if_bnx.c revision 1.44 1 /* $NetBSD: if_bnx.c,v 1.44 2011/07/15 11:29:31 jym Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.44 2011/07/15 11:29:31 jym Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 *
52 * BCM5706C A0, A1
53 * BCM5706S A0, A1
54 * BCM5708C A0, B0
55 * BCM5708S A0, B0
56 * BCM5709C A0 B0, B1, B2 (pre-production)
57 * BCM5709S A0, B0, B1, B2 (pre-production)
58 */
59
60 #include <sys/callout.h>
61 #include <sys/mutex.h>
62
63 #include <dev/pci/if_bnxreg.h>
64 #include <dev/pci/if_bnxvar.h>
65
66 #include <dev/microcode/bnx/bnxfw.h>
67
68 /****************************************************************************/
69 /* BNX Driver Version */
70 /****************************************************************************/
71 #define BNX_DRIVER_VERSION "v0.9.6"
72
73 /****************************************************************************/
74 /* BNX Debug Options */
75 /****************************************************************************/
76 #ifdef BNX_DEBUG
77 u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
78
79 /* 0 = Never */
80 /* 1 = 1 in 2,147,483,648 */
81 /* 256 = 1 in 8,388,608 */
82 /* 2048 = 1 in 1,048,576 */
83 /* 65536 = 1 in 32,768 */
84 /* 1048576 = 1 in 2,048 */
85 /* 268435456 = 1 in 8 */
86 /* 536870912 = 1 in 4 */
87 /* 1073741824 = 1 in 2 */
88
89 /* Controls how often the l2_fhdr frame error check will fail. */
90 int bnx_debug_l2fhdr_status_check = 0;
91
92 /* Controls how often the unexpected attention check will fail. */
93 int bnx_debug_unexpected_attention = 0;
94
95 /* Controls how often to simulate an mbuf allocation failure. */
96 int bnx_debug_mbuf_allocation_failure = 0;
97
98 /* Controls how often to simulate a DMA mapping failure. */
99 int bnx_debug_dma_map_addr_failure = 0;
100
101 /* Controls how often to simulate a bootcode failure. */
102 int bnx_debug_bootcode_running_failure = 0;
103 #endif
104
105 /****************************************************************************/
106 /* PCI Device ID Table */
107 /* */
108 /* Used by bnx_probe() to identify the devices supported by this driver. */
109 /****************************************************************************/
110 static const struct bnx_product {
111 pci_vendor_id_t bp_vendor;
112 pci_product_id_t bp_product;
113 pci_vendor_id_t bp_subvendor;
114 pci_product_id_t bp_subproduct;
115 const char *bp_name;
116 } bnx_devices[] = {
117 #ifdef PCI_SUBPRODUCT_HP_NC370T
118 {
119 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
120 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
121 "HP NC370T Multifunction Gigabit Server Adapter"
122 },
123 #endif
124 #ifdef PCI_SUBPRODUCT_HP_NC370i
125 {
126 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
127 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
128 "HP NC370i Multifunction Gigabit Server Adapter"
129 },
130 #endif
131 {
132 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
133 0, 0,
134 "Broadcom NetXtreme II BCM5706 1000Base-T"
135 },
136 #ifdef PCI_SUBPRODUCT_HP_NC370F
137 {
138 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
139 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
140 "HP NC370F Multifunction Gigabit Server Adapter"
141 },
142 #endif
143 {
144 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
145 0, 0,
146 "Broadcom NetXtreme II BCM5706 1000Base-SX"
147 },
148 {
149 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
150 0, 0,
151 "Broadcom NetXtreme II BCM5708 1000Base-T"
152 },
153 {
154 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
155 0, 0,
156 "Broadcom NetXtreme II BCM5708 1000Base-SX"
157 },
158 {
159 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
160 0, 0,
161 "Broadcom NetXtreme II BCM5709 1000Base-T"
162 },
163 {
164 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
165 0, 0,
166 "Broadcom NetXtreme II BCM5709 1000Base-SX"
167 },
168 {
169 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
170 0, 0,
171 "Broadcom NetXtreme II BCM5716 1000Base-T"
172 },
173 {
174 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
175 0, 0,
176 "Broadcom NetXtreme II BCM5716 1000Base-SX"
177 },
178 };
179
180 /****************************************************************************/
181 /* Supported Flash NVRAM device data. */
182 /****************************************************************************/
183 static struct flash_spec flash_table[] =
184 {
185 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
187 /* Slow EEPROM */
188 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
189 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
190 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
191 "EEPROM - slow"},
192 /* Expansion entry 0001 */
193 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
194 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
196 "Entry 0001"},
197 /* Saifun SA25F010 (non-buffered flash) */
198 /* strap, cfg1, & write1 need updates */
199 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
200 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
201 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
202 "Non-buffered flash (128kB)"},
203 /* Saifun SA25F020 (non-buffered flash) */
204 /* strap, cfg1, & write1 need updates */
205 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
206 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
208 "Non-buffered flash (256kB)"},
209 /* Expansion entry 0100 */
210 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
211 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 "Entry 0100"},
214 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
215 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
216 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
217 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
218 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
219 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
220 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
221 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
222 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
223 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
224 /* Saifun SA25F005 (non-buffered flash) */
225 /* strap, cfg1, & write1 need updates */
226 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
227 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
228 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
229 "Non-buffered flash (64kB)"},
230 /* Fast EEPROM */
231 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
232 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
233 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
234 "EEPROM - fast"},
235 /* Expansion entry 1001 */
236 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
237 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
238 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
239 "Entry 1001"},
240 /* Expansion entry 1010 */
241 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
242 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
243 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
244 "Entry 1010"},
245 /* ATMEL AT45DB011B (buffered flash) */
246 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
247 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
248 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
249 "Buffered flash (128kB)"},
250 /* Expansion entry 1100 */
251 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
252 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
253 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
254 "Entry 1100"},
255 /* Expansion entry 1101 */
256 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
257 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
258 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
259 "Entry 1101"},
260 /* Ateml Expansion entry 1110 */
261 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
262 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
263 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
264 "Entry 1110 (Atmel)"},
265 /* ATMEL AT45DB021B (buffered flash) */
266 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
267 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
268 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
269 "Buffered flash (256kB)"},
270 };
271
272 /*
273 * The BCM5709 controllers transparently handle the
274 * differences between Atmel 264 byte pages and all
275 * flash devices which use 256 byte pages, so no
276 * logical-to-physical mapping is required in the
277 * driver.
278 */
279 static struct flash_spec flash_5709 = {
280 .flags = BNX_NV_BUFFERED,
281 .page_bits = BCM5709_FLASH_PAGE_BITS,
282 .page_size = BCM5709_FLASH_PAGE_SIZE,
283 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
284 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
285 .name = "5709 buffered flash (256kB)",
286 };
287
288 /****************************************************************************/
289 /* OpenBSD device entry points. */
290 /****************************************************************************/
291 static int bnx_probe(device_t, cfdata_t, void *);
292 void bnx_attach(device_t, device_t, void *);
293 int bnx_detach(device_t, int);
294
295 /****************************************************************************/
296 /* BNX Debug Data Structure Dump Routines */
297 /****************************************************************************/
298 #ifdef BNX_DEBUG
299 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
300 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
301 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
302 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
303 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
304 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
305 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
306 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
307 void bnx_dump_status_block(struct bnx_softc *);
308 void bnx_dump_stats_block(struct bnx_softc *);
309 void bnx_dump_driver_state(struct bnx_softc *);
310 void bnx_dump_hw_state(struct bnx_softc *);
311 void bnx_breakpoint(struct bnx_softc *);
312 #endif
313
314 /****************************************************************************/
315 /* BNX Register/Memory Access Routines */
316 /****************************************************************************/
317 u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
318 void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
319 void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
320 int bnx_miibus_read_reg(device_t, int, int);
321 void bnx_miibus_write_reg(device_t, int, int, int);
322 void bnx_miibus_statchg(device_t);
323
324 /****************************************************************************/
325 /* BNX NVRAM Access Routines */
326 /****************************************************************************/
327 int bnx_acquire_nvram_lock(struct bnx_softc *);
328 int bnx_release_nvram_lock(struct bnx_softc *);
329 void bnx_enable_nvram_access(struct bnx_softc *);
330 void bnx_disable_nvram_access(struct bnx_softc *);
331 int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
332 u_int32_t);
333 int bnx_init_nvram(struct bnx_softc *);
334 int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
335 int bnx_nvram_test(struct bnx_softc *);
336 #ifdef BNX_NVRAM_WRITE_SUPPORT
337 int bnx_enable_nvram_write(struct bnx_softc *);
338 void bnx_disable_nvram_write(struct bnx_softc *);
339 int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
340 int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
341 u_int32_t);
342 int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
343 #endif
344
345 /****************************************************************************/
346 /* */
347 /****************************************************************************/
348 void bnx_get_media(struct bnx_softc *);
349 void bnx_init_media(struct bnx_softc *);
350 int bnx_dma_alloc(struct bnx_softc *);
351 void bnx_dma_free(struct bnx_softc *);
352 void bnx_release_resources(struct bnx_softc *);
353
354 /****************************************************************************/
355 /* BNX Firmware Synchronization and Load */
356 /****************************************************************************/
357 int bnx_fw_sync(struct bnx_softc *, u_int32_t);
358 void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
359 u_int32_t);
360 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 struct fw_info *);
362 void bnx_init_cpus(struct bnx_softc *);
363
364 void bnx_stop(struct ifnet *, int);
365 int bnx_reset(struct bnx_softc *, u_int32_t);
366 int bnx_chipinit(struct bnx_softc *);
367 int bnx_blockinit(struct bnx_softc *);
368 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
369 u_int16_t *, u_int32_t *);
370 int bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
371
372 int bnx_init_tx_chain(struct bnx_softc *);
373 void bnx_init_tx_context(struct bnx_softc *);
374 int bnx_init_rx_chain(struct bnx_softc *);
375 void bnx_init_rx_context(struct bnx_softc *);
376 void bnx_free_rx_chain(struct bnx_softc *);
377 void bnx_free_tx_chain(struct bnx_softc *);
378
379 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
380 void bnx_start(struct ifnet *);
381 int bnx_ioctl(struct ifnet *, u_long, void *);
382 void bnx_watchdog(struct ifnet *);
383 int bnx_init(struct ifnet *);
384
385 void bnx_init_context(struct bnx_softc *);
386 void bnx_get_mac_addr(struct bnx_softc *);
387 void bnx_set_mac_addr(struct bnx_softc *);
388 void bnx_phy_intr(struct bnx_softc *);
389 void bnx_rx_intr(struct bnx_softc *);
390 void bnx_tx_intr(struct bnx_softc *);
391 void bnx_disable_intr(struct bnx_softc *);
392 void bnx_enable_intr(struct bnx_softc *);
393
394 int bnx_intr(void *);
395 void bnx_iff(struct bnx_softc *);
396 void bnx_stats_update(struct bnx_softc *);
397 void bnx_tick(void *);
398
399 struct pool *bnx_tx_pool = NULL;
400 void bnx_alloc_pkts(struct work *, void *);
401
402 /****************************************************************************/
403 /* OpenBSD device dispatch table. */
404 /****************************************************************************/
405 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
406 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
407
408 /****************************************************************************/
409 /* Device probe function. */
410 /* */
411 /* Compares the device to the driver's list of supported devices and */
412 /* reports back to the OS whether this is the right driver for the device. */
413 /* */
414 /* Returns: */
415 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
416 /****************************************************************************/
417 static const struct bnx_product *
418 bnx_lookup(const struct pci_attach_args *pa)
419 {
420 int i;
421 pcireg_t subid;
422
423 for (i = 0; i < __arraycount(bnx_devices); i++) {
424 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
425 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
426 continue;
427 if (!bnx_devices[i].bp_subvendor)
428 return &bnx_devices[i];
429 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
430 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
431 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
432 return &bnx_devices[i];
433 }
434
435 return NULL;
436 }
437 static int
438 bnx_probe(device_t parent, cfdata_t match, void *aux)
439 {
440 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
441
442 if (bnx_lookup(pa) != NULL)
443 return (1);
444
445 return (0);
446 }
447
448 /****************************************************************************/
449 /* Device attach function. */
450 /* */
451 /* Allocates device resources, performs secondary chip identification, */
452 /* resets and initializes the hardware, and initializes driver instance */
453 /* variables. */
454 /* */
455 /* Returns: */
456 /* 0 on success, positive value on failure. */
457 /****************************************************************************/
458 void
459 bnx_attach(device_t parent, device_t self, void *aux)
460 {
461 const struct bnx_product *bp;
462 struct bnx_softc *sc = device_private(self);
463 prop_dictionary_t dict;
464 struct pci_attach_args *pa = aux;
465 pci_chipset_tag_t pc = pa->pa_pc;
466 pci_intr_handle_t ih;
467 const char *intrstr = NULL;
468 u_int32_t command;
469 struct ifnet *ifp;
470 u_int32_t val;
471 int mii_flags = MIIF_FORCEANEG;
472 pcireg_t memtype;
473
474 if (bnx_tx_pool == NULL) {
475 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
476 if (bnx_tx_pool != NULL) {
477 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
478 0, 0, 0, "bnxpkts", NULL, IPL_NET);
479 } else {
480 aprint_error(": can't alloc bnx_tx_pool\n");
481 return;
482 }
483 }
484
485 bp = bnx_lookup(pa);
486 if (bp == NULL)
487 panic("unknown device");
488
489 sc->bnx_dev = self;
490
491 aprint_naive("\n");
492 aprint_normal(": %s\n", bp->bp_name);
493
494 sc->bnx_pa = *pa;
495
496 /*
497 * Map control/status registers.
498 */
499 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
500 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
501 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
502 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
503
504 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
505 aprint_error_dev(sc->bnx_dev,
506 "failed to enable memory mapping!\n");
507 return;
508 }
509
510 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
511 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
512 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
513 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
514 return;
515 }
516
517 if (pci_intr_map(pa, &ih)) {
518 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
519 goto bnx_attach_fail;
520 }
521
522 intrstr = pci_intr_string(pc, ih);
523
524 /*
525 * Configure byte swap and enable indirect register access.
526 * Rely on CPU to do target byte swapping on big endian systems.
527 * Access to registers outside of PCI configurtion space are not
528 * valid until this is done.
529 */
530 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
531 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
532 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
533
534 /* Save ASIC revsion info. */
535 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
536
537 /*
538 * Find the base address for shared memory access.
539 * Newer versions of bootcode use a signature and offset
540 * while older versions use a fixed address.
541 */
542 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
543 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
544 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
545 (sc->bnx_pa.pa_function << 2));
546 else
547 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
548
549 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
550
551 /* Set initial device and PHY flags */
552 sc->bnx_flags = 0;
553 sc->bnx_phy_flags = 0;
554
555 /* Get PCI bus information (speed and type). */
556 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
557 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
558 u_int32_t clkreg;
559
560 sc->bnx_flags |= BNX_PCIX_FLAG;
561
562 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
563
564 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
565 switch (clkreg) {
566 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
567 sc->bus_speed_mhz = 133;
568 break;
569
570 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
571 sc->bus_speed_mhz = 100;
572 break;
573
574 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
575 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
576 sc->bus_speed_mhz = 66;
577 break;
578
579 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
580 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
581 sc->bus_speed_mhz = 50;
582 break;
583
584 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
585 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
586 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
587 sc->bus_speed_mhz = 33;
588 break;
589 }
590 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
591 sc->bus_speed_mhz = 66;
592 else
593 sc->bus_speed_mhz = 33;
594
595 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
596 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
597
598 /* Reset the controller. */
599 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
600 goto bnx_attach_fail;
601
602 /* Initialize the controller. */
603 if (bnx_chipinit(sc)) {
604 aprint_error_dev(sc->bnx_dev,
605 "Controller initialization failed!\n");
606 goto bnx_attach_fail;
607 }
608
609 /* Perform NVRAM test. */
610 if (bnx_nvram_test(sc)) {
611 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
612 goto bnx_attach_fail;
613 }
614
615 /* Fetch the permanent Ethernet MAC address. */
616 bnx_get_mac_addr(sc);
617 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
618 ether_sprintf(sc->eaddr));
619
620 /*
621 * Trip points control how many BDs
622 * should be ready before generating an
623 * interrupt while ticks control how long
624 * a BD can sit in the chain before
625 * generating an interrupt. Set the default
626 * values for the RX and TX rings.
627 */
628
629 #ifdef BNX_DEBUG
630 /* Force more frequent interrupts. */
631 sc->bnx_tx_quick_cons_trip_int = 1;
632 sc->bnx_tx_quick_cons_trip = 1;
633 sc->bnx_tx_ticks_int = 0;
634 sc->bnx_tx_ticks = 0;
635
636 sc->bnx_rx_quick_cons_trip_int = 1;
637 sc->bnx_rx_quick_cons_trip = 1;
638 sc->bnx_rx_ticks_int = 0;
639 sc->bnx_rx_ticks = 0;
640 #else
641 sc->bnx_tx_quick_cons_trip_int = 20;
642 sc->bnx_tx_quick_cons_trip = 20;
643 sc->bnx_tx_ticks_int = 80;
644 sc->bnx_tx_ticks = 80;
645
646 sc->bnx_rx_quick_cons_trip_int = 6;
647 sc->bnx_rx_quick_cons_trip = 6;
648 sc->bnx_rx_ticks_int = 18;
649 sc->bnx_rx_ticks = 18;
650 #endif
651
652 /* Update statistics once every second. */
653 sc->bnx_stats_ticks = 1000000 & 0xffff00;
654
655 /* Find the media type for the adapter. */
656 bnx_get_media(sc);
657
658 /*
659 * Store config data needed by the PHY driver for
660 * backplane applications
661 */
662 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
663 BNX_SHARED_HW_CFG_CONFIG);
664 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
665 BNX_PORT_HW_CFG_CONFIG);
666
667 /* Allocate DMA memory resources. */
668 sc->bnx_dmatag = pa->pa_dmat;
669 if (bnx_dma_alloc(sc)) {
670 aprint_error_dev(sc->bnx_dev,
671 "DMA resource allocation failed!\n");
672 goto bnx_attach_fail;
673 }
674
675 /* Initialize the ifnet interface. */
676 ifp = &sc->bnx_ec.ec_if;
677 ifp->if_softc = sc;
678 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
679 ifp->if_ioctl = bnx_ioctl;
680 ifp->if_stop = bnx_stop;
681 ifp->if_start = bnx_start;
682 ifp->if_init = bnx_init;
683 ifp->if_timer = 0;
684 ifp->if_watchdog = bnx_watchdog;
685 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
686 IFQ_SET_READY(&ifp->if_snd);
687 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
688
689 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
690 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
691
692 ifp->if_capabilities |=
693 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
694 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
695 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
696
697 /* Hookup IRQ last. */
698 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
699 if (sc->bnx_intrhand == NULL) {
700 aprint_error_dev(self, "couldn't establish interrupt");
701 if (intrstr != NULL)
702 aprint_error(" at %s", intrstr);
703 aprint_error("\n");
704 goto bnx_attach_fail;
705 }
706 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
707
708 /* create workqueue to handle packet allocations */
709 if (workqueue_create(&sc->bnx_wq, device_xname(self),
710 bnx_alloc_pkts, sc, PRI_NONE, IPL_NONE, WQ_MPSAFE) != 0) {
711 aprint_error_dev(self, "failed to create workqueue\n");
712 goto bnx_attach_fail;
713 }
714
715 sc->bnx_mii.mii_ifp = ifp;
716 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
717 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
718 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
719
720 /* Handle any special PHY initialization for SerDes PHYs. */
721 bnx_init_media(sc);
722
723 sc->bnx_ec.ec_mii = &sc->bnx_mii;
724 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
725 ether_mediastatus);
726
727 /* set phyflags and chipid before mii_attach() */
728 dict = device_properties(self);
729 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
730 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
731
732 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
733 mii_flags |= MIIF_HAVEFIBER;
734 mii_attach(self, &sc->bnx_mii, 0xffffffff,
735 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
736
737 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
738 aprint_error_dev(self, "no PHY found!\n");
739 ifmedia_add(&sc->bnx_mii.mii_media,
740 IFM_ETHER|IFM_MANUAL, 0, NULL);
741 ifmedia_set(&sc->bnx_mii.mii_media,
742 IFM_ETHER|IFM_MANUAL);
743 } else {
744 ifmedia_set(&sc->bnx_mii.mii_media,
745 IFM_ETHER|IFM_AUTO);
746 }
747
748 /* Attach to the Ethernet interface list. */
749 if_attach(ifp);
750 ether_ifattach(ifp,sc->eaddr);
751
752 callout_init(&sc->bnx_timeout, 0);
753
754 if (pmf_device_register(self, NULL, NULL))
755 pmf_class_network_register(self, ifp);
756 else
757 aprint_error_dev(self, "couldn't establish power handler\n");
758
759 /* Print some important debugging info. */
760 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
761
762 goto bnx_attach_exit;
763
764 bnx_attach_fail:
765 bnx_release_resources(sc);
766
767 bnx_attach_exit:
768 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
769 }
770
771 /****************************************************************************/
772 /* Device detach function. */
773 /* */
774 /* Stops the controller, resets the controller, and releases resources. */
775 /* */
776 /* Returns: */
777 /* 0 on success, positive value on failure. */
778 /****************************************************************************/
779 int
780 bnx_detach(device_t dev, int flags)
781 {
782 int s;
783 struct bnx_softc *sc;
784 struct ifnet *ifp;
785
786 sc = device_private(dev);
787 ifp = &sc->bnx_ec.ec_if;
788
789 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
790
791 /* Stop and reset the controller. */
792 s = splnet();
793 if (ifp->if_flags & IFF_RUNNING)
794 bnx_stop(ifp, 1);
795 else {
796 /* Disable the transmit/receive blocks. */
797 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
798 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
799 DELAY(20);
800 bnx_disable_intr(sc);
801 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
802 }
803
804 splx(s);
805
806 pmf_device_deregister(dev);
807 callout_destroy(&sc->bnx_timeout);
808 ether_ifdetach(ifp);
809 workqueue_destroy(sc->bnx_wq);
810
811 /* Delete all remaining media. */
812 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
813
814 if_detach(ifp);
815 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
816
817 /* Release all remaining resources. */
818 bnx_release_resources(sc);
819
820 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
821
822 return(0);
823 }
824
825 /****************************************************************************/
826 /* Indirect register read. */
827 /* */
828 /* Reads NetXtreme II registers using an index/data register pair in PCI */
829 /* configuration space. Using this mechanism avoids issues with posted */
830 /* reads but is much slower than memory-mapped I/O. */
831 /* */
832 /* Returns: */
833 /* The value of the register. */
834 /****************************************************************************/
835 u_int32_t
836 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
837 {
838 struct pci_attach_args *pa = &(sc->bnx_pa);
839
840 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
841 offset);
842 #ifdef BNX_DEBUG
843 {
844 u_int32_t val;
845 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
846 BNX_PCICFG_REG_WINDOW);
847 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
848 "val = 0x%08X\n", __func__, offset, val);
849 return (val);
850 }
851 #else
852 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
853 #endif
854 }
855
856 /****************************************************************************/
857 /* Indirect register write. */
858 /* */
859 /* Writes NetXtreme II registers using an index/data register pair in PCI */
860 /* configuration space. Using this mechanism avoids issues with posted */
861 /* writes but is muchh slower than memory-mapped I/O. */
862 /* */
863 /* Returns: */
864 /* Nothing. */
865 /****************************************************************************/
866 void
867 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
868 {
869 struct pci_attach_args *pa = &(sc->bnx_pa);
870
871 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
872 __func__, offset, val);
873
874 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
875 offset);
876 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
877 }
878
879 /****************************************************************************/
880 /* Context memory write. */
881 /* */
882 /* The NetXtreme II controller uses context memory to track connection */
883 /* information for L2 and higher network protocols. */
884 /* */
885 /* Returns: */
886 /* Nothing. */
887 /****************************************************************************/
888 void
889 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
890 u_int32_t ctx_val)
891 {
892 u_int32_t idx, offset = ctx_offset + cid_addr;
893 u_int32_t val, retry_cnt = 5;
894
895 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
896 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
897 REG_WR(sc, BNX_CTX_CTX_CTRL,
898 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
899
900 for (idx = 0; idx < retry_cnt; idx++) {
901 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
902 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
903 break;
904 DELAY(5);
905 }
906
907 #if 0
908 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
909 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
910 "cid_addr = 0x%08X, offset = 0x%08X!\n",
911 __FILE__, __LINE__, cid_addr, ctx_offset);
912 #endif
913
914 } else {
915 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
916 REG_WR(sc, BNX_CTX_DATA, ctx_val);
917 }
918 }
919
920 /****************************************************************************/
921 /* PHY register read. */
922 /* */
923 /* Implements register reads on the MII bus. */
924 /* */
925 /* Returns: */
926 /* The value of the register. */
927 /****************************************************************************/
928 int
929 bnx_miibus_read_reg(device_t dev, int phy, int reg)
930 {
931 struct bnx_softc *sc = device_private(dev);
932 u_int32_t val;
933 int i;
934
935 /* Make sure we are accessing the correct PHY address. */
936 if (phy != sc->bnx_phy_addr) {
937 DBPRINT(sc, BNX_VERBOSE,
938 "Invalid PHY address %d for PHY read!\n", phy);
939 return(0);
940 }
941
942 /*
943 * The BCM5709S PHY is an IEEE Clause 45 PHY
944 * with special mappings to work with IEEE
945 * Clause 22 register accesses.
