Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.51
      1 /*	$NetBSD: if_bnx.c,v 1.51 2014/03/29 19:28:24 christos Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
      3 
      4 /*-
      5  * Copyright (c) 2006 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.51 2014/03/29 19:28:24 christos Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *
     52  *   BCM5706C A0, A1
     53  *   BCM5706S A0, A1
     54  *   BCM5708C A0, B0
     55  *   BCM5708S A0, B0
     56  *   BCM5709C A0  B0, B1, B2 (pre-production)
     57  *   BCM5709S A0, B0, B1, B2 (pre-production)
     58  */
     59 
     60 #include <sys/callout.h>
     61 #include <sys/mutex.h>
     62 
     63 #include <dev/pci/if_bnxreg.h>
     64 #include <dev/pci/if_bnxvar.h>
     65 
     66 #include <dev/microcode/bnx/bnxfw.h>
     67 
     68 /****************************************************************************/
     69 /* BNX Driver Version                                                       */
     70 /****************************************************************************/
     71 #define BNX_DRIVER_VERSION	"v0.9.6"
     72 
     73 /****************************************************************************/
     74 /* BNX Debug Options                                                        */
     75 /****************************************************************************/
     76 #ifdef BNX_DEBUG
     77 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     78 
     79 	/*          0 = Never              */
     80 	/*          1 = 1 in 2,147,483,648 */
     81 	/*        256 = 1 in     8,388,608 */
     82 	/*       2048 = 1 in     1,048,576 */
     83 	/*      65536 = 1 in        32,768 */
     84 	/*    1048576 = 1 in         2,048 */
     85 	/*  268435456 =	1 in             8 */
     86 	/*  536870912 = 1 in             4 */
     87 	/* 1073741824 = 1 in             2 */
     88 
     89 	/* Controls how often the l2_fhdr frame error check will fail. */
     90 	int bnx_debug_l2fhdr_status_check = 0;
     91 
     92 	/* Controls how often the unexpected attention check will fail. */
     93 	int bnx_debug_unexpected_attention = 0;
     94 
     95 	/* Controls how often to simulate an mbuf allocation failure. */
     96 	int bnx_debug_mbuf_allocation_failure = 0;
     97 
     98 	/* Controls how often to simulate a DMA mapping failure. */
     99 	int bnx_debug_dma_map_addr_failure = 0;
    100 
    101 	/* Controls how often to simulate a bootcode failure. */
    102 	int bnx_debug_bootcode_running_failure = 0;
    103 #endif
    104 
    105 /****************************************************************************/
    106 /* PCI Device ID Table                                                      */
    107 /*                                                                          */
    108 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    109 /****************************************************************************/
    110 static const struct bnx_product {
    111 	pci_vendor_id_t		bp_vendor;
    112 	pci_product_id_t	bp_product;
    113 	pci_vendor_id_t		bp_subvendor;
    114 	pci_product_id_t	bp_subproduct;
    115 	const char		*bp_name;
    116 } bnx_devices[] = {
    117 #ifdef PCI_SUBPRODUCT_HP_NC370T
    118 	{
    119 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    120 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    121 	  "HP NC370T Multifunction Gigabit Server Adapter"
    122 	},
    123 #endif
    124 #ifdef PCI_SUBPRODUCT_HP_NC370i
    125 	{
    126 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    127 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    128 	  "HP NC370i Multifunction Gigabit Server Adapter"
    129 	},
    130 #endif
    131 	{
    132 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    133 	  0, 0,
    134 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    135 	},
    136 #ifdef PCI_SUBPRODUCT_HP_NC370F
    137 	{
    138 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    139 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    140 	  "HP NC370F Multifunction Gigabit Server Adapter"
    141 	},
    142 #endif
    143 	{
    144 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    145 	  0, 0,
    146 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    147 	},
    148 	{
    149 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    150 	  0, 0,
    151 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    152 	},
    153 	{
    154 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    155 	  0, 0,
    156 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    157 	},
    158 	{
    159 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    160 	  0, 0,
    161 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    162 	},
    163 	{
    164 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    165 	  0, 0,
    166 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    167 	},
    168 	{
    169 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    170 	  0, 0,
    171 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    172 	},
    173 	{
    174 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    175 	  0, 0,
    176 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    177 	},
    178 };
    179 
    180 /****************************************************************************/
    181 /* Supported Flash NVRAM device data.                                       */
    182 /****************************************************************************/
    183 static struct flash_spec flash_table[] =
    184 {
    185 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    186 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    187 	/* Slow EEPROM */
    188 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    189 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    190 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    191 	 "EEPROM - slow"},
    192 	/* Expansion entry 0001 */
    193 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    194 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    195 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    196 	 "Entry 0001"},
    197 	/* Saifun SA25F010 (non-buffered flash) */
    198 	/* strap, cfg1, & write1 need updates */
    199 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    200 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    201 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    202 	 "Non-buffered flash (128kB)"},
    203 	/* Saifun SA25F020 (non-buffered flash) */
    204 	/* strap, cfg1, & write1 need updates */
    205 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    206 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    207 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    208 	 "Non-buffered flash (256kB)"},
    209 	/* Expansion entry 0100 */
    210 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    211 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    213 	 "Entry 0100"},
    214 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    215 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    216 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    217 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    218 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    219 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    220 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    221 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    222 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    223 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    224 	/* Saifun SA25F005 (non-buffered flash) */
    225 	/* strap, cfg1, & write1 need updates */
    226 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    227 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    228 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    229 	 "Non-buffered flash (64kB)"},
    230 	/* Fast EEPROM */
    231 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    232 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    233 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    234 	 "EEPROM - fast"},
    235 	/* Expansion entry 1001 */
    236 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    237 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    238 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    239 	 "Entry 1001"},
    240 	/* Expansion entry 1010 */
    241 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    242 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    243 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    244 	 "Entry 1010"},
    245 	/* ATMEL AT45DB011B (buffered flash) */
    246 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    247 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    248 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    249 	 "Buffered flash (128kB)"},
    250 	/* Expansion entry 1100 */
    251 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    252 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    253 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    254 	 "Entry 1100"},
    255 	/* Expansion entry 1101 */
    256 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    257 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    258 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    259 	 "Entry 1101"},
    260 	/* Ateml Expansion entry 1110 */
    261 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    262 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    263 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    264 	 "Entry 1110 (Atmel)"},
    265 	/* ATMEL AT45DB021B (buffered flash) */
    266 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    267 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    268 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    269 	 "Buffered flash (256kB)"},
    270 };
    271 
    272 /*
    273  * The BCM5709 controllers transparently handle the
    274  * differences between Atmel 264 byte pages and all
    275  * flash devices which use 256 byte pages, so no
    276  * logical-to-physical mapping is required in the
    277  * driver.
    278  */
    279 static struct flash_spec flash_5709 = {
    280 	.flags		= BNX_NV_BUFFERED,
    281 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    282 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    283 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    284 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    285 	.name		= "5709 buffered flash (256kB)",
    286 };
    287 
    288 /****************************************************************************/
    289 /* OpenBSD device entry points.                                             */
    290 /****************************************************************************/
    291 static int	bnx_probe(device_t, cfdata_t, void *);
    292 void	bnx_attach(device_t, device_t, void *);
    293 int	bnx_detach(device_t, int);
    294 
    295 /****************************************************************************/
    296 /* BNX Debug Data Structure Dump Routines                                   */
    297 /****************************************************************************/
    298 #ifdef BNX_DEBUG
    299 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    300 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    301 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    302 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    303 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    304 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    305 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    306 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    307 void	bnx_dump_status_block(struct bnx_softc *);
    308 void	bnx_dump_stats_block(struct bnx_softc *);
    309 void	bnx_dump_driver_state(struct bnx_softc *);
    310 void	bnx_dump_hw_state(struct bnx_softc *);
    311 void	bnx_breakpoint(struct bnx_softc *);
    312 #endif
    313 
    314 /****************************************************************************/
    315 /* BNX Register/Memory Access Routines                                      */
    316 /****************************************************************************/
    317 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
    318 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
    319 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
    320 int	bnx_miibus_read_reg(device_t, int, int);
    321 void	bnx_miibus_write_reg(device_t, int, int, int);
    322 void	bnx_miibus_statchg(struct ifnet *);
    323 
    324 /****************************************************************************/
    325 /* BNX NVRAM Access Routines                                                */
    326 /****************************************************************************/
    327 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    328 int	bnx_release_nvram_lock(struct bnx_softc *);
    329 void	bnx_enable_nvram_access(struct bnx_softc *);
    330 void	bnx_disable_nvram_access(struct bnx_softc *);
    331 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    332 	    u_int32_t);
    333 int	bnx_init_nvram(struct bnx_softc *);
    334 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    335 int	bnx_nvram_test(struct bnx_softc *);
    336 #ifdef BNX_NVRAM_WRITE_SUPPORT
    337 int	bnx_enable_nvram_write(struct bnx_softc *);
    338 void	bnx_disable_nvram_write(struct bnx_softc *);
    339 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
    340 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    341 	    u_int32_t);
    342 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    343 #endif
    344 
    345 /****************************************************************************/
    346 /*                                                                          */
    347 /****************************************************************************/
    348 void	bnx_get_media(struct bnx_softc *);
    349 void	bnx_init_media(struct bnx_softc *);
    350 int	bnx_dma_alloc(struct bnx_softc *);
    351 void	bnx_dma_free(struct bnx_softc *);
    352 void	bnx_release_resources(struct bnx_softc *);
    353 
    354 /****************************************************************************/
    355 /* BNX Firmware Synchronization and Load                                    */
    356 /****************************************************************************/
    357 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
    358 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
    359 	    u_int32_t);
    360 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    361 	    struct fw_info *);
    362 void	bnx_init_cpus(struct bnx_softc *);
    363 
    364 void	bnx_stop(struct ifnet *, int);
    365 int	bnx_reset(struct bnx_softc *, u_int32_t);
    366 int	bnx_chipinit(struct bnx_softc *);
    367 int	bnx_blockinit(struct bnx_softc *);
    368 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
    369 	    u_int16_t *, u_int32_t *);
    370 int	bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
    371 
    372 int	bnx_init_tx_chain(struct bnx_softc *);
    373 void	bnx_init_tx_context(struct bnx_softc *);
    374 int	bnx_init_rx_chain(struct bnx_softc *);
    375 void	bnx_init_rx_context(struct bnx_softc *);
    376 void	bnx_free_rx_chain(struct bnx_softc *);
    377 void	bnx_free_tx_chain(struct bnx_softc *);
    378 
    379 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    380 void	bnx_start(struct ifnet *);
    381 int	bnx_ioctl(struct ifnet *, u_long, void *);
    382 void	bnx_watchdog(struct ifnet *);
    383 int	bnx_init(struct ifnet *);
    384 
    385 void	bnx_init_context(struct bnx_softc *);
    386 void	bnx_get_mac_addr(struct bnx_softc *);
    387 void	bnx_set_mac_addr(struct bnx_softc *);
    388 void	bnx_phy_intr(struct bnx_softc *);
    389 void	bnx_rx_intr(struct bnx_softc *);
    390 void	bnx_tx_intr(struct bnx_softc *);
    391 void	bnx_disable_intr(struct bnx_softc *);
    392 void	bnx_enable_intr(struct bnx_softc *);
    393 
    394 int	bnx_intr(void *);
    395 void	bnx_iff(struct bnx_softc *);
    396 void	bnx_stats_update(struct bnx_softc *);
    397 void	bnx_tick(void *);
    398 
    399 struct pool *bnx_tx_pool = NULL;
    400 void	bnx_alloc_pkts(struct work *, void *);
    401 
    402 /****************************************************************************/
    403 /* OpenBSD device dispatch table.                                           */
    404 /****************************************************************************/
    405 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    406     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    407 
    408 /****************************************************************************/
    409 /* Device probe function.                                                   */
    410 /*                                                                          */
    411 /* Compares the device to the driver's list of supported devices and        */
    412 /* reports back to the OS whether this is the right driver for the device.  */
    413 /*                                                                          */
    414 /* Returns:                                                                 */
    415 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    416 /****************************************************************************/
    417 static const struct bnx_product *
    418 bnx_lookup(const struct pci_attach_args *pa)
    419 {
    420 	int i;
    421 	pcireg_t subid;
    422 
    423 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    424 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    425 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    426 			continue;
    427 		if (!bnx_devices[i].bp_subvendor)
    428 			return &bnx_devices[i];
    429 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    430 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    431 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    432 			return &bnx_devices[i];
    433 	}
    434 
    435 	return NULL;
    436 }
    437 static int
    438 bnx_probe(device_t parent, cfdata_t match, void *aux)
    439 {
    440 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    441 
    442 	if (bnx_lookup(pa) != NULL)
    443 		return (1);
    444 
    445 	return (0);
    446 }
    447 
    448 /****************************************************************************/
    449 /* Device attach function.                                                  */
    450 /*                                                                          */
    451 /* Allocates device resources, performs secondary chip identification,      */
    452 /* resets and initializes the hardware, and initializes driver instance     */
    453 /* variables.                                                               */
    454 /*                                                                          */
    455 /* Returns:                                                                 */
    456 /*   0 on success, positive value on failure.                               */
    457 /****************************************************************************/
    458 void
    459 bnx_attach(device_t parent, device_t self, void *aux)
    460 {
    461 	const struct bnx_product *bp;
    462 	struct bnx_softc	*sc = device_private(self);
    463 	prop_dictionary_t	dict;
    464 	struct pci_attach_args	*pa = aux;
    465 	pci_chipset_tag_t	pc = pa->pa_pc;
    466 	pci_intr_handle_t	ih;
    467 	const char 		*intrstr = NULL;
    468 	u_int32_t		command;
    469 	struct ifnet		*ifp;
    470 	u_int32_t		val;
    471 	int			mii_flags = MIIF_FORCEANEG;
    472 	pcireg_t		memtype;
    473 	char intrbuf[PCI_INTRSTR_LEN];
    474 
    475 	if (bnx_tx_pool == NULL) {
    476 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    477 		if (bnx_tx_pool != NULL) {
    478 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    479 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    480 		} else {
    481 			aprint_error(": can't alloc bnx_tx_pool\n");
    482 			return;
    483 		}
    484 	}
    485 
    486 	bp = bnx_lookup(pa);
    487 	if (bp == NULL)
    488 		panic("unknown device");
    489 
    490 	sc->bnx_dev = self;
    491 
    492 	aprint_naive("\n");
    493 	aprint_normal(": %s\n", bp->bp_name);
    494 
    495 	sc->bnx_pa = *pa;
    496 
    497 	/*
    498 	 * Map control/status registers.
    499 	*/
    500 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    501 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    502 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    503 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    504 
    505 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    506 		aprint_error_dev(sc->bnx_dev,
    507 		    "failed to enable memory mapping!\n");
    508 		return;
    509 	}
    510 
    511 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    512 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    513 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    514 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    515 		return;
    516 	}
    517 
    518 	if (pci_intr_map(pa, &ih)) {
    519 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    520 		goto bnx_attach_fail;
    521 	}
    522 
    523 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    524 
    525 	/*
    526 	 * Configure byte swap and enable indirect register access.
    527 	 * Rely on CPU to do target byte swapping on big endian systems.
    528 	 * Access to registers outside of PCI configurtion space are not
    529 	 * valid until this is done.
    530 	 */
    531 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    532 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    533 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    534 
    535 	/* Save ASIC revsion info. */
    536 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    537 
    538 	/*
    539 	 * Find the base address for shared memory access.
    540 	 * Newer versions of bootcode use a signature and offset
    541 	 * while older versions use a fixed address.
    542 	 */
    543 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    544 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    545 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    546 		    (sc->bnx_pa.pa_function << 2));
    547 	else
    548 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    549 
    550 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    551 
    552 	/* Set initial device and PHY flags */
    553 	sc->bnx_flags = 0;
    554 	sc->bnx_phy_flags = 0;
    555 
    556 	/* Get PCI bus information (speed and type). */
    557 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    558 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    559 		u_int32_t clkreg;
    560 
    561 		sc->bnx_flags |= BNX_PCIX_FLAG;
    562 
    563 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    564 
    565 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    566 		switch (clkreg) {
    567 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    568 			sc->bus_speed_mhz = 133;
    569 			break;
    570 
    571 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    572 			sc->bus_speed_mhz = 100;
    573 			break;
    574 
    575 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    576 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    577 			sc->bus_speed_mhz = 66;
    578 			break;
    579 
    580 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    581 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    582 			sc->bus_speed_mhz = 50;
    583 			break;
    584 
    585 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    586 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    587 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    588 			sc->bus_speed_mhz = 33;
    589 			break;
    590 		}
    591 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    592 			sc->bus_speed_mhz = 66;
    593 		else
    594 			sc->bus_speed_mhz = 33;
    595 
    596 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    597 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    598 
    599 	/* Reset the controller. */
    600 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    601 		goto bnx_attach_fail;
    602 
    603 	/* Initialize the controller. */
    604 	if (bnx_chipinit(sc)) {
    605 		aprint_error_dev(sc->bnx_dev,
    606 		    "Controller initialization failed!\n");
    607 		goto bnx_attach_fail;
    608 	}
    609 
    610 	/* Perform NVRAM test. */
    611 	if (bnx_nvram_test(sc)) {
    612 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    613 		goto bnx_attach_fail;
    614 	}
    615 
    616 	/* Fetch the permanent Ethernet MAC address. */
    617 	bnx_get_mac_addr(sc);
    618 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    619 	    ether_sprintf(sc->eaddr));
    620 
    621 	/*
    622 	 * Trip points control how many BDs
    623 	 * should be ready before generating an
    624 	 * interrupt while ticks control how long
    625 	 * a BD can sit in the chain before
    626 	 * generating an interrupt.  Set the default
    627 	 * values for the RX and TX rings.
    628 	 */
    629 
    630 #ifdef BNX_DEBUG
    631 	/* Force more frequent interrupts. */
    632 	sc->bnx_tx_quick_cons_trip_int = 1;
    633 	sc->bnx_tx_quick_cons_trip     = 1;
    634 	sc->bnx_tx_ticks_int           = 0;
    635 	sc->bnx_tx_ticks               = 0;
    636 
    637 	sc->bnx_rx_quick_cons_trip_int = 1;
    638 	sc->bnx_rx_quick_cons_trip     = 1;
    639 	sc->bnx_rx_ticks_int           = 0;
    640 	sc->bnx_rx_ticks               = 0;
    641 #else
    642 	sc->bnx_tx_quick_cons_trip_int = 20;
    643 	sc->bnx_tx_quick_cons_trip     = 20;
    644 	sc->bnx_tx_ticks_int           = 80;
    645 	sc->bnx_tx_ticks               = 80;
    646 
    647 	sc->bnx_rx_quick_cons_trip_int = 6;
    648 	sc->bnx_rx_quick_cons_trip     = 6;
    649 	sc->bnx_rx_ticks_int           = 18;
    650 	sc->bnx_rx_ticks               = 18;
    651 #endif
    652 
    653 	/* Update statistics once every second. */
    654 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    655 
    656 	/* Find the media type for the adapter. */
    657 	bnx_get_media(sc);
    658 
    659 	/*
    660 	 * Store config data needed by the PHY driver for
    661 	 * backplane applications
    662 	 */
    663 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    664 	    BNX_SHARED_HW_CFG_CONFIG);
    665 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    666 	    BNX_PORT_HW_CFG_CONFIG);
    667 
    668 	/* Allocate DMA memory resources. */
    669 	sc->bnx_dmatag = pa->pa_dmat;
    670 	if (bnx_dma_alloc(sc)) {
    671 		aprint_error_dev(sc->bnx_dev,
    672 		    "DMA resource allocation failed!\n");
    673 		goto bnx_attach_fail;
    674 	}
    675 
    676 	/* Initialize the ifnet interface. */
    677 	ifp = &sc->bnx_ec.ec_if;
    678 	ifp->if_softc = sc;
    679 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    680 	ifp->if_ioctl = bnx_ioctl;
    681 	ifp->if_stop = bnx_stop;
    682 	ifp->if_start = bnx_start;
    683 	ifp->if_init = bnx_init;
    684 	ifp->if_timer = 0;
    685 	ifp->if_watchdog = bnx_watchdog;
    686 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    687 	IFQ_SET_READY(&ifp->if_snd);
    688 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    689 
    690 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    691 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    692 
    693 	ifp->if_capabilities |=
    694 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    695 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    696 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    697 
    698 	/* Hookup IRQ last. */
    699 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    700 	if (sc->bnx_intrhand == NULL) {
    701 		aprint_error_dev(self, "couldn't establish interrupt");
    702 		if (intrstr != NULL)
    703 			aprint_error(" at %s", intrstr);
    704 		aprint_error("\n");
    705 		goto bnx_attach_fail;
    706 	}
    707 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    708 
    709 	/* create workqueue to handle packet allocations */
    710 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    711 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    712 		aprint_error_dev(self, "failed to create workqueue\n");
    713 		goto bnx_attach_fail;
    714 	}
    715 
    716 	sc->bnx_mii.mii_ifp = ifp;
    717 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    718 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    719 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    720 
    721 	/* Handle any special PHY initialization for SerDes PHYs. */
    722 	bnx_init_media(sc);
    723 
    724 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    725 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    726 	    ether_mediastatus);
    727 
    728 	/* set phyflags and chipid before mii_attach() */
    729 	dict = device_properties(self);
    730 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    731 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    732 
    733 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    734 		mii_flags |= MIIF_HAVEFIBER;
    735 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    736 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    737 
    738 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    739 		aprint_error_dev(self, "no PHY found!\n");
    740 		ifmedia_add(&sc->bnx_mii.mii_media,
    741 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    742 		ifmedia_set(&sc->bnx_mii.mii_media,
    743 		    IFM_ETHER|IFM_MANUAL);
    744 	} else {
    745 		ifmedia_set(&sc->bnx_mii.mii_media,
    746 		    IFM_ETHER|IFM_AUTO);
    747 	}
    748 
    749 	/* Attach to the Ethernet interface list. */
    750 	if_attach(ifp);
    751 	ether_ifattach(ifp,sc->eaddr);
    752 
    753 	callout_init(&sc->bnx_timeout, 0);
    754 
    755 	if (pmf_device_register(self, NULL, NULL))
    756 		pmf_class_network_register(self, ifp);
    757 	else
    758 		aprint_error_dev(self, "couldn't establish power handler\n");
    759 
    760 	/* Print some important debugging info. */
    761 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    762 
    763 	goto bnx_attach_exit;
    764 
    765 bnx_attach_fail:
    766 	bnx_release_resources(sc);
    767 
    768 bnx_attach_exit:
    769 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    770 }
    771 
    772 /****************************************************************************/
    773 /* Device detach function.                                                  */
    774 /*                                                                          */
    775 /* Stops the controller, resets the controller, and releases resources.     */
    776 /*                                                                          */
    777 /* Returns:                                                                 */
    778 /*   0 on success, positive value on failure.                               */
    779 /****************************************************************************/
    780 int
    781 bnx_detach(device_t dev, int flags)
    782 {
    783 	int s;
    784 	struct bnx_softc *sc;
    785 	struct ifnet *ifp;
    786 
    787 	sc = device_private(dev);
    788 	ifp = &sc->bnx_ec.ec_if;
    789 
    790 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    791 
    792 	/* Stop and reset the controller. */
    793 	s = splnet();
    794 	if (ifp->if_flags & IFF_RUNNING)
    795 		bnx_stop(ifp, 1);
    796 	else {
    797 		/* Disable the transmit/receive blocks. */
    798 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
    799 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
    800 		DELAY(20);
    801 		bnx_disable_intr(sc);
    802 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
    803 	}
    804 
    805 	splx(s);
    806 
    807 	pmf_device_deregister(dev);
    808 	callout_destroy(&sc->bnx_timeout);
    809 	ether_ifdetach(ifp);
    810 	workqueue_destroy(sc->bnx_wq);
    811 
    812 	/* Delete all remaining media. */
    813 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    814 
    815 	if_detach(ifp);
    816 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    817 
    818 	/* Release all remaining resources. */
    819 	bnx_release_resources(sc);
    820 
    821 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    822 
    823 	return(0);
    824 }
    825 
    826 /****************************************************************************/
    827 /* Indirect register read.                                                  */
    828 /*                                                                          */
    829 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    830 /* configuration space.  Using this mechanism avoids issues with posted     */
    831 /* reads but is much slower than memory-mapped I/O.                         */
    832 /*                                                                          */
    833 /* Returns:                                                                 */
    834 /*   The value of the register.                                             */
    835 /****************************************************************************/
    836 u_int32_t
    837 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
    838 {
    839 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    840 
    841 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    842 	    offset);
    843 #ifdef BNX_DEBUG
    844 	{
    845 		u_int32_t val;
    846 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    847 		    BNX_PCICFG_REG_WINDOW);
    848 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    849 		    "val = 0x%08X\n", __func__, offset, val);
    850 		return (val);
    851 	}
    852 #else
    853 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    854 #endif
    855 }
    856 
    857 /****************************************************************************/
    858 /* Indirect register write.                                                 */
    859 /*                                                                          */
    860 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    861 /* configuration space.  Using this mechanism avoids issues with posted     */
    862 /* writes but is muchh slower than memory-mapped I/O.                       */
    863 /*                                                                          */
    864 /* Returns:                                                                 */
    865 /*   Nothing.                                                               */
    866 /****************************************************************************/
    867 void
    868 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
    869 {
    870 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    871 
    872 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    873 		__func__, offset, val);
    874 
    875 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    876 	    offset);
    877 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    878 }
    879 
    880 /****************************************************************************/
    881 /* Context memory write.                                                    */
    882 /*                                                                          */
    883 /* The NetXtreme II controller uses context memory to track connection      */
    884 /* information for L2 and higher network protocols.                         */
    885 /*                                                                          */
    886 /* Returns:                                                                 */
    887 /*   Nothing.                                                               */
    888 /****************************************************************************/
    889 void
    890 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
    891     u_int32_t ctx_val)
    892 {
    893 	u_int32_t idx, offset = ctx_offset + cid_addr;
    894 	u_int32_t val, retry_cnt = 5;
    895 
    896 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
    897 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
    898 		REG_WR(sc, BNX_CTX_CTX_CTRL,
    899 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
    900 
    901 		for (idx = 0; idx < retry_cnt; idx++) {
    902 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
    903 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
    904 				break;
    905 			DELAY(5);
    906 		}
    907 
    908 #if 0
    909 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
    910 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
    911 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
    912 				__FILE__, __LINE__, cid_addr, ctx_offset);
    913 #endif
    914 
    915 	} else {
    916 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
    917 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
    918 	}
    919 }
    920 
    921 /****************************************************************************/
    922 /* PHY register read.                                                       */
    923 /*                                                                          */
    924 /* Implements register reads on the MII bus.                                */
    925 /*                                                                          */
    926 /* Returns:                                                                 */
    927 /*   The value of the register.                                             */
    928 /****************************************************************************/
    929 int
    930 bnx_miibus_read_reg(device_t dev, int phy, int reg)
    931 {
    932 	struct bnx_softc	*sc = device_private(dev);
    933 	u_int32_t		val;
    934 	int			i;
    935 
    936 	/* Make sure we are accessing the correct PHY address. */
    937 	if (phy != sc->bnx_phy_addr) {
    938 		DBPRINT(sc, BNX_VERBOSE,
    939 		    "Invalid PHY address %d for PHY read!\n", phy);
    940 		return(0);
    941 	}
    942 
    943 	/*
    944 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
    945 	 * with special mappings to work with IEEE
    946 	 * Clause 22 register accesses.
