Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.53
      1 /*	$NetBSD: if_bnx.c,v 1.53 2014/06/17 21:37:20 msaitoh Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
      3 
      4 /*-
      5  * Copyright (c) 2006 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.53 2014/06/17 21:37:20 msaitoh Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *
     52  *   BCM5706C A0, A1
     53  *   BCM5706S A0, A1
     54  *   BCM5708C A0, B0
     55  *   BCM5708S A0, B0
     56  *   BCM5709C A0  B0, B1, B2 (pre-production)
     57  *   BCM5709S A0, B0, B1, B2 (pre-production)
     58  */
     59 
     60 #include <sys/callout.h>
     61 #include <sys/mutex.h>
     62 
     63 #include <dev/pci/if_bnxreg.h>
     64 #include <dev/pci/if_bnxvar.h>
     65 
     66 #include <dev/microcode/bnx/bnxfw.h>
     67 
     68 /****************************************************************************/
     69 /* BNX Driver Version                                                       */
     70 /****************************************************************************/
     71 #define BNX_DRIVER_VERSION	"v0.9.6"
     72 
     73 /****************************************************************************/
     74 /* BNX Debug Options                                                        */
     75 /****************************************************************************/
     76 #ifdef BNX_DEBUG
     77 	u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     78 
     79 	/*          0 = Never              */
     80 	/*          1 = 1 in 2,147,483,648 */
     81 	/*        256 = 1 in     8,388,608 */
     82 	/*       2048 = 1 in     1,048,576 */
     83 	/*      65536 = 1 in        32,768 */
     84 	/*    1048576 = 1 in         2,048 */
     85 	/*  268435456 =	1 in             8 */
     86 	/*  536870912 = 1 in             4 */
     87 	/* 1073741824 = 1 in             2 */
     88 
     89 	/* Controls how often the l2_fhdr frame error check will fail. */
     90 	int bnx_debug_l2fhdr_status_check = 0;
     91 
     92 	/* Controls how often the unexpected attention check will fail. */
     93 	int bnx_debug_unexpected_attention = 0;
     94 
     95 	/* Controls how often to simulate an mbuf allocation failure. */
     96 	int bnx_debug_mbuf_allocation_failure = 0;
     97 
     98 	/* Controls how often to simulate a DMA mapping failure. */
     99 	int bnx_debug_dma_map_addr_failure = 0;
    100 
    101 	/* Controls how often to simulate a bootcode failure. */
    102 	int bnx_debug_bootcode_running_failure = 0;
    103 #endif
    104 
    105 /****************************************************************************/
    106 /* PCI Device ID Table                                                      */
    107 /*                                                                          */
    108 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    109 /****************************************************************************/
    110 static const struct bnx_product {
    111 	pci_vendor_id_t		bp_vendor;
    112 	pci_product_id_t	bp_product;
    113 	pci_vendor_id_t		bp_subvendor;
    114 	pci_product_id_t	bp_subproduct;
    115 	const char		*bp_name;
    116 } bnx_devices[] = {
    117 #ifdef PCI_SUBPRODUCT_HP_NC370T
    118 	{
    119 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    120 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    121 	  "HP NC370T Multifunction Gigabit Server Adapter"
    122 	},
    123 #endif
    124 #ifdef PCI_SUBPRODUCT_HP_NC370i
    125 	{
    126 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    127 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    128 	  "HP NC370i Multifunction Gigabit Server Adapter"
    129 	},
    130 #endif
    131 	{
    132 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    133 	  0, 0,
    134 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    135 	},
    136 #ifdef PCI_SUBPRODUCT_HP_NC370F
    137 	{
    138 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    139 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    140 	  "HP NC370F Multifunction Gigabit Server Adapter"
    141 	},
    142 #endif
    143 	{
    144 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    145 	  0, 0,
    146 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    147 	},
    148 	{
    149 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    150 	  0, 0,
    151 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    152 	},
    153 	{
    154 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    155 	  0, 0,
    156 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    157 	},
    158 	{
    159 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    160 	  0, 0,
    161 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    162 	},
    163 	{
    164 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    165 	  0, 0,
    166 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    167 	},
    168 	{
    169 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    170 	  0, 0,
    171 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    172 	},
    173 	{
