mtx);
3866 }
3867
3868 return (i == 0) ? ENOMEM : 0;
3869
3870 stopping:
3871 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3872 put:
3873 pool_put(bnx_tx_pool, pkt);
3874 return (i == 0) ? ENOMEM : 0;
3875 }
3876
3877 /****************************************************************************/
3878 /* Initialize the TX context memory. */
3879 /* */
3880 /* Returns: */
3881 /* Nothing */
3882 /****************************************************************************/
3883 void
3884 bnx_init_tx_context(struct bnx_softc *sc)
3885 {
3886 u_int32_t val;
3887
3888 /* Initialize the context ID for an L2 TX chain. */
3889 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3890 /* Set the CID type to support an L2 connection. */
3891 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3892 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
3893 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3894 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
3895
3896 /* Point the hardware to the first page in the chain. */
3897 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3898 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3899 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
3900 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3901 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3902 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
3903 } else {
3904 /* Set the CID type to support an L2 connection. */
3905 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3906 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3907 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3908 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3909
3910 /* Point the hardware to the first page in the chain. */
3911 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3912 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3913 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3914 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3915 }
3916 }
3917
3918
3919 /****************************************************************************/
3920 /* Allocate memory and initialize the TX data structures. */
3921 /* */
3922 /* Returns: */
3923 /* 0 for success, positive value for failure. */
3924 /****************************************************************************/
3925 int
3926 bnx_init_tx_chain(struct bnx_softc *sc)
3927 {
3928 struct tx_bd *txbd;
3929 u_int32_t addr;
3930 int i, rc = 0;
3931
3932 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3933
3934 /* Force an allocation of some dmamaps for tx up front */
3935 bnx_alloc_pkts(sc);
3936
3937 /* Set the initial TX producer/consumer indices. */
3938 sc->tx_prod = 0;
3939 sc->tx_cons = 0;
3940 sc->tx_prod_bseq = 0;
3941 sc->used_tx_bd = 0;
3942 sc->max_tx_bd = USABLE_TX_BD;
3943 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3944 DBRUNIF(1, sc->tx_full_count = 0);
3945
3946 /*
3947 * The NetXtreme II supports a linked-list structure called
3948 * a Buffer Descriptor Chain (or BD chain). A BD chain
3949 * consists of a series of 1 or more chain pages, each of which
3950 * consists of a fixed number of BD entries.
3951 * The last BD entry on each page is a pointer to the next page
3952 * in the chain, and the last pointer in the BD chain
3953 * points back to the beginning of the chain.
3954 */
3955
3956 /* Set the TX next pointer chain entries. */
3957 for (i = 0; i < TX_PAGES; i++) {
3958 int j;
3959
3960 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3961
3962 /* Check if we've reached the last page. */
3963 if (i == (TX_PAGES - 1))
3964 j = 0;
3965 else
3966 j = i + 1;
3967
3968 addr = (u_int32_t)sc->tx_bd_chain_paddr[j];
3969 txbd->tx_bd_haddr_lo = addr;
3970 addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3971 txbd->tx_bd_haddr_hi = addr;
3972 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3973 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3974 }
3975
3976 /*
3977 * Initialize the context ID for an L2 TX chain.
3978 */
3979 bnx_init_tx_context(sc);
3980
3981 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3982
3983 return(rc);
3984 }
3985
3986 /****************************************************************************/
3987 /* Free memory and clear the TX data structures. */
3988 /* */
3989 /* Returns: */
3990 /* Nothing. */
3991 /****************************************************************************/
3992 void
3993 bnx_free_tx_chain(struct bnx_softc *sc)
3994 {
3995 struct bnx_pkt *pkt;
3996 int i;
3997
3998 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3999
4000 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4001 mutex_enter(&sc->tx_pkt_mtx);
4002 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4003 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4004 mutex_exit(&sc->tx_pkt_mtx);
4005
4006 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4007 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4008 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4009
4010 m_freem(pkt->pkt_mbuf);
4011 DBRUNIF(1, sc->tx_mbuf_alloc--);
4012
4013 mutex_enter(&sc->tx_pkt_mtx);
4014 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4015 }
4016
4017 /* Destroy all the dmamaps we allocated for TX */
4018 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4019 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4020 sc->tx_pkt_count--;
4021 mutex_exit(&sc->tx_pkt_mtx);
4022
4023 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4024 pool_put(bnx_tx_pool, pkt);
4025
4026 mutex_enter(&sc->tx_pkt_mtx);
4027 }
4028 mutex_exit(&sc->tx_pkt_mtx);
4029
4030
4031
4032 /* Clear each TX chain page. */
4033 for (i = 0; i < TX_PAGES; i++) {
4034 memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4035 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4036 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4037 }
4038
4039 sc->used_tx_bd = 0;
4040
4041 /* Check if we lost any mbufs in the process. */
4042 DBRUNIF((sc->tx_mbuf_alloc),
4043 aprint_error_dev(sc->bnx_dev,
4044 "Memory leak! Lost %d mbufs from tx chain!\n",
4045 sc->tx_mbuf_alloc));
4046
4047 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4048 }
4049
4050 /****************************************************************************/
4051 /* Initialize the RX context memory. */
4052 /* */
4053 /* Returns: */
4054 /* Nothing */
4055 /****************************************************************************/
4056 void
4057 bnx_init_rx_context(struct bnx_softc *sc)
4058 {
4059 u_int32_t val;
4060
4061 /* Initialize the context ID for an L2 RX chain. */
4062 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4063 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4064
4065 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4066 u_int32_t lo_water, hi_water;
4067
4068 lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4069 hi_water = USABLE_RX_BD / 4;
4070
4071 lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4072 hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4073
4074 if (hi_water > 0xf)
4075 hi_water = 0xf;
4076 else if (hi_water == 0)
4077 lo_water = 0;
4078 val |= lo_water |
4079 (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4080 }
4081
4082 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4083
4084 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4085 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4086 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4087 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4088 }
4089
4090 /* Point the hardware to the first page in the chain. */
4091 val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
4092 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4093 val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
4094 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4095 }
4096
4097 /****************************************************************************/
4098 /* Allocate memory and initialize the RX data structures. */
4099 /* */
4100 /* Returns: */
4101 /* 0 for success, positive value for failure. */
4102 /****************************************************************************/
4103 int
4104 bnx_init_rx_chain(struct bnx_softc *sc)
4105 {
4106 struct rx_bd *rxbd;
4107 int i, rc = 0;
4108 u_int16_t prod, chain_prod;
4109 u_int32_t prod_bseq, addr;
4110
4111 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4112
4113 /* Initialize the RX producer and consumer indices. */
4114 sc->rx_prod = 0;
4115 sc->rx_cons = 0;
4116 sc->rx_prod_bseq = 0;
4117 sc->free_rx_bd = USABLE_RX_BD;
4118 sc->max_rx_bd = USABLE_RX_BD;
4119 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4120 DBRUNIF(1, sc->rx_empty_count = 0);
4121
4122 /* Initialize the RX next pointer chain entries. */
4123 for (i = 0; i < RX_PAGES; i++) {
4124 int j;
4125
4126 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4127
4128 /* Check if we've reached the last page. */
4129 if (i == (RX_PAGES - 1))
4130 j = 0;
4131 else
4132 j = i + 1;
4133
4134 /* Setup the chain page pointers. */
4135 addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
4136 rxbd->rx_bd_haddr_hi = addr;
4137 addr = (u_int32_t)sc->rx_bd_chain_paddr[j];
4138 rxbd->rx_bd_haddr_lo = addr;
4139 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4140 0, BNX_RX_CHAIN_PAGE_SZ,
4141 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4142 }
4143
4144 /* Allocate mbuf clusters for the rx_bd chain. */
4145 prod = prod_bseq = 0;
4146 chain_prod = RX_CHAIN_IDX(prod);
4147 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4148 BNX_PRINTF(sc,
4149 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4150 }
4151
4152 /* Save the RX chain producer index. */
4153 sc->rx_prod = prod;
4154 sc->rx_prod_bseq = prod_bseq;
4155
4156 for (i = 0; i < RX_PAGES; i++)
4157 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4158 sc->rx_bd_chain_map[i]->dm_mapsize,
