if_bnx.c revision 1.43 1 /* $NetBSD: if_bnx.c,v 1.43 2011/05/02 09:03:10 jym Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.43 2011/05/02 09:03:10 jym Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 *
52 * BCM5706C A0, A1
53 * BCM5706S A0, A1
54 * BCM5708C A0, B0
55 * BCM5708S A0, B0
56 * BCM5709C A0 B0, B1, B2 (pre-production)
57 * BCM5709S A0, B0, B1, B2 (pre-production)
58 */
59
60 #include <sys/callout.h>
61 #include <sys/mutex.h>
62
63 #include <dev/pci/if_bnxreg.h>
64 #include <dev/pci/if_bnxvar.h>
65
66 #include <dev/microcode/bnx/bnxfw.h>
67
68 /****************************************************************************/
69 /* BNX Driver Version */
70 /****************************************************************************/
71 #define BNX_DRIVER_VERSION "v0.9.6"
72
73 /****************************************************************************/
74 /* BNX Debug Options */
75 /****************************************************************************/
76 #ifdef BNX_DEBUG
77 u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
78
79 /* 0 = Never */
80 /* 1 = 1 in 2,147,483,648 */
81 /* 256 = 1 in 8,388,608 */
82 /* 2048 = 1 in 1,048,576 */
83 /* 65536 = 1 in 32,768 */
84 /* 1048576 = 1 in 2,048 */
85 /* 268435456 = 1 in 8 */
86 /* 536870912 = 1 in 4 */
87 /* 1073741824 = 1 in 2 */
88
89 /* Controls how often the l2_fhdr frame error check will fail. */
90 int bnx_debug_l2fhdr_status_check = 0;
91
92 /* Controls how often the unexpected attention check will fail. */
93 int bnx_debug_unexpected_attention = 0;
94
95 /* Controls how often to simulate an mbuf allocation failure. */
96 int bnx_debug_mbuf_allocation_failure = 0;
97
98 /* Controls how often to simulate a DMA mapping failure. */
99 int bnx_debug_dma_map_addr_failure = 0;
100
101 /* Controls how often to simulate a bootcode failure. */
102 int bnx_debug_bootcode_running_failure = 0;
103 #endif
104
105 /****************************************************************************/
106 /* PCI Device ID Table */
107 /* */
108 /* Used by bnx_probe() to identify the devices supported by this driver. */
109 /****************************************************************************/
110 static const struct bnx_product {
111 pci_vendor_id_t bp_vendor;
112 pci_product_id_t bp_product;
113 pci_vendor_id_t bp_subvendor;
114 pci_product_id_t bp_subproduct;
115 const char *bp_name;
116 } bnx_devices[] = {
117 #ifdef PCI_SUBPRODUCT_HP_NC370T
118 {
119 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
120 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
121 "HP NC370T Multifunction Gigabit Server Adapter"
122 },
123 #endif
124 #ifdef PCI_SUBPRODUCT_HP_NC370i
125 {
126 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
127 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
128 "HP NC370i Multifunction Gigabit Server Adapter"
129 },
130 #endif
131 {
132 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
133 0, 0,
134 "Broadcom NetXtreme II BCM5706 1000Base-T"
135 },
136 #ifdef PCI_SUBPRODUCT_HP_NC370F
137 {
138 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
139 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
140 "HP NC370F Multifunction Gigabit Server Adapter"
141 },
142 #endif
143 {
144 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
145 0, 0,
146 "Broadcom NetXtreme II BCM5706 1000Base-SX"
147 },
148 {
149 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
150 0, 0,
151 "Broadcom NetXtreme II BCM5708 1000Base-T"
152 },
153 {
154 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
155 0, 0,
156 "Broadcom NetXtreme II BCM5708 1000Base-SX"
157 },
158 {
159 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
160 0, 0,
161 "Broadcom NetXtreme II BCM5709 1000Base-T"
162 },
163 {
164 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
165 0, 0,
166 "Broadcom NetXtreme II BCM5709 1000Base-SX"
167 },
168 {
169 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
170 0, 0,
171 "Broadcom NetXtreme II BCM5716 1000Base-T"
172 },
173 {
174 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
175 0, 0,
176 "Broadcom NetXtreme II BCM5716 1000Base-SX"
177 },
178 };
179
180 /****************************************************************************/
181 /* Supported Flash NVRAM device data. */
182 /****************************************************************************/
183 static struct flash_spec flash_table[] =
184 {
185 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
187 /* Slow EEPROM */
188 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
189 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
190 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
191 "EEPROM - slow"},
192 /* Expansion entry 0001 */
193 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
194 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
196 "Entry 0001"},
197 /* Saifun SA25F010 (non-buffered flash) */
198 /* strap, cfg1, & write1 need updates */
199 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
200 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
201 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
202 "Non-buffered flash (128kB)"},
203 /* Saifun SA25F020 (non-buffered flash) */
204 /* strap, cfg1, & write1 need updates */
205 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
206 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
208 "Non-buffered flash (256kB)"},
209 /* Expansion entry 0100 */
210 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
211 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 "Entry 0100"},
214 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
215 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
216 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
217 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
218 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
219 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
220 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
221 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
222 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
223 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
224 /* Saifun SA25F005 (non-buffered flash) */
225 /* strap, cfg1, & write1 need updates */
226 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
227 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
228 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
229 "Non-buffered flash (64kB)"},
230 /* Fast EEPROM */
231 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
232 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
233 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
234 "EEPROM - fast"},
235 /* Expansion entry 1001 */
236 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
237 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
238 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
239 "Entry 1001"},
240 /* Expansion entry 1010 */
241 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
242 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
243 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
244 "Entry 1010"},
245 /* ATMEL AT45DB011B (buffered flash) */
246 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
247 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
248 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
249 "Buffered flash (128kB)"},
250 /* Expansion entry 1100 */
251 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
252 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
253 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
254 "Entry 1100"},
255 /* Expansion entry 1101 */
256 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
257 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
258 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
259 "Entry 1101"},
260 /* Ateml Expansion entry 1110 */
261 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
262 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
263 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
264 "Entry 1110 (Atmel)"},
265 /* ATMEL AT45DB021B (buffered flash) */
266 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
267 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
268 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
269 "Buffered flash (256kB)"},
270 };
271
272 /*
273 * The BCM5709 controllers transparently handle the
274 * differences between Atmel 264 byte pages and all
275 * flash devices which use 256 byte pages, so no
276 * logical-to-physical mapping is required in the
277 * driver.
278 */
279 static struct flash_spec flash_5709 = {
280 .flags = BNX_NV_BUFFERED,
281 .page_bits = BCM5709_FLASH_PAGE_BITS,
282 .page_size = BCM5709_FLASH_PAGE_SIZE,
283 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
284 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
285 .name = "5709 buffered flash (256kB)",
286 };
287
288 /****************************************************************************/
289 /* OpenBSD device entry points. */
290 /****************************************************************************/
291 static int bnx_probe(device_t, cfdata_t, void *);
292 void bnx_attach(device_t, device_t, void *);
293 int bnx_detach(device_t, int);
294
295 /****************************************************************************/
296 /* BNX Debug Data Structure Dump Routines */
297 /****************************************************************************/
298 #ifdef BNX_DEBUG
299 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
300 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
301 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
302 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
303 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
304 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
305 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
306 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
307 void bnx_dump_status_block(struct bnx_softc *);
308 void bnx_dump_stats_block(struct bnx_softc *);
309 void bnx_dump_driver_state(struct bnx_softc *);
310 void bnx_dump_hw_state(struct bnx_softc *);
311 void bnx_breakpoint(struct bnx_softc *);
312 #endif
313
314 /****************************************************************************/
315 /* BNX Register/Memory Access Routines */
316 /****************************************************************************/
317 u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
318 void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
319 void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
320 int bnx_miibus_read_reg(device_t, int, int);
321 void bnx_miibus_write_reg(device_t, int, int, int);
322 void bnx_miibus_statchg(device_t);
323
324 /****************************************************************************/
325 /* BNX NVRAM Access Routines */
326 /****************************************************************************/
327 int bnx_acquire_nvram_lock(struct bnx_softc *);
328 int bnx_release_nvram_lock(struct bnx_softc *);
329 void bnx_enable_nvram_access(struct bnx_softc *);
330 void bnx_disable_nvram_access(struct bnx_softc *);
331 int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
332 u_int32_t);
333 int bnx_init_nvram(struct bnx_softc *);
334 int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
335 int bnx_nvram_test(struct bnx_softc *);
336 #ifdef BNX_NVRAM_WRITE_SUPPORT
337 int bnx_enable_nvram_write(struct bnx_softc *);
338 void bnx_disable_nvram_write(struct bnx_softc *);
339 int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
340 int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
341 u_int32_t);
342 int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
343 #endif
344
345 /****************************************************************************/
346 /* */
347 /****************************************************************************/
348 void bnx_get_media(struct bnx_softc *);
349 void bnx_init_media(struct bnx_softc *);
350 int bnx_dma_alloc(struct bnx_softc *);
351 void bnx_dma_free(struct bnx_softc *);
352 void bnx_release_resources(struct bnx_softc *);
353
354 /****************************************************************************/
355 /* BNX Firmware Synchronization and Load */
356 /****************************************************************************/
357 int bnx_fw_sync(struct bnx_softc *, u_int32_t);
358 void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
359 u_int32_t);
360 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 struct fw_info *);
362 void bnx_init_cpus(struct bnx_softc *);
363
364 void bnx_stop(struct ifnet *, int);
365 int bnx_reset(struct bnx_softc *, u_int32_t);
366 int bnx_chipinit(struct bnx_softc *);
367 int bnx_blockinit(struct bnx_softc *);
368 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
369 u_int16_t *, u_int32_t *);
370 int bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
371
372 int bnx_init_tx_chain(struct bnx_softc *);
373 void bnx_init_tx_context(struct bnx_softc *);
374 int bnx_init_rx_chain(struct bnx_softc *);
375 void bnx_init_rx_context(struct bnx_softc *);
376 void bnx_free_rx_chain(struct bnx_softc *);
377 void bnx_free_tx_chain(struct bnx_softc *);
378
379 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
380 void bnx_start(struct ifnet *);
381 int bnx_ioctl(struct ifnet *, u_long, void *);
382 void bnx_watchdog(struct ifnet *);
383 int bnx_init(struct ifnet *);
384
385 void bnx_init_context(struct bnx_softc *);
386 void bnx_get_mac_addr(struct bnx_softc *);
387 void bnx_set_mac_addr(struct bnx_softc *);
388 void bnx_phy_intr(struct bnx_softc *);
389 void bnx_rx_intr(struct bnx_softc *);
390 void bnx_tx_intr(struct bnx_softc *);
391 void bnx_disable_intr(struct bnx_softc *);
392 void bnx_enable_intr(struct bnx_softc *);
393
394 int bnx_intr(void *);
395 void bnx_iff(struct bnx_softc *);
396 void bnx_stats_update(struct bnx_softc *);
397 void bnx_tick(void *);
398
399 struct pool *bnx_tx_pool = NULL;
400 int bnx_alloc_pkts(struct bnx_softc *);
401
402 /****************************************************************************/
403 /* OpenBSD device dispatch table. */
404 /****************************************************************************/
405 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
406 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
407
408 /****************************************************************************/
409 /* Device probe function. */
410 /* */
411 /* Compares the device to the driver's list of supported devices and */
412 /* reports back to the OS whether this is the right driver for the device. */
413 /* */
414 /* Returns: */
415 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
416 /****************************************************************************/
417 static const struct bnx_product *
418 bnx_lookup(const struct pci_attach_args *pa)
419 {
420 int i;
421 pcireg_t subid;
422
423 for (i = 0; i < __arraycount(bnx_devices); i++) {
424 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
425 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
426 continue;
427 if (!bnx_devices[i].bp_subvendor)
428 return &bnx_devices[i];
429 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
430 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
431 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
432 return &bnx_devices[i];
433 }
434
435 return NULL;
436 }
437 static int
438 bnx_probe(device_t parent, cfdata_t match, void *aux)
439 {
440 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
441
442 if (bnx_lookup(pa) != NULL)
443 return (1);
444
445 return (0);
446 }
447
448 /****************************************************************************/
449 /* Device attach function. */
450 /* */
451 /* Allocates device resources, performs secondary chip identification, */
452 /* resets and initializes the hardware, and initializes driver instance */
453 /* variables. */
454 /* */
455 /* Returns: */
456 /* 0 on success, positive value on failure. */
457 /****************************************************************************/
458 void
459 bnx_attach(device_t parent, device_t self, void *aux)
460 {
461 const struct bnx_product *bp;
462 struct bnx_softc *sc = device_private(self);
463 prop_dictionary_t dict;
464 struct pci_attach_args *pa = aux;
465 pci_chipset_tag_t pc = pa->pa_pc;
466 pci_intr_handle_t ih;
467 const char *intrstr = NULL;
468 u_int32_t command;
469 struct ifnet *ifp;
470 u_int32_t val;
471 int mii_flags = MIIF_FORCEANEG;
472 pcireg_t memtype;
473
474 if (bnx_tx_pool == NULL) {
475 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
476 if (bnx_tx_pool != NULL) {
477 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
478 0, 0, 0, "bnxpkts", NULL, IPL_NET);
479 } else {
480 aprint_error(": can't alloc bnx_tx_pool\n");
481 return;
482 }
483 }
484
485 bp = bnx_lookup(pa);
486 if (bp == NULL)
487 panic("unknown device");
488
489 sc->bnx_dev = self;
490
491 aprint_naive("\n");
492 aprint_normal(": %s\n", bp->bp_name);
493
494 sc->bnx_pa = *pa;
495
496 /*
497 * Map control/status registers.
498 */
499 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
500 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
501 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
502 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
503
504 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
505 aprint_error_dev(sc->bnx_dev,
506 "failed to enable memory mapping!\n");
507 return;
508 }
509
510 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
511 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
512 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
513 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
514 return;
515 }
516
517 if (pci_intr_map(pa, &ih)) {
518 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
519 goto bnx_attach_fail;
520 }
521
522 intrstr = pci_intr_string(pc, ih);
523
524 /*
525 * Configure byte swap and enable indirect register access.
526 * Rely on CPU to do target byte swapping on big endian systems.
527 * Access to registers outside of PCI configurtion space are not
528 * valid until this is done.
529 */
530 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
531 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
532 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
533
534 /* Save ASIC revsion info. */
535 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
536
537 /*
538 * Find the base address for shared memory access.
539 * Newer versions of bootcode use a signature and offset
540 * while older versions use a fixed address.
541 */
542 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
543 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
544 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
545 (sc->bnx_pa.pa_function << 2));
546 else
547 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
548
549 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
550
551 /* Set initial device and PHY flags */
552 sc->bnx_flags = 0;
553 sc->bnx_phy_flags = 0;
554
555 /* Get PCI bus information (speed and type). */
556 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
557 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
558 u_int32_t clkreg;
559
560 sc->bnx_flags |= BNX_PCIX_FLAG;
561
562 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
563
564 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
565 switch (clkreg) {
566 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
567 sc->bus_speed_mhz = 133;
568 break;
569
570 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
571 sc->bus_speed_mhz = 100;
572 break;
573
574 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
575 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
576 sc->bus_speed_mhz = 66;
577 break;
578
579 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
580 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
581 sc->bus_speed_mhz = 50;
582 break;
583
584 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
585 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
586 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
587 sc->bus_speed_mhz = 33;
588 break;
589 }
590 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
591 sc->bus_speed_mhz = 66;
592 else
593 sc->bus_speed_mhz = 33;
594
595 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
596 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
597
598 /* Reset the controller. */
599 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
600 goto bnx_attach_fail;
601
602 /* Initialize the controller. */
603 if (bnx_chipinit(sc)) {
604 aprint_error_dev(sc->bnx_dev,
605 "Controller initialization failed!\n");
606 goto bnx_attach_fail;
607 }
608
609 /* Perform NVRAM test. */
610 if (bnx_nvram_test(sc)) {
611 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
612 goto bnx_attach_fail;
613 }
614
615 /* Fetch the permanent Ethernet MAC address. */
616 bnx_get_mac_addr(sc);
617 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
618 ether_sprintf(sc->eaddr));
619
620 /*
621 * Trip points control how many BDs
622 * should be ready before generating an
623 * interrupt while ticks control how long
624 * a BD can sit in the chain before
625 * generating an interrupt. Set the default
626 * values for the RX and TX rings.
627 */
628
629 #ifdef BNX_DEBUG
630 /* Force more frequent interrupts. */
631 sc->bnx_tx_quick_cons_trip_int = 1;
632 sc->bnx_tx_quick_cons_trip = 1;
633 sc->bnx_tx_ticks_int = 0;
634 sc->bnx_tx_ticks = 0;
635
636 sc->bnx_rx_quick_cons_trip_int = 1;
637 sc->bnx_rx_quick_cons_trip = 1;
638 sc->bnx_rx_ticks_int = 0;
639 sc->bnx_rx_ticks = 0;
640 #else
641 sc->bnx_tx_quick_cons_trip_int = 20;
642 sc->bnx_tx_quick_cons_trip = 20;
643 sc->bnx_tx_ticks_int = 80;
644 sc->bnx_tx_ticks = 80;
645
646 sc->bnx_rx_quick_cons_trip_int = 6;
647 sc->bnx_rx_quick_cons_trip = 6;
648 sc->bnx_rx_ticks_int = 18;
649 sc->bnx_rx_ticks = 18;
650 #endif
651
652 /* Update statistics once every second. */
653 sc->bnx_stats_ticks = 1000000 & 0xffff00;
654
655 /* Find the media type for the adapter. */
656 bnx_get_media(sc);
657
658 /*
659 * Store config data needed by the PHY driver for
660 * backplane applications
661 */
662 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
663 BNX_SHARED_HW_CFG_CONFIG);
664 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
665 BNX_PORT_HW_CFG_CONFIG);
666
667 /* Allocate DMA memory resources. */
668 sc->bnx_dmatag = pa->pa_dmat;
669 if (bnx_dma_alloc(sc)) {
670 aprint_error_dev(sc->bnx_dev,
671 "DMA resource allocation failed!\n");
672 goto bnx_attach_fail;
673 }
674
675 /* Initialize the ifnet interface. */
676 ifp = &sc->bnx_ec.ec_if;
677 ifp->if_softc = sc;
678 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
679 ifp->if_ioctl = bnx_ioctl;
680 ifp->if_stop = bnx_stop;
681 ifp->if_start = bnx_start;
682 ifp->if_init = bnx_init;
683 ifp->if_timer = 0;
684 ifp->if_watchdog = bnx_watchdog;
685 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
686 IFQ_SET_READY(&ifp->if_snd);
687 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
688
689 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
690 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
691
692 ifp->if_capabilities |=
693 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
694 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
695 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
696
697 /* Hookup IRQ last. */
698 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
699 if (sc->bnx_intrhand == NULL) {
700 aprint_error_dev(self, "couldn't establish interrupt");
701 if (intrstr != NULL)
702 aprint_error(" at %s", intrstr);
703 aprint_error("\n");
704 goto bnx_attach_fail;
705 }
706 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
707
708 sc->bnx_mii.mii_ifp = ifp;
709 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
710 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
711 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
712
713 /* Handle any special PHY initialization for SerDes PHYs. */
714 bnx_init_media(sc);
715
716 sc->bnx_ec.ec_mii = &sc->bnx_mii;
717 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
718 ether_mediastatus);
719
720 /* set phyflags and chipid before mii_attach() */
721 dict = device_properties(self);
722 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
723 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
724
725 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
726 mii_flags |= MIIF_HAVEFIBER;
727 mii_attach(self, &sc->bnx_mii, 0xffffffff,
728 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
729
730 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
731 aprint_error_dev(self, "no PHY found!\n");
732 ifmedia_add(&sc->bnx_mii.mii_media,
733 IFM_ETHER|IFM_MANUAL, 0, NULL);
734 ifmedia_set(&sc->bnx_mii.mii_media,
735 IFM_ETHER|IFM_MANUAL);
736 } else {
737 ifmedia_set(&sc->bnx_mii.mii_media,
738 IFM_ETHER|IFM_AUTO);
739 }
740
741 /* Attach to the Ethernet interface list. */
742 if_attach(ifp);
743 ether_ifattach(ifp,sc->eaddr);
744
745 callout_init(&sc->bnx_timeout, 0);
746
747 if (pmf_device_register(self, NULL, NULL))
748 pmf_class_network_register(self, ifp);
749 else
750 aprint_error_dev(self, "couldn't establish power handler\n");
751
752 /* Print some important debugging info. */
753 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
754
755 goto bnx_attach_exit;
756
757 bnx_attach_fail:
758 bnx_release_resources(sc);
759
760 bnx_attach_exit:
761 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
762 }
763
764 /****************************************************************************/
765 /* Device detach function. */
766 /* */
767 /* Stops the controller, resets the controller, and releases resources. */
768 /* */
769 /* Returns: */
770 /* 0 on success, positive value on failure. */
771 /****************************************************************************/
772 int
773 bnx_detach(device_t dev, int flags)
774 {
775 int s;
776 struct bnx_softc *sc;
777 struct ifnet *ifp;
778
779 sc = device_private(dev);
780 ifp = &sc->bnx_ec.ec_if;
781
782 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
783
784 /* Stop and reset the controller. */
785 s = splnet();
786 if (ifp->if_flags & IFF_RUNNING)
787 bnx_stop(ifp, 1);
788 else {
789 /* Disable the transmit/receive blocks. */
790 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
791 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
792 DELAY(20);
793 bnx_disable_intr(sc);
794 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
795 }
796
797 splx(s);
798
799 pmf_device_deregister(dev);
800 callout_destroy(&sc->bnx_timeout);
801 ether_ifdetach(ifp);
802
803 /* Delete all remaining media. */
804 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
805
806 if_detach(ifp);
807 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
808
809 /* Release all remaining resources. */
810 bnx_release_resources(sc);
811
812 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
813
814 return(0);
815 }
816
817 /****************************************************************************/
818 /* Indirect register read. */
819 /* */
820 /* Reads NetXtreme II registers using an index/data register pair in PCI */
821 /* configuration space. Using this mechanism avoids issues with posted */
822 /* reads but is much slower than memory-mapped I/O. */
823 /* */
824 /* Returns: */
825 /* The value of the register. */
826 /****************************************************************************/
827 u_int32_t
828 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
829 {
830 struct pci_attach_args *pa = &(sc->bnx_pa);
831
832 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
833 offset);
834 #ifdef BNX_DEBUG
835 {
836 u_int32_t val;
837 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
838 BNX_PCICFG_REG_WINDOW);
839 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
840 "val = 0x%08X\n", __func__, offset, val);
841 return (val);
842 }
843 #else
844 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
845 #endif
846 }
847
848 /****************************************************************************/
849 /* Indirect register write. */
850 /* */
851 /* Writes NetXtreme II registers using an index/data register pair in PCI */
852 /* configuration space. Using this mechanism avoids issues with posted */
853 /* writes but is muchh slower than memory-mapped I/O. */
854 /* */
855 /* Returns: */
856 /* Nothing. */
857 /****************************************************************************/
858 void
859 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
860 {
861 struct pci_attach_args *pa = &(sc->bnx_pa);
862
863 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
864 __func__, offset, val);
865
866 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
867 offset);
868 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
869 }
870
871 /****************************************************************************/
872 /* Context memory write. */
873 /* */
874 /* The NetXtreme II controller uses context memory to track connection */
875 /* information for L2 and higher network protocols. */
876 /* */
877 /* Returns: */
878 /* Nothing. */
879 /****************************************************************************/
880 void
881 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
882 u_int32_t ctx_val)
883 {
884 u_int32_t idx, offset = ctx_offset + cid_addr;
885 u_int32_t val, retry_cnt = 5;
886
887 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
888 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
889 REG_WR(sc, BNX_CTX_CTX_CTRL,
890 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
891
892 for (idx = 0; idx < retry_cnt; idx++) {
893 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
894 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
895 break;
896 DELAY(5);
897 }
898
899 #if 0
900 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
901 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
902 "cid_addr = 0x%08X, offset = 0x%08X!\n",
903 __FILE__, __LINE__, cid_addr, ctx_offset);
904 #endif
905
906 } else {
907 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
908 REG_WR(sc, BNX_CTX_DATA, ctx_val);
909 }
910 }
911
912 /****************************************************************************/
913 /* PHY register read. */
914 /* */
915 /* Implements register reads on the MII bus. */
916 /* */
917 /* Returns: */
918 /* The value of the register. */
919 /****************************************************************************/
920 int
921 bnx_miibus_read_reg(device_t dev, int phy, int reg)
922 {
923 struct bnx_softc *sc = device_private(dev);
924 u_int32_t val;
925 int i;
926
927 /* Make sure we are accessing the correct PHY address. */
928 if (phy != sc->bnx_phy_addr) {
929 DBPRINT(sc, BNX_VERBOSE,
930 "Invalid PHY address %d for PHY read!\n", phy);
931 return(0);
932 }
933
934 /*
935 * The BCM5709S PHY is an IEEE Clause 45 PHY
936 * with special mappings to work with IEEE
937 * Clause 22 register accesses.
