if_bnx.c revision 1.51 1 /* $NetBSD: if_bnx.c,v 1.51 2014/03/29 19:28:24 christos Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.51 2014/03/29 19:28:24 christos Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 *
52 * BCM5706C A0, A1
53 * BCM5706S A0, A1
54 * BCM5708C A0, B0
55 * BCM5708S A0, B0
56 * BCM5709C A0 B0, B1, B2 (pre-production)
57 * BCM5709S A0, B0, B1, B2 (pre-production)
58 */
59
60 #include <sys/callout.h>
61 #include <sys/mutex.h>
62
63 #include <dev/pci/if_bnxreg.h>
64 #include <dev/pci/if_bnxvar.h>
65
66 #include <dev/microcode/bnx/bnxfw.h>
67
68 /****************************************************************************/
69 /* BNX Driver Version */
70 /****************************************************************************/
71 #define BNX_DRIVER_VERSION "v0.9.6"
72
73 /****************************************************************************/
74 /* BNX Debug Options */
75 /****************************************************************************/
76 #ifdef BNX_DEBUG
77 u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
78
79 /* 0 = Never */
80 /* 1 = 1 in 2,147,483,648 */
81 /* 256 = 1 in 8,388,608 */
82 /* 2048 = 1 in 1,048,576 */
83 /* 65536 = 1 in 32,768 */
84 /* 1048576 = 1 in 2,048 */
85 /* 268435456 = 1 in 8 */
86 /* 536870912 = 1 in 4 */
87 /* 1073741824 = 1 in 2 */
88
89 /* Controls how often the l2_fhdr frame error check will fail. */
90 int bnx_debug_l2fhdr_status_check = 0;
91
92 /* Controls how often the unexpected attention check will fail. */
93 int bnx_debug_unexpected_attention = 0;
94
95 /* Controls how often to simulate an mbuf allocation failure. */
96 int bnx_debug_mbuf_allocation_failure = 0;
97
98 /* Controls how often to simulate a DMA mapping failure. */
99 int bnx_debug_dma_map_addr_failure = 0;
100
101 /* Controls how often to simulate a bootcode failure. */
102 int bnx_debug_bootcode_running_failure = 0;
103 #endif
104
105 /****************************************************************************/
106 /* PCI Device ID Table */
107 /* */
108 /* Used by bnx_probe() to identify the devices supported by this driver. */
109 /****************************************************************************/
110 static const struct bnx_product {
111 pci_vendor_id_t bp_vendor;
112 pci_product_id_t bp_product;
113 pci_vendor_id_t bp_subvendor;
114 pci_product_id_t bp_subproduct;
115 const char *bp_name;
116 } bnx_devices[] = {
117 #ifdef PCI_SUBPRODUCT_HP_NC370T
118 {
119 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
120 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
121 "HP NC370T Multifunction Gigabit Server Adapter"
122 },
123 #endif
124 #ifdef PCI_SUBPRODUCT_HP_NC370i
125 {
126 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
127 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
128 "HP NC370i Multifunction Gigabit Server Adapter"
129 },
130 #endif
131 {
132 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
133 0, 0,
134 "Broadcom NetXtreme II BCM5706 1000Base-T"
135 },
136 #ifdef PCI_SUBPRODUCT_HP_NC370F
137 {
138 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
139 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
140 "HP NC370F Multifunction Gigabit Server Adapter"
141 },
142 #endif
143 {
144 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
145 0, 0,
146 "Broadcom NetXtreme II BCM5706 1000Base-SX"
147 },
148 {
149 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
150 0, 0,
151 "Broadcom NetXtreme II BCM5708 1000Base-T"
152 },
153 {
154 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
155 0, 0,
156 "Broadcom NetXtreme II BCM5708 1000Base-SX"
157 },
158 {
159 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
160 0, 0,
161 "Broadcom NetXtreme II BCM5709 1000Base-T"
162 },
163 {
164 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
165 0, 0,
166 "Broadcom NetXtreme II BCM5709 1000Base-SX"
167 },
168 {
169 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
170 0, 0,
171 "Broadcom NetXtreme II BCM5716 1000Base-T"
172 },
173 {
174 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
175 0, 0,
176 "Broadcom NetXtreme II BCM5716 1000Base-SX"
177 },
178 };
179
180 /****************************************************************************/
181 /* Supported Flash NVRAM device data. */
182 /****************************************************************************/
183 static struct flash_spec flash_table[] =
184 {
185 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
187 /* Slow EEPROM */
188 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
189 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
190 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
191 "EEPROM - slow"},
192 /* Expansion entry 0001 */
193 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
194 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
196 "Entry 0001"},
197 /* Saifun SA25F010 (non-buffered flash) */
198 /* strap, cfg1, & write1 need updates */
199 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
200 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
201 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
202 "Non-buffered flash (128kB)"},
203 /* Saifun SA25F020 (non-buffered flash) */
204 /* strap, cfg1, & write1 need updates */
205 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
206 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
208 "Non-buffered flash (256kB)"},
209 /* Expansion entry 0100 */
210 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
211 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 "Entry 0100"},
214 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
215 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
216 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
217 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
218 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
219 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
220 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
221 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
222 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
223 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
224 /* Saifun SA25F005 (non-buffered flash) */
225 /* strap, cfg1, & write1 need updates */
226 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
227 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
228 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
229 "Non-buffered flash (64kB)"},
230 /* Fast EEPROM */
231 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
232 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
233 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
234 "EEPROM - fast"},
235 /* Expansion entry 1001 */
236 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
237 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
238 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
239 "Entry 1001"},
240 /* Expansion entry 1010 */
241 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
242 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
243 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
244 "Entry 1010"},
245 /* ATMEL AT45DB011B (buffered flash) */
246 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
247 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
248 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
249 "Buffered flash (128kB)"},
250 /* Expansion entry 1100 */
251 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
252 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
253 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
254 "Entry 1100"},
255 /* Expansion entry 1101 */
256 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
257 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
258 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
259 "Entry 1101"},
260 /* Ateml Expansion entry 1110 */
261 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
262 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
263 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
264 "Entry 1110 (Atmel)"},
265 /* ATMEL AT45DB021B (buffered flash) */
266 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
267 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
268 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
269 "Buffered flash (256kB)"},
270 };
271
272 /*
273 * The BCM5709 controllers transparently handle the
274 * differences between Atmel 264 byte pages and all
275 * flash devices which use 256 byte pages, so no
276 * logical-to-physical mapping is required in the
277 * driver.
278 */
279 static struct flash_spec flash_5709 = {
280 .flags = BNX_NV_BUFFERED,
281 .page_bits = BCM5709_FLASH_PAGE_BITS,
282 .page_size = BCM5709_FLASH_PAGE_SIZE,
283 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
284 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
285 .name = "5709 buffered flash (256kB)",
286 };
287
288 /****************************************************************************/
289 /* OpenBSD device entry points. */
290 /****************************************************************************/
291 static int bnx_probe(device_t, cfdata_t, void *);
292 void bnx_attach(device_t, device_t, void *);
293 int bnx_detach(device_t, int);
294
295 /****************************************************************************/
296 /* BNX Debug Data Structure Dump Routines */
297 /****************************************************************************/
298 #ifdef BNX_DEBUG
299 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
300 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
301 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
302 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
303 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
304 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
305 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
306 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
307 void bnx_dump_status_block(struct bnx_softc *);
308 void bnx_dump_stats_block(struct bnx_softc *);
309 void bnx_dump_driver_state(struct bnx_softc *);
310 void bnx_dump_hw_state(struct bnx_softc *);
311 void bnx_breakpoint(struct bnx_softc *);
312 #endif
313
314 /****************************************************************************/
315 /* BNX Register/Memory Access Routines */
316 /****************************************************************************/
317 u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
318 void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
319 void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
320 int bnx_miibus_read_reg(device_t, int, int);
321 void bnx_miibus_write_reg(device_t, int, int, int);
322 void bnx_miibus_statchg(struct ifnet *);
323
324 /****************************************************************************/
325 /* BNX NVRAM Access Routines */
326 /****************************************************************************/
327 int bnx_acquire_nvram_lock(struct bnx_softc *);
328 int bnx_release_nvram_lock(struct bnx_softc *);
329 void bnx_enable_nvram_access(struct bnx_softc *);
330 void bnx_disable_nvram_access(struct bnx_softc *);
331 int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
332 u_int32_t);
333 int bnx_init_nvram(struct bnx_softc *);
334 int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
335 int bnx_nvram_test(struct bnx_softc *);
336 #ifdef BNX_NVRAM_WRITE_SUPPORT
337 int bnx_enable_nvram_write(struct bnx_softc *);
338 void bnx_disable_nvram_write(struct bnx_softc *);
339 int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
340 int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
341 u_int32_t);
342 int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
343 #endif
344
345 /****************************************************************************/
346 /* */
347 /****************************************************************************/
348 void bnx_get_media(struct bnx_softc *);
349 void bnx_init_media(struct bnx_softc *);
350 int bnx_dma_alloc(struct bnx_softc *);
351 void bnx_dma_free(struct bnx_softc *);
352 void bnx_release_resources(struct bnx_softc *);
353
354 /****************************************************************************/
355 /* BNX Firmware Synchronization and Load */
356 /****************************************************************************/
357 int bnx_fw_sync(struct bnx_softc *, u_int32_t);
358 void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
359 u_int32_t);
360 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 struct fw_info *);
362 void bnx_init_cpus(struct bnx_softc *);
363
364 void bnx_stop(struct ifnet *, int);
365 int bnx_reset(struct bnx_softc *, u_int32_t);
366 int bnx_chipinit(struct bnx_softc *);
367 int bnx_blockinit(struct bnx_softc *);
368 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
369 u_int16_t *, u_int32_t *);
370 int bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
371
372 int bnx_init_tx_chain(struct bnx_softc *);
373 void bnx_init_tx_context(struct bnx_softc *);
374 int bnx_init_rx_chain(struct bnx_softc *);
375 void bnx_init_rx_context(struct bnx_softc *);
376 void bnx_free_rx_chain(struct bnx_softc *);
377 void bnx_free_tx_chain(struct bnx_softc *);
378
379 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
380 void bnx_start(struct ifnet *);
381 int bnx_ioctl(struct ifnet *, u_long, void *);
382 void bnx_watchdog(struct ifnet *);
383 int bnx_init(struct ifnet *);
384
385 void bnx_init_context(struct bnx_softc *);
386 void bnx_get_mac_addr(struct bnx_softc *);
387 void bnx_set_mac_addr(struct bnx_softc *);
388 void bnx_phy_intr(struct bnx_softc *);
389 void bnx_rx_intr(struct bnx_softc *);
390 void bnx_tx_intr(struct bnx_softc *);
391 void bnx_disable_intr(struct bnx_softc *);
392 void bnx_enable_intr(struct bnx_softc *);
393
394 int bnx_intr(void *);
395 void bnx_iff(struct bnx_softc *);
396 void bnx_stats_update(struct bnx_softc *);
397 void bnx_tick(void *);
398
399 struct pool *bnx_tx_pool = NULL;
400 void bnx_alloc_pkts(struct work *, void *);
401
402 /****************************************************************************/
403 /* OpenBSD device dispatch table. */
404 /****************************************************************************/
405 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
406 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
407
408 /****************************************************************************/
409 /* Device probe function. */
410 /* */
411 /* Compares the device to the driver's list of supported devices and */
412 /* reports back to the OS whether this is the right driver for the device. */
413 /* */
414 /* Returns: */
415 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
416 /****************************************************************************/
417 static const struct bnx_product *
418 bnx_lookup(const struct pci_attach_args *pa)
419 {
420 int i;
421 pcireg_t subid;
422
423 for (i = 0; i < __arraycount(bnx_devices); i++) {
424 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
425 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
426 continue;
427 if (!bnx_devices[i].bp_subvendor)
428 return &bnx_devices[i];
429 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
430 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
431 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
432 return &bnx_devices[i];
433 }
434
435 return NULL;
436 }
437 static int
438 bnx_probe(device_t parent, cfdata_t match, void *aux)
439 {
440 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
441
442 if (bnx_lookup(pa) != NULL)
443 return (1);
444
445 return (0);
446 }
447
448 /****************************************************************************/
449 /* Device attach function. */
450 /* */
451 /* Allocates device resources, performs secondary chip identification, */
452 /* resets and initializes the hardware, and initializes driver instance */
453 /* variables. */
454 /* */
455 /* Returns: */
456 /* 0 on success, positive value on failure. */
457 /****************************************************************************/
458 void
459 bnx_attach(device_t parent, device_t self, void *aux)
460 {
461 const struct bnx_product *bp;
462 struct bnx_softc *sc = device_private(self);
463 prop_dictionary_t dict;
464 struct pci_attach_args *pa = aux;
465 pci_chipset_tag_t pc = pa->pa_pc;
466 pci_intr_handle_t ih;
467 const char *intrstr = NULL;
468 u_int32_t command;
469 struct ifnet *ifp;
470 u_int32_t val;
471 int mii_flags = MIIF_FORCEANEG;
472 pcireg_t memtype;
473 char intrbuf[PCI_INTRSTR_LEN];
474
475 if (bnx_tx_pool == NULL) {
476 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
477 if (bnx_tx_pool != NULL) {
478 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
479 0, 0, 0, "bnxpkts", NULL, IPL_NET);
480 } else {
481 aprint_error(": can't alloc bnx_tx_pool\n");
482 return;
483 }
484 }
485
486 bp = bnx_lookup(pa);
487 if (bp == NULL)
488 panic("unknown device");
489
490 sc->bnx_dev = self;
491
492 aprint_naive("\n");
493 aprint_normal(": %s\n", bp->bp_name);
494
495 sc->bnx_pa = *pa;
496
497 /*
498 * Map control/status registers.
499 */
500 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
501 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
502 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
503 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
504
505 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
506 aprint_error_dev(sc->bnx_dev,
507 "failed to enable memory mapping!\n");
508 return;
509 }
510
511 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
512 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
513 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
514 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
515 return;
516 }
517
518 if (pci_intr_map(pa, &ih)) {
519 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
520 goto bnx_attach_fail;
521 }
522
523 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
524
525 /*
526 * Configure byte swap and enable indirect register access.
527 * Rely on CPU to do target byte swapping on big endian systems.
528 * Access to registers outside of PCI configurtion space are not
529 * valid until this is done.
530 */
531 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
532 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
533 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
534
535 /* Save ASIC revsion info. */
536 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
537
538 /*
539 * Find the base address for shared memory access.
540 * Newer versions of bootcode use a signature and offset
541 * while older versions use a fixed address.
542 */
543 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
544 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
545 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
546 (sc->bnx_pa.pa_function << 2));
547 else
548 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
549
550 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
551
552 /* Set initial device and PHY flags */
553 sc->bnx_flags = 0;
554 sc->bnx_phy_flags = 0;
555
556 /* Get PCI bus information (speed and type). */
557 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
558 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
559 u_int32_t clkreg;
560
561 sc->bnx_flags |= BNX_PCIX_FLAG;
562
563 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
564
565 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
566 switch (clkreg) {
567 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
568 sc->bus_speed_mhz = 133;
569 break;
570
571 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
572 sc->bus_speed_mhz = 100;
573 break;
574
575 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
576 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
577 sc->bus_speed_mhz = 66;
578 break;
579
580 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
581 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
582 sc->bus_speed_mhz = 50;
583 break;
584
585 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
586 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
587 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
588 sc->bus_speed_mhz = 33;
589 break;
590 }
591 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
592 sc->bus_speed_mhz = 66;
593 else
594 sc->bus_speed_mhz = 33;
595
596 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
597 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
598
599 /* Reset the controller. */
600 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
601 goto bnx_attach_fail;
602
603 /* Initialize the controller. */
604 if (bnx_chipinit(sc)) {
605 aprint_error_dev(sc->bnx_dev,
606 "Controller initialization failed!\n");
607 goto bnx_attach_fail;
608 }
609
610 /* Perform NVRAM test. */
611 if (bnx_nvram_test(sc)) {
612 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
613 goto bnx_attach_fail;
614 }
615
616 /* Fetch the permanent Ethernet MAC address. */
617 bnx_get_mac_addr(sc);
618 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
619 ether_sprintf(sc->eaddr));
620
621 /*
622 * Trip points control how many BDs
623 * should be ready before generating an
624 * interrupt while ticks control how long
625 * a BD can sit in the chain before
626 * generating an interrupt. Set the default
627 * values for the RX and TX rings.
628 */
629
630 #ifdef BNX_DEBUG
631 /* Force more frequent interrupts. */
632 sc->bnx_tx_quick_cons_trip_int = 1;
633 sc->bnx_tx_quick_cons_trip = 1;
634 sc->bnx_tx_ticks_int = 0;
635 sc->bnx_tx_ticks = 0;
636
637 sc->bnx_rx_quick_cons_trip_int = 1;
638 sc->bnx_rx_quick_cons_trip = 1;
639 sc->bnx_rx_ticks_int = 0;
640 sc->bnx_rx_ticks = 0;
641 #else
642 sc->bnx_tx_quick_cons_trip_int = 20;
643 sc->bnx_tx_quick_cons_trip = 20;
644 sc->bnx_tx_ticks_int = 80;
645 sc->bnx_tx_ticks = 80;
646
647 sc->bnx_rx_quick_cons_trip_int = 6;
648 sc->bnx_rx_quick_cons_trip = 6;
649 sc->bnx_rx_ticks_int = 18;
650 sc->bnx_rx_ticks = 18;
651 #endif
652
653 /* Update statistics once every second. */
654 sc->bnx_stats_ticks = 1000000 & 0xffff00;
655
656 /* Find the media type for the adapter. */
657 bnx_get_media(sc);
658
659 /*
660 * Store config data needed by the PHY driver for
661 * backplane applications
662 */
663 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
664 BNX_SHARED_HW_CFG_CONFIG);
665 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
666 BNX_PORT_HW_CFG_CONFIG);
667
668 /* Allocate DMA memory resources. */
669 sc->bnx_dmatag = pa->pa_dmat;
670 if (bnx_dma_alloc(sc)) {
671 aprint_error_dev(sc->bnx_dev,
672 "DMA resource allocation failed!\n");
673 goto bnx_attach_fail;
674 }
675
676 /* Initialize the ifnet interface. */
677 ifp = &sc->bnx_ec.ec_if;
678 ifp->if_softc = sc;
679 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
680 ifp->if_ioctl = bnx_ioctl;
681 ifp->if_stop = bnx_stop;
682 ifp->if_start = bnx_start;
683 ifp->if_init = bnx_init;
684 ifp->if_timer = 0;
685 ifp->if_watchdog = bnx_watchdog;
686 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
687 IFQ_SET_READY(&ifp->if_snd);
688 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
689
690 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
691 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
692
693 ifp->if_capabilities |=
694 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
695 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
696 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
697
698 /* Hookup IRQ last. */
699 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
700 if (sc->bnx_intrhand == NULL) {
701 aprint_error_dev(self, "couldn't establish interrupt");
702 if (intrstr != NULL)
703 aprint_error(" at %s", intrstr);
704 aprint_error("\n");
705 goto bnx_attach_fail;
706 }
707 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
708
709 /* create workqueue to handle packet allocations */
710 if (workqueue_create(&sc->bnx_wq, device_xname(self),
711 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
712 aprint_error_dev(self, "failed to create workqueue\n");
713 goto bnx_attach_fail;
714 }
715
716 sc->bnx_mii.mii_ifp = ifp;
717 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
718 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
719 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
720
721 /* Handle any special PHY initialization for SerDes PHYs. */
722 bnx_init_media(sc);
723
724 sc->bnx_ec.ec_mii = &sc->bnx_mii;
725 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
726 ether_mediastatus);
727
728 /* set phyflags and chipid before mii_attach() */
729 dict = device_properties(self);
730 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
731 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
732
733 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
734 mii_flags |= MIIF_HAVEFIBER;
735 mii_attach(self, &sc->bnx_mii, 0xffffffff,
736 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
737
738 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
739 aprint_error_dev(self, "no PHY found!\n");
740 ifmedia_add(&sc->bnx_mii.mii_media,
741 IFM_ETHER|IFM_MANUAL, 0, NULL);
742 ifmedia_set(&sc->bnx_mii.mii_media,
743 IFM_ETHER|IFM_MANUAL);
744 } else {
745 ifmedia_set(&sc->bnx_mii.mii_media,
746 IFM_ETHER|IFM_AUTO);
747 }
748
749 /* Attach to the Ethernet interface list. */
750 if_attach(ifp);
751 ether_ifattach(ifp,sc->eaddr);
752
753 callout_init(&sc->bnx_timeout, 0);
754
755 if (pmf_device_register(self, NULL, NULL))
756 pmf_class_network_register(self, ifp);
757 else
758 aprint_error_dev(self, "couldn't establish power handler\n");
759
760 /* Print some important debugging info. */
761 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
762
763 goto bnx_attach_exit;
764
765 bnx_attach_fail:
766 bnx_release_resources(sc);
767
768 bnx_attach_exit:
769 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
770 }
771
772 /****************************************************************************/
773 /* Device detach function. */
774 /* */
775 /* Stops the controller, resets the controller, and releases resources. */
776 /* */
777 /* Returns: */
778 /* 0 on success, positive value on failure. */
779 /****************************************************************************/
780 int
781 bnx_detach(device_t dev, int flags)
782 {
783 int s;
784 struct bnx_softc *sc;
785 struct ifnet *ifp;
786
787 sc = device_private(dev);
788 ifp = &sc->bnx_ec.ec_if;
789
790 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
791
792 /* Stop and reset the controller. */
793 s = splnet();
794 if (ifp->if_flags & IFF_RUNNING)
795 bnx_stop(ifp, 1);
796 else {
797 /* Disable the transmit/receive blocks. */
798 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
799 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
800 DELAY(20);
801 bnx_disable_intr(sc);
802 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
803 }
804
805 splx(s);
806
807 pmf_device_deregister(dev);
808 callout_destroy(&sc->bnx_timeout);
809 ether_ifdetach(ifp);
810 workqueue_destroy(sc->bnx_wq);
811
812 /* Delete all remaining media. */
813 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
814
815 if_detach(ifp);
816 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
817
818 /* Release all remaining resources. */
819 bnx_release_resources(sc);
820
821 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
822
823 return(0);
824 }
825
826 /****************************************************************************/
827 /* Indirect register read. */
828 /* */
829 /* Reads NetXtreme II registers using an index/data register pair in PCI */
830 /* configuration space. Using this mechanism avoids issues with posted */
831 /* reads but is much slower than memory-mapped I/O. */
832 /* */
833 /* Returns: */
834 /* The value of the register. */
835 /****************************************************************************/
836 u_int32_t
837 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
838 {
839 struct pci_attach_args *pa = &(sc->bnx_pa);
840
841 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
842 offset);
843 #ifdef BNX_DEBUG
844 {
845 u_int32_t val;
846 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
847 BNX_PCICFG_REG_WINDOW);
848 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
849 "val = 0x%08X\n", __func__, offset, val);
850 return (val);
851 }
852 #else
853 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
854 #endif
855 }
856
857 /****************************************************************************/
858 /* Indirect register write. */
859 /* */
860 /* Writes NetXtreme II registers using an index/data register pair in PCI */
861 /* configuration space. Using this mechanism avoids issues with posted */
862 /* writes but is muchh slower than memory-mapped I/O. */
863 /* */
864 /* Returns: */
865 /* Nothing. */
866 /****************************************************************************/
867 void
868 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
869 {
870 struct pci_attach_args *pa = &(sc->bnx_pa);
871
872 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
873 __func__, offset, val);
874
875 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
876 offset);
877 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
878 }
879
880 /****************************************************************************/
881 /* Context memory write. */
882 /* */
883 /* The NetXtreme II controller uses context memory to track connection */
884 /* information for L2 and higher network protocols. */
885 /* */
886 /* Returns: */
887 /* Nothing. */
888 /****************************************************************************/
889 void
890 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
891 u_int32_t ctx_val)
892 {
893 u_int32_t idx, offset = ctx_offset + cid_addr;
894 u_int32_t val, retry_cnt = 5;
895
896 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
897 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
898 REG_WR(sc, BNX_CTX_CTX_CTRL,
899 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
900
901 for (idx = 0; idx < retry_cnt; idx++) {
902 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
903 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
904 break;
905 DELAY(5);
906 }
907
908 #if 0
909 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
910 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
911 "cid_addr = 0x%08X, offset = 0x%08X!\n",
912 __FILE__, __LINE__, cid_addr, ctx_offset);
913 #endif
914
915 } else {
916 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
917 REG_WR(sc, BNX_CTX_DATA, ctx_val);
918 }
919 }
920
921 /****************************************************************************/
922 /* PHY register read. */
923 /* */
924 /* Implements register reads on the MII bus. */
925 /* */
926 /* Returns: */
927 /* The value of the register. */
928 /****************************************************************************/
929 int
930 bnx_miibus_read_reg(device_t dev, int phy, int reg)
931 {
932 struct bnx_softc *sc = device_private(dev);
933 u_int32_t val;
934 int i;
935
936 /* Make sure we are accessing the correct PHY address. */
937 if (phy != sc->bnx_phy_addr) {
938 DBPRINT(sc, BNX_VERBOSE,
939 "Invalid PHY address %d for PHY read!\n", phy);
940 return(0);
941 }
942
943 /*
944 * The BCM5709S PHY is an IEEE Clause 45 PHY
945 * with special mappings to work with IEEE
946 * Clause 22 register accesses.