946 */
947 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
948 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
949 reg += 0x10;
950 }
951
952 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
953 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
954 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
955
956 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
957 REG_RD(sc, BNX_EMAC_MDIO_MODE);
958
959 DELAY(40);
960 }
961
962 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
963 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
964 BNX_EMAC_MDIO_COMM_START_BUSY;
965 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
966
967 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
968 DELAY(10);
969
970 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
971 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
972 DELAY(5);
973
974 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
975 val &= BNX_EMAC_MDIO_COMM_DATA;
976
977 break;
978 }
979 }
980
981 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
982 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
983 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
984 val = 0x0;
985 } else
986 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
987
988 DBPRINT(sc, BNX_EXCESSIVE,
989 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
990 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
991
992 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
993 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
994 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
995
996 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
997 REG_RD(sc, BNX_EMAC_MDIO_MODE);
998
999 DELAY(40);
1000 }
1001
1002 return (val & 0xffff);
1003 }
1004
1005 /****************************************************************************/
1006 /* PHY register write. */
1007 /* */
1008 /* Implements register writes on the MII bus. */
1009 /* */
1010 /* Returns: */
1011 /* The value of the register. */
1012 /****************************************************************************/
1013 void
1014 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1015 {
1016 struct bnx_softc *sc = device_private(dev);
1017 u_int32_t val1;
1018 int i;
1019
1020 /* Make sure we are accessing the correct PHY address. */
1021 if (phy != sc->bnx_phy_addr) {
1022 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1023 phy);
1024 return;
1025 }
1026
1027 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1028 "val = 0x%04X\n", __func__,
1029 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
1030
1031 /*
1032 * The BCM5709S PHY is an IEEE Clause 45 PHY
1033 * with special mappings to work with IEEE
1034 * Clause 22 register accesses.
1035 */
1036 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1037 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1038 reg += 0x10;
1039 }
1040
1041 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1042 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1043 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1044
1045 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1046 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1047
1048 DELAY(40);
1049 }
1050
1051 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1052 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1053 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1054 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1055
1056 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1057 DELAY(10);
1058
1059 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1060 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1061 DELAY(5);
1062 break;
1063 }
1064 }
1065
1066 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1067 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1068 __LINE__);
1069 }
1070
1071 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1072 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1073 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1074
1075 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1076 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1077
1078 DELAY(40);
1079 }
1080 }
1081
1082 /****************************************************************************/
1083 /* MII bus status change. */
1084 /* */
1085 /* Called by the MII bus driver when the PHY establishes link to set the */
1086 /* MAC interface registers. */
1087 /* */
1088 /* Returns: */
1089 /* Nothing. */
1090 /****************************************************************************/
1091 void
1092 bnx_miibus_statchg(device_t dev)
1093 {
1094 struct bnx_softc *sc = device_private(dev);
1095 struct mii_data *mii = &sc->bnx_mii;
1096 int val;
1097
1098 val = REG_RD(sc, BNX_EMAC_MODE);
1099 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1100 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1101 BNX_EMAC_MODE_25G);
1102
1103 /* Set MII or GMII interface based on the speed
1104 * negotiated by the PHY.
1105 */
1106 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1107 case IFM_10_T:
1108 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1109 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1110 val |= BNX_EMAC_MODE_PORT_MII_10;
1111 break;
1112 }
1113 /* FALLTHROUGH */
1114 case IFM_100_TX:
1115 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1116 val |= BNX_EMAC_MODE_PORT_MII;
1117 break;
1118 case IFM_2500_SX:
1119 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1120 val |= BNX_EMAC_MODE_25G;
1121 /* FALLTHROUGH */
1122 case IFM_1000_T:
1123 case IFM_1000_SX:
1124 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1125 val |= BNX_EMAC_MODE_PORT_GMII;
1126 break;
1127 default:
1128 val |= BNX_EMAC_MODE_PORT_GMII;
1129 break;
1130 }
1131
1132 /* Set half or full duplex based on the duplicity
1133 * negotiated by the PHY.
1134 */
1135 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1136 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1137 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1138 } else {
1139 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1140 }
1141
1142 REG_WR(sc, BNX_EMAC_MODE, val);
1143 }
1144
1145 /****************************************************************************/
1146 /* Acquire NVRAM lock. */
1147 /* */
1148 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1149 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1150 /* for use by the driver. */
1151 /* */
1152 /* Returns: */
1153 /* 0 on success, positive value on failure. */
1154 /****************************************************************************/
1155 int
1156 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1157 {
1158 u_int32_t val;
1159 int j;
1160
1161 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1162
1163 /* Request access to the flash interface. */
1164 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1165 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1166 val = REG_RD(sc, BNX_NVM_SW_ARB);
1167 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1168 break;
1169
1170 DELAY(5);
1171 }
1172
1173 if (j >= NVRAM_TIMEOUT_COUNT) {
1174 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1175 return (EBUSY);
1176 }
1177
1178 return (0);
1179 }
1180
1181 /****************************************************************************/
1182 /* Release NVRAM lock. */
1183 /* */
1184 /* When the caller is finished accessing NVRAM the lock must be released. */
1185 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1186 /* for use by the driver. */
1187 /* */
1188 /* Returns: */
1189 /* 0 on success, positive value on failure. */
1190 /****************************************************************************/
1191 int
1192 bnx_release_nvram_lock(struct bnx_softc *sc)
1193 {
1194 int j;
1195 u_int32_t val;
1196
1197 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1198
1199 /* Relinquish nvram interface. */
1200 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1201
1202 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1203 val = REG_RD(sc, BNX_NVM_SW_ARB);
1204 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1205 break;
1206
1207 DELAY(5);
1208 }
1209
1210 if (j >= NVRAM_TIMEOUT_COUNT) {
1211 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1212 return (EBUSY);
1213 }
1214
1215 return (0);
1216 }
1217
1218 #ifdef BNX_NVRAM_WRITE_SUPPORT
1219 /****************************************************************************/
1220 /* Enable NVRAM write access. */
1221 /* */
1222 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1223 /* */
1224 /* Returns: */
1225 /* 0 on success, positive value on failure. */
1226 /****************************************************************************/
1227 int
1228 bnx_enable_nvram_write(struct bnx_softc *sc)
1229 {
1230 u_int32_t val;
1231
1232 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1233
1234 val = REG_RD(sc, BNX_MISC_CFG);
1235 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1236
1237 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1238 int j;
1239
1240 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1241 REG_WR(sc, BNX_NVM_COMMAND,
1242 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1243
1244 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1245 DELAY(5);
1246
1247 val = REG_RD(sc, BNX_NVM_COMMAND);
1248 if (val & BNX_NVM_COMMAND_DONE)
1249 break;
1250 }
1251
1252 if (j >= NVRAM_TIMEOUT_COUNT) {
1253 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1254 return (EBUSY);
1255 }
1256 }
1257
1258 return (0);
1259 }
1260
1261 /****************************************************************************/
1262 /* Disable NVRAM write access. */
1263 /* */
1264 /* When the caller is finished writing to NVRAM write access must be */
1265 /* disabled. */
1266 /* */
1267 /* Returns: */
1268 /* Nothing. */
1269 /****************************************************************************/
1270 void
1271 bnx_disable_nvram_write(struct bnx_softc *sc)
1272 {
1273 u_int32_t val;
1274
1275 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1276
1277 val = REG_RD(sc, BNX_MISC_CFG);
1278 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1279 }
1280 #endif
1281
1282 /****************************************************************************/
1283 /* Enable NVRAM access. */
1284 /* */
1285 /* Before accessing NVRAM for read or write operations the caller must */
1286 /* enabled NVRAM access. */
1287 /* */
1288 /* Returns: */
1289 /* Nothing. */
1290 /****************************************************************************/
1291 void
1292 bnx_enable_nvram_access(struct bnx_softc *sc)
1293 {
1294 u_int32_t val;
1295
1296 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1297
1298 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1299 /* Enable both bits, even on read. */
1300 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1301 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1302 }
1303
1304 /****************************************************************************/
1305 /* Disable NVRAM access. */
1306 /* */
1307 /* When the caller is finished accessing NVRAM access must be disabled. */
1308 /* */
1309 /* Returns: */
1310 /* Nothing. */
1311 /****************************************************************************/
1312 void
1313 bnx_disable_nvram_access(struct bnx_softc *sc)
1314 {
1315 u_int32_t val;
1316
1317 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1318
1319 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1320
1321 /* Disable both bits, even after read. */
1322 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1323 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1324 }
1325
1326 #ifdef BNX_NVRAM_WRITE_SUPPORT
1327 /****************************************************************************/
1328 /* Erase NVRAM page before writing. */
1329 /* */
1330 /* Non-buffered flash parts require that a page be erased before it is */
1331 /* written. */
1332 /* */
1333 /* Returns: */
1334 /* 0 on success, positive value on failure. */
1335 /****************************************************************************/
1336 int
1337 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1338 {
1339 u_int32_t cmd;
1340 int j;
1341
1342 /* Buffered flash doesn't require an erase. */
1343 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1344 return (0);
1345
1346 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1347
1348 /* Build an erase command. */
1349 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1350 BNX_NVM_COMMAND_DOIT;
1351
1352 /*
1353 * Clear the DONE bit separately, set the NVRAM adress to erase,
1354 * and issue the erase command.
1355 */
1356 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1357 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1358 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1359
1360 /* Wait for completion. */
1361 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1362 u_int32_t val;
1363
1364 DELAY(5);
1365
1366 val = REG_RD(sc, BNX_NVM_COMMAND);
1367 if (val & BNX_NVM_COMMAND_DONE)
1368 break;
1369 }
1370
1371 if (j >= NVRAM_TIMEOUT_COUNT) {
1372 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1373 return (EBUSY);
1374 }
1375
1376 return (0);
1377 }
1378 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1379
1380 /****************************************************************************/
1381 /* Read a dword (32 bits) from NVRAM. */
1382 /* */
1383 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1384 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1385 /* */
1386 /* Returns: */
1387 /* 0 on success and the 32 bit value read, positive value on failure. */
1388 /****************************************************************************/
1389 int
1390 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1391 u_int8_t *ret_val, u_int32_t cmd_flags)
1392 {
1393 u_int32_t cmd;
1394 int i, rc = 0;
1395
1396 /* Build the command word. */
1397 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1398
1399 /* Calculate the offset for buffered flash if translation is used. */
1400 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1401 offset = ((offset / sc->bnx_flash_info->page_size) <<
1402 sc->bnx_flash_info->page_bits) +
1403 (offset % sc->bnx_flash_info->page_size);
1404 }
1405
1406 /*
1407 * Clear the DONE bit separately, set the address to read,
1408 * and issue the read.
1409 */
1410 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1411 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1412 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1413
1414 /* Wait for completion. */
1415 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1416 u_int32_t val;
1417
1418 DELAY(5);
1419
1420 val = REG_RD(sc, BNX_NVM_COMMAND);
1421 if (val & BNX_NVM_COMMAND_DONE) {
1422 val = REG_RD(sc, BNX_NVM_READ);
1423
1424 val = bnx_be32toh(val);
1425 memcpy(ret_val, &val, 4);
1426 break;
1427 }
1428 }
1429
1430 /* Check for errors. */
1431 if (i >= NVRAM_TIMEOUT_COUNT) {
1432 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1433 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1434 rc = EBUSY;
1435 }
1436
1437 return(rc);
1438 }
1439
1440 #ifdef BNX_NVRAM_WRITE_SUPPORT
1441 /****************************************************************************/
1442 /* Write a dword (32 bits) to NVRAM. */
1443 /* */
1444 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1445 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1446 /* enabled NVRAM write access. */
1447 /* */
1448 /* Returns: */
1449 /* 0 on success, positive value on failure. */
1450 /****************************************************************************/
1451 int
1452 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1453 u_int32_t cmd_flags)
1454 {
1455 u_int32_t cmd, val32;
1456 int j;
1457
1458 /* Build the command word. */
1459 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1460
1461 /* Calculate the offset for buffered flash if translation is used. */
1462 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1463 offset = ((offset / sc->bnx_flash_info->page_size) <<
1464 sc->bnx_flash_info->page_bits) +
1465 (offset % sc->bnx_flash_info->page_size);
1466 }
1467
1468 /*
1469 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1470 * set the NVRAM address to write, and issue the write command
1471 */
1472 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1473 memcpy(&val32, val, 4);
1474 val32 = htobe32(val32);
1475 REG_WR(sc, BNX_NVM_WRITE, val32);
1476 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1477 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1478
1479 /* Wait for completion. */
1480 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1481 DELAY(5);
1482
1483 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1484 break;
1485 }
1486 if (j >= NVRAM_TIMEOUT_COUNT) {
1487 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1488 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1489 return (EBUSY);
1490 }
1491
1492 return (0);
1493 }
1494 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1495
1496 /****************************************************************************/
1497 /* Initialize NVRAM access. */
1498 /* */
1499 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1500 /* access that device. */
1501 /* */
1502 /* Returns: */
1503 /* 0 on success, positive value on failure. */
1504 /****************************************************************************/
1505 int
1506 bnx_init_nvram(struct bnx_softc *sc)
1507 {
1508 u_int32_t val;
1509 int j, entry_count, rc = 0;
1510 struct flash_spec *flash;
1511
1512 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1513
1514 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1515 sc->bnx_flash_info = &flash_5709;
1516 goto bnx_init_nvram_get_flash_size;
1517 }
1518
1519 /* Determine the selected interface. */
1520 val = REG_RD(sc, BNX_NVM_CFG1);
1521
1522 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1523
1524 /*
1525 * Flash reconfiguration is required to support additional
1526 * NVRAM devices not directly supported in hardware.
1527 * Check if the flash interface was reconfigured
1528 * by the bootcode.
1529 */
1530
1531 if (val & 0x40000000) {
1532 /* Flash interface reconfigured by bootcode. */
1533
1534 DBPRINT(sc,BNX_INFO_LOAD,
1535 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1536
1537 for (j = 0, flash = &flash_table[0]; j < entry_count;
1538 j++, flash++) {
1539 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1540 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1541 sc->bnx_flash_info = flash;
1542 break;
1543 }
1544 }
1545 } else {
1546 /* Flash interface not yet reconfigured. */
1547 u_int32_t mask;
1548
1549 DBPRINT(sc,BNX_INFO_LOAD,
1550 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1551
1552 if (val & (1 << 23))
1553 mask = FLASH_BACKUP_STRAP_MASK;
1554 else
1555 mask = FLASH_STRAP_MASK;
1556
1557 /* Look for the matching NVRAM device configuration data. */
1558 for (j = 0, flash = &flash_table[0]; j < entry_count;
1559 j++, flash++) {
1560 /* Check if the dev matches any of the known devices. */
1561 if ((val & mask) == (flash->strapping & mask)) {
1562 /* Found a device match. */
1563 sc->bnx_flash_info = flash;
1564
1565 /* Request access to the flash interface. */
1566 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1567 return (rc);
1568
1569 /* Reconfigure the flash interface. */
1570 bnx_enable_nvram_access(sc);
1571 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1572 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1573 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1574 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1575 bnx_disable_nvram_access(sc);
1576 bnx_release_nvram_lock(sc);
1577
1578 break;
1579 }
1580 }
1581 }
1582
1583 /* Check if a matching device was found. */
1584 if (j == entry_count) {
1585 sc->bnx_flash_info = NULL;
1586 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1587 __FILE__, __LINE__);
1588 rc = ENODEV;
1589 }
1590
1591 bnx_init_nvram_get_flash_size:
1592 /* Write the flash config data to the shared memory interface. */
1593 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1594 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1595 if (val)
1596 sc->bnx_flash_size = val;
1597 else
1598 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1599
1600 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1601 "0x%08X\n", sc->bnx_flash_info->total_size);
1602
1603 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1604
1605 return (rc);
1606 }
1607
1608 /****************************************************************************/
1609 /* Read an arbitrary range of data from NVRAM. */
1610 /* */
1611 /* Prepares the NVRAM interface for access and reads the requested data */
1612 /* into the supplied buffer. */
1613 /* */
1614 /* Returns: */
1615 /* 0 on success and the data read, positive value on failure. */
1616 /****************************************************************************/
1617 int
1618 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1619 int buf_size)
1620 {
1621 int rc = 0;
1622 u_int32_t cmd_flags, offset32, len32, extra;
1623
1624 if (buf_size == 0)
1625 return (0);
1626
1627 /* Request access to the flash interface. */
1628 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1629 return (rc);
1630
1631 /* Enable access to flash interface */
1632 bnx_enable_nvram_access(sc);
1633
1634 len32 = buf_size;
1635 offset32 = offset;
1636 extra = 0;
1637
1638 cmd_flags = 0;
1639
1640 if (offset32 & 3) {
1641 u_int8_t buf[4];
1642 u_int32_t pre_len;
1643
1644 offset32 &= ~3;
1645 pre_len = 4 - (offset & 3);
1646
1647 if (pre_len >= len32) {
1648 pre_len = len32;
1649 cmd_flags =
1650 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1651 } else
1652 cmd_flags = BNX_NVM_COMMAND_FIRST;
1653
1654 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1655
1656 if (rc)
1657 return (rc);
1658
1659 memcpy(ret_buf, buf + (offset & 3), pre_len);
1660
1661 offset32 += 4;
1662 ret_buf += pre_len;
1663 len32 -= pre_len;
1664 }
1665
1666 if (len32 & 3) {
1667 extra = 4 - (len32 & 3);
1668 len32 = (len32 + 4) & ~3;
1669 }
1670
1671 if (len32 == 4) {
1672 u_int8_t buf[4];
1673
1674 if (cmd_flags)
1675 cmd_flags = BNX_NVM_COMMAND_LAST;
1676 else
1677 cmd_flags =
1678 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1679
1680 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1681
1682 memcpy(ret_buf, buf, 4 - extra);
1683 } else if (len32 > 0) {
1684 u_int8_t buf[4];
1685
1686 /* Read the first word. */
1687 if (cmd_flags)
1688 cmd_flags = 0;
1689 else
1690 cmd_flags = BNX_NVM_COMMAND_FIRST;
1691
1692 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1693
1694 /* Advance to the next dword. */
1695 offset32 += 4;
1696 ret_buf += 4;
1697 len32 -= 4;
1698
1699 while (len32 > 4 && rc == 0) {
1700 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1701
1702 /* Advance to the next dword. */
1703 offset32 += 4;
1704 ret_buf += 4;
1705 len32 -= 4;
1706 }
1707
1708 if (rc)
1709 return (rc);
1710
1711 cmd_flags = BNX_NVM_COMMAND_LAST;
1712 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1713
1714 memcpy(ret_buf, buf, 4 - extra);
1715 }
1716
1717 /* Disable access to flash interface and release the lock. */
1718 bnx_disable_nvram_access(sc);
1719 bnx_release_nvram_lock(sc);
1720
1721 return (rc);
1722 }
1723
1724 #ifdef BNX_NVRAM_WRITE_SUPPORT
1725 /****************************************************************************/
1726 /* Write an arbitrary range of data from NVRAM. */
1727 /* */
1728 /* Prepares the NVRAM interface for write access and writes the requested */
1729 /* data from the supplied buffer. The caller is responsible for */
1730 /* calculating any appropriate CRCs. */
1731 /* */
1732 /* Returns: */
1733 /* 0 on success, positive value on failure. */
1734 /****************************************************************************/
1735 int
1736 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1737 int buf_size)
1738 {
1739 u_int32_t written, offset32, len32;
1740 u_int8_t *buf, start[4], end[4];
1741 int rc = 0;
1742 int align_start, align_end;
1743
1744 buf = data_buf;
1745 offset32 = offset;
1746 len32 = buf_size;
1747 align_start = align_end = 0;
1748
1749 if ((align_start = (offset32 & 3))) {
1750 offset32 &= ~3;
1751 len32 += align_start;
1752 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1753 return (rc);
1754 }
1755
1756 if (len32 & 3) {
1757 if ((len32 > 4) || !align_start) {
1758 align_end = 4 - (len32 & 3);
1759 len32 += align_end;
1760 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1761 end, 4))) {
1762 return (rc);
1763 }
1764 }
1765 }
1766
1767 if (align_start || align_end) {
1768 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1769 if (buf == 0)
1770 return (ENOMEM);
1771
1772 if (align_start)
1773 memcpy(buf, start, 4);
1774
1775 if (align_end)
1776 memcpy(buf + len32 - 4, end, 4);
1777
1778 memcpy(buf + align_start, data_buf, buf_size);
1779 }
1780
1781 written = 0;
1782 while ((written < len32) && (rc == 0)) {
1783 u_int32_t page_start, page_end, data_start, data_end;
1784 u_int32_t addr, cmd_flags;
1785 int i;
1786 u_int8_t flash_buffer[264];
1787
1788 /* Find the page_start addr */
1789 page_start = offset32 + written;
1790 page_start -= (page_start % sc->bnx_flash_info->page_size);
1791 /* Find the page_end addr */
1792 page_end = page_start + sc->bnx_flash_info->page_size;
1793 /* Find the data_start addr */
1794 data_start = (written == 0) ? offset32 : page_start;
1795 /* Find the data_end addr */
1796 data_end = (page_end > offset32 + len32) ?
