if_bnx.c revision 1.45.8.2 1 /* $NetBSD: if_bnx.c,v 1.45.8.2 2014/12/07 16:39:55 martin Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3
4 /*-
5 * Copyright (c) 2006-2010 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.45.8.2 2014/12/07 16:39:55 martin Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 * BCM5706C A0, A1
52 * BCM5706S A0, A1
53 * BCM5708C A0, B0
54 * BCM5708S A0, B0
55 * BCM5709C A0 B0, B1, B2 (pre-production)
56 * BCM5709S A0, B0, B1, B2 (pre-production)
57 */
58
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64
65 #include <dev/microcode/bnx/bnxfw.h>
66
67 /****************************************************************************/
68 /* BNX Driver Version */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION "v0.9.6"
71
72 /****************************************************************************/
73 /* BNX Debug Options */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77
78 /* 0 = Never */
79 /* 1 = 1 in 2,147,483,648 */
80 /* 256 = 1 in 8,388,608 */
81 /* 2048 = 1 in 1,048,576 */
82 /* 65536 = 1 in 32,768 */
83 /* 1048576 = 1 in 2,048 */
84 /* 268435456 = 1 in 8 */
85 /* 536870912 = 1 in 4 */
86 /* 1073741824 = 1 in 2 */
87
88 /* Controls how often the l2_fhdr frame error check will fail. */
89 int bnx_debug_l2fhdr_status_check = 0;
90
91 /* Controls how often the unexpected attention check will fail. */
92 int bnx_debug_unexpected_attention = 0;
93
94 /* Controls how often to simulate an mbuf allocation failure. */
95 int bnx_debug_mbuf_allocation_failure = 0;
96
97 /* Controls how often to simulate a DMA mapping failure. */
98 int bnx_debug_dma_map_addr_failure = 0;
99
100 /* Controls how often to simulate a bootcode failure. */
101 int bnx_debug_bootcode_running_failure = 0;
102 #endif
103
104 /****************************************************************************/
105 /* PCI Device ID Table */
106 /* */
107 /* Used by bnx_probe() to identify the devices supported by this driver. */
108 /****************************************************************************/
109 static const struct bnx_product {
110 pci_vendor_id_t bp_vendor;
111 pci_product_id_t bp_product;
112 pci_vendor_id_t bp_subvendor;
113 pci_product_id_t bp_subproduct;
114 const char *bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 {
118 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 "HP NC370T Multifunction Gigabit Server Adapter"
121 },
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 {
125 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 "HP NC370i Multifunction Gigabit Server Adapter"
128 },
129 #endif
130 {
131 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 0, 0,
133 "Broadcom NetXtreme II BCM5706 1000Base-T"
134 },
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 {
137 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 "HP NC370F Multifunction Gigabit Server Adapter"
140 },
141 #endif
142 {
143 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 0, 0,
145 "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 },
147 {
148 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 0, 0,
150 "Broadcom NetXtreme II BCM5708 1000Base-T"
151 },
152 {
153 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 0, 0,
155 "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 },
157 {
158 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 0, 0,
160 "Broadcom NetXtreme II BCM5709 1000Base-T"
161 },
162 {
163 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 0, 0,
165 "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 },
167 {
168 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 0, 0,
170 "Broadcom NetXtreme II BCM5716 1000Base-T"
171 },
172 {
173 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 0, 0,
175 "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 },
177 };
178
179 /****************************************************************************/
180 /* Supported Flash NVRAM device data. */
181 /****************************************************************************/
182 static struct flash_spec flash_table[] =
183 {
184 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
185 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
186 /* Slow EEPROM */
187 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
188 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
189 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
190 "EEPROM - slow"},
191 /* Expansion entry 0001 */
192 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
193 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 "Entry 0001"},
196 /* Saifun SA25F010 (non-buffered flash) */
197 /* strap, cfg1, & write1 need updates */
198 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
199 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
200 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
201 "Non-buffered flash (128kB)"},
202 /* Saifun SA25F020 (non-buffered flash) */
203 /* strap, cfg1, & write1 need updates */
204 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
205 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
206 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
207 "Non-buffered flash (256kB)"},
208 /* Expansion entry 0100 */
209 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
210 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
211 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
212 "Entry 0100"},
213 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
214 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
215 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
216 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
217 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
218 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
219 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
220 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
221 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
222 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
223 /* Saifun SA25F005 (non-buffered flash) */
224 /* strap, cfg1, & write1 need updates */
225 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
226 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
228 "Non-buffered flash (64kB)"},
229 /* Fast EEPROM */
230 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
231 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
232 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
233 "EEPROM - fast"},
234 /* Expansion entry 1001 */
235 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
236 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
237 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
238 "Entry 1001"},
239 /* Expansion entry 1010 */
240 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
241 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
242 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
243 "Entry 1010"},
244 /* ATMEL AT45DB011B (buffered flash) */
245 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
246 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
247 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
248 "Buffered flash (128kB)"},
249 /* Expansion entry 1100 */
250 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
251 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
252 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
253 "Entry 1100"},
254 /* Expansion entry 1101 */
255 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
256 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
257 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
258 "Entry 1101"},
259 /* Ateml Expansion entry 1110 */
260 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
261 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
262 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
263 "Entry 1110 (Atmel)"},
264 /* ATMEL AT45DB021B (buffered flash) */
265 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
266 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
267 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
268 "Buffered flash (256kB)"},
269 };
270
271 /*
272 * The BCM5709 controllers transparently handle the
273 * differences between Atmel 264 byte pages and all
274 * flash devices which use 256 byte pages, so no
275 * logical-to-physical mapping is required in the
276 * driver.
277 */
278 static struct flash_spec flash_5709 = {
279 .flags = BNX_NV_BUFFERED,
280 .page_bits = BCM5709_FLASH_PAGE_BITS,
281 .page_size = BCM5709_FLASH_PAGE_SIZE,
282 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
283 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
284 .name = "5709 buffered flash (256kB)",
285 };
286
287 /****************************************************************************/
288 /* OpenBSD device entry points. */
289 /****************************************************************************/
290 static int bnx_probe(device_t, cfdata_t, void *);
291 void bnx_attach(device_t, device_t, void *);
292 int bnx_detach(device_t, int);
293
294 /****************************************************************************/
295 /* BNX Debug Data Structure Dump Routines */
296 /****************************************************************************/
297 #ifdef BNX_DEBUG
298 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
299 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
300 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
301 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
302 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
303 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
304 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
305 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
306 void bnx_dump_status_block(struct bnx_softc *);
307 void bnx_dump_stats_block(struct bnx_softc *);
308 void bnx_dump_driver_state(struct bnx_softc *);
309 void bnx_dump_hw_state(struct bnx_softc *);
310 void bnx_breakpoint(struct bnx_softc *);
311 #endif
312
313 /****************************************************************************/
314 /* BNX Register/Memory Access Routines */
315 /****************************************************************************/
316 uint32_t bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
317 void bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
318 void bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
319 int bnx_miibus_read_reg(device_t, int, int);
320 void bnx_miibus_write_reg(device_t, int, int, int);
321 void bnx_miibus_statchg(device_t);
322
323 /****************************************************************************/
324 /* BNX NVRAM Access Routines */
325 /****************************************************************************/
326 int bnx_acquire_nvram_lock(struct bnx_softc *);
327 int bnx_release_nvram_lock(struct bnx_softc *);
328 void bnx_enable_nvram_access(struct bnx_softc *);
329 void bnx_disable_nvram_access(struct bnx_softc *);
330 int bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
331 uint32_t);
332 int bnx_init_nvram(struct bnx_softc *);
333 int bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
334 int bnx_nvram_test(struct bnx_softc *);
335 #ifdef BNX_NVRAM_WRITE_SUPPORT
336 int bnx_enable_nvram_write(struct bnx_softc *);
337 void bnx_disable_nvram_write(struct bnx_softc *);
338 int bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
339 int bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
340 uint32_t);
341 int bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
342 #endif
343
344 /****************************************************************************/
345 /* */
346 /****************************************************************************/
347 void bnx_get_media(struct bnx_softc *);
348 void bnx_init_media(struct bnx_softc *);
349 int bnx_dma_alloc(struct bnx_softc *);
350 void bnx_dma_free(struct bnx_softc *);
351 void bnx_release_resources(struct bnx_softc *);
352
353 /****************************************************************************/
354 /* BNX Firmware Synchronization and Load */
355 /****************************************************************************/
356 int bnx_fw_sync(struct bnx_softc *, uint32_t);
357 void bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t,
358 uint32_t);
359 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
360 struct fw_info *);
361 void bnx_init_cpus(struct bnx_softc *);
362
363 static void bnx_print_adapter_info(struct bnx_softc *);
364 static void bnx_probe_pci_caps(struct bnx_softc *);
365 void bnx_stop(struct ifnet *, int);
366 int bnx_reset(struct bnx_softc *, uint32_t);
367 int bnx_chipinit(struct bnx_softc *);
368 int bnx_blockinit(struct bnx_softc *);
369 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
370 uint16_t *, uint32_t *);
371 int bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
372
373 int bnx_init_tx_chain(struct bnx_softc *);
374 void bnx_init_tx_context(struct bnx_softc *);
375 int bnx_init_rx_chain(struct bnx_softc *);
376 void bnx_init_rx_context(struct bnx_softc *);
377 void bnx_free_rx_chain(struct bnx_softc *);
378 void bnx_free_tx_chain(struct bnx_softc *);
379
380 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
381 void bnx_start(struct ifnet *);
382 int bnx_ioctl(struct ifnet *, u_long, void *);
383 void bnx_watchdog(struct ifnet *);
384 int bnx_init(struct ifnet *);
385
386 void bnx_init_context(struct bnx_softc *);
387 void bnx_get_mac_addr(struct bnx_softc *);
388 void bnx_set_mac_addr(struct bnx_softc *);
389 void bnx_phy_intr(struct bnx_softc *);
390 void bnx_rx_intr(struct bnx_softc *);
391 void bnx_tx_intr(struct bnx_softc *);
392 void bnx_disable_intr(struct bnx_softc *);
393 void bnx_enable_intr(struct bnx_softc *);
394
395 int bnx_intr(void *);
396 void bnx_iff(struct bnx_softc *);
397 void bnx_stats_update(struct bnx_softc *);
398 void bnx_tick(void *);
399
400 struct pool *bnx_tx_pool = NULL;
401 void bnx_alloc_pkts(struct work *, void *);
402
403 /****************************************************************************/
404 /* OpenBSD device dispatch table. */
405 /****************************************************************************/
406 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
407 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
408
409 /****************************************************************************/
410 /* Device probe function. */
411 /* */
412 /* Compares the device to the driver's list of supported devices and */
413 /* reports back to the OS whether this is the right driver for the device. */
414 /* */
415 /* Returns: */
416 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
417 /****************************************************************************/
418 static const struct bnx_product *
419 bnx_lookup(const struct pci_attach_args *pa)
420 {
421 int i;
422 pcireg_t subid;
423
424 for (i = 0; i < __arraycount(bnx_devices); i++) {
425 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
426 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
427 continue;
428 if (!bnx_devices[i].bp_subvendor)
429 return &bnx_devices[i];
430 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
431 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
432 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
433 return &bnx_devices[i];
434 }
435
436 return NULL;
437 }
438 static int
439 bnx_probe(device_t parent, cfdata_t match, void *aux)
440 {
441 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
442
443 if (bnx_lookup(pa) != NULL)
444 return 1;
445
446 return 0;
447 }
448
449 /****************************************************************************/
450 /* PCI Capabilities Probe Function. */
451 /* */
452 /* Walks the PCI capabiites list for the device to find what features are */
453 /* supported. */
454 /* */
455 /* Returns: */
456 /* None. */
457 /****************************************************************************/
458 static void
459 bnx_print_adapter_info(struct bnx_softc *sc)
460 {
461
462 aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
463 BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
464 (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
465 ? "Serdes " : "", sc->bnx_chipid);
466
467 /* Bus info. */
468 if (sc->bnx_flags & BNX_PCIE_FLAG) {
469 aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
470 sc->link_width);
471 switch (sc->link_speed) {
472 case 1: aprint_normal("2.5Gbps\n"); break;
473 case 2: aprint_normal("5Gbps\n"); break;
474 default: aprint_normal("Unknown link speed\n");
475 }
476 } else {
477 aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
478 ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
479 (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
480 sc->bus_speed_mhz);
481 }
482
483 aprint_normal_dev(sc->bnx_dev,
484 "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
485 sc->bnx_rx_quick_cons_trip_int,
486 sc->bnx_rx_quick_cons_trip,
487 sc->bnx_rx_ticks_int,
488 sc->bnx_rx_ticks,
489 sc->bnx_tx_quick_cons_trip_int,
490 sc->bnx_tx_quick_cons_trip,
491 sc->bnx_tx_ticks_int,
492 sc->bnx_tx_ticks);
493 }
494
495
496 /****************************************************************************/
497 /* PCI Capabilities Probe Function. */
498 /* */
499 /* Walks the PCI capabiites list for the device to find what features are */
500 /* supported. */
501 /* */
502 /* Returns: */
503 /* None. */
504 /****************************************************************************/
505 static void
506 bnx_probe_pci_caps(struct bnx_softc *sc)
507 {
508 struct pci_attach_args *pa = &(sc->bnx_pa);
509 pcireg_t reg;
510
511 /* Check if PCI-X capability is enabled. */
512 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, ®,
513 NULL) != 0) {
514 sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
515 }
516
517 /* Check if PCIe capability is enabled. */
518 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, ®,
519 NULL) != 0) {
520 pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
521 reg + PCI_PCIE_LCSR);
522 DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
523 "0x%08X\n", link_status);
524 sc->link_speed = (link_status & PCI_PCIE_LCSR_LINKSPEED) >> 16;
525 sc->link_width = (link_status & PCI_PCIE_LCSR_NLW) >> 20;
526 sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
527 sc->bnx_flags |= BNX_PCIE_FLAG;
528 }
529
530 /* Check if MSI capability is enabled. */
531 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, ®,
532 NULL) != 0)
533 sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
534
535 /* Check if MSI-X capability is enabled. */
536 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, ®,
537 NULL) != 0)
538 sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
539 }
540
541
542 /****************************************************************************/
543 /* Device attach function. */
544 /* */
545 /* Allocates device resources, performs secondary chip identification, */
546 /* resets and initializes the hardware, and initializes driver instance */
547 /* variables. */
548 /* */
549 /* Returns: */
550 /* 0 on success, positive value on failure. */
551 /****************************************************************************/
552 void
553 bnx_attach(device_t parent, device_t self, void *aux)
554 {
555 const struct bnx_product *bp;
556 struct bnx_softc *sc = device_private(self);
557 prop_dictionary_t dict;
558 struct pci_attach_args *pa = aux;
559 pci_chipset_tag_t pc = pa->pa_pc;
560 pci_intr_handle_t ih;
561 const char *intrstr = NULL;
562 uint32_t command;
563 struct ifnet *ifp;
564 uint32_t val;
565 int mii_flags = MIIF_FORCEANEG;
566 pcireg_t memtype;
567
568 if (bnx_tx_pool == NULL) {
569 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
570 if (bnx_tx_pool != NULL) {
571 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
572 0, 0, 0, "bnxpkts", NULL, IPL_NET);
573 } else {
574 aprint_error(": can't alloc bnx_tx_pool\n");
575 return;
576 }
577 }
578
579 bp = bnx_lookup(pa);
580 if (bp == NULL)
581 panic("unknown device");
582
583 sc->bnx_dev = self;
584
585 aprint_naive("\n");
586 aprint_normal(": %s\n", bp->bp_name);
587
588 sc->bnx_pa = *pa;
589
590 /*
591 * Map control/status registers.
592 */
593 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
594 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
595 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
596 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
597
598 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
599 aprint_error_dev(sc->bnx_dev,
600 "failed to enable memory mapping!\n");
601 return;
602 }
603
604 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
605 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
606 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
607 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
608 return;
609 }
610
611 if (pci_intr_map(pa, &ih)) {
612 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
613 goto bnx_attach_fail;
614 }
615
616 intrstr = pci_intr_string(pc, ih);
617
618 /*
619 * Configure byte swap and enable indirect register access.
620 * Rely on CPU to do target byte swapping on big endian systems.
621 * Access to registers outside of PCI configurtion space are not
622 * valid until this is done.
623 */
624 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
625 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
626 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
627
628 /* Save ASIC revsion info. */
629 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
630
631 /*
632 * Find the base address for shared memory access.
633 * Newer versions of bootcode use a signature and offset
634 * while older versions use a fixed address.
635 */
636 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
637 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
638 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
639 (sc->bnx_pa.pa_function << 2));
640 else
641 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
642
643 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
644
645 /* Set initial device and PHY flags */
646 sc->bnx_flags = 0;
647 sc->bnx_phy_flags = 0;
648
649 bnx_probe_pci_caps(sc);
650
651 /* Get PCI bus information (speed and type). */
652 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
653 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
654 uint32_t clkreg;
655
656 sc->bnx_flags |= BNX_PCIX_FLAG;
657
658 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
659
660 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
661 switch (clkreg) {
662 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
663 sc->bus_speed_mhz = 133;
664 break;
665
666 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
667 sc->bus_speed_mhz = 100;
668 break;
669
670 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
671 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
672 sc->bus_speed_mhz = 66;
673 break;
674
675 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
676 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
677 sc->bus_speed_mhz = 50;
678 break;
679
680 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
681 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
682 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
683 sc->bus_speed_mhz = 33;
684 break;
685 }
686 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
687 sc->bus_speed_mhz = 66;
688 else
689 sc->bus_speed_mhz = 33;
690
691 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
692 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
693
694 /* Reset the controller. */
695 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
696 goto bnx_attach_fail;
697
698 /* Initialize the controller. */
699 if (bnx_chipinit(sc)) {
700 aprint_error_dev(sc->bnx_dev,
701 "Controller initialization failed!\n");
702 goto bnx_attach_fail;
703 }
704
705 /* Perform NVRAM test. */
706 if (bnx_nvram_test(sc)) {
707 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
708 goto bnx_attach_fail;
709 }
710
711 /* Fetch the permanent Ethernet MAC address. */
712 bnx_get_mac_addr(sc);
713 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
714 ether_sprintf(sc->eaddr));
715
716 /*
717 * Trip points control how many BDs
718 * should be ready before generating an
719 * interrupt while ticks control how long
720 * a BD can sit in the chain before
721 * generating an interrupt. Set the default
722 * values for the RX and TX rings.
