Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.49
      1 /*	$NetBSD: if_bnx.c,v 1.49 2013/09/13 20:54:14 martin Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
      3 
      4 /*-
      5  * Copyright (c) 2006 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.49 2013/09/13 20:54:14 martin Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *
     52  *   BCM5706C A0, A1
     53  *   BCM5706S A0, A1
     54  *   BCM5708C A0, B0
     55  *   BCM5708S A0, B0
     56  *   BCM5709C A0  B0, B1, B2 (pre-production)
     57  *   BCM5709S A0, B0, B1, B2 (pre-production)
     58  */
     59 
     60 #include <sys/callout.h>
     61 #include <sys/mutex.h>
     62 
     63 #include <dev/pci/if_bnxreg.h>
     64 #include <dev/pci/if_bnxvar.h>
     65 
     66 #include <dev/microcode/bnx/bnxfw.h>
     67 
     68 /****************************************************************************/
     69 /* BNX Driver Version                                                       */
     70 /****************************************************************************/
     71 #define BNX_DRIVER_VERSION	"v0.9.6"
     72 
     73 /****************************************************************************/
     74 /* BNX Debug Options                                                        */
     75 /****************************************************************************/
     76 #ifdef BNX_DEBUG
     77 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     78 
     79 	/*          0 = Never              */
     80 	/*          1 = 1 in 2,147,483,648 */
     81 	/*        256 = 1 in     8,388,608 */
     82 	/*       2048 = 1 in     1,048,576 */
     83 	/*      65536 = 1 in        32,768 */
     84 	/*    1048576 = 1 in         2,048 */
     85 	/*  268435456 =	1 in             8 */
     86 	/*  536870912 = 1 in             4 */
     87 	/* 1073741824 = 1 in             2 */
     88 
     89 	/* Controls how often the l2_fhdr frame error check will fail. */
     90 	int bnx_debug_l2fhdr_status_check = 0;
     91 
     92 	/* Controls how often the unexpected attention check will fail. */
     93 	int bnx_debug_unexpected_attention = 0;
     94 
     95 	/* Controls how often to simulate an mbuf allocation failure. */
     96 	int bnx_debug_mbuf_allocation_failure = 0;
     97 
     98 	/* Controls how often to simulate a DMA mapping failure. */
     99 	int bnx_debug_dma_map_addr_failure = 0;
    100 
    101 	/* Controls how often to simulate a bootcode failure. */
    102 	int bnx_debug_bootcode_running_failure = 0;
    103 #endif
    104 
    105 /****************************************************************************/
    106 /* PCI Device ID Table                                                      */
    107 /*                                                                          */
    108 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    109 /****************************************************************************/
    110 static const struct bnx_product {
    111 	pci_vendor_id_t		bp_vendor;
    112 	pci_product_id_t	bp_product;
    113 	pci_vendor_id_t		bp_subvendor;
    114 	pci_product_id_t	bp_subproduct;
    115 	const char		*bp_name;
    116 } bnx_devices[] = {
    117 #ifdef PCI_SUBPRODUCT_HP_NC370T
    118 	{
    119 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    120 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    121 	  "HP NC370T Multifunction Gigabit Server Adapter"
    122 	},
    123 #endif
    124 #ifdef PCI_SUBPRODUCT_HP_NC370i
    125 	{
    126 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    127 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    128 	  "HP NC370i Multifunction Gigabit Server Adapter"
    129 	},
    130 #endif
    131 	{
    132 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    133 	  0, 0,
    134 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    135 	},
    136 #ifdef PCI_SUBPRODUCT_HP_NC370F
    137 	{
    138 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    139 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    140 	  "HP NC370F Multifunction Gigabit Server Adapter"
    141 	},
    142 #endif
    143 	{
    144 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    145 	  0, 0,
    146 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    147 	},
    148 	{
    149 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    150 	  0, 0,
    151 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    152 	},
    153 	{
    154 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    155 	  0, 0,
    156 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    157 	},
    158 	{
    159 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    160 	  0, 0,
    161 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    162 	},
    163 	{
    164 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    165 	  0, 0,
    166 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    167 	},
    168 	{
    169 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    170 	  0, 0,
    171 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    172 	},
    173 	{
    174 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    175 	  0, 0,
    176 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    177 	},
    178 };
    179 
    180 /****************************************************************************/
    181 /* Supported Flash NVRAM device data.                                       */
    182 /****************************************************************************/
    183 static struct flash_spec flash_table[] =
    184 {
    185 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    186 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    187 	/* Slow EEPROM */
    188 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    189 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    190 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    191 	 "EEPROM - slow"},
    192 	/* Expansion entry 0001 */
    193 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    194 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    195 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    196 	 "Entry 0001"},
    197 	/* Saifun SA25F010 (non-buffered flash) */
    198 	/* strap, cfg1, & write1 need updates */
    199 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    200 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    201 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    202 	 "Non-buffered flash (128kB)"},
    203 	/* Saifun SA25F020 (non-buffered flash) */
    204 	/* strap, cfg1, & write1 need updates */
    205 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    206 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    207 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    208 	 "Non-buffered flash (256kB)"},
    209 	/* Expansion entry 0100 */
    210 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    211 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    213 	 "Entry 0100"},
    214 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    215 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    216 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    217 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    218 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    219 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    220 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    221 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    222 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    223 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    224 	/* Saifun SA25F005 (non-buffered flash) */
    225 	/* strap, cfg1, & write1 need updates */
    226 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    227 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    228 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    229 	 "Non-buffered flash (64kB)"},
    230 	/* Fast EEPROM */
    231 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    232 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    233 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    234 	 "EEPROM - fast"},
    235 	/* Expansion entry 1001 */
    236 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    237 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    238 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    239 	 "Entry 1001"},
    240 	/* Expansion entry 1010 */
    241 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    242 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    243 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    244 	 "Entry 1010"},
    245 	/* ATMEL AT45DB011B (buffered flash) */
    246 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    247 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    248 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    249 	 "Buffered flash (128kB)"},
    250 	/* Expansion entry 1100 */
    251 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    252 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    253 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    254 	 "Entry 1100"},
    255 	/* Expansion entry 1101 */
    256 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    257 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    258 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    259 	 "Entry 1101"},
    260 	/* Ateml Expansion entry 1110 */
    261 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    262 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    263 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    264 	 "Entry 1110 (Atmel)"},
    265 	/* ATMEL AT45DB021B (buffered flash) */
    266 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    267 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    268 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    269 	 "Buffered flash (256kB)"},
    270 };
    271 
    272 /*
    273  * The BCM5709 controllers transparently handle the
    274  * differences between Atmel 264 byte pages and all
    275  * flash devices which use 256 byte pages, so no
    276  * logical-to-physical mapping is required in the
    277  * driver.
    278  */
    279 static struct flash_spec flash_5709 = {
    280 	.flags		= BNX_NV_BUFFERED,
    281 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    282 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    283 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    284 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    285 	.name		= "5709 buffered flash (256kB)",
    286 };
    287 
    288 /****************************************************************************/
    289 /* OpenBSD device entry points.                                             */
    290 /****************************************************************************/
    291 static int	bnx_probe(device_t, cfdata_t, void *);
    292 void	bnx_attach(device_t, device_t, void *);
    293 int	bnx_detach(device_t, int);
    294 
    295 /****************************************************************************/
    296 /* BNX Debug Data Structure Dump Routines                                   */
    297 /****************************************************************************/
    298 #ifdef BNX_DEBUG
    299 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    300 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    301 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    302 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    303 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    304 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    305 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    306 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    307 void	bnx_dump_status_block(struct bnx_softc *);
    308 void	bnx_dump_stats_block(struct bnx_softc *);
    309 void	bnx_dump_driver_state(struct bnx_softc *);
    310 void	bnx_dump_hw_state(struct bnx_softc *);
    311 void	bnx_breakpoint(struct bnx_softc *);
    312 #endif
    313 
    314 /****************************************************************************/
    315 /* BNX Register/Memory Access Routines                                      */
    316 /****************************************************************************/
    317 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
    318 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
    319 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
    320 int	bnx_miibus_read_reg(device_t, int, int);
    321 void	bnx_miibus_write_reg(device_t, int, int, int);
    322 void	bnx_miibus_statchg(struct ifnet *);
    323 
    324 /****************************************************************************/
    325 /* BNX NVRAM Access Routines                                                */
    326 /****************************************************************************/
    327 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    328 int	bnx_release_nvram_lock(struct bnx_softc *);
    329 void	bnx_enable_nvram_access(struct bnx_softc *);
    330 void	bnx_disable_nvram_access(struct bnx_softc *);
    331 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    332 	    u_int32_t);
    333 int	bnx_init_nvram(struct bnx_softc *);
    334 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    335 int	bnx_nvram_test(struct bnx_softc *);
    336 #ifdef BNX_NVRAM_WRITE_SUPPORT
    337 int	bnx_enable_nvram_write(struct bnx_softc *);
    338 void	bnx_disable_nvram_write(struct bnx_softc *);
    339 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
    340 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    341 	    u_int32_t);
    342 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    343 #endif
    344 
    345 /****************************************************************************/
    346 /*                                                                          */
    347 /****************************************************************************/
    348 void	bnx_get_media(struct bnx_softc *);
    349 void	bnx_init_media(struct bnx_softc *);
    350 int	bnx_dma_alloc(struct bnx_softc *);
    351 void	bnx_dma_free(struct bnx_softc *);
    352 void	bnx_release_resources(struct bnx_softc *);
    353 
    354 /****************************************************************************/
    355 /* BNX Firmware Synchronization and Load                                    */
    356 /****************************************************************************/
    357 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
    358 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
    359 	    u_int32_t);
    360 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    361 	    struct fw_info *);
    362 void	bnx_init_cpus(struct bnx_softc *);
    363 
    364 void	bnx_stop(struct ifnet *, int);
    365 int	bnx_reset(struct bnx_softc *, u_int32_t);
    366 int	bnx_chipinit(struct bnx_softc *);
    367 int	bnx_blockinit(struct bnx_softc *);
    368 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
    369 	    u_int16_t *, u_int32_t *);
    370 int	bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
    371 
    372 int	bnx_init_tx_chain(struct bnx_softc *);
    373 void	bnx_init_tx_context(struct bnx_softc *);
    374 int	bnx_init_rx_chain(struct bnx_softc *);
    375 void	bnx_init_rx_context(struct bnx_softc *);
    376 void	bnx_free_rx_chain(struct bnx_softc *);
    377 void	bnx_free_tx_chain(struct bnx_softc *);
    378 
    379 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    380 void	bnx_start(struct ifnet *);
    381 int	bnx_ioctl(struct ifnet *, u_long, void *);
    382 void	bnx_watchdog(struct ifnet *);
    383 int	bnx_init(struct ifnet *);
    384 
    385 void	bnx_init_context(struct bnx_softc *);
    386 void	bnx_get_mac_addr(struct bnx_softc *);
    387 void	bnx_set_mac_addr(struct bnx_softc *);
    388 void	bnx_phy_intr(struct bnx_softc *);
    389 void	bnx_rx_intr(struct bnx_softc *);
    390 void	bnx_tx_intr(struct bnx_softc *);
    391 void	bnx_disable_intr(struct bnx_softc *);
    392 void	bnx_enable_intr(struct bnx_softc *);
    393 
    394 int	bnx_intr(void *);
    395 void	bnx_iff(struct bnx_softc *);
    396 void	bnx_stats_update(struct bnx_softc *);
    397 void	bnx_tick(void *);
    398 
    399 struct pool *bnx_tx_pool = NULL;
    400 void	bnx_alloc_pkts(struct work *, void *);
    401 
    402 /****************************************************************************/
    403 /* OpenBSD device dispatch table.                                           */
    404 /****************************************************************************/
    405 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    406     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    407 
    408 /****************************************************************************/
    409 /* Device probe function.                                                   */
    410 /*                                                                          */
    411 /* Compares the device to the driver's list of supported devices and        */
    412 /* reports back to the OS whether this is the right driver for the device.  */
    413 /*                                                                          */
    414 /* Returns:                                                                 */
    415 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    416 /****************************************************************************/
    417 static const struct bnx_product *
    418 bnx_lookup(const struct pci_attach_args *pa)
    419 {
    420 	int i;
    421 	pcireg_t subid;
    422 
    423 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    424 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    425 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    426 			continue;
    427 		if (!bnx_devices[i].bp_subvendor)
    428 			return &bnx_devices[i];
    429 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    430 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    431 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    432 			return &bnx_devices[i];
    433 	}
    434 
    435 	return NULL;
    436 }
    437 static int
    438 bnx_probe(device_t parent, cfdata_t match, void *aux)
    439 {
    440 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    441 
    442 	if (bnx_lookup(pa) != NULL)
    443 		return (1);
    444 
    445 	return (0);
    446 }
    447 
    448 /****************************************************************************/
    449 /* Device attach function.                                                  */
    450 /*                                                                          */
    451 /* Allocates device resources, performs secondary chip identification,      */
    452 /* resets and initializes the hardware, and initializes driver instance     */
    453 /* variables.                                                               */
    454 /*                                                                          */
    455 /* Returns:                                                                 */
    456 /*   0 on success, positive value on failure.                               */
    457 /****************************************************************************/
    458 void
    459 bnx_attach(device_t parent, device_t self, void *aux)
    460 {
    461 	const struct bnx_product *bp;
    462 	struct bnx_softc	*sc = device_private(self);
    463 	prop_dictionary_t	dict;
    464 	struct pci_attach_args	*pa = aux;
    465 	pci_chipset_tag_t	pc = pa->pa_pc;
    466 	pci_intr_handle_t	ih;
    467 	const char 		*intrstr = NULL;
    468 	u_int32_t		command;
    469 	struct ifnet		*ifp;
    470 	u_int32_t		val;
    471 	int			mii_flags = MIIF_FORCEANEG;
    472 	pcireg_t		memtype;
    473 
    474 	if (bnx_tx_pool == NULL) {
    475 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    476 		if (bnx_tx_pool != NULL) {
    477 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    478 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    479 		} else {
    480 			aprint_error(": can't alloc bnx_tx_pool\n");
    481 			return;
    482 		}
    483 	}
    484 
    485 	bp = bnx_lookup(pa);
    486 	if (bp == NULL)
    487 		panic("unknown device");
    488 
    489 	sc->bnx_dev = self;
    490 
    491 	aprint_naive("\n");
    492 	aprint_normal(": %s\n", bp->bp_name);
    493 
    494 	sc->bnx_pa = *pa;
    495 
    496 	/*
    497 	 * Map control/status registers.
    498 	*/
    499 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    500 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    501 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    502 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    503 
    504 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    505 		aprint_error_dev(sc->bnx_dev,
    506 		    "failed to enable memory mapping!\n");
    507 		return;
    508 	}
    509 
    510 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    511 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    512 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    513 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    514 		return;
    515 	}
    516 
    517 	if (pci_intr_map(pa, &ih)) {
    518 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    519 		goto bnx_attach_fail;
    520 	}
    521 
    522 	intrstr = pci_intr_string(pc, ih);
    523 
    524 	/*
    525 	 * Configure byte swap and enable indirect register access.
    526 	 * Rely on CPU to do target byte swapping on big endian systems.
    527 	 * Access to registers outside of PCI configurtion space are not
    528 	 * valid until this is done.
    529 	 */
    530 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    531 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    532 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    533 
    534 	/* Save ASIC revsion info. */
    535 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    536 
    537 	/*
    538 	 * Find the base address for shared memory access.
    539 	 * Newer versions of bootcode use a signature and offset
    540 	 * while older versions use a fixed address.
    541 	 */
    542 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    543 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    544 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    545 		    (sc->bnx_pa.pa_function << 2));
    546 	else
    547 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    548 
    549 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    550 
    551 	/* Set initial device and PHY flags */
    552 	sc->bnx_flags = 0;
    553 	sc->bnx_phy_flags = 0;
    554 
    555 	/* Get PCI bus information (speed and type). */
    556 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    557 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    558 		u_int32_t clkreg;
    559 
    560 		sc->bnx_flags |= BNX_PCIX_FLAG;
    561 
    562 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    563 
    564 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    565 		switch (clkreg) {
    566 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    567 			sc->bus_speed_mhz = 133;
    568 			break;
    569 
    570 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    571 			sc->bus_speed_mhz = 100;
    572 			break;
    573 
    574 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    575 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    576 			sc->bus_speed_mhz = 66;
    577 			break;
    578 
    579 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    580 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    581 			sc->bus_speed_mhz = 50;
    582 			break;
    583 
    584 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    585 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    586 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    587 			sc->bus_speed_mhz = 33;
    588 			break;
    589 		}
    590 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    591 			sc->bus_speed_mhz = 66;
    592 		else
    593 			sc->bus_speed_mhz = 33;
    594 
    595 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    596 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    597 
    598 	/* Reset the controller. */
    599 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    600 		goto bnx_attach_fail;
    601 
    602 	/* Initialize the controller. */
    603 	if (bnx_chipinit(sc)) {
    604 		aprint_error_dev(sc->bnx_dev,
    605 		    "Controller initialization failed!\n");
    606 		goto bnx_attach_fail;
    607 	}
    608 
    609 	/* Perform NVRAM test. */
    610 	if (bnx_nvram_test(sc)) {
    611 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    612 		goto bnx_attach_fail;
    613 	}
    614 
    615 	/* Fetch the permanent Ethernet MAC address. */
    616 	bnx_get_mac_addr(sc);
    617 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    618 	    ether_sprintf(sc->eaddr));
    619 
    620 	/*
    621 	 * Trip points control how many BDs
    622 	 * should be ready before generating an
    623 	 * interrupt while ticks control how long
    624 	 * a BD can sit in the chain before
    625 	 * generating an interrupt.  Set the default
    626 	 * values for the RX and TX rings.
    627 	 */
    628 
    629 #ifdef BNX_DEBUG
    630 	/* Force more frequent interrupts. */
    631 	sc->bnx_tx_quick_cons_trip_int = 1;
    632 	sc->bnx_tx_quick_cons_trip     = 1;
    633 	sc->bnx_tx_ticks_int           = 0;
    634 	sc->bnx_tx_ticks               = 0;
    635 
    636 	sc->bnx_rx_quick_cons_trip_int = 1;
    637 	sc->bnx_rx_quick_cons_trip     = 1;
    638 	sc->bnx_rx_ticks_int           = 0;
    639 	sc->bnx_rx_ticks               = 0;
    640 #else
    641 	sc->bnx_tx_quick_cons_trip_int = 20;
    642 	sc->bnx_tx_quick_cons_trip     = 20;
    643 	sc->bnx_tx_ticks_int           = 80;
    644 	sc->bnx_tx_ticks               = 80;
    645 
    646 	sc->bnx_rx_quick_cons_trip_int = 6;
    647 	sc->bnx_rx_quick_cons_trip     = 6;
    648 	sc->bnx_rx_ticks_int           = 18;
    649 	sc->bnx_rx_ticks               = 18;
    650 #endif
    651 
    652 	/* Update statistics once every second. */
    653 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    654 
    655 	/* Find the media type for the adapter. */
    656 	bnx_get_media(sc);
    657 
    658 	/*
    659 	 * Store config data needed by the PHY driver for
    660 	 * backplane applications
    661 	 */
    662 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    663 	    BNX_SHARED_HW_CFG_CONFIG);
    664 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    665 	    BNX_PORT_HW_CFG_CONFIG);
    666 
    667 	/* Allocate DMA memory resources. */
    668 	sc->bnx_dmatag = pa->pa_dmat;
    669 	if (bnx_dma_alloc(sc)) {
    670 		aprint_error_dev(sc->bnx_dev,
    671 		    "DMA resource allocation failed!\n");
    672 		goto bnx_attach_fail;
    673 	}
    674 
    675 	/* Initialize the ifnet interface. */
    676 	ifp = &sc->bnx_ec.ec_if;
    677 	ifp->if_softc = sc;
    678 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    679 	ifp->if_ioctl = bnx_ioctl;
    680 	ifp->if_stop = bnx_stop;
    681 	ifp->if_start = bnx_start;
    682 	ifp->if_init = bnx_init;
    683 	ifp->if_timer = 0;
    684 	ifp->if_watchdog = bnx_watchdog;
    685 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    686 	IFQ_SET_READY(&ifp->if_snd);
    687 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    688 
    689 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    690 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    691 
    692 	ifp->if_capabilities |=
    693 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    694 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    695 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    696 
    697 	/* Hookup IRQ last. */
    698 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    699 	if (sc->bnx_intrhand == NULL) {
    700 		aprint_error_dev(self, "couldn't establish interrupt");
    701 		if (intrstr != NULL)
    702 			aprint_error(" at %s", intrstr);
    703 		aprint_error("\n");
    704 		goto bnx_attach_fail;
    705 	}
    706 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    707 
    708 	/* create workqueue to handle packet allocations */
    709 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    710 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    711 		aprint_error_dev(self, "failed to create workqueue\n");
    712 		goto bnx_attach_fail;
    713 	}
    714 
    715 	sc->bnx_mii.mii_ifp = ifp;
    716 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    717 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    718 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    719 
    720 	/* Handle any special PHY initialization for SerDes PHYs. */
    721 	bnx_init_media(sc);
    722 
    723 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    724 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    725 	    ether_mediastatus);
    726 
    727 	/* set phyflags and chipid before mii_attach() */
    728 	dict = device_properties(self);
    729 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    730 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    731 
    732 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    733 		mii_flags |= MIIF_HAVEFIBER;
    734 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    735 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    736 
    737 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    738 		aprint_error_dev(self, "no PHY found!\n");
    739 		ifmedia_add(&sc->bnx_mii.mii_media,
    740 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    741 		ifmedia_set(&sc->bnx_mii.mii_media,
    742 		    IFM_ETHER|IFM_MANUAL);
    743 	} else {
    744 		ifmedia_set(&sc->bnx_mii.mii_media,
    745 		    IFM_ETHER|IFM_AUTO);
    746 	}
    747 
    748 	/* Attach to the Ethernet interface list. */
    749 	if_attach(ifp);
    750 	ether_ifattach(ifp,sc->eaddr);
    751 
    752 	callout_init(&sc->bnx_timeout, 0);
    753 
    754 	if (pmf_device_register(self, NULL, NULL))
    755 		pmf_class_network_register(self, ifp);
    756 	else
    757 		aprint_error_dev(self, "couldn't establish power handler\n");
    758 
    759 	/* Print some important debugging info. */
    760 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    761 
    762 	goto bnx_attach_exit;
    763 
    764 bnx_attach_fail:
    765 	bnx_release_resources(sc);
    766 
    767 bnx_attach_exit:
    768 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    769 }
    770 
    771 /****************************************************************************/
    772 /* Device detach function.                                                  */
    773 /*                                                                          */
    774 /* Stops the controller, resets the controller, and releases resources.     */
    775 /*                                                                          */
    776 /* Returns:                                                                 */
    777 /*   0 on success, positive value on failure.                               */
    778 /****************************************************************************/
    779 int
    780 bnx_detach(device_t dev, int flags)
    781 {
    782 	int s;
    783 	struct bnx_softc *sc;
    784 	struct ifnet *ifp;
    785 
    786 	sc = device_private(dev);
    787 	ifp = &sc->bnx_ec.ec_if;
    788 
    789 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    790 
    791 	/* Stop and reset the controller. */
    792 	s = splnet();
    793 	if (ifp->if_flags & IFF_RUNNING)
    794 		bnx_stop(ifp, 1);
    795 	else {
    796 		/* Disable the transmit/receive blocks. */
    797 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
    798 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
    799 		DELAY(20);
    800 		bnx_disable_intr(sc);
    801 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
    802 	}
    803 
    804 	splx(s);
    805 
    806 	pmf_device_deregister(dev);
    807 	callout_destroy(&sc->bnx_timeout);
    808 	ether_ifdetach(ifp);
    809 	workqueue_destroy(sc->bnx_wq);
    810 
    811 	/* Delete all remaining media. */
    812 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    813 
    814 	if_detach(ifp);
    815 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    816 
    817 	/* Release all remaining resources. */
    818 	bnx_release_resources(sc);
    819 
    820 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    821 
    822 	return(0);
    823 }
    824 
    825 /****************************************************************************/
    826 /* Indirect register read.                                                  */
    827 /*                                                                          */
    828 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    829 /* configuration space.  Using this mechanism avoids issues with posted     */
    830 /* reads but is much slower than memory-mapped I/O.                         */
    831 /*                                                                          */
    832 /* Returns:                                                                 */
    833 /*   The value of the register.                                             */
    834 /****************************************************************************/
    835 u_int32_t
    836 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
    837 {
    838 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    839 
    840 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    841 	    offset);
    842 #ifdef BNX_DEBUG
    843 	{
    844 		u_int32_t val;
    845 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    846 		    BNX_PCICFG_REG_WINDOW);
    847 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    848 		    "val = 0x%08X\n", __func__, offset, val);
    849 		return (val);
    850 	}
    851 #else
    852 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    853 #endif
    854 }
    855 
    856 /****************************************************************************/
    857 /* Indirect register write.                                                 */
    858 /*                                                                          */
    859 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    860 /* configuration space.  Using this mechanism avoids issues with posted     */
    861 /* writes but is muchh slower than memory-mapped I/O.                       */
    862 /*                                                                          */
    863 /* Returns:                                                                 */
    864 /*   Nothing.                                                               */
    865 /****************************************************************************/
    866 void
    867 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
    868 {
    869 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    870 
    871 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    872 		__func__, offset, val);
    873 
    874 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    875 	    offset);
    876 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    877 }
    878 
    879 /****************************************************************************/
    880 /* Context memory write.                                                    */
    881 /*                                                                          */
    882 /* The NetXtreme II controller uses context memory to track connection      */
    883 /* information for L2 and higher network protocols.                         */
    884 /*                                                                          */
    885 /* Returns:                                                                 */
    886 /*   Nothing.                                                               */
    887 /****************************************************************************/
    888 void
    889 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
    890     u_int32_t ctx_val)
    891 {
    892 	u_int32_t idx, offset = ctx_offset + cid_addr;
    893 	u_int32_t val, retry_cnt = 5;
    894 
    895 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
    896 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
    897 		REG_WR(sc, BNX_CTX_CTX_CTRL,
    898 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
    899 
    900 		for (idx = 0; idx < retry_cnt; idx++) {
    901 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
    902 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
    903 				break;
    904 			DELAY(5);
    905 		}
    906 
    907 #if 0
    908 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
    909 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
    910 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
    911 				__FILE__, __LINE__, cid_addr, ctx_offset);
    912 #endif
    913 
    914 	} else {
    915 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
    916 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
    917 	}
    918 }
    919 
    920 /****************************************************************************/
    921 /* PHY register read.                                                       */
    922 /*                                                                          */
    923 /* Implements register reads on the MII bus.                                */
    924 /*                                                                          */
    925 /* Returns:                                                                 */
    926 /*   The value of the register.                                             */
    927 /****************************************************************************/
    928 int
    929 bnx_miibus_read_reg(device_t dev, int phy, int reg)
    930 {
    931 	struct bnx_softc	*sc = device_private(dev);
    932 	u_int32_t		val;
    933 	int			i;
    934 
    935 	/* Make sure we are accessing the correct PHY address. */
    936 	if (phy != sc->bnx_phy_addr) {
    937 		DBPRINT(sc, BNX_VERBOSE,
    938 		    "Invalid PHY address %d for PHY read!\n", phy);
    939 		return(0);
    940 	}
    941 
    942 	/*
    943 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
    944 	 * with special mappings to work with IEEE
    945 	 * Clause 22 register accesses.