938 */
939 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
940 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
941 reg += 0x10;
942 }
943
944 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
945 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
946 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
947
948 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
949 REG_RD(sc, BNX_EMAC_MDIO_MODE);
950
951 DELAY(40);
952 }
953
954 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
955 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
956 BNX_EMAC_MDIO_COMM_START_BUSY;
957 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
958
959 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
960 DELAY(10);
961
962 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
963 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
964 DELAY(5);
965
966 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
967 val &= BNX_EMAC_MDIO_COMM_DATA;
968
969 break;
970 }
971 }
972
973 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
974 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
975 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
976 val = 0x0;
977 } else
978 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
979
980 DBPRINT(sc, BNX_EXCESSIVE,
981 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
982 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
983
984 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
985 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
986 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
987
988 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
989 REG_RD(sc, BNX_EMAC_MDIO_MODE);
990
991 DELAY(40);
992 }
993
994 return (val & 0xffff);
995 }
996
997 /****************************************************************************/
998 /* PHY register write. */
999 /* */
1000 /* Implements register writes on the MII bus. */
1001 /* */
1002 /* Returns: */
1003 /* The value of the register. */
1004 /****************************************************************************/
1005 void
1006 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1007 {
1008 struct bnx_softc *sc = device_private(dev);
1009 u_int32_t val1;
1010 int i;
1011
1012 /* Make sure we are accessing the correct PHY address. */
1013 if (phy != sc->bnx_phy_addr) {
1014 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1015 phy);
1016 return;
1017 }
1018
1019 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1020 "val = 0x%04X\n", __func__,
1021 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
1022
1023 /*
1024 * The BCM5709S PHY is an IEEE Clause 45 PHY
1025 * with special mappings to work with IEEE
1026 * Clause 22 register accesses.
1027 */
1028 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1029 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1030 reg += 0x10;
1031 }
1032
1033 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1034 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1035 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1036
1037 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1038 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1039
1040 DELAY(40);
1041 }
1042
1043 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1044 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1045 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1046 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1047
1048 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1049 DELAY(10);
1050
1051 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1052 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1053 DELAY(5);
1054 break;
1055 }
1056 }
1057
1058 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1059 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1060 __LINE__);
1061 }
1062
1063 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1064 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1065 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1066
1067 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1068 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1069
1070 DELAY(40);
1071 }
1072 }
1073
1074 /****************************************************************************/
1075 /* MII bus status change. */
1076 /* */
1077 /* Called by the MII bus driver when the PHY establishes link to set the */
1078 /* MAC interface registers. */
1079 /* */
1080 /* Returns: */
1081 /* Nothing. */
1082 /****************************************************************************/
1083 void
1084 bnx_miibus_statchg(device_t dev)
1085 {
1086 struct bnx_softc *sc = device_private(dev);
1087 struct mii_data *mii = &sc->bnx_mii;
1088 int val;
1089
1090 val = REG_RD(sc, BNX_EMAC_MODE);
1091 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1092 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1093 BNX_EMAC_MODE_25G);
1094
1095 /* Set MII or GMII interface based on the speed
1096 * negotiated by the PHY.
1097 */
1098 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1099 case IFM_10_T:
1100 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1101 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1102 val |= BNX_EMAC_MODE_PORT_MII_10;
1103 break;
1104 }
1105 /* FALLTHROUGH */
1106 case IFM_100_TX:
1107 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1108 val |= BNX_EMAC_MODE_PORT_MII;
1109 break;
1110 case IFM_2500_SX:
1111 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1112 val |= BNX_EMAC_MODE_25G;
1113 /* FALLTHROUGH */
1114 case IFM_1000_T:
1115 case IFM_1000_SX:
1116 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1117 val |= BNX_EMAC_MODE_PORT_GMII;
1118 break;
1119 default:
1120 val |= BNX_EMAC_MODE_PORT_GMII;
1121 break;
1122 }
1123
1124 /* Set half or full duplex based on the duplicity
1125 * negotiated by the PHY.
1126 */
1127 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1128 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1129 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1130 } else {
1131 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1132 }
1133
1134 REG_WR(sc, BNX_EMAC_MODE, val);
1135 }
1136
1137 /****************************************************************************/
1138 /* Acquire NVRAM lock. */
1139 /* */
1140 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1141 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1142 /* for use by the driver. */
1143 /* */
1144 /* Returns: */
1145 /* 0 on success, positive value on failure. */
1146 /****************************************************************************/
1147 int
1148 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1149 {
1150 u_int32_t val;
1151 int j;
1152
1153 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1154
1155 /* Request access to the flash interface. */
1156 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1157 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1158 val = REG_RD(sc, BNX_NVM_SW_ARB);
1159 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1160 break;
1161
1162 DELAY(5);
1163 }
1164
1165 if (j >= NVRAM_TIMEOUT_COUNT) {
1166 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1167 return (EBUSY);
1168 }
1169
1170 return (0);
1171 }
1172
1173 /****************************************************************************/
1174 /* Release NVRAM lock. */
1175 /* */
1176 /* When the caller is finished accessing NVRAM the lock must be released. */
1177 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1178 /* for use by the driver. */
1179 /* */
1180 /* Returns: */
1181 /* 0 on success, positive value on failure. */
1182 /****************************************************************************/
1183 int
1184 bnx_release_nvram_lock(struct bnx_softc *sc)
1185 {
1186 int j;
1187 u_int32_t val;
1188
1189 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1190
1191 /* Relinquish nvram interface. */
1192 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1193
1194 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1195 val = REG_RD(sc, BNX_NVM_SW_ARB);
1196 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1197 break;
1198
1199 DELAY(5);
1200 }
1201
1202 if (j >= NVRAM_TIMEOUT_COUNT) {
1203 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1204 return (EBUSY);
1205 }
1206
1207 return (0);
1208 }
1209
1210 #ifdef BNX_NVRAM_WRITE_SUPPORT
1211 /****************************************************************************/
1212 /* Enable NVRAM write access. */
1213 /* */
1214 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1215 /* */
1216 /* Returns: */
1217 /* 0 on success, positive value on failure. */
1218 /****************************************************************************/
1219 int
1220 bnx_enable_nvram_write(struct bnx_softc *sc)
1221 {
1222 u_int32_t val;
1223
1224 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1225
1226 val = REG_RD(sc, BNX_MISC_CFG);
1227 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1228
1229 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1230 int j;
1231
1232 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1233 REG_WR(sc, BNX_NVM_COMMAND,
1234 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1235
1236 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1237 DELAY(5);
1238
1239 val = REG_RD(sc, BNX_NVM_COMMAND);
1240 if (val & BNX_NVM_COMMAND_DONE)
1241 break;
1242 }
1243
1244 if (j >= NVRAM_TIMEOUT_COUNT) {
1245 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1246 return (EBUSY);
1247 }
1248 }
1249
1250 return (0);
1251 }
1252
1253 /****************************************************************************/
1254 /* Disable NVRAM write access. */
1255 /* */
1256 /* When the caller is finished writing to NVRAM write access must be */
1257 /* disabled. */
1258 /* */
1259 /* Returns: */
1260 /* Nothing. */
1261 /****************************************************************************/
1262 void
1263 bnx_disable_nvram_write(struct bnx_softc *sc)
1264 {
1265 u_int32_t val;
1266
1267 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1268
1269 val = REG_RD(sc, BNX_MISC_CFG);
1270 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1271 }
1272 #endif
1273
1274 /****************************************************************************/
1275 /* Enable NVRAM access. */
1276 /* */
1277 /* Before accessing NVRAM for read or write operations the caller must */
1278 /* enabled NVRAM access. */
1279 /* */
1280 /* Returns: */
1281 /* Nothing. */
1282 /****************************************************************************/
1283 void
1284 bnx_enable_nvram_access(struct bnx_softc *sc)
1285 {
1286 u_int32_t val;
1287
1288 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1289
1290 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1291 /* Enable both bits, even on read. */
1292 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1293 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1294 }
1295
1296 /****************************************************************************/
1297 /* Disable NVRAM access. */
1298 /* */
1299 /* When the caller is finished accessing NVRAM access must be disabled. */
1300 /* */
1301 /* Returns: */
1302 /* Nothing. */
1303 /****************************************************************************/
1304 void
1305 bnx_disable_nvram_access(struct bnx_softc *sc)
1306 {
1307 u_int32_t val;
1308
1309 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1310
1311 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1312
1313 /* Disable both bits, even after read. */
1314 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1315 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1316 }
1317
1318 #ifdef BNX_NVRAM_WRITE_SUPPORT
1319 /****************************************************************************/
1320 /* Erase NVRAM page before writing. */
1321 /* */
1322 /* Non-buffered flash parts require that a page be erased before it is */
1323 /* written. */
1324 /* */
1325 /* Returns: */
1326 /* 0 on success, positive value on failure. */
1327 /****************************************************************************/
1328 int
1329 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1330 {
1331 u_int32_t cmd;
1332 int j;
1333
1334 /* Buffered flash doesn't require an erase. */
1335 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1336 return (0);
1337
1338 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1339
1340 /* Build an erase command. */
1341 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1342 BNX_NVM_COMMAND_DOIT;
1343
1344 /*
1345 * Clear the DONE bit separately, set the NVRAM adress to erase,
1346 * and issue the erase command.
1347 */
1348 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1349 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1350 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1351
1352 /* Wait for completion. */
1353 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1354 u_int32_t val;
1355
1356 DELAY(5);
1357
1358 val = REG_RD(sc, BNX_NVM_COMMAND);
1359 if (val & BNX_NVM_COMMAND_DONE)
1360 break;
1361 }
1362
1363 if (j >= NVRAM_TIMEOUT_COUNT) {
1364 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1365 return (EBUSY);
1366 }
1367
1368 return (0);
1369 }
1370 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1371
1372 /****************************************************************************/
1373 /* Read a dword (32 bits) from NVRAM. */
1374 /* */
1375 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1376 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1377 /* */
1378 /* Returns: */
1379 /* 0 on success and the 32 bit value read, positive value on failure. */
1380 /****************************************************************************/
1381 int
1382 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1383 u_int8_t *ret_val, u_int32_t cmd_flags)
1384 {
1385 u_int32_t cmd;
1386 int i, rc = 0;
1387
1388 /* Build the command word. */
1389 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1390
1391 /* Calculate the offset for buffered flash if translation is used. */
1392 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1393 offset = ((offset / sc->bnx_flash_info->page_size) <<
1394 sc->bnx_flash_info->page_bits) +
1395 (offset % sc->bnx_flash_info->page_size);
1396 }
1397
1398 /*
1399 * Clear the DONE bit separately, set the address to read,
1400 * and issue the read.
1401 */
1402 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1403 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1404 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1405
1406 /* Wait for completion. */
1407 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1408 u_int32_t val;
1409
1410 DELAY(5);
1411
1412 val = REG_RD(sc, BNX_NVM_COMMAND);
1413 if (val & BNX_NVM_COMMAND_DONE) {
1414 val = REG_RD(sc, BNX_NVM_READ);
1415
1416 val = bnx_be32toh(val);
1417 memcpy(ret_val, &val, 4);
1418 break;
1419 }
1420 }
1421
1422 /* Check for errors. */
1423 if (i >= NVRAM_TIMEOUT_COUNT) {
1424 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1425 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1426 rc = EBUSY;
1427 }
1428
1429 return(rc);
1430 }
1431
1432 #ifdef BNX_NVRAM_WRITE_SUPPORT
1433 /****************************************************************************/
1434 /* Write a dword (32 bits) to NVRAM. */
1435 /* */
1436 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1437 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1438 /* enabled NVRAM write access. */
1439 /* */
1440 /* Returns: */
1441 /* 0 on success, positive value on failure. */
1442 /****************************************************************************/
1443 int
1444 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1445 u_int32_t cmd_flags)
1446 {
1447 u_int32_t cmd, val32;
1448 int j;
1449
1450 /* Build the command word. */
1451 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1452
1453 /* Calculate the offset for buffered flash if translation is used. */
1454 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1455 offset = ((offset / sc->bnx_flash_info->page_size) <<
1456 sc->bnx_flash_info->page_bits) +
1457 (offset % sc->bnx_flash_info->page_size);
1458 }
1459
1460 /*
1461 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1462 * set the NVRAM address to write, and issue the write command
1463 */
1464 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1465 memcpy(&val32, val, 4);
1466 val32 = htobe32(val32);
1467 REG_WR(sc, BNX_NVM_WRITE, val32);
1468 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1469 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1470
1471 /* Wait for completion. */
1472 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1473 DELAY(5);
1474
1475 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1476 break;
1477 }
1478 if (j >= NVRAM_TIMEOUT_COUNT) {
1479 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1480 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1481 return (EBUSY);
1482 }
1483
1484 return (0);
1485 }
1486 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1487
1488 /****************************************************************************/
1489 /* Initialize NVRAM access. */
1490 /* */
1491 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1492 /* access that device. */
1493 /* */
1494 /* Returns: */
1495 /* 0 on success, positive value on failure. */
1496 /****************************************************************************/
1497 int
1498 bnx_init_nvram(struct bnx_softc *sc)
1499 {
1500 u_int32_t val;
1501 int j, entry_count, rc = 0;
1502 struct flash_spec *flash;
1503
1504 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1505
1506 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1507 sc->bnx_flash_info = &flash_5709;
1508 goto bnx_init_nvram_get_flash_size;
1509 }
1510
1511 /* Determine the selected interface. */
1512 val = REG_RD(sc, BNX_NVM_CFG1);
1513
1514 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1515
1516 /*
1517 * Flash reconfiguration is required to support additional
1518 * NVRAM devices not directly supported in hardware.
1519 * Check if the flash interface was reconfigured
1520 * by the bootcode.
1521 */
1522
1523 if (val & 0x40000000) {
1524 /* Flash interface reconfigured by bootcode. */
1525
1526 DBPRINT(sc,BNX_INFO_LOAD,
1527 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1528
1529 for (j = 0, flash = &flash_table[0]; j < entry_count;
1530 j++, flash++) {
1531 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1532 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1533 sc->bnx_flash_info = flash;
1534 break;
1535 }
1536 }
1537 } else {
1538 /* Flash interface not yet reconfigured. */
1539 u_int32_t mask;
1540
1541 DBPRINT(sc,BNX_INFO_LOAD,
1542 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1543
1544 if (val & (1 << 23))
1545 mask = FLASH_BACKUP_STRAP_MASK;
1546 else
1547 mask = FLASH_STRAP_MASK;
1548
1549 /* Look for the matching NVRAM device configuration data. */
1550 for (j = 0, flash = &flash_table[0]; j < entry_count;
1551 j++, flash++) {
1552 /* Check if the dev matches any of the known devices. */
1553 if ((val & mask) == (flash->strapping & mask)) {
1554 /* Found a device match. */
1555 sc->bnx_flash_info = flash;
1556
1557 /* Request access to the flash interface. */
1558 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1559 return (rc);
1560
1561 /* Reconfigure the flash interface. */
1562 bnx_enable_nvram_access(sc);
1563 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1564 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1565 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1566 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1567 bnx_disable_nvram_access(sc);
1568 bnx_release_nvram_lock(sc);
1569
1570 break;
1571 }
1572 }
1573 }
1574
1575 /* Check if a matching device was found. */
1576 if (j == entry_count) {
1577 sc->bnx_flash_info = NULL;
1578 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1579 __FILE__, __LINE__);
1580 rc = ENODEV;
1581 }
1582
1583 bnx_init_nvram_get_flash_size:
1584 /* Write the flash config data to the shared memory interface. */
1585 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1586 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1587 if (val)
1588 sc->bnx_flash_size = val;
1589 else
1590 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1591
1592 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1593 "0x%08X\n", sc->bnx_flash_info->total_size);
1594
1595 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1596
1597 return (rc);
1598 }
1599
1600 /****************************************************************************/
1601 /* Read an arbitrary range of data from NVRAM. */
1602 /* */
1603 /* Prepares the NVRAM interface for access and reads the requested data */
1604 /* into the supplied buffer. */
1605 /* */
1606 /* Returns: */
1607 /* 0 on success and the data read, positive value on failure. */
1608 /****************************************************************************/
1609 int
1610 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1611 int buf_size)
1612 {
1613 int rc = 0;
1614 u_int32_t cmd_flags, offset32, len32, extra;
1615
1616 if (buf_size == 0)
1617 return (0);
1618
1619 /* Request access to the flash interface. */
1620 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1621 return (rc);
1622
1623 /* Enable access to flash interface */
1624 bnx_enable_nvram_access(sc);
1625
1626 len32 = buf_size;
1627 offset32 = offset;
1628 extra = 0;
1629
1630 cmd_flags = 0;
1631
1632 if (offset32 & 3) {
1633 u_int8_t buf[4];
1634 u_int32_t pre_len;
1635
1636 offset32 &= ~3;
1637 pre_len = 4 - (offset & 3);
1638
1639 if (pre_len >= len32) {
1640 pre_len = len32;
1641 cmd_flags =
1642 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1643 } else
1644 cmd_flags = BNX_NVM_COMMAND_FIRST;
1645
1646 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1647
1648 if (rc)
1649 return (rc);
1650
1651 memcpy(ret_buf, buf + (offset & 3), pre_len);
1652
1653 offset32 += 4;
1654 ret_buf += pre_len;
1655 len32 -= pre_len;
1656 }
1657
1658 if (len32 & 3) {
1659 extra = 4 - (len32 & 3);
1660 len32 = (len32 + 4) & ~3;
1661 }
1662
1663 if (len32 == 4) {
1664 u_int8_t buf[4];
1665
1666 if (cmd_flags)
1667 cmd_flags = BNX_NVM_COMMAND_LAST;
1668 else
1669 cmd_flags =
1670 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1671
1672 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1673
1674 memcpy(ret_buf, buf, 4 - extra);
1675 } else if (len32 > 0) {
1676 u_int8_t buf[4];
1677
1678 /* Read the first word. */
1679 if (cmd_flags)
1680 cmd_flags = 0;
1681 else
1682 cmd_flags = BNX_NVM_COMMAND_FIRST;
1683
1684 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1685
1686 /* Advance to the next dword. */
1687 offset32 += 4;
1688 ret_buf += 4;
1689 len32 -= 4;
1690
1691 while (len32 > 4 && rc == 0) {
1692 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1693
1694 /* Advance to the next dword. */
1695 offset32 += 4;
1696 ret_buf += 4;
1697 len32 -= 4;
1698 }
1699
1700 if (rc)
1701 return (rc);
1702
1703 cmd_flags = BNX_NVM_COMMAND_LAST;
1704 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1705
1706 memcpy(ret_buf, buf, 4 - extra);
1707 }
1708
1709 /* Disable access to flash interface and release the lock. */
1710 bnx_disable_nvram_access(sc);
1711 bnx_release_nvram_lock(sc);
1712
1713 return (rc);
1714 }
1715
1716 #ifdef BNX_NVRAM_WRITE_SUPPORT
1717 /****************************************************************************/
1718 /* Write an arbitrary range of data from NVRAM. */
1719 /* */
1720 /* Prepares the NVRAM interface for write access and writes the requested */
1721 /* data from the supplied buffer. The caller is responsible for */
1722 /* calculating any appropriate CRCs. */
1723 /* */
1724 /* Returns: */
1725 /* 0 on success, positive value on failure. */
1726 /****************************************************************************/
1727 int
1728 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1729 int buf_size)
1730 {
1731 u_int32_t written, offset32, len32;
1732 u_int8_t *buf, start[4], end[4];
1733 int rc = 0;
1734 int align_start, align_end;
1735
1736 buf = data_buf;
1737 offset32 = offset;
1738 len32 = buf_size;
1739 align_start = align_end = 0;
1740
1741 if ((align_start = (offset32 & 3))) {
1742 offset32 &= ~3;
1743 len32 += align_start;
1744 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1745 return (rc);
1746 }
1747
1748 if (len32 & 3) {
1749 if ((len32 > 4) || !align_start) {
1750 align_end = 4 - (len32 & 3);
1751 len32 += align_end;
1752 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1753 end, 4))) {
1754 return (rc);
1755 }
1756 }
1757 }
1758
1759 if (align_start || align_end) {
1760 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1761 if (buf == 0)
1762 return (ENOMEM);
1763
1764 if (align_start)
1765 memcpy(buf, start, 4);
1766
1767 if (align_end)
1768 memcpy(buf + len32 - 4, end, 4);
1769
1770 memcpy(buf + align_start, data_buf, buf_size);
1771 }
1772
1773 written = 0;
1774 while ((written < len32) && (rc == 0)) {
1775 u_int32_t page_start, page_end, data_start, data_end;
1776 u_int32_t addr, cmd_flags;
1777 int i;
1778 u_int8_t flash_buffer[264];
1779
1780 /* Find the page_start addr */
1781 page_start = offset32 + written;
1782 page_start -= (page_start % sc->bnx_flash_info->page_size);
1783 /* Find the page_end addr */
1784 page_end = page_start + sc->bnx_flash_info->page_size;
1785 /* Find the data_start addr */
1786 data_start = (written == 0) ? offset32 : page_start;
1787 /* Find the data_end addr */
1788 data_end = (page_end > offset32 + len32) ?