    947 	 */
    948 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
    949 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
    950 			reg += 0x10;
    951 	}
    952 
    953 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    954 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    955 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    956 
    957 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    958 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    959 
    960 		DELAY(40);
    961 	}
    962 
    963 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
    964 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
    965 	    BNX_EMAC_MDIO_COMM_START_BUSY;
    966 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
    967 
    968 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    969 		DELAY(10);
    970 
    971 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    972 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    973 			DELAY(5);
    974 
    975 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    976 			val &= BNX_EMAC_MDIO_COMM_DATA;
    977 
    978 			break;
    979 		}
    980 	}
    981 
    982 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
    983 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
    984 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
    985 		val = 0x0;
    986 	} else
    987 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    988 
    989 	DBPRINT(sc, BNX_EXCESSIVE,
    990 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
    991 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    992 
    993 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    994 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    995 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    996 
    997 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    998 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    999 
   1000 		DELAY(40);
   1001 	}
   1002 
   1003 	return (val & 0xffff);
   1004 }
   1005 
   1006 /****************************************************************************/
   1007 /* PHY register write.                                                      */
   1008 /*                                                                          */
   1009 /* Implements register writes on the MII bus.                               */
   1010 /*                                                                          */
   1011 /* Returns:                                                                 */
   1012 /*   The value of the register.                                             */
   1013 /****************************************************************************/
   1014 void
   1015 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
   1016 {
   1017 	struct bnx_softc	*sc = device_private(dev);
   1018 	u_int32_t		val1;
   1019 	int			i;
   1020 
   1021 	/* Make sure we are accessing the correct PHY address. */
   1022 	if (phy != sc->bnx_phy_addr) {
   1023 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
   1024 		    phy);
   1025 		return;
   1026 	}
   1027 
   1028 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1029 	    "val = 0x%04X\n", __func__,
   1030 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
   1031 
   1032 	/*
   1033 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1034 	 * with special mappings to work with IEEE
   1035 	 * Clause 22 register accesses.
   1036 	 */
   1037 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1038 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1039 			reg += 0x10;
   1040 	}
   1041 
   1042 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1043 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1044 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1045 
   1046 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1047 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1048 
   1049 		DELAY(40);
   1050 	}
   1051 
   1052 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1053 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1054 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1055 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1056 
   1057 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1058 		DELAY(10);
   1059 
   1060 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1061 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1062 			DELAY(5);
   1063 			break;
   1064 		}
   1065 	}
   1066 
   1067 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1068 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1069 		    __LINE__);
   1070 	}
   1071 
   1072 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1073 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1074 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1075 
   1076 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1077 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1078 
   1079 		DELAY(40);
   1080 	}
   1081 }
   1082 
   1083 /****************************************************************************/
   1084 /* MII bus status change.                                                   */
   1085 /*                                                                          */
   1086 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1087 /* MAC interface registers.                                                 */
   1088 /*                                                                          */
   1089 /* Returns:                                                                 */
   1090 /*   Nothing.                                                               */
   1091 /****************************************************************************/
   1092 void
   1093 bnx_miibus_statchg(struct ifnet *ifp)
   1094 {
   1095 	struct bnx_softc	*sc = ifp->if_softc;
   1096 	struct mii_data		*mii = &sc->bnx_mii;
   1097 	int			val;
   1098 
   1099 	val = REG_RD(sc, BNX_EMAC_MODE);
   1100 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1101 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1102 	    BNX_EMAC_MODE_25G);
   1103 
   1104 	/* Set MII or GMII interface based on the speed
   1105 	 * negotiated by the PHY.
   1106 	 */
   1107 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1108 	case IFM_10_T:
   1109 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1110 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1111 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1112 			break;
   1113 		}
   1114 		/* FALLTHROUGH */
   1115 	case IFM_100_TX:
   1116 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1117 		val |= BNX_EMAC_MODE_PORT_MII;
   1118 		break;
   1119 	case IFM_2500_SX:
   1120 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1121 		val |= BNX_EMAC_MODE_25G;
   1122 		/* FALLTHROUGH */
   1123 	case IFM_1000_T:
   1124 	case IFM_1000_SX:
   1125 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1126 		val |= BNX_EMAC_MODE_PORT_GMII;
   1127 		break;
   1128 	default:
   1129 		val |= BNX_EMAC_MODE_PORT_GMII;
   1130 		break;
   1131 	}
   1132 
   1133 	/* Set half or full duplex based on the duplicity
   1134 	 * negotiated by the PHY.
   1135 	 */
   1136 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1137 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1138 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1139 	} else {
   1140 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1141 	}
   1142 
   1143 	REG_WR(sc, BNX_EMAC_MODE, val);
   1144 }
   1145 
   1146 /****************************************************************************/
   1147 /* Acquire NVRAM lock.                                                      */
   1148 /*                                                                          */
   1149 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1150 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1151 /* for use by the driver.                                                   */
   1152 /*                                                                          */
   1153 /* Returns:                                                                 */
   1154 /*   0 on success, positive value on failure.                               */
   1155 /****************************************************************************/
   1156 int
   1157 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1158 {
   1159 	u_int32_t		val;
   1160 	int			j;
   1161 
   1162 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1163 
   1164 	/* Request access to the flash interface. */
   1165 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1166 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1167 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1168 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1169 			break;
   1170 
   1171 		DELAY(5);
   1172 	}
   1173 
   1174 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1175 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1176 		return (EBUSY);
   1177 	}
   1178 
   1179 	return (0);
   1180 }
   1181 
   1182 /****************************************************************************/
   1183 /* Release NVRAM lock.                                                      */
   1184 /*                                                                          */
   1185 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1186 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1187 /* for use by the driver.                                                   */
   1188 /*                                                                          */
   1189 /* Returns:                                                                 */
   1190 /*   0 on success, positive value on failure.                               */
   1191 /****************************************************************************/
   1192 int
   1193 bnx_release_nvram_lock(struct bnx_softc *sc)
   1194 {
   1195 	int			j;
   1196 	u_int32_t		val;
   1197 
   1198 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1199 
   1200 	/* Relinquish nvram interface. */
   1201 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1202 
   1203 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1204 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1205 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1206 			break;
   1207 
   1208 		DELAY(5);
   1209 	}
   1210 
   1211 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1212 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1213 		return (EBUSY);
   1214 	}
   1215 
   1216 	return (0);
   1217 }
   1218 
   1219 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1220 /****************************************************************************/
   1221 /* Enable NVRAM write access.                                               */
   1222 /*                                                                          */
   1223 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1224 /*                                                                          */
   1225 /* Returns:                                                                 */
   1226 /*   0 on success, positive value on failure.                               */
   1227 /****************************************************************************/
   1228 int
   1229 bnx_enable_nvram_write(struct bnx_softc *sc)
   1230 {
   1231 	u_int32_t		val;
   1232 
   1233 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1234 
   1235 	val = REG_RD(sc, BNX_MISC_CFG);
   1236 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1237 
   1238 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1239 		int j;
   1240 
   1241 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1242 		REG_WR(sc, BNX_NVM_COMMAND,
   1243 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1244 
   1245 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1246 			DELAY(5);
   1247 
   1248 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1249 			if (val & BNX_NVM_COMMAND_DONE)
   1250 				break;
   1251 		}
   1252 
   1253 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1254 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1255 			return (EBUSY);
   1256 		}
   1257 	}
   1258 
   1259 	return (0);
   1260 }
   1261 
   1262 /****************************************************************************/
   1263 /* Disable NVRAM write access.                                              */
   1264 /*                                                                          */
   1265 /* When the caller is finished writing to NVRAM write access must be        */
   1266 /* disabled.                                                                */
   1267 /*                                                                          */
   1268 /* Returns:                                                                 */
   1269 /*   Nothing.                                                               */
   1270 /****************************************************************************/
   1271 void
   1272 bnx_disable_nvram_write(struct bnx_softc *sc)
   1273 {
   1274 	u_int32_t		val;
   1275 
   1276 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1277 
   1278 	val = REG_RD(sc, BNX_MISC_CFG);
   1279 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1280 }
   1281 #endif
   1282 
   1283 /****************************************************************************/
   1284 /* Enable NVRAM access.                                                     */
   1285 /*                                                                          */
   1286 /* Before accessing NVRAM for read or write operations the caller must      */
   1287 /* enabled NVRAM access.                                                    */
   1288 /*                                                                          */
   1289 /* Returns:                                                                 */
   1290 /*   Nothing.                                                               */
   1291 /****************************************************************************/
   1292 void
   1293 bnx_enable_nvram_access(struct bnx_softc *sc)
   1294 {
   1295 	u_int32_t		val;
   1296 
   1297 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1298 
   1299 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1300 	/* Enable both bits, even on read. */
   1301 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1302 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1303 }
   1304 
   1305 /****************************************************************************/
   1306 /* Disable NVRAM access.                                                    */
   1307 /*                                                                          */
   1308 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1309 /*                                                                          */
   1310 /* Returns:                                                                 */
   1311 /*   Nothing.                                                               */
   1312 /****************************************************************************/
   1313 void
   1314 bnx_disable_nvram_access(struct bnx_softc *sc)
   1315 {
   1316 	u_int32_t		val;
   1317 
   1318 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1319 
   1320 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1321 
   1322 	/* Disable both bits, even after read. */
   1323 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1324 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1325 }
   1326 
   1327 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1328 /****************************************************************************/
   1329 /* Erase NVRAM page before writing.                                         */
   1330 /*                                                                          */
   1331 /* Non-buffered flash parts require that a page be erased before it is      */
   1332 /* written.                                                                 */
   1333 /*                                                                          */
   1334 /* Returns:                                                                 */
   1335 /*   0 on success, positive value on failure.                               */
   1336 /****************************************************************************/
   1337 int
   1338 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
   1339 {
   1340 	u_int32_t		cmd;
   1341 	int			j;
   1342 
   1343 	/* Buffered flash doesn't require an erase. */
   1344 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1345 		return (0);
   1346 
   1347 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1348 
   1349 	/* Build an erase command. */
   1350 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1351 	    BNX_NVM_COMMAND_DOIT;
   1352 
   1353 	/*
   1354 	 * Clear the DONE bit separately, set the NVRAM adress to erase,
   1355 	 * and issue the erase command.
   1356 	 */
   1357 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1358 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1359 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1360 
   1361 	/* Wait for completion. */
   1362 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1363 		u_int32_t val;
   1364 
   1365 		DELAY(5);
   1366 
   1367 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1368 		if (val & BNX_NVM_COMMAND_DONE)
   1369 			break;
   1370 	}
   1371 
   1372 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1373 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1374 		return (EBUSY);
   1375 	}
   1376 
   1377 	return (0);
   1378 }
   1379 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1380 
   1381 /****************************************************************************/
   1382 /* Read a dword (32 bits) from NVRAM.                                       */
   1383 /*                                                                          */
   1384 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1385 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1386 /*                                                                          */
   1387 /* Returns:                                                                 */
   1388 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1389 /****************************************************************************/
   1390 int
   1391 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
   1392     u_int8_t *ret_val, u_int32_t cmd_flags)
   1393 {
   1394 	u_int32_t		cmd;
   1395 	int			i, rc = 0;
   1396 
   1397 	/* Build the command word. */
   1398 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1399 
   1400 	/* Calculate the offset for buffered flash if translation is used. */
   1401 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1402 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1403 		    sc->bnx_flash_info->page_bits) +
   1404 		    (offset % sc->bnx_flash_info->page_size);
   1405 	}
   1406 
   1407 	/*
   1408 	 * Clear the DONE bit separately, set the address to read,
   1409 	 * and issue the read.
   1410 	 */
   1411 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1412 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1413 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1414 
   1415 	/* Wait for completion. */
   1416 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1417 		u_int32_t val;
   1418 
   1419 		DELAY(5);
   1420 
   1421 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1422 		if (val & BNX_NVM_COMMAND_DONE) {
   1423 			val = REG_RD(sc, BNX_NVM_READ);
   1424 
   1425 			val = bnx_be32toh(val);
   1426 			memcpy(ret_val, &val, 4);
   1427 			break;
   1428 		}
   1429 	}
   1430 
   1431 	/* Check for errors. */
   1432 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1433 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1434 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1435 		rc = EBUSY;
   1436 	}
   1437 
   1438 	return(rc);
   1439 }
   1440 
   1441 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1442 /****************************************************************************/
   1443 /* Write a dword (32 bits) to NVRAM.                                        */
   1444 /*                                                                          */
   1445 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1446 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1447 /* enabled NVRAM write access.                                              */
   1448 /*                                                                          */
   1449 /* Returns:                                                                 */
   1450 /*   0 on success, positive value on failure.                               */
   1451 /****************************************************************************/
   1452 int
   1453 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
   1454     u_int32_t cmd_flags)
   1455 {
   1456 	u_int32_t		cmd, val32;
   1457 	int			j;
   1458 
   1459 	/* Build the command word. */
   1460 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1461 
   1462 	/* Calculate the offset for buffered flash if translation is used. */
   1463 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1464 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1465 		    sc->bnx_flash_info->page_bits) +
   1466 		    (offset % sc->bnx_flash_info->page_size);
   1467 	}
   1468 
   1469 	/*
   1470 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1471 	 * set the NVRAM address to write, and issue the write command
   1472 	 */
   1473 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1474 	memcpy(&val32, val, 4);
   1475 	val32 = htobe32(val32);
   1476 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1477 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1478 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1479 
   1480 	/* Wait for completion. */
   1481 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1482 		DELAY(5);
   1483 
   1484 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1485 			break;
   1486 	}
   1487 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1488 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1489 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1490 		return (EBUSY);
   1491 	}
   1492 
   1493 	return (0);
   1494 }
   1495 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1496 
   1497 /****************************************************************************/
   1498 /* Initialize NVRAM access.                                                 */
   1499 /*                                                                          */
   1500 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1501 /* access that device.                                                      */
   1502 /*                                                                          */
   1503 /* Returns:                                                                 */
   1504 /*   0 on success, positive value on failure.                               */
   1505 /****************************************************************************/
   1506 int
   1507 bnx_init_nvram(struct bnx_softc *sc)
   1508 {
   1509 	u_int32_t		val;
   1510 	int			j, entry_count, rc = 0;
   1511 	struct flash_spec	*flash;
   1512 
   1513 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1514 
   1515 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1516 		sc->bnx_flash_info = &flash_5709;
   1517 		goto bnx_init_nvram_get_flash_size;
   1518 	}
   1519 
   1520 	/* Determine the selected interface. */
   1521 	val = REG_RD(sc, BNX_NVM_CFG1);
   1522 
   1523 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1524 
   1525 	/*
   1526 	 * Flash reconfiguration is required to support additional
   1527 	 * NVRAM devices not directly supported in hardware.
   1528 	 * Check if the flash interface was reconfigured
   1529 	 * by the bootcode.
   1530 	 */
   1531 
   1532 	if (val & 0x40000000) {
   1533 		/* Flash interface reconfigured by bootcode. */
   1534 
   1535 		DBPRINT(sc,BNX_INFO_LOAD,
   1536 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1537 
   1538 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1539 		     j++, flash++) {
   1540 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1541 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1542 				sc->bnx_flash_info = flash;
   1543 				break;
   1544 			}
   1545 		}
   1546 	} else {
   1547 		/* Flash interface not yet reconfigured. */
   1548 		u_int32_t mask;
   1549 
   1550 		DBPRINT(sc,BNX_INFO_LOAD,
   1551 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1552 
   1553 		if (val & (1 << 23))
   1554 			mask = FLASH_BACKUP_STRAP_MASK;
   1555 		else
   1556 			mask = FLASH_STRAP_MASK;
   1557 
   1558 		/* Look for the matching NVRAM device configuration data. */
   1559 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1560 		    j++, flash++) {
   1561 			/* Check if the dev matches any of the known devices. */
   1562 			if ((val & mask) == (flash->strapping & mask)) {
   1563 				/* Found a device match. */
   1564 				sc->bnx_flash_info = flash;
   1565 
   1566 				/* Request access to the flash interface. */
   1567 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1568 					return (rc);
   1569 
   1570 				/* Reconfigure the flash interface. */
   1571 				bnx_enable_nvram_access(sc);
   1572 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1573 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1574 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1575 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1576 				bnx_disable_nvram_access(sc);
   1577 				bnx_release_nvram_lock(sc);
   1578 
   1579 				break;
   1580 			}
   1581 		}
   1582 	}
   1583 
   1584 	/* Check if a matching device was found. */
   1585 	if (j == entry_count) {
   1586 		sc->bnx_flash_info = NULL;
   1587 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1588 			__FILE__, __LINE__);
   1589 		rc = ENODEV;
   1590 	}
   1591 
   1592 bnx_init_nvram_get_flash_size:
   1593 	/* Write the flash config data to the shared memory interface. */
   1594 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1595 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1596 	if (val)
   1597 		sc->bnx_flash_size = val;
   1598 	else
   1599 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1600 
   1601 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1602 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1603 
   1604 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1605 
   1606 	return (rc);
   1607 }
   1608 
   1609 /****************************************************************************/
   1610 /* Read an arbitrary range of data from NVRAM.                              */
   1611 /*                                                                          */
   1612 /* Prepares the NVRAM interface for access and reads the requested data     */
   1613 /* into the supplied buffer.                                                */
   1614 /*                                                                          */
   1615 /* Returns:                                                                 */
   1616 /*   0 on success and the data read, positive value on failure.             */
   1617 /****************************************************************************/
   1618 int
   1619 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
   1620     int buf_size)
   1621 {
   1622 	int			rc = 0;
   1623 	u_int32_t		cmd_flags, offset32, len32, extra;
   1624 
   1625 	if (buf_size == 0)
   1626 		return (0);
   1627 
   1628 	/* Request access to the flash interface. */
   1629 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1630 		return (rc);
   1631 
   1632 	/* Enable access to flash interface */
   1633 	bnx_enable_nvram_access(sc);
   1634 
   1635 	len32 = buf_size;
   1636 	offset32 = offset;
   1637 	extra = 0;
   1638 
   1639 	cmd_flags = 0;
   1640 
   1641 	if (offset32 & 3) {
   1642 		u_int8_t buf[4];
   1643 		u_int32_t pre_len;
   1644 
   1645 		offset32 &= ~3;
   1646 		pre_len = 4 - (offset & 3);
   1647 
   1648 		if (pre_len >= len32) {
   1649 			pre_len = len32;
   1650 			cmd_flags =
   1651 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1652 		} else
   1653 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1654 
   1655 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1656 
   1657 		if (rc)
   1658 			return (rc);
   1659 
   1660 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1661 
   1662 		offset32 += 4;
   1663 		ret_buf += pre_len;
   1664 		len32 -= pre_len;
   1665 	}
   1666 
   1667 	if (len32 & 3) {
   1668 		extra = 4 - (len32 & 3);
   1669 		len32 = (len32 + 4) & ~3;
   1670 	}
   1671 
   1672 	if (len32 == 4) {
   1673 		u_int8_t buf[4];
   1674 
   1675 		if (cmd_flags)
   1676 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1677 		else
   1678 			cmd_flags =
   1679 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1680 
   1681 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1682 
   1683 		memcpy(ret_buf, buf, 4 - extra);
   1684 	} else if (len32 > 0) {
   1685 		u_int8_t buf[4];
   1686 
   1687 		/* Read the first word. */
   1688 		if (cmd_flags)
   1689 			cmd_flags = 0;
   1690 		else
   1691 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1692 
   1693 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1694 
   1695 		/* Advance to the next dword. */
   1696 		offset32 += 4;
   1697 		ret_buf += 4;
   1698 		len32 -= 4;
   1699 
   1700 		while (len32 > 4 && rc == 0) {
   1701 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1702 
   1703 			/* Advance to the next dword. */
   1704 			offset32 += 4;
   1705 			ret_buf += 4;
   1706 			len32 -= 4;
   1707 		}
   1708 
   1709 		if (rc)
   1710 			return (rc);
   1711 
   1712 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1713 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1714 
   1715 		memcpy(ret_buf, buf, 4 - extra);
   1716 	}
   1717 
   1718 	/* Disable access to flash interface and release the lock. */
   1719 	bnx_disable_nvram_access(sc);
   1720 	bnx_release_nvram_lock(sc);
   1721 
   1722 	return (rc);
   1723 }
   1724 
   1725 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1726 /****************************************************************************/
   1727 /* Write an arbitrary range of data from NVRAM.                             */
   1728 /*                                                                          */
   1729 /* Prepares the NVRAM interface for write access and writes the requested   */
   1730 /* data from the supplied buffer.  The caller is responsible for            */
   1731 /* calculating any appropriate CRCs.                                        */
   1732 /*                                                                          */
   1733 /* Returns:                                                                 */
   1734 /*   0 on success, positive value on failure.                               */
   1735 /****************************************************************************/
   1736 int
   1737 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
   1738     int buf_size)
   1739 {
   1740 	u_int32_t		written, offset32, len32;
   1741 	u_int8_t		*buf, start[4], end[4];
   1742 	int			rc = 0;
   1743 	int			align_start, align_end;
   1744 
   1745 	buf = data_buf;
   1746 	offset32 = offset;
   1747 	len32 = buf_size;
   1748 	align_start = align_end = 0;
   1749 
   1750 	if ((align_start = (offset32 & 3))) {
   1751 		offset32 &= ~3;
   1752 		len32 += align_start;
   1753 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1754 			return (rc);
   1755 	}
   1756 
   1757 	if (len32 & 3) {
   1758 	       	if ((len32 > 4) || !align_start) {
   1759 			align_end = 4 - (len32 & 3);
   1760 			len32 += align_end;
   1761 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1762 			    end, 4))) {
   1763 				return (rc);
   1764 			}
   1765 		}
   1766 	}
   1767 
   1768 	if (align_start || align_end) {
   1769 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1770 		if (buf == 0)
   1771 			return (ENOMEM);
   1772 
   1773 		if (align_start)
   1774 			memcpy(buf, start, 4);
   1775 
   1776 		if (align_end)
   1777 			memcpy(buf + len32 - 4, end, 4);
   1778 
   1779 		memcpy(buf + align_start, data_buf, buf_size);
   1780 	}
   1781 
   1782 	written = 0;
   1783 	while ((written < len32) && (rc == 0)) {
   1784 		u_int32_t page_start, page_end, data_start, data_end;
   1785 		u_int32_t addr, cmd_flags;
   1786 		int i;
   1787 		u_int8_t flash_buffer[264];
   1788 
   1789 	    /* Find the page_start addr */
   1790 		page_start = offset32 + written;
   1791 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1792 		/* Find the page_end addr */
   1793 		page_end = page_start + sc->bnx_flash_info->page_size;
   1794 		/* Find the data_start addr */
   1795 		data_start = (written == 0) ? offset32 : page_start;
   1796 		/* Find the data_end addr */
   1797 		data_end = (page_end > offset32 + len32) ?