947 */
948 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
949 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
950 reg += 0x10;
951 }
952
953 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
954 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
955 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
956
957 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
958 REG_RD(sc, BNX_EMAC_MDIO_MODE);
959
960 DELAY(40);
961 }
962
963 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
964 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
965 BNX_EMAC_MDIO_COMM_START_BUSY;
966 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
967
968 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
969 DELAY(10);
970
971 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
972 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
973 DELAY(5);
974
975 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
976 val &= BNX_EMAC_MDIO_COMM_DATA;
977
978 break;
979 }
980 }
981
982 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
983 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
984 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
985 val = 0x0;
986 } else
987 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
988
989 DBPRINT(sc, BNX_EXCESSIVE,
990 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
991 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
992
993 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
994 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
995 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
996
997 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
998 REG_RD(sc, BNX_EMAC_MDIO_MODE);
999
1000 DELAY(40);
1001 }
1002
1003 return (val & 0xffff);
1004 }
1005
1006 /****************************************************************************/
1007 /* PHY register write. */
1008 /* */
1009 /* Implements register writes on the MII bus. */
1010 /* */
1011 /* Returns: */
1012 /* The value of the register. */
1013 /****************************************************************************/
1014 void
1015 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1016 {
1017 struct bnx_softc *sc = device_private(dev);
1018 u_int32_t val1;
1019 int i;
1020
1021 /* Make sure we are accessing the correct PHY address. */
1022 if (phy != sc->bnx_phy_addr) {
1023 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1024 phy);
1025 return;
1026 }
1027
1028 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1029 "val = 0x%04X\n", __func__,
1030 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
1031
1032 /*
1033 * The BCM5709S PHY is an IEEE Clause 45 PHY
1034 * with special mappings to work with IEEE
1035 * Clause 22 register accesses.
1036 */
1037 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1038 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1039 reg += 0x10;
1040 }
1041
1042 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1043 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1044 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1045
1046 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1047 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1048
1049 DELAY(40);
1050 }
1051
1052 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1053 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1054 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1055 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1056
1057 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1058 DELAY(10);
1059
1060 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1061 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1062 DELAY(5);
1063 break;
1064 }
1065 }
1066
1067 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1068 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1069 __LINE__);
1070 }
1071
1072 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1073 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1074 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1075
1076 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1077 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1078
1079 DELAY(40);
1080 }
1081 }
1082
1083 /****************************************************************************/
1084 /* MII bus status change. */
1085 /* */
1086 /* Called by the MII bus driver when the PHY establishes link to set the */
1087 /* MAC interface registers. */
1088 /* */
1089 /* Returns: */
1090 /* Nothing. */
1091 /****************************************************************************/
1092 void
1093 bnx_miibus_statchg(struct ifnet *ifp)
1094 {
1095 struct bnx_softc *sc = ifp->if_softc;
1096 struct mii_data *mii = &sc->bnx_mii;
1097 int val;
1098
1099 val = REG_RD(sc, BNX_EMAC_MODE);
1100 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1101 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1102 BNX_EMAC_MODE_25G);
1103
1104 /* Set MII or GMII interface based on the speed
1105 * negotiated by the PHY.
1106 */
1107 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1108 case IFM_10_T:
1109 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1110 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1111 val |= BNX_EMAC_MODE_PORT_MII_10;
1112 break;
1113 }
1114 /* FALLTHROUGH */
1115 case IFM_100_TX:
1116 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1117 val |= BNX_EMAC_MODE_PORT_MII;
1118 break;
1119 case IFM_2500_SX:
1120 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1121 val |= BNX_EMAC_MODE_25G;
1122 /* FALLTHROUGH */
1123 case IFM_1000_T:
1124 case IFM_1000_SX:
1125 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1126 val |= BNX_EMAC_MODE_PORT_GMII;
1127 break;
1128 default:
1129 val |= BNX_EMAC_MODE_PORT_GMII;
1130 break;
1131 }
1132
1133 /* Set half or full duplex based on the duplicity
1134 * negotiated by the PHY.
1135 */
1136 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1137 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1138 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1139 } else {
1140 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1141 }
1142
1143 REG_WR(sc, BNX_EMAC_MODE, val);
1144 }
1145
1146 /****************************************************************************/
1147 /* Acquire NVRAM lock. */
1148 /* */
1149 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1150 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1151 /* for use by the driver. */
1152 /* */
1153 /* Returns: */
1154 /* 0 on success, positive value on failure. */
1155 /****************************************************************************/
1156 int
1157 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1158 {
1159 u_int32_t val;
1160 int j;
1161
1162 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1163
1164 /* Request access to the flash interface. */
1165 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1166 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1167 val = REG_RD(sc, BNX_NVM_SW_ARB);
1168 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1169 break;
1170
1171 DELAY(5);
1172 }
1173
1174 if (j >= NVRAM_TIMEOUT_COUNT) {
1175 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1176 return (EBUSY);
1177 }
1178
1179 return (0);
1180 }
1181
1182 /****************************************************************************/
1183 /* Release NVRAM lock. */
1184 /* */
1185 /* When the caller is finished accessing NVRAM the lock must be released. */
1186 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1187 /* for use by the driver. */
1188 /* */
1189 /* Returns: */
1190 /* 0 on success, positive value on failure. */
1191 /****************************************************************************/
1192 int
1193 bnx_release_nvram_lock(struct bnx_softc *sc)
1194 {
1195 int j;
1196 u_int32_t val;
1197
1198 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1199
1200 /* Relinquish nvram interface. */
1201 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1202
1203 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1204 val = REG_RD(sc, BNX_NVM_SW_ARB);
1205 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1206 break;
1207
1208 DELAY(5);
1209 }
1210
1211 if (j >= NVRAM_TIMEOUT_COUNT) {
1212 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1213 return (EBUSY);
1214 }
1215
1216 return (0);
1217 }
1218
1219 #ifdef BNX_NVRAM_WRITE_SUPPORT
1220 /****************************************************************************/
1221 /* Enable NVRAM write access. */
1222 /* */
1223 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1224 /* */
1225 /* Returns: */
1226 /* 0 on success, positive value on failure. */
1227 /****************************************************************************/
1228 int
1229 bnx_enable_nvram_write(struct bnx_softc *sc)
1230 {
1231 u_int32_t val;
1232
1233 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1234
1235 val = REG_RD(sc, BNX_MISC_CFG);
1236 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1237
1238 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1239 int j;
1240
1241 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1242 REG_WR(sc, BNX_NVM_COMMAND,
1243 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1244
1245 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1246 DELAY(5);
1247
1248 val = REG_RD(sc, BNX_NVM_COMMAND);
1249 if (val & BNX_NVM_COMMAND_DONE)
1250 break;
1251 }
1252
1253 if (j >= NVRAM_TIMEOUT_COUNT) {
1254 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1255 return (EBUSY);
1256 }
1257 }
1258
1259 return (0);
1260 }
1261
1262 /****************************************************************************/
1263 /* Disable NVRAM write access. */
1264 /* */
1265 /* When the caller is finished writing to NVRAM write access must be */
1266 /* disabled. */
1267 /* */
1268 /* Returns: */
1269 /* Nothing. */
1270 /****************************************************************************/
1271 void
1272 bnx_disable_nvram_write(struct bnx_softc *sc)
1273 {
1274 u_int32_t val;
1275
1276 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1277
1278 val = REG_RD(sc, BNX_MISC_CFG);
1279 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1280 }
1281 #endif
1282
1283 /****************************************************************************/
1284 /* Enable NVRAM access. */
1285 /* */
1286 /* Before accessing NVRAM for read or write operations the caller must */
1287 /* enabled NVRAM access. */
1288 /* */
1289 /* Returns: */
1290 /* Nothing. */
1291 /****************************************************************************/
1292 void
1293 bnx_enable_nvram_access(struct bnx_softc *sc)
1294 {
1295 u_int32_t val;
1296
1297 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1298
1299 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1300 /* Enable both bits, even on read. */
1301 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1302 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1303 }
1304
1305 /****************************************************************************/
1306 /* Disable NVRAM access. */
1307 /* */
1308 /* When the caller is finished accessing NVRAM access must be disabled. */
1309 /* */
1310 /* Returns: */
1311 /* Nothing. */
1312 /****************************************************************************/
1313 void
1314 bnx_disable_nvram_access(struct bnx_softc *sc)
1315 {
1316 u_int32_t val;
1317
1318 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1319
1320 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1321
1322 /* Disable both bits, even after read. */
1323 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1324 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1325 }
1326
1327 #ifdef BNX_NVRAM_WRITE_SUPPORT
1328 /****************************************************************************/
1329 /* Erase NVRAM page before writing. */
1330 /* */
1331 /* Non-buffered flash parts require that a page be erased before it is */
1332 /* written. */
1333 /* */
1334 /* Returns: */
1335 /* 0 on success, positive value on failure. */
1336 /****************************************************************************/
1337 int
1338 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1339 {
1340 u_int32_t cmd;
1341 int j;
1342
1343 /* Buffered flash doesn't require an erase. */
1344 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1345 return (0);
1346
1347 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1348
1349 /* Build an erase command. */
1350 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1351 BNX_NVM_COMMAND_DOIT;
1352
1353 /*
1354 * Clear the DONE bit separately, set the NVRAM adress to erase,
1355 * and issue the erase command.
1356 */
1357 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1358 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1359 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1360
1361 /* Wait for completion. */
1362 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1363 u_int32_t val;
1364
1365 DELAY(5);
1366
1367 val = REG_RD(sc, BNX_NVM_COMMAND);
1368 if (val & BNX_NVM_COMMAND_DONE)
1369 break;
1370 }
1371
1372 if (j >= NVRAM_TIMEOUT_COUNT) {
1373 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1374 return (EBUSY);
1375 }
1376
1377 return (0);
1378 }
1379 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1380
1381 /****************************************************************************/
1382 /* Read a dword (32 bits) from NVRAM. */
1383 /* */
1384 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1385 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1386 /* */
1387 /* Returns: */
1388 /* 0 on success and the 32 bit value read, positive value on failure. */
1389 /****************************************************************************/
1390 int
1391 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1392 u_int8_t *ret_val, u_int32_t cmd_flags)
1393 {
1394 u_int32_t cmd;
1395 int i, rc = 0;
1396
1397 /* Build the command word. */
1398 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1399
1400 /* Calculate the offset for buffered flash if translation is used. */
1401 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1402 offset = ((offset / sc->bnx_flash_info->page_size) <<
1403 sc->bnx_flash_info->page_bits) +
1404 (offset % sc->bnx_flash_info->page_size);
1405 }
1406
1407 /*
1408 * Clear the DONE bit separately, set the address to read,
1409 * and issue the read.
1410 */
1411 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1412 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1413 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1414
1415 /* Wait for completion. */
1416 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1417 u_int32_t val;
1418
1419 DELAY(5);
1420
1421 val = REG_RD(sc, BNX_NVM_COMMAND);
1422 if (val & BNX_NVM_COMMAND_DONE) {
1423 val = REG_RD(sc, BNX_NVM_READ);
1424
1425 val = bnx_be32toh(val);
1426 memcpy(ret_val, &val, 4);
1427 break;
1428 }
1429 }
1430
1431 /* Check for errors. */
1432 if (i >= NVRAM_TIMEOUT_COUNT) {
1433 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1434 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1435 rc = EBUSY;
1436 }
1437
1438 return(rc);
1439 }
1440
1441 #ifdef BNX_NVRAM_WRITE_SUPPORT
1442 /****************************************************************************/
1443 /* Write a dword (32 bits) to NVRAM. */
1444 /* */
1445 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1446 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1447 /* enabled NVRAM write access. */
1448 /* */
1449 /* Returns: */
1450 /* 0 on success, positive value on failure. */
1451 /****************************************************************************/
1452 int
1453 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1454 u_int32_t cmd_flags)
1455 {
1456 u_int32_t cmd, val32;
1457 int j;
1458
1459 /* Build the command word. */
1460 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1461
1462 /* Calculate the offset for buffered flash if translation is used. */
1463 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1464 offset = ((offset / sc->bnx_flash_info->page_size) <<
1465 sc->bnx_flash_info->page_bits) +
1466 (offset % sc->bnx_flash_info->page_size);
1467 }
1468
1469 /*
1470 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1471 * set the NVRAM address to write, and issue the write command
1472 */
1473 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1474 memcpy(&val32, val, 4);
1475 val32 = htobe32(val32);
1476 REG_WR(sc, BNX_NVM_WRITE, val32);
1477 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1478 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1479
1480 /* Wait for completion. */
1481 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1482 DELAY(5);
1483
1484 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1485 break;
1486 }
1487 if (j >= NVRAM_TIMEOUT_COUNT) {
1488 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1489 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1490 return (EBUSY);
1491 }
1492
1493 return (0);
1494 }
1495 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1496
1497 /****************************************************************************/
1498 /* Initialize NVRAM access. */
1499 /* */
1500 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1501 /* access that device. */
1502 /* */
1503 /* Returns: */
1504 /* 0 on success, positive value on failure. */
1505 /****************************************************************************/
1506 int
1507 bnx_init_nvram(struct bnx_softc *sc)
1508 {
1509 u_int32_t val;
1510 int j, entry_count, rc = 0;
1511 struct flash_spec *flash;
1512
1513 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1514
1515 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1516 sc->bnx_flash_info = &flash_5709;
1517 goto bnx_init_nvram_get_flash_size;
1518 }
1519
1520 /* Determine the selected interface. */
1521 val = REG_RD(sc, BNX_NVM_CFG1);
1522
1523 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1524
1525 /*
1526 * Flash reconfiguration is required to support additional
1527 * NVRAM devices not directly supported in hardware.
1528 * Check if the flash interface was reconfigured
1529 * by the bootcode.
1530 */
1531
1532 if (val & 0x40000000) {
1533 /* Flash interface reconfigured by bootcode. */
1534
1535 DBPRINT(sc,BNX_INFO_LOAD,
1536 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1537
1538 for (j = 0, flash = &flash_table[0]; j < entry_count;
1539 j++, flash++) {
1540 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1541 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1542 sc->bnx_flash_info = flash;
1543 break;
1544 }
1545 }
1546 } else {
1547 /* Flash interface not yet reconfigured. */
1548 u_int32_t mask;
1549
1550 DBPRINT(sc,BNX_INFO_LOAD,
1551 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1552
1553 if (val & (1 << 23))
1554 mask = FLASH_BACKUP_STRAP_MASK;
1555 else
1556 mask = FLASH_STRAP_MASK;
1557
1558 /* Look for the matching NVRAM device configuration data. */
1559 for (j = 0, flash = &flash_table[0]; j < entry_count;
1560 j++, flash++) {
1561 /* Check if the dev matches any of the known devices. */
1562 if ((val & mask) == (flash->strapping & mask)) {
1563 /* Found a device match. */
1564 sc->bnx_flash_info = flash;
1565
1566 /* Request access to the flash interface. */
1567 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1568 return (rc);
1569
1570 /* Reconfigure the flash interface. */
1571 bnx_enable_nvram_access(sc);
1572 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1573 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1574 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1575 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1576 bnx_disable_nvram_access(sc);
1577 bnx_release_nvram_lock(sc);
1578
1579 break;
1580 }
1581 }
1582 }
1583
1584 /* Check if a matching device was found. */
1585 if (j == entry_count) {
1586 sc->bnx_flash_info = NULL;
1587 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1588 __FILE__, __LINE__);
1589 rc = ENODEV;
1590 }
1591
1592 bnx_init_nvram_get_flash_size:
1593 /* Write the flash config data to the shared memory interface. */
1594 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1595 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1596 if (val)
1597 sc->bnx_flash_size = val;
1598 else
1599 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1600
1601 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1602 "0x%08X\n", sc->bnx_flash_info->total_size);
1603
1604 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1605
1606 return (rc);
1607 }
1608
1609 /****************************************************************************/
1610 /* Read an arbitrary range of data from NVRAM. */
1611 /* */
1612 /* Prepares the NVRAM interface for access and reads the requested data */
1613 /* into the supplied buffer. */
1614 /* */
1615 /* Returns: */
1616 /* 0 on success and the data read, positive value on failure. */
1617 /****************************************************************************/
1618 int
1619 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1620 int buf_size)
1621 {
1622 int rc = 0;
1623 u_int32_t cmd_flags, offset32, len32, extra;
1624
1625 if (buf_size == 0)
1626 return (0);
1627
1628 /* Request access to the flash interface. */
1629 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1630 return (rc);
1631
1632 /* Enable access to flash interface */
1633 bnx_enable_nvram_access(sc);
1634
1635 len32 = buf_size;
1636 offset32 = offset;
1637 extra = 0;
1638
1639 cmd_flags = 0;
1640
1641 if (offset32 & 3) {
1642 u_int8_t buf[4];
1643 u_int32_t pre_len;
1644
1645 offset32 &= ~3;
1646 pre_len = 4 - (offset & 3);
1647
1648 if (pre_len >= len32) {
1649 pre_len = len32;
1650 cmd_flags =
1651 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1652 } else
1653 cmd_flags = BNX_NVM_COMMAND_FIRST;
1654
1655 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1656
1657 if (rc)
1658 return (rc);
1659
1660 memcpy(ret_buf, buf + (offset & 3), pre_len);
1661
1662 offset32 += 4;
1663 ret_buf += pre_len;
1664 len32 -= pre_len;
1665 }
1666
1667 if (len32 & 3) {
1668 extra = 4 - (len32 & 3);
1669 len32 = (len32 + 4) & ~3;
1670 }
1671
1672 if (len32 == 4) {
1673 u_int8_t buf[4];
1674
1675 if (cmd_flags)
1676 cmd_flags = BNX_NVM_COMMAND_LAST;
1677 else
1678 cmd_flags =
1679 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1680
1681 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1682
1683 memcpy(ret_buf, buf, 4 - extra);
1684 } else if (len32 > 0) {
1685 u_int8_t buf[4];
1686
1687 /* Read the first word. */
1688 if (cmd_flags)
1689 cmd_flags = 0;
1690 else
1691 cmd_flags = BNX_NVM_COMMAND_FIRST;
1692
1693 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1694
1695 /* Advance to the next dword. */
1696 offset32 += 4;
1697 ret_buf += 4;
1698 len32 -= 4;
1699
1700 while (len32 > 4 && rc == 0) {
1701 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1702
1703 /* Advance to the next dword. */
1704 offset32 += 4;
1705 ret_buf += 4;
1706 len32 -= 4;
1707 }
1708
1709 if (rc)
1710 return (rc);
1711
1712 cmd_flags = BNX_NVM_COMMAND_LAST;
1713 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1714
1715 memcpy(ret_buf, buf, 4 - extra);
1716 }
1717
1718 /* Disable access to flash interface and release the lock. */
1719 bnx_disable_nvram_access(sc);
1720 bnx_release_nvram_lock(sc);
1721
1722 return (rc);
1723 }
1724
1725 #ifdef BNX_NVRAM_WRITE_SUPPORT
1726 /****************************************************************************/
1727 /* Write an arbitrary range of data from NVRAM. */
1728 /* */
1729 /* Prepares the NVRAM interface for write access and writes the requested */
1730 /* data from the supplied buffer. The caller is responsible for */
1731 /* calculating any appropriate CRCs. */
1732 /* */
1733 /* Returns: */
1734 /* 0 on success, positive value on failure. */
1735 /****************************************************************************/
1736 int
1737 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1738 int buf_size)
1739 {
1740 u_int32_t written, offset32, len32;
1741 u_int8_t *buf, start[4], end[4];
1742 int rc = 0;
1743 int align_start, align_end;
1744
1745 buf = data_buf;
1746 offset32 = offset;
1747 len32 = buf_size;
1748 align_start = align_end = 0;
1749
1750 if ((align_start = (offset32 & 3))) {
1751 offset32 &= ~3;
1752 len32 += align_start;
1753 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1754 return (rc);
1755 }
1756
1757 if (len32 & 3) {
1758 if ((len32 > 4) || !align_start) {
1759 align_end = 4 - (len32 & 3);
1760 len32 += align_end;
1761 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1762 end, 4))) {
1763 return (rc);
1764 }
1765 }
1766 }
1767
1768 if (align_start || align_end) {
1769 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1770 if (buf == 0)
1771 return (ENOMEM);
1772
1773 if (align_start)
1774 memcpy(buf, start, 4);
1775
1776 if (align_end)
1777 memcpy(buf + len32 - 4, end, 4);
1778
1779 memcpy(buf + align_start, data_buf, buf_size);
1780 }
1781
1782 written = 0;
1783 while ((written < len32) && (rc == 0)) {
1784 u_int32_t page_start, page_end, data_start, data_end;
1785 u_int32_t addr, cmd_flags;
1786 int i;
1787 u_int8_t flash_buffer[264];
1788
1789 /* Find the page_start addr */
1790 page_start = offset32 + written;
1791 page_start -= (page_start % sc->bnx_flash_info->page_size);
1792 /* Find the page_end addr */
1793 page_end = page_start + sc->bnx_flash_info->page_size;
1794 /* Find the data_start addr */
1795 data_start = (written == 0) ? offset32 : page_start;
1796 /* Find the data_end addr */
1797 data_end = (page_end > offset32 + len32) ?