4159 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4160
4161 /* Tell the chip about the waiting rx_bd's. */
4162 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4163 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4164
4165 bnx_init_rx_context(sc);
4166
4167 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4168
4169 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4170
4171 return(rc);
4172 }
4173
4174 /****************************************************************************/
4175 /* Free memory and clear the RX data structures. */
4176 /* */
4177 /* Returns: */
4178 /* Nothing. */
4179 /****************************************************************************/
4180 void
4181 bnx_free_rx_chain(struct bnx_softc *sc)
4182 {
4183 int i;
4184
4185 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4186
4187 /* Free any mbufs still in the RX mbuf chain. */
4188 for (i = 0; i < TOTAL_RX_BD; i++) {
4189 if (sc->rx_mbuf_ptr[i] != NULL) {
4190 if (sc->rx_mbuf_map[i] != NULL) {
4191 bus_dmamap_sync(sc->bnx_dmatag,
4192 sc->rx_mbuf_map[i], 0,
4193 sc->rx_mbuf_map[i]->dm_mapsize,
4194 BUS_DMASYNC_POSTREAD);
4195 bus_dmamap_unload(sc->bnx_dmatag,
4196 sc->rx_mbuf_map[i]);
4197 }
4198 m_freem(sc->rx_mbuf_ptr[i]);
4199 sc->rx_mbuf_ptr[i] = NULL;
4200 DBRUNIF(1, sc->rx_mbuf_alloc--);
4201 }
4202 }
4203
4204 /* Clear each RX chain page. */
4205 for (i = 0; i < RX_PAGES; i++)
4206 memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4207
4208 sc->free_rx_bd = sc->max_rx_bd;
4209
4210 /* Check if we lost any mbufs in the process. */
4211 DBRUNIF((sc->rx_mbuf_alloc),
4212 aprint_error_dev(sc->bnx_dev,
4213 "Memory leak! Lost %d mbufs from rx chain!\n",
4214 sc->rx_mbuf_alloc));
4215
4216 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4217 }
4218
4219 /****************************************************************************/
4220 /* Handles PHY generated interrupt events. */
4221 /* */
4222 /* Returns: */
4223 /* Nothing. */
4224 /****************************************************************************/
4225 void
4226 bnx_phy_intr(struct bnx_softc *sc)
4227 {
4228 u_int32_t new_link_state, old_link_state;
4229
4230 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4231 BUS_DMASYNC_POSTREAD);
4232 new_link_state = sc->status_block->status_attn_bits &
4233 STATUS_ATTN_BITS_LINK_STATE;
4234 old_link_state = sc->status_block->status_attn_bits_ack &
4235 STATUS_ATTN_BITS_LINK_STATE;
4236
4237 /* Handle any changes if the link state has changed. */
4238 if (new_link_state != old_link_state) {
4239 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4240
4241 callout_stop(&sc->bnx_timeout);
4242 bnx_tick(sc);
4243
4244 /* Update the status_attn_bits_ack field in the status block. */
4245 if (new_link_state) {
4246 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4247 STATUS_ATTN_BITS_LINK_STATE);
4248 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4249 } else {
4250 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4251 STATUS_ATTN_BITS_LINK_STATE);
4252 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4253 }
4254 }
4255
4256 /* Acknowledge the link change interrupt. */
4257 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4258 }
4259
4260 /****************************************************************************/
4261 /* Handles received frame interrupt events. */
4262 /* */
4263 /* Returns: */
4264 /* Nothing. */
4265 /****************************************************************************/
4266 void
4267 bnx_rx_intr(struct bnx_softc *sc)
4268 {
4269 struct status_block *sblk = sc->status_block;
4270 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4271 u_int16_t hw_cons, sw_cons, sw_chain_cons;
4272 u_int16_t sw_prod, sw_chain_prod;
4273 u_int32_t sw_prod_bseq;
4274 struct l2_fhdr *l2fhdr;
4275 int i;
4276
4277 DBRUNIF(1, sc->rx_interrupts++);
4278 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4279 BUS_DMASYNC_POSTREAD);
4280
4281 /* Prepare the RX chain pages to be accessed by the host CPU. */
4282 for (i = 0; i < RX_PAGES; i++)
4283 bus_dmamap_sync(sc->bnx_dmatag,
4284 sc->rx_bd_chain_map[i], 0,
4285 sc->rx_bd_chain_map[i]->dm_mapsize,
4286 BUS_DMASYNC_POSTWRITE);
4287
4288 /* Get the hardware's view of the RX consumer index. */
4289 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4290 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4291 hw_cons++;
4292
4293 /* Get working copies of the driver's view of the RX indices. */
4294 sw_cons = sc->rx_cons;
4295 sw_prod = sc->rx_prod;
4296 sw_prod_bseq = sc->rx_prod_bseq;
4297
4298 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4299 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4300 __func__, sw_prod, sw_cons, sw_prod_bseq);
4301
4302 /* Prevent speculative reads from getting ahead of the status block. */
4303 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4304 BUS_SPACE_BARRIER_READ);
4305
4306 /* Update some debug statistics counters */
4307 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4308 sc->rx_low_watermark = sc->free_rx_bd);
4309 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4310
4311 /*
4312 * Scan through the receive chain as long
4313 * as there is work to do.
4314 */
4315 while (sw_cons != hw_cons) {
4316 struct mbuf *m;
4317 struct rx_bd *rxbd;
4318 unsigned int len;
4319 u_int32_t status;
4320
4321 /* Convert the producer/consumer indices to an actual
4322 * rx_bd index.
4323 */
4324 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4325 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4326
4327 /* Get the used rx_bd. */
4328 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4329 sc->free_rx_bd++;
4330
4331 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4332 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4333
4334 /* The mbuf is stored with the last rx_bd entry of a packet. */
4335 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4336 #ifdef DIAGNOSTIC
4337 /* Validate that this is the last rx_bd. */
4338 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4339 printf("%s: Unexpected mbuf found in "
4340 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4341 sw_chain_cons);
4342 }
4343 #endif
4344
4345 /* DRC - ToDo: If the received packet is small, say less
4346 * than 128 bytes, allocate a new mbuf here,
4347 * copy the data to that mbuf, and recycle
4348 * the mapped jumbo frame.
4349 */
4350
4351 /* Unmap the mbuf from DMA space. */
4352 #ifdef DIAGNOSTIC
4353 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4354 printf("invalid map sw_cons 0x%x "
4355 "sw_prod 0x%x "
4356 "sw_chain_cons 0x%x "
4357 "sw_chain_prod 0x%x "
4358 "hw_cons 0x%x "
4359 "TOTAL_RX_BD_PER_PAGE 0x%x "
4360 "TOTAL_RX_BD 0x%x\n",
4361 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4362 hw_cons,
4363 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4364 }
4365 #endif
4366 bus_dmamap_sync(sc->bnx_dmatag,
4367 sc->rx_mbuf_map[sw_chain_cons], 0,
4368 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4369 BUS_DMASYNC_POSTREAD);
4370 bus_dmamap_unload(sc->bnx_dmatag,
4371 sc->rx_mbuf_map[sw_chain_cons]);
4372
4373 /* Remove the mbuf from the driver's chain. */
4374 m = sc->rx_mbuf_ptr[sw_chain_cons];
4375 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4376
4377 /*
4378 * Frames received on the NetXteme II are prepended
4379 * with the l2_fhdr structure which provides status
4380 * information about the received frame (including
4381 * VLAN tags and checksum info) and are also
4382 * automatically adjusted to align the IP header
4383 * (i.e. two null bytes are inserted before the
4384 * Ethernet header).
4385 */
4386 l2fhdr = mtod(m, struct l2_fhdr *);
4387
4388 len = l2fhdr->l2_fhdr_pkt_len;
4389 status = l2fhdr->l2_fhdr_status;
4390
4391 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4392 aprint_error("Simulating l2_fhdr status error.\n");
4393 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4394
4395 /* Watch for unusual sized frames. */
4396 DBRUNIF(((len < BNX_MIN_MTU) ||
4397 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4398 aprint_error_dev(sc->bnx_dev,
4399 "Unusual frame size found. "
4400 "Min(%d), Actual(%d), Max(%d)\n",
4401 (int)BNX_MIN_MTU, len,
4402 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4403
4404 bnx_dump_mbuf(sc, m);
4405 bnx_breakpoint(sc));
4406
4407 len -= ETHER_CRC_LEN;
4408
4409 /* Check the received frame for errors. */
4410 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4411 L2_FHDR_ERRORS_PHY_DECODE |
4412 L2_FHDR_ERRORS_ALIGNMENT |
4413 L2_FHDR_ERRORS_TOO_SHORT |
4414 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4415 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4416 len >
4417 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4418 ifp->if_ierrors++;
4419 DBRUNIF(1, sc->l2fhdr_status_errors++);
4420
4421 /* Reuse the mbuf for a new frame. */
4422 if (bnx_add_buf(sc, m, &sw_prod,
4423 &sw_chain_prod, &sw_prod_bseq)) {
4424 DBRUNIF(1, bnx_breakpoint(sc));
4425 panic("%s: Can't reuse RX mbuf!\n",
4426 device_xname(sc->bnx_dev));
4427 }
4428 continue;
4429 }
4430
4431 /*
4432 * Get a new mbuf for the rx_bd. If no new
4433 * mbufs are available then reuse the current mbuf,
4434 * log an ierror on the interface, and generate
4435 * an error in the system log.
4436 */
4437 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4438 &sw_prod_bseq)) {
4439 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4440 "Failed to allocate "
4441 "new mbuf, incoming frame dropped!\n"));
4442
4443 ifp->if_ierrors++;
4444
4445 /* Try and reuse the exisitng mbuf. */
4446 if (bnx_add_buf(sc, m, &sw_prod,
4447 &sw_chain_prod, &sw_prod_bseq)) {
4448 DBRUNIF(1, bnx_breakpoint(sc));
4449 panic("%s: Double mbuf allocation "
4450 "failure!",
4451 device_xname(sc->bnx_dev));
4452 }
4453 continue;
4454 }
4455
4456 /* Skip over the l2_fhdr when passing the data up
4457 * the stack.