   1798 		    (offset32 + len32) : page_end;
   1799 
   1800 		/* Request access to the flash interface. */
   1801 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1802 			goto nvram_write_end;
   1803 
   1804 		/* Enable access to flash interface */
   1805 		bnx_enable_nvram_access(sc);
   1806 
   1807 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1808 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1809 			int j;
   1810 
   1811 			/* Read the whole page into the buffer
   1812 			 * (non-buffer flash only) */
   1813 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1814 				if (j == (sc->bnx_flash_info->page_size - 4))
   1815 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1816 
   1817 				rc = bnx_nvram_read_dword(sc,
   1818 					page_start + j,
   1819 					&flash_buffer[j],
   1820 					cmd_flags);
   1821 
   1822 				if (rc)
   1823 					goto nvram_write_end;
   1824 
   1825 				cmd_flags = 0;
   1826 			}
   1827 		}
   1828 
   1829 		/* Enable writes to flash interface (unlock write-protect) */
   1830 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1831 			goto nvram_write_end;
   1832 
   1833 		/* Erase the page */
   1834 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1835 			goto nvram_write_end;
   1836 
   1837 		/* Re-enable the write again for the actual write */
   1838 		bnx_enable_nvram_write(sc);
   1839 
   1840 		/* Loop to write back the buffer data from page_start to
   1841 		 * data_start */
   1842 		i = 0;
   1843 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1844 			for (addr = page_start; addr < data_start;
   1845 				addr += 4, i += 4) {
   1846 
   1847 				rc = bnx_nvram_write_dword(sc, addr,
   1848 				    &flash_buffer[i], cmd_flags);
   1849 
   1850 				if (rc != 0)
   1851 					goto nvram_write_end;
   1852 
   1853 				cmd_flags = 0;
   1854 			}
   1855 		}
   1856 
   1857 		/* Loop to write the new data from data_start to data_end */
   1858 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1859 			if ((addr == page_end - 4) ||
   1860 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   1861 			    && (addr == data_end - 4))) {
   1862 
   1863 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1864 			}
   1865 
   1866 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1867 
   1868 			if (rc != 0)
   1869 				goto nvram_write_end;
   1870 
   1871 			cmd_flags = 0;
   1872 			buf += 4;
   1873 		}
   1874 
   1875 		/* Loop to write back the buffer data from data_end
   1876 		 * to page_end */
   1877 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1878 			for (addr = data_end; addr < page_end;
   1879 			    addr += 4, i += 4) {
   1880 
   1881 				if (addr == page_end-4)
   1882 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1883 
   1884 				rc = bnx_nvram_write_dword(sc, addr,
   1885 				    &flash_buffer[i], cmd_flags);
   1886 
   1887 				if (rc != 0)
   1888 					goto nvram_write_end;
   1889 
   1890 				cmd_flags = 0;
   1891 			}
   1892 		}
   1893 
   1894 		/* Disable writes to flash interface (lock write-protect) */
   1895 		bnx_disable_nvram_write(sc);
   1896 
   1897 		/* Disable access to flash interface */
   1898 		bnx_disable_nvram_access(sc);
   1899 		bnx_release_nvram_lock(sc);
   1900 
   1901 		/* Increment written */
   1902 		written += data_end - data_start;
   1903 	}
   1904 
   1905 nvram_write_end:
   1906 	if (align_start || align_end)
   1907 		free(buf, M_DEVBUF);
   1908 
   1909 	return (rc);
   1910 }
   1911 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1912 
   1913 /****************************************************************************/
   1914 /* Verifies that NVRAM is accessible and contains valid data.               */
   1915 /*                                                                          */
   1916 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   1917 /* correct.                                                                 */
   1918 /*                                                                          */
   1919 /* Returns:                                                                 */
   1920 /*   0 on success, positive value on failure.                               */
   1921 /****************************************************************************/
   1922 int
   1923 bnx_nvram_test(struct bnx_softc *sc)
   1924 {
   1925 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
   1926 	u_int8_t		*data = (u_int8_t *) buf;
   1927 	int			rc = 0;
   1928 	u_int32_t		magic, csum;
   1929 
   1930 	/*
   1931 	 * Check that the device NVRAM is valid by reading
   1932 	 * the magic value at offset 0.
   1933 	 */
   1934 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   1935 		goto bnx_nvram_test_done;
   1936 
   1937 	magic = bnx_be32toh(buf[0]);
   1938 	if (magic != BNX_NVRAM_MAGIC) {
   1939 		rc = ENODEV;
   1940 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   1941 		    "Expected: 0x%08X, Found: 0x%08X\n",
   1942 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   1943 		goto bnx_nvram_test_done;
   1944 	}
   1945 
   1946 	/*
   1947 	 * Verify that the device NVRAM includes valid
   1948 	 * configuration data.
   1949 	 */
   1950 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   1951 		goto bnx_nvram_test_done;
   1952 
   1953 	csum = ether_crc32_le(data, 0x100);
   1954 	if (csum != BNX_CRC32_RESIDUAL) {
   1955 		rc = ENODEV;
   1956 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   1957 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   1958 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1959 		goto bnx_nvram_test_done;
   1960 	}
   1961 
   1962 	csum = ether_crc32_le(data + 0x100, 0x100);
   1963 	if (csum != BNX_CRC32_RESIDUAL) {
   1964 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   1965 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   1966 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1967 		rc = ENODEV;
   1968 	}
   1969 
   1970 bnx_nvram_test_done:
   1971 	return (rc);
   1972 }
   1973 
   1974 /****************************************************************************/
   1975 /* Identifies the current media type of the controller and sets the PHY     */
   1976 /* address.                                                                 */
   1977 /*                                                                          */
   1978 /* Returns:                                                                 */
   1979 /*   Nothing.                                                               */
   1980 /****************************************************************************/
   1981 void
   1982 bnx_get_media(struct bnx_softc *sc)
   1983 {
   1984 	sc->bnx_phy_addr = 1;
   1985 
   1986 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1987 		u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   1988 		u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   1989 		u_int32_t strap;
   1990 
   1991 		/*
   1992 		 * The BCM5709S is software configurable
   1993 		 * for Copper or SerDes operation.
   1994 		 */
   1995 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   1996 			DBPRINT(sc, BNX_INFO_LOAD,
   1997 			    "5709 bonded for copper.\n");
   1998 			goto bnx_get_media_exit;
   1999 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   2000 			DBPRINT(sc, BNX_INFO_LOAD,
   2001 			    "5709 bonded for dual media.\n");
   2002 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2003 			goto bnx_get_media_exit;
   2004 		}
   2005 
   2006 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2007 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2008 		else {
   2009 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2010 			    >> 8;
   2011 		}
   2012 
   2013 		if (sc->bnx_pa.pa_function == 0) {
   2014 			switch (strap) {
   2015 			case 0x4:
   2016 			case 0x5:
   2017 			case 0x6:
   2018 				DBPRINT(sc, BNX_INFO_LOAD,
   2019 					"BCM5709 s/w configured for SerDes.\n");
   2020 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2021 				break;
   2022 			default:
   2023 				DBPRINT(sc, BNX_INFO_LOAD,
   2024 					"BCM5709 s/w configured for Copper.\n");
   2025 			}
   2026 		} else {
   2027 			switch (strap) {
   2028 			case 0x1:
   2029 			case 0x2:
   2030 			case 0x4:
   2031 				DBPRINT(sc, BNX_INFO_LOAD,
   2032 					"BCM5709 s/w configured for SerDes.\n");
   2033 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2034 				break;
   2035 			default:
   2036 				DBPRINT(sc, BNX_INFO_LOAD,
   2037 					"BCM5709 s/w configured for Copper.\n");
   2038 			}
   2039 		}
   2040 
   2041 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2042 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2043 
   2044 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2045 		u_int32_t val;
   2046 
   2047 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2048 
   2049 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2050 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2051 
   2052 		/*
   2053 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2054 		 * separate PHY for SerDes.
   2055 		 */
   2056 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2057 			sc->bnx_phy_addr = 2;
   2058 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2059 				 BNX_SHARED_HW_CFG_CONFIG);
   2060 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2061 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2062 				DBPRINT(sc, BNX_INFO_LOAD,
   2063 				    "Found 2.5Gb capable adapter\n");
   2064 			}
   2065 		}
   2066 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2067 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2068 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2069 
   2070 bnx_get_media_exit:
   2071 	DBPRINT(sc, (BNX_INFO_LOAD),
   2072 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2073 }
   2074 
   2075 /****************************************************************************/
   2076 /* Performs PHY initialization required before MII drivers access the       */
   2077 /* device.                                                                  */
   2078 /*                                                                          */
   2079 /* Returns:                                                                 */
   2080 /*   Nothing.                                                               */
   2081 /****************************************************************************/
   2082 void
   2083 bnx_init_media(struct bnx_softc *sc)
   2084 {
   2085 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2086 		/*
   2087 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2088 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2089 		 * the PHY to the mii(4) layer. PHY specific configuration
   2090 		 * is done by the mii(4) layer.
   2091 		 */
   2092 
   2093 		/* Select auto-negotiation MMD of the PHY. */
   2094 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2095 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2096 
   2097 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2098 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2099 
   2100 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2101 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2102 	}
   2103 }
   2104 
   2105 /****************************************************************************/
   2106 /* Free any DMA memory owned by the driver.                                 */
   2107 /*                                                                          */
   2108 /* Scans through each data structre that requires DMA memory and frees      */
   2109 /* the memory if allocated.                                                 */
   2110 /*                                                                          */
   2111 /* Returns:                                                                 */
   2112 /*   Nothing.                                                               */
   2113 /****************************************************************************/
   2114 void
   2115 bnx_dma_free(struct bnx_softc *sc)
   2116 {
   2117 	int			i;
   2118 
   2119 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2120 
   2121 	/* Destroy the status block. */
   2122 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2123 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2124 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2125 		    BNX_STATUS_BLK_SZ);
   2126 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2127 		    sc->status_rseg);
   2128 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2129 		sc->status_block = NULL;
   2130 		sc->status_map = NULL;
   2131 	}
   2132 
   2133 	/* Destroy the statistics block. */
   2134 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2135 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2136 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2137 		    BNX_STATS_BLK_SZ);
   2138 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2139 		    sc->stats_rseg);
   2140 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2141 		sc->stats_block = NULL;
   2142 		sc->stats_map = NULL;
   2143 	}
   2144 
   2145 	/* Free, unmap and destroy all context memory pages. */
   2146 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2147 		for (i = 0; i < sc->ctx_pages; i++) {
   2148 			if (sc->ctx_block[i] != NULL) {
   2149 				bus_dmamap_unload(sc->bnx_dmatag,
   2150 				    sc->ctx_map[i]);
   2151 				bus_dmamem_unmap(sc->bnx_dmatag,
   2152 				    (void *)sc->ctx_block[i],
   2153 				    BCM_PAGE_SIZE);
   2154 				bus_dmamem_free(sc->bnx_dmatag,
   2155 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2156 				bus_dmamap_destroy(sc->bnx_dmatag,
   2157 				    sc->ctx_map[i]);
   2158 				sc->ctx_block[i] = NULL;
   2159 			}
   2160 		}
   2161 	}
   2162 
   2163 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2164 	for (i = 0; i < TX_PAGES; i++ ) {
   2165 		if (sc->tx_bd_chain[i] != NULL &&
   2166 		    sc->tx_bd_chain_map[i] != NULL) {
   2167 			bus_dmamap_unload(sc->bnx_dmatag,
   2168 			    sc->tx_bd_chain_map[i]);
   2169 			bus_dmamem_unmap(sc->bnx_dmatag,
   2170 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2171 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2172 			    sc->tx_bd_chain_rseg[i]);
   2173 			bus_dmamap_destroy(sc->bnx_dmatag,
   2174 			    sc->tx_bd_chain_map[i]);
   2175 			sc->tx_bd_chain[i] = NULL;
   2176 			sc->tx_bd_chain_map[i] = NULL;
   2177 		}
   2178 	}
   2179 
   2180 	/* Destroy the TX dmamaps. */
   2181 	/* This isn't necessary since we dont allocate them up front */
   2182 
   2183 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2184 	for (i = 0; i < RX_PAGES; i++ ) {
   2185 		if (sc->rx_bd_chain[i] != NULL &&
   2186 		    sc->rx_bd_chain_map[i] != NULL) {
   2187 			bus_dmamap_unload(sc->bnx_dmatag,
   2188 			    sc->rx_bd_chain_map[i]);
   2189 			bus_dmamem_unmap(sc->bnx_dmatag,
   2190 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2191 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2192 			    sc->rx_bd_chain_rseg[i]);
   2193 
   2194 			bus_dmamap_destroy(sc->bnx_dmatag,
   2195 			    sc->rx_bd_chain_map[i]);
   2196 			sc->rx_bd_chain[i] = NULL;
   2197 			sc->rx_bd_chain_map[i] = NULL;
   2198 		}
   2199 	}
   2200 
   2201 	/* Unload and destroy the RX mbuf maps. */
   2202 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2203 		if (sc->rx_mbuf_map[i] != NULL) {
   2204 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2205 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2206 		}
   2207 	}
   2208 
   2209 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2210 }
   2211 
   2212 /****************************************************************************/
   2213 /* Allocate any DMA memory needed by the driver.                            */
   2214 /*                                                                          */
   2215 /* Allocates DMA memory needed for the various global structures needed by  */
   2216 /* hardware.                                                                */
   2217 /*                                                                          */
   2218 /* Returns:                                                                 */
   2219 /*   0 for success, positive value for failure.                             */
   2220 /****************************************************************************/
   2221 int
   2222 bnx_dma_alloc(struct bnx_softc *sc)
   2223 {
   2224 	int			i, rc = 0;
   2225 
   2226 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2227 
   2228 	/*
   2229 	 * Allocate DMA memory for the status block, map the memory into DMA
   2230 	 * space, and fetch the physical address of the block.
   2231 	 */
   2232 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2233 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2234 		aprint_error_dev(sc->bnx_dev,
   2235 		    "Could not create status block DMA map!\n");
   2236 		rc = ENOMEM;
   2237 		goto bnx_dma_alloc_exit;
   2238 	}
   2239 
   2240 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2241 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2242 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2243 		aprint_error_dev(sc->bnx_dev,
   2244 		    "Could not allocate status block DMA memory!\n");
   2245 		rc = ENOMEM;
   2246 		goto bnx_dma_alloc_exit;
   2247 	}
   2248 
   2249 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2250 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2251 		aprint_error_dev(sc->bnx_dev,
   2252 		    "Could not map status block DMA memory!\n");
   2253 		rc = ENOMEM;
   2254 		goto bnx_dma_alloc_exit;
   2255 	}
   2256 
   2257 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2258 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2259 		aprint_error_dev(sc->bnx_dev,
   2260 		    "Could not load status block DMA memory!\n");
   2261 		rc = ENOMEM;
   2262 		goto bnx_dma_alloc_exit;
   2263 	}
   2264 
   2265 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2266 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2267 
   2268 	/* DRC - Fix for 64 bit addresses. */
   2269 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2270 		(u_int32_t) sc->status_block_paddr);
   2271 
   2272 	/* BCM5709 uses host memory as cache for context memory. */
   2273 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2274 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2275 		if (sc->ctx_pages == 0)
   2276 			sc->ctx_pages = 1;
   2277 		if (sc->ctx_pages > 4) /* XXX */
   2278 			sc->ctx_pages = 4;
   2279 
   2280 		DBRUNIF((sc->ctx_pages > 512),
   2281 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2282 				__FILE__, __LINE__, sc->ctx_pages));
   2283 
   2284 
   2285 		for (i = 0; i < sc->ctx_pages; i++) {
   2286 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2287 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2288 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2289 			    &sc->ctx_map[i]) != 0) {
   2290 				rc = ENOMEM;
   2291 				goto bnx_dma_alloc_exit;
   2292 			}
   2293 
   2294 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2295 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2296 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2297 				rc = ENOMEM;
   2298 				goto bnx_dma_alloc_exit;
   2299 			}
   2300 
   2301 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2302 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2303 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2304 				rc = ENOMEM;
   2305 				goto bnx_dma_alloc_exit;
   2306 			}
   2307 
   2308 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2309 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2310 			    BUS_DMA_NOWAIT) != 0) {
   2311 				rc = ENOMEM;
   2312 				goto bnx_dma_alloc_exit;
   2313 			}
   2314 
   2315 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2316 		}
   2317 	}
   2318 
   2319 	/*
   2320 	 * Allocate DMA memory for the statistics block, map the memory into
   2321 	 * DMA space, and fetch the physical address of the block.
   2322 	 */
   2323 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2324 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2325 		aprint_error_dev(sc->bnx_dev,
   2326 		    "Could not create stats block DMA map!\n");
   2327 		rc = ENOMEM;
   2328 		goto bnx_dma_alloc_exit;
   2329 	}
   2330 
   2331 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2332 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2333 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2334 		aprint_error_dev(sc->bnx_dev,
   2335 		    "Could not allocate stats block DMA memory!\n");
   2336 		rc = ENOMEM;
   2337 		goto bnx_dma_alloc_exit;
   2338 	}
   2339 
   2340 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2341 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2342 		aprint_error_dev(sc->bnx_dev,
   2343 		    "Could not map stats block DMA memory!\n");
   2344 		rc = ENOMEM;
   2345 		goto bnx_dma_alloc_exit;
   2346 	}
   2347 
   2348 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2349 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2350 		aprint_error_dev(sc->bnx_dev,
   2351 		    "Could not load status block DMA memory!\n");
   2352 		rc = ENOMEM;
   2353 		goto bnx_dma_alloc_exit;
   2354 	}
   2355 
   2356 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2357 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2358 
   2359 	/* DRC - Fix for 64 bit address. */
   2360 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2361 	    (u_int32_t) sc->stats_block_paddr);
   2362 
   2363 	/*
   2364 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2365 	 * and fetch the physical address of the block.
   2366 	 */
   2367 	for (i = 0; i < TX_PAGES; i++) {
   2368 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2369 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2370 		    &sc->tx_bd_chain_map[i])) {
   2371 			aprint_error_dev(sc->bnx_dev,
   2372 			    "Could not create Tx desc %d DMA map!\n", i);
   2373 			rc = ENOMEM;
   2374 			goto bnx_dma_alloc_exit;
   2375 		}
   2376 
   2377 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2378 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2379 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2380 			aprint_error_dev(sc->bnx_dev,
   2381 			    "Could not allocate TX desc %d DMA memory!\n",
   2382 			    i);
   2383 			rc = ENOMEM;
   2384 			goto bnx_dma_alloc_exit;
   2385 		}
   2386 
   2387 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2388 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2389 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2390 			aprint_error_dev(sc->bnx_dev,
   2391 			    "Could not map TX desc %d DMA memory!\n", i);
   2392 			rc = ENOMEM;
   2393 			goto bnx_dma_alloc_exit;
   2394 		}
   2395 
   2396 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2397 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2398 		    BUS_DMA_NOWAIT)) {
   2399 			aprint_error_dev(sc->bnx_dev,
   2400 			    "Could not load TX desc %d DMA memory!\n", i);
   2401 			rc = ENOMEM;
   2402 			goto bnx_dma_alloc_exit;
   2403 		}
   2404 
   2405 		sc->tx_bd_chain_paddr[i] =
   2406 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2407 
   2408 		/* DRC - Fix for 64 bit systems. */
   2409 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2410 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
   2411 	}
   2412 
   2413 	/*
   2414 	 * Create lists to hold TX mbufs.
