Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.45.8.2
      1 /*	$NetBSD: if_bnx.c,v 1.45.8.2 2014/12/07 16:39:55 martin Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
      3 
      4 /*-
      5  * Copyright (c) 2006-2010 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.45.8.2 2014/12/07 16:39:55 martin Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, B0, B1, B2 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/pci/if_bnxvar.h>
     64 
     65 #include <dev/microcode/bnx/bnxfw.h>
     66 
     67 /****************************************************************************/
     68 /* BNX Driver Version                                                       */
     69 /****************************************************************************/
     70 #define BNX_DRIVER_VERSION	"v0.9.6"
     71 
     72 /****************************************************************************/
     73 /* BNX Debug Options                                                        */
     74 /****************************************************************************/
     75 #ifdef BNX_DEBUG
     76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     77 
     78 	/*          0 = Never              */
     79 	/*          1 = 1 in 2,147,483,648 */
     80 	/*        256 = 1 in     8,388,608 */
     81 	/*       2048 = 1 in     1,048,576 */
     82 	/*      65536 = 1 in        32,768 */
     83 	/*    1048576 = 1 in         2,048 */
     84 	/*  268435456 =	1 in             8 */
     85 	/*  536870912 = 1 in             4 */
     86 	/* 1073741824 = 1 in             2 */
     87 
     88 	/* Controls how often the l2_fhdr frame error check will fail. */
     89 	int bnx_debug_l2fhdr_status_check = 0;
     90 
     91 	/* Controls how often the unexpected attention check will fail. */
     92 	int bnx_debug_unexpected_attention = 0;
     93 
     94 	/* Controls how often to simulate an mbuf allocation failure. */
     95 	int bnx_debug_mbuf_allocation_failure = 0;
     96 
     97 	/* Controls how often to simulate a DMA mapping failure. */
     98 	int bnx_debug_dma_map_addr_failure = 0;
     99 
    100 	/* Controls how often to simulate a bootcode failure. */
    101 	int bnx_debug_bootcode_running_failure = 0;
    102 #endif
    103 
    104 /****************************************************************************/
    105 /* PCI Device ID Table                                                      */
    106 /*                                                                          */
    107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    108 /****************************************************************************/
    109 static const struct bnx_product {
    110 	pci_vendor_id_t		bp_vendor;
    111 	pci_product_id_t	bp_product;
    112 	pci_vendor_id_t		bp_subvendor;
    113 	pci_product_id_t	bp_subproduct;
    114 	const char		*bp_name;
    115 } bnx_devices[] = {
    116 #ifdef PCI_SUBPRODUCT_HP_NC370T
    117 	{
    118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    120 	  "HP NC370T Multifunction Gigabit Server Adapter"
    121 	},
    122 #endif
    123 #ifdef PCI_SUBPRODUCT_HP_NC370i
    124 	{
    125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    127 	  "HP NC370i Multifunction Gigabit Server Adapter"
    128 	},
    129 #endif
    130 	{
    131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    132 	  0, 0,
    133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    134 	},
    135 #ifdef PCI_SUBPRODUCT_HP_NC370F
    136 	{
    137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    139 	  "HP NC370F Multifunction Gigabit Server Adapter"
    140 	},
    141 #endif
    142 	{
    143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    144 	  0, 0,
    145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    146 	},
    147 	{
    148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    149 	  0, 0,
    150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    151 	},
    152 	{
    153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    154 	  0, 0,
    155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    156 	},
    157 	{
    158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    159 	  0, 0,
    160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    161 	},
    162 	{
    163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    164 	  0, 0,
    165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    166 	},
    167 	{
    168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    169 	  0, 0,
    170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    171 	},
    172 	{
    173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    174 	  0, 0,
    175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    176 	},
    177 };
    178 
    179 /****************************************************************************/
    180 /* Supported Flash NVRAM device data.                                       */
    181 /****************************************************************************/
    182 static struct flash_spec flash_table[] =
    183 {
    184 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    185 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    186 	/* Slow EEPROM */
    187 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    188 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    189 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    190 	 "EEPROM - slow"},
    191 	/* Expansion entry 0001 */
    192 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    195 	 "Entry 0001"},
    196 	/* Saifun SA25F010 (non-buffered flash) */
    197 	/* strap, cfg1, & write1 need updates */
    198 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    199 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    200 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    201 	 "Non-buffered flash (128kB)"},
    202 	/* Saifun SA25F020 (non-buffered flash) */
    203 	/* strap, cfg1, & write1 need updates */
    204 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    205 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    206 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    207 	 "Non-buffered flash (256kB)"},
    208 	/* Expansion entry 0100 */
    209 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    210 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    211 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    212 	 "Entry 0100"},
    213 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    214 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    215 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    216 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    217 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    218 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    219 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    220 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    221 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    222 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    223 	/* Saifun SA25F005 (non-buffered flash) */
    224 	/* strap, cfg1, & write1 need updates */
    225 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    228 	 "Non-buffered flash (64kB)"},
    229 	/* Fast EEPROM */
    230 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    231 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    232 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    233 	 "EEPROM - fast"},
    234 	/* Expansion entry 1001 */
    235 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    236 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    237 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    238 	 "Entry 1001"},
    239 	/* Expansion entry 1010 */
    240 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    241 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    242 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    243 	 "Entry 1010"},
    244 	/* ATMEL AT45DB011B (buffered flash) */
    245 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    246 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    247 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    248 	 "Buffered flash (128kB)"},
    249 	/* Expansion entry 1100 */
    250 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    251 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    252 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    253 	 "Entry 1100"},
    254 	/* Expansion entry 1101 */
    255 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    256 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    257 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    258 	 "Entry 1101"},
    259 	/* Ateml Expansion entry 1110 */
    260 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    261 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    262 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    263 	 "Entry 1110 (Atmel)"},
    264 	/* ATMEL AT45DB021B (buffered flash) */
    265 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    266 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    267 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    268 	 "Buffered flash (256kB)"},
    269 };
    270 
    271 /*
    272  * The BCM5709 controllers transparently handle the
    273  * differences between Atmel 264 byte pages and all
    274  * flash devices which use 256 byte pages, so no
    275  * logical-to-physical mapping is required in the
    276  * driver.
    277  */
    278 static struct flash_spec flash_5709 = {
    279 	.flags		= BNX_NV_BUFFERED,
    280 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    281 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    282 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    283 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    284 	.name		= "5709 buffered flash (256kB)",
    285 };
    286 
    287 /****************************************************************************/
    288 /* OpenBSD device entry points.                                             */
    289 /****************************************************************************/
    290 static int	bnx_probe(device_t, cfdata_t, void *);
    291 void	bnx_attach(device_t, device_t, void *);
    292 int	bnx_detach(device_t, int);
    293 
    294 /****************************************************************************/
    295 /* BNX Debug Data Structure Dump Routines                                   */
    296 /****************************************************************************/
    297 #ifdef BNX_DEBUG
    298 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    299 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    300 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    301 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    302 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    303 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    304 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    305 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    306 void	bnx_dump_status_block(struct bnx_softc *);
    307 void	bnx_dump_stats_block(struct bnx_softc *);
    308 void	bnx_dump_driver_state(struct bnx_softc *);
    309 void	bnx_dump_hw_state(struct bnx_softc *);
    310 void	bnx_breakpoint(struct bnx_softc *);
    311 #endif
    312 
    313 /****************************************************************************/
    314 /* BNX Register/Memory Access Routines                                      */
    315 /****************************************************************************/
    316 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
    317 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
    318 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
    319 int	bnx_miibus_read_reg(device_t, int, int);
    320 void	bnx_miibus_write_reg(device_t, int, int, int);
    321 void	bnx_miibus_statchg(device_t);
    322 
    323 /****************************************************************************/
    324 /* BNX NVRAM Access Routines                                                */
    325 /****************************************************************************/
    326 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    327 int	bnx_release_nvram_lock(struct bnx_softc *);
    328 void	bnx_enable_nvram_access(struct bnx_softc *);
    329 void	bnx_disable_nvram_access(struct bnx_softc *);
    330 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
    331 	    uint32_t);
    332 int	bnx_init_nvram(struct bnx_softc *);
    333 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
    334 int	bnx_nvram_test(struct bnx_softc *);
    335 #ifdef BNX_NVRAM_WRITE_SUPPORT
    336 int	bnx_enable_nvram_write(struct bnx_softc *);
    337 void	bnx_disable_nvram_write(struct bnx_softc *);
    338 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
    339 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
    340 	    uint32_t);
    341 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
    342 #endif
    343 
    344 /****************************************************************************/
    345 /*                                                                          */
    346 /****************************************************************************/
    347 void	bnx_get_media(struct bnx_softc *);
    348 void	bnx_init_media(struct bnx_softc *);
    349 int	bnx_dma_alloc(struct bnx_softc *);
    350 void	bnx_dma_free(struct bnx_softc *);
    351 void	bnx_release_resources(struct bnx_softc *);
    352 
    353 /****************************************************************************/
    354 /* BNX Firmware Synchronization and Load                                    */
    355 /****************************************************************************/
    356 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
    357 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t,
    358 	    uint32_t);
    359 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    360 	    struct fw_info *);
    361 void	bnx_init_cpus(struct bnx_softc *);
    362 
    363 static void bnx_print_adapter_info(struct bnx_softc *);
    364 static void bnx_probe_pci_caps(struct bnx_softc *);
    365 void	bnx_stop(struct ifnet *, int);
    366 int	bnx_reset(struct bnx_softc *, uint32_t);
    367 int	bnx_chipinit(struct bnx_softc *);
    368 int	bnx_blockinit(struct bnx_softc *);
    369 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
    370 	    uint16_t *, uint32_t *);
    371 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
    372 
    373 int	bnx_init_tx_chain(struct bnx_softc *);
    374 void	bnx_init_tx_context(struct bnx_softc *);
    375 int	bnx_init_rx_chain(struct bnx_softc *);
    376 void	bnx_init_rx_context(struct bnx_softc *);
    377 void	bnx_free_rx_chain(struct bnx_softc *);
    378 void	bnx_free_tx_chain(struct bnx_softc *);
    379 
    380 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    381 void	bnx_start(struct ifnet *);
    382 int	bnx_ioctl(struct ifnet *, u_long, void *);
    383 void	bnx_watchdog(struct ifnet *);
    384 int	bnx_init(struct ifnet *);
    385 
    386 void	bnx_init_context(struct bnx_softc *);
    387 void	bnx_get_mac_addr(struct bnx_softc *);
    388 void	bnx_set_mac_addr(struct bnx_softc *);
    389 void	bnx_phy_intr(struct bnx_softc *);
    390 void	bnx_rx_intr(struct bnx_softc *);
    391 void	bnx_tx_intr(struct bnx_softc *);
    392 void	bnx_disable_intr(struct bnx_softc *);
    393 void	bnx_enable_intr(struct bnx_softc *);
    394 
    395 int	bnx_intr(void *);
    396 void	bnx_iff(struct bnx_softc *);
    397 void	bnx_stats_update(struct bnx_softc *);
    398 void	bnx_tick(void *);
    399 
    400 struct pool *bnx_tx_pool = NULL;
    401 void	bnx_alloc_pkts(struct work *, void *);
    402 
    403 /****************************************************************************/
    404 /* OpenBSD device dispatch table.                                           */
    405 /****************************************************************************/
    406 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    407     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    408 
    409 /****************************************************************************/
    410 /* Device probe function.                                                   */
    411 /*                                                                          */
    412 /* Compares the device to the driver's list of supported devices and        */
    413 /* reports back to the OS whether this is the right driver for the device.  */
    414 /*                                                                          */
    415 /* Returns:                                                                 */
    416 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    417 /****************************************************************************/
    418 static const struct bnx_product *
    419 bnx_lookup(const struct pci_attach_args *pa)
    420 {
    421 	int i;
    422 	pcireg_t subid;
    423 
    424 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    425 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    426 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    427 			continue;
    428 		if (!bnx_devices[i].bp_subvendor)
    429 			return &bnx_devices[i];
    430 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    431 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    432 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    433 			return &bnx_devices[i];
    434 	}
    435 
    436 	return NULL;
    437 }
    438 static int
    439 bnx_probe(device_t parent, cfdata_t match, void *aux)
    440 {
    441 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    442 
    443 	if (bnx_lookup(pa) != NULL)
    444 		return 1;
    445 
    446 	return 0;
    447 }
    448 
    449 /****************************************************************************/
    450 /* PCI Capabilities Probe Function.                                         */
    451 /*                                                                          */
    452 /* Walks the PCI capabiites list for the device to find what features are   */
    453 /* supported.                                                               */
    454 /*                                                                          */
    455 /* Returns:                                                                 */
    456 /*   None.                                                                  */
    457 /****************************************************************************/
    458 static void
    459 bnx_print_adapter_info(struct bnx_softc *sc)
    460 {
    461 
    462 	aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
    463 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
    464 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
    465 	    ? "Serdes " : "", sc->bnx_chipid);
    466 
    467 	/* Bus info. */
    468 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
    469 		aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
    470 		    sc->link_width);
    471 		switch (sc->link_speed) {
    472 		case 1: aprint_normal("2.5Gbps\n"); break;
    473 		case 2:	aprint_normal("5Gbps\n"); break;
    474 		default: aprint_normal("Unknown link speed\n");
    475 		}
    476 	} else {
    477 		aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
    478 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
    479 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
    480 		    sc->bus_speed_mhz);
    481 	}
    482 
    483 	aprint_normal_dev(sc->bnx_dev,
    484 	    "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
    485 	    sc->bnx_rx_quick_cons_trip_int,
    486 	    sc->bnx_rx_quick_cons_trip,
    487 	    sc->bnx_rx_ticks_int,
    488 	    sc->bnx_rx_ticks,
    489 	    sc->bnx_tx_quick_cons_trip_int,
    490 	    sc->bnx_tx_quick_cons_trip,
    491 	    sc->bnx_tx_ticks_int,
    492 	    sc->bnx_tx_ticks);
    493 }
    494 
    495 
    496 /****************************************************************************/
    497 /* PCI Capabilities Probe Function.                                         */
    498 /*                                                                          */
    499 /* Walks the PCI capabiites list for the device to find what features are   */
    500 /* supported.                                                               */
    501 /*                                                                          */
    502 /* Returns:                                                                 */
    503 /*   None.                                                                  */
    504 /****************************************************************************/
    505 static void
    506 bnx_probe_pci_caps(struct bnx_softc *sc)
    507 {
    508 	struct pci_attach_args *pa = &(sc->bnx_pa);
    509 	pcireg_t reg;
    510 
    511 	/* Check if PCI-X capability is enabled. */
    512 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
    513 		NULL) != 0) {
    514 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
    515 	}
    516 
    517 	/* Check if PCIe capability is enabled. */
    518 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
    519 		NULL) != 0) {
    520 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
    521 		    reg + PCI_PCIE_LCSR);
    522 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
    523 		    "0x%08X\n",	link_status);
    524 		sc->link_speed = (link_status & PCI_PCIE_LCSR_LINKSPEED) >> 16;
    525 		sc->link_width = (link_status & PCI_PCIE_LCSR_NLW) >> 20;
    526 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
    527 		sc->bnx_flags |= BNX_PCIE_FLAG;
    528 	}
    529 
    530 	/* Check if MSI capability is enabled. */
    531 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
    532 		NULL) != 0)
    533 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
    534 
    535 	/* Check if MSI-X capability is enabled. */
    536 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
    537 		NULL) != 0)
    538 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
    539 }
    540 
    541 
    542 /****************************************************************************/
    543 /* Device attach function.                                                  */
    544 /*                                                                          */
    545 /* Allocates device resources, performs secondary chip identification,      */
    546 /* resets and initializes the hardware, and initializes driver instance     */
    547 /* variables.                                                               */
    548 /*                                                                          */
    549 /* Returns:                                                                 */
    550 /*   0 on success, positive value on failure.                               */
    551 /****************************************************************************/
    552 void
    553 bnx_attach(device_t parent, device_t self, void *aux)
    554 {
    555 	const struct bnx_product *bp;
    556 	struct bnx_softc	*sc = device_private(self);
    557 	prop_dictionary_t	dict;
    558 	struct pci_attach_args	*pa = aux;
    559 	pci_chipset_tag_t	pc = pa->pa_pc;
    560 	pci_intr_handle_t	ih;
    561 	const char 		*intrstr = NULL;
    562 	uint32_t		command;
    563 	struct ifnet		*ifp;
    564 	uint32_t		val;
    565 	int			mii_flags = MIIF_FORCEANEG;
    566 	pcireg_t		memtype;
    567 
    568 	if (bnx_tx_pool == NULL) {
    569 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    570 		if (bnx_tx_pool != NULL) {
    571 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    572 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    573 		} else {
    574 			aprint_error(": can't alloc bnx_tx_pool\n");
    575 			return;
    576 		}
    577 	}
    578 
    579 	bp = bnx_lookup(pa);
    580 	if (bp == NULL)
    581 		panic("unknown device");
    582 
    583 	sc->bnx_dev = self;
    584 
    585 	aprint_naive("\n");
    586 	aprint_normal(": %s\n", bp->bp_name);
    587 
    588 	sc->bnx_pa = *pa;
    589 
    590 	/*
    591 	 * Map control/status registers.
    592 	*/
    593 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    594 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    595 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    596 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    597 
    598 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    599 		aprint_error_dev(sc->bnx_dev,
    600 		    "failed to enable memory mapping!\n");
    601 		return;
    602 	}
    603 
    604 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    605 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    606 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    607 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    608 		return;
    609 	}
    610 
    611 	if (pci_intr_map(pa, &ih)) {
    612 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    613 		goto bnx_attach_fail;
    614 	}
    615 
    616 	intrstr = pci_intr_string(pc, ih);
    617 
    618 	/*
    619 	 * Configure byte swap and enable indirect register access.
    620 	 * Rely on CPU to do target byte swapping on big endian systems.
    621 	 * Access to registers outside of PCI configurtion space are not
    622 	 * valid until this is done.
    623 	 */
    624 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    625 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    626 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    627 
    628 	/* Save ASIC revsion info. */
    629 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    630 
    631 	/*
    632 	 * Find the base address for shared memory access.
    633 	 * Newer versions of bootcode use a signature and offset
    634 	 * while older versions use a fixed address.
    635 	 */
    636 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    637 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    638 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    639 		    (sc->bnx_pa.pa_function << 2));
    640 	else
    641 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    642 
    643 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    644 
    645 	/* Set initial device and PHY flags */
    646 	sc->bnx_flags = 0;
    647 	sc->bnx_phy_flags = 0;
    648 
    649 	bnx_probe_pci_caps(sc);
    650 
    651 	/* Get PCI bus information (speed and type). */
    652 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    653 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    654 		uint32_t clkreg;
    655 
    656 		sc->bnx_flags |= BNX_PCIX_FLAG;
    657 
    658 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    659 
    660 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    661 		switch (clkreg) {
    662 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    663 			sc->bus_speed_mhz = 133;
    664 			break;
    665 
    666 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    667 			sc->bus_speed_mhz = 100;
    668 			break;
    669 
    670 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    671 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    672 			sc->bus_speed_mhz = 66;
    673 			break;
    674 
    675 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    676 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    677 			sc->bus_speed_mhz = 50;
    678 			break;
    679 
    680 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    681 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    682 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    683 			sc->bus_speed_mhz = 33;
    684 			break;
    685 		}
    686 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    687 			sc->bus_speed_mhz = 66;
    688 		else
    689 			sc->bus_speed_mhz = 33;
    690 
    691 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    692 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    693 
    694 	/* Reset the controller. */
    695 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    696 		goto bnx_attach_fail;
    697 
    698 	/* Initialize the controller. */
    699 	if (bnx_chipinit(sc)) {
    700 		aprint_error_dev(sc->bnx_dev,
    701 		    "Controller initialization failed!\n");
    702 		goto bnx_attach_fail;
    703 	}
    704 
    705 	/* Perform NVRAM test. */
    706 	if (bnx_nvram_test(sc)) {
    707 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    708 		goto bnx_attach_fail;
    709 	}
    710 
    711 	/* Fetch the permanent Ethernet MAC address. */
    712 	bnx_get_mac_addr(sc);
    713 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    714 	    ether_sprintf(sc->eaddr));
    715 
    716 	/*
    717 	 * Trip points control how many BDs
    718 	 * should be ready before generating an
    719 	 * interrupt while ticks control how long
    720 	 * a BD can sit in the chain before
    721 	 * generating an interrupt.  Set the default
    722 	 * values for the RX and TX rings.