4458 */
4459 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4460
4461 /* Adjust the pckt length to match the received data. */
4462 m->m_pkthdr.len = m->m_len = len;
4463
4464 /* Send the packet to the appropriate interface. */
4465 m->m_pkthdr.rcvif = ifp;
4466
4467 DBRUN(BNX_VERBOSE_RECV,
4468 struct ether_header *eh;
4469 eh = mtod(m, struct ether_header *);
4470 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4471 __func__, ether_sprintf(eh->ether_dhost),
4472 ether_sprintf(eh->ether_shost),
4473 htons(eh->ether_type)));
4474
4475 /* Validate the checksum. */
4476
4477 /* Check for an IP datagram. */
4478 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4479 /* Check if the IP checksum is valid. */
4480 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4481 == 0)
4482 m->m_pkthdr.csum_flags |=
4483 M_CSUM_IPv4;
4484 #ifdef BNX_DEBUG
4485 else
4486 DBPRINT(sc, BNX_WARN_SEND,
4487 "%s(): Invalid IP checksum "
4488 "= 0x%04X!\n",
4489 __func__,
4490 l2fhdr->l2_fhdr_ip_xsum
4491 );
4492 #endif
4493 }
4494
4495 /* Check for a valid TCP/UDP frame. */
4496 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4497 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4498 /* Check for a good TCP/UDP checksum. */
4499 if ((status &
4500 (L2_FHDR_ERRORS_TCP_XSUM |
4501 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4502 m->m_pkthdr.csum_flags |=
4503 M_CSUM_TCPv4 |
4504 M_CSUM_UDPv4;
4505 } else {
4506 DBPRINT(sc, BNX_WARN_SEND,
4507 "%s(): Invalid TCP/UDP "
4508 "checksum = 0x%04X!\n",
4509 __func__,
4510 l2fhdr->l2_fhdr_tcp_udp_xsum);
4511 }
4512 }
4513
4514 /*
4515 * If we received a packet with a vlan tag,
4516 * attach that information to the packet.
4517 */
4518 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4519 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4520 VLAN_INPUT_TAG(ifp, m,
4521 l2fhdr->l2_fhdr_vlan_tag,
4522 continue);
4523 }
4524
4525 /*
4526 * Handle BPF listeners. Let the BPF
4527 * user see the packet.
4528 */
4529 bpf_mtap(ifp, m);
4530
4531 /* Pass the mbuf off to the upper layers. */
4532 ifp->if_ipackets++;
4533 DBPRINT(sc, BNX_VERBOSE_RECV,
4534 "%s(): Passing received frame up.\n", __func__);
4535 (*ifp->if_input)(ifp, m);
4536 DBRUNIF(1, sc->rx_mbuf_alloc--);
4537
4538 }
4539
4540 sw_cons = NEXT_RX_BD(sw_cons);
4541
4542 /* Refresh hw_cons to see if there's new work */
4543 if (sw_cons == hw_cons) {
4544 hw_cons = sc->hw_rx_cons =
4545 sblk->status_rx_quick_consumer_index0;
4546 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4547 USABLE_RX_BD_PER_PAGE)
4548 hw_cons++;
4549 }
4550
4551 /* Prevent speculative reads from getting ahead of
4552 * the status block.
4553 */
4554 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4555 BUS_SPACE_BARRIER_READ);
4556 }
4557
4558 for (i = 0; i < RX_PAGES; i++)
4559 bus_dmamap_sync(sc->bnx_dmatag,
4560 sc->rx_bd_chain_map[i], 0,
4561 sc->rx_bd_chain_map[i]->dm_mapsize,
4562 BUS_DMASYNC_PREWRITE);
4563
4564 sc->rx_cons = sw_cons;
4565 sc->rx_prod = sw_prod;
4566 sc->rx_prod_bseq = sw_prod_bseq;
4567
4568 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4569 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4570
4571 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4572 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4573 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4574 }
4575
4576 /****************************************************************************/
4577 /* Handles transmit completion interrupt events. */
4578 /* */
4579 /* Returns: */
4580 /* Nothing. */
4581 /****************************************************************************/
4582 void
4583 bnx_tx_intr(struct bnx_softc *sc)
4584 {
4585 struct status_block *sblk = sc->status_block;
4586 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4587 struct bnx_pkt *pkt;
4588 bus_dmamap_t map;
4589 u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4590
4591 DBRUNIF(1, sc->tx_interrupts++);
4592 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4593 BUS_DMASYNC_POSTREAD);
4594
4595 /* Get the hardware's view of the TX consumer index. */
4596 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4597
4598 /* Skip to the next entry if this is a chain page pointer. */
4599 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4600 hw_tx_cons++;
4601
4602 sw_tx_cons = sc->tx_cons;
4603
4604 /* Prevent speculative reads from getting ahead of the status block. */
4605 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4606 BUS_SPACE_BARRIER_READ);
4607
4608 /* Cycle through any completed TX chain page entries. */
4609 while (sw_tx_cons != hw_tx_cons) {
4610 #ifdef BNX_DEBUG
4611 struct tx_bd *txbd = NULL;
4612 #endif
4613 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4614
4615 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4616 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4617 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4618
4619 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4620 aprint_error_dev(sc->bnx_dev,
4621 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4622 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4623
4624 DBRUNIF(1, txbd = &sc->tx_bd_chain
4625 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4626
4627 DBRUNIF((txbd == NULL),
4628 aprint_error_dev(sc->bnx_dev,
4629 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4630 bnx_breakpoint(sc));
4631
4632 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4633 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4634
4635
4636 mutex_enter(&sc->tx_pkt_mtx);
4637 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4638 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4639 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4640 mutex_exit(&sc->tx_pkt_mtx);
4641 /*
4642 * Free the associated mbuf. Remember
4643 * that only the last tx_bd of a packet
4644 * has an mbuf pointer and DMA map.
4645 */
4646 map = pkt->pkt_dmamap;
4647 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4648 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4649 bus_dmamap_unload(sc->bnx_dmatag, map);
4650
4651 m_freem(pkt->pkt_mbuf);
4652 DBRUNIF(1, sc->tx_mbuf_alloc--);
4653
4654 ifp->if_opackets++;
4655
4656 mutex_enter(&sc->tx_pkt_mtx);
4657 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4658 }
4659 mutex_exit(&sc->tx_pkt_mtx);
4660
4661 sc->used_tx_bd--;
4662 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4663 __FILE__, __LINE__, sc->used_tx_bd);
4664
4665 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4666
4667 /* Refresh hw_cons to see if there's new work. */
4668 hw_tx_cons = sc->hw_tx_cons =
4669 sblk->status_tx_quick_consumer_index0;
4670 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4671 USABLE_TX_BD_PER_PAGE)
4672 hw_tx_cons++;
4673
4674 /* Prevent speculative reads from getting ahead of
4675 * the status block.
4676 */
4677 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4678 BUS_SPACE_BARRIER_READ);
4679 }
4680
4681 /* Clear the TX timeout timer. */
4682 ifp->if_timer = 0;
4683
4684 /* Clear the tx hardware queue full flag. */
4685 if (sc->used_tx_bd < sc->max_tx_bd) {
4686 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4687 aprint_debug_dev(sc->bnx_dev,
4688 "Open TX chain! %d/%d (used/total)\n",
4689 sc->used_tx_bd, sc->max_tx_bd));
4690 ifp->if_flags &= ~IFF_OACTIVE;
4691 }
4692
4693 sc->tx_cons = sw_tx_cons;
4694 }
4695
4696 /****************************************************************************/
4697 /* Disables interrupt generation. */
4698 /* */
4699 /* Returns: */
4700 /* Nothing. */
4701 /****************************************************************************/
4702 void
4703 bnx_disable_intr(struct bnx_softc *sc)
4704 {
4705 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4706 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4707 }
4708
4709 /****************************************************************************/
4710 /* Enables interrupt generation. */
4711 /* */
4712 /* Returns: */
4713 /* Nothing. */
4714 /****************************************************************************/
4715 void
4716 bnx_enable_intr(struct bnx_softc *sc)
4717 {
4718 u_int32_t val;
4719
4720 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4721 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4722
4723 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4724 sc->last_status_idx);
4725
4726 val = REG_RD(sc, BNX_HC_COMMAND);
4727 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4728 }
4729
4730 /****************************************************************************/
4731 /* Handles controller initialization. */
4732 /* */
4733 /****************************************************************************/
4734 int
4735 bnx_init(struct ifnet *ifp)
4736 {
4737 struct bnx_softc *sc = ifp->if_softc;
4738 u_int32_t ether_mtu;
4739 int s, error = 0;
4740
4741 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4742
4743 s = splnet();
4744
4745 bnx_stop(ifp, 0);
4746
4747 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4748 aprint_error_dev(sc->bnx_dev,
4749 "Controller reset failed!\n");
4750 goto bnx_init_exit;
4751 }
4752
4753 if ((error = bnx_chipinit(sc)) != 0) {
4754 aprint_error_dev(sc->bnx_dev,
4755 "Controller initialization failed!\n");
4756 goto bnx_init_exit;
4757 }
4758
4759 if ((error = bnx_blockinit(sc)) != 0) {
4760 aprint_error_dev(sc->bnx_dev,
4761 "Block initialization failed!\n");
4762 goto bnx_init_exit;
4763 }
4764
4765 /* Calculate and program the Ethernet MRU size. */
4766 if (ifp->if_mtu <= ETHERMTU) {
4767 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4768 sc->mbuf_alloc_size = MCLBYTES;
4769 } else {
4770 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4771 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4772 }
4773
4774
4775 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4776 __func__, ether_mtu);
4777
4778 /*
4779 * Program the MRU and enable Jumbo frame
4780 * support.