    946 	 */
    947 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
    948 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
    949 			reg += 0x10;
    950 	}
    951 
    952 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    953 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    954 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    955 
    956 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    957 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    958 
    959 		DELAY(40);
    960 	}
    961 
    962 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
    963 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
    964 	    BNX_EMAC_MDIO_COMM_START_BUSY;
    965 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
    966 
    967 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    968 		DELAY(10);
    969 
    970 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    971 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    972 			DELAY(5);
    973 
    974 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    975 			val &= BNX_EMAC_MDIO_COMM_DATA;
    976 
    977 			break;
    978 		}
    979 	}
    980 
    981 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
    982 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
    983 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
    984 		val = 0x0;
    985 	} else
    986 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    987 
    988 	DBPRINT(sc, BNX_EXCESSIVE,
    989 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
    990 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    991 
    992 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    993 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    994 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    995 
    996 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    997 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    998 
    999 		DELAY(40);
   1000 	}
   1001 
   1002 	return (val & 0xffff);
   1003 }
   1004 
   1005 /****************************************************************************/
   1006 /* PHY register write.                                                      */
   1007 /*                                                                          */
   1008 /* Implements register writes on the MII bus.                               */
   1009 /*                                                                          */
   1010 /* Returns:                                                                 */
   1011 /*   The value of the register.                                             */
   1012 /****************************************************************************/
   1013 void
   1014 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
   1015 {
   1016 	struct bnx_softc	*sc = device_private(dev);
   1017 	u_int32_t		val1;
   1018 	int			i;
   1019 
   1020 	/* Make sure we are accessing the correct PHY address. */
   1021 	if (phy != sc->bnx_phy_addr) {
   1022 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
   1023 		    phy);
   1024 		return;
   1025 	}
   1026 
   1027 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1028 	    "val = 0x%04X\n", __func__,
   1029 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
   1030 
   1031 	/*
   1032 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1033 	 * with special mappings to work with IEEE
   1034 	 * Clause 22 register accesses.
   1035 	 */
   1036 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1037 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1038 			reg += 0x10;
   1039 	}
   1040 
   1041 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1042 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1043 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1044 
   1045 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1046 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1047 
   1048 		DELAY(40);
   1049 	}
   1050 
   1051 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1052 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1053 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1054 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1055 
   1056 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1057 		DELAY(10);
   1058 
   1059 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1060 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1061 			DELAY(5);
   1062 			break;
   1063 		}
   1064 	}
   1065 
   1066 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1067 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1068 		    __LINE__);
   1069 	}
   1070 
   1071 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1072 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1073 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1074 
   1075 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1076 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1077 
   1078 		DELAY(40);
   1079 	}
   1080 }
   1081 
   1082 /****************************************************************************/
   1083 /* MII bus status change.                                                   */
   1084 /*                                                                          */
   1085 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1086 /* MAC interface registers.                                                 */
   1087 /*                                                                          */
   1088 /* Returns:                                                                 */
   1089 /*   Nothing.                                                               */
   1090 /****************************************************************************/
   1091 void
   1092 bnx_miibus_statchg(struct ifnet *ifp)
   1093 {
   1094 	struct bnx_softc	*sc = ifp->if_softc;
   1095 	struct mii_data		*mii = &sc->bnx_mii;
   1096 	int			val;
   1097 
   1098 	val = REG_RD(sc, BNX_EMAC_MODE);
   1099 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1100 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1101 	    BNX_EMAC_MODE_25G);
   1102 
   1103 	/* Set MII or GMII interface based on the speed
   1104 	 * negotiated by the PHY.
   1105 	 */
   1106 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1107 	case IFM_10_T:
   1108 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1109 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1110 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1111 			break;
   1112 		}
   1113 		/* FALLTHROUGH */
   1114 	case IFM_100_TX:
   1115 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1116 		val |= BNX_EMAC_MODE_PORT_MII;
   1117 		break;
   1118 	case IFM_2500_SX:
   1119 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1120 		val |= BNX_EMAC_MODE_25G;
   1121 		/* FALLTHROUGH */
   1122 	case IFM_1000_T:
   1123 	case IFM_1000_SX:
   1124 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1125 		val |= BNX_EMAC_MODE_PORT_GMII;
   1126 		break;
   1127 	default:
   1128 		val |= BNX_EMAC_MODE_PORT_GMII;
   1129 		break;
   1130 	}
   1131 
   1132 	/* Set half or full duplex based on the duplicity
   1133 	 * negotiated by the PHY.
   1134 	 */
   1135 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1136 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1137 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1138 	} else {
   1139 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1140 	}
   1141 
   1142 	REG_WR(sc, BNX_EMAC_MODE, val);
   1143 }
   1144 
   1145 /****************************************************************************/
   1146 /* Acquire NVRAM lock.                                                      */
   1147 /*                                                                          */
   1148 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1149 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1150 /* for use by the driver.                                                   */
   1151 /*                                                                          */
   1152 /* Returns:                                                                 */
   1153 /*   0 on success, positive value on failure.                               */
   1154 /****************************************************************************/
   1155 int
   1156 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1157 {
   1158 	u_int32_t		val;
   1159 	int			j;
   1160 
   1161 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1162 
   1163 	/* Request access to the flash interface. */
   1164 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1165 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1166 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1167 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1168 			break;
   1169 
   1170 		DELAY(5);
   1171 	}
   1172 
   1173 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1174 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1175 		return (EBUSY);
   1176 	}
   1177 
   1178 	return (0);
   1179 }
   1180 
   1181 /****************************************************************************/
   1182 /* Release NVRAM lock.                                                      */
   1183 /*                                                                          */
   1184 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1185 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1186 /* for use by the driver.                                                   */
   1187 /*                                                                          */
   1188 /* Returns:                                                                 */
   1189 /*   0 on success, positive value on failure.                               */
   1190 /****************************************************************************/
   1191 int
   1192 bnx_release_nvram_lock(struct bnx_softc *sc)
   1193 {
   1194 	int			j;
   1195 	u_int32_t		val;
   1196 
   1197 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1198 
   1199 	/* Relinquish nvram interface. */
   1200 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1201 
   1202 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1203 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1204 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1205 			break;
   1206 
   1207 		DELAY(5);
   1208 	}
   1209 
   1210 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1211 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1212 		return (EBUSY);
   1213 	}
   1214 
   1215 	return (0);
   1216 }
   1217 
   1218 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1219 /****************************************************************************/
   1220 /* Enable NVRAM write access.                                               */
   1221 /*                                                                          */
   1222 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1223 /*                                                                          */
   1224 /* Returns:                                                                 */
   1225 /*   0 on success, positive value on failure.                               */
   1226 /****************************************************************************/
   1227 int
   1228 bnx_enable_nvram_write(struct bnx_softc *sc)
   1229 {
   1230 	u_int32_t		val;
   1231 
   1232 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1233 
   1234 	val = REG_RD(sc, BNX_MISC_CFG);
   1235 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1236 
   1237 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1238 		int j;
   1239 
   1240 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1241 		REG_WR(sc, BNX_NVM_COMMAND,
   1242 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1243 
   1244 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1245 			DELAY(5);
   1246 
   1247 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1248 			if (val & BNX_NVM_COMMAND_DONE)
   1249 				break;
   1250 		}
   1251 
   1252 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1253 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1254 			return (EBUSY);
   1255 		}
   1256 	}
   1257 
   1258 	return (0);
   1259 }
   1260 
   1261 /****************************************************************************/
   1262 /* Disable NVRAM write access.                                              */
   1263 /*                                                                          */
   1264 /* When the caller is finished writing to NVRAM write access must be        */
   1265 /* disabled.                                                                */
   1266 /*                                                                          */
   1267 /* Returns:                                                                 */
   1268 /*   Nothing.                                                               */
   1269 /****************************************************************************/
   1270 void
   1271 bnx_disable_nvram_write(struct bnx_softc *sc)
   1272 {
   1273 	u_int32_t		val;
   1274 
   1275 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1276 
   1277 	val = REG_RD(sc, BNX_MISC_CFG);
   1278 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1279 }
   1280 #endif
   1281 
   1282 /****************************************************************************/
   1283 /* Enable NVRAM access.                                                     */
   1284 /*                                                                          */
   1285 /* Before accessing NVRAM for read or write operations the caller must      */
   1286 /* enabled NVRAM access.                                                    */
   1287 /*                                                                          */
   1288 /* Returns:                                                                 */
   1289 /*   Nothing.                                                               */
   1290 /****************************************************************************/
   1291 void
   1292 bnx_enable_nvram_access(struct bnx_softc *sc)
   1293 {
   1294 	u_int32_t		val;
   1295 
   1296 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1297 
   1298 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1299 	/* Enable both bits, even on read. */
   1300 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1301 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1302 }
   1303 
   1304 /****************************************************************************/
   1305 /* Disable NVRAM access.                                                    */
   1306 /*                                                                          */
   1307 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1308 /*                                                                          */
   1309 /* Returns:                                                                 */
   1310 /*   Nothing.                                                               */
   1311 /****************************************************************************/
   1312 void
   1313 bnx_disable_nvram_access(struct bnx_softc *sc)
   1314 {
   1315 	u_int32_t		val;
   1316 
   1317 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1318 
   1319 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1320 
   1321 	/* Disable both bits, even after read. */
   1322 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1323 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1324 }
   1325 
   1326 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1327 /****************************************************************************/
   1328 /* Erase NVRAM page before writing.                                         */
   1329 /*                                                                          */
   1330 /* Non-buffered flash parts require that a page be erased before it is      */
   1331 /* written.                                                                 */
   1332 /*                                                                          */
   1333 /* Returns:                                                                 */
   1334 /*   0 on success, positive value on failure.                               */
   1335 /****************************************************************************/
   1336 int
   1337 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
   1338 {
   1339 	u_int32_t		cmd;
   1340 	int			j;
   1341 
   1342 	/* Buffered flash doesn't require an erase. */
   1343 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1344 		return (0);
   1345 
   1346 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1347 
   1348 	/* Build an erase command. */
   1349 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1350 	    BNX_NVM_COMMAND_DOIT;
   1351 
   1352 	/*
   1353 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
   1354 	 * and issue the erase command.
   1355 	 */
   1356 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1357 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1358 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1359 
   1360 	/* Wait for completion. */
   1361 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1362 		u_int32_t val;
   1363 
   1364 		DELAY(5);
   1365 
   1366 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1367 		if (val & BNX_NVM_COMMAND_DONE)
   1368 			break;
   1369 	}
   1370 
   1371 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1372 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1373 		return (EBUSY);
   1374 	}
   1375 
   1376 	return (0);
   1377 }
   1378 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1379 
   1380 /****************************************************************************/
   1381 /* Read a dword (32 bits) from NVRAM.                                       */
   1382 /*                                                                          */
   1383 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1384 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1385 /*                                                                          */
   1386 /* Returns:                                                                 */
   1387 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1388 /****************************************************************************/
   1389 int
   1390 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
   1391     u_int8_t *ret_val, u_int32_t cmd_flags)
   1392 {
   1393 	u_int32_t		cmd;
   1394 	int			i, rc = 0;
   1395 
   1396 	/* Build the command word. */
   1397 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1398 
   1399 	/* Calculate the offset for buffered flash if translation is used. */
   1400 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1401 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1402 		    sc->bnx_flash_info->page_bits) +
   1403 		    (offset % sc->bnx_flash_info->page_size);
   1404 	}
   1405 
   1406 	/*
   1407 	 * Clear the DONE bit separately, set the address to read,
   1408 	 * and issue the read.
   1409 	 */
   1410 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1411 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1412 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1413 
   1414 	/* Wait for completion. */
   1415 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1416 		u_int32_t val;
   1417 
   1418 		DELAY(5);
   1419 
   1420 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1421 		if (val & BNX_NVM_COMMAND_DONE) {
   1422 			val = REG_RD(sc, BNX_NVM_READ);
   1423 
   1424 			val = bnx_be32toh(val);
   1425 			memcpy(ret_val, &val, 4);
   1426 			break;
   1427 		}
   1428 	}
   1429 
   1430 	/* Check for errors. */
   1431 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1432 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1433 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1434 		rc = EBUSY;
   1435 	}
   1436 
   1437 	return(rc);
   1438 }
   1439 
   1440 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1441 /****************************************************************************/
   1442 /* Write a dword (32 bits) to NVRAM.                                        */
   1443 /*                                                                          */
   1444 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1445 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1446 /* enabled NVRAM write access.                                              */
   1447 /*                                                                          */
   1448 /* Returns:                                                                 */
   1449 /*   0 on success, positive value on failure.                               */
   1450 /****************************************************************************/
   1451 int
   1452 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
   1453     u_int32_t cmd_flags)
   1454 {
   1455 	u_int32_t		cmd, val32;
   1456 	int			j;
   1457 
   1458 	/* Build the command word. */
   1459 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1460 
   1461 	/* Calculate the offset for buffered flash if translation is used. */
   1462 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1463 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1464 		    sc->bnx_flash_info->page_bits) +
   1465 		    (offset % sc->bnx_flash_info->page_size);
   1466 	}
   1467 
   1468 	/*
   1469 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1470 	 * set the NVRAM address to write, and issue the write command
   1471 	 */
   1472 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1473 	memcpy(&val32, val, 4);
   1474 	val32 = htobe32(val32);
   1475 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1476 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1477 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1478 
   1479 	/* Wait for completion. */
   1480 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1481 		DELAY(5);
   1482 
   1483 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1484 			break;
   1485 	}
   1486 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1487 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1488 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1489 		return (EBUSY);
   1490 	}
   1491 
   1492 	return (0);
   1493 }
   1494 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1495 
   1496 /****************************************************************************/
   1497 /* Initialize NVRAM access.                                                 */
   1498 /*                                                                          */
   1499 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1500 /* access that device.                                                      */
   1501 /*                                                                          */
   1502 /* Returns:                                                                 */
   1503 /*   0 on success, positive value on failure.                               */
   1504 /****************************************************************************/
   1505 int
   1506 bnx_init_nvram(struct bnx_softc *sc)
   1507 {
   1508 	u_int32_t		val;
   1509 	int			j, entry_count, rc = 0;
   1510 	struct flash_spec	*flash;
   1511 
   1512 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1513 
   1514 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1515 		sc->bnx_flash_info = &flash_5709;
   1516 		goto bnx_init_nvram_get_flash_size;
   1517 	}
   1518 
   1519 	/* Determine the selected interface. */
   1520 	val = REG_RD(sc, BNX_NVM_CFG1);
   1521 
   1522 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1523 
   1524 	/*
   1525 	 * Flash reconfiguration is required to support additional
   1526 	 * NVRAM devices not directly supported in hardware.
   1527 	 * Check if the flash interface was reconfigured
   1528 	 * by the bootcode.
   1529 	 */
   1530 
   1531 	if (val & 0x40000000) {
   1532 		/* Flash interface reconfigured by bootcode. */
   1533 
   1534 		DBPRINT(sc,BNX_INFO_LOAD,
   1535 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1536 
   1537 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1538 		     j++, flash++) {
   1539 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1540 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1541 				sc->bnx_flash_info = flash;
   1542 				break;
   1543 			}
   1544 		}
   1545 	} else {
   1546 		/* Flash interface not yet reconfigured. */
   1547 		u_int32_t mask;
   1548 
   1549 		DBPRINT(sc,BNX_INFO_LOAD,
   1550 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1551 
   1552 		if (val & (1 << 23))
   1553 			mask = FLASH_BACKUP_STRAP_MASK;
   1554 		else
   1555 			mask = FLASH_STRAP_MASK;
   1556 
   1557 		/* Look for the matching NVRAM device configuration data. */
   1558 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1559 		    j++, flash++) {
   1560 			/* Check if the dev matches any of the known devices. */
   1561 			if ((val & mask) == (flash->strapping & mask)) {
   1562 				/* Found a device match. */
   1563 				sc->bnx_flash_info = flash;
   1564 
   1565 				/* Request access to the flash interface. */
   1566 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1567 					return (rc);
   1568 
   1569 				/* Reconfigure the flash interface. */
   1570 				bnx_enable_nvram_access(sc);
   1571 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1572 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1573 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1574 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1575 				bnx_disable_nvram_access(sc);
   1576 				bnx_release_nvram_lock(sc);
   1577 
   1578 				break;
   1579 			}
   1580 		}
   1581 	}
   1582 
   1583 	/* Check if a matching device was found. */
   1584 	if (j == entry_count) {
   1585 		sc->bnx_flash_info = NULL;
   1586 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1587 			__FILE__, __LINE__);
   1588 		rc = ENODEV;
   1589 	}
   1590 
   1591 bnx_init_nvram_get_flash_size:
   1592 	/* Write the flash config data to the shared memory interface. */
   1593 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1594 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1595 	if (val)
   1596 		sc->bnx_flash_size = val;
   1597 	else
   1598 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1599 
   1600 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1601 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1602 
   1603 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1604 
   1605 	return (rc);
   1606 }
   1607 
   1608 /****************************************************************************/
   1609 /* Read an arbitrary range of data from NVRAM.                              */
   1610 /*                                                                          */
   1611 /* Prepares the NVRAM interface for access and reads the requested data     */
   1612 /* into the supplied buffer.                                                */
   1613 /*                                                                          */
   1614 /* Returns:                                                                 */
   1615 /*   0 on success and the data read, positive value on failure.             */
   1616 /****************************************************************************/
   1617 int
   1618 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
   1619     int buf_size)
   1620 {
   1621 	int			rc = 0;
   1622 	u_int32_t		cmd_flags, offset32, len32, extra;
   1623 
   1624 	if (buf_size == 0)
   1625 		return (0);
   1626 
   1627 	/* Request access to the flash interface. */
   1628 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1629 		return (rc);
   1630 
   1631 	/* Enable access to flash interface */
   1632 	bnx_enable_nvram_access(sc);
   1633 
   1634 	len32 = buf_size;
   1635 	offset32 = offset;
   1636 	extra = 0;
   1637 
   1638 	cmd_flags = 0;
   1639 
   1640 	if (offset32 & 3) {
   1641 		u_int8_t buf[4];
   1642 		u_int32_t pre_len;
   1643 
   1644 		offset32 &= ~3;
   1645 		pre_len = 4 - (offset & 3);
   1646 
   1647 		if (pre_len >= len32) {
   1648 			pre_len = len32;
   1649 			cmd_flags =
   1650 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1651 		} else
   1652 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1653 
   1654 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1655 
   1656 		if (rc)
   1657 			return (rc);
   1658 
   1659 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1660 
   1661 		offset32 += 4;
   1662 		ret_buf += pre_len;
   1663 		len32 -= pre_len;
   1664 	}
   1665 
   1666 	if (len32 & 3) {
   1667 		extra = 4 - (len32 & 3);
   1668 		len32 = (len32 + 4) & ~3;
   1669 	}
   1670 
   1671 	if (len32 == 4) {
   1672 		u_int8_t buf[4];
   1673 
   1674 		if (cmd_flags)
   1675 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1676 		else
   1677 			cmd_flags =
   1678 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1679 
   1680 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1681 
   1682 		memcpy(ret_buf, buf, 4 - extra);
   1683 	} else if (len32 > 0) {
   1684 		u_int8_t buf[4];
   1685 
   1686 		/* Read the first word. */
   1687 		if (cmd_flags)
   1688 			cmd_flags = 0;
   1689 		else
   1690 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1691 
   1692 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1693 
   1694 		/* Advance to the next dword. */
   1695 		offset32 += 4;
   1696 		ret_buf += 4;
   1697 		len32 -= 4;
   1698 
   1699 		while (len32 > 4 && rc == 0) {
   1700 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1701 
   1702 			/* Advance to the next dword. */
   1703 			offset32 += 4;
   1704 			ret_buf += 4;
   1705 			len32 -= 4;
   1706 		}
   1707 
   1708 		if (rc)
   1709 			return (rc);
   1710 
   1711 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1712 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1713 
   1714 		memcpy(ret_buf, buf, 4 - extra);
   1715 	}
   1716 
   1717 	/* Disable access to flash interface and release the lock. */
   1718 	bnx_disable_nvram_access(sc);
   1719 	bnx_release_nvram_lock(sc);
   1720 
   1721 	return (rc);
   1722 }
   1723 
   1724 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1725 /****************************************************************************/
   1726 /* Write an arbitrary range of data from NVRAM.                             */
   1727 /*                                                                          */
   1728 /* Prepares the NVRAM interface for write access and writes the requested   */
   1729 /* data from the supplied buffer.  The caller is responsible for            */
   1730 /* calculating any appropriate CRCs.                                        */
   1731 /*                                                                          */
   1732 /* Returns:                                                                 */
   1733 /*   0 on success, positive value on failure.                               */
   1734 /****************************************************************************/
   1735 int
   1736 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
   1737     int buf_size)
   1738 {
   1739 	u_int32_t		written, offset32, len32;
   1740 	u_int8_t		*buf, start[4], end[4];
   1741 	int			rc = 0;
   1742 	int			align_start, align_end;
   1743 
   1744 	buf = data_buf;
   1745 	offset32 = offset;
   1746 	len32 = buf_size;
   1747 	align_start = align_end = 0;
   1748 
   1749 	if ((align_start = (offset32 & 3))) {
   1750 		offset32 &= ~3;
   1751 		len32 += align_start;
   1752 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1753 			return (rc);
   1754 	}
   1755 
   1756 	if (len32 & 3) {
   1757 	       	if ((len32 > 4) || !align_start) {
   1758 			align_end = 4 - (len32 & 3);
   1759 			len32 += align_end;
   1760 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1761 			    end, 4))) {
   1762 				return (rc);
   1763 			}
   1764 		}
   1765 	}
   1766 
   1767 	if (align_start || align_end) {
   1768 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1769 		if (buf == 0)
   1770 			return (ENOMEM);
   1771 
   1772 		if (align_start)
   1773 			memcpy(buf, start, 4);
   1774 
   1775 		if (align_end)
   1776 			memcpy(buf + len32 - 4, end, 4);
   1777 
   1778 		memcpy(buf + align_start, data_buf, buf_size);
   1779 	}
   1780 
   1781 	written = 0;
   1782 	while ((written < len32) && (rc == 0)) {
   1783 		u_int32_t page_start, page_end, data_start, data_end;
   1784 		u_int32_t addr, cmd_flags;
   1785 		int i;
   1786 		u_int8_t flash_buffer[264];
   1787 
   1788 	    /* Find the page_start addr */
   1789 		page_start = offset32 + written;
   1790 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1791 		/* Find the page_end addr */
   1792 		page_end = page_start + sc->bnx_flash_info->page_size;
   1793 		/* Find the data_start addr */
   1794 		data_start = (written == 0) ? offset32 : page_start;
   1795 		/* Find the data_end addr */
   1796 		data_end = (page_end > offset32 + len32) ?