723 */
724
725 #ifdef BNX_DEBUG
726 /* Force more frequent interrupts. */
727 sc->bnx_tx_quick_cons_trip_int = 1;
728 sc->bnx_tx_quick_cons_trip = 1;
729 sc->bnx_tx_ticks_int = 0;
730 sc->bnx_tx_ticks = 0;
731
732 sc->bnx_rx_quick_cons_trip_int = 1;
733 sc->bnx_rx_quick_cons_trip = 1;
734 sc->bnx_rx_ticks_int = 0;
735 sc->bnx_rx_ticks = 0;
736 #else
737 sc->bnx_tx_quick_cons_trip_int = 20;
738 sc->bnx_tx_quick_cons_trip = 20;
739 sc->bnx_tx_ticks_int = 80;
740 sc->bnx_tx_ticks = 80;
741
742 sc->bnx_rx_quick_cons_trip_int = 6;
743 sc->bnx_rx_quick_cons_trip = 6;
744 sc->bnx_rx_ticks_int = 18;
745 sc->bnx_rx_ticks = 18;
746 #endif
747
748 /* Update statistics once every second. */
749 sc->bnx_stats_ticks = 1000000 & 0xffff00;
750
751 /* Find the media type for the adapter. */
752 bnx_get_media(sc);
753
754 /*
755 * Store config data needed by the PHY driver for
756 * backplane applications
757 */
758 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
759 BNX_SHARED_HW_CFG_CONFIG);
760 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
761 BNX_PORT_HW_CFG_CONFIG);
762
763 /* Allocate DMA memory resources. */
764 sc->bnx_dmatag = pa->pa_dmat;
765 if (bnx_dma_alloc(sc)) {
766 aprint_error_dev(sc->bnx_dev,
767 "DMA resource allocation failed!\n");
768 goto bnx_attach_fail;
769 }
770
771 /* Initialize the ifnet interface. */
772 ifp = &sc->bnx_ec.ec_if;
773 ifp->if_softc = sc;
774 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
775 ifp->if_ioctl = bnx_ioctl;
776 ifp->if_stop = bnx_stop;
777 ifp->if_start = bnx_start;
778 ifp->if_init = bnx_init;
779 ifp->if_timer = 0;
780 ifp->if_watchdog = bnx_watchdog;
781 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
782 IFQ_SET_READY(&ifp->if_snd);
783 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
784
785 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
786 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
787
788 ifp->if_capabilities |=
789 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
790 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
791 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
792
793 /* Hookup IRQ last. */
794 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
795 if (sc->bnx_intrhand == NULL) {
796 aprint_error_dev(self, "couldn't establish interrupt");
797 if (intrstr != NULL)
798 aprint_error(" at %s", intrstr);
799 aprint_error("\n");
800 goto bnx_attach_fail;
801 }
802 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
803
804 /* create workqueue to handle packet allocations */
805 if (workqueue_create(&sc->bnx_wq, device_xname(self),
806 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
807 aprint_error_dev(self, "failed to create workqueue\n");
808 goto bnx_attach_fail;
809 }
810
811 sc->bnx_mii.mii_ifp = ifp;
812 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
813 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
814 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
815
816 /* Handle any special PHY initialization for SerDes PHYs. */
817 bnx_init_media(sc);
818
819 sc->bnx_ec.ec_mii = &sc->bnx_mii;
820 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
821 ether_mediastatus);
822
823 /* set phyflags and chipid before mii_attach() */
824 dict = device_properties(self);
825 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
826 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
827 prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
828 prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
829
830 /* Print some useful adapter info */
831 bnx_print_adapter_info(sc);
832
833 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
834 mii_flags |= MIIF_HAVEFIBER;
835 mii_attach(self, &sc->bnx_mii, 0xffffffff,
836 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
837
838 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
839 aprint_error_dev(self, "no PHY found!\n");
840 ifmedia_add(&sc->bnx_mii.mii_media,
841 IFM_ETHER|IFM_MANUAL, 0, NULL);
842 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
843 } else
844 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
845
846 /* Attach to the Ethernet interface list. */
847 if_attach(ifp);
848 ether_ifattach(ifp,sc->eaddr);
849
850 callout_init(&sc->bnx_timeout, 0);
851
852 if (pmf_device_register(self, NULL, NULL))
853 pmf_class_network_register(self, ifp);
854 else
855 aprint_error_dev(self, "couldn't establish power handler\n");
856
857 /* Print some important debugging info. */
858 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
859
860 goto bnx_attach_exit;
861
862 bnx_attach_fail:
863 bnx_release_resources(sc);
864
865 bnx_attach_exit:
866 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
867 }
868
869 /****************************************************************************/
870 /* Device detach function. */
871 /* */
872 /* Stops the controller, resets the controller, and releases resources. */
873 /* */
874 /* Returns: */
875 /* 0 on success, positive value on failure. */
876 /****************************************************************************/
877 int
878 bnx_detach(device_t dev, int flags)
879 {
880 int s;
881 struct bnx_softc *sc;
882 struct ifnet *ifp;
883
884 sc = device_private(dev);
885 ifp = &sc->bnx_ec.ec_if;
886
887 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
888
889 /* Stop and reset the controller. */
890 s = splnet();
891 if (ifp->if_flags & IFF_RUNNING)
892 bnx_stop(ifp, 1);
893 else {
894 /* Disable the transmit/receive blocks. */
895 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
896 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
897 DELAY(20);
898 bnx_disable_intr(sc);
899 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
900 }
901
902 splx(s);
903
904 pmf_device_deregister(dev);
905 callout_destroy(&sc->bnx_timeout);
906 ether_ifdetach(ifp);
907 workqueue_destroy(sc->bnx_wq);
908
909 /* Delete all remaining media. */
910 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
911
912 if_detach(ifp);
913 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
914
915 /* Release all remaining resources. */
916 bnx_release_resources(sc);
917
918 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
919
920 return 0;
921 }
922
923 /****************************************************************************/
924 /* Indirect register read. */
925 /* */
926 /* Reads NetXtreme II registers using an index/data register pair in PCI */
927 /* configuration space. Using this mechanism avoids issues with posted */
928 /* reads but is much slower than memory-mapped I/O. */
929 /* */
930 /* Returns: */
931 /* The value of the register. */
932 /****************************************************************************/
933 uint32_t
934 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
935 {
936 struct pci_attach_args *pa = &(sc->bnx_pa);
937
938 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
939 offset);
940 #ifdef BNX_DEBUG
941 {
942 uint32_t val;
943 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
944 BNX_PCICFG_REG_WINDOW);
945 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
946 "val = 0x%08X\n", __func__, offset, val);
947 return val;
948 }
949 #else
950 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
951 #endif
952 }
953
954 /****************************************************************************/
955 /* Indirect register write. */
956 /* */
957 /* Writes NetXtreme II registers using an index/data register pair in PCI */
958 /* configuration space. Using this mechanism avoids issues with posted */
959 /* writes but is muchh slower than memory-mapped I/O. */
960 /* */
961 /* Returns: */
962 /* Nothing. */
963 /****************************************************************************/
964 void
965 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
966 {
967 struct pci_attach_args *pa = &(sc->bnx_pa);
968
969 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
970 __func__, offset, val);
971
972 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
973 offset);
974 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
975 }
976
977 /****************************************************************************/
978 /* Context memory write. */
979 /* */
980 /* The NetXtreme II controller uses context memory to track connection */
981 /* information for L2 and higher network protocols. */
982 /* */
983 /* Returns: */
984 /* Nothing. */
985 /****************************************************************************/
986 void
987 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
988 uint32_t ctx_val)
989 {
990 uint32_t idx, offset = ctx_offset + cid_addr;
991 uint32_t val, retry_cnt = 5;
992
993 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
994 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
995 REG_WR(sc, BNX_CTX_CTX_CTRL,
996 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
997
998 for (idx = 0; idx < retry_cnt; idx++) {
999 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
1000 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
1001 break;
1002 DELAY(5);
1003 }
1004
1005 #if 0
1006 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1007 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1008 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1009 __FILE__, __LINE__, cid_addr, ctx_offset);
1010 #endif
1011
1012 } else {
1013 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1014 REG_WR(sc, BNX_CTX_DATA, ctx_val);
1015 }
1016 }
1017
1018 /****************************************************************************/
1019 /* PHY register read. */
1020 /* */
1021 /* Implements register reads on the MII bus. */
1022 /* */
1023 /* Returns: */
1024 /* The value of the register. */
1025 /****************************************************************************/
1026 int
1027 bnx_miibus_read_reg(device_t dev, int phy, int reg)
1028 {
1029 struct bnx_softc *sc = device_private(dev);
1030 uint32_t val;
1031 int i;
1032
1033 /* Make sure we are accessing the correct PHY address. */
1034 if (phy != sc->bnx_phy_addr) {
1035 DBPRINT(sc, BNX_VERBOSE,
1036 "Invalid PHY address %d for PHY read!\n", phy);
1037 return 0;
1038 }
1039
1040 /*
1041 * The BCM5709S PHY is an IEEE Clause 45 PHY
1042 * with special mappings to work with IEEE
1043 * Clause 22 register accesses.
1044 */
1045 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1046 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1047 reg += 0x10;
1048 }
1049
1050 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1051 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1052 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1053
1054 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
1055 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1056
1057 DELAY(40);
1058 }
1059
1060 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1061 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1062 BNX_EMAC_MDIO_COMM_START_BUSY;
1063 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
1064
1065 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1066 DELAY(10);
1067
1068 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1069 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1070 DELAY(5);
1071
1072 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1073 val &= BNX_EMAC_MDIO_COMM_DATA;
1074
1075 break;
1076 }
1077 }
1078
1079 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
1080 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1081 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1082 val = 0x0;
1083 } else
1084 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1085
1086 DBPRINT(sc, BNX_EXCESSIVE,
1087 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
1088 (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1089
1090 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1091 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1092 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1093
1094 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
1095 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1096
1097 DELAY(40);
1098 }
1099
1100 return (val & 0xffff);
1101 }
1102
1103 /****************************************************************************/
1104 /* PHY register write. */
1105 /* */
1106 /* Implements register writes on the MII bus. */
1107 /* */
1108 /* Returns: */
1109 /* The value of the register. */
1110 /****************************************************************************/
1111 void
1112 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1113 {
1114 struct bnx_softc *sc = device_private(dev);
1115 uint32_t val1;
1116 int i;
1117
1118 /* Make sure we are accessing the correct PHY address. */
1119 if (phy != sc->bnx_phy_addr) {
1120 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1121 phy);
1122 return;
1123 }
1124
1125 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1126 "val = 0x%04X\n", __func__,
1127 phy, (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1128
1129 /*
1130 * The BCM5709S PHY is an IEEE Clause 45 PHY
1131 * with special mappings to work with IEEE
1132 * Clause 22 register accesses.
1133 */
1134 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1135 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1136 reg += 0x10;
1137 }
1138
1139 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1140 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1141 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1142
1143 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1144 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1145
1146 DELAY(40);
1147 }
1148
1149 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1150 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1151 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1152 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1153
1154 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1155 DELAY(10);
1156
1157 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1158 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1159 DELAY(5);
1160 break;
1161 }
1162 }
1163
1164 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1165 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1166 __LINE__);
1167 }
1168
1169 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1170 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1171 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1172
1173 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1174 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1175
1176 DELAY(40);
1177 }
1178 }
1179
1180 /****************************************************************************/
1181 /* MII bus status change. */
1182 /* */
1183 /* Called by the MII bus driver when the PHY establishes link to set the */
1184 /* MAC interface registers. */
1185 /* */
1186 /* Returns: */
1187 /* Nothing. */
1188 /****************************************************************************/
1189 void
1190 bnx_miibus_statchg(device_t dev)
1191 {
1192 struct bnx_softc *sc = device_private(dev);
1193 struct mii_data *mii = &sc->bnx_mii;
1194 int val;
1195
1196 val = REG_RD(sc, BNX_EMAC_MODE);
1197 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1198 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1199 BNX_EMAC_MODE_25G);
1200
1201 /* Set MII or GMII interface based on the speed
1202 * negotiated by the PHY.
1203 */
1204 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1205 case IFM_10_T:
1206 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1207 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1208 val |= BNX_EMAC_MODE_PORT_MII_10;
1209 break;
1210 }
1211 /* FALLTHROUGH */
1212 case IFM_100_TX:
1213 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1214 val |= BNX_EMAC_MODE_PORT_MII;
1215 break;
1216 case IFM_2500_SX:
1217 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1218 val |= BNX_EMAC_MODE_25G;
1219 /* FALLTHROUGH */
1220 case IFM_1000_T:
1221 case IFM_1000_SX:
1222 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1223 val |= BNX_EMAC_MODE_PORT_GMII;
1224 break;
1225 default:
1226 val |= BNX_EMAC_MODE_PORT_GMII;
1227 break;
1228 }
1229
1230 /* Set half or full duplex based on the duplicity
1231 * negotiated by the PHY.
1232 */
1233 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1234 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1235 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1236 } else {
1237 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1238 }
1239
1240 REG_WR(sc, BNX_EMAC_MODE, val);
1241 }
1242
1243 /****************************************************************************/
1244 /* Acquire NVRAM lock. */
1245 /* */
1246 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1247 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1248 /* for use by the driver. */
1249 /* */
1250 /* Returns: */
1251 /* 0 on success, positive value on failure. */
1252 /****************************************************************************/
1253 int
1254 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1255 {
1256 uint32_t val;
1257 int j;
1258
1259 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1260
1261 /* Request access to the flash interface. */
1262 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1263 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1264 val = REG_RD(sc, BNX_NVM_SW_ARB);
1265 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1266 break;
1267
1268 DELAY(5);
1269 }
1270
1271 if (j >= NVRAM_TIMEOUT_COUNT) {
1272 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1273 return EBUSY;
1274 }
1275
1276 return 0;
1277 }
1278
1279 /****************************************************************************/
1280 /* Release NVRAM lock. */
1281 /* */
1282 /* When the caller is finished accessing NVRAM the lock must be released. */
1283 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1284 /* for use by the driver. */
1285 /* */
1286 /* Returns: */
1287 /* 0 on success, positive value on failure. */
1288 /****************************************************************************/
1289 int
1290 bnx_release_nvram_lock(struct bnx_softc *sc)
1291 {
1292 int j;
1293 uint32_t val;
1294
1295 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1296
1297 /* Relinquish nvram interface. */
1298 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1299
1300 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1301 val = REG_RD(sc, BNX_NVM_SW_ARB);
1302 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1303 break;
1304
1305 DELAY(5);
1306 }
1307
1308 if (j >= NVRAM_TIMEOUT_COUNT) {
1309 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1310 return EBUSY;
1311 }
1312
1313 return 0;
1314 }
1315
1316 #ifdef BNX_NVRAM_WRITE_SUPPORT
1317 /****************************************************************************/
1318 /* Enable NVRAM write access. */
1319 /* */
1320 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1321 /* */
1322 /* Returns: */
1323 /* 0 on success, positive value on failure. */
1324 /****************************************************************************/
1325 int
1326 bnx_enable_nvram_write(struct bnx_softc *sc)
1327 {
1328 uint32_t val;
1329
1330 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1331
1332 val = REG_RD(sc, BNX_MISC_CFG);
1333 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1334
1335 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1336 int j;
1337
1338 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1339 REG_WR(sc, BNX_NVM_COMMAND,
1340 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1341
1342 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1343 DELAY(5);
1344
1345 val = REG_RD(sc, BNX_NVM_COMMAND);
1346 if (val & BNX_NVM_COMMAND_DONE)
1347 break;
1348 }
1349
1350 if (j >= NVRAM_TIMEOUT_COUNT) {
1351 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1352 return EBUSY;
1353 }
1354 }
1355
1356 return 0;
1357 }
1358
1359 /****************************************************************************/
1360 /* Disable NVRAM write access. */
1361 /* */
1362 /* When the caller is finished writing to NVRAM write access must be */
1363 /* disabled. */
1364 /* */
1365 /* Returns: */
1366 /* Nothing. */
1367 /****************************************************************************/
1368 void
1369 bnx_disable_nvram_write(struct bnx_softc *sc)
1370 {
1371 uint32_t val;
1372
1373 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1374
1375 val = REG_RD(sc, BNX_MISC_CFG);
1376 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1377 }
1378 #endif
1379
1380 /****************************************************************************/
1381 /* Enable NVRAM access. */
1382 /* */
1383 /* Before accessing NVRAM for read or write operations the caller must */
1384 /* enabled NVRAM access. */
1385 /* */
1386 /* Returns: */
1387 /* Nothing. */
1388 /****************************************************************************/
1389 void
1390 bnx_enable_nvram_access(struct bnx_softc *sc)
1391 {
1392 uint32_t val;
1393
1394 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1395
1396 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1397 /* Enable both bits, even on read. */
1398 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1399 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1400 }
1401
1402 /****************************************************************************/
1403 /* Disable NVRAM access. */
1404 /* */
1405 /* When the caller is finished accessing NVRAM access must be disabled. */
1406 /* */
1407 /* Returns: */
1408 /* Nothing. */
1409 /****************************************************************************/
1410 void
1411 bnx_disable_nvram_access(struct bnx_softc *sc)
1412 {
1413 uint32_t val;
1414
1415 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1416
1417 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1418
1419 /* Disable both bits, even after read. */
1420 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1421 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1422 }
1423
1424 #ifdef BNX_NVRAM_WRITE_SUPPORT
1425 /****************************************************************************/
1426 /* Erase NVRAM page before writing. */
1427 /* */
1428 /* Non-buffered flash parts require that a page be erased before it is */
1429 /* written. */
1430 /* */
1431 /* Returns: */
1432 /* 0 on success, positive value on failure. */
1433 /****************************************************************************/
1434 int
1435 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1436 {
1437 uint32_t cmd;
1438 int j;
1439
1440 /* Buffered flash doesn't require an erase. */
1441 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1442 return 0;
1443
1444 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1445
1446 /* Build an erase command. */
1447 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1448 BNX_NVM_COMMAND_DOIT;
1449
1450 /*
1451 * Clear the DONE bit separately, set the NVRAM address to erase,
1452 * and issue the erase command.
1453 */
1454 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1455 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1456 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1457
1458 /* Wait for completion. */
1459 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1460 uint32_t val;
1461
1462 DELAY(5);
1463
1464 val = REG_RD(sc, BNX_NVM_COMMAND);
1465 if (val & BNX_NVM_COMMAND_DONE)
1466 break;
1467 }
1468
1469 if (j >= NVRAM_TIMEOUT_COUNT) {
1470 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1471 return EBUSY;
1472 }
1473
1474 return 0;
1475 }
1476 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1477
1478 /****************************************************************************/
1479 /* Read a dword (32 bits) from NVRAM. */
1480 /* */
1481 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1482 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1483 /* */
1484 /* Returns: */
1485 /* 0 on success and the 32 bit value read, positive value on failure. */
1486 /****************************************************************************/
1487 int
1488 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1489 uint8_t *ret_val, uint32_t cmd_flags)
1490 {
1491 uint32_t cmd;
1492 int i, rc = 0;
1493
1494 /* Build the command word. */
1495 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1496
1497 /* Calculate the offset for buffered flash if translation is used. */
1498 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1499 offset = ((offset / sc->bnx_flash_info->page_size) <<
1500 sc->bnx_flash_info->page_bits) +
1501 (offset % sc->bnx_flash_info->page_size);
1502 }
1503
1504 /*
1505 * Clear the DONE bit separately, set the address to read,
1506 * and issue the read.
1507 */
1508 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1509 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1510 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1511
1512 /* Wait for completion. */
1513 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1514 uint32_t val;
1515
1516 DELAY(5);
1517
1518 val = REG_RD(sc, BNX_NVM_COMMAND);
1519 if (val & BNX_NVM_COMMAND_DONE) {
1520 val = REG_RD(sc, BNX_NVM_READ);
1521
1522 val = bnx_be32toh(val);
1523 memcpy(ret_val, &val, 4);
1524 break;
1525 }
1526 }
1527
1528 /* Check for errors. */
1529 if (i >= NVRAM_TIMEOUT_COUNT) {
1530 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1531 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1532 rc = EBUSY;
1533 }
1534
1535 return rc;
1536 }
1537
1538 #ifdef BNX_NVRAM_WRITE_SUPPORT
1539 /****************************************************************************/
1540 /* Write a dword (32 bits) to NVRAM. */
1541 /* */
1542 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1543 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1544 /* enabled NVRAM write access. */
1545 /* */
1546 /* Returns: */
1547 /* 0 on success, positive value on failure. */
1548 /****************************************************************************/
1549 int
1550 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1551 uint32_t cmd_flags)
1552 {
1553 uint32_t cmd, val32;
1554 int j;
1555
1556 /* Build the command word. */
1557 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1558
1559 /* Calculate the offset for buffered flash if translation is used. */
1560 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1561 offset = ((offset / sc->bnx_flash_info->page_size) <<
1562 sc->bnx_flash_info->page_bits) +
1563 (offset % sc->bnx_flash_info->page_size);
1564 }
1565
1566 /*
1567 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1568 * set the NVRAM address to write, and issue the write command
1569 */
1570 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1571 memcpy(&val32, val, 4);
1572 val32 = htobe32(val32);
1573 REG_WR(sc, BNX_NVM_WRITE, val32);
1574 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1575 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1576
1577 /* Wait for completion. */
1578 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1579 DELAY(5);
1580
1581 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1582 break;
1583 }
1584 if (j >= NVRAM_TIMEOUT_COUNT) {
1585 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1586 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1587 return EBUSY;
1588 }
1589
1590 return 0;
1591 }
1592 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1593
1594 /****************************************************************************/
1595 /* Initialize NVRAM access. */
1596 /* */
1597 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1598 /* access that device. */
1599 /* */
1600 /* Returns: */
1601 /* 0 on success, positive value on failure. */
1602 /****************************************************************************/
1603 int
1604 bnx_init_nvram(struct bnx_softc *sc)
1605 {
1606 uint32_t val;
1607 int j, entry_count, rc = 0;
1608 struct flash_spec *flash;
1609
1610 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1611
1612 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1613 sc->bnx_flash_info = &flash_5709;
1614 goto bnx_init_nvram_get_flash_size;
1615 }
1616
1617 /* Determine the selected interface. */
1618 val = REG_RD(sc, BNX_NVM_CFG1);
1619
1620 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1621
1622 /*
1623 * Flash reconfiguration is required to support additional
1624 * NVRAM devices not directly supported in hardware.
1625 * Check if the flash interface was reconfigured
1626 * by the bootcode.