    174 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    175 	  0, 0,
    176 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    177 	},
    178 };
    179 
    180 /****************************************************************************/
    181 /* Supported Flash NVRAM device data.                                       */
    182 /****************************************************************************/
    183 static struct flash_spec flash_table[] =
    184 {
    185 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    186 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    187 	/* Slow EEPROM */
    188 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    189 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    190 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    191 	 "EEPROM - slow"},
    192 	/* Expansion entry 0001 */
    193 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    194 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    195 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    196 	 "Entry 0001"},
    197 	/* Saifun SA25F010 (non-buffered flash) */
    198 	/* strap, cfg1, & write1 need updates */
    199 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    200 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    201 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    202 	 "Non-buffered flash (128kB)"},
    203 	/* Saifun SA25F020 (non-buffered flash) */
    204 	/* strap, cfg1, & write1 need updates */
    205 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    206 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    207 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    208 	 "Non-buffered flash (256kB)"},
    209 	/* Expansion entry 0100 */
    210 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    211 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    212 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    213 	 "Entry 0100"},
    214 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    215 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    216 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    217 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    218 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    219 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    220 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    221 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    222 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    223 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    224 	/* Saifun SA25F005 (non-buffered flash) */
    225 	/* strap, cfg1, & write1 need updates */
    226 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    227 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    228 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    229 	 "Non-buffered flash (64kB)"},
    230 	/* Fast EEPROM */
    231 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    232 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    233 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    234 	 "EEPROM - fast"},
    235 	/* Expansion entry 1001 */
    236 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    237 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    238 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    239 	 "Entry 1001"},
    240 	/* Expansion entry 1010 */
    241 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    242 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    243 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    244 	 "Entry 1010"},
    245 	/* ATMEL AT45DB011B (buffered flash) */
    246 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    247 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    248 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    249 	 "Buffered flash (128kB)"},
    250 	/* Expansion entry 1100 */
    251 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    252 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    253 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    254 	 "Entry 1100"},
    255 	/* Expansion entry 1101 */
    256 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    257 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    258 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    259 	 "Entry 1101"},
    260 	/* Ateml Expansion entry 1110 */
    261 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    262 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    263 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    264 	 "Entry 1110 (Atmel)"},
    265 	/* ATMEL AT45DB021B (buffered flash) */
    266 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    267 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    268 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    269 	 "Buffered flash (256kB)"},
    270 };
    271 
    272 /*
    273  * The BCM5709 controllers transparently handle the
    274  * differences between Atmel 264 byte pages and all
    275  * flash devices which use 256 byte pages, so no
    276  * logical-to-physical mapping is required in the
    277  * driver.
