Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.43
      1 /*	$NetBSD: if_bnx.c,v 1.43 2011/05/02 09:03:10 jym Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
      3 
      4 /*-
      5  * Copyright (c) 2006 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.43 2011/05/02 09:03:10 jym Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *
     52  *   BCM5706C A0, A1
     53  *   BCM5706S A0, A1
     54  *   BCM5708C A0, B0
     55  *   BCM5708S A0, B0
     56  *   BCM5709C A0  B0, B1, B2 (pre-production)
     57  *   BCM5709S A0, B0, B1, B2 (pre-production)
     58  */
     59 
     60 #include <sys/callout.h>
     61 #include <sys/mutex.h>
     62 
     63 #include <dev/pci/if_bnxreg.h>
     64 #include <dev/pci/if_bnxvar.h>
     65 
     66 #include <dev/microcode/bnx/bnxfw.h>
     67 
     68 /****************************************************************************/
     69 /* BNX Driver Version                                                       */
     70 /****************************************************************************/
     71 #define BNX_DRIVER_VERSION	"v0.9.6"
     72 
     73 /****************************************************************************/
     74 /* BNX Debug Options                                                        */
     75 /****************************************************************************/
     76 #ifdef BNX_DEBUG
     77 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     78 
     79 	/*          0 = Never              */
     80 	/*          1 = 1 in 2,147,483,648 */
     81 	/*        256 = 1 in     8,388,608 */
     82 	/*       2048 = 1 in     1,048,576 */
     83 	/*      65536 = 1 in        32,768 */
     84 	/*    1048576 = 1 in         2,048 */
     85 	/*  268435456 =	1 in             8 */
     86 	/*  536870912 = 1 in             4 */
     87 	/* 1073741824 = 1 in             2 */
     88 
     89 	/* Controls how often the l2_fhdr frame error check will fail. */
     90 	int bnx_debug_l2fhdr_status_check = 0;
     91 
     92 	/* Controls how often the unexpected attention check will fail. */
     93 	int bnx_debug_unexpected_attention = 0;
     94 
     95 	/* Controls how often to simulate an mbuf allocation failure. */
     96 	int bnx_debug_mbuf_allocation_failure = 0;
     97 
     98 	/* Controls how often to simulate a DMA mapping failure. */
     99 	int bnx_debug_dma_map_addr_failure = 0;
    100 
    101 	/* Controls how often to simulate a bootcode failure. */
    102 	int bnx_debug_bootcode_running_failure = 0;
    103 #endif
    104 
    105 /****************************************************************************/
    106 /* PCI Device ID Table                                                      */
    107 /*                                                                          */
    108 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    109 /****************************************************************************/
    110 static const struct bnx_product {
    111 	pci_vendor_id_t		bp_vendor;
    112 	pci_product_id_t	bp_product;
    113 	pci_vendor_id_t		bp_subvendor;
    114 	pci_product_id_t	bp_subproduct;
    115 	const char		*bp_name;
    116 } bnx_devices[] = {
    117 #ifdef PCI_SUBPRODUCT_HP_NC370T
    118 	{
    119 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    120 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    121 	  "HP NC370T Multifunction Gigabit Server Adapter"
    122 	},
    123 #endif
    124 #ifdef PCI_SUBPRODUCT_HP_NC370i
    125 	{
    126 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    127 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    128 	  "HP NC370i Multifunction Gigabit Server Adapter"
    129 	},
    130 #endif
    131 	{
    132 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    133 	  0, 0,
    134 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    135 	},
    136 #ifdef PCI_SUBPRODUCT_HP_NC370F
    137 	{
    138 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    139 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    140 	  "HP NC370F Multifunction Gigabit Server Adapter"
    141 	},
    142 #endif
    143 	{
    144 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    145 	  0, 0,
    146 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    147 	},
    148 	{
    149 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    150 	  0, 0,
    151 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    152 	},
    153 	{
    154 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    155 	  0, 0,
    156 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    157 	},
    158 	{
    159 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    160 	  0, 0,
    161 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    162 	},
    163 	{
    164 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    165 	  0, 0,
    166 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    167 	},
    168 	{
    169 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    170 	  0, 0,
    171 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    172 	},
    173 	{
    174 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    175 	  0, 0,
    176 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    177 	},
    178 };
    179 
    180 /****************************************************************************/
    181 /* Supported Flash NVRAM device data.                                       */
    182 /****************************************************************************/
    183 static struct flash_spec flash_table[] =
    184 {
    185 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    186 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    187 	/* Slow EEPROM */
    188 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    189 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    190 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    191 	 "EEPROM - slow"},
    192 	/* Expansion entry 0001 */
    193 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    194 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    195 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    196 	 "Entry 0001"},
    197 	/* Saifun SA25F010 (non-buffered flash) */
    198 	/* strap, cfg1, & write1 need updates */
    199 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    200 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    201 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    202 	 "Non-buffered flash (128kB)"},
    203 	/* Saifun SA25F020 (non-buffered flash) */
    204 	/* strap, cfg1, & write1 need updates */
    205 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    206 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    207 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    208 	 "Non-buffered flash (256kB)"},
    209 	/* Expansion entry 0100 */
    210 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    211 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    213 	 "Entry 0100"},
    214 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    215 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    216 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    217 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    218 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    219 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    220 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    221 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    222 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    223 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    224 	/* Saifun SA25F005 (non-buffered flash) */
    225 	/* strap, cfg1, & write1 need updates */
    226 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    227 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    228 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    229 	 "Non-buffered flash (64kB)"},
    230 	/* Fast EEPROM */
    231 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    232 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    233 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    234 	 "EEPROM - fast"},
    235 	/* Expansion entry 1001 */
    236 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    237 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    238 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    239 	 "Entry 1001"},
    240 	/* Expansion entry 1010 */
    241 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    242 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    243 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    244 	 "Entry 1010"},
    245 	/* ATMEL AT45DB011B (buffered flash) */
    246 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    247 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    248 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    249 	 "Buffered flash (128kB)"},
    250 	/* Expansion entry 1100 */
    251 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    252 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    253 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    254 	 "Entry 1100"},
    255 	/* Expansion entry 1101 */
    256 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    257 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    258 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    259 	 "Entry 1101"},
    260 	/* Ateml Expansion entry 1110 */
    261 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    262 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    263 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    264 	 "Entry 1110 (Atmel)"},
    265 	/* ATMEL AT45DB021B (buffered flash) */
    266 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    267 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    268 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    269 	 "Buffered flash (256kB)"},
    270 };
    271 
    272 /*
    273  * The BCM5709 controllers transparently handle the
    274  * differences between Atmel 264 byte pages and all
    275  * flash devices which use 256 byte pages, so no
    276  * logical-to-physical mapping is required in the
    277  * driver.
    278  */
    279 static struct flash_spec flash_5709 = {
    280 	.flags		= BNX_NV_BUFFERED,
    281 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    282 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    283 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    284 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    285 	.name		= "5709 buffered flash (256kB)",
    286 };
    287 
    288 /****************************************************************************/
    289 /* OpenBSD device entry points.                                             */
    290 /****************************************************************************/
    291 static int	bnx_probe(device_t, cfdata_t, void *);
    292 void	bnx_attach(device_t, device_t, void *);
    293 int	bnx_detach(device_t, int);
    294 
    295 /****************************************************************************/
    296 /* BNX Debug Data Structure Dump Routines                                   */
    297 /****************************************************************************/
    298 #ifdef BNX_DEBUG
    299 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    300 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    301 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    302 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    303 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    304 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    305 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    306 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    307 void	bnx_dump_status_block(struct bnx_softc *);
    308 void	bnx_dump_stats_block(struct bnx_softc *);
    309 void	bnx_dump_driver_state(struct bnx_softc *);
    310 void	bnx_dump_hw_state(struct bnx_softc *);
    311 void	bnx_breakpoint(struct bnx_softc *);
    312 #endif
    313 
    314 /****************************************************************************/
    315 /* BNX Register/Memory Access Routines                                      */
    316 /****************************************************************************/
    317 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
    318 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
    319 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
    320 int	bnx_miibus_read_reg(device_t, int, int);
    321 void	bnx_miibus_write_reg(device_t, int, int, int);
    322 void	bnx_miibus_statchg(device_t);
    323 
    324 /****************************************************************************/
    325 /* BNX NVRAM Access Routines                                                */
    326 /****************************************************************************/
    327 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    328 int	bnx_release_nvram_lock(struct bnx_softc *);
    329 void	bnx_enable_nvram_access(struct bnx_softc *);
    330 void	bnx_disable_nvram_access(struct bnx_softc *);
    331 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    332 	    u_int32_t);
    333 int	bnx_init_nvram(struct bnx_softc *);
    334 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    335 int	bnx_nvram_test(struct bnx_softc *);
    336 #ifdef BNX_NVRAM_WRITE_SUPPORT
    337 int	bnx_enable_nvram_write(struct bnx_softc *);
    338 void	bnx_disable_nvram_write(struct bnx_softc *);
    339 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
    340 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    341 	    u_int32_t);
    342 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    343 #endif
    344 
    345 /****************************************************************************/
    346 /*                                                                          */
    347 /****************************************************************************/
    348 void	bnx_get_media(struct bnx_softc *);
    349 void	bnx_init_media(struct bnx_softc *);
    350 int	bnx_dma_alloc(struct bnx_softc *);
    351 void	bnx_dma_free(struct bnx_softc *);
    352 void	bnx_release_resources(struct bnx_softc *);
    353 
    354 /****************************************************************************/
    355 /* BNX Firmware Synchronization and Load                                    */
    356 /****************************************************************************/
    357 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
    358 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
    359 	    u_int32_t);
    360 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    361 	    struct fw_info *);
    362 void	bnx_init_cpus(struct bnx_softc *);
    363 
    364 void	bnx_stop(struct ifnet *, int);
    365 int	bnx_reset(struct bnx_softc *, u_int32_t);
    366 int	bnx_chipinit(struct bnx_softc *);
    367 int	bnx_blockinit(struct bnx_softc *);
    368 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
    369 	    u_int16_t *, u_int32_t *);
    370 int	bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
    371 
    372 int	bnx_init_tx_chain(struct bnx_softc *);
    373 void	bnx_init_tx_context(struct bnx_softc *);
    374 int	bnx_init_rx_chain(struct bnx_softc *);
    375 void	bnx_init_rx_context(struct bnx_softc *);
    376 void	bnx_free_rx_chain(struct bnx_softc *);
    377 void	bnx_free_tx_chain(struct bnx_softc *);
    378 
    379 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    380 void	bnx_start(struct ifnet *);
    381 int	bnx_ioctl(struct ifnet *, u_long, void *);
    382 void	bnx_watchdog(struct ifnet *);
    383 int	bnx_init(struct ifnet *);
    384 
    385 void	bnx_init_context(struct bnx_softc *);
    386 void	bnx_get_mac_addr(struct bnx_softc *);
    387 void	bnx_set_mac_addr(struct bnx_softc *);
    388 void	bnx_phy_intr(struct bnx_softc *);
    389 void	bnx_rx_intr(struct bnx_softc *);
    390 void	bnx_tx_intr(struct bnx_softc *);
    391 void	bnx_disable_intr(struct bnx_softc *);
    392 void	bnx_enable_intr(struct bnx_softc *);
    393 
    394 int	bnx_intr(void *);
    395 void	bnx_iff(struct bnx_softc *);
    396 void	bnx_stats_update(struct bnx_softc *);
    397 void	bnx_tick(void *);
    398 
    399 struct pool *bnx_tx_pool = NULL;
    400 int	bnx_alloc_pkts(struct bnx_softc *);
    401 
    402 /****************************************************************************/
    403 /* OpenBSD device dispatch table.                                           */
    404 /****************************************************************************/
    405 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    406     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    407 
    408 /****************************************************************************/
    409 /* Device probe function.                                                   */
    410 /*                                                                          */
    411 /* Compares the device to the driver's list of supported devices and        */
    412 /* reports back to the OS whether this is the right driver for the device.  */
    413 /*                                                                          */
    414 /* Returns:                                                                 */
    415 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    416 /****************************************************************************/
    417 static const struct bnx_product *
    418 bnx_lookup(const struct pci_attach_args *pa)
    419 {
    420 	int i;
    421 	pcireg_t subid;
    422 
    423 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    424 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    425 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    426 			continue;
    427 		if (!bnx_devices[i].bp_subvendor)
    428 			return &bnx_devices[i];
    429 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    430 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    431 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    432 			return &bnx_devices[i];
    433 	}
    434 
    435 	return NULL;
    436 }
    437 static int
    438 bnx_probe(device_t parent, cfdata_t match, void *aux)
    439 {
    440 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    441 
    442 	if (bnx_lookup(pa) != NULL)
    443 		return (1);
    444 
    445 	return (0);
    446 }
    447 
    448 /****************************************************************************/
    449 /* Device attach function.                                                  */
    450 /*                                                                          */
    451 /* Allocates device resources, performs secondary chip identification,      */
    452 /* resets and initializes the hardware, and initializes driver instance     */
    453 /* variables.                                                               */
    454 /*                                                                          */
    455 /* Returns:                                                                 */
    456 /*   0 on success, positive value on failure.                               */
    457 /****************************************************************************/
    458 void
    459 bnx_attach(device_t parent, device_t self, void *aux)
    460 {
    461 	const struct bnx_product *bp;
    462 	struct bnx_softc	*sc = device_private(self);
    463 	prop_dictionary_t	dict;
    464 	struct pci_attach_args	*pa = aux;
    465 	pci_chipset_tag_t	pc = pa->pa_pc;
    466 	pci_intr_handle_t	ih;
    467 	const char 		*intrstr = NULL;
    468 	u_int32_t		command;
    469 	struct ifnet		*ifp;
    470 	u_int32_t		val;
    471 	int			mii_flags = MIIF_FORCEANEG;
    472 	pcireg_t		memtype;
    473 
    474 	if (bnx_tx_pool == NULL) {
    475 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    476 		if (bnx_tx_pool != NULL) {
    477 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    478 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    479 		} else {
    480 			aprint_error(": can't alloc bnx_tx_pool\n");
    481 			return;
    482 		}
    483 	}
    484 
    485 	bp = bnx_lookup(pa);
    486 	if (bp == NULL)
    487 		panic("unknown device");
    488 
    489 	sc->bnx_dev = self;
    490 
    491 	aprint_naive("\n");
    492 	aprint_normal(": %s\n", bp->bp_name);
    493 
    494 	sc->bnx_pa = *pa;
    495 
    496 	/*
    497 	 * Map control/status registers.
    498 	*/
    499 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    500 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    501 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    502 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    503 
    504 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    505 		aprint_error_dev(sc->bnx_dev,
    506 		    "failed to enable memory mapping!\n");
    507 		return;
    508 	}
    509 
    510 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    511 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    512 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    513 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    514 		return;
    515 	}
    516 
    517 	if (pci_intr_map(pa, &ih)) {
    518 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    519 		goto bnx_attach_fail;
    520 	}
    521 
    522 	intrstr = pci_intr_string(pc, ih);
    523 
    524 	/*
    525 	 * Configure byte swap and enable indirect register access.
    526 	 * Rely on CPU to do target byte swapping on big endian systems.
    527 	 * Access to registers outside of PCI configurtion space are not
    528 	 * valid until this is done.
    529 	 */
    530 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    531 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    532 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    533 
    534 	/* Save ASIC revsion info. */
    535 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    536 
    537 	/*
    538 	 * Find the base address for shared memory access.
    539 	 * Newer versions of bootcode use a signature and offset
    540 	 * while older versions use a fixed address.
    541 	 */
    542 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    543 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    544 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    545 		    (sc->bnx_pa.pa_function << 2));
    546 	else
    547 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    548 
    549 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    550 
    551 	/* Set initial device and PHY flags */
    552 	sc->bnx_flags = 0;
    553 	sc->bnx_phy_flags = 0;
    554 
    555 	/* Get PCI bus information (speed and type). */
    556 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    557 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    558 		u_int32_t clkreg;
    559 
    560 		sc->bnx_flags |= BNX_PCIX_FLAG;
    561 
    562 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    563 
    564 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    565 		switch (clkreg) {
    566 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    567 			sc->bus_speed_mhz = 133;
    568 			break;
    569 
    570 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    571 			sc->bus_speed_mhz = 100;
    572 			break;
    573 
    574 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    575 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    576 			sc->bus_speed_mhz = 66;
    577 			break;
    578 
    579 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    580 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    581 			sc->bus_speed_mhz = 50;
    582 			break;
    583 
    584 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    585 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    586 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    587 			sc->bus_speed_mhz = 33;
    588 			break;
    589 		}
    590 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    591 			sc->bus_speed_mhz = 66;
    592 		else
    593 			sc->bus_speed_mhz = 33;
    594 
    595 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    596 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    597 
    598 	/* Reset the controller. */
    599 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    600 		goto bnx_attach_fail;
    601 
    602 	/* Initialize the controller. */
    603 	if (bnx_chipinit(sc)) {
    604 		aprint_error_dev(sc->bnx_dev,
    605 		    "Controller initialization failed!\n");
    606 		goto bnx_attach_fail;
    607 	}
    608 
    609 	/* Perform NVRAM test. */
    610 	if (bnx_nvram_test(sc)) {
    611 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    612 		goto bnx_attach_fail;
    613 	}
    614 
    615 	/* Fetch the permanent Ethernet MAC address. */
    616 	bnx_get_mac_addr(sc);
    617 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    618 	    ether_sprintf(sc->eaddr));
    619 
    620 	/*
    621 	 * Trip points control how many BDs
    622 	 * should be ready before generating an
    623 	 * interrupt while ticks control how long
    624 	 * a BD can sit in the chain before
    625 	 * generating an interrupt.  Set the default
    626 	 * values for the RX and TX rings.
    627 	 */
    628 
    629 #ifdef BNX_DEBUG
    630 	/* Force more frequent interrupts. */
    631 	sc->bnx_tx_quick_cons_trip_int = 1;
    632 	sc->bnx_tx_quick_cons_trip     = 1;
    633 	sc->bnx_tx_ticks_int           = 0;
    634 	sc->bnx_tx_ticks               = 0;
    635 
    636 	sc->bnx_rx_quick_cons_trip_int = 1;
    637 	sc->bnx_rx_quick_cons_trip     = 1;
    638 	sc->bnx_rx_ticks_int           = 0;
    639 	sc->bnx_rx_ticks               = 0;
    640 #else
    641 	sc->bnx_tx_quick_cons_trip_int = 20;
    642 	sc->bnx_tx_quick_cons_trip     = 20;
    643 	sc->bnx_tx_ticks_int           = 80;
    644 	sc->bnx_tx_ticks               = 80;
    645 
    646 	sc->bnx_rx_quick_cons_trip_int = 6;
    647 	sc->bnx_rx_quick_cons_trip     = 6;
    648 	sc->bnx_rx_ticks_int           = 18;
    649 	sc->bnx_rx_ticks               = 18;
    650 #endif
    651 
    652 	/* Update statistics once every second. */
    653 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    654 
    655 	/* Find the media type for the adapter. */
    656 	bnx_get_media(sc);
    657 
    658 	/*
    659 	 * Store config data needed by the PHY driver for
    660 	 * backplane applications
    661 	 */
    662 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    663 	    BNX_SHARED_HW_CFG_CONFIG);
    664 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    665 	    BNX_PORT_HW_CFG_CONFIG);
    666 
    667 	/* Allocate DMA memory resources. */
    668 	sc->bnx_dmatag = pa->pa_dmat;
    669 	if (bnx_dma_alloc(sc)) {
    670 		aprint_error_dev(sc->bnx_dev,
    671 		    "DMA resource allocation failed!\n");
    672 		goto bnx_attach_fail;
    673 	}
    674 
    675 	/* Initialize the ifnet interface. */
    676 	ifp = &sc->bnx_ec.ec_if;
    677 	ifp->if_softc = sc;
    678 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    679 	ifp->if_ioctl = bnx_ioctl;
    680 	ifp->if_stop = bnx_stop;
    681 	ifp->if_start = bnx_start;
    682 	ifp->if_init = bnx_init;
    683 	ifp->if_timer = 0;
    684 	ifp->if_watchdog = bnx_watchdog;
    685 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    686 	IFQ_SET_READY(&ifp->if_snd);
    687 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    688 
    689 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    690 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    691 
    692 	ifp->if_capabilities |=
    693 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    694 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    695 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    696 
    697 	/* Hookup IRQ last. */
    698 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    699 	if (sc->bnx_intrhand == NULL) {
    700 		aprint_error_dev(self, "couldn't establish interrupt");
    701 		if (intrstr != NULL)
    702 			aprint_error(" at %s", intrstr);
    703 		aprint_error("\n");
    704 		goto bnx_attach_fail;
    705 	}
    706 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    707 
    708 	sc->bnx_mii.mii_ifp = ifp;
    709 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    710 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    711 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    712 
    713 	/* Handle any special PHY initialization for SerDes PHYs. */
    714 	bnx_init_media(sc);
    715 
    716 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    717 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    718 	    ether_mediastatus);
    719 
    720 	/* set phyflags and chipid before mii_attach() */
    721 	dict = device_properties(self);
    722 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    723 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    724 
    725 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    726 		mii_flags |= MIIF_HAVEFIBER;
    727 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    728 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    729 
    730 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    731 		aprint_error_dev(self, "no PHY found!\n");
    732 		ifmedia_add(&sc->bnx_mii.mii_media,
    733 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    734 		ifmedia_set(&sc->bnx_mii.mii_media,
    735 		    IFM_ETHER|IFM_MANUAL);
    736 	} else {
    737 		ifmedia_set(&sc->bnx_mii.mii_media,
    738 		    IFM_ETHER|IFM_AUTO);
    739 	}
    740 
    741 	/* Attach to the Ethernet interface list. */
    742 	if_attach(ifp);
    743 	ether_ifattach(ifp,sc->eaddr);
    744 
    745 	callout_init(&sc->bnx_timeout, 0);
    746 
    747 	if (pmf_device_register(self, NULL, NULL))
    748 		pmf_class_network_register(self, ifp);
    749 	else
    750 		aprint_error_dev(self, "couldn't establish power handler\n");
    751 
    752 	/* Print some important debugging info. */
    753 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    754 
    755 	goto bnx_attach_exit;
    756 
    757 bnx_attach_fail:
    758 	bnx_release_resources(sc);
    759 
    760 bnx_attach_exit:
    761 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    762 }
    763 
    764 /****************************************************************************/
    765 /* Device detach function.                                                  */
    766 /*                                                                          */
    767 /* Stops the controller, resets the controller, and releases resources.     */
    768 /*                                                                          */
    769 /* Returns:                                                                 */
    770 /*   0 on success, positive value on failure.                               */
    771 /****************************************************************************/
    772 int
    773 bnx_detach(device_t dev, int flags)
    774 {
    775 	int s;
    776 	struct bnx_softc *sc;
    777 	struct ifnet *ifp;
    778 
    779 	sc = device_private(dev);
    780 	ifp = &sc->bnx_ec.ec_if;
    781 
    782 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    783 
    784 	/* Stop and reset the controller. */
    785 	s = splnet();
    786 	if (ifp->if_flags & IFF_RUNNING)
    787 		bnx_stop(ifp, 1);
    788 	else {
    789 		/* Disable the transmit/receive blocks. */
    790 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
    791 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
    792 		DELAY(20);
    793 		bnx_disable_intr(sc);
    794 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
    795 	}
    796 
    797 	splx(s);
    798 
    799 	pmf_device_deregister(dev);
    800 	callout_destroy(&sc->bnx_timeout);
    801 	ether_ifdetach(ifp);
    802 
    803 	/* Delete all remaining media. */
    804 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    805 
    806 	if_detach(ifp);
    807 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    808 
    809 	/* Release all remaining resources. */
    810 	bnx_release_resources(sc);
    811 
    812 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    813 
    814 	return(0);
    815 }
    816 
    817 /****************************************************************************/
    818 /* Indirect register read.                                                  */
    819 /*                                                                          */
    820 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    821 /* configuration space.  Using this mechanism avoids issues with posted     */
    822 /* reads but is much slower than memory-mapped I/O.                         */
    823 /*                                                                          */
    824 /* Returns:                                                                 */
    825 /*   The value of the register.                                             */
    826 /****************************************************************************/
    827 u_int32_t
    828 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
    829 {
    830 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    831 
    832 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    833 	    offset);
    834 #ifdef BNX_DEBUG
    835 	{
    836 		u_int32_t val;
    837 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    838 		    BNX_PCICFG_REG_WINDOW);
    839 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    840 		    "val = 0x%08X\n", __func__, offset, val);
    841 		return (val);
    842 	}
    843 #else
    844 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    845 #endif
    846 }
    847 
    848 /****************************************************************************/
    849 /* Indirect register write.                                                 */
    850 /*                                                                          */
    851 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    852 /* configuration space.  Using this mechanism avoids issues with posted     */
    853 /* writes but is muchh slower than memory-mapped I/O.                       */
    854 /*                                                                          */
    855 /* Returns:                                                                 */
    856 /*   Nothing.                                                               */
    857 /****************************************************************************/
    858 void
    859 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
    860 {
    861 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    862 
    863 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    864 		__func__, offset, val);
    865 
    866 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    867 	    offset);
    868 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    869 }
    870 
    871 /****************************************************************************/
    872 /* Context memory write.                                                    */
    873 /*                                                                          */
    874 /* The NetXtreme II controller uses context memory to track connection      */
    875 /* information for L2 and higher network protocols.                         */
    876 /*                                                                          */
    877 /* Returns:                                                                 */
    878 /*   Nothing.                                                               */
    879 /****************************************************************************/
    880 void
    881 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
    882     u_int32_t ctx_val)
    883 {
    884 	u_int32_t idx, offset = ctx_offset + cid_addr;
    885 	u_int32_t val, retry_cnt = 5;
    886 
    887 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
    888 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
    889 		REG_WR(sc, BNX_CTX_CTX_CTRL,
    890 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
    891 
    892 		for (idx = 0; idx < retry_cnt; idx++) {
    893 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
    894 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
    895 				break;
    896 			DELAY(5);
    897 		}
    898 
    899 #if 0
    900 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
    901 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
    902 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
    903 				__FILE__, __LINE__, cid_addr, ctx_offset);
    904 #endif
    905 
    906 	} else {
    907 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
    908 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
    909 	}
    910 }
    911 
    912 /****************************************************************************/
    913 /* PHY register read.                                                       */
    914 /*                                                                          */
    915 /* Implements register reads on the MII bus.                                */
    916 /*                                                                          */
    917 /* Returns:                                                                 */
    918 /*   The value of the register.                                             */
    919 /****************************************************************************/
    920 int
    921 bnx_miibus_read_reg(device_t dev, int phy, int reg)
    922 {
    923 	struct bnx_softc	*sc = device_private(dev);
    924 	u_int32_t		val;
    925 	int			i;
    926 
    927 	/* Make sure we are accessing the correct PHY address. */
    928 	if (phy != sc->bnx_phy_addr) {
    929 		DBPRINT(sc, BNX_VERBOSE,
    930 		    "Invalid PHY address %d for PHY read!\n", phy);
    931 		return(0);
    932 	}
    933 
    934 	/*
    935 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
    936 	 * with special mappings to work with IEEE
    937 	 * Clause 22 register accesses.