1627 */
1628
1629 if (val & 0x40000000) {
1630 /* Flash interface reconfigured by bootcode. */
1631
1632 DBPRINT(sc,BNX_INFO_LOAD,
1633 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1634
1635 for (j = 0, flash = &flash_table[0]; j < entry_count;
1636 j++, flash++) {
1637 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1638 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1639 sc->bnx_flash_info = flash;
1640 break;
1641 }
1642 }
1643 } else {
1644 /* Flash interface not yet reconfigured. */
1645 uint32_t mask;
1646
1647 DBPRINT(sc,BNX_INFO_LOAD,
1648 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1649
1650 if (val & (1 << 23))
1651 mask = FLASH_BACKUP_STRAP_MASK;
1652 else
1653 mask = FLASH_STRAP_MASK;
1654
1655 /* Look for the matching NVRAM device configuration data. */
1656 for (j = 0, flash = &flash_table[0]; j < entry_count;
1657 j++, flash++) {
1658 /* Check if the dev matches any of the known devices. */
1659 if ((val & mask) == (flash->strapping & mask)) {
1660 /* Found a device match. */
1661 sc->bnx_flash_info = flash;
1662
1663 /* Request access to the flash interface. */
1664 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1665 return rc;
1666
1667 /* Reconfigure the flash interface. */
1668 bnx_enable_nvram_access(sc);
1669 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1670 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1671 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1672 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1673 bnx_disable_nvram_access(sc);
1674 bnx_release_nvram_lock(sc);
1675
1676 break;
1677 }
1678 }
1679 }
1680
1681 /* Check if a matching device was found. */
1682 if (j == entry_count) {
1683 sc->bnx_flash_info = NULL;
1684 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1685 __FILE__, __LINE__);
1686 rc = ENODEV;
1687 }
1688
1689 bnx_init_nvram_get_flash_size:
1690 /* Write the flash config data to the shared memory interface. */
1691 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1692 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1693 if (val)
1694 sc->bnx_flash_size = val;
1695 else
1696 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1697
1698 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1699 "0x%08X\n", sc->bnx_flash_info->total_size);
1700
1701 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1702
1703 return rc;
1704 }
1705
1706 /****************************************************************************/
1707 /* Read an arbitrary range of data from NVRAM. */
1708 /* */
1709 /* Prepares the NVRAM interface for access and reads the requested data */
1710 /* into the supplied buffer. */
1711 /* */
1712 /* Returns: */
1713 /* 0 on success and the data read, positive value on failure. */
1714 /****************************************************************************/
1715 int
1716 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1717 int buf_size)
1718 {
1719 int rc = 0;
1720 uint32_t cmd_flags, offset32, len32, extra;
1721
1722 if (buf_size == 0)
1723 return 0;
1724
1725 /* Request access to the flash interface. */
1726 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1727 return rc;
1728
1729 /* Enable access to flash interface */
1730 bnx_enable_nvram_access(sc);
1731
1732 len32 = buf_size;
1733 offset32 = offset;
1734 extra = 0;
1735
1736 cmd_flags = 0;
1737
1738 if (offset32 & 3) {
1739 uint8_t buf[4];
1740 uint32_t pre_len;
1741
1742 offset32 &= ~3;
1743 pre_len = 4 - (offset & 3);
1744
1745 if (pre_len >= len32) {
1746 pre_len = len32;
1747 cmd_flags =
1748 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1749 } else
1750 cmd_flags = BNX_NVM_COMMAND_FIRST;
1751
1752 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1753
1754 if (rc)
1755 return rc;
1756
1757 memcpy(ret_buf, buf + (offset & 3), pre_len);
1758
1759 offset32 += 4;
1760 ret_buf += pre_len;
1761 len32 -= pre_len;
1762 }
1763
1764 if (len32 & 3) {
1765 extra = 4 - (len32 & 3);
1766 len32 = (len32 + 4) & ~3;
1767 }
1768
1769 if (len32 == 4) {
1770 uint8_t buf[4];
1771
1772 if (cmd_flags)
1773 cmd_flags = BNX_NVM_COMMAND_LAST;
1774 else
1775 cmd_flags =
1776 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1777
1778 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1779
1780 memcpy(ret_buf, buf, 4 - extra);
1781 } else if (len32 > 0) {
1782 uint8_t buf[4];
1783
1784 /* Read the first word. */
1785 if (cmd_flags)
1786 cmd_flags = 0;
1787 else
1788 cmd_flags = BNX_NVM_COMMAND_FIRST;
1789
1790 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1791
1792 /* Advance to the next dword. */
1793 offset32 += 4;
1794 ret_buf += 4;
1795 len32 -= 4;
1796
1797 while (len32 > 4 && rc == 0) {
1798 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1799
1800 /* Advance to the next dword. */
1801 offset32 += 4;
1802 ret_buf += 4;
1803 len32 -= 4;
1804 }
1805
1806 if (rc)
1807 return rc;
1808
1809 cmd_flags = BNX_NVM_COMMAND_LAST;
1810 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1811
1812 memcpy(ret_buf, buf, 4 - extra);
1813 }
1814
1815 /* Disable access to flash interface and release the lock. */
1816 bnx_disable_nvram_access(sc);
1817 bnx_release_nvram_lock(sc);
1818
1819 return rc;
1820 }
1821
1822 #ifdef BNX_NVRAM_WRITE_SUPPORT
1823 /****************************************************************************/
1824 /* Write an arbitrary range of data from NVRAM. */
1825 /* */
1826 /* Prepares the NVRAM interface for write access and writes the requested */
1827 /* data from the supplied buffer. The caller is responsible for */
1828 /* calculating any appropriate CRCs. */
1829 /* */
1830 /* Returns: */
1831 /* 0 on success, positive value on failure. */
1832 /****************************************************************************/
1833 int
1834 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1835 int buf_size)
1836 {
1837 uint32_t written, offset32, len32;
1838 uint8_t *buf, start[4], end[4];
1839 int rc = 0;
1840 int align_start, align_end;
1841
1842 buf = data_buf;
1843 offset32 = offset;
1844 len32 = buf_size;
1845 align_start = align_end = 0;
1846
1847 if ((align_start = (offset32 & 3))) {
1848 offset32 &= ~3;
1849 len32 += align_start;
1850 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1851 return rc;
1852 }
1853
1854 if (len32 & 3) {
1855 if ((len32 > 4) || !align_start) {
1856 align_end = 4 - (len32 & 3);
1857 len32 += align_end;
1858 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1859 end, 4)))
1860 return rc;
1861 }
1862 }
1863
1864 if (align_start || align_end) {
1865 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1866 if (buf == 0)
1867 return ENOMEM;
1868
1869 if (align_start)
1870 memcpy(buf, start, 4);
1871
1872 if (align_end)
1873 memcpy(buf + len32 - 4, end, 4);
1874
1875 memcpy(buf + align_start, data_buf, buf_size);
1876 }
1877
1878 written = 0;
1879 while ((written < len32) && (rc == 0)) {
1880 uint32_t page_start, page_end, data_start, data_end;
1881 uint32_t addr, cmd_flags;
1882 int i;
1883 uint8_t flash_buffer[264];
1884
1885 /* Find the page_start addr */
1886 page_start = offset32 + written;
1887 page_start -= (page_start % sc->bnx_flash_info->page_size);
1888 /* Find the page_end addr */
1889 page_end = page_start + sc->bnx_flash_info->page_size;
1890 /* Find the data_start addr */
1891 data_start = (written == 0) ? offset32 : page_start;
1892 /* Find the data_end addr */
1893 data_end = (page_end > offset32 + len32) ?
1894 (offset32 + len32) : page_end;
1895
1896 /* Request access to the flash interface. */
1897 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1898 goto nvram_write_end;
1899
1900 /* Enable access to flash interface */
1901 bnx_enable_nvram_access(sc);
1902
1903 cmd_flags = BNX_NVM_COMMAND_FIRST;
1904 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1905 int j;
1906
1907 /* Read the whole page into the buffer
1908 * (non-buffer flash only) */
1909 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1910 if (j == (sc->bnx_flash_info->page_size - 4))
1911 cmd_flags |= BNX_NVM_COMMAND_LAST;
1912
1913 rc = bnx_nvram_read_dword(sc,
1914 page_start + j,
1915 &flash_buffer[j],
1916 cmd_flags);
1917
1918 if (rc)
1919 goto nvram_write_end;
1920
1921 cmd_flags = 0;
1922 }
1923 }
1924
1925 /* Enable writes to flash interface (unlock write-protect) */
1926 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1927 goto nvram_write_end;
1928
1929 /* Erase the page */
1930 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1931 goto nvram_write_end;
1932
1933 /* Re-enable the write again for the actual write */
1934 bnx_enable_nvram_write(sc);
1935
1936 /* Loop to write back the buffer data from page_start to
1937 * data_start */
1938 i = 0;
1939 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1940 for (addr = page_start; addr < data_start;
1941 addr += 4, i += 4) {
1942
1943 rc = bnx_nvram_write_dword(sc, addr,
1944 &flash_buffer[i], cmd_flags);
1945
1946 if (rc != 0)
1947 goto nvram_write_end;
1948
1949 cmd_flags = 0;
1950 }
1951 }
1952
1953 /* Loop to write the new data from data_start to data_end */
1954 for (addr = data_start; addr < data_end; addr += 4, i++) {
1955 if ((addr == page_end - 4) ||
1956 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1957 && (addr == data_end - 4))) {
1958
1959 cmd_flags |= BNX_NVM_COMMAND_LAST;
1960 }
1961
1962 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1963
1964 if (rc != 0)
1965 goto nvram_write_end;
1966
1967 cmd_flags = 0;
1968 buf += 4;
1969 }
1970
1971 /* Loop to write back the buffer data from data_end
1972 * to page_end */
1973 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1974 for (addr = data_end; addr < page_end;
1975 addr += 4, i += 4) {
1976
1977 if (addr == page_end-4)
1978 cmd_flags = BNX_NVM_COMMAND_LAST;
1979
1980 rc = bnx_nvram_write_dword(sc, addr,
1981 &flash_buffer[i], cmd_flags);
1982
1983 if (rc != 0)
1984 goto nvram_write_end;
1985
1986 cmd_flags = 0;
1987 }
1988 }
1989
1990 /* Disable writes to flash interface (lock write-protect) */
1991 bnx_disable_nvram_write(sc);
1992
1993 /* Disable access to flash interface */
1994 bnx_disable_nvram_access(sc);
1995 bnx_release_nvram_lock(sc);
1996
1997 /* Increment written */
1998 written += data_end - data_start;
1999 }
2000
2001 nvram_write_end:
2002 if (align_start || align_end)
2003 free(buf, M_DEVBUF);
2004
2005 return rc;
2006 }
2007 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2008
2009 /****************************************************************************/
2010 /* Verifies that NVRAM is accessible and contains valid data. */
2011 /* */
2012 /* Reads the configuration data from NVRAM and verifies that the CRC is */
2013 /* correct. */
2014 /* */
2015 /* Returns: */
2016 /* 0 on success, positive value on failure. */
2017 /****************************************************************************/
2018 int
2019 bnx_nvram_test(struct bnx_softc *sc)
2020 {
2021 uint32_t buf[BNX_NVRAM_SIZE / 4];
2022 uint8_t *data = (uint8_t *) buf;
2023 int rc = 0;
2024 uint32_t magic, csum;
2025
2026 /*
2027 * Check that the device NVRAM is valid by reading
2028 * the magic value at offset 0.
2029 */
2030 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2031 goto bnx_nvram_test_done;
2032
2033 magic = bnx_be32toh(buf[0]);
2034 if (magic != BNX_NVRAM_MAGIC) {
2035 rc = ENODEV;
2036 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2037 "Expected: 0x%08X, Found: 0x%08X\n",
2038 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2039 goto bnx_nvram_test_done;
2040 }
2041
2042 /*
2043 * Verify that the device NVRAM includes valid
2044 * configuration data.
2045 */
2046 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2047 goto bnx_nvram_test_done;
2048
2049 csum = ether_crc32_le(data, 0x100);
2050 if (csum != BNX_CRC32_RESIDUAL) {
2051 rc = ENODEV;
2052 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2053 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2054 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2055 goto bnx_nvram_test_done;
2056 }
2057
2058 csum = ether_crc32_le(data + 0x100, 0x100);
2059 if (csum != BNX_CRC32_RESIDUAL) {
2060 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2061 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2062 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2063 rc = ENODEV;
2064 }
2065
2066 bnx_nvram_test_done:
2067 return rc;
2068 }
2069
2070 /****************************************************************************/
2071 /* Identifies the current media type of the controller and sets the PHY */
2072 /* address. */
2073 /* */
2074 /* Returns: */
2075 /* Nothing. */
2076 /****************************************************************************/
2077 void
2078 bnx_get_media(struct bnx_softc *sc)
2079 {
2080 sc->bnx_phy_addr = 1;
2081
2082 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2083 uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2084 uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2085 uint32_t strap;
2086
2087 /*
2088 * The BCM5709S is software configurable
2089 * for Copper or SerDes operation.
2090 */
2091 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2092 DBPRINT(sc, BNX_INFO_LOAD,
2093 "5709 bonded for copper.\n");
2094 goto bnx_get_media_exit;
2095 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2096 DBPRINT(sc, BNX_INFO_LOAD,
2097 "5709 bonded for dual media.\n");
2098 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2099 goto bnx_get_media_exit;
2100 }
2101
2102 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2103 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2104 else {
2105 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2106 >> 8;
2107 }
2108
2109 if (sc->bnx_pa.pa_function == 0) {
2110 switch (strap) {
2111 case 0x4:
2112 case 0x5:
2113 case 0x6:
2114 DBPRINT(sc, BNX_INFO_LOAD,
2115 "BCM5709 s/w configured for SerDes.\n");
2116 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2117 break;
2118 default:
2119 DBPRINT(sc, BNX_INFO_LOAD,
2120 "BCM5709 s/w configured for Copper.\n");
2121 }
2122 } else {
2123 switch (strap) {
2124 case 0x1:
2125 case 0x2:
2126 case 0x4:
2127 DBPRINT(sc, BNX_INFO_LOAD,
2128 "BCM5709 s/w configured for SerDes.\n");
2129 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2130 break;
2131 default:
2132 DBPRINT(sc, BNX_INFO_LOAD,
2133 "BCM5709 s/w configured for Copper.\n");
2134 }
2135 }
2136
2137 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2138 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2139
2140 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2141 uint32_t val;
2142
2143 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2144
2145 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2146 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2147
2148 /*
2149 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2150 * separate PHY for SerDes.
2151 */
2152 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2153 sc->bnx_phy_addr = 2;
2154 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2155 BNX_SHARED_HW_CFG_CONFIG);
2156 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2157 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2158 DBPRINT(sc, BNX_INFO_LOAD,
2159 "Found 2.5Gb capable adapter\n");
2160 }
2161 }
2162 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2163 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2164 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2165
2166 bnx_get_media_exit:
2167 DBPRINT(sc, (BNX_INFO_LOAD),
2168 "Using PHY address %d.\n", sc->bnx_phy_addr);
2169 }
2170
2171 /****************************************************************************/
2172 /* Performs PHY initialization required before MII drivers access the */
2173 /* device. */
2174 /* */
2175 /* Returns: */
2176 /* Nothing. */
2177 /****************************************************************************/
2178 void
2179 bnx_init_media(struct bnx_softc *sc)
2180 {
2181 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2182 /*
2183 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2184 * IEEE Clause 22 method. Otherwise we have no way to attach
2185 * the PHY to the mii(4) layer. PHY specific configuration
2186 * is done by the mii(4) layer.
2187 */
2188
2189 /* Select auto-negotiation MMD of the PHY. */
2190 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2191 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2192
2193 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2194 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2195
2196 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2197 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2198 }
2199 }
2200
2201 /****************************************************************************/
2202 /* Free any DMA memory owned by the driver. */
2203 /* */
2204 /* Scans through each data structre that requires DMA memory and frees */
2205 /* the memory if allocated. */
2206 /* */
2207 /* Returns: */
2208 /* Nothing. */
2209 /****************************************************************************/
2210 void
2211 bnx_dma_free(struct bnx_softc *sc)
2212 {
2213 int i;
2214
2215 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2216
2217 /* Destroy the status block. */
2218 if (sc->status_block != NULL && sc->status_map != NULL) {
2219 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2220 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2221 BNX_STATUS_BLK_SZ);
2222 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2223 sc->status_rseg);
2224 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2225 sc->status_block = NULL;
2226 sc->status_map = NULL;
2227 }
2228
2229 /* Destroy the statistics block. */
2230 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2231 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2232 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2233 BNX_STATS_BLK_SZ);
2234 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2235 sc->stats_rseg);
2236 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2237 sc->stats_block = NULL;
2238 sc->stats_map = NULL;
2239 }
2240
2241 /* Free, unmap and destroy all context memory pages. */
2242 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2243 for (i = 0; i < sc->ctx_pages; i++) {
2244 if (sc->ctx_block[i] != NULL) {
2245 bus_dmamap_unload(sc->bnx_dmatag,
2246 sc->ctx_map[i]);
2247 bus_dmamem_unmap(sc->bnx_dmatag,
2248 (void *)sc->ctx_block[i],
2249 BCM_PAGE_SIZE);
2250 bus_dmamem_free(sc->bnx_dmatag,
2251 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2252 bus_dmamap_destroy(sc->bnx_dmatag,
2253 sc->ctx_map[i]);
2254 sc->ctx_block[i] = NULL;
2255 }
2256 }
2257 }
2258
2259 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2260 for (i = 0; i < TX_PAGES; i++ ) {
2261 if (sc->tx_bd_chain[i] != NULL &&
2262 sc->tx_bd_chain_map[i] != NULL) {
2263 bus_dmamap_unload(sc->bnx_dmatag,
2264 sc->tx_bd_chain_map[i]);
2265 bus_dmamem_unmap(sc->bnx_dmatag,
2266 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2267 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2268 sc->tx_bd_chain_rseg[i]);
2269 bus_dmamap_destroy(sc->bnx_dmatag,
2270 sc->tx_bd_chain_map[i]);
2271 sc->tx_bd_chain[i] = NULL;
2272 sc->tx_bd_chain_map[i] = NULL;
2273 }
2274 }
2275
2276 /* Destroy the TX dmamaps. */
2277 /* This isn't necessary since we dont allocate them up front */
2278
2279 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2280 for (i = 0; i < RX_PAGES; i++ ) {
2281 if (sc->rx_bd_chain[i] != NULL &&
2282 sc->rx_bd_chain_map[i] != NULL) {
2283 bus_dmamap_unload(sc->bnx_dmatag,
2284 sc->rx_bd_chain_map[i]);
2285 bus_dmamem_unmap(sc->bnx_dmatag,
2286 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2287 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2288 sc->rx_bd_chain_rseg[i]);
2289
2290 bus_dmamap_destroy(sc->bnx_dmatag,
2291 sc->rx_bd_chain_map[i]);
2292 sc->rx_bd_chain[i] = NULL;
2293 sc->rx_bd_chain_map[i] = NULL;
2294 }
2295 }
2296
2297 /* Unload and destroy the RX mbuf maps. */
2298 for (i = 0; i < TOTAL_RX_BD; i++) {
2299 if (sc->rx_mbuf_map[i] != NULL) {
2300 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2301 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2302 }
2303 }
2304
2305 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2306 }
2307
2308 /****************************************************************************/
2309 /* Allocate any DMA memory needed by the driver. */
2310 /* */
2311 /* Allocates DMA memory needed for the various global structures needed by */
2312 /* hardware. */
2313 /* */
2314 /* Returns: */
2315 /* 0 for success, positive value for failure. */
2316 /****************************************************************************/
2317 int
2318 bnx_dma_alloc(struct bnx_softc *sc)
2319 {
2320 int i, rc = 0;
2321
2322 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2323
2324 /*
2325 * Allocate DMA memory for the status block, map the memory into DMA
2326 * space, and fetch the physical address of the block.
2327 */
2328 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2329 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2330 aprint_error_dev(sc->bnx_dev,
2331 "Could not create status block DMA map!\n");
2332 rc = ENOMEM;
2333 goto bnx_dma_alloc_exit;
2334 }
2335
2336 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2337 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2338 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2339 aprint_error_dev(sc->bnx_dev,
2340 "Could not allocate status block DMA memory!\n");
2341 rc = ENOMEM;
2342 goto bnx_dma_alloc_exit;
2343 }
2344
2345 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2346 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2347 aprint_error_dev(sc->bnx_dev,
2348 "Could not map status block DMA memory!\n");
2349 rc = ENOMEM;
2350 goto bnx_dma_alloc_exit;
2351 }
2352
2353 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2354 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2355 aprint_error_dev(sc->bnx_dev,
2356 "Could not load status block DMA memory!\n");
2357 rc = ENOMEM;
2358 goto bnx_dma_alloc_exit;
2359 }
2360
2361 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2362 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2363
2364 /* DRC - Fix for 64 bit addresses. */
2365 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2366 (uint32_t) sc->status_block_paddr);
2367
2368 /* BCM5709 uses host memory as cache for context memory. */
2369 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2370 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2371 if (sc->ctx_pages == 0)
2372 sc->ctx_pages = 1;
2373 if (sc->ctx_pages > 4) /* XXX */
2374 sc->ctx_pages = 4;
2375
2376 DBRUNIF((sc->ctx_pages > 512),
2377 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2378 __FILE__, __LINE__, sc->ctx_pages));
2379
2380
2381 for (i = 0; i < sc->ctx_pages; i++) {
2382 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2383 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2384 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2385 &sc->ctx_map[i]) != 0) {
2386 rc = ENOMEM;
2387 goto bnx_dma_alloc_exit;
2388 }
2389
2390 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2391 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2392 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2393 rc = ENOMEM;
2394 goto bnx_dma_alloc_exit;
2395 }
2396
2397 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2398 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2399 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2400 rc = ENOMEM;
2401 goto bnx_dma_alloc_exit;
2402 }
2403
2404 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2405 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2406 BUS_DMA_NOWAIT) != 0) {
2407 rc = ENOMEM;
2408 goto bnx_dma_alloc_exit;
2409 }
2410
2411 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2412 }
2413 }
2414
2415 /*
2416 * Allocate DMA memory for the statistics block, map the memory into
2417 * DMA space, and fetch the physical address of the block.
2418 */
2419 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2420 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2421 aprint_error_dev(sc->bnx_dev,
2422 "Could not create stats block DMA map!\n");
2423 rc = ENOMEM;
2424 goto bnx_dma_alloc_exit;
2425 }
2426
2427 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2428 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2429 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2430 aprint_error_dev(sc->bnx_dev,
2431 "Could not allocate stats block DMA memory!\n");
2432 rc = ENOMEM;
2433 goto bnx_dma_alloc_exit;
2434 }
2435
2436 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2437 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2438 aprint_error_dev(sc->bnx_dev,
2439 "Could not map stats block DMA memory!\n");
2440 rc = ENOMEM;
2441 goto bnx_dma_alloc_exit;
2442 }
2443
2444 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2445 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2446 aprint_error_dev(sc->bnx_dev,
2447 "Could not load status block DMA memory!\n");
2448 rc = ENOMEM;
2449 goto bnx_dma_alloc_exit;
2450 }
2451
2452 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2453 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2454
2455 /* DRC - Fix for 64 bit address. */
2456 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2457 (uint32_t) sc->stats_block_paddr);
2458
2459 /*
2460 * Allocate DMA memory for the TX buffer descriptor chain,
2461 * and fetch the physical address of the block.
2462 */
2463 for (i = 0; i < TX_PAGES; i++) {
2464 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2465 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2466 &sc->tx_bd_chain_map[i])) {
2467 aprint_error_dev(sc->bnx_dev,
2468 "Could not create Tx desc %d DMA map!\n", i);
2469 rc = ENOMEM;
2470 goto bnx_dma_alloc_exit;
2471 }
2472
2473 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2474 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2475 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2476 aprint_error_dev(sc->bnx_dev,
2477 "Could not allocate TX desc %d DMA memory!\n",
2478 i);
2479 rc = ENOMEM;
2480 goto bnx_dma_alloc_exit;
2481 }
2482
2483 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2484 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2485 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2486 aprint_error_dev(sc->bnx_dev,
2487 "Could not map TX desc %d DMA memory!\n", i);
2488 rc = ENOMEM;
2489 goto bnx_dma_alloc_exit;
2490 }
2491
2492 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2493 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2494 BUS_DMA_NOWAIT)) {
2495 aprint_error_dev(sc->bnx_dev,
2496 "Could not load TX desc %d DMA memory!\n", i);
2497 rc = ENOMEM;
2498 goto bnx_dma_alloc_exit;
2499 }
2500
2501 sc->tx_bd_chain_paddr[i] =
2502 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2503
2504 /* DRC - Fix for 64 bit systems. */
2505 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2506 i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2507 }
2508
2509 /*
2510 * Create lists to hold TX mbufs.
2511 */
2512 TAILQ_INIT(&sc->tx_free_pkts);
2513 TAILQ_INIT(&sc->tx_used_pkts);
2514 sc->tx_pkt_count = 0;
2515 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2516
2517 /*
2518 * Allocate DMA memory for the Rx buffer descriptor chain,
2519 * and fetch the physical address of the block.