4781 */
4782 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4783 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4784
4785 /* Calculate the RX Ethernet frame size for rx_bd's. */
4786 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4787
4788 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4789 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4790 sc->mbuf_alloc_size, sc->max_frame_size);
4791
4792 /* Program appropriate promiscuous/multicast filtering. */
4793 bnx_iff(sc);
4794
4795 /* Init RX buffer descriptor chain. */
4796 bnx_init_rx_chain(sc);
4797
4798 /* Init TX buffer descriptor chain. */
4799 bnx_init_tx_chain(sc);
4800
4801 /* Enable host interrupts. */
4802 bnx_enable_intr(sc);
4803
4804 if ((error = ether_mediachange(ifp)) != 0)
4805 goto bnx_init_exit;
4806
4807 ifp->if_flags |= IFF_RUNNING;
4808 ifp->if_flags &= ~IFF_OACTIVE;
4809
4810 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4811
4812 bnx_init_exit:
4813 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4814
4815 splx(s);
4816
4817 return(error);
4818 }
4819
4820 /****************************************************************************/
4821 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4822 /* memory visible to the controller. */
4823 /* */
4824 /* Returns: */
4825 /* 0 for success, positive value for failure. */
4826 /****************************************************************************/
4827 int
4828 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4829 {
4830 struct bnx_pkt *pkt;
4831 bus_dmamap_t map;
4832 struct tx_bd *txbd = NULL;
4833 u_int16_t vlan_tag = 0, flags = 0;
4834 u_int16_t chain_prod, prod;
4835 #ifdef BNX_DEBUG
4836 u_int16_t debug_prod;
4837 #endif
4838 u_int32_t addr, prod_bseq;
4839 int i, error;
4840 struct m_tag *mtag;
4841
4842 again:
4843 mutex_enter(&sc->tx_pkt_mtx);
4844 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4845 if (pkt == NULL) {
4846 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4847 mutex_exit(&sc->tx_pkt_mtx);
4848 return ENETDOWN;
4849 }
4850 if (sc->tx_pkt_count <= TOTAL_TX_BD) {
4851 mutex_exit(&sc->tx_pkt_mtx);
4852 if (bnx_alloc_pkts(sc) == 0)
4853 goto again;
4854 } else {
4855 mutex_exit(&sc->tx_pkt_mtx);
4856 }
4857 return (ENOMEM);
4858 }
4859 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4860 mutex_exit(&sc->tx_pkt_mtx);
4861
4862 /* Transfer any checksum offload flags to the bd. */
4863 if (m->m_pkthdr.csum_flags) {
4864 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4865 flags |= TX_BD_FLAGS_IP_CKSUM;
4866 if (m->m_pkthdr.csum_flags &
4867 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4868 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4869 }
4870
4871 /* Transfer any VLAN tags to the bd. */
4872 mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4873 if (mtag != NULL) {
4874 flags |= TX_BD_FLAGS_VLAN_TAG;
4875 vlan_tag = VLAN_TAG_VALUE(mtag);
4876 }
4877
4878 /* Map the mbuf into DMAable memory. */
4879 prod = sc->tx_prod;
4880 chain_prod = TX_CHAIN_IDX(prod);
4881 map = pkt->pkt_dmamap;
4882
4883 /* Map the mbuf into our DMA address space. */
4884 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4885 if (error != 0) {
4886 aprint_error_dev(sc->bnx_dev,
4887 "Error mapping mbuf into TX chain!\n");
4888 sc->tx_dma_map_failures++;
4889 goto maperr;
4890 }
4891 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4892 BUS_DMASYNC_PREWRITE);
4893 /* Make sure there's room in the chain */
4894 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
4895 goto nospace;
4896
4897 /* prod points to an empty tx_bd at this point. */
4898 prod_bseq = sc->tx_prod_bseq;
4899 #ifdef BNX_DEBUG
4900 debug_prod = chain_prod;
4901 #endif
4902 DBPRINT(sc, BNX_INFO_SEND,
4903 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4904 "prod_bseq = 0x%08X\n",
4905 __func__, prod, chain_prod, prod_bseq);
4906
4907 /*
4908 * Cycle through each mbuf segment that makes up
4909 * the outgoing frame, gathering the mapping info
4910 * for that segment and creating a tx_bd for the
4911 * mbuf.
4912 */
4913 for (i = 0; i < map->dm_nsegs ; i++) {
4914 chain_prod = TX_CHAIN_IDX(prod);
4915 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4916
4917 addr = (u_int32_t)map->dm_segs[i].ds_addr;
4918 txbd->tx_bd_haddr_lo = addr;
4919 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4920 txbd->tx_bd_haddr_hi = addr;
4921 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
4922 txbd->tx_bd_vlan_tag = vlan_tag;
4923 txbd->tx_bd_flags = flags;
4924 prod_bseq += map->dm_segs[i].ds_len;
4925 if (i == 0)
4926 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
4927 prod = NEXT_TX_BD(prod);
4928 }
4929 /* Set the END flag on the last TX buffer descriptor. */
4930 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
4931
4932 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
4933
4934 DBPRINT(sc, BNX_INFO_SEND,
4935 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
4936 "prod_bseq = 0x%08X\n",
4937 __func__, prod, chain_prod, prod_bseq);
4938
4939 pkt->pkt_mbuf = m;
4940 pkt->pkt_end_desc = chain_prod;
4941
4942 mutex_enter(&sc->tx_pkt_mtx);
4943 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
4944 mutex_exit(&sc->tx_pkt_mtx);
4945
4946 sc->used_tx_bd += map->dm_nsegs;
4947 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4948 __FILE__, __LINE__, sc->used_tx_bd);
4949
4950 /* Update some debug statistics counters */
4951 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4952 sc->tx_hi_watermark = sc->used_tx_bd);
4953 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
4954 DBRUNIF(1, sc->tx_mbuf_alloc++);
4955
4956 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4957 map->dm_nsegs));
4958
4959 /* prod points to the next free tx_bd at this point. */
4960 sc->tx_prod = prod;
4961 sc->tx_prod_bseq = prod_bseq;
4962
4963 return (0);
4964
4965
4966 nospace:
4967 bus_dmamap_unload(sc->bnx_dmatag, map);
4968 maperr:
4969 mutex_enter(&sc->tx_pkt_mtx);
4970 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4971 mutex_exit(&sc->tx_pkt_mtx);
4972
4973 return (ENOMEM);
4974 }
4975
4976 /****************************************************************************/
4977 /* Main transmit routine. */
4978 /* */
4979 /* Returns: */
4980 /* Nothing. */
4981 /****************************************************************************/
4982 void
4983 bnx_start(struct ifnet *ifp)
4984 {
4985 struct bnx_softc *sc = ifp->if_softc;
4986 struct mbuf *m_head = NULL;
4987 int count = 0;
4988 u_int16_t tx_prod, tx_chain_prod;
4989
4990 /* If there's no link or the transmit queue is empty then just exit. */
4991 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
4992 DBPRINT(sc, BNX_INFO_SEND,
4993 "%s(): output active or device not running.\n", __func__);
4994 goto bnx_start_exit;
4995 }
4996
4997 /* prod points to the next free tx_bd. */
4998 tx_prod = sc->tx_prod;
4999 tx_chain_prod = TX_CHAIN_IDX(tx_prod);
5000
5001 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5002 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5003 "used_tx %d max_tx %d\n",
5004 __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5005 sc->used_tx_bd, sc->max_tx_bd);
5006
5007 /*
5008 * Keep adding entries while there is space in the ring.
5009 */
5010 while (sc->used_tx_bd < sc->max_tx_bd) {
5011 /* Check for any frames to send. */
5012 IFQ_POLL(&ifp->if_snd, m_head);
5013 if (m_head == NULL)
5014 break;
5015
5016 /*
5017 * Pack the data into the transmit ring. If we
5018 * don't have room, set the OACTIVE flag to wait
5019 * for the NIC to drain the chain.