    938 	 */
    939 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
    940 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
    941 			reg += 0x10;
    942 	}
    943 
    944 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    945 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    946 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    947 
    948 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    949 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    950 
    951 		DELAY(40);
    952 	}
    953 
    954 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
    955 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
    956 	    BNX_EMAC_MDIO_COMM_START_BUSY;
    957 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
    958 
    959 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    960 		DELAY(10);
    961 
    962 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    963 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    964 			DELAY(5);
    965 
    966 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    967 			val &= BNX_EMAC_MDIO_COMM_DATA;
    968 
    969 			break;
    970 		}
    971 	}
    972 
    973 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
    974 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
    975 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
    976 		val = 0x0;
    977 	} else
    978 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    979 
    980 	DBPRINT(sc, BNX_EXCESSIVE,
    981 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
    982 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    983 
    984 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    985 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    986 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    987 
    988 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    989 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    990 
    991 		DELAY(40);
    992 	}
    993 
    994 	return (val & 0xffff);
    995 }
    996 
    997 /****************************************************************************/
    998 /* PHY register write.                                                      */
    999 /*                                                                          */
   1000 /* Implements register writes on the MII bus.                               */
   1001 /*                                                                          */
   1002 /* Returns:                                                                 */
   1003 /*   The value of the register.                                             */
   1004 /****************************************************************************/
   1005 void
   1006 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
   1007 {
   1008 	struct bnx_softc	*sc = device_private(dev);
   1009 	u_int32_t		val1;
   1010 	int			i;
   1011 
   1012 	/* Make sure we are accessing the correct PHY address. */
   1013 	if (phy != sc->bnx_phy_addr) {
   1014 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
   1015 		    phy);
   1016 		return;
   1017 	}
   1018 
   1019 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1020 	    "val = 0x%04X\n", __func__,
   1021 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
   1022 
   1023 	/*
   1024 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1025 	 * with special mappings to work with IEEE
   1026 	 * Clause 22 register accesses.
   1027 	 */
   1028 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1029 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1030 			reg += 0x10;
   1031 	}
   1032 
   1033 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1034 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1035 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1036 
   1037 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1038 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1039 
   1040 		DELAY(40);
   1041 	}
   1042 
   1043 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1044 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1045 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1046 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1047 
   1048 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1049 		DELAY(10);
   1050 
   1051 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1052 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1053 			DELAY(5);
   1054 			break;
   1055 		}
   1056 	}
   1057 
   1058 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1059 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1060 		    __LINE__);
   1061 	}
   1062 
   1063 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1064 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1065 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1066 
   1067 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1068 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1069 
   1070 		DELAY(40);
   1071 	}
   1072 }
   1073 
   1074 /****************************************************************************/
   1075 /* MII bus status change.                                                   */
   1076 /*                                                                          */
   1077 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1078 /* MAC interface registers.                                                 */
   1079 /*                                                                          */
   1080 /* Returns:                                                                 */
   1081 /*   Nothing.                                                               */
   1082 /****************************************************************************/
   1083 void
   1084 bnx_miibus_statchg(device_t dev)
   1085 {
   1086 	struct bnx_softc	*sc = device_private(dev);
   1087 	struct mii_data		*mii = &sc->bnx_mii;
   1088 	int			val;
   1089 
   1090 	val = REG_RD(sc, BNX_EMAC_MODE);
   1091 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1092 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1093 	    BNX_EMAC_MODE_25G);
   1094 
   1095 	/* Set MII or GMII interface based on the speed
   1096 	 * negotiated by the PHY.
   1097 	 */
   1098 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1099 	case IFM_10_T:
   1100 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1101 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1102 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1103 			break;
   1104 		}
   1105 		/* FALLTHROUGH */
   1106 	case IFM_100_TX:
   1107 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1108 		val |= BNX_EMAC_MODE_PORT_MII;
   1109 		break;
   1110 	case IFM_2500_SX:
   1111 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1112 		val |= BNX_EMAC_MODE_25G;
   1113 		/* FALLTHROUGH */
   1114 	case IFM_1000_T:
   1115 	case IFM_1000_SX:
   1116 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1117 		val |= BNX_EMAC_MODE_PORT_GMII;
   1118 		break;
   1119 	default:
   1120 		val |= BNX_EMAC_MODE_PORT_GMII;
   1121 		break;
   1122 	}
   1123 
   1124 	/* Set half or full duplex based on the duplicity
   1125 	 * negotiated by the PHY.
   1126 	 */
   1127 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1128 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1129 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1130 	} else {
   1131 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1132 	}
   1133 
   1134 	REG_WR(sc, BNX_EMAC_MODE, val);
   1135 }
   1136 
   1137 /****************************************************************************/
   1138 /* Acquire NVRAM lock.                                                      */
   1139 /*                                                                          */
   1140 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1141 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1142 /* for use by the driver.                                                   */
   1143 /*                                                                          */
   1144 /* Returns:                                                                 */
   1145 /*   0 on success, positive value on failure.                               */
   1146 /****************************************************************************/
   1147 int
   1148 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1149 {
   1150 	u_int32_t		val;
   1151 	int			j;
   1152 
   1153 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1154 
   1155 	/* Request access to the flash interface. */
   1156 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1157 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1158 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1159 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1160 			break;
   1161 
   1162 		DELAY(5);
   1163 	}
   1164 
   1165 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1166 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1167 		return (EBUSY);
   1168 	}
   1169 
   1170 	return (0);
   1171 }
   1172 
   1173 /****************************************************************************/
   1174 /* Release NVRAM lock.                                                      */
   1175 /*                                                                          */
   1176 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1177 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1178 /* for use by the driver.                                                   */
   1179 /*                                                                          */
   1180 /* Returns:                                                                 */
   1181 /*   0 on success, positive value on failure.                               */
   1182 /****************************************************************************/
   1183 int
   1184 bnx_release_nvram_lock(struct bnx_softc *sc)
   1185 {
   1186 	int			j;
   1187 	u_int32_t		val;
   1188 
   1189 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1190 
   1191 	/* Relinquish nvram interface. */
   1192 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1193 
   1194 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1195 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1196 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1197 			break;
   1198 
   1199 		DELAY(5);
   1200 	}
   1201 
   1202 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1203 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1204 		return (EBUSY);
   1205 	}
   1206 
   1207 	return (0);
   1208 }
   1209 
   1210 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1211 /****************************************************************************/
   1212 /* Enable NVRAM write access.                                               */
   1213 /*                                                                          */
   1214 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1215 /*                                                                          */
   1216 /* Returns:                                                                 */
   1217 /*   0 on success, positive value on failure.                               */
   1218 /****************************************************************************/
   1219 int
   1220 bnx_enable_nvram_write(struct bnx_softc *sc)
   1221 {
   1222 	u_int32_t		val;
   1223 
   1224 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1225 
   1226 	val = REG_RD(sc, BNX_MISC_CFG);
   1227 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1228 
   1229 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1230 		int j;
   1231 
   1232 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1233 		REG_WR(sc, BNX_NVM_COMMAND,
   1234 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1235 
   1236 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1237 			DELAY(5);
   1238 
   1239 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1240 			if (val & BNX_NVM_COMMAND_DONE)
   1241 				break;
   1242 		}
   1243 
   1244 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1245 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1246 			return (EBUSY);
   1247 		}
   1248 	}
   1249 
   1250 	return (0);
   1251 }
   1252 
   1253 /****************************************************************************/
   1254 /* Disable NVRAM write access.                                              */
   1255 /*                                                                          */
   1256 /* When the caller is finished writing to NVRAM write access must be        */
   1257 /* disabled.                                                                */
   1258 /*                                                                          */
   1259 /* Returns:                                                                 */
   1260 /*   Nothing.                                                               */
   1261 /****************************************************************************/
   1262 void
   1263 bnx_disable_nvram_write(struct bnx_softc *sc)
   1264 {
   1265 	u_int32_t		val;
   1266 
   1267 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1268 
   1269 	val = REG_RD(sc, BNX_MISC_CFG);
   1270 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1271 }
   1272 #endif
   1273 
   1274 /****************************************************************************/
   1275 /* Enable NVRAM access.                                                     */
   1276 /*                                                                          */
   1277 /* Before accessing NVRAM for read or write operations the caller must      */
   1278 /* enabled NVRAM access.                                                    */
   1279 /*                                                                          */
   1280 /* Returns:                                                                 */
   1281 /*   Nothing.                                                               */
   1282 /****************************************************************************/
   1283 void
   1284 bnx_enable_nvram_access(struct bnx_softc *sc)
   1285 {
   1286 	u_int32_t		val;
   1287 
   1288 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1289 
   1290 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1291 	/* Enable both bits, even on read. */
   1292 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1293 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1294 }
   1295 
   1296 /****************************************************************************/
   1297 /* Disable NVRAM access.                                                    */
   1298 /*                                                                          */
   1299 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1300 /*                                                                          */
   1301 /* Returns:                                                                 */
   1302 /*   Nothing.                                                               */
   1303 /****************************************************************************/
   1304 void
   1305 bnx_disable_nvram_access(struct bnx_softc *sc)
   1306 {
   1307 	u_int32_t		val;
   1308 
   1309 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1310 
   1311 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1312 
   1313 	/* Disable both bits, even after read. */
   1314 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1315 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1316 }
   1317 
   1318 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1319 /****************************************************************************/
   1320 /* Erase NVRAM page before writing.                                         */
   1321 /*                                                                          */
   1322 /* Non-buffered flash parts require that a page be erased before it is      */
   1323 /* written.                                                                 */
   1324 /*                                                                          */
   1325 /* Returns:                                                                 */
   1326 /*   0 on success, positive value on failure.                               */
   1327 /****************************************************************************/
   1328 int
   1329 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
   1330 {
   1331 	u_int32_t		cmd;
   1332 	int			j;
   1333 
   1334 	/* Buffered flash doesn't require an erase. */
   1335 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1336 		return (0);
   1337 
   1338 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1339 
   1340 	/* Build an erase command. */
   1341 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1342 	    BNX_NVM_COMMAND_DOIT;
   1343 
   1344 	/*
   1345 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
   1346 	 * and issue the erase command.
   1347 	 */
   1348 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1349 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1350 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1351 
   1352 	/* Wait for completion. */
   1353 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1354 		u_int32_t val;
   1355 
   1356 		DELAY(5);
   1357 
   1358 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1359 		if (val & BNX_NVM_COMMAND_DONE)
   1360 			break;
   1361 	}
   1362 
   1363 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1364 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1365 		return (EBUSY);
   1366 	}
   1367 
   1368 	return (0);
   1369 }
   1370 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1371 
   1372 /****************************************************************************/
   1373 /* Read a dword (32 bits) from NVRAM.                                       */
   1374 /*                                                                          */
   1375 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1376 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1377 /*                                                                          */
   1378 /* Returns:                                                                 */
   1379 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1380 /****************************************************************************/
   1381 int
   1382 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
   1383     u_int8_t *ret_val, u_int32_t cmd_flags)
   1384 {
   1385 	u_int32_t		cmd;
   1386 	int			i, rc = 0;
   1387 
   1388 	/* Build the command word. */
   1389 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1390 
   1391 	/* Calculate the offset for buffered flash if translation is used. */
   1392 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1393 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1394 		    sc->bnx_flash_info->page_bits) +
   1395 		    (offset % sc->bnx_flash_info->page_size);
   1396 	}
   1397 
   1398 	/*
   1399 	 * Clear the DONE bit separately, set the address to read,
   1400 	 * and issue the read.
   1401 	 */
   1402 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1403 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1404 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1405 
   1406 	/* Wait for completion. */
   1407 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1408 		u_int32_t val;
   1409 
   1410 		DELAY(5);
   1411 
   1412 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1413 		if (val & BNX_NVM_COMMAND_DONE) {
   1414 			val = REG_RD(sc, BNX_NVM_READ);
   1415 
   1416 			val = bnx_be32toh(val);
   1417 			memcpy(ret_val, &val, 4);
   1418 			break;
   1419 		}
   1420 	}
   1421 
   1422 	/* Check for errors. */
   1423 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1424 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1425 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1426 		rc = EBUSY;
   1427 	}
   1428 
   1429 	return(rc);
   1430 }
   1431 
   1432 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1433 /****************************************************************************/
   1434 /* Write a dword (32 bits) to NVRAM.                                        */
   1435 /*                                                                          */
   1436 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1437 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1438 /* enabled NVRAM write access.                                              */
   1439 /*                                                                          */
   1440 /* Returns:                                                                 */
   1441 /*   0 on success, positive value on failure.                               */
   1442 /****************************************************************************/
   1443 int
   1444 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
   1445     u_int32_t cmd_flags)
   1446 {
   1447 	u_int32_t		cmd, val32;
   1448 	int			j;
   1449 
   1450 	/* Build the command word. */
   1451 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1452 
   1453 	/* Calculate the offset for buffered flash if translation is used. */
   1454 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1455 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1456 		    sc->bnx_flash_info->page_bits) +
   1457 		    (offset % sc->bnx_flash_info->page_size);
   1458 	}
   1459 
   1460 	/*
   1461 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1462 	 * set the NVRAM address to write, and issue the write command
   1463 	 */
   1464 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1465 	memcpy(&val32, val, 4);
   1466 	val32 = htobe32(val32);
   1467 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1468 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1469 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1470 
   1471 	/* Wait for completion. */
   1472 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1473 		DELAY(5);
   1474 
   1475 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1476 			break;
   1477 	}
   1478 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1479 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1480 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1481 		return (EBUSY);
   1482 	}
   1483 
   1484 	return (0);
   1485 }
   1486 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1487 
   1488 /****************************************************************************/
   1489 /* Initialize NVRAM access.                                                 */
   1490 /*                                                                          */
   1491 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1492 /* access that device.                                                      */
   1493 /*                                                                          */
   1494 /* Returns:                                                                 */
   1495 /*   0 on success, positive value on failure.                               */
   1496 /****************************************************************************/
   1497 int
   1498 bnx_init_nvram(struct bnx_softc *sc)
   1499 {
   1500 	u_int32_t		val;
   1501 	int			j, entry_count, rc = 0;
   1502 	struct flash_spec	*flash;
   1503 
   1504 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1505 
   1506 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1507 		sc->bnx_flash_info = &flash_5709;
   1508 		goto bnx_init_nvram_get_flash_size;
   1509 	}
   1510 
   1511 	/* Determine the selected interface. */
   1512 	val = REG_RD(sc, BNX_NVM_CFG1);
   1513 
   1514 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1515 
   1516 	/*
   1517 	 * Flash reconfiguration is required to support additional
   1518 	 * NVRAM devices not directly supported in hardware.
   1519 	 * Check if the flash interface was reconfigured
   1520 	 * by the bootcode.
   1521 	 */
   1522 
   1523 	if (val & 0x40000000) {
   1524 		/* Flash interface reconfigured by bootcode. */
   1525 
   1526 		DBPRINT(sc,BNX_INFO_LOAD,
   1527 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1528 
   1529 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1530 		     j++, flash++) {
   1531 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1532 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1533 				sc->bnx_flash_info = flash;
   1534 				break;
   1535 			}
   1536 		}
   1537 	} else {
   1538 		/* Flash interface not yet reconfigured. */
   1539 		u_int32_t mask;
   1540 
   1541 		DBPRINT(sc,BNX_INFO_LOAD,
   1542 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1543 
   1544 		if (val & (1 << 23))
   1545 			mask = FLASH_BACKUP_STRAP_MASK;
   1546 		else
   1547 			mask = FLASH_STRAP_MASK;
   1548 
   1549 		/* Look for the matching NVRAM device configuration data. */
   1550 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1551 		    j++, flash++) {
   1552 			/* Check if the dev matches any of the known devices. */
   1553 			if ((val & mask) == (flash->strapping & mask)) {
   1554 				/* Found a device match. */
   1555 				sc->bnx_flash_info = flash;
   1556 
   1557 				/* Request access to the flash interface. */
   1558 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1559 					return (rc);
   1560 
   1561 				/* Reconfigure the flash interface. */
   1562 				bnx_enable_nvram_access(sc);
   1563 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1564 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1565 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1566 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1567 				bnx_disable_nvram_access(sc);
   1568 				bnx_release_nvram_lock(sc);
   1569 
   1570 				break;
   1571 			}
   1572 		}
   1573 	}
   1574 
   1575 	/* Check if a matching device was found. */
   1576 	if (j == entry_count) {
   1577 		sc->bnx_flash_info = NULL;
   1578 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1579 			__FILE__, __LINE__);
   1580 		rc = ENODEV;
   1581 	}
   1582 
   1583 bnx_init_nvram_get_flash_size:
   1584 	/* Write the flash config data to the shared memory interface. */
   1585 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1586 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1587 	if (val)
   1588 		sc->bnx_flash_size = val;
   1589 	else
   1590 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1591 
   1592 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1593 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1594 
   1595 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1596 
   1597 	return (rc);
   1598 }
   1599 
   1600 /****************************************************************************/
   1601 /* Read an arbitrary range of data from NVRAM.                              */
   1602 /*                                                                          */
   1603 /* Prepares the NVRAM interface for access and reads the requested data     */
   1604 /* into the supplied buffer.                                                */
   1605 /*                                                                          */
   1606 /* Returns:                                                                 */
   1607 /*   0 on success and the data read, positive value on failure.             */
   1608 /****************************************************************************/
   1609 int
   1610 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
   1611     int buf_size)
   1612 {
   1613 	int			rc = 0;
   1614 	u_int32_t		cmd_flags, offset32, len32, extra;
   1615 
   1616 	if (buf_size == 0)
   1617 		return (0);
   1618 
   1619 	/* Request access to the flash interface. */
   1620 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1621 		return (rc);
   1622 
   1623 	/* Enable access to flash interface */
   1624 	bnx_enable_nvram_access(sc);
   1625 
   1626 	len32 = buf_size;
   1627 	offset32 = offset;
   1628 	extra = 0;
   1629 
   1630 	cmd_flags = 0;
   1631 
   1632 	if (offset32 & 3) {
   1633 		u_int8_t buf[4];
   1634 		u_int32_t pre_len;
   1635 
   1636 		offset32 &= ~3;
   1637 		pre_len = 4 - (offset & 3);
   1638 
   1639 		if (pre_len >= len32) {
   1640 			pre_len = len32;
   1641 			cmd_flags =
   1642 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1643 		} else
   1644 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1645 
   1646 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1647 
   1648 		if (rc)
   1649 			return (rc);
   1650 
   1651 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1652 
   1653 		offset32 += 4;
   1654 		ret_buf += pre_len;
   1655 		len32 -= pre_len;
   1656 	}
   1657 
   1658 	if (len32 & 3) {
   1659 		extra = 4 - (len32 & 3);
   1660 		len32 = (len32 + 4) & ~3;
   1661 	}
   1662 
   1663 	if (len32 == 4) {
   1664 		u_int8_t buf[4];
   1665 
   1666 		if (cmd_flags)
   1667 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1668 		else
   1669 			cmd_flags =
   1670 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1671 
   1672 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1673 
   1674 		memcpy(ret_buf, buf, 4 - extra);
   1675 	} else if (len32 > 0) {
   1676 		u_int8_t buf[4];
   1677 
   1678 		/* Read the first word. */
   1679 		if (cmd_flags)
   1680 			cmd_flags = 0;
   1681 		else
   1682 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1683 
   1684 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1685 
   1686 		/* Advance to the next dword. */
   1687 		offset32 += 4;
   1688 		ret_buf += 4;
   1689 		len32 -= 4;
   1690 
   1691 		while (len32 > 4 && rc == 0) {
   1692 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1693 
   1694 			/* Advance to the next dword. */
   1695 			offset32 += 4;
   1696 			ret_buf += 4;
   1697 			len32 -= 4;
   1698 		}
   1699 
   1700 		if (rc)
   1701 			return (rc);
   1702 
   1703 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1704 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1705 
   1706 		memcpy(ret_buf, buf, 4 - extra);
   1707 	}
   1708 
   1709 	/* Disable access to flash interface and release the lock. */
   1710 	bnx_disable_nvram_access(sc);
   1711 	bnx_release_nvram_lock(sc);
   1712 
   1713 	return (rc);
   1714 }
   1715 
   1716 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1717 /****************************************************************************/
   1718 /* Write an arbitrary range of data from NVRAM.                             */
   1719 /*                                                                          */
   1720 /* Prepares the NVRAM interface for write access and writes the requested   */
   1721 /* data from the supplied buffer.  The caller is responsible for            */
   1722 /* calculating any appropriate CRCs.                                        */
   1723 /*                                                                          */
   1724 /* Returns:                                                                 */
   1725 /*   0 on success, positive value on failure.                               */
   1726 /****************************************************************************/
   1727 int
   1728 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
   1729     int buf_size)
   1730 {
   1731 	u_int32_t		written, offset32, len32;
   1732 	u_int8_t		*buf, start[4], end[4];
   1733 	int			rc = 0;
   1734 	int			align_start, align_end;
   1735 
   1736 	buf = data_buf;
   1737 	offset32 = offset;
   1738 	len32 = buf_size;
   1739 	align_start = align_end = 0;
   1740 
   1741 	if ((align_start = (offset32 & 3))) {
   1742 		offset32 &= ~3;
   1743 		len32 += align_start;
   1744 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1745 			return (rc);
   1746 	}
   1747 
   1748 	if (len32 & 3) {
   1749 	       	if ((len32 > 4) || !align_start) {
   1750 			align_end = 4 - (len32 & 3);
   1751 			len32 += align_end;
   1752 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1753 			    end, 4))) {
   1754 				return (rc);
   1755 			}
   1756 		}
   1757 	}
   1758 
   1759 	if (align_start || align_end) {
   1760 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1761 		if (buf == 0)
   1762 			return (ENOMEM);
   1763 
   1764 		if (align_start)
   1765 			memcpy(buf, start, 4);
   1766 
   1767 		if (align_end)
   1768 			memcpy(buf + len32 - 4, end, 4);
   1769 
   1770 		memcpy(buf + align_start, data_buf, buf_size);
   1771 	}
   1772 
   1773 	written = 0;
   1774 	while ((written < len32) && (rc == 0)) {
   1775 		u_int32_t page_start, page_end, data_start, data_end;
   1776 		u_int32_t addr, cmd_flags;
   1777 		int i;
   1778 		u_int8_t flash_buffer[264];
   1779 
   1780 	    /* Find the page_start addr */
   1781 		page_start = offset32 + written;
   1782 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1783 		/* Find the page_end addr */
   1784 		page_end = page_start + sc->bnx_flash_info->page_size;
   1785 		/* Find the data_start addr */
   1786 		data_start = (written == 0) ? offset32 : page_start;
   1787 		/* Find the data_end addr */
   1788 		data_end = (page_end > offset32 + len32) ?