    723 	 */
    724 
    725 #ifdef BNX_DEBUG
    726 	/* Force more frequent interrupts. */
    727 	sc->bnx_tx_quick_cons_trip_int = 1;
    728 	sc->bnx_tx_quick_cons_trip     = 1;
    729 	sc->bnx_tx_ticks_int           = 0;
    730 	sc->bnx_tx_ticks               = 0;
    731 
    732 	sc->bnx_rx_quick_cons_trip_int = 1;
    733 	sc->bnx_rx_quick_cons_trip     = 1;
    734 	sc->bnx_rx_ticks_int           = 0;
    735 	sc->bnx_rx_ticks               = 0;
    736 #else
    737 	sc->bnx_tx_quick_cons_trip_int = 20;
    738 	sc->bnx_tx_quick_cons_trip     = 20;
    739 	sc->bnx_tx_ticks_int           = 80;
    740 	sc->bnx_tx_ticks               = 80;
    741 
    742 	sc->bnx_rx_quick_cons_trip_int = 6;
    743 	sc->bnx_rx_quick_cons_trip     = 6;
    744 	sc->bnx_rx_ticks_int           = 18;
    745 	sc->bnx_rx_ticks               = 18;
    746 #endif
    747 
    748 	/* Update statistics once every second. */
    749 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    750 
    751 	/* Find the media type for the adapter. */
    752 	bnx_get_media(sc);
    753 
    754 	/*
    755 	 * Store config data needed by the PHY driver for
    756 	 * backplane applications
    757 	 */
    758 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    759 	    BNX_SHARED_HW_CFG_CONFIG);
    760 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    761 	    BNX_PORT_HW_CFG_CONFIG);
    762 
    763 	/* Allocate DMA memory resources. */
    764 	sc->bnx_dmatag = pa->pa_dmat;
    765 	if (bnx_dma_alloc(sc)) {
    766 		aprint_error_dev(sc->bnx_dev,
    767 		    "DMA resource allocation failed!\n");
    768 		goto bnx_attach_fail;
    769 	}
    770 
    771 	/* Initialize the ifnet interface. */
    772 	ifp = &sc->bnx_ec.ec_if;
    773 	ifp->if_softc = sc;
    774 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    775 	ifp->if_ioctl = bnx_ioctl;
    776 	ifp->if_stop = bnx_stop;
    777 	ifp->if_start = bnx_start;
    778 	ifp->if_init = bnx_init;
    779 	ifp->if_timer = 0;
    780 	ifp->if_watchdog = bnx_watchdog;
    781 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    782 	IFQ_SET_READY(&ifp->if_snd);
    783 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    784 
    785 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    786 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    787 
    788 	ifp->if_capabilities |=
    789 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    790 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    791 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    792 
    793 	/* Hookup IRQ last. */
    794 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    795 	if (sc->bnx_intrhand == NULL) {
    796 		aprint_error_dev(self, "couldn't establish interrupt");
    797 		if (intrstr != NULL)
    798 			aprint_error(" at %s", intrstr);
    799 		aprint_error("\n");
    800 		goto bnx_attach_fail;
    801 	}
    802 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    803 
    804 	/* create workqueue to handle packet allocations */
    805 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    806 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    807 		aprint_error_dev(self, "failed to create workqueue\n");
    808 		goto bnx_attach_fail;
    809 	}
    810 
    811 	sc->bnx_mii.mii_ifp = ifp;
    812 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    813 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    814 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    815 
    816 	/* Handle any special PHY initialization for SerDes PHYs. */
    817 	bnx_init_media(sc);
    818 
    819 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    820 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    821 	    ether_mediastatus);
    822 
    823 	/* set phyflags and chipid before mii_attach() */
    824 	dict = device_properties(self);
    825 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    826 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    827 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
    828 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
    829 
    830 	/* Print some useful adapter info */
    831 	bnx_print_adapter_info(sc);
    832 
    833 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    834 		mii_flags |= MIIF_HAVEFIBER;
    835 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    836 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    837 
    838 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    839 		aprint_error_dev(self, "no PHY found!\n");
    840 		ifmedia_add(&sc->bnx_mii.mii_media,
    841 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    842 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
    843 	} else
    844 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
    845 
    846 	/* Attach to the Ethernet interface list. */
    847 	if_attach(ifp);
    848 	ether_ifattach(ifp,sc->eaddr);
    849 
    850 	callout_init(&sc->bnx_timeout, 0);
    851 
    852 	if (pmf_device_register(self, NULL, NULL))
    853 		pmf_class_network_register(self, ifp);
    854 	else
    855 		aprint_error_dev(self, "couldn't establish power handler\n");
    856 
    857 	/* Print some important debugging info. */
    858 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    859 
    860 	goto bnx_attach_exit;
    861 
    862 bnx_attach_fail:
    863 	bnx_release_resources(sc);
    864 
    865 bnx_attach_exit:
    866 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    867 }
    868 
    869 /****************************************************************************/
    870 /* Device detach function.                                                  */
    871 /*                                                                          */
    872 /* Stops the controller, resets the controller, and releases resources.     */
    873 /*                                                                          */
    874 /* Returns:                                                                 */
    875 /*   0 on success, positive value on failure.                               */
    876 /****************************************************************************/
    877 int
    878 bnx_detach(device_t dev, int flags)
    879 {
    880 	int s;
    881 	struct bnx_softc *sc;
    882 	struct ifnet *ifp;
    883 
    884 	sc = device_private(dev);
    885 	ifp = &sc->bnx_ec.ec_if;
    886 
    887 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    888 
    889 	/* Stop and reset the controller. */
    890 	s = splnet();
    891 	if (ifp->if_flags & IFF_RUNNING)
    892 		bnx_stop(ifp, 1);
    893 	else {
    894 		/* Disable the transmit/receive blocks. */
    895 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
    896 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
    897 		DELAY(20);
    898 		bnx_disable_intr(sc);
    899 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
    900 	}
    901 
    902 	splx(s);
    903 
    904 	pmf_device_deregister(dev);
    905 	callout_destroy(&sc->bnx_timeout);
    906 	ether_ifdetach(ifp);
    907 	workqueue_destroy(sc->bnx_wq);
    908 
    909 	/* Delete all remaining media. */
    910 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    911 
    912 	if_detach(ifp);
    913 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    914 
    915 	/* Release all remaining resources. */
    916 	bnx_release_resources(sc);
    917 
    918 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    919 
    920 	return 0;
    921 }
    922 
    923 /****************************************************************************/
    924 /* Indirect register read.                                                  */
    925 /*                                                                          */
    926 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    927 /* configuration space.  Using this mechanism avoids issues with posted     */
    928 /* reads but is much slower than memory-mapped I/O.                         */
    929 /*                                                                          */
    930 /* Returns:                                                                 */
    931 /*   The value of the register.                                             */
    932 /****************************************************************************/
    933 uint32_t
    934 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
    935 {
    936 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    937 
    938 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    939 	    offset);
    940 #ifdef BNX_DEBUG
    941 	{
    942 		uint32_t val;
    943 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    944 		    BNX_PCICFG_REG_WINDOW);
    945 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    946 		    "val = 0x%08X\n", __func__, offset, val);
    947 		return val;
    948 	}
    949 #else
    950 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    951 #endif
    952 }
    953 
    954 /****************************************************************************/
    955 /* Indirect register write.                                                 */
    956 /*                                                                          */
    957 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    958 /* configuration space.  Using this mechanism avoids issues with posted     */
    959 /* writes but is muchh slower than memory-mapped I/O.                       */
    960 /*                                                                          */
    961 /* Returns:                                                                 */
    962 /*   Nothing.                                                               */
    963 /****************************************************************************/
    964 void
    965 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
    966 {
    967 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    968 
    969 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    970 		__func__, offset, val);
    971 
    972 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    973 	    offset);
    974 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    975 }
    976 
    977 /****************************************************************************/
    978 /* Context memory write.                                                    */
    979 /*                                                                          */
    980 /* The NetXtreme II controller uses context memory to track connection      */
    981 /* information for L2 and higher network protocols.                         */
    982 /*                                                                          */
    983 /* Returns:                                                                 */
    984 /*   Nothing.                                                               */
    985 /****************************************************************************/
    986 void
    987 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
    988     uint32_t ctx_val)
    989 {
    990 	uint32_t idx, offset = ctx_offset + cid_addr;
    991 	uint32_t val, retry_cnt = 5;
    992 
    993 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
    994 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
    995 		REG_WR(sc, BNX_CTX_CTX_CTRL,
    996 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
    997 
    998 		for (idx = 0; idx < retry_cnt; idx++) {
    999 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
   1000 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
   1001 				break;
   1002 			DELAY(5);
   1003 		}
   1004 
   1005 #if 0
   1006 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
   1007 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
   1008 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
   1009 				__FILE__, __LINE__, cid_addr, ctx_offset);
   1010 #endif
   1011 
   1012 	} else {
   1013 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
   1014 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
   1015 	}
   1016 }
   1017 
   1018 /****************************************************************************/
   1019 /* PHY register read.                                                       */
   1020 /*                                                                          */
   1021 /* Implements register reads on the MII bus.                                */
   1022 /*                                                                          */
   1023 /* Returns:                                                                 */
   1024 /*   The value of the register.                                             */
   1025 /****************************************************************************/
   1026 int
   1027 bnx_miibus_read_reg(device_t dev, int phy, int reg)
   1028 {
   1029 	struct bnx_softc	*sc = device_private(dev);
   1030 	uint32_t		val;
   1031 	int			i;
   1032 
   1033 	/* Make sure we are accessing the correct PHY address. */
   1034 	if (phy != sc->bnx_phy_addr) {
   1035 		DBPRINT(sc, BNX_VERBOSE,
   1036 		    "Invalid PHY address %d for PHY read!\n", phy);
   1037 		return 0;
   1038 	}
   1039 
   1040 	/*
   1041 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1042 	 * with special mappings to work with IEEE
   1043 	 * Clause 22 register accesses.
   1044 	 */
   1045 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1046 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1047 			reg += 0x10;
   1048 	}
   1049 
   1050 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1051 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1052 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1053 
   1054 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
   1055 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1056 
   1057 		DELAY(40);
   1058 	}
   1059 
   1060 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
   1061 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
   1062 	    BNX_EMAC_MDIO_COMM_START_BUSY;
   1063 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
   1064 
   1065 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1066 		DELAY(10);
   1067 
   1068 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1069 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1070 			DELAY(5);
   1071 
   1072 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1073 			val &= BNX_EMAC_MDIO_COMM_DATA;
   1074 
   1075 			break;
   1076 		}
   1077 	}
   1078 
   1079 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1080 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
   1081 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
   1082 		val = 0x0;
   1083 	} else
   1084 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1085 
   1086 	DBPRINT(sc, BNX_EXCESSIVE,
   1087 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
   1088 	    (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
   1089 
   1090 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1091 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1092 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1093 
   1094 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
   1095 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1096 
   1097 		DELAY(40);
   1098 	}
   1099 
   1100 	return (val & 0xffff);
   1101 }
   1102 
   1103 /****************************************************************************/
   1104 /* PHY register write.                                                      */
   1105 /*                                                                          */
   1106 /* Implements register writes on the MII bus.                               */
   1107 /*                                                                          */
   1108 /* Returns:                                                                 */
   1109 /*   The value of the register.                                             */
   1110 /****************************************************************************/
   1111 void
   1112 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
   1113 {
   1114 	struct bnx_softc	*sc = device_private(dev);
   1115 	uint32_t		val1;
   1116 	int			i;
   1117 
   1118 	/* Make sure we are accessing the correct PHY address. */
   1119 	if (phy != sc->bnx_phy_addr) {
   1120 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
   1121 		    phy);
   1122 		return;
   1123 	}
   1124 
   1125 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1126 	    "val = 0x%04X\n", __func__,
   1127 	    phy, (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
   1128 
   1129 	/*
   1130 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1131 	 * with special mappings to work with IEEE
   1132 	 * Clause 22 register accesses.
   1133 	 */
   1134 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1135 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1136 			reg += 0x10;
   1137 	}
   1138 
   1139 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1140 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1141 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1142 
   1143 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1144 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1145 
   1146 		DELAY(40);
   1147 	}
   1148 
   1149 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1150 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1151 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1152 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1153 
   1154 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1155 		DELAY(10);
   1156 
   1157 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1158 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1159 			DELAY(5);
   1160 			break;
   1161 		}
   1162 	}
   1163 
   1164 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1165 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1166 		    __LINE__);
   1167 	}
   1168 
   1169 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1170 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1171 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1172 
   1173 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1174 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1175 
   1176 		DELAY(40);
   1177 	}
   1178 }
   1179 
   1180 /****************************************************************************/
   1181 /* MII bus status change.                                                   */
   1182 /*                                                                          */
   1183 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1184 /* MAC interface registers.                                                 */
   1185 /*                                                                          */
   1186 /* Returns:                                                                 */
   1187 /*   Nothing.                                                               */
   1188 /****************************************************************************/
   1189 void
   1190 bnx_miibus_statchg(device_t dev)
   1191 {
   1192 	struct bnx_softc	*sc = device_private(dev);
   1193 	struct mii_data		*mii = &sc->bnx_mii;
   1194 	int			val;
   1195 
   1196 	val = REG_RD(sc, BNX_EMAC_MODE);
   1197 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1198 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1199 	    BNX_EMAC_MODE_25G);
   1200 
   1201 	/* Set MII or GMII interface based on the speed
   1202 	 * negotiated by the PHY.
   1203 	 */
   1204 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1205 	case IFM_10_T:
   1206 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1207 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1208 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1209 			break;
   1210 		}
   1211 		/* FALLTHROUGH */
   1212 	case IFM_100_TX:
   1213 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1214 		val |= BNX_EMAC_MODE_PORT_MII;
   1215 		break;
   1216 	case IFM_2500_SX:
   1217 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1218 		val |= BNX_EMAC_MODE_25G;
   1219 		/* FALLTHROUGH */
   1220 	case IFM_1000_T:
   1221 	case IFM_1000_SX:
   1222 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1223 		val |= BNX_EMAC_MODE_PORT_GMII;
   1224 		break;
   1225 	default:
   1226 		val |= BNX_EMAC_MODE_PORT_GMII;
   1227 		break;
   1228 	}
   1229 
   1230 	/* Set half or full duplex based on the duplicity
   1231 	 * negotiated by the PHY.
   1232 	 */
   1233 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1234 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1235 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1236 	} else {
   1237 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1238 	}
   1239 
   1240 	REG_WR(sc, BNX_EMAC_MODE, val);
   1241 }
   1242 
   1243 /****************************************************************************/
   1244 /* Acquire NVRAM lock.                                                      */
   1245 /*                                                                          */
   1246 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1247 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1248 /* for use by the driver.                                                   */
   1249 /*                                                                          */
   1250 /* Returns:                                                                 */
   1251 /*   0 on success, positive value on failure.                               */
   1252 /****************************************************************************/
   1253 int
   1254 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1255 {
   1256 	uint32_t		val;
   1257 	int			j;
   1258 
   1259 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1260 
   1261 	/* Request access to the flash interface. */
   1262 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1263 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1264 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1265 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1266 			break;
   1267 
   1268 		DELAY(5);
   1269 	}
   1270 
   1271 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1272 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1273 		return EBUSY;
   1274 	}
   1275 
   1276 	return 0;
   1277 }
   1278 
   1279 /****************************************************************************/
   1280 /* Release NVRAM lock.                                                      */
   1281 /*                                                                          */
   1282 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1283 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1284 /* for use by the driver.                                                   */
   1285 /*                                                                          */
   1286 /* Returns:                                                                 */
   1287 /*   0 on success, positive value on failure.                               */
   1288 /****************************************************************************/
   1289 int
   1290 bnx_release_nvram_lock(struct bnx_softc *sc)
   1291 {
   1292 	int			j;
   1293 	uint32_t		val;
   1294 
   1295 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1296 
   1297 	/* Relinquish nvram interface. */
   1298 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1299 
   1300 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1301 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1302 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1303 			break;
   1304 
   1305 		DELAY(5);
   1306 	}
   1307 
   1308 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1309 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1310 		return EBUSY;
   1311 	}
   1312 
   1313 	return 0;
   1314 }
   1315 
   1316 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1317 /****************************************************************************/
   1318 /* Enable NVRAM write access.                                               */
   1319 /*                                                                          */
   1320 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1321 /*                                                                          */
   1322 /* Returns:                                                                 */
   1323 /*   0 on success, positive value on failure.                               */
   1324 /****************************************************************************/
   1325 int
   1326 bnx_enable_nvram_write(struct bnx_softc *sc)
   1327 {
   1328 	uint32_t		val;
   1329 
   1330 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1331 
   1332 	val = REG_RD(sc, BNX_MISC_CFG);
   1333 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1334 
   1335 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1336 		int j;
   1337 
   1338 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1339 		REG_WR(sc, BNX_NVM_COMMAND,
   1340 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1341 
   1342 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1343 			DELAY(5);
   1344 
   1345 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1346 			if (val & BNX_NVM_COMMAND_DONE)
   1347 				break;
   1348 		}
   1349 
   1350 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1351 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1352 			return EBUSY;
   1353 		}
   1354 	}
   1355 
   1356 	return 0;
   1357 }
   1358 
   1359 /****************************************************************************/
   1360 /* Disable NVRAM write access.                                              */
   1361 /*                                                                          */
   1362 /* When the caller is finished writing to NVRAM write access must be        */
   1363 /* disabled.                                                                */
   1364 /*                                                                          */
   1365 /* Returns:                                                                 */
   1366 /*   Nothing.                                                               */
   1367 /****************************************************************************/
   1368 void
   1369 bnx_disable_nvram_write(struct bnx_softc *sc)
   1370 {
   1371 	uint32_t		val;
   1372 
   1373 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1374 
   1375 	val = REG_RD(sc, BNX_MISC_CFG);
   1376 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1377 }
   1378 #endif
   1379 
   1380 /****************************************************************************/
   1381 /* Enable NVRAM access.                                                     */
   1382 /*                                                                          */
   1383 /* Before accessing NVRAM for read or write operations the caller must      */
   1384 /* enabled NVRAM access.                                                    */
   1385 /*                                                                          */
   1386 /* Returns:                                                                 */
   1387 /*   Nothing.                                                               */
   1388 /****************************************************************************/
   1389 void
   1390 bnx_enable_nvram_access(struct bnx_softc *sc)
   1391 {
   1392 	uint32_t		val;
   1393 
   1394 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1395 
   1396 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1397 	/* Enable both bits, even on read. */
   1398 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1399 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1400 }
   1401 
   1402 /****************************************************************************/
   1403 /* Disable NVRAM access.                                                    */
   1404 /*                                                                          */
   1405 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1406 /*                                                                          */
   1407 /* Returns:                                                                 */
   1408 /*   Nothing.                                                               */
   1409 /****************************************************************************/
   1410 void
   1411 bnx_disable_nvram_access(struct bnx_softc *sc)
   1412 {
   1413 	uint32_t		val;
   1414 
   1415 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1416 
   1417 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1418 
   1419 	/* Disable both bits, even after read. */
   1420 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1421 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1422 }
   1423 
   1424 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1425 /****************************************************************************/
   1426 /* Erase NVRAM page before writing.                                         */
   1427 /*                                                                          */
   1428 /* Non-buffered flash parts require that a page be erased before it is      */
   1429 /* written.                                                                 */
   1430 /*                                                                          */
   1431 /* Returns:                                                                 */
   1432 /*   0 on success, positive value on failure.                               */
   1433 /****************************************************************************/
   1434 int
   1435 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
   1436 {
   1437 	uint32_t		cmd;
   1438 	int			j;
   1439 
   1440 	/* Buffered flash doesn't require an erase. */
   1441 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1442 		return 0;
   1443 
   1444 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1445 
   1446 	/* Build an erase command. */
   1447 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1448 	    BNX_NVM_COMMAND_DOIT;
   1449 
   1450 	/*
   1451 	 * Clear the DONE bit separately, set the NVRAM address to erase,
   1452 	 * and issue the erase command.
   1453 	 */
   1454 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1455 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1456 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1457 
   1458 	/* Wait for completion. */
   1459 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1460 		uint32_t val;
   1461 
   1462 		DELAY(5);
   1463 
   1464 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1465 		if (val & BNX_NVM_COMMAND_DONE)
   1466 			break;
   1467 	}
   1468 
   1469 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1470 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1471 		return EBUSY;
   1472 	}
   1473 
   1474 	return 0;
   1475 }
   1476 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1477 
   1478 /****************************************************************************/
   1479 /* Read a dword (32 bits) from NVRAM.                                       */
   1480 /*                                                                          */
   1481 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1482 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1483 /*                                                                          */
   1484 /* Returns:                                                                 */
   1485 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1486 /****************************************************************************/
   1487 int
   1488 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
   1489     uint8_t *ret_val, uint32_t cmd_flags)
   1490 {
   1491 	uint32_t		cmd;
   1492 	int			i, rc = 0;
   1493 
   1494 	/* Build the command word. */
   1495 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1496 
   1497 	/* Calculate the offset for buffered flash if translation is used. */
   1498 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1499 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1500 		    sc->bnx_flash_info->page_bits) +
   1501 		    (offset % sc->bnx_flash_info->page_size);
   1502 	}
   1503 
   1504 	/*
   1505 	 * Clear the DONE bit separately, set the address to read,
   1506 	 * and issue the read.
   1507 	 */
   1508 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1509 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1510 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1511 
   1512 	/* Wait for completion. */
   1513 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1514 		uint32_t val;
   1515 
   1516 		DELAY(5);
   1517 
   1518 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1519 		if (val & BNX_NVM_COMMAND_DONE) {
   1520 			val = REG_RD(sc, BNX_NVM_READ);
   1521 
   1522 			val = bnx_be32toh(val);
   1523 			memcpy(ret_val, &val, 4);
   1524 			break;
   1525 		}
   1526 	}
   1527 
   1528 	/* Check for errors. */
   1529 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1530 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1531 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1532 		rc = EBUSY;
   1533 	}
   1534 
   1535 	return rc;
   1536 }
   1537 
   1538 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1539 /****************************************************************************/
   1540 /* Write a dword (32 bits) to NVRAM.                                        */
   1541 /*                                                                          */
   1542 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1543 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1544 /* enabled NVRAM write access.                                              */
   1545 /*                                                                          */
   1546 /* Returns:                                                                 */
   1547 /*   0 on success, positive value on failure.                               */
   1548 /****************************************************************************/
   1549 int
   1550 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
   1551     uint32_t cmd_flags)
   1552 {
   1553 	uint32_t		cmd, val32;
   1554 	int			j;
   1555 
   1556 	/* Build the command word. */
   1557 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1558 
   1559 	/* Calculate the offset for buffered flash if translation is used. */
   1560 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1561 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1562 		    sc->bnx_flash_info->page_bits) +
   1563 		    (offset % sc->bnx_flash_info->page_size);
   1564 	}
   1565 
   1566 	/*
   1567 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1568 	 * set the NVRAM address to write, and issue the write command
   1569 	 */
   1570 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1571 	memcpy(&val32, val, 4);
   1572 	val32 = htobe32(val32);
   1573 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1574 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1575 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1576 
   1577 	/* Wait for completion. */
   1578 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1579 		DELAY(5);
   1580 
   1581 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1582 			break;
   1583 	}
   1584 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1585 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1586 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1587 		return EBUSY;
   1588 	}
   1589 
   1590 	return 0;
   1591 }
   1592 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1593 
   1594 /****************************************************************************/
   1595 /* Initialize NVRAM access.                                                 */
   1596 /*                                                                          */
   1597 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1598 /* access that device.                                                      */
   1599 /*                                                                          */
   1600 /* Returns:                                                                 */
   1601 /*   0 on success, positive value on failure.                               */
   1602 /****************************************************************************/
   1603 int
   1604 bnx_init_nvram(struct bnx_softc *sc)
   1605 {
   1606 	uint32_t		val;
   1607 	int			j, entry_count, rc = 0;
   1608 	struct flash_spec	*flash;
   1609 
   1610 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1611 
   1612 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1613 		sc->bnx_flash_info = &flash_5709;
   1614 		goto bnx_init_nvram_get_flash_size;
   1615 	}
   1616 
   1617 	/* Determine the selected interface. */
   1618 	val = REG_RD(sc, BNX_NVM_CFG1);
   1619 
   1620 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1621 
   1622 	/*
   1623 	 * Flash reconfiguration is required to support additional
   1624 	 * NVRAM devices not directly supported in hardware.
   1625 	 * Check if the flash interface was reconfigured
   1626 	 * by the bootcode.