1797 (offset32 + len32) : page_end;
1798
1799 /* Request access to the flash interface. */
1800 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1801 goto nvram_write_end;
1802
1803 /* Enable access to flash interface */
1804 bnx_enable_nvram_access(sc);
1805
1806 cmd_flags = BNX_NVM_COMMAND_FIRST;
1807 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1808 int j;
1809
1810 /* Read the whole page into the buffer
1811 * (non-buffer flash only) */
1812 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1813 if (j == (sc->bnx_flash_info->page_size - 4))
1814 cmd_flags |= BNX_NVM_COMMAND_LAST;
1815
1816 rc = bnx_nvram_read_dword(sc,
1817 page_start + j,
1818 &flash_buffer[j],
1819 cmd_flags);
1820
1821 if (rc)
1822 goto nvram_write_end;
1823
1824 cmd_flags = 0;
1825 }
1826 }
1827
1828 /* Enable writes to flash interface (unlock write-protect) */
1829 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1830 goto nvram_write_end;
1831
1832 /* Erase the page */
1833 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1834 goto nvram_write_end;
1835
1836 /* Re-enable the write again for the actual write */
1837 bnx_enable_nvram_write(sc);
1838
1839 /* Loop to write back the buffer data from page_start to
1840 * data_start */
1841 i = 0;
1842 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1843 for (addr = page_start; addr < data_start;
1844 addr += 4, i += 4) {
1845
1846 rc = bnx_nvram_write_dword(sc, addr,
1847 &flash_buffer[i], cmd_flags);
1848
1849 if (rc != 0)
1850 goto nvram_write_end;
1851
1852 cmd_flags = 0;
1853 }
1854 }
1855
1856 /* Loop to write the new data from data_start to data_end */
1857 for (addr = data_start; addr < data_end; addr += 4, i++) {
1858 if ((addr == page_end - 4) ||
1859 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1860 && (addr == data_end - 4))) {
1861
1862 cmd_flags |= BNX_NVM_COMMAND_LAST;
1863 }
1864
1865 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1866
1867 if (rc != 0)
1868 goto nvram_write_end;
1869
1870 cmd_flags = 0;
1871 buf += 4;
1872 }
1873
1874 /* Loop to write back the buffer data from data_end
1875 * to page_end */
1876 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1877 for (addr = data_end; addr < page_end;
1878 addr += 4, i += 4) {
1879
1880 if (addr == page_end-4)
1881 cmd_flags = BNX_NVM_COMMAND_LAST;
1882
1883 rc = bnx_nvram_write_dword(sc, addr,
1884 &flash_buffer[i], cmd_flags);
1885
1886 if (rc != 0)
1887 goto nvram_write_end;
1888
1889 cmd_flags = 0;
1890 }
1891 }
1892
1893 /* Disable writes to flash interface (lock write-protect) */
1894 bnx_disable_nvram_write(sc);
1895
1896 /* Disable access to flash interface */
1897 bnx_disable_nvram_access(sc);
1898 bnx_release_nvram_lock(sc);
1899
1900 /* Increment written */
1901 written += data_end - data_start;
1902 }
1903
1904 nvram_write_end:
1905 if (align_start || align_end)
1906 free(buf, M_DEVBUF);
1907
1908 return (rc);
1909 }
1910 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1911
1912 /****************************************************************************/
1913 /* Verifies that NVRAM is accessible and contains valid data. */
1914 /* */
1915 /* Reads the configuration data from NVRAM and verifies that the CRC is */
1916 /* correct. */
1917 /* */
1918 /* Returns: */
1919 /* 0 on success, positive value on failure. */
1920 /****************************************************************************/
1921 int
1922 bnx_nvram_test(struct bnx_softc *sc)
1923 {
1924 u_int32_t buf[BNX_NVRAM_SIZE / 4];
1925 u_int8_t *data = (u_int8_t *) buf;
1926 int rc = 0;
1927 u_int32_t magic, csum;
1928
1929 /*
1930 * Check that the device NVRAM is valid by reading
1931 * the magic value at offset 0.
1932 */
1933 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1934 goto bnx_nvram_test_done;
1935
1936 magic = bnx_be32toh(buf[0]);
1937 if (magic != BNX_NVRAM_MAGIC) {
1938 rc = ENODEV;
1939 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1940 "Expected: 0x%08X, Found: 0x%08X\n",
1941 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1942 goto bnx_nvram_test_done;
1943 }
1944
1945 /*
1946 * Verify that the device NVRAM includes valid
1947 * configuration data.
1948 */
1949 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1950 goto bnx_nvram_test_done;
1951
1952 csum = ether_crc32_le(data, 0x100);
1953 if (csum != BNX_CRC32_RESIDUAL) {
1954 rc = ENODEV;
1955 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1956 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1957 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1958 goto bnx_nvram_test_done;
1959 }
1960
1961 csum = ether_crc32_le(data + 0x100, 0x100);
1962 if (csum != BNX_CRC32_RESIDUAL) {
1963 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1964 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1965 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1966 rc = ENODEV;
1967 }
1968
1969 bnx_nvram_test_done:
1970 return (rc);
1971 }
1972
1973 /****************************************************************************/
1974 /* Identifies the current media type of the controller and sets the PHY */
1975 /* address. */
1976 /* */
1977 /* Returns: */
1978 /* Nothing. */
1979 /****************************************************************************/
1980 void
1981 bnx_get_media(struct bnx_softc *sc)
1982 {
1983 sc->bnx_phy_addr = 1;
1984
1985 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1986 u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
1987 u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1988 u_int32_t strap;
1989
1990 /*
1991 * The BCM5709S is software configurable
1992 * for Copper or SerDes operation.
1993 */
1994 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1995 DBPRINT(sc, BNX_INFO_LOAD,
1996 "5709 bonded for copper.\n");
1997 goto bnx_get_media_exit;
1998 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1999 DBPRINT(sc, BNX_INFO_LOAD,
2000 "5709 bonded for dual media.\n");
2001 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2002 goto bnx_get_media_exit;
2003 }
2004
2005 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2006 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2007 else {
2008 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2009 >> 8;
2010 }
2011
2012 if (sc->bnx_pa.pa_function == 0) {
2013 switch (strap) {
2014 case 0x4:
2015 case 0x5:
2016 case 0x6:
2017 DBPRINT(sc, BNX_INFO_LOAD,
2018 "BCM5709 s/w configured for SerDes.\n");
2019 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2020 break;
2021 default:
2022 DBPRINT(sc, BNX_INFO_LOAD,
2023 "BCM5709 s/w configured for Copper.\n");
2024 }
2025 } else {
2026 switch (strap) {
2027 case 0x1:
2028 case 0x2:
2029 case 0x4:
2030 DBPRINT(sc, BNX_INFO_LOAD,
2031 "BCM5709 s/w configured for SerDes.\n");
2032 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2033 break;
2034 default:
2035 DBPRINT(sc, BNX_INFO_LOAD,
2036 "BCM5709 s/w configured for Copper.\n");
2037 }
2038 }
2039
2040 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2041 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2042
2043 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2044 u_int32_t val;
2045
2046 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2047
2048 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2049 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2050
2051 /*
2052 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2053 * separate PHY for SerDes.
2054 */
2055 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2056 sc->bnx_phy_addr = 2;
2057 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2058 BNX_SHARED_HW_CFG_CONFIG);
2059 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2060 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2061 DBPRINT(sc, BNX_INFO_LOAD,
2062 "Found 2.5Gb capable adapter\n");
2063 }
2064 }
2065 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2066 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2067 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2068
2069 bnx_get_media_exit:
2070 DBPRINT(sc, (BNX_INFO_LOAD),
2071 "Using PHY address %d.\n", sc->bnx_phy_addr);
2072 }
2073
2074 /****************************************************************************/
2075 /* Performs PHY initialization required before MII drivers access the */
2076 /* device. */
2077 /* */
2078 /* Returns: */
2079 /* Nothing. */
2080 /****************************************************************************/
2081 void
2082 bnx_init_media(struct bnx_softc *sc)
2083 {
2084 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2085 /*
2086 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2087 * IEEE Clause 22 method. Otherwise we have no way to attach
2088 * the PHY to the mii(4) layer. PHY specific configuration
2089 * is done by the mii(4) layer.
2090 */
2091
2092 /* Select auto-negotiation MMD of the PHY. */
2093 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2094 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2095
2096 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2097 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2098
2099 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2100 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2101 }
2102 }
2103
2104 /****************************************************************************/
2105 /* Free any DMA memory owned by the driver. */
2106 /* */
2107 /* Scans through each data structre that requires DMA memory and frees */
2108 /* the memory if allocated. */
2109 /* */
2110 /* Returns: */
2111 /* Nothing. */
2112 /****************************************************************************/
2113 void
2114 bnx_dma_free(struct bnx_softc *sc)
2115 {
2116 int i;
2117
2118 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2119
2120 /* Destroy the status block. */
2121 if (sc->status_block != NULL && sc->status_map != NULL) {
2122 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2123 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2124 BNX_STATUS_BLK_SZ);
2125 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2126 sc->status_rseg);
2127 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2128 sc->status_block = NULL;
2129 sc->status_map = NULL;
2130 }
2131
2132 /* Destroy the statistics block. */
2133 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2134 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2135 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2136 BNX_STATS_BLK_SZ);
2137 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2138 sc->stats_rseg);
2139 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2140 sc->stats_block = NULL;
2141 sc->stats_map = NULL;
2142 }
2143
2144 /* Free, unmap and destroy all context memory pages. */
2145 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2146 for (i = 0; i < sc->ctx_pages; i++) {
2147 if (sc->ctx_block[i] != NULL) {
2148 bus_dmamap_unload(sc->bnx_dmatag,
2149 sc->ctx_map[i]);
2150 bus_dmamem_unmap(sc->bnx_dmatag,
2151 (void *)sc->ctx_block[i],
2152 BCM_PAGE_SIZE);
2153 bus_dmamem_free(sc->bnx_dmatag,
2154 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2155 bus_dmamap_destroy(sc->bnx_dmatag,
2156 sc->ctx_map[i]);
2157 sc->ctx_block[i] = NULL;
2158 }
2159 }
2160 }
2161
2162 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2163 for (i = 0; i < TX_PAGES; i++ ) {
2164 if (sc->tx_bd_chain[i] != NULL &&
2165 sc->tx_bd_chain_map[i] != NULL) {
2166 bus_dmamap_unload(sc->bnx_dmatag,
2167 sc->tx_bd_chain_map[i]);
2168 bus_dmamem_unmap(sc->bnx_dmatag,
2169 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2170 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2171 sc->tx_bd_chain_rseg[i]);
2172 bus_dmamap_destroy(sc->bnx_dmatag,
2173 sc->tx_bd_chain_map[i]);
2174 sc->tx_bd_chain[i] = NULL;
2175 sc->tx_bd_chain_map[i] = NULL;
2176 }
2177 }
2178
2179 /* Destroy the TX dmamaps. */
2180 /* This isn't necessary since we dont allocate them up front */
2181
2182 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2183 for (i = 0; i < RX_PAGES; i++ ) {
2184 if (sc->rx_bd_chain[i] != NULL &&
2185 sc->rx_bd_chain_map[i] != NULL) {
2186 bus_dmamap_unload(sc->bnx_dmatag,
2187 sc->rx_bd_chain_map[i]);
2188 bus_dmamem_unmap(sc->bnx_dmatag,
2189 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2190 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2191 sc->rx_bd_chain_rseg[i]);
2192
2193 bus_dmamap_destroy(sc->bnx_dmatag,
2194 sc->rx_bd_chain_map[i]);
2195 sc->rx_bd_chain[i] = NULL;
2196 sc->rx_bd_chain_map[i] = NULL;
2197 }
2198 }
2199
2200 /* Unload and destroy the RX mbuf maps. */
2201 for (i = 0; i < TOTAL_RX_BD; i++) {
2202 if (sc->rx_mbuf_map[i] != NULL) {
2203 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2204 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2205 }
2206 }
2207
2208 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2209 }
2210
2211 /****************************************************************************/
2212 /* Allocate any DMA memory needed by the driver. */
2213 /* */
2214 /* Allocates DMA memory needed for the various global structures needed by */
2215 /* hardware. */
2216 /* */
2217 /* Returns: */
2218 /* 0 for success, positive value for failure. */
2219 /****************************************************************************/
2220 int
2221 bnx_dma_alloc(struct bnx_softc *sc)
2222 {
2223 int i, rc = 0;
2224
2225 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2226
2227 /*
2228 * Allocate DMA memory for the status block, map the memory into DMA
2229 * space, and fetch the physical address of the block.
2230 */
2231 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2232 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2233 aprint_error_dev(sc->bnx_dev,
2234 "Could not create status block DMA map!\n");
2235 rc = ENOMEM;
2236 goto bnx_dma_alloc_exit;
2237 }
2238
2239 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2240 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2241 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2242 aprint_error_dev(sc->bnx_dev,
2243 "Could not allocate status block DMA memory!\n");
2244 rc = ENOMEM;
2245 goto bnx_dma_alloc_exit;
2246 }
2247
2248 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2249 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2250 aprint_error_dev(sc->bnx_dev,
2251 "Could not map status block DMA memory!\n");
2252 rc = ENOMEM;
2253 goto bnx_dma_alloc_exit;
2254 }
2255
2256 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2257 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2258 aprint_error_dev(sc->bnx_dev,
2259 "Could not load status block DMA memory!\n");
2260 rc = ENOMEM;
2261 goto bnx_dma_alloc_exit;
2262 }
2263
2264 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2265 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2266
2267 /* DRC - Fix for 64 bit addresses. */
2268 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2269 (u_int32_t) sc->status_block_paddr);
2270
2271 /* BCM5709 uses host memory as cache for context memory. */
2272 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2273 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2274 if (sc->ctx_pages == 0)
2275 sc->ctx_pages = 1;
2276 if (sc->ctx_pages > 4) /* XXX */
2277 sc->ctx_pages = 4;
2278
2279 DBRUNIF((sc->ctx_pages > 512),
2280 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2281 __FILE__, __LINE__, sc->ctx_pages));
2282
2283
2284 for (i = 0; i < sc->ctx_pages; i++) {
2285 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2286 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2287 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2288 &sc->ctx_map[i]) != 0) {
2289 rc = ENOMEM;
2290 goto bnx_dma_alloc_exit;
2291 }
2292
2293 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2294 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2295 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2296 rc = ENOMEM;
2297 goto bnx_dma_alloc_exit;
2298 }
2299
2300 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2301 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2302 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2303 rc = ENOMEM;
2304 goto bnx_dma_alloc_exit;
2305 }
2306
2307 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2308 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2309 BUS_DMA_NOWAIT) != 0) {
2310 rc = ENOMEM;
2311 goto bnx_dma_alloc_exit;
2312 }
2313
2314 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2315 }
2316 }
2317
2318 /*
2319 * Allocate DMA memory for the statistics block, map the memory into
2320 * DMA space, and fetch the physical address of the block.
2321 */
2322 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2323 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2324 aprint_error_dev(sc->bnx_dev,
2325 "Could not create stats block DMA map!\n");
2326 rc = ENOMEM;
2327 goto bnx_dma_alloc_exit;
2328 }
2329
2330 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2331 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2332 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2333 aprint_error_dev(sc->bnx_dev,
2334 "Could not allocate stats block DMA memory!\n");
2335 rc = ENOMEM;
2336 goto bnx_dma_alloc_exit;
2337 }
2338
2339 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2340 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2341 aprint_error_dev(sc->bnx_dev,
2342 "Could not map stats block DMA memory!\n");
2343 rc = ENOMEM;
2344 goto bnx_dma_alloc_exit;
2345 }
2346
2347 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2348 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2349 aprint_error_dev(sc->bnx_dev,
2350 "Could not load status block DMA memory!\n");
2351 rc = ENOMEM;
2352 goto bnx_dma_alloc_exit;
2353 }
2354
2355 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2356 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2357
2358 /* DRC - Fix for 64 bit address. */
2359 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2360 (u_int32_t) sc->stats_block_paddr);
2361
2362 /*
2363 * Allocate DMA memory for the TX buffer descriptor chain,
2364 * and fetch the physical address of the block.
2365 */
2366 for (i = 0; i < TX_PAGES; i++) {
2367 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2368 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2369 &sc->tx_bd_chain_map[i])) {
2370 aprint_error_dev(sc->bnx_dev,
2371 "Could not create Tx desc %d DMA map!\n", i);
2372 rc = ENOMEM;
2373 goto bnx_dma_alloc_exit;
2374 }
2375
2376 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2377 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2378 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2379 aprint_error_dev(sc->bnx_dev,
2380 "Could not allocate TX desc %d DMA memory!\n",
2381 i);
2382 rc = ENOMEM;
2383 goto bnx_dma_alloc_exit;
2384 }
2385
2386 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2387 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2388 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2389 aprint_error_dev(sc->bnx_dev,
2390 "Could not map TX desc %d DMA memory!\n", i);
2391 rc = ENOMEM;
2392 goto bnx_dma_alloc_exit;
2393 }
2394
2395 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2396 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2397 BUS_DMA_NOWAIT)) {
2398 aprint_error_dev(sc->bnx_dev,
2399 "Could not load TX desc %d DMA memory!\n", i);
2400 rc = ENOMEM;
2401 goto bnx_dma_alloc_exit;
2402 }
2403
2404 sc->tx_bd_chain_paddr[i] =
2405 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2406
2407 /* DRC - Fix for 64 bit systems. */
2408 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2409 i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2410 }
2411
2412 /*
2413 * Create lists to hold TX mbufs.
2414 */
2415 TAILQ_INIT(&sc->tx_free_pkts);
2416 TAILQ_INIT(&sc->tx_used_pkts);
2417 sc->tx_pkt_count = 0;
2418 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2419
2420 /*
2421 * Allocate DMA memory for the Rx buffer descriptor chain,
2422 * and fetch the physical address of the block.
2423 */
2424 for (i = 0; i < RX_PAGES; i++) {
2425 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2426 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2427 &sc->rx_bd_chain_map[i])) {
2428 aprint_error_dev(sc->bnx_dev,
2429 "Could not create Rx desc %d DMA map!\n", i);
2430 rc = ENOMEM;
2431 goto bnx_dma_alloc_exit;
2432 }
2433
2434 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2435 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2436 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2437 aprint_error_dev(sc->bnx_dev,
2438 "Could not allocate Rx desc %d DMA memory!\n", i);
2439 rc = ENOMEM;
2440 goto bnx_dma_alloc_exit;
2441 }
2442
2443 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2444 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2445 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2446 aprint_error_dev(sc->bnx_dev,
2447 "Could not map Rx desc %d DMA memory!\n", i);
2448 rc = ENOMEM;
2449 goto bnx_dma_alloc_exit;
2450 }
2451
2452 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2453 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2454 BUS_DMA_NOWAIT)) {
2455 aprint_error_dev(sc->bnx_dev,
2456 "Could not load Rx desc %d DMA memory!\n", i);
2457 rc = ENOMEM;
2458 goto bnx_dma_alloc_exit;
2459 }
2460
2461 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2462 sc->rx_bd_chain_paddr[i] =
2463 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2464
2465 /* DRC - Fix for 64 bit systems. */
2466 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2467 i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2468 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2469 0, BNX_RX_CHAIN_PAGE_SZ,
2470 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2471 }
2472
2473 /*
2474 * Create DMA maps for the Rx buffer mbufs.