5020 */
5021 if (bnx_tx_encap(sc, m_head)) {
5022 ifp->if_flags |= IFF_OACTIVE;
5023 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5024 "business! Total tx_bd used = %d\n",
5025 sc->used_tx_bd);
5026 break;
5027 }
5028
5029 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5030 count++;
5031
5032 /* Send a copy of the frame to any BPF listeners. */
5033 bpf_mtap(ifp, m_head);
5034 }
5035
5036 if (count == 0) {
5037 /* no packets were dequeued */
5038 DBPRINT(sc, BNX_VERBOSE_SEND,
5039 "%s(): No packets were dequeued\n", __func__);
5040 goto bnx_start_exit;
5041 }
5042
5043 /* Update the driver's counters. */
5044 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5045
5046 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
5047 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
5048 tx_chain_prod, sc->tx_prod_bseq);
5049
5050 /* Start the transmit. */
5051 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5052 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5053
5054 /* Set the tx timeout. */
5055 ifp->if_timer = BNX_TX_TIMEOUT;
5056
5057 bnx_start_exit:
5058 return;
5059 }
5060
5061 /****************************************************************************/
5062 /* Handles any IOCTL calls from the operating system. */
5063 /* */
5064 /* Returns: */
5065 /* 0 for success, positive value for failure. */
5066 /****************************************************************************/
5067 int
5068 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5069 {
5070 struct bnx_softc *sc = ifp->if_softc;
5071 struct ifreq *ifr = (struct ifreq *) data;
5072 struct mii_data *mii = &sc->bnx_mii;
5073 int s, error = 0;
5074
5075 s = splnet();
5076
5077 switch (command) {
5078 case SIOCSIFFLAGS:
5079 if ((error = ifioctl_common(ifp, command, data)) != 0)
5080 break;
5081 /* XXX set an ifflags callback and let ether_ioctl
5082 * handle all of this.
5083 */
5084 if (ifp->if_flags & IFF_UP) {
5085 if (ifp->if_flags & IFF_RUNNING)
5086 error = ENETRESET;
5087 else
5088 bnx_init(ifp);
5089 } else if (ifp->if_flags & IFF_RUNNING)
5090 bnx_stop(ifp, 1);
5091 break;
5092
5093 case SIOCSIFMEDIA:
5094 case SIOCGIFMEDIA:
5095 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5096 sc->bnx_phy_flags);
5097
5098 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5099 break;
5100
5101 default:
5102 error = ether_ioctl(ifp, command, data);
5103 }
5104
5105 if (error == ENETRESET) {
5106 if (ifp->if_flags & IFF_RUNNING)
5107 bnx_iff(sc);
5108 error = 0;
5109 }
5110
5111 splx(s);
5112 return (error);
5113 }
5114
5115 /****************************************************************************/
5116 /* Transmit timeout handler. */
5117 /* */
5118 /* Returns: */
5119 /* Nothing. */
5120 /****************************************************************************/
5121 void
5122 bnx_watchdog(struct ifnet *ifp)
5123 {
5124 struct bnx_softc *sc = ifp->if_softc;
5125
5126 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5127 bnx_dump_status_block(sc));
5128 /*
5129 * If we are in this routine because of pause frames, then
5130 * don't reset the hardware.
5131 */
5132 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5133 return;
5134
5135 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5136
5137 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5138
5139 bnx_init(ifp);
5140
5141 ifp->if_oerrors++;
5142 }
5143
5144 /*
5145 * Interrupt handler.
5146 */
5147 /****************************************************************************/
5148 /* Main interrupt entry point. Verifies that the controller generated the */
5149 /* interrupt and then calls a separate routine for handle the various */
5150 /* interrupt causes (PHY, TX, RX). */
5151 /* */
5152 /* Returns: */
5153 /* 0 for success, positive value for failure. */
5154 /****************************************************************************/
5155 int
5156 bnx_intr(void *xsc)
5157 {
5158 struct bnx_softc *sc;
5159 struct ifnet *ifp;
5160 u_int32_t status_attn_bits;
5161 const struct status_block *sblk;
5162
5163 sc = xsc;
5164
5165 ifp = &sc->bnx_ec.ec_if;
5166
5167 if (!device_is_active(sc->bnx_dev) ||
5168 (ifp->if_flags & IFF_RUNNING) == 0)
5169 return 0;
5170
5171 DBRUNIF(1, sc->interrupts_generated++);
5172
5173 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5174 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5175
5176 /*
5177 * If the hardware status block index
5178 * matches the last value read by the
5179 * driver and we haven't asserted our
5180 * interrupt then there's nothing to do.
5181 */
5182 if ((sc->status_block->status_idx == sc->last_status_idx) &&
5183 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5184 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5185 return (0);
5186
5187 /* Ack the interrupt and stop others from occuring. */
5188 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5189 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5190 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5191
5192 /* Keep processing data as long as there is work to do. */
5193 for (;;) {
5194 sblk = sc->status_block;
5195 status_attn_bits = sblk->status_attn_bits;
5196
5197 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5198 aprint_debug("Simulating unexpected status attention bit set.");
5199 status_attn_bits = status_attn_bits |
5200 STATUS_ATTN_BITS_PARITY_ERROR);
5201
5202 /* Was it a link change interrupt? */
5203 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5204 (sblk->status_attn_bits_ack &
5205 STATUS_ATTN_BITS_LINK_STATE))
5206 bnx_phy_intr(sc);
5207
5208 /* If any other attention is asserted then the chip is toast. */
5209 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5210 (sblk->status_attn_bits_ack &
5211 ~STATUS_ATTN_BITS_LINK_STATE))) {
5212 DBRUN(1, sc->unexpected_attentions++);
5213
5214 BNX_PRINTF(sc,
5215 "Fatal attention detected: 0x%08X\n",
5216 sblk->status_attn_bits);
5217
5218 DBRUN(BNX_FATAL,
5219 if (bnx_debug_unexpected_attention == 0)
5220 bnx_breakpoint(sc));
5221
5222 bnx_init(ifp);
5223 return (1);
5224 }
5225
5226 /* Check for any completed RX frames. */
5227 if (sblk->status_rx_quick_consumer_index0 !=
5228 sc->hw_rx_cons)
5229 bnx_rx_intr(sc);
5230
5231 /* Check for any completed TX frames. */
5232 if (sblk->status_tx_quick_consumer_index0 !=
5233 sc->hw_tx_cons)
5234 bnx_tx_intr(sc);
5235
5236 /* Save the status block index value for use during the
5237 * next interrupt.
5238 */
5239 sc->last_status_idx = sblk->status_idx;
5240
5241 /* Prevent speculative reads from getting ahead of the
5242 * status block.
5243 */
5244 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5245 BUS_SPACE_BARRIER_READ);
5246
5247 /* If there's no work left then exit the isr. */
5248 if ((sblk->status_rx_quick_consumer_index0 ==
5249 sc->hw_rx_cons) &&
5250 (sblk->status_tx_quick_consumer_index0 ==
5251 sc->hw_tx_cons))
5252 break;
5253 }
5254
5255 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5256 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5257
5258 /* Re-enable interrupts. */
5259 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5260 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5261 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5262 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5263 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5264
5265 /* Handle any frames that arrived while handling the interrupt. */
5266 if (!IFQ_IS_EMPTY(&ifp->if_snd))
5267 bnx_start(ifp);
5268
5269 return (1);
5270 }
5271
5272 /****************************************************************************/
5273 /* Programs the various packet receive modes (broadcast and multicast). */
5274 /* */
5275 /* Returns: */
5276 /* Nothing. */
5277 /****************************************************************************/
5278 void
5279 bnx_iff(struct bnx_softc *sc)
5280 {
5281 struct ethercom *ec = &sc->bnx_ec;
5282 struct ifnet *ifp = &ec->ec_if;
5283 struct ether_multi *enm;
5284 struct ether_multistep step;
5285 u_int32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5286 u_int32_t rx_mode, sort_mode;
5287 int h, i;
5288
5289 /* Initialize receive mode default settings. */
5290 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5291 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5292 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5293 ifp->if_flags &= ~IFF_ALLMULTI;
5294
5295 /*
5296 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5297 * be enbled.
5298 */
5299 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5300 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5301
5302 /*
5303 * Check for promiscuous, all multicast, or selected
5304 * multicast address filtering.
5305 */
5306 if (ifp->if_flags & IFF_PROMISC) {
5307 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5308
5309 ifp->if_flags |= IFF_ALLMULTI;
5310 /* Enable promiscuous mode. */
5311 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5312 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5313 } else if (ifp->if_flags & IFF_ALLMULTI) {
5314 allmulti:
5315 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5316
5317 ifp->if_flags |= IFF_ALLMULTI;
5318 /* Enable all multicast addresses. */
5319 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5320 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5321 0xffffffff);
5322 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5323 } else {
5324 /* Accept one or more multicast(s). */
5325 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5326
5327 ETHER_FIRST_MULTI(step, ec, enm);
5328 while (enm != NULL) {
5329 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5330 ETHER_ADDR_LEN)) {
5331 goto allmulti;
5332 }
5333 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5334 0xFF;
5335 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5336 ETHER_NEXT_MULTI(step, enm);
5337 }
5338
5339 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5340 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5341 hashes[i]);
5342
5343 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5344 }
5345
5346 /* Only make changes if the recive mode has actually changed. */
5347 if (rx_mode != sc->rx_mode) {
5348 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5349 rx_mode);
5350
5351 sc->rx_mode = rx_mode;
5352 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5353 }
5354
5355 /* Disable and clear the exisitng sort before enabling a new sort. */
5356 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5357 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5358 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5359 }
5360
5361 /****************************************************************************/
5362 /* Called periodically to updates statistics from the controllers */
5363 /* statistics block. */
5364 /* */
5365 /* Returns: */
5366 /* Nothing. */
5367 /****************************************************************************/
5368 void
5369 bnx_stats_update(struct bnx_softc *sc)
5370 {
5371 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5372 struct statistics_block *stats;
5373
5374 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5375 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5376 BUS_DMASYNC_POSTREAD);
5377
5378 stats = (struct statistics_block *)sc->stats_block;
5379
5380 /*
5381 * Update the interface statistics from the
5382 * hardware statistics.