   1797 		    (offset32 + len32) : page_end;
   1798 
   1799 		/* Request access to the flash interface. */
   1800 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1801 			goto nvram_write_end;
   1802 
   1803 		/* Enable access to flash interface */
   1804 		bnx_enable_nvram_access(sc);
   1805 
   1806 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1807 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1808 			int j;
   1809 
   1810 			/* Read the whole page into the buffer
   1811 			 * (non-buffer flash only) */
   1812 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1813 				if (j == (sc->bnx_flash_info->page_size - 4))
   1814 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1815 
   1816 				rc = bnx_nvram_read_dword(sc,
   1817 					page_start + j,
   1818 					&flash_buffer[j],
   1819 					cmd_flags);
   1820 
   1821 				if (rc)
   1822 					goto nvram_write_end;
   1823 
   1824 				cmd_flags = 0;
   1825 			}
   1826 		}
   1827 
   1828 		/* Enable writes to flash interface (unlock write-protect) */
   1829 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1830 			goto nvram_write_end;
   1831 
   1832 		/* Erase the page */
   1833 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1834 			goto nvram_write_end;
   1835 
   1836 		/* Re-enable the write again for the actual write */
   1837 		bnx_enable_nvram_write(sc);
   1838 
   1839 		/* Loop to write back the buffer data from page_start to
   1840 		 * data_start */
   1841 		i = 0;
   1842 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1843 			for (addr = page_start; addr < data_start;
   1844 				addr += 4, i += 4) {
   1845 
   1846 				rc = bnx_nvram_write_dword(sc, addr,
   1847 				    &flash_buffer[i], cmd_flags);
   1848 
   1849 				if (rc != 0)
   1850 					goto nvram_write_end;
   1851 
   1852 				cmd_flags = 0;
   1853 			}
   1854 		}
   1855 
   1856 		/* Loop to write the new data from data_start to data_end */
   1857 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1858 			if ((addr == page_end - 4) ||
   1859 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   1860 			    && (addr == data_end - 4))) {
   1861 
   1862 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1863 			}
   1864 
   1865 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1866 
   1867 			if (rc != 0)
   1868 				goto nvram_write_end;
   1869 
   1870 			cmd_flags = 0;
   1871 			buf += 4;
   1872 		}
   1873 
   1874 		/* Loop to write back the buffer data from data_end
   1875 		 * to page_end */
   1876 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1877 			for (addr = data_end; addr < page_end;
   1878 			    addr += 4, i += 4) {
   1879 
   1880 				if (addr == page_end-4)
   1881 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1882 
   1883 				rc = bnx_nvram_write_dword(sc, addr,
   1884 				    &flash_buffer[i], cmd_flags);
   1885 
   1886 				if (rc != 0)
   1887 					goto nvram_write_end;
   1888 
   1889 				cmd_flags = 0;
   1890 			}
   1891 		}
   1892 
   1893 		/* Disable writes to flash interface (lock write-protect) */
   1894 		bnx_disable_nvram_write(sc);
   1895 
   1896 		/* Disable access to flash interface */
   1897 		bnx_disable_nvram_access(sc);
   1898 		bnx_release_nvram_lock(sc);
   1899 
   1900 		/* Increment written */
   1901 		written += data_end - data_start;
   1902 	}
   1903 
   1904 nvram_write_end:
   1905 	if (align_start || align_end)
   1906 		free(buf, M_DEVBUF);
   1907 
   1908 	return (rc);
   1909 }
   1910 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1911 
   1912 /****************************************************************************/
   1913 /* Verifies that NVRAM is accessible and contains valid data.               */
   1914 /*                                                                          */
   1915 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   1916 /* correct.                                                                 */
   1917 /*                                                                          */
   1918 /* Returns:                                                                 */
   1919 /*   0 on success, positive value on failure.                               */
   1920 /****************************************************************************/
   1921 int
   1922 bnx_nvram_test(struct bnx_softc *sc)
   1923 {
   1924 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
   1925 	u_int8_t		*data = (u_int8_t *) buf;
   1926 	int			rc = 0;
   1927 	u_int32_t		magic, csum;
   1928 
   1929 	/*
   1930 	 * Check that the device NVRAM is valid by reading
   1931 	 * the magic value at offset 0.
   1932 	 */
   1933 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   1934 		goto bnx_nvram_test_done;
   1935 
   1936 	magic = bnx_be32toh(buf[0]);
   1937 	if (magic != BNX_NVRAM_MAGIC) {
   1938 		rc = ENODEV;
   1939 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   1940 		    "Expected: 0x%08X, Found: 0x%08X\n",
   1941 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   1942 		goto bnx_nvram_test_done;
   1943 	}
   1944 
   1945 	/*
   1946 	 * Verify that the device NVRAM includes valid
   1947 	 * configuration data.
   1948 	 */
   1949 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   1950 		goto bnx_nvram_test_done;
   1951 
   1952 	csum = ether_crc32_le(data, 0x100);
   1953 	if (csum != BNX_CRC32_RESIDUAL) {
   1954 		rc = ENODEV;
   1955 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   1956 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   1957 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1958 		goto bnx_nvram_test_done;
   1959 	}
   1960 
   1961 	csum = ether_crc32_le(data + 0x100, 0x100);
   1962 	if (csum != BNX_CRC32_RESIDUAL) {
   1963 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   1964 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   1965 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1966 		rc = ENODEV;
   1967 	}
   1968 
   1969 bnx_nvram_test_done:
   1970 	return (rc);
   1971 }
   1972 
   1973 /****************************************************************************/
   1974 /* Identifies the current media type of the controller and sets the PHY     */
   1975 /* address.                                                                 */
   1976 /*                                                                          */
   1977 /* Returns:                                                                 */
   1978 /*   Nothing.                                                               */
   1979 /****************************************************************************/
   1980 void
   1981 bnx_get_media(struct bnx_softc *sc)
   1982 {
   1983 	sc->bnx_phy_addr = 1;
   1984 
   1985 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1986 		u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   1987 		u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   1988 		u_int32_t strap;
   1989 
   1990 		/*
   1991 		 * The BCM5709S is software configurable
   1992 		 * for Copper or SerDes operation.
   1993 		 */
   1994 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   1995 			DBPRINT(sc, BNX_INFO_LOAD,
   1996 			    "5709 bonded for copper.\n");
   1997 			goto bnx_get_media_exit;
   1998 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   1999 			DBPRINT(sc, BNX_INFO_LOAD,
   2000 			    "5709 bonded for dual media.\n");
   2001 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2002 			goto bnx_get_media_exit;
   2003 		}
   2004 
   2005 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2006 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2007 		else {
   2008 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2009 			    >> 8;
   2010 		}
   2011 
   2012 		if (sc->bnx_pa.pa_function == 0) {
   2013 			switch (strap) {
   2014 			case 0x4:
   2015 			case 0x5:
   2016 			case 0x6:
   2017 				DBPRINT(sc, BNX_INFO_LOAD,
   2018 					"BCM5709 s/w configured for SerDes.\n");
   2019 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2020 				break;
   2021 			default:
   2022 				DBPRINT(sc, BNX_INFO_LOAD,
   2023 					"BCM5709 s/w configured for Copper.\n");
   2024 			}
   2025 		} else {
   2026 			switch (strap) {
   2027 			case 0x1:
   2028 			case 0x2:
   2029 			case 0x4:
   2030 				DBPRINT(sc, BNX_INFO_LOAD,
   2031 					"BCM5709 s/w configured for SerDes.\n");
   2032 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2033 				break;
   2034 			default:
   2035 				DBPRINT(sc, BNX_INFO_LOAD,
   2036 					"BCM5709 s/w configured for Copper.\n");
   2037 			}
   2038 		}
   2039 
   2040 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2041 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2042 
   2043 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2044 		u_int32_t val;
   2045 
   2046 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2047 
   2048 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2049 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2050 
   2051 		/*
   2052 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2053 		 * separate PHY for SerDes.
   2054 		 */
   2055 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2056 			sc->bnx_phy_addr = 2;
   2057 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2058 				 BNX_SHARED_HW_CFG_CONFIG);
   2059 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2060 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2061 				DBPRINT(sc, BNX_INFO_LOAD,
   2062 				    "Found 2.5Gb capable adapter\n");
   2063 			}
   2064 		}
   2065 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2066 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2067 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2068 
   2069 bnx_get_media_exit:
   2070 	DBPRINT(sc, (BNX_INFO_LOAD),
   2071 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2072 }
   2073 
   2074 /****************************************************************************/
   2075 /* Performs PHY initialization required before MII drivers access the       */
   2076 /* device.                                                                  */
   2077 /*                                                                          */
   2078 /* Returns:                                                                 */
   2079 /*   Nothing.                                                               */
   2080 /****************************************************************************/
   2081 void
   2082 bnx_init_media(struct bnx_softc *sc)
   2083 {
   2084 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2085 		/*
   2086 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2087 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2088 		 * the PHY to the mii(4) layer. PHY specific configuration
   2089 		 * is done by the mii(4) layer.
   2090 		 */
   2091 
   2092 		/* Select auto-negotiation MMD of the PHY. */
   2093 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2094 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2095 
   2096 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2097 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2098 
   2099 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2100 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2101 	}
   2102 }
   2103 
   2104 /****************************************************************************/
   2105 /* Free any DMA memory owned by the driver.                                 */
   2106 /*                                                                          */
   2107 /* Scans through each data structre that requires DMA memory and frees      */
   2108 /* the memory if allocated.                                                 */
   2109 /*                                                                          */
   2110 /* Returns:                                                                 */
   2111 /*   Nothing.                                                               */
   2112 /****************************************************************************/
   2113 void
   2114 bnx_dma_free(struct bnx_softc *sc)
   2115 {
   2116 	int			i;
   2117 
   2118 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2119 
   2120 	/* Destroy the status block. */
   2121 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2122 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2123 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2124 		    BNX_STATUS_BLK_SZ);
   2125 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2126 		    sc->status_rseg);
   2127 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2128 		sc->status_block = NULL;
   2129 		sc->status_map = NULL;
   2130 	}
   2131 
   2132 	/* Destroy the statistics block. */
   2133 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2134 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2135 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2136 		    BNX_STATS_BLK_SZ);
   2137 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2138 		    sc->stats_rseg);
   2139 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2140 		sc->stats_block = NULL;
   2141 		sc->stats_map = NULL;
   2142 	}
   2143 
   2144 	/* Free, unmap and destroy all context memory pages. */
   2145 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2146 		for (i = 0; i < sc->ctx_pages; i++) {
   2147 			if (sc->ctx_block[i] != NULL) {
   2148 				bus_dmamap_unload(sc->bnx_dmatag,
   2149 				    sc->ctx_map[i]);
   2150 				bus_dmamem_unmap(sc->bnx_dmatag,
   2151 				    (void *)sc->ctx_block[i],
   2152 				    BCM_PAGE_SIZE);
   2153 				bus_dmamem_free(sc->bnx_dmatag,
   2154 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2155 				bus_dmamap_destroy(sc->bnx_dmatag,
   2156 				    sc->ctx_map[i]);
   2157 				sc->ctx_block[i] = NULL;
   2158 			}
   2159 		}
   2160 	}
   2161 
   2162 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2163 	for (i = 0; i < TX_PAGES; i++ ) {
   2164 		if (sc->tx_bd_chain[i] != NULL &&
   2165 		    sc->tx_bd_chain_map[i] != NULL) {
   2166 			bus_dmamap_unload(sc->bnx_dmatag,
   2167 			    sc->tx_bd_chain_map[i]);
   2168 			bus_dmamem_unmap(sc->bnx_dmatag,
   2169 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2170 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2171 			    sc->tx_bd_chain_rseg[i]);
   2172 			bus_dmamap_destroy(sc->bnx_dmatag,
   2173 			    sc->tx_bd_chain_map[i]);
   2174 			sc->tx_bd_chain[i] = NULL;
   2175 			sc->tx_bd_chain_map[i] = NULL;
   2176 		}
   2177 	}
   2178 
   2179 	/* Destroy the TX dmamaps. */
   2180 	/* This isn't necessary since we dont allocate them up front */
   2181 
   2182 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2183 	for (i = 0; i < RX_PAGES; i++ ) {
   2184 		if (sc->rx_bd_chain[i] != NULL &&
   2185 		    sc->rx_bd_chain_map[i] != NULL) {
   2186 			bus_dmamap_unload(sc->bnx_dmatag,
   2187 			    sc->rx_bd_chain_map[i]);
   2188 			bus_dmamem_unmap(sc->bnx_dmatag,
   2189 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2190 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2191 			    sc->rx_bd_chain_rseg[i]);
   2192 
   2193 			bus_dmamap_destroy(sc->bnx_dmatag,
   2194 			    sc->rx_bd_chain_map[i]);
   2195 			sc->rx_bd_chain[i] = NULL;
   2196 			sc->rx_bd_chain_map[i] = NULL;
   2197 		}
   2198 	}
   2199 
   2200 	/* Unload and destroy the RX mbuf maps. */
   2201 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2202 		if (sc->rx_mbuf_map[i] != NULL) {
   2203 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2204 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2205 		}
   2206 	}
   2207 
   2208 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2209 }
   2210 
   2211 /****************************************************************************/
   2212 /* Allocate any DMA memory needed by the driver.                            */
   2213 /*                                                                          */
   2214 /* Allocates DMA memory needed for the various global structures needed by  */
   2215 /* hardware.                                                                */
   2216 /*                                                                          */
   2217 /* Returns:                                                                 */
   2218 /*   0 for success, positive value for failure.                             */
   2219 /****************************************************************************/
   2220 int
   2221 bnx_dma_alloc(struct bnx_softc *sc)
   2222 {
   2223 	int			i, rc = 0;
   2224 
   2225 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2226 
   2227 	/*
   2228 	 * Allocate DMA memory for the status block, map the memory into DMA
   2229 	 * space, and fetch the physical address of the block.
   2230 	 */
   2231 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2232 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2233 		aprint_error_dev(sc->bnx_dev,
   2234 		    "Could not create status block DMA map!\n");
   2235 		rc = ENOMEM;
   2236 		goto bnx_dma_alloc_exit;
   2237 	}
   2238 
   2239 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2240 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2241 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2242 		aprint_error_dev(sc->bnx_dev,
   2243 		    "Could not allocate status block DMA memory!\n");
   2244 		rc = ENOMEM;
   2245 		goto bnx_dma_alloc_exit;
   2246 	}
   2247 
   2248 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2249 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2250 		aprint_error_dev(sc->bnx_dev,
   2251 		    "Could not map status block DMA memory!\n");
   2252 		rc = ENOMEM;
   2253 		goto bnx_dma_alloc_exit;
   2254 	}
   2255 
   2256 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2257 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2258 		aprint_error_dev(sc->bnx_dev,
   2259 		    "Could not load status block DMA memory!\n");
   2260 		rc = ENOMEM;
   2261 		goto bnx_dma_alloc_exit;
   2262 	}
   2263 
   2264 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2265 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2266 
   2267 	/* DRC - Fix for 64 bit addresses. */
   2268 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2269 		(u_int32_t) sc->status_block_paddr);
   2270 
   2271 	/* BCM5709 uses host memory as cache for context memory. */
   2272 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2273 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2274 		if (sc->ctx_pages == 0)
   2275 			sc->ctx_pages = 1;
   2276 		if (sc->ctx_pages > 4) /* XXX */
   2277 			sc->ctx_pages = 4;
   2278 
   2279 		DBRUNIF((sc->ctx_pages > 512),
   2280 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2281 				__FILE__, __LINE__, sc->ctx_pages));
   2282 
   2283 
   2284 		for (i = 0; i < sc->ctx_pages; i++) {
   2285 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2286 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2287 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2288 			    &sc->ctx_map[i]) != 0) {
   2289 				rc = ENOMEM;
   2290 				goto bnx_dma_alloc_exit;
   2291 			}
   2292 
   2293 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2294 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2295 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2296 				rc = ENOMEM;
   2297 				goto bnx_dma_alloc_exit;
   2298 			}
   2299 
   2300 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2301 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2302 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2303 				rc = ENOMEM;
   2304 				goto bnx_dma_alloc_exit;
   2305 			}
   2306 
   2307 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2308 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2309 			    BUS_DMA_NOWAIT) != 0) {
   2310 				rc = ENOMEM;
   2311 				goto bnx_dma_alloc_exit;
   2312 			}
   2313 
   2314 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2315 		}
   2316 	}
   2317 
   2318 	/*
   2319 	 * Allocate DMA memory for the statistics block, map the memory into
   2320 	 * DMA space, and fetch the physical address of the block.
   2321 	 */
   2322 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2323 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2324 		aprint_error_dev(sc->bnx_dev,
   2325 		    "Could not create stats block DMA map!\n");
   2326 		rc = ENOMEM;
   2327 		goto bnx_dma_alloc_exit;
   2328 	}
   2329 
   2330 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2331 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2332 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2333 		aprint_error_dev(sc->bnx_dev,
   2334 		    "Could not allocate stats block DMA memory!\n");
   2335 		rc = ENOMEM;
   2336 		goto bnx_dma_alloc_exit;
   2337 	}
   2338 
   2339 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2340 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2341 		aprint_error_dev(sc->bnx_dev,
   2342 		    "Could not map stats block DMA memory!\n");
   2343 		rc = ENOMEM;
   2344 		goto bnx_dma_alloc_exit;
   2345 	}
   2346 
   2347 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2348 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2349 		aprint_error_dev(sc->bnx_dev,
   2350 		    "Could not load status block DMA memory!\n");
   2351 		rc = ENOMEM;
   2352 		goto bnx_dma_alloc_exit;
   2353 	}
   2354 
   2355 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2356 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2357 
   2358 	/* DRC - Fix for 64 bit address. */
   2359 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2360 	    (u_int32_t) sc->stats_block_paddr);
   2361 
   2362 	/*
   2363 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2364 	 * and fetch the physical address of the block.
   2365 	 */
   2366 	for (i = 0; i < TX_PAGES; i++) {
   2367 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2368 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2369 		    &sc->tx_bd_chain_map[i])) {
   2370 			aprint_error_dev(sc->bnx_dev,
   2371 			    "Could not create Tx desc %d DMA map!\n", i);
   2372 			rc = ENOMEM;
   2373 			goto bnx_dma_alloc_exit;
   2374 		}
   2375 
   2376 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2377 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2378 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2379 			aprint_error_dev(sc->bnx_dev,
   2380 			    "Could not allocate TX desc %d DMA memory!\n",
   2381 			    i);
   2382 			rc = ENOMEM;
   2383 			goto bnx_dma_alloc_exit;
   2384 		}
   2385 
   2386 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2387 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2388 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2389 			aprint_error_dev(sc->bnx_dev,
   2390 			    "Could not map TX desc %d DMA memory!\n", i);
   2391 			rc = ENOMEM;
   2392 			goto bnx_dma_alloc_exit;
   2393 		}
   2394 
   2395 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2396 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2397 		    BUS_DMA_NOWAIT)) {
   2398 			aprint_error_dev(sc->bnx_dev,
   2399 			    "Could not load TX desc %d DMA memory!\n", i);
   2400 			rc = ENOMEM;
   2401 			goto bnx_dma_alloc_exit;
   2402 		}
   2403 
   2404 		sc->tx_bd_chain_paddr[i] =
   2405 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2406 
   2407 		/* DRC - Fix for 64 bit systems. */
   2408 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2409 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
   2410 	}
   2411 
   2412 	/*
   2413 	 * Create lists to hold TX mbufs.