1789 (offset32 + len32) : page_end;
1790
1791 /* Request access to the flash interface. */
1792 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1793 goto nvram_write_end;
1794
1795 /* Enable access to flash interface */
1796 bnx_enable_nvram_access(sc);
1797
1798 cmd_flags = BNX_NVM_COMMAND_FIRST;
1799 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1800 int j;
1801
1802 /* Read the whole page into the buffer
1803 * (non-buffer flash only) */
1804 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1805 if (j == (sc->bnx_flash_info->page_size - 4))
1806 cmd_flags |= BNX_NVM_COMMAND_LAST;
1807
1808 rc = bnx_nvram_read_dword(sc,
1809 page_start + j,
1810 &flash_buffer[j],
1811 cmd_flags);
1812
1813 if (rc)
1814 goto nvram_write_end;
1815
1816 cmd_flags = 0;
1817 }
1818 }
1819
1820 /* Enable writes to flash interface (unlock write-protect) */
1821 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1822 goto nvram_write_end;
1823
1824 /* Erase the page */
1825 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1826 goto nvram_write_end;
1827
1828 /* Re-enable the write again for the actual write */
1829 bnx_enable_nvram_write(sc);
1830
1831 /* Loop to write back the buffer data from page_start to
1832 * data_start */
1833 i = 0;
1834 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1835 for (addr = page_start; addr < data_start;
1836 addr += 4, i += 4) {
1837
1838 rc = bnx_nvram_write_dword(sc, addr,
1839 &flash_buffer[i], cmd_flags);
1840
1841 if (rc != 0)
1842 goto nvram_write_end;
1843
1844 cmd_flags = 0;
1845 }
1846 }
1847
1848 /* Loop to write the new data from data_start to data_end */
1849 for (addr = data_start; addr < data_end; addr += 4, i++) {
1850 if ((addr == page_end - 4) ||
1851 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1852 && (addr == data_end - 4))) {
1853
1854 cmd_flags |= BNX_NVM_COMMAND_LAST;
1855 }
1856
1857 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1858
1859 if (rc != 0)
1860 goto nvram_write_end;
1861
1862 cmd_flags = 0;
1863 buf += 4;
1864 }
1865
1866 /* Loop to write back the buffer data from data_end
1867 * to page_end */
1868 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1869 for (addr = data_end; addr < page_end;
1870 addr += 4, i += 4) {
1871
1872 if (addr == page_end-4)
1873 cmd_flags = BNX_NVM_COMMAND_LAST;
1874
1875 rc = bnx_nvram_write_dword(sc, addr,
1876 &flash_buffer[i], cmd_flags);
1877
1878 if (rc != 0)
1879 goto nvram_write_end;
1880
1881 cmd_flags = 0;
1882 }
1883 }
1884
1885 /* Disable writes to flash interface (lock write-protect) */
1886 bnx_disable_nvram_write(sc);
1887
1888 /* Disable access to flash interface */
1889 bnx_disable_nvram_access(sc);
1890 bnx_release_nvram_lock(sc);
1891
1892 /* Increment written */
1893 written += data_end - data_start;
1894 }
1895
1896 nvram_write_end:
1897 if (align_start || align_end)
1898 free(buf, M_DEVBUF);
1899
1900 return (rc);
1901 }
1902 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1903
1904 /****************************************************************************/
1905 /* Verifies that NVRAM is accessible and contains valid data. */
1906 /* */
1907 /* Reads the configuration data from NVRAM and verifies that the CRC is */
1908 /* correct. */
1909 /* */
1910 /* Returns: */
1911 /* 0 on success, positive value on failure. */
1912 /****************************************************************************/
1913 int
1914 bnx_nvram_test(struct bnx_softc *sc)
1915 {
1916 u_int32_t buf[BNX_NVRAM_SIZE / 4];
1917 u_int8_t *data = (u_int8_t *) buf;
1918 int rc = 0;
1919 u_int32_t magic, csum;
1920
1921 /*
1922 * Check that the device NVRAM is valid by reading
1923 * the magic value at offset 0.
1924 */
1925 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1926 goto bnx_nvram_test_done;
1927
1928 magic = bnx_be32toh(buf[0]);
1929 if (magic != BNX_NVRAM_MAGIC) {
1930 rc = ENODEV;
1931 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1932 "Expected: 0x%08X, Found: 0x%08X\n",
1933 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1934 goto bnx_nvram_test_done;
1935 }
1936
1937 /*
1938 * Verify that the device NVRAM includes valid
1939 * configuration data.
1940 */
1941 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1942 goto bnx_nvram_test_done;
1943
1944 csum = ether_crc32_le(data, 0x100);
1945 if (csum != BNX_CRC32_RESIDUAL) {
1946 rc = ENODEV;
1947 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1948 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1949 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1950 goto bnx_nvram_test_done;
1951 }
1952
1953 csum = ether_crc32_le(data + 0x100, 0x100);
1954 if (csum != BNX_CRC32_RESIDUAL) {
1955 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1956 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1957 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1958 rc = ENODEV;
1959 }
1960
1961 bnx_nvram_test_done:
1962 return (rc);
1963 }
1964
1965 /****************************************************************************/
1966 /* Identifies the current media type of the controller and sets the PHY */
1967 /* address. */
1968 /* */
1969 /* Returns: */
1970 /* Nothing. */
1971 /****************************************************************************/
1972 void
1973 bnx_get_media(struct bnx_softc *sc)
1974 {
1975 sc->bnx_phy_addr = 1;
1976
1977 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1978 u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
1979 u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1980 u_int32_t strap;
1981
1982 /*
1983 * The BCM5709S is software configurable
1984 * for Copper or SerDes operation.
1985 */
1986 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1987 DBPRINT(sc, BNX_INFO_LOAD,
1988 "5709 bonded for copper.\n");
1989 goto bnx_get_media_exit;
1990 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1991 DBPRINT(sc, BNX_INFO_LOAD,
1992 "5709 bonded for dual media.\n");
1993 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
1994 goto bnx_get_media_exit;
1995 }
1996
1997 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
1998 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
1999 else {
2000 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2001 >> 8;
2002 }
2003
2004 if (sc->bnx_pa.pa_function == 0) {
2005 switch (strap) {
2006 case 0x4:
2007 case 0x5:
2008 case 0x6:
2009 DBPRINT(sc, BNX_INFO_LOAD,
2010 "BCM5709 s/w configured for SerDes.\n");
2011 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2012 break;
2013 default:
2014 DBPRINT(sc, BNX_INFO_LOAD,
2015 "BCM5709 s/w configured for Copper.\n");
2016 }
2017 } else {
2018 switch (strap) {
2019 case 0x1:
2020 case 0x2:
2021 case 0x4:
2022 DBPRINT(sc, BNX_INFO_LOAD,
2023 "BCM5709 s/w configured for SerDes.\n");
2024 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2025 break;
2026 default:
2027 DBPRINT(sc, BNX_INFO_LOAD,
2028 "BCM5709 s/w configured for Copper.\n");
2029 }
2030 }
2031
2032 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2033 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2034
2035 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2036 u_int32_t val;
2037
2038 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2039
2040 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2041 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2042
2043 /*
2044 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2045 * separate PHY for SerDes.
2046 */
2047 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2048 sc->bnx_phy_addr = 2;
2049 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2050 BNX_SHARED_HW_CFG_CONFIG);
2051 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2052 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2053 DBPRINT(sc, BNX_INFO_LOAD,
2054 "Found 2.5Gb capable adapter\n");
2055 }
2056 }
2057 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2058 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2059 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2060
2061 bnx_get_media_exit:
2062 DBPRINT(sc, (BNX_INFO_LOAD),
2063 "Using PHY address %d.\n", sc->bnx_phy_addr);
2064 }
2065
2066 /****************************************************************************/
2067 /* Performs PHY initialization required before MII drivers access the */
2068 /* device. */
2069 /* */
2070 /* Returns: */
2071 /* Nothing. */
2072 /****************************************************************************/
2073 void
2074 bnx_init_media(struct bnx_softc *sc)
2075 {
2076 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2077 /*
2078 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2079 * IEEE Clause 22 method. Otherwise we have no way to attach
2080 * the PHY to the mii(4) layer. PHY specific configuration
2081 * is done by the mii(4) layer.
2082 */
2083
2084 /* Select auto-negotiation MMD of the PHY. */
2085 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2086 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2087
2088 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2089 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2090
2091 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2092 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2093 }
2094 }
2095
2096 /****************************************************************************/
2097 /* Free any DMA memory owned by the driver. */
2098 /* */
2099 /* Scans through each data structre that requires DMA memory and frees */
2100 /* the memory if allocated. */
2101 /* */
2102 /* Returns: */
2103 /* Nothing. */
2104 /****************************************************************************/
2105 void
2106 bnx_dma_free(struct bnx_softc *sc)
2107 {
2108 int i;
2109
2110 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2111
2112 /* Destroy the status block. */
2113 if (sc->status_block != NULL && sc->status_map != NULL) {
2114 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2115 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2116 BNX_STATUS_BLK_SZ);
2117 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2118 sc->status_rseg);
2119 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2120 sc->status_block = NULL;
2121 sc->status_map = NULL;
2122 }
2123
2124 /* Destroy the statistics block. */
2125 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2126 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2127 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2128 BNX_STATS_BLK_SZ);
2129 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2130 sc->stats_rseg);
2131 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2132 sc->stats_block = NULL;
2133 sc->stats_map = NULL;
2134 }
2135
2136 /* Free, unmap and destroy all context memory pages. */
2137 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2138 for (i = 0; i < sc->ctx_pages; i++) {
2139 if (sc->ctx_block[i] != NULL) {
2140 bus_dmamap_unload(sc->bnx_dmatag,
2141 sc->ctx_map[i]);
2142 bus_dmamem_unmap(sc->bnx_dmatag,
2143 (void *)sc->ctx_block[i],
2144 BCM_PAGE_SIZE);
2145 bus_dmamem_free(sc->bnx_dmatag,
2146 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2147 bus_dmamap_destroy(sc->bnx_dmatag,
2148 sc->ctx_map[i]);
2149 sc->ctx_block[i] = NULL;
2150 }
2151 }
2152 }
2153
2154 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2155 for (i = 0; i < TX_PAGES; i++ ) {
2156 if (sc->tx_bd_chain[i] != NULL &&
2157 sc->tx_bd_chain_map[i] != NULL) {
2158 bus_dmamap_unload(sc->bnx_dmatag,
2159 sc->tx_bd_chain_map[i]);
2160 bus_dmamem_unmap(sc->bnx_dmatag,
2161 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2162 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2163 sc->tx_bd_chain_rseg[i]);
2164 bus_dmamap_destroy(sc->bnx_dmatag,
2165 sc->tx_bd_chain_map[i]);
2166 sc->tx_bd_chain[i] = NULL;
2167 sc->tx_bd_chain_map[i] = NULL;
2168 }
2169 }
2170
2171 /* Destroy the TX dmamaps. */
2172 /* This isn't necessary since we dont allocate them up front */
2173
2174 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2175 for (i = 0; i < RX_PAGES; i++ ) {
2176 if (sc->rx_bd_chain[i] != NULL &&
2177 sc->rx_bd_chain_map[i] != NULL) {
2178 bus_dmamap_unload(sc->bnx_dmatag,
2179 sc->rx_bd_chain_map[i]);
2180 bus_dmamem_unmap(sc->bnx_dmatag,
2181 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2182 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2183 sc->rx_bd_chain_rseg[i]);
2184
2185 bus_dmamap_destroy(sc->bnx_dmatag,
2186 sc->rx_bd_chain_map[i]);
2187 sc->rx_bd_chain[i] = NULL;
2188 sc->rx_bd_chain_map[i] = NULL;
2189 }
2190 }
2191
2192 /* Unload and destroy the RX mbuf maps. */
2193 for (i = 0; i < TOTAL_RX_BD; i++) {
2194 if (sc->rx_mbuf_map[i] != NULL) {
2195 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2196 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2197 }
2198 }
2199
2200 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2201 }
2202
2203 /****************************************************************************/
2204 /* Allocate any DMA memory needed by the driver. */
2205 /* */
2206 /* Allocates DMA memory needed for the various global structures needed by */
2207 /* hardware. */
2208 /* */
2209 /* Returns: */
2210 /* 0 for success, positive value for failure. */
2211 /****************************************************************************/
2212 int
2213 bnx_dma_alloc(struct bnx_softc *sc)
2214 {
2215 int i, rc = 0;
2216
2217 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2218
2219 /*
2220 * Allocate DMA memory for the status block, map the memory into DMA
2221 * space, and fetch the physical address of the block.
2222 */
2223 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2224 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2225 aprint_error_dev(sc->bnx_dev,
2226 "Could not create status block DMA map!\n");
2227 rc = ENOMEM;
2228 goto bnx_dma_alloc_exit;
2229 }
2230
2231 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2232 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2233 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2234 aprint_error_dev(sc->bnx_dev,
2235 "Could not allocate status block DMA memory!\n");
2236 rc = ENOMEM;
2237 goto bnx_dma_alloc_exit;
2238 }
2239
2240 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2241 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2242 aprint_error_dev(sc->bnx_dev,
2243 "Could not map status block DMA memory!\n");
2244 rc = ENOMEM;
2245 goto bnx_dma_alloc_exit;
2246 }
2247
2248 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2249 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2250 aprint_error_dev(sc->bnx_dev,
2251 "Could not load status block DMA memory!\n");
2252 rc = ENOMEM;
2253 goto bnx_dma_alloc_exit;
2254 }
2255
2256 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2257 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2258
2259 /* DRC - Fix for 64 bit addresses. */
2260 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2261 (u_int32_t) sc->status_block_paddr);
2262
2263 /* BCM5709 uses host memory as cache for context memory. */
2264 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2265 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2266 if (sc->ctx_pages == 0)
2267 sc->ctx_pages = 1;
2268 if (sc->ctx_pages > 4) /* XXX */
2269 sc->ctx_pages = 4;
2270
2271 DBRUNIF((sc->ctx_pages > 512),
2272 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2273 __FILE__, __LINE__, sc->ctx_pages));
2274
2275
2276 for (i = 0; i < sc->ctx_pages; i++) {
2277 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2278 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2279 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2280 &sc->ctx_map[i]) != 0) {
2281 rc = ENOMEM;
2282 goto bnx_dma_alloc_exit;
2283 }
2284
2285 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2286 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2287 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2288 rc = ENOMEM;
2289 goto bnx_dma_alloc_exit;
2290 }
2291
2292 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2293 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2294 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2295 rc = ENOMEM;
2296 goto bnx_dma_alloc_exit;
2297 }
2298
2299 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2300 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2301 BUS_DMA_NOWAIT) != 0) {
2302 rc = ENOMEM;
2303 goto bnx_dma_alloc_exit;
2304 }
2305
2306 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2307 }
2308 }
2309
2310 /*
2311 * Allocate DMA memory for the statistics block, map the memory into
2312 * DMA space, and fetch the physical address of the block.
2313 */
2314 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2315 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2316 aprint_error_dev(sc->bnx_dev,
2317 "Could not create stats block DMA map!\n");
2318 rc = ENOMEM;
2319 goto bnx_dma_alloc_exit;
2320 }
2321
2322 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2323 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2324 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2325 aprint_error_dev(sc->bnx_dev,
2326 "Could not allocate stats block DMA memory!\n");
2327 rc = ENOMEM;
2328 goto bnx_dma_alloc_exit;
2329 }
2330
2331 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2332 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2333 aprint_error_dev(sc->bnx_dev,
2334 "Could not map stats block DMA memory!\n");
2335 rc = ENOMEM;
2336 goto bnx_dma_alloc_exit;
2337 }
2338
2339 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2340 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2341 aprint_error_dev(sc->bnx_dev,
2342 "Could not load status block DMA memory!\n");
2343 rc = ENOMEM;
2344 goto bnx_dma_alloc_exit;
2345 }
2346
2347 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2348 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2349
2350 /* DRC - Fix for 64 bit address. */
2351 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2352 (u_int32_t) sc->stats_block_paddr);
2353
2354 /*
2355 * Allocate DMA memory for the TX buffer descriptor chain,
2356 * and fetch the physical address of the block.
2357 */
2358 for (i = 0; i < TX_PAGES; i++) {
2359 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2360 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2361 &sc->tx_bd_chain_map[i])) {
2362 aprint_error_dev(sc->bnx_dev,
2363 "Could not create Tx desc %d DMA map!\n", i);
2364 rc = ENOMEM;
2365 goto bnx_dma_alloc_exit;
2366 }
2367
2368 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2369 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2370 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2371 aprint_error_dev(sc->bnx_dev,
2372 "Could not allocate TX desc %d DMA memory!\n",
2373 i);
2374 rc = ENOMEM;
2375 goto bnx_dma_alloc_exit;
2376 }
2377
2378 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2379 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2380 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2381 aprint_error_dev(sc->bnx_dev,
2382 "Could not map TX desc %d DMA memory!\n", i);
2383 rc = ENOMEM;
2384 goto bnx_dma_alloc_exit;
2385 }
2386
2387 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2388 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2389 BUS_DMA_NOWAIT)) {
2390 aprint_error_dev(sc->bnx_dev,
2391 "Could not load TX desc %d DMA memory!\n", i);
2392 rc = ENOMEM;
2393 goto bnx_dma_alloc_exit;
2394 }
2395
2396 sc->tx_bd_chain_paddr[i] =
2397 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2398
2399 /* DRC - Fix for 64 bit systems. */
2400 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2401 i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2402 }
2403
2404 /*
2405 * Create lists to hold TX mbufs.
2406 */
2407 TAILQ_INIT(&sc->tx_free_pkts);
2408 TAILQ_INIT(&sc->tx_used_pkts);
2409 sc->tx_pkt_count = 0;
2410 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2411
2412 /*
2413 * Allocate DMA memory for the Rx buffer descriptor chain,
2414 * and fetch the physical address of the block.
2415 */
2416 for (i = 0; i < RX_PAGES; i++) {
2417 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2418 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2419 &sc->rx_bd_chain_map[i])) {
2420 aprint_error_dev(sc->bnx_dev,
2421 "Could not create Rx desc %d DMA map!\n", i);
2422 rc = ENOMEM;
2423 goto bnx_dma_alloc_exit;
2424 }
2425
2426 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2427 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2428 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2429 aprint_error_dev(sc->bnx_dev,
2430 "Could not allocate Rx desc %d DMA memory!\n", i);
2431 rc = ENOMEM;
2432 goto bnx_dma_alloc_exit;
2433 }
2434
2435 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2436 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2437 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2438 aprint_error_dev(sc->bnx_dev,
2439 "Could not map Rx desc %d DMA memory!\n", i);
2440 rc = ENOMEM;
2441 goto bnx_dma_alloc_exit;
2442 }
2443
2444 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2445 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2446 BUS_DMA_NOWAIT)) {
2447 aprint_error_dev(sc->bnx_dev,
2448 "Could not load Rx desc %d DMA memory!\n", i);
2449 rc = ENOMEM;
2450 goto bnx_dma_alloc_exit;
2451 }
2452
2453 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2454 sc->rx_bd_chain_paddr[i] =
2455 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2456
2457 /* DRC - Fix for 64 bit systems. */
2458 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2459 i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2460 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2461 0, BNX_RX_CHAIN_PAGE_SZ,
2462 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2463 }
2464
2465 /*
2466 * Create DMA maps for the Rx buffer mbufs.