1798 (offset32 + len32) : page_end;
1799
1800 /* Request access to the flash interface. */
1801 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1802 goto nvram_write_end;
1803
1804 /* Enable access to flash interface */
1805 bnx_enable_nvram_access(sc);
1806
1807 cmd_flags = BNX_NVM_COMMAND_FIRST;
1808 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1809 int j;
1810
1811 /* Read the whole page into the buffer
1812 * (non-buffer flash only) */
1813 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1814 if (j == (sc->bnx_flash_info->page_size - 4))
1815 cmd_flags |= BNX_NVM_COMMAND_LAST;
1816
1817 rc = bnx_nvram_read_dword(sc,
1818 page_start + j,
1819 &flash_buffer[j],
1820 cmd_flags);
1821
1822 if (rc)
1823 goto nvram_write_end;
1824
1825 cmd_flags = 0;
1826 }
1827 }
1828
1829 /* Enable writes to flash interface (unlock write-protect) */
1830 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1831 goto nvram_write_end;
1832
1833 /* Erase the page */
1834 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1835 goto nvram_write_end;
1836
1837 /* Re-enable the write again for the actual write */
1838 bnx_enable_nvram_write(sc);
1839
1840 /* Loop to write back the buffer data from page_start to
1841 * data_start */
1842 i = 0;
1843 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1844 for (addr = page_start; addr < data_start;
1845 addr += 4, i += 4) {
1846
1847 rc = bnx_nvram_write_dword(sc, addr,
1848 &flash_buffer[i], cmd_flags);
1849
1850 if (rc != 0)
1851 goto nvram_write_end;
1852
1853 cmd_flags = 0;
1854 }
1855 }
1856
1857 /* Loop to write the new data from data_start to data_end */
1858 for (addr = data_start; addr < data_end; addr += 4, i++) {
1859 if ((addr == page_end - 4) ||
1860 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1861 && (addr == data_end - 4))) {
1862
1863 cmd_flags |= BNX_NVM_COMMAND_LAST;
1864 }
1865
1866 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1867
1868 if (rc != 0)
1869 goto nvram_write_end;
1870
1871 cmd_flags = 0;
1872 buf += 4;
1873 }
1874
1875 /* Loop to write back the buffer data from data_end
1876 * to page_end */
1877 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1878 for (addr = data_end; addr < page_end;
1879 addr += 4, i += 4) {
1880
1881 if (addr == page_end-4)
1882 cmd_flags = BNX_NVM_COMMAND_LAST;
1883
1884 rc = bnx_nvram_write_dword(sc, addr,
1885 &flash_buffer[i], cmd_flags);
1886
1887 if (rc != 0)
1888 goto nvram_write_end;
1889
1890 cmd_flags = 0;
1891 }
1892 }
1893
1894 /* Disable writes to flash interface (lock write-protect) */
1895 bnx_disable_nvram_write(sc);
1896
1897 /* Disable access to flash interface */
1898 bnx_disable_nvram_access(sc);
1899 bnx_release_nvram_lock(sc);
1900
1901 /* Increment written */
1902 written += data_end - data_start;
1903 }
1904
1905 nvram_write_end:
1906 if (align_start || align_end)
1907 free(buf, M_DEVBUF);
1908
1909 return (rc);
1910 }
1911 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1912
1913 /****************************************************************************/
1914 /* Verifies that NVRAM is accessible and contains valid data. */
1915 /* */
1916 /* Reads the configuration data from NVRAM and verifies that the CRC is */
1917 /* correct. */
1918 /* */
1919 /* Returns: */
1920 /* 0 on success, positive value on failure. */
1921 /****************************************************************************/
1922 int
1923 bnx_nvram_test(struct bnx_softc *sc)
1924 {
1925 u_int32_t buf[BNX_NVRAM_SIZE / 4];
1926 u_int8_t *data = (u_int8_t *) buf;
1927 int rc = 0;
1928 u_int32_t magic, csum;
1929
1930 /*
1931 * Check that the device NVRAM is valid by reading
1932 * the magic value at offset 0.
1933 */
1934 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1935 goto bnx_nvram_test_done;
1936
1937 magic = bnx_be32toh(buf[0]);
1938 if (magic != BNX_NVRAM_MAGIC) {
1939 rc = ENODEV;
1940 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1941 "Expected: 0x%08X, Found: 0x%08X\n",
1942 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1943 goto bnx_nvram_test_done;
1944 }
1945
1946 /*
1947 * Verify that the device NVRAM includes valid
1948 * configuration data.
1949 */
1950 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1951 goto bnx_nvram_test_done;
1952
1953 csum = ether_crc32_le(data, 0x100);
1954 if (csum != BNX_CRC32_RESIDUAL) {
1955 rc = ENODEV;
1956 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1957 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1958 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1959 goto bnx_nvram_test_done;
1960 }
1961
1962 csum = ether_crc32_le(data + 0x100, 0x100);
1963 if (csum != BNX_CRC32_RESIDUAL) {
1964 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1965 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1966 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1967 rc = ENODEV;
1968 }
1969
1970 bnx_nvram_test_done:
1971 return (rc);
1972 }
1973
1974 /****************************************************************************/
1975 /* Identifies the current media type of the controller and sets the PHY */
1976 /* address. */
1977 /* */
1978 /* Returns: */
1979 /* Nothing. */
1980 /****************************************************************************/
1981 void
1982 bnx_get_media(struct bnx_softc *sc)
1983 {
1984 sc->bnx_phy_addr = 1;
1985
1986 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1987 u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
1988 u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1989 u_int32_t strap;
1990
1991 /*
1992 * The BCM5709S is software configurable
1993 * for Copper or SerDes operation.
1994 */
1995 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1996 DBPRINT(sc, BNX_INFO_LOAD,
1997 "5709 bonded for copper.\n");
1998 goto bnx_get_media_exit;
1999 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2000 DBPRINT(sc, BNX_INFO_LOAD,
2001 "5709 bonded for dual media.\n");
2002 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2003 goto bnx_get_media_exit;
2004 }
2005
2006 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2007 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2008 else {
2009 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2010 >> 8;
2011 }
2012
2013 if (sc->bnx_pa.pa_function == 0) {
2014 switch (strap) {
2015 case 0x4:
2016 case 0x5:
2017 case 0x6:
2018 DBPRINT(sc, BNX_INFO_LOAD,
2019 "BCM5709 s/w configured for SerDes.\n");
2020 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2021 break;
2022 default:
2023 DBPRINT(sc, BNX_INFO_LOAD,
2024 "BCM5709 s/w configured for Copper.\n");
2025 }
2026 } else {
2027 switch (strap) {
2028 case 0x1:
2029 case 0x2:
2030 case 0x4:
2031 DBPRINT(sc, BNX_INFO_LOAD,
2032 "BCM5709 s/w configured for SerDes.\n");
2033 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2034 break;
2035 default:
2036 DBPRINT(sc, BNX_INFO_LOAD,
2037 "BCM5709 s/w configured for Copper.\n");
2038 }
2039 }
2040
2041 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2042 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2043
2044 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2045 u_int32_t val;
2046
2047 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2048
2049 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2050 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2051
2052 /*
2053 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2054 * separate PHY for SerDes.
2055 */
2056 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2057 sc->bnx_phy_addr = 2;
2058 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2059 BNX_SHARED_HW_CFG_CONFIG);
2060 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2061 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2062 DBPRINT(sc, BNX_INFO_LOAD,
2063 "Found 2.5Gb capable adapter\n");
2064 }
2065 }
2066 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2067 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2068 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2069
2070 bnx_get_media_exit:
2071 DBPRINT(sc, (BNX_INFO_LOAD),
2072 "Using PHY address %d.\n", sc->bnx_phy_addr);
2073 }
2074
2075 /****************************************************************************/
2076 /* Performs PHY initialization required before MII drivers access the */
2077 /* device. */
2078 /* */
2079 /* Returns: */
2080 /* Nothing. */
2081 /****************************************************************************/
2082 void
2083 bnx_init_media(struct bnx_softc *sc)
2084 {
2085 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2086 /*
2087 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2088 * IEEE Clause 22 method. Otherwise we have no way to attach
2089 * the PHY to the mii(4) layer. PHY specific configuration
2090 * is done by the mii(4) layer.
2091 */
2092
2093 /* Select auto-negotiation MMD of the PHY. */
2094 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2095 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2096
2097 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2098 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2099
2100 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2101 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2102 }
2103 }
2104
2105 /****************************************************************************/
2106 /* Free any DMA memory owned by the driver. */
2107 /* */
2108 /* Scans through each data structre that requires DMA memory and frees */
2109 /* the memory if allocated. */
2110 /* */
2111 /* Returns: */
2112 /* Nothing. */
2113 /****************************************************************************/
2114 void
2115 bnx_dma_free(struct bnx_softc *sc)
2116 {
2117 int i;
2118
2119 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2120
2121 /* Destroy the status block. */
2122 if (sc->status_block != NULL && sc->status_map != NULL) {
2123 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2124 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2125 BNX_STATUS_BLK_SZ);
2126 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2127 sc->status_rseg);
2128 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2129 sc->status_block = NULL;
2130 sc->status_map = NULL;
2131 }
2132
2133 /* Destroy the statistics block. */
2134 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2135 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2136 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2137 BNX_STATS_BLK_SZ);
2138 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2139 sc->stats_rseg);
2140 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2141 sc->stats_block = NULL;
2142 sc->stats_map = NULL;
2143 }
2144
2145 /* Free, unmap and destroy all context memory pages. */
2146 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2147 for (i = 0; i < sc->ctx_pages; i++) {
2148 if (sc->ctx_block[i] != NULL) {
2149 bus_dmamap_unload(sc->bnx_dmatag,
2150 sc->ctx_map[i]);
2151 bus_dmamem_unmap(sc->bnx_dmatag,
2152 (void *)sc->ctx_block[i],
2153 BCM_PAGE_SIZE);
2154 bus_dmamem_free(sc->bnx_dmatag,
2155 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2156 bus_dmamap_destroy(sc->bnx_dmatag,
2157 sc->ctx_map[i]);
2158 sc->ctx_block[i] = NULL;
2159 }
2160 }
2161 }
2162
2163 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2164 for (i = 0; i < TX_PAGES; i++ ) {
2165 if (sc->tx_bd_chain[i] != NULL &&
2166 sc->tx_bd_chain_map[i] != NULL) {
2167 bus_dmamap_unload(sc->bnx_dmatag,
2168 sc->tx_bd_chain_map[i]);
2169 bus_dmamem_unmap(sc->bnx_dmatag,
2170 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2171 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2172 sc->tx_bd_chain_rseg[i]);
2173 bus_dmamap_destroy(sc->bnx_dmatag,
2174 sc->tx_bd_chain_map[i]);
2175 sc->tx_bd_chain[i] = NULL;
2176 sc->tx_bd_chain_map[i] = NULL;
2177 }
2178 }
2179
2180 /* Destroy the TX dmamaps. */
2181 /* This isn't necessary since we dont allocate them up front */
2182
2183 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2184 for (i = 0; i < RX_PAGES; i++ ) {
2185 if (sc->rx_bd_chain[i] != NULL &&
2186 sc->rx_bd_chain_map[i] != NULL) {
2187 bus_dmamap_unload(sc->bnx_dmatag,
2188 sc->rx_bd_chain_map[i]);
2189 bus_dmamem_unmap(sc->bnx_dmatag,
2190 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2191 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2192 sc->rx_bd_chain_rseg[i]);
2193
2194 bus_dmamap_destroy(sc->bnx_dmatag,
2195 sc->rx_bd_chain_map[i]);
2196 sc->rx_bd_chain[i] = NULL;
2197 sc->rx_bd_chain_map[i] = NULL;
2198 }
2199 }
2200
2201 /* Unload and destroy the RX mbuf maps. */
2202 for (i = 0; i < TOTAL_RX_BD; i++) {
2203 if (sc->rx_mbuf_map[i] != NULL) {
2204 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2205 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2206 }
2207 }
2208
2209 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2210 }
2211
2212 /****************************************************************************/
2213 /* Allocate any DMA memory needed by the driver. */
2214 /* */
2215 /* Allocates DMA memory needed for the various global structures needed by */
2216 /* hardware. */
2217 /* */
2218 /* Returns: */
2219 /* 0 for success, positive value for failure. */
2220 /****************************************************************************/
2221 int
2222 bnx_dma_alloc(struct bnx_softc *sc)
2223 {
2224 int i, rc = 0;
2225
2226 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2227
2228 /*
2229 * Allocate DMA memory for the status block, map the memory into DMA
2230 * space, and fetch the physical address of the block.
2231 */
2232 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2233 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2234 aprint_error_dev(sc->bnx_dev,
2235 "Could not create status block DMA map!\n");
2236 rc = ENOMEM;
2237 goto bnx_dma_alloc_exit;
2238 }
2239
2240 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2241 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2242 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2243 aprint_error_dev(sc->bnx_dev,
2244 "Could not allocate status block DMA memory!\n");
2245 rc = ENOMEM;
2246 goto bnx_dma_alloc_exit;
2247 }
2248
2249 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2250 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2251 aprint_error_dev(sc->bnx_dev,
2252 "Could not map status block DMA memory!\n");
2253 rc = ENOMEM;
2254 goto bnx_dma_alloc_exit;
2255 }
2256
2257 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2258 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2259 aprint_error_dev(sc->bnx_dev,
2260 "Could not load status block DMA memory!\n");
2261 rc = ENOMEM;
2262 goto bnx_dma_alloc_exit;
2263 }
2264
2265 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2266 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2267
2268 /* DRC - Fix for 64 bit addresses. */
2269 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2270 (u_int32_t) sc->status_block_paddr);
2271
2272 /* BCM5709 uses host memory as cache for context memory. */
2273 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2274 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2275 if (sc->ctx_pages == 0)
2276 sc->ctx_pages = 1;
2277 if (sc->ctx_pages > 4) /* XXX */
2278 sc->ctx_pages = 4;
2279
2280 DBRUNIF((sc->ctx_pages > 512),
2281 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2282 __FILE__, __LINE__, sc->ctx_pages));
2283
2284
2285 for (i = 0; i < sc->ctx_pages; i++) {
2286 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2287 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2288 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2289 &sc->ctx_map[i]) != 0) {
2290 rc = ENOMEM;
2291 goto bnx_dma_alloc_exit;
2292 }
2293
2294 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2295 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2296 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2297 rc = ENOMEM;
2298 goto bnx_dma_alloc_exit;
2299 }
2300
2301 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2302 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2303 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2304 rc = ENOMEM;
2305 goto bnx_dma_alloc_exit;
2306 }
2307
2308 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2309 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2310 BUS_DMA_NOWAIT) != 0) {
2311 rc = ENOMEM;
2312 goto bnx_dma_alloc_exit;
2313 }
2314
2315 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2316 }
2317 }
2318
2319 /*
2320 * Allocate DMA memory for the statistics block, map the memory into
2321 * DMA space, and fetch the physical address of the block.
2322 */
2323 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2324 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2325 aprint_error_dev(sc->bnx_dev,
2326 "Could not create stats block DMA map!\n");
2327 rc = ENOMEM;
2328 goto bnx_dma_alloc_exit;
2329 }
2330
2331 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2332 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2333 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2334 aprint_error_dev(sc->bnx_dev,
2335 "Could not allocate stats block DMA memory!\n");
2336 rc = ENOMEM;
2337 goto bnx_dma_alloc_exit;
2338 }
2339
2340 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2341 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2342 aprint_error_dev(sc->bnx_dev,
2343 "Could not map stats block DMA memory!\n");
2344 rc = ENOMEM;
2345 goto bnx_dma_alloc_exit;
2346 }
2347
2348 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2349 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2350 aprint_error_dev(sc->bnx_dev,
2351 "Could not load status block DMA memory!\n");
2352 rc = ENOMEM;
2353 goto bnx_dma_alloc_exit;
2354 }
2355
2356 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2357 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2358
2359 /* DRC - Fix for 64 bit address. */
2360 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2361 (u_int32_t) sc->stats_block_paddr);
2362
2363 /*
2364 * Allocate DMA memory for the TX buffer descriptor chain,
2365 * and fetch the physical address of the block.
2366 */
2367 for (i = 0; i < TX_PAGES; i++) {
2368 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2369 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2370 &sc->tx_bd_chain_map[i])) {
2371 aprint_error_dev(sc->bnx_dev,
2372 "Could not create Tx desc %d DMA map!\n", i);
2373 rc = ENOMEM;
2374 goto bnx_dma_alloc_exit;
2375 }
2376
2377 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2378 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2379 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2380 aprint_error_dev(sc->bnx_dev,
2381 "Could not allocate TX desc %d DMA memory!\n",
2382 i);
2383 rc = ENOMEM;
2384 goto bnx_dma_alloc_exit;
2385 }
2386
2387 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2388 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2389 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2390 aprint_error_dev(sc->bnx_dev,
2391 "Could not map TX desc %d DMA memory!\n", i);
2392 rc = ENOMEM;
2393 goto bnx_dma_alloc_exit;
2394 }
2395
2396 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2397 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2398 BUS_DMA_NOWAIT)) {
2399 aprint_error_dev(sc->bnx_dev,
2400 "Could not load TX desc %d DMA memory!\n", i);
2401 rc = ENOMEM;
2402 goto bnx_dma_alloc_exit;
2403 }
2404
2405 sc->tx_bd_chain_paddr[i] =
2406 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2407
2408 /* DRC - Fix for 64 bit systems. */
2409 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2410 i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2411 }
2412
2413 /*
2414 * Create lists to hold TX mbufs.
2415 */
2416 TAILQ_INIT(&sc->tx_free_pkts);
2417 TAILQ_INIT(&sc->tx_used_pkts);
2418 sc->tx_pkt_count = 0;
2419 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2420
2421 /*
2422 * Allocate DMA memory for the Rx buffer descriptor chain,
2423 * and fetch the physical address of the block.
2424 */
2425 for (i = 0; i < RX_PAGES; i++) {
2426 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2427 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2428 &sc->rx_bd_chain_map[i])) {
2429 aprint_error_dev(sc->bnx_dev,
2430 "Could not create Rx desc %d DMA map!\n", i);
2431 rc = ENOMEM;
2432 goto bnx_dma_alloc_exit;
2433 }
2434
2435 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2436 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2437 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2438 aprint_error_dev(sc->bnx_dev,
2439 "Could not allocate Rx desc %d DMA memory!\n", i);
2440 rc = ENOMEM;
2441 goto bnx_dma_alloc_exit;
2442 }
2443
2444 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2445 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2446 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2447 aprint_error_dev(sc->bnx_dev,
2448 "Could not map Rx desc %d DMA memory!\n", i);
2449 rc = ENOMEM;
2450 goto bnx_dma_alloc_exit;
2451 }
2452
2453 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2454 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2455 BUS_DMA_NOWAIT)) {
2456 aprint_error_dev(sc->bnx_dev,
2457 "Could not load Rx desc %d DMA memory!\n", i);
2458 rc = ENOMEM;
2459 goto bnx_dma_alloc_exit;
2460 }
2461
2462 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2463 sc->rx_bd_chain_paddr[i] =
2464 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2465
2466 /* DRC - Fix for 64 bit systems. */
2467 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2468 i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2469 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2470 0, BNX_RX_CHAIN_PAGE_SZ,
2471 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2472 }
2473
2474 /*
2475 * Create DMA maps for the Rx buffer mbufs.