   2414 	 */
   2415 	TAILQ_INIT(&sc->tx_free_pkts);
   2416 	TAILQ_INIT(&sc->tx_used_pkts);
   2417 	sc->tx_pkt_count = 0;
   2418 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2419 
   2420 	/*
   2421 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2422 	 * and fetch the physical address of the block.
   2423 	 */
   2424 	for (i = 0; i < RX_PAGES; i++) {
   2425 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2426 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2427 		    &sc->rx_bd_chain_map[i])) {
   2428 			aprint_error_dev(sc->bnx_dev,
   2429 			    "Could not create Rx desc %d DMA map!\n", i);
   2430 			rc = ENOMEM;
   2431 			goto bnx_dma_alloc_exit;
   2432 		}
   2433 
   2434 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2435 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2436 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2437 			aprint_error_dev(sc->bnx_dev,
   2438 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2439 			rc = ENOMEM;
   2440 			goto bnx_dma_alloc_exit;
   2441 		}
   2442 
   2443 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2444 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2445 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2446 			aprint_error_dev(sc->bnx_dev,
   2447 			    "Could not map Rx desc %d DMA memory!\n", i);
   2448 			rc = ENOMEM;
   2449 			goto bnx_dma_alloc_exit;
   2450 		}
   2451 
   2452 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2453 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2454 		    BUS_DMA_NOWAIT)) {
   2455 			aprint_error_dev(sc->bnx_dev,
   2456 			    "Could not load Rx desc %d DMA memory!\n", i);
   2457 			rc = ENOMEM;
   2458 			goto bnx_dma_alloc_exit;
   2459 		}
   2460 
   2461 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2462 		sc->rx_bd_chain_paddr[i] =
   2463 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2464 
   2465 		/* DRC - Fix for 64 bit systems. */
   2466 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2467 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
   2468 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2469 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2470 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2471 	}
   2472 
   2473 	/*
   2474 	 * Create DMA maps for the Rx buffer mbufs.
   2475 	 */
   2476 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2477 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2478 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2479 		    &sc->rx_mbuf_map[i])) {
   2480 			aprint_error_dev(sc->bnx_dev,
   2481 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2482 			rc = ENOMEM;
   2483 			goto bnx_dma_alloc_exit;
   2484 		}
   2485 	}
   2486 
   2487  bnx_dma_alloc_exit:
   2488 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2489 
   2490 	return(rc);
   2491 }
   2492 
   2493 /****************************************************************************/
   2494 /* Release all resources used by the driver.                                */
   2495 /*                                                                          */
   2496 /* Releases all resources acquired by the driver including interrupts,      */
   2497 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2498 /*                                                                          */
   2499 /* Returns:                                                                 */
   2500 /*   Nothing.                                                               */
   2501 /****************************************************************************/
   2502 void
   2503 bnx_release_resources(struct bnx_softc *sc)
   2504 {
   2505 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2506 
   2507 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2508 
   2509 	bnx_dma_free(sc);
   2510 
   2511 	if (sc->bnx_intrhand != NULL)
   2512 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2513 
   2514 	if (sc->bnx_size)
   2515 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2516 
   2517 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2518 }
   2519 
   2520 /****************************************************************************/
   2521 /* Firmware synchronization.                                                */
   2522 /*                                                                          */
   2523 /* Before performing certain events such as a chip reset, synchronize with  */
   2524 /* the firmware first.                                                      */
   2525 /*                                                                          */
   2526 /* Returns:                                                                 */
   2527 /*   0 for success, positive value for failure.                             */
   2528 /****************************************************************************/
   2529 int
   2530 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
   2531 {
   2532 	int			i, rc = 0;
   2533 	u_int32_t		val;
   2534 
   2535 	/* Don't waste any time if we've timed out before. */
   2536 	if (sc->bnx_fw_timed_out) {
   2537 		rc = EBUSY;
   2538 		goto bnx_fw_sync_exit;
   2539 	}
   2540 
   2541 	/* Increment the message sequence number. */
   2542 	sc->bnx_fw_wr_seq++;
   2543 	msg_data |= sc->bnx_fw_wr_seq;
   2544 
   2545  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2546 	    msg_data);
   2547 
   2548 	/* Send the message to the bootcode driver mailbox. */
   2549 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2550 
   2551 	/* Wait for the bootcode to acknowledge the message. */
   2552 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2553 		/* Check for a response in the bootcode firmware mailbox. */
   2554 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2555 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2556 			break;
   2557 		DELAY(1000);
   2558 	}
   2559 
   2560 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2561 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2562 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2563 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2564 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2565 
   2566 		msg_data &= ~BNX_DRV_MSG_CODE;
   2567 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2568 
   2569 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2570 
   2571 		sc->bnx_fw_timed_out = 1;
   2572 		rc = EBUSY;
   2573 	}
   2574 
   2575 bnx_fw_sync_exit:
   2576 	return (rc);
   2577 }
   2578 
   2579 /****************************************************************************/
   2580 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2581 /*                                                                          */
   2582 /* Returns:                                                                 */
   2583 /*   Nothing.                                                               */
   2584 /****************************************************************************/
   2585 void
   2586 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
   2587     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
   2588 {
   2589 	int			i;
   2590 	u_int32_t		val;
   2591 
   2592 	/* Set the page size used by RV2P. */
   2593 	if (rv2p_proc == RV2P_PROC2) {
   2594 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2595 		    USABLE_RX_BD_PER_PAGE);
   2596 	}
   2597 
   2598 	for (i = 0; i < rv2p_code_len; i += 8) {
   2599 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2600 		rv2p_code++;
   2601 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2602 		rv2p_code++;
   2603 
   2604 		if (rv2p_proc == RV2P_PROC1) {
   2605 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2606 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2607 		} else {
   2608 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2609 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2610 		}
   2611 	}
   2612 
   2613 	/* Reset the processor, un-stall is done later. */
   2614 	if (rv2p_proc == RV2P_PROC1)
   2615 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2616 	else
   2617 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2618 }
   2619 
   2620 /****************************************************************************/
   2621 /* Load RISC processor firmware.                                            */
   2622 /*                                                                          */
   2623 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2624 /* associated with a particular processor.                                  */
   2625 /*                                                                          */
   2626 /* Returns:                                                                 */
   2627 /*   Nothing.                                                               */
   2628 /****************************************************************************/
   2629 void
   2630 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2631     struct fw_info *fw)
   2632 {
   2633 	u_int32_t		offset;
   2634 	u_int32_t		val;
   2635 
   2636 	/* Halt the CPU. */
   2637 	val = REG_RD_IND(sc, cpu_reg->mode);
   2638 	val |= cpu_reg->mode_value_halt;
   2639 	REG_WR_IND(sc, cpu_reg->mode, val);
   2640 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2641 
   2642 	/* Load the Text area. */
   2643 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2644 	if (fw->text) {
   2645 		int j;
   2646 
   2647 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2648 			REG_WR_IND(sc, offset, fw->text[j]);
   2649 	}
   2650 
   2651 	/* Load the Data area. */
   2652 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2653 	if (fw->data) {
   2654 		int j;
   2655 
   2656 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2657 			REG_WR_IND(sc, offset, fw->data[j]);
   2658 	}
   2659 
   2660 	/* Load the SBSS area. */
   2661 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2662 	if (fw->sbss) {
   2663 		int j;
   2664 
   2665 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2666 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2667 	}
   2668 
   2669 	/* Load the BSS area. */
   2670 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2671 	if (fw->bss) {
   2672 		int j;
   2673 
   2674 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2675 			REG_WR_IND(sc, offset, fw->bss[j]);
   2676 	}
   2677 
   2678 	/* Load the Read-Only area. */
   2679 	offset = cpu_reg->spad_base +
   2680 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2681 	if (fw->rodata) {
   2682 		int j;
   2683 
   2684 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2685 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2686 	}
   2687 
   2688 	/* Clear the pre-fetch instruction. */
   2689 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2690 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2691 
   2692 	/* Start the CPU. */
   2693 	val = REG_RD_IND(sc, cpu_reg->mode);
   2694 	val &= ~cpu_reg->mode_value_halt;
   2695 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2696 	REG_WR_IND(sc, cpu_reg->mode, val);
   2697 }
   2698 
   2699 /****************************************************************************/
   2700 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2701 /*                                                                          */
   2702 /* Loads the firmware for each CPU and starts the CPU.                      */
   2703 /*                                                                          */
   2704 /* Returns:                                                                 */
   2705 /*   Nothing.                                                               */
   2706 /****************************************************************************/
   2707 void
   2708 bnx_init_cpus(struct bnx_softc *sc)
   2709 {
   2710 	struct cpu_reg cpu_reg;
   2711 	struct fw_info fw;
   2712 
   2713 	switch(BNX_CHIP_NUM(sc)) {
   2714 	case BNX_CHIP_NUM_5709:
   2715 		/* Initialize the RV2P processor. */
   2716 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2717 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2718 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2719 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2720 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2721 		} else {
   2722 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2723 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2724 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2725 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2726 		}
   2727 
   2728 		/* Initialize the RX Processor. */
   2729 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2730 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2731 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2732 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2733 		cpu_reg.state_value_clear = 0xffffff;
   2734 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2735 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2736 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2737 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2738 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2739 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2740 		cpu_reg.mips_view_base = 0x8000000;
   2741 
   2742 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2743 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2744 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2745 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2746 
   2747 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2748 		fw.text_len = bnx_RXP_b09FwTextLen;
   2749 		fw.text_index = 0;
   2750 		fw.text = bnx_RXP_b09FwText;
   2751 
   2752 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2753 		fw.data_len = bnx_RXP_b09FwDataLen;
   2754 		fw.data_index = 0;
   2755 		fw.data = bnx_RXP_b09FwData;
   2756 
   2757 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2758 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2759 		fw.sbss_index = 0;
   2760 		fw.sbss = bnx_RXP_b09FwSbss;
   2761 
   2762 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2763 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2764 		fw.bss_index = 0;
   2765 		fw.bss = bnx_RXP_b09FwBss;
   2766 
   2767 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2768 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2769 		fw.rodata_index = 0;
   2770 		fw.rodata = bnx_RXP_b09FwRodata;
   2771 
   2772 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2773 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2774 
   2775 		/* Initialize the TX Processor. */
   2776 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2777 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2778 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2779 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2780 		cpu_reg.state_value_clear = 0xffffff;
   2781 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2782 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2783 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2784 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2785 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2786 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2787 		cpu_reg.mips_view_base = 0x8000000;
   2788 
   2789 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2790 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2791 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2792 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2793 
   2794 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2795 		fw.text_len = bnx_TXP_b09FwTextLen;
   2796 		fw.text_index = 0;
   2797 		fw.text = bnx_TXP_b09FwText;
   2798 
   2799 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   2800 		fw.data_len = bnx_TXP_b09FwDataLen;
   2801 		fw.data_index = 0;
   2802 		fw.data = bnx_TXP_b09FwData;
   2803 
   2804 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   2805 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   2806 		fw.sbss_index = 0;
   2807 		fw.sbss = bnx_TXP_b09FwSbss;
   2808 
   2809 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   2810 		fw.bss_len = bnx_TXP_b09FwBssLen;
   2811 		fw.bss_index = 0;
   2812 		fw.bss = bnx_TXP_b09FwBss;
   2813 
   2814 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   2815 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   2816 		fw.rodata_index = 0;
   2817 		fw.rodata = bnx_TXP_b09FwRodata;
   2818 
   2819 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2820 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2821 
   2822 		/* Initialize the TX Patch-up Processor. */
   2823 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2824 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2825 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2826 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2827 		cpu_reg.state_value_clear = 0xffffff;
   2828 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2829 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2830 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2831 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2832 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2833 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2834 		cpu_reg.mips_view_base = 0x8000000;
   2835 
   2836 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   2837 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   2838 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   2839 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   2840 
   2841 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   2842 		fw.text_len = bnx_TPAT_b09FwTextLen;
   2843 		fw.text_index = 0;
   2844 		fw.text = bnx_TPAT_b09FwText;
   2845 
   2846 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   2847 		fw.data_len = bnx_TPAT_b09FwDataLen;
   2848 		fw.data_index = 0;
   2849 		fw.data = bnx_TPAT_b09FwData;
   2850 
   2851 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   2852 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   2853 		fw.sbss_index = 0;
   2854 		fw.sbss = bnx_TPAT_b09FwSbss;
   2855 
   2856 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   2857 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   2858 		fw.bss_index = 0;
   2859 		fw.bss = bnx_TPAT_b09FwBss;
   2860 
   2861 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   2862 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   2863 		fw.rodata_index = 0;
   2864 		fw.rodata = bnx_TPAT_b09FwRodata;
   2865 
   2866 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2867 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2868 
   2869 		/* Initialize the Completion Processor. */
   2870 		cpu_reg.mode = BNX_COM_CPU_MODE;
   2871 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2872 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2873 		cpu_reg.state = BNX_COM_CPU_STATE;
   2874 		cpu_reg.state_value_clear = 0xffffff;
   2875 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2876 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2877 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2878 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2879 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2880 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   2881 		cpu_reg.mips_view_base = 0x8000000;
   2882 
   2883 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   2884 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   2885 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   2886 		fw.start_addr = bnx_COM_b09FwStartAddr;
   2887 
   2888 		fw.text_addr = bnx_COM_b09FwTextAddr;
   2889 		fw.text_len = bnx_COM_b09FwTextLen;
   2890 		fw.text_index = 0;
   2891 		fw.text = bnx_COM_b09FwText;
   2892 
   2893 		fw.data_addr = bnx_COM_b09FwDataAddr;
   2894 		fw.data_len = bnx_COM_b09FwDataLen;
   2895 		fw.data_index = 0;
   2896 		fw.data = bnx_COM_b09FwData;
   2897 
   2898 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   2899 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   2900 		fw.sbss_index = 0;
   2901 		fw.sbss = bnx_COM_b09FwSbss;
   2902 
   2903 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   2904 		fw.bss_len = bnx_COM_b09FwBssLen;
   2905 		fw.bss_index = 0;
   2906 		fw.bss = bnx_COM_b09FwBss;
   2907 
   2908 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   2909 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   2910 		fw.rodata_index = 0;
   2911 		fw.rodata = bnx_COM_b09FwRodata;
   2912 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   2913 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2914 		break;
   2915 	default:
   2916 		/* Initialize the RV2P processor. */
   2917 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   2918 		    RV2P_PROC1);
   2919 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   2920 		    RV2P_PROC2);
   2921 
   2922 		/* Initialize the RX Processor. */
   2923 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2924 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2925 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2926 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2927 		cpu_reg.state_value_clear = 0xffffff;
   2928 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2929 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2930 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2931 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2932 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2933 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2934 		cpu_reg.mips_view_base = 0x8000000;
   2935 
   2936 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   2937 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   2938 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   2939 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   2940 
   2941 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   2942 		fw.text_len = bnx_RXP_b06FwTextLen;
   2943 		fw.text_index = 0;
   2944 		fw.text = bnx_RXP_b06FwText;
   2945 
   2946 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   2947 		fw.data_len = bnx_RXP_b06FwDataLen;
   2948 		fw.data_index = 0;
   2949 		fw.data = bnx_RXP_b06FwData;
   2950 
   2951 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   2952 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   2953 		fw.sbss_index = 0;
   2954 		fw.sbss = bnx_RXP_b06FwSbss;
   2955 
   2956 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   2957 		fw.bss_len = bnx_RXP_b06FwBssLen;
   2958 		fw.bss_index = 0;
   2959 		fw.bss = bnx_RXP_b06FwBss;
   2960 
   2961 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   2962 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   2963 		fw.rodata_index = 0;
   2964 		fw.rodata = bnx_RXP_b06FwRodata;
   2965 
   2966 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2967 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2968 
   2969 		/* Initialize the TX Processor. */
   2970 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2971 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2972 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2973 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2974 		cpu_reg.state_value_clear = 0xffffff;
   2975 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2976 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2977 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2978 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2979 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2980 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2981 		cpu_reg.mips_view_base = 0x8000000;
   2982 
   2983 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   2984 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   2985 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   2986 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   2987 
   2988 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   2989 		fw.text_len = bnx_TXP_b06FwTextLen;
   2990 		fw.text_index = 0;
   2991 		fw.text = bnx_TXP_b06FwText;
   2992 
   2993 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   2994 		fw.data_len = bnx_TXP_b06FwDataLen;
   2995 		fw.data_index = 0;
   2996 		fw.data = bnx_TXP_b06FwData;
   2997 
   2998 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   2999 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   3000 		fw.sbss_index = 0;
   3001 		fw.sbss = bnx_TXP_b06FwSbss;
   3002 
   3003 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3004 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3005 		fw.bss_index = 0;
   3006 		fw.bss = bnx_TXP_b06FwBss;
   3007 
   3008 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3009 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3010 		fw.rodata_index = 0;
   3011 		fw.rodata = bnx_TXP_b06FwRodata;
   3012 
   3013 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3014 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3015 
   3016 		/* Initialize the TX Patch-up Processor. */
   3017 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3018 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3019 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3020 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3021 		cpu_reg.state_value_clear = 0xffffff;
   3022 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3023 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3024 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3025 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3026 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3027 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3028 		cpu_reg.mips_view_base = 0x8000000;
   3029 
   3030 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3031 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3032 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3033 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3034 
   3035 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3036 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3037 		fw.text_index = 0;
   3038 		fw.text = bnx_TPAT_b06FwText;
   3039 
   3040 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3041 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3042 		fw.data_index = 0;
   3043 		fw.data = bnx_TPAT_b06FwData;
   3044 
   3045 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3046 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3047 		fw.sbss_index = 0;
   3048 		fw.sbss = bnx_TPAT_b06FwSbss;
   3049 
   3050 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3051 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3052 		fw.bss_index = 0;
   3053 		fw.bss = bnx_TPAT_b06FwBss;
   3054 
   3055 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3056 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3057 		fw.rodata_index = 0;
   3058 		fw.rodata = bnx_TPAT_b06FwRodata;
   3059 
   3060 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3061 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3062 
   3063 		/* Initialize the Completion Processor. */
   3064 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3065 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3066 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3067 		cpu_reg.state = BNX_COM_CPU_STATE;
   3068 		cpu_reg.state_value_clear = 0xffffff;
   3069 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3070 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3071 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3072 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3073 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3074 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3075 		cpu_reg.mips_view_base = 0x8000000;
   3076 
   3077 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3078 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3079 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3080 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3081 
   3082 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3083 		fw.text_len = bnx_COM_b06FwTextLen;
   3084 		fw.text_index = 0;
   3085 		fw.text = bnx_COM_b06FwText;
   3086 
   3087 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3088 		fw.data_len = bnx_COM_b06FwDataLen;
   3089 		fw.data_index = 0;
   3090 		fw.data = bnx_COM_b06FwData;
   3091 
   3092 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3093 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3094 		fw.sbss_index = 0;
   3095 		fw.sbss = bnx_COM_b06FwSbss;
   3096 
   3097 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3098 		fw.bss_len = bnx_COM_b06FwBssLen;
   3099 		fw.bss_index = 0;
   3100 		fw.bss = bnx_COM_b06FwBss;
   3101 
   3102 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3103 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3104 		fw.rodata_index = 0;
   3105 		fw.rodata = bnx_COM_b06FwRodata;
   3106 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3107 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3108 		break;
   3109 	}
   3110 }
   3111 
   3112 /****************************************************************************/
   3113 /* Initialize context memory.                                               */
   3114 /*                                                                          */
   3115 /* Clears the memory associated with each Context ID (CID).                 */
   3116 /*                                                                          */
   3117 /* Returns:                                                                 */
   3118 /*   Nothing.                                                               */
   3119 /****************************************************************************/
   3120 void
   3121 bnx_init_context(struct bnx_softc *sc)
   3122 {
   3123 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3124 		/* DRC: Replace this constant value with a #define. */
   3125 		int i, retry_cnt = 10;
   3126 		u_int32_t val;
   3127 
   3128 		/*
   3129 		 * BCM5709 context memory may be cached
   3130 		 * in host memory so prepare the host memory
   3131 		 * for access.
   3132 		 */
   3133 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3134 		    | (1 << 12);
   3135 		val |= (BCM_PAGE_BITS - 8) << 16;
   3136 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3137 
   3138 		/* Wait for mem init command to complete. */
   3139 		for (i = 0; i < retry_cnt; i++) {
   3140 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3141 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3142 				break;
   3143 			DELAY(2);
   3144 		}
   3145 
   3146 
   3147 		/* ToDo: Consider returning an error here. */
   3148 
   3149 		for (i = 0; i < sc->ctx_pages; i++) {
   3150 			int j;
   3151 
   3152 
   3153 			/* Set the physaddr of the context memory cache. */
   3154 			val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
   3155 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3156 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3157 			val = (u_int32_t)
   3158 			    ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
   3159 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3160 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3161 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3162 
   3163 
   3164 			/* Verify that the context memory write was successful. */
   3165 			for (j = 0; j < retry_cnt; j++) {
   3166 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3167 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3168 					break;
   3169 				DELAY(5);
   3170 			}
   3171 
   3172 			/* ToDo: Consider returning an error here. */
   3173 		}
   3174 	} else {
   3175 		u_int32_t vcid_addr, offset;
   3176 
   3177 		/*
   3178 		 * For the 5706/5708, context memory is local to
   3179 		 * the controller, so initialize the controller
   3180 		 * context memory.
   3181 		 */
   3182 
   3183 		vcid_addr = GET_CID_ADDR(96);
   3184 		while (vcid_addr) {
   3185 
   3186 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3187 
   3188 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3189 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3190 
   3191 			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
   3192 				CTX_WR(sc, 0x00, offset, 0);
   3193 			}
   3194 
   3195 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3196 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3197 		}
   3198 	}
   3199 }
   3200 
   3201 /****************************************************************************/
   3202 /* Fetch the permanent MAC address of the controller.                       */
   3203 /*                                                                          */
   3204 /* Returns:                                                                 */
   3205 /*   Nothing.                                                               */
   3206 /****************************************************************************/
   3207 void
   3208 bnx_get_mac_addr(struct bnx_softc *sc)
   3209 {
   3210 	u_int32_t		mac_lo = 0, mac_hi = 0;
   3211 
   3212 	/*
   3213 	 * The NetXtreme II bootcode populates various NIC
   3214 	 * power-on and runtime configuration items in a
   3215 	 * shared memory area.  The factory configured MAC
   3216 	 * address is available from both NVRAM and the
   3217 	 * shared memory area so we'll read the value from
   3218 	 * shared memory for speed.