   1789 		    (offset32 + len32) : page_end;
   1790 
   1791 		/* Request access to the flash interface. */
   1792 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1793 			goto nvram_write_end;
   1794 
   1795 		/* Enable access to flash interface */
   1796 		bnx_enable_nvram_access(sc);
   1797 
   1798 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1799 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1800 			int j;
   1801 
   1802 			/* Read the whole page into the buffer
   1803 			 * (non-buffer flash only) */
   1804 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1805 				if (j == (sc->bnx_flash_info->page_size - 4))
   1806 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1807 
   1808 				rc = bnx_nvram_read_dword(sc,
   1809 					page_start + j,
   1810 					&flash_buffer[j],
   1811 					cmd_flags);
   1812 
   1813 				if (rc)
   1814 					goto nvram_write_end;
   1815 
   1816 				cmd_flags = 0;
   1817 			}
   1818 		}
   1819 
   1820 		/* Enable writes to flash interface (unlock write-protect) */
   1821 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1822 			goto nvram_write_end;
   1823 
   1824 		/* Erase the page */
   1825 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1826 			goto nvram_write_end;
   1827 
   1828 		/* Re-enable the write again for the actual write */
   1829 		bnx_enable_nvram_write(sc);
   1830 
   1831 		/* Loop to write back the buffer data from page_start to
   1832 		 * data_start */
   1833 		i = 0;
   1834 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1835 			for (addr = page_start; addr < data_start;
   1836 				addr += 4, i += 4) {
   1837 
   1838 				rc = bnx_nvram_write_dword(sc, addr,
   1839 				    &flash_buffer[i], cmd_flags);
   1840 
   1841 				if (rc != 0)
   1842 					goto nvram_write_end;
   1843 
   1844 				cmd_flags = 0;
   1845 			}
   1846 		}
   1847 
   1848 		/* Loop to write the new data from data_start to data_end */
   1849 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1850 			if ((addr == page_end - 4) ||
   1851 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   1852 			    && (addr == data_end - 4))) {
   1853 
   1854 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1855 			}
   1856 
   1857 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1858 
   1859 			if (rc != 0)
   1860 				goto nvram_write_end;
   1861 
   1862 			cmd_flags = 0;
   1863 			buf += 4;
   1864 		}
   1865 
   1866 		/* Loop to write back the buffer data from data_end
   1867 		 * to page_end */
   1868 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1869 			for (addr = data_end; addr < page_end;
   1870 			    addr += 4, i += 4) {
   1871 
   1872 				if (addr == page_end-4)
   1873 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1874 
   1875 				rc = bnx_nvram_write_dword(sc, addr,
   1876 				    &flash_buffer[i], cmd_flags);
   1877 
   1878 				if (rc != 0)
   1879 					goto nvram_write_end;
   1880 
   1881 				cmd_flags = 0;
   1882 			}
   1883 		}
   1884 
   1885 		/* Disable writes to flash interface (lock write-protect) */
   1886 		bnx_disable_nvram_write(sc);
   1887 
   1888 		/* Disable access to flash interface */
   1889 		bnx_disable_nvram_access(sc);
   1890 		bnx_release_nvram_lock(sc);
   1891 
   1892 		/* Increment written */
   1893 		written += data_end - data_start;
   1894 	}
   1895 
   1896 nvram_write_end:
   1897 	if (align_start || align_end)
   1898 		free(buf, M_DEVBUF);
   1899 
   1900 	return (rc);
   1901 }
   1902 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1903 
   1904 /****************************************************************************/
   1905 /* Verifies that NVRAM is accessible and contains valid data.               */
   1906 /*                                                                          */
   1907 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   1908 /* correct.                                                                 */
   1909 /*                                                                          */
   1910 /* Returns:                                                                 */
   1911 /*   0 on success, positive value on failure.                               */
   1912 /****************************************************************************/
   1913 int
   1914 bnx_nvram_test(struct bnx_softc *sc)
   1915 {
   1916 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
   1917 	u_int8_t		*data = (u_int8_t *) buf;
   1918 	int			rc = 0;
   1919 	u_int32_t		magic, csum;
   1920 
   1921 	/*
   1922 	 * Check that the device NVRAM is valid by reading
   1923 	 * the magic value at offset 0.
   1924 	 */
   1925 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   1926 		goto bnx_nvram_test_done;
   1927 
   1928 	magic = bnx_be32toh(buf[0]);
   1929 	if (magic != BNX_NVRAM_MAGIC) {
   1930 		rc = ENODEV;
   1931 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   1932 		    "Expected: 0x%08X, Found: 0x%08X\n",
   1933 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   1934 		goto bnx_nvram_test_done;
   1935 	}
   1936 
   1937 	/*
   1938 	 * Verify that the device NVRAM includes valid
   1939 	 * configuration data.
   1940 	 */
   1941 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   1942 		goto bnx_nvram_test_done;
   1943 
   1944 	csum = ether_crc32_le(data, 0x100);
   1945 	if (csum != BNX_CRC32_RESIDUAL) {
   1946 		rc = ENODEV;
   1947 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   1948 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   1949 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1950 		goto bnx_nvram_test_done;
   1951 	}
   1952 
   1953 	csum = ether_crc32_le(data + 0x100, 0x100);
   1954 	if (csum != BNX_CRC32_RESIDUAL) {
   1955 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   1956 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   1957 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1958 		rc = ENODEV;
   1959 	}
   1960 
   1961 bnx_nvram_test_done:
   1962 	return (rc);
   1963 }
   1964 
   1965 /****************************************************************************/
   1966 /* Identifies the current media type of the controller and sets the PHY     */
   1967 /* address.                                                                 */
   1968 /*                                                                          */
   1969 /* Returns:                                                                 */
   1970 /*   Nothing.                                                               */
   1971 /****************************************************************************/
   1972 void
   1973 bnx_get_media(struct bnx_softc *sc)
   1974 {
   1975 	sc->bnx_phy_addr = 1;
   1976 
   1977 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1978 		u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   1979 		u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   1980 		u_int32_t strap;
   1981 
   1982 		/*
   1983 		 * The BCM5709S is software configurable
   1984 		 * for Copper or SerDes operation.
   1985 		 */
   1986 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   1987 			DBPRINT(sc, BNX_INFO_LOAD,
   1988 			    "5709 bonded for copper.\n");
   1989 			goto bnx_get_media_exit;
   1990 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   1991 			DBPRINT(sc, BNX_INFO_LOAD,
   1992 			    "5709 bonded for dual media.\n");
   1993 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   1994 			goto bnx_get_media_exit;
   1995 		}
   1996 
   1997 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   1998 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   1999 		else {
   2000 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2001 			    >> 8;
   2002 		}
   2003 
   2004 		if (sc->bnx_pa.pa_function == 0) {
   2005 			switch (strap) {
   2006 			case 0x4:
   2007 			case 0x5:
   2008 			case 0x6:
   2009 				DBPRINT(sc, BNX_INFO_LOAD,
   2010 					"BCM5709 s/w configured for SerDes.\n");
   2011 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2012 				break;
   2013 			default:
   2014 				DBPRINT(sc, BNX_INFO_LOAD,
   2015 					"BCM5709 s/w configured for Copper.\n");
   2016 			}
   2017 		} else {
   2018 			switch (strap) {
   2019 			case 0x1:
   2020 			case 0x2:
   2021 			case 0x4:
   2022 				DBPRINT(sc, BNX_INFO_LOAD,
   2023 					"BCM5709 s/w configured for SerDes.\n");
   2024 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2025 				break;
   2026 			default:
   2027 				DBPRINT(sc, BNX_INFO_LOAD,
   2028 					"BCM5709 s/w configured for Copper.\n");
   2029 			}
   2030 		}
   2031 
   2032 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2033 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2034 
   2035 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2036 		u_int32_t val;
   2037 
   2038 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2039 
   2040 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2041 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2042 
   2043 		/*
   2044 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2045 		 * separate PHY for SerDes.
   2046 		 */
   2047 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2048 			sc->bnx_phy_addr = 2;
   2049 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2050 				 BNX_SHARED_HW_CFG_CONFIG);
   2051 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2052 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2053 				DBPRINT(sc, BNX_INFO_LOAD,
   2054 				    "Found 2.5Gb capable adapter\n");
   2055 			}
   2056 		}
   2057 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2058 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2059 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2060 
   2061 bnx_get_media_exit:
   2062 	DBPRINT(sc, (BNX_INFO_LOAD),
   2063 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2064 }
   2065 
   2066 /****************************************************************************/
   2067 /* Performs PHY initialization required before MII drivers access the       */
   2068 /* device.                                                                  */
   2069 /*                                                                          */
   2070 /* Returns:                                                                 */
   2071 /*   Nothing.                                                               */
   2072 /****************************************************************************/
   2073 void
   2074 bnx_init_media(struct bnx_softc *sc)
   2075 {
   2076 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2077 		/*
   2078 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2079 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2080 		 * the PHY to the mii(4) layer. PHY specific configuration
   2081 		 * is done by the mii(4) layer.
   2082 		 */
   2083 
   2084 		/* Select auto-negotiation MMD of the PHY. */
   2085 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2086 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2087 
   2088 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2089 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2090 
   2091 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2092 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2093 	}
   2094 }
   2095 
   2096 /****************************************************************************/
   2097 /* Free any DMA memory owned by the driver.                                 */
   2098 /*                                                                          */
   2099 /* Scans through each data structre that requires DMA memory and frees      */
   2100 /* the memory if allocated.                                                 */
   2101 /*                                                                          */
   2102 /* Returns:                                                                 */
   2103 /*   Nothing.                                                               */
   2104 /****************************************************************************/
   2105 void
   2106 bnx_dma_free(struct bnx_softc *sc)
   2107 {
   2108 	int			i;
   2109 
   2110 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2111 
   2112 	/* Destroy the status block. */
   2113 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2114 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2115 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2116 		    BNX_STATUS_BLK_SZ);
   2117 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2118 		    sc->status_rseg);
   2119 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2120 		sc->status_block = NULL;
   2121 		sc->status_map = NULL;
   2122 	}
   2123 
   2124 	/* Destroy the statistics block. */
   2125 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2126 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2127 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2128 		    BNX_STATS_BLK_SZ);
   2129 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2130 		    sc->stats_rseg);
   2131 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2132 		sc->stats_block = NULL;
   2133 		sc->stats_map = NULL;
   2134 	}
   2135 
   2136 	/* Free, unmap and destroy all context memory pages. */
   2137 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2138 		for (i = 0; i < sc->ctx_pages; i++) {
   2139 			if (sc->ctx_block[i] != NULL) {
   2140 				bus_dmamap_unload(sc->bnx_dmatag,
   2141 				    sc->ctx_map[i]);
   2142 				bus_dmamem_unmap(sc->bnx_dmatag,
   2143 				    (void *)sc->ctx_block[i],
   2144 				    BCM_PAGE_SIZE);
   2145 				bus_dmamem_free(sc->bnx_dmatag,
   2146 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2147 				bus_dmamap_destroy(sc->bnx_dmatag,
   2148 				    sc->ctx_map[i]);
   2149 				sc->ctx_block[i] = NULL;
   2150 			}
   2151 		}
   2152 	}
   2153 
   2154 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2155 	for (i = 0; i < TX_PAGES; i++ ) {
   2156 		if (sc->tx_bd_chain[i] != NULL &&
   2157 		    sc->tx_bd_chain_map[i] != NULL) {
   2158 			bus_dmamap_unload(sc->bnx_dmatag,
   2159 			    sc->tx_bd_chain_map[i]);
   2160 			bus_dmamem_unmap(sc->bnx_dmatag,
   2161 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2162 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2163 			    sc->tx_bd_chain_rseg[i]);
   2164 			bus_dmamap_destroy(sc->bnx_dmatag,
   2165 			    sc->tx_bd_chain_map[i]);
   2166 			sc->tx_bd_chain[i] = NULL;
   2167 			sc->tx_bd_chain_map[i] = NULL;
   2168 		}
   2169 	}
   2170 
   2171 	/* Destroy the TX dmamaps. */
   2172 	/* This isn't necessary since we dont allocate them up front */
   2173 
   2174 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2175 	for (i = 0; i < RX_PAGES; i++ ) {
   2176 		if (sc->rx_bd_chain[i] != NULL &&
   2177 		    sc->rx_bd_chain_map[i] != NULL) {
   2178 			bus_dmamap_unload(sc->bnx_dmatag,
   2179 			    sc->rx_bd_chain_map[i]);
   2180 			bus_dmamem_unmap(sc->bnx_dmatag,
   2181 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2182 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2183 			    sc->rx_bd_chain_rseg[i]);
   2184 
   2185 			bus_dmamap_destroy(sc->bnx_dmatag,
   2186 			    sc->rx_bd_chain_map[i]);
   2187 			sc->rx_bd_chain[i] = NULL;
   2188 			sc->rx_bd_chain_map[i] = NULL;
   2189 		}
   2190 	}
   2191 
   2192 	/* Unload and destroy the RX mbuf maps. */
   2193 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2194 		if (sc->rx_mbuf_map[i] != NULL) {
   2195 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2196 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2197 		}
   2198 	}
   2199 
   2200 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2201 }
   2202 
   2203 /****************************************************************************/
   2204 /* Allocate any DMA memory needed by the driver.                            */
   2205 /*                                                                          */
   2206 /* Allocates DMA memory needed for the various global structures needed by  */
   2207 /* hardware.                                                                */
   2208 /*                                                                          */
   2209 /* Returns:                                                                 */
   2210 /*   0 for success, positive value for failure.                             */
   2211 /****************************************************************************/
   2212 int
   2213 bnx_dma_alloc(struct bnx_softc *sc)
   2214 {
   2215 	int			i, rc = 0;
   2216 
   2217 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2218 
   2219 	/*
   2220 	 * Allocate DMA memory for the status block, map the memory into DMA
   2221 	 * space, and fetch the physical address of the block.
   2222 	 */
   2223 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2224 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2225 		aprint_error_dev(sc->bnx_dev,
   2226 		    "Could not create status block DMA map!\n");
   2227 		rc = ENOMEM;
   2228 		goto bnx_dma_alloc_exit;
   2229 	}
   2230 
   2231 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2232 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2233 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2234 		aprint_error_dev(sc->bnx_dev,
   2235 		    "Could not allocate status block DMA memory!\n");
   2236 		rc = ENOMEM;
   2237 		goto bnx_dma_alloc_exit;
   2238 	}
   2239 
   2240 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2241 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2242 		aprint_error_dev(sc->bnx_dev,
   2243 		    "Could not map status block DMA memory!\n");
   2244 		rc = ENOMEM;
   2245 		goto bnx_dma_alloc_exit;
   2246 	}
   2247 
   2248 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2249 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2250 		aprint_error_dev(sc->bnx_dev,
   2251 		    "Could not load status block DMA memory!\n");
   2252 		rc = ENOMEM;
   2253 		goto bnx_dma_alloc_exit;
   2254 	}
   2255 
   2256 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2257 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2258 
   2259 	/* DRC - Fix for 64 bit addresses. */
   2260 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2261 		(u_int32_t) sc->status_block_paddr);
   2262 
   2263 	/* BCM5709 uses host memory as cache for context memory. */
   2264 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2265 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2266 		if (sc->ctx_pages == 0)
   2267 			sc->ctx_pages = 1;
   2268 		if (sc->ctx_pages > 4) /* XXX */
   2269 			sc->ctx_pages = 4;
   2270 
   2271 		DBRUNIF((sc->ctx_pages > 512),
   2272 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2273 				__FILE__, __LINE__, sc->ctx_pages));
   2274 
   2275 
   2276 		for (i = 0; i < sc->ctx_pages; i++) {
   2277 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2278 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2279 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2280 			    &sc->ctx_map[i]) != 0) {
   2281 				rc = ENOMEM;
   2282 				goto bnx_dma_alloc_exit;
   2283 			}
   2284 
   2285 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2286 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2287 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2288 				rc = ENOMEM;
   2289 				goto bnx_dma_alloc_exit;
   2290 			}
   2291 
   2292 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2293 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2294 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2295 				rc = ENOMEM;
   2296 				goto bnx_dma_alloc_exit;
   2297 			}
   2298 
   2299 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2300 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2301 			    BUS_DMA_NOWAIT) != 0) {
   2302 				rc = ENOMEM;
   2303 				goto bnx_dma_alloc_exit;
   2304 			}
   2305 
   2306 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2307 		}
   2308 	}
   2309 
   2310 	/*
   2311 	 * Allocate DMA memory for the statistics block, map the memory into
   2312 	 * DMA space, and fetch the physical address of the block.
   2313 	 */
   2314 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2315 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2316 		aprint_error_dev(sc->bnx_dev,
   2317 		    "Could not create stats block DMA map!\n");
   2318 		rc = ENOMEM;
   2319 		goto bnx_dma_alloc_exit;
   2320 	}
   2321 
   2322 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2323 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2324 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2325 		aprint_error_dev(sc->bnx_dev,
   2326 		    "Could not allocate stats block DMA memory!\n");
   2327 		rc = ENOMEM;
   2328 		goto bnx_dma_alloc_exit;
   2329 	}
   2330 
   2331 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2332 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2333 		aprint_error_dev(sc->bnx_dev,
   2334 		    "Could not map stats block DMA memory!\n");
   2335 		rc = ENOMEM;
   2336 		goto bnx_dma_alloc_exit;
   2337 	}
   2338 
   2339 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2340 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2341 		aprint_error_dev(sc->bnx_dev,
   2342 		    "Could not load status block DMA memory!\n");
   2343 		rc = ENOMEM;
   2344 		goto bnx_dma_alloc_exit;
   2345 	}
   2346 
   2347 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2348 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2349 
   2350 	/* DRC - Fix for 64 bit address. */
   2351 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2352 	    (u_int32_t) sc->stats_block_paddr);
   2353 
   2354 	/*
   2355 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2356 	 * and fetch the physical address of the block.
   2357 	 */
   2358 	for (i = 0; i < TX_PAGES; i++) {
   2359 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2360 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2361 		    &sc->tx_bd_chain_map[i])) {
   2362 			aprint_error_dev(sc->bnx_dev,
   2363 			    "Could not create Tx desc %d DMA map!\n", i);
   2364 			rc = ENOMEM;
   2365 			goto bnx_dma_alloc_exit;
   2366 		}
   2367 
   2368 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2369 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2370 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2371 			aprint_error_dev(sc->bnx_dev,
   2372 			    "Could not allocate TX desc %d DMA memory!\n",
   2373 			    i);
   2374 			rc = ENOMEM;
   2375 			goto bnx_dma_alloc_exit;
   2376 		}
   2377 
   2378 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2379 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2380 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2381 			aprint_error_dev(sc->bnx_dev,
   2382 			    "Could not map TX desc %d DMA memory!\n", i);
   2383 			rc = ENOMEM;
   2384 			goto bnx_dma_alloc_exit;
   2385 		}
   2386 
   2387 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2388 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2389 		    BUS_DMA_NOWAIT)) {
   2390 			aprint_error_dev(sc->bnx_dev,
   2391 			    "Could not load TX desc %d DMA memory!\n", i);
   2392 			rc = ENOMEM;
   2393 			goto bnx_dma_alloc_exit;
   2394 		}
   2395 
   2396 		sc->tx_bd_chain_paddr[i] =
   2397 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2398 
   2399 		/* DRC - Fix for 64 bit systems. */
   2400 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2401 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
   2402 	}
   2403 
   2404 	/*
   2405 	 * Create lists to hold TX mbufs.
   2406 	 */
   2407 	TAILQ_INIT(&sc->tx_free_pkts);
   2408 	TAILQ_INIT(&sc->tx_used_pkts);
   2409 	sc->tx_pkt_count = 0;
   2410 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2411 
   2412 	/*
   2413 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2414 	 * and fetch the physical address of the block.