2475 */
2476 for (i = 0; i < TOTAL_RX_BD; i++) {
2477 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2478 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2479 &sc->rx_mbuf_map[i])) {
2480 aprint_error_dev(sc->bnx_dev,
2481 "Could not create Rx mbuf %d DMA map!\n", i);
2482 rc = ENOMEM;
2483 goto bnx_dma_alloc_exit;
2484 }
2485 }
2486
2487 bnx_dma_alloc_exit:
2488 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2489
2490 return(rc);
2491 }
2492
2493 /****************************************************************************/
2494 /* Release all resources used by the driver. */
2495 /* */
2496 /* Releases all resources acquired by the driver including interrupts, */
2497 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2498 /* */
2499 /* Returns: */
2500 /* Nothing. */
2501 /****************************************************************************/
2502 void
2503 bnx_release_resources(struct bnx_softc *sc)
2504 {
2505 struct pci_attach_args *pa = &(sc->bnx_pa);
2506
2507 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2508
2509 bnx_dma_free(sc);
2510
2511 if (sc->bnx_intrhand != NULL)
2512 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2513
2514 if (sc->bnx_size)
2515 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2516
2517 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2518 }
2519
2520 /****************************************************************************/
2521 /* Firmware synchronization. */
2522 /* */
2523 /* Before performing certain events such as a chip reset, synchronize with */
2524 /* the firmware first. */
2525 /* */
2526 /* Returns: */
2527 /* 0 for success, positive value for failure. */
2528 /****************************************************************************/
2529 int
2530 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2531 {
2532 int i, rc = 0;
2533 u_int32_t val;
2534
2535 /* Don't waste any time if we've timed out before. */
2536 if (sc->bnx_fw_timed_out) {
2537 rc = EBUSY;
2538 goto bnx_fw_sync_exit;
2539 }
2540
2541 /* Increment the message sequence number. */
2542 sc->bnx_fw_wr_seq++;
2543 msg_data |= sc->bnx_fw_wr_seq;
2544
2545 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2546 msg_data);
2547
2548 /* Send the message to the bootcode driver mailbox. */
2549 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2550
2551 /* Wait for the bootcode to acknowledge the message. */
2552 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2553 /* Check for a response in the bootcode firmware mailbox. */
2554 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2555 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2556 break;
2557 DELAY(1000);
2558 }
2559
2560 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2561 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2562 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2563 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2564 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2565
2566 msg_data &= ~BNX_DRV_MSG_CODE;
2567 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2568
2569 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2570
2571 sc->bnx_fw_timed_out = 1;
2572 rc = EBUSY;
2573 }
2574
2575 bnx_fw_sync_exit:
2576 return (rc);
2577 }
2578
2579 /****************************************************************************/
2580 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2581 /* */
2582 /* Returns: */
2583 /* Nothing. */
2584 /****************************************************************************/
2585 void
2586 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2587 u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2588 {
2589 int i;
2590 u_int32_t val;
2591
2592 /* Set the page size used by RV2P. */
2593 if (rv2p_proc == RV2P_PROC2) {
2594 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2595 USABLE_RX_BD_PER_PAGE);
2596 }
2597
2598 for (i = 0; i < rv2p_code_len; i += 8) {
2599 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2600 rv2p_code++;
2601 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2602 rv2p_code++;
2603
2604 if (rv2p_proc == RV2P_PROC1) {
2605 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2606 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2607 } else {
2608 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2609 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2610 }
2611 }
2612
2613 /* Reset the processor, un-stall is done later. */
2614 if (rv2p_proc == RV2P_PROC1)
2615 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2616 else
2617 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2618 }
2619
2620 /****************************************************************************/
2621 /* Load RISC processor firmware. */
2622 /* */
2623 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2624 /* associated with a particular processor. */
2625 /* */
2626 /* Returns: */
2627 /* Nothing. */
2628 /****************************************************************************/
2629 void
2630 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2631 struct fw_info *fw)
2632 {
2633 u_int32_t offset;
2634 u_int32_t val;
2635
2636 /* Halt the CPU. */
2637 val = REG_RD_IND(sc, cpu_reg->mode);
2638 val |= cpu_reg->mode_value_halt;
2639 REG_WR_IND(sc, cpu_reg->mode, val);
2640 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2641
2642 /* Load the Text area. */
2643 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2644 if (fw->text) {
2645 int j;
2646
2647 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2648 REG_WR_IND(sc, offset, fw->text[j]);
2649 }
2650
2651 /* Load the Data area. */
2652 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2653 if (fw->data) {
2654 int j;
2655
2656 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2657 REG_WR_IND(sc, offset, fw->data[j]);
2658 }
2659
2660 /* Load the SBSS area. */
2661 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2662 if (fw->sbss) {
2663 int j;
2664
2665 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2666 REG_WR_IND(sc, offset, fw->sbss[j]);
2667 }
2668
2669 /* Load the BSS area. */
2670 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2671 if (fw->bss) {
2672 int j;
2673
2674 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2675 REG_WR_IND(sc, offset, fw->bss[j]);
2676 }
2677
2678 /* Load the Read-Only area. */
2679 offset = cpu_reg->spad_base +
2680 (fw->rodata_addr - cpu_reg->mips_view_base);
2681 if (fw->rodata) {
2682 int j;
2683
2684 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2685 REG_WR_IND(sc, offset, fw->rodata[j]);
2686 }
2687
2688 /* Clear the pre-fetch instruction. */
2689 REG_WR_IND(sc, cpu_reg->inst, 0);
2690 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2691
2692 /* Start the CPU. */
2693 val = REG_RD_IND(sc, cpu_reg->mode);
2694 val &= ~cpu_reg->mode_value_halt;
2695 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2696 REG_WR_IND(sc, cpu_reg->mode, val);
2697 }
2698
2699 /****************************************************************************/
2700 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2701 /* */
2702 /* Loads the firmware for each CPU and starts the CPU. */
2703 /* */
2704 /* Returns: */
2705 /* Nothing. */
2706 /****************************************************************************/
2707 void
2708 bnx_init_cpus(struct bnx_softc *sc)
2709 {
2710 struct cpu_reg cpu_reg;
2711 struct fw_info fw;
2712
2713 switch(BNX_CHIP_NUM(sc)) {
2714 case BNX_CHIP_NUM_5709:
2715 /* Initialize the RV2P processor. */
2716 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2717 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2718 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2719 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2720 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2721 } else {
2722 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2723 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2724 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2725 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2726 }
2727
2728 /* Initialize the RX Processor. */
2729 cpu_reg.mode = BNX_RXP_CPU_MODE;
2730 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2731 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2732 cpu_reg.state = BNX_RXP_CPU_STATE;
2733 cpu_reg.state_value_clear = 0xffffff;
2734 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2735 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2736 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2737 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2738 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2739 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2740 cpu_reg.mips_view_base = 0x8000000;
2741
2742 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2743 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2744 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2745 fw.start_addr = bnx_RXP_b09FwStartAddr;
2746
2747 fw.text_addr = bnx_RXP_b09FwTextAddr;
2748 fw.text_len = bnx_RXP_b09FwTextLen;
2749 fw.text_index = 0;
2750 fw.text = bnx_RXP_b09FwText;
2751
2752 fw.data_addr = bnx_RXP_b09FwDataAddr;
2753 fw.data_len = bnx_RXP_b09FwDataLen;
2754 fw.data_index = 0;
2755 fw.data = bnx_RXP_b09FwData;
2756
2757 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2758 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2759 fw.sbss_index = 0;
2760 fw.sbss = bnx_RXP_b09FwSbss;
2761
2762 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2763 fw.bss_len = bnx_RXP_b09FwBssLen;
2764 fw.bss_index = 0;
2765 fw.bss = bnx_RXP_b09FwBss;
2766
2767 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2768 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2769 fw.rodata_index = 0;
2770 fw.rodata = bnx_RXP_b09FwRodata;
2771
2772 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2773 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2774
2775 /* Initialize the TX Processor. */
2776 cpu_reg.mode = BNX_TXP_CPU_MODE;
2777 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2778 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2779 cpu_reg.state = BNX_TXP_CPU_STATE;
2780 cpu_reg.state_value_clear = 0xffffff;
2781 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2782 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2783 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2784 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2785 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2786 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2787 cpu_reg.mips_view_base = 0x8000000;
2788
2789 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2790 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2791 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2792 fw.start_addr = bnx_TXP_b09FwStartAddr;
2793
2794 fw.text_addr = bnx_TXP_b09FwTextAddr;
2795 fw.text_len = bnx_TXP_b09FwTextLen;
2796 fw.text_index = 0;
2797 fw.text = bnx_TXP_b09FwText;
2798
2799 fw.data_addr = bnx_TXP_b09FwDataAddr;
2800 fw.data_len = bnx_TXP_b09FwDataLen;
2801 fw.data_index = 0;
2802 fw.data = bnx_TXP_b09FwData;
2803
2804 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2805 fw.sbss_len = bnx_TXP_b09FwSbssLen;
2806 fw.sbss_index = 0;
2807 fw.sbss = bnx_TXP_b09FwSbss;
2808
2809 fw.bss_addr = bnx_TXP_b09FwBssAddr;
2810 fw.bss_len = bnx_TXP_b09FwBssLen;
2811 fw.bss_index = 0;
2812 fw.bss = bnx_TXP_b09FwBss;
2813
2814 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2815 fw.rodata_len = bnx_TXP_b09FwRodataLen;
2816 fw.rodata_index = 0;
2817 fw.rodata = bnx_TXP_b09FwRodata;
2818
2819 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2820 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2821
2822 /* Initialize the TX Patch-up Processor. */
2823 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2824 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2825 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2826 cpu_reg.state = BNX_TPAT_CPU_STATE;
2827 cpu_reg.state_value_clear = 0xffffff;
2828 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2829 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2830 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2831 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2832 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2833 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2834 cpu_reg.mips_view_base = 0x8000000;
2835
2836 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2837 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2838 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2839 fw.start_addr = bnx_TPAT_b09FwStartAddr;
2840
2841 fw.text_addr = bnx_TPAT_b09FwTextAddr;
2842 fw.text_len = bnx_TPAT_b09FwTextLen;
2843 fw.text_index = 0;
2844 fw.text = bnx_TPAT_b09FwText;
2845
2846 fw.data_addr = bnx_TPAT_b09FwDataAddr;
2847 fw.data_len = bnx_TPAT_b09FwDataLen;
2848 fw.data_index = 0;
2849 fw.data = bnx_TPAT_b09FwData;
2850
2851 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2852 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2853 fw.sbss_index = 0;
2854 fw.sbss = bnx_TPAT_b09FwSbss;
2855
2856 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2857 fw.bss_len = bnx_TPAT_b09FwBssLen;
2858 fw.bss_index = 0;
2859 fw.bss = bnx_TPAT_b09FwBss;
2860
2861 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2862 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2863 fw.rodata_index = 0;
2864 fw.rodata = bnx_TPAT_b09FwRodata;
2865
2866 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2867 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2868
2869 /* Initialize the Completion Processor. */
2870 cpu_reg.mode = BNX_COM_CPU_MODE;
2871 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2872 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2873 cpu_reg.state = BNX_COM_CPU_STATE;
2874 cpu_reg.state_value_clear = 0xffffff;
2875 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2876 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2877 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2878 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2879 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2880 cpu_reg.spad_base = BNX_COM_SCRATCH;
2881 cpu_reg.mips_view_base = 0x8000000;
2882
2883 fw.ver_major = bnx_COM_b09FwReleaseMajor;
2884 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2885 fw.ver_fix = bnx_COM_b09FwReleaseFix;
2886 fw.start_addr = bnx_COM_b09FwStartAddr;
2887
2888 fw.text_addr = bnx_COM_b09FwTextAddr;
2889 fw.text_len = bnx_COM_b09FwTextLen;
2890 fw.text_index = 0;
2891 fw.text = bnx_COM_b09FwText;
2892
2893 fw.data_addr = bnx_COM_b09FwDataAddr;
2894 fw.data_len = bnx_COM_b09FwDataLen;
2895 fw.data_index = 0;
2896 fw.data = bnx_COM_b09FwData;
2897
2898 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2899 fw.sbss_len = bnx_COM_b09FwSbssLen;
2900 fw.sbss_index = 0;
2901 fw.sbss = bnx_COM_b09FwSbss;
2902
2903 fw.bss_addr = bnx_COM_b09FwBssAddr;
2904 fw.bss_len = bnx_COM_b09FwBssLen;
2905 fw.bss_index = 0;
2906 fw.bss = bnx_COM_b09FwBss;
2907
2908 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
2909 fw.rodata_len = bnx_COM_b09FwRodataLen;
2910 fw.rodata_index = 0;
2911 fw.rodata = bnx_COM_b09FwRodata;
2912 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2913 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2914 break;
2915 default:
2916 /* Initialize the RV2P processor. */
2917 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2918 RV2P_PROC1);
2919 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2920 RV2P_PROC2);
2921
2922 /* Initialize the RX Processor. */
2923 cpu_reg.mode = BNX_RXP_CPU_MODE;
2924 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2925 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2926 cpu_reg.state = BNX_RXP_CPU_STATE;
2927 cpu_reg.state_value_clear = 0xffffff;
2928 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2929 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2930 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2931 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2932 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2933 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2934 cpu_reg.mips_view_base = 0x8000000;
2935
2936 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2937 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2938 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2939 fw.start_addr = bnx_RXP_b06FwStartAddr;
2940
2941 fw.text_addr = bnx_RXP_b06FwTextAddr;
2942 fw.text_len = bnx_RXP_b06FwTextLen;
2943 fw.text_index = 0;
2944 fw.text = bnx_RXP_b06FwText;
2945
2946 fw.data_addr = bnx_RXP_b06FwDataAddr;
2947 fw.data_len = bnx_RXP_b06FwDataLen;
2948 fw.data_index = 0;
2949 fw.data = bnx_RXP_b06FwData;
2950
2951 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2952 fw.sbss_len = bnx_RXP_b06FwSbssLen;
2953 fw.sbss_index = 0;
2954 fw.sbss = bnx_RXP_b06FwSbss;
2955
2956 fw.bss_addr = bnx_RXP_b06FwBssAddr;
2957 fw.bss_len = bnx_RXP_b06FwBssLen;
2958 fw.bss_index = 0;
2959 fw.bss = bnx_RXP_b06FwBss;
2960
2961 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2962 fw.rodata_len = bnx_RXP_b06FwRodataLen;
2963 fw.rodata_index = 0;
2964 fw.rodata = bnx_RXP_b06FwRodata;
2965
2966 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2967 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2968
2969 /* Initialize the TX Processor. */
2970 cpu_reg.mode = BNX_TXP_CPU_MODE;
2971 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2972 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2973 cpu_reg.state = BNX_TXP_CPU_STATE;
2974 cpu_reg.state_value_clear = 0xffffff;
2975 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2976 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2977 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2978 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2979 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2980 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2981 cpu_reg.mips_view_base = 0x8000000;
2982
2983 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2984 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2985 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2986 fw.start_addr = bnx_TXP_b06FwStartAddr;
2987
2988 fw.text_addr = bnx_TXP_b06FwTextAddr;
2989 fw.text_len = bnx_TXP_b06FwTextLen;
2990 fw.text_index = 0;
2991 fw.text = bnx_TXP_b06FwText;
2992
2993 fw.data_addr = bnx_TXP_b06FwDataAddr;
2994 fw.data_len = bnx_TXP_b06FwDataLen;
2995 fw.data_index = 0;
2996 fw.data = bnx_TXP_b06FwData;
2997
2998 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2999 fw.sbss_len = bnx_TXP_b06FwSbssLen;
3000 fw.sbss_index = 0;
3001 fw.sbss = bnx_TXP_b06FwSbss;
3002
3003 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3004 fw.bss_len = bnx_TXP_b06FwBssLen;
3005 fw.bss_index = 0;
3006 fw.bss = bnx_TXP_b06FwBss;
3007
3008 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3009 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3010 fw.rodata_index = 0;
3011 fw.rodata = bnx_TXP_b06FwRodata;
3012
3013 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3014 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3015
3016 /* Initialize the TX Patch-up Processor. */
3017 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3018 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3019 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3020 cpu_reg.state = BNX_TPAT_CPU_STATE;
3021 cpu_reg.state_value_clear = 0xffffff;
3022 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3023 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3024 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3025 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3026 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3027 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3028 cpu_reg.mips_view_base = 0x8000000;
3029
3030 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3031 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3032 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3033 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3034
3035 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3036 fw.text_len = bnx_TPAT_b06FwTextLen;
3037 fw.text_index = 0;
3038 fw.text = bnx_TPAT_b06FwText;
3039
3040 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3041 fw.data_len = bnx_TPAT_b06FwDataLen;
3042 fw.data_index = 0;
3043 fw.data = bnx_TPAT_b06FwData;
3044
3045 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3046 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3047 fw.sbss_index = 0;
3048 fw.sbss = bnx_TPAT_b06FwSbss;
3049
3050 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3051 fw.bss_len = bnx_TPAT_b06FwBssLen;
3052 fw.bss_index = 0;
3053 fw.bss = bnx_TPAT_b06FwBss;
3054
3055 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3056 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3057 fw.rodata_index = 0;
3058 fw.rodata = bnx_TPAT_b06FwRodata;
3059
3060 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3061 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3062
3063 /* Initialize the Completion Processor. */
3064 cpu_reg.mode = BNX_COM_CPU_MODE;
3065 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3066 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3067 cpu_reg.state = BNX_COM_CPU_STATE;
3068 cpu_reg.state_value_clear = 0xffffff;
3069 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3070 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3071 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3072 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3073 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3074 cpu_reg.spad_base = BNX_COM_SCRATCH;
3075 cpu_reg.mips_view_base = 0x8000000;
3076
3077 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3078 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3079 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3080 fw.start_addr = bnx_COM_b06FwStartAddr;
3081
3082 fw.text_addr = bnx_COM_b06FwTextAddr;
3083 fw.text_len = bnx_COM_b06FwTextLen;
3084 fw.text_index = 0;
3085 fw.text = bnx_COM_b06FwText;
3086
3087 fw.data_addr = bnx_COM_b06FwDataAddr;
3088 fw.data_len = bnx_COM_b06FwDataLen;
3089 fw.data_index = 0;
3090 fw.data = bnx_COM_b06FwData;
3091
3092 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3093 fw.sbss_len = bnx_COM_b06FwSbssLen;
3094 fw.sbss_index = 0;
3095 fw.sbss = bnx_COM_b06FwSbss;
3096
3097 fw.bss_addr = bnx_COM_b06FwBssAddr;
3098 fw.bss_len = bnx_COM_b06FwBssLen;
3099 fw.bss_index = 0;
3100 fw.bss = bnx_COM_b06FwBss;
3101
3102 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3103 fw.rodata_len = bnx_COM_b06FwRodataLen;
3104 fw.rodata_index = 0;
3105 fw.rodata = bnx_COM_b06FwRodata;
3106 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3107 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3108 break;
3109 }
3110 }
3111
3112 /****************************************************************************/
3113 /* Initialize context memory. */
3114 /* */
3115 /* Clears the memory associated with each Context ID (CID). */
3116 /* */
3117 /* Returns: */
3118 /* Nothing. */
3119 /****************************************************************************/
3120 void
3121 bnx_init_context(struct bnx_softc *sc)
3122 {
3123 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3124 /* DRC: Replace this constant value with a #define. */
3125 int i, retry_cnt = 10;
3126 u_int32_t val;
3127
3128 /*
3129 * BCM5709 context memory may be cached
3130 * in host memory so prepare the host memory
3131 * for access.
3132 */
3133 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3134 | (1 << 12);
3135 val |= (BCM_PAGE_BITS - 8) << 16;
3136 REG_WR(sc, BNX_CTX_COMMAND, val);
3137
3138 /* Wait for mem init command to complete. */
3139 for (i = 0; i < retry_cnt; i++) {
3140 val = REG_RD(sc, BNX_CTX_COMMAND);
3141 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3142 break;
3143 DELAY(2);
3144 }
3145
3146
3147 /* ToDo: Consider returning an error here. */
3148
3149 for (i = 0; i < sc->ctx_pages; i++) {
3150 int j;
3151
3152
3153 /* Set the physaddr of the context memory cache. */
3154 val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
3155 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3156 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3157 val = (u_int32_t)
3158 ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
3159 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3160 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3161 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3162
3163
3164 /* Verify that the context memory write was successful. */
3165 for (j = 0; j < retry_cnt; j++) {
3166 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3167 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3168 break;
3169 DELAY(5);
3170 }
3171
3172 /* ToDo: Consider returning an error here. */
3173 }
3174 } else {
3175 u_int32_t vcid_addr, offset;
3176
3177 /*
3178 * For the 5706/5708, context memory is local to
3179 * the controller, so initialize the controller
3180 * context memory.
3181 */
3182
3183 vcid_addr = GET_CID_ADDR(96);
3184 while (vcid_addr) {
3185
3186 vcid_addr -= BNX_PHY_CTX_SIZE;
3187
3188 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3189 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3190
3191 for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3192 CTX_WR(sc, 0x00, offset, 0);
3193 }
3194
3195 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3196 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3197 }
3198 }
3199 }
3200
3201 /****************************************************************************/
3202 /* Fetch the permanent MAC address of the controller. */
3203 /* */
3204 /* Returns: */
3205 /* Nothing. */
3206 /****************************************************************************/
3207 void
3208 bnx_get_mac_addr(struct bnx_softc *sc)
3209 {
3210 u_int32_t mac_lo = 0, mac_hi = 0;
3211
3212 /*
3213 * The NetXtreme II bootcode populates various NIC
3214 * power-on and runtime configuration items in a
3215 * shared memory area. The factory configured MAC
3216 * address is available from both NVRAM and the
3217 * shared memory area so we'll read the value from
3218 * shared memory for speed.