   1627 	 */
   1628 
   1629 	if (val & 0x40000000) {
   1630 		/* Flash interface reconfigured by bootcode. */
   1631 
   1632 		DBPRINT(sc,BNX_INFO_LOAD,
   1633 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1634 
   1635 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1636 		     j++, flash++) {
   1637 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1638 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1639 				sc->bnx_flash_info = flash;
   1640 				break;
   1641 			}
   1642 		}
   1643 	} else {
   1644 		/* Flash interface not yet reconfigured. */
   1645 		uint32_t mask;
   1646 
   1647 		DBPRINT(sc,BNX_INFO_LOAD,
   1648 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1649 
   1650 		if (val & (1 << 23))
   1651 			mask = FLASH_BACKUP_STRAP_MASK;
   1652 		else
   1653 			mask = FLASH_STRAP_MASK;
   1654 
   1655 		/* Look for the matching NVRAM device configuration data. */
   1656 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1657 		    j++, flash++) {
   1658 			/* Check if the dev matches any of the known devices. */
   1659 			if ((val & mask) == (flash->strapping & mask)) {
   1660 				/* Found a device match. */
   1661 				sc->bnx_flash_info = flash;
   1662 
   1663 				/* Request access to the flash interface. */
   1664 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1665 					return rc;
   1666 
   1667 				/* Reconfigure the flash interface. */
   1668 				bnx_enable_nvram_access(sc);
   1669 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1670 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1671 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1672 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1673 				bnx_disable_nvram_access(sc);
   1674 				bnx_release_nvram_lock(sc);
   1675 
   1676 				break;
   1677 			}
   1678 		}
   1679 	}
   1680 
   1681 	/* Check if a matching device was found. */
   1682 	if (j == entry_count) {
   1683 		sc->bnx_flash_info = NULL;
   1684 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1685 			__FILE__, __LINE__);
   1686 		rc = ENODEV;
   1687 	}
   1688 
   1689 bnx_init_nvram_get_flash_size:
   1690 	/* Write the flash config data to the shared memory interface. */
   1691 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1692 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1693 	if (val)
   1694 		sc->bnx_flash_size = val;
   1695 	else
   1696 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1697 
   1698 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1699 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1700 
   1701 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1702 
   1703 	return rc;
   1704 }
   1705 
   1706 /****************************************************************************/
   1707 /* Read an arbitrary range of data from NVRAM.                              */
   1708 /*                                                                          */
   1709 /* Prepares the NVRAM interface for access and reads the requested data     */
   1710 /* into the supplied buffer.                                                */
   1711 /*                                                                          */
   1712 /* Returns:                                                                 */
   1713 /*   0 on success and the data read, positive value on failure.             */
   1714 /****************************************************************************/
   1715 int
   1716 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
   1717     int buf_size)
   1718 {
   1719 	int			rc = 0;
   1720 	uint32_t		cmd_flags, offset32, len32, extra;
   1721 
   1722 	if (buf_size == 0)
   1723 		return 0;
   1724 
   1725 	/* Request access to the flash interface. */
   1726 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1727 		return rc;
   1728 
   1729 	/* Enable access to flash interface */
   1730 	bnx_enable_nvram_access(sc);
   1731 
   1732 	len32 = buf_size;
   1733 	offset32 = offset;
   1734 	extra = 0;
   1735 
   1736 	cmd_flags = 0;
   1737 
   1738 	if (offset32 & 3) {
   1739 		uint8_t buf[4];
   1740 		uint32_t pre_len;
   1741 
   1742 		offset32 &= ~3;
   1743 		pre_len = 4 - (offset & 3);
   1744 
   1745 		if (pre_len >= len32) {
   1746 			pre_len = len32;
   1747 			cmd_flags =
   1748 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1749 		} else
   1750 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1751 
   1752 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1753 
   1754 		if (rc)
   1755 			return rc;
   1756 
   1757 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1758 
   1759 		offset32 += 4;
   1760 		ret_buf += pre_len;
   1761 		len32 -= pre_len;
   1762 	}
   1763 
   1764 	if (len32 & 3) {
   1765 		extra = 4 - (len32 & 3);
   1766 		len32 = (len32 + 4) & ~3;
   1767 	}
   1768 
   1769 	if (len32 == 4) {
   1770 		uint8_t buf[4];
   1771 
   1772 		if (cmd_flags)
   1773 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1774 		else
   1775 			cmd_flags =
   1776 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1777 
   1778 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1779 
   1780 		memcpy(ret_buf, buf, 4 - extra);
   1781 	} else if (len32 > 0) {
   1782 		uint8_t buf[4];
   1783 
   1784 		/* Read the first word. */
   1785 		if (cmd_flags)
   1786 			cmd_flags = 0;
   1787 		else
   1788 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1789 
   1790 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1791 
   1792 		/* Advance to the next dword. */
   1793 		offset32 += 4;
   1794 		ret_buf += 4;
   1795 		len32 -= 4;
   1796 
   1797 		while (len32 > 4 && rc == 0) {
   1798 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1799 
   1800 			/* Advance to the next dword. */
   1801 			offset32 += 4;
   1802 			ret_buf += 4;
   1803 			len32 -= 4;
   1804 		}
   1805 
   1806 		if (rc)
   1807 			return rc;
   1808 
   1809 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1810 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1811 
   1812 		memcpy(ret_buf, buf, 4 - extra);
   1813 	}
   1814 
   1815 	/* Disable access to flash interface and release the lock. */
   1816 	bnx_disable_nvram_access(sc);
   1817 	bnx_release_nvram_lock(sc);
   1818 
   1819 	return rc;
   1820 }
   1821 
   1822 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1823 /****************************************************************************/
   1824 /* Write an arbitrary range of data from NVRAM.                             */
   1825 /*                                                                          */
   1826 /* Prepares the NVRAM interface for write access and writes the requested   */
   1827 /* data from the supplied buffer.  The caller is responsible for            */
   1828 /* calculating any appropriate CRCs.                                        */
   1829 /*                                                                          */
   1830 /* Returns:                                                                 */
   1831 /*   0 on success, positive value on failure.                               */
   1832 /****************************************************************************/
   1833 int
   1834 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
   1835     int buf_size)
   1836 {
   1837 	uint32_t		written, offset32, len32;
   1838 	uint8_t		*buf, start[4], end[4];
   1839 	int			rc = 0;
   1840 	int			align_start, align_end;
   1841 
   1842 	buf = data_buf;
   1843 	offset32 = offset;
   1844 	len32 = buf_size;
   1845 	align_start = align_end = 0;
   1846 
   1847 	if ((align_start = (offset32 & 3))) {
   1848 		offset32 &= ~3;
   1849 		len32 += align_start;
   1850 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1851 			return rc;
   1852 	}
   1853 
   1854 	if (len32 & 3) {
   1855 		if ((len32 > 4) || !align_start) {
   1856 			align_end = 4 - (len32 & 3);
   1857 			len32 += align_end;
   1858 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1859 			    end, 4)))
   1860 				return rc;
   1861 		}
   1862 	}
   1863 
   1864 	if (align_start || align_end) {
   1865 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1866 		if (buf == 0)
   1867 			return ENOMEM;
   1868 
   1869 		if (align_start)
   1870 			memcpy(buf, start, 4);
   1871 
   1872 		if (align_end)
   1873 			memcpy(buf + len32 - 4, end, 4);
   1874 
   1875 		memcpy(buf + align_start, data_buf, buf_size);
   1876 	}
   1877 
   1878 	written = 0;
   1879 	while ((written < len32) && (rc == 0)) {
   1880 		uint32_t page_start, page_end, data_start, data_end;
   1881 		uint32_t addr, cmd_flags;
   1882 		int i;
   1883 		uint8_t flash_buffer[264];
   1884 
   1885 	    /* Find the page_start addr */
   1886 		page_start = offset32 + written;
   1887 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1888 		/* Find the page_end addr */
   1889 		page_end = page_start + sc->bnx_flash_info->page_size;
   1890 		/* Find the data_start addr */
   1891 		data_start = (written == 0) ? offset32 : page_start;
   1892 		/* Find the data_end addr */
   1893 		data_end = (page_end > offset32 + len32) ?
   1894 		    (offset32 + len32) : page_end;
   1895 
   1896 		/* Request access to the flash interface. */
   1897 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1898 			goto nvram_write_end;
   1899 
   1900 		/* Enable access to flash interface */
   1901 		bnx_enable_nvram_access(sc);
   1902 
   1903 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1904 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1905 			int j;
   1906 
   1907 			/* Read the whole page into the buffer
   1908 			 * (non-buffer flash only) */
   1909 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1910 				if (j == (sc->bnx_flash_info->page_size - 4))
   1911 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1912 
   1913 				rc = bnx_nvram_read_dword(sc,
   1914 					page_start + j,
   1915 					&flash_buffer[j],
   1916 					cmd_flags);
   1917 
   1918 				if (rc)
   1919 					goto nvram_write_end;
   1920 
   1921 				cmd_flags = 0;
   1922 			}
   1923 		}
   1924 
   1925 		/* Enable writes to flash interface (unlock write-protect) */
   1926 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1927 			goto nvram_write_end;
   1928 
   1929 		/* Erase the page */
   1930 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1931 			goto nvram_write_end;
   1932 
   1933 		/* Re-enable the write again for the actual write */
   1934 		bnx_enable_nvram_write(sc);
   1935 
   1936 		/* Loop to write back the buffer data from page_start to
   1937 		 * data_start */
   1938 		i = 0;
   1939 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1940 			for (addr = page_start; addr < data_start;
   1941 				addr += 4, i += 4) {
   1942 
   1943 				rc = bnx_nvram_write_dword(sc, addr,
   1944 				    &flash_buffer[i], cmd_flags);
   1945 
   1946 				if (rc != 0)
   1947 					goto nvram_write_end;
   1948 
   1949 				cmd_flags = 0;
   1950 			}
   1951 		}
   1952 
   1953 		/* Loop to write the new data from data_start to data_end */
   1954 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1955 			if ((addr == page_end - 4) ||
   1956 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   1957 			    && (addr == data_end - 4))) {
   1958 
   1959 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1960 			}
   1961 
   1962 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1963 
   1964 			if (rc != 0)
   1965 				goto nvram_write_end;
   1966 
   1967 			cmd_flags = 0;
   1968 			buf += 4;
   1969 		}
   1970 
   1971 		/* Loop to write back the buffer data from data_end
   1972 		 * to page_end */
   1973 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1974 			for (addr = data_end; addr < page_end;
   1975 			    addr += 4, i += 4) {
   1976 
   1977 				if (addr == page_end-4)
   1978 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1979 
   1980 				rc = bnx_nvram_write_dword(sc, addr,
   1981 				    &flash_buffer[i], cmd_flags);
   1982 
   1983 				if (rc != 0)
   1984 					goto nvram_write_end;
   1985 
   1986 				cmd_flags = 0;
   1987 			}
   1988 		}
   1989 
   1990 		/* Disable writes to flash interface (lock write-protect) */
   1991 		bnx_disable_nvram_write(sc);
   1992 
   1993 		/* Disable access to flash interface */
   1994 		bnx_disable_nvram_access(sc);
   1995 		bnx_release_nvram_lock(sc);
   1996 
   1997 		/* Increment written */
   1998 		written += data_end - data_start;
   1999 	}
   2000 
   2001 nvram_write_end:
   2002 	if (align_start || align_end)
   2003 		free(buf, M_DEVBUF);
   2004 
   2005 	return rc;
   2006 }
   2007 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   2008 
   2009 /****************************************************************************/
   2010 /* Verifies that NVRAM is accessible and contains valid data.               */
   2011 /*                                                                          */
   2012 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   2013 /* correct.                                                                 */
   2014 /*                                                                          */
   2015 /* Returns:                                                                 */
   2016 /*   0 on success, positive value on failure.                               */
   2017 /****************************************************************************/
   2018 int
   2019 bnx_nvram_test(struct bnx_softc *sc)
   2020 {
   2021 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
   2022 	uint8_t		*data = (uint8_t *) buf;
   2023 	int			rc = 0;
   2024 	uint32_t		magic, csum;
   2025 
   2026 	/*
   2027 	 * Check that the device NVRAM is valid by reading
   2028 	 * the magic value at offset 0.
   2029 	 */
   2030 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   2031 		goto bnx_nvram_test_done;
   2032 
   2033 	magic = bnx_be32toh(buf[0]);
   2034 	if (magic != BNX_NVRAM_MAGIC) {
   2035 		rc = ENODEV;
   2036 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   2037 		    "Expected: 0x%08X, Found: 0x%08X\n",
   2038 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   2039 		goto bnx_nvram_test_done;
   2040 	}
   2041 
   2042 	/*
   2043 	 * Verify that the device NVRAM includes valid
   2044 	 * configuration data.
   2045 	 */
   2046 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   2047 		goto bnx_nvram_test_done;
   2048 
   2049 	csum = ether_crc32_le(data, 0x100);
   2050 	if (csum != BNX_CRC32_RESIDUAL) {
   2051 		rc = ENODEV;
   2052 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   2053 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   2054 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2055 		goto bnx_nvram_test_done;
   2056 	}
   2057 
   2058 	csum = ether_crc32_le(data + 0x100, 0x100);
   2059 	if (csum != BNX_CRC32_RESIDUAL) {
   2060 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   2061 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   2062 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2063 		rc = ENODEV;
   2064 	}
   2065 
   2066 bnx_nvram_test_done:
   2067 	return rc;
   2068 }
   2069 
   2070 /****************************************************************************/
   2071 /* Identifies the current media type of the controller and sets the PHY     */
   2072 /* address.                                                                 */
   2073 /*                                                                          */
   2074 /* Returns:                                                                 */
   2075 /*   Nothing.                                                               */
   2076 /****************************************************************************/
   2077 void
   2078 bnx_get_media(struct bnx_softc *sc)
   2079 {
   2080 	sc->bnx_phy_addr = 1;
   2081 
   2082 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2083 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   2084 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   2085 		uint32_t strap;
   2086 
   2087 		/*
   2088 		 * The BCM5709S is software configurable
   2089 		 * for Copper or SerDes operation.
   2090 		 */
   2091 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   2092 			DBPRINT(sc, BNX_INFO_LOAD,
   2093 			    "5709 bonded for copper.\n");
   2094 			goto bnx_get_media_exit;
   2095 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   2096 			DBPRINT(sc, BNX_INFO_LOAD,
   2097 			    "5709 bonded for dual media.\n");
   2098 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2099 			goto bnx_get_media_exit;
   2100 		}
   2101 
   2102 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2103 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2104 		else {
   2105 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2106 			    >> 8;
   2107 		}
   2108 
   2109 		if (sc->bnx_pa.pa_function == 0) {
   2110 			switch (strap) {
   2111 			case 0x4:
   2112 			case 0x5:
   2113 			case 0x6:
   2114 				DBPRINT(sc, BNX_INFO_LOAD,
   2115 					"BCM5709 s/w configured for SerDes.\n");
   2116 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2117 				break;
   2118 			default:
   2119 				DBPRINT(sc, BNX_INFO_LOAD,
   2120 					"BCM5709 s/w configured for Copper.\n");
   2121 			}
   2122 		} else {
   2123 			switch (strap) {
   2124 			case 0x1:
   2125 			case 0x2:
   2126 			case 0x4:
   2127 				DBPRINT(sc, BNX_INFO_LOAD,
   2128 					"BCM5709 s/w configured for SerDes.\n");
   2129 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2130 				break;
   2131 			default:
   2132 				DBPRINT(sc, BNX_INFO_LOAD,
   2133 					"BCM5709 s/w configured for Copper.\n");
   2134 			}
   2135 		}
   2136 
   2137 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2138 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2139 
   2140 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2141 		uint32_t val;
   2142 
   2143 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2144 
   2145 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2146 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2147 
   2148 		/*
   2149 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2150 		 * separate PHY for SerDes.
   2151 		 */
   2152 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2153 			sc->bnx_phy_addr = 2;
   2154 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2155 				 BNX_SHARED_HW_CFG_CONFIG);
   2156 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2157 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2158 				DBPRINT(sc, BNX_INFO_LOAD,
   2159 				    "Found 2.5Gb capable adapter\n");
   2160 			}
   2161 		}
   2162 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2163 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2164 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2165 
   2166 bnx_get_media_exit:
   2167 	DBPRINT(sc, (BNX_INFO_LOAD),
   2168 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2169 }
   2170 
   2171 /****************************************************************************/
   2172 /* Performs PHY initialization required before MII drivers access the       */
   2173 /* device.                                                                  */
   2174 /*                                                                          */
   2175 /* Returns:                                                                 */
   2176 /*   Nothing.                                                               */
   2177 /****************************************************************************/
   2178 void
   2179 bnx_init_media(struct bnx_softc *sc)
   2180 {
   2181 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2182 		/*
   2183 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2184 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2185 		 * the PHY to the mii(4) layer. PHY specific configuration
   2186 		 * is done by the mii(4) layer.
   2187 		 */
   2188 
   2189 		/* Select auto-negotiation MMD of the PHY. */
   2190 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2191 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2192 
   2193 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2194 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2195 
   2196 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2197 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2198 	}
   2199 }
   2200 
   2201 /****************************************************************************/
   2202 /* Free any DMA memory owned by the driver.                                 */
   2203 /*                                                                          */
   2204 /* Scans through each data structre that requires DMA memory and frees      */
   2205 /* the memory if allocated.                                                 */
   2206 /*                                                                          */
   2207 /* Returns:                                                                 */
   2208 /*   Nothing.                                                               */
   2209 /****************************************************************************/
   2210 void
   2211 bnx_dma_free(struct bnx_softc *sc)
   2212 {
   2213 	int			i;
   2214 
   2215 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2216 
   2217 	/* Destroy the status block. */
   2218 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2219 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2220 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2221 		    BNX_STATUS_BLK_SZ);
   2222 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2223 		    sc->status_rseg);
   2224 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2225 		sc->status_block = NULL;
   2226 		sc->status_map = NULL;
   2227 	}
   2228 
   2229 	/* Destroy the statistics block. */
   2230 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2231 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2232 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2233 		    BNX_STATS_BLK_SZ);
   2234 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2235 		    sc->stats_rseg);
   2236 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2237 		sc->stats_block = NULL;
   2238 		sc->stats_map = NULL;
   2239 	}
   2240 
   2241 	/* Free, unmap and destroy all context memory pages. */
   2242 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2243 		for (i = 0; i < sc->ctx_pages; i++) {
   2244 			if (sc->ctx_block[i] != NULL) {
   2245 				bus_dmamap_unload(sc->bnx_dmatag,
   2246 				    sc->ctx_map[i]);
   2247 				bus_dmamem_unmap(sc->bnx_dmatag,
   2248 				    (void *)sc->ctx_block[i],
   2249 				    BCM_PAGE_SIZE);
   2250 				bus_dmamem_free(sc->bnx_dmatag,
   2251 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2252 				bus_dmamap_destroy(sc->bnx_dmatag,
   2253 				    sc->ctx_map[i]);
   2254 				sc->ctx_block[i] = NULL;
   2255 			}
   2256 		}
   2257 	}
   2258 
   2259 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2260 	for (i = 0; i < TX_PAGES; i++ ) {
   2261 		if (sc->tx_bd_chain[i] != NULL &&
   2262 		    sc->tx_bd_chain_map[i] != NULL) {
   2263 			bus_dmamap_unload(sc->bnx_dmatag,
   2264 			    sc->tx_bd_chain_map[i]);
   2265 			bus_dmamem_unmap(sc->bnx_dmatag,
   2266 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2267 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2268 			    sc->tx_bd_chain_rseg[i]);
   2269 			bus_dmamap_destroy(sc->bnx_dmatag,
   2270 			    sc->tx_bd_chain_map[i]);
   2271 			sc->tx_bd_chain[i] = NULL;
   2272 			sc->tx_bd_chain_map[i] = NULL;
   2273 		}
   2274 	}
   2275 
   2276 	/* Destroy the TX dmamaps. */
   2277 	/* This isn't necessary since we dont allocate them up front */
   2278 
   2279 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2280 	for (i = 0; i < RX_PAGES; i++ ) {
   2281 		if (sc->rx_bd_chain[i] != NULL &&
   2282 		    sc->rx_bd_chain_map[i] != NULL) {
   2283 			bus_dmamap_unload(sc->bnx_dmatag,
   2284 			    sc->rx_bd_chain_map[i]);
   2285 			bus_dmamem_unmap(sc->bnx_dmatag,
   2286 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2287 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2288 			    sc->rx_bd_chain_rseg[i]);
   2289 
   2290 			bus_dmamap_destroy(sc->bnx_dmatag,
   2291 			    sc->rx_bd_chain_map[i]);
   2292 			sc->rx_bd_chain[i] = NULL;
   2293 			sc->rx_bd_chain_map[i] = NULL;
   2294 		}
   2295 	}
   2296 
   2297 	/* Unload and destroy the RX mbuf maps. */
   2298 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2299 		if (sc->rx_mbuf_map[i] != NULL) {
   2300 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2301 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2302 		}
   2303 	}
   2304 
   2305 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2306 }
   2307 
   2308 /****************************************************************************/
   2309 /* Allocate any DMA memory needed by the driver.                            */
   2310 /*                                                                          */
   2311 /* Allocates DMA memory needed for the various global structures needed by  */
   2312 /* hardware.                                                                */
   2313 /*                                                                          */
   2314 /* Returns:                                                                 */
   2315 /*   0 for success, positive value for failure.                             */
   2316 /****************************************************************************/
   2317 int
   2318 bnx_dma_alloc(struct bnx_softc *sc)
   2319 {
   2320 	int			i, rc = 0;
   2321 
   2322 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2323 
   2324 	/*
   2325 	 * Allocate DMA memory for the status block, map the memory into DMA
   2326 	 * space, and fetch the physical address of the block.
   2327 	 */
   2328 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2329 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2330 		aprint_error_dev(sc->bnx_dev,
   2331 		    "Could not create status block DMA map!\n");
   2332 		rc = ENOMEM;
   2333 		goto bnx_dma_alloc_exit;
   2334 	}
   2335 
   2336 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2337 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2338 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2339 		aprint_error_dev(sc->bnx_dev,
   2340 		    "Could not allocate status block DMA memory!\n");
   2341 		rc = ENOMEM;
   2342 		goto bnx_dma_alloc_exit;
   2343 	}
   2344 
   2345 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2346 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2347 		aprint_error_dev(sc->bnx_dev,
   2348 		    "Could not map status block DMA memory!\n");
   2349 		rc = ENOMEM;
   2350 		goto bnx_dma_alloc_exit;
   2351 	}
   2352 
   2353 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2354 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2355 		aprint_error_dev(sc->bnx_dev,
   2356 		    "Could not load status block DMA memory!\n");
   2357 		rc = ENOMEM;
   2358 		goto bnx_dma_alloc_exit;
   2359 	}
   2360 
   2361 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2362 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2363 
   2364 	/* DRC - Fix for 64 bit addresses. */
   2365 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2366 		(uint32_t) sc->status_block_paddr);
   2367 
   2368 	/* BCM5709 uses host memory as cache for context memory. */
   2369 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2370 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2371 		if (sc->ctx_pages == 0)
   2372 			sc->ctx_pages = 1;
   2373 		if (sc->ctx_pages > 4) /* XXX */
   2374 			sc->ctx_pages = 4;
   2375 
   2376 		DBRUNIF((sc->ctx_pages > 512),
   2377 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2378 				__FILE__, __LINE__, sc->ctx_pages));
   2379 
   2380 
   2381 		for (i = 0; i < sc->ctx_pages; i++) {
   2382 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2383 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2384 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2385 			    &sc->ctx_map[i]) != 0) {
   2386 				rc = ENOMEM;
   2387 				goto bnx_dma_alloc_exit;
   2388 			}
   2389 
   2390 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2391 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2392 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2393 				rc = ENOMEM;
   2394 				goto bnx_dma_alloc_exit;
   2395 			}
   2396 
   2397 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2398 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2399 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2400 				rc = ENOMEM;
   2401 				goto bnx_dma_alloc_exit;
   2402 			}
   2403 
   2404 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2405 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2406 			    BUS_DMA_NOWAIT) != 0) {
   2407 				rc = ENOMEM;
   2408 				goto bnx_dma_alloc_exit;
   2409 			}
   2410 
   2411 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2412 		}
   2413 	}
   2414 
   2415 	/*
   2416 	 * Allocate DMA memory for the statistics block, map the memory into
   2417 	 * DMA space, and fetch the physical address of the block.
   2418 	 */
   2419 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2420 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2421 		aprint_error_dev(sc->bnx_dev,
   2422 		    "Could not create stats block DMA map!\n");
   2423 		rc = ENOMEM;
   2424 		goto bnx_dma_alloc_exit;
   2425 	}
   2426 
   2427 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2428 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2429 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2430 		aprint_error_dev(sc->bnx_dev,
   2431 		    "Could not allocate stats block DMA memory!\n");
   2432 		rc = ENOMEM;
   2433 		goto bnx_dma_alloc_exit;
   2434 	}
   2435 
   2436 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2437 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2438 		aprint_error_dev(sc->bnx_dev,
   2439 		    "Could not map stats block DMA memory!\n");
   2440 		rc = ENOMEM;
   2441 		goto bnx_dma_alloc_exit;
   2442 	}
   2443 
   2444 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2445 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2446 		aprint_error_dev(sc->bnx_dev,
   2447 		    "Could not load status block DMA memory!\n");
   2448 		rc = ENOMEM;
   2449 		goto bnx_dma_alloc_exit;
   2450 	}
   2451 
   2452 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2453 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2454 
   2455 	/* DRC - Fix for 64 bit address. */
   2456 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2457 	    (uint32_t) sc->stats_block_paddr);
   2458 
   2459 	/*
   2460 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2461 	 * and fetch the physical address of the block.