5383 */
5384 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5385
5386 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5387 (u_long)stats->stat_EtherStatsOverrsizePkts +
5388 (u_long)stats->stat_IfInMBUFDiscards +
5389 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5390 (u_long)stats->stat_Dot3StatsFCSErrors;
5391
5392 ifp->if_oerrors = (u_long)
5393 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5394 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5395 (u_long)stats->stat_Dot3StatsLateCollisions;
5396
5397 /*
5398 * Certain controllers don't report
5399 * carrier sense errors correctly.
5400 * See errata E11_5708CA0_1165.
5401 */
5402 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5403 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5404 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5405
5406 /*
5407 * Update the sysctl statistics from the
5408 * hardware statistics.
5409 */
5410 sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
5411 (u_int64_t) stats->stat_IfHCInOctets_lo;
5412
5413 sc->stat_IfHCInBadOctets =
5414 ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5415 (u_int64_t) stats->stat_IfHCInBadOctets_lo;
5416
5417 sc->stat_IfHCOutOctets =
5418 ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
5419 (u_int64_t) stats->stat_IfHCOutOctets_lo;
5420
5421 sc->stat_IfHCOutBadOctets =
5422 ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5423 (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
5424
5425 sc->stat_IfHCInUcastPkts =
5426 ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5427 (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
5428
5429 sc->stat_IfHCInMulticastPkts =
5430 ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5431 (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
5432
5433 sc->stat_IfHCInBroadcastPkts =
5434 ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5435 (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
5436
5437 sc->stat_IfHCOutUcastPkts =
5438 ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5439 (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
5440
5441 sc->stat_IfHCOutMulticastPkts =
5442 ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5443 (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
5444
5445 sc->stat_IfHCOutBroadcastPkts =
5446 ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5447 (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5448
5449 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5450 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5451
5452 sc->stat_Dot3StatsCarrierSenseErrors =
5453 stats->stat_Dot3StatsCarrierSenseErrors;
5454
5455 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5456
5457 sc->stat_Dot3StatsAlignmentErrors =
5458 stats->stat_Dot3StatsAlignmentErrors;
5459
5460 sc->stat_Dot3StatsSingleCollisionFrames =
5461 stats->stat_Dot3StatsSingleCollisionFrames;
5462
5463 sc->stat_Dot3StatsMultipleCollisionFrames =
5464 stats->stat_Dot3StatsMultipleCollisionFrames;
5465
5466 sc->stat_Dot3StatsDeferredTransmissions =
5467 stats->stat_Dot3StatsDeferredTransmissions;
5468
5469 sc->stat_Dot3StatsExcessiveCollisions =
5470 stats->stat_Dot3StatsExcessiveCollisions;
5471
5472 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5473
5474 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5475
5476 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5477
5478 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5479
5480 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5481
5482 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5483
5484 sc->stat_EtherStatsPktsRx64Octets =
5485 stats->stat_EtherStatsPktsRx64Octets;
5486
5487 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5488 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5489
5490 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5491 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5492
5493 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5494 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5495
5496 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5497 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5498
5499 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5500 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5501
5502 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5503 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5504
5505 sc->stat_EtherStatsPktsTx64Octets =
5506 stats->stat_EtherStatsPktsTx64Octets;
5507
5508 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5509 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5510
5511 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5512 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5513
5514 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5515 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5516
5517 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5518 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5519
5520 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5521 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5522
5523 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5524 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5525
5526 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5527
5528 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5529
5530 sc->stat_OutXonSent = stats->stat_OutXonSent;
5531
5532 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5533
5534 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5535
5536 sc->stat_MacControlFramesReceived =
5537 stats->stat_MacControlFramesReceived;
5538
5539 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5540
5541 sc->stat_IfInFramesL2FilterDiscards =
5542 stats->stat_IfInFramesL2FilterDiscards;
5543
5544 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5545
5546 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5547
5548 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5549
5550 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5551
5552 sc->stat_CatchupInRuleCheckerDiscards =
5553 stats->stat_CatchupInRuleCheckerDiscards;
5554
5555 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5556
5557 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5558
5559 sc->stat_CatchupInRuleCheckerP4Hit =
5560 stats->stat_CatchupInRuleCheckerP4Hit;
5561
5562 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5563 }
5564
5565 void
5566 bnx_tick(void *xsc)
5567 {
5568 struct bnx_softc *sc = xsc;
5569 struct mii_data *mii;
5570 u_int32_t msg;
5571 u_int16_t prod, chain_prod;
5572 u_int32_t prod_bseq;
5573 int s = splnet();
5574
5575 /* Tell the firmware that the driver is still running. */
5576 #ifdef BNX_DEBUG
5577 msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5578 #else
5579 msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5580 #endif
5581 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5582
5583 /* Update the statistics from the hardware statistics block. */
5584 bnx_stats_update(sc);
5585
5586 /* Schedule the next tick. */
5587 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5588
5589 mii = &sc->bnx_mii;
5590 mii_tick(mii);
5591
5592 /* try to get more RX buffers, just in case */
5593 prod = sc->rx_prod;
5594 prod_bseq = sc->rx_prod_bseq;
5595 chain_prod = RX_CHAIN_IDX(prod);
5596 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5597 sc->rx_prod = prod;
5598 sc->rx_prod_bseq = prod_bseq;
5599 splx(s);
5600 return;
5601 }
5602
5603 /****************************************************************************/
5604 /* BNX Debug Routines */
5605 /****************************************************************************/
5606 #ifdef BNX_DEBUG
5607
5608 /****************************************************************************/
5609 /* Prints out information about an mbuf. */
5610 /* */
5611 /* Returns: */
5612 /* Nothing. */
5613 /****************************************************************************/
5614 void
5615 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5616 {
5617 struct mbuf *mp = m;
5618
5619 if (m == NULL) {
5620 /* Index out of range. */
5621 aprint_error("mbuf ptr is null!\n");
5622 return;
5623 }
5624
5625 while (mp) {
5626 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5627 mp, mp->m_len);
5628
5629 if (mp->m_flags & M_EXT)
5630 aprint_debug("M_EXT ");
5631 if (mp->m_flags & M_PKTHDR)
5632 aprint_debug("M_PKTHDR ");
5633 aprint_debug("\n");
5634
5635 if (mp->m_flags & M_EXT)
5636 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5637 mp, mp->m_ext.ext_size);
5638
5639 mp = mp->m_next;
5640 }
5641 }
5642
5643 /****************************************************************************/
5644 /* Prints out the mbufs in the TX mbuf chain. */
5645 /* */
5646 /* Returns: */
5647 /* Nothing. */
5648 /****************************************************************************/
5649 void
5650 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5651 {
5652 #if 0
5653 struct mbuf *m;
5654 int i;
5655
5656 aprint_debug_dev(sc->bnx_dev,
5657 "----------------------------"
5658 " tx mbuf data "
5659 "----------------------------\n");
5660
5661 for (i = 0; i < count; i++) {
5662 m = sc->tx_mbuf_ptr[chain_prod];
5663 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5664 bnx_dump_mbuf(sc, m);
5665 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5666 }
5667
5668 aprint_debug_dev(sc->bnx_dev,
5669 "--------------------------------------------"
5670 "----------------------------\n");
5671 #endif
5672 }
5673
5674 /*
5675 * This routine prints the RX mbuf chain.
5676 */
5677 void
5678 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5679 {
5680 struct mbuf *m;
5681 int i;
5682
5683 aprint_debug_dev(sc->bnx_dev,
5684 "----------------------------"
5685 " rx mbuf data "
5686 "----------------------------\n");
5687
5688 for (i = 0; i < count; i++) {
5689 m = sc->rx_mbuf_ptr[chain_prod];
5690 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5691 bnx_dump_mbuf(sc, m);
5692 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5693 }
5694
5695
5696 aprint_debug_dev(sc->bnx_dev,
5697 "--------------------------------------------"
5698 "----------------------------\n");
5699 }
5700
5701 void
5702 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5703 {
5704 if (idx > MAX_TX_BD)
5705 /* Index out of range. */
5706 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5707 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5708 /* TX Chain page pointer. */
5709 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5710 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5711 txbd->tx_bd_haddr_lo);
5712 else
5713 /* Normal tx_bd entry. */
5714 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5715 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5716 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5717 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5718 txbd->tx_bd_flags);
5719 }
5720
5721 void
5722 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5723 {
5724 if (idx > MAX_RX_BD)
5725 /* Index out of range. */
5726 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5727 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5728 /* TX Chain page pointer. */
5729 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5730 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5731 rxbd->rx_bd_haddr_lo);
5732 else
5733 /* Normal tx_bd entry. */
5734 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5735 "0x%08X, flags = 0x%08X\n", idx,
5736 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5737 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5738 }
5739
5740 void
5741 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5742 {
5743 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5744 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5745 "tcp_udp_xsum = 0x%04X\n", idx,
5746 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5747 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5748 l2fhdr->l2_fhdr_tcp_udp_xsum);
5749 }
5750
5751 /*
5752 * This routine prints the TX chain.