3219 */
3220
3221 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3222 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3223
3224 if ((mac_lo == 0) && (mac_hi == 0)) {
3225 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3226 __FILE__, __LINE__);
3227 } else {
3228 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3229 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3230 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3231 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3232 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3233 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3234 }
3235
3236 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3237 "%s\n", ether_sprintf(sc->eaddr));
3238 }
3239
3240 /****************************************************************************/
3241 /* Program the MAC address. */
3242 /* */
3243 /* Returns: */
3244 /* Nothing. */
3245 /****************************************************************************/
3246 void
3247 bnx_set_mac_addr(struct bnx_softc *sc)
3248 {
3249 u_int32_t val;
3250 const u_int8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3251
3252 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3253 "%s\n", ether_sprintf(sc->eaddr));
3254
3255 val = (mac_addr[0] << 8) | mac_addr[1];
3256
3257 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3258
3259 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3260 (mac_addr[4] << 8) | mac_addr[5];
3261
3262 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3263 }
3264
3265 /****************************************************************************/
3266 /* Stop the controller. */
3267 /* */
3268 /* Returns: */
3269 /* Nothing. */
3270 /****************************************************************************/
3271 void
3272 bnx_stop(struct ifnet *ifp, int disable)
3273 {
3274 struct bnx_softc *sc = ifp->if_softc;
3275
3276 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3277
3278 if ((ifp->if_flags & IFF_RUNNING) == 0)
3279 return;
3280
3281 callout_stop(&sc->bnx_timeout);
3282
3283 mii_down(&sc->bnx_mii);
3284
3285 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3286
3287 /* Disable the transmit/receive blocks. */
3288 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3289 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3290 DELAY(20);
3291
3292 bnx_disable_intr(sc);
3293
3294 /* Tell firmware that the driver is going away. */
3295 if (disable)
3296 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3297 else
3298 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3299
3300 /* Free RX buffers. */
3301 bnx_free_rx_chain(sc);
3302
3303 /* Free TX buffers. */
3304 bnx_free_tx_chain(sc);
3305
3306 ifp->if_timer = 0;
3307
3308 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3309
3310 }
3311
3312 int
3313 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
3314 {
3315 struct pci_attach_args *pa = &(sc->bnx_pa);
3316 u_int32_t val;
3317 int i, rc = 0;
3318
3319 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3320
3321 /* Wait for pending PCI transactions to complete. */
3322 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3323 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3324 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3325 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3326 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3327 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3328 DELAY(5);
3329
3330 /* Disable DMA */
3331 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3332 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3333 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3334 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3335 }
3336
3337 /* Assume bootcode is running. */
3338 sc->bnx_fw_timed_out = 0;
3339
3340 /* Give the firmware a chance to prepare for the reset. */
3341 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3342 if (rc)
3343 goto bnx_reset_exit;
3344
3345 /* Set a firmware reminder that this is a soft reset. */
3346 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3347 BNX_DRV_RESET_SIGNATURE_MAGIC);
3348
3349 /* Dummy read to force the chip to complete all current transactions. */
3350 val = REG_RD(sc, BNX_MISC_ID);
3351
3352 /* Chip reset. */
3353 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3354 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3355 REG_RD(sc, BNX_MISC_COMMAND);
3356 DELAY(5);
3357
3358 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3359 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3360
3361 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3362 val);
3363 } else {
3364 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3365 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3366 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3367 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3368
3369 /* Allow up to 30us for reset to complete. */
3370 for (i = 0; i < 10; i++) {
3371 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3372 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3373 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3374 break;
3375 }
3376 DELAY(10);
3377 }
3378
3379 /* Check that reset completed successfully. */
3380 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3381 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3382 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3383 __FILE__, __LINE__);
3384 rc = EBUSY;
3385 goto bnx_reset_exit;
3386 }
3387 }
3388
3389 /* Make sure byte swapping is properly configured. */
3390 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3391 if (val != 0x01020304) {
3392 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3393 __FILE__, __LINE__);
3394 rc = ENODEV;
3395 goto bnx_reset_exit;
3396 }
3397
3398 /* Just completed a reset, assume that firmware is running again. */
3399 sc->bnx_fw_timed_out = 0;
3400
3401 /* Wait for the firmware to finish its initialization. */
3402 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3403 if (rc)
3404 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3405 "initialization!\n", __FILE__, __LINE__);
3406
3407 bnx_reset_exit:
3408 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3409
3410 return (rc);
3411 }
3412
3413 int
3414 bnx_chipinit(struct bnx_softc *sc)
3415 {
3416 struct pci_attach_args *pa = &(sc->bnx_pa);
3417 u_int32_t val;
3418 int rc = 0;
3419
3420 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3421
3422 /* Make sure the interrupt is not active. */
3423 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3424
3425 /* Initialize DMA byte/word swapping, configure the number of DMA */
3426 /* channels and PCI clock compensation delay. */
3427 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3428 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3429 #if BYTE_ORDER == BIG_ENDIAN
3430 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3431 #endif
3432 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3433 DMA_READ_CHANS << 12 |
3434 DMA_WRITE_CHANS << 16;
3435
3436 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3437
3438 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3439 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3440
3441 /*
3442 * This setting resolves a problem observed on certain Intel PCI
3443 * chipsets that cannot handle multiple outstanding DMA operations.
3444 * See errata E9_5706A1_65.
3445 */
3446 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3447 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3448 !(sc->bnx_flags & BNX_PCIX_FLAG))
3449 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3450
3451 REG_WR(sc, BNX_DMA_CONFIG, val);
3452
3453 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3454 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3455 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3456 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3457 val & ~0x20000);
3458 }
3459
3460 /* Enable the RX_V2P and Context state machines before access. */
3461 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3462 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3463 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3464 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3465
3466 /* Initialize context mapping and zero out the quick contexts. */
3467 bnx_init_context(sc);
3468
3469 /* Initialize the on-boards CPUs */
3470 bnx_init_cpus(sc);
3471
3472 /* Prepare NVRAM for access. */
3473 if (bnx_init_nvram(sc)) {
3474 rc = ENODEV;
3475 goto bnx_chipinit_exit;
3476 }
3477
3478 /* Set the kernel bypass block size */
3479 val = REG_RD(sc, BNX_MQ_CONFIG);
3480 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3481 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3482
3483 /* Enable bins used on the 5709. */
3484 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3485 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3486 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3487 val |= BNX_MQ_CONFIG_HALT_DIS;
3488 }
3489
3490 REG_WR(sc, BNX_MQ_CONFIG, val);
3491
3492 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3493 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3494 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3495
3496 val = (BCM_PAGE_BITS - 8) << 24;
3497 REG_WR(sc, BNX_RV2P_CONFIG, val);
3498
3499 /* Configure page size. */
3500 val = REG_RD(sc, BNX_TBDR_CONFIG);
3501 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3502 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3503 REG_WR(sc, BNX_TBDR_CONFIG, val);
3504
3505 #if 0
3506 /* Set the perfect match control register to default. */
3507 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3508 #endif
3509
3510 bnx_chipinit_exit:
3511 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3512
3513 return(rc);
3514 }
3515
3516 /****************************************************************************/
3517 /* Initialize the controller in preparation to send/receive traffic. */
3518 /* */
3519 /* Returns: */
3520 /* 0 for success, positive value for failure. */
3521 /****************************************************************************/
3522 int
3523 bnx_blockinit(struct bnx_softc *sc)
3524 {
3525 u_int32_t reg, val;
3526 int rc = 0;
3527
3528 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3529
3530 /* Load the hardware default MAC address. */
3531 bnx_set_mac_addr(sc);
3532
3533 /* Set the Ethernet backoff seed value */
3534 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3535 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3536 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3537
3538 sc->last_status_idx = 0;
3539 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3540
3541 /* Set up link change interrupt generation. */
3542 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3543 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3544
3545 /* Program the physical address of the status block. */
3546 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
3547 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3548 (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
3549
3550 /* Program the physical address of the statistics block. */
3551 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3552 (u_int32_t)(sc->stats_block_paddr));
3553 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3554 (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
3555
3556 /* Program various host coalescing parameters. */
3557 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3558 << 16) | sc->bnx_tx_quick_cons_trip);
3559 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3560 << 16) | sc->bnx_rx_quick_cons_trip);
3561 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3562 sc->bnx_comp_prod_trip);
3563 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3564 sc->bnx_tx_ticks);
3565 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3566 sc->bnx_rx_ticks);
3567 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3568 sc->bnx_com_ticks);
3569 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3570 sc->bnx_cmd_ticks);
3571 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3572 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3573 REG_WR(sc, BNX_HC_CONFIG,
3574 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3575 BNX_HC_CONFIG_COLLECT_STATS));
3576
3577 /* Clear the internal statistics counters. */
3578 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3579
3580 /* Verify that bootcode is running. */
3581 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3582
3583 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3584 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3585 __FILE__, __LINE__); reg = 0);
3586
3587 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3588 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3589 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3590 "Expected: 08%08X\n", __FILE__, __LINE__,
3591 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3592 BNX_DEV_INFO_SIGNATURE_MAGIC);
3593 rc = ENODEV;
3594 goto bnx_blockinit_exit;
3595 }
3596
3597 /* Check if any management firmware is running. */
3598 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3599 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3600 BNX_PORT_FEATURE_IMD_ENABLED)) {
3601 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3602 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3603 }
3604
3605 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3606 BNX_DEV_INFO_BC_REV);
3607
3608 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3609
3610 /* Enable DMA */
3611 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3612 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3613 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3614 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3615 }
3616
3617 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3618 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3619
3620 /* Enable link state change interrupt generation. */
3621 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3622 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3623 BNX_MISC_ENABLE_DEFAULT_XI);
3624 } else
3625 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3626
3627 /* Enable all remaining blocks in the MAC. */
3628 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3629 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3630 DELAY(20);
3631
3632 bnx_blockinit_exit:
3633 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3634
3635 return (rc);
3636 }
3637
3638 static int
3639 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
3640 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3641 {
3642 bus_dmamap_t map;
3643 struct rx_bd *rxbd;
3644 u_int32_t addr;
3645 int i;
3646 #ifdef BNX_DEBUG
3647 u_int16_t debug_chain_prod = *chain_prod;
3648 #endif
3649 u_int16_t first_chain_prod;
3650
3651 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3652
3653 /* Map the mbuf cluster into device memory. */
3654 map = sc->rx_mbuf_map[*chain_prod];
3655 first_chain_prod = *chain_prod;
3656 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3657 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3658 __FILE__, __LINE__);
3659
3660 m_freem(m_new);
3661
3662 DBRUNIF(1, sc->rx_mbuf_alloc--);
3663
3664 return ENOBUFS;
3665 }
3666 /* Make sure there is room in the receive chain. */
3667 if (map->dm_nsegs > sc->free_rx_bd) {
3668 bus_dmamap_unload(sc->bnx_dmatag, map);
3669 m_freem(m_new);
3670 return EFBIG;
3671 }
3672 #ifdef BNX_DEBUG
3673 /* Track the distribution of buffer segments. */
3674 sc->rx_mbuf_segs[map->dm_nsegs]++;
3675 #endif
3676
3677 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3678 BUS_DMASYNC_PREREAD);
3679
3680 /* Update some debug statistics counters */
3681 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3682 sc->rx_low_watermark = sc->free_rx_bd);
3683 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3684
3685 /*
3686 * Setup the rx_bd for the first segment
3687 */
3688 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3689
3690 addr = (u_int32_t)map->dm_segs[0].ds_addr;
3691 rxbd->rx_bd_haddr_lo = addr;
3692 addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3693 rxbd->rx_bd_haddr_hi = addr;
3694 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3695 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3696 *prod_bseq += map->dm_segs[0].ds_len;
3697 bus_dmamap_sync(sc->bnx_dmatag,
3698 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3699 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3700 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3701
3702 for (i = 1; i < map->dm_nsegs; i++) {
3703 *prod = NEXT_RX_BD(*prod);
3704 *chain_prod = RX_CHAIN_IDX(*prod);
3705
3706 rxbd =
3707 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3708
3709 addr = (u_int32_t)map->dm_segs[i].ds_addr;
3710 rxbd->rx_bd_haddr_lo = addr;
3711 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3712 rxbd->rx_bd_haddr_hi = addr;
3713 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3714 rxbd->rx_bd_flags = 0;
3715 *prod_bseq += map->dm_segs[i].ds_len;
3716 bus_dmamap_sync(sc->bnx_dmatag,
3717 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3718 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3719 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3720 }
3721
3722 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3723 bus_dmamap_sync(sc->bnx_dmatag,
3724 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3725 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3726 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3727
3728 /*
3729 * Save the mbuf, ajust the map pointer (swap map for first and
3730 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3731 * and update counter.
3732 */
3733 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3734 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3735 sc->rx_mbuf_map[*chain_prod] = map;
3736 sc->free_rx_bd -= map->dm_nsegs;
3737
3738 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3739 map->dm_nsegs));
3740 *prod = NEXT_RX_BD(*prod);
3741 *chain_prod = RX_CHAIN_IDX(*prod);
3742
3743 return 0;
3744 }
3745
3746 /****************************************************************************/
3747 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3748 /* */
3749 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3750 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3751 /* necessary. */
3752 /* */
3753 /* Returns: */
3754 /* 0 for success, positive value for failure. */
3755 /****************************************************************************/
3756 int
3757 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
3758 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3759 {
3760 struct mbuf *m_new = NULL;
3761 int rc = 0;
3762 u_int16_t min_free_bd;
3763
3764 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3765 __func__);
3766
3767 /* Make sure the inputs are valid. */
3768 DBRUNIF((*chain_prod > MAX_RX_BD),
3769 aprint_error_dev(sc->bnx_dev,
3770 "RX producer out of range: 0x%04X > 0x%04X\n",
3771 *chain_prod, (u_int16_t)MAX_RX_BD));
3772
3773 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3774 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3775 *prod_bseq);
3776
3777 /* try to get in as many mbufs as possible */
3778 if (sc->mbuf_alloc_size == MCLBYTES)
3779 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3780 else
3781 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3782 while (sc->free_rx_bd >= min_free_bd) {
3783 /* Simulate an mbuf allocation failure. */
3784 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3785 aprint_error_dev(sc->bnx_dev,
3786 "Simulating mbuf allocation failure.\n");
3787 sc->mbuf_sim_alloc_failed++;
3788 rc = ENOBUFS;
3789 goto bnx_get_buf_exit);
3790
3791 /* This is a new mbuf allocation. */
3792 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3793 if (m_new == NULL) {
3794 DBPRINT(sc, BNX_WARN,
3795 "%s(%d): RX mbuf header allocation failed!\n",
3796 __FILE__, __LINE__);
3797
3798 sc->mbuf_alloc_failed++;
3799
3800 rc = ENOBUFS;
3801 goto bnx_get_buf_exit;
3802 }
3803
3804 DBRUNIF(1, sc->rx_mbuf_alloc++);
3805
3806 /* Simulate an mbuf cluster allocation failure. */
3807 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3808 m_freem(m_new);
3809 sc->rx_mbuf_alloc--;
3810 sc->mbuf_alloc_failed++;
3811 sc->mbuf_sim_alloc_failed++;
3812 rc = ENOBUFS;
3813 goto bnx_get_buf_exit);
3814
3815 if (sc->mbuf_alloc_size == MCLBYTES)
3816 MCLGET(m_new, M_DONTWAIT);
3817 else
3818 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3819 M_DONTWAIT);
3820 if (!(m_new->m_flags & M_EXT)) {
3821 DBPRINT(sc, BNX_WARN,
3822 "%s(%d): RX mbuf chain allocation failed!\n",
3823 __FILE__, __LINE__);
3824
3825 m_freem(m_new);
3826
3827 DBRUNIF(1, sc->rx_mbuf_alloc--);
3828 sc->mbuf_alloc_failed++;
3829
3830 rc = ENOBUFS;
3831 goto bnx_get_buf_exit;
3832 }
3833
3834 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3835 if (rc != 0)
3836 goto bnx_get_buf_exit;
3837 }
3838
3839 bnx_get_buf_exit:
3840 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3841 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3842 *chain_prod, *prod_bseq);
3843
3844 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3845 __func__);
3846
3847 return(rc);
3848 }
3849
3850 void
3851 bnx_alloc_pkts(struct work * unused, void * arg)
3852 {
3853 struct bnx_softc *sc = arg;
3854 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3855 struct bnx_pkt *pkt;
3856 int i, s;
3857
3858 for (i = 0; i < 4; i++) { /* magic! */
3859 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
3860 if (pkt == NULL)
3861 break;
3862
3863 if (bus_dmamap_create(sc->bnx_dmatag,
3864 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3865 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
3866 &pkt->pkt_dmamap) != 0)
3867 goto put;
3868
3869 if (!ISSET(ifp->if_flags, IFF_UP))
3870 goto stopping;
3871
3872 mutex_enter(&sc->tx_pkt_mtx);
3873 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3874 sc->tx_pkt_count++;
3875 mutex_exit(&sc->tx_pkt_mtx);
3876 }
3877
3878 mutex_enter(&sc->tx_pkt_mtx);
3879 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
3880 mutex_exit(&sc->tx_pkt_mtx);
3881
3882 /* fire-up TX now that allocations have been done */
3883 s = splnet();
3884 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3885 bnx_start(ifp);
3886 splx(s);
3887
3888 return;
3889
3890 stopping:
3891 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3892 put:
3893 pool_put(bnx_tx_pool, pkt);
3894 return;
3895 }
3896
3897 /****************************************************************************/
3898 /* Initialize the TX context memory. */
3899 /* */
3900 /* Returns: */
3901 /* Nothing */
3902 /****************************************************************************/
3903 void
3904 bnx_init_tx_context(struct bnx_softc *sc)
3905 {
3906 u_int32_t val;
3907
3908 /* Initialize the context ID for an L2 TX chain. */
3909 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3910 /* Set the CID type to support an L2 connection. */
3911 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3912 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
3913 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3914 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
3915
3916 /* Point the hardware to the first page in the chain. */
3917 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3918 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3919 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
3920 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3921 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3922 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
3923 } else {
3924 /* Set the CID type to support an L2 connection. */
3925 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3926 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3927 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3928 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3929
3930 /* Point the hardware to the first page in the chain. */
3931 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3932 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3933 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3934 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3935 }
3936 }
3937
3938
3939 /****************************************************************************/
3940 /* Allocate memory and initialize the TX data structures. */
3941 /* */
3942 /* Returns: */
3943 /* 0 for success, positive value for failure. */
3944 /****************************************************************************/
3945 int
3946 bnx_init_tx_chain(struct bnx_softc *sc)
3947 {
3948 struct tx_bd *txbd;
3949 u_int32_t addr;
3950 int i, rc = 0;
3951
3952 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3953
3954 /* Force an allocation of some dmamaps for tx up front */
3955 bnx_alloc_pkts(NULL, sc);
3956
3957 /* Set the initial TX producer/consumer indices. */
3958 sc->tx_prod = 0;
3959 sc->tx_cons = 0;
3960 sc->tx_prod_bseq = 0;
3961 sc->used_tx_bd = 0;
3962 sc->max_tx_bd = USABLE_TX_BD;
3963 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3964 DBRUNIF(1, sc->tx_full_count = 0);
3965
3966 /*
3967 * The NetXtreme II supports a linked-list structure called
3968 * a Buffer Descriptor Chain (or BD chain). A BD chain
3969 * consists of a series of 1 or more chain pages, each of which
3970 * consists of a fixed number of BD entries.
3971 * The last BD entry on each page is a pointer to the next page
3972 * in the chain, and the last pointer in the BD chain
3973 * points back to the beginning of the chain.
3974 */
3975
3976 /* Set the TX next pointer chain entries. */
3977 for (i = 0; i < TX_PAGES; i++) {
3978 int j;
3979
3980 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3981
3982 /* Check if we've reached the last page. */
3983 if (i == (TX_PAGES - 1))
3984 j = 0;
3985 else
3986 j = i + 1;
3987
3988 addr = (u_int32_t)sc->tx_bd_chain_paddr[j];
3989 txbd->tx_bd_haddr_lo = addr;
3990 addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3991 txbd->tx_bd_haddr_hi = addr;
3992 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3993 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3994 }
3995
3996 /*
3997 * Initialize the context ID for an L2 TX chain.