2476 */
2477 for (i = 0; i < TOTAL_RX_BD; i++) {
2478 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2479 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2480 &sc->rx_mbuf_map[i])) {
2481 aprint_error_dev(sc->bnx_dev,
2482 "Could not create Rx mbuf %d DMA map!\n", i);
2483 rc = ENOMEM;
2484 goto bnx_dma_alloc_exit;
2485 }
2486 }
2487
2488 bnx_dma_alloc_exit:
2489 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2490
2491 return(rc);
2492 }
2493
2494 /****************************************************************************/
2495 /* Release all resources used by the driver. */
2496 /* */
2497 /* Releases all resources acquired by the driver including interrupts, */
2498 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2499 /* */
2500 /* Returns: */
2501 /* Nothing. */
2502 /****************************************************************************/
2503 void
2504 bnx_release_resources(struct bnx_softc *sc)
2505 {
2506 struct pci_attach_args *pa = &(sc->bnx_pa);
2507
2508 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2509
2510 bnx_dma_free(sc);
2511
2512 if (sc->bnx_intrhand != NULL)
2513 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2514
2515 if (sc->bnx_size)
2516 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2517
2518 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2519 }
2520
2521 /****************************************************************************/
2522 /* Firmware synchronization. */
2523 /* */
2524 /* Before performing certain events such as a chip reset, synchronize with */
2525 /* the firmware first. */
2526 /* */
2527 /* Returns: */
2528 /* 0 for success, positive value for failure. */
2529 /****************************************************************************/
2530 int
2531 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2532 {
2533 int i, rc = 0;
2534 u_int32_t val;
2535
2536 /* Don't waste any time if we've timed out before. */
2537 if (sc->bnx_fw_timed_out) {
2538 rc = EBUSY;
2539 goto bnx_fw_sync_exit;
2540 }
2541
2542 /* Increment the message sequence number. */
2543 sc->bnx_fw_wr_seq++;
2544 msg_data |= sc->bnx_fw_wr_seq;
2545
2546 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2547 msg_data);
2548
2549 /* Send the message to the bootcode driver mailbox. */
2550 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2551
2552 /* Wait for the bootcode to acknowledge the message. */
2553 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2554 /* Check for a response in the bootcode firmware mailbox. */
2555 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2556 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2557 break;
2558 DELAY(1000);
2559 }
2560
2561 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2562 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2563 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2564 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2565 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2566
2567 msg_data &= ~BNX_DRV_MSG_CODE;
2568 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2569
2570 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2571
2572 sc->bnx_fw_timed_out = 1;
2573 rc = EBUSY;
2574 }
2575
2576 bnx_fw_sync_exit:
2577 return (rc);
2578 }
2579
2580 /****************************************************************************/
2581 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2582 /* */
2583 /* Returns: */
2584 /* Nothing. */
2585 /****************************************************************************/
2586 void
2587 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2588 u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2589 {
2590 int i;
2591 u_int32_t val;
2592
2593 /* Set the page size used by RV2P. */
2594 if (rv2p_proc == RV2P_PROC2) {
2595 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2596 USABLE_RX_BD_PER_PAGE);
2597 }
2598
2599 for (i = 0; i < rv2p_code_len; i += 8) {
2600 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2601 rv2p_code++;
2602 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2603 rv2p_code++;
2604
2605 if (rv2p_proc == RV2P_PROC1) {
2606 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2607 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2608 } else {
2609 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2610 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2611 }
2612 }
2613
2614 /* Reset the processor, un-stall is done later. */
2615 if (rv2p_proc == RV2P_PROC1)
2616 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2617 else
2618 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2619 }
2620
2621 /****************************************************************************/
2622 /* Load RISC processor firmware. */
2623 /* */
2624 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2625 /* associated with a particular processor. */
2626 /* */
2627 /* Returns: */
2628 /* Nothing. */
2629 /****************************************************************************/
2630 void
2631 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2632 struct fw_info *fw)
2633 {
2634 u_int32_t offset;
2635 u_int32_t val;
2636
2637 /* Halt the CPU. */
2638 val = REG_RD_IND(sc, cpu_reg->mode);
2639 val |= cpu_reg->mode_value_halt;
2640 REG_WR_IND(sc, cpu_reg->mode, val);
2641 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2642
2643 /* Load the Text area. */
2644 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2645 if (fw->text) {
2646 int j;
2647
2648 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2649 REG_WR_IND(sc, offset, fw->text[j]);
2650 }
2651
2652 /* Load the Data area. */
2653 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2654 if (fw->data) {
2655 int j;
2656
2657 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2658 REG_WR_IND(sc, offset, fw->data[j]);
2659 }
2660
2661 /* Load the SBSS area. */
2662 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2663 if (fw->sbss) {
2664 int j;
2665
2666 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2667 REG_WR_IND(sc, offset, fw->sbss[j]);
2668 }
2669
2670 /* Load the BSS area. */
2671 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2672 if (fw->bss) {
2673 int j;
2674
2675 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2676 REG_WR_IND(sc, offset, fw->bss[j]);
2677 }
2678
2679 /* Load the Read-Only area. */
2680 offset = cpu_reg->spad_base +
2681 (fw->rodata_addr - cpu_reg->mips_view_base);
2682 if (fw->rodata) {
2683 int j;
2684
2685 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2686 REG_WR_IND(sc, offset, fw->rodata[j]);
2687 }
2688
2689 /* Clear the pre-fetch instruction. */
2690 REG_WR_IND(sc, cpu_reg->inst, 0);
2691 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2692
2693 /* Start the CPU. */
2694 val = REG_RD_IND(sc, cpu_reg->mode);
2695 val &= ~cpu_reg->mode_value_halt;
2696 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2697 REG_WR_IND(sc, cpu_reg->mode, val);
2698 }
2699
2700 /****************************************************************************/
2701 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2702 /* */
2703 /* Loads the firmware for each CPU and starts the CPU. */
2704 /* */
2705 /* Returns: */
2706 /* Nothing. */
2707 /****************************************************************************/
2708 void
2709 bnx_init_cpus(struct bnx_softc *sc)
2710 {
2711 struct cpu_reg cpu_reg;
2712 struct fw_info fw;
2713
2714 switch(BNX_CHIP_NUM(sc)) {
2715 case BNX_CHIP_NUM_5709:
2716 /* Initialize the RV2P processor. */
2717 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2718 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2719 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2720 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2721 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2722 } else {
2723 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2724 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2725 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2726 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2727 }
2728
2729 /* Initialize the RX Processor. */
2730 cpu_reg.mode = BNX_RXP_CPU_MODE;
2731 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2732 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2733 cpu_reg.state = BNX_RXP_CPU_STATE;
2734 cpu_reg.state_value_clear = 0xffffff;
2735 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2736 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2737 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2738 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2739 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2740 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2741 cpu_reg.mips_view_base = 0x8000000;
2742
2743 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2744 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2745 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2746 fw.start_addr = bnx_RXP_b09FwStartAddr;
2747
2748 fw.text_addr = bnx_RXP_b09FwTextAddr;
2749 fw.text_len = bnx_RXP_b09FwTextLen;
2750 fw.text_index = 0;
2751 fw.text = bnx_RXP_b09FwText;
2752
2753 fw.data_addr = bnx_RXP_b09FwDataAddr;
2754 fw.data_len = bnx_RXP_b09FwDataLen;
2755 fw.data_index = 0;
2756 fw.data = bnx_RXP_b09FwData;
2757
2758 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2759 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2760 fw.sbss_index = 0;
2761 fw.sbss = bnx_RXP_b09FwSbss;
2762
2763 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2764 fw.bss_len = bnx_RXP_b09FwBssLen;
2765 fw.bss_index = 0;
2766 fw.bss = bnx_RXP_b09FwBss;
2767
2768 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2769 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2770 fw.rodata_index = 0;
2771 fw.rodata = bnx_RXP_b09FwRodata;
2772
2773 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2774 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2775
2776 /* Initialize the TX Processor. */
2777 cpu_reg.mode = BNX_TXP_CPU_MODE;
2778 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2779 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2780 cpu_reg.state = BNX_TXP_CPU_STATE;
2781 cpu_reg.state_value_clear = 0xffffff;
2782 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2783 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2784 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2785 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2786 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2787 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2788 cpu_reg.mips_view_base = 0x8000000;
2789
2790 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2791 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2792 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2793 fw.start_addr = bnx_TXP_b09FwStartAddr;
2794
2795 fw.text_addr = bnx_TXP_b09FwTextAddr;
2796 fw.text_len = bnx_TXP_b09FwTextLen;
2797 fw.text_index = 0;
2798 fw.text = bnx_TXP_b09FwText;
2799
2800 fw.data_addr = bnx_TXP_b09FwDataAddr;
2801 fw.data_len = bnx_TXP_b09FwDataLen;
2802 fw.data_index = 0;
2803 fw.data = bnx_TXP_b09FwData;
2804
2805 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2806 fw.sbss_len = bnx_TXP_b09FwSbssLen;
2807 fw.sbss_index = 0;
2808 fw.sbss = bnx_TXP_b09FwSbss;
2809
2810 fw.bss_addr = bnx_TXP_b09FwBssAddr;
2811 fw.bss_len = bnx_TXP_b09FwBssLen;
2812 fw.bss_index = 0;
2813 fw.bss = bnx_TXP_b09FwBss;
2814
2815 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2816 fw.rodata_len = bnx_TXP_b09FwRodataLen;
2817 fw.rodata_index = 0;
2818 fw.rodata = bnx_TXP_b09FwRodata;
2819
2820 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2821 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2822
2823 /* Initialize the TX Patch-up Processor. */
2824 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2825 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2826 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2827 cpu_reg.state = BNX_TPAT_CPU_STATE;
2828 cpu_reg.state_value_clear = 0xffffff;
2829 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2830 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2831 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2832 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2833 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2834 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2835 cpu_reg.mips_view_base = 0x8000000;
2836
2837 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2838 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2839 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2840 fw.start_addr = bnx_TPAT_b09FwStartAddr;
2841
2842 fw.text_addr = bnx_TPAT_b09FwTextAddr;
2843 fw.text_len = bnx_TPAT_b09FwTextLen;
2844 fw.text_index = 0;
2845 fw.text = bnx_TPAT_b09FwText;
2846
2847 fw.data_addr = bnx_TPAT_b09FwDataAddr;
2848 fw.data_len = bnx_TPAT_b09FwDataLen;
2849 fw.data_index = 0;
2850 fw.data = bnx_TPAT_b09FwData;
2851
2852 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2853 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2854 fw.sbss_index = 0;
2855 fw.sbss = bnx_TPAT_b09FwSbss;
2856
2857 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2858 fw.bss_len = bnx_TPAT_b09FwBssLen;
2859 fw.bss_index = 0;
2860 fw.bss = bnx_TPAT_b09FwBss;
2861
2862 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2863 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2864 fw.rodata_index = 0;
2865 fw.rodata = bnx_TPAT_b09FwRodata;
2866
2867 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2868 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2869
2870 /* Initialize the Completion Processor. */
2871 cpu_reg.mode = BNX_COM_CPU_MODE;
2872 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2873 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2874 cpu_reg.state = BNX_COM_CPU_STATE;
2875 cpu_reg.state_value_clear = 0xffffff;
2876 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2877 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2878 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2879 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2880 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2881 cpu_reg.spad_base = BNX_COM_SCRATCH;
2882 cpu_reg.mips_view_base = 0x8000000;
2883
2884 fw.ver_major = bnx_COM_b09FwReleaseMajor;
2885 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2886 fw.ver_fix = bnx_COM_b09FwReleaseFix;
2887 fw.start_addr = bnx_COM_b09FwStartAddr;
2888
2889 fw.text_addr = bnx_COM_b09FwTextAddr;
2890 fw.text_len = bnx_COM_b09FwTextLen;
2891 fw.text_index = 0;
2892 fw.text = bnx_COM_b09FwText;
2893
2894 fw.data_addr = bnx_COM_b09FwDataAddr;
2895 fw.data_len = bnx_COM_b09FwDataLen;
2896 fw.data_index = 0;
2897 fw.data = bnx_COM_b09FwData;
2898
2899 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2900 fw.sbss_len = bnx_COM_b09FwSbssLen;
2901 fw.sbss_index = 0;
2902 fw.sbss = bnx_COM_b09FwSbss;
2903
2904 fw.bss_addr = bnx_COM_b09FwBssAddr;
2905 fw.bss_len = bnx_COM_b09FwBssLen;
2906 fw.bss_index = 0;
2907 fw.bss = bnx_COM_b09FwBss;
2908
2909 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
2910 fw.rodata_len = bnx_COM_b09FwRodataLen;
2911 fw.rodata_index = 0;
2912 fw.rodata = bnx_COM_b09FwRodata;
2913 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2914 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2915 break;
2916 default:
2917 /* Initialize the RV2P processor. */
2918 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2919 RV2P_PROC1);
2920 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2921 RV2P_PROC2);
2922
2923 /* Initialize the RX Processor. */
2924 cpu_reg.mode = BNX_RXP_CPU_MODE;
2925 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2926 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2927 cpu_reg.state = BNX_RXP_CPU_STATE;
2928 cpu_reg.state_value_clear = 0xffffff;
2929 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2930 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2931 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2932 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2933 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2934 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2935 cpu_reg.mips_view_base = 0x8000000;
2936
2937 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2938 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2939 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2940 fw.start_addr = bnx_RXP_b06FwStartAddr;
2941
2942 fw.text_addr = bnx_RXP_b06FwTextAddr;
2943 fw.text_len = bnx_RXP_b06FwTextLen;
2944 fw.text_index = 0;
2945 fw.text = bnx_RXP_b06FwText;
2946
2947 fw.data_addr = bnx_RXP_b06FwDataAddr;
2948 fw.data_len = bnx_RXP_b06FwDataLen;
2949 fw.data_index = 0;
2950 fw.data = bnx_RXP_b06FwData;
2951
2952 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2953 fw.sbss_len = bnx_RXP_b06FwSbssLen;
2954 fw.sbss_index = 0;
2955 fw.sbss = bnx_RXP_b06FwSbss;
2956
2957 fw.bss_addr = bnx_RXP_b06FwBssAddr;
2958 fw.bss_len = bnx_RXP_b06FwBssLen;
2959 fw.bss_index = 0;
2960 fw.bss = bnx_RXP_b06FwBss;
2961
2962 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2963 fw.rodata_len = bnx_RXP_b06FwRodataLen;
2964 fw.rodata_index = 0;
2965 fw.rodata = bnx_RXP_b06FwRodata;
2966
2967 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2968 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2969
2970 /* Initialize the TX Processor. */
2971 cpu_reg.mode = BNX_TXP_CPU_MODE;
2972 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2973 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2974 cpu_reg.state = BNX_TXP_CPU_STATE;
2975 cpu_reg.state_value_clear = 0xffffff;
2976 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2977 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2978 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2979 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2980 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2981 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2982 cpu_reg.mips_view_base = 0x8000000;
2983
2984 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2985 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2986 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2987 fw.start_addr = bnx_TXP_b06FwStartAddr;
2988
2989 fw.text_addr = bnx_TXP_b06FwTextAddr;
2990 fw.text_len = bnx_TXP_b06FwTextLen;
2991 fw.text_index = 0;
2992 fw.text = bnx_TXP_b06FwText;
2993
2994 fw.data_addr = bnx_TXP_b06FwDataAddr;
2995 fw.data_len = bnx_TXP_b06FwDataLen;
2996 fw.data_index = 0;
2997 fw.data = bnx_TXP_b06FwData;
2998
2999 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3000 fw.sbss_len = bnx_TXP_b06FwSbssLen;
3001 fw.sbss_index = 0;
3002 fw.sbss = bnx_TXP_b06FwSbss;
3003
3004 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3005 fw.bss_len = bnx_TXP_b06FwBssLen;
3006 fw.bss_index = 0;
3007 fw.bss = bnx_TXP_b06FwBss;
3008
3009 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3010 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3011 fw.rodata_index = 0;
3012 fw.rodata = bnx_TXP_b06FwRodata;
3013
3014 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3015 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3016
3017 /* Initialize the TX Patch-up Processor. */
3018 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3019 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3020 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3021 cpu_reg.state = BNX_TPAT_CPU_STATE;
3022 cpu_reg.state_value_clear = 0xffffff;
3023 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3024 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3025 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3026 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3027 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3028 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3029 cpu_reg.mips_view_base = 0x8000000;
3030
3031 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3032 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3033 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3034 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3035
3036 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3037 fw.text_len = bnx_TPAT_b06FwTextLen;
3038 fw.text_index = 0;
3039 fw.text = bnx_TPAT_b06FwText;
3040
3041 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3042 fw.data_len = bnx_TPAT_b06FwDataLen;
3043 fw.data_index = 0;
3044 fw.data = bnx_TPAT_b06FwData;
3045
3046 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3047 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3048 fw.sbss_index = 0;
3049 fw.sbss = bnx_TPAT_b06FwSbss;
3050
3051 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3052 fw.bss_len = bnx_TPAT_b06FwBssLen;
3053 fw.bss_index = 0;
3054 fw.bss = bnx_TPAT_b06FwBss;
3055
3056 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3057 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3058 fw.rodata_index = 0;
3059 fw.rodata = bnx_TPAT_b06FwRodata;
3060
3061 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3062 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3063
3064 /* Initialize the Completion Processor. */
3065 cpu_reg.mode = BNX_COM_CPU_MODE;
3066 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3067 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3068 cpu_reg.state = BNX_COM_CPU_STATE;
3069 cpu_reg.state_value_clear = 0xffffff;
3070 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3071 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3072 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3073 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3074 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3075 cpu_reg.spad_base = BNX_COM_SCRATCH;
3076 cpu_reg.mips_view_base = 0x8000000;
3077
3078 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3079 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3080 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3081 fw.start_addr = bnx_COM_b06FwStartAddr;
3082
3083 fw.text_addr = bnx_COM_b06FwTextAddr;
3084 fw.text_len = bnx_COM_b06FwTextLen;
3085 fw.text_index = 0;
3086 fw.text = bnx_COM_b06FwText;
3087
3088 fw.data_addr = bnx_COM_b06FwDataAddr;
3089 fw.data_len = bnx_COM_b06FwDataLen;
3090 fw.data_index = 0;
3091 fw.data = bnx_COM_b06FwData;
3092
3093 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3094 fw.sbss_len = bnx_COM_b06FwSbssLen;
3095 fw.sbss_index = 0;
3096 fw.sbss = bnx_COM_b06FwSbss;
3097
3098 fw.bss_addr = bnx_COM_b06FwBssAddr;
3099 fw.bss_len = bnx_COM_b06FwBssLen;
3100 fw.bss_index = 0;
3101 fw.bss = bnx_COM_b06FwBss;
3102
3103 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3104 fw.rodata_len = bnx_COM_b06FwRodataLen;
3105 fw.rodata_index = 0;
3106 fw.rodata = bnx_COM_b06FwRodata;
3107 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3108 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3109 break;
3110 }
3111 }
3112
3113 /****************************************************************************/
3114 /* Initialize context memory. */
3115 /* */
3116 /* Clears the memory associated with each Context ID (CID). */
3117 /* */
3118 /* Returns: */
3119 /* Nothing. */
3120 /****************************************************************************/
3121 void
3122 bnx_init_context(struct bnx_softc *sc)
3123 {
3124 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3125 /* DRC: Replace this constant value with a #define. */
3126 int i, retry_cnt = 10;
3127 u_int32_t val;
3128
3129 /*
3130 * BCM5709 context memory may be cached
3131 * in host memory so prepare the host memory
3132 * for access.
3133 */
3134 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3135 | (1 << 12);
3136 val |= (BCM_PAGE_BITS - 8) << 16;
3137 REG_WR(sc, BNX_CTX_COMMAND, val);
3138
3139 /* Wait for mem init command to complete. */
3140 for (i = 0; i < retry_cnt; i++) {
3141 val = REG_RD(sc, BNX_CTX_COMMAND);
3142 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3143 break;
3144 DELAY(2);
3145 }
3146
3147
3148 /* ToDo: Consider returning an error here. */
3149
3150 for (i = 0; i < sc->ctx_pages; i++) {
3151 int j;
3152
3153
3154 /* Set the physaddr of the context memory cache. */
3155 val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
3156 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3157 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3158 val = (u_int32_t)
3159 ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
3160 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3161 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3162 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3163
3164
3165 /* Verify that the context memory write was successful. */
3166 for (j = 0; j < retry_cnt; j++) {
3167 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3168 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3169 break;
3170 DELAY(5);
3171 }
3172
3173 /* ToDo: Consider returning an error here. */
3174 }
3175 } else {
3176 u_int32_t vcid_addr, offset;
3177
3178 /*
3179 * For the 5706/5708, context memory is local to
3180 * the controller, so initialize the controller
3181 * context memory.
3182 */
3183
3184 vcid_addr = GET_CID_ADDR(96);
3185 while (vcid_addr) {
3186
3187 vcid_addr -= BNX_PHY_CTX_SIZE;
3188
3189 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3190 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3191
3192 for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3193 CTX_WR(sc, 0x00, offset, 0);
3194 }
3195
3196 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3197 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3198 }
3199 }
3200 }
3201
3202 /****************************************************************************/
3203 /* Fetch the permanent MAC address of the controller. */
3204 /* */
3205 /* Returns: */
3206 /* Nothing. */
3207 /****************************************************************************/
3208 void
3209 bnx_get_mac_addr(struct bnx_softc *sc)
3210 {
3211 u_int32_t mac_lo = 0, mac_hi = 0;
3212
3213 /*
3214 * The NetXtreme II bootcode populates various NIC
3215 * power-on and runtime configuration items in a
3216 * shared memory area. The factory configured MAC
3217 * address is available from both NVRAM and the
3218 * shared memory area so we'll read the value from
3219 * shared memory for speed.