   3219 	 */
   3220 
   3221 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3222 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3223 
   3224 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3225 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3226 		    __FILE__, __LINE__);
   3227 	} else {
   3228 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3229 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3230 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3231 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3232 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3233 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3234 	}
   3235 
   3236 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3237 	    "%s\n", ether_sprintf(sc->eaddr));
   3238 }
   3239 
   3240 /****************************************************************************/
   3241 /* Program the MAC address.                                                 */
   3242 /*                                                                          */
   3243 /* Returns:                                                                 */
   3244 /*   Nothing.                                                               */
   3245 /****************************************************************************/
   3246 void
   3247 bnx_set_mac_addr(struct bnx_softc *sc)
   3248 {
   3249 	u_int32_t		val;
   3250 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3251 
   3252 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3253 	    "%s\n", ether_sprintf(sc->eaddr));
   3254 
   3255 	val = (mac_addr[0] << 8) | mac_addr[1];
   3256 
   3257 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3258 
   3259 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3260 		(mac_addr[4] << 8) | mac_addr[5];
   3261 
   3262 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3263 }
   3264 
   3265 /****************************************************************************/
   3266 /* Stop the controller.                                                     */
   3267 /*                                                                          */
   3268 /* Returns:                                                                 */
   3269 /*   Nothing.                                                               */
   3270 /****************************************************************************/
   3271 void
   3272 bnx_stop(struct ifnet *ifp, int disable)
   3273 {
   3274 	struct bnx_softc *sc = ifp->if_softc;
   3275 
   3276 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3277 
   3278 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   3279 		return;
   3280 
   3281 	callout_stop(&sc->bnx_timeout);
   3282 
   3283 	mii_down(&sc->bnx_mii);
   3284 
   3285 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3286 
   3287 	/* Disable the transmit/receive blocks. */
   3288 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3289 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3290 	DELAY(20);
   3291 
   3292 	bnx_disable_intr(sc);
   3293 
   3294 	/* Tell firmware that the driver is going away. */
   3295 	if (disable)
   3296 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3297 	else
   3298 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3299 
   3300 	/* Free RX buffers. */
   3301 	bnx_free_rx_chain(sc);
   3302 
   3303 	/* Free TX buffers. */
   3304 	bnx_free_tx_chain(sc);
   3305 
   3306 	ifp->if_timer = 0;
   3307 
   3308 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3309 
   3310 }
   3311 
   3312 int
   3313 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
   3314 {
   3315 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3316 	u_int32_t		val;
   3317 	int			i, rc = 0;
   3318 
   3319 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3320 
   3321 	/* Wait for pending PCI transactions to complete. */
   3322 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3323 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3324 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3325 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3326 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3327 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3328 	DELAY(5);
   3329 
   3330 	/* Disable DMA */
   3331 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3332 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3333 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3334 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3335 	}
   3336 
   3337 	/* Assume bootcode is running. */
   3338 	sc->bnx_fw_timed_out = 0;
   3339 
   3340 	/* Give the firmware a chance to prepare for the reset. */
   3341 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3342 	if (rc)
   3343 		goto bnx_reset_exit;
   3344 
   3345 	/* Set a firmware reminder that this is a soft reset. */
   3346 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3347 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3348 
   3349 	/* Dummy read to force the chip to complete all current transactions. */
   3350 	val = REG_RD(sc, BNX_MISC_ID);
   3351 
   3352 	/* Chip reset. */
   3353 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3354 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3355 		REG_RD(sc, BNX_MISC_COMMAND);
   3356 		DELAY(5);
   3357 
   3358 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3359 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3360 
   3361 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3362 		    val);
   3363 	} else {
   3364 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3365 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3366 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3367 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3368 
   3369 		/* Allow up to 30us for reset to complete. */
   3370 		for (i = 0; i < 10; i++) {
   3371 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3372 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3373 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3374 				break;
   3375 			}
   3376 			DELAY(10);
   3377 		}
   3378 
   3379 		/* Check that reset completed successfully. */
   3380 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3381 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3382 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3383 			    __FILE__, __LINE__);
   3384 			rc = EBUSY;
   3385 			goto bnx_reset_exit;
   3386 		}
   3387 	}
   3388 
   3389 	/* Make sure byte swapping is properly configured. */
   3390 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3391 	if (val != 0x01020304) {
   3392 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3393 		    __FILE__, __LINE__);
   3394 		rc = ENODEV;
   3395 		goto bnx_reset_exit;
   3396 	}
   3397 
   3398 	/* Just completed a reset, assume that firmware is running again. */
   3399 	sc->bnx_fw_timed_out = 0;
   3400 
   3401 	/* Wait for the firmware to finish its initialization. */
   3402 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3403 	if (rc)
   3404 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3405 		    "initialization!\n", __FILE__, __LINE__);
   3406 
   3407 bnx_reset_exit:
   3408 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3409 
   3410 	return (rc);
   3411 }
   3412 
   3413 int
   3414 bnx_chipinit(struct bnx_softc *sc)
   3415 {
   3416 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3417 	u_int32_t		val;
   3418 	int			rc = 0;
   3419 
   3420 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3421 
   3422 	/* Make sure the interrupt is not active. */
   3423 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3424 
   3425 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3426 	/* channels and PCI clock compensation delay.                      */
   3427 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3428 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3429 #if BYTE_ORDER == BIG_ENDIAN
   3430 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3431 #endif
   3432 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3433 	    DMA_READ_CHANS << 12 |
   3434 	    DMA_WRITE_CHANS << 16;
   3435 
   3436 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3437 
   3438 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3439 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3440 
   3441 	/*
   3442 	 * This setting resolves a problem observed on certain Intel PCI
   3443 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3444 	 * See errata E9_5706A1_65.
   3445 	 */
   3446 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3447 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3448 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3449 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3450 
   3451 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3452 
   3453 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3454 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3455 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3456 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3457 		    val & ~0x20000);
   3458 	}
   3459 
   3460 	/* Enable the RX_V2P and Context state machines before access. */
   3461 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3462 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3463 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3464 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3465 
   3466 	/* Initialize context mapping and zero out the quick contexts. */
   3467 	bnx_init_context(sc);
   3468 
   3469 	/* Initialize the on-boards CPUs */
   3470 	bnx_init_cpus(sc);
   3471 
   3472 	/* Prepare NVRAM for access. */
   3473 	if (bnx_init_nvram(sc)) {
   3474 		rc = ENODEV;
   3475 		goto bnx_chipinit_exit;
   3476 	}
   3477 
   3478 	/* Set the kernel bypass block size */
   3479 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3480 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3481 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3482 
   3483 	/* Enable bins used on the 5709. */
   3484 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3485 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3486 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3487 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3488 	}
   3489 
   3490 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3491 
   3492 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3493 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3494 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3495 
   3496 	val = (BCM_PAGE_BITS - 8) << 24;
   3497 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3498 
   3499 	/* Configure page size. */
   3500 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3501 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3502 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3503 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3504 
   3505 #if 0
   3506 	/* Set the perfect match control register to default. */
   3507 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3508 #endif
   3509 
   3510 bnx_chipinit_exit:
   3511 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3512 
   3513 	return(rc);
   3514 }
   3515 
   3516 /****************************************************************************/
   3517 /* Initialize the controller in preparation to send/receive traffic.        */
   3518 /*                                                                          */
   3519 /* Returns:                                                                 */
   3520 /*   0 for success, positive value for failure.                             */
   3521 /****************************************************************************/
   3522 int
   3523 bnx_blockinit(struct bnx_softc *sc)
   3524 {
   3525 	u_int32_t		reg, val;
   3526 	int 			rc = 0;
   3527 
   3528 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3529 
   3530 	/* Load the hardware default MAC address. */
   3531 	bnx_set_mac_addr(sc);
   3532 
   3533 	/* Set the Ethernet backoff seed value */
   3534 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3535 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3536 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3537 
   3538 	sc->last_status_idx = 0;
   3539 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3540 
   3541 	/* Set up link change interrupt generation. */
   3542 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3543 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3544 
   3545 	/* Program the physical address of the status block. */
   3546 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
   3547 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3548 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
   3549 
   3550 	/* Program the physical address of the statistics block. */
   3551 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3552 	    (u_int32_t)(sc->stats_block_paddr));
   3553 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3554 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
   3555 
   3556 	/* Program various host coalescing parameters. */
   3557 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3558 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3559 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3560 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3561 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3562 	    sc->bnx_comp_prod_trip);
   3563 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3564 	    sc->bnx_tx_ticks);
   3565 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3566 	    sc->bnx_rx_ticks);
   3567 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3568 	    sc->bnx_com_ticks);
   3569 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3570 	    sc->bnx_cmd_ticks);
   3571 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3572 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3573 	REG_WR(sc, BNX_HC_CONFIG,
   3574 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3575 	    BNX_HC_CONFIG_COLLECT_STATS));
   3576 
   3577 	/* Clear the internal statistics counters. */
   3578 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3579 
   3580 	/* Verify that bootcode is running. */
   3581 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3582 
   3583 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3584 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3585 	    __FILE__, __LINE__); reg = 0);
   3586 
   3587 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3588 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3589 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3590 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3591 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3592 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3593 		rc = ENODEV;
   3594 		goto bnx_blockinit_exit;
   3595 	}
   3596 
   3597 	/* Check if any management firmware is running. */
   3598 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3599 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3600 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3601 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3602 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3603 	}
   3604 
   3605 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3606 	    BNX_DEV_INFO_BC_REV);
   3607 
   3608 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3609 
   3610 	/* Enable DMA */
   3611 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3612 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3613 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3614 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3615 	}
   3616 
   3617 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3618 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3619 
   3620 	/* Enable link state change interrupt generation. */
   3621 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3622 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3623 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3624 	} else
   3625 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3626 
   3627 	/* Enable all remaining blocks in the MAC. */
   3628 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3629 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3630 	DELAY(20);
   3631 
   3632 bnx_blockinit_exit:
   3633 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3634 
   3635 	return (rc);
   3636 }
   3637 
   3638 static int
   3639 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
   3640     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3641 {
   3642 	bus_dmamap_t		map;
   3643 	struct rx_bd		*rxbd;
   3644 	u_int32_t		addr;
   3645 	int i;
   3646 #ifdef BNX_DEBUG
   3647 	u_int16_t debug_chain_prod =	*chain_prod;
   3648 #endif
   3649 	u_int16_t first_chain_prod;
   3650 
   3651 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3652 
   3653 	/* Map the mbuf cluster into device memory. */
   3654 	map = sc->rx_mbuf_map[*chain_prod];
   3655 	first_chain_prod = *chain_prod;
   3656 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3657 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3658 		    __FILE__, __LINE__);
   3659 
   3660 		m_freem(m_new);
   3661 
   3662 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3663 
   3664 		return ENOBUFS;
   3665 	}
   3666 	/* Make sure there is room in the receive chain. */
   3667 	if (map->dm_nsegs > sc->free_rx_bd) {
   3668 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3669 		m_freem(m_new);
   3670 		return EFBIG;
   3671 	}
   3672 #ifdef BNX_DEBUG
   3673 	/* Track the distribution of buffer segments. */
   3674 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3675 #endif
   3676 
   3677 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3678 	    BUS_DMASYNC_PREREAD);
   3679 
   3680 	/* Update some debug statistics counters */
   3681 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3682 	    sc->rx_low_watermark = sc->free_rx_bd);
   3683 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3684 
   3685 	/*
   3686 	 * Setup the rx_bd for the first segment
   3687 	 */
   3688 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3689 
   3690 	addr = (u_int32_t)map->dm_segs[0].ds_addr;
   3691 	rxbd->rx_bd_haddr_lo = addr;
   3692 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
   3693 	rxbd->rx_bd_haddr_hi = addr;
   3694 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3695 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3696 	*prod_bseq += map->dm_segs[0].ds_len;
   3697 	bus_dmamap_sync(sc->bnx_dmatag,
   3698 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3699 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3700 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3701 
   3702 	for (i = 1; i < map->dm_nsegs; i++) {
   3703 		*prod = NEXT_RX_BD(*prod);
   3704 		*chain_prod = RX_CHAIN_IDX(*prod);
   3705 
   3706 		rxbd =
   3707 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3708 
   3709 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
   3710 		rxbd->rx_bd_haddr_lo = addr;
   3711 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   3712 		rxbd->rx_bd_haddr_hi = addr;
   3713 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3714 		rxbd->rx_bd_flags = 0;
   3715 		*prod_bseq += map->dm_segs[i].ds_len;
   3716 		bus_dmamap_sync(sc->bnx_dmatag,
   3717 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3718 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3719 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3720 	}
   3721 
   3722 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3723 	bus_dmamap_sync(sc->bnx_dmatag,
   3724 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3725 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3726 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3727 
   3728 	/*
   3729 	 * Save the mbuf, ajust the map pointer (swap map for first and
   3730 	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
   3731 	 * and update counter.
   3732 	 */
   3733 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3734 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3735 	sc->rx_mbuf_map[*chain_prod] = map;
   3736 	sc->free_rx_bd -= map->dm_nsegs;
   3737 
   3738 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3739 	    map->dm_nsegs));
   3740 	*prod = NEXT_RX_BD(*prod);
   3741 	*chain_prod = RX_CHAIN_IDX(*prod);
   3742 
   3743 	return 0;
   3744 }
   3745 
   3746 /****************************************************************************/
   3747 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3748 /*                                                                          */
   3749 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3750 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3751 /* necessary.                                                               */
   3752 /*                                                                          */
   3753 /* Returns:                                                                 */
   3754 /*   0 for success, positive value for failure.                             */
   3755 /****************************************************************************/
   3756 int
   3757 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
   3758     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3759 {
   3760 	struct mbuf 		*m_new = NULL;
   3761 	int			rc = 0;
   3762 	u_int16_t min_free_bd;
   3763 
   3764 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3765 	    __func__);
   3766 
   3767 	/* Make sure the inputs are valid. */
   3768 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3769 	    aprint_error_dev(sc->bnx_dev,
   3770 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3771 		*chain_prod, (u_int16_t)MAX_RX_BD));
   3772 
   3773 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3774 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3775 	    *prod_bseq);
   3776 
   3777 	/* try to get in as many mbufs as possible */
   3778 	if (sc->mbuf_alloc_size == MCLBYTES)
   3779 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3780 	else
   3781 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3782 	while (sc->free_rx_bd >= min_free_bd) {
   3783 		/* Simulate an mbuf allocation failure. */
   3784 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3785 		    aprint_error_dev(sc->bnx_dev,
   3786 		    "Simulating mbuf allocation failure.\n");
   3787 			sc->mbuf_sim_alloc_failed++;
   3788 			rc = ENOBUFS;
   3789 			goto bnx_get_buf_exit);
   3790 
   3791 		/* This is a new mbuf allocation. */
   3792 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3793 		if (m_new == NULL) {
   3794 			DBPRINT(sc, BNX_WARN,
   3795 			    "%s(%d): RX mbuf header allocation failed!\n",
   3796 			    __FILE__, __LINE__);
   3797 
   3798 			sc->mbuf_alloc_failed++;
   3799 
   3800 			rc = ENOBUFS;
   3801 			goto bnx_get_buf_exit;
   3802 		}
   3803 
   3804 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3805 
   3806 		/* Simulate an mbuf cluster allocation failure. */
   3807 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3808 			m_freem(m_new);
   3809 			sc->rx_mbuf_alloc--;
   3810 			sc->mbuf_alloc_failed++;
   3811 			sc->mbuf_sim_alloc_failed++;
   3812 			rc = ENOBUFS;
   3813 			goto bnx_get_buf_exit);
   3814 
   3815 		if (sc->mbuf_alloc_size == MCLBYTES)
   3816 			MCLGET(m_new, M_DONTWAIT);
   3817 		else
   3818 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3819 			    M_DONTWAIT);
   3820 		if (!(m_new->m_flags & M_EXT)) {
   3821 			DBPRINT(sc, BNX_WARN,
   3822 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3823 			    __FILE__, __LINE__);
   3824 
   3825 			m_freem(m_new);
   3826 
   3827 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3828 			sc->mbuf_alloc_failed++;
   3829 
   3830 			rc = ENOBUFS;
   3831 			goto bnx_get_buf_exit;
   3832 		}
   3833 
   3834 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3835 		if (rc != 0)
   3836 			goto bnx_get_buf_exit;
   3837 	}
   3838 
   3839 bnx_get_buf_exit:
   3840 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3841 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3842 	    *chain_prod, *prod_bseq);
   3843 
   3844 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3845 	    __func__);
   3846 
   3847 	return(rc);
   3848 }
   3849 
   3850 void
   3851 bnx_alloc_pkts(struct work * unused, void * arg)
   3852 {
   3853 	struct bnx_softc *sc = arg;
   3854 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   3855 	struct bnx_pkt *pkt;
   3856 	int i, s;
   3857 
   3858 	for (i = 0; i < 4; i++) { /* magic! */
   3859 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   3860 		if (pkt == NULL)
   3861 			break;
   3862 
   3863 		if (bus_dmamap_create(sc->bnx_dmatag,
   3864 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   3865 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   3866 		    &pkt->pkt_dmamap) != 0)
   3867 			goto put;
   3868 
   3869 		if (!ISSET(ifp->if_flags, IFF_UP))
   3870 			goto stopping;
   3871 
   3872 		mutex_enter(&sc->tx_pkt_mtx);
   3873 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   3874 		sc->tx_pkt_count++;
   3875 		mutex_exit(&sc->tx_pkt_mtx);
   3876 	}
   3877 
   3878 	mutex_enter(&sc->tx_pkt_mtx);
   3879 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   3880 	mutex_exit(&sc->tx_pkt_mtx);
   3881 
   3882 	/* fire-up TX now that allocations have been done */
   3883 	s = splnet();
   3884 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3885 		bnx_start(ifp);
   3886 	splx(s);
   3887 
   3888 	return;
   3889 
   3890 stopping:
   3891 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   3892 put:
   3893 	pool_put(bnx_tx_pool, pkt);
   3894 	return;
   3895 }
   3896 
   3897 /****************************************************************************/
   3898 /* Initialize the TX context memory.                                        */
   3899 /*                                                                          */
   3900 /* Returns:                                                                 */
   3901 /*   Nothing                                                                */
   3902 /****************************************************************************/
   3903 void
   3904 bnx_init_tx_context(struct bnx_softc *sc)
   3905 {
   3906 	u_int32_t val;
   3907 
   3908 	/* Initialize the context ID for an L2 TX chain. */
   3909 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3910 		/* Set the CID type to support an L2 connection. */
   3911 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3912 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   3913 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3914 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   3915 
   3916 		/* Point the hardware to the first page in the chain. */
   3917 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3918 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   3919 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   3920 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3921 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   3922 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   3923 	} else {
   3924 		/* Set the CID type to support an L2 connection. */
   3925 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3926 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   3927 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3928 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   3929 
   3930 		/* Point the hardware to the first page in the chain. */
   3931 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3932 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   3933 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3934 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   3935 	}
   3936 }
   3937 
   3938 
   3939 /****************************************************************************/
   3940 /* Allocate memory and initialize the TX data structures.                   */
   3941 /*                                                                          */
   3942 /* Returns:                                                                 */
   3943 /*   0 for success, positive value for failure.                             */
   3944 /****************************************************************************/
   3945 int
   3946 bnx_init_tx_chain(struct bnx_softc *sc)
   3947 {
   3948 	struct tx_bd		*txbd;
   3949 	u_int32_t		addr;
   3950 	int			i, rc = 0;
   3951 
   3952 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3953 
   3954 	/* Force an allocation of some dmamaps for tx up front */
   3955 	bnx_alloc_pkts(NULL, sc);
   3956 
   3957 	/* Set the initial TX producer/consumer indices. */
   3958 	sc->tx_prod = 0;
   3959 	sc->tx_cons = 0;
   3960 	sc->tx_prod_bseq = 0;
   3961 	sc->used_tx_bd = 0;
   3962 	sc->max_tx_bd = USABLE_TX_BD;
   3963 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   3964 	DBRUNIF(1, sc->tx_full_count = 0);
   3965 
   3966 	/*
   3967 	 * The NetXtreme II supports a linked-list structure called
   3968 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   3969 	 * consists of a series of 1 or more chain pages, each of which
   3970 	 * consists of a fixed number of BD entries.
   3971 	 * The last BD entry on each page is a pointer to the next page
   3972 	 * in the chain, and the last pointer in the BD chain
   3973 	 * points back to the beginning of the chain.
   3974 	 */
   3975 
   3976 	/* Set the TX next pointer chain entries. */
   3977 	for (i = 0; i < TX_PAGES; i++) {
   3978 		int j;
   3979 
   3980 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   3981 
   3982 		/* Check if we've reached the last page. */
   3983 		if (i == (TX_PAGES - 1))
   3984 			j = 0;
   3985 		else
   3986 			j = i + 1;
   3987 
   3988 		addr = (u_int32_t)sc->tx_bd_chain_paddr[j];
   3989 		txbd->tx_bd_haddr_lo = addr;
   3990 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
   3991 		txbd->tx_bd_haddr_hi = addr;
   3992 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3993 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3994 	}
   3995 
   3996 	/*
   3997 	 * Initialize the context ID for an L2 TX chain.