3998 */
3999 bnx_init_tx_context(sc);
4000
4001 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4002
4003 return(rc);
4004 }
4005
4006 /****************************************************************************/
4007 /* Free memory and clear the TX data structures. */
4008 /* */
4009 /* Returns: */
4010 /* Nothing. */
4011 /****************************************************************************/
4012 void
4013 bnx_free_tx_chain(struct bnx_softc *sc)
4014 {
4015 struct bnx_pkt *pkt;
4016 int i;
4017
4018 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4019
4020 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4021 mutex_enter(&sc->tx_pkt_mtx);
4022 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4023 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4024 mutex_exit(&sc->tx_pkt_mtx);
4025
4026 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4027 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4028 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4029
4030 m_freem(pkt->pkt_mbuf);
4031 DBRUNIF(1, sc->tx_mbuf_alloc--);
4032
4033 mutex_enter(&sc->tx_pkt_mtx);
4034 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4035 }
4036
4037 /* Destroy all the dmamaps we allocated for TX */
4038 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4039 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4040 sc->tx_pkt_count--;
4041 mutex_exit(&sc->tx_pkt_mtx);
4042
4043 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4044 pool_put(bnx_tx_pool, pkt);
4045
4046 mutex_enter(&sc->tx_pkt_mtx);
4047 }
4048 mutex_exit(&sc->tx_pkt_mtx);
4049
4050
4051
4052 /* Clear each TX chain page. */
4053 for (i = 0; i < TX_PAGES; i++) {
4054 memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4055 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4056 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4057 }
4058
4059 sc->used_tx_bd = 0;
4060
4061 /* Check if we lost any mbufs in the process. */
4062 DBRUNIF((sc->tx_mbuf_alloc),
4063 aprint_error_dev(sc->bnx_dev,
4064 "Memory leak! Lost %d mbufs from tx chain!\n",
4065 sc->tx_mbuf_alloc));
4066
4067 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4068 }
4069
4070 /****************************************************************************/
4071 /* Initialize the RX context memory. */
4072 /* */
4073 /* Returns: */
4074 /* Nothing */
4075 /****************************************************************************/
4076 void
4077 bnx_init_rx_context(struct bnx_softc *sc)
4078 {
4079 u_int32_t val;
4080
4081 /* Initialize the context ID for an L2 RX chain. */
4082 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4083 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4084
4085 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4086 u_int32_t lo_water, hi_water;
4087
4088 lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4089 hi_water = USABLE_RX_BD / 4;
4090
4091 lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4092 hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4093
4094 if (hi_water > 0xf)
4095 hi_water = 0xf;
4096 else if (hi_water == 0)
4097 lo_water = 0;
4098 val |= lo_water |
4099 (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4100 }
4101
4102 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4103
4104 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4105 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4106 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4107 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4108 }
4109
4110 /* Point the hardware to the first page in the chain. */
4111 val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
4112 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4113 val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
4114 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4115 }
4116
4117 /****************************************************************************/
4118 /* Allocate memory and initialize the RX data structures. */
4119 /* */
4120 /* Returns: */
4121 /* 0 for success, positive value for failure. */
4122 /****************************************************************************/
4123 int
4124 bnx_init_rx_chain(struct bnx_softc *sc)
4125 {
4126 struct rx_bd *rxbd;
4127 int i, rc = 0;
4128 u_int16_t prod, chain_prod;
4129 u_int32_t prod_bseq, addr;
4130
4131 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4132
4133 /* Initialize the RX producer and consumer indices. */
4134 sc->rx_prod = 0;
4135 sc->rx_cons = 0;
4136 sc->rx_prod_bseq = 0;
4137 sc->free_rx_bd = USABLE_RX_BD;
4138 sc->max_rx_bd = USABLE_RX_BD;
4139 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4140 DBRUNIF(1, sc->rx_empty_count = 0);
4141
4142 /* Initialize the RX next pointer chain entries. */
4143 for (i = 0; i < RX_PAGES; i++) {
4144 int j;
4145
4146 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4147
4148 /* Check if we've reached the last page. */
4149 if (i == (RX_PAGES - 1))
4150 j = 0;
4151 else
4152 j = i + 1;
4153
4154 /* Setup the chain page pointers. */
4155 addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
4156 rxbd->rx_bd_haddr_hi = addr;
4157 addr = (u_int32_t)sc->rx_bd_chain_paddr[j];
4158 rxbd->rx_bd_haddr_lo = addr;
4159 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4160 0, BNX_RX_CHAIN_PAGE_SZ,
4161 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4162 }
4163
4164 /* Allocate mbuf clusters for the rx_bd chain. */
4165 prod = prod_bseq = 0;
4166 chain_prod = RX_CHAIN_IDX(prod);
4167 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4168 BNX_PRINTF(sc,
4169 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4170 }
4171
4172 /* Save the RX chain producer index. */
4173 sc->rx_prod = prod;
4174 sc->rx_prod_bseq = prod_bseq;
4175
4176 for (i = 0; i < RX_PAGES; i++)
4177 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4178 sc->rx_bd_chain_map[i]->dm_mapsize,
4179 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4180
4181 /* Tell the chip about the waiting rx_bd's. */
4182 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4183 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4184
4185 bnx_init_rx_context(sc);
4186
4187 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4188
4189 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4190
4191 return(rc);
4192 }
4193
4194 /****************************************************************************/
4195 /* Free memory and clear the RX data structures. */
4196 /* */
4197 /* Returns: */
4198 /* Nothing. */
4199 /****************************************************************************/
4200 void
4201 bnx_free_rx_chain(struct bnx_softc *sc)
4202 {
4203 int i;
4204
4205 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4206
4207 /* Free any mbufs still in the RX mbuf chain. */
4208 for (i = 0; i < TOTAL_RX_BD; i++) {
4209 if (sc->rx_mbuf_ptr[i] != NULL) {
4210 if (sc->rx_mbuf_map[i] != NULL) {
4211 bus_dmamap_sync(sc->bnx_dmatag,
4212 sc->rx_mbuf_map[i], 0,
4213 sc->rx_mbuf_map[i]->dm_mapsize,
4214 BUS_DMASYNC_POSTREAD);
4215 bus_dmamap_unload(sc->bnx_dmatag,
4216 sc->rx_mbuf_map[i]);
4217 }
4218 m_freem(sc->rx_mbuf_ptr[i]);
4219 sc->rx_mbuf_ptr[i] = NULL;
4220 DBRUNIF(1, sc->rx_mbuf_alloc--);
4221 }
4222 }
4223
4224 /* Clear each RX chain page. */
4225 for (i = 0; i < RX_PAGES; i++)
4226 memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4227
4228 sc->free_rx_bd = sc->max_rx_bd;
4229
4230 /* Check if we lost any mbufs in the process. */
4231 DBRUNIF((sc->rx_mbuf_alloc),
4232 aprint_error_dev(sc->bnx_dev,
4233 "Memory leak! Lost %d mbufs from rx chain!\n",
4234 sc->rx_mbuf_alloc));
4235
4236 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4237 }
4238
4239 /****************************************************************************/
4240 /* Handles PHY generated interrupt events. */
4241 /* */
4242 /* Returns: */
4243 /* Nothing. */
4244 /****************************************************************************/
4245 void
4246 bnx_phy_intr(struct bnx_softc *sc)
4247 {
4248 u_int32_t new_link_state, old_link_state;
4249
4250 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4251 BUS_DMASYNC_POSTREAD);
4252 new_link_state = sc->status_block->status_attn_bits &
4253 STATUS_ATTN_BITS_LINK_STATE;
4254 old_link_state = sc->status_block->status_attn_bits_ack &
4255 STATUS_ATTN_BITS_LINK_STATE;
4256
4257 /* Handle any changes if the link state has changed. */
4258 if (new_link_state != old_link_state) {
4259 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4260
4261 callout_stop(&sc->bnx_timeout);
4262 bnx_tick(sc);
4263
4264 /* Update the status_attn_bits_ack field in the status block. */
4265 if (new_link_state) {
4266 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4267 STATUS_ATTN_BITS_LINK_STATE);
4268 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4269 } else {
4270 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4271 STATUS_ATTN_BITS_LINK_STATE);
4272 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4273 }
4274 }
4275
4276 /* Acknowledge the link change interrupt. */
4277 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4278 }
4279
4280 /****************************************************************************/
4281 /* Handles received frame interrupt events. */
4282 /* */
4283 /* Returns: */
4284 /* Nothing. */
4285 /****************************************************************************/
4286 void
4287 bnx_rx_intr(struct bnx_softc *sc)
4288 {
4289 struct status_block *sblk = sc->status_block;
4290 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4291 u_int16_t hw_cons, sw_cons, sw_chain_cons;
4292 u_int16_t sw_prod, sw_chain_prod;
4293 u_int32_t sw_prod_bseq;
4294 struct l2_fhdr *l2fhdr;
4295 int i;
4296
4297 DBRUNIF(1, sc->rx_interrupts++);
4298 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4299 BUS_DMASYNC_POSTREAD);
4300
4301 /* Prepare the RX chain pages to be accessed by the host CPU. */
4302 for (i = 0; i < RX_PAGES; i++)
4303 bus_dmamap_sync(sc->bnx_dmatag,
4304 sc->rx_bd_chain_map[i], 0,
4305 sc->rx_bd_chain_map[i]->dm_mapsize,
4306 BUS_DMASYNC_POSTWRITE);
4307
4308 /* Get the hardware's view of the RX consumer index. */
4309 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4310 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4311 hw_cons++;
4312
4313 /* Get working copies of the driver's view of the RX indices. */
4314 sw_cons = sc->rx_cons;
4315 sw_prod = sc->rx_prod;
4316 sw_prod_bseq = sc->rx_prod_bseq;
4317
4318 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4319 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4320 __func__, sw_prod, sw_cons, sw_prod_bseq);
4321
4322 /* Prevent speculative reads from getting ahead of the status block. */
4323 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4324 BUS_SPACE_BARRIER_READ);
4325
4326 /* Update some debug statistics counters */
4327 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4328 sc->rx_low_watermark = sc->free_rx_bd);
4329 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4330
4331 /*
4332 * Scan through the receive chain as long
4333 * as there is work to do.
4334 */
4335 while (sw_cons != hw_cons) {
4336 struct mbuf *m;
4337 struct rx_bd *rxbd;
4338 unsigned int len;
4339 u_int32_t status;
4340
4341 /* Convert the producer/consumer indices to an actual
4342 * rx_bd index.
4343 */
4344 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4345 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4346
4347 /* Get the used rx_bd. */
4348 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4349 sc->free_rx_bd++;
4350
4351 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4352 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4353
4354 /* The mbuf is stored with the last rx_bd entry of a packet. */
4355 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4356 #ifdef DIAGNOSTIC
4357 /* Validate that this is the last rx_bd. */
4358 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4359 printf("%s: Unexpected mbuf found in "
4360 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4361 sw_chain_cons);
4362 }
4363 #endif
4364
4365 /* DRC - ToDo: If the received packet is small, say less
4366 * than 128 bytes, allocate a new mbuf here,
4367 * copy the data to that mbuf, and recycle
4368 * the mapped jumbo frame.
4369 */
4370
4371 /* Unmap the mbuf from DMA space. */
4372 #ifdef DIAGNOSTIC
4373 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4374 printf("invalid map sw_cons 0x%x "
4375 "sw_prod 0x%x "
4376 "sw_chain_cons 0x%x "
4377 "sw_chain_prod 0x%x "
4378 "hw_cons 0x%x "
4379 "TOTAL_RX_BD_PER_PAGE 0x%x "
4380 "TOTAL_RX_BD 0x%x\n",
4381 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4382 hw_cons,
4383 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4384 }
4385 #endif
4386 bus_dmamap_sync(sc->bnx_dmatag,
4387 sc->rx_mbuf_map[sw_chain_cons], 0,
4388 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4389 BUS_DMASYNC_POSTREAD);
4390 bus_dmamap_unload(sc->bnx_dmatag,
4391 sc->rx_mbuf_map[sw_chain_cons]);
4392
4393 /* Remove the mbuf from the driver's chain. */
4394 m = sc->rx_mbuf_ptr[sw_chain_cons];
4395 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4396
4397 /*
4398 * Frames received on the NetXteme II are prepended
4399 * with the l2_fhdr structure which provides status
4400 * information about the received frame (including
4401 * VLAN tags and checksum info) and are also
4402 * automatically adjusted to align the IP header
4403 * (i.e. two null bytes are inserted before the
4404 * Ethernet header).
4405 */
4406 l2fhdr = mtod(m, struct l2_fhdr *);
4407
4408 len = l2fhdr->l2_fhdr_pkt_len;
4409 status = l2fhdr->l2_fhdr_status;
4410
4411 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4412 aprint_error("Simulating l2_fhdr status error.\n");
4413 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4414
4415 /* Watch for unusual sized frames. */
4416 DBRUNIF(((len < BNX_MIN_MTU) ||
4417 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4418 aprint_error_dev(sc->bnx_dev,
4419 "Unusual frame size found. "
4420 "Min(%d), Actual(%d), Max(%d)\n",
4421 (int)BNX_MIN_MTU, len,
4422 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4423
4424 bnx_dump_mbuf(sc, m);
4425 bnx_breakpoint(sc));
4426
4427 len -= ETHER_CRC_LEN;
4428
4429 /* Check the received frame for errors. */
4430 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4431 L2_FHDR_ERRORS_PHY_DECODE |
4432 L2_FHDR_ERRORS_ALIGNMENT |
4433 L2_FHDR_ERRORS_TOO_SHORT |
4434 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4435 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4436 len >
4437 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4438 ifp->if_ierrors++;
4439 DBRUNIF(1, sc->l2fhdr_status_errors++);
4440
4441 /* Reuse the mbuf for a new frame. */
4442 if (bnx_add_buf(sc, m, &sw_prod,
4443 &sw_chain_prod, &sw_prod_bseq)) {
4444 DBRUNIF(1, bnx_breakpoint(sc));
4445 panic("%s: Can't reuse RX mbuf!\n",
4446 device_xname(sc->bnx_dev));
4447 }
4448 continue;
4449 }
4450
4451 /*
4452 * Get a new mbuf for the rx_bd. If no new
4453 * mbufs are available then reuse the current mbuf,
4454 * log an ierror on the interface, and generate
4455 * an error in the system log.
4456 */
4457 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4458 &sw_prod_bseq)) {
4459 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4460 "Failed to allocate "
4461 "new mbuf, incoming frame dropped!\n"));
4462
4463 ifp->if_ierrors++;
4464
4465 /* Try and reuse the exisitng mbuf. */
4466 if (bnx_add_buf(sc, m, &sw_prod,
4467 &sw_chain_prod, &sw_prod_bseq)) {
4468 DBRUNIF(1, bnx_breakpoint(sc));
4469 panic("%s: Double mbuf allocation "
4470 "failure!",
4471 device_xname(sc->bnx_dev));
4472 }
4473 continue;
4474 }
4475
4476 /* Skip over the l2_fhdr when passing the data up
4477 * the stack.
4478 */
4479 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4480
4481 /* Adjust the pckt length to match the received data. */
4482 m->m_pkthdr.len = m->m_len = len;
4483
4484 /* Send the packet to the appropriate interface. */
4485 m->m_pkthdr.rcvif = ifp;
4486
4487 DBRUN(BNX_VERBOSE_RECV,
4488 struct ether_header *eh;
4489 eh = mtod(m, struct ether_header *);
4490 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4491 __func__, ether_sprintf(eh->ether_dhost),
4492 ether_sprintf(eh->ether_shost),
4493 htons(eh->ether_type)));
4494
4495 /* Validate the checksum. */
4496
4497 /* Check for an IP datagram. */
4498 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4499 /* Check if the IP checksum is valid. */
4500 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4501 == 0)
4502 m->m_pkthdr.csum_flags |=
4503 M_CSUM_IPv4;
4504 #ifdef BNX_DEBUG
4505 else
4506 DBPRINT(sc, BNX_WARN_SEND,
4507 "%s(): Invalid IP checksum "
4508 "= 0x%04X!\n",
4509 __func__,
4510 l2fhdr->l2_fhdr_ip_xsum
4511 );
4512 #endif
4513 }
4514
4515 /* Check for a valid TCP/UDP frame. */
4516 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4517 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4518 /* Check for a good TCP/UDP checksum. */
4519 if ((status &
4520 (L2_FHDR_ERRORS_TCP_XSUM |
4521 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4522 m->m_pkthdr.csum_flags |=
4523 M_CSUM_TCPv4 |
4524 M_CSUM_UDPv4;
4525 } else {
4526 DBPRINT(sc, BNX_WARN_SEND,
4527 "%s(): Invalid TCP/UDP "
4528 "checksum = 0x%04X!\n",
4529 __func__,
4530 l2fhdr->l2_fhdr_tcp_udp_xsum);
4531 }
4532 }
4533
4534 /*
4535 * If we received a packet with a vlan tag,
4536 * attach that information to the packet.
4537 */
4538 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4539 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4540 VLAN_INPUT_TAG(ifp, m,
4541 l2fhdr->l2_fhdr_vlan_tag,
4542 continue);
4543 }
4544
4545 /*
4546 * Handle BPF listeners. Let the BPF
4547 * user see the packet.
4548 */
4549 bpf_mtap(ifp, m);
4550
4551 /* Pass the mbuf off to the upper layers. */
4552 ifp->if_ipackets++;
4553 DBPRINT(sc, BNX_VERBOSE_RECV,
4554 "%s(): Passing received frame up.\n", __func__);
4555 (*ifp->if_input)(ifp, m);
4556 DBRUNIF(1, sc->rx_mbuf_alloc--);
4557
4558 }
4559
4560 sw_cons = NEXT_RX_BD(sw_cons);
4561
4562 /* Refresh hw_cons to see if there's new work */
4563 if (sw_cons == hw_cons) {
4564 hw_cons = sc->hw_rx_cons =
4565 sblk->status_rx_quick_consumer_index0;
4566 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4567 USABLE_RX_BD_PER_PAGE)
4568 hw_cons++;
4569 }
4570
4571 /* Prevent speculative reads from getting ahead of
4572 * the status block.
4573 */
4574 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4575 BUS_SPACE_BARRIER_READ);
4576 }
4577
4578 for (i = 0; i < RX_PAGES; i++)
4579 bus_dmamap_sync(sc->bnx_dmatag,
4580 sc->rx_bd_chain_map[i], 0,
4581 sc->rx_bd_chain_map[i]->dm_mapsize,
4582 BUS_DMASYNC_PREWRITE);
4583
4584 sc->rx_cons = sw_cons;
4585 sc->rx_prod = sw_prod;
4586 sc->rx_prod_bseq = sw_prod_bseq;
4587
4588 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4589 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4590
4591 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4592 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4593 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4594 }
4595
4596 /****************************************************************************/
4597 /* Handles transmit completion interrupt events. */
4598 /* */
4599 /* Returns: */
4600 /* Nothing. */
4601 /****************************************************************************/
4602 void
4603 bnx_tx_intr(struct bnx_softc *sc)
4604 {
4605 struct status_block *sblk = sc->status_block;
4606 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4607 struct bnx_pkt *pkt;
4608 bus_dmamap_t map;
4609 u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4610
4611 DBRUNIF(1, sc->tx_interrupts++);
4612 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4613 BUS_DMASYNC_POSTREAD);
4614
4615 /* Get the hardware's view of the TX consumer index. */
4616 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4617
4618 /* Skip to the next entry if this is a chain page pointer. */
4619 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4620 hw_tx_cons++;
4621
4622 sw_tx_cons = sc->tx_cons;
4623
4624 /* Prevent speculative reads from getting ahead of the status block. */
4625 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4626 BUS_SPACE_BARRIER_READ);
4627
4628 /* Cycle through any completed TX chain page entries. */
4629 while (sw_tx_cons != hw_tx_cons) {
4630 #ifdef BNX_DEBUG
4631 struct tx_bd *txbd = NULL;
4632 #endif
4633 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4634
4635 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4636 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4637 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4638
4639 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4640 aprint_error_dev(sc->bnx_dev,
4641 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4642 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4643
4644 DBRUNIF(1, txbd = &sc->tx_bd_chain
4645 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4646
4647 DBRUNIF((txbd == NULL),
4648 aprint_error_dev(sc->bnx_dev,
4649 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4650 bnx_breakpoint(sc));
4651
4652 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4653 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4654
4655
4656 mutex_enter(&sc->tx_pkt_mtx);
4657 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4658 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4659 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4660 mutex_exit(&sc->tx_pkt_mtx);
4661 /*
4662 * Free the associated mbuf. Remember
4663 * that only the last tx_bd of a packet
4664 * has an mbuf pointer and DMA map.
4665 */
4666 map = pkt->pkt_dmamap;
4667 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4668 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4669 bus_dmamap_unload(sc->bnx_dmatag, map);
4670
4671 m_freem(pkt->pkt_mbuf);
4672 DBRUNIF(1, sc->tx_mbuf_alloc--);
4673
4674 ifp->if_opackets++;
4675
4676 mutex_enter(&sc->tx_pkt_mtx);
4677 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4678 }
4679 mutex_exit(&sc->tx_pkt_mtx);
4680
4681 sc->used_tx_bd--;
4682 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4683 __FILE__, __LINE__, sc->used_tx_bd);
4684
4685 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4686
4687 /* Refresh hw_cons to see if there's new work. */
4688 hw_tx_cons = sc->hw_tx_cons =
4689 sblk->status_tx_quick_consumer_index0;
4690 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4691 USABLE_TX_BD_PER_PAGE)
4692 hw_tx_cons++;
4693
4694 /* Prevent speculative reads from getting ahead of
4695 * the status block.
4696 */
4697 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4698 BUS_SPACE_BARRIER_READ);
4699 }
4700
4701 /* Clear the TX timeout timer. */
4702 ifp->if_timer = 0;
4703
4704 /* Clear the tx hardware queue full flag. */
4705 if (sc->used_tx_bd < sc->max_tx_bd) {
4706 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4707 aprint_debug_dev(sc->bnx_dev,
4708 "Open TX chain! %d/%d (used/total)\n",
4709 sc->used_tx_bd, sc->max_tx_bd));
4710 ifp->if_flags &= ~IFF_OACTIVE;
4711 }
4712
4713 sc->tx_cons = sw_tx_cons;
4714 }
4715
4716 /****************************************************************************/
4717 /* Disables interrupt generation. */
4718 /* */
4719 /* Returns: */
4720 /* Nothing. */
4721 /****************************************************************************/
4722 void
4723 bnx_disable_intr(struct bnx_softc *sc)
4724 {
4725 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4726 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4727 }
4728
4729 /****************************************************************************/
4730 /* Enables interrupt generation. */
4731 /* */
4732 /* Returns: */
4733 /* Nothing. */
4734 /****************************************************************************/
4735 void
4736 bnx_enable_intr(struct bnx_softc *sc)
4737 {
4738 u_int32_t val;
4739
4740 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4741 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4742
4743 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4744 sc->last_status_idx);
4745
4746 val = REG_RD(sc, BNX_HC_COMMAND);
4747 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4748 }
4749
4750 /****************************************************************************/
4751 /* Handles controller initialization. */
4752 /* */
4753 /****************************************************************************/
4754 int
4755 bnx_init(struct ifnet *ifp)
4756 {
4757 struct bnx_softc *sc = ifp->if_softc;
4758 u_int32_t ether_mtu;
4759 int s, error = 0;
4760
4761 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4762
4763 s = splnet();
4764
4765 bnx_stop(ifp, 0);
4766
4767 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4768 aprint_error_dev(sc->bnx_dev,
4769 "Controller reset failed!\n");
4770 goto bnx_init_exit;
4771 }
4772
4773 if ((error = bnx_chipinit(sc)) != 0) {
4774 aprint_error_dev(sc->bnx_dev,
4775 "Controller initialization failed!\n");
4776 goto bnx_init_exit;
4777 }
4778
4779 if ((error = bnx_blockinit(sc)) != 0) {
4780 aprint_error_dev(sc->bnx_dev,
4781 "Block initialization failed!\n");
4782 goto bnx_init_exit;
4783 }
4784
4785 /* Calculate and program the Ethernet MRU size. */
4786 if (ifp->if_mtu <= ETHERMTU) {
4787 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4788 sc->mbuf_alloc_size = MCLBYTES;
4789 } else {
4790 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4791 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4792 }
4793
4794
4795 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4796 __func__, ether_mtu);
4797
4798 /*
4799 * Program the MRU and enable Jumbo frame
4800 * support.