3220 */
3221
3222 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3223 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3224
3225 if ((mac_lo == 0) && (mac_hi == 0)) {
3226 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3227 __FILE__, __LINE__);
3228 } else {
3229 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3230 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3231 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3232 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3233 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3234 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3235 }
3236
3237 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3238 "%s\n", ether_sprintf(sc->eaddr));
3239 }
3240
3241 /****************************************************************************/
3242 /* Program the MAC address. */
3243 /* */
3244 /* Returns: */
3245 /* Nothing. */
3246 /****************************************************************************/
3247 void
3248 bnx_set_mac_addr(struct bnx_softc *sc)
3249 {
3250 u_int32_t val;
3251 const u_int8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3252
3253 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3254 "%s\n", ether_sprintf(sc->eaddr));
3255
3256 val = (mac_addr[0] << 8) | mac_addr[1];
3257
3258 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3259
3260 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3261 (mac_addr[4] << 8) | mac_addr[5];
3262
3263 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3264 }
3265
3266 /****************************************************************************/
3267 /* Stop the controller. */
3268 /* */
3269 /* Returns: */
3270 /* Nothing. */
3271 /****************************************************************************/
3272 void
3273 bnx_stop(struct ifnet *ifp, int disable)
3274 {
3275 struct bnx_softc *sc = ifp->if_softc;
3276
3277 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3278
3279 if ((ifp->if_flags & IFF_RUNNING) == 0)
3280 return;
3281
3282 callout_stop(&sc->bnx_timeout);
3283
3284 mii_down(&sc->bnx_mii);
3285
3286 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3287
3288 /* Disable the transmit/receive blocks. */
3289 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3290 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3291 DELAY(20);
3292
3293 bnx_disable_intr(sc);
3294
3295 /* Tell firmware that the driver is going away. */
3296 if (disable)
3297 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3298 else
3299 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3300
3301 /* Free RX buffers. */
3302 bnx_free_rx_chain(sc);
3303
3304 /* Free TX buffers. */
3305 bnx_free_tx_chain(sc);
3306
3307 ifp->if_timer = 0;
3308
3309 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3310
3311 }
3312
3313 int
3314 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
3315 {
3316 struct pci_attach_args *pa = &(sc->bnx_pa);
3317 u_int32_t val;
3318 int i, rc = 0;
3319
3320 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3321
3322 /* Wait for pending PCI transactions to complete. */
3323 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3324 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3325 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3326 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3327 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3328 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3329 DELAY(5);
3330
3331 /* Disable DMA */
3332 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3333 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3334 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3335 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3336 }
3337
3338 /* Assume bootcode is running. */
3339 sc->bnx_fw_timed_out = 0;
3340
3341 /* Give the firmware a chance to prepare for the reset. */
3342 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3343 if (rc)
3344 goto bnx_reset_exit;
3345
3346 /* Set a firmware reminder that this is a soft reset. */
3347 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3348 BNX_DRV_RESET_SIGNATURE_MAGIC);
3349
3350 /* Dummy read to force the chip to complete all current transactions. */
3351 val = REG_RD(sc, BNX_MISC_ID);
3352
3353 /* Chip reset. */
3354 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3355 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3356 REG_RD(sc, BNX_MISC_COMMAND);
3357 DELAY(5);
3358
3359 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3360 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3361
3362 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3363 val);
3364 } else {
3365 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3366 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3367 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3368 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3369
3370 /* Allow up to 30us for reset to complete. */
3371 for (i = 0; i < 10; i++) {
3372 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3373 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3374 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3375 break;
3376 }
3377 DELAY(10);
3378 }
3379
3380 /* Check that reset completed successfully. */
3381 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3382 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3383 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3384 __FILE__, __LINE__);
3385 rc = EBUSY;
3386 goto bnx_reset_exit;
3387 }
3388 }
3389
3390 /* Make sure byte swapping is properly configured. */
3391 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3392 if (val != 0x01020304) {
3393 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3394 __FILE__, __LINE__);
3395 rc = ENODEV;
3396 goto bnx_reset_exit;
3397 }
3398
3399 /* Just completed a reset, assume that firmware is running again. */
3400 sc->bnx_fw_timed_out = 0;
3401
3402 /* Wait for the firmware to finish its initialization. */
3403 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3404 if (rc)
3405 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3406 "initialization!\n", __FILE__, __LINE__);
3407
3408 bnx_reset_exit:
3409 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3410
3411 return (rc);
3412 }
3413
3414 int
3415 bnx_chipinit(struct bnx_softc *sc)
3416 {
3417 struct pci_attach_args *pa = &(sc->bnx_pa);
3418 u_int32_t val;
3419 int rc = 0;
3420
3421 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3422
3423 /* Make sure the interrupt is not active. */
3424 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3425
3426 /* Initialize DMA byte/word swapping, configure the number of DMA */
3427 /* channels and PCI clock compensation delay. */
3428 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3429 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3430 #if BYTE_ORDER == BIG_ENDIAN
3431 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3432 #endif
3433 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3434 DMA_READ_CHANS << 12 |
3435 DMA_WRITE_CHANS << 16;
3436
3437 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3438
3439 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3440 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3441
3442 /*
3443 * This setting resolves a problem observed on certain Intel PCI
3444 * chipsets that cannot handle multiple outstanding DMA operations.
3445 * See errata E9_5706A1_65.
3446 */
3447 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3448 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3449 !(sc->bnx_flags & BNX_PCIX_FLAG))
3450 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3451
3452 REG_WR(sc, BNX_DMA_CONFIG, val);
3453
3454 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3455 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3456 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3457 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3458 val & ~0x20000);
3459 }
3460
3461 /* Enable the RX_V2P and Context state machines before access. */
3462 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3463 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3464 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3465 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3466
3467 /* Initialize context mapping and zero out the quick contexts. */
3468 bnx_init_context(sc);
3469
3470 /* Initialize the on-boards CPUs */
3471 bnx_init_cpus(sc);
3472
3473 /* Prepare NVRAM for access. */
3474 if (bnx_init_nvram(sc)) {
3475 rc = ENODEV;
3476 goto bnx_chipinit_exit;
3477 }
3478
3479 /* Set the kernel bypass block size */
3480 val = REG_RD(sc, BNX_MQ_CONFIG);
3481 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3482 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3483
3484 /* Enable bins used on the 5709. */
3485 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3486 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3487 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3488 val |= BNX_MQ_CONFIG_HALT_DIS;
3489 }
3490
3491 REG_WR(sc, BNX_MQ_CONFIG, val);
3492
3493 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3494 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3495 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3496
3497 val = (BCM_PAGE_BITS - 8) << 24;
3498 REG_WR(sc, BNX_RV2P_CONFIG, val);
3499
3500 /* Configure page size. */
3501 val = REG_RD(sc, BNX_TBDR_CONFIG);
3502 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3503 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3504 REG_WR(sc, BNX_TBDR_CONFIG, val);
3505
3506 #if 0
3507 /* Set the perfect match control register to default. */
3508 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3509 #endif
3510
3511 bnx_chipinit_exit:
3512 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3513
3514 return(rc);
3515 }
3516
3517 /****************************************************************************/
3518 /* Initialize the controller in preparation to send/receive traffic. */
3519 /* */
3520 /* Returns: */
3521 /* 0 for success, positive value for failure. */
3522 /****************************************************************************/
3523 int
3524 bnx_blockinit(struct bnx_softc *sc)
3525 {
3526 u_int32_t reg, val;
3527 int rc = 0;
3528
3529 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3530
3531 /* Load the hardware default MAC address. */
3532 bnx_set_mac_addr(sc);
3533
3534 /* Set the Ethernet backoff seed value */
3535 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3536 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3537 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3538
3539 sc->last_status_idx = 0;
3540 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3541
3542 /* Set up link change interrupt generation. */
3543 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3544 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3545
3546 /* Program the physical address of the status block. */
3547 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
3548 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3549 (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
3550
3551 /* Program the physical address of the statistics block. */
3552 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3553 (u_int32_t)(sc->stats_block_paddr));
3554 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3555 (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
3556
3557 /* Program various host coalescing parameters. */
3558 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3559 << 16) | sc->bnx_tx_quick_cons_trip);
3560 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3561 << 16) | sc->bnx_rx_quick_cons_trip);
3562 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3563 sc->bnx_comp_prod_trip);
3564 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3565 sc->bnx_tx_ticks);
3566 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3567 sc->bnx_rx_ticks);
3568 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3569 sc->bnx_com_ticks);
3570 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3571 sc->bnx_cmd_ticks);
3572 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3573 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3574 REG_WR(sc, BNX_HC_CONFIG,
3575 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3576 BNX_HC_CONFIG_COLLECT_STATS));
3577
3578 /* Clear the internal statistics counters. */
3579 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3580
3581 /* Verify that bootcode is running. */
3582 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3583
3584 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3585 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3586 __FILE__, __LINE__); reg = 0);
3587
3588 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3589 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3590 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3591 "Expected: 08%08X\n", __FILE__, __LINE__,
3592 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3593 BNX_DEV_INFO_SIGNATURE_MAGIC);
3594 rc = ENODEV;
3595 goto bnx_blockinit_exit;
3596 }
3597
3598 /* Check if any management firmware is running. */
3599 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3600 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3601 BNX_PORT_FEATURE_IMD_ENABLED)) {
3602 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3603 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3604 }
3605
3606 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3607 BNX_DEV_INFO_BC_REV);
3608
3609 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3610
3611 /* Enable DMA */
3612 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3613 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3614 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3615 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3616 }
3617
3618 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3619 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3620
3621 /* Enable link state change interrupt generation. */
3622 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3623 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3624 BNX_MISC_ENABLE_DEFAULT_XI);
3625 } else
3626 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3627
3628 /* Enable all remaining blocks in the MAC. */
3629 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3630 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3631 DELAY(20);
3632
3633 bnx_blockinit_exit:
3634 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3635
3636 return (rc);
3637 }
3638
3639 static int
3640 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
3641 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3642 {
3643 bus_dmamap_t map;
3644 struct rx_bd *rxbd;
3645 u_int32_t addr;
3646 int i;
3647 #ifdef BNX_DEBUG
3648 u_int16_t debug_chain_prod = *chain_prod;
3649 #endif
3650 u_int16_t first_chain_prod;
3651
3652 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3653
3654 /* Map the mbuf cluster into device memory. */
3655 map = sc->rx_mbuf_map[*chain_prod];
3656 first_chain_prod = *chain_prod;
3657 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3658 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3659 __FILE__, __LINE__);
3660
3661 m_freem(m_new);
3662
3663 DBRUNIF(1, sc->rx_mbuf_alloc--);
3664
3665 return ENOBUFS;
3666 }
3667 /* Make sure there is room in the receive chain. */
3668 if (map->dm_nsegs > sc->free_rx_bd) {
3669 bus_dmamap_unload(sc->bnx_dmatag, map);
3670 m_freem(m_new);
3671 return EFBIG;
3672 }
3673 #ifdef BNX_DEBUG
3674 /* Track the distribution of buffer segments. */
3675 sc->rx_mbuf_segs[map->dm_nsegs]++;
3676 #endif
3677
3678 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3679 BUS_DMASYNC_PREREAD);
3680
3681 /* Update some debug statistics counters */
3682 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3683 sc->rx_low_watermark = sc->free_rx_bd);
3684 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3685
3686 /*
3687 * Setup the rx_bd for the first segment
3688 */
3689 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3690
3691 addr = (u_int32_t)map->dm_segs[0].ds_addr;
3692 rxbd->rx_bd_haddr_lo = addr;
3693 addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3694 rxbd->rx_bd_haddr_hi = addr;
3695 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3696 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3697 *prod_bseq += map->dm_segs[0].ds_len;
3698 bus_dmamap_sync(sc->bnx_dmatag,
3699 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3700 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3701 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3702
3703 for (i = 1; i < map->dm_nsegs; i++) {
3704 *prod = NEXT_RX_BD(*prod);
3705 *chain_prod = RX_CHAIN_IDX(*prod);
3706
3707 rxbd =
3708 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3709
3710 addr = (u_int32_t)map->dm_segs[i].ds_addr;
3711 rxbd->rx_bd_haddr_lo = addr;
3712 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3713 rxbd->rx_bd_haddr_hi = addr;
3714 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3715 rxbd->rx_bd_flags = 0;
3716 *prod_bseq += map->dm_segs[i].ds_len;
3717 bus_dmamap_sync(sc->bnx_dmatag,
3718 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3719 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3720 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3721 }
3722
3723 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3724 bus_dmamap_sync(sc->bnx_dmatag,
3725 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3726 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3727 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3728
3729 /*
3730 * Save the mbuf, ajust the map pointer (swap map for first and
3731 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3732 * and update counter.
3733 */
3734 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3735 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3736 sc->rx_mbuf_map[*chain_prod] = map;
3737 sc->free_rx_bd -= map->dm_nsegs;
3738
3739 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3740 map->dm_nsegs));
3741 *prod = NEXT_RX_BD(*prod);
3742 *chain_prod = RX_CHAIN_IDX(*prod);
3743
3744 return 0;
3745 }
3746
3747 /****************************************************************************/
3748 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3749 /* */
3750 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3751 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3752 /* necessary. */
3753 /* */
3754 /* Returns: */
3755 /* 0 for success, positive value for failure. */
3756 /****************************************************************************/
3757 int
3758 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
3759 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3760 {
3761 struct mbuf *m_new = NULL;
3762 int rc = 0;
3763 u_int16_t min_free_bd;
3764
3765 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3766 __func__);
3767
3768 /* Make sure the inputs are valid. */
3769 DBRUNIF((*chain_prod > MAX_RX_BD),
3770 aprint_error_dev(sc->bnx_dev,
3771 "RX producer out of range: 0x%04X > 0x%04X\n",
3772 *chain_prod, (u_int16_t)MAX_RX_BD));
3773
3774 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3775 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3776 *prod_bseq);
3777
3778 /* try to get in as many mbufs as possible */
3779 if (sc->mbuf_alloc_size == MCLBYTES)
3780 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3781 else
3782 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3783 while (sc->free_rx_bd >= min_free_bd) {
3784 /* Simulate an mbuf allocation failure. */
3785 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3786 aprint_error_dev(sc->bnx_dev,
3787 "Simulating mbuf allocation failure.\n");
3788 sc->mbuf_sim_alloc_failed++;
3789 rc = ENOBUFS;
3790 goto bnx_get_buf_exit);
3791
3792 /* This is a new mbuf allocation. */
3793 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3794 if (m_new == NULL) {
3795 DBPRINT(sc, BNX_WARN,
3796 "%s(%d): RX mbuf header allocation failed!\n",
3797 __FILE__, __LINE__);
3798
3799 sc->mbuf_alloc_failed++;
3800
3801 rc = ENOBUFS;
3802 goto bnx_get_buf_exit;
3803 }
3804
3805 DBRUNIF(1, sc->rx_mbuf_alloc++);
3806
3807 /* Simulate an mbuf cluster allocation failure. */
3808 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3809 m_freem(m_new);
3810 sc->rx_mbuf_alloc--;
3811 sc->mbuf_alloc_failed++;
3812 sc->mbuf_sim_alloc_failed++;
3813 rc = ENOBUFS;
3814 goto bnx_get_buf_exit);
3815
3816 if (sc->mbuf_alloc_size == MCLBYTES)
3817 MCLGET(m_new, M_DONTWAIT);
3818 else
3819 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3820 M_DONTWAIT);
3821 if (!(m_new->m_flags & M_EXT)) {
3822 DBPRINT(sc, BNX_WARN,
3823 "%s(%d): RX mbuf chain allocation failed!\n",
3824 __FILE__, __LINE__);
3825
3826 m_freem(m_new);
3827
3828 DBRUNIF(1, sc->rx_mbuf_alloc--);
3829 sc->mbuf_alloc_failed++;
3830
3831 rc = ENOBUFS;
3832 goto bnx_get_buf_exit;
3833 }
3834
3835 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3836 if (rc != 0)
3837 goto bnx_get_buf_exit;
3838 }
3839
3840 bnx_get_buf_exit:
3841 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3842 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3843 *chain_prod, *prod_bseq);
3844
3845 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3846 __func__);
3847
3848 return(rc);
3849 }
3850
3851 void
3852 bnx_alloc_pkts(struct work * unused, void * arg)
3853 {
3854 struct bnx_softc *sc = arg;
3855 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3856 struct bnx_pkt *pkt;
3857 int i, s;
3858
3859 for (i = 0; i < 4; i++) { /* magic! */
3860 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
3861 if (pkt == NULL)
3862 break;
3863
3864 if (bus_dmamap_create(sc->bnx_dmatag,
3865 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3866 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
3867 &pkt->pkt_dmamap) != 0)
3868 goto put;
3869
3870 if (!ISSET(ifp->if_flags, IFF_UP))
3871 goto stopping;
3872
3873 mutex_enter(&sc->tx_pkt_mtx);
3874 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3875 sc->tx_pkt_count++;
3876 mutex_exit(&sc->tx_pkt_mtx);
3877 }
3878
3879 mutex_enter(&sc->tx_pkt_mtx);
3880 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
3881 mutex_exit(&sc->tx_pkt_mtx);
3882
3883 /* fire-up TX now that allocations have been done */
3884 s = splnet();
3885 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3886 bnx_start(ifp);
3887 splx(s);
3888
3889 return;
3890
3891 stopping:
3892 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3893 put:
3894 pool_put(bnx_tx_pool, pkt);
3895 return;
3896 }
3897
3898 /****************************************************************************/
3899 /* Initialize the TX context memory. */
3900 /* */
3901 /* Returns: */
3902 /* Nothing */
3903 /****************************************************************************/
3904 void
3905 bnx_init_tx_context(struct bnx_softc *sc)
3906 {
3907 u_int32_t val;
3908
3909 /* Initialize the context ID for an L2 TX chain. */
3910 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3911 /* Set the CID type to support an L2 connection. */
3912 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3913 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
3914 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3915 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
3916
3917 /* Point the hardware to the first page in the chain. */
3918 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3919 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3920 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
3921 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3922 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3923 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
3924 } else {
3925 /* Set the CID type to support an L2 connection. */
3926 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3927 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3928 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3929 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3930
3931 /* Point the hardware to the first page in the chain. */
3932 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3933 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3934 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3935 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3936 }
3937 }
3938
3939
3940 /****************************************************************************/
3941 /* Allocate memory and initialize the TX data structures. */
3942 /* */
3943 /* Returns: */
3944 /* 0 for success, positive value for failure. */
3945 /****************************************************************************/
3946 int
3947 bnx_init_tx_chain(struct bnx_softc *sc)
3948 {
3949 struct tx_bd *txbd;
3950 u_int32_t addr;
3951 int i, rc = 0;
3952
3953 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3954
3955 /* Force an allocation of some dmamaps for tx up front */
3956 bnx_alloc_pkts(NULL, sc);
3957
3958 /* Set the initial TX producer/consumer indices. */
3959 sc->tx_prod = 0;
3960 sc->tx_cons = 0;
3961 sc->tx_prod_bseq = 0;
3962 sc->used_tx_bd = 0;
3963 sc->max_tx_bd = USABLE_TX_BD;
3964 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3965 DBRUNIF(1, sc->tx_full_count = 0);
3966
3967 /*
3968 * The NetXtreme II supports a linked-list structure called
3969 * a Buffer Descriptor Chain (or BD chain). A BD chain
3970 * consists of a series of 1 or more chain pages, each of which
3971 * consists of a fixed number of BD entries.
3972 * The last BD entry on each page is a pointer to the next page
3973 * in the chain, and the last pointer in the BD chain
3974 * points back to the beginning of the chain.
3975 */
3976
3977 /* Set the TX next pointer chain entries. */
3978 for (i = 0; i < TX_PAGES; i++) {
3979 int j;
3980
3981 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3982
3983 /* Check if we've reached the last page. */
3984 if (i == (TX_PAGES - 1))
3985 j = 0;
3986 else
3987 j = i + 1;
3988
3989 addr = (u_int32_t)sc->tx_bd_chain_paddr[j];
3990 txbd->tx_bd_haddr_lo = addr;
3991 addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3992 txbd->tx_bd_haddr_hi = addr;
3993 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3994 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3995 }
3996
3997 /*
3998 * Initialize the context ID for an L2 TX chain.