2467 */
2468 for (i = 0; i < TOTAL_RX_BD; i++) {
2469 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2470 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2471 &sc->rx_mbuf_map[i])) {
2472 aprint_error_dev(sc->bnx_dev,
2473 "Could not create Rx mbuf %d DMA map!\n", i);
2474 rc = ENOMEM;
2475 goto bnx_dma_alloc_exit;
2476 }
2477 }
2478
2479 bnx_dma_alloc_exit:
2480 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2481
2482 return(rc);
2483 }
2484
2485 /****************************************************************************/
2486 /* Release all resources used by the driver. */
2487 /* */
2488 /* Releases all resources acquired by the driver including interrupts, */
2489 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2490 /* */
2491 /* Returns: */
2492 /* Nothing. */
2493 /****************************************************************************/
2494 void
2495 bnx_release_resources(struct bnx_softc *sc)
2496 {
2497 struct pci_attach_args *pa = &(sc->bnx_pa);
2498
2499 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2500
2501 bnx_dma_free(sc);
2502
2503 if (sc->bnx_intrhand != NULL)
2504 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2505
2506 if (sc->bnx_size)
2507 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2508
2509 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2510 }
2511
2512 /****************************************************************************/
2513 /* Firmware synchronization. */
2514 /* */
2515 /* Before performing certain events such as a chip reset, synchronize with */
2516 /* the firmware first. */
2517 /* */
2518 /* Returns: */
2519 /* 0 for success, positive value for failure. */
2520 /****************************************************************************/
2521 int
2522 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2523 {
2524 int i, rc = 0;
2525 u_int32_t val;
2526
2527 /* Don't waste any time if we've timed out before. */
2528 if (sc->bnx_fw_timed_out) {
2529 rc = EBUSY;
2530 goto bnx_fw_sync_exit;
2531 }
2532
2533 /* Increment the message sequence number. */
2534 sc->bnx_fw_wr_seq++;
2535 msg_data |= sc->bnx_fw_wr_seq;
2536
2537 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2538 msg_data);
2539
2540 /* Send the message to the bootcode driver mailbox. */
2541 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2542
2543 /* Wait for the bootcode to acknowledge the message. */
2544 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2545 /* Check for a response in the bootcode firmware mailbox. */
2546 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2547 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2548 break;
2549 DELAY(1000);
2550 }
2551
2552 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2553 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2554 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2555 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2556 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2557
2558 msg_data &= ~BNX_DRV_MSG_CODE;
2559 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2560
2561 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2562
2563 sc->bnx_fw_timed_out = 1;
2564 rc = EBUSY;
2565 }
2566
2567 bnx_fw_sync_exit:
2568 return (rc);
2569 }
2570
2571 /****************************************************************************/
2572 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2573 /* */
2574 /* Returns: */
2575 /* Nothing. */
2576 /****************************************************************************/
2577 void
2578 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2579 u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2580 {
2581 int i;
2582 u_int32_t val;
2583
2584 /* Set the page size used by RV2P. */
2585 if (rv2p_proc == RV2P_PROC2) {
2586 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2587 USABLE_RX_BD_PER_PAGE);
2588 }
2589
2590 for (i = 0; i < rv2p_code_len; i += 8) {
2591 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2592 rv2p_code++;
2593 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2594 rv2p_code++;
2595
2596 if (rv2p_proc == RV2P_PROC1) {
2597 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2598 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2599 } else {
2600 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2601 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2602 }
2603 }
2604
2605 /* Reset the processor, un-stall is done later. */
2606 if (rv2p_proc == RV2P_PROC1)
2607 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2608 else
2609 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2610 }
2611
2612 /****************************************************************************/
2613 /* Load RISC processor firmware. */
2614 /* */
2615 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2616 /* associated with a particular processor. */
2617 /* */
2618 /* Returns: */
2619 /* Nothing. */
2620 /****************************************************************************/
2621 void
2622 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2623 struct fw_info *fw)
2624 {
2625 u_int32_t offset;
2626 u_int32_t val;
2627
2628 /* Halt the CPU. */
2629 val = REG_RD_IND(sc, cpu_reg->mode);
2630 val |= cpu_reg->mode_value_halt;
2631 REG_WR_IND(sc, cpu_reg->mode, val);
2632 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2633
2634 /* Load the Text area. */
2635 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2636 if (fw->text) {
2637 int j;
2638
2639 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2640 REG_WR_IND(sc, offset, fw->text[j]);
2641 }
2642
2643 /* Load the Data area. */
2644 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2645 if (fw->data) {
2646 int j;
2647
2648 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2649 REG_WR_IND(sc, offset, fw->data[j]);
2650 }
2651
2652 /* Load the SBSS area. */
2653 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2654 if (fw->sbss) {
2655 int j;
2656
2657 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2658 REG_WR_IND(sc, offset, fw->sbss[j]);
2659 }
2660
2661 /* Load the BSS area. */
2662 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2663 if (fw->bss) {
2664 int j;
2665
2666 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2667 REG_WR_IND(sc, offset, fw->bss[j]);
2668 }
2669
2670 /* Load the Read-Only area. */
2671 offset = cpu_reg->spad_base +
2672 (fw->rodata_addr - cpu_reg->mips_view_base);
2673 if (fw->rodata) {
2674 int j;
2675
2676 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2677 REG_WR_IND(sc, offset, fw->rodata[j]);
2678 }
2679
2680 /* Clear the pre-fetch instruction. */
2681 REG_WR_IND(sc, cpu_reg->inst, 0);
2682 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2683
2684 /* Start the CPU. */
2685 val = REG_RD_IND(sc, cpu_reg->mode);
2686 val &= ~cpu_reg->mode_value_halt;
2687 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2688 REG_WR_IND(sc, cpu_reg->mode, val);
2689 }
2690
2691 /****************************************************************************/
2692 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2693 /* */
2694 /* Loads the firmware for each CPU and starts the CPU. */
2695 /* */
2696 /* Returns: */
2697 /* Nothing. */
2698 /****************************************************************************/
2699 void
2700 bnx_init_cpus(struct bnx_softc *sc)
2701 {
2702 struct cpu_reg cpu_reg;
2703 struct fw_info fw;
2704
2705 switch(BNX_CHIP_NUM(sc)) {
2706 case BNX_CHIP_NUM_5709:
2707 /* Initialize the RV2P processor. */
2708 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2709 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2710 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2711 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2712 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2713 } else {
2714 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2715 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2716 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2717 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2718 }
2719
2720 /* Initialize the RX Processor. */
2721 cpu_reg.mode = BNX_RXP_CPU_MODE;
2722 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2723 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2724 cpu_reg.state = BNX_RXP_CPU_STATE;
2725 cpu_reg.state_value_clear = 0xffffff;
2726 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2727 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2728 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2729 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2730 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2731 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2732 cpu_reg.mips_view_base = 0x8000000;
2733
2734 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2735 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2736 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2737 fw.start_addr = bnx_RXP_b09FwStartAddr;
2738
2739 fw.text_addr = bnx_RXP_b09FwTextAddr;
2740 fw.text_len = bnx_RXP_b09FwTextLen;
2741 fw.text_index = 0;
2742 fw.text = bnx_RXP_b09FwText;
2743
2744 fw.data_addr = bnx_RXP_b09FwDataAddr;
2745 fw.data_len = bnx_RXP_b09FwDataLen;
2746 fw.data_index = 0;
2747 fw.data = bnx_RXP_b09FwData;
2748
2749 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2750 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2751 fw.sbss_index = 0;
2752 fw.sbss = bnx_RXP_b09FwSbss;
2753
2754 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2755 fw.bss_len = bnx_RXP_b09FwBssLen;
2756 fw.bss_index = 0;
2757 fw.bss = bnx_RXP_b09FwBss;
2758
2759 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2760 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2761 fw.rodata_index = 0;
2762 fw.rodata = bnx_RXP_b09FwRodata;
2763
2764 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2765 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2766
2767 /* Initialize the TX Processor. */
2768 cpu_reg.mode = BNX_TXP_CPU_MODE;
2769 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2770 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2771 cpu_reg.state = BNX_TXP_CPU_STATE;
2772 cpu_reg.state_value_clear = 0xffffff;
2773 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2774 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2775 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2776 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2777 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2778 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2779 cpu_reg.mips_view_base = 0x8000000;
2780
2781 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2782 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2783 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2784 fw.start_addr = bnx_TXP_b09FwStartAddr;
2785
2786 fw.text_addr = bnx_TXP_b09FwTextAddr;
2787 fw.text_len = bnx_TXP_b09FwTextLen;
2788 fw.text_index = 0;
2789 fw.text = bnx_TXP_b09FwText;
2790
2791 fw.data_addr = bnx_TXP_b09FwDataAddr;
2792 fw.data_len = bnx_TXP_b09FwDataLen;
2793 fw.data_index = 0;
2794 fw.data = bnx_TXP_b09FwData;
2795
2796 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2797 fw.sbss_len = bnx_TXP_b09FwSbssLen;
2798 fw.sbss_index = 0;
2799 fw.sbss = bnx_TXP_b09FwSbss;
2800
2801 fw.bss_addr = bnx_TXP_b09FwBssAddr;
2802 fw.bss_len = bnx_TXP_b09FwBssLen;
2803 fw.bss_index = 0;
2804 fw.bss = bnx_TXP_b09FwBss;
2805
2806 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2807 fw.rodata_len = bnx_TXP_b09FwRodataLen;
2808 fw.rodata_index = 0;
2809 fw.rodata = bnx_TXP_b09FwRodata;
2810
2811 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2812 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2813
2814 /* Initialize the TX Patch-up Processor. */
2815 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2816 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2817 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2818 cpu_reg.state = BNX_TPAT_CPU_STATE;
2819 cpu_reg.state_value_clear = 0xffffff;
2820 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2821 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2822 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2823 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2824 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2825 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2826 cpu_reg.mips_view_base = 0x8000000;
2827
2828 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2829 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2830 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2831 fw.start_addr = bnx_TPAT_b09FwStartAddr;
2832
2833 fw.text_addr = bnx_TPAT_b09FwTextAddr;
2834 fw.text_len = bnx_TPAT_b09FwTextLen;
2835 fw.text_index = 0;
2836 fw.text = bnx_TPAT_b09FwText;
2837
2838 fw.data_addr = bnx_TPAT_b09FwDataAddr;
2839 fw.data_len = bnx_TPAT_b09FwDataLen;
2840 fw.data_index = 0;
2841 fw.data = bnx_TPAT_b09FwData;
2842
2843 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2844 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2845 fw.sbss_index = 0;
2846 fw.sbss = bnx_TPAT_b09FwSbss;
2847
2848 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2849 fw.bss_len = bnx_TPAT_b09FwBssLen;
2850 fw.bss_index = 0;
2851 fw.bss = bnx_TPAT_b09FwBss;
2852
2853 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2854 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2855 fw.rodata_index = 0;
2856 fw.rodata = bnx_TPAT_b09FwRodata;
2857
2858 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2859 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2860
2861 /* Initialize the Completion Processor. */
2862 cpu_reg.mode = BNX_COM_CPU_MODE;
2863 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2864 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2865 cpu_reg.state = BNX_COM_CPU_STATE;
2866 cpu_reg.state_value_clear = 0xffffff;
2867 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2868 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2869 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2870 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2871 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2872 cpu_reg.spad_base = BNX_COM_SCRATCH;
2873 cpu_reg.mips_view_base = 0x8000000;
2874
2875 fw.ver_major = bnx_COM_b09FwReleaseMajor;
2876 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2877 fw.ver_fix = bnx_COM_b09FwReleaseFix;
2878 fw.start_addr = bnx_COM_b09FwStartAddr;
2879
2880 fw.text_addr = bnx_COM_b09FwTextAddr;
2881 fw.text_len = bnx_COM_b09FwTextLen;
2882 fw.text_index = 0;
2883 fw.text = bnx_COM_b09FwText;
2884
2885 fw.data_addr = bnx_COM_b09FwDataAddr;
2886 fw.data_len = bnx_COM_b09FwDataLen;
2887 fw.data_index = 0;
2888 fw.data = bnx_COM_b09FwData;
2889
2890 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2891 fw.sbss_len = bnx_COM_b09FwSbssLen;
2892 fw.sbss_index = 0;
2893 fw.sbss = bnx_COM_b09FwSbss;
2894
2895 fw.bss_addr = bnx_COM_b09FwBssAddr;
2896 fw.bss_len = bnx_COM_b09FwBssLen;
2897 fw.bss_index = 0;
2898 fw.bss = bnx_COM_b09FwBss;
2899
2900 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
2901 fw.rodata_len = bnx_COM_b09FwRodataLen;
2902 fw.rodata_index = 0;
2903 fw.rodata = bnx_COM_b09FwRodata;
2904 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2905 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2906 break;
2907 default:
2908 /* Initialize the RV2P processor. */
2909 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2910 RV2P_PROC1);
2911 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2912 RV2P_PROC2);
2913
2914 /* Initialize the RX Processor. */
2915 cpu_reg.mode = BNX_RXP_CPU_MODE;
2916 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2917 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2918 cpu_reg.state = BNX_RXP_CPU_STATE;
2919 cpu_reg.state_value_clear = 0xffffff;
2920 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2921 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2922 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2923 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2924 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2925 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2926 cpu_reg.mips_view_base = 0x8000000;
2927
2928 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2929 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2930 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2931 fw.start_addr = bnx_RXP_b06FwStartAddr;
2932
2933 fw.text_addr = bnx_RXP_b06FwTextAddr;
2934 fw.text_len = bnx_RXP_b06FwTextLen;
2935 fw.text_index = 0;
2936 fw.text = bnx_RXP_b06FwText;
2937
2938 fw.data_addr = bnx_RXP_b06FwDataAddr;
2939 fw.data_len = bnx_RXP_b06FwDataLen;
2940 fw.data_index = 0;
2941 fw.data = bnx_RXP_b06FwData;
2942
2943 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2944 fw.sbss_len = bnx_RXP_b06FwSbssLen;
2945 fw.sbss_index = 0;
2946 fw.sbss = bnx_RXP_b06FwSbss;
2947
2948 fw.bss_addr = bnx_RXP_b06FwBssAddr;
2949 fw.bss_len = bnx_RXP_b06FwBssLen;
2950 fw.bss_index = 0;
2951 fw.bss = bnx_RXP_b06FwBss;
2952
2953 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2954 fw.rodata_len = bnx_RXP_b06FwRodataLen;
2955 fw.rodata_index = 0;
2956 fw.rodata = bnx_RXP_b06FwRodata;
2957
2958 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2959 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2960
2961 /* Initialize the TX Processor. */
2962 cpu_reg.mode = BNX_TXP_CPU_MODE;
2963 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2964 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2965 cpu_reg.state = BNX_TXP_CPU_STATE;
2966 cpu_reg.state_value_clear = 0xffffff;
2967 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2968 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2969 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2970 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2971 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2972 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2973 cpu_reg.mips_view_base = 0x8000000;
2974
2975 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2976 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2977 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2978 fw.start_addr = bnx_TXP_b06FwStartAddr;
2979
2980 fw.text_addr = bnx_TXP_b06FwTextAddr;
2981 fw.text_len = bnx_TXP_b06FwTextLen;
2982 fw.text_index = 0;
2983 fw.text = bnx_TXP_b06FwText;
2984
2985 fw.data_addr = bnx_TXP_b06FwDataAddr;
2986 fw.data_len = bnx_TXP_b06FwDataLen;
2987 fw.data_index = 0;
2988 fw.data = bnx_TXP_b06FwData;
2989
2990 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2991 fw.sbss_len = bnx_TXP_b06FwSbssLen;
2992 fw.sbss_index = 0;
2993 fw.sbss = bnx_TXP_b06FwSbss;
2994
2995 fw.bss_addr = bnx_TXP_b06FwBssAddr;
2996 fw.bss_len = bnx_TXP_b06FwBssLen;
2997 fw.bss_index = 0;
2998 fw.bss = bnx_TXP_b06FwBss;
2999
3000 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3001 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3002 fw.rodata_index = 0;
3003 fw.rodata = bnx_TXP_b06FwRodata;
3004
3005 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3006 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3007
3008 /* Initialize the TX Patch-up Processor. */
3009 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3010 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3011 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3012 cpu_reg.state = BNX_TPAT_CPU_STATE;
3013 cpu_reg.state_value_clear = 0xffffff;
3014 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3015 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3016 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3017 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3018 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3019 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3020 cpu_reg.mips_view_base = 0x8000000;
3021
3022 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3023 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3024 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3025 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3026
3027 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3028 fw.text_len = bnx_TPAT_b06FwTextLen;
3029 fw.text_index = 0;
3030 fw.text = bnx_TPAT_b06FwText;
3031
3032 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3033 fw.data_len = bnx_TPAT_b06FwDataLen;
3034 fw.data_index = 0;
3035 fw.data = bnx_TPAT_b06FwData;
3036
3037 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3038 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3039 fw.sbss_index = 0;
3040 fw.sbss = bnx_TPAT_b06FwSbss;
3041
3042 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3043 fw.bss_len = bnx_TPAT_b06FwBssLen;
3044 fw.bss_index = 0;
3045 fw.bss = bnx_TPAT_b06FwBss;
3046
3047 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3048 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3049 fw.rodata_index = 0;
3050 fw.rodata = bnx_TPAT_b06FwRodata;
3051
3052 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3053 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3054
3055 /* Initialize the Completion Processor. */
3056 cpu_reg.mode = BNX_COM_CPU_MODE;
3057 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3058 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3059 cpu_reg.state = BNX_COM_CPU_STATE;
3060 cpu_reg.state_value_clear = 0xffffff;
3061 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3062 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3063 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3064 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3065 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3066 cpu_reg.spad_base = BNX_COM_SCRATCH;
3067 cpu_reg.mips_view_base = 0x8000000;
3068
3069 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3070 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3071 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3072 fw.start_addr = bnx_COM_b06FwStartAddr;
3073
3074 fw.text_addr = bnx_COM_b06FwTextAddr;
3075 fw.text_len = bnx_COM_b06FwTextLen;
3076 fw.text_index = 0;
3077 fw.text = bnx_COM_b06FwText;
3078
3079 fw.data_addr = bnx_COM_b06FwDataAddr;
3080 fw.data_len = bnx_COM_b06FwDataLen;
3081 fw.data_index = 0;
3082 fw.data = bnx_COM_b06FwData;
3083
3084 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3085 fw.sbss_len = bnx_COM_b06FwSbssLen;
3086 fw.sbss_index = 0;
3087 fw.sbss = bnx_COM_b06FwSbss;
3088
3089 fw.bss_addr = bnx_COM_b06FwBssAddr;
3090 fw.bss_len = bnx_COM_b06FwBssLen;
3091 fw.bss_index = 0;
3092 fw.bss = bnx_COM_b06FwBss;
3093
3094 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3095 fw.rodata_len = bnx_COM_b06FwRodataLen;
3096 fw.rodata_index = 0;
3097 fw.rodata = bnx_COM_b06FwRodata;
3098 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3099 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3100 break;
3101 }
3102 }
3103
3104 /****************************************************************************/
3105 /* Initialize context memory. */
3106 /* */
3107 /* Clears the memory associated with each Context ID (CID). */
3108 /* */
3109 /* Returns: */
3110 /* Nothing. */
3111 /****************************************************************************/
3112 void
3113 bnx_init_context(struct bnx_softc *sc)
3114 {
3115 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3116 /* DRC: Replace this constant value with a #define. */
3117 int i, retry_cnt = 10;
3118 u_int32_t val;
3119
3120 /*
3121 * BCM5709 context memory may be cached
3122 * in host memory so prepare the host memory
3123 * for access.
3124 */
3125 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3126 | (1 << 12);
3127 val |= (BCM_PAGE_BITS - 8) << 16;
3128 REG_WR(sc, BNX_CTX_COMMAND, val);
3129
3130 /* Wait for mem init command to complete. */
3131 for (i = 0; i < retry_cnt; i++) {
3132 val = REG_RD(sc, BNX_CTX_COMMAND);
3133 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3134 break;
3135 DELAY(2);
3136 }
3137
3138
3139 /* ToDo: Consider returning an error here. */
3140
3141 for (i = 0; i < sc->ctx_pages; i++) {
3142 int j;
3143
3144
3145 /* Set the physaddr of the context memory cache. */
3146 val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
3147 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3148 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3149 val = (u_int32_t)
3150 ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
3151 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3152 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3153 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3154
3155
3156 /* Verify that the context memory write was successful. */
3157 for (j = 0; j < retry_cnt; j++) {
3158 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3159 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3160 break;
3161 DELAY(5);
3162 }
3163
3164 /* ToDo: Consider returning an error here. */
3165 }
3166 } else {
3167 u_int32_t vcid_addr, offset;
3168
3169 /*
3170 * For the 5706/5708, context memory is local to
3171 * the controller, so initialize the controller
3172 * context memory.
3173 */
3174
3175 vcid_addr = GET_CID_ADDR(96);
3176 while (vcid_addr) {
3177
3178 vcid_addr -= BNX_PHY_CTX_SIZE;
3179
3180 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3181 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3182
3183 for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3184 CTX_WR(sc, 0x00, offset, 0);
3185 }
3186
3187 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3188 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3189 }
3190 }
3191 }
3192
3193 /****************************************************************************/
3194 /* Fetch the permanent MAC address of the controller. */
3195 /* */
3196 /* Returns: */
3197 /* Nothing. */
3198 /****************************************************************************/
3199 void
3200 bnx_get_mac_addr(struct bnx_softc *sc)
3201 {
3202 u_int32_t mac_lo = 0, mac_hi = 0;
3203
3204 /*
3205 * The NetXtreme II bootcode populates various NIC
3206 * power-on and runtime configuration items in a
3207 * shared memory area. The factory configured MAC
3208 * address is available from both NVRAM and the
3209 * shared memory area so we'll read the value from
3210 * shared memory for speed.