4801 */
4802 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4803 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4804
4805 /* Calculate the RX Ethernet frame size for rx_bd's. */
4806 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4807
4808 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4809 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4810 sc->mbuf_alloc_size, sc->max_frame_size);
4811
4812 /* Program appropriate promiscuous/multicast filtering. */
4813 bnx_iff(sc);
4814
4815 /* Init RX buffer descriptor chain. */
4816 bnx_init_rx_chain(sc);
4817
4818 /* Init TX buffer descriptor chain. */
4819 bnx_init_tx_chain(sc);
4820
4821 /* Enable host interrupts. */
4822 bnx_enable_intr(sc);
4823
4824 if ((error = ether_mediachange(ifp)) != 0)
4825 goto bnx_init_exit;
4826
4827 SET(ifp->if_flags, IFF_RUNNING);
4828 CLR(ifp->if_flags, IFF_OACTIVE);
4829
4830 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4831
4832 bnx_init_exit:
4833 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4834
4835 splx(s);
4836
4837 return(error);
4838 }
4839
4840 /****************************************************************************/
4841 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4842 /* memory visible to the controller. */
4843 /* */
4844 /* Returns: */
4845 /* 0 for success, positive value for failure. */
4846 /****************************************************************************/
4847 int
4848 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4849 {
4850 struct bnx_pkt *pkt;
4851 bus_dmamap_t map;
4852 struct tx_bd *txbd = NULL;
4853 u_int16_t vlan_tag = 0, flags = 0;
4854 u_int16_t chain_prod, prod;
4855 #ifdef BNX_DEBUG
4856 u_int16_t debug_prod;
4857 #endif
4858 u_int32_t addr, prod_bseq;
4859 int i, error;
4860 struct m_tag *mtag;
4861 static struct work bnx_wk; /* Dummy work. Statically allocated. */
4862
4863 mutex_enter(&sc->tx_pkt_mtx);
4864 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4865 if (pkt == NULL) {
4866 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4867 mutex_exit(&sc->tx_pkt_mtx);
4868 return ENETDOWN;
4869 }
4870
4871 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
4872 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
4873 workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
4874 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4875 }
4876
4877 mutex_exit(&sc->tx_pkt_mtx);
4878 return ENOMEM;
4879 }
4880 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4881 mutex_exit(&sc->tx_pkt_mtx);
4882
4883 /* Transfer any checksum offload flags to the bd. */
4884 if (m->m_pkthdr.csum_flags) {
4885 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4886 flags |= TX_BD_FLAGS_IP_CKSUM;
4887 if (m->m_pkthdr.csum_flags &
4888 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4889 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4890 }
4891
4892 /* Transfer any VLAN tags to the bd. */
4893 mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4894 if (mtag != NULL) {
4895 flags |= TX_BD_FLAGS_VLAN_TAG;
4896 vlan_tag = VLAN_TAG_VALUE(mtag);
4897 }
4898
4899 /* Map the mbuf into DMAable memory. */
4900 prod = sc->tx_prod;
4901 chain_prod = TX_CHAIN_IDX(prod);
4902 map = pkt->pkt_dmamap;
4903
4904 /* Map the mbuf into our DMA address space. */
4905 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4906 if (error != 0) {
4907 aprint_error_dev(sc->bnx_dev,
4908 "Error mapping mbuf into TX chain!\n");
4909 sc->tx_dma_map_failures++;
4910 goto maperr;
4911 }
4912 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4913 BUS_DMASYNC_PREWRITE);
4914 /* Make sure there's room in the chain */
4915 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
4916 goto nospace;
4917
4918 /* prod points to an empty tx_bd at this point. */
4919 prod_bseq = sc->tx_prod_bseq;
4920 #ifdef BNX_DEBUG
4921 debug_prod = chain_prod;
4922 #endif
4923 DBPRINT(sc, BNX_INFO_SEND,
4924 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4925 "prod_bseq = 0x%08X\n",
4926 __func__, prod, chain_prod, prod_bseq);
4927
4928 /*
4929 * Cycle through each mbuf segment that makes up
4930 * the outgoing frame, gathering the mapping info
4931 * for that segment and creating a tx_bd for the
4932 * mbuf.
4933 */
4934 for (i = 0; i < map->dm_nsegs ; i++) {
4935 chain_prod = TX_CHAIN_IDX(prod);
4936 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4937
4938 addr = (u_int32_t)map->dm_segs[i].ds_addr;
4939 txbd->tx_bd_haddr_lo = addr;
4940 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4941 txbd->tx_bd_haddr_hi = addr;
4942 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
4943 txbd->tx_bd_vlan_tag = vlan_tag;
4944 txbd->tx_bd_flags = flags;
4945 prod_bseq += map->dm_segs[i].ds_len;
4946 if (i == 0)
4947 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
4948 prod = NEXT_TX_BD(prod);
4949 }
4950 /* Set the END flag on the last TX buffer descriptor. */
4951 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
4952
4953 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
4954
4955 DBPRINT(sc, BNX_INFO_SEND,
4956 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
4957 "prod_bseq = 0x%08X\n",
4958 __func__, prod, chain_prod, prod_bseq);
4959
4960 pkt->pkt_mbuf = m;
4961 pkt->pkt_end_desc = chain_prod;
4962
4963 mutex_enter(&sc->tx_pkt_mtx);
4964 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
4965 mutex_exit(&sc->tx_pkt_mtx);
4966
4967 sc->used_tx_bd += map->dm_nsegs;
4968 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4969 __FILE__, __LINE__, sc->used_tx_bd);
4970
4971 /* Update some debug statistics counters */
4972 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4973 sc->tx_hi_watermark = sc->used_tx_bd);
4974 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
4975 DBRUNIF(1, sc->tx_mbuf_alloc++);
4976
4977 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4978 map->dm_nsegs));
4979
4980 /* prod points to the next free tx_bd at this point. */
4981 sc->tx_prod = prod;
4982 sc->tx_prod_bseq = prod_bseq;
4983
4984 return (0);
4985
4986
4987 nospace:
4988 bus_dmamap_unload(sc->bnx_dmatag, map);
4989 maperr:
4990 mutex_enter(&sc->tx_pkt_mtx);
4991 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4992 mutex_exit(&sc->tx_pkt_mtx);
4993
4994 return (ENOMEM);
4995 }
4996
4997 /****************************************************************************/
4998 /* Main transmit routine. */
4999 /* */
5000 /* Returns: */
5001 /* Nothing. */
5002 /****************************************************************************/
5003 void
5004 bnx_start(struct ifnet *ifp)
5005 {
5006 struct bnx_softc *sc = ifp->if_softc;
5007 struct mbuf *m_head = NULL;
5008 int count = 0;
5009 u_int16_t tx_prod, tx_chain_prod;
5010
5011 /* If there's no link or the transmit queue is empty then just exit. */
5012 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
5013 DBPRINT(sc, BNX_INFO_SEND,
5014 "%s(): output active or device not running.\n", __func__);
5015 goto bnx_start_exit;
5016 }
5017
5018 /* prod points to the next free tx_bd. */
5019 tx_prod = sc->tx_prod;
5020 tx_chain_prod = TX_CHAIN_IDX(tx_prod);
5021
5022 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5023 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5024 "used_tx %d max_tx %d\n",
5025 __func__, tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5026 sc->used_tx_bd, sc->max_tx_bd);
5027
5028 /*
5029 * Keep adding entries while there is space in the ring.
5030 */
5031 while (sc->used_tx_bd < sc->max_tx_bd) {
5032 /* Check for any frames to send. */
5033 IFQ_POLL(&ifp->if_snd, m_head);
5034 if (m_head == NULL)
5035 break;
5036
5037 /*
5038 * Pack the data into the transmit ring. If we
5039 * don't have room, set the OACTIVE flag to wait
5040 * for the NIC to drain the chain.
5041 */
5042 if (bnx_tx_encap(sc, m_head)) {
5043 ifp->if_flags |= IFF_OACTIVE;
5044 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5045 "business! Total tx_bd used = %d\n",
5046 sc->used_tx_bd);
5047 break;
5048 }
5049
5050 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5051 count++;
5052
5053 /* Send a copy of the frame to any BPF listeners. */
5054 bpf_mtap(ifp, m_head);
5055 }
5056
5057 if (count == 0) {
5058 /* no packets were dequeued */
5059 DBPRINT(sc, BNX_VERBOSE_SEND,
5060 "%s(): No packets were dequeued\n", __func__);
5061 goto bnx_start_exit;
5062 }
5063
5064 /* Update the driver's counters. */
5065 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5066
5067 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
5068 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, tx_prod,
5069 tx_chain_prod, sc->tx_prod_bseq);
5070
5071 /* Start the transmit. */
5072 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5073 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5074
5075 /* Set the tx timeout. */
5076 ifp->if_timer = BNX_TX_TIMEOUT;
5077
5078 bnx_start_exit:
5079 return;
5080 }
5081
5082 /****************************************************************************/
5083 /* Handles any IOCTL calls from the operating system. */
5084 /* */
5085 /* Returns: */
5086 /* 0 for success, positive value for failure. */
5087 /****************************************************************************/
5088 int
5089 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5090 {
5091 struct bnx_softc *sc = ifp->if_softc;
5092 struct ifreq *ifr = (struct ifreq *) data;
5093 struct mii_data *mii = &sc->bnx_mii;
5094 int s, error = 0;
5095
5096 s = splnet();
5097
5098 switch (command) {
5099 case SIOCSIFFLAGS:
5100 if ((error = ifioctl_common(ifp, command, data)) != 0)
5101 break;
5102 /* XXX set an ifflags callback and let ether_ioctl
5103 * handle all of this.
5104 */
5105 if (ISSET(ifp->if_flags, IFF_UP)) {
5106 if (ifp->if_flags & IFF_RUNNING)
5107 error = ENETRESET;
5108 else
5109 bnx_init(ifp);
5110 } else if (ifp->if_flags & IFF_RUNNING)
5111 bnx_stop(ifp, 1);
5112 break;
5113
5114 case SIOCSIFMEDIA:
5115 case SIOCGIFMEDIA:
5116 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5117 sc->bnx_phy_flags);
5118
5119 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5120 break;
5121
5122 default:
5123 error = ether_ioctl(ifp, command, data);
5124 }
5125
5126 if (error == ENETRESET) {
5127 if (ifp->if_flags & IFF_RUNNING)
5128 bnx_iff(sc);
5129 error = 0;
5130 }
5131
5132 splx(s);
5133 return (error);
5134 }
5135
5136 /****************************************************************************/
5137 /* Transmit timeout handler. */
5138 /* */
5139 /* Returns: */
5140 /* Nothing. */
5141 /****************************************************************************/
5142 void
5143 bnx_watchdog(struct ifnet *ifp)
5144 {
5145 struct bnx_softc *sc = ifp->if_softc;
5146
5147 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5148 bnx_dump_status_block(sc));
5149 /*
5150 * If we are in this routine because of pause frames, then
5151 * don't reset the hardware.
5152 */
5153 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5154 return;
5155
5156 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5157
5158 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5159
5160 bnx_init(ifp);
5161
5162 ifp->if_oerrors++;
5163 }
5164
5165 /*
5166 * Interrupt handler.
5167 */
5168 /****************************************************************************/
5169 /* Main interrupt entry point. Verifies that the controller generated the */
5170 /* interrupt and then calls a separate routine for handle the various */
5171 /* interrupt causes (PHY, TX, RX). */
5172 /* */
5173 /* Returns: */
5174 /* 0 for success, positive value for failure. */
5175 /****************************************************************************/
5176 int
5177 bnx_intr(void *xsc)
5178 {
5179 struct bnx_softc *sc;
5180 struct ifnet *ifp;
5181 u_int32_t status_attn_bits;
5182 const struct status_block *sblk;
5183
5184 sc = xsc;
5185
5186 ifp = &sc->bnx_ec.ec_if;
5187
5188 if (!device_is_active(sc->bnx_dev) ||
5189 (ifp->if_flags & IFF_RUNNING) == 0)
5190 return 0;
5191
5192 DBRUNIF(1, sc->interrupts_generated++);
5193
5194 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5195 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5196
5197 /*
5198 * If the hardware status block index
5199 * matches the last value read by the
5200 * driver and we haven't asserted our
5201 * interrupt then there's nothing to do.
5202 */
5203 if ((sc->status_block->status_idx == sc->last_status_idx) &&
5204 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5205 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5206 return (0);
5207
5208 /* Ack the interrupt and stop others from occuring. */
5209 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5210 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5211 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5212
5213 /* Keep processing data as long as there is work to do. */
5214 for (;;) {
5215 sblk = sc->status_block;
5216 status_attn_bits = sblk->status_attn_bits;
5217
5218 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5219 aprint_debug("Simulating unexpected status attention bit set.");
5220 status_attn_bits = status_attn_bits |
5221 STATUS_ATTN_BITS_PARITY_ERROR);
5222
5223 /* Was it a link change interrupt? */
5224 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5225 (sblk->status_attn_bits_ack &
5226 STATUS_ATTN_BITS_LINK_STATE))
5227 bnx_phy_intr(sc);
5228
5229 /* If any other attention is asserted then the chip is toast. */
5230 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5231 (sblk->status_attn_bits_ack &
5232 ~STATUS_ATTN_BITS_LINK_STATE))) {
5233 DBRUN(1, sc->unexpected_attentions++);
5234
5235 BNX_PRINTF(sc,
5236 "Fatal attention detected: 0x%08X\n",
5237 sblk->status_attn_bits);
5238
5239 DBRUN(BNX_FATAL,
5240 if (bnx_debug_unexpected_attention == 0)
5241 bnx_breakpoint(sc));
5242
5243 bnx_init(ifp);
5244 return (1);
5245 }
5246
5247 /* Check for any completed RX frames. */
5248 if (sblk->status_rx_quick_consumer_index0 !=
5249 sc->hw_rx_cons)
5250 bnx_rx_intr(sc);
5251
5252 /* Check for any completed TX frames. */
5253 if (sblk->status_tx_quick_consumer_index0 !=
5254 sc->hw_tx_cons)
5255 bnx_tx_intr(sc);
5256
5257 /* Save the status block index value for use during the
5258 * next interrupt.
5259 */
5260 sc->last_status_idx = sblk->status_idx;
5261
5262 /* Prevent speculative reads from getting ahead of the
5263 * status block.
5264 */
5265 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5266 BUS_SPACE_BARRIER_READ);
5267
5268 /* If there's no work left then exit the isr. */
5269 if ((sblk->status_rx_quick_consumer_index0 ==
5270 sc->hw_rx_cons) &&
5271 (sblk->status_tx_quick_consumer_index0 ==
5272 sc->hw_tx_cons))
5273 break;
5274 }
5275
5276 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5277 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5278
5279 /* Re-enable interrupts. */
5280 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5281 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5282 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5283 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5284 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5285
5286 /* Handle any frames that arrived while handling the interrupt. */
5287 if (!IFQ_IS_EMPTY(&ifp->if_snd))
5288 bnx_start(ifp);
5289
5290 return (1);
5291 }
5292
5293 /****************************************************************************/
5294 /* Programs the various packet receive modes (broadcast and multicast). */
5295 /* */
5296 /* Returns: */
5297 /* Nothing. */
5298 /****************************************************************************/
5299 void
5300 bnx_iff(struct bnx_softc *sc)
5301 {
5302 struct ethercom *ec = &sc->bnx_ec;
5303 struct ifnet *ifp = &ec->ec_if;
5304 struct ether_multi *enm;
5305 struct ether_multistep step;
5306 u_int32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5307 u_int32_t rx_mode, sort_mode;
5308 int h, i;
5309
5310 /* Initialize receive mode default settings. */
5311 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5312 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5313 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5314 ifp->if_flags &= ~IFF_ALLMULTI;
5315
5316 /*
5317 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5318 * be enbled.
5319 */
5320 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5321 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5322
5323 /*
5324 * Check for promiscuous, all multicast, or selected
5325 * multicast address filtering.
5326 */
5327 if (ifp->if_flags & IFF_PROMISC) {
5328 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5329
5330 ifp->if_flags |= IFF_ALLMULTI;
5331 /* Enable promiscuous mode. */
5332 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5333 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5334 } else if (ifp->if_flags & IFF_ALLMULTI) {
5335 allmulti:
5336 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5337
5338 ifp->if_flags |= IFF_ALLMULTI;
5339 /* Enable all multicast addresses. */
5340 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5341 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5342 0xffffffff);
5343 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5344 } else {
5345 /* Accept one or more multicast(s). */
5346 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5347
5348 ETHER_FIRST_MULTI(step, ec, enm);
5349 while (enm != NULL) {
5350 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5351 ETHER_ADDR_LEN)) {
5352 goto allmulti;
5353 }
5354 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5355 0xFF;
5356 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5357 ETHER_NEXT_MULTI(step, enm);
5358 }
5359
5360 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5361 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5362 hashes[i]);
5363
5364 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5365 }
5366
5367 /* Only make changes if the recive mode has actually changed. */
5368 if (rx_mode != sc->rx_mode) {
5369 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5370 rx_mode);
5371
5372 sc->rx_mode = rx_mode;
5373 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5374 }
5375
5376 /* Disable and clear the exisitng sort before enabling a new sort. */
5377 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5378 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5379 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5380 }
5381
5382 /****************************************************************************/
5383 /* Called periodically to updates statistics from the controllers */
5384 /* statistics block. */
5385 /* */
5386 /* Returns: */
5387 /* Nothing. */
5388 /****************************************************************************/
5389 void
5390 bnx_stats_update(struct bnx_softc *sc)
5391 {
5392 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5393 struct statistics_block *stats;
5394
5395 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5396 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5397 BUS_DMASYNC_POSTREAD);
5398
5399 stats = (struct statistics_block *)sc->stats_block;
5400
5401 /*
5402 * Update the interface statistics from the
5403 * hardware statistics.
5404 */
5405 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5406
5407 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5408 (u_long)stats->stat_EtherStatsOverrsizePkts +
5409 (u_long)stats->stat_IfInMBUFDiscards +
5410 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5411 (u_long)stats->stat_Dot3StatsFCSErrors;
5412
5413 ifp->if_oerrors = (u_long)
5414 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5415 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5416 (u_long)stats->stat_Dot3StatsLateCollisions;
5417
5418 /*
5419 * Certain controllers don't report
5420 * carrier sense errors correctly.
5421 * See errata E11_5708CA0_1165.
5422 */
5423 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5424 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5425 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5426
5427 /*
5428 * Update the sysctl statistics from the
5429 * hardware statistics.
5430 */
5431 sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
5432 (u_int64_t) stats->stat_IfHCInOctets_lo;
5433
5434 sc->stat_IfHCInBadOctets =
5435 ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5436 (u_int64_t) stats->stat_IfHCInBadOctets_lo;
5437
5438 sc->stat_IfHCOutOctets =
5439 ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
5440 (u_int64_t) stats->stat_IfHCOutOctets_lo;
5441
5442 sc->stat_IfHCOutBadOctets =
5443 ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5444 (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
5445
5446 sc->stat_IfHCInUcastPkts =
5447 ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5448 (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
5449
5450 sc->stat_IfHCInMulticastPkts =
5451 ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5452 (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
5453
5454 sc->stat_IfHCInBroadcastPkts =
5455 ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5456 (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
5457
5458 sc->stat_IfHCOutUcastPkts =
5459 ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5460 (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
5461
5462 sc->stat_IfHCOutMulticastPkts =
5463 ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5464 (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
5465
5466 sc->stat_IfHCOutBroadcastPkts =
5467 ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5468 (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5469
5470 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5471 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5472
5473 sc->stat_Dot3StatsCarrierSenseErrors =
5474 stats->stat_Dot3StatsCarrierSenseErrors;
5475
5476 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5477
5478 sc->stat_Dot3StatsAlignmentErrors =
5479 stats->stat_Dot3StatsAlignmentErrors;
5480
5481 sc->stat_Dot3StatsSingleCollisionFrames =
5482 stats->stat_Dot3StatsSingleCollisionFrames;
5483
5484 sc->stat_Dot3StatsMultipleCollisionFrames =
5485 stats->stat_Dot3StatsMultipleCollisionFrames;
5486
5487 sc->stat_Dot3StatsDeferredTransmissions =
5488 stats->stat_Dot3StatsDeferredTransmissions;
5489
5490 sc->stat_Dot3StatsExcessiveCollisions =
5491 stats->stat_Dot3StatsExcessiveCollisions;
5492
5493 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5494
5495 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5496
5497 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5498
5499 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5500
5501 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5502
5503 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5504
5505 sc->stat_EtherStatsPktsRx64Octets =
5506 stats->stat_EtherStatsPktsRx64Octets;
5507
5508 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5509 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5510
5511 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5512 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5513
5514 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5515 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5516
5517 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5518 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5519
5520 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5521 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5522
5523 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5524 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5525
5526 sc->stat_EtherStatsPktsTx64Octets =
5527 stats->stat_EtherStatsPktsTx64Octets;
5528
5529 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5530 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5531
5532 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5533 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5534
5535 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5536 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5537
5538 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5539 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5540
5541 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5542 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5543
5544 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5545 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5546
5547 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5548
5549 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5550
5551 sc->stat_OutXonSent = stats->stat_OutXonSent;
5552
5553 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5554
5555 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5556
5557 sc->stat_MacControlFramesReceived =
5558 stats->stat_MacControlFramesReceived;
5559
5560 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5561
5562 sc->stat_IfInFramesL2FilterDiscards =
5563 stats->stat_IfInFramesL2FilterDiscards;
5564
5565 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5566
5567 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5568
5569 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5570
5571 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5572
5573 sc->stat_CatchupInRuleCheckerDiscards =
5574 stats->stat_CatchupInRuleCheckerDiscards;
5575
5576 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5577
5578 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5579
5580 sc->stat_CatchupInRuleCheckerP4Hit =
5581 stats->stat_CatchupInRuleCheckerP4Hit;
5582
5583 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5584 }
5585
5586 void
5587 bnx_tick(void *xsc)
5588 {
5589 struct bnx_softc *sc = xsc;
5590 struct mii_data *mii;
5591 u_int32_t msg;
5592 u_int16_t prod, chain_prod;
5593 u_int32_t prod_bseq;
5594 int s = splnet();
5595
5596 /* Tell the firmware that the driver is still running. */
5597 #ifdef BNX_DEBUG
5598 msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5599 #else
5600 msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5601 #endif
5602 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5603
5604 /* Update the statistics from the hardware statistics block. */
5605 bnx_stats_update(sc);
5606
5607 /* Schedule the next tick. */
5608 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5609
5610 mii = &sc->bnx_mii;
5611 mii_tick(mii);
5612
5613 /* try to get more RX buffers, just in case */
5614 prod = sc->rx_prod;
5615 prod_bseq = sc->rx_prod_bseq;
5616 chain_prod = RX_CHAIN_IDX(prod);
5617 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5618 sc->rx_prod = prod;
5619 sc->rx_prod_bseq = prod_bseq;
5620 splx(s);
5621 return;
5622 }
5623
5624 /****************************************************************************/
5625 /* BNX Debug Routines */
5626 /****************************************************************************/
5627 #ifdef BNX_DEBUG
5628
5629 /****************************************************************************/
5630 /* Prints out information about an mbuf. */
5631 /* */
5632 /* Returns: */
5633 /* Nothing. */
5634 /****************************************************************************/
5635 void
5636 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5637 {
5638 struct mbuf *mp = m;
5639
5640 if (m == NULL) {
5641 /* Index out of range. */
5642 aprint_error("mbuf ptr is null!\n");
5643 return;
5644 }
5645
5646 while (mp) {
5647 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5648 mp, mp->m_len);
5649
5650 if (mp->m_flags & M_EXT)
5651 aprint_debug("M_EXT ");
5652 if (mp->m_flags & M_PKTHDR)
5653 aprint_debug("M_PKTHDR ");
5654 aprint_debug("\n");
5655
5656 if (mp->m_flags & M_EXT)
5657 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5658 mp, mp->m_ext.ext_size);
5659
5660 mp = mp->m_next;
5661 }
5662 }
5663
5664 /****************************************************************************/
5665 /* Prints out the mbufs in the TX mbuf chain. */
5666 /* */
5667 /* Returns: */
5668 /* Nothing. */
5669 /****************************************************************************/
5670 void
5671 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5672 {
5673 #if 0
5674 struct mbuf *m;
5675 int i;
5676
5677 aprint_debug_dev(sc->bnx_dev,
5678 "----------------------------"
5679 " tx mbuf data "
5680 "----------------------------\n");
5681
5682 for (i = 0; i < count; i++) {
5683 m = sc->tx_mbuf_ptr[chain_prod];
5684 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5685 bnx_dump_mbuf(sc, m);
5686 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5687 }
5688
5689 aprint_debug_dev(sc->bnx_dev,
5690 "--------------------------------------------"
5691 "----------------------------\n");
5692 #endif
5693 }
5694
5695 /*
5696 * This routine prints the RX mbuf chain.