   2415 	 */
   2416 	TAILQ_INIT(&sc->tx_free_pkts);
   2417 	TAILQ_INIT(&sc->tx_used_pkts);
   2418 	sc->tx_pkt_count = 0;
   2419 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2420 
   2421 	/*
   2422 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2423 	 * and fetch the physical address of the block.
   2424 	 */
   2425 	for (i = 0; i < RX_PAGES; i++) {
   2426 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2427 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2428 		    &sc->rx_bd_chain_map[i])) {
   2429 			aprint_error_dev(sc->bnx_dev,
   2430 			    "Could not create Rx desc %d DMA map!\n", i);
   2431 			rc = ENOMEM;
   2432 			goto bnx_dma_alloc_exit;
   2433 		}
   2434 
   2435 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2436 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2437 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2438 			aprint_error_dev(sc->bnx_dev,
   2439 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2440 			rc = ENOMEM;
   2441 			goto bnx_dma_alloc_exit;
   2442 		}
   2443 
   2444 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2445 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2446 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2447 			aprint_error_dev(sc->bnx_dev,
   2448 			    "Could not map Rx desc %d DMA memory!\n", i);
   2449 			rc = ENOMEM;
   2450 			goto bnx_dma_alloc_exit;
   2451 		}
   2452 
   2453 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2454 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2455 		    BUS_DMA_NOWAIT)) {
   2456 			aprint_error_dev(sc->bnx_dev,
   2457 			    "Could not load Rx desc %d DMA memory!\n", i);
   2458 			rc = ENOMEM;
   2459 			goto bnx_dma_alloc_exit;
   2460 		}
   2461 
   2462 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2463 		sc->rx_bd_chain_paddr[i] =
   2464 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2465 
   2466 		/* DRC - Fix for 64 bit systems. */
   2467 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2468 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
   2469 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2470 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2471 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2472 	}
   2473 
   2474 	/*
   2475 	 * Create DMA maps for the Rx buffer mbufs.
   2476 	 */
   2477 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2478 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2479 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2480 		    &sc->rx_mbuf_map[i])) {
   2481 			aprint_error_dev(sc->bnx_dev,
   2482 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2483 			rc = ENOMEM;
   2484 			goto bnx_dma_alloc_exit;
   2485 		}
   2486 	}
   2487 
   2488  bnx_dma_alloc_exit:
   2489 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2490 
   2491 	return(rc);
   2492 }
   2493 
   2494 /****************************************************************************/
   2495 /* Release all resources used by the driver.                                */
   2496 /*                                                                          */
   2497 /* Releases all resources acquired by the driver including interrupts,      */
   2498 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2499 /*                                                                          */
   2500 /* Returns:                                                                 */
   2501 /*   Nothing.                                                               */
   2502 /****************************************************************************/
   2503 void
   2504 bnx_release_resources(struct bnx_softc *sc)
   2505 {
   2506 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2507 
   2508 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2509 
   2510 	bnx_dma_free(sc);
   2511 
   2512 	if (sc->bnx_intrhand != NULL)
   2513 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2514 
   2515 	if (sc->bnx_size)
   2516 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2517 
   2518 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2519 }
   2520 
   2521 /****************************************************************************/
   2522 /* Firmware synchronization.                                                */
   2523 /*                                                                          */
   2524 /* Before performing certain events such as a chip reset, synchronize with  */
   2525 /* the firmware first.                                                      */
   2526 /*                                                                          */
   2527 /* Returns:                                                                 */
   2528 /*   0 for success, positive value for failure.                             */
   2529 /****************************************************************************/
   2530 int
   2531 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
   2532 {
   2533 	int			i, rc = 0;
   2534 	u_int32_t		val;
   2535 
   2536 	/* Don't waste any time if we've timed out before. */
   2537 	if (sc->bnx_fw_timed_out) {
   2538 		rc = EBUSY;
   2539 		goto bnx_fw_sync_exit;
   2540 	}
   2541 
   2542 	/* Increment the message sequence number. */
   2543 	sc->bnx_fw_wr_seq++;
   2544 	msg_data |= sc->bnx_fw_wr_seq;
   2545 
   2546  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2547 	    msg_data);
   2548 
   2549 	/* Send the message to the bootcode driver mailbox. */
   2550 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2551 
   2552 	/* Wait for the bootcode to acknowledge the message. */
   2553 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2554 		/* Check for a response in the bootcode firmware mailbox. */
   2555 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2556 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2557 			break;
   2558 		DELAY(1000);
   2559 	}
   2560 
   2561 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2562 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2563 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2564 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2565 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2566 
   2567 		msg_data &= ~BNX_DRV_MSG_CODE;
   2568 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2569 
   2570 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2571 
   2572 		sc->bnx_fw_timed_out = 1;
   2573 		rc = EBUSY;
   2574 	}
   2575 
   2576 bnx_fw_sync_exit:
   2577 	return (rc);
   2578 }
   2579 
   2580 /****************************************************************************/
   2581 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2582 /*                                                                          */
   2583 /* Returns:                                                                 */
   2584 /*   Nothing.                                                               */
   2585 /****************************************************************************/
   2586 void
   2587 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
   2588     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
   2589 {
   2590 	int			i;
   2591 	u_int32_t		val;
   2592 
   2593 	/* Set the page size used by RV2P. */
   2594 	if (rv2p_proc == RV2P_PROC2) {
   2595 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2596 		    USABLE_RX_BD_PER_PAGE);
   2597 	}
   2598 
   2599 	for (i = 0; i < rv2p_code_len; i += 8) {
   2600 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2601 		rv2p_code++;
   2602 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2603 		rv2p_code++;
   2604 
   2605 		if (rv2p_proc == RV2P_PROC1) {
   2606 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2607 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2608 		} else {
   2609 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2610 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2611 		}
   2612 	}
   2613 
   2614 	/* Reset the processor, un-stall is done later. */
   2615 	if (rv2p_proc == RV2P_PROC1)
   2616 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2617 	else
   2618 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2619 }
   2620 
   2621 /****************************************************************************/
   2622 /* Load RISC processor firmware.                                            */
   2623 /*                                                                          */
   2624 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2625 /* associated with a particular processor.                                  */
   2626 /*                                                                          */
   2627 /* Returns:                                                                 */
   2628 /*   Nothing.                                                               */
   2629 /****************************************************************************/
   2630 void
   2631 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2632     struct fw_info *fw)
   2633 {
   2634 	u_int32_t		offset;
   2635 	u_int32_t		val;
   2636 
   2637 	/* Halt the CPU. */
   2638 	val = REG_RD_IND(sc, cpu_reg->mode);
   2639 	val |= cpu_reg->mode_value_halt;
   2640 	REG_WR_IND(sc, cpu_reg->mode, val);
   2641 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2642 
   2643 	/* Load the Text area. */
   2644 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2645 	if (fw->text) {
   2646 		int j;
   2647 
   2648 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2649 			REG_WR_IND(sc, offset, fw->text[j]);
   2650 	}
   2651 
   2652 	/* Load the Data area. */
   2653 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2654 	if (fw->data) {
   2655 		int j;
   2656 
   2657 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2658 			REG_WR_IND(sc, offset, fw->data[j]);
   2659 	}
   2660 
   2661 	/* Load the SBSS area. */
   2662 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2663 	if (fw->sbss) {
   2664 		int j;
   2665 
   2666 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2667 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2668 	}
   2669 
   2670 	/* Load the BSS area. */
   2671 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2672 	if (fw->bss) {
   2673 		int j;
   2674 
   2675 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2676 			REG_WR_IND(sc, offset, fw->bss[j]);
   2677 	}
   2678 
   2679 	/* Load the Read-Only area. */
   2680 	offset = cpu_reg->spad_base +
   2681 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2682 	if (fw->rodata) {
   2683 		int j;
   2684 
   2685 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2686 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2687 	}
   2688 
   2689 	/* Clear the pre-fetch instruction. */
   2690 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2691 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2692 
   2693 	/* Start the CPU. */
   2694 	val = REG_RD_IND(sc, cpu_reg->mode);
   2695 	val &= ~cpu_reg->mode_value_halt;
   2696 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2697 	REG_WR_IND(sc, cpu_reg->mode, val);
   2698 }
   2699 
   2700 /****************************************************************************/
   2701 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2702 /*                                                                          */
   2703 /* Loads the firmware for each CPU and starts the CPU.                      */
   2704 /*                                                                          */
   2705 /* Returns:                                                                 */
   2706 /*   Nothing.                                                               */
   2707 /****************************************************************************/
   2708 void
   2709 bnx_init_cpus(struct bnx_softc *sc)
   2710 {
   2711 	struct cpu_reg cpu_reg;
   2712 	struct fw_info fw;
   2713 
   2714 	switch(BNX_CHIP_NUM(sc)) {
   2715 	case BNX_CHIP_NUM_5709:
   2716 		/* Initialize the RV2P processor. */
   2717 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2718 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2719 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2720 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2721 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2722 		} else {
   2723 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2724 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2725 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2726 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2727 		}
   2728 
   2729 		/* Initialize the RX Processor. */
   2730 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2731 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2732 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2733 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2734 		cpu_reg.state_value_clear = 0xffffff;
   2735 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2736 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2737 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2738 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2739 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2740 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2741 		cpu_reg.mips_view_base = 0x8000000;
   2742 
   2743 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2744 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2745 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2746 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2747 
   2748 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2749 		fw.text_len = bnx_RXP_b09FwTextLen;
   2750 		fw.text_index = 0;
   2751 		fw.text = bnx_RXP_b09FwText;
   2752 
   2753 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2754 		fw.data_len = bnx_RXP_b09FwDataLen;
   2755 		fw.data_index = 0;
   2756 		fw.data = bnx_RXP_b09FwData;
   2757 
   2758 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2759 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2760 		fw.sbss_index = 0;
   2761 		fw.sbss = bnx_RXP_b09FwSbss;
   2762 
   2763 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2764 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2765 		fw.bss_index = 0;
   2766 		fw.bss = bnx_RXP_b09FwBss;
   2767 
   2768 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2769 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2770 		fw.rodata_index = 0;
   2771 		fw.rodata = bnx_RXP_b09FwRodata;
   2772 
   2773 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2774 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2775 
   2776 		/* Initialize the TX Processor. */
   2777 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2778 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2779 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2780 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2781 		cpu_reg.state_value_clear = 0xffffff;
   2782 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2783 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2784 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2785 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2786 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2787 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2788 		cpu_reg.mips_view_base = 0x8000000;
   2789 
   2790 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2791 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2792 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2793 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2794 
   2795 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2796 		fw.text_len = bnx_TXP_b09FwTextLen;
   2797 		fw.text_index = 0;
   2798 		fw.text = bnx_TXP_b09FwText;
   2799 
   2800 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   2801 		fw.data_len = bnx_TXP_b09FwDataLen;
   2802 		fw.data_index = 0;
   2803 		fw.data = bnx_TXP_b09FwData;
   2804 
   2805 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   2806 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   2807 		fw.sbss_index = 0;
   2808 		fw.sbss = bnx_TXP_b09FwSbss;
   2809 
   2810 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   2811 		fw.bss_len = bnx_TXP_b09FwBssLen;
   2812 		fw.bss_index = 0;
   2813 		fw.bss = bnx_TXP_b09FwBss;
   2814 
   2815 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   2816 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   2817 		fw.rodata_index = 0;
   2818 		fw.rodata = bnx_TXP_b09FwRodata;
   2819 
   2820 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2821 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2822 
   2823 		/* Initialize the TX Patch-up Processor. */
   2824 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2825 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2826 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2827 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2828 		cpu_reg.state_value_clear = 0xffffff;
   2829 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2830 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2831 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2832 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2833 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2834 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2835 		cpu_reg.mips_view_base = 0x8000000;
   2836 
   2837 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   2838 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   2839 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   2840 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   2841 
   2842 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   2843 		fw.text_len = bnx_TPAT_b09FwTextLen;
   2844 		fw.text_index = 0;
   2845 		fw.text = bnx_TPAT_b09FwText;
   2846 
   2847 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   2848 		fw.data_len = bnx_TPAT_b09FwDataLen;
   2849 		fw.data_index = 0;
   2850 		fw.data = bnx_TPAT_b09FwData;
   2851 
   2852 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   2853 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   2854 		fw.sbss_index = 0;
   2855 		fw.sbss = bnx_TPAT_b09FwSbss;
   2856 
   2857 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   2858 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   2859 		fw.bss_index = 0;
   2860 		fw.bss = bnx_TPAT_b09FwBss;
   2861 
   2862 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   2863 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   2864 		fw.rodata_index = 0;
   2865 		fw.rodata = bnx_TPAT_b09FwRodata;
   2866 
   2867 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2868 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2869 
   2870 		/* Initialize the Completion Processor. */
   2871 		cpu_reg.mode = BNX_COM_CPU_MODE;
   2872 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2873 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2874 		cpu_reg.state = BNX_COM_CPU_STATE;
   2875 		cpu_reg.state_value_clear = 0xffffff;
   2876 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2877 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2878 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2879 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2880 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2881 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   2882 		cpu_reg.mips_view_base = 0x8000000;
   2883 
   2884 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   2885 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   2886 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   2887 		fw.start_addr = bnx_COM_b09FwStartAddr;
   2888 
   2889 		fw.text_addr = bnx_COM_b09FwTextAddr;
   2890 		fw.text_len = bnx_COM_b09FwTextLen;
   2891 		fw.text_index = 0;
   2892 		fw.text = bnx_COM_b09FwText;
   2893 
   2894 		fw.data_addr = bnx_COM_b09FwDataAddr;
   2895 		fw.data_len = bnx_COM_b09FwDataLen;
   2896 		fw.data_index = 0;
   2897 		fw.data = bnx_COM_b09FwData;
   2898 
   2899 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   2900 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   2901 		fw.sbss_index = 0;
   2902 		fw.sbss = bnx_COM_b09FwSbss;
   2903 
   2904 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   2905 		fw.bss_len = bnx_COM_b09FwBssLen;
   2906 		fw.bss_index = 0;
   2907 		fw.bss = bnx_COM_b09FwBss;
   2908 
   2909 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   2910 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   2911 		fw.rodata_index = 0;
   2912 		fw.rodata = bnx_COM_b09FwRodata;
   2913 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   2914 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2915 		break;
   2916 	default:
   2917 		/* Initialize the RV2P processor. */
   2918 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   2919 		    RV2P_PROC1);
   2920 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   2921 		    RV2P_PROC2);
   2922 
   2923 		/* Initialize the RX Processor. */
   2924 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2925 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2926 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2927 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2928 		cpu_reg.state_value_clear = 0xffffff;
   2929 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2930 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2931 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2932 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2933 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2934 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2935 		cpu_reg.mips_view_base = 0x8000000;
   2936 
   2937 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   2938 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   2939 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   2940 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   2941 
   2942 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   2943 		fw.text_len = bnx_RXP_b06FwTextLen;
   2944 		fw.text_index = 0;
   2945 		fw.text = bnx_RXP_b06FwText;
   2946 
   2947 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   2948 		fw.data_len = bnx_RXP_b06FwDataLen;
   2949 		fw.data_index = 0;
   2950 		fw.data = bnx_RXP_b06FwData;
   2951 
   2952 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   2953 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   2954 		fw.sbss_index = 0;
   2955 		fw.sbss = bnx_RXP_b06FwSbss;
   2956 
   2957 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   2958 		fw.bss_len = bnx_RXP_b06FwBssLen;
   2959 		fw.bss_index = 0;
   2960 		fw.bss = bnx_RXP_b06FwBss;
   2961 
   2962 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   2963 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   2964 		fw.rodata_index = 0;
   2965 		fw.rodata = bnx_RXP_b06FwRodata;
   2966 
   2967 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2968 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2969 
   2970 		/* Initialize the TX Processor. */
   2971 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2972 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2973 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2974 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2975 		cpu_reg.state_value_clear = 0xffffff;
   2976 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2977 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2978 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2979 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2980 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2981 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2982 		cpu_reg.mips_view_base = 0x8000000;
   2983 
   2984 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   2985 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   2986 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   2987 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   2988 
   2989 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   2990 		fw.text_len = bnx_TXP_b06FwTextLen;
   2991 		fw.text_index = 0;
   2992 		fw.text = bnx_TXP_b06FwText;
   2993 
   2994 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   2995 		fw.data_len = bnx_TXP_b06FwDataLen;
   2996 		fw.data_index = 0;
   2997 		fw.data = bnx_TXP_b06FwData;
   2998 
   2999 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   3000 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   3001 		fw.sbss_index = 0;
   3002 		fw.sbss = bnx_TXP_b06FwSbss;
   3003 
   3004 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3005 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3006 		fw.bss_index = 0;
   3007 		fw.bss = bnx_TXP_b06FwBss;
   3008 
   3009 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3010 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3011 		fw.rodata_index = 0;
   3012 		fw.rodata = bnx_TXP_b06FwRodata;
   3013 
   3014 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3015 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3016 
   3017 		/* Initialize the TX Patch-up Processor. */
   3018 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3019 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3020 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3021 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3022 		cpu_reg.state_value_clear = 0xffffff;
   3023 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3024 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3025 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3026 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3027 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3028 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3029 		cpu_reg.mips_view_base = 0x8000000;
   3030 
   3031 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3032 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3033 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3034 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3035 
   3036 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3037 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3038 		fw.text_index = 0;
   3039 		fw.text = bnx_TPAT_b06FwText;
   3040 
   3041 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3042 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3043 		fw.data_index = 0;
   3044 		fw.data = bnx_TPAT_b06FwData;
   3045 
   3046 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3047 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3048 		fw.sbss_index = 0;
   3049 		fw.sbss = bnx_TPAT_b06FwSbss;
   3050 
   3051 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3052 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3053 		fw.bss_index = 0;
   3054 		fw.bss = bnx_TPAT_b06FwBss;
   3055 
   3056 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3057 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3058 		fw.rodata_index = 0;
   3059 		fw.rodata = bnx_TPAT_b06FwRodata;
   3060 
   3061 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3062 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3063 
   3064 		/* Initialize the Completion Processor. */
   3065 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3066 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3067 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3068 		cpu_reg.state = BNX_COM_CPU_STATE;
   3069 		cpu_reg.state_value_clear = 0xffffff;
   3070 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3071 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3072 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3073 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3074 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3075 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3076 		cpu_reg.mips_view_base = 0x8000000;
   3077 
   3078 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3079 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3080 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3081 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3082 
   3083 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3084 		fw.text_len = bnx_COM_b06FwTextLen;
   3085 		fw.text_index = 0;
   3086 		fw.text = bnx_COM_b06FwText;
   3087 
   3088 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3089 		fw.data_len = bnx_COM_b06FwDataLen;
   3090 		fw.data_index = 0;
   3091 		fw.data = bnx_COM_b06FwData;
   3092 
   3093 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3094 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3095 		fw.sbss_index = 0;
   3096 		fw.sbss = bnx_COM_b06FwSbss;
   3097 
   3098 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3099 		fw.bss_len = bnx_COM_b06FwBssLen;
   3100 		fw.bss_index = 0;
   3101 		fw.bss = bnx_COM_b06FwBss;
   3102 
   3103 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3104 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3105 		fw.rodata_index = 0;
   3106 		fw.rodata = bnx_COM_b06FwRodata;
   3107 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3108 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3109 		break;
   3110 	}
   3111 }
   3112 
   3113 /****************************************************************************/
   3114 /* Initialize context memory.                                               */
   3115 /*                                                                          */
   3116 /* Clears the memory associated with each Context ID (CID).                 */
   3117 /*                                                                          */
   3118 /* Returns:                                                                 */
   3119 /*   Nothing.                                                               */
   3120 /****************************************************************************/
   3121 void
   3122 bnx_init_context(struct bnx_softc *sc)
   3123 {
   3124 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3125 		/* DRC: Replace this constant value with a #define. */
   3126 		int i, retry_cnt = 10;
   3127 		u_int32_t val;
   3128 
   3129 		/*
   3130 		 * BCM5709 context memory may be cached
   3131 		 * in host memory so prepare the host memory
   3132 		 * for access.
   3133 		 */
   3134 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3135 		    | (1 << 12);
   3136 		val |= (BCM_PAGE_BITS - 8) << 16;
   3137 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3138 
   3139 		/* Wait for mem init command to complete. */
   3140 		for (i = 0; i < retry_cnt; i++) {
   3141 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3142 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3143 				break;
   3144 			DELAY(2);
   3145 		}
   3146 
   3147 
   3148 		/* ToDo: Consider returning an error here. */
   3149 
   3150 		for (i = 0; i < sc->ctx_pages; i++) {
   3151 			int j;
   3152 
   3153 
   3154 			/* Set the physaddr of the context memory cache. */
   3155 			val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
   3156 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3157 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3158 			val = (u_int32_t)
   3159 			    ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
   3160 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3161 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3162 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3163 
   3164 
   3165 			/* Verify that the context memory write was successful. */
   3166 			for (j = 0; j < retry_cnt; j++) {
   3167 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3168 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3169 					break;
   3170 				DELAY(5);
   3171 			}
   3172 
   3173 			/* ToDo: Consider returning an error here. */
   3174 		}
   3175 	} else {
   3176 		u_int32_t vcid_addr, offset;
   3177 
   3178 		/*
   3179 		 * For the 5706/5708, context memory is local to
   3180 		 * the controller, so initialize the controller
   3181 		 * context memory.
   3182 		 */
   3183 
   3184 		vcid_addr = GET_CID_ADDR(96);
   3185 		while (vcid_addr) {
   3186 
   3187 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3188 
   3189 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3190 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3191 
   3192 			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
   3193 				CTX_WR(sc, 0x00, offset, 0);
   3194 			}
   3195 
   3196 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3197 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3198 		}
   3199 	}
   3200 }
   3201 
   3202 /****************************************************************************/
   3203 /* Fetch the permanent MAC address of the controller.                       */
   3204 /*                                                                          */
   3205 /* Returns:                                                                 */
   3206 /*   Nothing.                                                               */
   3207 /****************************************************************************/
   3208 void
   3209 bnx_get_mac_addr(struct bnx_softc *sc)
   3210 {
   3211 	u_int32_t		mac_lo = 0, mac_hi = 0;
   3212 
   3213 	/*
   3214 	 * The NetXtreme II bootcode populates various NIC
   3215 	 * power-on and runtime configuration items in a
   3216 	 * shared memory area.  The factory configured MAC
   3217 	 * address is available from both NVRAM and the
   3218 	 * shared memory area so we'll read the value from
   3219 	 * shared memory for speed.