2520 */
2521 for (i = 0; i < RX_PAGES; i++) {
2522 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2523 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2524 &sc->rx_bd_chain_map[i])) {
2525 aprint_error_dev(sc->bnx_dev,
2526 "Could not create Rx desc %d DMA map!\n", i);
2527 rc = ENOMEM;
2528 goto bnx_dma_alloc_exit;
2529 }
2530
2531 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2532 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2533 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2534 aprint_error_dev(sc->bnx_dev,
2535 "Could not allocate Rx desc %d DMA memory!\n", i);
2536 rc = ENOMEM;
2537 goto bnx_dma_alloc_exit;
2538 }
2539
2540 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2541 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2542 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2543 aprint_error_dev(sc->bnx_dev,
2544 "Could not map Rx desc %d DMA memory!\n", i);
2545 rc = ENOMEM;
2546 goto bnx_dma_alloc_exit;
2547 }
2548
2549 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2550 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2551 BUS_DMA_NOWAIT)) {
2552 aprint_error_dev(sc->bnx_dev,
2553 "Could not load Rx desc %d DMA memory!\n", i);
2554 rc = ENOMEM;
2555 goto bnx_dma_alloc_exit;
2556 }
2557
2558 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2559 sc->rx_bd_chain_paddr[i] =
2560 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2561
2562 /* DRC - Fix for 64 bit systems. */
2563 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2564 i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2565 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2566 0, BNX_RX_CHAIN_PAGE_SZ,
2567 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2568 }
2569
2570 /*
2571 * Create DMA maps for the Rx buffer mbufs.
2572 */
2573 for (i = 0; i < TOTAL_RX_BD; i++) {
2574 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2575 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2576 &sc->rx_mbuf_map[i])) {
2577 aprint_error_dev(sc->bnx_dev,
2578 "Could not create Rx mbuf %d DMA map!\n", i);
2579 rc = ENOMEM;
2580 goto bnx_dma_alloc_exit;
2581 }
2582 }
2583
2584 bnx_dma_alloc_exit:
2585 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2586
2587 return rc;
2588 }
2589
2590 /****************************************************************************/
2591 /* Release all resources used by the driver. */
2592 /* */
2593 /* Releases all resources acquired by the driver including interrupts, */
2594 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2595 /* */
2596 /* Returns: */
2597 /* Nothing. */
2598 /****************************************************************************/
2599 void
2600 bnx_release_resources(struct bnx_softc *sc)
2601 {
2602 struct pci_attach_args *pa = &(sc->bnx_pa);
2603
2604 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2605
2606 bnx_dma_free(sc);
2607
2608 if (sc->bnx_intrhand != NULL)
2609 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2610
2611 if (sc->bnx_size)
2612 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2613
2614 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2615 }
2616
2617 /****************************************************************************/
2618 /* Firmware synchronization. */
2619 /* */
2620 /* Before performing certain events such as a chip reset, synchronize with */
2621 /* the firmware first. */
2622 /* */
2623 /* Returns: */
2624 /* 0 for success, positive value for failure. */
2625 /****************************************************************************/
2626 int
2627 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2628 {
2629 int i, rc = 0;
2630 uint32_t val;
2631
2632 /* Don't waste any time if we've timed out before. */
2633 if (sc->bnx_fw_timed_out) {
2634 rc = EBUSY;
2635 goto bnx_fw_sync_exit;
2636 }
2637
2638 /* Increment the message sequence number. */
2639 sc->bnx_fw_wr_seq++;
2640 msg_data |= sc->bnx_fw_wr_seq;
2641
2642 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2643 msg_data);
2644
2645 /* Send the message to the bootcode driver mailbox. */
2646 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2647
2648 /* Wait for the bootcode to acknowledge the message. */
2649 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2650 /* Check for a response in the bootcode firmware mailbox. */
2651 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2652 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2653 break;
2654 DELAY(1000);
2655 }
2656
2657 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2658 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2659 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2660 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2661 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2662
2663 msg_data &= ~BNX_DRV_MSG_CODE;
2664 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2665
2666 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2667
2668 sc->bnx_fw_timed_out = 1;
2669 rc = EBUSY;
2670 }
2671
2672 bnx_fw_sync_exit:
2673 return rc;
2674 }
2675
2676 /****************************************************************************/
2677 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2678 /* */
2679 /* Returns: */
2680 /* Nothing. */
2681 /****************************************************************************/
2682 void
2683 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2684 uint32_t rv2p_code_len, uint32_t rv2p_proc)
2685 {
2686 int i;
2687 uint32_t val;
2688
2689 /* Set the page size used by RV2P. */
2690 if (rv2p_proc == RV2P_PROC2) {
2691 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2692 USABLE_RX_BD_PER_PAGE);
2693 }
2694
2695 for (i = 0; i < rv2p_code_len; i += 8) {
2696 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2697 rv2p_code++;
2698 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2699 rv2p_code++;
2700
2701 if (rv2p_proc == RV2P_PROC1) {
2702 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2703 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2704 } else {
2705 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2706 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2707 }
2708 }
2709
2710 /* Reset the processor, un-stall is done later. */
2711 if (rv2p_proc == RV2P_PROC1)
2712 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2713 else
2714 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2715 }
2716
2717 /****************************************************************************/
2718 /* Load RISC processor firmware. */
2719 /* */
2720 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2721 /* associated with a particular processor. */
2722 /* */
2723 /* Returns: */
2724 /* Nothing. */
2725 /****************************************************************************/
2726 void
2727 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2728 struct fw_info *fw)
2729 {
2730 uint32_t offset;
2731 uint32_t val;
2732
2733 /* Halt the CPU. */
2734 val = REG_RD_IND(sc, cpu_reg->mode);
2735 val |= cpu_reg->mode_value_halt;
2736 REG_WR_IND(sc, cpu_reg->mode, val);
2737 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2738
2739 /* Load the Text area. */
2740 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2741 if (fw->text) {
2742 int j;
2743
2744 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2745 REG_WR_IND(sc, offset, fw->text[j]);
2746 }
2747
2748 /* Load the Data area. */
2749 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2750 if (fw->data) {
2751 int j;
2752
2753 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2754 REG_WR_IND(sc, offset, fw->data[j]);
2755 }
2756
2757 /* Load the SBSS area. */
2758 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2759 if (fw->sbss) {
2760 int j;
2761
2762 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2763 REG_WR_IND(sc, offset, fw->sbss[j]);
2764 }
2765
2766 /* Load the BSS area. */
2767 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2768 if (fw->bss) {
2769 int j;
2770
2771 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2772 REG_WR_IND(sc, offset, fw->bss[j]);
2773 }
2774
2775 /* Load the Read-Only area. */
2776 offset = cpu_reg->spad_base +
2777 (fw->rodata_addr - cpu_reg->mips_view_base);
2778 if (fw->rodata) {
2779 int j;
2780
2781 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2782 REG_WR_IND(sc, offset, fw->rodata[j]);
2783 }
2784
2785 /* Clear the pre-fetch instruction. */
2786 REG_WR_IND(sc, cpu_reg->inst, 0);
2787 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2788
2789 /* Start the CPU. */
2790 val = REG_RD_IND(sc, cpu_reg->mode);
2791 val &= ~cpu_reg->mode_value_halt;
2792 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2793 REG_WR_IND(sc, cpu_reg->mode, val);
2794 }
2795
2796 /****************************************************************************/
2797 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2798 /* */
2799 /* Loads the firmware for each CPU and starts the CPU. */
2800 /* */
2801 /* Returns: */
2802 /* Nothing. */
2803 /****************************************************************************/
2804 void
2805 bnx_init_cpus(struct bnx_softc *sc)
2806 {
2807 struct cpu_reg cpu_reg;
2808 struct fw_info fw;
2809
2810 switch(BNX_CHIP_NUM(sc)) {
2811 case BNX_CHIP_NUM_5709:
2812 /* Initialize the RV2P processor. */
2813 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2814 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2815 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2816 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2817 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2818 } else {
2819 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2820 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2821 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2822 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2823 }
2824
2825 /* Initialize the RX Processor. */
2826 cpu_reg.mode = BNX_RXP_CPU_MODE;
2827 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2828 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2829 cpu_reg.state = BNX_RXP_CPU_STATE;
2830 cpu_reg.state_value_clear = 0xffffff;
2831 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2832 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2833 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2834 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2835 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2836 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2837 cpu_reg.mips_view_base = 0x8000000;
2838
2839 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2840 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2841 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2842 fw.start_addr = bnx_RXP_b09FwStartAddr;
2843
2844 fw.text_addr = bnx_RXP_b09FwTextAddr;
2845 fw.text_len = bnx_RXP_b09FwTextLen;
2846 fw.text_index = 0;
2847 fw.text = bnx_RXP_b09FwText;
2848
2849 fw.data_addr = bnx_RXP_b09FwDataAddr;
2850 fw.data_len = bnx_RXP_b09FwDataLen;
2851 fw.data_index = 0;
2852 fw.data = bnx_RXP_b09FwData;
2853
2854 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2855 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2856 fw.sbss_index = 0;
2857 fw.sbss = bnx_RXP_b09FwSbss;
2858
2859 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2860 fw.bss_len = bnx_RXP_b09FwBssLen;
2861 fw.bss_index = 0;
2862 fw.bss = bnx_RXP_b09FwBss;
2863
2864 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2865 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2866 fw.rodata_index = 0;
2867 fw.rodata = bnx_RXP_b09FwRodata;
2868
2869 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2870 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2871
2872 /* Initialize the TX Processor. */
2873 cpu_reg.mode = BNX_TXP_CPU_MODE;
2874 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2875 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2876 cpu_reg.state = BNX_TXP_CPU_STATE;
2877 cpu_reg.state_value_clear = 0xffffff;
2878 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2879 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2880 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2881 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2882 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2883 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2884 cpu_reg.mips_view_base = 0x8000000;
2885
2886 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2887 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2888 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2889 fw.start_addr = bnx_TXP_b09FwStartAddr;
2890
2891 fw.text_addr = bnx_TXP_b09FwTextAddr;
2892 fw.text_len = bnx_TXP_b09FwTextLen;
2893 fw.text_index = 0;
2894 fw.text = bnx_TXP_b09FwText;
2895
2896 fw.data_addr = bnx_TXP_b09FwDataAddr;
2897 fw.data_len = bnx_TXP_b09FwDataLen;
2898 fw.data_index = 0;
2899 fw.data = bnx_TXP_b09FwData;
2900
2901 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2902 fw.sbss_len = bnx_TXP_b09FwSbssLen;
2903 fw.sbss_index = 0;
2904 fw.sbss = bnx_TXP_b09FwSbss;
2905
2906 fw.bss_addr = bnx_TXP_b09FwBssAddr;
2907 fw.bss_len = bnx_TXP_b09FwBssLen;
2908 fw.bss_index = 0;
2909 fw.bss = bnx_TXP_b09FwBss;
2910
2911 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2912 fw.rodata_len = bnx_TXP_b09FwRodataLen;
2913 fw.rodata_index = 0;
2914 fw.rodata = bnx_TXP_b09FwRodata;
2915
2916 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2917 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2918
2919 /* Initialize the TX Patch-up Processor. */
2920 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2921 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2922 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2923 cpu_reg.state = BNX_TPAT_CPU_STATE;
2924 cpu_reg.state_value_clear = 0xffffff;
2925 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2926 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2927 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2928 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2929 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2930 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2931 cpu_reg.mips_view_base = 0x8000000;
2932
2933 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2934 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2935 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2936 fw.start_addr = bnx_TPAT_b09FwStartAddr;
2937
2938 fw.text_addr = bnx_TPAT_b09FwTextAddr;
2939 fw.text_len = bnx_TPAT_b09FwTextLen;
2940 fw.text_index = 0;
2941 fw.text = bnx_TPAT_b09FwText;
2942
2943 fw.data_addr = bnx_TPAT_b09FwDataAddr;
2944 fw.data_len = bnx_TPAT_b09FwDataLen;
2945 fw.data_index = 0;
2946 fw.data = bnx_TPAT_b09FwData;
2947
2948 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2949 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2950 fw.sbss_index = 0;
2951 fw.sbss = bnx_TPAT_b09FwSbss;
2952
2953 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2954 fw.bss_len = bnx_TPAT_b09FwBssLen;
2955 fw.bss_index = 0;
2956 fw.bss = bnx_TPAT_b09FwBss;
2957
2958 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2959 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2960 fw.rodata_index = 0;
2961 fw.rodata = bnx_TPAT_b09FwRodata;
2962
2963 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2964 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2965
2966 /* Initialize the Completion Processor. */
2967 cpu_reg.mode = BNX_COM_CPU_MODE;
2968 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2969 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2970 cpu_reg.state = BNX_COM_CPU_STATE;
2971 cpu_reg.state_value_clear = 0xffffff;
2972 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2973 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2974 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2975 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2976 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2977 cpu_reg.spad_base = BNX_COM_SCRATCH;
2978 cpu_reg.mips_view_base = 0x8000000;
2979
2980 fw.ver_major = bnx_COM_b09FwReleaseMajor;
2981 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2982 fw.ver_fix = bnx_COM_b09FwReleaseFix;
2983 fw.start_addr = bnx_COM_b09FwStartAddr;
2984
2985 fw.text_addr = bnx_COM_b09FwTextAddr;
2986 fw.text_len = bnx_COM_b09FwTextLen;
2987 fw.text_index = 0;
2988 fw.text = bnx_COM_b09FwText;
2989
2990 fw.data_addr = bnx_COM_b09FwDataAddr;
2991 fw.data_len = bnx_COM_b09FwDataLen;
2992 fw.data_index = 0;
2993 fw.data = bnx_COM_b09FwData;
2994
2995 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2996 fw.sbss_len = bnx_COM_b09FwSbssLen;
2997 fw.sbss_index = 0;
2998 fw.sbss = bnx_COM_b09FwSbss;
2999
3000 fw.bss_addr = bnx_COM_b09FwBssAddr;
3001 fw.bss_len = bnx_COM_b09FwBssLen;
3002 fw.bss_index = 0;
3003 fw.bss = bnx_COM_b09FwBss;
3004
3005 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
3006 fw.rodata_len = bnx_COM_b09FwRodataLen;
3007 fw.rodata_index = 0;
3008 fw.rodata = bnx_COM_b09FwRodata;
3009 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3010 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3011 break;
3012 default:
3013 /* Initialize the RV2P processor. */
3014 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3015 RV2P_PROC1);
3016 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3017 RV2P_PROC2);
3018
3019 /* Initialize the RX Processor. */
3020 cpu_reg.mode = BNX_RXP_CPU_MODE;
3021 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3022 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3023 cpu_reg.state = BNX_RXP_CPU_STATE;
3024 cpu_reg.state_value_clear = 0xffffff;
3025 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3026 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3027 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3028 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3029 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3030 cpu_reg.spad_base = BNX_RXP_SCRATCH;
3031 cpu_reg.mips_view_base = 0x8000000;
3032
3033 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3034 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3035 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3036 fw.start_addr = bnx_RXP_b06FwStartAddr;
3037
3038 fw.text_addr = bnx_RXP_b06FwTextAddr;
3039 fw.text_len = bnx_RXP_b06FwTextLen;
3040 fw.text_index = 0;
3041 fw.text = bnx_RXP_b06FwText;
3042
3043 fw.data_addr = bnx_RXP_b06FwDataAddr;
3044 fw.data_len = bnx_RXP_b06FwDataLen;
3045 fw.data_index = 0;
3046 fw.data = bnx_RXP_b06FwData;
3047
3048 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3049 fw.sbss_len = bnx_RXP_b06FwSbssLen;
3050 fw.sbss_index = 0;
3051 fw.sbss = bnx_RXP_b06FwSbss;
3052
3053 fw.bss_addr = bnx_RXP_b06FwBssAddr;
3054 fw.bss_len = bnx_RXP_b06FwBssLen;
3055 fw.bss_index = 0;
3056 fw.bss = bnx_RXP_b06FwBss;
3057
3058 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3059 fw.rodata_len = bnx_RXP_b06FwRodataLen;
3060 fw.rodata_index = 0;
3061 fw.rodata = bnx_RXP_b06FwRodata;
3062
3063 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3064 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3065
3066 /* Initialize the TX Processor. */
3067 cpu_reg.mode = BNX_TXP_CPU_MODE;
3068 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3069 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3070 cpu_reg.state = BNX_TXP_CPU_STATE;
3071 cpu_reg.state_value_clear = 0xffffff;
3072 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3073 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3074 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3075 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3076 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3077 cpu_reg.spad_base = BNX_TXP_SCRATCH;
3078 cpu_reg.mips_view_base = 0x8000000;
3079
3080 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3081 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3082 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3083 fw.start_addr = bnx_TXP_b06FwStartAddr;
3084
3085 fw.text_addr = bnx_TXP_b06FwTextAddr;
3086 fw.text_len = bnx_TXP_b06FwTextLen;
3087 fw.text_index = 0;
3088 fw.text = bnx_TXP_b06FwText;
3089
3090 fw.data_addr = bnx_TXP_b06FwDataAddr;
3091 fw.data_len = bnx_TXP_b06FwDataLen;
3092 fw.data_index = 0;
3093 fw.data = bnx_TXP_b06FwData;
3094
3095 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3096 fw.sbss_len = bnx_TXP_b06FwSbssLen;
3097 fw.sbss_index = 0;
3098 fw.sbss = bnx_TXP_b06FwSbss;
3099
3100 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3101 fw.bss_len = bnx_TXP_b06FwBssLen;
3102 fw.bss_index = 0;
3103 fw.bss = bnx_TXP_b06FwBss;
3104
3105 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3106 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3107 fw.rodata_index = 0;
3108 fw.rodata = bnx_TXP_b06FwRodata;
3109
3110 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3111 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3112
3113 /* Initialize the TX Patch-up Processor. */
3114 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3115 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3116 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3117 cpu_reg.state = BNX_TPAT_CPU_STATE;
3118 cpu_reg.state_value_clear = 0xffffff;
3119 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3120 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3121 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3122 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3123 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3124 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3125 cpu_reg.mips_view_base = 0x8000000;
3126
3127 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3128 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3129 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3130 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3131
3132 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3133 fw.text_len = bnx_TPAT_b06FwTextLen;
3134 fw.text_index = 0;
3135 fw.text = bnx_TPAT_b06FwText;
3136
3137 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3138 fw.data_len = bnx_TPAT_b06FwDataLen;
3139 fw.data_index = 0;
3140 fw.data = bnx_TPAT_b06FwData;
3141
3142 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3143 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3144 fw.sbss_index = 0;
3145 fw.sbss = bnx_TPAT_b06FwSbss;
3146
3147 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3148 fw.bss_len = bnx_TPAT_b06FwBssLen;
3149 fw.bss_index = 0;
3150 fw.bss = bnx_TPAT_b06FwBss;
3151
3152 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3153 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3154 fw.rodata_index = 0;
3155 fw.rodata = bnx_TPAT_b06FwRodata;
3156
3157 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3158 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3159
3160 /* Initialize the Completion Processor. */
3161 cpu_reg.mode = BNX_COM_CPU_MODE;
3162 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3163 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3164 cpu_reg.state = BNX_COM_CPU_STATE;
3165 cpu_reg.state_value_clear = 0xffffff;
3166 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3167 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3168 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3169 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3170 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3171 cpu_reg.spad_base = BNX_COM_SCRATCH;
3172 cpu_reg.mips_view_base = 0x8000000;
3173
3174 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3175 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3176 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3177 fw.start_addr = bnx_COM_b06FwStartAddr;
3178
3179 fw.text_addr = bnx_COM_b06FwTextAddr;
3180 fw.text_len = bnx_COM_b06FwTextLen;
3181 fw.text_index = 0;
3182 fw.text = bnx_COM_b06FwText;
3183
3184 fw.data_addr = bnx_COM_b06FwDataAddr;
3185 fw.data_len = bnx_COM_b06FwDataLen;
3186 fw.data_index = 0;
3187 fw.data = bnx_COM_b06FwData;
3188
3189 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3190 fw.sbss_len = bnx_COM_b06FwSbssLen;
3191 fw.sbss_index = 0;
3192 fw.sbss = bnx_COM_b06FwSbss;
3193
3194 fw.bss_addr = bnx_COM_b06FwBssAddr;
3195 fw.bss_len = bnx_COM_b06FwBssLen;
3196 fw.bss_index = 0;
3197 fw.bss = bnx_COM_b06FwBss;
3198
3199 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3200 fw.rodata_len = bnx_COM_b06FwRodataLen;
3201 fw.rodata_index = 0;
3202 fw.rodata = bnx_COM_b06FwRodata;
3203 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3204 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3205 break;
3206 }
3207 }
3208
3209 /****************************************************************************/
3210 /* Initialize context memory. */
3211 /* */
3212 /* Clears the memory associated with each Context ID (CID). */
3213 /* */
3214 /* Returns: */
3215 /* Nothing. */
3216 /****************************************************************************/
3217 void
3218 bnx_init_context(struct bnx_softc *sc)
3219 {
3220 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3221 /* DRC: Replace this constant value with a #define. */
3222 int i, retry_cnt = 10;
3223 uint32_t val;
3224
3225 /*
3226 * BCM5709 context memory may be cached
3227 * in host memory so prepare the host memory
3228 * for access.
3229 */
3230 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3231 | (1 << 12);
3232 val |= (BCM_PAGE_BITS - 8) << 16;
3233 REG_WR(sc, BNX_CTX_COMMAND, val);
3234
3235 /* Wait for mem init command to complete. */
3236 for (i = 0; i < retry_cnt; i++) {
3237 val = REG_RD(sc, BNX_CTX_COMMAND);
3238 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3239 break;
3240 DELAY(2);
3241 }
3242
3243 /* ToDo: Consider returning an error here. */
3244
3245 for (i = 0; i < sc->ctx_pages; i++) {
3246 int j;
3247
3248 /* Set the physaddr of the context memory cache. */
3249 val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3250 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3251 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3252 val = (uint32_t)
3253 ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3254 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3255 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3256 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3257
3258 /* Verify that the context memory write was successful. */
3259 for (j = 0; j < retry_cnt; j++) {
3260 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3261 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3262 break;
3263 DELAY(5);
3264 }
3265
3266 /* ToDo: Consider returning an error here. */
3267 }
3268 } else {
3269 uint32_t vcid_addr, offset;
3270
3271 /*
3272 * For the 5706/5708, context memory is local to
3273 * the controller, so initialize the controller
3274 * context memory.
3275 */
3276
3277 vcid_addr = GET_CID_ADDR(96);
3278 while (vcid_addr) {
3279
3280 vcid_addr -= BNX_PHY_CTX_SIZE;
3281
3282 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3283 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3284
3285 for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3286 CTX_WR(sc, 0x00, offset, 0);
3287 }
3288
3289 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3290 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3291 }
3292 }
3293 }
3294
3295 /****************************************************************************/
3296 /* Fetch the permanent MAC address of the controller. */
3297 /* */
3298 /* Returns: */
3299 /* Nothing. */
3300 /****************************************************************************/
3301 void
3302 bnx_get_mac_addr(struct bnx_softc *sc)
3303 {
3304 uint32_t mac_lo = 0, mac_hi = 0;
3305
3306 /*
3307 * The NetXtreme II bootcode populates various NIC
3308 * power-on and runtime configuration items in a
3309 * shared memory area. The factory configured MAC
3310 * address is available from both NVRAM and the
3311 * shared memory area so we'll read the value from
3312 * shared memory for speed.