3211 */
3212
3213 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3214 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3215
3216 if ((mac_lo == 0) && (mac_hi == 0)) {
3217 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3218 __FILE__, __LINE__);
3219 } else {
3220 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3221 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3222 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3223 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3224 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3225 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3226 }
3227
3228 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3229 "%s\n", ether_sprintf(sc->eaddr));
3230 }
3231
3232 /****************************************************************************/
3233 /* Program the MAC address. */
3234 /* */
3235 /* Returns: */
3236 /* Nothing. */
3237 /****************************************************************************/
3238 void
3239 bnx_set_mac_addr(struct bnx_softc *sc)
3240 {
3241 u_int32_t val;
3242 const u_int8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3243
3244 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3245 "%s\n", ether_sprintf(sc->eaddr));
3246
3247 val = (mac_addr[0] << 8) | mac_addr[1];
3248
3249 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3250
3251 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3252 (mac_addr[4] << 8) | mac_addr[5];
3253
3254 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3255 }
3256
3257 /****************************************************************************/
3258 /* Stop the controller. */
3259 /* */
3260 /* Returns: */
3261 /* Nothing. */
3262 /****************************************************************************/
3263 void
3264 bnx_stop(struct ifnet *ifp, int disable)
3265 {
3266 struct bnx_softc *sc = ifp->if_softc;
3267
3268 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3269
3270 if ((ifp->if_flags & IFF_RUNNING) == 0)
3271 return;
3272
3273 callout_stop(&sc->bnx_timeout);
3274
3275 mii_down(&sc->bnx_mii);
3276
3277 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3278
3279 /* Disable the transmit/receive blocks. */
3280 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3281 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3282 DELAY(20);
3283
3284 bnx_disable_intr(sc);
3285
3286 /* Tell firmware that the driver is going away. */
3287 if (disable)
3288 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3289 else
3290 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3291
3292 /* Free RX buffers. */
3293 bnx_free_rx_chain(sc);
3294
3295 /* Free TX buffers. */
3296 bnx_free_tx_chain(sc);
3297
3298 ifp->if_timer = 0;
3299
3300 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3301
3302 }
3303
3304 int
3305 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
3306 {
3307 struct pci_attach_args *pa = &(sc->bnx_pa);
3308 u_int32_t val;
3309 int i, rc = 0;
3310
3311 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3312
3313 /* Wait for pending PCI transactions to complete. */
3314 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3315 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3316 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3317 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3318 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3319 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3320 DELAY(5);
3321
3322 /* Disable DMA */
3323 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3324 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3325 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3326 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3327 }
3328
3329 /* Assume bootcode is running. */
3330 sc->bnx_fw_timed_out = 0;
3331
3332 /* Give the firmware a chance to prepare for the reset. */
3333 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3334 if (rc)
3335 goto bnx_reset_exit;
3336
3337 /* Set a firmware reminder that this is a soft reset. */
3338 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3339 BNX_DRV_RESET_SIGNATURE_MAGIC);
3340
3341 /* Dummy read to force the chip to complete all current transactions. */
3342 val = REG_RD(sc, BNX_MISC_ID);
3343
3344 /* Chip reset. */
3345 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3346 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3347 REG_RD(sc, BNX_MISC_COMMAND);
3348 DELAY(5);
3349
3350 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3351 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3352
3353 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3354 val);
3355 } else {
3356 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3357 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3358 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3359 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3360
3361 /* Allow up to 30us for reset to complete. */
3362 for (i = 0; i < 10; i++) {
3363 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3364 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3365 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3366 break;
3367 }
3368 DELAY(10);
3369 }
3370
3371 /* Check that reset completed successfully. */
3372 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3373 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3374 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3375 __FILE__, __LINE__);
3376 rc = EBUSY;
3377 goto bnx_reset_exit;
3378 }
3379 }
3380
3381 /* Make sure byte swapping is properly configured. */
3382 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3383 if (val != 0x01020304) {
3384 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3385 __FILE__, __LINE__);
3386 rc = ENODEV;
3387 goto bnx_reset_exit;
3388 }
3389
3390 /* Just completed a reset, assume that firmware is running again. */
3391 sc->bnx_fw_timed_out = 0;
3392
3393 /* Wait for the firmware to finish its initialization. */
3394 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3395 if (rc)
3396 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3397 "initialization!\n", __FILE__, __LINE__);
3398
3399 bnx_reset_exit:
3400 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3401
3402 return (rc);
3403 }
3404
3405 int
3406 bnx_chipinit(struct bnx_softc *sc)
3407 {
3408 struct pci_attach_args *pa = &(sc->bnx_pa);
3409 u_int32_t val;
3410 int rc = 0;
3411
3412 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3413
3414 /* Make sure the interrupt is not active. */
3415 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3416
3417 /* Initialize DMA byte/word swapping, configure the number of DMA */
3418 /* channels and PCI clock compensation delay. */
3419 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3420 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3421 #if BYTE_ORDER == BIG_ENDIAN
3422 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3423 #endif
3424 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3425 DMA_READ_CHANS << 12 |
3426 DMA_WRITE_CHANS << 16;
3427
3428 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3429
3430 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3431 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3432
3433 /*
3434 * This setting resolves a problem observed on certain Intel PCI
3435 * chipsets that cannot handle multiple outstanding DMA operations.
3436 * See errata E9_5706A1_65.
3437 */
3438 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3439 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3440 !(sc->bnx_flags & BNX_PCIX_FLAG))
3441 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3442
3443 REG_WR(sc, BNX_DMA_CONFIG, val);
3444
3445 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3446 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3447 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3448 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3449 val & ~0x20000);
3450 }
3451
3452 /* Enable the RX_V2P and Context state machines before access. */
3453 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3454 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3455 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3456 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3457
3458 /* Initialize context mapping and zero out the quick contexts. */
3459 bnx_init_context(sc);
3460
3461 /* Initialize the on-boards CPUs */
3462 bnx_init_cpus(sc);
3463
3464 /* Prepare NVRAM for access. */
3465 if (bnx_init_nvram(sc)) {
3466 rc = ENODEV;
3467 goto bnx_chipinit_exit;
3468 }
3469
3470 /* Set the kernel bypass block size */
3471 val = REG_RD(sc, BNX_MQ_CONFIG);
3472 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3473 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3474
3475 /* Enable bins used on the 5709. */
3476 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3477 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3478 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3479 val |= BNX_MQ_CONFIG_HALT_DIS;
3480 }
3481
3482 REG_WR(sc, BNX_MQ_CONFIG, val);
3483
3484 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3485 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3486 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3487
3488 val = (BCM_PAGE_BITS - 8) << 24;
3489 REG_WR(sc, BNX_RV2P_CONFIG, val);
3490
3491 /* Configure page size. */
3492 val = REG_RD(sc, BNX_TBDR_CONFIG);
3493 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3494 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3495 REG_WR(sc, BNX_TBDR_CONFIG, val);
3496
3497 #if 0
3498 /* Set the perfect match control register to default. */
3499 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3500 #endif
3501
3502 bnx_chipinit_exit:
3503 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3504
3505 return(rc);
3506 }
3507
3508 /****************************************************************************/
3509 /* Initialize the controller in preparation to send/receive traffic. */
3510 /* */
3511 /* Returns: */
3512 /* 0 for success, positive value for failure. */
3513 /****************************************************************************/
3514 int
3515 bnx_blockinit(struct bnx_softc *sc)
3516 {
3517 u_int32_t reg, val;
3518 int rc = 0;
3519
3520 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3521
3522 /* Load the hardware default MAC address. */
3523 bnx_set_mac_addr(sc);
3524
3525 /* Set the Ethernet backoff seed value */
3526 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3527 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3528 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3529
3530 sc->last_status_idx = 0;
3531 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3532
3533 /* Set up link change interrupt generation. */
3534 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3535 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3536
3537 /* Program the physical address of the status block. */
3538 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
3539 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3540 (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
3541
3542 /* Program the physical address of the statistics block. */
3543 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3544 (u_int32_t)(sc->stats_block_paddr));
3545 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3546 (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
3547
3548 /* Program various host coalescing parameters. */
3549 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3550 << 16) | sc->bnx_tx_quick_cons_trip);
3551 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3552 << 16) | sc->bnx_rx_quick_cons_trip);
3553 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3554 sc->bnx_comp_prod_trip);
3555 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3556 sc->bnx_tx_ticks);
3557 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3558 sc->bnx_rx_ticks);
3559 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3560 sc->bnx_com_ticks);
3561 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3562 sc->bnx_cmd_ticks);
3563 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3564 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3565 REG_WR(sc, BNX_HC_CONFIG,
3566 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3567 BNX_HC_CONFIG_COLLECT_STATS));
3568
3569 /* Clear the internal statistics counters. */
3570 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3571
3572 /* Verify that bootcode is running. */
3573 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3574
3575 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3576 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3577 __FILE__, __LINE__); reg = 0);
3578
3579 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3580 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3581 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3582 "Expected: 08%08X\n", __FILE__, __LINE__,
3583 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3584 BNX_DEV_INFO_SIGNATURE_MAGIC);
3585 rc = ENODEV;
3586 goto bnx_blockinit_exit;
3587 }
3588
3589 /* Check if any management firmware is running. */
3590 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3591 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3592 BNX_PORT_FEATURE_IMD_ENABLED)) {
3593 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3594 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3595 }
3596
3597 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3598 BNX_DEV_INFO_BC_REV);
3599
3600 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3601
3602 /* Enable DMA */
3603 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3604 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3605 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3606 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3607 }
3608
3609 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3610 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3611
3612 /* Enable link state change interrupt generation. */
3613 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3614 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3615 BNX_MISC_ENABLE_DEFAULT_XI);
3616 } else
3617 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3618
3619 /* Enable all remaining blocks in the MAC. */
3620 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3621 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3622 DELAY(20);
3623
3624 bnx_blockinit_exit:
3625 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3626
3627 return (rc);
3628 }
3629
3630 static int
3631 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
3632 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3633 {
3634 bus_dmamap_t map;
3635 struct rx_bd *rxbd;
3636 u_int32_t addr;
3637 int i;
3638 #ifdef BNX_DEBUG
3639 u_int16_t debug_chain_prod = *chain_prod;
3640 #endif
3641 u_int16_t first_chain_prod;
3642
3643 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3644
3645 /* Map the mbuf cluster into device memory. */
3646 map = sc->rx_mbuf_map[*chain_prod];
3647 first_chain_prod = *chain_prod;
3648 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3649 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3650 __FILE__, __LINE__);
3651
3652 m_freem(m_new);
3653
3654 DBRUNIF(1, sc->rx_mbuf_alloc--);
3655
3656 return ENOBUFS;
3657 }
3658 /* Make sure there is room in the receive chain. */
3659 if (map->dm_nsegs > sc->free_rx_bd) {
3660 bus_dmamap_unload(sc->bnx_dmatag, map);
3661 m_freem(m_new);
3662 return EFBIG;
3663 }
3664 #ifdef BNX_DEBUG
3665 /* Track the distribution of buffer segments. */
3666 sc->rx_mbuf_segs[map->dm_nsegs]++;
3667 #endif
3668
3669 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3670 BUS_DMASYNC_PREREAD);
3671
3672 /* Update some debug statistics counters */
3673 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3674 sc->rx_low_watermark = sc->free_rx_bd);
3675 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3676
3677 /*
3678 * Setup the rx_bd for the first segment
3679 */
3680 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3681
3682 addr = (u_int32_t)map->dm_segs[0].ds_addr;
3683 rxbd->rx_bd_haddr_lo = addr;
3684 addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3685 rxbd->rx_bd_haddr_hi = addr;
3686 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3687 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3688 *prod_bseq += map->dm_segs[0].ds_len;
3689 bus_dmamap_sync(sc->bnx_dmatag,
3690 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3691 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3692 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3693
3694 for (i = 1; i < map->dm_nsegs; i++) {
3695 *prod = NEXT_RX_BD(*prod);
3696 *chain_prod = RX_CHAIN_IDX(*prod);
3697
3698 rxbd =
3699 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3700
3701 addr = (u_int32_t)map->dm_segs[i].ds_addr;
3702 rxbd->rx_bd_haddr_lo = addr;
3703 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3704 rxbd->rx_bd_haddr_hi = addr;
3705 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3706 rxbd->rx_bd_flags = 0;
3707 *prod_bseq += map->dm_segs[i].ds_len;
3708 bus_dmamap_sync(sc->bnx_dmatag,
3709 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3710 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3711 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3712 }
3713
3714 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3715 bus_dmamap_sync(sc->bnx_dmatag,
3716 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3717 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3718 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3719
3720 /*
3721 * Save the mbuf, ajust the map pointer (swap map for first and
3722 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3723 * and update counter.
3724 */
3725 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3726 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3727 sc->rx_mbuf_map[*chain_prod] = map;
3728 sc->free_rx_bd -= map->dm_nsegs;
3729
3730 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3731 map->dm_nsegs));
3732 *prod = NEXT_RX_BD(*prod);
3733 *chain_prod = RX_CHAIN_IDX(*prod);
3734
3735 return 0;
3736 }
3737
3738 /****************************************************************************/
3739 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3740 /* */
3741 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3742 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3743 /* necessary. */
3744 /* */
3745 /* Returns: */
3746 /* 0 for success, positive value for failure. */
3747 /****************************************************************************/
3748 int
3749 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
3750 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3751 {
3752 struct mbuf *m_new = NULL;
3753 int rc = 0;
3754 u_int16_t min_free_bd;
3755
3756 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3757 __func__);
3758
3759 /* Make sure the inputs are valid. */
3760 DBRUNIF((*chain_prod > MAX_RX_BD),
3761 aprint_error_dev(sc->bnx_dev,
3762 "RX producer out of range: 0x%04X > 0x%04X\n",
3763 *chain_prod, (u_int16_t)MAX_RX_BD));
3764
3765 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3766 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3767 *prod_bseq);
3768
3769 /* try to get in as many mbufs as possible */
3770 if (sc->mbuf_alloc_size == MCLBYTES)
3771 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3772 else
3773 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3774 while (sc->free_rx_bd >= min_free_bd) {
3775 /* Simulate an mbuf allocation failure. */
3776 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3777 aprint_error_dev(sc->bnx_dev,
3778 "Simulating mbuf allocation failure.\n");
3779 sc->mbuf_sim_alloc_failed++;
3780 rc = ENOBUFS;
3781 goto bnx_get_buf_exit);
3782
3783 /* This is a new mbuf allocation. */
3784 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3785 if (m_new == NULL) {
3786 DBPRINT(sc, BNX_WARN,
3787 "%s(%d): RX mbuf header allocation failed!\n",
3788 __FILE__, __LINE__);
3789
3790 sc->mbuf_alloc_failed++;
3791
3792 rc = ENOBUFS;
3793 goto bnx_get_buf_exit;
3794 }
3795
3796 DBRUNIF(1, sc->rx_mbuf_alloc++);
3797
3798 /* Simulate an mbuf cluster allocation failure. */
3799 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3800 m_freem(m_new);
3801 sc->rx_mbuf_alloc--;
3802 sc->mbuf_alloc_failed++;
3803 sc->mbuf_sim_alloc_failed++;
3804 rc = ENOBUFS;
3805 goto bnx_get_buf_exit);
3806
3807 if (sc->mbuf_alloc_size == MCLBYTES)
3808 MCLGET(m_new, M_DONTWAIT);
3809 else
3810 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3811 M_DONTWAIT);
3812 if (!(m_new->m_flags & M_EXT)) {
3813 DBPRINT(sc, BNX_WARN,
3814 "%s(%d): RX mbuf chain allocation failed!\n",
3815 __FILE__, __LINE__);
3816
3817 m_freem(m_new);
3818
3819 DBRUNIF(1, sc->rx_mbuf_alloc--);
3820 sc->mbuf_alloc_failed++;
3821
3822 rc = ENOBUFS;
3823 goto bnx_get_buf_exit;
3824 }
3825
3826 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3827 if (rc != 0)
3828 goto bnx_get_buf_exit;
3829 }
3830
3831 bnx_get_buf_exit:
3832 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3833 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3834 *chain_prod, *prod_bseq);
3835
3836 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3837 __func__);
3838
3839 return(rc);
3840 }
3841
3842 int
3843 bnx_alloc_pkts(struct bnx_softc *sc)
3844 {
3845 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3846 struct bnx_pkt *pkt;
3847 int i;
3848
3849 for (i = 0; i < 4; i++) { /* magic! */
3850 pkt = pool_get(bnx_tx_pool, PR_NOWAIT);
3851 if (pkt == NULL)
3852 break;
3853
3854 if (bus_dmamap_create(sc->bnx_dmatag,
3855 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3856 MCLBYTES, 0, BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
3857 &pkt->pkt_dmamap) != 0)
3858 goto put;
3859
3860 if (!ISSET(ifp->if_flags, IFF_UP))
3861 goto stopping;
3862
3863 mutex_enter(&sc->tx_pkt_mtx);
3864 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3865 sc->tx_pkt_count++;
3866 mutex_exit(&sc->tx_pkt_mtx);
3867 }
3868
3869 return (i == 0) ? ENOMEM : 0;
3870
3871 stopping:
3872 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3873 put:
3874 pool_put(bnx_tx_pool, pkt);
3875 return (i == 0) ? ENOMEM : 0;
3876 }
3877
3878 /****************************************************************************/
3879 /* Initialize the TX context memory. */
3880 /* */
3881 /* Returns: */
3882 /* Nothing */
3883 /****************************************************************************/
3884 void
3885 bnx_init_tx_context(struct bnx_softc *sc)
3886 {
3887 u_int32_t val;
3888
3889 /* Initialize the context ID for an L2 TX chain. */
3890 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3891 /* Set the CID type to support an L2 connection. */
3892 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3893 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
3894 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3895 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
3896
3897 /* Point the hardware to the first page in the chain. */
3898 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3899 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3900 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
3901 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3902 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3903 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
3904 } else {
3905 /* Set the CID type to support an L2 connection. */
3906 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3907 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3908 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3909 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3910
3911 /* Point the hardware to the first page in the chain. */
3912 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3913 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3914 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3915 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3916 }
3917 }
3918
3919
3920 /****************************************************************************/
3921 /* Allocate memory and initialize the TX data structures. */
3922 /* */
3923 /* Returns: */
3924 /* 0 for success, positive value for failure. */
3925 /****************************************************************************/
3926 int
3927 bnx_init_tx_chain(struct bnx_softc *sc)
3928 {
3929 struct tx_bd *txbd;
3930 u_int32_t addr;
3931 int i, rc = 0;
3932
3933 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3934
3935 /* Force an allocation of some dmamaps for tx up front */
3936 bnx_alloc_pkts(sc);
3937
3938 /* Set the initial TX producer/consumer indices. */
3939 sc->tx_prod = 0;
3940 sc->tx_cons = 0;
3941 sc->tx_prod_bseq = 0;
3942 sc->used_tx_bd = 0;
3943 sc->max_tx_bd = USABLE_TX_BD;
3944 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3945 DBRUNIF(1, sc->tx_full_count = 0);
3946
3947 /*
3948 * The NetXtreme II supports a linked-list structure called
3949 * a Buffer Descriptor Chain (or BD chain). A BD chain
3950 * consists of a series of 1 or more chain pages, each of which
3951 * consists of a fixed number of BD entries.
3952 * The last BD entry on each page is a pointer to the next page
3953 * in the chain, and the last pointer in the BD chain
3954 * points back to the beginning of the chain.
3955 */
3956
3957 /* Set the TX next pointer chain entries. */
3958 for (i = 0; i < TX_PAGES; i++) {
3959 int j;
3960
3961 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3962
3963 /* Check if we've reached the last page. */
3964 if (i == (TX_PAGES - 1))
3965 j = 0;
3966 else
3967 j = i + 1;
3968
3969 addr = (u_int32_t)sc->tx_bd_chain_paddr[j];
3970 txbd->tx_bd_haddr_lo = addr;
3971 addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3972 txbd->tx_bd_haddr_hi = addr;
3973 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3974 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3975 }
3976
3977 /*
3978 * Initialize the context ID for an L2 TX chain.