   2462 	 */
   2463 	for (i = 0; i < TX_PAGES; i++) {
   2464 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2465 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2466 		    &sc->tx_bd_chain_map[i])) {
   2467 			aprint_error_dev(sc->bnx_dev,
   2468 			    "Could not create Tx desc %d DMA map!\n", i);
   2469 			rc = ENOMEM;
   2470 			goto bnx_dma_alloc_exit;
   2471 		}
   2472 
   2473 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2474 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2475 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2476 			aprint_error_dev(sc->bnx_dev,
   2477 			    "Could not allocate TX desc %d DMA memory!\n",
   2478 			    i);
   2479 			rc = ENOMEM;
   2480 			goto bnx_dma_alloc_exit;
   2481 		}
   2482 
   2483 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2484 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2485 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2486 			aprint_error_dev(sc->bnx_dev,
   2487 			    "Could not map TX desc %d DMA memory!\n", i);
   2488 			rc = ENOMEM;
   2489 			goto bnx_dma_alloc_exit;
   2490 		}
   2491 
   2492 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2493 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2494 		    BUS_DMA_NOWAIT)) {
   2495 			aprint_error_dev(sc->bnx_dev,
   2496 			    "Could not load TX desc %d DMA memory!\n", i);
   2497 			rc = ENOMEM;
   2498 			goto bnx_dma_alloc_exit;
   2499 		}
   2500 
   2501 		sc->tx_bd_chain_paddr[i] =
   2502 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2503 
   2504 		/* DRC - Fix for 64 bit systems. */
   2505 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2506 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
   2507 	}
   2508 
   2509 	/*
   2510 	 * Create lists to hold TX mbufs.
   2511 	 */
   2512 	TAILQ_INIT(&sc->tx_free_pkts);
   2513 	TAILQ_INIT(&sc->tx_used_pkts);
   2514 	sc->tx_pkt_count = 0;
   2515 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2516 
   2517 	/*
   2518 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2519 	 * and fetch the physical address of the block.
   2520 	 */
   2521 	for (i = 0; i < RX_PAGES; i++) {
   2522 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2523 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2524 		    &sc->rx_bd_chain_map[i])) {
   2525 			aprint_error_dev(sc->bnx_dev,
   2526 			    "Could not create Rx desc %d DMA map!\n", i);
   2527 			rc = ENOMEM;
   2528 			goto bnx_dma_alloc_exit;
   2529 		}
   2530 
   2531 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2532 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2533 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2534 			aprint_error_dev(sc->bnx_dev,
   2535 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2536 			rc = ENOMEM;
   2537 			goto bnx_dma_alloc_exit;
   2538 		}
   2539 
   2540 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2541 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2542 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2543 			aprint_error_dev(sc->bnx_dev,
   2544 			    "Could not map Rx desc %d DMA memory!\n", i);
   2545 			rc = ENOMEM;
   2546 			goto bnx_dma_alloc_exit;
   2547 		}
   2548 
   2549 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2550 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2551 		    BUS_DMA_NOWAIT)) {
   2552 			aprint_error_dev(sc->bnx_dev,
   2553 			    "Could not load Rx desc %d DMA memory!\n", i);
   2554 			rc = ENOMEM;
   2555 			goto bnx_dma_alloc_exit;
   2556 		}
   2557 
   2558 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2559 		sc->rx_bd_chain_paddr[i] =
   2560 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2561 
   2562 		/* DRC - Fix for 64 bit systems. */
   2563 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2564 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
   2565 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2566 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2567 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2568 	}
   2569 
   2570 	/*
   2571 	 * Create DMA maps for the Rx buffer mbufs.
   2572 	 */
   2573 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2574 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2575 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2576 		    &sc->rx_mbuf_map[i])) {
   2577 			aprint_error_dev(sc->bnx_dev,
   2578 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2579 			rc = ENOMEM;
   2580 			goto bnx_dma_alloc_exit;
   2581 		}
   2582 	}
   2583 
   2584  bnx_dma_alloc_exit:
   2585 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2586 
   2587 	return rc;
   2588 }
   2589 
   2590 /****************************************************************************/
   2591 /* Release all resources used by the driver.                                */
   2592 /*                                                                          */
   2593 /* Releases all resources acquired by the driver including interrupts,      */
   2594 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2595 /*                                                                          */
   2596 /* Returns:                                                                 */
   2597 /*   Nothing.                                                               */
   2598 /****************************************************************************/
   2599 void
   2600 bnx_release_resources(struct bnx_softc *sc)
   2601 {
   2602 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2603 
   2604 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2605 
   2606 	bnx_dma_free(sc);
   2607 
   2608 	if (sc->bnx_intrhand != NULL)
   2609 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2610 
   2611 	if (sc->bnx_size)
   2612 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2613 
   2614 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2615 }
   2616 
   2617 /****************************************************************************/
   2618 /* Firmware synchronization.                                                */
   2619 /*                                                                          */
   2620 /* Before performing certain events such as a chip reset, synchronize with  */
   2621 /* the firmware first.                                                      */
   2622 /*                                                                          */
   2623 /* Returns:                                                                 */
   2624 /*   0 for success, positive value for failure.                             */
   2625 /****************************************************************************/
   2626 int
   2627 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
   2628 {
   2629 	int			i, rc = 0;
   2630 	uint32_t		val;
   2631 
   2632 	/* Don't waste any time if we've timed out before. */
   2633 	if (sc->bnx_fw_timed_out) {
   2634 		rc = EBUSY;
   2635 		goto bnx_fw_sync_exit;
   2636 	}
   2637 
   2638 	/* Increment the message sequence number. */
   2639 	sc->bnx_fw_wr_seq++;
   2640 	msg_data |= sc->bnx_fw_wr_seq;
   2641 
   2642  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2643 	    msg_data);
   2644 
   2645 	/* Send the message to the bootcode driver mailbox. */
   2646 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2647 
   2648 	/* Wait for the bootcode to acknowledge the message. */
   2649 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2650 		/* Check for a response in the bootcode firmware mailbox. */
   2651 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2652 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2653 			break;
   2654 		DELAY(1000);
   2655 	}
   2656 
   2657 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2658 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2659 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2660 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2661 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2662 
   2663 		msg_data &= ~BNX_DRV_MSG_CODE;
   2664 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2665 
   2666 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2667 
   2668 		sc->bnx_fw_timed_out = 1;
   2669 		rc = EBUSY;
   2670 	}
   2671 
   2672 bnx_fw_sync_exit:
   2673 	return rc;
   2674 }
   2675 
   2676 /****************************************************************************/
   2677 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2678 /*                                                                          */
   2679 /* Returns:                                                                 */
   2680 /*   Nothing.                                                               */
   2681 /****************************************************************************/
   2682 void
   2683 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
   2684     uint32_t rv2p_code_len, uint32_t rv2p_proc)
   2685 {
   2686 	int			i;
   2687 	uint32_t		val;
   2688 
   2689 	/* Set the page size used by RV2P. */
   2690 	if (rv2p_proc == RV2P_PROC2) {
   2691 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2692 		    USABLE_RX_BD_PER_PAGE);
   2693 	}
   2694 
   2695 	for (i = 0; i < rv2p_code_len; i += 8) {
   2696 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2697 		rv2p_code++;
   2698 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2699 		rv2p_code++;
   2700 
   2701 		if (rv2p_proc == RV2P_PROC1) {
   2702 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2703 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2704 		} else {
   2705 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2706 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2707 		}
   2708 	}
   2709 
   2710 	/* Reset the processor, un-stall is done later. */
   2711 	if (rv2p_proc == RV2P_PROC1)
   2712 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2713 	else
   2714 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2715 }
   2716 
   2717 /****************************************************************************/
   2718 /* Load RISC processor firmware.                                            */
   2719 /*                                                                          */
   2720 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2721 /* associated with a particular processor.                                  */
   2722 /*                                                                          */
   2723 /* Returns:                                                                 */
   2724 /*   Nothing.                                                               */
   2725 /****************************************************************************/
   2726 void
   2727 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2728     struct fw_info *fw)
   2729 {
   2730 	uint32_t		offset;
   2731 	uint32_t		val;
   2732 
   2733 	/* Halt the CPU. */
   2734 	val = REG_RD_IND(sc, cpu_reg->mode);
   2735 	val |= cpu_reg->mode_value_halt;
   2736 	REG_WR_IND(sc, cpu_reg->mode, val);
   2737 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2738 
   2739 	/* Load the Text area. */
   2740 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2741 	if (fw->text) {
   2742 		int j;
   2743 
   2744 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2745 			REG_WR_IND(sc, offset, fw->text[j]);
   2746 	}
   2747 
   2748 	/* Load the Data area. */
   2749 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2750 	if (fw->data) {
   2751 		int j;
   2752 
   2753 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2754 			REG_WR_IND(sc, offset, fw->data[j]);
   2755 	}
   2756 
   2757 	/* Load the SBSS area. */
   2758 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2759 	if (fw->sbss) {
   2760 		int j;
   2761 
   2762 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2763 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2764 	}
   2765 
   2766 	/* Load the BSS area. */
   2767 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2768 	if (fw->bss) {
   2769 		int j;
   2770 
   2771 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2772 			REG_WR_IND(sc, offset, fw->bss[j]);
   2773 	}
   2774 
   2775 	/* Load the Read-Only area. */
   2776 	offset = cpu_reg->spad_base +
   2777 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2778 	if (fw->rodata) {
   2779 		int j;
   2780 
   2781 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2782 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2783 	}
   2784 
   2785 	/* Clear the pre-fetch instruction. */
   2786 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2787 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2788 
   2789 	/* Start the CPU. */
   2790 	val = REG_RD_IND(sc, cpu_reg->mode);
   2791 	val &= ~cpu_reg->mode_value_halt;
   2792 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2793 	REG_WR_IND(sc, cpu_reg->mode, val);
   2794 }
   2795 
   2796 /****************************************************************************/
   2797 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2798 /*                                                                          */
   2799 /* Loads the firmware for each CPU and starts the CPU.                      */
   2800 /*                                                                          */
   2801 /* Returns:                                                                 */
   2802 /*   Nothing.                                                               */
   2803 /****************************************************************************/
   2804 void
   2805 bnx_init_cpus(struct bnx_softc *sc)
   2806 {
   2807 	struct cpu_reg cpu_reg;
   2808 	struct fw_info fw;
   2809 
   2810 	switch(BNX_CHIP_NUM(sc)) {
   2811 	case BNX_CHIP_NUM_5709:
   2812 		/* Initialize the RV2P processor. */
   2813 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2814 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2815 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2816 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2817 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2818 		} else {
   2819 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2820 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2821 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2822 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2823 		}
   2824 
   2825 		/* Initialize the RX Processor. */
   2826 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2827 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2828 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2829 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2830 		cpu_reg.state_value_clear = 0xffffff;
   2831 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2832 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2833 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2834 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2835 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2836 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2837 		cpu_reg.mips_view_base = 0x8000000;
   2838 
   2839 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2840 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2841 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2842 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2843 
   2844 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2845 		fw.text_len = bnx_RXP_b09FwTextLen;
   2846 		fw.text_index = 0;
   2847 		fw.text = bnx_RXP_b09FwText;
   2848 
   2849 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2850 		fw.data_len = bnx_RXP_b09FwDataLen;
   2851 		fw.data_index = 0;
   2852 		fw.data = bnx_RXP_b09FwData;
   2853 
   2854 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2855 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2856 		fw.sbss_index = 0;
   2857 		fw.sbss = bnx_RXP_b09FwSbss;
   2858 
   2859 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2860 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2861 		fw.bss_index = 0;
   2862 		fw.bss = bnx_RXP_b09FwBss;
   2863 
   2864 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2865 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2866 		fw.rodata_index = 0;
   2867 		fw.rodata = bnx_RXP_b09FwRodata;
   2868 
   2869 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2870 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2871 
   2872 		/* Initialize the TX Processor. */
   2873 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2874 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2875 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2876 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2877 		cpu_reg.state_value_clear = 0xffffff;
   2878 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2879 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2880 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2881 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2882 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2883 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2884 		cpu_reg.mips_view_base = 0x8000000;
   2885 
   2886 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2887 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2888 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2889 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2890 
   2891 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2892 		fw.text_len = bnx_TXP_b09FwTextLen;
   2893 		fw.text_index = 0;
   2894 		fw.text = bnx_TXP_b09FwText;
   2895 
   2896 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   2897 		fw.data_len = bnx_TXP_b09FwDataLen;
   2898 		fw.data_index = 0;
   2899 		fw.data = bnx_TXP_b09FwData;
   2900 
   2901 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   2902 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   2903 		fw.sbss_index = 0;
   2904 		fw.sbss = bnx_TXP_b09FwSbss;
   2905 
   2906 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   2907 		fw.bss_len = bnx_TXP_b09FwBssLen;
   2908 		fw.bss_index = 0;
   2909 		fw.bss = bnx_TXP_b09FwBss;
   2910 
   2911 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   2912 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   2913 		fw.rodata_index = 0;
   2914 		fw.rodata = bnx_TXP_b09FwRodata;
   2915 
   2916 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2917 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2918 
   2919 		/* Initialize the TX Patch-up Processor. */
   2920 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2921 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2922 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2923 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2924 		cpu_reg.state_value_clear = 0xffffff;
   2925 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2926 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2927 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2928 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2929 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2930 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2931 		cpu_reg.mips_view_base = 0x8000000;
   2932 
   2933 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   2934 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   2935 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   2936 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   2937 
   2938 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   2939 		fw.text_len = bnx_TPAT_b09FwTextLen;
   2940 		fw.text_index = 0;
   2941 		fw.text = bnx_TPAT_b09FwText;
   2942 
   2943 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   2944 		fw.data_len = bnx_TPAT_b09FwDataLen;
   2945 		fw.data_index = 0;
   2946 		fw.data = bnx_TPAT_b09FwData;
   2947 
   2948 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   2949 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   2950 		fw.sbss_index = 0;
   2951 		fw.sbss = bnx_TPAT_b09FwSbss;
   2952 
   2953 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   2954 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   2955 		fw.bss_index = 0;
   2956 		fw.bss = bnx_TPAT_b09FwBss;
   2957 
   2958 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   2959 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   2960 		fw.rodata_index = 0;
   2961 		fw.rodata = bnx_TPAT_b09FwRodata;
   2962 
   2963 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2964 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2965 
   2966 		/* Initialize the Completion Processor. */
   2967 		cpu_reg.mode = BNX_COM_CPU_MODE;
   2968 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2969 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2970 		cpu_reg.state = BNX_COM_CPU_STATE;
   2971 		cpu_reg.state_value_clear = 0xffffff;
   2972 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2973 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2974 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2975 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2976 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2977 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   2978 		cpu_reg.mips_view_base = 0x8000000;
   2979 
   2980 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   2981 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   2982 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   2983 		fw.start_addr = bnx_COM_b09FwStartAddr;
   2984 
   2985 		fw.text_addr = bnx_COM_b09FwTextAddr;
   2986 		fw.text_len = bnx_COM_b09FwTextLen;
   2987 		fw.text_index = 0;
   2988 		fw.text = bnx_COM_b09FwText;
   2989 
   2990 		fw.data_addr = bnx_COM_b09FwDataAddr;
   2991 		fw.data_len = bnx_COM_b09FwDataLen;
   2992 		fw.data_index = 0;
   2993 		fw.data = bnx_COM_b09FwData;
   2994 
   2995 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   2996 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   2997 		fw.sbss_index = 0;
   2998 		fw.sbss = bnx_COM_b09FwSbss;
   2999 
   3000 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   3001 		fw.bss_len = bnx_COM_b09FwBssLen;
   3002 		fw.bss_index = 0;
   3003 		fw.bss = bnx_COM_b09FwBss;
   3004 
   3005 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   3006 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   3007 		fw.rodata_index = 0;
   3008 		fw.rodata = bnx_COM_b09FwRodata;
   3009 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3010 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3011 		break;
   3012 	default:
   3013 		/* Initialize the RV2P processor. */
   3014 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   3015 		    RV2P_PROC1);
   3016 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   3017 		    RV2P_PROC2);
   3018 
   3019 		/* Initialize the RX Processor. */
   3020 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   3021 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   3022 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   3023 		cpu_reg.state = BNX_RXP_CPU_STATE;
   3024 		cpu_reg.state_value_clear = 0xffffff;
   3025 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   3026 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   3027 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   3028 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   3029 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   3030 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   3031 		cpu_reg.mips_view_base = 0x8000000;
   3032 
   3033 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   3034 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   3035 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   3036 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   3037 
   3038 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   3039 		fw.text_len = bnx_RXP_b06FwTextLen;
   3040 		fw.text_index = 0;
   3041 		fw.text = bnx_RXP_b06FwText;
   3042 
   3043 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   3044 		fw.data_len = bnx_RXP_b06FwDataLen;
   3045 		fw.data_index = 0;
   3046 		fw.data = bnx_RXP_b06FwData;
   3047 
   3048 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   3049 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   3050 		fw.sbss_index = 0;
   3051 		fw.sbss = bnx_RXP_b06FwSbss;
   3052 
   3053 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   3054 		fw.bss_len = bnx_RXP_b06FwBssLen;
   3055 		fw.bss_index = 0;
   3056 		fw.bss = bnx_RXP_b06FwBss;
   3057 
   3058 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   3059 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   3060 		fw.rodata_index = 0;
   3061 		fw.rodata = bnx_RXP_b06FwRodata;
   3062 
   3063 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   3064 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3065 
   3066 		/* Initialize the TX Processor. */
   3067 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   3068 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   3069 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   3070 		cpu_reg.state = BNX_TXP_CPU_STATE;
   3071 		cpu_reg.state_value_clear = 0xffffff;
   3072 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   3073 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   3074 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   3075 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   3076 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   3077 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   3078 		cpu_reg.mips_view_base = 0x8000000;
   3079 
   3080 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   3081 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   3082 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   3083 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   3084 
   3085 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   3086 		fw.text_len = bnx_TXP_b06FwTextLen;
   3087 		fw.text_index = 0;
   3088 		fw.text = bnx_TXP_b06FwText;
   3089 
   3090 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   3091 		fw.data_len = bnx_TXP_b06FwDataLen;
   3092 		fw.data_index = 0;
   3093 		fw.data = bnx_TXP_b06FwData;
   3094 
   3095 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   3096 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   3097 		fw.sbss_index = 0;
   3098 		fw.sbss = bnx_TXP_b06FwSbss;
   3099 
   3100 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3101 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3102 		fw.bss_index = 0;
   3103 		fw.bss = bnx_TXP_b06FwBss;
   3104 
   3105 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3106 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3107 		fw.rodata_index = 0;
   3108 		fw.rodata = bnx_TXP_b06FwRodata;
   3109 
   3110 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3111 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3112 
   3113 		/* Initialize the TX Patch-up Processor. */
   3114 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3115 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3116 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3117 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3118 		cpu_reg.state_value_clear = 0xffffff;
   3119 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3120 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3121 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3122 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3123 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3124 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3125 		cpu_reg.mips_view_base = 0x8000000;
   3126 
   3127 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3128 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3129 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3130 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3131 
   3132 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3133 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3134 		fw.text_index = 0;
   3135 		fw.text = bnx_TPAT_b06FwText;
   3136 
   3137 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3138 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3139 		fw.data_index = 0;
   3140 		fw.data = bnx_TPAT_b06FwData;
   3141 
   3142 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3143 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3144 		fw.sbss_index = 0;
   3145 		fw.sbss = bnx_TPAT_b06FwSbss;
   3146 
   3147 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3148 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3149 		fw.bss_index = 0;
   3150 		fw.bss = bnx_TPAT_b06FwBss;
   3151 
   3152 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3153 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3154 		fw.rodata_index = 0;
   3155 		fw.rodata = bnx_TPAT_b06FwRodata;
   3156 
   3157 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3158 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3159 
   3160 		/* Initialize the Completion Processor. */
   3161 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3162 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3163 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3164 		cpu_reg.state = BNX_COM_CPU_STATE;
   3165 		cpu_reg.state_value_clear = 0xffffff;
   3166 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3167 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3168 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3169 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3170 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3171 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3172 		cpu_reg.mips_view_base = 0x8000000;
   3173 
   3174 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3175 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3176 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3177 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3178 
   3179 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3180 		fw.text_len = bnx_COM_b06FwTextLen;
   3181 		fw.text_index = 0;
   3182 		fw.text = bnx_COM_b06FwText;
   3183 
   3184 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3185 		fw.data_len = bnx_COM_b06FwDataLen;
   3186 		fw.data_index = 0;
   3187 		fw.data = bnx_COM_b06FwData;
   3188 
   3189 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3190 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3191 		fw.sbss_index = 0;
   3192 		fw.sbss = bnx_COM_b06FwSbss;
   3193 
   3194 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3195 		fw.bss_len = bnx_COM_b06FwBssLen;
   3196 		fw.bss_index = 0;
   3197 		fw.bss = bnx_COM_b06FwBss;
   3198 
   3199 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3200 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3201 		fw.rodata_index = 0;
   3202 		fw.rodata = bnx_COM_b06FwRodata;
   3203 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3204 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3205 		break;
   3206 	}
   3207 }
   3208 
   3209 /****************************************************************************/
   3210 /* Initialize context memory.                                               */
   3211 /*                                                                          */
   3212 /* Clears the memory associated with each Context ID (CID).                 */
   3213 /*                                                                          */
   3214 /* Returns:                                                                 */
   3215 /*   Nothing.                                                               */
   3216 /****************************************************************************/
   3217 void
   3218 bnx_init_context(struct bnx_softc *sc)
   3219 {
   3220 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3221 		/* DRC: Replace this constant value with a #define. */
   3222 		int i, retry_cnt = 10;
   3223 		uint32_t val;
   3224 
   3225 		/*
   3226 		 * BCM5709 context memory may be cached
   3227 		 * in host memory so prepare the host memory
   3228 		 * for access.
   3229 		 */
   3230 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3231 		    | (1 << 12);
   3232 		val |= (BCM_PAGE_BITS - 8) << 16;
   3233 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3234 
   3235 		/* Wait for mem init command to complete. */
   3236 		for (i = 0; i < retry_cnt; i++) {
   3237 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3238 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3239 				break;
   3240 			DELAY(2);
   3241 		}
   3242 
   3243 		/* ToDo: Consider returning an error here. */
   3244 
   3245 		for (i = 0; i < sc->ctx_pages; i++) {
   3246 			int j;
   3247 
   3248 			/* Set the physaddr of the context memory cache. */
   3249 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
   3250 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3251 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3252 			val = (uint32_t)
   3253 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
   3254 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3255 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3256 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3257 
   3258 			/* Verify that the context memory write was successful. */
   3259 			for (j = 0; j < retry_cnt; j++) {
   3260 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3261 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3262 					break;
   3263 				DELAY(5);
   3264 			}
   3265 
   3266 			/* ToDo: Consider returning an error here. */
   3267 		}
   3268 	} else {
   3269 		uint32_t vcid_addr, offset;
   3270 
   3271 		/*
   3272 		 * For the 5706/5708, context memory is local to
   3273 		 * the controller, so initialize the controller
   3274 		 * context memory.