   3220 	 */
   3221 
   3222 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3223 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3224 
   3225 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3226 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3227 		    __FILE__, __LINE__);
   3228 	} else {
   3229 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3230 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3231 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3232 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3233 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3234 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3235 	}
   3236 
   3237 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3238 	    "%s\n", ether_sprintf(sc->eaddr));
   3239 }
   3240 
   3241 /****************************************************************************/
   3242 /* Program the MAC address.                                                 */
   3243 /*                                                                          */
   3244 /* Returns:                                                                 */
   3245 /*   Nothing.                                                               */
   3246 /****************************************************************************/
   3247 void
   3248 bnx_set_mac_addr(struct bnx_softc *sc)
   3249 {
   3250 	u_int32_t		val;
   3251 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3252 
   3253 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3254 	    "%s\n", ether_sprintf(sc->eaddr));
   3255 
   3256 	val = (mac_addr[0] << 8) | mac_addr[1];
   3257 
   3258 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3259 
   3260 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3261 		(mac_addr[4] << 8) | mac_addr[5];
   3262 
   3263 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3264 }
   3265 
   3266 /****************************************************************************/
   3267 /* Stop the controller.                                                     */
   3268 /*                                                                          */
   3269 /* Returns:                                                                 */
   3270 /*   Nothing.                                                               */
   3271 /****************************************************************************/
   3272 void
   3273 bnx_stop(struct ifnet *ifp, int disable)
   3274 {
   3275 	struct bnx_softc *sc = ifp->if_softc;
   3276 
   3277 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3278 
   3279 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   3280 		return;
   3281 
   3282 	callout_stop(&sc->bnx_timeout);
   3283 
   3284 	mii_down(&sc->bnx_mii);
   3285 
   3286 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3287 
   3288 	/* Disable the transmit/receive blocks. */
   3289 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3290 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3291 	DELAY(20);
   3292 
   3293 	bnx_disable_intr(sc);
   3294 
   3295 	/* Tell firmware that the driver is going away. */
   3296 	if (disable)
   3297 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3298 	else
   3299 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3300 
   3301 	/* Free RX buffers. */
   3302 	bnx_free_rx_chain(sc);
   3303 
   3304 	/* Free TX buffers. */
   3305 	bnx_free_tx_chain(sc);
   3306 
   3307 	ifp->if_timer = 0;
   3308 
   3309 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3310 
   3311 }
   3312 
   3313 int
   3314 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
   3315 {
   3316 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3317 	u_int32_t		val;
   3318 	int			i, rc = 0;
   3319 
   3320 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3321 
   3322 	/* Wait for pending PCI transactions to complete. */
   3323 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3324 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3325 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3326 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3327 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3328 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3329 	DELAY(5);
   3330 
   3331 	/* Disable DMA */
   3332 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3333 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3334 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3335 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3336 	}
   3337 
   3338 	/* Assume bootcode is running. */
   3339 	sc->bnx_fw_timed_out = 0;
   3340 
   3341 	/* Give the firmware a chance to prepare for the reset. */
   3342 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3343 	if (rc)
   3344 		goto bnx_reset_exit;
   3345 
   3346 	/* Set a firmware reminder that this is a soft reset. */
   3347 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3348 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3349 
   3350 	/* Dummy read to force the chip to complete all current transactions. */
   3351 	val = REG_RD(sc, BNX_MISC_ID);
   3352 
   3353 	/* Chip reset. */
   3354 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3355 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3356 		REG_RD(sc, BNX_MISC_COMMAND);
   3357 		DELAY(5);
   3358 
   3359 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3360 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3361 
   3362 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3363 		    val);
   3364 	} else {
   3365 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3366 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3367 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3368 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3369 
   3370 		/* Allow up to 30us for reset to complete. */
   3371 		for (i = 0; i < 10; i++) {
   3372 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3373 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3374 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3375 				break;
   3376 			}
   3377 			DELAY(10);
   3378 		}
   3379 
   3380 		/* Check that reset completed successfully. */
   3381 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3382 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3383 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3384 			    __FILE__, __LINE__);
   3385 			rc = EBUSY;
   3386 			goto bnx_reset_exit;
   3387 		}
   3388 	}
   3389 
   3390 	/* Make sure byte swapping is properly configured. */
   3391 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3392 	if (val != 0x01020304) {
   3393 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3394 		    __FILE__, __LINE__);
   3395 		rc = ENODEV;
   3396 		goto bnx_reset_exit;
   3397 	}
   3398 
   3399 	/* Just completed a reset, assume that firmware is running again. */
   3400 	sc->bnx_fw_timed_out = 0;
   3401 
   3402 	/* Wait for the firmware to finish its initialization. */
   3403 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3404 	if (rc)
   3405 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3406 		    "initialization!\n", __FILE__, __LINE__);
   3407 
   3408 bnx_reset_exit:
   3409 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3410 
   3411 	return (rc);
   3412 }
   3413 
   3414 int
   3415 bnx_chipinit(struct bnx_softc *sc)
   3416 {
   3417 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3418 	u_int32_t		val;
   3419 	int			rc = 0;
   3420 
   3421 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3422 
   3423 	/* Make sure the interrupt is not active. */
   3424 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3425 
   3426 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3427 	/* channels and PCI clock compensation delay.                      */
   3428 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3429 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3430 #if BYTE_ORDER == BIG_ENDIAN
   3431 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3432 #endif
   3433 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3434 	    DMA_READ_CHANS << 12 |
   3435 	    DMA_WRITE_CHANS << 16;
   3436 
   3437 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3438 
   3439 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3440 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3441 
   3442 	/*
   3443 	 * This setting resolves a problem observed on certain Intel PCI
   3444 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3445 	 * See errata E9_5706A1_65.
   3446 	 */
   3447 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3448 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3449 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3450 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3451 
   3452 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3453 
   3454 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3455 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3456 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3457 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3458 		    val & ~0x20000);
   3459 	}
   3460 
   3461 	/* Enable the RX_V2P and Context state machines before access. */
   3462 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3463 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3464 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3465 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3466 
   3467 	/* Initialize context mapping and zero out the quick contexts. */
   3468 	bnx_init_context(sc);
   3469 
   3470 	/* Initialize the on-boards CPUs */
   3471 	bnx_init_cpus(sc);
   3472 
   3473 	/* Prepare NVRAM for access. */
   3474 	if (bnx_init_nvram(sc)) {
   3475 		rc = ENODEV;
   3476 		goto bnx_chipinit_exit;
   3477 	}
   3478 
   3479 	/* Set the kernel bypass block size */
   3480 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3481 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3482 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3483 
   3484 	/* Enable bins used on the 5709. */
   3485 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3486 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3487 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3488 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3489 	}
   3490 
   3491 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3492 
   3493 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3494 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3495 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3496 
   3497 	val = (BCM_PAGE_BITS - 8) << 24;
   3498 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3499 
   3500 	/* Configure page size. */
   3501 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3502 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3503 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3504 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3505 
   3506 #if 0
   3507 	/* Set the perfect match control register to default. */
   3508 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3509 #endif
   3510 
   3511 bnx_chipinit_exit:
   3512 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3513 
   3514 	return(rc);
   3515 }
   3516 
   3517 /****************************************************************************/
   3518 /* Initialize the controller in preparation to send/receive traffic.        */
   3519 /*                                                                          */
   3520 /* Returns:                                                                 */
   3521 /*   0 for success, positive value for failure.                             */
   3522 /****************************************************************************/
   3523 int
   3524 bnx_blockinit(struct bnx_softc *sc)
   3525 {
   3526 	u_int32_t		reg, val;
   3527 	int 			rc = 0;
   3528 
   3529 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3530 
   3531 	/* Load the hardware default MAC address. */
   3532 	bnx_set_mac_addr(sc);
   3533 
   3534 	/* Set the Ethernet backoff seed value */
   3535 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3536 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3537 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3538 
   3539 	sc->last_status_idx = 0;
   3540 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3541 
   3542 	/* Set up link change interrupt generation. */
   3543 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3544 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3545 
   3546 	/* Program the physical address of the status block. */
   3547 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
   3548 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3549 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
   3550 
   3551 	/* Program the physical address of the statistics block. */
   3552 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3553 	    (u_int32_t)(sc->stats_block_paddr));
   3554 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3555 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
   3556 
   3557 	/* Program various host coalescing parameters. */
   3558 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3559 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3560 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3561 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3562 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3563 	    sc->bnx_comp_prod_trip);
   3564 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3565 	    sc->bnx_tx_ticks);
   3566 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3567 	    sc->bnx_rx_ticks);
   3568 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3569 	    sc->bnx_com_ticks);
   3570 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3571 	    sc->bnx_cmd_ticks);
   3572 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3573 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3574 	REG_WR(sc, BNX_HC_CONFIG,
   3575 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3576 	    BNX_HC_CONFIG_COLLECT_STATS));
   3577 
   3578 	/* Clear the internal statistics counters. */
   3579 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3580 
   3581 	/* Verify that bootcode is running. */
   3582 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3583 
   3584 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3585 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3586 	    __FILE__, __LINE__); reg = 0);
   3587 
   3588 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3589 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3590 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3591 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3592 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3593 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3594 		rc = ENODEV;
   3595 		goto bnx_blockinit_exit;
   3596 	}
   3597 
   3598 	/* Check if any management firmware is running. */
   3599 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3600 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3601 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3602 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3603 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3604 	}
   3605 
   3606 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3607 	    BNX_DEV_INFO_BC_REV);
   3608 
   3609 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3610 
   3611 	/* Enable DMA */
   3612 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3613 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3614 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3615 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3616 	}
   3617 
   3618 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3619 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3620 
   3621 	/* Enable link state change interrupt generation. */
   3622 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3623 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3624 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3625 	} else
   3626 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3627 
   3628 	/* Enable all remaining blocks in the MAC. */
   3629 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3630 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3631 	DELAY(20);
   3632 
   3633 bnx_blockinit_exit:
   3634 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3635 
   3636 	return (rc);
   3637 }
   3638 
   3639 static int
   3640 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
   3641     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3642 {
   3643 	bus_dmamap_t		map;
   3644 	struct rx_bd		*rxbd;
   3645 	u_int32_t		addr;
   3646 	int i;
   3647 #ifdef BNX_DEBUG
   3648 	u_int16_t debug_chain_prod =	*chain_prod;
   3649 #endif
   3650 	u_int16_t first_chain_prod;
   3651 
   3652 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3653 
   3654 	/* Map the mbuf cluster into device memory. */
   3655 	map = sc->rx_mbuf_map[*chain_prod];
   3656 	first_chain_prod = *chain_prod;
   3657 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3658 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3659 		    __FILE__, __LINE__);
   3660 
   3661 		m_freem(m_new);
   3662 
   3663 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3664 
   3665 		return ENOBUFS;
   3666 	}
   3667 	/* Make sure there is room in the receive chain. */
   3668 	if (map->dm_nsegs > sc->free_rx_bd) {
   3669 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3670 		m_freem(m_new);
   3671 		return EFBIG;
   3672 	}
   3673 #ifdef BNX_DEBUG
   3674 	/* Track the distribution of buffer segments. */
   3675 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3676 #endif
   3677 
   3678 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3679 	    BUS_DMASYNC_PREREAD);
   3680 
   3681 	/* Update some debug statistics counters */
   3682 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3683 	    sc->rx_low_watermark = sc->free_rx_bd);
   3684 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3685 
   3686 	/*
   3687 	 * Setup the rx_bd for the first segment
   3688 	 */
   3689 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3690 
   3691 	addr = (u_int32_t)map->dm_segs[0].ds_addr;
   3692 	rxbd->rx_bd_haddr_lo = addr;
   3693 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
   3694 	rxbd->rx_bd_haddr_hi = addr;
   3695 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3696 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3697 	*prod_bseq += map->dm_segs[0].ds_len;
   3698 	bus_dmamap_sync(sc->bnx_dmatag,
   3699 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3700 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3701 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3702 
   3703 	for (i = 1; i < map->dm_nsegs; i++) {
   3704 		*prod = NEXT_RX_BD(*prod);
   3705 		*chain_prod = RX_CHAIN_IDX(*prod);
   3706 
   3707 		rxbd =
   3708 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3709 
   3710 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
   3711 		rxbd->rx_bd_haddr_lo = addr;
   3712 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   3713 		rxbd->rx_bd_haddr_hi = addr;
   3714 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3715 		rxbd->rx_bd_flags = 0;
   3716 		*prod_bseq += map->dm_segs[i].ds_len;
   3717 		bus_dmamap_sync(sc->bnx_dmatag,
   3718 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3719 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3720 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3721 	}
   3722 
   3723 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3724 	bus_dmamap_sync(sc->bnx_dmatag,
   3725 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3726 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3727 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3728 
   3729 	/*
   3730 	 * Save the mbuf, ajust the map pointer (swap map for first and
   3731 	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
   3732 	 * and update counter.
   3733 	 */
   3734 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3735 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3736 	sc->rx_mbuf_map[*chain_prod] = map;
   3737 	sc->free_rx_bd -= map->dm_nsegs;
   3738 
   3739 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3740 	    map->dm_nsegs));
   3741 	*prod = NEXT_RX_BD(*prod);
   3742 	*chain_prod = RX_CHAIN_IDX(*prod);
   3743 
   3744 	return 0;
   3745 }
   3746 
   3747 /****************************************************************************/
   3748 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3749 /*                                                                          */
   3750 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3751 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3752 /* necessary.                                                               */
   3753 /*                                                                          */
   3754 /* Returns:                                                                 */
   3755 /*   0 for success, positive value for failure.                             */
   3756 /****************************************************************************/
   3757 int
   3758 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
   3759     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3760 {
   3761 	struct mbuf 		*m_new = NULL;
   3762 	int			rc = 0;
   3763 	u_int16_t min_free_bd;
   3764 
   3765 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3766 	    __func__);
   3767 
   3768 	/* Make sure the inputs are valid. */
   3769 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3770 	    aprint_error_dev(sc->bnx_dev,
   3771 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3772 		*chain_prod, (u_int16_t)MAX_RX_BD));
   3773 
   3774 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3775 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3776 	    *prod_bseq);
   3777 
   3778 	/* try to get in as many mbufs as possible */
   3779 	if (sc->mbuf_alloc_size == MCLBYTES)
   3780 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3781 	else
   3782 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3783 	while (sc->free_rx_bd >= min_free_bd) {
   3784 		/* Simulate an mbuf allocation failure. */
   3785 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3786 		    aprint_error_dev(sc->bnx_dev,
   3787 		    "Simulating mbuf allocation failure.\n");
   3788 			sc->mbuf_sim_alloc_failed++;
   3789 			rc = ENOBUFS;
   3790 			goto bnx_get_buf_exit);
   3791 
   3792 		/* This is a new mbuf allocation. */
   3793 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3794 		if (m_new == NULL) {
   3795 			DBPRINT(sc, BNX_WARN,
   3796 			    "%s(%d): RX mbuf header allocation failed!\n",
   3797 			    __FILE__, __LINE__);
   3798 
   3799 			sc->mbuf_alloc_failed++;
   3800 
   3801 			rc = ENOBUFS;
   3802 			goto bnx_get_buf_exit;
   3803 		}
   3804 
   3805 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3806 
   3807 		/* Simulate an mbuf cluster allocation failure. */
   3808 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3809 			m_freem(m_new);
   3810 			sc->rx_mbuf_alloc--;
   3811 			sc->mbuf_alloc_failed++;
   3812 			sc->mbuf_sim_alloc_failed++;
   3813 			rc = ENOBUFS;
   3814 			goto bnx_get_buf_exit);
   3815 
   3816 		if (sc->mbuf_alloc_size == MCLBYTES)
   3817 			MCLGET(m_new, M_DONTWAIT);
   3818 		else
   3819 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3820 			    M_DONTWAIT);
   3821 		if (!(m_new->m_flags & M_EXT)) {
   3822 			DBPRINT(sc, BNX_WARN,
   3823 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3824 			    __FILE__, __LINE__);
   3825 
   3826 			m_freem(m_new);
   3827 
   3828 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3829 			sc->mbuf_alloc_failed++;
   3830 
   3831 			rc = ENOBUFS;
   3832 			goto bnx_get_buf_exit;
   3833 		}
   3834 
   3835 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3836 		if (rc != 0)
   3837 			goto bnx_get_buf_exit;
   3838 	}
   3839 
   3840 bnx_get_buf_exit:
   3841 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3842 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3843 	    *chain_prod, *prod_bseq);
   3844 
   3845 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3846 	    __func__);
   3847 
   3848 	return(rc);
   3849 }
   3850 
   3851 void
   3852 bnx_alloc_pkts(struct work * unused, void * arg)
   3853 {
   3854 	struct bnx_softc *sc = arg;
   3855 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   3856 	struct bnx_pkt *pkt;
   3857 	int i, s;
   3858 
   3859 	for (i = 0; i < 4; i++) { /* magic! */
   3860 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   3861 		if (pkt == NULL)
   3862 			break;
   3863 
   3864 		if (bus_dmamap_create(sc->bnx_dmatag,
   3865 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   3866 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   3867 		    &pkt->pkt_dmamap) != 0)
   3868 			goto put;
   3869 
   3870 		if (!ISSET(ifp->if_flags, IFF_UP))
   3871 			goto stopping;
   3872 
   3873 		mutex_enter(&sc->tx_pkt_mtx);
   3874 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   3875 		sc->tx_pkt_count++;
   3876 		mutex_exit(&sc->tx_pkt_mtx);
   3877 	}
   3878 
   3879 	mutex_enter(&sc->tx_pkt_mtx);
   3880 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   3881 	mutex_exit(&sc->tx_pkt_mtx);
   3882 
   3883 	/* fire-up TX now that allocations have been done */
   3884 	s = splnet();
   3885 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3886 		bnx_start(ifp);
   3887 	splx(s);
   3888 
   3889 	return;
   3890 
   3891 stopping:
   3892 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   3893 put:
   3894 	pool_put(bnx_tx_pool, pkt);
   3895 	return;
   3896 }
   3897 
   3898 /****************************************************************************/
   3899 /* Initialize the TX context memory.                                        */
   3900 /*                                                                          */
   3901 /* Returns:                                                                 */
   3902 /*   Nothing                                                                */
   3903 /****************************************************************************/
   3904 void
   3905 bnx_init_tx_context(struct bnx_softc *sc)
   3906 {
   3907 	u_int32_t val;
   3908 
   3909 	/* Initialize the context ID for an L2 TX chain. */
   3910 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3911 		/* Set the CID type to support an L2 connection. */
   3912 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3913 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   3914 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3915 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   3916 
   3917 		/* Point the hardware to the first page in the chain. */
   3918 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3919 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   3920 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   3921 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3922 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   3923 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   3924 	} else {
   3925 		/* Set the CID type to support an L2 connection. */
   3926 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3927 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   3928 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3929 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   3930 
   3931 		/* Point the hardware to the first page in the chain. */
   3932 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3933 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   3934 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3935 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   3936 	}
   3937 }
   3938 
   3939 
   3940 /****************************************************************************/
   3941 /* Allocate memory and initialize the TX data structures.                   */
   3942 /*                                                                          */
   3943 /* Returns:                                                                 */
   3944 /*   0 for success, positive value for failure.                             */
   3945 /****************************************************************************/
   3946 int
   3947 bnx_init_tx_chain(struct bnx_softc *sc)
   3948 {
   3949 	struct tx_bd		*txbd;
   3950 	u_int32_t		addr;
   3951 	int			i, rc = 0;
   3952 
   3953 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3954 
   3955 	/* Force an allocation of some dmamaps for tx up front */
   3956 	bnx_alloc_pkts(NULL, sc);
   3957 
   3958 	/* Set the initial TX producer/consumer indices. */
   3959 	sc->tx_prod = 0;
   3960 	sc->tx_cons = 0;
   3961 	sc->tx_prod_bseq = 0;
   3962 	sc->used_tx_bd = 0;
   3963 	sc->max_tx_bd = USABLE_TX_BD;
   3964 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   3965 	DBRUNIF(1, sc->tx_full_count = 0);
   3966 
   3967 	/*
   3968 	 * The NetXtreme II supports a linked-list structure called
   3969 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   3970 	 * consists of a series of 1 or more chain pages, each of which
   3971 	 * consists of a fixed number of BD entries.
   3972 	 * The last BD entry on each page is a pointer to the next page
   3973 	 * in the chain, and the last pointer in the BD chain
   3974 	 * points back to the beginning of the chain.
   3975 	 */
   3976 
   3977 	/* Set the TX next pointer chain entries. */
   3978 	for (i = 0; i < TX_PAGES; i++) {
   3979 		int j;
   3980 
   3981 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   3982 
   3983 		/* Check if we've reached the last page. */
   3984 		if (i == (TX_PAGES - 1))
   3985 			j = 0;
   3986 		else
   3987 			j = i + 1;
   3988 
   3989 		addr = (u_int32_t)sc->tx_bd_chain_paddr[j];
   3990 		txbd->tx_bd_haddr_lo = addr;
   3991 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
   3992 		txbd->tx_bd_haddr_hi = addr;
   3993 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3994 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3995 	}
   3996 
   3997 	/*
   3998 	 * Initialize the context ID for an L2 TX chain.