3313 */
3314
3315 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3316 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3317
3318 if ((mac_lo == 0) && (mac_hi == 0)) {
3319 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3320 __FILE__, __LINE__);
3321 } else {
3322 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3323 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3324 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3325 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3326 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3327 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3328 }
3329
3330 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3331 "%s\n", ether_sprintf(sc->eaddr));
3332 }
3333
3334 /****************************************************************************/
3335 /* Program the MAC address. */
3336 /* */
3337 /* Returns: */
3338 /* Nothing. */
3339 /****************************************************************************/
3340 void
3341 bnx_set_mac_addr(struct bnx_softc *sc)
3342 {
3343 uint32_t val;
3344 const uint8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3345
3346 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3347 "%s\n", ether_sprintf(sc->eaddr));
3348
3349 val = (mac_addr[0] << 8) | mac_addr[1];
3350
3351 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3352
3353 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3354 (mac_addr[4] << 8) | mac_addr[5];
3355
3356 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3357 }
3358
3359 /****************************************************************************/
3360 /* Stop the controller. */
3361 /* */
3362 /* Returns: */
3363 /* Nothing. */
3364 /****************************************************************************/
3365 void
3366 bnx_stop(struct ifnet *ifp, int disable)
3367 {
3368 struct bnx_softc *sc = ifp->if_softc;
3369
3370 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3371
3372 if ((ifp->if_flags & IFF_RUNNING) == 0)
3373 return;
3374
3375 callout_stop(&sc->bnx_timeout);
3376
3377 mii_down(&sc->bnx_mii);
3378
3379 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3380
3381 /* Disable the transmit/receive blocks. */
3382 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3383 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3384 DELAY(20);
3385
3386 bnx_disable_intr(sc);
3387
3388 /* Tell firmware that the driver is going away. */
3389 if (disable)
3390 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3391 else
3392 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3393
3394 /* Free RX buffers. */
3395 bnx_free_rx_chain(sc);
3396
3397 /* Free TX buffers. */
3398 bnx_free_tx_chain(sc);
3399
3400 ifp->if_timer = 0;
3401
3402 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3403
3404 }
3405
3406 int
3407 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3408 {
3409 struct pci_attach_args *pa = &(sc->bnx_pa);
3410 uint32_t val;
3411 int i, rc = 0;
3412
3413 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3414
3415 /* Wait for pending PCI transactions to complete. */
3416 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3417 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3418 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3419 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3420 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3421 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3422 DELAY(5);
3423
3424 /* Disable DMA */
3425 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3426 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3427 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3428 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3429 }
3430
3431 /* Assume bootcode is running. */
3432 sc->bnx_fw_timed_out = 0;
3433
3434 /* Give the firmware a chance to prepare for the reset. */
3435 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3436 if (rc)
3437 goto bnx_reset_exit;
3438
3439 /* Set a firmware reminder that this is a soft reset. */
3440 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3441 BNX_DRV_RESET_SIGNATURE_MAGIC);
3442
3443 /* Dummy read to force the chip to complete all current transactions. */
3444 val = REG_RD(sc, BNX_MISC_ID);
3445
3446 /* Chip reset. */
3447 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3448 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3449 REG_RD(sc, BNX_MISC_COMMAND);
3450 DELAY(5);
3451
3452 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3453 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3454
3455 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3456 val);
3457 } else {
3458 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3459 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3460 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3461 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3462
3463 /* Allow up to 30us for reset to complete. */
3464 for (i = 0; i < 10; i++) {
3465 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3466 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3467 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3468 break;
3469 }
3470 DELAY(10);
3471 }
3472
3473 /* Check that reset completed successfully. */
3474 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3475 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3476 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3477 __FILE__, __LINE__);
3478 rc = EBUSY;
3479 goto bnx_reset_exit;
3480 }
3481 }
3482
3483 /* Make sure byte swapping is properly configured. */
3484 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3485 if (val != 0x01020304) {
3486 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3487 __FILE__, __LINE__);
3488 rc = ENODEV;
3489 goto bnx_reset_exit;
3490 }
3491
3492 /* Just completed a reset, assume that firmware is running again. */
3493 sc->bnx_fw_timed_out = 0;
3494
3495 /* Wait for the firmware to finish its initialization. */
3496 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3497 if (rc)
3498 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3499 "initialization!\n", __FILE__, __LINE__);
3500
3501 bnx_reset_exit:
3502 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3503
3504 return rc;
3505 }
3506
3507 int
3508 bnx_chipinit(struct bnx_softc *sc)
3509 {
3510 struct pci_attach_args *pa = &(sc->bnx_pa);
3511 uint32_t val;
3512 int rc = 0;
3513
3514 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3515
3516 /* Make sure the interrupt is not active. */
3517 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3518
3519 /* Initialize DMA byte/word swapping, configure the number of DMA */
3520 /* channels and PCI clock compensation delay. */
3521 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3522 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3523 #if BYTE_ORDER == BIG_ENDIAN
3524 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3525 #endif
3526 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3527 DMA_READ_CHANS << 12 |
3528 DMA_WRITE_CHANS << 16;
3529
3530 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3531
3532 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3533 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3534
3535 /*
3536 * This setting resolves a problem observed on certain Intel PCI
3537 * chipsets that cannot handle multiple outstanding DMA operations.
3538 * See errata E9_5706A1_65.
3539 */
3540 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3541 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3542 !(sc->bnx_flags & BNX_PCIX_FLAG))
3543 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3544
3545 REG_WR(sc, BNX_DMA_CONFIG, val);
3546
3547 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3548 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3549 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3550 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3551 val & ~0x20000);
3552 }
3553
3554 /* Enable the RX_V2P and Context state machines before access. */
3555 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3556 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3557 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3558 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3559
3560 /* Initialize context mapping and zero out the quick contexts. */
3561 bnx_init_context(sc);
3562
3563 /* Initialize the on-boards CPUs */
3564 bnx_init_cpus(sc);
3565
3566 /* Prepare NVRAM for access. */
3567 if (bnx_init_nvram(sc)) {
3568 rc = ENODEV;
3569 goto bnx_chipinit_exit;
3570 }
3571
3572 /* Set the kernel bypass block size */
3573 val = REG_RD(sc, BNX_MQ_CONFIG);
3574 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3575 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3576
3577 /* Enable bins used on the 5709. */
3578 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3579 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3580 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3581 val |= BNX_MQ_CONFIG_HALT_DIS;
3582 }
3583
3584 REG_WR(sc, BNX_MQ_CONFIG, val);
3585
3586 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3587 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3588 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3589
3590 val = (BCM_PAGE_BITS - 8) << 24;
3591 REG_WR(sc, BNX_RV2P_CONFIG, val);
3592
3593 /* Configure page size. */
3594 val = REG_RD(sc, BNX_TBDR_CONFIG);
3595 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3596 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3597 REG_WR(sc, BNX_TBDR_CONFIG, val);
3598
3599 #if 0
3600 /* Set the perfect match control register to default. */
3601 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3602 #endif
3603
3604 bnx_chipinit_exit:
3605 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3606
3607 return rc;
3608 }
3609
3610 /****************************************************************************/
3611 /* Initialize the controller in preparation to send/receive traffic. */
3612 /* */
3613 /* Returns: */
3614 /* 0 for success, positive value for failure. */
3615 /****************************************************************************/
3616 int
3617 bnx_blockinit(struct bnx_softc *sc)
3618 {
3619 uint32_t reg, val;
3620 int rc = 0;
3621
3622 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3623
3624 /* Load the hardware default MAC address. */
3625 bnx_set_mac_addr(sc);
3626
3627 /* Set the Ethernet backoff seed value */
3628 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3629 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3630 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3631
3632 sc->last_status_idx = 0;
3633 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3634
3635 /* Set up link change interrupt generation. */
3636 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3637 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3638
3639 /* Program the physical address of the status block. */
3640 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3641 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3642 (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3643
3644 /* Program the physical address of the statistics block. */
3645 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3646 (uint32_t)(sc->stats_block_paddr));
3647 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3648 (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3649
3650 /* Program various host coalescing parameters. */
3651 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3652 << 16) | sc->bnx_tx_quick_cons_trip);
3653 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3654 << 16) | sc->bnx_rx_quick_cons_trip);
3655 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3656 sc->bnx_comp_prod_trip);
3657 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3658 sc->bnx_tx_ticks);
3659 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3660 sc->bnx_rx_ticks);
3661 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3662 sc->bnx_com_ticks);
3663 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3664 sc->bnx_cmd_ticks);
3665 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3666 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3667 REG_WR(sc, BNX_HC_CONFIG,
3668 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3669 BNX_HC_CONFIG_COLLECT_STATS));
3670
3671 /* Clear the internal statistics counters. */
3672 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3673
3674 /* Verify that bootcode is running. */
3675 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3676
3677 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3678 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3679 __FILE__, __LINE__); reg = 0);
3680
3681 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3682 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3683 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3684 "Expected: 08%08X\n", __FILE__, __LINE__,
3685 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3686 BNX_DEV_INFO_SIGNATURE_MAGIC);
3687 rc = ENODEV;
3688 goto bnx_blockinit_exit;
3689 }
3690
3691 /* Check if any management firmware is running. */
3692 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3693 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3694 BNX_PORT_FEATURE_IMD_ENABLED)) {
3695 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3696 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3697 }
3698
3699 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3700 BNX_DEV_INFO_BC_REV);
3701
3702 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3703
3704 /* Enable DMA */
3705 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3706 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3707 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3708 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3709 }
3710
3711 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3712 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3713
3714 /* Enable link state change interrupt generation. */
3715 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3716 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3717 BNX_MISC_ENABLE_DEFAULT_XI);
3718 } else
3719 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3720
3721 /* Enable all remaining blocks in the MAC. */
3722 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3723 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3724 DELAY(20);
3725
3726 bnx_blockinit_exit:
3727 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3728
3729 return rc;
3730 }
3731
3732 static int
3733 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3734 uint16_t *chain_prod, uint32_t *prod_bseq)
3735 {
3736 bus_dmamap_t map;
3737 struct rx_bd *rxbd;
3738 uint32_t addr;
3739 int i;
3740 #ifdef BNX_DEBUG
3741 uint16_t debug_chain_prod = *chain_prod;
3742 #endif
3743 uint16_t first_chain_prod;
3744
3745 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3746
3747 /* Map the mbuf cluster into device memory. */
3748 map = sc->rx_mbuf_map[*chain_prod];
3749 first_chain_prod = *chain_prod;
3750 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3751 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3752 __FILE__, __LINE__);
3753
3754 m_freem(m_new);
3755
3756 DBRUNIF(1, sc->rx_mbuf_alloc--);
3757
3758 return ENOBUFS;
3759 }
3760 /* Make sure there is room in the receive chain. */
3761 if (map->dm_nsegs > sc->free_rx_bd) {
3762 bus_dmamap_unload(sc->bnx_dmatag, map);
3763 m_freem(m_new);
3764 return EFBIG;
3765 }
3766 #ifdef BNX_DEBUG
3767 /* Track the distribution of buffer segments. */
3768 sc->rx_mbuf_segs[map->dm_nsegs]++;
3769 #endif
3770
3771 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3772 BUS_DMASYNC_PREREAD);
3773
3774 /* Update some debug statistics counters */
3775 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3776 sc->rx_low_watermark = sc->free_rx_bd);
3777 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3778
3779 /*
3780 * Setup the rx_bd for the first segment
3781 */
3782 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3783
3784 addr = (uint32_t)map->dm_segs[0].ds_addr;
3785 rxbd->rx_bd_haddr_lo = addr;
3786 addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3787 rxbd->rx_bd_haddr_hi = addr;
3788 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3789 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3790 *prod_bseq += map->dm_segs[0].ds_len;
3791 bus_dmamap_sync(sc->bnx_dmatag,
3792 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3793 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3794 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3795
3796 for (i = 1; i < map->dm_nsegs; i++) {
3797 *prod = NEXT_RX_BD(*prod);
3798 *chain_prod = RX_CHAIN_IDX(*prod);
3799
3800 rxbd =
3801 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3802
3803 addr = (uint32_t)map->dm_segs[i].ds_addr;
3804 rxbd->rx_bd_haddr_lo = addr;
3805 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3806 rxbd->rx_bd_haddr_hi = addr;
3807 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3808 rxbd->rx_bd_flags = 0;
3809 *prod_bseq += map->dm_segs[i].ds_len;
3810 bus_dmamap_sync(sc->bnx_dmatag,
3811 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3812 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3813 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3814 }
3815
3816 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3817 bus_dmamap_sync(sc->bnx_dmatag,
3818 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3819 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3820 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3821
3822 /*
3823 * Save the mbuf, adjust the map pointer (swap map for first and
3824 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3825 * and update our counter.
3826 */
3827 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3828 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3829 sc->rx_mbuf_map[*chain_prod] = map;
3830 sc->free_rx_bd -= map->dm_nsegs;
3831
3832 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3833 map->dm_nsegs));
3834 *prod = NEXT_RX_BD(*prod);
3835 *chain_prod = RX_CHAIN_IDX(*prod);
3836
3837 return 0;
3838 }
3839
3840 /****************************************************************************/
3841 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3842 /* */
3843 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3844 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3845 /* necessary. */
3846 /* */
3847 /* Returns: */
3848 /* 0 for success, positive value for failure. */
3849 /****************************************************************************/
3850 int
3851 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3852 uint16_t *chain_prod, uint32_t *prod_bseq)
3853 {
3854 struct mbuf *m_new = NULL;
3855 int rc = 0;
3856 uint16_t min_free_bd;
3857
3858 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3859 __func__);
3860
3861 /* Make sure the inputs are valid. */
3862 DBRUNIF((*chain_prod > MAX_RX_BD),
3863 aprint_error_dev(sc->bnx_dev,
3864 "RX producer out of range: 0x%04X > 0x%04X\n",
3865 *chain_prod, (uint16_t)MAX_RX_BD));
3866
3867 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3868 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3869 *prod_bseq);
3870
3871 /* try to get in as many mbufs as possible */
3872 if (sc->mbuf_alloc_size == MCLBYTES)
3873 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3874 else
3875 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3876 while (sc->free_rx_bd >= min_free_bd) {
3877 /* Simulate an mbuf allocation failure. */
3878 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3879 aprint_error_dev(sc->bnx_dev,
3880 "Simulating mbuf allocation failure.\n");
3881 sc->mbuf_sim_alloc_failed++;
3882 rc = ENOBUFS;
3883 goto bnx_get_buf_exit);
3884
3885 /* This is a new mbuf allocation. */
3886 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3887 if (m_new == NULL) {
3888 DBPRINT(sc, BNX_WARN,
3889 "%s(%d): RX mbuf header allocation failed!\n",
3890 __FILE__, __LINE__);
3891
3892 sc->mbuf_alloc_failed++;
3893
3894 rc = ENOBUFS;
3895 goto bnx_get_buf_exit;
3896 }
3897
3898 DBRUNIF(1, sc->rx_mbuf_alloc++);
3899
3900 /* Simulate an mbuf cluster allocation failure. */
3901 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3902 m_freem(m_new);
3903 sc->rx_mbuf_alloc--;
3904 sc->mbuf_alloc_failed++;
3905 sc->mbuf_sim_alloc_failed++;
3906 rc = ENOBUFS;
3907 goto bnx_get_buf_exit);
3908
3909 if (sc->mbuf_alloc_size == MCLBYTES)
3910 MCLGET(m_new, M_DONTWAIT);
3911 else
3912 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3913 M_DONTWAIT);
3914 if (!(m_new->m_flags & M_EXT)) {
3915 DBPRINT(sc, BNX_WARN,
3916 "%s(%d): RX mbuf chain allocation failed!\n",
3917 __FILE__, __LINE__);
3918
3919 m_freem(m_new);
3920
3921 DBRUNIF(1, sc->rx_mbuf_alloc--);
3922 sc->mbuf_alloc_failed++;
3923
3924 rc = ENOBUFS;
3925 goto bnx_get_buf_exit;
3926 }
3927
3928 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3929 if (rc != 0)
3930 goto bnx_get_buf_exit;
3931 }
3932
3933 bnx_get_buf_exit:
3934 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3935 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3936 *chain_prod, *prod_bseq);
3937
3938 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3939 __func__);
3940
3941 return rc;
3942 }
3943
3944 void
3945 bnx_alloc_pkts(struct work * unused, void * arg)
3946 {
3947 struct bnx_softc *sc = arg;
3948 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3949 struct bnx_pkt *pkt;
3950 int i, s;
3951
3952 for (i = 0; i < 4; i++) { /* magic! */
3953 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
3954 if (pkt == NULL)
3955 break;
3956
3957 if (bus_dmamap_create(sc->bnx_dmatag,
3958 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3959 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
3960 &pkt->pkt_dmamap) != 0)
3961 goto put;
3962
3963 if (!ISSET(ifp->if_flags, IFF_UP))
3964 goto stopping;
3965
3966 mutex_enter(&sc->tx_pkt_mtx);
3967 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3968 sc->tx_pkt_count++;
3969 mutex_exit(&sc->tx_pkt_mtx);
3970 }
3971
3972 mutex_enter(&sc->tx_pkt_mtx);
3973 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
3974 mutex_exit(&sc->tx_pkt_mtx);
3975
3976 /* fire-up TX now that allocations have been done */
3977 s = splnet();
3978 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3979 bnx_start(ifp);
3980 splx(s);
3981
3982 return;
3983
3984 stopping:
3985 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3986 put:
3987 pool_put(bnx_tx_pool, pkt);
3988 return;
3989 }
3990
3991 /****************************************************************************/
3992 /* Initialize the TX context memory. */
3993 /* */
3994 /* Returns: */
3995 /* Nothing */
3996 /****************************************************************************/
3997 void
3998 bnx_init_tx_context(struct bnx_softc *sc)
3999 {
4000 uint32_t val;
4001
4002 /* Initialize the context ID for an L2 TX chain. */
4003 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4004 /* Set the CID type to support an L2 connection. */
4005 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4006 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4007 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4008 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4009
4010 /* Point the hardware to the first page in the chain. */
4011 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4012 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4013 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4014 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4015 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4016 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4017 } else {
4018 /* Set the CID type to support an L2 connection. */
4019 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4020 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4021 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4022 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4023
4024 /* Point the hardware to the first page in the chain. */
4025 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4026 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4027 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4028 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4029 }
4030 }
4031
4032
4033 /****************************************************************************/
4034 /* Allocate memory and initialize the TX data structures. */
4035 /* */
4036 /* Returns: */
4037 /* 0 for success, positive value for failure. */
4038 /****************************************************************************/
4039 int
4040 bnx_init_tx_chain(struct bnx_softc *sc)
4041 {
4042 struct tx_bd *txbd;
4043 uint32_t addr;
4044 int i, rc = 0;
4045
4046 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4047
4048 /* Force an allocation of some dmamaps for tx up front */
4049 bnx_alloc_pkts(NULL, sc);
4050
4051 /* Set the initial TX producer/consumer indices. */
4052 sc->tx_prod = 0;
4053 sc->tx_cons = 0;
4054 sc->tx_prod_bseq = 0;
4055 sc->used_tx_bd = 0;
4056 sc->max_tx_bd = USABLE_TX_BD;
4057 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4058 DBRUNIF(1, sc->tx_full_count = 0);
4059
4060 /*
4061 * The NetXtreme II supports a linked-list structure called
4062 * a Buffer Descriptor Chain (or BD chain). A BD chain
4063 * consists of a series of 1 or more chain pages, each of which
4064 * consists of a fixed number of BD entries.
4065 * The last BD entry on each page is a pointer to the next page
4066 * in the chain, and the last pointer in the BD chain
4067 * points back to the beginning of the chain.
4068 */
4069
4070 /* Set the TX next pointer chain entries. */
4071 for (i = 0; i < TX_PAGES; i++) {
4072 int j;
4073
4074 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4075
4076 /* Check if we've reached the last page. */
4077 if (i == (TX_PAGES - 1))
4078 j = 0;
4079 else
4080 j = i + 1;
4081
4082 addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4083 txbd->tx_bd_haddr_lo = addr;
4084 addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4085 txbd->tx_bd_haddr_hi = addr;
4086 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4087 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4088 }
4089
4090 /*
4091 * Initialize the context ID for an L2 TX chain.