    278  */
    279 static struct flash_spec flash_5709 = {
    280 	.flags		= BNX_NV_BUFFERED,
    281 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    282 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    283 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    284 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    285 	.name		= "5709 buffered flash (256kB)",
    286 };
    287 
    288 /****************************************************************************/
    289 /* OpenBSD device entry points.                                             */
    290 /****************************************************************************/
    291 static int	bnx_probe(device_t, cfdata_t, void *);
    292 void	bnx_attach(device_t, device_t, void *);
    293 int	bnx_detach(device_t, int);
    294 
    295 /****************************************************************************/
    296 /* BNX Debug Data Structure Dump Routines                                   */
    297 /****************************************************************************/
    298 #ifdef BNX_DEBUG
    299 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    300 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    301 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    302 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    303 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    304 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    305 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    306 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    307 void	bnx_dump_status_block(struct bnx_softc *);
    308 void	bnx_dump_stats_block(struct bnx_softc *);
    309 void	bnx_dump_driver_state(struct bnx_softc *);
    310 void	bnx_dump_hw_state(struct bnx_softc *);
    311 void	bnx_breakpoint(struct bnx_softc *);
    312 #endif
    313 
    314 /****************************************************************************/
    315 /* BNX Register/Memory Access Routines                                      */
    316 /****************************************************************************/
    317 u_int32_t	bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
    318 void	bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
    319 void	bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
    320 int	bnx_miibus_read_reg(device_t, int, int);
    321 void	bnx_miibus_write_reg(device_t, int, int, int);
    322 void	bnx_miibus_statchg(struct ifnet *);
    323 
    324 /****************************************************************************/
    325 /* BNX NVRAM Access Routines                                                */
    326 /****************************************************************************/
    327 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    328 int	bnx_release_nvram_lock(struct bnx_softc *);
    329 void	bnx_enable_nvram_access(struct bnx_softc *);
    330 void	bnx_disable_nvram_access(struct bnx_softc *);
    331 int	bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    332 	    u_int32_t);
    333 int	bnx_init_nvram(struct bnx_softc *);
    334 int	bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    335 int	bnx_nvram_test(struct bnx_softc *);
    336 #ifdef BNX_NVRAM_WRITE_SUPPORT
    337 int	bnx_enable_nvram_write(struct bnx_softc *);
    338 void	bnx_disable_nvram_write(struct bnx_softc *);
    339 int	bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
    340 int	bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
    341 	    u_int32_t);
    342 int	bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
    343 #endif
    344 
    345 /****************************************************************************/
    346 /*                                                                          */
    347 /****************************************************************************/
    348 void	bnx_get_media(struct bnx_softc *);
    349 void	bnx_init_media(struct bnx_softc *);
    350 int	bnx_dma_alloc(struct bnx_softc *);
    351 void	bnx_dma_free(struct bnx_softc *);
    352 void	bnx_release_resources(struct bnx_softc *);
    353 
    354 /****************************************************************************/
    355 /* BNX Firmware Synchronization and Load                                    */
    356 /****************************************************************************/
    357 int	bnx_fw_sync(struct bnx_softc *, u_int32_t);
    358 void	bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
    359 	    u_int32_t);
    360 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    361 	    struct fw_info *);
    362 void	bnx_init_cpus(struct bnx_softc *);
    363 
    364 void	bnx_stop(struct ifnet *, int);
    365 int	bnx_reset(struct bnx_softc *, u_int32_t);
    366 int	bnx_chipinit(struct bnx_softc *);
    367 int	bnx_blockinit(struct bnx_softc *);
    368 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
    369 	    u_int16_t *, u_int32_t *);
    370 int	bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
    371 
    372 int	bnx_init_tx_chain(struct bnx_softc *);
    373 void	bnx_init_tx_context(struct bnx_softc *);
    374 int	bnx_init_rx_chain(struct bnx_softc *);
    375 void	bnx_init_rx_context(struct bnx_softc *);
    376 void	bnx_free_rx_chain(struct bnx_softc *);
    377 void	bnx_free_tx_chain(struct bnx_softc *);
    378 
    379 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    380 void	bnx_start(struct ifnet *);
    381 int	bnx_ioctl(struct ifnet *, u_long, void *);
    382 void	bnx_watchdog(struct ifnet *);
    383 int	bnx_init(struct ifnet *);
    384 
    385 void	bnx_init_context(struct bnx_softc *);
    386 void	bnx_get_mac_addr(struct bnx_softc *);