   3999 	 */
   4000 	bnx_init_tx_context(sc);
   4001 
   4002 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4003 
   4004 	return(rc);
   4005 }
   4006 
   4007 /****************************************************************************/
   4008 /* Free memory and clear the TX data structures.                            */
   4009 /*                                                                          */
   4010 /* Returns:                                                                 */
   4011 /*   Nothing.                                                               */
   4012 /****************************************************************************/
   4013 void
   4014 bnx_free_tx_chain(struct bnx_softc *sc)
   4015 {
   4016 	struct bnx_pkt		*pkt;
   4017 	int			i;
   4018 
   4019 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4020 
   4021 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4022 	mutex_enter(&sc->tx_pkt_mtx);
   4023 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4024 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4025 		mutex_exit(&sc->tx_pkt_mtx);
   4026 
   4027 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4028 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4029 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4030 
   4031 		m_freem(pkt->pkt_mbuf);
   4032 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4033 
   4034 		mutex_enter(&sc->tx_pkt_mtx);
   4035 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4036         }
   4037 
   4038 	/* Destroy all the dmamaps we allocated for TX */
   4039 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   4040 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4041 		sc->tx_pkt_count--;
   4042 		mutex_exit(&sc->tx_pkt_mtx);
   4043 
   4044 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4045 		pool_put(bnx_tx_pool, pkt);
   4046 
   4047 		mutex_enter(&sc->tx_pkt_mtx);
   4048 	}
   4049 	mutex_exit(&sc->tx_pkt_mtx);
   4050 
   4051 
   4052 
   4053 	/* Clear each TX chain page. */
   4054 	for (i = 0; i < TX_PAGES; i++) {
   4055 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4056 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4057 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4058 	}
   4059 
   4060 	sc->used_tx_bd = 0;
   4061 
   4062 	/* Check if we lost any mbufs in the process. */
   4063 	DBRUNIF((sc->tx_mbuf_alloc),
   4064 	    aprint_error_dev(sc->bnx_dev,
   4065 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   4066 		sc->tx_mbuf_alloc));
   4067 
   4068 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4069 }
   4070 
   4071 /****************************************************************************/
   4072 /* Initialize the RX context memory.                                        */
   4073 /*                                                                          */
   4074 /* Returns:                                                                 */
   4075 /*   Nothing                                                                */
   4076 /****************************************************************************/
   4077 void
   4078 bnx_init_rx_context(struct bnx_softc *sc)
   4079 {
   4080 	u_int32_t val;
   4081 
   4082 	/* Initialize the context ID for an L2 RX chain. */
   4083 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4084 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4085 
   4086 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4087 		u_int32_t lo_water, hi_water;
   4088 
   4089 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
   4090 		hi_water = USABLE_RX_BD / 4;
   4091 
   4092 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
   4093 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
   4094 
   4095 		if (hi_water > 0xf)
   4096 			hi_water = 0xf;
   4097 		else if (hi_water == 0)
   4098 			lo_water = 0;
   4099 		val |= lo_water |
   4100 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
   4101 	}
   4102 
   4103  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4104 
   4105 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4106 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4107 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4108 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4109 	}
   4110 
   4111 	/* Point the hardware to the first page in the chain. */
   4112 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4113 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4114 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
   4115 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4116 }
   4117 
   4118 /****************************************************************************/
   4119 /* Allocate memory and initialize the RX data structures.                   */
   4120 /*                                                                          */
   4121 /* Returns:                                                                 */
   4122 /*   0 for success, positive value for failure.                             */
   4123 /****************************************************************************/
   4124 int
   4125 bnx_init_rx_chain(struct bnx_softc *sc)
   4126 {
   4127 	struct rx_bd		*rxbd;
   4128 	int			i, rc = 0;
   4129 	u_int16_t		prod, chain_prod;
   4130 	u_int32_t		prod_bseq, addr;
   4131 
   4132 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4133 
   4134 	/* Initialize the RX producer and consumer indices. */
   4135 	sc->rx_prod = 0;
   4136 	sc->rx_cons = 0;
   4137 	sc->rx_prod_bseq = 0;
   4138 	sc->free_rx_bd = USABLE_RX_BD;
   4139 	sc->max_rx_bd = USABLE_RX_BD;
   4140 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4141 	DBRUNIF(1, sc->rx_empty_count = 0);
   4142 
   4143 	/* Initialize the RX next pointer chain entries. */
   4144 	for (i = 0; i < RX_PAGES; i++) {
   4145 		int j;
   4146 
   4147 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4148 
   4149 		/* Check if we've reached the last page. */
   4150 		if (i == (RX_PAGES - 1))
   4151 			j = 0;
   4152 		else
   4153 			j = i + 1;
   4154 
   4155 		/* Setup the chain page pointers. */
   4156 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4157 		rxbd->rx_bd_haddr_hi = addr;
   4158 		addr = (u_int32_t)sc->rx_bd_chain_paddr[j];
   4159 		rxbd->rx_bd_haddr_lo = addr;
   4160 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4161 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4162 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4163 	}
   4164 
   4165 	/* Allocate mbuf clusters for the rx_bd chain. */
   4166 	prod = prod_bseq = 0;
   4167 	chain_prod = RX_CHAIN_IDX(prod);
   4168 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4169 		BNX_PRINTF(sc,
   4170 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4171 	}
   4172 
   4173 	/* Save the RX chain producer index. */
   4174 	sc->rx_prod = prod;
   4175 	sc->rx_prod_bseq = prod_bseq;
   4176 
   4177 	for (i = 0; i < RX_PAGES; i++)
   4178 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4179 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4180 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4181 
   4182 	/* Tell the chip about the waiting rx_bd's. */
   4183 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4184 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4185 
   4186 	bnx_init_rx_context(sc);
   4187 
   4188 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4189 
   4190 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4191 
   4192 	return(rc);
   4193 }
   4194 
   4195 /****************************************************************************/
   4196 /* Free memory and clear the RX data structures.                            */
   4197 /*                                                                          */
   4198 /* Returns:                                                                 */
   4199 /*   Nothing.                                                               */
   4200 /****************************************************************************/
   4201 void
   4202 bnx_free_rx_chain(struct bnx_softc *sc)
   4203 {
   4204 	int			i;
   4205 
   4206 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4207 
   4208 	/* Free any mbufs still in the RX mbuf chain. */
   4209 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4210 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4211 			if (sc->rx_mbuf_map[i] != NULL) {
   4212 				bus_dmamap_sync(sc->bnx_dmatag,
   4213 				    sc->rx_mbuf_map[i],	0,
   4214 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4215 				    BUS_DMASYNC_POSTREAD);
   4216 				bus_dmamap_unload(sc->bnx_dmatag,
   4217 				    sc->rx_mbuf_map[i]);
   4218 			}
   4219 			m_freem(sc->rx_mbuf_ptr[i]);
   4220 			sc->rx_mbuf_ptr[i] = NULL;
   4221 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4222 		}
   4223 	}
   4224 
   4225 	/* Clear each RX chain page. */
   4226 	for (i = 0; i < RX_PAGES; i++)
   4227 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4228 
   4229 	sc->free_rx_bd = sc->max_rx_bd;
   4230 
   4231 	/* Check if we lost any mbufs in the process. */
   4232 	DBRUNIF((sc->rx_mbuf_alloc),
   4233 	    aprint_error_dev(sc->bnx_dev,
   4234 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   4235 		sc->rx_mbuf_alloc));
   4236 
   4237 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4238 }
   4239 
   4240 /****************************************************************************/
   4241 /* Handles PHY generated interrupt events.                                  */
   4242 /*                                                                          */
   4243 /* Returns:                                                                 */
   4244 /*   Nothing.                                                               */
   4245 /****************************************************************************/
   4246 void
   4247 bnx_phy_intr(struct bnx_softc *sc)
   4248 {
   4249 	u_int32_t		new_link_state, old_link_state;
   4250 
   4251 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4252 	    BUS_DMASYNC_POSTREAD);
   4253 	new_link_state = sc->status_block->status_attn_bits &
   4254 	    STATUS_ATTN_BITS_LINK_STATE;
   4255 	old_link_state = sc->status_block->status_attn_bits_ack &
   4256 	    STATUS_ATTN_BITS_LINK_STATE;
   4257 
   4258 	/* Handle any changes if the link state has changed. */
   4259 	if (new_link_state != old_link_state) {
   4260 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4261 
   4262 		callout_stop(&sc->bnx_timeout);
   4263 		bnx_tick(sc);
   4264 
   4265 		/* Update the status_attn_bits_ack field in the status block. */
   4266 		if (new_link_state) {
   4267 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4268 			    STATUS_ATTN_BITS_LINK_STATE);
   4269 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4270 		} else {
   4271 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4272 			    STATUS_ATTN_BITS_LINK_STATE);
   4273 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4274 		}
   4275 	}
   4276 
   4277 	/* Acknowledge the link change interrupt. */
   4278 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4279 }
   4280 
   4281 /****************************************************************************/
   4282 /* Handles received frame interrupt events.                                 */
   4283 /*                                                                          */
   4284 /* Returns:                                                                 */
   4285 /*   Nothing.                                                               */
   4286 /****************************************************************************/
   4287 void
   4288 bnx_rx_intr(struct bnx_softc *sc)
   4289 {
   4290 	struct status_block	*sblk = sc->status_block;
   4291 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4292 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
   4293 	u_int16_t		sw_prod, sw_chain_prod;
   4294 	u_int32_t		sw_prod_bseq;
   4295 	struct l2_fhdr		*l2fhdr;
   4296 	int			i;
   4297 
   4298 	DBRUNIF(1, sc->rx_interrupts++);
   4299 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4300 	    BUS_DMASYNC_POSTREAD);
   4301 
   4302 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4303 	for (i = 0; i < RX_PAGES; i++)
   4304 		bus_dmamap_sync(sc->bnx_dmatag,
   4305 		    sc->rx_bd_chain_map[i], 0,
   4306 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4307 		    BUS_DMASYNC_POSTWRITE);
   4308 
   4309 	/* Get the hardware's view of the RX consumer index. */
   4310 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4311 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4312 		hw_cons++;
   4313 
   4314 	/* Get working copies of the driver's view of the RX indices. */
   4315 	sw_cons = sc->rx_cons;
   4316 	sw_prod = sc->rx_prod;
   4317 	sw_prod_bseq = sc->rx_prod_bseq;
   4318 
   4319 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4320 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4321 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4322 
   4323 	/* Prevent speculative reads from getting ahead of the status block. */
   4324 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4325 	    BUS_SPACE_BARRIER_READ);
   4326 
   4327 	/* Update some debug statistics counters */
   4328 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4329 	    sc->rx_low_watermark = sc->free_rx_bd);
   4330 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4331 
   4332 	/*
   4333 	 * Scan through the receive chain as long
   4334 	 * as there is work to do.
   4335 	 */
   4336 	while (sw_cons != hw_cons) {
   4337 		struct mbuf *m;
   4338 		struct rx_bd *rxbd __diagused;
   4339 		unsigned int len;
   4340 		u_int32_t status;
   4341 
   4342 		/* Convert the producer/consumer indices to an actual
   4343 		 * rx_bd index.
   4344 		 */
   4345 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4346 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4347 
   4348 		/* Get the used rx_bd. */
   4349 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4350 		sc->free_rx_bd++;
   4351 
   4352 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4353 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4354 
   4355 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4356 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4357 #ifdef DIAGNOSTIC
   4358 			/* Validate that this is the last rx_bd. */
   4359 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4360 			    printf("%s: Unexpected mbuf found in "
   4361 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4362 			        sw_chain_cons);
   4363 			}
   4364 #endif
   4365 
   4366 			/* DRC - ToDo: If the received packet is small, say less
   4367 			 *             than 128 bytes, allocate a new mbuf here,
   4368 			 *             copy the data to that mbuf, and recycle
   4369 			 *             the mapped jumbo frame.
   4370 			 */
   4371 
   4372 			/* Unmap the mbuf from DMA space. */
   4373 #ifdef DIAGNOSTIC
   4374 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4375 				printf("invalid map sw_cons 0x%x "
   4376 				"sw_prod 0x%x "
   4377 				"sw_chain_cons 0x%x "
   4378 				"sw_chain_prod 0x%x "
   4379 				"hw_cons 0x%x "
   4380 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4381 				"TOTAL_RX_BD 0x%x\n",
   4382 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4383 				hw_cons,
   4384 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4385 			}
   4386 #endif
   4387 			bus_dmamap_sync(sc->bnx_dmatag,
   4388 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4389 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4390 			    BUS_DMASYNC_POSTREAD);
   4391 			bus_dmamap_unload(sc->bnx_dmatag,
   4392 			    sc->rx_mbuf_map[sw_chain_cons]);
   4393 
   4394 			/* Remove the mbuf from the driver's chain. */
   4395 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4396 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4397 
   4398 			/*
   4399 			 * Frames received on the NetXteme II are prepended
   4400 			 * with the l2_fhdr structure which provides status
   4401 			 * information about the received frame (including
   4402 			 * VLAN tags and checksum info) and are also
   4403 			 * automatically adjusted to align the IP header
   4404 			 * (i.e. two null bytes are inserted before the
   4405 			 * Ethernet header).
   4406 			 */
   4407 			l2fhdr = mtod(m, struct l2_fhdr *);
   4408 
   4409 			len    = l2fhdr->l2_fhdr_pkt_len;
   4410 			status = l2fhdr->l2_fhdr_status;
   4411 
   4412 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4413 			    aprint_error("Simulating l2_fhdr status error.\n");
   4414 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4415 
   4416 			/* Watch for unusual sized frames. */
   4417 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4418 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4419 			    aprint_error_dev(sc->bnx_dev,
   4420 			        "Unusual frame size found. "
   4421 				"Min(%d), Actual(%d), Max(%d)\n",
   4422 				(int)BNX_MIN_MTU, len,
   4423 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4424 
   4425 			bnx_dump_mbuf(sc, m);
   4426 			bnx_breakpoint(sc));
   4427 
   4428 			len -= ETHER_CRC_LEN;
   4429 
   4430 			/* Check the received frame for errors. */
   4431 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4432 			    L2_FHDR_ERRORS_PHY_DECODE |
   4433 			    L2_FHDR_ERRORS_ALIGNMENT |
   4434 			    L2_FHDR_ERRORS_TOO_SHORT |
   4435 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4436 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4437 			    len >
   4438 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4439 				ifp->if_ierrors++;
   4440 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4441 
   4442 				/* Reuse the mbuf for a new frame. */
   4443 				if (bnx_add_buf(sc, m, &sw_prod,
   4444 				    &sw_chain_prod, &sw_prod_bseq)) {
   4445 					DBRUNIF(1, bnx_breakpoint(sc));
   4446 					panic("%s: Can't reuse RX mbuf!\n",
   4447 					    device_xname(sc->bnx_dev));
   4448 				}
   4449 				continue;
   4450 			}
   4451 
   4452 			/*
   4453 			 * Get a new mbuf for the rx_bd.   If no new
   4454 			 * mbufs are available then reuse the current mbuf,
   4455 			 * log an ierror on the interface, and generate
   4456 			 * an error in the system log.
   4457 			 */
   4458 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4459 			    &sw_prod_bseq)) {
   4460 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4461 				    "Failed to allocate "
   4462 				    "new mbuf, incoming frame dropped!\n"));
   4463 
   4464 				ifp->if_ierrors++;
   4465 
   4466 				/* Try and reuse the exisitng mbuf. */
   4467 				if (bnx_add_buf(sc, m, &sw_prod,
   4468 				    &sw_chain_prod, &sw_prod_bseq)) {
   4469 					DBRUNIF(1, bnx_breakpoint(sc));
   4470 					panic("%s: Double mbuf allocation "
   4471 					    "failure!",
   4472 					    device_xname(sc->bnx_dev));
   4473 				}
   4474 				continue;
   4475 			}
   4476 
   4477 			/* Skip over the l2_fhdr when passing the data up
   4478 			 * the stack.
   4479 			 */
   4480 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4481 
   4482 			/* Adjust the pckt length to match the received data. */
   4483 			m->m_pkthdr.len = m->m_len = len;
   4484 
   4485 			/* Send the packet to the appropriate interface. */
   4486 			m->m_pkthdr.rcvif = ifp;
   4487 
   4488 			DBRUN(BNX_VERBOSE_RECV,
   4489 			    struct ether_header *eh;
   4490 			    eh = mtod(m, struct ether_header *);
   4491 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4492 			    __func__, ether_sprintf(eh->ether_dhost),
   4493 			    ether_sprintf(eh->ether_shost),
   4494 			    htons(eh->ether_type)));
   4495 
   4496 			/* Validate the checksum. */
   4497 
   4498 			/* Check for an IP datagram. */
   4499 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4500 				/* Check if the IP checksum is valid. */
   4501 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   4502 				    == 0)
   4503 					m->m_pkthdr.csum_flags |=
   4504 					    M_CSUM_IPv4;
   4505 #ifdef BNX_DEBUG
   4506 				else
   4507 					DBPRINT(sc, BNX_WARN_SEND,
   4508 					    "%s(): Invalid IP checksum "
   4509 					        "= 0x%04X!\n",
   4510 						__func__,
   4511 						l2fhdr->l2_fhdr_ip_xsum
   4512 						);
   4513 #endif
   4514 			}
   4515 
   4516 			/* Check for a valid TCP/UDP frame. */
   4517 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4518 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4519 				/* Check for a good TCP/UDP checksum. */
   4520 				if ((status &
   4521 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4522 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4523 					m->m_pkthdr.csum_flags |=
   4524 					    M_CSUM_TCPv4 |
   4525 					    M_CSUM_UDPv4;
   4526 				} else {
   4527 					DBPRINT(sc, BNX_WARN_SEND,
   4528 					    "%s(): Invalid TCP/UDP "
   4529 					    "checksum = 0x%04X!\n",
   4530 					    __func__,
   4531 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4532 				}
   4533 			}
   4534 
   4535 			/*
   4536 			 * If we received a packet with a vlan tag,
   4537 			 * attach that information to the packet.
   4538 			 */
   4539 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4540 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4541 				VLAN_INPUT_TAG(ifp, m,
   4542 				    l2fhdr->l2_fhdr_vlan_tag,
   4543 				    continue);
   4544 			}
   4545 
   4546 			/*
   4547 			 * Handle BPF listeners. Let the BPF
   4548 			 * user see the packet.
   4549 			 */
   4550 			bpf_mtap(ifp, m);
   4551 
   4552 			/* Pass the mbuf off to the upper layers. */
   4553 			ifp->if_ipackets++;
   4554 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4555 			    "%s(): Passing received frame up.\n", __func__);
   4556 			(*ifp->if_input)(ifp, m);
   4557 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4558 
   4559 		}
   4560 
   4561 		sw_cons = NEXT_RX_BD(sw_cons);
   4562 
   4563 		/* Refresh hw_cons to see if there's new work */
   4564 		if (sw_cons == hw_cons) {
   4565 			hw_cons = sc->hw_rx_cons =
   4566 			    sblk->status_rx_quick_consumer_index0;
   4567 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4568 			    USABLE_RX_BD_PER_PAGE)
   4569 				hw_cons++;
   4570 		}
   4571 
   4572 		/* Prevent speculative reads from getting ahead of
   4573 		 * the status block.
   4574 		 */
   4575 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4576 		    BUS_SPACE_BARRIER_READ);
   4577 	}
   4578 
   4579 	for (i = 0; i < RX_PAGES; i++)
   4580 		bus_dmamap_sync(sc->bnx_dmatag,
   4581 		    sc->rx_bd_chain_map[i], 0,
   4582 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4583 		    BUS_DMASYNC_PREWRITE);
   4584 
   4585 	sc->rx_cons = sw_cons;
   4586 	sc->rx_prod = sw_prod;
   4587 	sc->rx_prod_bseq = sw_prod_bseq;
   4588 
   4589 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4590 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4591 
   4592 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4593 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4594 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4595 }
   4596 
   4597 /****************************************************************************/
   4598 /* Handles transmit completion interrupt events.                            */
   4599 /*                                                                          */
   4600 /* Returns:                                                                 */
   4601 /*   Nothing.                                                               */
   4602 /****************************************************************************/
   4603 void
   4604 bnx_tx_intr(struct bnx_softc *sc)
   4605 {
   4606 	struct status_block	*sblk = sc->status_block;
   4607 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4608 	struct bnx_pkt		*pkt;
   4609 	bus_dmamap_t		map;
   4610 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4611 
   4612 	DBRUNIF(1, sc->tx_interrupts++);
   4613 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4614 	    BUS_DMASYNC_POSTREAD);
   4615 
   4616 	/* Get the hardware's view of the TX consumer index. */
   4617 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4618 
   4619 	/* Skip to the next entry if this is a chain page pointer. */
   4620 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4621 		hw_tx_cons++;
   4622 
   4623 	sw_tx_cons = sc->tx_cons;
   4624 
   4625 	/* Prevent speculative reads from getting ahead of the status block. */
   4626 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4627 	    BUS_SPACE_BARRIER_READ);
   4628 
   4629 	/* Cycle through any completed TX chain page entries. */
   4630 	while (sw_tx_cons != hw_tx_cons) {
   4631 #ifdef BNX_DEBUG
   4632 		struct tx_bd *txbd = NULL;
   4633 #endif
   4634 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4635 
   4636 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4637 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4638 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4639 
   4640 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4641 		    aprint_error_dev(sc->bnx_dev,
   4642 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4643 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4644 
   4645 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4646 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4647 
   4648 		DBRUNIF((txbd == NULL),
   4649 		    aprint_error_dev(sc->bnx_dev,
   4650 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4651 		    bnx_breakpoint(sc));
   4652 
   4653 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4654 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4655 
   4656 
   4657 		mutex_enter(&sc->tx_pkt_mtx);
   4658 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4659 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4660 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4661 			mutex_exit(&sc->tx_pkt_mtx);
   4662 			/*
   4663 			 * Free the associated mbuf. Remember
   4664 			 * that only the last tx_bd of a packet
   4665 			 * has an mbuf pointer and DMA map.
   4666 			 */
   4667 			map = pkt->pkt_dmamap;
   4668 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4669 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4670 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4671 
   4672 			m_freem(pkt->pkt_mbuf);
   4673 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4674 
   4675 			ifp->if_opackets++;
   4676 
   4677 			mutex_enter(&sc->tx_pkt_mtx);
   4678 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4679 		}
   4680 		mutex_exit(&sc->tx_pkt_mtx);
   4681 
   4682 		sc->used_tx_bd--;
   4683 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4684 			__FILE__, __LINE__, sc->used_tx_bd);
   4685 
   4686 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4687 
   4688 		/* Refresh hw_cons to see if there's new work. */
   4689 		hw_tx_cons = sc->hw_tx_cons =
   4690 		    sblk->status_tx_quick_consumer_index0;
   4691 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4692 		    USABLE_TX_BD_PER_PAGE)
   4693 			hw_tx_cons++;
   4694 
   4695 		/* Prevent speculative reads from getting ahead of
   4696 		 * the status block.
   4697 		 */
   4698 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4699 		    BUS_SPACE_BARRIER_READ);
   4700 	}
   4701 
   4702 	/* Clear the TX timeout timer. */
   4703 	ifp->if_timer = 0;
   4704 
   4705 	/* Clear the tx hardware queue full flag. */
   4706 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4707 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4708 		    aprint_debug_dev(sc->bnx_dev,
   4709 		        "Open TX chain! %d/%d (used/total)\n",
   4710 			sc->used_tx_bd, sc->max_tx_bd));
   4711 		ifp->if_flags &= ~IFF_OACTIVE;
   4712 	}
   4713 
   4714 	sc->tx_cons = sw_tx_cons;
   4715 }
   4716 
   4717 /****************************************************************************/
   4718 /* Disables interrupt generation.                                           */
   4719 /*                                                                          */
   4720 /* Returns:                                                                 */
   4721 /*   Nothing.                                                               */
   4722 /****************************************************************************/
   4723 void
   4724 bnx_disable_intr(struct bnx_softc *sc)
   4725 {
   4726 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4727 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4728 }
   4729 
   4730 /****************************************************************************/
   4731 /* Enables interrupt generation.                                            */
   4732 /*                                                                          */
   4733 /* Returns:                                                                 */
   4734 /*   Nothing.                                                               */
   4735 /****************************************************************************/
   4736 void
   4737 bnx_enable_intr(struct bnx_softc *sc)
   4738 {
   4739 	u_int32_t		val;
   4740 
   4741 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4742 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4743 
   4744 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4745 	    sc->last_status_idx);
   4746 
   4747 	val = REG_RD(sc, BNX_HC_COMMAND);
   4748 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4749 }
   4750 
   4751 /****************************************************************************/
   4752 /* Handles controller initialization.                                       */
   4753 /*                                                                          */
   4754 /****************************************************************************/
   4755 int
   4756 bnx_init(struct ifnet *ifp)
   4757 {
   4758 	struct bnx_softc	*sc = ifp->if_softc;
   4759 	u_int32_t		ether_mtu;
   4760 	int			s, error = 0;
   4761 
   4762 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4763 
   4764 	s = splnet();
   4765 
   4766 	bnx_stop(ifp, 0);
   4767 
   4768 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4769 		aprint_error_dev(sc->bnx_dev,
   4770 		    "Controller reset failed!\n");
   4771 		goto bnx_init_exit;
   4772 	}
   4773 
   4774 	if ((error = bnx_chipinit(sc)) != 0) {
   4775 		aprint_error_dev(sc->bnx_dev,
   4776 		    "Controller initialization failed!\n");
   4777 		goto bnx_init_exit;
   4778 	}
   4779 
   4780 	if ((error = bnx_blockinit(sc)) != 0) {
   4781 		aprint_error_dev(sc->bnx_dev,
   4782 		    "Block initialization failed!\n");
   4783 		goto bnx_init_exit;
   4784 	}
   4785 
   4786 	/* Calculate and program the Ethernet MRU size. */
   4787 	if (ifp->if_mtu <= ETHERMTU) {
   4788 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4789 		sc->mbuf_alloc_size = MCLBYTES;
   4790 	} else {
   4791 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4792 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   4793 	}
   4794 
   4795 
   4796 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4797 	    __func__, ether_mtu);
   4798 
   4799 	/*
   4800 	 * Program the MRU and enable Jumbo frame
   4801 	 * support.