   2415 	 */
   2416 	for (i = 0; i < RX_PAGES; i++) {
   2417 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2418 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2419 		    &sc->rx_bd_chain_map[i])) {
   2420 			aprint_error_dev(sc->bnx_dev,
   2421 			    "Could not create Rx desc %d DMA map!\n", i);
   2422 			rc = ENOMEM;
   2423 			goto bnx_dma_alloc_exit;
   2424 		}
   2425 
   2426 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2427 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2428 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2429 			aprint_error_dev(sc->bnx_dev,
   2430 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2431 			rc = ENOMEM;
   2432 			goto bnx_dma_alloc_exit;
   2433 		}
   2434 
   2435 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2436 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2437 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2438 			aprint_error_dev(sc->bnx_dev,
   2439 			    "Could not map Rx desc %d DMA memory!\n", i);
   2440 			rc = ENOMEM;
   2441 			goto bnx_dma_alloc_exit;
   2442 		}
   2443 
   2444 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2445 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2446 		    BUS_DMA_NOWAIT)) {
   2447 			aprint_error_dev(sc->bnx_dev,
   2448 			    "Could not load Rx desc %d DMA memory!\n", i);
   2449 			rc = ENOMEM;
   2450 			goto bnx_dma_alloc_exit;
   2451 		}
   2452 
   2453 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2454 		sc->rx_bd_chain_paddr[i] =
   2455 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2456 
   2457 		/* DRC - Fix for 64 bit systems. */
   2458 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2459 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
   2460 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2461 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2462 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2463 	}
   2464 
   2465 	/*
   2466 	 * Create DMA maps for the Rx buffer mbufs.
   2467 	 */
   2468 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2469 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2470 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2471 		    &sc->rx_mbuf_map[i])) {
   2472 			aprint_error_dev(sc->bnx_dev,
   2473 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2474 			rc = ENOMEM;
   2475 			goto bnx_dma_alloc_exit;
   2476 		}
   2477 	}
   2478 
   2479  bnx_dma_alloc_exit:
   2480 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2481 
   2482 	return(rc);
   2483 }
   2484 
   2485 /****************************************************************************/
   2486 /* Release all resources used by the driver.                                */
   2487 /*                                                                          */
   2488 /* Releases all resources acquired by the driver including interrupts,      */
   2489 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2490 /*                                                                          */
   2491 /* Returns:                                                                 */
   2492 /*   Nothing.                                                               */
   2493 /****************************************************************************/
   2494 void
   2495 bnx_release_resources(struct bnx_softc *sc)
   2496 {
   2497 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2498 
   2499 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2500 
   2501 	bnx_dma_free(sc);
   2502 
   2503 	if (sc->bnx_intrhand != NULL)
   2504 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2505 
   2506 	if (sc->bnx_size)
   2507 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2508 
   2509 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2510 }
   2511 
   2512 /****************************************************************************/
   2513 /* Firmware synchronization.                                                */
   2514 /*                                                                          */
   2515 /* Before performing certain events such as a chip reset, synchronize with  */
   2516 /* the firmware first.                                                      */
   2517 /*                                                                          */
   2518 /* Returns:                                                                 */
   2519 /*   0 for success, positive value for failure.                             */
   2520 /****************************************************************************/
   2521 int
   2522 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
   2523 {
   2524 	int			i, rc = 0;
   2525 	u_int32_t		val;
   2526 
   2527 	/* Don't waste any time if we've timed out before. */
   2528 	if (sc->bnx_fw_timed_out) {
   2529 		rc = EBUSY;
   2530 		goto bnx_fw_sync_exit;
   2531 	}
   2532 
   2533 	/* Increment the message sequence number. */
   2534 	sc->bnx_fw_wr_seq++;
   2535 	msg_data |= sc->bnx_fw_wr_seq;
   2536 
   2537  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2538 	    msg_data);
   2539 
   2540 	/* Send the message to the bootcode driver mailbox. */
   2541 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2542 
   2543 	/* Wait for the bootcode to acknowledge the message. */
   2544 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2545 		/* Check for a response in the bootcode firmware mailbox. */
   2546 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2547 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2548 			break;
   2549 		DELAY(1000);
   2550 	}
   2551 
   2552 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2553 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2554 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2555 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2556 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2557 
   2558 		msg_data &= ~BNX_DRV_MSG_CODE;
   2559 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2560 
   2561 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2562 
   2563 		sc->bnx_fw_timed_out = 1;
   2564 		rc = EBUSY;
   2565 	}
   2566 
   2567 bnx_fw_sync_exit:
   2568 	return (rc);
   2569 }
   2570 
   2571 /****************************************************************************/
   2572 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2573 /*                                                                          */
   2574 /* Returns:                                                                 */
   2575 /*   Nothing.                                                               */
   2576 /****************************************************************************/
   2577 void
   2578 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
   2579     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
   2580 {
   2581 	int			i;
   2582 	u_int32_t		val;
   2583 
   2584 	/* Set the page size used by RV2P. */
   2585 	if (rv2p_proc == RV2P_PROC2) {
   2586 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2587 		    USABLE_RX_BD_PER_PAGE);
   2588 	}
   2589 
   2590 	for (i = 0; i < rv2p_code_len; i += 8) {
   2591 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2592 		rv2p_code++;
   2593 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2594 		rv2p_code++;
   2595 
   2596 		if (rv2p_proc == RV2P_PROC1) {
   2597 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2598 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2599 		} else {
   2600 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2601 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2602 		}
   2603 	}
   2604 
   2605 	/* Reset the processor, un-stall is done later. */
   2606 	if (rv2p_proc == RV2P_PROC1)
   2607 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2608 	else
   2609 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2610 }
   2611 
   2612 /****************************************************************************/
   2613 /* Load RISC processor firmware.                                            */
   2614 /*                                                                          */
   2615 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2616 /* associated with a particular processor.                                  */
   2617 /*                                                                          */
   2618 /* Returns:                                                                 */
   2619 /*   Nothing.                                                               */
   2620 /****************************************************************************/
   2621 void
   2622 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2623     struct fw_info *fw)
   2624 {
   2625 	u_int32_t		offset;
   2626 	u_int32_t		val;
   2627 
   2628 	/* Halt the CPU. */
   2629 	val = REG_RD_IND(sc, cpu_reg->mode);
   2630 	val |= cpu_reg->mode_value_halt;
   2631 	REG_WR_IND(sc, cpu_reg->mode, val);
   2632 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2633 
   2634 	/* Load the Text area. */
   2635 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2636 	if (fw->text) {
   2637 		int j;
   2638 
   2639 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2640 			REG_WR_IND(sc, offset, fw->text[j]);
   2641 	}
   2642 
   2643 	/* Load the Data area. */
   2644 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2645 	if (fw->data) {
   2646 		int j;
   2647 
   2648 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2649 			REG_WR_IND(sc, offset, fw->data[j]);
   2650 	}
   2651 
   2652 	/* Load the SBSS area. */
   2653 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2654 	if (fw->sbss) {
   2655 		int j;
   2656 
   2657 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2658 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2659 	}
   2660 
   2661 	/* Load the BSS area. */
   2662 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2663 	if (fw->bss) {
   2664 		int j;
   2665 
   2666 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2667 			REG_WR_IND(sc, offset, fw->bss[j]);
   2668 	}
   2669 
   2670 	/* Load the Read-Only area. */
   2671 	offset = cpu_reg->spad_base +
   2672 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2673 	if (fw->rodata) {
   2674 		int j;
   2675 
   2676 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2677 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2678 	}
   2679 
   2680 	/* Clear the pre-fetch instruction. */
   2681 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2682 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2683 
   2684 	/* Start the CPU. */
   2685 	val = REG_RD_IND(sc, cpu_reg->mode);
   2686 	val &= ~cpu_reg->mode_value_halt;
   2687 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2688 	REG_WR_IND(sc, cpu_reg->mode, val);
   2689 }
   2690 
   2691 /****************************************************************************/
   2692 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2693 /*                                                                          */
   2694 /* Loads the firmware for each CPU and starts the CPU.                      */
   2695 /*                                                                          */
   2696 /* Returns:                                                                 */
   2697 /*   Nothing.                                                               */
   2698 /****************************************************************************/
   2699 void
   2700 bnx_init_cpus(struct bnx_softc *sc)
   2701 {
   2702 	struct cpu_reg cpu_reg;
   2703 	struct fw_info fw;
   2704 
   2705 	switch(BNX_CHIP_NUM(sc)) {
   2706 	case BNX_CHIP_NUM_5709:
   2707 		/* Initialize the RV2P processor. */
   2708 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2709 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2710 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2711 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2712 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2713 		} else {
   2714 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2715 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2716 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2717 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2718 		}
   2719 
   2720 		/* Initialize the RX Processor. */
   2721 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2722 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2723 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2724 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2725 		cpu_reg.state_value_clear = 0xffffff;
   2726 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2727 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2728 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2729 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2730 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2731 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2732 		cpu_reg.mips_view_base = 0x8000000;
   2733 
   2734 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2735 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2736 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2737 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2738 
   2739 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2740 		fw.text_len = bnx_RXP_b09FwTextLen;
   2741 		fw.text_index = 0;
   2742 		fw.text = bnx_RXP_b09FwText;
   2743 
   2744 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2745 		fw.data_len = bnx_RXP_b09FwDataLen;
   2746 		fw.data_index = 0;
   2747 		fw.data = bnx_RXP_b09FwData;
   2748 
   2749 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2750 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2751 		fw.sbss_index = 0;
   2752 		fw.sbss = bnx_RXP_b09FwSbss;
   2753 
   2754 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2755 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2756 		fw.bss_index = 0;
   2757 		fw.bss = bnx_RXP_b09FwBss;
   2758 
   2759 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2760 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2761 		fw.rodata_index = 0;
   2762 		fw.rodata = bnx_RXP_b09FwRodata;
   2763 
   2764 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2765 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2766 
   2767 		/* Initialize the TX Processor. */
   2768 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2769 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2770 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2771 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2772 		cpu_reg.state_value_clear = 0xffffff;
   2773 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2774 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2775 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2776 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2777 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2778 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2779 		cpu_reg.mips_view_base = 0x8000000;
   2780 
   2781 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2782 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2783 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2784 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2785 
   2786 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2787 		fw.text_len = bnx_TXP_b09FwTextLen;
   2788 		fw.text_index = 0;
   2789 		fw.text = bnx_TXP_b09FwText;
   2790 
   2791 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   2792 		fw.data_len = bnx_TXP_b09FwDataLen;
   2793 		fw.data_index = 0;
   2794 		fw.data = bnx_TXP_b09FwData;
   2795 
   2796 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   2797 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   2798 		fw.sbss_index = 0;
   2799 		fw.sbss = bnx_TXP_b09FwSbss;
   2800 
   2801 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   2802 		fw.bss_len = bnx_TXP_b09FwBssLen;
   2803 		fw.bss_index = 0;
   2804 		fw.bss = bnx_TXP_b09FwBss;
   2805 
   2806 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   2807 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   2808 		fw.rodata_index = 0;
   2809 		fw.rodata = bnx_TXP_b09FwRodata;
   2810 
   2811 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2812 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2813 
   2814 		/* Initialize the TX Patch-up Processor. */
   2815 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2816 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2817 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2818 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2819 		cpu_reg.state_value_clear = 0xffffff;
   2820 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2821 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2822 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2823 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2824 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2825 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2826 		cpu_reg.mips_view_base = 0x8000000;
   2827 
   2828 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   2829 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   2830 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   2831 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   2832 
   2833 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   2834 		fw.text_len = bnx_TPAT_b09FwTextLen;
   2835 		fw.text_index = 0;
   2836 		fw.text = bnx_TPAT_b09FwText;
   2837 
   2838 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   2839 		fw.data_len = bnx_TPAT_b09FwDataLen;
   2840 		fw.data_index = 0;
   2841 		fw.data = bnx_TPAT_b09FwData;
   2842 
   2843 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   2844 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   2845 		fw.sbss_index = 0;
   2846 		fw.sbss = bnx_TPAT_b09FwSbss;
   2847 
   2848 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   2849 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   2850 		fw.bss_index = 0;
   2851 		fw.bss = bnx_TPAT_b09FwBss;
   2852 
   2853 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   2854 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   2855 		fw.rodata_index = 0;
   2856 		fw.rodata = bnx_TPAT_b09FwRodata;
   2857 
   2858 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2859 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2860 
   2861 		/* Initialize the Completion Processor. */
   2862 		cpu_reg.mode = BNX_COM_CPU_MODE;
   2863 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2864 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2865 		cpu_reg.state = BNX_COM_CPU_STATE;
   2866 		cpu_reg.state_value_clear = 0xffffff;
   2867 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2868 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2869 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2870 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2871 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2872 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   2873 		cpu_reg.mips_view_base = 0x8000000;
   2874 
   2875 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   2876 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   2877 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   2878 		fw.start_addr = bnx_COM_b09FwStartAddr;
   2879 
   2880 		fw.text_addr = bnx_COM_b09FwTextAddr;
   2881 		fw.text_len = bnx_COM_b09FwTextLen;
   2882 		fw.text_index = 0;
   2883 		fw.text = bnx_COM_b09FwText;
   2884 
   2885 		fw.data_addr = bnx_COM_b09FwDataAddr;
   2886 		fw.data_len = bnx_COM_b09FwDataLen;
   2887 		fw.data_index = 0;
   2888 		fw.data = bnx_COM_b09FwData;
   2889 
   2890 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   2891 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   2892 		fw.sbss_index = 0;
   2893 		fw.sbss = bnx_COM_b09FwSbss;
   2894 
   2895 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   2896 		fw.bss_len = bnx_COM_b09FwBssLen;
   2897 		fw.bss_index = 0;
   2898 		fw.bss = bnx_COM_b09FwBss;
   2899 
   2900 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   2901 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   2902 		fw.rodata_index = 0;
   2903 		fw.rodata = bnx_COM_b09FwRodata;
   2904 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   2905 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2906 		break;
   2907 	default:
   2908 		/* Initialize the RV2P processor. */
   2909 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   2910 		    RV2P_PROC1);
   2911 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   2912 		    RV2P_PROC2);
   2913 
   2914 		/* Initialize the RX Processor. */
   2915 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2916 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2917 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2918 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2919 		cpu_reg.state_value_clear = 0xffffff;
   2920 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2921 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2922 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2923 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2924 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2925 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2926 		cpu_reg.mips_view_base = 0x8000000;
   2927 
   2928 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   2929 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   2930 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   2931 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   2932 
   2933 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   2934 		fw.text_len = bnx_RXP_b06FwTextLen;
   2935 		fw.text_index = 0;
   2936 		fw.text = bnx_RXP_b06FwText;
   2937 
   2938 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   2939 		fw.data_len = bnx_RXP_b06FwDataLen;
   2940 		fw.data_index = 0;
   2941 		fw.data = bnx_RXP_b06FwData;
   2942 
   2943 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   2944 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   2945 		fw.sbss_index = 0;
   2946 		fw.sbss = bnx_RXP_b06FwSbss;
   2947 
   2948 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   2949 		fw.bss_len = bnx_RXP_b06FwBssLen;
   2950 		fw.bss_index = 0;
   2951 		fw.bss = bnx_RXP_b06FwBss;
   2952 
   2953 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   2954 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   2955 		fw.rodata_index = 0;
   2956 		fw.rodata = bnx_RXP_b06FwRodata;
   2957 
   2958 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2959 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2960 
   2961 		/* Initialize the TX Processor. */
   2962 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2963 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2964 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2965 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2966 		cpu_reg.state_value_clear = 0xffffff;
   2967 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2968 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2969 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2970 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2971 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2972 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2973 		cpu_reg.mips_view_base = 0x8000000;
   2974 
   2975 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   2976 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   2977 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   2978 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   2979 
   2980 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   2981 		fw.text_len = bnx_TXP_b06FwTextLen;
   2982 		fw.text_index = 0;
   2983 		fw.text = bnx_TXP_b06FwText;
   2984 
   2985 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   2986 		fw.data_len = bnx_TXP_b06FwDataLen;
   2987 		fw.data_index = 0;
   2988 		fw.data = bnx_TXP_b06FwData;
   2989 
   2990 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   2991 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   2992 		fw.sbss_index = 0;
   2993 		fw.sbss = bnx_TXP_b06FwSbss;
   2994 
   2995 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   2996 		fw.bss_len = bnx_TXP_b06FwBssLen;
   2997 		fw.bss_index = 0;
   2998 		fw.bss = bnx_TXP_b06FwBss;
   2999 
   3000 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3001 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3002 		fw.rodata_index = 0;
   3003 		fw.rodata = bnx_TXP_b06FwRodata;
   3004 
   3005 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3006 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3007 
   3008 		/* Initialize the TX Patch-up Processor. */
   3009 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3010 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3011 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3012 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3013 		cpu_reg.state_value_clear = 0xffffff;
   3014 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3015 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3016 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3017 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3018 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3019 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3020 		cpu_reg.mips_view_base = 0x8000000;
   3021 
   3022 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3023 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3024 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3025 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3026 
   3027 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3028 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3029 		fw.text_index = 0;
   3030 		fw.text = bnx_TPAT_b06FwText;
   3031 
   3032 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3033 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3034 		fw.data_index = 0;
   3035 		fw.data = bnx_TPAT_b06FwData;
   3036 
   3037 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3038 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3039 		fw.sbss_index = 0;
   3040 		fw.sbss = bnx_TPAT_b06FwSbss;
   3041 
   3042 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3043 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3044 		fw.bss_index = 0;
   3045 		fw.bss = bnx_TPAT_b06FwBss;
   3046 
   3047 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3048 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3049 		fw.rodata_index = 0;
   3050 		fw.rodata = bnx_TPAT_b06FwRodata;
   3051 
   3052 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3053 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3054 
   3055 		/* Initialize the Completion Processor. */
   3056 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3057 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3058 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3059 		cpu_reg.state = BNX_COM_CPU_STATE;
   3060 		cpu_reg.state_value_clear = 0xffffff;
   3061 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3062 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3063 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3064 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3065 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3066 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3067 		cpu_reg.mips_view_base = 0x8000000;
   3068 
   3069 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3070 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3071 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3072 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3073 
   3074 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3075 		fw.text_len = bnx_COM_b06FwTextLen;
   3076 		fw.text_index = 0;
   3077 		fw.text = bnx_COM_b06FwText;
   3078 
   3079 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3080 		fw.data_len = bnx_COM_b06FwDataLen;
   3081 		fw.data_index = 0;
   3082 		fw.data = bnx_COM_b06FwData;
   3083 
   3084 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3085 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3086 		fw.sbss_index = 0;
   3087 		fw.sbss = bnx_COM_b06FwSbss;
   3088 
   3089 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3090 		fw.bss_len = bnx_COM_b06FwBssLen;
   3091 		fw.bss_index = 0;
   3092 		fw.bss = bnx_COM_b06FwBss;
   3093 
   3094 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3095 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3096 		fw.rodata_index = 0;
   3097 		fw.rodata = bnx_COM_b06FwRodata;
   3098 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3099 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3100 		break;
   3101 	}
   3102 }
   3103 
   3104 /****************************************************************************/
   3105 /* Initialize context memory.                                               */
   3106 /*                                                                          */
   3107 /* Clears the memory associated with each Context ID (CID).                 */
   3108 /*                                                                          */
   3109 /* Returns:                                                                 */
   3110 /*   Nothing.                                                               */
   3111 /****************************************************************************/
   3112 void
   3113 bnx_init_context(struct bnx_softc *sc)
   3114 {
   3115 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3116 		/* DRC: Replace this constant value with a #define. */
   3117 		int i, retry_cnt = 10;
   3118 		u_int32_t val;
   3119 
   3120 		/*
   3121 		 * BCM5709 context memory may be cached
   3122 		 * in host memory so prepare the host memory
   3123 		 * for access.
   3124 		 */
   3125 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3126 		    | (1 << 12);
   3127 		val |= (BCM_PAGE_BITS - 8) << 16;
   3128 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3129 
   3130 		/* Wait for mem init command to complete. */
   3131 		for (i = 0; i < retry_cnt; i++) {
   3132 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3133 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3134 				break;
   3135 			DELAY(2);
   3136 		}
   3137 
   3138 
   3139 		/* ToDo: Consider returning an error here. */
   3140 
   3141 		for (i = 0; i < sc->ctx_pages; i++) {
   3142 			int j;
   3143 
   3144 
   3145 			/* Set the physaddr of the context memory cache. */
   3146 			val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
   3147 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3148 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3149 			val = (u_int32_t)
   3150 			    ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
   3151 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3152 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3153 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3154 
   3155 
   3156 			/* Verify that the context memory write was successful. */
   3157 			for (j = 0; j < retry_cnt; j++) {
   3158 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3159 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3160 					break;
   3161 				DELAY(5);
   3162 			}
   3163 
   3164 			/* ToDo: Consider returning an error here. */
   3165 		}
   3166 	} else {
   3167 		u_int32_t vcid_addr, offset;
   3168 
   3169 		/*
   3170 		 * For the 5706/5708, context memory is local to
   3171 		 * the controller, so initialize the controller
   3172 		 * context memory.
   3173 		 */
   3174 
   3175 		vcid_addr = GET_CID_ADDR(96);
   3176 		while (vcid_addr) {
   3177 
   3178 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3179 
   3180 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3181 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3182 
   3183 			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
   3184 				CTX_WR(sc, 0x00, offset, 0);
   3185 			}
   3186 
   3187 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3188 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3189 		}
   3190 	}
   3191 }
   3192 
   3193 /****************************************************************************/
   3194 /* Fetch the permanent MAC address of the controller.                       */
   3195 /*                                                                          */
   3196 /* Returns:                                                                 */
   3197 /*   Nothing.                                                               */
   3198 /****************************************************************************/
   3199 void
   3200 bnx_get_mac_addr(struct bnx_softc *sc)
   3201 {
   3202 	u_int32_t		mac_lo = 0, mac_hi = 0;
   3203 
   3204 	/*
   3205 	 * The NetXtreme II bootcode populates various NIC
   3206 	 * power-on and runtime configuration items in a
   3207 	 * shared memory area.  The factory configured MAC
   3208 	 * address is available from both NVRAM and the
   3209 	 * shared memory area so we'll read the value from
   3210 	 * shared memory for speed.