4092 */
4093 bnx_init_tx_context(sc);
4094
4095 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4096
4097 return rc;
4098 }
4099
4100 /****************************************************************************/
4101 /* Free memory and clear the TX data structures. */
4102 /* */
4103 /* Returns: */
4104 /* Nothing. */
4105 /****************************************************************************/
4106 void
4107 bnx_free_tx_chain(struct bnx_softc *sc)
4108 {
4109 struct bnx_pkt *pkt;
4110 int i;
4111
4112 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4113
4114 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4115 mutex_enter(&sc->tx_pkt_mtx);
4116 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4117 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4118 mutex_exit(&sc->tx_pkt_mtx);
4119
4120 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4121 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4122 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4123
4124 m_freem(pkt->pkt_mbuf);
4125 DBRUNIF(1, sc->tx_mbuf_alloc--);
4126
4127 mutex_enter(&sc->tx_pkt_mtx);
4128 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4129 }
4130
4131 /* Destroy all the dmamaps we allocated for TX */
4132 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4133 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4134 sc->tx_pkt_count--;
4135 mutex_exit(&sc->tx_pkt_mtx);
4136
4137 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4138 pool_put(bnx_tx_pool, pkt);
4139
4140 mutex_enter(&sc->tx_pkt_mtx);
4141 }
4142 mutex_exit(&sc->tx_pkt_mtx);
4143
4144
4145
4146 /* Clear each TX chain page. */
4147 for (i = 0; i < TX_PAGES; i++) {
4148 memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4149 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4150 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4151 }
4152
4153 sc->used_tx_bd = 0;
4154
4155 /* Check if we lost any mbufs in the process. */
4156 DBRUNIF((sc->tx_mbuf_alloc),
4157 aprint_error_dev(sc->bnx_dev,
4158 "Memory leak! Lost %d mbufs from tx chain!\n",
4159 sc->tx_mbuf_alloc));
4160
4161 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4162 }
4163
4164 /****************************************************************************/
4165 /* Initialize the RX context memory. */
4166 /* */
4167 /* Returns: */
4168 /* Nothing */
4169 /****************************************************************************/
4170 void
4171 bnx_init_rx_context(struct bnx_softc *sc)
4172 {
4173 uint32_t val;
4174
4175 /* Initialize the context ID for an L2 RX chain. */
4176 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4177 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4178
4179 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4180 uint32_t lo_water, hi_water;
4181
4182 lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4183 hi_water = USABLE_RX_BD / 4;
4184
4185 lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4186 hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4187
4188 if (hi_water > 0xf)
4189 hi_water = 0xf;
4190 else if (hi_water == 0)
4191 lo_water = 0;
4192 val |= lo_water |
4193 (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4194 }
4195
4196 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4197
4198 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4199 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4200 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4201 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4202 }
4203
4204 /* Point the hardware to the first page in the chain. */
4205 val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4206 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4207 val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4208 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4209 }
4210
4211 /****************************************************************************/
4212 /* Allocate memory and initialize the RX data structures. */
4213 /* */
4214 /* Returns: */
4215 /* 0 for success, positive value for failure. */
4216 /****************************************************************************/
4217 int
4218 bnx_init_rx_chain(struct bnx_softc *sc)
4219 {
4220 struct rx_bd *rxbd;
4221 int i, rc = 0;
4222 uint16_t prod, chain_prod;
4223 uint32_t prod_bseq, addr;
4224
4225 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4226
4227 /* Initialize the RX producer and consumer indices. */
4228 sc->rx_prod = 0;
4229 sc->rx_cons = 0;
4230 sc->rx_prod_bseq = 0;
4231 sc->free_rx_bd = USABLE_RX_BD;
4232 sc->max_rx_bd = USABLE_RX_BD;
4233 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4234 DBRUNIF(1, sc->rx_empty_count = 0);
4235
4236 /* Initialize the RX next pointer chain entries. */
4237 for (i = 0; i < RX_PAGES; i++) {
4238 int j;
4239
4240 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4241
4242 /* Check if we've reached the last page. */
4243 if (i == (RX_PAGES - 1))
4244 j = 0;
4245 else
4246 j = i + 1;
4247
4248 /* Setup the chain page pointers. */
4249 addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4250 rxbd->rx_bd_haddr_hi = addr;
4251 addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4252 rxbd->rx_bd_haddr_lo = addr;
4253 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4254 0, BNX_RX_CHAIN_PAGE_SZ,
4255 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4256 }
4257
4258 /* Allocate mbuf clusters for the rx_bd chain. */
4259 prod = prod_bseq = 0;
4260 chain_prod = RX_CHAIN_IDX(prod);
4261 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4262 BNX_PRINTF(sc,
4263 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4264 }
4265
4266 /* Save the RX chain producer index. */
4267 sc->rx_prod = prod;
4268 sc->rx_prod_bseq = prod_bseq;
4269
4270 for (i = 0; i < RX_PAGES; i++)
4271 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4272 sc->rx_bd_chain_map[i]->dm_mapsize,
4273 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4274
4275 /* Tell the chip about the waiting rx_bd's. */
4276 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4277 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4278
4279 bnx_init_rx_context(sc);
4280
4281 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4282
4283 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4284
4285 return rc;
4286 }
4287
4288 /****************************************************************************/
4289 /* Free memory and clear the RX data structures. */
4290 /* */
4291 /* Returns: */
4292 /* Nothing. */
4293 /****************************************************************************/
4294 void
4295 bnx_free_rx_chain(struct bnx_softc *sc)
4296 {
4297 int i;
4298
4299 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4300
4301 /* Free any mbufs still in the RX mbuf chain. */
4302 for (i = 0; i < TOTAL_RX_BD; i++) {
4303 if (sc->rx_mbuf_ptr[i] != NULL) {
4304 if (sc->rx_mbuf_map[i] != NULL) {
4305 bus_dmamap_sync(sc->bnx_dmatag,
4306 sc->rx_mbuf_map[i], 0,
4307 sc->rx_mbuf_map[i]->dm_mapsize,
4308 BUS_DMASYNC_POSTREAD);
4309 bus_dmamap_unload(sc->bnx_dmatag,
4310 sc->rx_mbuf_map[i]);
4311 }
4312 m_freem(sc->rx_mbuf_ptr[i]);
4313 sc->rx_mbuf_ptr[i] = NULL;
4314 DBRUNIF(1, sc->rx_mbuf_alloc--);
4315 }
4316 }
4317
4318 /* Clear each RX chain page. */
4319 for (i = 0; i < RX_PAGES; i++)
4320 memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4321
4322 sc->free_rx_bd = sc->max_rx_bd;
4323
4324 /* Check if we lost any mbufs in the process. */
4325 DBRUNIF((sc->rx_mbuf_alloc),
4326 aprint_error_dev(sc->bnx_dev,
4327 "Memory leak! Lost %d mbufs from rx chain!\n",
4328 sc->rx_mbuf_alloc));
4329
4330 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4331 }
4332
4333 /****************************************************************************/
4334 /* Handles PHY generated interrupt events. */
4335 /* */
4336 /* Returns: */
4337 /* Nothing. */
4338 /****************************************************************************/
4339 void
4340 bnx_phy_intr(struct bnx_softc *sc)
4341 {
4342 uint32_t new_link_state, old_link_state;
4343
4344 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4345 BUS_DMASYNC_POSTREAD);
4346 new_link_state = sc->status_block->status_attn_bits &
4347 STATUS_ATTN_BITS_LINK_STATE;
4348 old_link_state = sc->status_block->status_attn_bits_ack &
4349 STATUS_ATTN_BITS_LINK_STATE;
4350
4351 /* Handle any changes if the link state has changed. */
4352 if (new_link_state != old_link_state) {
4353 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4354
4355 callout_stop(&sc->bnx_timeout);
4356 bnx_tick(sc);
4357
4358 /* Update the status_attn_bits_ack field in the status block. */
4359 if (new_link_state) {
4360 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4361 STATUS_ATTN_BITS_LINK_STATE);
4362 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4363 } else {
4364 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4365 STATUS_ATTN_BITS_LINK_STATE);
4366 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4367 }
4368 }
4369
4370 /* Acknowledge the link change interrupt. */
4371 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4372 }
4373
4374 /****************************************************************************/
4375 /* Handles received frame interrupt events. */
4376 /* */
4377 /* Returns: */
4378 /* Nothing. */
4379 /****************************************************************************/
4380 void
4381 bnx_rx_intr(struct bnx_softc *sc)
4382 {
4383 struct status_block *sblk = sc->status_block;
4384 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4385 uint16_t hw_cons, sw_cons, sw_chain_cons;
4386 uint16_t sw_prod, sw_chain_prod;
4387 uint32_t sw_prod_bseq;
4388 struct l2_fhdr *l2fhdr;
4389 int i;
4390
4391 DBRUNIF(1, sc->rx_interrupts++);
4392 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4393 BUS_DMASYNC_POSTREAD);
4394
4395 /* Prepare the RX chain pages to be accessed by the host CPU. */
4396 for (i = 0; i < RX_PAGES; i++)
4397 bus_dmamap_sync(sc->bnx_dmatag,
4398 sc->rx_bd_chain_map[i], 0,
4399 sc->rx_bd_chain_map[i]->dm_mapsize,
4400 BUS_DMASYNC_POSTWRITE);
4401
4402 /* Get the hardware's view of the RX consumer index. */
4403 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4404 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4405 hw_cons++;
4406
4407 /* Get working copies of the driver's view of the RX indices. */
4408 sw_cons = sc->rx_cons;
4409 sw_prod = sc->rx_prod;
4410 sw_prod_bseq = sc->rx_prod_bseq;
4411
4412 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4413 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4414 __func__, sw_prod, sw_cons, sw_prod_bseq);
4415
4416 /* Prevent speculative reads from getting ahead of the status block. */
4417 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4418 BUS_SPACE_BARRIER_READ);
4419
4420 /* Update some debug statistics counters */
4421 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4422 sc->rx_low_watermark = sc->free_rx_bd);
4423 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4424
4425 /*
4426 * Scan through the receive chain as long
4427 * as there is work to do.
4428 */
4429 while (sw_cons != hw_cons) {
4430 struct mbuf *m;
4431 struct rx_bd *rxbd;
4432 unsigned int len;
4433 uint32_t status;
4434
4435 /* Convert the producer/consumer indices to an actual
4436 * rx_bd index.
4437 */
4438 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4439 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4440
4441 /* Get the used rx_bd. */
4442 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4443 sc->free_rx_bd++;
4444
4445 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4446 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4447
4448 /* The mbuf is stored with the last rx_bd entry of a packet. */
4449 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4450 #ifdef DIAGNOSTIC
4451 /* Validate that this is the last rx_bd. */
4452 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4453 printf("%s: Unexpected mbuf found in "
4454 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4455 sw_chain_cons);
4456 }
4457 #endif
4458
4459 /* DRC - ToDo: If the received packet is small, say less
4460 * than 128 bytes, allocate a new mbuf here,
4461 * copy the data to that mbuf, and recycle
4462 * the mapped jumbo frame.
4463 */
4464
4465 /* Unmap the mbuf from DMA space. */
4466 #ifdef DIAGNOSTIC
4467 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4468 printf("invalid map sw_cons 0x%x "
4469 "sw_prod 0x%x "
4470 "sw_chain_cons 0x%x "
4471 "sw_chain_prod 0x%x "
4472 "hw_cons 0x%x "
4473 "TOTAL_RX_BD_PER_PAGE 0x%x "
4474 "TOTAL_RX_BD 0x%x\n",
4475 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4476 hw_cons,
4477 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4478 }
4479 #endif
4480 bus_dmamap_sync(sc->bnx_dmatag,
4481 sc->rx_mbuf_map[sw_chain_cons], 0,
4482 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4483 BUS_DMASYNC_POSTREAD);
4484 bus_dmamap_unload(sc->bnx_dmatag,
4485 sc->rx_mbuf_map[sw_chain_cons]);
4486
4487 /* Remove the mbuf from the driver's chain. */
4488 m = sc->rx_mbuf_ptr[sw_chain_cons];
4489 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4490
4491 /*
4492 * Frames received on the NetXteme II are prepended
4493 * with the l2_fhdr structure which provides status
4494 * information about the received frame (including
4495 * VLAN tags and checksum info) and are also
4496 * automatically adjusted to align the IP header
4497 * (i.e. two null bytes are inserted before the
4498 * Ethernet header).
4499 */
4500 l2fhdr = mtod(m, struct l2_fhdr *);
4501
4502 len = l2fhdr->l2_fhdr_pkt_len;
4503 status = l2fhdr->l2_fhdr_status;
4504
4505 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4506 aprint_error("Simulating l2_fhdr status error.\n");
4507 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4508
4509 /* Watch for unusual sized frames. */
4510 DBRUNIF(((len < BNX_MIN_MTU) ||
4511 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4512 aprint_error_dev(sc->bnx_dev,
4513 "Unusual frame size found. "
4514 "Min(%d), Actual(%d), Max(%d)\n",
4515 (int)BNX_MIN_MTU, len,
4516 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4517
4518 bnx_dump_mbuf(sc, m);
4519 bnx_breakpoint(sc));
4520
4521 len -= ETHER_CRC_LEN;
4522
4523 /* Check the received frame for errors. */
4524 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4525 L2_FHDR_ERRORS_PHY_DECODE |
4526 L2_FHDR_ERRORS_ALIGNMENT |
4527 L2_FHDR_ERRORS_TOO_SHORT |
4528 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4529 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4530 len >
4531 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4532 ifp->if_ierrors++;
4533 DBRUNIF(1, sc->l2fhdr_status_errors++);
4534
4535 /* Reuse the mbuf for a new frame. */
4536 if (bnx_add_buf(sc, m, &sw_prod,
4537 &sw_chain_prod, &sw_prod_bseq)) {
4538 DBRUNIF(1, bnx_breakpoint(sc));
4539 panic("%s: Can't reuse RX mbuf!\n",
4540 device_xname(sc->bnx_dev));
4541 }
4542 continue;
4543 }
4544
4545 /*
4546 * Get a new mbuf for the rx_bd. If no new
4547 * mbufs are available then reuse the current mbuf,
4548 * log an ierror on the interface, and generate
4549 * an error in the system log.
4550 */
4551 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4552 &sw_prod_bseq)) {
4553 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4554 "Failed to allocate "
4555 "new mbuf, incoming frame dropped!\n"));
4556
4557 ifp->if_ierrors++;
4558
4559 /* Try and reuse the exisitng mbuf. */
4560 if (bnx_add_buf(sc, m, &sw_prod,
4561 &sw_chain_prod, &sw_prod_bseq)) {
4562 DBRUNIF(1, bnx_breakpoint(sc));
4563 panic("%s: Double mbuf allocation "
4564 "failure!",
4565 device_xname(sc->bnx_dev));
4566 }
4567 continue;
4568 }
4569
4570 /* Skip over the l2_fhdr when passing the data up
4571 * the stack.
4572 */
4573 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4574
4575 /* Adjust the pckt length to match the received data. */
4576 m->m_pkthdr.len = m->m_len = len;
4577
4578 /* Send the packet to the appropriate interface. */
4579 m->m_pkthdr.rcvif = ifp;
4580
4581 DBRUN(BNX_VERBOSE_RECV,
4582 struct ether_header *eh;
4583 eh = mtod(m, struct ether_header *);
4584 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4585 __func__, ether_sprintf(eh->ether_dhost),
4586 ether_sprintf(eh->ether_shost),
4587 htons(eh->ether_type)));
4588
4589 /* Validate the checksum. */
4590
4591 /* Check for an IP datagram. */
4592 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4593 /* Check if the IP checksum is valid. */
4594 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4595 == 0)
4596 m->m_pkthdr.csum_flags |=
4597 M_CSUM_IPv4;
4598 #ifdef BNX_DEBUG
4599 else
4600 DBPRINT(sc, BNX_WARN_SEND,
4601 "%s(): Invalid IP checksum "
4602 "= 0x%04X!\n",
4603 __func__,
4604 l2fhdr->l2_fhdr_ip_xsum
4605 );
4606 #endif
4607 }
4608
4609 /* Check for a valid TCP/UDP frame. */
4610 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4611 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4612 /* Check for a good TCP/UDP checksum. */
4613 if ((status &
4614 (L2_FHDR_ERRORS_TCP_XSUM |
4615 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4616 m->m_pkthdr.csum_flags |=
4617 M_CSUM_TCPv4 |
4618 M_CSUM_UDPv4;
4619 } else {
4620 DBPRINT(sc, BNX_WARN_SEND,
4621 "%s(): Invalid TCP/UDP "
4622 "checksum = 0x%04X!\n",
4623 __func__,
4624 l2fhdr->l2_fhdr_tcp_udp_xsum);
4625 }
4626 }
4627
4628 /*
4629 * If we received a packet with a vlan tag,
4630 * attach that information to the packet.
4631 */
4632 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4633 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4634 VLAN_INPUT_TAG(ifp, m,
4635 l2fhdr->l2_fhdr_vlan_tag,
4636 continue);
4637 }
4638
4639 /*
4640 * Handle BPF listeners. Let the BPF
4641 * user see the packet.
4642 */
4643 bpf_mtap(ifp, m);
4644
4645 /* Pass the mbuf off to the upper layers. */
4646 ifp->if_ipackets++;
4647 DBPRINT(sc, BNX_VERBOSE_RECV,
4648 "%s(): Passing received frame up.\n", __func__);
4649 (*ifp->if_input)(ifp, m);
4650 DBRUNIF(1, sc->rx_mbuf_alloc--);
4651
4652 }
4653
4654 sw_cons = NEXT_RX_BD(sw_cons);
4655
4656 /* Refresh hw_cons to see if there's new work */
4657 if (sw_cons == hw_cons) {
4658 hw_cons = sc->hw_rx_cons =
4659 sblk->status_rx_quick_consumer_index0;
4660 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4661 USABLE_RX_BD_PER_PAGE)
4662 hw_cons++;
4663 }
4664
4665 /* Prevent speculative reads from getting ahead of
4666 * the status block.
4667 */
4668 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4669 BUS_SPACE_BARRIER_READ);
4670 }
4671
4672 for (i = 0; i < RX_PAGES; i++)
4673 bus_dmamap_sync(sc->bnx_dmatag,
4674 sc->rx_bd_chain_map[i], 0,
4675 sc->rx_bd_chain_map[i]->dm_mapsize,
4676 BUS_DMASYNC_PREWRITE);
4677
4678 sc->rx_cons = sw_cons;
4679 sc->rx_prod = sw_prod;
4680 sc->rx_prod_bseq = sw_prod_bseq;
4681
4682 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4683 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4684
4685 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4686 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4687 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4688 }
4689
4690 /****************************************************************************/
4691 /* Handles transmit completion interrupt events. */
4692 /* */
4693 /* Returns: */
4694 /* Nothing. */
4695 /****************************************************************************/
4696 void
4697 bnx_tx_intr(struct bnx_softc *sc)
4698 {
4699 struct status_block *sblk = sc->status_block;
4700 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4701 struct bnx_pkt *pkt;
4702 bus_dmamap_t map;
4703 uint16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4704
4705 DBRUNIF(1, sc->tx_interrupts++);
4706 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4707 BUS_DMASYNC_POSTREAD);
4708
4709 /* Get the hardware's view of the TX consumer index. */
4710 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4711
4712 /* Skip to the next entry if this is a chain page pointer. */
4713 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4714 hw_tx_cons++;
4715
4716 sw_tx_cons = sc->tx_cons;
4717
4718 /* Prevent speculative reads from getting ahead of the status block. */
4719 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4720 BUS_SPACE_BARRIER_READ);
4721
4722 /* Cycle through any completed TX chain page entries. */
4723 while (sw_tx_cons != hw_tx_cons) {
4724 #ifdef BNX_DEBUG
4725 struct tx_bd *txbd = NULL;
4726 #endif
4727 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4728
4729 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4730 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4731 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4732
4733 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4734 aprint_error_dev(sc->bnx_dev,
4735 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4736 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4737
4738 DBRUNIF(1, txbd = &sc->tx_bd_chain
4739 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4740
4741 DBRUNIF((txbd == NULL),
4742 aprint_error_dev(sc->bnx_dev,
4743 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4744 bnx_breakpoint(sc));
4745
4746 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4747 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4748
4749
4750 mutex_enter(&sc->tx_pkt_mtx);
4751 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4752 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4753 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4754 mutex_exit(&sc->tx_pkt_mtx);
4755 /*
4756 * Free the associated mbuf. Remember
4757 * that only the last tx_bd of a packet
4758 * has an mbuf pointer and DMA map.
4759 */
4760 map = pkt->pkt_dmamap;
4761 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4762 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4763 bus_dmamap_unload(sc->bnx_dmatag, map);
4764
4765 m_freem(pkt->pkt_mbuf);
4766 DBRUNIF(1, sc->tx_mbuf_alloc--);
4767
4768 ifp->if_opackets++;
4769
4770 mutex_enter(&sc->tx_pkt_mtx);
4771 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4772 }
4773 mutex_exit(&sc->tx_pkt_mtx);
4774
4775 sc->used_tx_bd--;
4776 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4777 __FILE__, __LINE__, sc->used_tx_bd);
4778
4779 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4780
4781 /* Refresh hw_cons to see if there's new work. */
4782 hw_tx_cons = sc->hw_tx_cons =
4783 sblk->status_tx_quick_consumer_index0;
4784 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4785 USABLE_TX_BD_PER_PAGE)
4786 hw_tx_cons++;
4787
4788 /* Prevent speculative reads from getting ahead of
4789 * the status block.
4790 */
4791 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4792 BUS_SPACE_BARRIER_READ);
4793 }
4794
4795 /* Clear the TX timeout timer. */
4796 ifp->if_timer = 0;
4797
4798 /* Clear the tx hardware queue full flag. */
4799 if (sc->used_tx_bd < sc->max_tx_bd) {
4800 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4801 aprint_debug_dev(sc->bnx_dev,
4802 "Open TX chain! %d/%d (used/total)\n",
4803 sc->used_tx_bd, sc->max_tx_bd));
4804 ifp->if_flags &= ~IFF_OACTIVE;
4805 }
4806
4807 sc->tx_cons = sw_tx_cons;
4808 }
4809
4810 /****************************************************************************/
4811 /* Disables interrupt generation. */
4812 /* */
4813 /* Returns: */
4814 /* Nothing. */
4815 /****************************************************************************/
4816 void
4817 bnx_disable_intr(struct bnx_softc *sc)
4818 {
4819 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4820 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4821 }
4822
4823 /****************************************************************************/
4824 /* Enables interrupt generation. */
4825 /* */
4826 /* Returns: */
4827 /* Nothing. */
4828 /****************************************************************************/
4829 void
4830 bnx_enable_intr(struct bnx_softc *sc)
4831 {
4832 uint32_t val;
4833
4834 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4835 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4836
4837 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4838 sc->last_status_idx);
4839
4840 val = REG_RD(sc, BNX_HC_COMMAND);
4841 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4842 }
4843
4844 /****************************************************************************/
4845 /* Handles controller initialization. */
4846 /* */
4847 /****************************************************************************/
4848 int
4849 bnx_init(struct ifnet *ifp)
4850 {
4851 struct bnx_softc *sc = ifp->if_softc;
4852 uint32_t ether_mtu;
4853 int s, error = 0;
4854
4855 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4856
4857 s = splnet();
4858
4859 bnx_stop(ifp, 0);
4860
4861 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4862 aprint_error_dev(sc->bnx_dev,
4863 "Controller reset failed!\n");
4864 goto bnx_init_exit;
4865 }
4866
4867 if ((error = bnx_chipinit(sc)) != 0) {
4868 aprint_error_dev(sc->bnx_dev,
4869 "Controller initialization failed!\n");
4870 goto bnx_init_exit;
4871 }
4872
4873 if ((error = bnx_blockinit(sc)) != 0) {
4874 aprint_error_dev(sc->bnx_dev,
4875 "Block initialization failed!\n");
4876 goto bnx_init_exit;
4877 }
4878
4879 /* Calculate and program the Ethernet MRU size. */
4880 if (ifp->if_mtu <= ETHERMTU) {
4881 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4882 sc->mbuf_alloc_size = MCLBYTES;
4883 } else {
4884 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4885 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4886 }
4887
4888
4889 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4890 __func__, ether_mtu);
4891
4892 /*
4893 * Program the MRU and enable Jumbo frame
4894 * support.