   3998 	 */
   3999 	bnx_init_tx_context(sc);
   4000 
   4001 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4002 
   4003 	return(rc);
   4004 }
   4005 
   4006 /****************************************************************************/
   4007 /* Free memory and clear the TX data structures.                            */
   4008 /*                                                                          */
   4009 /* Returns:                                                                 */
   4010 /*   Nothing.                                                               */
   4011 /****************************************************************************/
   4012 void
   4013 bnx_free_tx_chain(struct bnx_softc *sc)
   4014 {
   4015 	struct bnx_pkt		*pkt;
   4016 	int			i;
   4017 
   4018 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4019 
   4020 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4021 	mutex_enter(&sc->tx_pkt_mtx);
   4022 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4023 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4024 		mutex_exit(&sc->tx_pkt_mtx);
   4025 
   4026 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4027 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4028 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4029 
   4030 		m_freem(pkt->pkt_mbuf);
   4031 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4032 
   4033 		mutex_enter(&sc->tx_pkt_mtx);
   4034 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4035         }
   4036 
   4037 	/* Destroy all the dmamaps we allocated for TX */
   4038 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   4039 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4040 		sc->tx_pkt_count--;
   4041 		mutex_exit(&sc->tx_pkt_mtx);
   4042 
   4043 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4044 		pool_put(bnx_tx_pool, pkt);
   4045 
   4046 		mutex_enter(&sc->tx_pkt_mtx);
   4047 	}
   4048 	mutex_exit(&sc->tx_pkt_mtx);
   4049 
   4050 
   4051 
   4052 	/* Clear each TX chain page. */
   4053 	for (i = 0; i < TX_PAGES; i++) {
   4054 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4055 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4056 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4057 	}
   4058 
   4059 	sc->used_tx_bd = 0;
   4060 
   4061 	/* Check if we lost any mbufs in the process. */
   4062 	DBRUNIF((sc->tx_mbuf_alloc),
   4063 	    aprint_error_dev(sc->bnx_dev,
   4064 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   4065 		sc->tx_mbuf_alloc));
   4066 
   4067 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4068 }
   4069 
   4070 /****************************************************************************/
   4071 /* Initialize the RX context memory.                                        */
   4072 /*                                                                          */
   4073 /* Returns:                                                                 */
   4074 /*   Nothing                                                                */
   4075 /****************************************************************************/
   4076 void
   4077 bnx_init_rx_context(struct bnx_softc *sc)
   4078 {
   4079 	u_int32_t val;
   4080 
   4081 	/* Initialize the context ID for an L2 RX chain. */
   4082 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4083 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4084 
   4085 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4086 		u_int32_t lo_water, hi_water;
   4087 
   4088 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
   4089 		hi_water = USABLE_RX_BD / 4;
   4090 
   4091 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
   4092 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
   4093 
   4094 		if (hi_water > 0xf)
   4095 			hi_water = 0xf;
   4096 		else if (hi_water == 0)
   4097 			lo_water = 0;
   4098 		val |= lo_water |
   4099 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
   4100 	}
   4101 
   4102  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4103 
   4104 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4105 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4106 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4107 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4108 	}
   4109 
   4110 	/* Point the hardware to the first page in the chain. */
   4111 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4112 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4113 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
   4114 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4115 }
   4116 
   4117 /****************************************************************************/
   4118 /* Allocate memory and initialize the RX data structures.                   */
   4119 /*                                                                          */
   4120 /* Returns:                                                                 */
   4121 /*   0 for success, positive value for failure.                             */
   4122 /****************************************************************************/
   4123 int
   4124 bnx_init_rx_chain(struct bnx_softc *sc)
   4125 {
   4126 	struct rx_bd		*rxbd;
   4127 	int			i, rc = 0;
   4128 	u_int16_t		prod, chain_prod;
   4129 	u_int32_t		prod_bseq, addr;
   4130 
   4131 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4132 
   4133 	/* Initialize the RX producer and consumer indices. */
   4134 	sc->rx_prod = 0;
   4135 	sc->rx_cons = 0;
   4136 	sc->rx_prod_bseq = 0;
   4137 	sc->free_rx_bd = USABLE_RX_BD;
   4138 	sc->max_rx_bd = USABLE_RX_BD;
   4139 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4140 	DBRUNIF(1, sc->rx_empty_count = 0);
   4141 
   4142 	/* Initialize the RX next pointer chain entries. */
   4143 	for (i = 0; i < RX_PAGES; i++) {
   4144 		int j;
   4145 
   4146 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4147 
   4148 		/* Check if we've reached the last page. */
   4149 		if (i == (RX_PAGES - 1))
   4150 			j = 0;
   4151 		else
   4152 			j = i + 1;
   4153 
   4154 		/* Setup the chain page pointers. */
   4155 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4156 		rxbd->rx_bd_haddr_hi = addr;
   4157 		addr = (u_int32_t)sc->rx_bd_chain_paddr[j];
   4158 		rxbd->rx_bd_haddr_lo = addr;
   4159 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4160 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4161 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4162 	}
   4163 
   4164 	/* Allocate mbuf clusters for the rx_bd chain. */
   4165 	prod = prod_bseq = 0;
   4166 	chain_prod = RX_CHAIN_IDX(prod);
   4167 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4168 		BNX_PRINTF(sc,
   4169 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4170 	}
   4171 
   4172 	/* Save the RX chain producer index. */
   4173 	sc->rx_prod = prod;
   4174 	sc->rx_prod_bseq = prod_bseq;
   4175 
   4176 	for (i = 0; i < RX_PAGES; i++)
   4177 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4178 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4179 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4180 
   4181 	/* Tell the chip about the waiting rx_bd's. */
   4182 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4183 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4184 
   4185 	bnx_init_rx_context(sc);
   4186 
   4187 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4188 
   4189 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4190 
   4191 	return(rc);
   4192 }
   4193 
   4194 /****************************************************************************/
   4195 /* Free memory and clear the RX data structures.                            */
   4196 /*                                                                          */
   4197 /* Returns:                                                                 */
   4198 /*   Nothing.                                                               */
   4199 /****************************************************************************/
   4200 void
   4201 bnx_free_rx_chain(struct bnx_softc *sc)
   4202 {
   4203 	int			i;
   4204 
   4205 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4206 
   4207 	/* Free any mbufs still in the RX mbuf chain. */
   4208 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4209 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4210 			if (sc->rx_mbuf_map[i] != NULL) {
   4211 				bus_dmamap_sync(sc->bnx_dmatag,
   4212 				    sc->rx_mbuf_map[i],	0,
   4213 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4214 				    BUS_DMASYNC_POSTREAD);
   4215 				bus_dmamap_unload(sc->bnx_dmatag,
   4216 				    sc->rx_mbuf_map[i]);
   4217 			}
   4218 			m_freem(sc->rx_mbuf_ptr[i]);
   4219 			sc->rx_mbuf_ptr[i] = NULL;
   4220 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4221 		}
   4222 	}
   4223 
   4224 	/* Clear each RX chain page. */
   4225 	for (i = 0; i < RX_PAGES; i++)
   4226 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4227 
   4228 	sc->free_rx_bd = sc->max_rx_bd;
   4229 
   4230 	/* Check if we lost any mbufs in the process. */
   4231 	DBRUNIF((sc->rx_mbuf_alloc),
   4232 	    aprint_error_dev(sc->bnx_dev,
   4233 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   4234 		sc->rx_mbuf_alloc));
   4235 
   4236 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4237 }
   4238 
   4239 /****************************************************************************/
   4240 /* Handles PHY generated interrupt events.                                  */
   4241 /*                                                                          */
   4242 /* Returns:                                                                 */
   4243 /*   Nothing.                                                               */
   4244 /****************************************************************************/
   4245 void
   4246 bnx_phy_intr(struct bnx_softc *sc)
   4247 {
   4248 	u_int32_t		new_link_state, old_link_state;
   4249 
   4250 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4251 	    BUS_DMASYNC_POSTREAD);
   4252 	new_link_state = sc->status_block->status_attn_bits &
   4253 	    STATUS_ATTN_BITS_LINK_STATE;
   4254 	old_link_state = sc->status_block->status_attn_bits_ack &
   4255 	    STATUS_ATTN_BITS_LINK_STATE;
   4256 
   4257 	/* Handle any changes if the link state has changed. */
   4258 	if (new_link_state != old_link_state) {
   4259 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4260 
   4261 		callout_stop(&sc->bnx_timeout);
   4262 		bnx_tick(sc);
   4263 
   4264 		/* Update the status_attn_bits_ack field in the status block. */
   4265 		if (new_link_state) {
   4266 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4267 			    STATUS_ATTN_BITS_LINK_STATE);
   4268 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4269 		} else {
   4270 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4271 			    STATUS_ATTN_BITS_LINK_STATE);
   4272 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4273 		}
   4274 	}
   4275 
   4276 	/* Acknowledge the link change interrupt. */
   4277 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4278 }
   4279 
   4280 /****************************************************************************/
   4281 /* Handles received frame interrupt events.                                 */
   4282 /*                                                                          */
   4283 /* Returns:                                                                 */
   4284 /*   Nothing.                                                               */
   4285 /****************************************************************************/
   4286 void
   4287 bnx_rx_intr(struct bnx_softc *sc)
   4288 {
   4289 	struct status_block	*sblk = sc->status_block;
   4290 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4291 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
   4292 	u_int16_t		sw_prod, sw_chain_prod;
   4293 	u_int32_t		sw_prod_bseq;
   4294 	struct l2_fhdr		*l2fhdr;
   4295 	int			i;
   4296 
   4297 	DBRUNIF(1, sc->rx_interrupts++);
   4298 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4299 	    BUS_DMASYNC_POSTREAD);
   4300 
   4301 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4302 	for (i = 0; i < RX_PAGES; i++)
   4303 		bus_dmamap_sync(sc->bnx_dmatag,
   4304 		    sc->rx_bd_chain_map[i], 0,
   4305 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4306 		    BUS_DMASYNC_POSTWRITE);
   4307 
   4308 	/* Get the hardware's view of the RX consumer index. */
   4309 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4310 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4311 		hw_cons++;
   4312 
   4313 	/* Get working copies of the driver's view of the RX indices. */
   4314 	sw_cons = sc->rx_cons;
   4315 	sw_prod = sc->rx_prod;
   4316 	sw_prod_bseq = sc->rx_prod_bseq;
   4317 
   4318 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4319 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4320 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4321 
   4322 	/* Prevent speculative reads from getting ahead of the status block. */
   4323 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4324 	    BUS_SPACE_BARRIER_READ);
   4325 
   4326 	/* Update some debug statistics counters */
   4327 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4328 	    sc->rx_low_watermark = sc->free_rx_bd);
   4329 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4330 
   4331 	/*
   4332 	 * Scan through the receive chain as long
   4333 	 * as there is work to do.
   4334 	 */
   4335 	while (sw_cons != hw_cons) {
   4336 		struct mbuf *m;
   4337 		struct rx_bd *rxbd;
   4338 		unsigned int len;
   4339 		u_int32_t status;
   4340 
   4341 		/* Convert the producer/consumer indices to an actual
   4342 		 * rx_bd index.
   4343 		 */
   4344 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4345 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4346 
   4347 		/* Get the used rx_bd. */
   4348 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4349 		sc->free_rx_bd++;
   4350 
   4351 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4352 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4353 
   4354 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4355 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4356 #ifdef DIAGNOSTIC
   4357 			/* Validate that this is the last rx_bd. */
   4358 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4359 			    printf("%s: Unexpected mbuf found in "
   4360 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4361 			        sw_chain_cons);
   4362 			}
   4363 #endif
   4364 
   4365 			/* DRC - ToDo: If the received packet is small, say less
   4366 			 *             than 128 bytes, allocate a new mbuf here,
   4367 			 *             copy the data to that mbuf, and recycle
   4368 			 *             the mapped jumbo frame.
   4369 			 */
   4370 
   4371 			/* Unmap the mbuf from DMA space. */
   4372 #ifdef DIAGNOSTIC
   4373 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4374 				printf("invalid map sw_cons 0x%x "
   4375 				"sw_prod 0x%x "
   4376 				"sw_chain_cons 0x%x "
   4377 				"sw_chain_prod 0x%x "
   4378 				"hw_cons 0x%x "
   4379 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4380 				"TOTAL_RX_BD 0x%x\n",
   4381 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4382 				hw_cons,
   4383 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4384 			}
   4385 #endif
   4386 			bus_dmamap_sync(sc->bnx_dmatag,
   4387 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4388 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4389 			    BUS_DMASYNC_POSTREAD);
   4390 			bus_dmamap_unload(sc->bnx_dmatag,
   4391 			    sc->rx_mbuf_map[sw_chain_cons]);
   4392 
   4393 			/* Remove the mbuf from the driver's chain. */
   4394 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4395 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4396 
   4397 			/*
   4398 			 * Frames received on the NetXteme II are prepended
   4399 			 * with the l2_fhdr structure which provides status
   4400 			 * information about the received frame (including
   4401 			 * VLAN tags and checksum info) and are also
   4402 			 * automatically adjusted to align the IP header
   4403 			 * (i.e. two null bytes are inserted before the
   4404 			 * Ethernet header).
   4405 			 */
   4406 			l2fhdr = mtod(m, struct l2_fhdr *);
   4407 
   4408 			len    = l2fhdr->l2_fhdr_pkt_len;
   4409 			status = l2fhdr->l2_fhdr_status;
   4410 
   4411 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4412 			    aprint_error("Simulating l2_fhdr status error.\n");
   4413 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4414 
   4415 			/* Watch for unusual sized frames. */
   4416 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4417 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4418 			    aprint_error_dev(sc->bnx_dev,
   4419 			        "Unusual frame size found. "
   4420 				"Min(%d), Actual(%d), Max(%d)\n",
   4421 				(int)BNX_MIN_MTU, len,
   4422 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4423 
   4424 			bnx_dump_mbuf(sc, m);
   4425 			bnx_breakpoint(sc));
   4426 
   4427 			len -= ETHER_CRC_LEN;
   4428 
   4429 			/* Check the received frame for errors. */
   4430 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4431 			    L2_FHDR_ERRORS_PHY_DECODE |
   4432 			    L2_FHDR_ERRORS_ALIGNMENT |
   4433 			    L2_FHDR_ERRORS_TOO_SHORT |
   4434 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4435 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4436 			    len >
   4437 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4438 				ifp->if_ierrors++;
   4439 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4440 
   4441 				/* Reuse the mbuf for a new frame. */
   4442 				if (bnx_add_buf(sc, m, &sw_prod,
   4443 				    &sw_chain_prod, &sw_prod_bseq)) {
   4444 					DBRUNIF(1, bnx_breakpoint(sc));
   4445 					panic("%s: Can't reuse RX mbuf!\n",
   4446 					    device_xname(sc->bnx_dev));
   4447 				}
   4448 				continue;
   4449 			}
   4450 
   4451 			/*
   4452 			 * Get a new mbuf for the rx_bd.   If no new
   4453 			 * mbufs are available then reuse the current mbuf,
   4454 			 * log an ierror on the interface, and generate
   4455 			 * an error in the system log.
   4456 			 */
   4457 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4458 			    &sw_prod_bseq)) {
   4459 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4460 				    "Failed to allocate "
   4461 				    "new mbuf, incoming frame dropped!\n"));
   4462 
   4463 				ifp->if_ierrors++;
   4464 
   4465 				/* Try and reuse the exisitng mbuf. */
   4466 				if (bnx_add_buf(sc, m, &sw_prod,
   4467 				    &sw_chain_prod, &sw_prod_bseq)) {
   4468 					DBRUNIF(1, bnx_breakpoint(sc));
   4469 					panic("%s: Double mbuf allocation "
   4470 					    "failure!",
   4471 					    device_xname(sc->bnx_dev));
   4472 				}
   4473 				continue;
   4474 			}
   4475 
   4476 			/* Skip over the l2_fhdr when passing the data up
   4477 			 * the stack.
   4478 			 */
   4479 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4480 
   4481 			/* Adjust the pckt length to match the received data. */
   4482 			m->m_pkthdr.len = m->m_len = len;
   4483 
   4484 			/* Send the packet to the appropriate interface. */
   4485 			m->m_pkthdr.rcvif = ifp;
   4486 
   4487 			DBRUN(BNX_VERBOSE_RECV,
   4488 			    struct ether_header *eh;
   4489 			    eh = mtod(m, struct ether_header *);
   4490 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4491 			    __func__, ether_sprintf(eh->ether_dhost),
   4492 			    ether_sprintf(eh->ether_shost),
   4493 			    htons(eh->ether_type)));
   4494 
   4495 			/* Validate the checksum. */
   4496 
   4497 			/* Check for an IP datagram. */
   4498 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4499 				/* Check if the IP checksum is valid. */
   4500 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   4501 				    == 0)
   4502 					m->m_pkthdr.csum_flags |=
   4503 					    M_CSUM_IPv4;
   4504 #ifdef BNX_DEBUG
   4505 				else
   4506 					DBPRINT(sc, BNX_WARN_SEND,
   4507 					    "%s(): Invalid IP checksum "
   4508 					        "= 0x%04X!\n",
   4509 						__func__,
   4510 						l2fhdr->l2_fhdr_ip_xsum
   4511 						);
   4512 #endif
   4513 			}
   4514 
   4515 			/* Check for a valid TCP/UDP frame. */
   4516 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4517 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4518 				/* Check for a good TCP/UDP checksum. */
   4519 				if ((status &
   4520 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4521 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4522 					m->m_pkthdr.csum_flags |=
   4523 					    M_CSUM_TCPv4 |
   4524 					    M_CSUM_UDPv4;
   4525 				} else {
   4526 					DBPRINT(sc, BNX_WARN_SEND,
   4527 					    "%s(): Invalid TCP/UDP "
   4528 					    "checksum = 0x%04X!\n",
   4529 					    __func__,
   4530 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4531 				}
   4532 			}
   4533 
   4534 			/*
   4535 			 * If we received a packet with a vlan tag,
   4536 			 * attach that information to the packet.
   4537 			 */
   4538 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4539 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4540 				VLAN_INPUT_TAG(ifp, m,
   4541 				    l2fhdr->l2_fhdr_vlan_tag,
   4542 				    continue);
   4543 			}
   4544 
   4545 			/*
   4546 			 * Handle BPF listeners. Let the BPF
   4547 			 * user see the packet.
   4548 			 */
   4549 			bpf_mtap(ifp, m);
   4550 
   4551 			/* Pass the mbuf off to the upper layers. */
   4552 			ifp->if_ipackets++;
   4553 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4554 			    "%s(): Passing received frame up.\n", __func__);
   4555 			(*ifp->if_input)(ifp, m);
   4556 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4557 
   4558 		}
   4559 
   4560 		sw_cons = NEXT_RX_BD(sw_cons);
   4561 
   4562 		/* Refresh hw_cons to see if there's new work */
   4563 		if (sw_cons == hw_cons) {
   4564 			hw_cons = sc->hw_rx_cons =
   4565 			    sblk->status_rx_quick_consumer_index0;
   4566 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4567 			    USABLE_RX_BD_PER_PAGE)
   4568 				hw_cons++;
   4569 		}
   4570 
   4571 		/* Prevent speculative reads from getting ahead of
   4572 		 * the status block.
   4573 		 */
   4574 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4575 		    BUS_SPACE_BARRIER_READ);
   4576 	}
   4577 
   4578 	for (i = 0; i < RX_PAGES; i++)
   4579 		bus_dmamap_sync(sc->bnx_dmatag,
   4580 		    sc->rx_bd_chain_map[i], 0,
   4581 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4582 		    BUS_DMASYNC_PREWRITE);
   4583 
   4584 	sc->rx_cons = sw_cons;
   4585 	sc->rx_prod = sw_prod;
   4586 	sc->rx_prod_bseq = sw_prod_bseq;
   4587 
   4588 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4589 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4590 
   4591 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4592 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4593 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4594 }
   4595 
   4596 /****************************************************************************/
   4597 /* Handles transmit completion interrupt events.                            */
   4598 /*                                                                          */
   4599 /* Returns:                                                                 */
   4600 /*   Nothing.                                                               */
   4601 /****************************************************************************/
   4602 void
   4603 bnx_tx_intr(struct bnx_softc *sc)
   4604 {
   4605 	struct status_block	*sblk = sc->status_block;
   4606 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4607 	struct bnx_pkt		*pkt;
   4608 	bus_dmamap_t		map;
   4609 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4610 
   4611 	DBRUNIF(1, sc->tx_interrupts++);
   4612 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4613 	    BUS_DMASYNC_POSTREAD);
   4614 
   4615 	/* Get the hardware's view of the TX consumer index. */
   4616 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4617 
   4618 	/* Skip to the next entry if this is a chain page pointer. */
   4619 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4620 		hw_tx_cons++;
   4621 
   4622 	sw_tx_cons = sc->tx_cons;
   4623 
   4624 	/* Prevent speculative reads from getting ahead of the status block. */
   4625 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4626 	    BUS_SPACE_BARRIER_READ);
   4627 
   4628 	/* Cycle through any completed TX chain page entries. */
   4629 	while (sw_tx_cons != hw_tx_cons) {
   4630 #ifdef BNX_DEBUG
   4631 		struct tx_bd *txbd = NULL;
   4632 #endif
   4633 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4634 
   4635 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4636 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4637 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4638 
   4639 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4640 		    aprint_error_dev(sc->bnx_dev,
   4641 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4642 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4643 
   4644 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4645 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4646 
   4647 		DBRUNIF((txbd == NULL),
   4648 		    aprint_error_dev(sc->bnx_dev,
   4649 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4650 		    bnx_breakpoint(sc));
   4651 
   4652 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4653 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4654 
   4655 
   4656 		mutex_enter(&sc->tx_pkt_mtx);
   4657 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4658 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4659 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4660 			mutex_exit(&sc->tx_pkt_mtx);
   4661 			/*
   4662 			 * Free the associated mbuf. Remember
   4663 			 * that only the last tx_bd of a packet
   4664 			 * has an mbuf pointer and DMA map.
   4665 			 */
   4666 			map = pkt->pkt_dmamap;
   4667 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4668 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4669 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4670 
   4671 			m_freem(pkt->pkt_mbuf);
   4672 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4673 
   4674 			ifp->if_opackets++;
   4675 
   4676 			mutex_enter(&sc->tx_pkt_mtx);
   4677 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4678 		}
   4679 		mutex_exit(&sc->tx_pkt_mtx);
   4680 
   4681 		sc->used_tx_bd--;
   4682 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4683 			__FILE__, __LINE__, sc->used_tx_bd);
   4684 
   4685 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4686 
   4687 		/* Refresh hw_cons to see if there's new work. */
   4688 		hw_tx_cons = sc->hw_tx_cons =
   4689 		    sblk->status_tx_quick_consumer_index0;
   4690 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4691 		    USABLE_TX_BD_PER_PAGE)
   4692 			hw_tx_cons++;
   4693 
   4694 		/* Prevent speculative reads from getting ahead of
   4695 		 * the status block.
   4696 		 */
   4697 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4698 		    BUS_SPACE_BARRIER_READ);
   4699 	}
   4700 
   4701 	/* Clear the TX timeout timer. */
   4702 	ifp->if_timer = 0;
   4703 
   4704 	/* Clear the tx hardware queue full flag. */
   4705 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4706 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4707 		    aprint_debug_dev(sc->bnx_dev,
   4708 		        "Open TX chain! %d/%d (used/total)\n",
   4709 			sc->used_tx_bd, sc->max_tx_bd));
   4710 		ifp->if_flags &= ~IFF_OACTIVE;
   4711 	}
   4712 
   4713 	sc->tx_cons = sw_tx_cons;
   4714 }
   4715 
   4716 /****************************************************************************/
   4717 /* Disables interrupt generation.                                           */
   4718 /*                                                                          */
   4719 /* Returns:                                                                 */
   4720 /*   Nothing.                                                               */
   4721 /****************************************************************************/
   4722 void
   4723 bnx_disable_intr(struct bnx_softc *sc)
   4724 {
   4725 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4726 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4727 }
   4728 
   4729 /****************************************************************************/
   4730 /* Enables interrupt generation.                                            */
   4731 /*                                                                          */
   4732 /* Returns:                                                                 */
   4733 /*   Nothing.                                                               */
   4734 /****************************************************************************/
   4735 void
   4736 bnx_enable_intr(struct bnx_softc *sc)
   4737 {
   4738 	u_int32_t		val;
   4739 
   4740 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4741 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4742 
   4743 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4744 	    sc->last_status_idx);
   4745 
   4746 	val = REG_RD(sc, BNX_HC_COMMAND);
   4747 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4748 }
   4749 
   4750 /****************************************************************************/
   4751 /* Handles controller initialization.                                       */
   4752 /*                                                                          */
   4753 /****************************************************************************/
   4754 int
   4755 bnx_init(struct ifnet *ifp)
   4756 {
   4757 	struct bnx_softc	*sc = ifp->if_softc;
   4758 	u_int32_t		ether_mtu;
   4759 	int			s, error = 0;
   4760 
   4761 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4762 
   4763 	s = splnet();
   4764 
   4765 	bnx_stop(ifp, 0);
   4766 
   4767 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4768 		aprint_error_dev(sc->bnx_dev,
   4769 		    "Controller reset failed!\n");
   4770 		goto bnx_init_exit;
   4771 	}
   4772 
   4773 	if ((error = bnx_chipinit(sc)) != 0) {
   4774 		aprint_error_dev(sc->bnx_dev,
   4775 		    "Controller initialization failed!\n");
   4776 		goto bnx_init_exit;
   4777 	}
   4778 
   4779 	if ((error = bnx_blockinit(sc)) != 0) {
   4780 		aprint_error_dev(sc->bnx_dev,
   4781 		    "Block initialization failed!\n");
   4782 		goto bnx_init_exit;
   4783 	}
   4784 
   4785 	/* Calculate and program the Ethernet MRU size. */
   4786 	if (ifp->if_mtu <= ETHERMTU) {
   4787 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4788 		sc->mbuf_alloc_size = MCLBYTES;
   4789 	} else {
   4790 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4791 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   4792 	}
   4793 
   4794 
   4795 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4796 	    __func__, ether_mtu);
   4797 
   4798 	/*
   4799 	 * Program the MRU and enable Jumbo frame
   4800 	 * support.