   3211 	 */
   3212 
   3213 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3214 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3215 
   3216 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3217 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3218 		    __FILE__, __LINE__);
   3219 	} else {
   3220 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3221 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3222 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3223 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3224 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3225 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3226 	}
   3227 
   3228 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3229 	    "%s\n", ether_sprintf(sc->eaddr));
   3230 }
   3231 
   3232 /****************************************************************************/
   3233 /* Program the MAC address.                                                 */
   3234 /*                                                                          */
   3235 /* Returns:                                                                 */
   3236 /*   Nothing.                                                               */
   3237 /****************************************************************************/
   3238 void
   3239 bnx_set_mac_addr(struct bnx_softc *sc)
   3240 {
   3241 	u_int32_t		val;
   3242 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3243 
   3244 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3245 	    "%s\n", ether_sprintf(sc->eaddr));
   3246 
   3247 	val = (mac_addr[0] << 8) | mac_addr[1];
   3248 
   3249 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3250 
   3251 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3252 		(mac_addr[4] << 8) | mac_addr[5];
   3253 
   3254 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3255 }
   3256 
   3257 /****************************************************************************/
   3258 /* Stop the controller.                                                     */
   3259 /*                                                                          */
   3260 /* Returns:                                                                 */
   3261 /*   Nothing.                                                               */
   3262 /****************************************************************************/
   3263 void
   3264 bnx_stop(struct ifnet *ifp, int disable)
   3265 {
   3266 	struct bnx_softc *sc = ifp->if_softc;
   3267 
   3268 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3269 
   3270 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   3271 		return;
   3272 
   3273 	callout_stop(&sc->bnx_timeout);
   3274 
   3275 	mii_down(&sc->bnx_mii);
   3276 
   3277 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3278 
   3279 	/* Disable the transmit/receive blocks. */
   3280 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3281 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3282 	DELAY(20);
   3283 
   3284 	bnx_disable_intr(sc);
   3285 
   3286 	/* Tell firmware that the driver is going away. */
   3287 	if (disable)
   3288 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3289 	else
   3290 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3291 
   3292 	/* Free RX buffers. */
   3293 	bnx_free_rx_chain(sc);
   3294 
   3295 	/* Free TX buffers. */
   3296 	bnx_free_tx_chain(sc);
   3297 
   3298 	ifp->if_timer = 0;
   3299 
   3300 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3301 
   3302 }
   3303 
   3304 int
   3305 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
   3306 {
   3307 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3308 	u_int32_t		val;
   3309 	int			i, rc = 0;
   3310 
   3311 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3312 
   3313 	/* Wait for pending PCI transactions to complete. */
   3314 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3315 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3316 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3317 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3318 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3319 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3320 	DELAY(5);
   3321 
   3322 	/* Disable DMA */
   3323 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3324 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3325 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3326 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3327 	}
   3328 
   3329 	/* Assume bootcode is running. */
   3330 	sc->bnx_fw_timed_out = 0;
   3331 
   3332 	/* Give the firmware a chance to prepare for the reset. */
   3333 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3334 	if (rc)
   3335 		goto bnx_reset_exit;
   3336 
   3337 	/* Set a firmware reminder that this is a soft reset. */
   3338 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3339 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3340 
   3341 	/* Dummy read to force the chip to complete all current transactions. */
   3342 	val = REG_RD(sc, BNX_MISC_ID);
   3343 
   3344 	/* Chip reset. */
   3345 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3346 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3347 		REG_RD(sc, BNX_MISC_COMMAND);
   3348 		DELAY(5);
   3349 
   3350 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3351 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3352 
   3353 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3354 		    val);
   3355 	} else {
   3356 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3357 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3358 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3359 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3360 
   3361 		/* Allow up to 30us for reset to complete. */
   3362 		for (i = 0; i < 10; i++) {
   3363 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3364 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3365 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3366 				break;
   3367 			}
   3368 			DELAY(10);
   3369 		}
   3370 
   3371 		/* Check that reset completed successfully. */
   3372 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3373 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3374 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3375 			    __FILE__, __LINE__);
   3376 			rc = EBUSY;
   3377 			goto bnx_reset_exit;
   3378 		}
   3379 	}
   3380 
   3381 	/* Make sure byte swapping is properly configured. */
   3382 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3383 	if (val != 0x01020304) {
   3384 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3385 		    __FILE__, __LINE__);
   3386 		rc = ENODEV;
   3387 		goto bnx_reset_exit;
   3388 	}
   3389 
   3390 	/* Just completed a reset, assume that firmware is running again. */
   3391 	sc->bnx_fw_timed_out = 0;
   3392 
   3393 	/* Wait for the firmware to finish its initialization. */
   3394 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3395 	if (rc)
   3396 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3397 		    "initialization!\n", __FILE__, __LINE__);
   3398 
   3399 bnx_reset_exit:
   3400 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3401 
   3402 	return (rc);
   3403 }
   3404 
   3405 int
   3406 bnx_chipinit(struct bnx_softc *sc)
   3407 {
   3408 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3409 	u_int32_t		val;
   3410 	int			rc = 0;
   3411 
   3412 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3413 
   3414 	/* Make sure the interrupt is not active. */
   3415 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3416 
   3417 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3418 	/* channels and PCI clock compensation delay.                      */
   3419 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3420 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3421 #if BYTE_ORDER == BIG_ENDIAN
   3422 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3423 #endif
   3424 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3425 	    DMA_READ_CHANS << 12 |
   3426 	    DMA_WRITE_CHANS << 16;
   3427 
   3428 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3429 
   3430 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3431 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3432 
   3433 	/*
   3434 	 * This setting resolves a problem observed on certain Intel PCI
   3435 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3436 	 * See errata E9_5706A1_65.
   3437 	 */
   3438 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3439 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3440 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3441 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3442 
   3443 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3444 
   3445 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3446 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3447 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3448 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3449 		    val & ~0x20000);
   3450 	}
   3451 
   3452 	/* Enable the RX_V2P and Context state machines before access. */
   3453 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3454 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3455 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3456 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3457 
   3458 	/* Initialize context mapping and zero out the quick contexts. */
   3459 	bnx_init_context(sc);
   3460 
   3461 	/* Initialize the on-boards CPUs */
   3462 	bnx_init_cpus(sc);
   3463 
   3464 	/* Prepare NVRAM for access. */
   3465 	if (bnx_init_nvram(sc)) {
   3466 		rc = ENODEV;
   3467 		goto bnx_chipinit_exit;
   3468 	}
   3469 
   3470 	/* Set the kernel bypass block size */
   3471 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3472 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3473 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3474 
   3475 	/* Enable bins used on the 5709. */
   3476 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3477 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3478 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3479 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3480 	}
   3481 
   3482 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3483 
   3484 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3485 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3486 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3487 
   3488 	val = (BCM_PAGE_BITS - 8) << 24;
   3489 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3490 
   3491 	/* Configure page size. */
   3492 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3493 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3494 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3495 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3496 
   3497 #if 0
   3498 	/* Set the perfect match control register to default. */
   3499 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3500 #endif
   3501 
   3502 bnx_chipinit_exit:
   3503 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3504 
   3505 	return(rc);
   3506 }
   3507 
   3508 /****************************************************************************/
   3509 /* Initialize the controller in preparation to send/receive traffic.        */
   3510 /*                                                                          */
   3511 /* Returns:                                                                 */
   3512 /*   0 for success, positive value for failure.                             */
   3513 /****************************************************************************/
   3514 int
   3515 bnx_blockinit(struct bnx_softc *sc)
   3516 {
   3517 	u_int32_t		reg, val;
   3518 	int 			rc = 0;
   3519 
   3520 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3521 
   3522 	/* Load the hardware default MAC address. */
   3523 	bnx_set_mac_addr(sc);
   3524 
   3525 	/* Set the Ethernet backoff seed value */
   3526 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3527 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3528 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3529 
   3530 	sc->last_status_idx = 0;
   3531 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3532 
   3533 	/* Set up link change interrupt generation. */
   3534 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3535 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3536 
   3537 	/* Program the physical address of the status block. */
   3538 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
   3539 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3540 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
   3541 
   3542 	/* Program the physical address of the statistics block. */
   3543 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3544 	    (u_int32_t)(sc->stats_block_paddr));
   3545 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3546 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
   3547 
   3548 	/* Program various host coalescing parameters. */
   3549 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3550 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3551 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3552 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3553 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3554 	    sc->bnx_comp_prod_trip);
   3555 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3556 	    sc->bnx_tx_ticks);
   3557 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3558 	    sc->bnx_rx_ticks);
   3559 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3560 	    sc->bnx_com_ticks);
   3561 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3562 	    sc->bnx_cmd_ticks);
   3563 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3564 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3565 	REG_WR(sc, BNX_HC_CONFIG,
   3566 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3567 	    BNX_HC_CONFIG_COLLECT_STATS));
   3568 
   3569 	/* Clear the internal statistics counters. */
   3570 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3571 
   3572 	/* Verify that bootcode is running. */
   3573 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3574 
   3575 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3576 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3577 	    __FILE__, __LINE__); reg = 0);
   3578 
   3579 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3580 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3581 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3582 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3583 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3584 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3585 		rc = ENODEV;
   3586 		goto bnx_blockinit_exit;
   3587 	}
   3588 
   3589 	/* Check if any management firmware is running. */
   3590 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3591 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3592 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3593 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3594 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3595 	}
   3596 
   3597 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3598 	    BNX_DEV_INFO_BC_REV);
   3599 
   3600 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3601 
   3602 	/* Enable DMA */
   3603 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3604 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3605 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3606 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3607 	}
   3608 
   3609 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3610 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3611 
   3612 	/* Enable link state change interrupt generation. */
   3613 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3614 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3615 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3616 	} else
   3617 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3618 
   3619 	/* Enable all remaining blocks in the MAC. */
   3620 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3621 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3622 	DELAY(20);
   3623 
   3624 bnx_blockinit_exit:
   3625 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3626 
   3627 	return (rc);
   3628 }
   3629 
   3630 static int
   3631 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
   3632     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3633 {
   3634 	bus_dmamap_t		map;
   3635 	struct rx_bd		*rxbd;
   3636 	u_int32_t		addr;
   3637 	int i;
   3638 #ifdef BNX_DEBUG
   3639 	u_int16_t debug_chain_prod =	*chain_prod;
   3640 #endif
   3641 	u_int16_t first_chain_prod;
   3642 
   3643 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3644 
   3645 	/* Map the mbuf cluster into device memory. */
   3646 	map = sc->rx_mbuf_map[*chain_prod];
   3647 	first_chain_prod = *chain_prod;
   3648 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3649 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3650 		    __FILE__, __LINE__);
   3651 
   3652 		m_freem(m_new);
   3653 
   3654 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3655 
   3656 		return ENOBUFS;
   3657 	}
   3658 	/* Make sure there is room in the receive chain. */
   3659 	if (map->dm_nsegs > sc->free_rx_bd) {
   3660 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3661 		m_freem(m_new);
   3662 		return EFBIG;
   3663 	}
   3664 #ifdef BNX_DEBUG
   3665 	/* Track the distribution of buffer segments. */
   3666 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3667 #endif
   3668 
   3669 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3670 	    BUS_DMASYNC_PREREAD);
   3671 
   3672 	/* Update some debug statistics counters */
   3673 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3674 	    sc->rx_low_watermark = sc->free_rx_bd);
   3675 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3676 
   3677 	/*
   3678 	 * Setup the rx_bd for the first segment
   3679 	 */
   3680 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3681 
   3682 	addr = (u_int32_t)map->dm_segs[0].ds_addr;
   3683 	rxbd->rx_bd_haddr_lo = addr;
   3684 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
   3685 	rxbd->rx_bd_haddr_hi = addr;
   3686 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3687 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3688 	*prod_bseq += map->dm_segs[0].ds_len;
   3689 	bus_dmamap_sync(sc->bnx_dmatag,
   3690 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3691 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3692 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3693 
   3694 	for (i = 1; i < map->dm_nsegs; i++) {
   3695 		*prod = NEXT_RX_BD(*prod);
   3696 		*chain_prod = RX_CHAIN_IDX(*prod);
   3697 
   3698 		rxbd =
   3699 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3700 
   3701 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
   3702 		rxbd->rx_bd_haddr_lo = addr;
   3703 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   3704 		rxbd->rx_bd_haddr_hi = addr;
   3705 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3706 		rxbd->rx_bd_flags = 0;
   3707 		*prod_bseq += map->dm_segs[i].ds_len;
   3708 		bus_dmamap_sync(sc->bnx_dmatag,
   3709 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3710 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3711 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3712 	}
   3713 
   3714 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3715 	bus_dmamap_sync(sc->bnx_dmatag,
   3716 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3717 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3718 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3719 
   3720 	/*
   3721 	 * Save the mbuf, ajust the map pointer (swap map for first and
   3722 	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
   3723 	 * and update counter.
   3724 	 */
   3725 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3726 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3727 	sc->rx_mbuf_map[*chain_prod] = map;
   3728 	sc->free_rx_bd -= map->dm_nsegs;
   3729 
   3730 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3731 	    map->dm_nsegs));
   3732 	*prod = NEXT_RX_BD(*prod);
   3733 	*chain_prod = RX_CHAIN_IDX(*prod);
   3734 
   3735 	return 0;
   3736 }
   3737 
   3738 /****************************************************************************/
   3739 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3740 /*                                                                          */
   3741 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3742 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3743 /* necessary.                                                               */
   3744 /*                                                                          */
   3745 /* Returns:                                                                 */
   3746 /*   0 for success, positive value for failure.                             */
   3747 /****************************************************************************/
   3748 int
   3749 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
   3750     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3751 {
   3752 	struct mbuf 		*m_new = NULL;
   3753 	int			rc = 0;
   3754 	u_int16_t min_free_bd;
   3755 
   3756 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3757 	    __func__);
   3758 
   3759 	/* Make sure the inputs are valid. */
   3760 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3761 	    aprint_error_dev(sc->bnx_dev,
   3762 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3763 		*chain_prod, (u_int16_t)MAX_RX_BD));
   3764 
   3765 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3766 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3767 	    *prod_bseq);
   3768 
   3769 	/* try to get in as many mbufs as possible */
   3770 	if (sc->mbuf_alloc_size == MCLBYTES)
   3771 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3772 	else
   3773 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3774 	while (sc->free_rx_bd >= min_free_bd) {
   3775 		/* Simulate an mbuf allocation failure. */
   3776 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3777 		    aprint_error_dev(sc->bnx_dev,
   3778 		    "Simulating mbuf allocation failure.\n");
   3779 			sc->mbuf_sim_alloc_failed++;
   3780 			rc = ENOBUFS;
   3781 			goto bnx_get_buf_exit);
   3782 
   3783 		/* This is a new mbuf allocation. */
   3784 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3785 		if (m_new == NULL) {
   3786 			DBPRINT(sc, BNX_WARN,
   3787 			    "%s(%d): RX mbuf header allocation failed!\n",
   3788 			    __FILE__, __LINE__);
   3789 
   3790 			sc->mbuf_alloc_failed++;
   3791 
   3792 			rc = ENOBUFS;
   3793 			goto bnx_get_buf_exit;
   3794 		}
   3795 
   3796 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3797 
   3798 		/* Simulate an mbuf cluster allocation failure. */
   3799 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3800 			m_freem(m_new);
   3801 			sc->rx_mbuf_alloc--;
   3802 			sc->mbuf_alloc_failed++;
   3803 			sc->mbuf_sim_alloc_failed++;
   3804 			rc = ENOBUFS;
   3805 			goto bnx_get_buf_exit);
   3806 
   3807 		if (sc->mbuf_alloc_size == MCLBYTES)
   3808 			MCLGET(m_new, M_DONTWAIT);
   3809 		else
   3810 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3811 			    M_DONTWAIT);
   3812 		if (!(m_new->m_flags & M_EXT)) {
   3813 			DBPRINT(sc, BNX_WARN,
   3814 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3815 			    __FILE__, __LINE__);
   3816 
   3817 			m_freem(m_new);
   3818 
   3819 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3820 			sc->mbuf_alloc_failed++;
   3821 
   3822 			rc = ENOBUFS;
   3823 			goto bnx_get_buf_exit;
   3824 		}
   3825 
   3826 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3827 		if (rc != 0)
   3828 			goto bnx_get_buf_exit;
   3829 	}
   3830 
   3831 bnx_get_buf_exit:
   3832 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3833 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3834 	    *chain_prod, *prod_bseq);
   3835 
   3836 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3837 	    __func__);
   3838 
   3839 	return(rc);
   3840 }
   3841 
   3842 int
   3843 bnx_alloc_pkts(struct bnx_softc *sc)
   3844 {
   3845 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   3846 	struct bnx_pkt *pkt;
   3847 	int i;
   3848 
   3849 	for (i = 0; i < 4; i++) { /* magic! */
   3850 		pkt = pool_get(bnx_tx_pool, PR_NOWAIT);
   3851 		if (pkt == NULL)
   3852 			break;
   3853 
   3854 		if (bus_dmamap_create(sc->bnx_dmatag,
   3855 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   3856 		    MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   3857 		    &pkt->pkt_dmamap) != 0)
   3858 			goto put;
   3859 
   3860 		if (!ISSET(ifp->if_flags, IFF_UP))
   3861 			goto stopping;
   3862 
   3863 		mutex_enter(&sc->tx_pkt_mtx);
   3864 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   3865 		sc->tx_pkt_count++;
   3866 		mutex_exit(&sc->tx_pkt_mtx);
   3867 	}
   3868 
   3869 	return (i == 0) ? ENOMEM : 0;
   3870 
   3871 stopping:
   3872 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   3873 put:
   3874 	pool_put(bnx_tx_pool, pkt);
   3875 	return (i == 0) ? ENOMEM : 0;
   3876 }
   3877 
   3878 /****************************************************************************/
   3879 /* Initialize the TX context memory.                                        */
   3880 /*                                                                          */
   3881 /* Returns:                                                                 */
   3882 /*   Nothing                                                                */
   3883 /****************************************************************************/
   3884 void
   3885 bnx_init_tx_context(struct bnx_softc *sc)
   3886 {
   3887 	u_int32_t val;
   3888 
   3889 	/* Initialize the context ID for an L2 TX chain. */
   3890 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3891 		/* Set the CID type to support an L2 connection. */
   3892 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3893 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   3894 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3895 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   3896 
   3897 		/* Point the hardware to the first page in the chain. */
   3898 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3899 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   3900 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   3901 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3902 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   3903 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   3904 	} else {
   3905 		/* Set the CID type to support an L2 connection. */
   3906 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3907 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   3908 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3909 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   3910 
   3911 		/* Point the hardware to the first page in the chain. */
   3912 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3913 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   3914 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3915 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   3916 	}
   3917 }
   3918 
   3919 
   3920 /****************************************************************************/
   3921 /* Allocate memory and initialize the TX data structures.                   */
   3922 /*                                                                          */
   3923 /* Returns:                                                                 */
   3924 /*   0 for success, positive value for failure.                             */
   3925 /****************************************************************************/
   3926 int
   3927 bnx_init_tx_chain(struct bnx_softc *sc)
   3928 {
   3929 	struct tx_bd		*txbd;
   3930 	u_int32_t		addr;
   3931 	int			i, rc = 0;
   3932 
   3933 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3934 
   3935 	/* Force an allocation of some dmamaps for tx up front */
   3936 	bnx_alloc_pkts(sc);
   3937 
   3938 	/* Set the initial TX producer/consumer indices. */
   3939 	sc->tx_prod = 0;
   3940 	sc->tx_cons = 0;
   3941 	sc->tx_prod_bseq = 0;
   3942 	sc->used_tx_bd = 0;
   3943 	sc->max_tx_bd = USABLE_TX_BD;
   3944 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   3945 	DBRUNIF(1, sc->tx_full_count = 0);
   3946 
   3947 	/*
   3948 	 * The NetXtreme II supports a linked-list structure called
   3949 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   3950 	 * consists of a series of 1 or more chain pages, each of which
   3951 	 * consists of a fixed number of BD entries.
   3952 	 * The last BD entry on each page is a pointer to the next page
   3953 	 * in the chain, and the last pointer in the BD chain
   3954 	 * points back to the beginning of the chain.
   3955 	 */
   3956 
   3957 	/* Set the TX next pointer chain entries. */
   3958 	for (i = 0; i < TX_PAGES; i++) {
   3959 		int j;
   3960 
   3961 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   3962 
   3963 		/* Check if we've reached the last page. */
   3964 		if (i == (TX_PAGES - 1))
   3965 			j = 0;
   3966 		else
   3967 			j = i + 1;
   3968 
   3969 		addr = (u_int32_t)sc->tx_bd_chain_paddr[j];
   3970 		txbd->tx_bd_haddr_lo = addr;
   3971 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
   3972 		txbd->tx_bd_haddr_hi = addr;
   3973 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3974 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3975 	}
   3976 
   3977 	/*
   3978 	 * Initialize the context ID for an L2 TX chain.