   3275 		 */
   3276 
   3277 		vcid_addr = GET_CID_ADDR(96);
   3278 		while (vcid_addr) {
   3279 
   3280 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3281 
   3282 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3283 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3284 
   3285 			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
   3286 				CTX_WR(sc, 0x00, offset, 0);
   3287 			}
   3288 
   3289 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3290 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3291 		}
   3292 	}
   3293 }
   3294 
   3295 /****************************************************************************/
   3296 /* Fetch the permanent MAC address of the controller.                       */
   3297 /*                                                                          */
   3298 /* Returns:                                                                 */
   3299 /*   Nothing.                                                               */
   3300 /****************************************************************************/
   3301 void
   3302 bnx_get_mac_addr(struct bnx_softc *sc)
   3303 {
   3304 	uint32_t		mac_lo = 0, mac_hi = 0;
   3305 
   3306 	/*
   3307 	 * The NetXtreme II bootcode populates various NIC
   3308 	 * power-on and runtime configuration items in a
   3309 	 * shared memory area.  The factory configured MAC
   3310 	 * address is available from both NVRAM and the
   3311 	 * shared memory area so we'll read the value from
   3312 	 * shared memory for speed.
   3313 	 */
   3314 
   3315 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3316 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3317 
   3318 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3319 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3320 		    __FILE__, __LINE__);
   3321 	} else {
   3322 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3323 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3324 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3325 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3326 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3327 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3328 	}
   3329 
   3330 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3331 	    "%s\n", ether_sprintf(sc->eaddr));
   3332 }
   3333 
   3334 /****************************************************************************/
   3335 /* Program the MAC address.                                                 */
   3336 /*                                                                          */
   3337 /* Returns:                                                                 */
   3338 /*   Nothing.                                                               */
   3339 /****************************************************************************/
   3340 void
   3341 bnx_set_mac_addr(struct bnx_softc *sc)
   3342 {
   3343 	uint32_t		val;
   3344 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3345 
   3346 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3347 	    "%s\n", ether_sprintf(sc->eaddr));
   3348 
   3349 	val = (mac_addr[0] << 8) | mac_addr[1];
   3350 
   3351 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3352 
   3353 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3354 		(mac_addr[4] << 8) | mac_addr[5];
   3355 
   3356 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3357 }
   3358 
   3359 /****************************************************************************/
   3360 /* Stop the controller.                                                     */
   3361 /*                                                                          */
   3362 /* Returns:                                                                 */
   3363 /*   Nothing.                                                               */
   3364 /****************************************************************************/
   3365 void
   3366 bnx_stop(struct ifnet *ifp, int disable)
   3367 {
   3368 	struct bnx_softc *sc = ifp->if_softc;
   3369 
   3370 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3371 
   3372 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   3373 		return;
   3374 
   3375 	callout_stop(&sc->bnx_timeout);
   3376 
   3377 	mii_down(&sc->bnx_mii);
   3378 
   3379 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3380 
   3381 	/* Disable the transmit/receive blocks. */
   3382 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3383 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3384 	DELAY(20);
   3385 
   3386 	bnx_disable_intr(sc);
   3387 
   3388 	/* Tell firmware that the driver is going away. */
   3389 	if (disable)
   3390 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3391 	else
   3392 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3393 
   3394 	/* Free RX buffers. */
   3395 	bnx_free_rx_chain(sc);
   3396 
   3397 	/* Free TX buffers. */
   3398 	bnx_free_tx_chain(sc);
   3399 
   3400 	ifp->if_timer = 0;
   3401 
   3402 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3403 
   3404 }
   3405 
   3406 int
   3407 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
   3408 {
   3409 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3410 	uint32_t		val;
   3411 	int			i, rc = 0;
   3412 
   3413 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3414 
   3415 	/* Wait for pending PCI transactions to complete. */
   3416 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3417 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3418 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3419 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3420 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3421 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3422 	DELAY(5);
   3423 
   3424 	/* Disable DMA */
   3425 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3426 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3427 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3428 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3429 	}
   3430 
   3431 	/* Assume bootcode is running. */
   3432 	sc->bnx_fw_timed_out = 0;
   3433 
   3434 	/* Give the firmware a chance to prepare for the reset. */
   3435 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3436 	if (rc)
   3437 		goto bnx_reset_exit;
   3438 
   3439 	/* Set a firmware reminder that this is a soft reset. */
   3440 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3441 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3442 
   3443 	/* Dummy read to force the chip to complete all current transactions. */
   3444 	val = REG_RD(sc, BNX_MISC_ID);
   3445 
   3446 	/* Chip reset. */
   3447 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3448 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3449 		REG_RD(sc, BNX_MISC_COMMAND);
   3450 		DELAY(5);
   3451 
   3452 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3453 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3454 
   3455 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3456 		    val);
   3457 	} else {
   3458 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3459 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3460 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3461 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3462 
   3463 		/* Allow up to 30us for reset to complete. */
   3464 		for (i = 0; i < 10; i++) {
   3465 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3466 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3467 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3468 				break;
   3469 			}
   3470 			DELAY(10);
   3471 		}
   3472 
   3473 		/* Check that reset completed successfully. */
   3474 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3475 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3476 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3477 			    __FILE__, __LINE__);
   3478 			rc = EBUSY;
   3479 			goto bnx_reset_exit;
   3480 		}
   3481 	}
   3482 
   3483 	/* Make sure byte swapping is properly configured. */
   3484 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3485 	if (val != 0x01020304) {
   3486 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3487 		    __FILE__, __LINE__);
   3488 		rc = ENODEV;
   3489 		goto bnx_reset_exit;
   3490 	}
   3491 
   3492 	/* Just completed a reset, assume that firmware is running again. */
   3493 	sc->bnx_fw_timed_out = 0;
   3494 
   3495 	/* Wait for the firmware to finish its initialization. */
   3496 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3497 	if (rc)
   3498 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3499 		    "initialization!\n", __FILE__, __LINE__);
   3500 
   3501 bnx_reset_exit:
   3502 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3503 
   3504 	return rc;
   3505 }
   3506 
   3507 int
   3508 bnx_chipinit(struct bnx_softc *sc)
   3509 {
   3510 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3511 	uint32_t		val;
   3512 	int			rc = 0;
   3513 
   3514 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3515 
   3516 	/* Make sure the interrupt is not active. */
   3517 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3518 
   3519 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3520 	/* channels and PCI clock compensation delay.                      */
   3521 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3522 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3523 #if BYTE_ORDER == BIG_ENDIAN
   3524 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3525 #endif
   3526 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3527 	    DMA_READ_CHANS << 12 |
   3528 	    DMA_WRITE_CHANS << 16;
   3529 
   3530 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3531 
   3532 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3533 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3534 
   3535 	/*
   3536 	 * This setting resolves a problem observed on certain Intel PCI
   3537 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3538 	 * See errata E9_5706A1_65.
   3539 	 */
   3540 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3541 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3542 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3543 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3544 
   3545 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3546 
   3547 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3548 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3549 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3550 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3551 		    val & ~0x20000);
   3552 	}
   3553 
   3554 	/* Enable the RX_V2P and Context state machines before access. */
   3555 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3556 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3557 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3558 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3559 
   3560 	/* Initialize context mapping and zero out the quick contexts. */
   3561 	bnx_init_context(sc);
   3562 
   3563 	/* Initialize the on-boards CPUs */
   3564 	bnx_init_cpus(sc);
   3565 
   3566 	/* Prepare NVRAM for access. */
   3567 	if (bnx_init_nvram(sc)) {
   3568 		rc = ENODEV;
   3569 		goto bnx_chipinit_exit;
   3570 	}
   3571 
   3572 	/* Set the kernel bypass block size */
   3573 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3574 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3575 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3576 
   3577 	/* Enable bins used on the 5709. */
   3578 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3579 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3580 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3581 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3582 	}
   3583 
   3584 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3585 
   3586 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3587 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3588 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3589 
   3590 	val = (BCM_PAGE_BITS - 8) << 24;
   3591 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3592 
   3593 	/* Configure page size. */
   3594 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3595 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3596 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3597 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3598 
   3599 #if 0
   3600 	/* Set the perfect match control register to default. */
   3601 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3602 #endif
   3603 
   3604 bnx_chipinit_exit:
   3605 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3606 
   3607 	return rc;
   3608 }
   3609 
   3610 /****************************************************************************/
   3611 /* Initialize the controller in preparation to send/receive traffic.        */
   3612 /*                                                                          */
   3613 /* Returns:                                                                 */
   3614 /*   0 for success, positive value for failure.                             */
   3615 /****************************************************************************/
   3616 int
   3617 bnx_blockinit(struct bnx_softc *sc)
   3618 {
   3619 	uint32_t		reg, val;
   3620 	int 			rc = 0;
   3621 
   3622 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3623 
   3624 	/* Load the hardware default MAC address. */
   3625 	bnx_set_mac_addr(sc);
   3626 
   3627 	/* Set the Ethernet backoff seed value */
   3628 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3629 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3630 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3631 
   3632 	sc->last_status_idx = 0;
   3633 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3634 
   3635 	/* Set up link change interrupt generation. */
   3636 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3637 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3638 
   3639 	/* Program the physical address of the status block. */
   3640 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
   3641 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3642 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
   3643 
   3644 	/* Program the physical address of the statistics block. */
   3645 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3646 	    (uint32_t)(sc->stats_block_paddr));
   3647 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3648 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
   3649 
   3650 	/* Program various host coalescing parameters. */
   3651 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3652 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3653 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3654 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3655 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3656 	    sc->bnx_comp_prod_trip);
   3657 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3658 	    sc->bnx_tx_ticks);
   3659 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3660 	    sc->bnx_rx_ticks);
   3661 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3662 	    sc->bnx_com_ticks);
   3663 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3664 	    sc->bnx_cmd_ticks);
   3665 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3666 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3667 	REG_WR(sc, BNX_HC_CONFIG,
   3668 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3669 	    BNX_HC_CONFIG_COLLECT_STATS));
   3670 
   3671 	/* Clear the internal statistics counters. */
   3672 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3673 
   3674 	/* Verify that bootcode is running. */
   3675 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3676 
   3677 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3678 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3679 	    __FILE__, __LINE__); reg = 0);
   3680 
   3681 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3682 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3683 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3684 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3685 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3686 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3687 		rc = ENODEV;
   3688 		goto bnx_blockinit_exit;
   3689 	}
   3690 
   3691 	/* Check if any management firmware is running. */
   3692 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3693 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3694 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3695 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3696 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3697 	}
   3698 
   3699 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3700 	    BNX_DEV_INFO_BC_REV);
   3701 
   3702 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3703 
   3704 	/* Enable DMA */
   3705 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3706 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3707 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3708 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3709 	}
   3710 
   3711 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3712 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3713 
   3714 	/* Enable link state change interrupt generation. */
   3715 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3716 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3717 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3718 	} else
   3719 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3720 
   3721 	/* Enable all remaining blocks in the MAC. */
   3722 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3723 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3724 	DELAY(20);
   3725 
   3726 bnx_blockinit_exit:
   3727 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3728 
   3729 	return rc;
   3730 }
   3731 
   3732 static int
   3733 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
   3734     uint16_t *chain_prod, uint32_t *prod_bseq)
   3735 {
   3736 	bus_dmamap_t		map;
   3737 	struct rx_bd		*rxbd;
   3738 	uint32_t		addr;
   3739 	int i;
   3740 #ifdef BNX_DEBUG
   3741 	uint16_t debug_chain_prod =	*chain_prod;
   3742 #endif
   3743 	uint16_t first_chain_prod;
   3744 
   3745 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3746 
   3747 	/* Map the mbuf cluster into device memory. */
   3748 	map = sc->rx_mbuf_map[*chain_prod];
   3749 	first_chain_prod = *chain_prod;
   3750 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3751 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3752 		    __FILE__, __LINE__);
   3753 
   3754 		m_freem(m_new);
   3755 
   3756 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3757 
   3758 		return ENOBUFS;
   3759 	}
   3760 	/* Make sure there is room in the receive chain. */
   3761 	if (map->dm_nsegs > sc->free_rx_bd) {
   3762 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3763 		m_freem(m_new);
   3764 		return EFBIG;
   3765 	}
   3766 #ifdef BNX_DEBUG
   3767 	/* Track the distribution of buffer segments. */
   3768 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3769 #endif
   3770 
   3771 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3772 	    BUS_DMASYNC_PREREAD);
   3773 
   3774 	/* Update some debug statistics counters */
   3775 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3776 	    sc->rx_low_watermark = sc->free_rx_bd);
   3777 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3778 
   3779 	/*
   3780 	 * Setup the rx_bd for the first segment
   3781 	 */
   3782 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3783 
   3784 	addr = (uint32_t)map->dm_segs[0].ds_addr;
   3785 	rxbd->rx_bd_haddr_lo = addr;
   3786 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
   3787 	rxbd->rx_bd_haddr_hi = addr;
   3788 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3789 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3790 	*prod_bseq += map->dm_segs[0].ds_len;
   3791 	bus_dmamap_sync(sc->bnx_dmatag,
   3792 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3793 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3794 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3795 
   3796 	for (i = 1; i < map->dm_nsegs; i++) {
   3797 		*prod = NEXT_RX_BD(*prod);
   3798 		*chain_prod = RX_CHAIN_IDX(*prod);
   3799 
   3800 		rxbd =
   3801 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3802 
   3803 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   3804 		rxbd->rx_bd_haddr_lo = addr;
   3805 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   3806 		rxbd->rx_bd_haddr_hi = addr;
   3807 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3808 		rxbd->rx_bd_flags = 0;
   3809 		*prod_bseq += map->dm_segs[i].ds_len;
   3810 		bus_dmamap_sync(sc->bnx_dmatag,
   3811 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3812 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3813 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3814 	}
   3815 
   3816 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3817 	bus_dmamap_sync(sc->bnx_dmatag,
   3818 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3819 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3820 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3821 
   3822 	/*
   3823 	 * Save the mbuf, adjust the map pointer (swap map for first and
   3824 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
   3825 	 * and update our counter.
   3826 	 */
   3827 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3828 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3829 	sc->rx_mbuf_map[*chain_prod] = map;
   3830 	sc->free_rx_bd -= map->dm_nsegs;
   3831 
   3832 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3833 	    map->dm_nsegs));
   3834 	*prod = NEXT_RX_BD(*prod);
   3835 	*chain_prod = RX_CHAIN_IDX(*prod);
   3836 
   3837 	return 0;
   3838 }
   3839 
   3840 /****************************************************************************/
   3841 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3842 /*                                                                          */
   3843 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3844 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3845 /* necessary.                                                               */
   3846 /*                                                                          */
   3847 /* Returns:                                                                 */
   3848 /*   0 for success, positive value for failure.                             */
   3849 /****************************************************************************/
   3850 int
   3851 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
   3852     uint16_t *chain_prod, uint32_t *prod_bseq)
   3853 {
   3854 	struct mbuf 		*m_new = NULL;
   3855 	int			rc = 0;
   3856 	uint16_t min_free_bd;
   3857 
   3858 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3859 	    __func__);
   3860 
   3861 	/* Make sure the inputs are valid. */
   3862 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3863 	    aprint_error_dev(sc->bnx_dev,
   3864 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3865 		*chain_prod, (uint16_t)MAX_RX_BD));
   3866 
   3867 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3868 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3869 	    *prod_bseq);
   3870 
   3871 	/* try to get in as many mbufs as possible */
   3872 	if (sc->mbuf_alloc_size == MCLBYTES)
   3873 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3874 	else
   3875 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3876 	while (sc->free_rx_bd >= min_free_bd) {
   3877 		/* Simulate an mbuf allocation failure. */
   3878 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3879 		    aprint_error_dev(sc->bnx_dev,
   3880 		    "Simulating mbuf allocation failure.\n");
   3881 			sc->mbuf_sim_alloc_failed++;
   3882 			rc = ENOBUFS;
   3883 			goto bnx_get_buf_exit);
   3884 
   3885 		/* This is a new mbuf allocation. */
   3886 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3887 		if (m_new == NULL) {
   3888 			DBPRINT(sc, BNX_WARN,
   3889 			    "%s(%d): RX mbuf header allocation failed!\n",
   3890 			    __FILE__, __LINE__);
   3891 
   3892 			sc->mbuf_alloc_failed++;
   3893 
   3894 			rc = ENOBUFS;
   3895 			goto bnx_get_buf_exit;
   3896 		}
   3897 
   3898 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3899 
   3900 		/* Simulate an mbuf cluster allocation failure. */
   3901 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3902 			m_freem(m_new);
   3903 			sc->rx_mbuf_alloc--;
   3904 			sc->mbuf_alloc_failed++;
   3905 			sc->mbuf_sim_alloc_failed++;
   3906 			rc = ENOBUFS;
   3907 			goto bnx_get_buf_exit);
   3908 
   3909 		if (sc->mbuf_alloc_size == MCLBYTES)
   3910 			MCLGET(m_new, M_DONTWAIT);
   3911 		else
   3912 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3913 			    M_DONTWAIT);
   3914 		if (!(m_new->m_flags & M_EXT)) {
   3915 			DBPRINT(sc, BNX_WARN,
   3916 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3917 			    __FILE__, __LINE__);
   3918 
   3919 			m_freem(m_new);
   3920 
   3921 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3922 			sc->mbuf_alloc_failed++;
   3923 
   3924 			rc = ENOBUFS;
   3925 			goto bnx_get_buf_exit;
   3926 		}
   3927 
   3928 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3929 		if (rc != 0)
   3930 			goto bnx_get_buf_exit;
   3931 	}
   3932 
   3933 bnx_get_buf_exit:
   3934 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3935 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3936 	    *chain_prod, *prod_bseq);
   3937 
   3938 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3939 	    __func__);
   3940 
   3941 	return rc;
   3942 }
   3943 
   3944 void
   3945 bnx_alloc_pkts(struct work * unused, void * arg)
   3946 {
   3947 	struct bnx_softc *sc = arg;
   3948 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   3949 	struct bnx_pkt *pkt;
   3950 	int i, s;
   3951 
   3952 	for (i = 0; i < 4; i++) { /* magic! */
   3953 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   3954 		if (pkt == NULL)
   3955 			break;
   3956 
   3957 		if (bus_dmamap_create(sc->bnx_dmatag,
   3958 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   3959 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   3960 		    &pkt->pkt_dmamap) != 0)
   3961 			goto put;
   3962 
   3963 		if (!ISSET(ifp->if_flags, IFF_UP))
   3964 			goto stopping;
   3965 
   3966 		mutex_enter(&sc->tx_pkt_mtx);
   3967 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   3968 		sc->tx_pkt_count++;
   3969 		mutex_exit(&sc->tx_pkt_mtx);
   3970 	}
   3971 
   3972 	mutex_enter(&sc->tx_pkt_mtx);
   3973 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   3974 	mutex_exit(&sc->tx_pkt_mtx);
   3975 
   3976 	/* fire-up TX now that allocations have been done */
   3977 	s = splnet();
   3978 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3979 		bnx_start(ifp);
   3980 	splx(s);
   3981 
   3982 	return;
   3983 
   3984 stopping:
   3985 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   3986 put:
   3987 	pool_put(bnx_tx_pool, pkt);
   3988 	return;
   3989 }
   3990 
   3991 /****************************************************************************/
   3992 /* Initialize the TX context memory.                                        */
   3993 /*                                                                          */
   3994 /* Returns:                                                                 */
   3995 /*   Nothing                                                                */
   3996 /****************************************************************************/
   3997 void
   3998 bnx_init_tx_context(struct bnx_softc *sc)
   3999 {
   4000 	uint32_t val;
   4001 
   4002 	/* Initialize the context ID for an L2 TX chain. */
   4003 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4004 		/* Set the CID type to support an L2 connection. */
   4005 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4006 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   4007 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4008 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   4009 
   4010 		/* Point the hardware to the first page in the chain. */
   4011 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4012 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4013 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   4014 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4015 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4016 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   4017 	} else {
   4018 		/* Set the CID type to support an L2 connection. */
   4019 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4020 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   4021 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4022 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   4023 
   4024 		/* Point the hardware to the first page in the chain. */
   4025 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4026 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   4027 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4028 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   4029 	}
   4030 }
   4031 
   4032 
   4033 /****************************************************************************/
   4034 /* Allocate memory and initialize the TX data structures.                   */
   4035 /*                                                                          */
   4036 /* Returns:                                                                 */
   4037 /*   0 for success, positive value for failure.                             */
   4038 /****************************************************************************/
   4039 int
   4040 bnx_init_tx_chain(struct bnx_softc *sc)
   4041 {
   4042 	struct tx_bd		*txbd;
   4043 	uint32_t		addr;
   4044 	int			i, rc = 0;
   4045 
   4046 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4047 
   4048 	/* Force an allocation of some dmamaps for tx up front */
   4049 	bnx_alloc_pkts(NULL, sc);
   4050 
   4051 	/* Set the initial TX producer/consumer indices. */
   4052 	sc->tx_prod = 0;
   4053 	sc->tx_cons = 0;
   4054 	sc->tx_prod_bseq = 0;
   4055 	sc->used_tx_bd = 0;
   4056 	sc->max_tx_bd = USABLE_TX_BD;
   4057 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   4058 	DBRUNIF(1, sc->tx_full_count = 0);
   4059 
   4060 	/*
   4061 	 * The NetXtreme II supports a linked-list structure called
   4062 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   4063 	 * consists of a series of 1 or more chain pages, each of which
   4064 	 * consists of a fixed number of BD entries.
   4065 	 * The last BD entry on each page is a pointer to the next page
   4066 	 * in the chain, and the last pointer in the BD chain
   4067 	 * points back to the beginning of the chain.
   4068 	 */
   4069 
   4070 	/* Set the TX next pointer chain entries. */
   4071 	for (i = 0; i < TX_PAGES; i++) {
   4072 		int j;
   4073 
   4074 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   4075 
   4076 		/* Check if we've reached the last page. */
   4077 		if (i == (TX_PAGES - 1))
   4078 			j = 0;
   4079 		else
   4080 			j = i + 1;
   4081 
   4082 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
   4083 		txbd->tx_bd_haddr_lo = addr;
   4084 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
   4085 		txbd->tx_bd_haddr_hi = addr;
   4086 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4087 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4088 	}
   4089 
   4090 	/*
   4091 	 * Initialize the context ID for an L2 TX chain.