3999 */
4000 bnx_init_tx_context(sc);
4001
4002 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4003
4004 return(rc);
4005 }
4006
4007 /****************************************************************************/
4008 /* Free memory and clear the TX data structures. */
4009 /* */
4010 /* Returns: */
4011 /* Nothing. */
4012 /****************************************************************************/
4013 void
4014 bnx_free_tx_chain(struct bnx_softc *sc)
4015 {
4016 struct bnx_pkt *pkt;
4017 int i;
4018
4019 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4020
4021 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4022 mutex_enter(&sc->tx_pkt_mtx);
4023 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4024 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4025 mutex_exit(&sc->tx_pkt_mtx);
4026
4027 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4028 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4029 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4030
4031 m_freem(pkt->pkt_mbuf);
4032 DBRUNIF(1, sc->tx_mbuf_alloc--);
4033
4034 mutex_enter(&sc->tx_pkt_mtx);
4035 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4036 }
4037
4038 /* Destroy all the dmamaps we allocated for TX */
4039 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4040 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4041 sc->tx_pkt_count--;
4042 mutex_exit(&sc->tx_pkt_mtx);
4043
4044 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4045 pool_put(bnx_tx_pool, pkt);
4046
4047 mutex_enter(&sc->tx_pkt_mtx);
4048 }
4049 mutex_exit(&sc->tx_pkt_mtx);
4050
4051
4052
4053 /* Clear each TX chain page. */
4054 for (i = 0; i < TX_PAGES; i++) {
4055 memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4056 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4057 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4058 }
4059
4060 sc->used_tx_bd = 0;
4061
4062 /* Check if we lost any mbufs in the process. */
4063 DBRUNIF((sc->tx_mbuf_alloc),
4064 aprint_error_dev(sc->bnx_dev,
4065 "Memory leak! Lost %d mbufs from tx chain!\n",
4066 sc->tx_mbuf_alloc));
4067
4068 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4069 }
4070
4071 /****************************************************************************/
4072 /* Initialize the RX context memory. */
4073 /* */
4074 /* Returns: */
4075 /* Nothing */
4076 /****************************************************************************/
4077 void
4078 bnx_init_rx_context(struct bnx_softc *sc)
4079 {
4080 u_int32_t val;
4081
4082 /* Initialize the context ID for an L2 RX chain. */
4083 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4084 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4085
4086 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4087 u_int32_t lo_water, hi_water;
4088
4089 lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4090 hi_water = USABLE_RX_BD / 4;
4091
4092 lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4093 hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4094
4095 if (hi_water > 0xf)
4096 hi_water = 0xf;
4097 else if (hi_water == 0)
4098 lo_water = 0;
4099 val |= lo_water |
4100 (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4101 }
4102
4103 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4104
4105 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4106 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4107 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4108 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4109 }
4110
4111 /* Point the hardware to the first page in the chain. */
4112 val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
4113 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4114 val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
4115 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4116 }
4117
4118 /****************************************************************************/
4119 /* Allocate memory and initialize the RX data structures. */
4120 /* */
4121 /* Returns: */
4122 /* 0 for success, positive value for failure. */
4123 /****************************************************************************/
4124 int
4125 bnx_init_rx_chain(struct bnx_softc *sc)
4126 {
4127 struct rx_bd *rxbd;
4128 int i, rc = 0;
4129 u_int16_t prod, chain_prod;
4130 u_int32_t prod_bseq, addr;
4131
4132 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4133
4134 /* Initialize the RX producer and consumer indices. */
4135 sc->rx_prod = 0;
4136 sc->rx_cons = 0;
4137 sc->rx_prod_bseq = 0;
4138 sc->free_rx_bd = USABLE_RX_BD;
4139 sc->max_rx_bd = USABLE_RX_BD;
4140 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4141 DBRUNIF(1, sc->rx_empty_count = 0);
4142
4143 /* Initialize the RX next pointer chain entries. */
4144 for (i = 0; i < RX_PAGES; i++) {
4145 int j;
4146
4147 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4148
4149 /* Check if we've reached the last page. */
4150 if (i == (RX_PAGES - 1))
4151 j = 0;
4152 else
4153 j = i + 1;
4154
4155 /* Setup the chain page pointers. */
4156 addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
4157 rxbd->rx_bd_haddr_hi = addr;
4158 addr = (u_int32_t)sc->rx_bd_chain_paddr[j];
4159 rxbd->rx_bd_haddr_lo = addr;
4160 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4161 0, BNX_RX_CHAIN_PAGE_SZ,
4162 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4163 }
4164
4165 /* Allocate mbuf clusters for the rx_bd chain. */
4166 prod = prod_bseq = 0;
4167 chain_prod = RX_CHAIN_IDX(prod);
4168 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4169 BNX_PRINTF(sc,
4170 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4171 }
4172
4173 /* Save the RX chain producer index. */
4174 sc->rx_prod = prod;
4175 sc->rx_prod_bseq = prod_bseq;
4176
4177 for (i = 0; i < RX_PAGES; i++)
4178 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4179 sc->rx_bd_chain_map[i]->dm_mapsize,
4180 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4181
4182 /* Tell the chip about the waiting rx_bd's. */
4183 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4184 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4185
4186 bnx_init_rx_context(sc);
4187
4188 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4189
4190 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4191
4192 return(rc);
4193 }
4194
4195 /****************************************************************************/
4196 /* Free memory and clear the RX data structures. */
4197 /* */
4198 /* Returns: */
4199 /* Nothing. */
4200 /****************************************************************************/
4201 void
4202 bnx_free_rx_chain(struct bnx_softc *sc)
4203 {
4204 int i;
4205
4206 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4207
4208 /* Free any mbufs still in the RX mbuf chain. */
4209 for (i = 0; i < TOTAL_RX_BD; i++) {
4210 if (sc->rx_mbuf_ptr[i] != NULL) {
4211 if (sc->rx_mbuf_map[i] != NULL) {
4212 bus_dmamap_sync(sc->bnx_dmatag,
4213 sc->rx_mbuf_map[i], 0,
4214 sc->rx_mbuf_map[i]->dm_mapsize,
4215 BUS_DMASYNC_POSTREAD);
4216 bus_dmamap_unload(sc->bnx_dmatag,
4217 sc->rx_mbuf_map[i]);
4218 }
4219 m_freem(sc->rx_mbuf_ptr[i]);
4220 sc->rx_mbuf_ptr[i] = NULL;
4221 DBRUNIF(1, sc->rx_mbuf_alloc--);
4222 }
4223 }
4224
4225 /* Clear each RX chain page. */
4226 for (i = 0; i < RX_PAGES; i++)
4227 memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4228
4229 sc->free_rx_bd = sc->max_rx_bd;
4230
4231 /* Check if we lost any mbufs in the process. */
4232 DBRUNIF((sc->rx_mbuf_alloc),
4233 aprint_error_dev(sc->bnx_dev,
4234 "Memory leak! Lost %d mbufs from rx chain!\n",
4235 sc->rx_mbuf_alloc));
4236
4237 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4238 }
4239
4240 /****************************************************************************/
4241 /* Handles PHY generated interrupt events. */
4242 /* */
4243 /* Returns: */
4244 /* Nothing. */
4245 /****************************************************************************/
4246 void
4247 bnx_phy_intr(struct bnx_softc *sc)
4248 {
4249 u_int32_t new_link_state, old_link_state;
4250
4251 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4252 BUS_DMASYNC_POSTREAD);
4253 new_link_state = sc->status_block->status_attn_bits &
4254 STATUS_ATTN_BITS_LINK_STATE;
4255 old_link_state = sc->status_block->status_attn_bits_ack &
4256 STATUS_ATTN_BITS_LINK_STATE;
4257
4258 /* Handle any changes if the link state has changed. */
4259 if (new_link_state != old_link_state) {
4260 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4261
4262 callout_stop(&sc->bnx_timeout);
4263 bnx_tick(sc);
4264
4265 /* Update the status_attn_bits_ack field in the status block. */
4266 if (new_link_state) {
4267 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4268 STATUS_ATTN_BITS_LINK_STATE);
4269 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4270 } else {
4271 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4272 STATUS_ATTN_BITS_LINK_STATE);
4273 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4274 }
4275 }
4276
4277 /* Acknowledge the link change interrupt. */
4278 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4279 }
4280
4281 /****************************************************************************/
4282 /* Handles received frame interrupt events. */
4283 /* */
4284 /* Returns: */
4285 /* Nothing. */
4286 /****************************************************************************/
4287 void
4288 bnx_rx_intr(struct bnx_softc *sc)
4289 {
4290 struct status_block *sblk = sc->status_block;
4291 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4292 u_int16_t hw_cons, sw_cons, sw_chain_cons;
4293 u_int16_t sw_prod, sw_chain_prod;
4294 u_int32_t sw_prod_bseq;
4295 struct l2_fhdr *l2fhdr;
4296 int i;
4297
4298 DBRUNIF(1, sc->rx_interrupts++);
4299 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4300 BUS_DMASYNC_POSTREAD);
4301
4302 /* Prepare the RX chain pages to be accessed by the host CPU. */
4303 for (i = 0; i < RX_PAGES; i++)
4304 bus_dmamap_sync(sc->bnx_dmatag,
4305 sc->rx_bd_chain_map[i], 0,
4306 sc->rx_bd_chain_map[i]->dm_mapsize,
4307 BUS_DMASYNC_POSTWRITE);
4308
4309 /* Get the hardware's view of the RX consumer index. */
4310 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4311 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4312 hw_cons++;
4313
4314 /* Get working copies of the driver's view of the RX indices. */
4315 sw_cons = sc->rx_cons;
4316 sw_prod = sc->rx_prod;
4317 sw_prod_bseq = sc->rx_prod_bseq;
4318
4319 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4320 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4321 __func__, sw_prod, sw_cons, sw_prod_bseq);
4322
4323 /* Prevent speculative reads from getting ahead of the status block. */
4324 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4325 BUS_SPACE_BARRIER_READ);
4326
4327 /* Update some debug statistics counters */
4328 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4329 sc->rx_low_watermark = sc->free_rx_bd);
4330 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4331
4332 /*
4333 * Scan through the receive chain as long
4334 * as there is work to do.
4335 */
4336 while (sw_cons != hw_cons) {
4337 struct mbuf *m;
4338 struct rx_bd *rxbd __diagused;
4339 unsigned int len;
4340 u_int32_t status;
4341
4342 /* Convert the producer/consumer indices to an actual
4343 * rx_bd index.
4344 */
4345 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4346 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4347
4348 /* Get the used rx_bd. */
4349 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4350 sc->free_rx_bd++;
4351
4352 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4353 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4354
4355 /* The mbuf is stored with the last rx_bd entry of a packet. */
4356 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4357 #ifdef DIAGNOSTIC
4358 /* Validate that this is the last rx_bd. */
4359 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4360 printf("%s: Unexpected mbuf found in "
4361 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4362 sw_chain_cons);
4363 }
4364 #endif
4365
4366 /* DRC - ToDo: If the received packet is small, say less
4367 * than 128 bytes, allocate a new mbuf here,
4368 * copy the data to that mbuf, and recycle
4369 * the mapped jumbo frame.
4370 */
4371
4372 /* Unmap the mbuf from DMA space. */
4373 #ifdef DIAGNOSTIC
4374 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4375 printf("invalid map sw_cons 0x%x "
4376 "sw_prod 0x%x "
4377 "sw_chain_cons 0x%x "
4378 "sw_chain_prod 0x%x "
4379 "hw_cons 0x%x "
4380 "TOTAL_RX_BD_PER_PAGE 0x%x "
4381 "TOTAL_RX_BD 0x%x\n",
4382 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4383 hw_cons,
4384 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4385 }
4386 #endif
4387 bus_dmamap_sync(sc->bnx_dmatag,
4388 sc->rx_mbuf_map[sw_chain_cons], 0,
4389 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4390 BUS_DMASYNC_POSTREAD);
4391 bus_dmamap_unload(sc->bnx_dmatag,
4392 sc->rx_mbuf_map[sw_chain_cons]);
4393
4394 /* Remove the mbuf from the driver's chain. */
4395 m = sc->rx_mbuf_ptr[sw_chain_cons];
4396 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4397
4398 /*
4399 * Frames received on the NetXteme II are prepended
4400 * with the l2_fhdr structure which provides status
4401 * information about the received frame (including
4402 * VLAN tags and checksum info) and are also
4403 * automatically adjusted to align the IP header
4404 * (i.e. two null bytes are inserted before the
4405 * Ethernet header).
4406 */
4407 l2fhdr = mtod(m, struct l2_fhdr *);
4408
4409 len = l2fhdr->l2_fhdr_pkt_len;
4410 status = l2fhdr->l2_fhdr_status;
4411
4412 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4413 aprint_error("Simulating l2_fhdr status error.\n");
4414 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4415
4416 /* Watch for unusual sized frames. */
4417 DBRUNIF(((len < BNX_MIN_MTU) ||
4418 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4419 aprint_error_dev(sc->bnx_dev,
4420 "Unusual frame size found. "
4421 "Min(%d), Actual(%d), Max(%d)\n",
4422 (int)BNX_MIN_MTU, len,
4423 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4424
4425 bnx_dump_mbuf(sc, m);
4426 bnx_breakpoint(sc));
4427
4428 len -= ETHER_CRC_LEN;
4429
4430 /* Check the received frame for errors. */
4431 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4432 L2_FHDR_ERRORS_PHY_DECODE |
4433 L2_FHDR_ERRORS_ALIGNMENT |
4434 L2_FHDR_ERRORS_TOO_SHORT |
4435 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4436 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4437 len >
4438 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4439 ifp->if_ierrors++;
4440 DBRUNIF(1, sc->l2fhdr_status_errors++);
4441
4442 /* Reuse the mbuf for a new frame. */
4443 if (bnx_add_buf(sc, m, &sw_prod,
4444 &sw_chain_prod, &sw_prod_bseq)) {
4445 DBRUNIF(1, bnx_breakpoint(sc));
4446 panic("%s: Can't reuse RX mbuf!\n",
4447 device_xname(sc->bnx_dev));
4448 }
4449 continue;
4450 }
4451
4452 /*
4453 * Get a new mbuf for the rx_bd. If no new
4454 * mbufs are available then reuse the current mbuf,
4455 * log an ierror on the interface, and generate
4456 * an error in the system log.
4457 */
4458 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4459 &sw_prod_bseq)) {
4460 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4461 "Failed to allocate "
4462 "new mbuf, incoming frame dropped!\n"));
4463
4464 ifp->if_ierrors++;
4465
4466 /* Try and reuse the exisitng mbuf. */
4467 if (bnx_add_buf(sc, m, &sw_prod,
4468 &sw_chain_prod, &sw_prod_bseq)) {
4469 DBRUNIF(1, bnx_breakpoint(sc));
4470 panic("%s: Double mbuf allocation "
4471 "failure!",
4472 device_xname(sc->bnx_dev));
4473 }
4474 continue;
4475 }
4476
4477 /* Skip over the l2_fhdr when passing the data up
4478 * the stack.
4479 */
4480 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4481
4482 /* Adjust the pckt length to match the received data. */
4483 m->m_pkthdr.len = m->m_len = len;
4484
4485 /* Send the packet to the appropriate interface. */
4486 m->m_pkthdr.rcvif = ifp;
4487
4488 DBRUN(BNX_VERBOSE_RECV,
4489 struct ether_header *eh;
4490 eh = mtod(m, struct ether_header *);
4491 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4492 __func__, ether_sprintf(eh->ether_dhost),
4493 ether_sprintf(eh->ether_shost),
4494 htons(eh->ether_type)));
4495
4496 /* Validate the checksum. */
4497
4498 /* Check for an IP datagram. */
4499 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4500 /* Check if the IP checksum is valid. */
4501 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4502 == 0)
4503 m->m_pkthdr.csum_flags |=
4504 M_CSUM_IPv4;
4505 #ifdef BNX_DEBUG
4506 else
4507 DBPRINT(sc, BNX_WARN_SEND,
4508 "%s(): Invalid IP checksum "
4509 "= 0x%04X!\n",
4510 __func__,
4511 l2fhdr->l2_fhdr_ip_xsum
4512 );
4513 #endif
4514 }
4515
4516 /* Check for a valid TCP/UDP frame. */
4517 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4518 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4519 /* Check for a good TCP/UDP checksum. */
4520 if ((status &
4521 (L2_FHDR_ERRORS_TCP_XSUM |
4522 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4523 m->m_pkthdr.csum_flags |=
4524 M_CSUM_TCPv4 |
4525 M_CSUM_UDPv4;
4526 } else {
4527 DBPRINT(sc, BNX_WARN_SEND,
4528 "%s(): Invalid TCP/UDP "
4529 "checksum = 0x%04X!\n",
4530 __func__,
4531 l2fhdr->l2_fhdr_tcp_udp_xsum);
4532 }
4533 }
4534
4535 /*
4536 * If we received a packet with a vlan tag,
4537 * attach that information to the packet.
4538 */
4539 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4540 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4541 VLAN_INPUT_TAG(ifp, m,
4542 l2fhdr->l2_fhdr_vlan_tag,
4543 continue);
4544 }
4545
4546 /*
4547 * Handle BPF listeners. Let the BPF
4548 * user see the packet.
4549 */
4550 bpf_mtap(ifp, m);
4551
4552 /* Pass the mbuf off to the upper layers. */
4553 ifp->if_ipackets++;
4554 DBPRINT(sc, BNX_VERBOSE_RECV,
4555 "%s(): Passing received frame up.\n", __func__);
4556 (*ifp->if_input)(ifp, m);
4557 DBRUNIF(1, sc->rx_mbuf_alloc--);
4558
4559 }
4560
4561 sw_cons = NEXT_RX_BD(sw_cons);
4562
4563 /* Refresh hw_cons to see if there's new work */
4564 if (sw_cons == hw_cons) {
4565 hw_cons = sc->hw_rx_cons =
4566 sblk->status_rx_quick_consumer_index0;
4567 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4568 USABLE_RX_BD_PER_PAGE)
4569 hw_cons++;
4570 }
4571
4572 /* Prevent speculative reads from getting ahead of
4573 * the status block.
4574 */
4575 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4576 BUS_SPACE_BARRIER_READ);
4577 }
4578
4579 for (i = 0; i < RX_PAGES; i++)
4580 bus_dmamap_sync(sc->bnx_dmatag,
4581 sc->rx_bd_chain_map[i], 0,
4582 sc->rx_bd_chain_map[i]->dm_mapsize,
4583 BUS_DMASYNC_PREWRITE);
4584
4585 sc->rx_cons = sw_cons;
4586 sc->rx_prod = sw_prod;
4587 sc->rx_prod_bseq = sw_prod_bseq;
4588
4589 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4590 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4591
4592 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4593 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4594 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4595 }
4596
4597 /****************************************************************************/
4598 /* Handles transmit completion interrupt events. */
4599 /* */
4600 /* Returns: */
4601 /* Nothing. */
4602 /****************************************************************************/
4603 void
4604 bnx_tx_intr(struct bnx_softc *sc)
4605 {
4606 struct status_block *sblk = sc->status_block;
4607 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4608 struct bnx_pkt *pkt;
4609 bus_dmamap_t map;
4610 u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4611
4612 DBRUNIF(1, sc->tx_interrupts++);
4613 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4614 BUS_DMASYNC_POSTREAD);
4615
4616 /* Get the hardware's view of the TX consumer index. */
4617 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4618
4619 /* Skip to the next entry if this is a chain page pointer. */
4620 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4621 hw_tx_cons++;
4622
4623 sw_tx_cons = sc->tx_cons;
4624
4625 /* Prevent speculative reads from getting ahead of the status block. */
4626 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4627 BUS_SPACE_BARRIER_READ);
4628
4629 /* Cycle through any completed TX chain page entries. */
4630 while (sw_tx_cons != hw_tx_cons) {
4631 #ifdef BNX_DEBUG
4632 struct tx_bd *txbd = NULL;
4633 #endif
4634 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4635
4636 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4637 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4638 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4639
4640 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4641 aprint_error_dev(sc->bnx_dev,
4642 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4643 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4644
4645 DBRUNIF(1, txbd = &sc->tx_bd_chain
4646 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4647
4648 DBRUNIF((txbd == NULL),
4649 aprint_error_dev(sc->bnx_dev,
4650 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4651 bnx_breakpoint(sc));
4652
4653 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4654 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4655
4656
4657 mutex_enter(&sc->tx_pkt_mtx);
4658 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4659 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4660 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4661 mutex_exit(&sc->tx_pkt_mtx);
4662 /*
4663 * Free the associated mbuf. Remember
4664 * that only the last tx_bd of a packet
4665 * has an mbuf pointer and DMA map.
4666 */
4667 map = pkt->pkt_dmamap;
4668 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4669 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4670 bus_dmamap_unload(sc->bnx_dmatag, map);
4671
4672 m_freem(pkt->pkt_mbuf);
4673 DBRUNIF(1, sc->tx_mbuf_alloc--);
4674
4675 ifp->if_opackets++;
4676
4677 mutex_enter(&sc->tx_pkt_mtx);
4678 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4679 }
4680 mutex_exit(&sc->tx_pkt_mtx);
4681
4682 sc->used_tx_bd--;
4683 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4684 __FILE__, __LINE__, sc->used_tx_bd);
4685
4686 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4687
4688 /* Refresh hw_cons to see if there's new work. */
4689 hw_tx_cons = sc->hw_tx_cons =
4690 sblk->status_tx_quick_consumer_index0;
4691 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4692 USABLE_TX_BD_PER_PAGE)
4693 hw_tx_cons++;
4694
4695 /* Prevent speculative reads from getting ahead of
4696 * the status block.
4697 */
4698 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4699 BUS_SPACE_BARRIER_READ);
4700 }
4701
4702 /* Clear the TX timeout timer. */
4703 ifp->if_timer = 0;
4704
4705 /* Clear the tx hardware queue full flag. */
4706 if (sc->used_tx_bd < sc->max_tx_bd) {
4707 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4708 aprint_debug_dev(sc->bnx_dev,
4709 "Open TX chain! %d/%d (used/total)\n",
4710 sc->used_tx_bd, sc->max_tx_bd));
4711 ifp->if_flags &= ~IFF_OACTIVE;
4712 }
4713
4714 sc->tx_cons = sw_tx_cons;
4715 }
4716
4717 /****************************************************************************/
4718 /* Disables interrupt generation. */
4719 /* */
4720 /* Returns: */
4721 /* Nothing. */
4722 /****************************************************************************/
4723 void
4724 bnx_disable_intr(struct bnx_softc *sc)
4725 {
4726 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4727 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4728 }
4729
4730 /****************************************************************************/
4731 /* Enables interrupt generation. */
4732 /* */
4733 /* Returns: */
4734 /* Nothing. */
4735 /****************************************************************************/
4736 void
4737 bnx_enable_intr(struct bnx_softc *sc)
4738 {
4739 u_int32_t val;
4740
4741 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4742 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4743
4744 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4745 sc->last_status_idx);
4746
4747 val = REG_RD(sc, BNX_HC_COMMAND);
4748 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4749 }
4750
4751 /****************************************************************************/
4752 /* Handles controller initialization. */
4753 /* */
4754 /****************************************************************************/
4755 int
4756 bnx_init(struct ifnet *ifp)
4757 {
4758 struct bnx_softc *sc = ifp->if_softc;
4759 u_int32_t ether_mtu;
4760 int s, error = 0;
4761
4762 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4763
4764 s = splnet();
4765
4766 bnx_stop(ifp, 0);
4767
4768 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4769 aprint_error_dev(sc->bnx_dev,
4770 "Controller reset failed!\n");
4771 goto bnx_init_exit;
4772 }
4773
4774 if ((error = bnx_chipinit(sc)) != 0) {
4775 aprint_error_dev(sc->bnx_dev,
4776 "Controller initialization failed!\n");
4777 goto bnx_init_exit;
4778 }
4779
4780 if ((error = bnx_blockinit(sc)) != 0) {
4781 aprint_error_dev(sc->bnx_dev,
4782 "Block initialization failed!\n");
4783 goto bnx_init_exit;
4784 }
4785
4786 /* Calculate and program the Ethernet MRU size. */
4787 if (ifp->if_mtu <= ETHERMTU) {
4788 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4789 sc->mbuf_alloc_size = MCLBYTES;
4790 } else {
4791 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4792 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4793 }
4794
4795
4796 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4797 __func__, ether_mtu);
4798
4799 /*
4800 * Program the MRU and enable Jumbo frame
4801 * support.