   3979 	 */
   3980 	bnx_init_tx_context(sc);
   3981 
   3982 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3983 
   3984 	return(rc);
   3985 }
   3986 
   3987 /****************************************************************************/
   3988 /* Free memory and clear the TX data structures.                            */
   3989 /*                                                                          */
   3990 /* Returns:                                                                 */
   3991 /*   Nothing.                                                               */
   3992 /****************************************************************************/
   3993 void
   3994 bnx_free_tx_chain(struct bnx_softc *sc)
   3995 {
   3996 	struct bnx_pkt		*pkt;
   3997 	int			i;
   3998 
   3999 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4000 
   4001 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4002 	mutex_enter(&sc->tx_pkt_mtx);
   4003 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4004 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4005 		mutex_exit(&sc->tx_pkt_mtx);
   4006 
   4007 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4008 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4009 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4010 
   4011 		m_freem(pkt->pkt_mbuf);
   4012 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4013 
   4014 		mutex_enter(&sc->tx_pkt_mtx);
   4015 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4016         }
   4017 
   4018 	/* Destroy all the dmamaps we allocated for TX */
   4019 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   4020 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4021 		sc->tx_pkt_count--;
   4022 		mutex_exit(&sc->tx_pkt_mtx);
   4023 
   4024 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4025 		pool_put(bnx_tx_pool, pkt);
   4026 
   4027 		mutex_enter(&sc->tx_pkt_mtx);
   4028 	}
   4029 	mutex_exit(&sc->tx_pkt_mtx);
   4030 
   4031 
   4032 
   4033 	/* Clear each TX chain page. */
   4034 	for (i = 0; i < TX_PAGES; i++) {
   4035 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4036 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4037 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4038 	}
   4039 
   4040 	sc->used_tx_bd = 0;
   4041 
   4042 	/* Check if we lost any mbufs in the process. */
   4043 	DBRUNIF((sc->tx_mbuf_alloc),
   4044 	    aprint_error_dev(sc->bnx_dev,
   4045 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   4046 		sc->tx_mbuf_alloc));
   4047 
   4048 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4049 }
   4050 
   4051 /****************************************************************************/
   4052 /* Initialize the RX context memory.                                        */
   4053 /*                                                                          */
   4054 /* Returns:                                                                 */
   4055 /*   Nothing                                                                */
   4056 /****************************************************************************/
   4057 void
   4058 bnx_init_rx_context(struct bnx_softc *sc)
   4059 {
   4060 	u_int32_t val;
   4061 
   4062 	/* Initialize the context ID for an L2 RX chain. */
   4063 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4064 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4065 
   4066 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4067 		u_int32_t lo_water, hi_water;
   4068 
   4069 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
   4070 		hi_water = USABLE_RX_BD / 4;
   4071 
   4072 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
   4073 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
   4074 
   4075 		if (hi_water > 0xf)
   4076 			hi_water = 0xf;
   4077 		else if (hi_water == 0)
   4078 			lo_water = 0;
   4079 		val |= lo_water |
   4080 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
   4081 	}
   4082 
   4083  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4084 
   4085 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4086 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4087 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4088 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4089 	}
   4090 
   4091 	/* Point the hardware to the first page in the chain. */
   4092 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4093 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4094 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
   4095 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4096 }
   4097 
   4098 /****************************************************************************/
   4099 /* Allocate memory and initialize the RX data structures.                   */
   4100 /*                                                                          */
   4101 /* Returns:                                                                 */
   4102 /*   0 for success, positive value for failure.                             */
   4103 /****************************************************************************/
   4104 int
   4105 bnx_init_rx_chain(struct bnx_softc *sc)
   4106 {
   4107 	struct rx_bd		*rxbd;
   4108 	int			i, rc = 0;
   4109 	u_int16_t		prod, chain_prod;
   4110 	u_int32_t		prod_bseq, addr;
   4111 
   4112 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4113 
   4114 	/* Initialize the RX producer and consumer indices. */
   4115 	sc->rx_prod = 0;
   4116 	sc->rx_cons = 0;
   4117 	sc->rx_prod_bseq = 0;
   4118 	sc->free_rx_bd = USABLE_RX_BD;
   4119 	sc->max_rx_bd = USABLE_RX_BD;
   4120 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4121 	DBRUNIF(1, sc->rx_empty_count = 0);
   4122 
   4123 	/* Initialize the RX next pointer chain entries. */
   4124 	for (i = 0; i < RX_PAGES; i++) {
   4125 		int j;
   4126 
   4127 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4128 
   4129 		/* Check if we've reached the last page. */
   4130 		if (i == (RX_PAGES - 1))
   4131 			j = 0;
   4132 		else
   4133 			j = i + 1;
   4134 
   4135 		/* Setup the chain page pointers. */
   4136 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4137 		rxbd->rx_bd_haddr_hi = addr;
   4138 		addr = (u_int32_t)sc->rx_bd_chain_paddr[j];
   4139 		rxbd->rx_bd_haddr_lo = addr;
   4140 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4141 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4142 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4143 	}
   4144 
   4145 	/* Allocate mbuf clusters for the rx_bd chain. */
   4146 	prod = prod_bseq = 0;
   4147 	chain_prod = RX_CHAIN_IDX(prod);
   4148 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4149 		BNX_PRINTF(sc,
   4150 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4151 	}
   4152 
   4153 	/* Save the RX chain producer index. */
   4154 	sc->rx_prod = prod;
   4155 	sc->rx_prod_bseq = prod_bseq;
   4156 
   4157 	for (i = 0; i < RX_PAGES; i++)
   4158 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4159 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4160 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4161 
   4162 	/* Tell the chip about the waiting rx_bd's. */
   4163 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4164 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4165 
   4166 	bnx_init_rx_context(sc);
   4167 
   4168 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4169 
   4170 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4171 
   4172 	return(rc);
   4173 }
   4174 
   4175 /****************************************************************************/
   4176 /* Free memory and clear the RX data structures.                            */
   4177 /*                                                                          */
   4178 /* Returns:                                                                 */
   4179 /*   Nothing.                                                               */
   4180 /****************************************************************************/
   4181 void
   4182 bnx_free_rx_chain(struct bnx_softc *sc)
   4183 {
   4184 	int			i;
   4185 
   4186 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4187 
   4188 	/* Free any mbufs still in the RX mbuf chain. */
   4189 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4190 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4191 			if (sc->rx_mbuf_map[i] != NULL) {
   4192 				bus_dmamap_sync(sc->bnx_dmatag,
   4193 				    sc->rx_mbuf_map[i],	0,
   4194 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4195 				    BUS_DMASYNC_POSTREAD);
   4196 				bus_dmamap_unload(sc->bnx_dmatag,
   4197 				    sc->rx_mbuf_map[i]);
   4198 			}
   4199 			m_freem(sc->rx_mbuf_ptr[i]);
   4200 			sc->rx_mbuf_ptr[i] = NULL;
   4201 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4202 		}
   4203 	}
   4204 
   4205 	/* Clear each RX chain page. */
   4206 	for (i = 0; i < RX_PAGES; i++)
   4207 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4208 
   4209 	sc->free_rx_bd = sc->max_rx_bd;
   4210 
   4211 	/* Check if we lost any mbufs in the process. */
   4212 	DBRUNIF((sc->rx_mbuf_alloc),
   4213 	    aprint_error_dev(sc->bnx_dev,
   4214 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   4215 		sc->rx_mbuf_alloc));
   4216 
   4217 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4218 }
   4219 
   4220 /****************************************************************************/
   4221 /* Handles PHY generated interrupt events.                                  */
   4222 /*                                                                          */
   4223 /* Returns:                                                                 */
   4224 /*   Nothing.                                                               */
   4225 /****************************************************************************/
   4226 void
   4227 bnx_phy_intr(struct bnx_softc *sc)
   4228 {
   4229 	u_int32_t		new_link_state, old_link_state;
   4230 
   4231 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4232 	    BUS_DMASYNC_POSTREAD);
   4233 	new_link_state = sc->status_block->status_attn_bits &
   4234 	    STATUS_ATTN_BITS_LINK_STATE;
   4235 	old_link_state = sc->status_block->status_attn_bits_ack &
   4236 	    STATUS_ATTN_BITS_LINK_STATE;
   4237 
   4238 	/* Handle any changes if the link state has changed. */
   4239 	if (new_link_state != old_link_state) {
   4240 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4241 
   4242 		callout_stop(&sc->bnx_timeout);
   4243 		bnx_tick(sc);
   4244 
   4245 		/* Update the status_attn_bits_ack field in the status block. */
   4246 		if (new_link_state) {
   4247 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4248 			    STATUS_ATTN_BITS_LINK_STATE);
   4249 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4250 		} else {
   4251 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4252 			    STATUS_ATTN_BITS_LINK_STATE);
   4253 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4254 		}
   4255 	}
   4256 
   4257 	/* Acknowledge the link change interrupt. */
   4258 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4259 }
   4260 
   4261 /****************************************************************************/
   4262 /* Handles received frame interrupt events.                                 */
   4263 /*                                                                          */
   4264 /* Returns:                                                                 */
   4265 /*   Nothing.                                                               */
   4266 /****************************************************************************/
   4267 void
   4268 bnx_rx_intr(struct bnx_softc *sc)
   4269 {
   4270 	struct status_block	*sblk = sc->status_block;
   4271 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4272 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
   4273 	u_int16_t		sw_prod, sw_chain_prod;
   4274 	u_int32_t		sw_prod_bseq;
   4275 	struct l2_fhdr		*l2fhdr;
   4276 	int			i;
   4277 
   4278 	DBRUNIF(1, sc->rx_interrupts++);
   4279 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4280 	    BUS_DMASYNC_POSTREAD);
   4281 
   4282 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4283 	for (i = 0; i < RX_PAGES; i++)
   4284 		bus_dmamap_sync(sc->bnx_dmatag,
   4285 		    sc->rx_bd_chain_map[i], 0,
   4286 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4287 		    BUS_DMASYNC_POSTWRITE);
   4288 
   4289 	/* Get the hardware's view of the RX consumer index. */
   4290 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4291 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4292 		hw_cons++;
   4293 
   4294 	/* Get working copies of the driver's view of the RX indices. */
   4295 	sw_cons = sc->rx_cons;
   4296 	sw_prod = sc->rx_prod;
   4297 	sw_prod_bseq = sc->rx_prod_bseq;
   4298 
   4299 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4300 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4301 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4302 
   4303 	/* Prevent speculative reads from getting ahead of the status block. */
   4304 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4305 	    BUS_SPACE_BARRIER_READ);
   4306 
   4307 	/* Update some debug statistics counters */
   4308 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4309 	    sc->rx_low_watermark = sc->free_rx_bd);
   4310 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4311 
   4312 	/*
   4313 	 * Scan through the receive chain as long
   4314 	 * as there is work to do.
   4315 	 */
   4316 	while (sw_cons != hw_cons) {
   4317 		struct mbuf *m;
   4318 		struct rx_bd *rxbd;
   4319 		unsigned int len;
   4320 		u_int32_t status;
   4321 
   4322 		/* Convert the producer/consumer indices to an actual
   4323 		 * rx_bd index.
   4324 		 */
   4325 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4326 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4327 
   4328 		/* Get the used rx_bd. */
   4329 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4330 		sc->free_rx_bd++;
   4331 
   4332 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4333 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4334 
   4335 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4336 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4337 #ifdef DIAGNOSTIC
   4338 			/* Validate that this is the last rx_bd. */
   4339 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4340 			    printf("%s: Unexpected mbuf found in "
   4341 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4342 			        sw_chain_cons);
   4343 			}
   4344 #endif
   4345 
   4346 			/* DRC - ToDo: If the received packet is small, say less
   4347 			 *             than 128 bytes, allocate a new mbuf here,
   4348 			 *             copy the data to that mbuf, and recycle
   4349 			 *             the mapped jumbo frame.
   4350 			 */
   4351 
   4352 			/* Unmap the mbuf from DMA space. */
   4353 #ifdef DIAGNOSTIC
   4354 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4355 				printf("invalid map sw_cons 0x%x "
   4356 				"sw_prod 0x%x "
   4357 				"sw_chain_cons 0x%x "
   4358 				"sw_chain_prod 0x%x "
   4359 				"hw_cons 0x%x "
   4360 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4361 				"TOTAL_RX_BD 0x%x\n",
   4362 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4363 				hw_cons,
   4364 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4365 			}
   4366 #endif
   4367 			bus_dmamap_sync(sc->bnx_dmatag,
   4368 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4369 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4370 			    BUS_DMASYNC_POSTREAD);
   4371 			bus_dmamap_unload(sc->bnx_dmatag,
   4372 			    sc->rx_mbuf_map[sw_chain_cons]);
   4373 
   4374 			/* Remove the mbuf from the driver's chain. */
   4375 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4376 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4377 
   4378 			/*
   4379 			 * Frames received on the NetXteme II are prepended
   4380 			 * with the l2_fhdr structure which provides status
   4381 			 * information about the received frame (including
   4382 			 * VLAN tags and checksum info) and are also
   4383 			 * automatically adjusted to align the IP header
   4384 			 * (i.e. two null bytes are inserted before the
   4385 			 * Ethernet header).
   4386 			 */
   4387 			l2fhdr = mtod(m, struct l2_fhdr *);
   4388 
   4389 			len    = l2fhdr->l2_fhdr_pkt_len;
   4390 			status = l2fhdr->l2_fhdr_status;
   4391 
   4392 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4393 			    aprint_error("Simulating l2_fhdr status error.\n");
   4394 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4395 
   4396 			/* Watch for unusual sized frames. */
   4397 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4398 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4399 			    aprint_error_dev(sc->bnx_dev,
   4400 			        "Unusual frame size found. "
   4401 				"Min(%d), Actual(%d), Max(%d)\n",
   4402 				(int)BNX_MIN_MTU, len,
   4403 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4404 
   4405 			bnx_dump_mbuf(sc, m);
   4406 			bnx_breakpoint(sc));
   4407 
   4408 			len -= ETHER_CRC_LEN;
   4409 
   4410 			/* Check the received frame for errors. */
   4411 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4412 			    L2_FHDR_ERRORS_PHY_DECODE |
   4413 			    L2_FHDR_ERRORS_ALIGNMENT |
   4414 			    L2_FHDR_ERRORS_TOO_SHORT |
   4415 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4416 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4417 			    len >
   4418 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4419 				ifp->if_ierrors++;
   4420 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4421 
   4422 				/* Reuse the mbuf for a new frame. */
   4423 				if (bnx_add_buf(sc, m, &sw_prod,
   4424 				    &sw_chain_prod, &sw_prod_bseq)) {
   4425 					DBRUNIF(1, bnx_breakpoint(sc));
   4426 					panic("%s: Can't reuse RX mbuf!\n",
   4427 					    device_xname(sc->bnx_dev));
   4428 				}
   4429 				continue;
   4430 			}
   4431 
   4432 			/*
   4433 			 * Get a new mbuf for the rx_bd.   If no new
   4434 			 * mbufs are available then reuse the current mbuf,
   4435 			 * log an ierror on the interface, and generate
   4436 			 * an error in the system log.
   4437 			 */
   4438 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4439 			    &sw_prod_bseq)) {
   4440 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4441 				    "Failed to allocate "
   4442 				    "new mbuf, incoming frame dropped!\n"));
   4443 
   4444 				ifp->if_ierrors++;
   4445 
   4446 				/* Try and reuse the exisitng mbuf. */
   4447 				if (bnx_add_buf(sc, m, &sw_prod,
   4448 				    &sw_chain_prod, &sw_prod_bseq)) {
   4449 					DBRUNIF(1, bnx_breakpoint(sc));
   4450 					panic("%s: Double mbuf allocation "
   4451 					    "failure!",
   4452 					    device_xname(sc->bnx_dev));
   4453 				}
   4454 				continue;
   4455 			}
   4456 
   4457 			/* Skip over the l2_fhdr when passing the data up
   4458 			 * the stack.
   4459 			 */
   4460 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4461 
   4462 			/* Adjust the pckt length to match the received data. */
   4463 			m->m_pkthdr.len = m->m_len = len;
   4464 
   4465 			/* Send the packet to the appropriate interface. */
   4466 			m->m_pkthdr.rcvif = ifp;
   4467 
   4468 			DBRUN(BNX_VERBOSE_RECV,
   4469 			    struct ether_header *eh;
   4470 			    eh = mtod(m, struct ether_header *);
   4471 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4472 			    __func__, ether_sprintf(eh->ether_dhost),
   4473 			    ether_sprintf(eh->ether_shost),
   4474 			    htons(eh->ether_type)));
   4475 
   4476 			/* Validate the checksum. */
   4477 
   4478 			/* Check for an IP datagram. */
   4479 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4480 				/* Check if the IP checksum is valid. */
   4481 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   4482 				    == 0)
   4483 					m->m_pkthdr.csum_flags |=
   4484 					    M_CSUM_IPv4;
   4485 #ifdef BNX_DEBUG
   4486 				else
   4487 					DBPRINT(sc, BNX_WARN_SEND,
   4488 					    "%s(): Invalid IP checksum "
   4489 					        "= 0x%04X!\n",
   4490 						__func__,
   4491 						l2fhdr->l2_fhdr_ip_xsum
   4492 						);
   4493 #endif
   4494 			}
   4495 
   4496 			/* Check for a valid TCP/UDP frame. */
   4497 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4498 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4499 				/* Check for a good TCP/UDP checksum. */
   4500 				if ((status &
   4501 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4502 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4503 					m->m_pkthdr.csum_flags |=
   4504 					    M_CSUM_TCPv4 |
   4505 					    M_CSUM_UDPv4;
   4506 				} else {
   4507 					DBPRINT(sc, BNX_WARN_SEND,
   4508 					    "%s(): Invalid TCP/UDP "
   4509 					    "checksum = 0x%04X!\n",
   4510 					    __func__,
   4511 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4512 				}
   4513 			}
   4514 
   4515 			/*
   4516 			 * If we received a packet with a vlan tag,
   4517 			 * attach that information to the packet.
   4518 			 */
   4519 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4520 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4521 				VLAN_INPUT_TAG(ifp, m,
   4522 				    l2fhdr->l2_fhdr_vlan_tag,
   4523 				    continue);
   4524 			}
   4525 
   4526 			/*
   4527 			 * Handle BPF listeners. Let the BPF
   4528 			 * user see the packet.
   4529 			 */
   4530 			bpf_mtap(ifp, m);
   4531 
   4532 			/* Pass the mbuf off to the upper layers. */
   4533 			ifp->if_ipackets++;
   4534 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4535 			    "%s(): Passing received frame up.\n", __func__);
   4536 			(*ifp->if_input)(ifp, m);
   4537 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4538 
   4539 		}
   4540 
   4541 		sw_cons = NEXT_RX_BD(sw_cons);
   4542 
   4543 		/* Refresh hw_cons to see if there's new work */
   4544 		if (sw_cons == hw_cons) {
   4545 			hw_cons = sc->hw_rx_cons =
   4546 			    sblk->status_rx_quick_consumer_index0;
   4547 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4548 			    USABLE_RX_BD_PER_PAGE)
   4549 				hw_cons++;
   4550 		}
   4551 
   4552 		/* Prevent speculative reads from getting ahead of
   4553 		 * the status block.
   4554 		 */
   4555 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4556 		    BUS_SPACE_BARRIER_READ);
   4557 	}
   4558 
   4559 	for (i = 0; i < RX_PAGES; i++)
   4560 		bus_dmamap_sync(sc->bnx_dmatag,
   4561 		    sc->rx_bd_chain_map[i], 0,
   4562 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4563 		    BUS_DMASYNC_PREWRITE);
   4564 
   4565 	sc->rx_cons = sw_cons;
   4566 	sc->rx_prod = sw_prod;
   4567 	sc->rx_prod_bseq = sw_prod_bseq;
   4568 
   4569 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4570 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4571 
   4572 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4573 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4574 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4575 }
   4576 
   4577 /****************************************************************************/
   4578 /* Handles transmit completion interrupt events.                            */
   4579 /*                                                                          */
   4580 /* Returns:                                                                 */
   4581 /*   Nothing.                                                               */
   4582 /****************************************************************************/
   4583 void
   4584 bnx_tx_intr(struct bnx_softc *sc)
   4585 {
   4586 	struct status_block	*sblk = sc->status_block;
   4587 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4588 	struct bnx_pkt		*pkt;
   4589 	bus_dmamap_t		map;
   4590 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4591 
   4592 	DBRUNIF(1, sc->tx_interrupts++);
   4593 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4594 	    BUS_DMASYNC_POSTREAD);
   4595 
   4596 	/* Get the hardware's view of the TX consumer index. */
   4597 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4598 
   4599 	/* Skip to the next entry if this is a chain page pointer. */
   4600 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4601 		hw_tx_cons++;
   4602 
   4603 	sw_tx_cons = sc->tx_cons;
   4604 
   4605 	/* Prevent speculative reads from getting ahead of the status block. */
   4606 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4607 	    BUS_SPACE_BARRIER_READ);
   4608 
   4609 	/* Cycle through any completed TX chain page entries. */
   4610 	while (sw_tx_cons != hw_tx_cons) {
   4611 #ifdef BNX_DEBUG
   4612 		struct tx_bd *txbd = NULL;
   4613 #endif
   4614 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4615 
   4616 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4617 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4618 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4619 
   4620 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4621 		    aprint_error_dev(sc->bnx_dev,
   4622 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4623 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4624 
   4625 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4626 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4627 
   4628 		DBRUNIF((txbd == NULL),
   4629 		    aprint_error_dev(sc->bnx_dev,
   4630 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4631 		    bnx_breakpoint(sc));
   4632 
   4633 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4634 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4635 
   4636 
   4637 		mutex_enter(&sc->tx_pkt_mtx);
   4638 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4639 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4640 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4641 			mutex_exit(&sc->tx_pkt_mtx);
   4642 			/*
   4643 			 * Free the associated mbuf. Remember
   4644 			 * that only the last tx_bd of a packet
   4645 			 * has an mbuf pointer and DMA map.
   4646 			 */
   4647 			map = pkt->pkt_dmamap;
   4648 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4649 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4650 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4651 
   4652 			m_freem(pkt->pkt_mbuf);
   4653 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4654 
   4655 			ifp->if_opackets++;
   4656 
   4657 			mutex_enter(&sc->tx_pkt_mtx);
   4658 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4659 		}
   4660 		mutex_exit(&sc->tx_pkt_mtx);
   4661 
   4662 		sc->used_tx_bd--;
   4663 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4664 			__FILE__, __LINE__, sc->used_tx_bd);
   4665 
   4666 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4667 
   4668 		/* Refresh hw_cons to see if there's new work. */
   4669 		hw_tx_cons = sc->hw_tx_cons =
   4670 		    sblk->status_tx_quick_consumer_index0;
   4671 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4672 		    USABLE_TX_BD_PER_PAGE)
   4673 			hw_tx_cons++;
   4674 
   4675 		/* Prevent speculative reads from getting ahead of
   4676 		 * the status block.
   4677 		 */
   4678 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4679 		    BUS_SPACE_BARRIER_READ);
   4680 	}
   4681 
   4682 	/* Clear the TX timeout timer. */
   4683 	ifp->if_timer = 0;
   4684 
   4685 	/* Clear the tx hardware queue full flag. */
   4686 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4687 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4688 		    aprint_debug_dev(sc->bnx_dev,
   4689 		        "Open TX chain! %d/%d (used/total)\n",
   4690 			sc->used_tx_bd, sc->max_tx_bd));
   4691 		ifp->if_flags &= ~IFF_OACTIVE;
   4692 	}
   4693 
   4694 	sc->tx_cons = sw_tx_cons;
   4695 }
   4696 
   4697 /****************************************************************************/
   4698 /* Disables interrupt generation.                                           */
   4699 /*                                                                          */
   4700 /* Returns:                                                                 */
   4701 /*   Nothing.                                                               */
   4702 /****************************************************************************/
   4703 void
   4704 bnx_disable_intr(struct bnx_softc *sc)
   4705 {
   4706 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4707 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4708 }
   4709 
   4710 /****************************************************************************/
   4711 /* Enables interrupt generation.                                            */
   4712 /*                                                                          */
   4713 /* Returns:                                                                 */
   4714 /*   Nothing.                                                               */
   4715 /****************************************************************************/
   4716 void
   4717 bnx_enable_intr(struct bnx_softc *sc)
   4718 {
   4719 	u_int32_t		val;
   4720 
   4721 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4722 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4723 
   4724 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4725 	    sc->last_status_idx);
   4726 
   4727 	val = REG_RD(sc, BNX_HC_COMMAND);
   4728 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4729 }
   4730 
   4731 /****************************************************************************/
   4732 /* Handles controller initialization.                                       */
   4733 /*                                                                          */
   4734 /****************************************************************************/
   4735 int
   4736 bnx_init(struct ifnet *ifp)
   4737 {
   4738 	struct bnx_softc	*sc = ifp->if_softc;
   4739 	u_int32_t		ether_mtu;
   4740 	int			s, error = 0;
   4741 
   4742 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4743 
   4744 	s = splnet();
   4745 
   4746 	bnx_stop(ifp, 0);
   4747 
   4748 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4749 		aprint_error_dev(sc->bnx_dev,
   4750 		    "Controller reset failed!\n");
   4751 		goto bnx_init_exit;
   4752 	}
   4753 
   4754 	if ((error = bnx_chipinit(sc)) != 0) {
   4755 		aprint_error_dev(sc->bnx_dev,
   4756 		    "Controller initialization failed!\n");
   4757 		goto bnx_init_exit;
   4758 	}
   4759 
   4760 	if ((error = bnx_blockinit(sc)) != 0) {
   4761 		aprint_error_dev(sc->bnx_dev,
   4762 		    "Block initialization failed!\n");
   4763 		goto bnx_init_exit;
   4764 	}
   4765 
   4766 	/* Calculate and program the Ethernet MRU size. */
   4767 	if (ifp->if_mtu <= ETHERMTU) {
   4768 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4769 		sc->mbuf_alloc_size = MCLBYTES;
   4770 	} else {
   4771 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4772 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   4773 	}
   4774 
   4775 
   4776 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4777 	    __func__, ether_mtu);
   4778 
   4779 	/*
   4780 	 * Program the MRU and enable Jumbo frame
   4781 	 * support.