5753 */
5754 void
5755 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5756 {
5757 struct tx_bd *txbd;
5758 int i;
5759
5760 /* First some info about the tx_bd chain structure. */
5761 aprint_debug_dev(sc->bnx_dev,
5762 "----------------------------"
5763 " tx_bd chain "
5764 "----------------------------\n");
5765
5766 BNX_PRINTF(sc,
5767 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5768 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5769
5770 BNX_PRINTF(sc,
5771 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5772 (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5773
5774 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", TOTAL_TX_BD);
5775
5776 aprint_error_dev(sc->bnx_dev, ""
5777 "-----------------------------"
5778 " tx_bd data "
5779 "-----------------------------\n");
5780
5781 /* Now print out the tx_bd's themselves. */
5782 for (i = 0; i < count; i++) {
5783 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5784 bnx_dump_txbd(sc, tx_prod, txbd);
5785 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5786 }
5787
5788 aprint_debug_dev(sc->bnx_dev,
5789 "-----------------------------"
5790 "--------------"
5791 "-----------------------------\n");
5792 }
5793
5794 /*
5795 * This routine prints the RX chain.
5796 */
5797 void
5798 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5799 {
5800 struct rx_bd *rxbd;
5801 int i;
5802
5803 /* First some info about the tx_bd chain structure. */
5804 aprint_debug_dev(sc->bnx_dev,
5805 "----------------------------"
5806 " rx_bd chain "
5807 "----------------------------\n");
5808
5809 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5810
5811 BNX_PRINTF(sc,
5812 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5813 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5814
5815 BNX_PRINTF(sc,
5816 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5817 (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5818
5819 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", TOTAL_RX_BD);
5820
5821 aprint_error_dev(sc->bnx_dev,
5822 "----------------------------"
5823 " rx_bd data "
5824 "----------------------------\n");
5825
5826 /* Now print out the rx_bd's themselves. */
5827 for (i = 0; i < count; i++) {
5828 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5829 bnx_dump_rxbd(sc, rx_prod, rxbd);
5830 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5831 }
5832
5833 aprint_debug_dev(sc->bnx_dev,
5834 "----------------------------"
5835 "--------------"
5836 "----------------------------\n");
5837 }
5838
5839 /*
5840 * This routine prints the status block.
5841 */
5842 void
5843 bnx_dump_status_block(struct bnx_softc *sc)
5844 {
5845 struct status_block *sblk;
5846 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5847 BUS_DMASYNC_POSTREAD);
5848
5849 sblk = sc->status_block;
5850
5851 aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5852 "-----------------------------\n");
5853
5854 BNX_PRINTF(sc,
5855 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5856 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5857 sblk->status_idx);
5858
5859 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5860 sblk->status_rx_quick_consumer_index0,
5861 sblk->status_tx_quick_consumer_index0);
5862
5863 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5864
5865 /* Theses indices are not used for normal L2 drivers. */
5866 if (sblk->status_rx_quick_consumer_index1 ||
5867 sblk->status_tx_quick_consumer_index1)
5868 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5869 sblk->status_rx_quick_consumer_index1,
5870 sblk->status_tx_quick_consumer_index1);
5871
5872 if (sblk->status_rx_quick_consumer_index2 ||
5873 sblk->status_tx_quick_consumer_index2)
5874 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5875 sblk->status_rx_quick_consumer_index2,
5876 sblk->status_tx_quick_consumer_index2);
5877
5878 if (sblk->status_rx_quick_consumer_index3 ||
5879 sblk->status_tx_quick_consumer_index3)
5880 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5881 sblk->status_rx_quick_consumer_index3,
5882 sblk->status_tx_quick_consumer_index3);
5883
5884 if (sblk->status_rx_quick_consumer_index4 ||
5885 sblk->status_rx_quick_consumer_index5)
5886 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5887 sblk->status_rx_quick_consumer_index4,
5888 sblk->status_rx_quick_consumer_index5);
5889
5890 if (sblk->status_rx_quick_consumer_index6 ||
5891 sblk->status_rx_quick_consumer_index7)
5892 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
5893 sblk->status_rx_quick_consumer_index6,
5894 sblk->status_rx_quick_consumer_index7);
5895
5896 if (sblk->status_rx_quick_consumer_index8 ||
5897 sblk->status_rx_quick_consumer_index9)
5898 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
5899 sblk->status_rx_quick_consumer_index8,
5900 sblk->status_rx_quick_consumer_index9);
5901
5902 if (sblk->status_rx_quick_consumer_index10 ||
5903 sblk->status_rx_quick_consumer_index11)
5904 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
5905 sblk->status_rx_quick_consumer_index10,
5906 sblk->status_rx_quick_consumer_index11);
5907
5908 if (sblk->status_rx_quick_consumer_index12 ||
5909 sblk->status_rx_quick_consumer_index13)
5910 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
5911 sblk->status_rx_quick_consumer_index12,
5912 sblk->status_rx_quick_consumer_index13);
5913
5914 if (sblk->status_rx_quick_consumer_index14 ||
5915 sblk->status_rx_quick_consumer_index15)
5916 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
5917 sblk->status_rx_quick_consumer_index14,
5918 sblk->status_rx_quick_consumer_index15);
5919
5920 if (sblk->status_completion_producer_index ||
5921 sblk->status_cmd_consumer_index)
5922 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
5923 sblk->status_completion_producer_index,
5924 sblk->status_cmd_consumer_index);
5925
5926 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
5927 "-----------------------------\n");
5928 }
5929
5930 /*
5931 * This routine prints the statistics block.
5932 */
5933 void
5934 bnx_dump_stats_block(struct bnx_softc *sc)
5935 {
5936 struct statistics_block *sblk;
5937 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5938 BUS_DMASYNC_POSTREAD);
5939
5940 sblk = sc->stats_block;
5941
5942 aprint_debug_dev(sc->bnx_dev, ""
5943 "-----------------------------"
5944 " Stats Block "
5945 "-----------------------------\n");
5946
5947 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
5948 "IfHcInBadOctets = 0x%08X:%08X\n",
5949 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5950 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5951
5952 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
5953 "IfHcOutBadOctets = 0x%08X:%08X\n",
5954 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5955 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5956
5957 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
5958 "IfHcInMulticastPkts = 0x%08X:%08X\n",
5959 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5960 sblk->stat_IfHCInMulticastPkts_hi,
5961 sblk->stat_IfHCInMulticastPkts_lo);
5962
5963 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
5964 "IfHcOutUcastPkts = 0x%08X:%08X\n",
5965 sblk->stat_IfHCInBroadcastPkts_hi,
5966 sblk->stat_IfHCInBroadcastPkts_lo,
5967 sblk->stat_IfHCOutUcastPkts_hi,
5968 sblk->stat_IfHCOutUcastPkts_lo);
5969
5970 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5971 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5972 sblk->stat_IfHCOutMulticastPkts_hi,
5973 sblk->stat_IfHCOutMulticastPkts_lo,
5974 sblk->stat_IfHCOutBroadcastPkts_hi,
5975 sblk->stat_IfHCOutBroadcastPkts_lo);
5976
5977 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5978 BNX_PRINTF(sc, "0x%08X : "
5979 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5980 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5981
5982 if (sblk->stat_Dot3StatsCarrierSenseErrors)
5983 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5984 sblk->stat_Dot3StatsCarrierSenseErrors);
5985
5986 if (sblk->stat_Dot3StatsFCSErrors)
5987 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5988 sblk->stat_Dot3StatsFCSErrors);
5989
5990 if (sblk->stat_Dot3StatsAlignmentErrors)
5991 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5992 sblk->stat_Dot3StatsAlignmentErrors);
5993
5994 if (sblk->stat_Dot3StatsSingleCollisionFrames)
5995 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5996 sblk->stat_Dot3StatsSingleCollisionFrames);
5997
5998 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
5999 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6000 sblk->stat_Dot3StatsMultipleCollisionFrames);
6001
6002 if (sblk->stat_Dot3StatsDeferredTransmissions)
6003 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6004 sblk->stat_Dot3StatsDeferredTransmissions);
6005
6006 if (sblk->stat_Dot3StatsExcessiveCollisions)
6007 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6008 sblk->stat_Dot3StatsExcessiveCollisions);
6009
6010 if (sblk->stat_Dot3StatsLateCollisions)
6011 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6012 sblk->stat_Dot3StatsLateCollisions);
6013
6014 if (sblk->stat_EtherStatsCollisions)
6015 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6016 sblk->stat_EtherStatsCollisions);
6017
6018 if (sblk->stat_EtherStatsFragments)
6019 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6020 sblk->stat_EtherStatsFragments);
6021
6022 if (sblk->stat_EtherStatsJabbers)
6023 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6024 sblk->stat_EtherStatsJabbers);
6025
6026 if (sblk->stat_EtherStatsUndersizePkts)
6027 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6028 sblk->stat_EtherStatsUndersizePkts);
6029
6030 if (sblk->stat_EtherStatsOverrsizePkts)
6031 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6032 sblk->stat_EtherStatsOverrsizePkts);
6033
6034 if (sblk->stat_EtherStatsPktsRx64Octets)
6035 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6036 sblk->stat_EtherStatsPktsRx64Octets);
6037
6038 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6039 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6040 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6041
6042 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6043 BNX_PRINTF(sc, "0x%08X : "
6044 "EtherStatsPktsRx128Octetsto255Octets\n",
6045 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6046