4895 */
4896 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4897 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4898
4899 /* Calculate the RX Ethernet frame size for rx_bd's. */
4900 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4901
4902 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4903 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4904 sc->mbuf_alloc_size, sc->max_frame_size);
4905
4906 /* Program appropriate promiscuous/multicast filtering. */
4907 bnx_iff(sc);
4908
4909 /* Init RX buffer descriptor chain. */
4910 bnx_init_rx_chain(sc);
4911
4912 /* Init TX buffer descriptor chain. */
4913 bnx_init_tx_chain(sc);
4914
4915 /* Enable host interrupts. */
4916 bnx_enable_intr(sc);
4917
4918 if ((error = ether_mediachange(ifp)) != 0)
4919 goto bnx_init_exit;
4920
4921 SET(ifp->if_flags, IFF_RUNNING);
4922 CLR(ifp->if_flags, IFF_OACTIVE);
4923
4924 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4925
4926 bnx_init_exit:
4927 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4928
4929 splx(s);
4930
4931 return error;
4932 }
4933
4934 /****************************************************************************/
4935 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4936 /* memory visible to the controller. */
4937 /* */
4938 /* Returns: */
4939 /* 0 for success, positive value for failure. */
4940 /****************************************************************************/
4941 int
4942 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4943 {
4944 struct bnx_pkt *pkt;
4945 bus_dmamap_t map;
4946 struct tx_bd *txbd = NULL;
4947 uint16_t vlan_tag = 0, flags = 0;
4948 uint16_t chain_prod, prod;
4949 #ifdef BNX_DEBUG
4950 uint16_t debug_prod;
4951 #endif
4952 uint32_t addr, prod_bseq;
4953 int i, error;
4954 struct m_tag *mtag;
4955 static struct work bnx_wk; /* Dummy work. Statically allocated. */
4956
4957 mutex_enter(&sc->tx_pkt_mtx);
4958 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4959 if (pkt == NULL) {
4960 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4961 mutex_exit(&sc->tx_pkt_mtx);
4962 return ENETDOWN;
4963 }
4964
4965 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
4966 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
4967 workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
4968 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4969 }
4970
4971 mutex_exit(&sc->tx_pkt_mtx);
4972 return ENOMEM;
4973 }
4974 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4975 mutex_exit(&sc->tx_pkt_mtx);
4976
4977 /* Transfer any checksum offload flags to the bd. */
4978 if (m->m_pkthdr.csum_flags) {
4979 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4980 flags |= TX_BD_FLAGS_IP_CKSUM;
4981 if (m->m_pkthdr.csum_flags &
4982 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4983 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4984 }
4985
4986 /* Transfer any VLAN tags to the bd. */
4987 mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4988 if (mtag != NULL) {
4989 flags |= TX_BD_FLAGS_VLAN_TAG;
4990 vlan_tag = VLAN_TAG_VALUE(mtag);
4991 }
4992
4993 /* Map the mbuf into DMAable memory. */
4994 prod = sc->tx_prod;
4995 chain_prod = TX_CHAIN_IDX(prod);
4996 map = pkt->pkt_dmamap;
4997
4998 /* Map the mbuf into our DMA address space. */
4999 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
5000 if (error != 0) {
5001 aprint_error_dev(sc->bnx_dev,
5002 "Error mapping mbuf into TX chain!\n");
5003 sc->tx_dma_map_failures++;
5004 goto maperr;
5005 }
5006 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
5007 BUS_DMASYNC_PREWRITE);
5008 /* Make sure there's room in the chain */
5009 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
5010 goto nospace;
5011
5012 /* prod points to an empty tx_bd at this point. */
5013 prod_bseq = sc->tx_prod_bseq;
5014 #ifdef BNX_DEBUG
5015 debug_prod = chain_prod;
5016 #endif
5017 DBPRINT(sc, BNX_INFO_SEND,
5018 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5019 "prod_bseq = 0x%08X\n",
5020 __func__, prod, chain_prod, prod_bseq);
5021
5022 /*
5023 * Cycle through each mbuf segment that makes up
5024 * the outgoing frame, gathering the mapping info
5025 * for that segment and creating a tx_bd for the
5026 * mbuf.
5027 */
5028 for (i = 0; i < map->dm_nsegs ; i++) {
5029 chain_prod = TX_CHAIN_IDX(prod);
5030 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5031
5032 addr = (uint32_t)map->dm_segs[i].ds_addr;
5033 txbd->tx_bd_haddr_lo = addr;
5034 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5035 txbd->tx_bd_haddr_hi = addr;
5036 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5037 txbd->tx_bd_vlan_tag = vlan_tag;
5038 txbd->tx_bd_flags = flags;
5039 prod_bseq += map->dm_segs[i].ds_len;
5040 if (i == 0)
5041 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5042 prod = NEXT_TX_BD(prod);
5043 }
5044 /* Set the END flag on the last TX buffer descriptor. */
5045 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5046
5047 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5048
5049 DBPRINT(sc, BNX_INFO_SEND,
5050 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
5051 "prod_bseq = 0x%08X\n",
5052 __func__, prod, chain_prod, prod_bseq);
5053
5054 pkt->pkt_mbuf = m;
5055 pkt->pkt_end_desc = chain_prod;
5056
5057 mutex_enter(&sc->tx_pkt_mtx);
5058 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5059 mutex_exit(&sc->tx_pkt_mtx);
5060
5061 sc->used_tx_bd += map->dm_nsegs;
5062 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5063 __FILE__, __LINE__, sc->used_tx_bd);
5064
5065 /* Update some debug statistics counters */
5066 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5067 sc->tx_hi_watermark = sc->used_tx_bd);
5068 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5069 DBRUNIF(1, sc->tx_mbuf_alloc++);
5070
5071 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5072 map->dm_nsegs));
5073
5074 /* prod points to the next free tx_bd at this point. */
5075 sc->tx_prod = prod;
5076 sc->tx_prod_bseq = prod_bseq;
5077
5078 return 0;
5079
5080
5081 nospace:
5082 bus_dmamap_unload(sc->bnx_dmatag, map);
5083 maperr:
5084 mutex_enter(&sc->tx_pkt_mtx);
5085 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5086 mutex_exit(&sc->tx_pkt_mtx);
5087
5088 return ENOMEM;
5089 }
5090
5091 /****************************************************************************/
5092 /* Main transmit routine. */
5093 /* */
5094 /* Returns: */
5095 /* Nothing. */
5096 /****************************************************************************/
5097 void
5098 bnx_start(struct ifnet *ifp)
5099 {
5100 struct bnx_softc *sc = ifp->if_softc;
5101 struct mbuf *m_head = NULL;
5102 int count = 0;
5103 #ifdef BNX_DEBUG
5104 uint16_t tx_chain_prod;
5105 #endif
5106
5107 /* If there's no link or the transmit queue is empty then just exit. */
5108 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
5109 DBPRINT(sc, BNX_INFO_SEND,
5110 "%s(): output active or device not running.\n", __func__);
5111 goto bnx_start_exit;
5112 }
5113
5114 /* prod points to the next free tx_bd. */
5115 #ifdef BNX_DEBUG
5116 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5117 #endif
5118
5119 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5120 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5121 "used_tx %d max_tx %d\n",
5122 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5123 sc->used_tx_bd, sc->max_tx_bd);
5124
5125 /*
5126 * Keep adding entries while there is space in the ring.
5127 */
5128 while (sc->used_tx_bd < sc->max_tx_bd) {
5129 /* Check for any frames to send. */
5130 IFQ_POLL(&ifp->if_snd, m_head);
5131 if (m_head == NULL)
5132 break;
5133
5134 /*
5135 * Pack the data into the transmit ring. If we
5136 * don't have room, set the OACTIVE flag to wait
5137 * for the NIC to drain the chain.
5138 */
5139 if (bnx_tx_encap(sc, m_head)) {
5140 ifp->if_flags |= IFF_OACTIVE;
5141 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5142 "business! Total tx_bd used = %d\n",
5143 sc->used_tx_bd);
5144 break;
5145 }
5146
5147 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5148 count++;
5149
5150 /* Send a copy of the frame to any BPF listeners. */
5151 bpf_mtap(ifp, m_head);
5152 }
5153
5154 if (count == 0) {
5155 /* no packets were dequeued */
5156 DBPRINT(sc, BNX_VERBOSE_SEND,
5157 "%s(): No packets were dequeued\n", __func__);
5158 goto bnx_start_exit;
5159 }
5160
5161 /* Update the driver's counters. */
5162 #ifdef BNX_DEBUG
5163 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5164 #endif
5165
5166 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
5167 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
5168 tx_chain_prod, sc->tx_prod_bseq);
5169
5170 /* Start the transmit. */
5171 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5172 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5173
5174 /* Set the tx timeout. */
5175 ifp->if_timer = BNX_TX_TIMEOUT;
5176
5177 bnx_start_exit:
5178 return;
5179 }
5180
5181 /****************************************************************************/
5182 /* Handles any IOCTL calls from the operating system. */
5183 /* */
5184 /* Returns: */
5185 /* 0 for success, positive value for failure. */
5186 /****************************************************************************/
5187 int
5188 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5189 {
5190 struct bnx_softc *sc = ifp->if_softc;
5191 struct ifreq *ifr = (struct ifreq *) data;
5192 struct mii_data *mii = &sc->bnx_mii;
5193 int s, error = 0;
5194
5195 s = splnet();
5196
5197 switch (command) {
5198 case SIOCSIFFLAGS:
5199 if ((error = ifioctl_common(ifp, command, data)) != 0)
5200 break;
5201 /* XXX set an ifflags callback and let ether_ioctl
5202 * handle all of this.
5203 */
5204 if (ISSET(ifp->if_flags, IFF_UP)) {
5205 if (ifp->if_flags & IFF_RUNNING)
5206 error = ENETRESET;
5207 else
5208 bnx_init(ifp);
5209 } else if (ifp->if_flags & IFF_RUNNING)
5210 bnx_stop(ifp, 1);
5211 break;
5212
5213 case SIOCSIFMEDIA:
5214 case SIOCGIFMEDIA:
5215 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5216 sc->bnx_phy_flags);
5217
5218 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5219 break;
5220
5221 default:
5222 error = ether_ioctl(ifp, command, data);
5223 }
5224
5225 if (error == ENETRESET) {
5226 if (ifp->if_flags & IFF_RUNNING)
5227 bnx_iff(sc);
5228 error = 0;
5229 }
5230
5231 splx(s);
5232 return error;
5233 }
5234
5235 /****************************************************************************/
5236 /* Transmit timeout handler. */
5237 /* */
5238 /* Returns: */
5239 /* Nothing. */
5240 /****************************************************************************/
5241 void
5242 bnx_watchdog(struct ifnet *ifp)
5243 {
5244 struct bnx_softc *sc = ifp->if_softc;
5245
5246 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5247 bnx_dump_status_block(sc));
5248 /*
5249 * If we are in this routine because of pause frames, then
5250 * don't reset the hardware.
5251 */
5252 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5253 return;
5254
5255 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5256
5257 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5258
5259 bnx_init(ifp);
5260
5261 ifp->if_oerrors++;
5262 }
5263
5264 /*
5265 * Interrupt handler.
5266 */
5267 /****************************************************************************/
5268 /* Main interrupt entry point. Verifies that the controller generated the */
5269 /* interrupt and then calls a separate routine for handle the various */
5270 /* interrupt causes (PHY, TX, RX). */
5271 /* */
5272 /* Returns: */
5273 /* 0 for success, positive value for failure. */
5274 /****************************************************************************/
5275 int
5276 bnx_intr(void *xsc)
5277 {
5278 struct bnx_softc *sc;
5279 struct ifnet *ifp;
5280 uint32_t status_attn_bits;
5281 const struct status_block *sblk;
5282
5283 sc = xsc;
5284
5285 ifp = &sc->bnx_ec.ec_if;
5286
5287 if (!device_is_active(sc->bnx_dev) ||
5288 (ifp->if_flags & IFF_RUNNING) == 0)
5289 return 0;
5290
5291 DBRUNIF(1, sc->interrupts_generated++);
5292
5293 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5294 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5295
5296 /*
5297 * If the hardware status block index
5298 * matches the last value read by the
5299 * driver and we haven't asserted our
5300 * interrupt then there's nothing to do.
5301 */
5302 if ((sc->status_block->status_idx == sc->last_status_idx) &&
5303 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5304 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5305 return 0;
5306
5307 /* Ack the interrupt and stop others from occuring. */
5308 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5309 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5310 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5311
5312 /* Keep processing data as long as there is work to do. */
5313 for (;;) {
5314 sblk = sc->status_block;
5315 status_attn_bits = sblk->status_attn_bits;
5316
5317 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5318 aprint_debug("Simulating unexpected status attention bit set.");
5319 status_attn_bits = status_attn_bits |
5320 STATUS_ATTN_BITS_PARITY_ERROR);
5321
5322 /* Was it a link change interrupt? */
5323 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5324 (sblk->status_attn_bits_ack &
5325 STATUS_ATTN_BITS_LINK_STATE))
5326 bnx_phy_intr(sc);
5327
5328 /* If any other attention is asserted then the chip is toast. */
5329 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5330 (sblk->status_attn_bits_ack &
5331 ~STATUS_ATTN_BITS_LINK_STATE))) {
5332 DBRUN(1, sc->unexpected_attentions++);
5333
5334 BNX_PRINTF(sc,
5335 "Fatal attention detected: 0x%08X\n",
5336 sblk->status_attn_bits);
5337
5338 DBRUN(BNX_FATAL,
5339 if (bnx_debug_unexpected_attention == 0)
5340 bnx_breakpoint(sc));
5341
5342 bnx_init(ifp);
5343 return 1;
5344 }
5345
5346 /* Check for any completed RX frames. */
5347 if (sblk->status_rx_quick_consumer_index0 !=
5348 sc->hw_rx_cons)
5349 bnx_rx_intr(sc);
5350
5351 /* Check for any completed TX frames. */
5352 if (sblk->status_tx_quick_consumer_index0 !=
5353 sc->hw_tx_cons)
5354 bnx_tx_intr(sc);
5355
5356 /*
5357 * Save the status block index value for use during the
5358 * next interrupt.
5359 */
5360 sc->last_status_idx = sblk->status_idx;
5361
5362 /* Prevent speculative reads from getting ahead of the
5363 * status block.
5364 */
5365 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5366 BUS_SPACE_BARRIER_READ);
5367
5368 /* If there's no work left then exit the isr. */
5369 if ((sblk->status_rx_quick_consumer_index0 ==
5370 sc->hw_rx_cons) &&
5371 (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
5372 break;
5373 }
5374
5375 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5376 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5377
5378 /* Re-enable interrupts. */
5379 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5380 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5381 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5382 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5383 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5384
5385 /* Handle any frames that arrived while handling the interrupt. */
5386 if (!IFQ_IS_EMPTY(&ifp->if_snd))
5387 bnx_start(ifp);
5388
5389 return 1;
5390 }
5391
5392 /****************************************************************************/
5393 /* Programs the various packet receive modes (broadcast and multicast). */
5394 /* */
5395 /* Returns: */
5396 /* Nothing. */
5397 /****************************************************************************/
5398 void
5399 bnx_iff(struct bnx_softc *sc)
5400 {
5401 struct ethercom *ec = &sc->bnx_ec;
5402 struct ifnet *ifp = &ec->ec_if;
5403 struct ether_multi *enm;
5404 struct ether_multistep step;
5405 uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5406 uint32_t rx_mode, sort_mode;
5407 int h, i;
5408
5409 /* Initialize receive mode default settings. */
5410 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5411 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5412 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5413 ifp->if_flags &= ~IFF_ALLMULTI;
5414
5415 /*
5416 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5417 * be enbled.
5418 */
5419 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5420 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5421
5422 /*
5423 * Check for promiscuous, all multicast, or selected
5424 * multicast address filtering.
5425 */
5426 if (ifp->if_flags & IFF_PROMISC) {
5427 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5428
5429 ifp->if_flags |= IFF_ALLMULTI;
5430 /* Enable promiscuous mode. */
5431 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5432 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5433 } else if (ifp->if_flags & IFF_ALLMULTI) {
5434 allmulti:
5435 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5436
5437 ifp->if_flags |= IFF_ALLMULTI;
5438 /* Enable all multicast addresses. */
5439 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5440 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5441 0xffffffff);
5442 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5443 } else {
5444 /* Accept one or more multicast(s). */
5445 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5446
5447 ETHER_FIRST_MULTI(step, ec, enm);
5448 while (enm != NULL) {
5449 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5450 ETHER_ADDR_LEN)) {
5451 goto allmulti;
5452 }
5453 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5454 0xFF;
5455 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5456 ETHER_NEXT_MULTI(step, enm);
5457 }
5458
5459 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5460 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5461 hashes[i]);
5462
5463 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5464 }
5465
5466 /* Only make changes if the recive mode has actually changed. */
5467 if (rx_mode != sc->rx_mode) {
5468 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5469 rx_mode);
5470
5471 sc->rx_mode = rx_mode;
5472 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5473 }
5474
5475 /* Disable and clear the exisitng sort before enabling a new sort. */
5476 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5477 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5478 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5479 }
5480
5481 /****************************************************************************/
5482 /* Called periodically to updates statistics from the controllers */
5483 /* statistics block. */
5484 /* */
5485 /* Returns: */
5486 /* Nothing. */
5487 /****************************************************************************/
5488 void
5489 bnx_stats_update(struct bnx_softc *sc)
5490 {
5491 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5492 struct statistics_block *stats;
5493
5494 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5495 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5496 BUS_DMASYNC_POSTREAD);
5497
5498 stats = (struct statistics_block *)sc->stats_block;
5499
5500 /*
5501 * Update the interface statistics from the
5502 * hardware statistics.
5503 */
5504 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5505
5506 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5507 (u_long)stats->stat_EtherStatsOverrsizePkts +
5508 (u_long)stats->stat_IfInMBUFDiscards +
5509 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5510 (u_long)stats->stat_Dot3StatsFCSErrors;
5511
5512 ifp->if_oerrors = (u_long)
5513 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5514 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5515 (u_long)stats->stat_Dot3StatsLateCollisions;
5516
5517 /*
5518 * Certain controllers don't report
5519 * carrier sense errors correctly.
5520 * See errata E11_5708CA0_1165.
5521 */
5522 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5523 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5524 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5525
5526 /*
5527 * Update the sysctl statistics from the
5528 * hardware statistics.
5529 */
5530 sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5531 (uint64_t) stats->stat_IfHCInOctets_lo;
5532
5533 sc->stat_IfHCInBadOctets =
5534 ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5535 (uint64_t) stats->stat_IfHCInBadOctets_lo;
5536
5537 sc->stat_IfHCOutOctets =
5538 ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5539 (uint64_t) stats->stat_IfHCOutOctets_lo;
5540
5541 sc->stat_IfHCOutBadOctets =
5542 ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5543 (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5544
5545 sc->stat_IfHCInUcastPkts =
5546 ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5547 (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5548
5549 sc->stat_IfHCInMulticastPkts =
5550 ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5551 (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5552
5553 sc->stat_IfHCInBroadcastPkts =
5554 ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5555 (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5556
5557 sc->stat_IfHCOutUcastPkts =
5558 ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5559 (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5560
5561 sc->stat_IfHCOutMulticastPkts =
5562 ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5563 (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5564
5565 sc->stat_IfHCOutBroadcastPkts =
5566 ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5567 (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5568
5569 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5570 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5571
5572 sc->stat_Dot3StatsCarrierSenseErrors =
5573 stats->stat_Dot3StatsCarrierSenseErrors;
5574
5575 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5576
5577 sc->stat_Dot3StatsAlignmentErrors =
5578 stats->stat_Dot3StatsAlignmentErrors;
5579
5580 sc->stat_Dot3StatsSingleCollisionFrames =
5581 stats->stat_Dot3StatsSingleCollisionFrames;
5582
5583 sc->stat_Dot3StatsMultipleCollisionFrames =
5584 stats->stat_Dot3StatsMultipleCollisionFrames;
5585
5586 sc->stat_Dot3StatsDeferredTransmissions =
5587 stats->stat_Dot3StatsDeferredTransmissions;
5588
5589 sc->stat_Dot3StatsExcessiveCollisions =
5590 stats->stat_Dot3StatsExcessiveCollisions;
5591
5592 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5593
5594 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5595
5596 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5597
5598 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5599
5600 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5601
5602 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5603
5604 sc->stat_EtherStatsPktsRx64Octets =
5605 stats->stat_EtherStatsPktsRx64Octets;
5606
5607 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5608 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5609
5610 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5611 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5612
5613 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5614 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5615
5616 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5617 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5618
5619 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5620 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5621
5622 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5623 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5624
5625 sc->stat_EtherStatsPktsTx64Octets =
5626 stats->stat_EtherStatsPktsTx64Octets;
5627
5628 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5629 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5630
5631 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5632 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5633
5634 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5635 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5636
5637 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5638 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5639
5640 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5641 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5642
5643 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5644 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5645
5646 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5647
5648 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5649
5650 sc->stat_OutXonSent = stats->stat_OutXonSent;
5651
5652 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5653
5654 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5655
5656 sc->stat_MacControlFramesReceived =
5657 stats->stat_MacControlFramesReceived;
5658
5659 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5660
5661 sc->stat_IfInFramesL2FilterDiscards =
5662 stats->stat_IfInFramesL2FilterDiscards;
5663
5664 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5665
5666 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5667
5668 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5669
5670 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5671
5672 sc->stat_CatchupInRuleCheckerDiscards =
5673 stats->stat_CatchupInRuleCheckerDiscards;
5674
5675 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5676
5677 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5678
5679 sc->stat_CatchupInRuleCheckerP4Hit =
5680 stats->stat_CatchupInRuleCheckerP4Hit;
5681
5682 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5683 }
5684
5685 void
5686 bnx_tick(void *xsc)
5687 {
5688 struct bnx_softc *sc = xsc;
5689 struct mii_data *mii;
5690 uint32_t msg;
5691 uint16_t prod, chain_prod;
5692 uint32_t prod_bseq;
5693 int s = splnet();
5694
5695 /* Tell the firmware that the driver is still running. */
5696 #ifdef BNX_DEBUG
5697 msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5698 #else
5699 msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5700 #endif
5701 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5702
5703 /* Update the statistics from the hardware statistics block. */
5704 bnx_stats_update(sc);
5705
5706 /* Schedule the next tick. */
5707 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5708
5709 mii = &sc->bnx_mii;
5710 mii_tick(mii);
5711
5712 /* try to get more RX buffers, just in case */
5713 prod = sc->rx_prod;
5714 prod_bseq = sc->rx_prod_bseq;
5715 chain_prod = RX_CHAIN_IDX(prod);
5716 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5717 sc->rx_prod = prod;
5718 sc->rx_prod_bseq = prod_bseq;
5719 splx(s);
5720 return;
5721 }
5722
5723 /****************************************************************************/
5724 /* BNX Debug Routines */
5725 /****************************************************************************/
5726 #ifdef BNX_DEBUG
5727
5728 /****************************************************************************/
5729 /* Prints out information about an mbuf. */
5730 /* */
5731 /* Returns: */
5732 /* Nothing. */
5733 /****************************************************************************/
5734 void
5735 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5736 {
5737 struct mbuf *mp = m;
5738
5739 if (m == NULL) {
5740 /* Index out of range. */
5741 aprint_error("mbuf ptr is null!\n");
5742 return;
5743 }
5744
5745 while (mp) {
5746 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5747 mp, mp->m_len);
5748
5749 if (mp->m_flags & M_EXT)
5750 aprint_debug("M_EXT ");
5751 if (mp->m_flags & M_PKTHDR)
5752 aprint_debug("M_PKTHDR ");
5753 aprint_debug("\n");
5754
5755 if (mp->m_flags & M_EXT)
5756 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5757 mp, mp->m_ext.ext_size);
5758
5759 mp = mp->m_next;
5760 }
5761 }
5762
5763 /****************************************************************************/
5764 /* Prints out the mbufs in the TX mbuf chain. */
5765 /* */
5766 /* Returns: */
5767 /* Nothing. */
5768 /****************************************************************************/
5769 void
5770 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5771 {
5772 #if 0
5773 struct mbuf *m;
5774 int i;
5775
5776 aprint_debug_dev(sc->bnx_dev,
5777 "----------------------------"
5778 " tx mbuf data "
5779 "----------------------------\n");
5780
5781 for (i = 0; i < count; i++) {
5782 m = sc->tx_mbuf_ptr[chain_prod];
5783 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5784 bnx_dump_mbuf(sc, m);
5785 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5786 }
5787
5788 aprint_debug_dev(sc->bnx_dev,
5789 "--------------------------------------------"
5790 "----------------------------\n");
5791 #endif
5792 }
5793
5794 /*
5795 * This routine prints the RX mbuf chain.