   4092 	 */
   4093 	bnx_init_tx_context(sc);
   4094 
   4095 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4096 
   4097 	return rc;
   4098 }
   4099 
   4100 /****************************************************************************/
   4101 /* Free memory and clear the TX data structures.                            */
   4102 /*                                                                          */
   4103 /* Returns:                                                                 */
   4104 /*   Nothing.                                                               */
   4105 /****************************************************************************/
   4106 void
   4107 bnx_free_tx_chain(struct bnx_softc *sc)
   4108 {
   4109 	struct bnx_pkt		*pkt;
   4110 	int			i;
   4111 
   4112 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4113 
   4114 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4115 	mutex_enter(&sc->tx_pkt_mtx);
   4116 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4117 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4118 		mutex_exit(&sc->tx_pkt_mtx);
   4119 
   4120 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4121 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4122 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4123 
   4124 		m_freem(pkt->pkt_mbuf);
   4125 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4126 
   4127 		mutex_enter(&sc->tx_pkt_mtx);
   4128 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4129 	}
   4130 
   4131 	/* Destroy all the dmamaps we allocated for TX */
   4132 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   4133 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4134 		sc->tx_pkt_count--;
   4135 		mutex_exit(&sc->tx_pkt_mtx);
   4136 
   4137 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4138 		pool_put(bnx_tx_pool, pkt);
   4139 
   4140 		mutex_enter(&sc->tx_pkt_mtx);
   4141 	}
   4142 	mutex_exit(&sc->tx_pkt_mtx);
   4143 
   4144 
   4145 
   4146 	/* Clear each TX chain page. */
   4147 	for (i = 0; i < TX_PAGES; i++) {
   4148 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4149 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4150 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4151 	}
   4152 
   4153 	sc->used_tx_bd = 0;
   4154 
   4155 	/* Check if we lost any mbufs in the process. */
   4156 	DBRUNIF((sc->tx_mbuf_alloc),
   4157 	    aprint_error_dev(sc->bnx_dev,
   4158 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   4159 		sc->tx_mbuf_alloc));
   4160 
   4161 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4162 }
   4163 
   4164 /****************************************************************************/
   4165 /* Initialize the RX context memory.                                        */
   4166 /*                                                                          */
   4167 /* Returns:                                                                 */
   4168 /*   Nothing                                                                */
   4169 /****************************************************************************/
   4170 void
   4171 bnx_init_rx_context(struct bnx_softc *sc)
   4172 {
   4173 	uint32_t val;
   4174 
   4175 	/* Initialize the context ID for an L2 RX chain. */
   4176 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4177 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4178 
   4179 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4180 		uint32_t lo_water, hi_water;
   4181 
   4182 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
   4183 		hi_water = USABLE_RX_BD / 4;
   4184 
   4185 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
   4186 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
   4187 
   4188 		if (hi_water > 0xf)
   4189 			hi_water = 0xf;
   4190 		else if (hi_water == 0)
   4191 			lo_water = 0;
   4192 		val |= lo_water |
   4193 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
   4194 	}
   4195 
   4196  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4197 
   4198 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4199 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4200 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4201 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4202 	}
   4203 
   4204 	/* Point the hardware to the first page in the chain. */
   4205 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4206 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4207 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
   4208 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4209 }
   4210 
   4211 /****************************************************************************/
   4212 /* Allocate memory and initialize the RX data structures.                   */
   4213 /*                                                                          */
   4214 /* Returns:                                                                 */
   4215 /*   0 for success, positive value for failure.                             */
   4216 /****************************************************************************/
   4217 int
   4218 bnx_init_rx_chain(struct bnx_softc *sc)
   4219 {
   4220 	struct rx_bd		*rxbd;
   4221 	int			i, rc = 0;
   4222 	uint16_t		prod, chain_prod;
   4223 	uint32_t		prod_bseq, addr;
   4224 
   4225 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4226 
   4227 	/* Initialize the RX producer and consumer indices. */
   4228 	sc->rx_prod = 0;
   4229 	sc->rx_cons = 0;
   4230 	sc->rx_prod_bseq = 0;
   4231 	sc->free_rx_bd = USABLE_RX_BD;
   4232 	sc->max_rx_bd = USABLE_RX_BD;
   4233 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4234 	DBRUNIF(1, sc->rx_empty_count = 0);
   4235 
   4236 	/* Initialize the RX next pointer chain entries. */
   4237 	for (i = 0; i < RX_PAGES; i++) {
   4238 		int j;
   4239 
   4240 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4241 
   4242 		/* Check if we've reached the last page. */
   4243 		if (i == (RX_PAGES - 1))
   4244 			j = 0;
   4245 		else
   4246 			j = i + 1;
   4247 
   4248 		/* Setup the chain page pointers. */
   4249 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4250 		rxbd->rx_bd_haddr_hi = addr;
   4251 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
   4252 		rxbd->rx_bd_haddr_lo = addr;
   4253 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4254 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4255 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4256 	}
   4257 
   4258 	/* Allocate mbuf clusters for the rx_bd chain. */
   4259 	prod = prod_bseq = 0;
   4260 	chain_prod = RX_CHAIN_IDX(prod);
   4261 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4262 		BNX_PRINTF(sc,
   4263 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4264 	}
   4265 
   4266 	/* Save the RX chain producer index. */
   4267 	sc->rx_prod = prod;
   4268 	sc->rx_prod_bseq = prod_bseq;
   4269 
   4270 	for (i = 0; i < RX_PAGES; i++)
   4271 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4272 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4273 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4274 
   4275 	/* Tell the chip about the waiting rx_bd's. */
   4276 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4277 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4278 
   4279 	bnx_init_rx_context(sc);
   4280 
   4281 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4282 
   4283 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4284 
   4285 	return rc;
   4286 }
   4287 
   4288 /****************************************************************************/
   4289 /* Free memory and clear the RX data structures.                            */
   4290 /*                                                                          */
   4291 /* Returns:                                                                 */
   4292 /*   Nothing.                                                               */
   4293 /****************************************************************************/
   4294 void
   4295 bnx_free_rx_chain(struct bnx_softc *sc)
   4296 {
   4297 	int			i;
   4298 
   4299 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4300 
   4301 	/* Free any mbufs still in the RX mbuf chain. */
   4302 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4303 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4304 			if (sc->rx_mbuf_map[i] != NULL) {
   4305 				bus_dmamap_sync(sc->bnx_dmatag,
   4306 				    sc->rx_mbuf_map[i],	0,
   4307 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4308 				    BUS_DMASYNC_POSTREAD);
   4309 				bus_dmamap_unload(sc->bnx_dmatag,
   4310 				    sc->rx_mbuf_map[i]);
   4311 			}
   4312 			m_freem(sc->rx_mbuf_ptr[i]);
   4313 			sc->rx_mbuf_ptr[i] = NULL;
   4314 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4315 		}
   4316 	}
   4317 
   4318 	/* Clear each RX chain page. */
   4319 	for (i = 0; i < RX_PAGES; i++)
   4320 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4321 
   4322 	sc->free_rx_bd = sc->max_rx_bd;
   4323 
   4324 	/* Check if we lost any mbufs in the process. */
   4325 	DBRUNIF((sc->rx_mbuf_alloc),
   4326 	    aprint_error_dev(sc->bnx_dev,
   4327 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   4328 		sc->rx_mbuf_alloc));
   4329 
   4330 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4331 }
   4332 
   4333 /****************************************************************************/
   4334 /* Handles PHY generated interrupt events.                                  */
   4335 /*                                                                          */
   4336 /* Returns:                                                                 */
   4337 /*   Nothing.                                                               */
   4338 /****************************************************************************/
   4339 void
   4340 bnx_phy_intr(struct bnx_softc *sc)
   4341 {
   4342 	uint32_t		new_link_state, old_link_state;
   4343 
   4344 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4345 	    BUS_DMASYNC_POSTREAD);
   4346 	new_link_state = sc->status_block->status_attn_bits &
   4347 	    STATUS_ATTN_BITS_LINK_STATE;
   4348 	old_link_state = sc->status_block->status_attn_bits_ack &
   4349 	    STATUS_ATTN_BITS_LINK_STATE;
   4350 
   4351 	/* Handle any changes if the link state has changed. */
   4352 	if (new_link_state != old_link_state) {
   4353 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4354 
   4355 		callout_stop(&sc->bnx_timeout);
   4356 		bnx_tick(sc);
   4357 
   4358 		/* Update the status_attn_bits_ack field in the status block. */
   4359 		if (new_link_state) {
   4360 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4361 			    STATUS_ATTN_BITS_LINK_STATE);
   4362 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4363 		} else {
   4364 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4365 			    STATUS_ATTN_BITS_LINK_STATE);
   4366 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4367 		}
   4368 	}
   4369 
   4370 	/* Acknowledge the link change interrupt. */
   4371 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4372 }
   4373 
   4374 /****************************************************************************/
   4375 /* Handles received frame interrupt events.                                 */
   4376 /*                                                                          */
   4377 /* Returns:                                                                 */
   4378 /*   Nothing.                                                               */
   4379 /****************************************************************************/
   4380 void
   4381 bnx_rx_intr(struct bnx_softc *sc)
   4382 {
   4383 	struct status_block	*sblk = sc->status_block;
   4384 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4385 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
   4386 	uint16_t		sw_prod, sw_chain_prod;
   4387 	uint32_t		sw_prod_bseq;
   4388 	struct l2_fhdr		*l2fhdr;
   4389 	int			i;
   4390 
   4391 	DBRUNIF(1, sc->rx_interrupts++);
   4392 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4393 	    BUS_DMASYNC_POSTREAD);
   4394 
   4395 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4396 	for (i = 0; i < RX_PAGES; i++)
   4397 		bus_dmamap_sync(sc->bnx_dmatag,
   4398 		    sc->rx_bd_chain_map[i], 0,
   4399 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4400 		    BUS_DMASYNC_POSTWRITE);
   4401 
   4402 	/* Get the hardware's view of the RX consumer index. */
   4403 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4404 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4405 		hw_cons++;
   4406 
   4407 	/* Get working copies of the driver's view of the RX indices. */
   4408 	sw_cons = sc->rx_cons;
   4409 	sw_prod = sc->rx_prod;
   4410 	sw_prod_bseq = sc->rx_prod_bseq;
   4411 
   4412 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4413 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4414 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4415 
   4416 	/* Prevent speculative reads from getting ahead of the status block. */
   4417 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4418 	    BUS_SPACE_BARRIER_READ);
   4419 
   4420 	/* Update some debug statistics counters */
   4421 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4422 	    sc->rx_low_watermark = sc->free_rx_bd);
   4423 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4424 
   4425 	/*
   4426 	 * Scan through the receive chain as long
   4427 	 * as there is work to do.
   4428 	 */
   4429 	while (sw_cons != hw_cons) {
   4430 		struct mbuf *m;
   4431 		struct rx_bd *rxbd;
   4432 		unsigned int len;
   4433 		uint32_t status;
   4434 
   4435 		/* Convert the producer/consumer indices to an actual
   4436 		 * rx_bd index.
   4437 		 */
   4438 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4439 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4440 
   4441 		/* Get the used rx_bd. */
   4442 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4443 		sc->free_rx_bd++;
   4444 
   4445 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4446 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4447 
   4448 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4449 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4450 #ifdef DIAGNOSTIC
   4451 			/* Validate that this is the last rx_bd. */
   4452 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4453 			    printf("%s: Unexpected mbuf found in "
   4454 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4455 			        sw_chain_cons);
   4456 			}
   4457 #endif
   4458 
   4459 			/* DRC - ToDo: If the received packet is small, say less
   4460 			 *             than 128 bytes, allocate a new mbuf here,
   4461 			 *             copy the data to that mbuf, and recycle
   4462 			 *             the mapped jumbo frame.
   4463 			 */
   4464 
   4465 			/* Unmap the mbuf from DMA space. */
   4466 #ifdef DIAGNOSTIC
   4467 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4468 				printf("invalid map sw_cons 0x%x "
   4469 				"sw_prod 0x%x "
   4470 				"sw_chain_cons 0x%x "
   4471 				"sw_chain_prod 0x%x "
   4472 				"hw_cons 0x%x "
   4473 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4474 				"TOTAL_RX_BD 0x%x\n",
   4475 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4476 				hw_cons,
   4477 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4478 			}
   4479 #endif
   4480 			bus_dmamap_sync(sc->bnx_dmatag,
   4481 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4482 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4483 			    BUS_DMASYNC_POSTREAD);
   4484 			bus_dmamap_unload(sc->bnx_dmatag,
   4485 			    sc->rx_mbuf_map[sw_chain_cons]);
   4486 
   4487 			/* Remove the mbuf from the driver's chain. */
   4488 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4489 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4490 
   4491 			/*
   4492 			 * Frames received on the NetXteme II are prepended
   4493 			 * with the l2_fhdr structure which provides status
   4494 			 * information about the received frame (including
   4495 			 * VLAN tags and checksum info) and are also
   4496 			 * automatically adjusted to align the IP header
   4497 			 * (i.e. two null bytes are inserted before the
   4498 			 * Ethernet header).
   4499 			 */
   4500 			l2fhdr = mtod(m, struct l2_fhdr *);
   4501 
   4502 			len    = l2fhdr->l2_fhdr_pkt_len;
   4503 			status = l2fhdr->l2_fhdr_status;
   4504 
   4505 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4506 			    aprint_error("Simulating l2_fhdr status error.\n");
   4507 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4508 
   4509 			/* Watch for unusual sized frames. */
   4510 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4511 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4512 			    aprint_error_dev(sc->bnx_dev,
   4513 			        "Unusual frame size found. "
   4514 				"Min(%d), Actual(%d), Max(%d)\n",
   4515 				(int)BNX_MIN_MTU, len,
   4516 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4517 
   4518 			bnx_dump_mbuf(sc, m);
   4519 			bnx_breakpoint(sc));
   4520 
   4521 			len -= ETHER_CRC_LEN;
   4522 
   4523 			/* Check the received frame for errors. */
   4524 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4525 			    L2_FHDR_ERRORS_PHY_DECODE |
   4526 			    L2_FHDR_ERRORS_ALIGNMENT |
   4527 			    L2_FHDR_ERRORS_TOO_SHORT |
   4528 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4529 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4530 			    len >
   4531 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4532 				ifp->if_ierrors++;
   4533 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4534 
   4535 				/* Reuse the mbuf for a new frame. */
   4536 				if (bnx_add_buf(sc, m, &sw_prod,
   4537 				    &sw_chain_prod, &sw_prod_bseq)) {
   4538 					DBRUNIF(1, bnx_breakpoint(sc));
   4539 					panic("%s: Can't reuse RX mbuf!\n",
   4540 					    device_xname(sc->bnx_dev));
   4541 				}
   4542 				continue;
   4543 			}
   4544 
   4545 			/*
   4546 			 * Get a new mbuf for the rx_bd.   If no new
   4547 			 * mbufs are available then reuse the current mbuf,
   4548 			 * log an ierror on the interface, and generate
   4549 			 * an error in the system log.
   4550 			 */
   4551 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4552 			    &sw_prod_bseq)) {
   4553 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4554 				    "Failed to allocate "
   4555 				    "new mbuf, incoming frame dropped!\n"));
   4556 
   4557 				ifp->if_ierrors++;
   4558 
   4559 				/* Try and reuse the exisitng mbuf. */
   4560 				if (bnx_add_buf(sc, m, &sw_prod,
   4561 				    &sw_chain_prod, &sw_prod_bseq)) {
   4562 					DBRUNIF(1, bnx_breakpoint(sc));
   4563 					panic("%s: Double mbuf allocation "
   4564 					    "failure!",
   4565 					    device_xname(sc->bnx_dev));
   4566 				}
   4567 				continue;
   4568 			}
   4569 
   4570 			/* Skip over the l2_fhdr when passing the data up
   4571 			 * the stack.
   4572 			 */
   4573 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4574 
   4575 			/* Adjust the pckt length to match the received data. */
   4576 			m->m_pkthdr.len = m->m_len = len;
   4577 
   4578 			/* Send the packet to the appropriate interface. */
   4579 			m->m_pkthdr.rcvif = ifp;
   4580 
   4581 			DBRUN(BNX_VERBOSE_RECV,
   4582 			    struct ether_header *eh;
   4583 			    eh = mtod(m, struct ether_header *);
   4584 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4585 			    __func__, ether_sprintf(eh->ether_dhost),
   4586 			    ether_sprintf(eh->ether_shost),
   4587 			    htons(eh->ether_type)));
   4588 
   4589 			/* Validate the checksum. */
   4590 
   4591 			/* Check for an IP datagram. */
   4592 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4593 				/* Check if the IP checksum is valid. */
   4594 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   4595 				    == 0)
   4596 					m->m_pkthdr.csum_flags |=
   4597 					    M_CSUM_IPv4;
   4598 #ifdef BNX_DEBUG
   4599 				else
   4600 					DBPRINT(sc, BNX_WARN_SEND,
   4601 					    "%s(): Invalid IP checksum "
   4602 					        "= 0x%04X!\n",
   4603 						__func__,
   4604 						l2fhdr->l2_fhdr_ip_xsum
   4605 						);
   4606 #endif
   4607 			}
   4608 
   4609 			/* Check for a valid TCP/UDP frame. */
   4610 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4611 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4612 				/* Check for a good TCP/UDP checksum. */
   4613 				if ((status &
   4614 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4615 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4616 					m->m_pkthdr.csum_flags |=
   4617 					    M_CSUM_TCPv4 |
   4618 					    M_CSUM_UDPv4;
   4619 				} else {
   4620 					DBPRINT(sc, BNX_WARN_SEND,
   4621 					    "%s(): Invalid TCP/UDP "
   4622 					    "checksum = 0x%04X!\n",
   4623 					    __func__,
   4624 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4625 				}
   4626 			}
   4627 
   4628 			/*
   4629 			 * If we received a packet with a vlan tag,
   4630 			 * attach that information to the packet.
   4631 			 */
   4632 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4633 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4634 				VLAN_INPUT_TAG(ifp, m,
   4635 				    l2fhdr->l2_fhdr_vlan_tag,
   4636 				    continue);
   4637 			}
   4638 
   4639 			/*
   4640 			 * Handle BPF listeners. Let the BPF
   4641 			 * user see the packet.
   4642 			 */
   4643 			bpf_mtap(ifp, m);
   4644 
   4645 			/* Pass the mbuf off to the upper layers. */
   4646 			ifp->if_ipackets++;
   4647 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4648 			    "%s(): Passing received frame up.\n", __func__);
   4649 			(*ifp->if_input)(ifp, m);
   4650 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4651 
   4652 		}
   4653 
   4654 		sw_cons = NEXT_RX_BD(sw_cons);
   4655 
   4656 		/* Refresh hw_cons to see if there's new work */
   4657 		if (sw_cons == hw_cons) {
   4658 			hw_cons = sc->hw_rx_cons =
   4659 			    sblk->status_rx_quick_consumer_index0;
   4660 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4661 			    USABLE_RX_BD_PER_PAGE)
   4662 				hw_cons++;
   4663 		}
   4664 
   4665 		/* Prevent speculative reads from getting ahead of
   4666 		 * the status block.
   4667 		 */
   4668 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4669 		    BUS_SPACE_BARRIER_READ);
   4670 	}
   4671 
   4672 	for (i = 0; i < RX_PAGES; i++)
   4673 		bus_dmamap_sync(sc->bnx_dmatag,
   4674 		    sc->rx_bd_chain_map[i], 0,
   4675 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4676 		    BUS_DMASYNC_PREWRITE);
   4677 
   4678 	sc->rx_cons = sw_cons;
   4679 	sc->rx_prod = sw_prod;
   4680 	sc->rx_prod_bseq = sw_prod_bseq;
   4681 
   4682 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4683 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4684 
   4685 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4686 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4687 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4688 }
   4689 
   4690 /****************************************************************************/
   4691 /* Handles transmit completion interrupt events.                            */
   4692 /*                                                                          */
   4693 /* Returns:                                                                 */
   4694 /*   Nothing.                                                               */
   4695 /****************************************************************************/
   4696 void
   4697 bnx_tx_intr(struct bnx_softc *sc)
   4698 {
   4699 	struct status_block	*sblk = sc->status_block;
   4700 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4701 	struct bnx_pkt		*pkt;
   4702 	bus_dmamap_t		map;
   4703 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4704 
   4705 	DBRUNIF(1, sc->tx_interrupts++);
   4706 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4707 	    BUS_DMASYNC_POSTREAD);
   4708 
   4709 	/* Get the hardware's view of the TX consumer index. */
   4710 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4711 
   4712 	/* Skip to the next entry if this is a chain page pointer. */
   4713 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4714 		hw_tx_cons++;
   4715 
   4716 	sw_tx_cons = sc->tx_cons;
   4717 
   4718 	/* Prevent speculative reads from getting ahead of the status block. */
   4719 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4720 	    BUS_SPACE_BARRIER_READ);
   4721 
   4722 	/* Cycle through any completed TX chain page entries. */
   4723 	while (sw_tx_cons != hw_tx_cons) {
   4724 #ifdef BNX_DEBUG
   4725 		struct tx_bd *txbd = NULL;
   4726 #endif
   4727 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4728 
   4729 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4730 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4731 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4732 
   4733 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4734 		    aprint_error_dev(sc->bnx_dev,
   4735 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4736 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4737 
   4738 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4739 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4740 
   4741 		DBRUNIF((txbd == NULL),
   4742 		    aprint_error_dev(sc->bnx_dev,
   4743 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4744 		    bnx_breakpoint(sc));
   4745 
   4746 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4747 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4748 
   4749 
   4750 		mutex_enter(&sc->tx_pkt_mtx);
   4751 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4752 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4753 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4754 			mutex_exit(&sc->tx_pkt_mtx);
   4755 			/*
   4756 			 * Free the associated mbuf. Remember
   4757 			 * that only the last tx_bd of a packet
   4758 			 * has an mbuf pointer and DMA map.
   4759 			 */
   4760 			map = pkt->pkt_dmamap;
   4761 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4762 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4763 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4764 
   4765 			m_freem(pkt->pkt_mbuf);
   4766 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4767 
   4768 			ifp->if_opackets++;
   4769 
   4770 			mutex_enter(&sc->tx_pkt_mtx);
   4771 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4772 		}
   4773 		mutex_exit(&sc->tx_pkt_mtx);
   4774 
   4775 		sc->used_tx_bd--;
   4776 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4777 			__FILE__, __LINE__, sc->used_tx_bd);
   4778 
   4779 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4780 
   4781 		/* Refresh hw_cons to see if there's new work. */
   4782 		hw_tx_cons = sc->hw_tx_cons =
   4783 		    sblk->status_tx_quick_consumer_index0;
   4784 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4785 		    USABLE_TX_BD_PER_PAGE)
   4786 			hw_tx_cons++;
   4787 
   4788 		/* Prevent speculative reads from getting ahead of
   4789 		 * the status block.
   4790 		 */
   4791 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4792 		    BUS_SPACE_BARRIER_READ);
   4793 	}
   4794 
   4795 	/* Clear the TX timeout timer. */
   4796 	ifp->if_timer = 0;
   4797 
   4798 	/* Clear the tx hardware queue full flag. */
   4799 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4800 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4801 		    aprint_debug_dev(sc->bnx_dev,
   4802 		        "Open TX chain! %d/%d (used/total)\n",
   4803 			sc->used_tx_bd, sc->max_tx_bd));
   4804 		ifp->if_flags &= ~IFF_OACTIVE;
   4805 	}
   4806 
   4807 	sc->tx_cons = sw_tx_cons;
   4808 }
   4809 
   4810 /****************************************************************************/
   4811 /* Disables interrupt generation.                                           */
   4812 /*                                                                          */
   4813 /* Returns:                                                                 */
   4814 /*   Nothing.                                                               */
   4815 /****************************************************************************/
   4816 void
   4817 bnx_disable_intr(struct bnx_softc *sc)
   4818 {
   4819 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4820 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4821 }
   4822 
   4823 /****************************************************************************/
   4824 /* Enables interrupt generation.                                            */
   4825 /*                                                                          */
   4826 /* Returns:                                                                 */
   4827 /*   Nothing.                                                               */
   4828 /****************************************************************************/
   4829 void
   4830 bnx_enable_intr(struct bnx_softc *sc)
   4831 {
   4832 	uint32_t		val;
   4833 
   4834 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4835 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4836 
   4837 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4838 	    sc->last_status_idx);
   4839 
   4840 	val = REG_RD(sc, BNX_HC_COMMAND);
   4841 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4842 }
   4843 
   4844 /****************************************************************************/
   4845 /* Handles controller initialization.                                       */
   4846 /*                                                                          */
   4847 /****************************************************************************/
   4848 int
   4849 bnx_init(struct ifnet *ifp)
   4850 {
   4851 	struct bnx_softc	*sc = ifp->if_softc;
   4852 	uint32_t		ether_mtu;
   4853 	int			s, error = 0;
   4854 
   4855 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4856 
   4857 	s = splnet();
   4858 
   4859 	bnx_stop(ifp, 0);
   4860 
   4861 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4862 		aprint_error_dev(sc->bnx_dev,
   4863 		    "Controller reset failed!\n");
   4864 		goto bnx_init_exit;
   4865 	}
   4866 
   4867 	if ((error = bnx_chipinit(sc)) != 0) {
   4868 		aprint_error_dev(sc->bnx_dev,
   4869 		    "Controller initialization failed!\n");
   4870 		goto bnx_init_exit;
   4871 	}
   4872 
   4873 	if ((error = bnx_blockinit(sc)) != 0) {
   4874 		aprint_error_dev(sc->bnx_dev,
   4875 		    "Block initialization failed!\n");
   4876 		goto bnx_init_exit;
   4877 	}
   4878 
   4879 	/* Calculate and program the Ethernet MRU size. */
   4880 	if (ifp->if_mtu <= ETHERMTU) {
   4881 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4882 		sc->mbuf_alloc_size = MCLBYTES;
   4883 	} else {
   4884 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4885 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   4886 	}
   4887 
   4888 
   4889 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4890 	    __func__, ether_mtu);
   4891 
   4892 	/*
   4893 	 * Program the MRU and enable Jumbo frame
   4894 	 * support.