6047 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6048 BNX_PRINTF(sc, "0x%08X : "
6049 "EtherStatsPktsRx256Octetsto511Octets\n",
6050 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6051
6052 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6053 BNX_PRINTF(sc, "0x%08X : "
6054 "EtherStatsPktsRx512Octetsto1023Octets\n",
6055 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6056
6057 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6058 BNX_PRINTF(sc, "0x%08X : "
6059 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6060 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6061
6062 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6063 BNX_PRINTF(sc, "0x%08X : "
6064 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6065 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6066
6067 if (sblk->stat_EtherStatsPktsTx64Octets)
6068 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6069 sblk->stat_EtherStatsPktsTx64Octets);
6070
6071 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6072 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6073 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6074
6075 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6076 BNX_PRINTF(sc, "0x%08X : "
6077 "EtherStatsPktsTx128Octetsto255Octets\n",
6078 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6079
6080 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6081 BNX_PRINTF(sc, "0x%08X : "
6082 "EtherStatsPktsTx256Octetsto511Octets\n",
6083 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6084
6085 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6086 BNX_PRINTF(sc, "0x%08X : "
6087 "EtherStatsPktsTx512Octetsto1023Octets\n",
6088 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6089
6090 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6091 BNX_PRINTF(sc, "0x%08X : "
6092 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6093 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6094
6095 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6096 BNX_PRINTF(sc, "0x%08X : "
6097 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6098 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6099
6100 if (sblk->stat_XonPauseFramesReceived)
6101 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6102 sblk->stat_XonPauseFramesReceived);
6103
6104 if (sblk->stat_XoffPauseFramesReceived)
6105 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6106 sblk->stat_XoffPauseFramesReceived);
6107
6108 if (sblk->stat_OutXonSent)
6109 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6110 sblk->stat_OutXonSent);
6111
6112 if (sblk->stat_OutXoffSent)
6113 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6114 sblk->stat_OutXoffSent);
6115
6116 if (sblk->stat_FlowControlDone)
6117 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6118 sblk->stat_FlowControlDone);
6119
6120 if (sblk->stat_MacControlFramesReceived)
6121 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6122 sblk->stat_MacControlFramesReceived);
6123
6124 if (sblk->stat_XoffStateEntered)
6125 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6126 sblk->stat_XoffStateEntered);
6127
6128 if (sblk->stat_IfInFramesL2FilterDiscards)
6129 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6130 sblk->stat_IfInFramesL2FilterDiscards);
6131
6132 if (sblk->stat_IfInRuleCheckerDiscards)
6133 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6134 sblk->stat_IfInRuleCheckerDiscards);
6135
6136 if (sblk->stat_IfInFTQDiscards)
6137 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6138 sblk->stat_IfInFTQDiscards);
6139
6140 if (sblk->stat_IfInMBUFDiscards)
6141 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6142 sblk->stat_IfInMBUFDiscards);
6143
6144 if (sblk->stat_IfInRuleCheckerP4Hit)
6145 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6146 sblk->stat_IfInRuleCheckerP4Hit);
6147
6148 if (sblk->stat_CatchupInRuleCheckerDiscards)
6149 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6150 sblk->stat_CatchupInRuleCheckerDiscards);
6151
6152 if (sblk->stat_CatchupInFTQDiscards)
6153 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6154 sblk->stat_CatchupInFTQDiscards);
6155
6156 if (sblk->stat_CatchupInMBUFDiscards)
6157 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6158 sblk->stat_CatchupInMBUFDiscards);
6159
6160 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6161 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6162 sblk->stat_CatchupInRuleCheckerP4Hit);
6163
6164 aprint_debug_dev(sc->bnx_dev,
6165 "-----------------------------"
6166 "--------------"
6167 "-----------------------------\n");
6168 }
6169
6170 void
6171 bnx_dump_driver_state(struct bnx_softc *sc)
6172 {
6173 aprint_debug_dev(sc->bnx_dev,
6174 "-----------------------------"
6175 " Driver State "
6176 "-----------------------------\n");
6177
6178 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6179 "address\n", sc);
6180
6181 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6182 sc->status_block);
6183
6184 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6185 "address\n", sc->stats_block);
6186
6187 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6188 "adddress\n", sc->tx_bd_chain);
6189
6190 #if 0
6191 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6192 sc->rx_bd_chain);
6193
6194 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6195 sc->tx_mbuf_ptr);
6196 #endif
6197
6198 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6199 sc->rx_mbuf_ptr);
6200
6201 BNX_PRINTF(sc,
6202 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6203 sc->interrupts_generated);
6204
6205 BNX_PRINTF(sc,
6206 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6207 sc->rx_interrupts);
6208
6209 BNX_PRINTF(sc,
6210 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6211 sc->tx_interrupts);
6212
6213 BNX_PRINTF(sc,
6214 " 0x%08X - (sc->last_status_idx) status block index\n",
6215 sc->last_status_idx);
6216
6217 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6218 sc->tx_prod);
6219
6220 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6221 sc->tx_cons);
6222
6223 BNX_PRINTF(sc,
6224 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6225 sc->tx_prod_bseq);
6226 BNX_PRINTF(sc,
6227 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6228 sc->tx_mbuf_alloc);
6229
6230 BNX_PRINTF(sc,
6231 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6232 sc->used_tx_bd);
6233
6234 BNX_PRINTF(sc,
6235 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6236 sc->tx_hi_watermark, sc->max_tx_bd);
6237
6238
6239 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6240 sc->rx_prod);
6241
6242 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6243 sc->rx_cons);
6244
6245 BNX_PRINTF(sc,
6246 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6247 sc->rx_prod_bseq);
6248
6249 BNX_PRINTF(sc,
6250 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6251 sc->rx_mbuf_alloc);
6252
6253 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6254 sc->free_rx_bd);
6255
6256 BNX_PRINTF(sc,
6257 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6258 sc->rx_low_watermark, sc->max_rx_bd);
6259
6260 BNX_PRINTF(sc,
6261 " 0x%08X - (sc->mbuf_alloc_failed) "
6262 "mbuf alloc failures\n",
6263 sc->mbuf_alloc_failed);
6264
6265 BNX_PRINTF(sc,
6266 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6267 "simulated mbuf alloc failures\n",
6268 sc->mbuf_sim_alloc_failed);
6269
6270 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6271 "-----------------------------\n");
6272 }
6273
6274 void
6275 bnx_dump_hw_state(struct bnx_softc *sc)
6276 {
6277 u_int32_t val1;
6278 int i;
6279
6280 aprint_debug_dev(sc->bnx_dev,
6281 "----------------------------"
6282 " Hardware State "
6283 "----------------------------\n");
6284
6285 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6286
6287 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6288 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6289 val1, BNX_MISC_ENABLE_STATUS_BITS);
6290
6291 val1 = REG_RD(sc, BNX_DMA_STATUS);
6292 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6293
6294 val1 = REG_RD(sc, BNX_CTX_STATUS);
6295 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6296
6297 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6298 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6299 BNX_EMAC_STATUS);
6300
6301 val1 = REG_RD(sc, BNX_RPM_STATUS);
6302 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6303
6304 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6305 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6306 BNX_TBDR_STATUS);
6307
6308 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6309 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6310 BNX_TDMA_STATUS);
6311
6312 val1 = REG_RD(sc, BNX_HC_STATUS);
6313 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6314
6315 aprint_debug_dev(sc->bnx_dev,
6316 "----------------------------"
6317 "----------------"
6318 "----------------------------\n");
6319
6320 aprint_debug_dev(sc->bnx_dev,
6321 "----------------------------"
6322 " Register Dump "
6323 "----------------------------\n");
6324
6325 for (i = 0x400; i < 0x8000; i += 0x10)
6326 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6327 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6328 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6329
6330 aprint_debug_dev(sc->bnx_dev,
6331 "----------------------------"
6332 "----------------"
6333 "----------------------------\n");
6334 }
6335
6336 void
6337 bnx_breakpoint(struct bnx_softc *sc)
6338 {
6339 /* Unreachable code to shut the compiler up about unused functions. */
6340 if (0) {
6341 bnx_dump_txbd(sc, 0, NULL);
6342 bnx_dump_rxbd(sc, 0, NULL);
6343 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6344 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6345 bnx_dump_l2fhdr(sc, 0, NULL);
6346 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6347 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6348 bnx_dump_status_block(sc);
6349 bnx_dump_stats_block(sc);
6350 bnx_dump_driver_state(sc);
6351 bnx_dump_hw_state(sc);
6352 }
6353
6354 bnx_dump_driver_state(sc);
6355 /* Print the important status block fields. */
6356 bnx_dump_status_block(sc);
6357
6358 #if 0
6359 /* Call the debugger. */
6360 breakpoint();
6361 #endif
6362
6363 return;
6364 }
6365 #endif
6366