   4802 	 */
   4803 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4804 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4805 
   4806 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4807 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4808 
   4809 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4810 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4811 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4812 
   4813 	/* Program appropriate promiscuous/multicast filtering. */
   4814 	bnx_iff(sc);
   4815 
   4816 	/* Init RX buffer descriptor chain. */
   4817 	bnx_init_rx_chain(sc);
   4818 
   4819 	/* Init TX buffer descriptor chain. */
   4820 	bnx_init_tx_chain(sc);
   4821 
   4822 	/* Enable host interrupts. */
   4823 	bnx_enable_intr(sc);
   4824 
   4825 	if ((error = ether_mediachange(ifp)) != 0)
   4826 		goto bnx_init_exit;
   4827 
   4828 	SET(ifp->if_flags, IFF_RUNNING);
   4829 	CLR(ifp->if_flags, IFF_OACTIVE);
   4830 
   4831 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4832 
   4833 bnx_init_exit:
   4834 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4835 
   4836 	splx(s);
   4837 
   4838 	return(error);
   4839 }
   4840 
   4841 /****************************************************************************/
   4842 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4843 /* memory visible to the controller.                                        */
   4844 /*                                                                          */
   4845 /* Returns:                                                                 */
   4846 /*   0 for success, positive value for failure.                             */
   4847 /****************************************************************************/
   4848 int
   4849 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   4850 {
   4851 	struct bnx_pkt		*pkt;
   4852 	bus_dmamap_t		map;
   4853 	struct tx_bd		*txbd = NULL;
   4854 	u_int16_t		vlan_tag = 0, flags = 0;
   4855 	u_int16_t		chain_prod, prod;
   4856 #ifdef BNX_DEBUG
   4857 	u_int16_t		debug_prod;
   4858 #endif
   4859 	u_int32_t		addr, prod_bseq;
   4860 	int			i, error;
   4861 	struct m_tag		*mtag;
   4862 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
   4863 
   4864 	mutex_enter(&sc->tx_pkt_mtx);
   4865 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   4866 	if (pkt == NULL) {
   4867 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   4868 			mutex_exit(&sc->tx_pkt_mtx);
   4869 			return ENETDOWN;
   4870 		}
   4871 
   4872 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   4873 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   4874 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
   4875 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4876 		}
   4877 
   4878 		mutex_exit(&sc->tx_pkt_mtx);
   4879 		return ENOMEM;
   4880 	}
   4881 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4882 	mutex_exit(&sc->tx_pkt_mtx);
   4883 
   4884 	/* Transfer any checksum offload flags to the bd. */
   4885 	if (m->m_pkthdr.csum_flags) {
   4886 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4887 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4888 		if (m->m_pkthdr.csum_flags &
   4889 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4890 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4891 	}
   4892 
   4893 	/* Transfer any VLAN tags to the bd. */
   4894 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
   4895 	if (mtag != NULL) {
   4896 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4897 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4898 	}
   4899 
   4900 	/* Map the mbuf into DMAable memory. */
   4901 	prod = sc->tx_prod;
   4902 	chain_prod = TX_CHAIN_IDX(prod);
   4903 	map = pkt->pkt_dmamap;
   4904 
   4905 	/* Map the mbuf into our DMA address space. */
   4906 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   4907 	if (error != 0) {
   4908 		aprint_error_dev(sc->bnx_dev,
   4909 		    "Error mapping mbuf into TX chain!\n");
   4910 		sc->tx_dma_map_failures++;
   4911 		goto maperr;
   4912 	}
   4913 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4914 	    BUS_DMASYNC_PREWRITE);
   4915         /* Make sure there's room in the chain */
   4916 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   4917                 goto nospace;
   4918 
   4919 	/* prod points to an empty tx_bd at this point. */
   4920 	prod_bseq = sc->tx_prod_bseq;
   4921 #ifdef BNX_DEBUG
   4922 	debug_prod = chain_prod;
   4923 #endif
   4924 	DBPRINT(sc, BNX_INFO_SEND,
   4925 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   4926 		"prod_bseq = 0x%08X\n",
   4927 		__func__, prod, chain_prod, prod_bseq);
   4928 
   4929 	/*
   4930 	 * Cycle through each mbuf segment that makes up
   4931 	 * the outgoing frame, gathering the mapping info
   4932 	 * for that segment and creating a tx_bd for the
   4933 	 * mbuf.
   4934 	 */
   4935 	for (i = 0; i < map->dm_nsegs ; i++) {
   4936 		chain_prod = TX_CHAIN_IDX(prod);
   4937 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   4938 
   4939 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
   4940 		txbd->tx_bd_haddr_lo = addr;
   4941 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   4942 		txbd->tx_bd_haddr_hi = addr;
   4943 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   4944 		txbd->tx_bd_vlan_tag = vlan_tag;
   4945 		txbd->tx_bd_flags = flags;
   4946 		prod_bseq += map->dm_segs[i].ds_len;
   4947 		if (i == 0)
   4948 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   4949 		prod = NEXT_TX_BD(prod);
   4950 	}
   4951 	/* Set the END flag on the last TX buffer descriptor. */
   4952 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   4953 
   4954 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   4955 
   4956 	DBPRINT(sc, BNX_INFO_SEND,
   4957 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   4958 		"prod_bseq = 0x%08X\n",
   4959 		__func__, prod, chain_prod, prod_bseq);
   4960 
   4961 	pkt->pkt_mbuf = m;
   4962 	pkt->pkt_end_desc = chain_prod;
   4963 
   4964 	mutex_enter(&sc->tx_pkt_mtx);
   4965 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   4966 	mutex_exit(&sc->tx_pkt_mtx);
   4967 
   4968 	sc->used_tx_bd += map->dm_nsegs;
   4969 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4970 		__FILE__, __LINE__, sc->used_tx_bd);
   4971 
   4972 	/* Update some debug statistics counters */
   4973 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   4974 	    sc->tx_hi_watermark = sc->used_tx_bd);
   4975 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   4976 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   4977 
   4978 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   4979 	    map->dm_nsegs));
   4980 
   4981 	/* prod points to the next free tx_bd at this point. */
   4982 	sc->tx_prod = prod;
   4983 	sc->tx_prod_bseq = prod_bseq;
   4984 
   4985 	return (0);
   4986 
   4987 
   4988 nospace:
   4989 	bus_dmamap_unload(sc->bnx_dmatag, map);
   4990 maperr:
   4991 	mutex_enter(&sc->tx_pkt_mtx);
   4992 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4993 	mutex_exit(&sc->tx_pkt_mtx);
   4994 
   4995 	return (ENOMEM);
   4996 }
   4997 
   4998 /****************************************************************************/
   4999 /* Main transmit routine.                                                   */
   5000 /*                                                                          */
   5001 /* Returns:                                                                 */
   5002 /*   Nothing.                                                               */
   5003 /****************************************************************************/
   5004 void
   5005 bnx_start(struct ifnet *ifp)
   5006 {
   5007 	struct bnx_softc	*sc = ifp->if_softc;
   5008 	struct mbuf		*m_head = NULL;
   5009 	int			count = 0;
   5010 #ifdef BNX_DEBUG
   5011 	u_int16_t		tx_chain_prod;
   5012 #endif
   5013 
   5014 	/* If there's no link or the transmit queue is empty then just exit. */
   5015 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   5016 		DBPRINT(sc, BNX_INFO_SEND,
   5017 		    "%s(): output active or device not running.\n", __func__);
   5018 		goto bnx_start_exit;
   5019 	}
   5020 
   5021 	/* prod points to the next free tx_bd. */
   5022 #ifdef BNX_DEBUG
   5023 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5024 #endif
   5025 
   5026 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5027 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5028 	    "used_tx %d max_tx %d\n",
   5029 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5030 	    sc->used_tx_bd, sc->max_tx_bd);
   5031 
   5032 	/*
   5033 	 * Keep adding entries while there is space in the ring.
   5034 	 */
   5035 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5036 		/* Check for any frames to send. */
   5037 		IFQ_POLL(&ifp->if_snd, m_head);
   5038 		if (m_head == NULL)
   5039 			break;
   5040 
   5041 		/*
   5042 		 * Pack the data into the transmit ring. If we
   5043 		 * don't have room, set the OACTIVE flag to wait
   5044 		 * for the NIC to drain the chain.
   5045 		 */
   5046 		if (bnx_tx_encap(sc, m_head)) {
   5047 			ifp->if_flags |= IFF_OACTIVE;
   5048 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5049 			    "business! Total tx_bd used = %d\n",
   5050 			    sc->used_tx_bd);
   5051 			break;
   5052 		}
   5053 
   5054 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5055 		count++;
   5056 
   5057 		/* Send a copy of the frame to any BPF listeners. */
   5058 		bpf_mtap(ifp, m_head);
   5059 	}
   5060 
   5061 	if (count == 0) {
   5062 		/* no packets were dequeued */
   5063 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5064 		    "%s(): No packets were dequeued\n", __func__);
   5065 		goto bnx_start_exit;
   5066 	}
   5067 
   5068 	/* Update the driver's counters. */
   5069 #ifdef BNX_DEBUG
   5070 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5071 #endif
   5072 
   5073 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   5074 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
   5075 	    tx_chain_prod, sc->tx_prod_bseq);
   5076 
   5077 	/* Start the transmit. */
   5078 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5079 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5080 
   5081 	/* Set the tx timeout. */
   5082 	ifp->if_timer = BNX_TX_TIMEOUT;
   5083 
   5084 bnx_start_exit:
   5085 	return;
   5086 }
   5087 
   5088 /****************************************************************************/
   5089 /* Handles any IOCTL calls from the operating system.                       */
   5090 /*                                                                          */
   5091 /* Returns:                                                                 */
   5092 /*   0 for success, positive value for failure.                             */
   5093 /****************************************************************************/
   5094 int
   5095 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5096 {
   5097 	struct bnx_softc	*sc = ifp->if_softc;
   5098 	struct ifreq		*ifr = (struct ifreq *) data;
   5099 	struct mii_data		*mii = &sc->bnx_mii;
   5100 	int			s, error = 0;
   5101 
   5102 	s = splnet();
   5103 
   5104 	switch (command) {
   5105 	case SIOCSIFFLAGS:
   5106 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5107 			break;
   5108 		/* XXX set an ifflags callback and let ether_ioctl
   5109 		 * handle all of this.
   5110 		 */
   5111 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5112 			if (ifp->if_flags & IFF_RUNNING)
   5113 				error = ENETRESET;
   5114 			else
   5115 				bnx_init(ifp);
   5116 		} else if (ifp->if_flags & IFF_RUNNING)
   5117 			bnx_stop(ifp, 1);
   5118 		break;
   5119 
   5120 	case SIOCSIFMEDIA:
   5121 	case SIOCGIFMEDIA:
   5122 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5123 		    sc->bnx_phy_flags);
   5124 
   5125 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5126 		break;
   5127 
   5128 	default:
   5129 		error = ether_ioctl(ifp, command, data);
   5130 	}
   5131 
   5132 	if (error == ENETRESET) {
   5133 		if (ifp->if_flags & IFF_RUNNING)
   5134 			bnx_iff(sc);
   5135 		error = 0;
   5136 	}
   5137 
   5138 	splx(s);
   5139 	return (error);
   5140 }
   5141 
   5142 /****************************************************************************/
   5143 /* Transmit timeout handler.                                                */
   5144 /*                                                                          */
   5145 /* Returns:                                                                 */
   5146 /*   Nothing.                                                               */
   5147 /****************************************************************************/
   5148 void
   5149 bnx_watchdog(struct ifnet *ifp)
   5150 {
   5151 	struct bnx_softc	*sc = ifp->if_softc;
   5152 
   5153 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5154 	    bnx_dump_status_block(sc));
   5155 	/*
   5156 	 * If we are in this routine because of pause frames, then
   5157 	 * don't reset the hardware.
   5158 	 */
   5159 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5160 		return;
   5161 
   5162 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5163 
   5164 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5165 
   5166 	bnx_init(ifp);
   5167 
   5168 	ifp->if_oerrors++;
   5169 }
   5170 
   5171 /*
   5172  * Interrupt handler.
   5173  */
   5174 /****************************************************************************/
   5175 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5176 /* interrupt and then calls a separate routine for handle the various       */
   5177 /* interrupt causes (PHY, TX, RX).                                          */
   5178 /*                                                                          */
   5179 /* Returns:                                                                 */
   5180 /*   0 for success, positive value for failure.                             */
   5181 /****************************************************************************/
   5182 int
   5183 bnx_intr(void *xsc)
   5184 {
   5185 	struct bnx_softc	*sc;
   5186 	struct ifnet		*ifp;
   5187 	u_int32_t		status_attn_bits;
   5188 	const struct status_block *sblk;
   5189 
   5190 	sc = xsc;
   5191 
   5192 	ifp = &sc->bnx_ec.ec_if;
   5193 
   5194 	if (!device_is_active(sc->bnx_dev) ||
   5195 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5196 		return 0;
   5197 
   5198 	DBRUNIF(1, sc->interrupts_generated++);
   5199 
   5200 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5201 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   5202 
   5203 	/*
   5204 	 * If the hardware status block index
   5205 	 * matches the last value read by the
   5206 	 * driver and we haven't asserted our
   5207 	 * interrupt then there's nothing to do.
   5208 	 */
   5209 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   5210 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   5211 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   5212 		return (0);
   5213 
   5214 	/* Ack the interrupt and stop others from occuring. */
   5215 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5216 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   5217 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5218 
   5219 	/* Keep processing data as long as there is work to do. */
   5220 	for (;;) {
   5221 		sblk = sc->status_block;
   5222 		status_attn_bits = sblk->status_attn_bits;
   5223 
   5224 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5225 		    aprint_debug("Simulating unexpected status attention bit set.");
   5226 		    status_attn_bits = status_attn_bits |
   5227 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5228 
   5229 		/* Was it a link change interrupt? */
   5230 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5231 		    (sblk->status_attn_bits_ack &
   5232 		    STATUS_ATTN_BITS_LINK_STATE))
   5233 			bnx_phy_intr(sc);
   5234 
   5235 		/* If any other attention is asserted then the chip is toast. */
   5236 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5237 		    (sblk->status_attn_bits_ack &
   5238 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5239 			DBRUN(1, sc->unexpected_attentions++);
   5240 
   5241 			BNX_PRINTF(sc,
   5242 			    "Fatal attention detected: 0x%08X\n",
   5243 			    sblk->status_attn_bits);
   5244 
   5245 			DBRUN(BNX_FATAL,
   5246 			    if (bnx_debug_unexpected_attention == 0)
   5247 			    bnx_breakpoint(sc));
   5248 
   5249 			bnx_init(ifp);
   5250 			return (1);
   5251 		}
   5252 
   5253 		/* Check for any completed RX frames. */
   5254 		if (sblk->status_rx_quick_consumer_index0 !=
   5255 		    sc->hw_rx_cons)
   5256 			bnx_rx_intr(sc);
   5257 
   5258 		/* Check for any completed TX frames. */
   5259 		if (sblk->status_tx_quick_consumer_index0 !=
   5260 		    sc->hw_tx_cons)
   5261 			bnx_tx_intr(sc);
   5262 
   5263 		/* Save the status block index value for use during the
   5264 		 * next interrupt.
   5265 		 */
   5266 		sc->last_status_idx = sblk->status_idx;
   5267 
   5268 		/* Prevent speculative reads from getting ahead of the
   5269 		 * status block.
   5270 		 */
   5271 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   5272 		    BUS_SPACE_BARRIER_READ);
   5273 
   5274 		/* If there's no work left then exit the isr. */
   5275 		if ((sblk->status_rx_quick_consumer_index0 ==
   5276 		    sc->hw_rx_cons) &&
   5277 		    (sblk->status_tx_quick_consumer_index0 ==
   5278 		    sc->hw_tx_cons))
   5279 			break;
   5280 	}
   5281 
   5282 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5283 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   5284 
   5285 	/* Re-enable interrupts. */
   5286 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5287 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   5288 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5289 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5290 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   5291 
   5292 	/* Handle any frames that arrived while handling the interrupt. */
   5293 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   5294 		bnx_start(ifp);
   5295 
   5296 	return (1);
   5297 }
   5298 
   5299 /****************************************************************************/
   5300 /* Programs the various packet receive modes (broadcast and multicast).     */
   5301 /*                                                                          */
   5302 /* Returns:                                                                 */
   5303 /*   Nothing.                                                               */
   5304 /****************************************************************************/
   5305 void
   5306 bnx_iff(struct bnx_softc *sc)
   5307 {
   5308 	struct ethercom		*ec = &sc->bnx_ec;
   5309 	struct ifnet		*ifp = &ec->ec_if;
   5310 	struct ether_multi	*enm;
   5311 	struct ether_multistep	step;
   5312 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5313 	u_int32_t		rx_mode, sort_mode;
   5314 	int			h, i;
   5315 
   5316 	/* Initialize receive mode default settings. */
   5317 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5318 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5319 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5320 	ifp->if_flags &= ~IFF_ALLMULTI;
   5321 
   5322 	/*
   5323 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5324 	 * be enbled.
   5325 	 */
   5326 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5327 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5328 
   5329 	/*
   5330 	 * Check for promiscuous, all multicast, or selected
   5331 	 * multicast address filtering.
   5332 	 */
   5333 	if (ifp->if_flags & IFF_PROMISC) {
   5334 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5335 
   5336 		ifp->if_flags |= IFF_ALLMULTI;
   5337 		/* Enable promiscuous mode. */
   5338 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5339 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5340 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5341 allmulti:
   5342 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5343 
   5344 		ifp->if_flags |= IFF_ALLMULTI;
   5345 		/* Enable all multicast addresses. */
   5346 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5347 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5348 			    0xffffffff);
   5349 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5350 	} else {
   5351 		/* Accept one or more multicast(s). */
   5352 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5353 
   5354 		ETHER_FIRST_MULTI(step, ec, enm);
   5355 		while (enm != NULL) {
   5356 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5357 			    ETHER_ADDR_LEN)) {
   5358 				goto allmulti;
   5359 			}
   5360 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5361 			    0xFF;
   5362 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5363 			ETHER_NEXT_MULTI(step, enm);
   5364 		}
   5365 
   5366 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5367 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5368 			    hashes[i]);
   5369 
   5370 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5371 	}
   5372 
   5373 	/* Only make changes if the recive mode has actually changed. */
   5374 	if (rx_mode != sc->rx_mode) {
   5375 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5376 		    rx_mode);
   5377 
   5378 		sc->rx_mode = rx_mode;
   5379 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5380 	}
   5381 
   5382 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5383 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5384 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5385 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5386 }
   5387 
   5388 /****************************************************************************/
   5389 /* Called periodically to updates statistics from the controllers           */
   5390 /* statistics block.                                                        */
   5391 /*                                                                          */
   5392 /* Returns:                                                                 */
   5393 /*   Nothing.                                                               */
   5394 /****************************************************************************/
   5395 void
   5396 bnx_stats_update(struct bnx_softc *sc)
   5397 {
   5398 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5399 	struct statistics_block	*stats;
   5400 
   5401 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5402 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5403 	    BUS_DMASYNC_POSTREAD);
   5404 
   5405 	stats = (struct statistics_block *)sc->stats_block;
   5406 
   5407 	/*
   5408 	 * Update the interface statistics from the
   5409 	 * hardware statistics.
   5410 	 */
   5411 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5412 
   5413 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5414 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5415 	    (u_long)stats->stat_IfInMBUFDiscards +
   5416 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5417 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5418 
   5419 	ifp->if_oerrors = (u_long)
   5420 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5421 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5422 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5423 
   5424 	/*
   5425 	 * Certain controllers don't report
   5426 	 * carrier sense errors correctly.
   5427 	 * See errata E11_5708CA0_1165.
   5428 	 */
   5429 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5430 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5431 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5432 
   5433 	/*
   5434 	 * Update the sysctl statistics from the
   5435 	 * hardware statistics.