3979 */
3980 bnx_init_tx_context(sc);
3981
3982 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3983
3984 return(rc);
3985 }
3986
3987 /****************************************************************************/
3988 /* Free memory and clear the TX data structures. */
3989 /* */
3990 /* Returns: */
3991 /* Nothing. */
3992 /****************************************************************************/
3993 void
3994 bnx_free_tx_chain(struct bnx_softc *sc)
3995 {
3996 struct bnx_pkt *pkt;
3997 int i;
3998
3999 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4000
4001 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4002 mutex_enter(&sc->tx_pkt_mtx);
4003 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4004 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4005 mutex_exit(&sc->tx_pkt_mtx);
4006
4007 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4008 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4009 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4010
4011 m_freem(pkt->pkt_mbuf);
4012 DBRUNIF(1, sc->tx_mbuf_alloc--);
4013
4014 mutex_enter(&sc->tx_pkt_mtx);
4015 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4016 }
4017
4018 /* Destroy all the dmamaps we allocated for TX */
4019 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4020 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4021 sc->tx_pkt_count--;
4022 mutex_exit(&sc->tx_pkt_mtx);
4023
4024 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4025 pool_put(bnx_tx_pool, pkt);
4026
4027 mutex_enter(&sc->tx_pkt_mtx);
4028 }
4029 mutex_exit(&sc->tx_pkt_mtx);
4030
4031
4032
4033 /* Clear each TX chain page. */
4034 for (i = 0; i < TX_PAGES; i++) {
4035 memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4036 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4037 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4038 }
4039
4040 sc->used_tx_bd = 0;
4041
4042 /* Check if we lost any mbufs in the process. */
4043 DBRUNIF((sc->tx_mbuf_alloc),
4044 aprint_error_dev(sc->bnx_dev,
4045 "Memory leak! Lost %d mbufs from tx chain!\n",
4046 sc->tx_mbuf_alloc));
4047
4048 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4049 }
4050
4051 /****************************************************************************/
4052 /* Initialize the RX context memory. */
4053 /* */
4054 /* Returns: */
4055 /* Nothing */
4056 /****************************************************************************/
4057 void
4058 bnx_init_rx_context(struct bnx_softc *sc)
4059 {
4060 u_int32_t val;
4061
4062 /* Initialize the context ID for an L2 RX chain. */
4063 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4064 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4065
4066 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4067 u_int32_t lo_water, hi_water;
4068
4069 lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4070 hi_water = USABLE_RX_BD / 4;
4071
4072 lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4073 hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4074
4075 if (hi_water > 0xf)
4076 hi_water = 0xf;
4077 else if (hi_water == 0)
4078 lo_water = 0;
4079 val |= lo_water |
4080 (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4081 }
4082
4083 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4084
4085 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4086 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4087 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4088 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4089 }
4090
4091 /* Point the hardware to the first page in the chain. */
4092 val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
4093 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4094 val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
4095 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4096 }
4097
4098 /****************************************************************************/
4099 /* Allocate memory and initialize the RX data structures. */
4100 /* */
4101 /* Returns: */
4102 /* 0 for success, positive value for failure. */
4103 /****************************************************************************/
4104 int
4105 bnx_init_rx_chain(struct bnx_softc *sc)
4106 {
4107 struct rx_bd *rxbd;
4108 int i, rc = 0;
4109 u_int16_t prod, chain_prod;
4110 u_int32_t prod_bseq, addr;
4111
4112 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4113
4114 /* Initialize the RX producer and consumer indices. */
4115 sc->rx_prod = 0;
4116 sc->rx_cons = 0;
4117 sc->rx_prod_bseq = 0;
4118 sc->free_rx_bd = USABLE_RX_BD;
4119 sc->max_rx_bd = USABLE_RX_BD;
4120 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4121 DBRUNIF(1, sc->rx_empty_count = 0);
4122
4123 /* Initialize the RX next pointer chain entries. */
4124 for (i = 0; i < RX_PAGES; i++) {
4125 int j;
4126
4127 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4128
4129 /* Check if we've reached the last page. */
4130 if (i == (RX_PAGES - 1))
4131 j = 0;
4132 else
4133 j = i + 1;
4134
4135 /* Setup the chain page pointers. */
4136 addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
4137 rxbd->rx_bd_haddr_hi = addr;
4138 addr = (u_int32_t)sc->rx_bd_chain_paddr[j];
4139 rxbd->rx_bd_haddr_lo = addr;
4140 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4141 0, BNX_RX_CHAIN_PAGE_SZ,
4142 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4143 }
4144
4145 /* Allocate mbuf clusters for the rx_bd chain. */
4146 prod = prod_bseq = 0;
4147 chain_prod = RX_CHAIN_IDX(prod);
4148 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4149 BNX_PRINTF(sc,
4150 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4151 }
4152
4153 /* Save the RX chain producer index. */
4154 sc->rx_prod = prod;
4155 sc->rx_prod_bseq = prod_bseq;
4156
4157 for (i = 0; i < RX_PAGES; i++)
4158 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4159 sc->rx_bd_chain_map[i]->dm_mapsize,
4160 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4161
4162 /* Tell the chip about the waiting rx_bd's. */
4163 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4164 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4165
4166 bnx_init_rx_context(sc);
4167
4168 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4169
4170 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4171
4172 return(rc);
4173 }
4174
4175 /****************************************************************************/
4176 /* Free memory and clear the RX data structures. */
4177 /* */
4178 /* Returns: */
4179 /* Nothing. */
4180 /****************************************************************************/
4181 void
4182 bnx_free_rx_chain(struct bnx_softc *sc)
4183 {
4184 int i;
4185
4186 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4187
4188 /* Free any mbufs still in the RX mbuf chain. */
4189 for (i = 0; i < TOTAL_RX_BD; i++) {
4190 if (sc->rx_mbuf_ptr[i] != NULL) {
4191 if (sc->rx_mbuf_map[i] != NULL) {
4192 bus_dmamap_sync(sc->bnx_dmatag,
4193 sc->rx_mbuf_map[i], 0,
4194 sc->rx_mbuf_map[i]->dm_mapsize,
4195 BUS_DMASYNC_POSTREAD);
4196 bus_dmamap_unload(sc->bnx_dmatag,
4197 sc->rx_mbuf_map[i]);
4198 }
4199 m_freem(sc->rx_mbuf_ptr[i]);
4200 sc->rx_mbuf_ptr[i] = NULL;
4201 DBRUNIF(1, sc->rx_mbuf_alloc--);
4202 }
4203 }
4204
4205 /* Clear each RX chain page. */
4206 for (i = 0; i < RX_PAGES; i++)
4207 memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4208
4209 sc->free_rx_bd = sc->max_rx_bd;
4210
4211 /* Check if we lost any mbufs in the process. */
4212 DBRUNIF((sc->rx_mbuf_alloc),
4213 aprint_error_dev(sc->bnx_dev,
4214 "Memory leak! Lost %d mbufs from rx chain!\n",
4215 sc->rx_mbuf_alloc));
4216
4217 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4218 }
4219
4220 /****************************************************************************/
4221 /* Handles PHY generated interrupt events. */
4222 /* */
4223 /* Returns: */
4224 /* Nothing. */
4225 /****************************************************************************/
4226 void
4227 bnx_phy_intr(struct bnx_softc *sc)
4228 {
4229 u_int32_t new_link_state, old_link_state;
4230
4231 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4232 BUS_DMASYNC_POSTREAD);
4233 new_link_state = sc->status_block->status_attn_bits &
4234 STATUS_ATTN_BITS_LINK_STATE;
4235 old_link_state = sc->status_block->status_attn_bits_ack &
4236 STATUS_ATTN_BITS_LINK_STATE;
4237
4238 /* Handle any changes if the link state has changed. */
4239 if (new_link_state != old_link_state) {
4240 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4241
4242 callout_stop(&sc->bnx_timeout);
4243 bnx_tick(sc);
4244
4245 /* Update the status_attn_bits_ack field in the status block. */
4246 if (new_link_state) {
4247 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4248 STATUS_ATTN_BITS_LINK_STATE);
4249 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4250 } else {
4251 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4252 STATUS_ATTN_BITS_LINK_STATE);
4253 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4254 }
4255 }
4256
4257 /* Acknowledge the link change interrupt. */
4258 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4259 }
4260
4261 /****************************************************************************/
4262 /* Handles received frame interrupt events. */
4263 /* */
4264 /* Returns: */
4265 /* Nothing. */
4266 /****************************************************************************/
4267 void
4268 bnx_rx_intr(struct bnx_softc *sc)
4269 {
4270 struct status_block *sblk = sc->status_block;
4271 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4272 u_int16_t hw_cons, sw_cons, sw_chain_cons;
4273 u_int16_t sw_prod, sw_chain_prod;
4274 u_int32_t sw_prod_bseq;
4275 struct l2_fhdr *l2fhdr;
4276 int i;
4277
4278 DBRUNIF(1, sc->rx_interrupts++);
4279 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4280 BUS_DMASYNC_POSTREAD);
4281
4282 /* Prepare the RX chain pages to be accessed by the host CPU. */
4283 for (i = 0; i < RX_PAGES; i++)
4284 bus_dmamap_sync(sc->bnx_dmatag,
4285 sc->rx_bd_chain_map[i], 0,
4286 sc->rx_bd_chain_map[i]->dm_mapsize,
4287 BUS_DMASYNC_POSTWRITE);
4288
4289 /* Get the hardware's view of the RX consumer index. */
4290 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4291 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4292 hw_cons++;
4293
4294 /* Get working copies of the driver's view of the RX indices. */
4295 sw_cons = sc->rx_cons;
4296 sw_prod = sc->rx_prod;
4297 sw_prod_bseq = sc->rx_prod_bseq;
4298
4299 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4300 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4301 __func__, sw_prod, sw_cons, sw_prod_bseq);
4302
4303 /* Prevent speculative reads from getting ahead of the status block. */
4304 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4305 BUS_SPACE_BARRIER_READ);
4306
4307 /* Update some debug statistics counters */
4308 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4309 sc->rx_low_watermark = sc->free_rx_bd);
4310 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4311
4312 /*
4313 * Scan through the receive chain as long
4314 * as there is work to do.
4315 */
4316 while (sw_cons != hw_cons) {
4317 struct mbuf *m;
4318 struct rx_bd *rxbd;
4319 unsigned int len;
4320 u_int32_t status;
4321
4322 /* Convert the producer/consumer indices to an actual
4323 * rx_bd index.
4324 */
4325 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4326 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4327
4328 /* Get the used rx_bd. */
4329 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4330 sc->free_rx_bd++;
4331
4332 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4333 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4334
4335 /* The mbuf is stored with the last rx_bd entry of a packet. */
4336 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4337 #ifdef DIAGNOSTIC
4338 /* Validate that this is the last rx_bd. */
4339 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4340 printf("%s: Unexpected mbuf found in "
4341 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4342 sw_chain_cons);
4343 }
4344 #endif
4345
4346 /* DRC - ToDo: If the received packet is small, say less
4347 * than 128 bytes, allocate a new mbuf here,
4348 * copy the data to that mbuf, and recycle
4349 * the mapped jumbo frame.
4350 */
4351
4352 /* Unmap the mbuf from DMA space. */
4353 #ifdef DIAGNOSTIC
4354 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4355 printf("invalid map sw_cons 0x%x "
4356 "sw_prod 0x%x "
4357 "sw_chain_cons 0x%x "
4358 "sw_chain_prod 0x%x "
4359 "hw_cons 0x%x "
4360 "TOTAL_RX_BD_PER_PAGE 0x%x "
4361 "TOTAL_RX_BD 0x%x\n",
4362 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4363 hw_cons,
4364 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4365 }
4366 #endif
4367 bus_dmamap_sync(sc->bnx_dmatag,
4368 sc->rx_mbuf_map[sw_chain_cons], 0,
4369 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4370 BUS_DMASYNC_POSTREAD);
4371 bus_dmamap_unload(sc->bnx_dmatag,
4372 sc->rx_mbuf_map[sw_chain_cons]);
4373
4374 /* Remove the mbuf from the driver's chain. */
4375 m = sc->rx_mbuf_ptr[sw_chain_cons];
4376 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4377
4378 /*
4379 * Frames received on the NetXteme II are prepended
4380 * with the l2_fhdr structure which provides status
4381 * information about the received frame (including
4382 * VLAN tags and checksum info) and are also
4383 * automatically adjusted to align the IP header
4384 * (i.e. two null bytes are inserted before the
4385 * Ethernet header).
4386 */
4387 l2fhdr = mtod(m, struct l2_fhdr *);
4388
4389 len = l2fhdr->l2_fhdr_pkt_len;
4390 status = l2fhdr->l2_fhdr_status;
4391
4392 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4393 aprint_error("Simulating l2_fhdr status error.\n");
4394 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4395
4396 /* Watch for unusual sized frames. */
4397 DBRUNIF(((len < BNX_MIN_MTU) ||
4398 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4399 aprint_error_dev(sc->bnx_dev,
4400 "Unusual frame size found. "
4401 "Min(%d), Actual(%d), Max(%d)\n",
4402 (int)BNX_MIN_MTU, len,
4403 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4404
4405 bnx_dump_mbuf(sc, m);
4406 bnx_breakpoint(sc));
4407
4408 len -= ETHER_CRC_LEN;
4409
4410 /* Check the received frame for errors. */
4411 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4412 L2_FHDR_ERRORS_PHY_DECODE |
4413 L2_FHDR_ERRORS_ALIGNMENT |
4414 L2_FHDR_ERRORS_TOO_SHORT |
4415 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4416 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4417 len >
4418 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4419 ifp->if_ierrors++;
4420 DBRUNIF(1, sc->l2fhdr_status_errors++);
4421
4422 /* Reuse the mbuf for a new frame. */
4423 if (bnx_add_buf(sc, m, &sw_prod,
4424 &sw_chain_prod, &sw_prod_bseq)) {
4425 DBRUNIF(1, bnx_breakpoint(sc));
4426 panic("%s: Can't reuse RX mbuf!\n",
4427 device_xname(sc->bnx_dev));
4428 }
4429 continue;
4430 }
4431
4432 /*
4433 * Get a new mbuf for the rx_bd. If no new
4434 * mbufs are available then reuse the current mbuf,
4435 * log an ierror on the interface, and generate
4436 * an error in the system log.
4437 */
4438 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4439 &sw_prod_bseq)) {
4440 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4441 "Failed to allocate "
4442 "new mbuf, incoming frame dropped!\n"));
4443
4444 ifp->if_ierrors++;
4445
4446 /* Try and reuse the exisitng mbuf. */
4447 if (bnx_add_buf(sc, m, &sw_prod,
4448 &sw_chain_prod, &sw_prod_bseq)) {
4449 DBRUNIF(1, bnx_breakpoint(sc));
4450 panic("%s: Double mbuf allocation "
4451 "failure!",
4452 device_xname(sc->bnx_dev));
4453 }
4454 continue;
4455 }
4456
4457 /* Skip over the l2_fhdr when passing the data up
4458 * the stack.
4459 */
4460 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4461
4462 /* Adjust the pckt length to match the received data. */
4463 m->m_pkthdr.len = m->m_len = len;
4464
4465 /* Send the packet to the appropriate interface. */
4466 m->m_pkthdr.rcvif = ifp;
4467
4468 DBRUN(BNX_VERBOSE_RECV,
4469 struct ether_header *eh;
4470 eh = mtod(m, struct ether_header *);
4471 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4472 __func__, ether_sprintf(eh->ether_dhost),
4473 ether_sprintf(eh->ether_shost),
4474 htons(eh->ether_type)));
4475
4476 /* Validate the checksum. */
4477
4478 /* Check for an IP datagram. */
4479 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4480 /* Check if the IP checksum is valid. */
4481 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4482 == 0)
4483 m->m_pkthdr.csum_flags |=
4484 M_CSUM_IPv4;
4485 #ifdef BNX_DEBUG
4486 else
4487 DBPRINT(sc, BNX_WARN_SEND,
4488 "%s(): Invalid IP checksum "
4489 "= 0x%04X!\n",
4490 __func__,
4491 l2fhdr->l2_fhdr_ip_xsum
4492 );
4493 #endif
4494 }
4495
4496 /* Check for a valid TCP/UDP frame. */
4497 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4498 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4499 /* Check for a good TCP/UDP checksum. */
4500 if ((status &
4501 (L2_FHDR_ERRORS_TCP_XSUM |
4502 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4503 m->m_pkthdr.csum_flags |=
4504 M_CSUM_TCPv4 |
4505 M_CSUM_UDPv4;
4506 } else {
4507 DBPRINT(sc, BNX_WARN_SEND,
4508 "%s(): Invalid TCP/UDP "
4509 "checksum = 0x%04X!\n",
4510 __func__,
4511 l2fhdr->l2_fhdr_tcp_udp_xsum);
4512 }
4513 }
4514
4515 /*
4516 * If we received a packet with a vlan tag,
4517 * attach that information to the packet.
4518 */
4519 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4520 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4521 VLAN_INPUT_TAG(ifp, m,
4522 l2fhdr->l2_fhdr_vlan_tag,
4523 continue);
4524 }
4525
4526 /*
4527 * Handle BPF listeners. Let the BPF
4528 * user see the packet.
4529 */
4530 bpf_mtap(ifp, m);
4531
4532 /* Pass the mbuf off to the upper layers. */
4533 ifp->if_ipackets++;
4534 DBPRINT(sc, BNX_VERBOSE_RECV,
4535 "%s(): Passing received frame up.\n", __func__);
4536 (*ifp->if_input)(ifp, m);
4537 DBRUNIF(1, sc->rx_mbuf_alloc--);
4538
4539 }
4540
4541 sw_cons = NEXT_RX_BD(sw_cons);
4542
4543 /* Refresh hw_cons to see if there's new work */
4544 if (sw_cons == hw_cons) {
4545 hw_cons = sc->hw_rx_cons =
4546 sblk->status_rx_quick_consumer_index0;
4547 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4548 USABLE_RX_BD_PER_PAGE)
4549 hw_cons++;
4550 }
4551
4552 /* Prevent speculative reads from getting ahead of
4553 * the status block.
4554 */
4555 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4556 BUS_SPACE_BARRIER_READ);
4557 }
4558
4559 for (i = 0; i < RX_PAGES; i++)
4560 bus_dmamap_sync(sc->bnx_dmatag,
4561 sc->rx_bd_chain_map[i], 0,
4562 sc->rx_bd_chain_map[i]->dm_mapsize,
4563 BUS_DMASYNC_PREWRITE);
4564
4565 sc->rx_cons = sw_cons;
4566 sc->rx_prod = sw_prod;
4567 sc->rx_prod_bseq = sw_prod_bseq;
4568
4569 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4570 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4571
4572 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4573 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4574 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4575 }
4576
4577 /****************************************************************************/
4578 /* Handles transmit completion interrupt events. */
4579 /* */
4580 /* Returns: */
4581 /* Nothing. */
4582 /****************************************************************************/
4583 void
4584 bnx_tx_intr(struct bnx_softc *sc)
4585 {
4586 struct status_block *sblk = sc->status_block;
4587 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4588 struct bnx_pkt *pkt;
4589 bus_dmamap_t map;
4590 u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4591
4592 DBRUNIF(1, sc->tx_interrupts++);
4593 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4594 BUS_DMASYNC_POSTREAD);
4595
4596 /* Get the hardware's view of the TX consumer index. */
4597 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4598
4599 /* Skip to the next entry if this is a chain page pointer. */
4600 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4601 hw_tx_cons++;
4602
4603 sw_tx_cons = sc->tx_cons;
4604
4605 /* Prevent speculative reads from getting ahead of the status block. */
4606 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4607 BUS_SPACE_BARRIER_READ);
4608
4609 /* Cycle through any completed TX chain page entries. */
4610 while (sw_tx_cons != hw_tx_cons) {
4611 #ifdef BNX_DEBUG
4612 struct tx_bd *txbd = NULL;
4613 #endif
4614 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4615
4616 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4617 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4618 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4619
4620 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4621 aprint_error_dev(sc->bnx_dev,
4622 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4623 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4624
4625 DBRUNIF(1, txbd = &sc->tx_bd_chain
4626 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4627
4628 DBRUNIF((txbd == NULL),
4629 aprint_error_dev(sc->bnx_dev,
4630 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4631 bnx_breakpoint(sc));
4632
4633 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4634 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4635
4636
4637 mutex_enter(&sc->tx_pkt_mtx);
4638 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4639 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4640 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4641 mutex_exit(&sc->tx_pkt_mtx);
4642 /*
4643 * Free the associated mbuf. Remember
4644 * that only the last tx_bd of a packet
4645 * has an mbuf pointer and DMA map.
4646 */
4647 map = pkt->pkt_dmamap;
4648 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4649 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4650 bus_dmamap_unload(sc->bnx_dmatag, map);
4651
4652 m_freem(pkt->pkt_mbuf);
4653 DBRUNIF(1, sc->tx_mbuf_alloc--);
4654
4655 ifp->if_opackets++;
4656
4657 mutex_enter(&sc->tx_pkt_mtx);
4658 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4659 }
4660 mutex_exit(&sc->tx_pkt_mtx);
4661
4662 sc->used_tx_bd--;
4663 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4664 __FILE__, __LINE__, sc->used_tx_bd);
4665
4666 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4667
4668 /* Refresh hw_cons to see if there's new work. */
4669 hw_tx_cons = sc->hw_tx_cons =
4670 sblk->status_tx_quick_consumer_index0;
4671 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4672 USABLE_TX_BD_PER_PAGE)
4673 hw_tx_cons++;
4674
4675 /* Prevent speculative reads from getting ahead of
4676 * the status block.
4677 */
4678 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4679 BUS_SPACE_BARRIER_READ);
4680 }
4681
4682 /* Clear the TX timeout timer. */
4683 ifp->if_timer = 0;
4684
4685 /* Clear the tx hardware queue full flag. */
4686 if (sc->used_tx_bd < sc->max_tx_bd) {
4687 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4688 aprint_debug_dev(sc->bnx_dev,
4689 "Open TX chain! %d/%d (used/total)\n",
4690 sc->used_tx_bd, sc->max_tx_bd));
4691 ifp->if_flags &= ~IFF_OACTIVE;
4692 }
4693
4694 sc->tx_cons = sw_tx_cons;
4695 }
4696
4697 /****************************************************************************/
4698 /* Disables interrupt generation. */
4699 /* */
4700 /* Returns: */
4701 /* Nothing. */
4702 /****************************************************************************/
4703 void
4704 bnx_disable_intr(struct bnx_softc *sc)
4705 {
4706 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4707 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4708 }
4709
4710 /****************************************************************************/
4711 /* Enables interrupt generation. */
4712 /* */
4713 /* Returns: */
4714 /* Nothing. */
4715 /****************************************************************************/
4716 void
4717 bnx_enable_intr(struct bnx_softc *sc)
4718 {
4719 u_int32_t val;
4720
4721 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4722 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4723
4724 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4725 sc->last_status_idx);
4726
4727 val = REG_RD(sc, BNX_HC_COMMAND);
4728 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4729 }
4730
4731 /****************************************************************************/
4732 /* Handles controller initialization. */
4733 /* */
4734 /****************************************************************************/
4735 int
4736 bnx_init(struct ifnet *ifp)
4737 {
4738 struct bnx_softc *sc = ifp->if_softc;
4739 u_int32_t ether_mtu;
4740 int s, error = 0;
4741
4742 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4743
4744 s = splnet();
4745
4746 bnx_stop(ifp, 0);
4747
4748 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4749 aprint_error_dev(sc->bnx_dev,
4750 "Controller reset failed!\n");
4751 goto bnx_init_exit;
4752 }
4753
4754 if ((error = bnx_chipinit(sc)) != 0) {
4755 aprint_error_dev(sc->bnx_dev,
4756 "Controller initialization failed!\n");
4757 goto bnx_init_exit;
4758 }
4759
4760 if ((error = bnx_blockinit(sc)) != 0) {
4761 aprint_error_dev(sc->bnx_dev,
4762 "Block initialization failed!\n");
4763 goto bnx_init_exit;
4764 }
4765
4766 /* Calculate and program the Ethernet MRU size. */
4767 if (ifp->if_mtu <= ETHERMTU) {
4768 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4769 sc->mbuf_alloc_size = MCLBYTES;
4770 } else {
4771 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4772 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4773 }
4774
4775
4776 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4777 __func__, ether_mtu);
4778
4779 /*
4780 * Program the MRU and enable Jumbo frame
4781 * support.