   4895 	 */
   4896 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4897 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4898 
   4899 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4900 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4901 
   4902 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4903 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4904 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4905 
   4906 	/* Program appropriate promiscuous/multicast filtering. */
   4907 	bnx_iff(sc);
   4908 
   4909 	/* Init RX buffer descriptor chain. */
   4910 	bnx_init_rx_chain(sc);
   4911 
   4912 	/* Init TX buffer descriptor chain. */
   4913 	bnx_init_tx_chain(sc);
   4914 
   4915 	/* Enable host interrupts. */
   4916 	bnx_enable_intr(sc);
   4917 
   4918 	if ((error = ether_mediachange(ifp)) != 0)
   4919 		goto bnx_init_exit;
   4920 
   4921 	SET(ifp->if_flags, IFF_RUNNING);
   4922 	CLR(ifp->if_flags, IFF_OACTIVE);
   4923 
   4924 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4925 
   4926 bnx_init_exit:
   4927 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4928 
   4929 	splx(s);
   4930 
   4931 	return error;
   4932 }
   4933 
   4934 /****************************************************************************/
   4935 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4936 /* memory visible to the controller.                                        */
   4937 /*                                                                          */
   4938 /* Returns:                                                                 */
   4939 /*   0 for success, positive value for failure.                             */
   4940 /****************************************************************************/
   4941 int
   4942 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   4943 {
   4944 	struct bnx_pkt		*pkt;
   4945 	bus_dmamap_t		map;
   4946 	struct tx_bd		*txbd = NULL;
   4947 	uint16_t		vlan_tag = 0, flags = 0;
   4948 	uint16_t		chain_prod, prod;
   4949 #ifdef BNX_DEBUG
   4950 	uint16_t		debug_prod;
   4951 #endif
   4952 	uint32_t		addr, prod_bseq;
   4953 	int			i, error;
   4954 	struct m_tag		*mtag;
   4955 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
   4956 
   4957 	mutex_enter(&sc->tx_pkt_mtx);
   4958 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   4959 	if (pkt == NULL) {
   4960 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   4961 			mutex_exit(&sc->tx_pkt_mtx);
   4962 			return ENETDOWN;
   4963 		}
   4964 
   4965 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   4966 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   4967 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
   4968 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4969 		}
   4970 
   4971 		mutex_exit(&sc->tx_pkt_mtx);
   4972 		return ENOMEM;
   4973 	}
   4974 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4975 	mutex_exit(&sc->tx_pkt_mtx);
   4976 
   4977 	/* Transfer any checksum offload flags to the bd. */
   4978 	if (m->m_pkthdr.csum_flags) {
   4979 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4980 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4981 		if (m->m_pkthdr.csum_flags &
   4982 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4983 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4984 	}
   4985 
   4986 	/* Transfer any VLAN tags to the bd. */
   4987 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
   4988 	if (mtag != NULL) {
   4989 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4990 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4991 	}
   4992 
   4993 	/* Map the mbuf into DMAable memory. */
   4994 	prod = sc->tx_prod;
   4995 	chain_prod = TX_CHAIN_IDX(prod);
   4996 	map = pkt->pkt_dmamap;
   4997 
   4998 	/* Map the mbuf into our DMA address space. */
   4999 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   5000 	if (error != 0) {
   5001 		aprint_error_dev(sc->bnx_dev,
   5002 		    "Error mapping mbuf into TX chain!\n");
   5003 		sc->tx_dma_map_failures++;
   5004 		goto maperr;
   5005 	}
   5006 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   5007 	    BUS_DMASYNC_PREWRITE);
   5008         /* Make sure there's room in the chain */
   5009 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   5010                 goto nospace;
   5011 
   5012 	/* prod points to an empty tx_bd at this point. */
   5013 	prod_bseq = sc->tx_prod_bseq;
   5014 #ifdef BNX_DEBUG
   5015 	debug_prod = chain_prod;
   5016 #endif
   5017 	DBPRINT(sc, BNX_INFO_SEND,
   5018 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   5019 		"prod_bseq = 0x%08X\n",
   5020 		__func__, prod, chain_prod, prod_bseq);
   5021 
   5022 	/*
   5023 	 * Cycle through each mbuf segment that makes up
   5024 	 * the outgoing frame, gathering the mapping info
   5025 	 * for that segment and creating a tx_bd for the
   5026 	 * mbuf.
   5027 	 */
   5028 	for (i = 0; i < map->dm_nsegs ; i++) {
   5029 		chain_prod = TX_CHAIN_IDX(prod);
   5030 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   5031 
   5032 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   5033 		txbd->tx_bd_haddr_lo = addr;
   5034 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   5035 		txbd->tx_bd_haddr_hi = addr;
   5036 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   5037 		txbd->tx_bd_vlan_tag = vlan_tag;
   5038 		txbd->tx_bd_flags = flags;
   5039 		prod_bseq += map->dm_segs[i].ds_len;
   5040 		if (i == 0)
   5041 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   5042 		prod = NEXT_TX_BD(prod);
   5043 	}
   5044 	/* Set the END flag on the last TX buffer descriptor. */
   5045 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   5046 
   5047 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   5048 
   5049 	DBPRINT(sc, BNX_INFO_SEND,
   5050 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   5051 		"prod_bseq = 0x%08X\n",
   5052 		__func__, prod, chain_prod, prod_bseq);
   5053 
   5054 	pkt->pkt_mbuf = m;
   5055 	pkt->pkt_end_desc = chain_prod;
   5056 
   5057 	mutex_enter(&sc->tx_pkt_mtx);
   5058 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   5059 	mutex_exit(&sc->tx_pkt_mtx);
   5060 
   5061 	sc->used_tx_bd += map->dm_nsegs;
   5062 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   5063 		__FILE__, __LINE__, sc->used_tx_bd);
   5064 
   5065 	/* Update some debug statistics counters */
   5066 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   5067 	    sc->tx_hi_watermark = sc->used_tx_bd);
   5068 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   5069 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   5070 
   5071 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   5072 	    map->dm_nsegs));
   5073 
   5074 	/* prod points to the next free tx_bd at this point. */
   5075 	sc->tx_prod = prod;
   5076 	sc->tx_prod_bseq = prod_bseq;
   5077 
   5078 	return 0;
   5079 
   5080 
   5081 nospace:
   5082 	bus_dmamap_unload(sc->bnx_dmatag, map);
   5083 maperr:
   5084 	mutex_enter(&sc->tx_pkt_mtx);
   5085 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   5086 	mutex_exit(&sc->tx_pkt_mtx);
   5087 
   5088 	return ENOMEM;
   5089 }
   5090 
   5091 /****************************************************************************/
   5092 /* Main transmit routine.                                                   */
   5093 /*                                                                          */
   5094 /* Returns:                                                                 */
   5095 /*   Nothing.                                                               */
   5096 /****************************************************************************/
   5097 void
   5098 bnx_start(struct ifnet *ifp)
   5099 {
   5100 	struct bnx_softc	*sc = ifp->if_softc;
   5101 	struct mbuf		*m_head = NULL;
   5102 	int			count = 0;
   5103 #ifdef BNX_DEBUG
   5104 	uint16_t		tx_chain_prod;
   5105 #endif
   5106 
   5107 	/* If there's no link or the transmit queue is empty then just exit. */
   5108 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   5109 		DBPRINT(sc, BNX_INFO_SEND,
   5110 		    "%s(): output active or device not running.\n", __func__);
   5111 		goto bnx_start_exit;
   5112 	}
   5113 
   5114 	/* prod points to the next free tx_bd. */
   5115 #ifdef BNX_DEBUG
   5116 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5117 #endif
   5118 
   5119 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5120 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5121 	    "used_tx %d max_tx %d\n",
   5122 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5123 	    sc->used_tx_bd, sc->max_tx_bd);
   5124 
   5125 	/*
   5126 	 * Keep adding entries while there is space in the ring.
   5127 	 */
   5128 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5129 		/* Check for any frames to send. */
   5130 		IFQ_POLL(&ifp->if_snd, m_head);
   5131 		if (m_head == NULL)
   5132 			break;
   5133 
   5134 		/*
   5135 		 * Pack the data into the transmit ring. If we
   5136 		 * don't have room, set the OACTIVE flag to wait
   5137 		 * for the NIC to drain the chain.
   5138 		 */
   5139 		if (bnx_tx_encap(sc, m_head)) {
   5140 			ifp->if_flags |= IFF_OACTIVE;
   5141 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5142 			    "business! Total tx_bd used = %d\n",
   5143 			    sc->used_tx_bd);
   5144 			break;
   5145 		}
   5146 
   5147 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5148 		count++;
   5149 
   5150 		/* Send a copy of the frame to any BPF listeners. */
   5151 		bpf_mtap(ifp, m_head);
   5152 	}
   5153 
   5154 	if (count == 0) {
   5155 		/* no packets were dequeued */
   5156 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5157 		    "%s(): No packets were dequeued\n", __func__);
   5158 		goto bnx_start_exit;
   5159 	}
   5160 
   5161 	/* Update the driver's counters. */
   5162 #ifdef BNX_DEBUG
   5163 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5164 #endif
   5165 
   5166 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   5167 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
   5168 	    tx_chain_prod, sc->tx_prod_bseq);
   5169 
   5170 	/* Start the transmit. */
   5171 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5172 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5173 
   5174 	/* Set the tx timeout. */
   5175 	ifp->if_timer = BNX_TX_TIMEOUT;
   5176 
   5177 bnx_start_exit:
   5178 	return;
   5179 }
   5180 
   5181 /****************************************************************************/
   5182 /* Handles any IOCTL calls from the operating system.                       */
   5183 /*                                                                          */
   5184 /* Returns:                                                                 */
   5185 /*   0 for success, positive value for failure.                             */
   5186 /****************************************************************************/
   5187 int
   5188 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5189 {
   5190 	struct bnx_softc	*sc = ifp->if_softc;
   5191 	struct ifreq		*ifr = (struct ifreq *) data;
   5192 	struct mii_data		*mii = &sc->bnx_mii;
   5193 	int			s, error = 0;
   5194 
   5195 	s = splnet();
   5196 
   5197 	switch (command) {
   5198 	case SIOCSIFFLAGS:
   5199 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5200 			break;
   5201 		/* XXX set an ifflags callback and let ether_ioctl
   5202 		 * handle all of this.
   5203 		 */
   5204 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5205 			if (ifp->if_flags & IFF_RUNNING)
   5206 				error = ENETRESET;
   5207 			else
   5208 				bnx_init(ifp);
   5209 		} else if (ifp->if_flags & IFF_RUNNING)
   5210 			bnx_stop(ifp, 1);
   5211 		break;
   5212 
   5213 	case SIOCSIFMEDIA:
   5214 	case SIOCGIFMEDIA:
   5215 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5216 		    sc->bnx_phy_flags);
   5217 
   5218 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5219 		break;
   5220 
   5221 	default:
   5222 		error = ether_ioctl(ifp, command, data);
   5223 	}
   5224 
   5225 	if (error == ENETRESET) {
   5226 		if (ifp->if_flags & IFF_RUNNING)
   5227 			bnx_iff(sc);
   5228 		error = 0;
   5229 	}
   5230 
   5231 	splx(s);
   5232 	return error;
   5233 }
   5234 
   5235 /****************************************************************************/
   5236 /* Transmit timeout handler.                                                */
   5237 /*                                                                          */
   5238 /* Returns:                                                                 */
   5239 /*   Nothing.                                                               */
   5240 /****************************************************************************/
   5241 void
   5242 bnx_watchdog(struct ifnet *ifp)
   5243 {
   5244 	struct bnx_softc	*sc = ifp->if_softc;
   5245 
   5246 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5247 	    bnx_dump_status_block(sc));
   5248 	/*
   5249 	 * If we are in this routine because of pause frames, then
   5250 	 * don't reset the hardware.
   5251 	 */
   5252 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5253 		return;
   5254 
   5255 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5256 
   5257 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5258 
   5259 	bnx_init(ifp);
   5260 
   5261 	ifp->if_oerrors++;
   5262 }
   5263 
   5264 /*
   5265  * Interrupt handler.
   5266  */
   5267 /****************************************************************************/
   5268 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5269 /* interrupt and then calls a separate routine for handle the various       */
   5270 /* interrupt causes (PHY, TX, RX).                                          */
   5271 /*                                                                          */
   5272 /* Returns:                                                                 */
   5273 /*   0 for success, positive value for failure.                             */
   5274 /****************************************************************************/
   5275 int
   5276 bnx_intr(void *xsc)
   5277 {
   5278 	struct bnx_softc	*sc;
   5279 	struct ifnet		*ifp;
   5280 	uint32_t		status_attn_bits;
   5281 	const struct status_block *sblk;
   5282 
   5283 	sc = xsc;
   5284 
   5285 	ifp = &sc->bnx_ec.ec_if;
   5286 
   5287 	if (!device_is_active(sc->bnx_dev) ||
   5288 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5289 		return 0;
   5290 
   5291 	DBRUNIF(1, sc->interrupts_generated++);
   5292 
   5293 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5294 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   5295 
   5296 	/*
   5297 	 * If the hardware status block index
   5298 	 * matches the last value read by the
   5299 	 * driver and we haven't asserted our
   5300 	 * interrupt then there's nothing to do.
   5301 	 */
   5302 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   5303 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   5304 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   5305 		return 0;
   5306 
   5307 	/* Ack the interrupt and stop others from occuring. */
   5308 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5309 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   5310 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5311 
   5312 	/* Keep processing data as long as there is work to do. */
   5313 	for (;;) {
   5314 		sblk = sc->status_block;
   5315 		status_attn_bits = sblk->status_attn_bits;
   5316 
   5317 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5318 		    aprint_debug("Simulating unexpected status attention bit set.");
   5319 		    status_attn_bits = status_attn_bits |
   5320 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5321 
   5322 		/* Was it a link change interrupt? */
   5323 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5324 		    (sblk->status_attn_bits_ack &
   5325 		    STATUS_ATTN_BITS_LINK_STATE))
   5326 			bnx_phy_intr(sc);
   5327 
   5328 		/* If any other attention is asserted then the chip is toast. */
   5329 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5330 		    (sblk->status_attn_bits_ack &
   5331 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5332 			DBRUN(1, sc->unexpected_attentions++);
   5333 
   5334 			BNX_PRINTF(sc,
   5335 			    "Fatal attention detected: 0x%08X\n",
   5336 			    sblk->status_attn_bits);
   5337 
   5338 			DBRUN(BNX_FATAL,
   5339 			    if (bnx_debug_unexpected_attention == 0)
   5340 			    bnx_breakpoint(sc));
   5341 
   5342 			bnx_init(ifp);
   5343 			return 1;
   5344 		}
   5345 
   5346 		/* Check for any completed RX frames. */
   5347 		if (sblk->status_rx_quick_consumer_index0 !=
   5348 		    sc->hw_rx_cons)
   5349 			bnx_rx_intr(sc);
   5350 
   5351 		/* Check for any completed TX frames. */
   5352 		if (sblk->status_tx_quick_consumer_index0 !=
   5353 		    sc->hw_tx_cons)
   5354 			bnx_tx_intr(sc);
   5355 
   5356 		/*
   5357 		 * Save the status block index value for use during the
   5358 		 * next interrupt.
   5359 		 */
   5360 		sc->last_status_idx = sblk->status_idx;
   5361 
   5362 		/* Prevent speculative reads from getting ahead of the
   5363 		 * status block.
   5364 		 */
   5365 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   5366 		    BUS_SPACE_BARRIER_READ);
   5367 
   5368 		/* If there's no work left then exit the isr. */
   5369 		if ((sblk->status_rx_quick_consumer_index0 ==
   5370 			sc->hw_rx_cons) &&
   5371 		    (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
   5372 			break;
   5373 	}
   5374 
   5375 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5376 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   5377 
   5378 	/* Re-enable interrupts. */
   5379 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5380 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   5381 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5382 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5383 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   5384 
   5385 	/* Handle any frames that arrived while handling the interrupt. */
   5386 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   5387 		bnx_start(ifp);
   5388 
   5389 	return 1;
   5390 }
   5391 
   5392 /****************************************************************************/
   5393 /* Programs the various packet receive modes (broadcast and multicast).     */
   5394 /*                                                                          */
   5395 /* Returns:                                                                 */
   5396 /*   Nothing.                                                               */
   5397 /****************************************************************************/
   5398 void
   5399 bnx_iff(struct bnx_softc *sc)
   5400 {
   5401 	struct ethercom		*ec = &sc->bnx_ec;
   5402 	struct ifnet		*ifp = &ec->ec_if;
   5403 	struct ether_multi	*enm;
   5404 	struct ether_multistep	step;
   5405 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5406 	uint32_t		rx_mode, sort_mode;
   5407 	int			h, i;
   5408 
   5409 	/* Initialize receive mode default settings. */
   5410 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5411 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5412 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5413 	ifp->if_flags &= ~IFF_ALLMULTI;
   5414 
   5415 	/*
   5416 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5417 	 * be enbled.
   5418 	 */
   5419 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5420 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5421 
   5422 	/*
   5423 	 * Check for promiscuous, all multicast, or selected
   5424 	 * multicast address filtering.
   5425 	 */
   5426 	if (ifp->if_flags & IFF_PROMISC) {
   5427 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5428 
   5429 		ifp->if_flags |= IFF_ALLMULTI;
   5430 		/* Enable promiscuous mode. */
   5431 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5432 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5433 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5434 allmulti:
   5435 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5436 
   5437 		ifp->if_flags |= IFF_ALLMULTI;
   5438 		/* Enable all multicast addresses. */
   5439 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5440 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5441 			    0xffffffff);
   5442 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5443 	} else {
   5444 		/* Accept one or more multicast(s). */
   5445 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5446 
   5447 		ETHER_FIRST_MULTI(step, ec, enm);
   5448 		while (enm != NULL) {
   5449 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5450 			    ETHER_ADDR_LEN)) {
   5451 				goto allmulti;
   5452 			}
   5453 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5454 			    0xFF;
   5455 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5456 			ETHER_NEXT_MULTI(step, enm);
   5457 		}
   5458 
   5459 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5460 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5461 			    hashes[i]);
   5462 
   5463 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5464 	}
   5465 
   5466 	/* Only make changes if the recive mode has actually changed. */
   5467 	if (rx_mode != sc->rx_mode) {
   5468 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5469 		    rx_mode);
   5470 
   5471 		sc->rx_mode = rx_mode;
   5472 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5473 	}
   5474 
   5475 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5476 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5477 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5478 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5479 }
   5480 
   5481 /****************************************************************************/
   5482 /* Called periodically to updates statistics from the controllers           */
   5483 /* statistics block.                                                        */
   5484 /*                                                                          */
   5485 /* Returns:                                                                 */
   5486 /*   Nothing.                                                               */
   5487 /****************************************************************************/
   5488 void
   5489 bnx_stats_update(struct bnx_softc *sc)
   5490 {
   5491 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5492 	struct statistics_block	*stats;
   5493 
   5494 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5495 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5496 	    BUS_DMASYNC_POSTREAD);
   5497 
   5498 	stats = (struct statistics_block *)sc->stats_block;
   5499 
   5500 	/*
   5501 	 * Update the interface statistics from the
   5502 	 * hardware statistics.
   5503 	 */
   5504 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5505 
   5506 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5507 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5508 	    (u_long)stats->stat_IfInMBUFDiscards +
   5509 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5510 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5511 
   5512 	ifp->if_oerrors = (u_long)
   5513 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5514 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5515 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5516 
   5517 	/*
   5518 	 * Certain controllers don't report
   5519 	 * carrier sense errors correctly.
   5520 	 * See errata E11_5708CA0_1165.
   5521 	 */
   5522 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5523 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5524 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5525 
   5526 	/*
   5527 	 * Update the sysctl statistics from the
   5528 	 * hardware statistics.