4802 */
4803 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4804 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4805
4806 /* Calculate the RX Ethernet frame size for rx_bd's. */
4807 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4808
4809 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4810 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4811 sc->mbuf_alloc_size, sc->max_frame_size);
4812
4813 /* Program appropriate promiscuous/multicast filtering. */
4814 bnx_iff(sc);
4815
4816 /* Init RX buffer descriptor chain. */
4817 bnx_init_rx_chain(sc);
4818
4819 /* Init TX buffer descriptor chain. */
4820 bnx_init_tx_chain(sc);
4821
4822 /* Enable host interrupts. */
4823 bnx_enable_intr(sc);
4824
4825 if ((error = ether_mediachange(ifp)) != 0)
4826 goto bnx_init_exit;
4827
4828 SET(ifp->if_flags, IFF_RUNNING);
4829 CLR(ifp->if_flags, IFF_OACTIVE);
4830
4831 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4832
4833 bnx_init_exit:
4834 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4835
4836 splx(s);
4837
4838 return(error);
4839 }
4840
4841 /****************************************************************************/
4842 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4843 /* memory visible to the controller. */
4844 /* */
4845 /* Returns: */
4846 /* 0 for success, positive value for failure. */
4847 /****************************************************************************/
4848 int
4849 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4850 {
4851 struct bnx_pkt *pkt;
4852 bus_dmamap_t map;
4853 struct tx_bd *txbd = NULL;
4854 u_int16_t vlan_tag = 0, flags = 0;
4855 u_int16_t chain_prod, prod;
4856 #ifdef BNX_DEBUG
4857 u_int16_t debug_prod;
4858 #endif
4859 u_int32_t addr, prod_bseq;
4860 int i, error;
4861 struct m_tag *mtag;
4862 static struct work bnx_wk; /* Dummy work. Statically allocated. */
4863
4864 mutex_enter(&sc->tx_pkt_mtx);
4865 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4866 if (pkt == NULL) {
4867 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4868 mutex_exit(&sc->tx_pkt_mtx);
4869 return ENETDOWN;
4870 }
4871
4872 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
4873 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
4874 workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
4875 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4876 }
4877
4878 mutex_exit(&sc->tx_pkt_mtx);
4879 return ENOMEM;
4880 }
4881 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4882 mutex_exit(&sc->tx_pkt_mtx);
4883
4884 /* Transfer any checksum offload flags to the bd. */
4885 if (m->m_pkthdr.csum_flags) {
4886 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4887 flags |= TX_BD_FLAGS_IP_CKSUM;
4888 if (m->m_pkthdr.csum_flags &
4889 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4890 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4891 }
4892
4893 /* Transfer any VLAN tags to the bd. */
4894 mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4895 if (mtag != NULL) {
4896 flags |= TX_BD_FLAGS_VLAN_TAG;
4897 vlan_tag = VLAN_TAG_VALUE(mtag);
4898 }
4899
4900 /* Map the mbuf into DMAable memory. */
4901 prod = sc->tx_prod;
4902 chain_prod = TX_CHAIN_IDX(prod);
4903 map = pkt->pkt_dmamap;
4904
4905 /* Map the mbuf into our DMA address space. */
4906 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4907 if (error != 0) {
4908 aprint_error_dev(sc->bnx_dev,
4909 "Error mapping mbuf into TX chain!\n");
4910 sc->tx_dma_map_failures++;
4911 goto maperr;
4912 }
4913 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4914 BUS_DMASYNC_PREWRITE);
4915 /* Make sure there's room in the chain */
4916 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
4917 goto nospace;
4918
4919 /* prod points to an empty tx_bd at this point. */
4920 prod_bseq = sc->tx_prod_bseq;
4921 #ifdef BNX_DEBUG
4922 debug_prod = chain_prod;
4923 #endif
4924 DBPRINT(sc, BNX_INFO_SEND,
4925 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4926 "prod_bseq = 0x%08X\n",
4927 __func__, prod, chain_prod, prod_bseq);
4928
4929 /*
4930 * Cycle through each mbuf segment that makes up
4931 * the outgoing frame, gathering the mapping info
4932 * for that segment and creating a tx_bd for the
4933 * mbuf.
4934 */
4935 for (i = 0; i < map->dm_nsegs ; i++) {
4936 chain_prod = TX_CHAIN_IDX(prod);
4937 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4938
4939 addr = (u_int32_t)map->dm_segs[i].ds_addr;
4940 txbd->tx_bd_haddr_lo = addr;
4941 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4942 txbd->tx_bd_haddr_hi = addr;
4943 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
4944 txbd->tx_bd_vlan_tag = vlan_tag;
4945 txbd->tx_bd_flags = flags;
4946 prod_bseq += map->dm_segs[i].ds_len;
4947 if (i == 0)
4948 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
4949 prod = NEXT_TX_BD(prod);
4950 }
4951 /* Set the END flag on the last TX buffer descriptor. */
4952 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
4953
4954 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
4955
4956 DBPRINT(sc, BNX_INFO_SEND,
4957 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
4958 "prod_bseq = 0x%08X\n",
4959 __func__, prod, chain_prod, prod_bseq);
4960
4961 pkt->pkt_mbuf = m;
4962 pkt->pkt_end_desc = chain_prod;
4963
4964 mutex_enter(&sc->tx_pkt_mtx);
4965 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
4966 mutex_exit(&sc->tx_pkt_mtx);
4967
4968 sc->used_tx_bd += map->dm_nsegs;
4969 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4970 __FILE__, __LINE__, sc->used_tx_bd);
4971
4972 /* Update some debug statistics counters */
4973 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4974 sc->tx_hi_watermark = sc->used_tx_bd);
4975 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
4976 DBRUNIF(1, sc->tx_mbuf_alloc++);
4977
4978 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4979 map->dm_nsegs));
4980
4981 /* prod points to the next free tx_bd at this point. */
4982 sc->tx_prod = prod;
4983 sc->tx_prod_bseq = prod_bseq;
4984
4985 return (0);
4986
4987
4988 nospace:
4989 bus_dmamap_unload(sc->bnx_dmatag, map);
4990 maperr:
4991 mutex_enter(&sc->tx_pkt_mtx);
4992 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4993 mutex_exit(&sc->tx_pkt_mtx);
4994
4995 return (ENOMEM);
4996 }
4997
4998 /****************************************************************************/
4999 /* Main transmit routine. */
5000 /* */
5001 /* Returns: */
5002 /* Nothing. */
5003 /****************************************************************************/
5004 void
5005 bnx_start(struct ifnet *ifp)
5006 {
5007 struct bnx_softc *sc = ifp->if_softc;
5008 struct mbuf *m_head = NULL;
5009 int count = 0;
5010 #ifdef BNX_DEBUG
5011 u_int16_t tx_chain_prod;
5012 #endif
5013
5014 /* If there's no link or the transmit queue is empty then just exit. */
5015 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
5016 DBPRINT(sc, BNX_INFO_SEND,
5017 "%s(): output active or device not running.\n", __func__);
5018 goto bnx_start_exit;
5019 }
5020
5021 /* prod points to the next free tx_bd. */
5022 #ifdef BNX_DEBUG
5023 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5024 #endif
5025
5026 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5027 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5028 "used_tx %d max_tx %d\n",
5029 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5030 sc->used_tx_bd, sc->max_tx_bd);
5031
5032 /*
5033 * Keep adding entries while there is space in the ring.
5034 */
5035 while (sc->used_tx_bd < sc->max_tx_bd) {
5036 /* Check for any frames to send. */
5037 IFQ_POLL(&ifp->if_snd, m_head);
5038 if (m_head == NULL)
5039 break;
5040
5041 /*
5042 * Pack the data into the transmit ring. If we
5043 * don't have room, set the OACTIVE flag to wait
5044 * for the NIC to drain the chain.
5045 */
5046 if (bnx_tx_encap(sc, m_head)) {
5047 ifp->if_flags |= IFF_OACTIVE;
5048 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5049 "business! Total tx_bd used = %d\n",
5050 sc->used_tx_bd);
5051 break;
5052 }
5053
5054 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5055 count++;
5056
5057 /* Send a copy of the frame to any BPF listeners. */
5058 bpf_mtap(ifp, m_head);
5059 }
5060
5061 if (count == 0) {
5062 /* no packets were dequeued */
5063 DBPRINT(sc, BNX_VERBOSE_SEND,
5064 "%s(): No packets were dequeued\n", __func__);
5065 goto bnx_start_exit;
5066 }
5067
5068 /* Update the driver's counters. */
5069 #ifdef BNX_DEBUG
5070 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5071 #endif
5072
5073 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
5074 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
5075 tx_chain_prod, sc->tx_prod_bseq);
5076
5077 /* Start the transmit. */
5078 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5079 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5080
5081 /* Set the tx timeout. */
5082 ifp->if_timer = BNX_TX_TIMEOUT;
5083
5084 bnx_start_exit:
5085 return;
5086 }
5087
5088 /****************************************************************************/
5089 /* Handles any IOCTL calls from the operating system. */
5090 /* */
5091 /* Returns: */
5092 /* 0 for success, positive value for failure. */
5093 /****************************************************************************/
5094 int
5095 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5096 {
5097 struct bnx_softc *sc = ifp->if_softc;
5098 struct ifreq *ifr = (struct ifreq *) data;
5099 struct mii_data *mii = &sc->bnx_mii;
5100 int s, error = 0;
5101
5102 s = splnet();
5103
5104 switch (command) {
5105 case SIOCSIFFLAGS:
5106 if ((error = ifioctl_common(ifp, command, data)) != 0)
5107 break;
5108 /* XXX set an ifflags callback and let ether_ioctl
5109 * handle all of this.
5110 */
5111 if (ISSET(ifp->if_flags, IFF_UP)) {
5112 if (ifp->if_flags & IFF_RUNNING)
5113 error = ENETRESET;
5114 else
5115 bnx_init(ifp);
5116 } else if (ifp->if_flags & IFF_RUNNING)
5117 bnx_stop(ifp, 1);
5118 break;
5119
5120 case SIOCSIFMEDIA:
5121 case SIOCGIFMEDIA:
5122 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5123 sc->bnx_phy_flags);
5124
5125 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5126 break;
5127
5128 default:
5129 error = ether_ioctl(ifp, command, data);
5130 }
5131
5132 if (error == ENETRESET) {
5133 if (ifp->if_flags & IFF_RUNNING)
5134 bnx_iff(sc);
5135 error = 0;
5136 }
5137
5138 splx(s);
5139 return (error);
5140 }
5141
5142 /****************************************************************************/
5143 /* Transmit timeout handler. */
5144 /* */
5145 /* Returns: */
5146 /* Nothing. */
5147 /****************************************************************************/
5148 void
5149 bnx_watchdog(struct ifnet *ifp)
5150 {
5151 struct bnx_softc *sc = ifp->if_softc;
5152
5153 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5154 bnx_dump_status_block(sc));
5155 /*
5156 * If we are in this routine because of pause frames, then
5157 * don't reset the hardware.
5158 */
5159 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5160 return;
5161
5162 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5163
5164 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5165
5166 bnx_init(ifp);
5167
5168 ifp->if_oerrors++;
5169 }
5170
5171 /*
5172 * Interrupt handler.
5173 */
5174 /****************************************************************************/
5175 /* Main interrupt entry point. Verifies that the controller generated the */
5176 /* interrupt and then calls a separate routine for handle the various */
5177 /* interrupt causes (PHY, TX, RX). */
5178 /* */
5179 /* Returns: */
5180 /* 0 for success, positive value for failure. */
5181 /****************************************************************************/
5182 int
5183 bnx_intr(void *xsc)
5184 {
5185 struct bnx_softc *sc;
5186 struct ifnet *ifp;
5187 u_int32_t status_attn_bits;
5188 const struct status_block *sblk;
5189
5190 sc = xsc;
5191
5192 ifp = &sc->bnx_ec.ec_if;
5193
5194 if (!device_is_active(sc->bnx_dev) ||
5195 (ifp->if_flags & IFF_RUNNING) == 0)
5196 return 0;
5197
5198 DBRUNIF(1, sc->interrupts_generated++);
5199
5200 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5201 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5202
5203 /*
5204 * If the hardware status block index
5205 * matches the last value read by the
5206 * driver and we haven't asserted our
5207 * interrupt then there's nothing to do.
5208 */
5209 if ((sc->status_block->status_idx == sc->last_status_idx) &&
5210 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5211 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5212 return (0);
5213
5214 /* Ack the interrupt and stop others from occuring. */
5215 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5216 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5217 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5218
5219 /* Keep processing data as long as there is work to do. */
5220 for (;;) {
5221 sblk = sc->status_block;
5222 status_attn_bits = sblk->status_attn_bits;
5223
5224 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5225 aprint_debug("Simulating unexpected status attention bit set.");
5226 status_attn_bits = status_attn_bits |
5227 STATUS_ATTN_BITS_PARITY_ERROR);
5228
5229 /* Was it a link change interrupt? */
5230 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5231 (sblk->status_attn_bits_ack &
5232 STATUS_ATTN_BITS_LINK_STATE))
5233 bnx_phy_intr(sc);
5234
5235 /* If any other attention is asserted then the chip is toast. */
5236 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5237 (sblk->status_attn_bits_ack &
5238 ~STATUS_ATTN_BITS_LINK_STATE))) {
5239 DBRUN(1, sc->unexpected_attentions++);
5240
5241 BNX_PRINTF(sc,
5242 "Fatal attention detected: 0x%08X\n",
5243 sblk->status_attn_bits);
5244
5245 DBRUN(BNX_FATAL,
5246 if (bnx_debug_unexpected_attention == 0)
5247 bnx_breakpoint(sc));
5248
5249 bnx_init(ifp);
5250 return (1);
5251 }
5252
5253 /* Check for any completed RX frames. */
5254 if (sblk->status_rx_quick_consumer_index0 !=
5255 sc->hw_rx_cons)
5256 bnx_rx_intr(sc);
5257
5258 /* Check for any completed TX frames. */
5259 if (sblk->status_tx_quick_consumer_index0 !=
5260 sc->hw_tx_cons)
5261 bnx_tx_intr(sc);
5262
5263 /* Save the status block index value for use during the
5264 * next interrupt.
5265 */
5266 sc->last_status_idx = sblk->status_idx;
5267
5268 /* Prevent speculative reads from getting ahead of the
5269 * status block.
5270 */
5271 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5272 BUS_SPACE_BARRIER_READ);
5273
5274 /* If there's no work left then exit the isr. */
5275 if ((sblk->status_rx_quick_consumer_index0 ==
5276 sc->hw_rx_cons) &&
5277 (sblk->status_tx_quick_consumer_index0 ==
5278 sc->hw_tx_cons))
5279 break;
5280 }
5281
5282 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5283 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5284
5285 /* Re-enable interrupts. */
5286 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5287 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5288 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5289 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5290 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5291
5292 /* Handle any frames that arrived while handling the interrupt. */
5293 if (!IFQ_IS_EMPTY(&ifp->if_snd))
5294 bnx_start(ifp);
5295
5296 return (1);
5297 }
5298
5299 /****************************************************************************/
5300 /* Programs the various packet receive modes (broadcast and multicast). */
5301 /* */
5302 /* Returns: */
5303 /* Nothing. */
5304 /****************************************************************************/
5305 void
5306 bnx_iff(struct bnx_softc *sc)
5307 {
5308 struct ethercom *ec = &sc->bnx_ec;
5309 struct ifnet *ifp = &ec->ec_if;
5310 struct ether_multi *enm;
5311 struct ether_multistep step;
5312 u_int32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5313 u_int32_t rx_mode, sort_mode;
5314 int h, i;
5315
5316 /* Initialize receive mode default settings. */
5317 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5318 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5319 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5320 ifp->if_flags &= ~IFF_ALLMULTI;
5321
5322 /*
5323 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5324 * be enbled.
5325 */
5326 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5327 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5328
5329 /*
5330 * Check for promiscuous, all multicast, or selected
5331 * multicast address filtering.
5332 */
5333 if (ifp->if_flags & IFF_PROMISC) {
5334 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5335
5336 ifp->if_flags |= IFF_ALLMULTI;
5337 /* Enable promiscuous mode. */
5338 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5339 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5340 } else if (ifp->if_flags & IFF_ALLMULTI) {
5341 allmulti:
5342 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5343
5344 ifp->if_flags |= IFF_ALLMULTI;
5345 /* Enable all multicast addresses. */
5346 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5347 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5348 0xffffffff);
5349 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5350 } else {
5351 /* Accept one or more multicast(s). */
5352 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5353
5354 ETHER_FIRST_MULTI(step, ec, enm);
5355 while (enm != NULL) {
5356 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5357 ETHER_ADDR_LEN)) {
5358 goto allmulti;
5359 }
5360 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5361 0xFF;
5362 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5363 ETHER_NEXT_MULTI(step, enm);
5364 }
5365
5366 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5367 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5368 hashes[i]);
5369
5370 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5371 }
5372
5373 /* Only make changes if the recive mode has actually changed. */
5374 if (rx_mode != sc->rx_mode) {
5375 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5376 rx_mode);
5377
5378 sc->rx_mode = rx_mode;
5379 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5380 }
5381
5382 /* Disable and clear the exisitng sort before enabling a new sort. */
5383 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5384 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5385 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5386 }
5387
5388 /****************************************************************************/
5389 /* Called periodically to updates statistics from the controllers */
5390 /* statistics block. */
5391 /* */
5392 /* Returns: */
5393 /* Nothing. */
5394 /****************************************************************************/
5395 void
5396 bnx_stats_update(struct bnx_softc *sc)
5397 {
5398 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5399 struct statistics_block *stats;
5400
5401 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5402 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5403 BUS_DMASYNC_POSTREAD);
5404
5405 stats = (struct statistics_block *)sc->stats_block;
5406
5407 /*
5408 * Update the interface statistics from the
5409 * hardware statistics.
5410 */
5411 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5412
5413 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5414 (u_long)stats->stat_EtherStatsOverrsizePkts +
5415 (u_long)stats->stat_IfInMBUFDiscards +
5416 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5417 (u_long)stats->stat_Dot3StatsFCSErrors;
5418
5419 ifp->if_oerrors = (u_long)
5420 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5421 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5422 (u_long)stats->stat_Dot3StatsLateCollisions;
5423
5424 /*
5425 * Certain controllers don't report
5426 * carrier sense errors correctly.
5427 * See errata E11_5708CA0_1165.
5428 */
5429 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5430 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5431 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5432
5433 /*
5434 * Update the sysctl statistics from the
5435 * hardware statistics.
5436 */
5437 sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
5438 (u_int64_t) stats->stat_IfHCInOctets_lo;
5439
5440 sc->stat_IfHCInBadOctets =
5441 ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5442 (u_int64_t) stats->stat_IfHCInBadOctets_lo;
5443
5444 sc->stat_IfHCOutOctets =
5445 ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
5446 (u_int64_t) stats->stat_IfHCOutOctets_lo;
5447
5448 sc->stat_IfHCOutBadOctets =
5449 ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5450 (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
5451
5452 sc->stat_IfHCInUcastPkts =
5453 ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5454 (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
5455
5456 sc->stat_IfHCInMulticastPkts =
5457 ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5458 (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
5459
5460 sc->stat_IfHCInBroadcastPkts =
5461 ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5462 (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
5463
5464 sc->stat_IfHCOutUcastPkts =
5465 ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5466 (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
5467
5468 sc->stat_IfHCOutMulticastPkts =
5469 ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5470 (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
5471
5472 sc->stat_IfHCOutBroadcastPkts =
5473 ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5474 (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5475
5476 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5477 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5478
5479 sc->stat_Dot3StatsCarrierSenseErrors =
5480 stats->stat_Dot3StatsCarrierSenseErrors;
5481
5482 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5483
5484 sc->stat_Dot3StatsAlignmentErrors =
5485 stats->stat_Dot3StatsAlignmentErrors;
5486
5487 sc->stat_Dot3StatsSingleCollisionFrames =
5488 stats->stat_Dot3StatsSingleCollisionFrames;
5489
5490 sc->stat_Dot3StatsMultipleCollisionFrames =
5491 stats->stat_Dot3StatsMultipleCollisionFrames;
5492
5493 sc->stat_Dot3StatsDeferredTransmissions =
5494 stats->stat_Dot3StatsDeferredTransmissions;
5495
5496 sc->stat_Dot3StatsExcessiveCollisions =
5497 stats->stat_Dot3StatsExcessiveCollisions;
5498
5499 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5500
5501 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5502
5503 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5504
5505 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5506
5507 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5508
5509 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5510
5511 sc->stat_EtherStatsPktsRx64Octets =
5512 stats->stat_EtherStatsPktsRx64Octets;
5513
5514 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5515 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5516
5517 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5518 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5519
5520 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5521 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5522
5523 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5524 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5525
5526 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5527 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5528
5529 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5530 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5531
5532 sc->stat_EtherStatsPktsTx64Octets =
5533 stats->stat_EtherStatsPktsTx64Octets;
5534
5535 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5536 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5537
5538 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5539 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5540
5541 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5542 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5543
5544 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5545 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5546
5547 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5548 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5549
5550 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5551 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5552
5553 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5554
5555 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5556
5557 sc->stat_OutXonSent = stats->stat_OutXonSent;
5558
5559 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5560
5561 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5562
5563 sc->stat_MacControlFramesReceived =
5564 stats->stat_MacControlFramesReceived;
5565
5566 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5567
5568 sc->stat_IfInFramesL2FilterDiscards =
5569 stats->stat_IfInFramesL2FilterDiscards;
5570
5571 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5572
5573 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5574
5575 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5576
5577 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5578
5579 sc->stat_CatchupInRuleCheckerDiscards =
5580 stats->stat_CatchupInRuleCheckerDiscards;
5581
5582 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5583
5584 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5585
5586 sc->stat_CatchupInRuleCheckerP4Hit =
5587 stats->stat_CatchupInRuleCheckerP4Hit;
5588
5589 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5590 }
5591
5592 void
5593 bnx_tick(void *xsc)
5594 {
5595 struct bnx_softc *sc = xsc;
5596 struct mii_data *mii;
5597 u_int32_t msg;
5598 u_int16_t prod, chain_prod;
5599 u_int32_t prod_bseq;
5600 int s = splnet();
5601
5602 /* Tell the firmware that the driver is still running. */
5603 #ifdef BNX_DEBUG
5604 msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5605 #else
5606 msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5607 #endif
5608 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5609
5610 /* Update the statistics from the hardware statistics block. */
5611 bnx_stats_update(sc);
5612
5613 /* Schedule the next tick. */
5614 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5615
5616 mii = &sc->bnx_mii;
5617 mii_tick(mii);
5618
5619 /* try to get more RX buffers, just in case */
5620 prod = sc->rx_prod;
5621 prod_bseq = sc->rx_prod_bseq;
5622 chain_prod = RX_CHAIN_IDX(prod);
5623 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5624 sc->rx_prod = prod;
5625 sc->rx_prod_bseq = prod_bseq;
5626 splx(s);
5627 return;
5628 }
5629
5630 /****************************************************************************/
5631 /* BNX Debug Routines */
5632 /****************************************************************************/
5633 #ifdef BNX_DEBUG
5634
5635 /****************************************************************************/
5636 /* Prints out information about an mbuf. */
5637 /* */
5638 /* Returns: */
5639 /* Nothing. */
5640 /****************************************************************************/
5641 void
5642 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5643 {
5644 struct mbuf *mp = m;
5645
5646 if (m == NULL) {
5647 /* Index out of range. */
5648 aprint_error("mbuf ptr is null!\n");
5649 return;
5650 }
5651
5652 while (mp) {
5653 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5654 mp, mp->m_len);
5655
5656 if (mp->m_flags & M_EXT)
5657 aprint_debug("M_EXT ");
5658 if (mp->m_flags & M_PKTHDR)
5659 aprint_debug("M_PKTHDR ");
5660 aprint_debug("\n");
5661
5662 if (mp->m_flags & M_EXT)
5663 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5664 mp, mp->m_ext.ext_size);
5665
5666 mp = mp->m_next;
5667 }
5668 }
5669
5670 /****************************************************************************/
5671 /* Prints out the mbufs in the TX mbuf chain. */
5672 /* */
5673 /* Returns: */
5674 /* Nothing. */
5675 /****************************************************************************/
5676 void
5677 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5678 {
5679 #if 0
5680 struct mbuf *m;
5681 int i;
5682
5683 aprint_debug_dev(sc->bnx_dev,
5684 "----------------------------"
5685 " tx mbuf data "
5686 "----------------------------\n");
5687
5688 for (i = 0; i < count; i++) {
5689 m = sc->tx_mbuf_ptr[chain_prod];
5690 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5691 bnx_dump_mbuf(sc, m);
5692 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5693 }
5694
5695 aprint_debug_dev(sc->bnx_dev,
5696 "--------------------------------------------"
5697 "----------------------------\n");
5698 #endif
5699 }
5700
5701 /*
5702 * This routine prints the RX mbuf chain.