4782 */
4783 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4784 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4785
4786 /* Calculate the RX Ethernet frame size for rx_bd's. */
4787 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4788
4789 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4790 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4791 sc->mbuf_alloc_size, sc->max_frame_size);
4792
4793 /* Program appropriate promiscuous/multicast filtering. */
4794 bnx_iff(sc);
4795
4796 /* Init RX buffer descriptor chain. */
4797 bnx_init_rx_chain(sc);
4798
4799 /* Init TX buffer descriptor chain. */
4800 bnx_init_tx_chain(sc);
4801
4802 /* Enable host interrupts. */
4803 bnx_enable_intr(sc);
4804
4805 if ((error = ether_mediachange(ifp)) != 0)
4806 goto bnx_init_exit;
4807
4808 ifp->if_flags |= IFF_RUNNING;
4809 ifp->if_flags &= ~IFF_OACTIVE;
4810
4811 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4812
4813 bnx_init_exit:
4814 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4815
4816 splx(s);
4817
4818 return(error);
4819 }
4820
4821 /****************************************************************************/
4822 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4823 /* memory visible to the controller. */
4824 /* */
4825 /* Returns: */
4826 /* 0 for success, positive value for failure. */
4827 /****************************************************************************/
4828 int
4829 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4830 {
4831 struct bnx_pkt *pkt;
4832 bus_dmamap_t map;
4833 struct tx_bd *txbd = NULL;
4834 u_int16_t vlan_tag = 0, flags = 0;
4835 u_int16_t chain_prod, prod;
4836 #ifdef BNX_DEBUG
4837 u_int16_t debug_prod;
4838 #endif
4839 u_int32_t addr, prod_bseq;
4840 int i, error;
4841 struct m_tag *mtag;
4842
4843 again:
4844 mutex_enter(&sc->tx_pkt_mtx);
4845 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4846 if (pkt == NULL) {
4847 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4848 mutex_exit(&sc->tx_pkt_mtx);
4849 return ENETDOWN;
4850 }
4851 if (sc->tx_pkt_count <= TOTAL_TX_BD) {
4852 mutex_exit(&sc->tx_pkt_mtx);
4853 if (bnx_alloc_pkts(sc) == 0)
4854 goto again;
4855 } else {
4856 mutex_exit(&sc->tx_pkt_mtx);
4857 }
4858 return (ENOMEM);
4859 }
4860 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4861 mutex_exit(&sc->tx_pkt_mtx);
4862
4863 /* Transfer any checksum offload flags to the bd. */
4864 if (m->m_pkthdr.csum_flags) {
4865 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4866 flags |= TX_BD_FLAGS_IP_CKSUM;
4867 if (m->m_pkthdr.csum_flags &
4868 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4869 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4870 }
4871
4872 /* Transfer any VLAN tags to the bd. */
4873 mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4874 if (mtag != NULL) {
4875 flags |= TX_BD_FLAGS_VLAN_TAG;
4876 vlan_tag = VLAN_TAG_VALUE(mtag);
4877 }
4878
4879 /* Map the mbuf into DMAable memory. */
4880 prod = sc->tx_prod;
4881 chain_prod = TX_CHAIN_IDX(prod);
4882 map = pkt->pkt_dmamap;
4883
4884 /* Map the mbuf into our DMA address space. */
4885 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4886 if (error != 0) {
4887 aprint_error_dev(sc->bnx_dev,
4888 "Error mapping mbuf into TX chain!\n");
4889 sc->tx_dma_map_failures++;
4890 goto maperr;
4891 }
4892 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4893 BUS_DMASYNC_PREWRITE);
4894 /* Make sure there's room in the chain */
4895 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
4896 goto nospace;
4897
4898 /* prod points to an empty tx_bd at this point. */
4899 prod_bseq = sc->tx_prod_bseq;
4900 #ifdef BNX_DEBUG
4901 debug_prod = chain_prod;
4902 #endif
4903 DBPRINT(sc, BNX_INFO_SEND,
4904 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4905 "prod_bseq = 0x%08X\n",
4906 __func__, prod, chain_prod, prod_bseq);
4907
4908 /*
4909 * Cycle through each mbuf segment that makes up
4910 * the outgoing frame, gathering the mapping info
4911 * for that segment and creating a tx_bd for the
4912 * mbuf.
4913 */
4914 for (i = 0; i < map->dm_nsegs ; i++) {
4915 chain_prod = TX_CHAIN_IDX(prod);
4916 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4917
4918 addr = (u_int32_t)map->dm_segs[i].ds_addr;
4919 txbd->tx_bd_haddr_lo = addr;
4920 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4921 txbd->tx_bd_haddr_hi = addr;
4922 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
4923 txbd->tx_bd_vlan_tag = vlan_tag;
4924 txbd->tx_bd_flags = flags;
4925 prod_bseq += map->dm_segs[i].ds_len;
4926 if (i == 0)
4927 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
4928 prod = NEXT_TX_BD(prod);
4929 }
4930 /* Set the END flag on the last TX buffer descriptor. */
4931 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
4932
4933 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
4934
4935 DBPRINT(sc, BNX_INFO_SEND,
4936 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
4937 "prod_bseq = 0x%08X\n",
4938 __func__, prod, chain_prod, prod_bseq);
4939
4940 pkt->pkt_mbuf = m;
4941 pkt->pkt_end_desc = chain_prod;
4942
4943 mutex_enter(&sc->tx_pkt_mtx);
4944 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
4945 mutex_exit(&sc->tx_pkt_mtx);
4946
4947 sc->used_tx_bd += map->dm_nsegs;
4948 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4949 __FILE__, __LINE__, sc->used_tx_bd);
4950
4951 /* Update some debug statistics counters */
4952 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4953 sc->tx_hi_watermark = sc->used_tx_bd);
4954 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
4955 DBRUNIF(1, sc->tx_mbuf_alloc++);
4956
4957 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4958 map->dm_nsegs));
4959
4960 /* prod points to the next free tx_bd at this point. */
4961 sc->tx_prod = prod;
4962 sc->tx_prod_bseq = prod_bseq;
4963
4964 return (0);
4965
4966
4967 nospace:
4968 bus_dmamap_unload(sc->bnx_dmatag, map);
4969 maperr:
4970 mutex_enter(&sc->tx_pkt_mtx);
4971 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4972 mutex_exit(&sc->tx_pkt_mtx);
4973
4974 return (ENOMEM);
4975 }
4976
4977 /****************************************************************************/
4978 /* Main transmit routine. */
4979 /* */
4980 /* Returns: */
4981 /* Nothing. */
4982 /****************************************************************************/
4983 void
4984 bnx_start(struct ifnet *ifp)
4985 {
4986 struct bnx_softc *sc = ifp->if_softc;
4987 struct mbuf *m_head = NULL;
4988 int count = 0;
4989 u_int16_t tx_prod, tx_chain_prod;
4990
4991 /* If there's no link or the transmit queue is empty then just exit. */
4992 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
4993 DBPRINT(sc, BNX_INFO_SEND,
4994 "%s(): output active or device not running.\n", __func__);
4995 goto bnx_start_exit;
4996 }
4997
4998 /* prod points to the next free tx_bd. */
4999 tx_prod = sc->tx_prod;
5000 tx_chain_prod = TX_CHAIN_IDX(tx_prod);
5001
5002 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5003 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5004 "used_tx %d max_tx %d\n",
5005 __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5006 sc->used_tx_bd, sc->max_tx_bd);
5007
5008 /*
5009 * Keep adding entries while there is space in the ring.
5010 */
5011 while (sc->used_tx_bd < sc->max_tx_bd) {
5012 /* Check for any frames to send. */
5013 IFQ_POLL(&ifp->if_snd, m_head);
5014 if (m_head == NULL)
5015 break;
5016
5017 /*
5018 * Pack the data into the transmit ring. If we
5019 * don't have room, set the OACTIVE flag to wait
5020 * for the NIC to drain the chain.
5021 */
5022 if (bnx_tx_encap(sc, m_head)) {
5023 ifp->if_flags |= IFF_OACTIVE;
5024 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5025 "business! Total tx_bd used = %d\n",
5026 sc->used_tx_bd);
5027 break;
5028 }
5029
5030 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5031 count++;
5032
5033 /* Send a copy of the frame to any BPF listeners. */
5034 bpf_mtap(ifp, m_head);
5035 }
5036
5037 if (count == 0) {
5038 /* no packets were dequeued */
5039 DBPRINT(sc, BNX_VERBOSE_SEND,
5040 "%s(): No packets were dequeued\n", __func__);
5041 goto bnx_start_exit;
5042 }
5043
5044 /* Update the driver's counters. */
5045 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5046
5047 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
5048 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
5049 tx_chain_prod, sc->tx_prod_bseq);
5050
5051 /* Start the transmit. */
5052 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5053 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5054
5055 /* Set the tx timeout. */
5056 ifp->if_timer = BNX_TX_TIMEOUT;
5057
5058 bnx_start_exit:
5059 return;
5060 }
5061
5062 /****************************************************************************/
5063 /* Handles any IOCTL calls from the operating system. */
5064 /* */
5065 /* Returns: */
5066 /* 0 for success, positive value for failure. */
5067 /****************************************************************************/
5068 int
5069 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5070 {
5071 struct bnx_softc *sc = ifp->if_softc;
5072 struct ifreq *ifr = (struct ifreq *) data;
5073 struct mii_data *mii = &sc->bnx_mii;
5074 int s, error = 0;
5075
5076 s = splnet();
5077
5078 switch (command) {
5079 case SIOCSIFFLAGS:
5080 if ((error = ifioctl_common(ifp, command, data)) != 0)
5081 break;
5082 /* XXX set an ifflags callback and let ether_ioctl
5083 * handle all of this.
5084 */
5085 if (ifp->if_flags & IFF_UP) {
5086 if (ifp->if_flags & IFF_RUNNING)
5087 error = ENETRESET;
5088 else
5089 bnx_init(ifp);
5090 } else if (ifp->if_flags & IFF_RUNNING)
5091 bnx_stop(ifp, 1);
5092 break;
5093
5094 case SIOCSIFMEDIA:
5095 case SIOCGIFMEDIA:
5096 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5097 sc->bnx_phy_flags);
5098
5099 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5100 break;
5101
5102 default:
5103 error = ether_ioctl(ifp, command, data);
5104 }
5105
5106 if (error == ENETRESET) {
5107 if (ifp->if_flags & IFF_RUNNING)
5108 bnx_iff(sc);
5109 error = 0;
5110 }
5111
5112 splx(s);
5113 return (error);
5114 }
5115
5116 /****************************************************************************/
5117 /* Transmit timeout handler. */
5118 /* */
5119 /* Returns: */
5120 /* Nothing. */
5121 /****************************************************************************/
5122 void
5123 bnx_watchdog(struct ifnet *ifp)
5124 {
5125 struct bnx_softc *sc = ifp->if_softc;
5126
5127 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5128 bnx_dump_status_block(sc));
5129 /*
5130 * If we are in this routine because of pause frames, then
5131 * don't reset the hardware.
5132 */
5133 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5134 return;
5135
5136 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5137
5138 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5139
5140 bnx_init(ifp);
5141
5142 ifp->if_oerrors++;
5143 }
5144
5145 /*
5146 * Interrupt handler.
5147 */
5148 /****************************************************************************/
5149 /* Main interrupt entry point. Verifies that the controller generated the */
5150 /* interrupt and then calls a separate routine for handle the various */
5151 /* interrupt causes (PHY, TX, RX). */
5152 /* */
5153 /* Returns: */
5154 /* 0 for success, positive value for failure. */
5155 /****************************************************************************/
5156 int
5157 bnx_intr(void *xsc)
5158 {
5159 struct bnx_softc *sc;
5160 struct ifnet *ifp;
5161 u_int32_t status_attn_bits;
5162 const struct status_block *sblk;
5163
5164 sc = xsc;
5165
5166 ifp = &sc->bnx_ec.ec_if;
5167
5168 if (!device_is_active(sc->bnx_dev) ||
5169 (ifp->if_flags & IFF_RUNNING) == 0)
5170 return 0;
5171
5172 DBRUNIF(1, sc->interrupts_generated++);
5173
5174 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5175 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5176
5177 /*
5178 * If the hardware status block index
5179 * matches the last value read by the
5180 * driver and we haven't asserted our
5181 * interrupt then there's nothing to do.
5182 */
5183 if ((sc->status_block->status_idx == sc->last_status_idx) &&
5184 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5185 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5186 return (0);
5187
5188 /* Ack the interrupt and stop others from occuring. */
5189 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5190 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5191 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5192
5193 /* Keep processing data as long as there is work to do. */
5194 for (;;) {
5195 sblk = sc->status_block;
5196 status_attn_bits = sblk->status_attn_bits;
5197
5198 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5199 aprint_debug("Simulating unexpected status attention bit set.");
5200 status_attn_bits = status_attn_bits |
5201 STATUS_ATTN_BITS_PARITY_ERROR);
5202
5203 /* Was it a link change interrupt? */
5204 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5205 (sblk->status_attn_bits_ack &
5206 STATUS_ATTN_BITS_LINK_STATE))
5207 bnx_phy_intr(sc);
5208
5209 /* If any other attention is asserted then the chip is toast. */
5210 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5211 (sblk->status_attn_bits_ack &
5212 ~STATUS_ATTN_BITS_LINK_STATE))) {
5213 DBRUN(1, sc->unexpected_attentions++);
5214
5215 BNX_PRINTF(sc,
5216 "Fatal attention detected: 0x%08X\n",
5217 sblk->status_attn_bits);
5218
5219 DBRUN(BNX_FATAL,
5220 if (bnx_debug_unexpected_attention == 0)
5221 bnx_breakpoint(sc));
5222
5223 bnx_init(ifp);
5224 return (1);
5225 }
5226
5227 /* Check for any completed RX frames. */
5228 if (sblk->status_rx_quick_consumer_index0 !=
5229 sc->hw_rx_cons)
5230 bnx_rx_intr(sc);
5231
5232 /* Check for any completed TX frames. */
5233 if (sblk->status_tx_quick_consumer_index0 !=
5234 sc->hw_tx_cons)
5235 bnx_tx_intr(sc);
5236
5237 /* Save the status block index value for use during the
5238 * next interrupt.
5239 */
5240 sc->last_status_idx = sblk->status_idx;
5241
5242 /* Prevent speculative reads from getting ahead of the
5243 * status block.
5244 */
5245 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5246 BUS_SPACE_BARRIER_READ);
5247
5248 /* If there's no work left then exit the isr. */
5249 if ((sblk->status_rx_quick_consumer_index0 ==
5250 sc->hw_rx_cons) &&
5251 (sblk->status_tx_quick_consumer_index0 ==
5252 sc->hw_tx_cons))
5253 break;
5254 }
5255
5256 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5257 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5258
5259 /* Re-enable interrupts. */
5260 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5261 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5262 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5263 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5264 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5265
5266 /* Handle any frames that arrived while handling the interrupt. */
5267 if (!IFQ_IS_EMPTY(&ifp->if_snd))
5268 bnx_start(ifp);
5269
5270 return (1);
5271 }
5272
5273 /****************************************************************************/
5274 /* Programs the various packet receive modes (broadcast and multicast). */
5275 /* */
5276 /* Returns: */
5277 /* Nothing. */
5278 /****************************************************************************/
5279 void
5280 bnx_iff(struct bnx_softc *sc)
5281 {
5282 struct ethercom *ec = &sc->bnx_ec;
5283 struct ifnet *ifp = &ec->ec_if;
5284 struct ether_multi *enm;
5285 struct ether_multistep step;
5286 u_int32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5287 u_int32_t rx_mode, sort_mode;
5288 int h, i;
5289
5290 /* Initialize receive mode default settings. */
5291 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5292 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5293 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5294 ifp->if_flags &= ~IFF_ALLMULTI;
5295
5296 /*
5297 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5298 * be enbled.
5299 */
5300 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5301 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5302
5303 /*
5304 * Check for promiscuous, all multicast, or selected
5305 * multicast address filtering.
5306 */
5307 if (ifp->if_flags & IFF_PROMISC) {
5308 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5309
5310 ifp->if_flags |= IFF_ALLMULTI;
5311 /* Enable promiscuous mode. */
5312 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5313 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5314 } else if (ifp->if_flags & IFF_ALLMULTI) {
5315 allmulti:
5316 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5317
5318 ifp->if_flags |= IFF_ALLMULTI;
5319 /* Enable all multicast addresses. */
5320 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5321 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5322 0xffffffff);
5323 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5324 } else {
5325 /* Accept one or more multicast(s). */
5326 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5327
5328 ETHER_FIRST_MULTI(step, ec, enm);
5329 while (enm != NULL) {
5330 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5331 ETHER_ADDR_LEN)) {
5332 goto allmulti;
5333 }
5334 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5335 0xFF;
5336 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5337 ETHER_NEXT_MULTI(step, enm);
5338 }
5339
5340 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5341 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5342 hashes[i]);
5343
5344 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5345 }
5346
5347 /* Only make changes if the recive mode has actually changed. */
5348 if (rx_mode != sc->rx_mode) {
5349 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5350 rx_mode);
5351
5352 sc->rx_mode = rx_mode;
5353 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5354 }
5355
5356 /* Disable and clear the exisitng sort before enabling a new sort. */
5357 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5358 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5359 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5360 }
5361
5362 /****************************************************************************/
5363 /* Called periodically to updates statistics from the controllers */
5364 /* statistics block. */
5365 /* */
5366 /* Returns: */
5367 /* Nothing. */
5368 /****************************************************************************/
5369 void
5370 bnx_stats_update(struct bnx_softc *sc)
5371 {
5372 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5373 struct statistics_block *stats;
5374
5375 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5376 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5377 BUS_DMASYNC_POSTREAD);
5378
5379 stats = (struct statistics_block *)sc->stats_block;
5380
5381 /*
5382 * Update the interface statistics from the
5383 * hardware statistics.
5384 */
5385 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5386
5387 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5388 (u_long)stats->stat_EtherStatsOverrsizePkts +
5389 (u_long)stats->stat_IfInMBUFDiscards +
5390 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5391 (u_long)stats->stat_Dot3StatsFCSErrors;
5392
5393 ifp->if_oerrors = (u_long)
5394 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5395 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5396 (u_long)stats->stat_Dot3StatsLateCollisions;
5397
5398 /*
5399 * Certain controllers don't report
5400 * carrier sense errors correctly.
5401 * See errata E11_5708CA0_1165.
5402 */
5403 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5404 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5405 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5406
5407 /*
5408 * Update the sysctl statistics from the
5409 * hardware statistics.
5410 */
5411 sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
5412 (u_int64_t) stats->stat_IfHCInOctets_lo;
5413
5414 sc->stat_IfHCInBadOctets =
5415 ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5416 (u_int64_t) stats->stat_IfHCInBadOctets_lo;
5417
5418 sc->stat_IfHCOutOctets =
5419 ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
5420 (u_int64_t) stats->stat_IfHCOutOctets_lo;
5421
5422 sc->stat_IfHCOutBadOctets =
5423 ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5424 (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
5425
5426 sc->stat_IfHCInUcastPkts =
5427 ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5428 (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
5429
5430 sc->stat_IfHCInMulticastPkts =
5431 ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5432 (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
5433
5434 sc->stat_IfHCInBroadcastPkts =
5435 ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5436 (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
5437
5438 sc->stat_IfHCOutUcastPkts =
5439 ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5440 (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
5441
5442 sc->stat_IfHCOutMulticastPkts =
5443 ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5444 (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
5445
5446 sc->stat_IfHCOutBroadcastPkts =
5447 ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5448 (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5449
5450 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5451 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5452
5453 sc->stat_Dot3StatsCarrierSenseErrors =
5454 stats->stat_Dot3StatsCarrierSenseErrors;
5455
5456 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5457
5458 sc->stat_Dot3StatsAlignmentErrors =
5459 stats->stat_Dot3StatsAlignmentErrors;
5460
5461 sc->stat_Dot3StatsSingleCollisionFrames =
5462 stats->stat_Dot3StatsSingleCollisionFrames;
5463
5464 sc->stat_Dot3StatsMultipleCollisionFrames =
5465 stats->stat_Dot3StatsMultipleCollisionFrames;
5466
5467 sc->stat_Dot3StatsDeferredTransmissions =
5468 stats->stat_Dot3StatsDeferredTransmissions;
5469
5470 sc->stat_Dot3StatsExcessiveCollisions =
5471 stats->stat_Dot3StatsExcessiveCollisions;
5472
5473 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5474
5475 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5476
5477 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5478
5479 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5480
5481 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5482
5483 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5484
5485 sc->stat_EtherStatsPktsRx64Octets =
5486 stats->stat_EtherStatsPktsRx64Octets;
5487
5488 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5489 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5490
5491 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5492 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5493
5494 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5495 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5496
5497 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5498 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5499
5500 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5501 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5502
5503 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5504 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5505
5506 sc->stat_EtherStatsPktsTx64Octets =
5507 stats->stat_EtherStatsPktsTx64Octets;
5508
5509 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5510 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5511
5512 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5513 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5514
5515 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5516 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5517
5518 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5519 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5520
5521 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5522 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5523
5524 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5525 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5526
5527 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5528
5529 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5530
5531 sc->stat_OutXonSent = stats->stat_OutXonSent;
5532
5533 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5534
5535 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5536
5537 sc->stat_MacControlFramesReceived =
5538 stats->stat_MacControlFramesReceived;
5539
5540 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5541
5542 sc->stat_IfInFramesL2FilterDiscards =
5543 stats->stat_IfInFramesL2FilterDiscards;
5544
5545 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5546
5547 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5548
5549 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5550
5551 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5552
5553 sc->stat_CatchupInRuleCheckerDiscards =
5554 stats->stat_CatchupInRuleCheckerDiscards;
5555
5556 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5557
5558 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5559
5560 sc->stat_CatchupInRuleCheckerP4Hit =
5561 stats->stat_CatchupInRuleCheckerP4Hit;
5562
5563 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5564 }
5565
5566 void
5567 bnx_tick(void *xsc)
5568 {
5569 struct bnx_softc *sc = xsc;
5570 struct mii_data *mii;
5571 u_int32_t msg;
5572 u_int16_t prod, chain_prod;
5573 u_int32_t prod_bseq;
5574 int s = splnet();
5575
5576 /* Tell the firmware that the driver is still running. */
5577 #ifdef BNX_DEBUG
5578 msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5579 #else
5580 msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5581 #endif
5582 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5583
5584 /* Update the statistics from the hardware statistics block. */
5585 bnx_stats_update(sc);
5586
5587 /* Schedule the next tick. */
5588 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5589
5590 mii = &sc->bnx_mii;
5591 mii_tick(mii);
5592
5593 /* try to get more RX buffers, just in case */
5594 prod = sc->rx_prod;
5595 prod_bseq = sc->rx_prod_bseq;
5596 chain_prod = RX_CHAIN_IDX(prod);
5597 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5598 sc->rx_prod = prod;
5599 sc->rx_prod_bseq = prod_bseq;
5600 splx(s);
5601 return;
5602 }
5603
5604 /****************************************************************************/
5605 /* BNX Debug Routines */
5606 /****************************************************************************/
5607 #ifdef BNX_DEBUG
5608
5609 /****************************************************************************/
5610 /* Prints out information about an mbuf. */
5611 /* */
5612 /* Returns: */
5613 /* Nothing. */
5614 /****************************************************************************/
5615 void
5616 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5617 {
5618 struct mbuf *mp = m;
5619
5620 if (m == NULL) {
5621 /* Index out of range. */
5622 aprint_error("mbuf ptr is null!\n");
5623 return;
5624 }
5625
5626 while (mp) {
5627 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5628 mp, mp->m_len);
5629
5630 if (mp->m_flags & M_EXT)
5631 aprint_debug("M_EXT ");
5632 if (mp->m_flags & M_PKTHDR)
5633 aprint_debug("M_PKTHDR ");
5634 aprint_debug("\n");
5635
5636 if (mp->m_flags & M_EXT)
5637 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5638 mp, mp->m_ext.ext_size);
5639
5640 mp = mp->m_next;
5641 }
5642 }
5643
5644 /****************************************************************************/
5645 /* Prints out the mbufs in the TX mbuf chain. */
5646 /* */
5647 /* Returns: */
5648 /* Nothing. */
5649 /****************************************************************************/
5650 void
5651 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5652 {
5653 #if 0
5654 struct mbuf *m;
5655 int i;
5656
5657 aprint_debug_dev(sc->bnx_dev,
5658 "----------------------------"
5659 " tx mbuf data "
5660 "----------------------------\n");
5661
5662 for (i = 0; i < count; i++) {
5663 m = sc->tx_mbuf_ptr[chain_prod];
5664 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5665 bnx_dump_mbuf(sc, m);
5666 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5667 }
5668
5669 aprint_debug_dev(sc->bnx_dev,
5670 "--------------------------------------------"
5671 "----------------------------\n");
5672 #endif
5673 }
5674
5675 /*
5676 * This routine prints the RX mbuf chain.