5796 */
5797 void
5798 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5799 {
5800 struct mbuf *m;
5801 int i;
5802
5803 aprint_debug_dev(sc->bnx_dev,
5804 "----------------------------"
5805 " rx mbuf data "
5806 "----------------------------\n");
5807
5808 for (i = 0; i < count; i++) {
5809 m = sc->rx_mbuf_ptr[chain_prod];
5810 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5811 bnx_dump_mbuf(sc, m);
5812 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5813 }
5814
5815
5816 aprint_debug_dev(sc->bnx_dev,
5817 "--------------------------------------------"
5818 "----------------------------\n");
5819 }
5820
5821 void
5822 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5823 {
5824 if (idx > MAX_TX_BD)
5825 /* Index out of range. */
5826 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5827 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5828 /* TX Chain page pointer. */
5829 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5830 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5831 txbd->tx_bd_haddr_lo);
5832 else
5833 /* Normal tx_bd entry. */
5834 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5835 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5836 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5837 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5838 txbd->tx_bd_flags);
5839 }
5840
5841 void
5842 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5843 {
5844 if (idx > MAX_RX_BD)
5845 /* Index out of range. */
5846 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5847 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5848 /* TX Chain page pointer. */
5849 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5850 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5851 rxbd->rx_bd_haddr_lo);
5852 else
5853 /* Normal tx_bd entry. */
5854 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5855 "0x%08X, flags = 0x%08X\n", idx,
5856 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5857 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5858 }
5859
5860 void
5861 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5862 {
5863 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5864 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5865 "tcp_udp_xsum = 0x%04X\n", idx,
5866 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5867 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5868 l2fhdr->l2_fhdr_tcp_udp_xsum);
5869 }
5870
5871 /*
5872 * This routine prints the TX chain.
5873 */
5874 void
5875 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5876 {
5877 struct tx_bd *txbd;
5878 int i;
5879
5880 /* First some info about the tx_bd chain structure. */
5881 aprint_debug_dev(sc->bnx_dev,
5882 "----------------------------"
5883 " tx_bd chain "
5884 "----------------------------\n");
5885
5886 BNX_PRINTF(sc,
5887 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5888 (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
5889
5890 BNX_PRINTF(sc,
5891 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5892 (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
5893
5894 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", TOTAL_TX_BD);
5895
5896 aprint_error_dev(sc->bnx_dev, ""
5897 "-----------------------------"
5898 " tx_bd data "
5899 "-----------------------------\n");
5900
5901 /* Now print out the tx_bd's themselves. */
5902 for (i = 0; i < count; i++) {
5903 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5904 bnx_dump_txbd(sc, tx_prod, txbd);
5905 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5906 }
5907
5908 aprint_debug_dev(sc->bnx_dev,
5909 "-----------------------------"
5910 "--------------"
5911 "-----------------------------\n");
5912 }
5913
5914 /*
5915 * This routine prints the RX chain.
5916 */
5917 void
5918 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5919 {
5920 struct rx_bd *rxbd;
5921 int i;
5922
5923 /* First some info about the tx_bd chain structure. */
5924 aprint_debug_dev(sc->bnx_dev,
5925 "----------------------------"
5926 " rx_bd chain "
5927 "----------------------------\n");
5928
5929 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5930
5931 BNX_PRINTF(sc,
5932 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5933 (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
5934
5935 BNX_PRINTF(sc,
5936 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5937 (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
5938
5939 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", TOTAL_RX_BD);
5940
5941 aprint_error_dev(sc->bnx_dev,
5942 "----------------------------"
5943 " rx_bd data "
5944 "----------------------------\n");
5945
5946 /* Now print out the rx_bd's themselves. */
5947 for (i = 0; i < count; i++) {
5948 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5949 bnx_dump_rxbd(sc, rx_prod, rxbd);
5950 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5951 }
5952
5953 aprint_debug_dev(sc->bnx_dev,
5954 "----------------------------"
5955 "--------------"
5956 "----------------------------\n");
5957 }
5958
5959 /*
5960 * This routine prints the status block.
5961 */
5962 void
5963 bnx_dump_status_block(struct bnx_softc *sc)
5964 {
5965 struct status_block *sblk;
5966 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5967 BUS_DMASYNC_POSTREAD);
5968
5969 sblk = sc->status_block;
5970
5971 aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5972 "-----------------------------\n");
5973
5974 BNX_PRINTF(sc,
5975 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5976 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5977 sblk->status_idx);
5978
5979 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5980 sblk->status_rx_quick_consumer_index0,
5981 sblk->status_tx_quick_consumer_index0);
5982
5983 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5984
5985 /* Theses indices are not used for normal L2 drivers. */
5986 if (sblk->status_rx_quick_consumer_index1 ||
5987 sblk->status_tx_quick_consumer_index1)
5988 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5989 sblk->status_rx_quick_consumer_index1,
5990 sblk->status_tx_quick_consumer_index1);
5991
5992 if (sblk->status_rx_quick_consumer_index2 ||
5993 sblk->status_tx_quick_consumer_index2)
5994 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5995 sblk->status_rx_quick_consumer_index2,
5996 sblk->status_tx_quick_consumer_index2);
5997
5998 if (sblk->status_rx_quick_consumer_index3 ||
5999 sblk->status_tx_quick_consumer_index3)
6000 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
6001 sblk->status_rx_quick_consumer_index3,
6002 sblk->status_tx_quick_consumer_index3);
6003
6004 if (sblk->status_rx_quick_consumer_index4 ||
6005 sblk->status_rx_quick_consumer_index5)
6006 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
6007 sblk->status_rx_quick_consumer_index4,
6008 sblk->status_rx_quick_consumer_index5);
6009
6010 if (sblk->status_rx_quick_consumer_index6 ||
6011 sblk->status_rx_quick_consumer_index7)
6012 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
6013 sblk->status_rx_quick_consumer_index6,
6014 sblk->status_rx_quick_consumer_index7);
6015
6016 if (sblk->status_rx_quick_consumer_index8 ||
6017 sblk->status_rx_quick_consumer_index9)
6018 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
6019 sblk->status_rx_quick_consumer_index8,
6020 sblk->status_rx_quick_consumer_index9);
6021
6022 if (sblk->status_rx_quick_consumer_index10 ||
6023 sblk->status_rx_quick_consumer_index11)
6024 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
6025 sblk->status_rx_quick_consumer_index10,
6026 sblk->status_rx_quick_consumer_index11);
6027
6028 if (sblk->status_rx_quick_consumer_index12 ||
6029 sblk->status_rx_quick_consumer_index13)
6030 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
6031 sblk->status_rx_quick_consumer_index12,
6032 sblk->status_rx_quick_consumer_index13);
6033
6034 if (sblk->status_rx_quick_consumer_index14 ||
6035 sblk->status_rx_quick_consumer_index15)
6036 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
6037 sblk->status_rx_quick_consumer_index14,
6038 sblk->status_rx_quick_consumer_index15);
6039
6040 if (sblk->status_completion_producer_index ||
6041 sblk->status_cmd_consumer_index)
6042 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
6043 sblk->status_completion_producer_index,
6044 sblk->status_cmd_consumer_index);
6045
6046 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6047 "-----------------------------\n");
6048 }
6049
6050 /*
6051 * This routine prints the statistics block.
6052 */
6053 void
6054 bnx_dump_stats_block(struct bnx_softc *sc)
6055 {
6056 struct statistics_block *sblk;
6057 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6058 BUS_DMASYNC_POSTREAD);
6059
6060 sblk = sc->stats_block;
6061
6062 aprint_debug_dev(sc->bnx_dev, ""
6063 "-----------------------------"
6064 " Stats Block "
6065 "-----------------------------\n");
6066
6067 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
6068 "IfHcInBadOctets = 0x%08X:%08X\n",
6069 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6070 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6071
6072 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
6073 "IfHcOutBadOctets = 0x%08X:%08X\n",
6074 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6075 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6076
6077 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
6078 "IfHcInMulticastPkts = 0x%08X:%08X\n",
6079 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6080 sblk->stat_IfHCInMulticastPkts_hi,
6081 sblk->stat_IfHCInMulticastPkts_lo);
6082
6083 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
6084 "IfHcOutUcastPkts = 0x%08X:%08X\n",
6085 sblk->stat_IfHCInBroadcastPkts_hi,
6086 sblk->stat_IfHCInBroadcastPkts_lo,
6087 sblk->stat_IfHCOutUcastPkts_hi,
6088 sblk->stat_IfHCOutUcastPkts_lo);
6089
6090 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6091 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6092 sblk->stat_IfHCOutMulticastPkts_hi,
6093 sblk->stat_IfHCOutMulticastPkts_lo,
6094 sblk->stat_IfHCOutBroadcastPkts_hi,
6095 sblk->stat_IfHCOutBroadcastPkts_lo);
6096
6097 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6098 BNX_PRINTF(sc, "0x%08X : "
6099 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6100 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6101
6102 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6103 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6104 sblk->stat_Dot3StatsCarrierSenseErrors);
6105
6106 if (sblk->stat_Dot3StatsFCSErrors)
6107 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6108 sblk->stat_Dot3StatsFCSErrors);
6109
6110 if (sblk->stat_Dot3StatsAlignmentErrors)
6111 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6112 sblk->stat_Dot3StatsAlignmentErrors);
6113
6114 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6115 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6116 sblk->stat_Dot3StatsSingleCollisionFrames);
6117
6118 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6119 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6120 sblk->stat_Dot3StatsMultipleCollisionFrames);
6121
6122 if (sblk->stat_Dot3StatsDeferredTransmissions)
6123 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6124 sblk->stat_Dot3StatsDeferredTransmissions);
6125
6126 if (sblk->stat_Dot3StatsExcessiveCollisions)
6127 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6128 sblk->stat_Dot3StatsExcessiveCollisions);
6129
6130 if (sblk->stat_Dot3StatsLateCollisions)
6131 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6132 sblk->stat_Dot3StatsLateCollisions);
6133
6134 if (sblk->stat_EtherStatsCollisions)
6135 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6136 sblk->stat_EtherStatsCollisions);
6137
6138 if (sblk->stat_EtherStatsFragments)
6139 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6140 sblk->stat_EtherStatsFragments);
6141
6142 if (sblk->stat_EtherStatsJabbers)
6143 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6144 sblk->stat_EtherStatsJabbers);
6145
6146 if (sblk->stat_EtherStatsUndersizePkts)
6147 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6148 sblk->stat_EtherStatsUndersizePkts);
6149
6150 if (sblk->stat_EtherStatsOverrsizePkts)
6151 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6152 sblk->stat_EtherStatsOverrsizePkts);
6153
6154 if (sblk->stat_EtherStatsPktsRx64Octets)
6155 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6156 sblk->stat_EtherStatsPktsRx64Octets);
6157
6158 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6159 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6160 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6161
6162 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6163 BNX_PRINTF(sc, "0x%08X : "
6164 "EtherStatsPktsRx128Octetsto255Octets\n",
6165 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6166
6167 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6168 BNX_PRINTF(sc, "0x%08X : "
6169 "EtherStatsPktsRx256Octetsto511Octets\n",
6170 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6171
6172 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6173 BNX_PRINTF(sc, "0x%08X : "
6174 "EtherStatsPktsRx512Octetsto1023Octets\n",
6175 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6176
6177 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6178 BNX_PRINTF(sc, "0x%08X : "
6179 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6180 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6181
6182 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6183 BNX_PRINTF(sc, "0x%08X : "
6184 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6185 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6186
6187 if (sblk->stat_EtherStatsPktsTx64Octets)
6188 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6189 sblk->stat_EtherStatsPktsTx64Octets);
6190
6191 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6192 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6193 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6194
6195 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6196 BNX_PRINTF(sc, "0x%08X : "
6197 "EtherStatsPktsTx128Octetsto255Octets\n",
6198 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6199
6200 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6201 BNX_PRINTF(sc, "0x%08X : "
6202 "EtherStatsPktsTx256Octetsto511Octets\n",
6203 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6204
6205 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6206 BNX_PRINTF(sc, "0x%08X : "
6207 "EtherStatsPktsTx512Octetsto1023Octets\n",
6208 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6209
6210 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6211 BNX_PRINTF(sc, "0x%08X : "
6212 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6213 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6214
6215 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6216 BNX_PRINTF(sc, "0x%08X : "
6217 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6218 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6219
6220 if (sblk->stat_XonPauseFramesReceived)
6221 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6222 sblk->stat_XonPauseFramesReceived);
6223
6224 if (sblk->stat_XoffPauseFramesReceived)
6225 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6226 sblk->stat_XoffPauseFramesReceived);
6227
6228 if (sblk->stat_OutXonSent)
6229 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6230 sblk->stat_OutXonSent);
6231
6232 if (sblk->stat_OutXoffSent)
6233 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6234 sblk->stat_OutXoffSent);
6235
6236 if (sblk->stat_FlowControlDone)
6237 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6238 sblk->stat_FlowControlDone);
6239
6240 if (sblk->stat_MacControlFramesReceived)
6241 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6242 sblk->stat_MacControlFramesReceived);
6243
6244 if (sblk->stat_XoffStateEntered)
6245 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6246 sblk->stat_XoffStateEntered);
6247
6248 if (sblk->stat_IfInFramesL2FilterDiscards)
6249 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6250 sblk->stat_IfInFramesL2FilterDiscards);
6251
6252 if (sblk->stat_IfInRuleCheckerDiscards)
6253 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6254 sblk->stat_IfInRuleCheckerDiscards);
6255
6256 if (sblk->stat_IfInFTQDiscards)
6257 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6258 sblk->stat_IfInFTQDiscards);
6259
6260 if (sblk->stat_IfInMBUFDiscards)
6261 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6262 sblk->stat_IfInMBUFDiscards);
6263
6264 if (sblk->stat_IfInRuleCheckerP4Hit)
6265 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6266 sblk->stat_IfInRuleCheckerP4Hit);
6267
6268 if (sblk->stat_CatchupInRuleCheckerDiscards)
6269 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6270 sblk->stat_CatchupInRuleCheckerDiscards);
6271
6272 if (sblk->stat_CatchupInFTQDiscards)
6273 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6274 sblk->stat_CatchupInFTQDiscards);
6275
6276 if (sblk->stat_CatchupInMBUFDiscards)
6277 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6278 sblk->stat_CatchupInMBUFDiscards);
6279
6280 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6281 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6282 sblk->stat_CatchupInRuleCheckerP4Hit);
6283
6284 aprint_debug_dev(sc->bnx_dev,
6285 "-----------------------------"
6286 "--------------"
6287 "-----------------------------\n");
6288 }
6289
6290 void
6291 bnx_dump_driver_state(struct bnx_softc *sc)
6292 {
6293 aprint_debug_dev(sc->bnx_dev,
6294 "-----------------------------"
6295 " Driver State "
6296 "-----------------------------\n");
6297
6298 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6299 "address\n", sc);
6300
6301 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6302 sc->status_block);
6303
6304 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6305 "address\n", sc->stats_block);
6306
6307 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6308 "adddress\n", sc->tx_bd_chain);
6309
6310 #if 0
6311 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6312 sc->rx_bd_chain);
6313
6314 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6315 sc->tx_mbuf_ptr);
6316 #endif
6317
6318 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6319 sc->rx_mbuf_ptr);
6320
6321 BNX_PRINTF(sc,
6322 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6323 sc->interrupts_generated);
6324
6325 BNX_PRINTF(sc,
6326 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6327 sc->rx_interrupts);
6328
6329 BNX_PRINTF(sc,
6330 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6331 sc->tx_interrupts);
6332
6333 BNX_PRINTF(sc,
6334 " 0x%08X - (sc->last_status_idx) status block index\n",
6335 sc->last_status_idx);
6336
6337 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6338 sc->tx_prod);
6339
6340 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6341 sc->tx_cons);
6342
6343 BNX_PRINTF(sc,
6344 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6345 sc->tx_prod_bseq);
6346 BNX_PRINTF(sc,
6347 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6348 sc->tx_mbuf_alloc);
6349
6350 BNX_PRINTF(sc,
6351 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6352 sc->used_tx_bd);
6353
6354 BNX_PRINTF(sc,
6355 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6356 sc->tx_hi_watermark, sc->max_tx_bd);
6357
6358
6359 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6360 sc->rx_prod);
6361
6362 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6363 sc->rx_cons);
6364
6365 BNX_PRINTF(sc,
6366 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6367 sc->rx_prod_bseq);
6368
6369 BNX_PRINTF(sc,
6370 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6371 sc->rx_mbuf_alloc);
6372
6373 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6374 sc->free_rx_bd);
6375
6376 BNX_PRINTF(sc,
6377 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6378 sc->rx_low_watermark, sc->max_rx_bd);
6379
6380 BNX_PRINTF(sc,
6381 " 0x%08X - (sc->mbuf_alloc_failed) "
6382 "mbuf alloc failures\n",
6383 sc->mbuf_alloc_failed);
6384
6385 BNX_PRINTF(sc,
6386 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6387 "simulated mbuf alloc failures\n",
6388 sc->mbuf_sim_alloc_failed);
6389
6390 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6391 "-----------------------------\n");
6392 }
6393
6394 void
6395 bnx_dump_hw_state(struct bnx_softc *sc)
6396 {
6397 uint32_t val1;
6398 int i;
6399
6400 aprint_debug_dev(sc->bnx_dev,
6401 "----------------------------"
6402 " Hardware State "
6403 "----------------------------\n");
6404
6405 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6406
6407 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6408 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6409 val1, BNX_MISC_ENABLE_STATUS_BITS);
6410
6411 val1 = REG_RD(sc, BNX_DMA_STATUS);
6412 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6413
6414 val1 = REG_RD(sc, BNX_CTX_STATUS);
6415 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6416
6417 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6418 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6419 BNX_EMAC_STATUS);
6420
6421 val1 = REG_RD(sc, BNX_RPM_STATUS);
6422 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6423
6424 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6425 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6426 BNX_TBDR_STATUS);
6427
6428 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6429 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6430 BNX_TDMA_STATUS);
6431
6432 val1 = REG_RD(sc, BNX_HC_STATUS);
6433 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6434
6435 aprint_debug_dev(sc->bnx_dev,
6436 "----------------------------"
6437 "----------------"
6438 "----------------------------\n");
6439
6440 aprint_debug_dev(sc->bnx_dev,
6441 "----------------------------"
6442 " Register Dump "
6443 "----------------------------\n");
6444
6445 for (i = 0x400; i < 0x8000; i += 0x10)
6446 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6447 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6448 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6449
6450 aprint_debug_dev(sc->bnx_dev,
6451 "----------------------------"
6452 "----------------"
6453 "----------------------------\n");
6454 }
6455
6456 void
6457 bnx_breakpoint(struct bnx_softc *sc)
6458 {
6459 /* Unreachable code to shut the compiler up about unused functions. */
6460 if (0) {
6461 bnx_dump_txbd(sc, 0, NULL);
6462 bnx_dump_rxbd(sc, 0, NULL);
6463 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6464 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6465 bnx_dump_l2fhdr(sc, 0, NULL);
6466 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6467 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6468 bnx_dump_status_block(sc);
6469 bnx_dump_stats_block(sc);
6470 bnx_dump_driver_state(sc);
6471 bnx_dump_hw_state(sc);
6472 }
6473
6474 bnx_dump_driver_state(sc);
6475 /* Print the important status block fields. */
6476 bnx_dump_status_block(sc);
6477
6478 #if 0
6479 /* Call the debugger. */
6480 breakpoint();
6481 #endif
6482
6483 return;
6484 }
6485 #endif
6486