   4801 	 */
   4802 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4803 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4804 
   4805 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4806 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4807 
   4808 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4809 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4810 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4811 
   4812 	/* Program appropriate promiscuous/multicast filtering. */
   4813 	bnx_iff(sc);
   4814 
   4815 	/* Init RX buffer descriptor chain. */
   4816 	bnx_init_rx_chain(sc);
   4817 
   4818 	/* Init TX buffer descriptor chain. */
   4819 	bnx_init_tx_chain(sc);
   4820 
   4821 	/* Enable host interrupts. */
   4822 	bnx_enable_intr(sc);
   4823 
   4824 	if ((error = ether_mediachange(ifp)) != 0)
   4825 		goto bnx_init_exit;
   4826 
   4827 	SET(ifp->if_flags, IFF_RUNNING);
   4828 	CLR(ifp->if_flags, IFF_OACTIVE);
   4829 
   4830 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4831 
   4832 bnx_init_exit:
   4833 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4834 
   4835 	splx(s);
   4836 
   4837 	return(error);
   4838 }
   4839 
   4840 /****************************************************************************/
   4841 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4842 /* memory visible to the controller.                                        */
   4843 /*                                                                          */
   4844 /* Returns:                                                                 */
   4845 /*   0 for success, positive value for failure.                             */
   4846 /****************************************************************************/
   4847 int
   4848 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   4849 {
   4850 	struct bnx_pkt		*pkt;
   4851 	bus_dmamap_t		map;
   4852 	struct tx_bd		*txbd = NULL;
   4853 	u_int16_t		vlan_tag = 0, flags = 0;
   4854 	u_int16_t		chain_prod, prod;
   4855 #ifdef BNX_DEBUG
   4856 	u_int16_t		debug_prod;
   4857 #endif
   4858 	u_int32_t		addr, prod_bseq;
   4859 	int			i, error;
   4860 	struct m_tag		*mtag;
   4861 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
   4862 
   4863 	mutex_enter(&sc->tx_pkt_mtx);
   4864 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   4865 	if (pkt == NULL) {
   4866 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   4867 			mutex_exit(&sc->tx_pkt_mtx);
   4868 			return ENETDOWN;
   4869 		}
   4870 
   4871 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   4872 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   4873 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
   4874 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4875 		}
   4876 
   4877 		mutex_exit(&sc->tx_pkt_mtx);
   4878 		return ENOMEM;
   4879 	}
   4880 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4881 	mutex_exit(&sc->tx_pkt_mtx);
   4882 
   4883 	/* Transfer any checksum offload flags to the bd. */
   4884 	if (m->m_pkthdr.csum_flags) {
   4885 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4886 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4887 		if (m->m_pkthdr.csum_flags &
   4888 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4889 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4890 	}
   4891 
   4892 	/* Transfer any VLAN tags to the bd. */
   4893 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
   4894 	if (mtag != NULL) {
   4895 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4896 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4897 	}
   4898 
   4899 	/* Map the mbuf into DMAable memory. */
   4900 	prod = sc->tx_prod;
   4901 	chain_prod = TX_CHAIN_IDX(prod);
   4902 	map = pkt->pkt_dmamap;
   4903 
   4904 	/* Map the mbuf into our DMA address space. */
   4905 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   4906 	if (error != 0) {
   4907 		aprint_error_dev(sc->bnx_dev,
   4908 		    "Error mapping mbuf into TX chain!\n");
   4909 		sc->tx_dma_map_failures++;
   4910 		goto maperr;
   4911 	}
   4912 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4913 	    BUS_DMASYNC_PREWRITE);
   4914         /* Make sure there's room in the chain */
   4915 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   4916                 goto nospace;
   4917 
   4918 	/* prod points to an empty tx_bd at this point. */
   4919 	prod_bseq = sc->tx_prod_bseq;
   4920 #ifdef BNX_DEBUG
   4921 	debug_prod = chain_prod;
   4922 #endif
   4923 	DBPRINT(sc, BNX_INFO_SEND,
   4924 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   4925 		"prod_bseq = 0x%08X\n",
   4926 		__func__, prod, chain_prod, prod_bseq);
   4927 
   4928 	/*
   4929 	 * Cycle through each mbuf segment that makes up
   4930 	 * the outgoing frame, gathering the mapping info
   4931 	 * for that segment and creating a tx_bd for the
   4932 	 * mbuf.
   4933 	 */
   4934 	for (i = 0; i < map->dm_nsegs ; i++) {
   4935 		chain_prod = TX_CHAIN_IDX(prod);
   4936 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   4937 
   4938 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
   4939 		txbd->tx_bd_haddr_lo = addr;
   4940 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   4941 		txbd->tx_bd_haddr_hi = addr;
   4942 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   4943 		txbd->tx_bd_vlan_tag = vlan_tag;
   4944 		txbd->tx_bd_flags = flags;
   4945 		prod_bseq += map->dm_segs[i].ds_len;
   4946 		if (i == 0)
   4947 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   4948 		prod = NEXT_TX_BD(prod);
   4949 	}
   4950 	/* Set the END flag on the last TX buffer descriptor. */
   4951 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   4952 
   4953 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   4954 
   4955 	DBPRINT(sc, BNX_INFO_SEND,
   4956 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   4957 		"prod_bseq = 0x%08X\n",
   4958 		__func__, prod, chain_prod, prod_bseq);
   4959 
   4960 	pkt->pkt_mbuf = m;
   4961 	pkt->pkt_end_desc = chain_prod;
   4962 
   4963 	mutex_enter(&sc->tx_pkt_mtx);
   4964 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   4965 	mutex_exit(&sc->tx_pkt_mtx);
   4966 
   4967 	sc->used_tx_bd += map->dm_nsegs;
   4968 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4969 		__FILE__, __LINE__, sc->used_tx_bd);
   4970 
   4971 	/* Update some debug statistics counters */
   4972 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   4973 	    sc->tx_hi_watermark = sc->used_tx_bd);
   4974 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   4975 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   4976 
   4977 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   4978 	    map->dm_nsegs));
   4979 
   4980 	/* prod points to the next free tx_bd at this point. */
   4981 	sc->tx_prod = prod;
   4982 	sc->tx_prod_bseq = prod_bseq;
   4983 
   4984 	return (0);
   4985 
   4986 
   4987 nospace:
   4988 	bus_dmamap_unload(sc->bnx_dmatag, map);
   4989 maperr:
   4990 	mutex_enter(&sc->tx_pkt_mtx);
   4991 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4992 	mutex_exit(&sc->tx_pkt_mtx);
   4993 
   4994 	return (ENOMEM);
   4995 }
   4996 
   4997 /****************************************************************************/
   4998 /* Main transmit routine.                                                   */
   4999 /*                                                                          */
   5000 /* Returns:                                                                 */
   5001 /*   Nothing.                                                               */
   5002 /****************************************************************************/
   5003 void
   5004 bnx_start(struct ifnet *ifp)
   5005 {
   5006 	struct bnx_softc	*sc = ifp->if_softc;
   5007 	struct mbuf		*m_head = NULL;
   5008 	int			count = 0;
   5009 #ifdef BNX_DEBUG
   5010 	u_int16_t		tx_chain_prod;
   5011 #endif
   5012 
   5013 	/* If there's no link or the transmit queue is empty then just exit. */
   5014 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   5015 		DBPRINT(sc, BNX_INFO_SEND,
   5016 		    "%s(): output active or device not running.\n", __func__);
   5017 		goto bnx_start_exit;
   5018 	}
   5019 
   5020 	/* prod points to the next free tx_bd. */
   5021 #ifdef BNX_DEBUG
   5022 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5023 #endif
   5024 
   5025 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5026 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5027 	    "used_tx %d max_tx %d\n",
   5028 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5029 	    sc->used_tx_bd, sc->max_tx_bd);
   5030 
   5031 	/*
   5032 	 * Keep adding entries while there is space in the ring.
   5033 	 */
   5034 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5035 		/* Check for any frames to send. */
   5036 		IFQ_POLL(&ifp->if_snd, m_head);
   5037 		if (m_head == NULL)
   5038 			break;
   5039 
   5040 		/*
   5041 		 * Pack the data into the transmit ring. If we
   5042 		 * don't have room, set the OACTIVE flag to wait
   5043 		 * for the NIC to drain the chain.
   5044 		 */
   5045 		if (bnx_tx_encap(sc, m_head)) {
   5046 			ifp->if_flags |= IFF_OACTIVE;
   5047 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5048 			    "business! Total tx_bd used = %d\n",
   5049 			    sc->used_tx_bd);
   5050 			break;
   5051 		}
   5052 
   5053 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5054 		count++;
   5055 
   5056 		/* Send a copy of the frame to any BPF listeners. */
   5057 		bpf_mtap(ifp, m_head);
   5058 	}
   5059 
   5060 	if (count == 0) {
   5061 		/* no packets were dequeued */
   5062 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5063 		    "%s(): No packets were dequeued\n", __func__);
   5064 		goto bnx_start_exit;
   5065 	}
   5066 
   5067 	/* Update the driver's counters. */
   5068 #ifdef BNX_DEBUG
   5069 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5070 #endif
   5071 
   5072 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   5073 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
   5074 	    tx_chain_prod, sc->tx_prod_bseq);
   5075 
   5076 	/* Start the transmit. */
   5077 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5078 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5079 
   5080 	/* Set the tx timeout. */
   5081 	ifp->if_timer = BNX_TX_TIMEOUT;
   5082 
   5083 bnx_start_exit:
   5084 	return;
   5085 }
   5086 
   5087 /****************************************************************************/
   5088 /* Handles any IOCTL calls from the operating system.                       */
   5089 /*                                                                          */
   5090 /* Returns:                                                                 */
   5091 /*   0 for success, positive value for failure.                             */
   5092 /****************************************************************************/
   5093 int
   5094 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5095 {
   5096 	struct bnx_softc	*sc = ifp->if_softc;
   5097 	struct ifreq		*ifr = (struct ifreq *) data;
   5098 	struct mii_data		*mii = &sc->bnx_mii;
   5099 	int			s, error = 0;
   5100 
   5101 	s = splnet();
   5102 
   5103 	switch (command) {
   5104 	case SIOCSIFFLAGS:
   5105 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5106 			break;
   5107 		/* XXX set an ifflags callback and let ether_ioctl
   5108 		 * handle all of this.
   5109 		 */
   5110 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5111 			if (ifp->if_flags & IFF_RUNNING)
   5112 				error = ENETRESET;
   5113 			else
   5114 				bnx_init(ifp);
   5115 		} else if (ifp->if_flags & IFF_RUNNING)
   5116 			bnx_stop(ifp, 1);
   5117 		break;
   5118 
   5119 	case SIOCSIFMEDIA:
   5120 	case SIOCGIFMEDIA:
   5121 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5122 		    sc->bnx_phy_flags);
   5123 
   5124 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5125 		break;
   5126 
   5127 	default:
   5128 		error = ether_ioctl(ifp, command, data);
   5129 	}
   5130 
   5131 	if (error == ENETRESET) {
   5132 		if (ifp->if_flags & IFF_RUNNING)
   5133 			bnx_iff(sc);
   5134 		error = 0;
   5135 	}
   5136 
   5137 	splx(s);
   5138 	return (error);
   5139 }
   5140 
   5141 /****************************************************************************/
   5142 /* Transmit timeout handler.                                                */
   5143 /*                                                                          */
   5144 /* Returns:                                                                 */
   5145 /*   Nothing.                                                               */
   5146 /****************************************************************************/
   5147 void
   5148 bnx_watchdog(struct ifnet *ifp)
   5149 {
   5150 	struct bnx_softc	*sc = ifp->if_softc;
   5151 
   5152 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5153 	    bnx_dump_status_block(sc));
   5154 	/*
   5155 	 * If we are in this routine because of pause frames, then
   5156 	 * don't reset the hardware.
   5157 	 */
   5158 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5159 		return;
   5160 
   5161 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5162 
   5163 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5164 
   5165 	bnx_init(ifp);
   5166 
   5167 	ifp->if_oerrors++;
   5168 }
   5169 
   5170 /*
   5171  * Interrupt handler.
   5172  */
   5173 /****************************************************************************/
   5174 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5175 /* interrupt and then calls a separate routine for handle the various       */
   5176 /* interrupt causes (PHY, TX, RX).                                          */
   5177 /*                                                                          */
   5178 /* Returns:                                                                 */
   5179 /*   0 for success, positive value for failure.                             */
   5180 /****************************************************************************/
   5181 int
   5182 bnx_intr(void *xsc)
   5183 {
   5184 	struct bnx_softc	*sc;
   5185 	struct ifnet		*ifp;
   5186 	u_int32_t		status_attn_bits;
   5187 	const struct status_block *sblk;
   5188 
   5189 	sc = xsc;
   5190 
   5191 	ifp = &sc->bnx_ec.ec_if;
   5192 
   5193 	if (!device_is_active(sc->bnx_dev) ||
   5194 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5195 		return 0;
   5196 
   5197 	DBRUNIF(1, sc->interrupts_generated++);
   5198 
   5199 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5200 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   5201 
   5202 	/*
   5203 	 * If the hardware status block index
   5204 	 * matches the last value read by the
   5205 	 * driver and we haven't asserted our
   5206 	 * interrupt then there's nothing to do.
   5207 	 */
   5208 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   5209 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   5210 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   5211 		return (0);
   5212 
   5213 	/* Ack the interrupt and stop others from occuring. */
   5214 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5215 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   5216 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5217 
   5218 	/* Keep processing data as long as there is work to do. */
   5219 	for (;;) {
   5220 		sblk = sc->status_block;
   5221 		status_attn_bits = sblk->status_attn_bits;
   5222 
   5223 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5224 		    aprint_debug("Simulating unexpected status attention bit set.");
   5225 		    status_attn_bits = status_attn_bits |
   5226 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5227 
   5228 		/* Was it a link change interrupt? */
   5229 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5230 		    (sblk->status_attn_bits_ack &
   5231 		    STATUS_ATTN_BITS_LINK_STATE))
   5232 			bnx_phy_intr(sc);
   5233 
   5234 		/* If any other attention is asserted then the chip is toast. */
   5235 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5236 		    (sblk->status_attn_bits_ack &
   5237 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5238 			DBRUN(1, sc->unexpected_attentions++);
   5239 
   5240 			BNX_PRINTF(sc,
   5241 			    "Fatal attention detected: 0x%08X\n",
   5242 			    sblk->status_attn_bits);
   5243 
   5244 			DBRUN(BNX_FATAL,
   5245 			    if (bnx_debug_unexpected_attention == 0)
   5246 			    bnx_breakpoint(sc));
   5247 
   5248 			bnx_init(ifp);
   5249 			return (1);
   5250 		}
   5251 
   5252 		/* Check for any completed RX frames. */
   5253 		if (sblk->status_rx_quick_consumer_index0 !=
   5254 		    sc->hw_rx_cons)
   5255 			bnx_rx_intr(sc);
   5256 
   5257 		/* Check for any completed TX frames. */
   5258 		if (sblk->status_tx_quick_consumer_index0 !=
   5259 		    sc->hw_tx_cons)
   5260 			bnx_tx_intr(sc);
   5261 
   5262 		/* Save the status block index value for use during the
   5263 		 * next interrupt.
   5264 		 */
   5265 		sc->last_status_idx = sblk->status_idx;
   5266 
   5267 		/* Prevent speculative reads from getting ahead of the
   5268 		 * status block.
   5269 		 */
   5270 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   5271 		    BUS_SPACE_BARRIER_READ);
   5272 
   5273 		/* If there's no work left then exit the isr. */
   5274 		if ((sblk->status_rx_quick_consumer_index0 ==
   5275 		    sc->hw_rx_cons) &&
   5276 		    (sblk->status_tx_quick_consumer_index0 ==
   5277 		    sc->hw_tx_cons))
   5278 			break;
   5279 	}
   5280 
   5281 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5282 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   5283 
   5284 	/* Re-enable interrupts. */
   5285 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5286 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   5287 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5288 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5289 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   5290 
   5291 	/* Handle any frames that arrived while handling the interrupt. */
   5292 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   5293 		bnx_start(ifp);
   5294 
   5295 	return (1);
   5296 }
   5297 
   5298 /****************************************************************************/
   5299 /* Programs the various packet receive modes (broadcast and multicast).     */
   5300 /*                                                                          */
   5301 /* Returns:                                                                 */
   5302 /*   Nothing.                                                               */
   5303 /****************************************************************************/
   5304 void
   5305 bnx_iff(struct bnx_softc *sc)
   5306 {
   5307 	struct ethercom		*ec = &sc->bnx_ec;
   5308 	struct ifnet		*ifp = &ec->ec_if;
   5309 	struct ether_multi	*enm;
   5310 	struct ether_multistep	step;
   5311 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5312 	u_int32_t		rx_mode, sort_mode;
   5313 	int			h, i;
   5314 
   5315 	/* Initialize receive mode default settings. */
   5316 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5317 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5318 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5319 	ifp->if_flags &= ~IFF_ALLMULTI;
   5320 
   5321 	/*
   5322 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5323 	 * be enbled.
   5324 	 */
   5325 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5326 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5327 
   5328 	/*
   5329 	 * Check for promiscuous, all multicast, or selected
   5330 	 * multicast address filtering.
   5331 	 */
   5332 	if (ifp->if_flags & IFF_PROMISC) {
   5333 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5334 
   5335 		ifp->if_flags |= IFF_ALLMULTI;
   5336 		/* Enable promiscuous mode. */
   5337 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5338 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5339 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5340 allmulti:
   5341 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5342 
   5343 		ifp->if_flags |= IFF_ALLMULTI;
   5344 		/* Enable all multicast addresses. */
   5345 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5346 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5347 			    0xffffffff);
   5348 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5349 	} else {
   5350 		/* Accept one or more multicast(s). */
   5351 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5352 
   5353 		ETHER_FIRST_MULTI(step, ec, enm);
   5354 		while (enm != NULL) {
   5355 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5356 			    ETHER_ADDR_LEN)) {
   5357 				goto allmulti;
   5358 			}
   5359 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5360 			    0xFF;
   5361 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5362 			ETHER_NEXT_MULTI(step, enm);
   5363 		}
   5364 
   5365 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5366 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5367 			    hashes[i]);
   5368 
   5369 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5370 	}
   5371 
   5372 	/* Only make changes if the recive mode has actually changed. */
   5373 	if (rx_mode != sc->rx_mode) {
   5374 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5375 		    rx_mode);
   5376 
   5377 		sc->rx_mode = rx_mode;
   5378 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5379 	}
   5380 
   5381 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5382 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5383 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5384 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5385 }
   5386 
   5387 /****************************************************************************/
   5388 /* Called periodically to updates statistics from the controllers           */
   5389 /* statistics block.                                                        */
   5390 /*                                                                          */
   5391 /* Returns:                                                                 */
   5392 /*   Nothing.                                                               */
   5393 /****************************************************************************/
   5394 void
   5395 bnx_stats_update(struct bnx_softc *sc)
   5396 {
   5397 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5398 	struct statistics_block	*stats;
   5399 
   5400 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5401 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5402 	    BUS_DMASYNC_POSTREAD);
   5403 
   5404 	stats = (struct statistics_block *)sc->stats_block;
   5405 
   5406 	/*
   5407 	 * Update the interface statistics from the
   5408 	 * hardware statistics.
   5409 	 */
   5410 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5411 
   5412 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5413 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5414 	    (u_long)stats->stat_IfInMBUFDiscards +
   5415 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5416 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5417 
   5418 	ifp->if_oerrors = (u_long)
   5419 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5420 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5421 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5422 
   5423 	/*
   5424 	 * Certain controllers don't report
   5425 	 * carrier sense errors correctly.
   5426 	 * See errata E11_5708CA0_1165.
   5427 	 */
   5428 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5429 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5430 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5431 
   5432 	/*
   5433 	 * Update the sysctl statistics from the
   5434 	 * hardware statistics.