   4782 	 */
   4783 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4784 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4785 
   4786 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4787 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4788 
   4789 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4790 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4791 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4792 
   4793 	/* Program appropriate promiscuous/multicast filtering. */
   4794 	bnx_iff(sc);
   4795 
   4796 	/* Init RX buffer descriptor chain. */
   4797 	bnx_init_rx_chain(sc);
   4798 
   4799 	/* Init TX buffer descriptor chain. */
   4800 	bnx_init_tx_chain(sc);
   4801 
   4802 	/* Enable host interrupts. */
   4803 	bnx_enable_intr(sc);
   4804 
   4805 	if ((error = ether_mediachange(ifp)) != 0)
   4806 		goto bnx_init_exit;
   4807 
   4808 	ifp->if_flags |= IFF_RUNNING;
   4809 	ifp->if_flags &= ~IFF_OACTIVE;
   4810 
   4811 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4812 
   4813 bnx_init_exit:
   4814 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4815 
   4816 	splx(s);
   4817 
   4818 	return(error);
   4819 }
   4820 
   4821 /****************************************************************************/
   4822 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4823 /* memory visible to the controller.                                        */
   4824 /*                                                                          */
   4825 /* Returns:                                                                 */
   4826 /*   0 for success, positive value for failure.                             */
   4827 /****************************************************************************/
   4828 int
   4829 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   4830 {
   4831 	struct bnx_pkt		*pkt;
   4832 	bus_dmamap_t		map;
   4833 	struct tx_bd		*txbd = NULL;
   4834 	u_int16_t		vlan_tag = 0, flags = 0;
   4835 	u_int16_t		chain_prod, prod;
   4836 #ifdef BNX_DEBUG
   4837 	u_int16_t		debug_prod;
   4838 #endif
   4839 	u_int32_t		addr, prod_bseq;
   4840 	int			i, error;
   4841 	struct m_tag		*mtag;
   4842 
   4843 again:
   4844 	mutex_enter(&sc->tx_pkt_mtx);
   4845 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   4846 	if (pkt == NULL) {
   4847 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   4848 			mutex_exit(&sc->tx_pkt_mtx);
   4849 			return ENETDOWN;
   4850 		}
   4851 		if (sc->tx_pkt_count <= TOTAL_TX_BD) {
   4852 			mutex_exit(&sc->tx_pkt_mtx);
   4853 			if (bnx_alloc_pkts(sc) == 0)
   4854 				goto again;
   4855 		} else {
   4856 			mutex_exit(&sc->tx_pkt_mtx);
   4857 		}
   4858 		return (ENOMEM);
   4859 	}
   4860 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4861 	mutex_exit(&sc->tx_pkt_mtx);
   4862 
   4863 	/* Transfer any checksum offload flags to the bd. */
   4864 	if (m->m_pkthdr.csum_flags) {
   4865 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4866 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4867 		if (m->m_pkthdr.csum_flags &
   4868 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4869 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4870 	}
   4871 
   4872 	/* Transfer any VLAN tags to the bd. */
   4873 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
   4874 	if (mtag != NULL) {
   4875 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4876 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4877 	}
   4878 
   4879 	/* Map the mbuf into DMAable memory. */
   4880 	prod = sc->tx_prod;
   4881 	chain_prod = TX_CHAIN_IDX(prod);
   4882 	map = pkt->pkt_dmamap;
   4883 
   4884 	/* Map the mbuf into our DMA address space. */
   4885 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   4886 	if (error != 0) {
   4887 		aprint_error_dev(sc->bnx_dev,
   4888 		    "Error mapping mbuf into TX chain!\n");
   4889 		sc->tx_dma_map_failures++;
   4890 		goto maperr;
   4891 	}
   4892 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4893 	    BUS_DMASYNC_PREWRITE);
   4894         /* Make sure there's room in the chain */
   4895 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   4896                 goto nospace;
   4897 
   4898 	/* prod points to an empty tx_bd at this point. */
   4899 	prod_bseq = sc->tx_prod_bseq;
   4900 #ifdef BNX_DEBUG
   4901 	debug_prod = chain_prod;
   4902 #endif
   4903 	DBPRINT(sc, BNX_INFO_SEND,
   4904 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   4905 		"prod_bseq = 0x%08X\n",
   4906 		__func__, prod, chain_prod, prod_bseq);
   4907 
   4908 	/*
   4909 	 * Cycle through each mbuf segment that makes up
   4910 	 * the outgoing frame, gathering the mapping info
   4911 	 * for that segment and creating a tx_bd for the
   4912 	 * mbuf.
   4913 	 */
   4914 	for (i = 0; i < map->dm_nsegs ; i++) {
   4915 		chain_prod = TX_CHAIN_IDX(prod);
   4916 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   4917 
   4918 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
   4919 		txbd->tx_bd_haddr_lo = addr;
   4920 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   4921 		txbd->tx_bd_haddr_hi = addr;
   4922 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   4923 		txbd->tx_bd_vlan_tag = vlan_tag;
   4924 		txbd->tx_bd_flags = flags;
   4925 		prod_bseq += map->dm_segs[i].ds_len;
   4926 		if (i == 0)
   4927 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   4928 		prod = NEXT_TX_BD(prod);
   4929 	}
   4930 	/* Set the END flag on the last TX buffer descriptor. */
   4931 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   4932 
   4933 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   4934 
   4935 	DBPRINT(sc, BNX_INFO_SEND,
   4936 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   4937 		"prod_bseq = 0x%08X\n",
   4938 		__func__, prod, chain_prod, prod_bseq);
   4939 
   4940 	pkt->pkt_mbuf = m;
   4941 	pkt->pkt_end_desc = chain_prod;
   4942 
   4943 	mutex_enter(&sc->tx_pkt_mtx);
   4944 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   4945 	mutex_exit(&sc->tx_pkt_mtx);
   4946 
   4947 	sc->used_tx_bd += map->dm_nsegs;
   4948 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4949 		__FILE__, __LINE__, sc->used_tx_bd);
   4950 
   4951 	/* Update some debug statistics counters */
   4952 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   4953 	    sc->tx_hi_watermark = sc->used_tx_bd);
   4954 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   4955 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   4956 
   4957 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   4958 	    map->dm_nsegs));
   4959 
   4960 	/* prod points to the next free tx_bd at this point. */
   4961 	sc->tx_prod = prod;
   4962 	sc->tx_prod_bseq = prod_bseq;
   4963 
   4964 	return (0);
   4965 
   4966 
   4967 nospace:
   4968 	bus_dmamap_unload(sc->bnx_dmatag, map);
   4969 maperr:
   4970 	mutex_enter(&sc->tx_pkt_mtx);
   4971 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4972 	mutex_exit(&sc->tx_pkt_mtx);
   4973 
   4974 	return (ENOMEM);
   4975 }
   4976 
   4977 /****************************************************************************/
   4978 /* Main transmit routine.                                                   */
   4979 /*                                                                          */
   4980 /* Returns:                                                                 */
   4981 /*   Nothing.                                                               */
   4982 /****************************************************************************/
   4983 void
   4984 bnx_start(struct ifnet *ifp)
   4985 {
   4986 	struct bnx_softc	*sc = ifp->if_softc;
   4987 	struct mbuf		*m_head = NULL;
   4988 	int			count = 0;
   4989 	u_int16_t		tx_prod, tx_chain_prod;
   4990 
   4991 	/* If there's no link or the transmit queue is empty then just exit. */
   4992 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   4993 		DBPRINT(sc, BNX_INFO_SEND,
   4994 		    "%s(): output active or device not running.\n", __func__);
   4995 		goto bnx_start_exit;
   4996 	}
   4997 
   4998 	/* prod points to the next free tx_bd. */
   4999 	tx_prod = sc->tx_prod;
   5000 	tx_chain_prod = TX_CHAIN_IDX(tx_prod);
   5001 
   5002 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5003 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5004 	    "used_tx %d max_tx %d\n",
   5005 	    __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5006 	    sc->used_tx_bd, sc->max_tx_bd);
   5007 
   5008 	/*
   5009 	 * Keep adding entries while there is space in the ring.
   5010 	 */
   5011 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5012 		/* Check for any frames to send. */
   5013 		IFQ_POLL(&ifp->if_snd, m_head);
   5014 		if (m_head == NULL)
   5015 			break;
   5016 
   5017 		/*
   5018 		 * Pack the data into the transmit ring. If we
   5019 		 * don't have room, set the OACTIVE flag to wait
   5020 		 * for the NIC to drain the chain.
   5021 		 */
   5022 		if (bnx_tx_encap(sc, m_head)) {
   5023 			ifp->if_flags |= IFF_OACTIVE;
   5024 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5025 			    "business! Total tx_bd used = %d\n",
   5026 			    sc->used_tx_bd);
   5027 			break;
   5028 		}
   5029 
   5030 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5031 		count++;
   5032 
   5033 		/* Send a copy of the frame to any BPF listeners. */
   5034 		bpf_mtap(ifp, m_head);
   5035 	}
   5036 
   5037 	if (count == 0) {
   5038 		/* no packets were dequeued */
   5039 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5040 		    "%s(): No packets were dequeued\n", __func__);
   5041 		goto bnx_start_exit;
   5042 	}
   5043 
   5044 	/* Update the driver's counters. */
   5045 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5046 
   5047 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   5048 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
   5049 	    tx_chain_prod, sc->tx_prod_bseq);
   5050 
   5051 	/* Start the transmit. */
   5052 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5053 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5054 
   5055 	/* Set the tx timeout. */
   5056 	ifp->if_timer = BNX_TX_TIMEOUT;
   5057 
   5058 bnx_start_exit:
   5059 	return;
   5060 }
   5061 
   5062 /****************************************************************************/
   5063 /* Handles any IOCTL calls from the operating system.                       */
   5064 /*                                                                          */
   5065 /* Returns:                                                                 */
   5066 /*   0 for success, positive value for failure.                             */
   5067 /****************************************************************************/
   5068 int
   5069 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5070 {
   5071 	struct bnx_softc	*sc = ifp->if_softc;
   5072 	struct ifreq		*ifr = (struct ifreq *) data;
   5073 	struct mii_data		*mii = &sc->bnx_mii;
   5074 	int			s, error = 0;
   5075 
   5076 	s = splnet();
   5077 
   5078 	switch (command) {
   5079 	case SIOCSIFFLAGS:
   5080 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5081 			break;
   5082 		/* XXX set an ifflags callback and let ether_ioctl
   5083 		 * handle all of this.
   5084 		 */
   5085 		if (ifp->if_flags & IFF_UP) {
   5086 			if (ifp->if_flags & IFF_RUNNING)
   5087 				error = ENETRESET;
   5088 			else
   5089 				bnx_init(ifp);
   5090 		} else if (ifp->if_flags & IFF_RUNNING)
   5091 			bnx_stop(ifp, 1);
   5092 		break;
   5093 
   5094 	case SIOCSIFMEDIA:
   5095 	case SIOCGIFMEDIA:
   5096 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5097 		    sc->bnx_phy_flags);
   5098 
   5099 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5100 		break;
   5101 
   5102 	default:
   5103 		error = ether_ioctl(ifp, command, data);
   5104 	}
   5105 
   5106 	if (error == ENETRESET) {
   5107 		if (ifp->if_flags & IFF_RUNNING)
   5108 			bnx_iff(sc);
   5109 		error = 0;
   5110 	}
   5111 
   5112 	splx(s);
   5113 	return (error);
   5114 }
   5115 
   5116 /****************************************************************************/
   5117 /* Transmit timeout handler.                                                */
   5118 /*                                                                          */
   5119 /* Returns:                                                                 */
   5120 /*   Nothing.                                                               */
   5121 /****************************************************************************/
   5122 void
   5123 bnx_watchdog(struct ifnet *ifp)
   5124 {
   5125 	struct bnx_softc	*sc = ifp->if_softc;
   5126 
   5127 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5128 	    bnx_dump_status_block(sc));
   5129 	/*
   5130 	 * If we are in this routine because of pause frames, then
   5131 	 * don't reset the hardware.
   5132 	 */
   5133 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5134 		return;
   5135 
   5136 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5137 
   5138 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5139 
   5140 	bnx_init(ifp);
   5141 
   5142 	ifp->if_oerrors++;
   5143 }
   5144 
   5145 /*
   5146  * Interrupt handler.
   5147  */
   5148 /****************************************************************************/
   5149 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5150 /* interrupt and then calls a separate routine for handle the various       */
   5151 /* interrupt causes (PHY, TX, RX).                                          */
   5152 /*                                                                          */
   5153 /* Returns:                                                                 */
   5154 /*   0 for success, positive value for failure.                             */
   5155 /****************************************************************************/
   5156 int
   5157 bnx_intr(void *xsc)
   5158 {
   5159 	struct bnx_softc	*sc;
   5160 	struct ifnet		*ifp;
   5161 	u_int32_t		status_attn_bits;
   5162 	const struct status_block *sblk;
   5163 
   5164 	sc = xsc;
   5165 
   5166 	ifp = &sc->bnx_ec.ec_if;
   5167 
   5168 	if (!device_is_active(sc->bnx_dev) ||
   5169 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5170 		return 0;
   5171 
   5172 	DBRUNIF(1, sc->interrupts_generated++);
   5173 
   5174 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5175 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   5176 
   5177 	/*
   5178 	 * If the hardware status block index
   5179 	 * matches the last value read by the
   5180 	 * driver and we haven't asserted our
   5181 	 * interrupt then there's nothing to do.
   5182 	 */
   5183 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   5184 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   5185 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   5186 		return (0);
   5187 
   5188 	/* Ack the interrupt and stop others from occuring. */
   5189 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5190 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   5191 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5192 
   5193 	/* Keep processing data as long as there is work to do. */
   5194 	for (;;) {
   5195 		sblk = sc->status_block;
   5196 		status_attn_bits = sblk->status_attn_bits;
   5197 
   5198 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5199 		    aprint_debug("Simulating unexpected status attention bit set.");
   5200 		    status_attn_bits = status_attn_bits |
   5201 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5202 
   5203 		/* Was it a link change interrupt? */
   5204 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5205 		    (sblk->status_attn_bits_ack &
   5206 		    STATUS_ATTN_BITS_LINK_STATE))
   5207 			bnx_phy_intr(sc);
   5208 
   5209 		/* If any other attention is asserted then the chip is toast. */
   5210 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5211 		    (sblk->status_attn_bits_ack &
   5212 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5213 			DBRUN(1, sc->unexpected_attentions++);
   5214 
   5215 			BNX_PRINTF(sc,
   5216 			    "Fatal attention detected: 0x%08X\n",
   5217 			    sblk->status_attn_bits);
   5218 
   5219 			DBRUN(BNX_FATAL,
   5220 			    if (bnx_debug_unexpected_attention == 0)
   5221 			    bnx_breakpoint(sc));
   5222 
   5223 			bnx_init(ifp);
   5224 			return (1);
   5225 		}
   5226 
   5227 		/* Check for any completed RX frames. */
   5228 		if (sblk->status_rx_quick_consumer_index0 !=
   5229 		    sc->hw_rx_cons)
   5230 			bnx_rx_intr(sc);
   5231 
   5232 		/* Check for any completed TX frames. */
   5233 		if (sblk->status_tx_quick_consumer_index0 !=
   5234 		    sc->hw_tx_cons)
   5235 			bnx_tx_intr(sc);
   5236 
   5237 		/* Save the status block index value for use during the
   5238 		 * next interrupt.
   5239 		 */
   5240 		sc->last_status_idx = sblk->status_idx;
   5241 
   5242 		/* Prevent speculative reads from getting ahead of the
   5243 		 * status block.
   5244 		 */
   5245 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   5246 		    BUS_SPACE_BARRIER_READ);
   5247 
   5248 		/* If there's no work left then exit the isr. */
   5249 		if ((sblk->status_rx_quick_consumer_index0 ==
   5250 		    sc->hw_rx_cons) &&
   5251 		    (sblk->status_tx_quick_consumer_index0 ==
   5252 		    sc->hw_tx_cons))
   5253 			break;
   5254 	}
   5255 
   5256 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5257 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   5258 
   5259 	/* Re-enable interrupts. */
   5260 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5261 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   5262 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5263 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5264 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   5265 
   5266 	/* Handle any frames that arrived while handling the interrupt. */
   5267 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   5268 		bnx_start(ifp);
   5269 
   5270 	return (1);
   5271 }
   5272 
   5273 /****************************************************************************/
   5274 /* Programs the various packet receive modes (broadcast and multicast).     */
   5275 /*                                                                          */
   5276 /* Returns:                                                                 */
   5277 /*   Nothing.                                                               */
   5278 /****************************************************************************/
   5279 void
   5280 bnx_iff(struct bnx_softc *sc)
   5281 {
   5282 	struct ethercom		*ec = &sc->bnx_ec;
   5283 	struct ifnet		*ifp = &ec->ec_if;
   5284 	struct ether_multi	*enm;
   5285 	struct ether_multistep	step;
   5286 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5287 	u_int32_t		rx_mode, sort_mode;
   5288 	int			h, i;
   5289 
   5290 	/* Initialize receive mode default settings. */
   5291 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5292 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5293 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5294 	ifp->if_flags &= ~IFF_ALLMULTI;
   5295 
   5296 	/*
   5297 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5298 	 * be enbled.
   5299 	 */
   5300 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5301 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5302 
   5303 	/*
   5304 	 * Check for promiscuous, all multicast, or selected
   5305 	 * multicast address filtering.
   5306 	 */
   5307 	if (ifp->if_flags & IFF_PROMISC) {
   5308 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5309 
   5310 		ifp->if_flags |= IFF_ALLMULTI;
   5311 		/* Enable promiscuous mode. */
   5312 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5313 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5314 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5315 allmulti:
   5316 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5317 
   5318 		ifp->if_flags |= IFF_ALLMULTI;
   5319 		/* Enable all multicast addresses. */
   5320 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5321 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5322 			    0xffffffff);
   5323 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5324 	} else {
   5325 		/* Accept one or more multicast(s). */
   5326 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5327 
   5328 		ETHER_FIRST_MULTI(step, ec, enm);
   5329 		while (enm != NULL) {
   5330 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5331 			    ETHER_ADDR_LEN)) {
   5332 				goto allmulti;
   5333 			}
   5334 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5335 			    0xFF;
   5336 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5337 			ETHER_NEXT_MULTI(step, enm);
   5338 		}
   5339 
   5340 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5341 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5342 			    hashes[i]);
   5343 
   5344 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5345 	}
   5346 
   5347 	/* Only make changes if the recive mode has actually changed. */
   5348 	if (rx_mode != sc->rx_mode) {
   5349 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5350 		    rx_mode);
   5351 
   5352 		sc->rx_mode = rx_mode;
   5353 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5354 	}
   5355 
   5356 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5357 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5358 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5359 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5360 }
   5361 
   5362 /****************************************************************************/
   5363 /* Called periodically to updates statistics from the controllers           */
   5364 /* statistics block.                                                        */
   5365 /*                                                                          */
   5366 /* Returns:                                                                 */
   5367 /*   Nothing.                                                               */
   5368 /****************************************************************************/
   5369 void
   5370 bnx_stats_update(struct bnx_softc *sc)
   5371 {
   5372 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5373 	struct statistics_block	*stats;
   5374 
   5375 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5376 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5377 	    BUS_DMASYNC_POSTREAD);
   5378 
   5379 	stats = (struct statistics_block *)sc->stats_block;
   5380 
   5381 	/*
   5382 	 * Update the interface statistics from the
   5383 	 * hardware statistics.
   5384 	 */
   5385 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5386 
   5387 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5388 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5389 	    (u_long)stats->stat_IfInMBUFDiscards +
   5390 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5391 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5392 
   5393 	ifp->if_oerrors = (u_long)
   5394 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5395 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5396 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5397 
   5398 	/*
   5399 	 * Certain controllers don't report
   5400 	 * carrier sense errors correctly.
   5401 	 * See errata E11_5708CA0_1165.
   5402 	 */
   5403 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5404 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5405 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5406 
   5407 	/*
   5408 	 * Update the sysctl statistics from the
   5409 	 * hardware statistics.