   5436 	 */
   5437 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
   5438 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
   5439 
   5440 	sc->stat_IfHCInBadOctets =
   5441 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5442 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
   5443 
   5444 	sc->stat_IfHCOutOctets =
   5445 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5446 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
   5447 
   5448 	sc->stat_IfHCOutBadOctets =
   5449 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5450 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
   5451 
   5452 	sc->stat_IfHCInUcastPkts =
   5453 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5454 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
   5455 
   5456 	sc->stat_IfHCInMulticastPkts =
   5457 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5458 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
   5459 
   5460 	sc->stat_IfHCInBroadcastPkts =
   5461 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5462 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5463 
   5464 	sc->stat_IfHCOutUcastPkts =
   5465 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5466 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
   5467 
   5468 	sc->stat_IfHCOutMulticastPkts =
   5469 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5470 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5471 
   5472 	sc->stat_IfHCOutBroadcastPkts =
   5473 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5474 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5475 
   5476 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5477 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5478 
   5479 	sc->stat_Dot3StatsCarrierSenseErrors =
   5480 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5481 
   5482 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5483 
   5484 	sc->stat_Dot3StatsAlignmentErrors =
   5485 	    stats->stat_Dot3StatsAlignmentErrors;
   5486 
   5487 	sc->stat_Dot3StatsSingleCollisionFrames =
   5488 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5489 
   5490 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5491 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5492 
   5493 	sc->stat_Dot3StatsDeferredTransmissions =
   5494 	    stats->stat_Dot3StatsDeferredTransmissions;
   5495 
   5496 	sc->stat_Dot3StatsExcessiveCollisions =
   5497 	    stats->stat_Dot3StatsExcessiveCollisions;
   5498 
   5499 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5500 
   5501 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5502 
   5503 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5504 
   5505 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5506 
   5507 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5508 
   5509 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5510 
   5511 	sc->stat_EtherStatsPktsRx64Octets =
   5512 	    stats->stat_EtherStatsPktsRx64Octets;
   5513 
   5514 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5515 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5516 
   5517 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5518 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5519 
   5520 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5521 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5522 
   5523 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5524 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5525 
   5526 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5527 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5528 
   5529 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5530 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5531 
   5532 	sc->stat_EtherStatsPktsTx64Octets =
   5533 	    stats->stat_EtherStatsPktsTx64Octets;
   5534 
   5535 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5536 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5537 
   5538 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5539 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5540 
   5541 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5542 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5543 
   5544 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5545 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5546 
   5547 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5548 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5549 
   5550 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5551 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5552 
   5553 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5554 
   5555 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5556 
   5557 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5558 
   5559 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5560 
   5561 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5562 
   5563 	sc->stat_MacControlFramesReceived =
   5564 	    stats->stat_MacControlFramesReceived;
   5565 
   5566 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5567 
   5568 	sc->stat_IfInFramesL2FilterDiscards =
   5569 	    stats->stat_IfInFramesL2FilterDiscards;
   5570 
   5571 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5572 
   5573 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5574 
   5575 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5576 
   5577 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5578 
   5579 	sc->stat_CatchupInRuleCheckerDiscards =
   5580 	    stats->stat_CatchupInRuleCheckerDiscards;
   5581 
   5582 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5583 
   5584 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5585 
   5586 	sc->stat_CatchupInRuleCheckerP4Hit =
   5587 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5588 
   5589 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5590 }
   5591 
   5592 void
   5593 bnx_tick(void *xsc)
   5594 {
   5595 	struct bnx_softc	*sc = xsc;
   5596 	struct mii_data		*mii;
   5597 	u_int32_t		msg;
   5598 	u_int16_t		prod, chain_prod;
   5599 	u_int32_t		prod_bseq;
   5600 	int s = splnet();
   5601 
   5602 	/* Tell the firmware that the driver is still running. */
   5603 #ifdef BNX_DEBUG
   5604 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5605 #else
   5606 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5607 #endif
   5608 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5609 
   5610 	/* Update the statistics from the hardware statistics block. */
   5611 	bnx_stats_update(sc);
   5612 
   5613 	/* Schedule the next tick. */
   5614 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5615 
   5616 	mii = &sc->bnx_mii;
   5617 	mii_tick(mii);
   5618 
   5619 	/* try to get more RX buffers, just in case */
   5620 	prod = sc->rx_prod;
   5621 	prod_bseq = sc->rx_prod_bseq;
   5622 	chain_prod = RX_CHAIN_IDX(prod);
   5623 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5624 	sc->rx_prod = prod;
   5625 	sc->rx_prod_bseq = prod_bseq;
   5626 	splx(s);
   5627 	return;
   5628 }
   5629 
   5630 /****************************************************************************/
   5631 /* BNX Debug Routines                                                       */
   5632 /****************************************************************************/
   5633 #ifdef BNX_DEBUG
   5634 
   5635 /****************************************************************************/
   5636 /* Prints out information about an mbuf.                                    */
   5637 /*                                                                          */
   5638 /* Returns:                                                                 */
   5639 /*   Nothing.                                                               */
   5640 /****************************************************************************/
   5641 void
   5642 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5643 {
   5644 	struct mbuf		*mp = m;
   5645 
   5646 	if (m == NULL) {
   5647 		/* Index out of range. */
   5648 		aprint_error("mbuf ptr is null!\n");
   5649 		return;
   5650 	}
   5651 
   5652 	while (mp) {
   5653 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5654 		    mp, mp->m_len);
   5655 
   5656 		if (mp->m_flags & M_EXT)
   5657 			aprint_debug("M_EXT ");
   5658 		if (mp->m_flags & M_PKTHDR)
   5659 			aprint_debug("M_PKTHDR ");
   5660 		aprint_debug("\n");
   5661 
   5662 		if (mp->m_flags & M_EXT)
   5663 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   5664 			    mp, mp->m_ext.ext_size);
   5665 
   5666 		mp = mp->m_next;
   5667 	}
   5668 }
   5669 
   5670 /****************************************************************************/
   5671 /* Prints out the mbufs in the TX mbuf chain.                               */
   5672 /*                                                                          */
   5673 /* Returns:                                                                 */
   5674 /*   Nothing.                                                               */
   5675 /****************************************************************************/
   5676 void
   5677 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5678 {
   5679 #if 0
   5680 	struct mbuf		*m;
   5681 	int			i;
   5682 
   5683 	aprint_debug_dev(sc->bnx_dev,
   5684 	    "----------------------------"
   5685 	    "  tx mbuf data  "
   5686 	    "----------------------------\n");
   5687 
   5688 	for (i = 0; i < count; i++) {
   5689 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5690 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5691 		bnx_dump_mbuf(sc, m);
   5692 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5693 	}
   5694 
   5695 	aprint_debug_dev(sc->bnx_dev,
   5696 	    "--------------------------------------------"
   5697 	    "----------------------------\n");
   5698 #endif
   5699 }
   5700 
   5701 /*
   5702  * This routine prints the RX mbuf chain.
   5703  */
   5704 void
   5705 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5706 {
   5707 	struct mbuf		*m;
   5708 	int			i;
   5709 
   5710 	aprint_debug_dev(sc->bnx_dev,
   5711 	    "----------------------------"
   5712 	    "  rx mbuf data  "
   5713 	    "----------------------------\n");
   5714 
   5715 	for (i = 0; i < count; i++) {
   5716 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5717 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5718 		bnx_dump_mbuf(sc, m);
   5719 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5720 	}
   5721 
   5722 
   5723 	aprint_debug_dev(sc->bnx_dev,
   5724 	    "--------------------------------------------"
   5725 	    "----------------------------\n");
   5726 }
   5727 
   5728 void
   5729 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5730 {
   5731 	if (idx > MAX_TX_BD)
   5732 		/* Index out of range. */
   5733 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5734 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5735 		/* TX Chain page pointer. */
   5736 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5737 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5738 		    txbd->tx_bd_haddr_lo);
   5739 	else
   5740 		/* Normal tx_bd entry. */
   5741 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5742 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5743 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5744 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5745 		    txbd->tx_bd_flags);
   5746 }
   5747 
   5748 void
   5749 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5750 {
   5751 	if (idx > MAX_RX_BD)
   5752 		/* Index out of range. */
   5753 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5754 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5755 		/* TX Chain page pointer. */
   5756 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5757 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5758 		    rxbd->rx_bd_haddr_lo);
   5759 	else
   5760 		/* Normal tx_bd entry. */
   5761 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5762 		    "0x%08X, flags = 0x%08X\n", idx,
   5763 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5764 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5765 }
   5766 
   5767 void
   5768 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5769 {
   5770 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5771 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5772 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5773 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5774 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5775 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5776 }
   5777 
   5778 /*
   5779  * This routine prints the TX chain.
   5780  */
   5781 void
   5782 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5783 {
   5784 	struct tx_bd		*txbd;
   5785 	int			i;
   5786 
   5787 	/* First some info about the tx_bd chain structure. */
   5788 	aprint_debug_dev(sc->bnx_dev,
   5789 	    "----------------------------"
   5790 	    "  tx_bd  chain  "
   5791 	    "----------------------------\n");
   5792 
   5793 	BNX_PRINTF(sc,
   5794 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5795 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
   5796 
   5797 	BNX_PRINTF(sc,
   5798 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5799 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
   5800 
   5801 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
   5802 
   5803 	aprint_error_dev(sc->bnx_dev, ""
   5804 	    "-----------------------------"
   5805 	    "   tx_bd data   "
   5806 	    "-----------------------------\n");
   5807 
   5808 	/* Now print out the tx_bd's themselves. */
   5809 	for (i = 0; i < count; i++) {
   5810 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5811 		bnx_dump_txbd(sc, tx_prod, txbd);
   5812 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5813 	}
   5814 
   5815 	aprint_debug_dev(sc->bnx_dev,
   5816 	    "-----------------------------"
   5817 	    "--------------"
   5818 	    "-----------------------------\n");
   5819 }
   5820 
   5821 /*
   5822  * This routine prints the RX chain.
   5823  */
   5824 void
   5825 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5826 {
   5827 	struct rx_bd		*rxbd;
   5828 	int			i;
   5829 
   5830 	/* First some info about the tx_bd chain structure. */
   5831 	aprint_debug_dev(sc->bnx_dev,
   5832 	    "----------------------------"
   5833 	    "  rx_bd  chain  "
   5834 	    "----------------------------\n");
   5835 
   5836 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   5837 
   5838 	BNX_PRINTF(sc,
   5839 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5840 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
   5841 
   5842 	BNX_PRINTF(sc,
   5843 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5844 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
   5845 
   5846 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
   5847 
   5848 	aprint_error_dev(sc->bnx_dev,
   5849 	    "----------------------------"
   5850 	    "   rx_bd data   "
   5851 	    "----------------------------\n");
   5852 
   5853 	/* Now print out the rx_bd's themselves. */
   5854 	for (i = 0; i < count; i++) {
   5855 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5856 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5857 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5858 	}
   5859 
   5860 	aprint_debug_dev(sc->bnx_dev,
   5861 	    "----------------------------"
   5862 	    "--------------"
   5863 	    "----------------------------\n");
   5864 }
   5865 
   5866 /*
   5867  * This routine prints the status block.
   5868  */
   5869 void
   5870 bnx_dump_status_block(struct bnx_softc *sc)
   5871 {
   5872 	struct status_block	*sblk;
   5873 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5874 	    BUS_DMASYNC_POSTREAD);
   5875 
   5876 	sblk = sc->status_block;
   5877 
   5878    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
   5879 	    "-----------------------------\n");
   5880 
   5881 	BNX_PRINTF(sc,
   5882 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5883 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5884 	    sblk->status_idx);
   5885 
   5886 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5887 	    sblk->status_rx_quick_consumer_index0,
   5888 	    sblk->status_tx_quick_consumer_index0);
   5889 
   5890 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5891 
   5892 	/* Theses indices are not used for normal L2 drivers. */
   5893 	if (sblk->status_rx_quick_consumer_index1 ||
   5894 		sblk->status_tx_quick_consumer_index1)
   5895 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5896 		    sblk->status_rx_quick_consumer_index1,
   5897 		    sblk->status_tx_quick_consumer_index1);
   5898 
   5899 	if (sblk->status_rx_quick_consumer_index2 ||
   5900 		sblk->status_tx_quick_consumer_index2)
   5901 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5902 		    sblk->status_rx_quick_consumer_index2,
   5903 		    sblk->status_tx_quick_consumer_index2);
   5904 
   5905 	if (sblk->status_rx_quick_consumer_index3 ||
   5906 		sblk->status_tx_quick_consumer_index3)
   5907 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5908 		    sblk->status_rx_quick_consumer_index3,
   5909 		    sblk->status_tx_quick_consumer_index3);
   5910 
   5911 	if (sblk->status_rx_quick_consumer_index4 ||
   5912 		sblk->status_rx_quick_consumer_index5)
   5913 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5914 		    sblk->status_rx_quick_consumer_index4,
   5915 		    sblk->status_rx_quick_consumer_index5);
   5916 
   5917 	if (sblk->status_rx_quick_consumer_index6 ||
   5918 		sblk->status_rx_quick_consumer_index7)
   5919 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5920 		    sblk->status_rx_quick_consumer_index6,
   5921 		    sblk->status_rx_quick_consumer_index7);
   5922 
   5923 	if (sblk->status_rx_quick_consumer_index8 ||
   5924 		sblk->status_rx_quick_consumer_index9)
   5925 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5926 		    sblk->status_rx_quick_consumer_index8,
   5927 		    sblk->status_rx_quick_consumer_index9);
   5928 
   5929 	if (sblk->status_rx_quick_consumer_index10 ||
   5930 		sblk->status_rx_quick_consumer_index11)
   5931 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   5932 		    sblk->status_rx_quick_consumer_index10,
   5933 		    sblk->status_rx_quick_consumer_index11);
   5934 
   5935 	if (sblk->status_rx_quick_consumer_index12 ||
   5936 		sblk->status_rx_quick_consumer_index13)
   5937 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   5938 		    sblk->status_rx_quick_consumer_index12,
   5939 		    sblk->status_rx_quick_consumer_index13);
   5940 
   5941 	if (sblk->status_rx_quick_consumer_index14 ||
   5942 		sblk->status_rx_quick_consumer_index15)
   5943 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   5944 		    sblk->status_rx_quick_consumer_index14,
   5945 		    sblk->status_rx_quick_consumer_index15);
   5946 
   5947 	if (sblk->status_completion_producer_index ||
   5948 		sblk->status_cmd_consumer_index)
   5949 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   5950 		    sblk->status_completion_producer_index,
   5951 		    sblk->status_cmd_consumer_index);
   5952 
   5953 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   5954 	    "-----------------------------\n");
   5955 }
   5956 
   5957 /*
   5958  * This routine prints the statistics block.
   5959  */
   5960 void
   5961 bnx_dump_stats_block(struct bnx_softc *sc)
   5962 {
   5963 	struct statistics_block	*sblk;
   5964 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5965 	    BUS_DMASYNC_POSTREAD);
   5966 
   5967 	sblk = sc->stats_block;
   5968 
   5969 	aprint_debug_dev(sc->bnx_dev, ""
   5970 	    "-----------------------------"
   5971 	    " Stats  Block "
   5972 	    "-----------------------------\n");
   5973 
   5974 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   5975 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   5976 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   5977 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   5978 
   5979 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   5980 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   5981 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   5982 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   5983 
   5984 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   5985 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   5986 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   5987 	    sblk->stat_IfHCInMulticastPkts_hi,
   5988 	    sblk->stat_IfHCInMulticastPkts_lo);
   5989 
   5990 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   5991 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   5992 	    sblk->stat_IfHCInBroadcastPkts_hi,
   5993 	    sblk->stat_IfHCInBroadcastPkts_lo,
   5994 	    sblk->stat_IfHCOutUcastPkts_hi,
   5995 	    sblk->stat_IfHCOutUcastPkts_lo);
   5996 
   5997 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   5998 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   5999 	    sblk->stat_IfHCOutMulticastPkts_hi,
   6000 	    sblk->stat_IfHCOutMulticastPkts_lo,
   6001 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   6002 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   6003 
   6004 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   6005 		BNX_PRINTF(sc, "0x%08X : "
   6006 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6007 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6008 
   6009 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6010 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6011 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6012 
   6013 	if (sblk->stat_Dot3StatsFCSErrors)
   6014 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6015 		    sblk->stat_Dot3StatsFCSErrors);
   6016 
   6017 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6018 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6019 		    sblk->stat_Dot3StatsAlignmentErrors);
   6020 
   6021 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6022 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6023 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6024 
   6025 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6026 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6027 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6028 
   6029 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6030 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6031 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6032 
   6033 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6034 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6035 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6036 
   6037 	if (sblk->stat_Dot3StatsLateCollisions)
   6038 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6039 		    sblk->stat_Dot3StatsLateCollisions);
   6040 
   6041 	if (sblk->stat_EtherStatsCollisions)
   6042 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6043 		    sblk->stat_EtherStatsCollisions);
   6044 
   6045 	if (sblk->stat_EtherStatsFragments)
   6046 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6047 		    sblk->stat_EtherStatsFragments);
   6048 
   6049 	if (sblk->stat_EtherStatsJabbers)
   6050 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6051 		    sblk->stat_EtherStatsJabbers);
   6052 
   6053 	if (sblk->stat_EtherStatsUndersizePkts)
   6054 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6055 		    sblk->stat_EtherStatsUndersizePkts);
   6056 
   6057 	if (sblk->stat_EtherStatsOverrsizePkts)
   6058 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6059 		    sblk->stat_EtherStatsOverrsizePkts);
   6060 
   6061 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6062 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6063 		    sblk->stat_EtherStatsPktsRx64Octets);
   6064 
   6065 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6066 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6067 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6068 
   6069 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6070 		BNX_PRINTF(sc, "0x%08X : "
   6071 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6072 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6073 
   6074 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6075 		BNX_PRINTF(sc, "0x%08X : "
   6076 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6077 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6078 
   6079 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6080 		BNX_PRINTF(sc, "0x%08X : "
   6081 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6082 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6083 
   6084 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6085 		BNX_PRINTF(sc, "0x%08X : "
   6086 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6087 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6088 
   6089 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6090 		BNX_PRINTF(sc, "0x%08X : "
   6091 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6092 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6093 
   6094 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6095 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6096 		    sblk->stat_EtherStatsPktsTx64Octets);
   6097 
   6098 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6099 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6100 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6101 
   6102 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6103 		BNX_PRINTF(sc, "0x%08X : "
   6104 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6105 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6106 
   6107 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6108 		BNX_PRINTF(sc, "0x%08X : "
   6109 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6110 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6111 
   6112 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6113 		BNX_PRINTF(sc, "0x%08X : "
   6114 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6115 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6116 
   6117 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6118 		BNX_PRINTF(sc, "0x%08X : "
   6119 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6120 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6121 
   6122 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6123 		BNX_PRINTF(sc, "0x%08X : "
   6124 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6125 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6126 
   6127 	if (sblk->stat_XonPauseFramesReceived)
   6128 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6129 		    sblk->stat_XonPauseFramesReceived);
   6130 
   6131 	if (sblk->stat_XoffPauseFramesReceived)
   6132 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6133 		    sblk->stat_XoffPauseFramesReceived);
   6134 
   6135 	if (sblk->stat_OutXonSent)
   6136 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6137 		    sblk->stat_OutXonSent);
   6138 
   6139 	if (sblk->stat_OutXoffSent)
   6140 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6141 		    sblk->stat_OutXoffSent);
   6142 
   6143 	if (sblk->stat_FlowControlDone)
   6144 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6145 		    sblk->stat_FlowControlDone);
   6146 
   6147 	if (sblk->stat_MacControlFramesReceived)
   6148 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6149 		    sblk->stat_MacControlFramesReceived);
   6150 
   6151 	if (sblk->stat_XoffStateEntered)
   6152 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6153 		    sblk->stat_XoffStateEntered);
   6154 
   6155 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6156 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6157 		    sblk->stat_IfInFramesL2FilterDiscards);
   6158 
   6159 	if (sblk->stat_IfInRuleCheckerDiscards)
   6160 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6161 		    sblk->stat_IfInRuleCheckerDiscards);
   6162 
   6163 	if (sblk->stat_IfInFTQDiscards)
   6164 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6165 		    sblk->stat_IfInFTQDiscards);
   6166 
   6167 	if (sblk->stat_IfInMBUFDiscards)
   6168 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6169 		    sblk->stat_IfInMBUFDiscards);
   6170 
   6171 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6172 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6173 		    sblk->stat_IfInRuleCheckerP4Hit);
   6174 
   6175 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6176 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6177 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6178 
   6179 	if (sblk->stat_CatchupInFTQDiscards)
   6180 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6181 		    sblk->stat_CatchupInFTQDiscards);
   6182 
   6183 	if (sblk->stat_CatchupInMBUFDiscards)
   6184 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6185 		    sblk->stat_CatchupInMBUFDiscards);
   6186 
   6187 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6188 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6189 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6190 
   6191 	aprint_debug_dev(sc->bnx_dev,
   6192 	    "-----------------------------"
   6193 	    "--------------"
   6194 	    "-----------------------------\n");
   6195 }
   6196 
   6197 void
   6198 bnx_dump_driver_state(struct bnx_softc *sc)
   6199 {
   6200 	aprint_debug_dev(sc->bnx_dev,
   6201 	    "-----------------------------"
   6202 	    " Driver State "
   6203 	    "-----------------------------\n");
   6204 
   6205 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6206 	    "address\n", sc);
   6207 
   6208 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6209 	    sc->status_block);
   6210 
   6211 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6212 	    "address\n", sc->stats_block);
   6213 
   6214 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6215 	    "adddress\n", sc->tx_bd_chain);
   6216 
   6217 #if 0
   6218 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6219 	    sc->rx_bd_chain);
   6220 
   6221 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6222 	    sc->tx_mbuf_ptr);
   6223 #endif
   6224 
   6225 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6226 	    sc->rx_mbuf_ptr);
   6227 
   6228 	BNX_PRINTF(sc,
   6229 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6230 	    sc->interrupts_generated);
   6231 
   6232 	BNX_PRINTF(sc,
   6233 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6234 	    sc->rx_interrupts);
   6235 
   6236 	BNX_PRINTF(sc,
   6237 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6238 	    sc->tx_interrupts);
   6239 
   6240 	BNX_PRINTF(sc,
   6241 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6242 	    sc->last_status_idx);
   6243 
   6244 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6245 	    sc->tx_prod);
   6246 
   6247 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6248 	    sc->tx_cons);
   6249 
   6250 	BNX_PRINTF(sc,
   6251 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6252 	    sc->tx_prod_bseq);
   6253 	BNX_PRINTF(sc,
   6254 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6255 	    sc->tx_mbuf_alloc);
   6256 
   6257 	BNX_PRINTF(sc,
   6258 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6259 	    sc->used_tx_bd);
   6260 
   6261 	BNX_PRINTF(sc,
   6262 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6263 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6264 
   6265 
   6266 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6267 	    sc->rx_prod);
   6268 
   6269 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6270 	    sc->rx_cons);
   6271 
   6272 	BNX_PRINTF(sc,
   6273 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6274 	    sc->rx_prod_bseq);
   6275 
   6276 	BNX_PRINTF(sc,
   6277 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6278 	    sc->rx_mbuf_alloc);
   6279 
   6280 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6281 	    sc->free_rx_bd);
   6282 
   6283 	BNX_PRINTF(sc,
   6284 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6285 	    sc->rx_low_watermark, sc->max_rx_bd);
   6286 
   6287 	BNX_PRINTF(sc,
   6288 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6289 	    "mbuf alloc failures\n",
   6290 	    sc->mbuf_alloc_failed);
   6291 
   6292 	BNX_PRINTF(sc,
   6293 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6294 	    "simulated mbuf alloc failures\n",
   6295 	    sc->mbuf_sim_alloc_failed);
   6296 
   6297 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6298 	    "-----------------------------\n");
   6299 }
   6300 
   6301 void
   6302 bnx_dump_hw_state(struct bnx_softc *sc)
   6303 {
   6304 	u_int32_t		val1;
   6305 	int			i;
   6306 
   6307 	aprint_debug_dev(sc->bnx_dev,
   6308 	    "----------------------------"
   6309 	    " Hardware State "
   6310 	    "----------------------------\n");
   6311 
   6312 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   6313 
   6314 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6315 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6316 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6317 
   6318 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6319 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6320 
   6321 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6322 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6323 
   6324 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6325 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6326 	    BNX_EMAC_STATUS);
   6327 
   6328 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6329 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6330 
   6331 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6332 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6333 	    BNX_TBDR_STATUS);
   6334 
   6335 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6336 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6337 	    BNX_TDMA_STATUS);
   6338 
   6339 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6340 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6341 
   6342 	aprint_debug_dev(sc->bnx_dev,
   6343 	    "----------------------------"
   6344 	    "----------------"
   6345 	    "----------------------------\n");
   6346 
   6347 	aprint_debug_dev(sc->bnx_dev,
   6348 	    "----------------------------"
   6349 	    " Register  Dump "
   6350 	    "----------------------------\n");
   6351 
   6352 	for (i = 0x400; i < 0x8000; i += 0x10)
   6353 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6354 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6355 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6356 
   6357 	aprint_debug_dev(sc->bnx_dev,
   6358 	    "----------------------------"
   6359 	    "----------------"
   6360 	    "----------------------------\n");
   6361 }
   6362 
   6363 void
   6364 bnx_breakpoint(struct bnx_softc *sc)
   6365 {
   6366 	/* Unreachable code to shut the compiler up about unused functions. */
   6367 	if (0) {
   6368    		bnx_dump_txbd(sc, 0, NULL);
   6369 		bnx_dump_rxbd(sc, 0, NULL);
   6370 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6371 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6372 		bnx_dump_l2fhdr(sc, 0, NULL);
   6373 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6374 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6375 		bnx_dump_status_block(sc);
   6376 		bnx_dump_stats_block(sc);
   6377 		bnx_dump_driver_state(sc);
   6378 		bnx_dump_hw_state(sc);
   6379 	}
   6380 
   6381 	bnx_dump_driver_state(sc);
   6382 	/* Print the important status block fields. */
   6383 	bnx_dump_status_block(sc);
   6384 
   6385 #if 0
   6386 	/* Call the debugger. */
   6387 	breakpoint();
   6388 #endif
   6389 
   6390 	return;
   6391 }
   6392 #endif
   6393