   5529 	 */
   5530 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
   5531 	    (uint64_t) stats->stat_IfHCInOctets_lo;
   5532 
   5533 	sc->stat_IfHCInBadOctets =
   5534 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5535 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
   5536 
   5537 	sc->stat_IfHCOutOctets =
   5538 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5539 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
   5540 
   5541 	sc->stat_IfHCOutBadOctets =
   5542 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5543 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
   5544 
   5545 	sc->stat_IfHCInUcastPkts =
   5546 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5547 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
   5548 
   5549 	sc->stat_IfHCInMulticastPkts =
   5550 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5551 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
   5552 
   5553 	sc->stat_IfHCInBroadcastPkts =
   5554 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5555 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5556 
   5557 	sc->stat_IfHCOutUcastPkts =
   5558 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5559 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
   5560 
   5561 	sc->stat_IfHCOutMulticastPkts =
   5562 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5563 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5564 
   5565 	sc->stat_IfHCOutBroadcastPkts =
   5566 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5567 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5568 
   5569 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5570 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5571 
   5572 	sc->stat_Dot3StatsCarrierSenseErrors =
   5573 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5574 
   5575 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5576 
   5577 	sc->stat_Dot3StatsAlignmentErrors =
   5578 	    stats->stat_Dot3StatsAlignmentErrors;
   5579 
   5580 	sc->stat_Dot3StatsSingleCollisionFrames =
   5581 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5582 
   5583 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5584 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5585 
   5586 	sc->stat_Dot3StatsDeferredTransmissions =
   5587 	    stats->stat_Dot3StatsDeferredTransmissions;
   5588 
   5589 	sc->stat_Dot3StatsExcessiveCollisions =
   5590 	    stats->stat_Dot3StatsExcessiveCollisions;
   5591 
   5592 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5593 
   5594 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5595 
   5596 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5597 
   5598 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5599 
   5600 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5601 
   5602 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5603 
   5604 	sc->stat_EtherStatsPktsRx64Octets =
   5605 	    stats->stat_EtherStatsPktsRx64Octets;
   5606 
   5607 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5608 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5609 
   5610 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5611 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5612 
   5613 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5614 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5615 
   5616 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5617 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5618 
   5619 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5620 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5621 
   5622 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5623 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5624 
   5625 	sc->stat_EtherStatsPktsTx64Octets =
   5626 	    stats->stat_EtherStatsPktsTx64Octets;
   5627 
   5628 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5629 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5630 
   5631 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5632 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5633 
   5634 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5635 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5636 
   5637 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5638 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5639 
   5640 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5641 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5642 
   5643 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5644 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5645 
   5646 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5647 
   5648 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5649 
   5650 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5651 
   5652 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5653 
   5654 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5655 
   5656 	sc->stat_MacControlFramesReceived =
   5657 	    stats->stat_MacControlFramesReceived;
   5658 
   5659 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5660 
   5661 	sc->stat_IfInFramesL2FilterDiscards =
   5662 	    stats->stat_IfInFramesL2FilterDiscards;
   5663 
   5664 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5665 
   5666 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5667 
   5668 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5669 
   5670 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5671 
   5672 	sc->stat_CatchupInRuleCheckerDiscards =
   5673 	    stats->stat_CatchupInRuleCheckerDiscards;
   5674 
   5675 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5676 
   5677 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5678 
   5679 	sc->stat_CatchupInRuleCheckerP4Hit =
   5680 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5681 
   5682 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5683 }
   5684 
   5685 void
   5686 bnx_tick(void *xsc)
   5687 {
   5688 	struct bnx_softc	*sc = xsc;
   5689 	struct mii_data		*mii;
   5690 	uint32_t		msg;
   5691 	uint16_t		prod, chain_prod;
   5692 	uint32_t		prod_bseq;
   5693 	int s = splnet();
   5694 
   5695 	/* Tell the firmware that the driver is still running. */
   5696 #ifdef BNX_DEBUG
   5697 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5698 #else
   5699 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5700 #endif
   5701 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5702 
   5703 	/* Update the statistics from the hardware statistics block. */
   5704 	bnx_stats_update(sc);
   5705 
   5706 	/* Schedule the next tick. */
   5707 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5708 
   5709 	mii = &sc->bnx_mii;
   5710 	mii_tick(mii);
   5711 
   5712 	/* try to get more RX buffers, just in case */
   5713 	prod = sc->rx_prod;
   5714 	prod_bseq = sc->rx_prod_bseq;
   5715 	chain_prod = RX_CHAIN_IDX(prod);
   5716 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5717 	sc->rx_prod = prod;
   5718 	sc->rx_prod_bseq = prod_bseq;
   5719 	splx(s);
   5720 	return;
   5721 }
   5722 
   5723 /****************************************************************************/
   5724 /* BNX Debug Routines                                                       */
   5725 /****************************************************************************/
   5726 #ifdef BNX_DEBUG
   5727 
   5728 /****************************************************************************/
   5729 /* Prints out information about an mbuf.                                    */
   5730 /*                                                                          */
   5731 /* Returns:                                                                 */
   5732 /*   Nothing.                                                               */
   5733 /****************************************************************************/
   5734 void
   5735 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5736 {
   5737 	struct mbuf		*mp = m;
   5738 
   5739 	if (m == NULL) {
   5740 		/* Index out of range. */
   5741 		aprint_error("mbuf ptr is null!\n");
   5742 		return;
   5743 	}
   5744 
   5745 	while (mp) {
   5746 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5747 		    mp, mp->m_len);
   5748 
   5749 		if (mp->m_flags & M_EXT)
   5750 			aprint_debug("M_EXT ");
   5751 		if (mp->m_flags & M_PKTHDR)
   5752 			aprint_debug("M_PKTHDR ");
   5753 		aprint_debug("\n");
   5754 
   5755 		if (mp->m_flags & M_EXT)
   5756 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   5757 			    mp, mp->m_ext.ext_size);
   5758 
   5759 		mp = mp->m_next;
   5760 	}
   5761 }
   5762 
   5763 /****************************************************************************/
   5764 /* Prints out the mbufs in the TX mbuf chain.                               */
   5765 /*                                                                          */
   5766 /* Returns:                                                                 */
   5767 /*   Nothing.                                                               */
   5768 /****************************************************************************/
   5769 void
   5770 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5771 {
   5772 #if 0
   5773 	struct mbuf		*m;
   5774 	int			i;
   5775 
   5776 	aprint_debug_dev(sc->bnx_dev,
   5777 	    "----------------------------"
   5778 	    "  tx mbuf data  "
   5779 	    "----------------------------\n");
   5780 
   5781 	for (i = 0; i < count; i++) {
   5782 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5783 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5784 		bnx_dump_mbuf(sc, m);
   5785 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5786 	}
   5787 
   5788 	aprint_debug_dev(sc->bnx_dev,
   5789 	    "--------------------------------------------"
   5790 	    "----------------------------\n");
   5791 #endif
   5792 }
   5793 
   5794 /*
   5795  * This routine prints the RX mbuf chain.
   5796  */
   5797 void
   5798 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5799 {
   5800 	struct mbuf		*m;
   5801 	int			i;
   5802 
   5803 	aprint_debug_dev(sc->bnx_dev,
   5804 	    "----------------------------"
   5805 	    "  rx mbuf data  "
   5806 	    "----------------------------\n");
   5807 
   5808 	for (i = 0; i < count; i++) {
   5809 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5810 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5811 		bnx_dump_mbuf(sc, m);
   5812 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5813 	}
   5814 
   5815 
   5816 	aprint_debug_dev(sc->bnx_dev,
   5817 	    "--------------------------------------------"
   5818 	    "----------------------------\n");
   5819 }
   5820 
   5821 void
   5822 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5823 {
   5824 	if (idx > MAX_TX_BD)
   5825 		/* Index out of range. */
   5826 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5827 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5828 		/* TX Chain page pointer. */
   5829 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5830 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5831 		    txbd->tx_bd_haddr_lo);
   5832 	else
   5833 		/* Normal tx_bd entry. */
   5834 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5835 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5836 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5837 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5838 		    txbd->tx_bd_flags);
   5839 }
   5840 
   5841 void
   5842 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5843 {
   5844 	if (idx > MAX_RX_BD)
   5845 		/* Index out of range. */
   5846 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5847 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5848 		/* TX Chain page pointer. */
   5849 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5850 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5851 		    rxbd->rx_bd_haddr_lo);
   5852 	else
   5853 		/* Normal tx_bd entry. */
   5854 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5855 		    "0x%08X, flags = 0x%08X\n", idx,
   5856 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5857 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5858 }
   5859 
   5860 void
   5861 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5862 {
   5863 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5864 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5865 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5866 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5867 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5868 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5869 }
   5870 
   5871 /*
   5872  * This routine prints the TX chain.
   5873  */
   5874 void
   5875 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5876 {
   5877 	struct tx_bd		*txbd;
   5878 	int			i;
   5879 
   5880 	/* First some info about the tx_bd chain structure. */
   5881 	aprint_debug_dev(sc->bnx_dev,
   5882 	    "----------------------------"
   5883 	    "  tx_bd  chain  "
   5884 	    "----------------------------\n");
   5885 
   5886 	BNX_PRINTF(sc,
   5887 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5888 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
   5889 
   5890 	BNX_PRINTF(sc,
   5891 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5892 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
   5893 
   5894 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
   5895 
   5896 	aprint_error_dev(sc->bnx_dev, ""
   5897 	    "-----------------------------"
   5898 	    "   tx_bd data   "
   5899 	    "-----------------------------\n");
   5900 
   5901 	/* Now print out the tx_bd's themselves. */
   5902 	for (i = 0; i < count; i++) {
   5903 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5904 		bnx_dump_txbd(sc, tx_prod, txbd);
   5905 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5906 	}
   5907 
   5908 	aprint_debug_dev(sc->bnx_dev,
   5909 	    "-----------------------------"
   5910 	    "--------------"
   5911 	    "-----------------------------\n");
   5912 }
   5913 
   5914 /*
   5915  * This routine prints the RX chain.
   5916  */
   5917 void
   5918 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5919 {
   5920 	struct rx_bd		*rxbd;
   5921 	int			i;
   5922 
   5923 	/* First some info about the tx_bd chain structure. */
   5924 	aprint_debug_dev(sc->bnx_dev,
   5925 	    "----------------------------"
   5926 	    "  rx_bd  chain  "
   5927 	    "----------------------------\n");
   5928 
   5929 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   5930 
   5931 	BNX_PRINTF(sc,
   5932 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5933 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
   5934 
   5935 	BNX_PRINTF(sc,
   5936 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5937 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
   5938 
   5939 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
   5940 
   5941 	aprint_error_dev(sc->bnx_dev,
   5942 	    "----------------------------"
   5943 	    "   rx_bd data   "
   5944 	    "----------------------------\n");
   5945 
   5946 	/* Now print out the rx_bd's themselves. */
   5947 	for (i = 0; i < count; i++) {
   5948 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5949 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5950 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5951 	}
   5952 
   5953 	aprint_debug_dev(sc->bnx_dev,
   5954 	    "----------------------------"
   5955 	    "--------------"
   5956 	    "----------------------------\n");
   5957 }
   5958 
   5959 /*
   5960  * This routine prints the status block.
   5961  */
   5962 void
   5963 bnx_dump_status_block(struct bnx_softc *sc)
   5964 {
   5965 	struct status_block	*sblk;
   5966 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5967 	    BUS_DMASYNC_POSTREAD);
   5968 
   5969 	sblk = sc->status_block;
   5970 
   5971    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
   5972 	    "-----------------------------\n");
   5973 
   5974 	BNX_PRINTF(sc,
   5975 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5976 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5977 	    sblk->status_idx);
   5978 
   5979 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5980 	    sblk->status_rx_quick_consumer_index0,
   5981 	    sblk->status_tx_quick_consumer_index0);
   5982 
   5983 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5984 
   5985 	/* Theses indices are not used for normal L2 drivers. */
   5986 	if (sblk->status_rx_quick_consumer_index1 ||
   5987 		sblk->status_tx_quick_consumer_index1)
   5988 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5989 		    sblk->status_rx_quick_consumer_index1,
   5990 		    sblk->status_tx_quick_consumer_index1);
   5991 
   5992 	if (sblk->status_rx_quick_consumer_index2 ||
   5993 		sblk->status_tx_quick_consumer_index2)
   5994 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5995 		    sblk->status_rx_quick_consumer_index2,
   5996 		    sblk->status_tx_quick_consumer_index2);
   5997 
   5998 	if (sblk->status_rx_quick_consumer_index3 ||
   5999 		sblk->status_tx_quick_consumer_index3)
   6000 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   6001 		    sblk->status_rx_quick_consumer_index3,
   6002 		    sblk->status_tx_quick_consumer_index3);
   6003 
   6004 	if (sblk->status_rx_quick_consumer_index4 ||
   6005 		sblk->status_rx_quick_consumer_index5)
   6006 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   6007 		    sblk->status_rx_quick_consumer_index4,
   6008 		    sblk->status_rx_quick_consumer_index5);
   6009 
   6010 	if (sblk->status_rx_quick_consumer_index6 ||
   6011 		sblk->status_rx_quick_consumer_index7)
   6012 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   6013 		    sblk->status_rx_quick_consumer_index6,
   6014 		    sblk->status_rx_quick_consumer_index7);
   6015 
   6016 	if (sblk->status_rx_quick_consumer_index8 ||
   6017 		sblk->status_rx_quick_consumer_index9)
   6018 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   6019 		    sblk->status_rx_quick_consumer_index8,
   6020 		    sblk->status_rx_quick_consumer_index9);
   6021 
   6022 	if (sblk->status_rx_quick_consumer_index10 ||
   6023 		sblk->status_rx_quick_consumer_index11)
   6024 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   6025 		    sblk->status_rx_quick_consumer_index10,
   6026 		    sblk->status_rx_quick_consumer_index11);
   6027 
   6028 	if (sblk->status_rx_quick_consumer_index12 ||
   6029 		sblk->status_rx_quick_consumer_index13)
   6030 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   6031 		    sblk->status_rx_quick_consumer_index12,
   6032 		    sblk->status_rx_quick_consumer_index13);
   6033 
   6034 	if (sblk->status_rx_quick_consumer_index14 ||
   6035 		sblk->status_rx_quick_consumer_index15)
   6036 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   6037 		    sblk->status_rx_quick_consumer_index14,
   6038 		    sblk->status_rx_quick_consumer_index15);
   6039 
   6040 	if (sblk->status_completion_producer_index ||
   6041 		sblk->status_cmd_consumer_index)
   6042 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   6043 		    sblk->status_completion_producer_index,
   6044 		    sblk->status_cmd_consumer_index);
   6045 
   6046 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6047 	    "-----------------------------\n");
   6048 }
   6049 
   6050 /*
   6051  * This routine prints the statistics block.
   6052  */
   6053 void
   6054 bnx_dump_stats_block(struct bnx_softc *sc)
   6055 {
   6056 	struct statistics_block	*sblk;
   6057 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6058 	    BUS_DMASYNC_POSTREAD);
   6059 
   6060 	sblk = sc->stats_block;
   6061 
   6062 	aprint_debug_dev(sc->bnx_dev, ""
   6063 	    "-----------------------------"
   6064 	    " Stats  Block "
   6065 	    "-----------------------------\n");
   6066 
   6067 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   6068 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   6069 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   6070 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   6071 
   6072 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   6073 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   6074 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   6075 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   6076 
   6077 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   6078 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   6079 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   6080 	    sblk->stat_IfHCInMulticastPkts_hi,
   6081 	    sblk->stat_IfHCInMulticastPkts_lo);
   6082 
   6083 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   6084 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   6085 	    sblk->stat_IfHCInBroadcastPkts_hi,
   6086 	    sblk->stat_IfHCInBroadcastPkts_lo,
   6087 	    sblk->stat_IfHCOutUcastPkts_hi,
   6088 	    sblk->stat_IfHCOutUcastPkts_lo);
   6089 
   6090 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   6091 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   6092 	    sblk->stat_IfHCOutMulticastPkts_hi,
   6093 	    sblk->stat_IfHCOutMulticastPkts_lo,
   6094 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   6095 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   6096 
   6097 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   6098 		BNX_PRINTF(sc, "0x%08X : "
   6099 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6100 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6101 
   6102 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6103 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6104 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6105 
   6106 	if (sblk->stat_Dot3StatsFCSErrors)
   6107 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6108 		    sblk->stat_Dot3StatsFCSErrors);
   6109 
   6110 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6111 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6112 		    sblk->stat_Dot3StatsAlignmentErrors);
   6113 
   6114 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6115 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6116 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6117 
   6118 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6119 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6120 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6121 
   6122 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6123 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6124 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6125 
   6126 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6127 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6128 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6129 
   6130 	if (sblk->stat_Dot3StatsLateCollisions)
   6131 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6132 		    sblk->stat_Dot3StatsLateCollisions);
   6133 
   6134 	if (sblk->stat_EtherStatsCollisions)
   6135 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6136 		    sblk->stat_EtherStatsCollisions);
   6137 
   6138 	if (sblk->stat_EtherStatsFragments)
   6139 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6140 		    sblk->stat_EtherStatsFragments);
   6141 
   6142 	if (sblk->stat_EtherStatsJabbers)
   6143 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6144 		    sblk->stat_EtherStatsJabbers);
   6145 
   6146 	if (sblk->stat_EtherStatsUndersizePkts)
   6147 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6148 		    sblk->stat_EtherStatsUndersizePkts);
   6149 
   6150 	if (sblk->stat_EtherStatsOverrsizePkts)
   6151 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6152 		    sblk->stat_EtherStatsOverrsizePkts);
   6153 
   6154 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6155 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6156 		    sblk->stat_EtherStatsPktsRx64Octets);
   6157 
   6158 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6159 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6160 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6161 
   6162 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6163 		BNX_PRINTF(sc, "0x%08X : "
   6164 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6165 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6166 
   6167 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6168 		BNX_PRINTF(sc, "0x%08X : "
   6169 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6170 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6171 
   6172 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6173 		BNX_PRINTF(sc, "0x%08X : "
   6174 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6175 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6176 
   6177 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6178 		BNX_PRINTF(sc, "0x%08X : "
   6179 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6180 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6181 
   6182 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6183 		BNX_PRINTF(sc, "0x%08X : "
   6184 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6185 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6186 
   6187 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6188 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6189 		    sblk->stat_EtherStatsPktsTx64Octets);
   6190 
   6191 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6192 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6193 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6194 
   6195 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6196 		BNX_PRINTF(sc, "0x%08X : "
   6197 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6198 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6199 
   6200 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6201 		BNX_PRINTF(sc, "0x%08X : "
   6202 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6203 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6204 
   6205 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6206 		BNX_PRINTF(sc, "0x%08X : "
   6207 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6208 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6209 
   6210 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6211 		BNX_PRINTF(sc, "0x%08X : "
   6212 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6213 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6214 
   6215 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6216 		BNX_PRINTF(sc, "0x%08X : "
   6217 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6218 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6219 
   6220 	if (sblk->stat_XonPauseFramesReceived)
   6221 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6222 		    sblk->stat_XonPauseFramesReceived);
   6223 
   6224 	if (sblk->stat_XoffPauseFramesReceived)
   6225 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6226 		    sblk->stat_XoffPauseFramesReceived);
   6227 
   6228 	if (sblk->stat_OutXonSent)
   6229 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6230 		    sblk->stat_OutXonSent);
   6231 
   6232 	if (sblk->stat_OutXoffSent)
   6233 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6234 		    sblk->stat_OutXoffSent);
   6235 
   6236 	if (sblk->stat_FlowControlDone)
   6237 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6238 		    sblk->stat_FlowControlDone);
   6239 
   6240 	if (sblk->stat_MacControlFramesReceived)
   6241 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6242 		    sblk->stat_MacControlFramesReceived);
   6243 
   6244 	if (sblk->stat_XoffStateEntered)
   6245 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6246 		    sblk->stat_XoffStateEntered);
   6247 
   6248 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6249 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6250 		    sblk->stat_IfInFramesL2FilterDiscards);
   6251 
   6252 	if (sblk->stat_IfInRuleCheckerDiscards)
   6253 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6254 		    sblk->stat_IfInRuleCheckerDiscards);
   6255 
   6256 	if (sblk->stat_IfInFTQDiscards)
   6257 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6258 		    sblk->stat_IfInFTQDiscards);
   6259 
   6260 	if (sblk->stat_IfInMBUFDiscards)
   6261 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6262 		    sblk->stat_IfInMBUFDiscards);
   6263 
   6264 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6265 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6266 		    sblk->stat_IfInRuleCheckerP4Hit);
   6267 
   6268 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6269 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6270 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6271 
   6272 	if (sblk->stat_CatchupInFTQDiscards)
   6273 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6274 		    sblk->stat_CatchupInFTQDiscards);
   6275 
   6276 	if (sblk->stat_CatchupInMBUFDiscards)
   6277 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6278 		    sblk->stat_CatchupInMBUFDiscards);
   6279 
   6280 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6281 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6282 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6283 
   6284 	aprint_debug_dev(sc->bnx_dev,
   6285 	    "-----------------------------"
   6286 	    "--------------"
   6287 	    "-----------------------------\n");
   6288 }
   6289 
   6290 void
   6291 bnx_dump_driver_state(struct bnx_softc *sc)
   6292 {
   6293 	aprint_debug_dev(sc->bnx_dev,
   6294 	    "-----------------------------"
   6295 	    " Driver State "
   6296 	    "-----------------------------\n");
   6297 
   6298 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6299 	    "address\n", sc);
   6300 
   6301 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6302 	    sc->status_block);
   6303 
   6304 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6305 	    "address\n", sc->stats_block);
   6306 
   6307 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6308 	    "adddress\n", sc->tx_bd_chain);
   6309 
   6310 #if 0
   6311 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6312 	    sc->rx_bd_chain);
   6313 
   6314 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6315 	    sc->tx_mbuf_ptr);
   6316 #endif
   6317 
   6318 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6319 	    sc->rx_mbuf_ptr);
   6320 
   6321 	BNX_PRINTF(sc,
   6322 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6323 	    sc->interrupts_generated);
   6324 
   6325 	BNX_PRINTF(sc,
   6326 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6327 	    sc->rx_interrupts);
   6328 
   6329 	BNX_PRINTF(sc,
   6330 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6331 	    sc->tx_interrupts);
   6332 
   6333 	BNX_PRINTF(sc,
   6334 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6335 	    sc->last_status_idx);
   6336 
   6337 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6338 	    sc->tx_prod);
   6339 
   6340 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6341 	    sc->tx_cons);
   6342 
   6343 	BNX_PRINTF(sc,
   6344 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6345 	    sc->tx_prod_bseq);
   6346 	BNX_PRINTF(sc,
   6347 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6348 	    sc->tx_mbuf_alloc);
   6349 
   6350 	BNX_PRINTF(sc,
   6351 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6352 	    sc->used_tx_bd);
   6353 
   6354 	BNX_PRINTF(sc,
   6355 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6356 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6357 
   6358 
   6359 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6360 	    sc->rx_prod);
   6361 
   6362 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6363 	    sc->rx_cons);
   6364 
   6365 	BNX_PRINTF(sc,
   6366 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6367 	    sc->rx_prod_bseq);
   6368 
   6369 	BNX_PRINTF(sc,
   6370 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6371 	    sc->rx_mbuf_alloc);
   6372 
   6373 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6374 	    sc->free_rx_bd);
   6375 
   6376 	BNX_PRINTF(sc,
   6377 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6378 	    sc->rx_low_watermark, sc->max_rx_bd);
   6379 
   6380 	BNX_PRINTF(sc,
   6381 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6382 	    "mbuf alloc failures\n",
   6383 	    sc->mbuf_alloc_failed);
   6384 
   6385 	BNX_PRINTF(sc,
   6386 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6387 	    "simulated mbuf alloc failures\n",
   6388 	    sc->mbuf_sim_alloc_failed);
   6389 
   6390 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6391 	    "-----------------------------\n");
   6392 }
   6393 
   6394 void
   6395 bnx_dump_hw_state(struct bnx_softc *sc)
   6396 {
   6397 	uint32_t		val1;
   6398 	int			i;
   6399 
   6400 	aprint_debug_dev(sc->bnx_dev,
   6401 	    "----------------------------"
   6402 	    " Hardware State "
   6403 	    "----------------------------\n");
   6404 
   6405 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   6406 
   6407 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6408 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6409 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6410 
   6411 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6412 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6413 
   6414 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6415 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6416 
   6417 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6418 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6419 	    BNX_EMAC_STATUS);
   6420 
   6421 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6422 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6423 
   6424 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6425 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6426 	    BNX_TBDR_STATUS);
   6427 
   6428 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6429 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6430 	    BNX_TDMA_STATUS);
   6431 
   6432 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6433 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6434 
   6435 	aprint_debug_dev(sc->bnx_dev,
   6436 	    "----------------------------"
   6437 	    "----------------"
   6438 	    "----------------------------\n");
   6439 
   6440 	aprint_debug_dev(sc->bnx_dev,
   6441 	    "----------------------------"
   6442 	    " Register  Dump "
   6443 	    "----------------------------\n");
   6444 
   6445 	for (i = 0x400; i < 0x8000; i += 0x10)
   6446 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6447 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6448 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6449 
   6450 	aprint_debug_dev(sc->bnx_dev,
   6451 	    "----------------------------"
   6452 	    "----------------"
   6453 	    "----------------------------\n");
   6454 }
   6455 
   6456 void
   6457 bnx_breakpoint(struct bnx_softc *sc)
   6458 {
   6459 	/* Unreachable code to shut the compiler up about unused functions. */
   6460 	if (0) {
   6461    		bnx_dump_txbd(sc, 0, NULL);
   6462 		bnx_dump_rxbd(sc, 0, NULL);
   6463 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6464 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6465 		bnx_dump_l2fhdr(sc, 0, NULL);
   6466 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6467 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6468 		bnx_dump_status_block(sc);
   6469 		bnx_dump_stats_block(sc);
   6470 		bnx_dump_driver_state(sc);
   6471 		bnx_dump_hw_state(sc);
   6472 	}
   6473 
   6474 	bnx_dump_driver_state(sc);
   6475 	/* Print the important status block fields. */
   6476 	bnx_dump_status_block(sc);
   6477 
   6478 #if 0
   6479 	/* Call the debugger. */
   6480 	breakpoint();
   6481 #endif
   6482 
   6483 	return;
   6484 }
   6485 #endif
   6486