5703 */
5704 void
5705 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5706 {
5707 struct mbuf *m;
5708 int i;
5709
5710 aprint_debug_dev(sc->bnx_dev,
5711 "----------------------------"
5712 " rx mbuf data "
5713 "----------------------------\n");
5714
5715 for (i = 0; i < count; i++) {
5716 m = sc->rx_mbuf_ptr[chain_prod];
5717 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5718 bnx_dump_mbuf(sc, m);
5719 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5720 }
5721
5722
5723 aprint_debug_dev(sc->bnx_dev,
5724 "--------------------------------------------"
5725 "----------------------------\n");
5726 }
5727
5728 void
5729 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5730 {
5731 if (idx > MAX_TX_BD)
5732 /* Index out of range. */
5733 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5734 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5735 /* TX Chain page pointer. */
5736 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5737 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5738 txbd->tx_bd_haddr_lo);
5739 else
5740 /* Normal tx_bd entry. */
5741 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5742 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5743 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5744 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5745 txbd->tx_bd_flags);
5746 }
5747
5748 void
5749 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5750 {
5751 if (idx > MAX_RX_BD)
5752 /* Index out of range. */
5753 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5754 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5755 /* TX Chain page pointer. */
5756 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5757 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5758 rxbd->rx_bd_haddr_lo);
5759 else
5760 /* Normal tx_bd entry. */
5761 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5762 "0x%08X, flags = 0x%08X\n", idx,
5763 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5764 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5765 }
5766
5767 void
5768 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5769 {
5770 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5771 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5772 "tcp_udp_xsum = 0x%04X\n", idx,
5773 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5774 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5775 l2fhdr->l2_fhdr_tcp_udp_xsum);
5776 }
5777
5778 /*
5779 * This routine prints the TX chain.
5780 */
5781 void
5782 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5783 {
5784 struct tx_bd *txbd;
5785 int i;
5786
5787 /* First some info about the tx_bd chain structure. */
5788 aprint_debug_dev(sc->bnx_dev,
5789 "----------------------------"
5790 " tx_bd chain "
5791 "----------------------------\n");
5792
5793 BNX_PRINTF(sc,
5794 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5795 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5796
5797 BNX_PRINTF(sc,
5798 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5799 (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5800
5801 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", TOTAL_TX_BD);
5802
5803 aprint_error_dev(sc->bnx_dev, ""
5804 "-----------------------------"
5805 " tx_bd data "
5806 "-----------------------------\n");
5807
5808 /* Now print out the tx_bd's themselves. */
5809 for (i = 0; i < count; i++) {
5810 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5811 bnx_dump_txbd(sc, tx_prod, txbd);
5812 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5813 }
5814
5815 aprint_debug_dev(sc->bnx_dev,
5816 "-----------------------------"
5817 "--------------"
5818 "-----------------------------\n");
5819 }
5820
5821 /*
5822 * This routine prints the RX chain.
5823 */
5824 void
5825 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5826 {
5827 struct rx_bd *rxbd;
5828 int i;
5829
5830 /* First some info about the tx_bd chain structure. */
5831 aprint_debug_dev(sc->bnx_dev,
5832 "----------------------------"
5833 " rx_bd chain "
5834 "----------------------------\n");
5835
5836 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5837
5838 BNX_PRINTF(sc,
5839 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5840 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5841
5842 BNX_PRINTF(sc,
5843 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5844 (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5845
5846 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", TOTAL_RX_BD);
5847
5848 aprint_error_dev(sc->bnx_dev,
5849 "----------------------------"
5850 " rx_bd data "
5851 "----------------------------\n");
5852
5853 /* Now print out the rx_bd's themselves. */
5854 for (i = 0; i < count; i++) {
5855 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5856 bnx_dump_rxbd(sc, rx_prod, rxbd);
5857 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5858 }
5859
5860 aprint_debug_dev(sc->bnx_dev,
5861 "----------------------------"
5862 "--------------"
5863 "----------------------------\n");
5864 }
5865
5866 /*
5867 * This routine prints the status block.
5868 */
5869 void
5870 bnx_dump_status_block(struct bnx_softc *sc)
5871 {
5872 struct status_block *sblk;
5873 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5874 BUS_DMASYNC_POSTREAD);
5875
5876 sblk = sc->status_block;
5877
5878 aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5879 "-----------------------------\n");
5880
5881 BNX_PRINTF(sc,
5882 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5883 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5884 sblk->status_idx);
5885
5886 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5887 sblk->status_rx_quick_consumer_index0,
5888 sblk->status_tx_quick_consumer_index0);
5889
5890 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5891
5892 /* Theses indices are not used for normal L2 drivers. */
5893 if (sblk->status_rx_quick_consumer_index1 ||
5894 sblk->status_tx_quick_consumer_index1)
5895 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5896 sblk->status_rx_quick_consumer_index1,
5897 sblk->status_tx_quick_consumer_index1);
5898
5899 if (sblk->status_rx_quick_consumer_index2 ||
5900 sblk->status_tx_quick_consumer_index2)
5901 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5902 sblk->status_rx_quick_consumer_index2,
5903 sblk->status_tx_quick_consumer_index2);
5904
5905 if (sblk->status_rx_quick_consumer_index3 ||
5906 sblk->status_tx_quick_consumer_index3)
5907 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5908 sblk->status_rx_quick_consumer_index3,
5909 sblk->status_tx_quick_consumer_index3);
5910
5911 if (sblk->status_rx_quick_consumer_index4 ||
5912 sblk->status_rx_quick_consumer_index5)
5913 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5914 sblk->status_rx_quick_consumer_index4,
5915 sblk->status_rx_quick_consumer_index5);
5916
5917 if (sblk->status_rx_quick_consumer_index6 ||
5918 sblk->status_rx_quick_consumer_index7)
5919 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
5920 sblk->status_rx_quick_consumer_index6,
5921 sblk->status_rx_quick_consumer_index7);
5922
5923 if (sblk->status_rx_quick_consumer_index8 ||
5924 sblk->status_rx_quick_consumer_index9)
5925 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
5926 sblk->status_rx_quick_consumer_index8,
5927 sblk->status_rx_quick_consumer_index9);
5928
5929 if (sblk->status_rx_quick_consumer_index10 ||
5930 sblk->status_rx_quick_consumer_index11)
5931 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
5932 sblk->status_rx_quick_consumer_index10,
5933 sblk->status_rx_quick_consumer_index11);
5934
5935 if (sblk->status_rx_quick_consumer_index12 ||
5936 sblk->status_rx_quick_consumer_index13)
5937 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
5938 sblk->status_rx_quick_consumer_index12,
5939 sblk->status_rx_quick_consumer_index13);
5940
5941 if (sblk->status_rx_quick_consumer_index14 ||
5942 sblk->status_rx_quick_consumer_index15)
5943 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
5944 sblk->status_rx_quick_consumer_index14,
5945 sblk->status_rx_quick_consumer_index15);
5946
5947 if (sblk->status_completion_producer_index ||
5948 sblk->status_cmd_consumer_index)
5949 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
5950 sblk->status_completion_producer_index,
5951 sblk->status_cmd_consumer_index);
5952
5953 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
5954 "-----------------------------\n");
5955 }
5956
5957 /*
5958 * This routine prints the statistics block.
5959 */
5960 void
5961 bnx_dump_stats_block(struct bnx_softc *sc)
5962 {
5963 struct statistics_block *sblk;
5964 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5965 BUS_DMASYNC_POSTREAD);
5966
5967 sblk = sc->stats_block;
5968
5969 aprint_debug_dev(sc->bnx_dev, ""
5970 "-----------------------------"
5971 " Stats Block "
5972 "-----------------------------\n");
5973
5974 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
5975 "IfHcInBadOctets = 0x%08X:%08X\n",
5976 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5977 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5978
5979 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
5980 "IfHcOutBadOctets = 0x%08X:%08X\n",
5981 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5982 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5983
5984 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
5985 "IfHcInMulticastPkts = 0x%08X:%08X\n",
5986 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5987 sblk->stat_IfHCInMulticastPkts_hi,
5988 sblk->stat_IfHCInMulticastPkts_lo);
5989
5990 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
5991 "IfHcOutUcastPkts = 0x%08X:%08X\n",
5992 sblk->stat_IfHCInBroadcastPkts_hi,
5993 sblk->stat_IfHCInBroadcastPkts_lo,
5994 sblk->stat_IfHCOutUcastPkts_hi,
5995 sblk->stat_IfHCOutUcastPkts_lo);
5996
5997 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5998 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5999 sblk->stat_IfHCOutMulticastPkts_hi,
6000 sblk->stat_IfHCOutMulticastPkts_lo,
6001 sblk->stat_IfHCOutBroadcastPkts_hi,
6002 sblk->stat_IfHCOutBroadcastPkts_lo);
6003
6004 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6005 BNX_PRINTF(sc, "0x%08X : "
6006 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6007 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6008
6009 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6010 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6011 sblk->stat_Dot3StatsCarrierSenseErrors);
6012
6013 if (sblk->stat_Dot3StatsFCSErrors)
6014 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6015 sblk->stat_Dot3StatsFCSErrors);
6016
6017 if (sblk->stat_Dot3StatsAlignmentErrors)
6018 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6019 sblk->stat_Dot3StatsAlignmentErrors);
6020
6021 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6022 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6023 sblk->stat_Dot3StatsSingleCollisionFrames);
6024
6025 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6026 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6027 sblk->stat_Dot3StatsMultipleCollisionFrames);
6028
6029 if (sblk->stat_Dot3StatsDeferredTransmissions)
6030 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6031 sblk->stat_Dot3StatsDeferredTransmissions);
6032
6033 if (sblk->stat_Dot3StatsExcessiveCollisions)
6034 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6035 sblk->stat_Dot3StatsExcessiveCollisions);
6036
6037 if (sblk->stat_Dot3StatsLateCollisions)
6038 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6039 sblk->stat_Dot3StatsLateCollisions);
6040
6041 if (sblk->stat_EtherStatsCollisions)
6042 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6043 sblk->stat_EtherStatsCollisions);
6044
6045 if (sblk->stat_EtherStatsFragments)
6046 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6047 sblk->stat_EtherStatsFragments);
6048
6049 if (sblk->stat_EtherStatsJabbers)
6050 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6051 sblk->stat_EtherStatsJabbers);
6052
6053 if (sblk->stat_EtherStatsUndersizePkts)
6054 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6055 sblk->stat_EtherStatsUndersizePkts);
6056
6057 if (sblk->stat_EtherStatsOverrsizePkts)
6058 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6059 sblk->stat_EtherStatsOverrsizePkts);
6060
6061 if (sblk->stat_EtherStatsPktsRx64Octets)
6062 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6063 sblk->stat_EtherStatsPktsRx64Octets);
6064
6065 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6066 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6067 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6068
6069 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6070 BNX_PRINTF(sc, "0x%08X : "
6071 "EtherStatsPktsRx128Octetsto255Octets\n",
6072 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6073
6074 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6075 BNX_PRINTF(sc, "0x%08X : "
6076 "EtherStatsPktsRx256Octetsto511Octets\n",
6077 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6078
6079 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6080 BNX_PRINTF(sc, "0x%08X : "
6081 "EtherStatsPktsRx512Octetsto1023Octets\n",
6082 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6083
6084 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6085 BNX_PRINTF(sc, "0x%08X : "
6086 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6087 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6088
6089 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6090 BNX_PRINTF(sc, "0x%08X : "
6091 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6092 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6093
6094 if (sblk->stat_EtherStatsPktsTx64Octets)
6095 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6096 sblk->stat_EtherStatsPktsTx64Octets);
6097
6098 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6099 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6100 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6101
6102 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6103 BNX_PRINTF(sc, "0x%08X : "
6104 "EtherStatsPktsTx128Octetsto255Octets\n",
6105 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6106
6107 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6108 BNX_PRINTF(sc, "0x%08X : "
6109 "EtherStatsPktsTx256Octetsto511Octets\n",
6110 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6111
6112 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6113 BNX_PRINTF(sc, "0x%08X : "
6114 "EtherStatsPktsTx512Octetsto1023Octets\n",
6115 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6116
6117 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6118 BNX_PRINTF(sc, "0x%08X : "
6119 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6120 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6121
6122 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6123 BNX_PRINTF(sc, "0x%08X : "
6124 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6125 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6126
6127 if (sblk->stat_XonPauseFramesReceived)
6128 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6129 sblk->stat_XonPauseFramesReceived);
6130
6131 if (sblk->stat_XoffPauseFramesReceived)
6132 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6133 sblk->stat_XoffPauseFramesReceived);
6134
6135 if (sblk->stat_OutXonSent)
6136 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6137 sblk->stat_OutXonSent);
6138
6139 if (sblk->stat_OutXoffSent)
6140 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6141 sblk->stat_OutXoffSent);
6142
6143 if (sblk->stat_FlowControlDone)
6144 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6145 sblk->stat_FlowControlDone);
6146
6147 if (sblk->stat_MacControlFramesReceived)
6148 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6149 sblk->stat_MacControlFramesReceived);
6150
6151 if (sblk->stat_XoffStateEntered)
6152 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6153 sblk->stat_XoffStateEntered);
6154
6155 if (sblk->stat_IfInFramesL2FilterDiscards)
6156 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6157 sblk->stat_IfInFramesL2FilterDiscards);
6158
6159 if (sblk->stat_IfInRuleCheckerDiscards)
6160 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6161 sblk->stat_IfInRuleCheckerDiscards);
6162
6163 if (sblk->stat_IfInFTQDiscards)
6164 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6165 sblk->stat_IfInFTQDiscards);
6166
6167 if (sblk->stat_IfInMBUFDiscards)
6168 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6169 sblk->stat_IfInMBUFDiscards);
6170
6171 if (sblk->stat_IfInRuleCheckerP4Hit)
6172 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6173 sblk->stat_IfInRuleCheckerP4Hit);
6174
6175 if (sblk->stat_CatchupInRuleCheckerDiscards)
6176 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6177 sblk->stat_CatchupInRuleCheckerDiscards);
6178
6179 if (sblk->stat_CatchupInFTQDiscards)
6180 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6181 sblk->stat_CatchupInFTQDiscards);
6182
6183 if (sblk->stat_CatchupInMBUFDiscards)
6184 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6185 sblk->stat_CatchupInMBUFDiscards);
6186
6187 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6188 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6189 sblk->stat_CatchupInRuleCheckerP4Hit);
6190
6191 aprint_debug_dev(sc->bnx_dev,
6192 "-----------------------------"
6193 "--------------"
6194 "-----------------------------\n");
6195 }
6196
6197 void
6198 bnx_dump_driver_state(struct bnx_softc *sc)
6199 {
6200 aprint_debug_dev(sc->bnx_dev,
6201 "-----------------------------"
6202 " Driver State "
6203 "-----------------------------\n");
6204
6205 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6206 "address\n", sc);
6207
6208 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6209 sc->status_block);
6210
6211 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6212 "address\n", sc->stats_block);
6213
6214 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6215 "adddress\n", sc->tx_bd_chain);
6216
6217 #if 0
6218 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6219 sc->rx_bd_chain);
6220
6221 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6222 sc->tx_mbuf_ptr);
6223 #endif
6224
6225 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6226 sc->rx_mbuf_ptr);
6227
6228 BNX_PRINTF(sc,
6229 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6230 sc->interrupts_generated);
6231
6232 BNX_PRINTF(sc,
6233 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6234 sc->rx_interrupts);
6235
6236 BNX_PRINTF(sc,
6237 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6238 sc->tx_interrupts);
6239
6240 BNX_PRINTF(sc,
6241 " 0x%08X - (sc->last_status_idx) status block index\n",
6242 sc->last_status_idx);
6243
6244 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6245 sc->tx_prod);
6246
6247 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6248 sc->tx_cons);
6249
6250 BNX_PRINTF(sc,
6251 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6252 sc->tx_prod_bseq);
6253 BNX_PRINTF(sc,
6254 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6255 sc->tx_mbuf_alloc);
6256
6257 BNX_PRINTF(sc,
6258 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6259 sc->used_tx_bd);
6260
6261 BNX_PRINTF(sc,
6262 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6263 sc->tx_hi_watermark, sc->max_tx_bd);
6264
6265
6266 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6267 sc->rx_prod);
6268
6269 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6270 sc->rx_cons);
6271
6272 BNX_PRINTF(sc,
6273 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6274 sc->rx_prod_bseq);
6275
6276 BNX_PRINTF(sc,
6277 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6278 sc->rx_mbuf_alloc);
6279
6280 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6281 sc->free_rx_bd);
6282
6283 BNX_PRINTF(sc,
6284 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6285 sc->rx_low_watermark, sc->max_rx_bd);
6286
6287 BNX_PRINTF(sc,
6288 " 0x%08X - (sc->mbuf_alloc_failed) "
6289 "mbuf alloc failures\n",
6290 sc->mbuf_alloc_failed);
6291
6292 BNX_PRINTF(sc,
6293 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6294 "simulated mbuf alloc failures\n",
6295 sc->mbuf_sim_alloc_failed);
6296
6297 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6298 "-----------------------------\n");
6299 }
6300
6301 void
6302 bnx_dump_hw_state(struct bnx_softc *sc)
6303 {
6304 u_int32_t val1;
6305 int i;
6306
6307 aprint_debug_dev(sc->bnx_dev,
6308 "----------------------------"
6309 " Hardware State "
6310 "----------------------------\n");
6311
6312 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6313
6314 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6315 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6316 val1, BNX_MISC_ENABLE_STATUS_BITS);
6317
6318 val1 = REG_RD(sc, BNX_DMA_STATUS);
6319 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6320
6321 val1 = REG_RD(sc, BNX_CTX_STATUS);
6322 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6323
6324 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6325 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6326 BNX_EMAC_STATUS);
6327
6328 val1 = REG_RD(sc, BNX_RPM_STATUS);
6329 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6330
6331 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6332 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6333 BNX_TBDR_STATUS);
6334
6335 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6336 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6337 BNX_TDMA_STATUS);
6338
6339 val1 = REG_RD(sc, BNX_HC_STATUS);
6340 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6341
6342 aprint_debug_dev(sc->bnx_dev,
6343 "----------------------------"
6344 "----------------"
6345 "----------------------------\n");
6346
6347 aprint_debug_dev(sc->bnx_dev,
6348 "----------------------------"
6349 " Register Dump "
6350 "----------------------------\n");
6351
6352 for (i = 0x400; i < 0x8000; i += 0x10)
6353 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6354 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6355 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6356
6357 aprint_debug_dev(sc->bnx_dev,
6358 "----------------------------"
6359 "----------------"
6360 "----------------------------\n");
6361 }
6362
6363 void
6364 bnx_breakpoint(struct bnx_softc *sc)
6365 {
6366 /* Unreachable code to shut the compiler up about unused functions. */
6367 if (0) {
6368 bnx_dump_txbd(sc, 0, NULL);
6369 bnx_dump_rxbd(sc, 0, NULL);
6370 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6371 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6372 bnx_dump_l2fhdr(sc, 0, NULL);
6373 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6374 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6375 bnx_dump_status_block(sc);
6376 bnx_dump_stats_block(sc);
6377 bnx_dump_driver_state(sc);
6378 bnx_dump_hw_state(sc);
6379 }
6380
6381 bnx_dump_driver_state(sc);
6382 /* Print the important status block fields. */
6383 bnx_dump_status_block(sc);
6384
6385 #if 0
6386 /* Call the debugger. */
6387 breakpoint();
6388 #endif
6389
6390 return;
6391 }
6392 #endif
6393