5697 */
5698 void
5699 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5700 {
5701 struct mbuf *m;
5702 int i;
5703
5704 aprint_debug_dev(sc->bnx_dev,
5705 "----------------------------"
5706 " rx mbuf data "
5707 "----------------------------\n");
5708
5709 for (i = 0; i < count; i++) {
5710 m = sc->rx_mbuf_ptr[chain_prod];
5711 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5712 bnx_dump_mbuf(sc, m);
5713 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5714 }
5715
5716
5717 aprint_debug_dev(sc->bnx_dev,
5718 "--------------------------------------------"
5719 "----------------------------\n");
5720 }
5721
5722 void
5723 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5724 {
5725 if (idx > MAX_TX_BD)
5726 /* Index out of range. */
5727 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5728 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5729 /* TX Chain page pointer. */
5730 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5731 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5732 txbd->tx_bd_haddr_lo);
5733 else
5734 /* Normal tx_bd entry. */
5735 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5736 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5737 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5738 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5739 txbd->tx_bd_flags);
5740 }
5741
5742 void
5743 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5744 {
5745 if (idx > MAX_RX_BD)
5746 /* Index out of range. */
5747 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5748 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5749 /* TX Chain page pointer. */
5750 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5751 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5752 rxbd->rx_bd_haddr_lo);
5753 else
5754 /* Normal tx_bd entry. */
5755 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5756 "0x%08X, flags = 0x%08X\n", idx,
5757 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5758 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5759 }
5760
5761 void
5762 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5763 {
5764 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5765 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5766 "tcp_udp_xsum = 0x%04X\n", idx,
5767 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5768 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5769 l2fhdr->l2_fhdr_tcp_udp_xsum);
5770 }
5771
5772 /*
5773 * This routine prints the TX chain.
5774 */
5775 void
5776 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5777 {
5778 struct tx_bd *txbd;
5779 int i;
5780
5781 /* First some info about the tx_bd chain structure. */
5782 aprint_debug_dev(sc->bnx_dev,
5783 "----------------------------"
5784 " tx_bd chain "
5785 "----------------------------\n");
5786
5787 BNX_PRINTF(sc,
5788 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5789 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5790
5791 BNX_PRINTF(sc,
5792 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5793 (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5794
5795 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", TOTAL_TX_BD);
5796
5797 aprint_error_dev(sc->bnx_dev, ""
5798 "-----------------------------"
5799 " tx_bd data "
5800 "-----------------------------\n");
5801
5802 /* Now print out the tx_bd's themselves. */
5803 for (i = 0; i < count; i++) {
5804 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5805 bnx_dump_txbd(sc, tx_prod, txbd);
5806 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5807 }
5808
5809 aprint_debug_dev(sc->bnx_dev,
5810 "-----------------------------"
5811 "--------------"
5812 "-----------------------------\n");
5813 }
5814
5815 /*
5816 * This routine prints the RX chain.
5817 */
5818 void
5819 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5820 {
5821 struct rx_bd *rxbd;
5822 int i;
5823
5824 /* First some info about the tx_bd chain structure. */
5825 aprint_debug_dev(sc->bnx_dev,
5826 "----------------------------"
5827 " rx_bd chain "
5828 "----------------------------\n");
5829
5830 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5831
5832 BNX_PRINTF(sc,
5833 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5834 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5835
5836 BNX_PRINTF(sc,
5837 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5838 (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5839
5840 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", TOTAL_RX_BD);
5841
5842 aprint_error_dev(sc->bnx_dev,
5843 "----------------------------"
5844 " rx_bd data "
5845 "----------------------------\n");
5846
5847 /* Now print out the rx_bd's themselves. */
5848 for (i = 0; i < count; i++) {
5849 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5850 bnx_dump_rxbd(sc, rx_prod, rxbd);
5851 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5852 }
5853
5854 aprint_debug_dev(sc->bnx_dev,
5855 "----------------------------"
5856 "--------------"
5857 "----------------------------\n");
5858 }
5859
5860 /*
5861 * This routine prints the status block.
5862 */
5863 void
5864 bnx_dump_status_block(struct bnx_softc *sc)
5865 {
5866 struct status_block *sblk;
5867 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5868 BUS_DMASYNC_POSTREAD);
5869
5870 sblk = sc->status_block;
5871
5872 aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5873 "-----------------------------\n");
5874
5875 BNX_PRINTF(sc,
5876 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5877 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5878 sblk->status_idx);
5879
5880 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5881 sblk->status_rx_quick_consumer_index0,
5882 sblk->status_tx_quick_consumer_index0);
5883
5884 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5885
5886 /* Theses indices are not used for normal L2 drivers. */
5887 if (sblk->status_rx_quick_consumer_index1 ||
5888 sblk->status_tx_quick_consumer_index1)
5889 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5890 sblk->status_rx_quick_consumer_index1,
5891 sblk->status_tx_quick_consumer_index1);
5892
5893 if (sblk->status_rx_quick_consumer_index2 ||
5894 sblk->status_tx_quick_consumer_index2)
5895 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5896 sblk->status_rx_quick_consumer_index2,
5897 sblk->status_tx_quick_consumer_index2);
5898
5899 if (sblk->status_rx_quick_consumer_index3 ||
5900 sblk->status_tx_quick_consumer_index3)
5901 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5902 sblk->status_rx_quick_consumer_index3,
5903 sblk->status_tx_quick_consumer_index3);
5904
5905 if (sblk->status_rx_quick_consumer_index4 ||
5906 sblk->status_rx_quick_consumer_index5)
5907 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5908 sblk->status_rx_quick_consumer_index4,
5909 sblk->status_rx_quick_consumer_index5);
5910
5911 if (sblk->status_rx_quick_consumer_index6 ||
5912 sblk->status_rx_quick_consumer_index7)
5913 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
5914 sblk->status_rx_quick_consumer_index6,
5915 sblk->status_rx_quick_consumer_index7);
5916
5917 if (sblk->status_rx_quick_consumer_index8 ||
5918 sblk->status_rx_quick_consumer_index9)
5919 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
5920 sblk->status_rx_quick_consumer_index8,
5921 sblk->status_rx_quick_consumer_index9);
5922
5923 if (sblk->status_rx_quick_consumer_index10 ||
5924 sblk->status_rx_quick_consumer_index11)
5925 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
5926 sblk->status_rx_quick_consumer_index10,
5927 sblk->status_rx_quick_consumer_index11);
5928
5929 if (sblk->status_rx_quick_consumer_index12 ||
5930 sblk->status_rx_quick_consumer_index13)
5931 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
5932 sblk->status_rx_quick_consumer_index12,
5933 sblk->status_rx_quick_consumer_index13);
5934
5935 if (sblk->status_rx_quick_consumer_index14 ||
5936 sblk->status_rx_quick_consumer_index15)
5937 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
5938 sblk->status_rx_quick_consumer_index14,
5939 sblk->status_rx_quick_consumer_index15);
5940
5941 if (sblk->status_completion_producer_index ||
5942 sblk->status_cmd_consumer_index)
5943 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
5944 sblk->status_completion_producer_index,
5945 sblk->status_cmd_consumer_index);
5946
5947 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
5948 "-----------------------------\n");
5949 }
5950
5951 /*
5952 * This routine prints the statistics block.
5953 */
5954 void
5955 bnx_dump_stats_block(struct bnx_softc *sc)
5956 {
5957 struct statistics_block *sblk;
5958 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5959 BUS_DMASYNC_POSTREAD);
5960
5961 sblk = sc->stats_block;
5962
5963 aprint_debug_dev(sc->bnx_dev, ""
5964 "-----------------------------"
5965 " Stats Block "
5966 "-----------------------------\n");
5967
5968 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
5969 "IfHcInBadOctets = 0x%08X:%08X\n",
5970 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5971 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5972
5973 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
5974 "IfHcOutBadOctets = 0x%08X:%08X\n",
5975 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5976 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5977
5978 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
5979 "IfHcInMulticastPkts = 0x%08X:%08X\n",
5980 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5981 sblk->stat_IfHCInMulticastPkts_hi,
5982 sblk->stat_IfHCInMulticastPkts_lo);
5983
5984 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
5985 "IfHcOutUcastPkts = 0x%08X:%08X\n",
5986 sblk->stat_IfHCInBroadcastPkts_hi,
5987 sblk->stat_IfHCInBroadcastPkts_lo,
5988 sblk->stat_IfHCOutUcastPkts_hi,
5989 sblk->stat_IfHCOutUcastPkts_lo);
5990
5991 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5992 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5993 sblk->stat_IfHCOutMulticastPkts_hi,
5994 sblk->stat_IfHCOutMulticastPkts_lo,
5995 sblk->stat_IfHCOutBroadcastPkts_hi,
5996 sblk->stat_IfHCOutBroadcastPkts_lo);
5997
5998 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5999 BNX_PRINTF(sc, "0x%08X : "
6000 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6001 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6002
6003 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6004 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6005 sblk->stat_Dot3StatsCarrierSenseErrors);
6006
6007 if (sblk->stat_Dot3StatsFCSErrors)
6008 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6009 sblk->stat_Dot3StatsFCSErrors);
6010
6011 if (sblk->stat_Dot3StatsAlignmentErrors)
6012 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6013 sblk->stat_Dot3StatsAlignmentErrors);
6014
6015 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6016 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6017 sblk->stat_Dot3StatsSingleCollisionFrames);
6018
6019 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6020 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6021 sblk->stat_Dot3StatsMultipleCollisionFrames);
6022
6023 if (sblk->stat_Dot3StatsDeferredTransmissions)
6024 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6025 sblk->stat_Dot3StatsDeferredTransmissions);
6026
6027 if (sblk->stat_Dot3StatsExcessiveCollisions)
6028 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6029 sblk->stat_Dot3StatsExcessiveCollisions);
6030
6031 if (sblk->stat_Dot3StatsLateCollisions)
6032 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6033 sblk->stat_Dot3StatsLateCollisions);
6034
6035 if (sblk->stat_EtherStatsCollisions)
6036 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6037 sblk->stat_EtherStatsCollisions);
6038
6039 if (sblk->stat_EtherStatsFragments)
6040 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6041 sblk->stat_EtherStatsFragments);
6042
6043 if (sblk->stat_EtherStatsJabbers)
6044 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6045 sblk->stat_EtherStatsJabbers);
6046
6047 if (sblk->stat_EtherStatsUndersizePkts)
6048 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6049 sblk->stat_EtherStatsUndersizePkts);
6050
6051 if (sblk->stat_EtherStatsOverrsizePkts)
6052 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6053 sblk->stat_EtherStatsOverrsizePkts);
6054
6055 if (sblk->stat_EtherStatsPktsRx64Octets)
6056 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6057 sblk->stat_EtherStatsPktsRx64Octets);
6058
6059 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6060 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6061 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6062
6063 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6064 BNX_PRINTF(sc, "0x%08X : "
6065 "EtherStatsPktsRx128Octetsto255Octets\n",
6066 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6067
6068 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6069 BNX_PRINTF(sc, "0x%08X : "
6070 "EtherStatsPktsRx256Octetsto511Octets\n",
6071 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6072
6073 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6074 BNX_PRINTF(sc, "0x%08X : "
6075 "EtherStatsPktsRx512Octetsto1023Octets\n",
6076 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6077
6078 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6079 BNX_PRINTF(sc, "0x%08X : "
6080 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6081 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6082
6083 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6084 BNX_PRINTF(sc, "0x%08X : "
6085 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6086 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6087
6088 if (sblk->stat_EtherStatsPktsTx64Octets)
6089 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6090 sblk->stat_EtherStatsPktsTx64Octets);
6091
6092 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6093 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6094 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6095
6096 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6097 BNX_PRINTF(sc, "0x%08X : "
6098 "EtherStatsPktsTx128Octetsto255Octets\n",
6099 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6100
6101 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6102 BNX_PRINTF(sc, "0x%08X : "
6103 "EtherStatsPktsTx256Octetsto511Octets\n",
6104 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6105
6106 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6107 BNX_PRINTF(sc, "0x%08X : "
6108 "EtherStatsPktsTx512Octetsto1023Octets\n",
6109 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6110
6111 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6112 BNX_PRINTF(sc, "0x%08X : "
6113 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6114 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6115
6116 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6117 BNX_PRINTF(sc, "0x%08X : "
6118 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6119 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6120
6121 if (sblk->stat_XonPauseFramesReceived)
6122 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6123 sblk->stat_XonPauseFramesReceived);
6124
6125 if (sblk->stat_XoffPauseFramesReceived)
6126 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6127 sblk->stat_XoffPauseFramesReceived);
6128
6129 if (sblk->stat_OutXonSent)
6130 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6131 sblk->stat_OutXonSent);
6132
6133 if (sblk->stat_OutXoffSent)
6134 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6135 sblk->stat_OutXoffSent);
6136
6137 if (sblk->stat_FlowControlDone)
6138 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6139 sblk->stat_FlowControlDone);
6140
6141 if (sblk->stat_MacControlFramesReceived)
6142 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6143 sblk->stat_MacControlFramesReceived);
6144
6145 if (sblk->stat_XoffStateEntered)
6146 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6147 sblk->stat_XoffStateEntered);
6148
6149 if (sblk->stat_IfInFramesL2FilterDiscards)
6150 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6151 sblk->stat_IfInFramesL2FilterDiscards);
6152
6153 if (sblk->stat_IfInRuleCheckerDiscards)
6154 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6155 sblk->stat_IfInRuleCheckerDiscards);
6156
6157 if (sblk->stat_IfInFTQDiscards)
6158 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6159 sblk->stat_IfInFTQDiscards);
6160
6161 if (sblk->stat_IfInMBUFDiscards)
6162 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6163 sblk->stat_IfInMBUFDiscards);
6164
6165 if (sblk->stat_IfInRuleCheckerP4Hit)
6166 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6167 sblk->stat_IfInRuleCheckerP4Hit);
6168
6169 if (sblk->stat_CatchupInRuleCheckerDiscards)
6170 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6171 sblk->stat_CatchupInRuleCheckerDiscards);
6172
6173 if (sblk->stat_CatchupInFTQDiscards)
6174 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6175 sblk->stat_CatchupInFTQDiscards);
6176
6177 if (sblk->stat_CatchupInMBUFDiscards)
6178 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6179 sblk->stat_CatchupInMBUFDiscards);
6180
6181 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6182 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6183 sblk->stat_CatchupInRuleCheckerP4Hit);
6184
6185 aprint_debug_dev(sc->bnx_dev,
6186 "-----------------------------"
6187 "--------------"
6188 "-----------------------------\n");
6189 }
6190
6191 void
6192 bnx_dump_driver_state(struct bnx_softc *sc)
6193 {
6194 aprint_debug_dev(sc->bnx_dev,
6195 "-----------------------------"
6196 " Driver State "
6197 "-----------------------------\n");
6198
6199 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6200 "address\n", sc);
6201
6202 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6203 sc->status_block);
6204
6205 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6206 "address\n", sc->stats_block);
6207
6208 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6209 "adddress\n", sc->tx_bd_chain);
6210
6211 #if 0
6212 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6213 sc->rx_bd_chain);
6214
6215 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6216 sc->tx_mbuf_ptr);
6217 #endif
6218
6219 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6220 sc->rx_mbuf_ptr);
6221
6222 BNX_PRINTF(sc,
6223 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6224 sc->interrupts_generated);
6225
6226 BNX_PRINTF(sc,
6227 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6228 sc->rx_interrupts);
6229
6230 BNX_PRINTF(sc,
6231 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6232 sc->tx_interrupts);
6233
6234 BNX_PRINTF(sc,
6235 " 0x%08X - (sc->last_status_idx) status block index\n",
6236 sc->last_status_idx);
6237
6238 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6239 sc->tx_prod);
6240
6241 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6242 sc->tx_cons);
6243
6244 BNX_PRINTF(sc,
6245 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6246 sc->tx_prod_bseq);
6247 BNX_PRINTF(sc,
6248 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6249 sc->tx_mbuf_alloc);
6250
6251 BNX_PRINTF(sc,
6252 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6253 sc->used_tx_bd);
6254
6255 BNX_PRINTF(sc,
6256 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6257 sc->tx_hi_watermark, sc->max_tx_bd);
6258
6259
6260 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6261 sc->rx_prod);
6262
6263 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6264 sc->rx_cons);
6265
6266 BNX_PRINTF(sc,
6267 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6268 sc->rx_prod_bseq);
6269
6270 BNX_PRINTF(sc,
6271 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6272 sc->rx_mbuf_alloc);
6273
6274 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6275 sc->free_rx_bd);
6276
6277 BNX_PRINTF(sc,
6278 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6279 sc->rx_low_watermark, sc->max_rx_bd);
6280
6281 BNX_PRINTF(sc,
6282 " 0x%08X - (sc->mbuf_alloc_failed) "
6283 "mbuf alloc failures\n",
6284 sc->mbuf_alloc_failed);
6285
6286 BNX_PRINTF(sc,
6287 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6288 "simulated mbuf alloc failures\n",
6289 sc->mbuf_sim_alloc_failed);
6290
6291 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6292 "-----------------------------\n");
6293 }
6294
6295 void
6296 bnx_dump_hw_state(struct bnx_softc *sc)
6297 {
6298 u_int32_t val1;
6299 int i;
6300
6301 aprint_debug_dev(sc->bnx_dev,
6302 "----------------------------"
6303 " Hardware State "
6304 "----------------------------\n");
6305
6306 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6307
6308 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6309 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6310 val1, BNX_MISC_ENABLE_STATUS_BITS);
6311
6312 val1 = REG_RD(sc, BNX_DMA_STATUS);
6313 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6314
6315 val1 = REG_RD(sc, BNX_CTX_STATUS);
6316 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6317
6318 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6319 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6320 BNX_EMAC_STATUS);
6321
6322 val1 = REG_RD(sc, BNX_RPM_STATUS);
6323 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6324
6325 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6326 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6327 BNX_TBDR_STATUS);
6328
6329 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6330 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6331 BNX_TDMA_STATUS);
6332
6333 val1 = REG_RD(sc, BNX_HC_STATUS);
6334 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6335
6336 aprint_debug_dev(sc->bnx_dev,
6337 "----------------------------"
6338 "----------------"
6339 "----------------------------\n");
6340
6341 aprint_debug_dev(sc->bnx_dev,
6342 "----------------------------"
6343 " Register Dump "
6344 "----------------------------\n");
6345
6346 for (i = 0x400; i < 0x8000; i += 0x10)
6347 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6348 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6349 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6350
6351 aprint_debug_dev(sc->bnx_dev,
6352 "----------------------------"
6353 "----------------"
6354 "----------------------------\n");
6355 }
6356
6357 void
6358 bnx_breakpoint(struct bnx_softc *sc)
6359 {
6360 /* Unreachable code to shut the compiler up about unused functions. */
6361 if (0) {
6362 bnx_dump_txbd(sc, 0, NULL);
6363 bnx_dump_rxbd(sc, 0, NULL);
6364 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6365 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6366 bnx_dump_l2fhdr(sc, 0, NULL);
6367 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6368 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6369 bnx_dump_status_block(sc);
6370 bnx_dump_stats_block(sc);
6371 bnx_dump_driver_state(sc);
6372 bnx_dump_hw_state(sc);
6373 }
6374
6375 bnx_dump_driver_state(sc);
6376 /* Print the important status block fields. */
6377 bnx_dump_status_block(sc);
6378
6379 #if 0
6380 /* Call the debugger. */
6381 breakpoint();
6382 #endif
6383
6384 return;
6385 }
6386 #endif
6387