5677 */
5678 void
5679 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5680 {
5681 struct mbuf *m;
5682 int i;
5683
5684 aprint_debug_dev(sc->bnx_dev,
5685 "----------------------------"
5686 " rx mbuf data "
5687 "----------------------------\n");
5688
5689 for (i = 0; i < count; i++) {
5690 m = sc->rx_mbuf_ptr[chain_prod];
5691 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5692 bnx_dump_mbuf(sc, m);
5693 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5694 }
5695
5696
5697 aprint_debug_dev(sc->bnx_dev,
5698 "--------------------------------------------"
5699 "----------------------------\n");
5700 }
5701
5702 void
5703 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5704 {
5705 if (idx > MAX_TX_BD)
5706 /* Index out of range. */
5707 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5708 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5709 /* TX Chain page pointer. */
5710 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5711 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5712 txbd->tx_bd_haddr_lo);
5713 else
5714 /* Normal tx_bd entry. */
5715 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5716 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5717 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5718 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5719 txbd->tx_bd_flags);
5720 }
5721
5722 void
5723 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5724 {
5725 if (idx > MAX_RX_BD)
5726 /* Index out of range. */
5727 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5728 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5729 /* TX Chain page pointer. */
5730 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5731 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5732 rxbd->rx_bd_haddr_lo);
5733 else
5734 /* Normal tx_bd entry. */
5735 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5736 "0x%08X, flags = 0x%08X\n", idx,
5737 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5738 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5739 }
5740
5741 void
5742 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5743 {
5744 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5745 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5746 "tcp_udp_xsum = 0x%04X\n", idx,
5747 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5748 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5749 l2fhdr->l2_fhdr_tcp_udp_xsum);
5750 }
5751
5752 /*
5753 * This routine prints the TX chain.
5754 */
5755 void
5756 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5757 {
5758 struct tx_bd *txbd;
5759 int i;
5760
5761 /* First some info about the tx_bd chain structure. */
5762 aprint_debug_dev(sc->bnx_dev,
5763 "----------------------------"
5764 " tx_bd chain "
5765 "----------------------------\n");
5766
5767 BNX_PRINTF(sc,
5768 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5769 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5770
5771 BNX_PRINTF(sc,
5772 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5773 (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5774
5775 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", TOTAL_TX_BD);
5776
5777 aprint_error_dev(sc->bnx_dev, ""
5778 "-----------------------------"
5779 " tx_bd data "
5780 "-----------------------------\n");
5781
5782 /* Now print out the tx_bd's themselves. */
5783 for (i = 0; i < count; i++) {
5784 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5785 bnx_dump_txbd(sc, tx_prod, txbd);
5786 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5787 }
5788
5789 aprint_debug_dev(sc->bnx_dev,
5790 "-----------------------------"
5791 "--------------"
5792 "-----------------------------\n");
5793 }
5794
5795 /*
5796 * This routine prints the RX chain.
5797 */
5798 void
5799 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5800 {
5801 struct rx_bd *rxbd;
5802 int i;
5803
5804 /* First some info about the tx_bd chain structure. */
5805 aprint_debug_dev(sc->bnx_dev,
5806 "----------------------------"
5807 " rx_bd chain "
5808 "----------------------------\n");
5809
5810 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5811
5812 BNX_PRINTF(sc,
5813 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5814 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5815
5816 BNX_PRINTF(sc,
5817 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5818 (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5819
5820 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", TOTAL_RX_BD);
5821
5822 aprint_error_dev(sc->bnx_dev,
5823 "----------------------------"
5824 " rx_bd data "
5825 "----------------------------\n");
5826
5827 /* Now print out the rx_bd's themselves. */
5828 for (i = 0; i < count; i++) {
5829 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5830 bnx_dump_rxbd(sc, rx_prod, rxbd);
5831 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5832 }
5833
5834 aprint_debug_dev(sc->bnx_dev,
5835 "----------------------------"
5836 "--------------"
5837 "----------------------------\n");
5838 }
5839
5840 /*
5841 * This routine prints the status block.
5842 */
5843 void
5844 bnx_dump_status_block(struct bnx_softc *sc)
5845 {
5846 struct status_block *sblk;
5847 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5848 BUS_DMASYNC_POSTREAD);
5849
5850 sblk = sc->status_block;
5851
5852 aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5853 "-----------------------------\n");
5854
5855 BNX_PRINTF(sc,
5856 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5857 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5858 sblk->status_idx);
5859
5860 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5861 sblk->status_rx_quick_consumer_index0,
5862 sblk->status_tx_quick_consumer_index0);
5863
5864 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5865
5866 /* Theses indices are not used for normal L2 drivers. */
5867 if (sblk->status_rx_quick_consumer_index1 ||
5868 sblk->status_tx_quick_consumer_index1)
5869 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5870 sblk->status_rx_quick_consumer_index1,
5871 sblk->status_tx_quick_consumer_index1);
5872
5873 if (sblk->status_rx_quick_consumer_index2 ||
5874 sblk->status_tx_quick_consumer_index2)
5875 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5876 sblk->status_rx_quick_consumer_index2,
5877 sblk->status_tx_quick_consumer_index2);
5878
5879 if (sblk->status_rx_quick_consumer_index3 ||
5880 sblk->status_tx_quick_consumer_index3)
5881 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5882 sblk->status_rx_quick_consumer_index3,
5883 sblk->status_tx_quick_consumer_index3);
5884
5885 if (sblk->status_rx_quick_consumer_index4 ||
5886 sblk->status_rx_quick_consumer_index5)
5887 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5888 sblk->status_rx_quick_consumer_index4,
5889 sblk->status_rx_quick_consumer_index5);
5890
5891 if (sblk->status_rx_quick_consumer_index6 ||
5892 sblk->status_rx_quick_consumer_index7)
5893 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
5894 sblk->status_rx_quick_consumer_index6,
5895 sblk->status_rx_quick_consumer_index7);
5896
5897 if (sblk->status_rx_quick_consumer_index8 ||
5898 sblk->status_rx_quick_consumer_index9)
5899 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
5900 sblk->status_rx_quick_consumer_index8,
5901 sblk->status_rx_quick_consumer_index9);
5902
5903 if (sblk->status_rx_quick_consumer_index10 ||
5904 sblk->status_rx_quick_consumer_index11)
5905 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
5906 sblk->status_rx_quick_consumer_index10,
5907 sblk->status_rx_quick_consumer_index11);
5908
5909 if (sblk->status_rx_quick_consumer_index12 ||
5910 sblk->status_rx_quick_consumer_index13)
5911 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
5912 sblk->status_rx_quick_consumer_index12,
5913 sblk->status_rx_quick_consumer_index13);
5914
5915 if (sblk->status_rx_quick_consumer_index14 ||
5916 sblk->status_rx_quick_consumer_index15)
5917 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
5918 sblk->status_rx_quick_consumer_index14,
5919 sblk->status_rx_quick_consumer_index15);
5920
5921 if (sblk->status_completion_producer_index ||
5922 sblk->status_cmd_consumer_index)
5923 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
5924 sblk->status_completion_producer_index,
5925 sblk->status_cmd_consumer_index);
5926
5927 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
5928 "-----------------------------\n");
5929 }
5930
5931 /*
5932 * This routine prints the statistics block.
5933 */
5934 void
5935 bnx_dump_stats_block(struct bnx_softc *sc)
5936 {
5937 struct statistics_block *sblk;
5938 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5939 BUS_DMASYNC_POSTREAD);
5940
5941 sblk = sc->stats_block;
5942
5943 aprint_debug_dev(sc->bnx_dev, ""
5944 "-----------------------------"
5945 " Stats Block "
5946 "-----------------------------\n");
5947
5948 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
5949 "IfHcInBadOctets = 0x%08X:%08X\n",
5950 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5951 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5952
5953 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
5954 "IfHcOutBadOctets = 0x%08X:%08X\n",
5955 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5956 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5957
5958 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
5959 "IfHcInMulticastPkts = 0x%08X:%08X\n",
5960 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5961 sblk->stat_IfHCInMulticastPkts_hi,
5962 sblk->stat_IfHCInMulticastPkts_lo);
5963
5964 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
5965 "IfHcOutUcastPkts = 0x%08X:%08X\n",
5966 sblk->stat_IfHCInBroadcastPkts_hi,
5967 sblk->stat_IfHCInBroadcastPkts_lo,
5968 sblk->stat_IfHCOutUcastPkts_hi,
5969 sblk->stat_IfHCOutUcastPkts_lo);
5970
5971 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5972 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5973 sblk->stat_IfHCOutMulticastPkts_hi,
5974 sblk->stat_IfHCOutMulticastPkts_lo,
5975 sblk->stat_IfHCOutBroadcastPkts_hi,
5976 sblk->stat_IfHCOutBroadcastPkts_lo);
5977
5978 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5979 BNX_PRINTF(sc, "0x%08X : "
5980 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
5981 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
5982
5983 if (sblk->stat_Dot3StatsCarrierSenseErrors)
5984 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
5985 sblk->stat_Dot3StatsCarrierSenseErrors);
5986
5987 if (sblk->stat_Dot3StatsFCSErrors)
5988 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
5989 sblk->stat_Dot3StatsFCSErrors);
5990
5991 if (sblk->stat_Dot3StatsAlignmentErrors)
5992 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
5993 sblk->stat_Dot3StatsAlignmentErrors);
5994
5995 if (sblk->stat_Dot3StatsSingleCollisionFrames)
5996 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
5997 sblk->stat_Dot3StatsSingleCollisionFrames);
5998
5999 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6000 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6001 sblk->stat_Dot3StatsMultipleCollisionFrames);
6002
6003 if (sblk->stat_Dot3StatsDeferredTransmissions)
6004 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6005 sblk->stat_Dot3StatsDeferredTransmissions);
6006
6007 if (sblk->stat_Dot3StatsExcessiveCollisions)
6008 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6009 sblk->stat_Dot3StatsExcessiveCollisions);
6010
6011 if (sblk->stat_Dot3StatsLateCollisions)
6012 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6013 sblk->stat_Dot3StatsLateCollisions);
6014
6015 if (sblk->stat_EtherStatsCollisions)
6016 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6017 sblk->stat_EtherStatsCollisions);
6018
6019 if (sblk->stat_EtherStatsFragments)
6020 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6021 sblk->stat_EtherStatsFragments);
6022
6023 if (sblk->stat_EtherStatsJabbers)
6024 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6025 sblk->stat_EtherStatsJabbers);
6026
6027 if (sblk->stat_EtherStatsUndersizePkts)
6028 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6029 sblk->stat_EtherStatsUndersizePkts);
6030
6031 if (sblk->stat_EtherStatsOverrsizePkts)
6032 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6033 sblk->stat_EtherStatsOverrsizePkts);
6034
6035 if (sblk->stat_EtherStatsPktsRx64Octets)
6036 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6037 sblk->stat_EtherStatsPktsRx64Octets);
6038
6039 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6040 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6041 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6042
6043 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6044 BNX_PRINTF(sc, "0x%08X : "
6045 "EtherStatsPktsRx128Octetsto255Octets\n",
6046 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6047
6048 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6049 BNX_PRINTF(sc, "0x%08X : "
6050 "EtherStatsPktsRx256Octetsto511Octets\n",
6051 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6052
6053 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6054 BNX_PRINTF(sc, "0x%08X : "
6055 "EtherStatsPktsRx512Octetsto1023Octets\n",
6056 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6057
6058 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6059 BNX_PRINTF(sc, "0x%08X : "
6060 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6061 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6062
6063 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6064 BNX_PRINTF(sc, "0x%08X : "
6065 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6066 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6067
6068 if (sblk->stat_EtherStatsPktsTx64Octets)
6069 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6070 sblk->stat_EtherStatsPktsTx64Octets);
6071
6072 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6073 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6074 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6075
6076 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6077 BNX_PRINTF(sc, "0x%08X : "
6078 "EtherStatsPktsTx128Octetsto255Octets\n",
6079 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6080
6081 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6082 BNX_PRINTF(sc, "0x%08X : "
6083 "EtherStatsPktsTx256Octetsto511Octets\n",
6084 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6085
6086 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6087 BNX_PRINTF(sc, "0x%08X : "
6088 "EtherStatsPktsTx512Octetsto1023Octets\n",
6089 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6090
6091 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6092 BNX_PRINTF(sc, "0x%08X : "
6093 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6094 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6095
6096 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6097 BNX_PRINTF(sc, "0x%08X : "
6098 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6099 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6100
6101 if (sblk->stat_XonPauseFramesReceived)
6102 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6103 sblk->stat_XonPauseFramesReceived);
6104
6105 if (sblk->stat_XoffPauseFramesReceived)
6106 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6107 sblk->stat_XoffPauseFramesReceived);
6108
6109 if (sblk->stat_OutXonSent)
6110 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6111 sblk->stat_OutXonSent);
6112
6113 if (sblk->stat_OutXoffSent)
6114 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6115 sblk->stat_OutXoffSent);
6116
6117 if (sblk->stat_FlowControlDone)
6118 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6119 sblk->stat_FlowControlDone);
6120
6121 if (sblk->stat_MacControlFramesReceived)
6122 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6123 sblk->stat_MacControlFramesReceived);
6124
6125 if (sblk->stat_XoffStateEntered)
6126 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6127 sblk->stat_XoffStateEntered);
6128
6129 if (sblk->stat_IfInFramesL2FilterDiscards)
6130 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6131 sblk->stat_IfInFramesL2FilterDiscards);
6132
6133 if (sblk->stat_IfInRuleCheckerDiscards)
6134 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6135 sblk->stat_IfInRuleCheckerDiscards);
6136
6137 if (sblk->stat_IfInFTQDiscards)
6138 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6139 sblk->stat_IfInFTQDiscards);
6140
6141 if (sblk->stat_IfInMBUFDiscards)
6142 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6143 sblk->stat_IfInMBUFDiscards);
6144
6145 if (sblk->stat_IfInRuleCheckerP4Hit)
6146 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6147 sblk->stat_IfInRuleCheckerP4Hit);
6148
6149 if (sblk->stat_CatchupInRuleCheckerDiscards)
6150 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6151 sblk->stat_CatchupInRuleCheckerDiscards);
6152
6153 if (sblk->stat_CatchupInFTQDiscards)
6154 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6155 sblk->stat_CatchupInFTQDiscards);
6156
6157 if (sblk->stat_CatchupInMBUFDiscards)
6158 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6159 sblk->stat_CatchupInMBUFDiscards);
6160
6161 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6162 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6163 sblk->stat_CatchupInRuleCheckerP4Hit);
6164
6165 aprint_debug_dev(sc->bnx_dev,
6166 "-----------------------------"
6167 "--------------"
6168 "-----------------------------\n");
6169 }
6170
6171 void
6172 bnx_dump_driver_state(struct bnx_softc *sc)
6173 {
6174 aprint_debug_dev(sc->bnx_dev,
6175 "-----------------------------"
6176 " Driver State "
6177 "-----------------------------\n");
6178
6179 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6180 "address\n", sc);
6181
6182 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6183 sc->status_block);
6184
6185 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6186 "address\n", sc->stats_block);
6187
6188 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6189 "adddress\n", sc->tx_bd_chain);
6190
6191 #if 0
6192 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6193 sc->rx_bd_chain);
6194
6195 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6196 sc->tx_mbuf_ptr);
6197 #endif
6198
6199 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6200 sc->rx_mbuf_ptr);
6201
6202 BNX_PRINTF(sc,
6203 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6204 sc->interrupts_generated);
6205
6206 BNX_PRINTF(sc,
6207 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6208 sc->rx_interrupts);
6209
6210 BNX_PRINTF(sc,
6211 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6212 sc->tx_interrupts);
6213
6214 BNX_PRINTF(sc,
6215 " 0x%08X - (sc->last_status_idx) status block index\n",
6216 sc->last_status_idx);
6217
6218 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6219 sc->tx_prod);
6220
6221 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6222 sc->tx_cons);
6223
6224 BNX_PRINTF(sc,
6225 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6226 sc->tx_prod_bseq);
6227 BNX_PRINTF(sc,
6228 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6229 sc->tx_mbuf_alloc);
6230
6231 BNX_PRINTF(sc,
6232 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6233 sc->used_tx_bd);
6234
6235 BNX_PRINTF(sc,
6236 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6237 sc->tx_hi_watermark, sc->max_tx_bd);
6238
6239
6240 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6241 sc->rx_prod);
6242
6243 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6244 sc->rx_cons);
6245
6246 BNX_PRINTF(sc,
6247 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6248 sc->rx_prod_bseq);
6249
6250 BNX_PRINTF(sc,
6251 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6252 sc->rx_mbuf_alloc);
6253
6254 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6255 sc->free_rx_bd);
6256
6257 BNX_PRINTF(sc,
6258 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6259 sc->rx_low_watermark, sc->max_rx_bd);
6260
6261 BNX_PRINTF(sc,
6262 " 0x%08X - (sc->mbuf_alloc_failed) "
6263 "mbuf alloc failures\n",
6264 sc->mbuf_alloc_failed);
6265
6266 BNX_PRINTF(sc,
6267 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6268 "simulated mbuf alloc failures\n",
6269 sc->mbuf_sim_alloc_failed);
6270
6271 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6272 "-----------------------------\n");
6273 }
6274
6275 void
6276 bnx_dump_hw_state(struct bnx_softc *sc)
6277 {
6278 u_int32_t val1;
6279 int i;
6280
6281 aprint_debug_dev(sc->bnx_dev,
6282 "----------------------------"
6283 " Hardware State "
6284 "----------------------------\n");
6285
6286 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6287
6288 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6289 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6290 val1, BNX_MISC_ENABLE_STATUS_BITS);
6291
6292 val1 = REG_RD(sc, BNX_DMA_STATUS);
6293 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6294
6295 val1 = REG_RD(sc, BNX_CTX_STATUS);
6296 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6297
6298 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6299 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6300 BNX_EMAC_STATUS);
6301
6302 val1 = REG_RD(sc, BNX_RPM_STATUS);
6303 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6304
6305 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6306 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6307 BNX_TBDR_STATUS);
6308
6309 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6310 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6311 BNX_TDMA_STATUS);
6312
6313 val1 = REG_RD(sc, BNX_HC_STATUS);
6314 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6315
6316 aprint_debug_dev(sc->bnx_dev,
6317 "----------------------------"
6318 "----------------"
6319 "----------------------------\n");
6320
6321 aprint_debug_dev(sc->bnx_dev,
6322 "----------------------------"
6323 " Register Dump "
6324 "----------------------------\n");
6325
6326 for (i = 0x400; i < 0x8000; i += 0x10)
6327 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6328 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6329 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6330
6331 aprint_debug_dev(sc->bnx_dev,
6332 "----------------------------"
6333 "----------------"
6334 "----------------------------\n");
6335 }
6336
6337 void
6338 bnx_breakpoint(struct bnx_softc *sc)
6339 {
6340 /* Unreachable code to shut the compiler up about unused functions. */
6341 if (0) {
6342 bnx_dump_txbd(sc, 0, NULL);
6343 bnx_dump_rxbd(sc, 0, NULL);
6344 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6345 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6346 bnx_dump_l2fhdr(sc, 0, NULL);
6347 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6348 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6349 bnx_dump_status_block(sc);
6350 bnx_dump_stats_block(sc);
6351 bnx_dump_driver_state(sc);
6352 bnx_dump_hw_state(sc);
6353 }
6354
6355 bnx_dump_driver_state(sc);
6356 /* Print the important status block fields. */
6357 bnx_dump_status_block(sc);
6358
6359 #if 0
6360 /* Call the debugger. */
6361 breakpoint();
6362 #endif
6363
6364 return;
6365 }
6366 #endif
6367