   5435 	 */
   5436 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
   5437 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
   5438 
   5439 	sc->stat_IfHCInBadOctets =
   5440 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5441 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
   5442 
   5443 	sc->stat_IfHCOutOctets =
   5444 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5445 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
   5446 
   5447 	sc->stat_IfHCOutBadOctets =
   5448 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5449 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
   5450 
   5451 	sc->stat_IfHCInUcastPkts =
   5452 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5453 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
   5454 
   5455 	sc->stat_IfHCInMulticastPkts =
   5456 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5457 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
   5458 
   5459 	sc->stat_IfHCInBroadcastPkts =
   5460 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5461 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5462 
   5463 	sc->stat_IfHCOutUcastPkts =
   5464 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5465 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
   5466 
   5467 	sc->stat_IfHCOutMulticastPkts =
   5468 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5469 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5470 
   5471 	sc->stat_IfHCOutBroadcastPkts =
   5472 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5473 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5474 
   5475 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5476 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5477 
   5478 	sc->stat_Dot3StatsCarrierSenseErrors =
   5479 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5480 
   5481 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5482 
   5483 	sc->stat_Dot3StatsAlignmentErrors =
   5484 	    stats->stat_Dot3StatsAlignmentErrors;
   5485 
   5486 	sc->stat_Dot3StatsSingleCollisionFrames =
   5487 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5488 
   5489 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5490 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5491 
   5492 	sc->stat_Dot3StatsDeferredTransmissions =
   5493 	    stats->stat_Dot3StatsDeferredTransmissions;
   5494 
   5495 	sc->stat_Dot3StatsExcessiveCollisions =
   5496 	    stats->stat_Dot3StatsExcessiveCollisions;
   5497 
   5498 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5499 
   5500 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5501 
   5502 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5503 
   5504 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5505 
   5506 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5507 
   5508 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5509 
   5510 	sc->stat_EtherStatsPktsRx64Octets =
   5511 	    stats->stat_EtherStatsPktsRx64Octets;
   5512 
   5513 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5514 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5515 
   5516 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5517 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5518 
   5519 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5520 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5521 
   5522 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5523 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5524 
   5525 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5526 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5527 
   5528 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5529 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5530 
   5531 	sc->stat_EtherStatsPktsTx64Octets =
   5532 	    stats->stat_EtherStatsPktsTx64Octets;
   5533 
   5534 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5535 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5536 
   5537 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5538 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5539 
   5540 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5541 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5542 
   5543 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5544 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5545 
   5546 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5547 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5548 
   5549 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5550 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5551 
   5552 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5553 
   5554 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5555 
   5556 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5557 
   5558 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5559 
   5560 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5561 
   5562 	sc->stat_MacControlFramesReceived =
   5563 	    stats->stat_MacControlFramesReceived;
   5564 
   5565 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5566 
   5567 	sc->stat_IfInFramesL2FilterDiscards =
   5568 	    stats->stat_IfInFramesL2FilterDiscards;
   5569 
   5570 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5571 
   5572 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5573 
   5574 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5575 
   5576 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5577 
   5578 	sc->stat_CatchupInRuleCheckerDiscards =
   5579 	    stats->stat_CatchupInRuleCheckerDiscards;
   5580 
   5581 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5582 
   5583 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5584 
   5585 	sc->stat_CatchupInRuleCheckerP4Hit =
   5586 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5587 
   5588 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5589 }
   5590 
   5591 void
   5592 bnx_tick(void *xsc)
   5593 {
   5594 	struct bnx_softc	*sc = xsc;
   5595 	struct mii_data		*mii;
   5596 	u_int32_t		msg;
   5597 	u_int16_t		prod, chain_prod;
   5598 	u_int32_t		prod_bseq;
   5599 	int s = splnet();
   5600 
   5601 	/* Tell the firmware that the driver is still running. */
   5602 #ifdef BNX_DEBUG
   5603 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5604 #else
   5605 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5606 #endif
   5607 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5608 
   5609 	/* Update the statistics from the hardware statistics block. */
   5610 	bnx_stats_update(sc);
   5611 
   5612 	/* Schedule the next tick. */
   5613 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5614 
   5615 	mii = &sc->bnx_mii;
   5616 	mii_tick(mii);
   5617 
   5618 	/* try to get more RX buffers, just in case */
   5619 	prod = sc->rx_prod;
   5620 	prod_bseq = sc->rx_prod_bseq;
   5621 	chain_prod = RX_CHAIN_IDX(prod);
   5622 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5623 	sc->rx_prod = prod;
   5624 	sc->rx_prod_bseq = prod_bseq;
   5625 	splx(s);
   5626 	return;
   5627 }
   5628 
   5629 /****************************************************************************/
   5630 /* BNX Debug Routines                                                       */
   5631 /****************************************************************************/
   5632 #ifdef BNX_DEBUG
   5633 
   5634 /****************************************************************************/
   5635 /* Prints out information about an mbuf.                                    */
   5636 /*                                                                          */
   5637 /* Returns:                                                                 */
   5638 /*   Nothing.                                                               */
   5639 /****************************************************************************/
   5640 void
   5641 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5642 {
   5643 	struct mbuf		*mp = m;
   5644 
   5645 	if (m == NULL) {
   5646 		/* Index out of range. */
   5647 		aprint_error("mbuf ptr is null!\n");
   5648 		return;
   5649 	}
   5650 
   5651 	while (mp) {
   5652 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5653 		    mp, mp->m_len);
   5654 
   5655 		if (mp->m_flags & M_EXT)
   5656 			aprint_debug("M_EXT ");
   5657 		if (mp->m_flags & M_PKTHDR)
   5658 			aprint_debug("M_PKTHDR ");
   5659 		aprint_debug("\n");
   5660 
   5661 		if (mp->m_flags & M_EXT)
   5662 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   5663 			    mp, mp->m_ext.ext_size);
   5664 
   5665 		mp = mp->m_next;
   5666 	}
   5667 }
   5668 
   5669 /****************************************************************************/
   5670 /* Prints out the mbufs in the TX mbuf chain.                               */
   5671 /*                                                                          */
   5672 /* Returns:                                                                 */
   5673 /*   Nothing.                                                               */
   5674 /****************************************************************************/
   5675 void
   5676 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5677 {
   5678 #if 0
   5679 	struct mbuf		*m;
   5680 	int			i;
   5681 
   5682 	aprint_debug_dev(sc->bnx_dev,
   5683 	    "----------------------------"
   5684 	    "  tx mbuf data  "
   5685 	    "----------------------------\n");
   5686 
   5687 	for (i = 0; i < count; i++) {
   5688 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5689 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5690 		bnx_dump_mbuf(sc, m);
   5691 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5692 	}
   5693 
   5694 	aprint_debug_dev(sc->bnx_dev,
   5695 	    "--------------------------------------------"
   5696 	    "----------------------------\n");
   5697 #endif
   5698 }
   5699 
   5700 /*
   5701  * This routine prints the RX mbuf chain.
   5702  */
   5703 void
   5704 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5705 {
   5706 	struct mbuf		*m;
   5707 	int			i;
   5708 
   5709 	aprint_debug_dev(sc->bnx_dev,
   5710 	    "----------------------------"
   5711 	    "  rx mbuf data  "
   5712 	    "----------------------------\n");
   5713 
   5714 	for (i = 0; i < count; i++) {
   5715 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5716 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5717 		bnx_dump_mbuf(sc, m);
   5718 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5719 	}
   5720 
   5721 
   5722 	aprint_debug_dev(sc->bnx_dev,
   5723 	    "--------------------------------------------"
   5724 	    "----------------------------\n");
   5725 }
   5726 
   5727 void
   5728 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5729 {
   5730 	if (idx > MAX_TX_BD)
   5731 		/* Index out of range. */
   5732 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5733 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5734 		/* TX Chain page pointer. */
   5735 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5736 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5737 		    txbd->tx_bd_haddr_lo);
   5738 	else
   5739 		/* Normal tx_bd entry. */
   5740 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5741 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5742 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5743 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5744 		    txbd->tx_bd_flags);
   5745 }
   5746 
   5747 void
   5748 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5749 {
   5750 	if (idx > MAX_RX_BD)
   5751 		/* Index out of range. */
   5752 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5753 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5754 		/* TX Chain page pointer. */
   5755 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5756 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5757 		    rxbd->rx_bd_haddr_lo);
   5758 	else
   5759 		/* Normal tx_bd entry. */
   5760 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5761 		    "0x%08X, flags = 0x%08X\n", idx,
   5762 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5763 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5764 }
   5765 
   5766 void
   5767 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5768 {
   5769 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5770 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5771 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5772 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5773 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5774 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5775 }
   5776 
   5777 /*
   5778  * This routine prints the TX chain.
   5779  */
   5780 void
   5781 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5782 {
   5783 	struct tx_bd		*txbd;
   5784 	int			i;
   5785 
   5786 	/* First some info about the tx_bd chain structure. */
   5787 	aprint_debug_dev(sc->bnx_dev,
   5788 	    "----------------------------"
   5789 	    "  tx_bd  chain  "
   5790 	    "----------------------------\n");
   5791 
   5792 	BNX_PRINTF(sc,
   5793 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5794 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
   5795 
   5796 	BNX_PRINTF(sc,
   5797 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5798 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
   5799 
   5800 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
   5801 
   5802 	aprint_error_dev(sc->bnx_dev, ""
   5803 	    "-----------------------------"
   5804 	    "   tx_bd data   "
   5805 	    "-----------------------------\n");
   5806 
   5807 	/* Now print out the tx_bd's themselves. */
   5808 	for (i = 0; i < count; i++) {
   5809 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5810 		bnx_dump_txbd(sc, tx_prod, txbd);
   5811 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5812 	}
   5813 
   5814 	aprint_debug_dev(sc->bnx_dev,
   5815 	    "-----------------------------"
   5816 	    "--------------"
   5817 	    "-----------------------------\n");
   5818 }
   5819 
   5820 /*
   5821  * This routine prints the RX chain.
   5822  */
   5823 void
   5824 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5825 {
   5826 	struct rx_bd		*rxbd;
   5827 	int			i;
   5828 
   5829 	/* First some info about the tx_bd chain structure. */
   5830 	aprint_debug_dev(sc->bnx_dev,
   5831 	    "----------------------------"
   5832 	    "  rx_bd  chain  "
   5833 	    "----------------------------\n");
   5834 
   5835 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   5836 
   5837 	BNX_PRINTF(sc,
   5838 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5839 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
   5840 
   5841 	BNX_PRINTF(sc,
   5842 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5843 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
   5844 
   5845 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
   5846 
   5847 	aprint_error_dev(sc->bnx_dev,
   5848 	    "----------------------------"
   5849 	    "   rx_bd data   "
   5850 	    "----------------------------\n");
   5851 
   5852 	/* Now print out the rx_bd's themselves. */
   5853 	for (i = 0; i < count; i++) {
   5854 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5855 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5856 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5857 	}
   5858 
   5859 	aprint_debug_dev(sc->bnx_dev,
   5860 	    "----------------------------"
   5861 	    "--------------"
   5862 	    "----------------------------\n");
   5863 }
   5864 
   5865 /*
   5866  * This routine prints the status block.
   5867  */
   5868 void
   5869 bnx_dump_status_block(struct bnx_softc *sc)
   5870 {
   5871 	struct status_block	*sblk;
   5872 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5873 	    BUS_DMASYNC_POSTREAD);
   5874 
   5875 	sblk = sc->status_block;
   5876 
   5877    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
   5878 	    "-----------------------------\n");
   5879 
   5880 	BNX_PRINTF(sc,
   5881 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5882 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5883 	    sblk->status_idx);
   5884 
   5885 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5886 	    sblk->status_rx_quick_consumer_index0,
   5887 	    sblk->status_tx_quick_consumer_index0);
   5888 
   5889 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5890 
   5891 	/* Theses indices are not used for normal L2 drivers. */
   5892 	if (sblk->status_rx_quick_consumer_index1 ||
   5893 		sblk->status_tx_quick_consumer_index1)
   5894 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5895 		    sblk->status_rx_quick_consumer_index1,
   5896 		    sblk->status_tx_quick_consumer_index1);
   5897 
   5898 	if (sblk->status_rx_quick_consumer_index2 ||
   5899 		sblk->status_tx_quick_consumer_index2)
   5900 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5901 		    sblk->status_rx_quick_consumer_index2,
   5902 		    sblk->status_tx_quick_consumer_index2);
   5903 
   5904 	if (sblk->status_rx_quick_consumer_index3 ||
   5905 		sblk->status_tx_quick_consumer_index3)
   5906 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5907 		    sblk->status_rx_quick_consumer_index3,
   5908 		    sblk->status_tx_quick_consumer_index3);
   5909 
   5910 	if (sblk->status_rx_quick_consumer_index4 ||
   5911 		sblk->status_rx_quick_consumer_index5)
   5912 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5913 		    sblk->status_rx_quick_consumer_index4,
   5914 		    sblk->status_rx_quick_consumer_index5);
   5915 
   5916 	if (sblk->status_rx_quick_consumer_index6 ||
   5917 		sblk->status_rx_quick_consumer_index7)
   5918 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5919 		    sblk->status_rx_quick_consumer_index6,
   5920 		    sblk->status_rx_quick_consumer_index7);
   5921 
   5922 	if (sblk->status_rx_quick_consumer_index8 ||
   5923 		sblk->status_rx_quick_consumer_index9)
   5924 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5925 		    sblk->status_rx_quick_consumer_index8,
   5926 		    sblk->status_rx_quick_consumer_index9);
   5927 
   5928 	if (sblk->status_rx_quick_consumer_index10 ||
   5929 		sblk->status_rx_quick_consumer_index11)
   5930 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   5931 		    sblk->status_rx_quick_consumer_index10,
   5932 		    sblk->status_rx_quick_consumer_index11);
   5933 
   5934 	if (sblk->status_rx_quick_consumer_index12 ||
   5935 		sblk->status_rx_quick_consumer_index13)
   5936 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   5937 		    sblk->status_rx_quick_consumer_index12,
   5938 		    sblk->status_rx_quick_consumer_index13);
   5939 
   5940 	if (sblk->status_rx_quick_consumer_index14 ||
   5941 		sblk->status_rx_quick_consumer_index15)
   5942 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   5943 		    sblk->status_rx_quick_consumer_index14,
   5944 		    sblk->status_rx_quick_consumer_index15);
   5945 
   5946 	if (sblk->status_completion_producer_index ||
   5947 		sblk->status_cmd_consumer_index)
   5948 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   5949 		    sblk->status_completion_producer_index,
   5950 		    sblk->status_cmd_consumer_index);
   5951 
   5952 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   5953 	    "-----------------------------\n");
   5954 }
   5955 
   5956 /*
   5957  * This routine prints the statistics block.
   5958  */
   5959 void
   5960 bnx_dump_stats_block(struct bnx_softc *sc)
   5961 {
   5962 	struct statistics_block	*sblk;
   5963 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5964 	    BUS_DMASYNC_POSTREAD);
   5965 
   5966 	sblk = sc->stats_block;
   5967 
   5968 	aprint_debug_dev(sc->bnx_dev, ""
   5969 	    "-----------------------------"
   5970 	    " Stats  Block "
   5971 	    "-----------------------------\n");
   5972 
   5973 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   5974 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   5975 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   5976 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   5977 
   5978 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   5979 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   5980 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   5981 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   5982 
   5983 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   5984 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   5985 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   5986 	    sblk->stat_IfHCInMulticastPkts_hi,
   5987 	    sblk->stat_IfHCInMulticastPkts_lo);
   5988 
   5989 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   5990 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   5991 	    sblk->stat_IfHCInBroadcastPkts_hi,
   5992 	    sblk->stat_IfHCInBroadcastPkts_lo,
   5993 	    sblk->stat_IfHCOutUcastPkts_hi,
   5994 	    sblk->stat_IfHCOutUcastPkts_lo);
   5995 
   5996 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   5997 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   5998 	    sblk->stat_IfHCOutMulticastPkts_hi,
   5999 	    sblk->stat_IfHCOutMulticastPkts_lo,
   6000 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   6001 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   6002 
   6003 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   6004 		BNX_PRINTF(sc, "0x%08X : "
   6005 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6006 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6007 
   6008 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6009 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6010 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6011 
   6012 	if (sblk->stat_Dot3StatsFCSErrors)
   6013 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6014 		    sblk->stat_Dot3StatsFCSErrors);
   6015 
   6016 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6017 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6018 		    sblk->stat_Dot3StatsAlignmentErrors);
   6019 
   6020 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6021 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6022 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6023 
   6024 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6025 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6026 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6027 
   6028 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6029 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6030 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6031 
   6032 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6033 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6034 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6035 
   6036 	if (sblk->stat_Dot3StatsLateCollisions)
   6037 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6038 		    sblk->stat_Dot3StatsLateCollisions);
   6039 
   6040 	if (sblk->stat_EtherStatsCollisions)
   6041 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6042 		    sblk->stat_EtherStatsCollisions);
   6043 
   6044 	if (sblk->stat_EtherStatsFragments)
   6045 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6046 		    sblk->stat_EtherStatsFragments);
   6047 
   6048 	if (sblk->stat_EtherStatsJabbers)
   6049 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6050 		    sblk->stat_EtherStatsJabbers);
   6051 
   6052 	if (sblk->stat_EtherStatsUndersizePkts)
   6053 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6054 		    sblk->stat_EtherStatsUndersizePkts);
   6055 
   6056 	if (sblk->stat_EtherStatsOverrsizePkts)
   6057 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6058 		    sblk->stat_EtherStatsOverrsizePkts);
   6059 
   6060 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6061 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6062 		    sblk->stat_EtherStatsPktsRx64Octets);
   6063 
   6064 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6065 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6066 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6067 
   6068 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6069 		BNX_PRINTF(sc, "0x%08X : "
   6070 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6071 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6072 
   6073 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6074 		BNX_PRINTF(sc, "0x%08X : "
   6075 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6076 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6077 
   6078 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6079 		BNX_PRINTF(sc, "0x%08X : "
   6080 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6081 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6082 
   6083 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6084 		BNX_PRINTF(sc, "0x%08X : "
   6085 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6086 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6087 
   6088 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6089 		BNX_PRINTF(sc, "0x%08X : "
   6090 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6091 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6092 
   6093 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6094 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6095 		    sblk->stat_EtherStatsPktsTx64Octets);
   6096 
   6097 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6098 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6099 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6100 
   6101 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6102 		BNX_PRINTF(sc, "0x%08X : "
   6103 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6104 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6105 
   6106 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6107 		BNX_PRINTF(sc, "0x%08X : "
   6108 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6109 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6110 
   6111 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6112 		BNX_PRINTF(sc, "0x%08X : "
   6113 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6114 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6115 
   6116 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6117 		BNX_PRINTF(sc, "0x%08X : "
   6118 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6119 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6120 
   6121 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6122 		BNX_PRINTF(sc, "0x%08X : "
   6123 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6124 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6125 
   6126 	if (sblk->stat_XonPauseFramesReceived)
   6127 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6128 		    sblk->stat_XonPauseFramesReceived);
   6129 
   6130 	if (sblk->stat_XoffPauseFramesReceived)
   6131 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6132 		    sblk->stat_XoffPauseFramesReceived);
   6133 
   6134 	if (sblk->stat_OutXonSent)
   6135 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6136 		    sblk->stat_OutXonSent);
   6137 
   6138 	if (sblk->stat_OutXoffSent)
   6139 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6140 		    sblk->stat_OutXoffSent);
   6141 
   6142 	if (sblk->stat_FlowControlDone)
   6143 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6144 		    sblk->stat_FlowControlDone);
   6145 
   6146 	if (sblk->stat_MacControlFramesReceived)
   6147 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6148 		    sblk->stat_MacControlFramesReceived);
   6149 
   6150 	if (sblk->stat_XoffStateEntered)
   6151 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6152 		    sblk->stat_XoffStateEntered);
   6153 
   6154 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6155 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6156 		    sblk->stat_IfInFramesL2FilterDiscards);
   6157 
   6158 	if (sblk->stat_IfInRuleCheckerDiscards)
   6159 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6160 		    sblk->stat_IfInRuleCheckerDiscards);
   6161 
   6162 	if (sblk->stat_IfInFTQDiscards)
   6163 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6164 		    sblk->stat_IfInFTQDiscards);
   6165 
   6166 	if (sblk->stat_IfInMBUFDiscards)
   6167 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6168 		    sblk->stat_IfInMBUFDiscards);
   6169 
   6170 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6171 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6172 		    sblk->stat_IfInRuleCheckerP4Hit);
   6173 
   6174 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6175 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6176 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6177 
   6178 	if (sblk->stat_CatchupInFTQDiscards)
   6179 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6180 		    sblk->stat_CatchupInFTQDiscards);
   6181 
   6182 	if (sblk->stat_CatchupInMBUFDiscards)
   6183 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6184 		    sblk->stat_CatchupInMBUFDiscards);
   6185 
   6186 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6187 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6188 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6189 
   6190 	aprint_debug_dev(sc->bnx_dev,
   6191 	    "-----------------------------"
   6192 	    "--------------"
   6193 	    "-----------------------------\n");
   6194 }
   6195 
   6196 void
   6197 bnx_dump_driver_state(struct bnx_softc *sc)
   6198 {
   6199 	aprint_debug_dev(sc->bnx_dev,
   6200 	    "-----------------------------"
   6201 	    " Driver State "
   6202 	    "-----------------------------\n");
   6203 
   6204 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6205 	    "address\n", sc);
   6206 
   6207 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6208 	    sc->status_block);
   6209 
   6210 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6211 	    "address\n", sc->stats_block);
   6212 
   6213 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6214 	    "adddress\n", sc->tx_bd_chain);
   6215 
   6216 #if 0
   6217 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6218 	    sc->rx_bd_chain);
   6219 
   6220 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6221 	    sc->tx_mbuf_ptr);
   6222 #endif
   6223 
   6224 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6225 	    sc->rx_mbuf_ptr);
   6226 
   6227 	BNX_PRINTF(sc,
   6228 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6229 	    sc->interrupts_generated);
   6230 
   6231 	BNX_PRINTF(sc,
   6232 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6233 	    sc->rx_interrupts);
   6234 
   6235 	BNX_PRINTF(sc,
   6236 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6237 	    sc->tx_interrupts);
   6238 
   6239 	BNX_PRINTF(sc,
   6240 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6241 	    sc->last_status_idx);
   6242 
   6243 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6244 	    sc->tx_prod);
   6245 
   6246 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6247 	    sc->tx_cons);
   6248 
   6249 	BNX_PRINTF(sc,
   6250 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6251 	    sc->tx_prod_bseq);
   6252 	BNX_PRINTF(sc,
   6253 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6254 	    sc->tx_mbuf_alloc);
   6255 
   6256 	BNX_PRINTF(sc,
   6257 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6258 	    sc->used_tx_bd);
   6259 
   6260 	BNX_PRINTF(sc,
   6261 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6262 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6263 
   6264 
   6265 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6266 	    sc->rx_prod);
   6267 
   6268 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6269 	    sc->rx_cons);
   6270 
   6271 	BNX_PRINTF(sc,
   6272 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6273 	    sc->rx_prod_bseq);
   6274 
   6275 	BNX_PRINTF(sc,
   6276 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6277 	    sc->rx_mbuf_alloc);
   6278 
   6279 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6280 	    sc->free_rx_bd);
   6281 
   6282 	BNX_PRINTF(sc,
   6283 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6284 	    sc->rx_low_watermark, sc->max_rx_bd);
   6285 
   6286 	BNX_PRINTF(sc,
   6287 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6288 	    "mbuf alloc failures\n",
   6289 	    sc->mbuf_alloc_failed);
   6290 
   6291 	BNX_PRINTF(sc,
   6292 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6293 	    "simulated mbuf alloc failures\n",
   6294 	    sc->mbuf_sim_alloc_failed);
   6295 
   6296 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6297 	    "-----------------------------\n");
   6298 }
   6299 
   6300 void
   6301 bnx_dump_hw_state(struct bnx_softc *sc)
   6302 {
   6303 	u_int32_t		val1;
   6304 	int			i;
   6305 
   6306 	aprint_debug_dev(sc->bnx_dev,
   6307 	    "----------------------------"
   6308 	    " Hardware State "
   6309 	    "----------------------------\n");
   6310 
   6311 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   6312 
   6313 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6314 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6315 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6316 
   6317 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6318 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6319 
   6320 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6321 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6322 
   6323 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6324 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6325 	    BNX_EMAC_STATUS);
   6326 
   6327 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6328 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6329 
   6330 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6331 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6332 	    BNX_TBDR_STATUS);
   6333 
   6334 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6335 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6336 	    BNX_TDMA_STATUS);
   6337 
   6338 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6339 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6340 
   6341 	aprint_debug_dev(sc->bnx_dev,
   6342 	    "----------------------------"
   6343 	    "----------------"
   6344 	    "----------------------------\n");
   6345 
   6346 	aprint_debug_dev(sc->bnx_dev,
   6347 	    "----------------------------"
   6348 	    " Register  Dump "
   6349 	    "----------------------------\n");
   6350 
   6351 	for (i = 0x400; i < 0x8000; i += 0x10)
   6352 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6353 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6354 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6355 
   6356 	aprint_debug_dev(sc->bnx_dev,
   6357 	    "----------------------------"
   6358 	    "----------------"
   6359 	    "----------------------------\n");
   6360 }
   6361 
   6362 void
   6363 bnx_breakpoint(struct bnx_softc *sc)
   6364 {
   6365 	/* Unreachable code to shut the compiler up about unused functions. */
   6366 	if (0) {
   6367    		bnx_dump_txbd(sc, 0, NULL);
   6368 		bnx_dump_rxbd(sc, 0, NULL);
   6369 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6370 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6371 		bnx_dump_l2fhdr(sc, 0, NULL);
   6372 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6373 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6374 		bnx_dump_status_block(sc);
   6375 		bnx_dump_stats_block(sc);
   6376 		bnx_dump_driver_state(sc);
   6377 		bnx_dump_hw_state(sc);
   6378 	}
   6379 
   6380 	bnx_dump_driver_state(sc);
   6381 	/* Print the important status block fields. */
   6382 	bnx_dump_status_block(sc);
   6383 
   6384 #if 0
   6385 	/* Call the debugger. */
   6386 	breakpoint();
   6387 #endif
   6388 
   6389 	return;
   6390 }
   6391 #endif
   6392