   5410 	 */
   5411 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
   5412 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
   5413 
   5414 	sc->stat_IfHCInBadOctets =
   5415 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5416 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
   5417 
   5418 	sc->stat_IfHCOutOctets =
   5419 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5420 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
   5421 
   5422 	sc->stat_IfHCOutBadOctets =
   5423 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5424 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
   5425 
   5426 	sc->stat_IfHCInUcastPkts =
   5427 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5428 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
   5429 
   5430 	sc->stat_IfHCInMulticastPkts =
   5431 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5432 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
   5433 
   5434 	sc->stat_IfHCInBroadcastPkts =
   5435 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5436 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5437 
   5438 	sc->stat_IfHCOutUcastPkts =
   5439 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5440 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
   5441 
   5442 	sc->stat_IfHCOutMulticastPkts =
   5443 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5444 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5445 
   5446 	sc->stat_IfHCOutBroadcastPkts =
   5447 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5448 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5449 
   5450 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5451 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5452 
   5453 	sc->stat_Dot3StatsCarrierSenseErrors =
   5454 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5455 
   5456 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5457 
   5458 	sc->stat_Dot3StatsAlignmentErrors =
   5459 	    stats->stat_Dot3StatsAlignmentErrors;
   5460 
   5461 	sc->stat_Dot3StatsSingleCollisionFrames =
   5462 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5463 
   5464 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5465 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5466 
   5467 	sc->stat_Dot3StatsDeferredTransmissions =
   5468 	    stats->stat_Dot3StatsDeferredTransmissions;
   5469 
   5470 	sc->stat_Dot3StatsExcessiveCollisions =
   5471 	    stats->stat_Dot3StatsExcessiveCollisions;
   5472 
   5473 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5474 
   5475 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5476 
   5477 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5478 
   5479 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5480 
   5481 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5482 
   5483 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5484 
   5485 	sc->stat_EtherStatsPktsRx64Octets =
   5486 	    stats->stat_EtherStatsPktsRx64Octets;
   5487 
   5488 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5489 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5490 
   5491 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5492 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5493 
   5494 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5495 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5496 
   5497 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5498 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5499 
   5500 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5501 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5502 
   5503 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5504 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5505 
   5506 	sc->stat_EtherStatsPktsTx64Octets =
   5507 	    stats->stat_EtherStatsPktsTx64Octets;
   5508 
   5509 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5510 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5511 
   5512 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5513 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5514 
   5515 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5516 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5517 
   5518 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5519 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5520 
   5521 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5522 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5523 
   5524 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5525 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5526 
   5527 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5528 
   5529 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5530 
   5531 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5532 
   5533 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5534 
   5535 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5536 
   5537 	sc->stat_MacControlFramesReceived =
   5538 	    stats->stat_MacControlFramesReceived;
   5539 
   5540 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5541 
   5542 	sc->stat_IfInFramesL2FilterDiscards =
   5543 	    stats->stat_IfInFramesL2FilterDiscards;
   5544 
   5545 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5546 
   5547 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5548 
   5549 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5550 
   5551 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5552 
   5553 	sc->stat_CatchupInRuleCheckerDiscards =
   5554 	    stats->stat_CatchupInRuleCheckerDiscards;
   5555 
   5556 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5557 
   5558 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5559 
   5560 	sc->stat_CatchupInRuleCheckerP4Hit =
   5561 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5562 
   5563 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5564 }
   5565 
   5566 void
   5567 bnx_tick(void *xsc)
   5568 {
   5569 	struct bnx_softc	*sc = xsc;
   5570 	struct mii_data		*mii;
   5571 	u_int32_t		msg;
   5572 	u_int16_t		prod, chain_prod;
   5573 	u_int32_t		prod_bseq;
   5574 	int s = splnet();
   5575 
   5576 	/* Tell the firmware that the driver is still running. */
   5577 #ifdef BNX_DEBUG
   5578 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5579 #else
   5580 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5581 #endif
   5582 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5583 
   5584 	/* Update the statistics from the hardware statistics block. */
   5585 	bnx_stats_update(sc);
   5586 
   5587 	/* Schedule the next tick. */
   5588 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5589 
   5590 	mii = &sc->bnx_mii;
   5591 	mii_tick(mii);
   5592 
   5593 	/* try to get more RX buffers, just in case */
   5594 	prod = sc->rx_prod;
   5595 	prod_bseq = sc->rx_prod_bseq;
   5596 	chain_prod = RX_CHAIN_IDX(prod);
   5597 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5598 	sc->rx_prod = prod;
   5599 	sc->rx_prod_bseq = prod_bseq;
   5600 	splx(s);
   5601 	return;
   5602 }
   5603 
   5604 /****************************************************************************/
   5605 /* BNX Debug Routines                                                       */
   5606 /****************************************************************************/
   5607 #ifdef BNX_DEBUG
   5608 
   5609 /****************************************************************************/
   5610 /* Prints out information about an mbuf.                                    */
   5611 /*                                                                          */
   5612 /* Returns:                                                                 */
   5613 /*   Nothing.                                                               */
   5614 /****************************************************************************/
   5615 void
   5616 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5617 {
   5618 	struct mbuf		*mp = m;
   5619 
   5620 	if (m == NULL) {
   5621 		/* Index out of range. */
   5622 		aprint_error("mbuf ptr is null!\n");
   5623 		return;
   5624 	}
   5625 
   5626 	while (mp) {
   5627 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5628 		    mp, mp->m_len);
   5629 
   5630 		if (mp->m_flags & M_EXT)
   5631 			aprint_debug("M_EXT ");
   5632 		if (mp->m_flags & M_PKTHDR)
   5633 			aprint_debug("M_PKTHDR ");
   5634 		aprint_debug("\n");
   5635 
   5636 		if (mp->m_flags & M_EXT)
   5637 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   5638 			    mp, mp->m_ext.ext_size);
   5639 
   5640 		mp = mp->m_next;
   5641 	}
   5642 }
   5643 
   5644 /****************************************************************************/
   5645 /* Prints out the mbufs in the TX mbuf chain.                               */
   5646 /*                                                                          */
   5647 /* Returns:                                                                 */
   5648 /*   Nothing.                                                               */
   5649 /****************************************************************************/
   5650 void
   5651 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5652 {
   5653 #if 0
   5654 	struct mbuf		*m;
   5655 	int			i;
   5656 
   5657 	aprint_debug_dev(sc->bnx_dev,
   5658 	    "----------------------------"
   5659 	    "  tx mbuf data  "
   5660 	    "----------------------------\n");
   5661 
   5662 	for (i = 0; i < count; i++) {
   5663 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5664 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5665 		bnx_dump_mbuf(sc, m);
   5666 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5667 	}
   5668 
   5669 	aprint_debug_dev(sc->bnx_dev,
   5670 	    "--------------------------------------------"
   5671 	    "----------------------------\n");
   5672 #endif
   5673 }
   5674 
   5675 /*
   5676  * This routine prints the RX mbuf chain.
   5677  */
   5678 void
   5679 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5680 {
   5681 	struct mbuf		*m;
   5682 	int			i;
   5683 
   5684 	aprint_debug_dev(sc->bnx_dev,
   5685 	    "----------------------------"
   5686 	    "  rx mbuf data  "
   5687 	    "----------------------------\n");
   5688 
   5689 	for (i = 0; i < count; i++) {
   5690 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5691 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5692 		bnx_dump_mbuf(sc, m);
   5693 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5694 	}
   5695 
   5696 
   5697 	aprint_debug_dev(sc->bnx_dev,
   5698 	    "--------------------------------------------"
   5699 	    "----------------------------\n");
   5700 }
   5701 
   5702 void
   5703 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5704 {
   5705 	if (idx > MAX_TX_BD)
   5706 		/* Index out of range. */
   5707 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5708 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5709 		/* TX Chain page pointer. */
   5710 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5711 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5712 		    txbd->tx_bd_haddr_lo);
   5713 	else
   5714 		/* Normal tx_bd entry. */
   5715 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5716 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5717 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5718 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5719 		    txbd->tx_bd_flags);
   5720 }
   5721 
   5722 void
   5723 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5724 {
   5725 	if (idx > MAX_RX_BD)
   5726 		/* Index out of range. */
   5727 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5728 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5729 		/* TX Chain page pointer. */
   5730 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5731 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5732 		    rxbd->rx_bd_haddr_lo);
   5733 	else
   5734 		/* Normal tx_bd entry. */
   5735 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5736 		    "0x%08X, flags = 0x%08X\n", idx,
   5737 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5738 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5739 }
   5740 
   5741 void
   5742 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5743 {
   5744 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5745 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5746 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5747 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5748 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5749 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5750 }
   5751 
   5752 /*
   5753  * This routine prints the TX chain.
   5754  */
   5755 void
   5756 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5757 {
   5758 	struct tx_bd		*txbd;
   5759 	int			i;
   5760 
   5761 	/* First some info about the tx_bd chain structure. */
   5762 	aprint_debug_dev(sc->bnx_dev,
   5763 	    "----------------------------"
   5764 	    "  tx_bd  chain  "
   5765 	    "----------------------------\n");
   5766 
   5767 	BNX_PRINTF(sc,
   5768 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5769 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
   5770 
   5771 	BNX_PRINTF(sc,
   5772 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5773 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
   5774 
   5775 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
   5776 
   5777 	aprint_error_dev(sc->bnx_dev, ""
   5778 	    "-----------------------------"
   5779 	    "   tx_bd data   "
   5780 	    "-----------------------------\n");
   5781 
   5782 	/* Now print out the tx_bd's themselves. */
   5783 	for (i = 0; i < count; i++) {
   5784 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5785 		bnx_dump_txbd(sc, tx_prod, txbd);
   5786 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5787 	}
   5788 
   5789 	aprint_debug_dev(sc->bnx_dev,
   5790 	    "-----------------------------"
   5791 	    "--------------"
   5792 	    "-----------------------------\n");
   5793 }
   5794 
   5795 /*
   5796  * This routine prints the RX chain.
   5797  */
   5798 void
   5799 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5800 {
   5801 	struct rx_bd		*rxbd;
   5802 	int			i;
   5803 
   5804 	/* First some info about the tx_bd chain structure. */
   5805 	aprint_debug_dev(sc->bnx_dev,
   5806 	    "----------------------------"
   5807 	    "  rx_bd  chain  "
   5808 	    "----------------------------\n");
   5809 
   5810 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   5811 
   5812 	BNX_PRINTF(sc,
   5813 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5814 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
   5815 
   5816 	BNX_PRINTF(sc,
   5817 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5818 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
   5819 
   5820 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
   5821 
   5822 	aprint_error_dev(sc->bnx_dev,
   5823 	    "----------------------------"
   5824 	    "   rx_bd data   "
   5825 	    "----------------------------\n");
   5826 
   5827 	/* Now print out the rx_bd's themselves. */
   5828 	for (i = 0; i < count; i++) {
   5829 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5830 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5831 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5832 	}
   5833 
   5834 	aprint_debug_dev(sc->bnx_dev,
   5835 	    "----------------------------"
   5836 	    "--------------"
   5837 	    "----------------------------\n");
   5838 }
   5839 
   5840 /*
   5841  * This routine prints the status block.
   5842  */
   5843 void
   5844 bnx_dump_status_block(struct bnx_softc *sc)
   5845 {
   5846 	struct status_block	*sblk;
   5847 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5848 	    BUS_DMASYNC_POSTREAD);
   5849 
   5850 	sblk = sc->status_block;
   5851 
   5852    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
   5853 	    "-----------------------------\n");
   5854 
   5855 	BNX_PRINTF(sc,
   5856 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5857 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5858 	    sblk->status_idx);
   5859 
   5860 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5861 	    sblk->status_rx_quick_consumer_index0,
   5862 	    sblk->status_tx_quick_consumer_index0);
   5863 
   5864 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5865 
   5866 	/* Theses indices are not used for normal L2 drivers. */
   5867 	if (sblk->status_rx_quick_consumer_index1 ||
   5868 		sblk->status_tx_quick_consumer_index1)
   5869 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5870 		    sblk->status_rx_quick_consumer_index1,
   5871 		    sblk->status_tx_quick_consumer_index1);
   5872 
   5873 	if (sblk->status_rx_quick_consumer_index2 ||
   5874 		sblk->status_tx_quick_consumer_index2)
   5875 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5876 		    sblk->status_rx_quick_consumer_index2,
   5877 		    sblk->status_tx_quick_consumer_index2);
   5878 
   5879 	if (sblk->status_rx_quick_consumer_index3 ||
   5880 		sblk->status_tx_quick_consumer_index3)
   5881 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5882 		    sblk->status_rx_quick_consumer_index3,
   5883 		    sblk->status_tx_quick_consumer_index3);
   5884 
   5885 	if (sblk->status_rx_quick_consumer_index4 ||
   5886 		sblk->status_rx_quick_consumer_index5)
   5887 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5888 		    sblk->status_rx_quick_consumer_index4,
   5889 		    sblk->status_rx_quick_consumer_index5);
   5890 
   5891 	if (sblk->status_rx_quick_consumer_index6 ||
   5892 		sblk->status_rx_quick_consumer_index7)
   5893 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5894 		    sblk->status_rx_quick_consumer_index6,
   5895 		    sblk->status_rx_quick_consumer_index7);
   5896 
   5897 	if (sblk->status_rx_quick_consumer_index8 ||
   5898 		sblk->status_rx_quick_consumer_index9)
   5899 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5900 		    sblk->status_rx_quick_consumer_index8,
   5901 		    sblk->status_rx_quick_consumer_index9);
   5902 
   5903 	if (sblk->status_rx_quick_consumer_index10 ||
   5904 		sblk->status_rx_quick_consumer_index11)
   5905 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   5906 		    sblk->status_rx_quick_consumer_index10,
   5907 		    sblk->status_rx_quick_consumer_index11);
   5908 
   5909 	if (sblk->status_rx_quick_consumer_index12 ||
   5910 		sblk->status_rx_quick_consumer_index13)
   5911 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   5912 		    sblk->status_rx_quick_consumer_index12,
   5913 		    sblk->status_rx_quick_consumer_index13);
   5914 
   5915 	if (sblk->status_rx_quick_consumer_index14 ||
   5916 		sblk->status_rx_quick_consumer_index15)
   5917 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   5918 		    sblk->status_rx_quick_consumer_index14,
   5919 		    sblk->status_rx_quick_consumer_index15);
   5920 
   5921 	if (sblk->status_completion_producer_index ||
   5922 		sblk->status_cmd_consumer_index)
   5923 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   5924 		    sblk->status_completion_producer_index,
   5925 		    sblk->status_cmd_consumer_index);
   5926 
   5927 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   5928 	    "-----------------------------\n");
   5929 }
   5930 
   5931 /*
   5932  * This routine prints the statistics block.
   5933  */
   5934 void
   5935 bnx_dump_stats_block(struct bnx_softc *sc)
   5936 {
   5937 	struct statistics_block	*sblk;
   5938 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5939 	    BUS_DMASYNC_POSTREAD);
   5940 
   5941 	sblk = sc->stats_block;
   5942 
   5943 	aprint_debug_dev(sc->bnx_dev, ""
   5944 	    "-----------------------------"
   5945 	    " Stats  Block "
   5946 	    "-----------------------------\n");
   5947 
   5948 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   5949 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   5950 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   5951 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   5952 
   5953 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   5954 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   5955 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   5956 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   5957 
   5958 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   5959 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   5960 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   5961 	    sblk->stat_IfHCInMulticastPkts_hi,
   5962 	    sblk->stat_IfHCInMulticastPkts_lo);
   5963 
   5964 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   5965 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   5966 	    sblk->stat_IfHCInBroadcastPkts_hi,
   5967 	    sblk->stat_IfHCInBroadcastPkts_lo,
   5968 	    sblk->stat_IfHCOutUcastPkts_hi,
   5969 	    sblk->stat_IfHCOutUcastPkts_lo);
   5970 
   5971 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   5972 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   5973 	    sblk->stat_IfHCOutMulticastPkts_hi,
   5974 	    sblk->stat_IfHCOutMulticastPkts_lo,
   5975 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   5976 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   5977 
   5978 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   5979 		BNX_PRINTF(sc, "0x%08X : "
   5980 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   5981 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   5982 
   5983 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   5984 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   5985 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   5986 
   5987 	if (sblk->stat_Dot3StatsFCSErrors)
   5988 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   5989 		    sblk->stat_Dot3StatsFCSErrors);
   5990 
   5991 	if (sblk->stat_Dot3StatsAlignmentErrors)
   5992 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   5993 		    sblk->stat_Dot3StatsAlignmentErrors);
   5994 
   5995 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   5996 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   5997 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   5998 
   5999 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6000 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6001 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6002 
   6003 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6004 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6005 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6006 
   6007 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6008 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6009 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6010 
   6011 	if (sblk->stat_Dot3StatsLateCollisions)
   6012 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6013 		    sblk->stat_Dot3StatsLateCollisions);
   6014 
   6015 	if (sblk->stat_EtherStatsCollisions)
   6016 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6017 		    sblk->stat_EtherStatsCollisions);
   6018 
   6019 	if (sblk->stat_EtherStatsFragments)
   6020 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6021 		    sblk->stat_EtherStatsFragments);
   6022 
   6023 	if (sblk->stat_EtherStatsJabbers)
   6024 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6025 		    sblk->stat_EtherStatsJabbers);
   6026 
   6027 	if (sblk->stat_EtherStatsUndersizePkts)
   6028 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6029 		    sblk->stat_EtherStatsUndersizePkts);
   6030 
   6031 	if (sblk->stat_EtherStatsOverrsizePkts)
   6032 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6033 		    sblk->stat_EtherStatsOverrsizePkts);
   6034 
   6035 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6036 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6037 		    sblk->stat_EtherStatsPktsRx64Octets);
   6038 
   6039 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6040 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6041 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6042 
   6043 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6044 		BNX_PRINTF(sc, "0x%08X : "
   6045 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6046 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6047 
   6048 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6049 		BNX_PRINTF(sc, "0x%08X : "
   6050 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6051 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6052 
   6053 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6054 		BNX_PRINTF(sc, "0x%08X : "
   6055 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6056 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6057 
   6058 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6059 		BNX_PRINTF(sc, "0x%08X : "
   6060 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6061 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6062 
   6063 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6064 		BNX_PRINTF(sc, "0x%08X : "
   6065 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6066 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6067 
   6068 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6069 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6070 		    sblk->stat_EtherStatsPktsTx64Octets);
   6071 
   6072 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6073 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6074 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6075 
   6076 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6077 		BNX_PRINTF(sc, "0x%08X : "
   6078 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6079 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6080 
   6081 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6082 		BNX_PRINTF(sc, "0x%08X : "
   6083 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6084 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6085 
   6086 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6087 		BNX_PRINTF(sc, "0x%08X : "
   6088 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6089 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6090 
   6091 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6092 		BNX_PRINTF(sc, "0x%08X : "
   6093 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6094 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6095 
   6096 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6097 		BNX_PRINTF(sc, "0x%08X : "
   6098 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6099 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6100 
   6101 	if (sblk->stat_XonPauseFramesReceived)
   6102 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6103 		    sblk->stat_XonPauseFramesReceived);
   6104 
   6105 	if (sblk->stat_XoffPauseFramesReceived)
   6106 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6107 		    sblk->stat_XoffPauseFramesReceived);
   6108 
   6109 	if (sblk->stat_OutXonSent)
   6110 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6111 		    sblk->stat_OutXonSent);
   6112 
   6113 	if (sblk->stat_OutXoffSent)
   6114 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6115 		    sblk->stat_OutXoffSent);
   6116 
   6117 	if (sblk->stat_FlowControlDone)
   6118 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6119 		    sblk->stat_FlowControlDone);
   6120 
   6121 	if (sblk->stat_MacControlFramesReceived)
   6122 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6123 		    sblk->stat_MacControlFramesReceived);
   6124 
   6125 	if (sblk->stat_XoffStateEntered)
   6126 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6127 		    sblk->stat_XoffStateEntered);
   6128 
   6129 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6130 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6131 		    sblk->stat_IfInFramesL2FilterDiscards);
   6132 
   6133 	if (sblk->stat_IfInRuleCheckerDiscards)
   6134 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6135 		    sblk->stat_IfInRuleCheckerDiscards);
   6136 
   6137 	if (sblk->stat_IfInFTQDiscards)
   6138 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6139 		    sblk->stat_IfInFTQDiscards);
   6140 
   6141 	if (sblk->stat_IfInMBUFDiscards)
   6142 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6143 		    sblk->stat_IfInMBUFDiscards);
   6144 
   6145 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6146 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6147 		    sblk->stat_IfInRuleCheckerP4Hit);
   6148 
   6149 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6150 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6151 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6152 
   6153 	if (sblk->stat_CatchupInFTQDiscards)
   6154 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6155 		    sblk->stat_CatchupInFTQDiscards);
   6156 
   6157 	if (sblk->stat_CatchupInMBUFDiscards)
   6158 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6159 		    sblk->stat_CatchupInMBUFDiscards);
   6160 
   6161 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6162 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6163 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6164 
   6165 	aprint_debug_dev(sc->bnx_dev,
   6166 	    "-----------------------------"
   6167 	    "--------------"
   6168 	    "-----------------------------\n");
   6169 }
   6170 
   6171 void
   6172 bnx_dump_driver_state(struct bnx_softc *sc)
   6173 {
   6174 	aprint_debug_dev(sc->bnx_dev,
   6175 	    "-----------------------------"
   6176 	    " Driver State "
   6177 	    "-----------------------------\n");
   6178 
   6179 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6180 	    "address\n", sc);
   6181 
   6182 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6183 	    sc->status_block);
   6184 
   6185 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6186 	    "address\n", sc->stats_block);
   6187 
   6188 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6189 	    "adddress\n", sc->tx_bd_chain);
   6190 
   6191 #if 0
   6192 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6193 	    sc->rx_bd_chain);
   6194 
   6195 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6196 	    sc->tx_mbuf_ptr);
   6197 #endif
   6198 
   6199 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6200 	    sc->rx_mbuf_ptr);
   6201 
   6202 	BNX_PRINTF(sc,
   6203 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6204 	    sc->interrupts_generated);
   6205 
   6206 	BNX_PRINTF(sc,
   6207 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6208 	    sc->rx_interrupts);
   6209 
   6210 	BNX_PRINTF(sc,
   6211 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6212 	    sc->tx_interrupts);
   6213 
   6214 	BNX_PRINTF(sc,
   6215 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6216 	    sc->last_status_idx);
   6217 
   6218 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6219 	    sc->tx_prod);
   6220 
   6221 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6222 	    sc->tx_cons);
   6223 
   6224 	BNX_PRINTF(sc,
   6225 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6226 	    sc->tx_prod_bseq);
   6227 	BNX_PRINTF(sc,
   6228 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6229 	    sc->tx_mbuf_alloc);
   6230 
   6231 	BNX_PRINTF(sc,
   6232 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6233 	    sc->used_tx_bd);
   6234 
   6235 	BNX_PRINTF(sc,
   6236 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6237 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6238 
   6239 
   6240 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6241 	    sc->rx_prod);
   6242 
   6243 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6244 	    sc->rx_cons);
   6245 
   6246 	BNX_PRINTF(sc,
   6247 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6248 	    sc->rx_prod_bseq);
   6249 
   6250 	BNX_PRINTF(sc,
   6251 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6252 	    sc->rx_mbuf_alloc);
   6253 
   6254 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6255 	    sc->free_rx_bd);
   6256 
   6257 	BNX_PRINTF(sc,
   6258 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6259 	    sc->rx_low_watermark, sc->max_rx_bd);
   6260 
   6261 	BNX_PRINTF(sc,
   6262 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6263 	    "mbuf alloc failures\n",
   6264 	    sc->mbuf_alloc_failed);
   6265 
   6266 	BNX_PRINTF(sc,
   6267 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6268 	    "simulated mbuf alloc failures\n",
   6269 	    sc->mbuf_sim_alloc_failed);
   6270 
   6271 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6272 	    "-----------------------------\n");
   6273 }
   6274 
   6275 void
   6276 bnx_dump_hw_state(struct bnx_softc *sc)
   6277 {
   6278 	u_int32_t		val1;
   6279 	int			i;
   6280 
   6281 	aprint_debug_dev(sc->bnx_dev,
   6282 	    "----------------------------"
   6283 	    " Hardware State "
   6284 	    "----------------------------\n");
   6285 
   6286 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   6287 
   6288 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6289 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6290 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6291 
   6292 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6293 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6294 
   6295 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6296 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6297 
   6298 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6299 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6300 	    BNX_EMAC_STATUS);
   6301 
   6302 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6303 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6304 
   6305 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6306 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6307 	    BNX_TBDR_STATUS);
   6308 
   6309 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6310 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6311 	    BNX_TDMA_STATUS);
   6312 
   6313 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6314 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6315 
   6316 	aprint_debug_dev(sc->bnx_dev,
   6317 	    "----------------------------"
   6318 	    "----------------"
   6319 	    "----------------------------\n");
   6320 
   6321 	aprint_debug_dev(sc->bnx_dev,
   6322 	    "----------------------------"
   6323 	    " Register  Dump "
   6324 	    "----------------------------\n");
   6325 
   6326 	for (i = 0x400; i < 0x8000; i += 0x10)
   6327 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6328 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6329 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6330 
   6331 	aprint_debug_dev(sc->bnx_dev,
   6332 	    "----------------------------"
   6333 	    "----------------"
   6334 	    "----------------------------\n");
   6335 }
   6336 
   6337 void
   6338 bnx_breakpoint(struct bnx_softc *sc)
   6339 {
   6340 	/* Unreachable code to shut the compiler up about unused functions. */
   6341 	if (0) {
   6342    		bnx_dump_txbd(sc, 0, NULL);
   6343 		bnx_dump_rxbd(sc, 0, NULL);
   6344 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6345 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6346 		bnx_dump_l2fhdr(sc, 0, NULL);
   6347 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6348 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6349 		bnx_dump_status_block(sc);
   6350 		bnx_dump_stats_block(sc);
   6351 		bnx_dump_driver_state(sc);
   6352 		bnx_dump_hw_state(sc);
   6353 	}
   6354 
   6355 	bnx_dump_driver_state(sc);
   6356 	/* Print the important status block fields. */
   6357 	bnx_dump_status_block(sc);
   6358 
   6359 #if 0
   6360 	/* Call the debugger. */
   6361 	breakpoint();
   6362 #endif
   6363 
   6364 	return;
   6365 }
   6366 #endif
   6367