    387 void	bnx_set_mac_addr(struct bnx_softc *);
    388 void	bnx_phy_intr(struct bnx_softc *);
    389 void	bnx_rx_intr(struct bnx_softc *);
    390 void	bnx_tx_intr(struct bnx_softc *);
    391 void	bnx_disable_intr(struct bnx_softc *);
    392 void	bnx_enable_intr(struct bnx_softc *);
    393 
    394 int	bnx_intr(void *);
    395 void	bnx_iff(struct bnx_softc *);
    396 void	bnx_stats_update(struct bnx_softc *);
    397 void	bnx_tick(void *);
    398 
    399 struct pool *bnx_tx_pool = NULL;
    400 void	bnx_alloc_pkts(struct work *, void *);
    401 
    402 /****************************************************************************/
    403 /* OpenBSD device dispatch table.                                           */
    404 /****************************************************************************/
    405 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    406     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    407 
    408 /****************************************************************************/
    409 /* Device probe function.                                                   */
    410 /*                                                                          */
    411 /* Compares the device to the driver's list of supported devices and        */
    412 /* reports back to the OS whether this is the right driver for the device.  */
    413 /*                                                                          */
    414 /* Returns:                                                                 */
    415 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    416 /****************************************************************************/
    417 static const struct bnx_product *
    418 bnx_lookup(const struct pci_attach_args *pa)
    419 {
    420 	int i;
    421 	pcireg_t subid;
    422 
    423 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    424 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    425 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    426 			continue;
    427 		if (!bnx_devices[i].bp_subvendor)
    428 			return &bnx_devices[i];
    429 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    430 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    431 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    432 			return &bnx_devices[i];
    433 	}
    434 
    435 	return NULL;
    436 }
    437 static int
    438 bnx_probe(device_t parent, cfdata_t match, void *aux)
    439 {
    440 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    441 
    442 	if (bnx_lookup(pa) != NULL)
    443 		return 1;
    444 
    445 	return 0;
    446 }
    447 
    448 /****************************************************************************/
    449 /* Device attach function.                                                  */
    450 /*                                                                          */
    451 /* Allocates device resources, performs secondary chip identification,      */
    452 /* resets and initializes the hardware, and initializes driver instance     */
    453 /* variables.                                                               */
    454 /*                                                                          */
    455 /* Returns:                                                                 */
    456 /*   0 on success, positive value on failure.                               */
    457 /****************************************************************************/
    458 void
    459 bnx_attach(device_t parent, device_t self, void *aux)
    460 {
    461 	const struct bnx_product *bp;
    462 	struct bnx_softc	*sc = device_private(self);
    463 	prop_dictionary_t	dict;
    464 	struct pci_attach_args	*pa = aux;
    465 	pci_chipset_tag_t	pc = pa->pa_pc;
    466 	pci_intr_handle_t	ih;
    467 	const char 		*intrstr = NULL;
    468 	u_int32_t		command;
    469 	struct ifnet		*ifp;
    470 	u_int32_t		val;
    471 	int			mii_flags = MIIF_FORCEANEG;
    472 	pcireg_t		memtype;
    473 	char intrbuf[PCI_INTRSTR_LEN];
    474 
    475 	if (bnx_tx_pool == NULL) {
    476 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    477 		if (bnx_tx_pool != NULL) {
    478 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    479 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    480 		} else {
    481 			aprint_error(": can't alloc bnx_tx_pool\n");
    482 			return;
    483 		}
    484 	}
    485 
    486 	bp = bnx_lookup(pa);
    487 	if (bp == NULL)
    488 		panic("unknown device");
    489 
    490 	sc->bnx_dev = self;
    491 
    492 	aprint_naive("\n");
    493 	aprint_normal(": %s\n", bp->bp_name);
    494 
    495 	sc->bnx_pa = *pa;
    496 
    497 	/*
    498 	 * Map control/status registers.
    499 	*/
    500 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    501 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    502 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    503 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    504 
    505 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    506 		aprint_error_dev(sc->bnx_dev,
    507 		    "failed to enable memory mapping!\n");
    508 		return;
    509 	}
    510 
    511 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    512 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    513 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    514 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    515 		return;
    516 	}
    517 
    518 	if (pci_intr_map(pa, &ih)) {
    519 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    520 		goto bnx_attach_fail;
    521 	}
    522 
    523 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    524 
    525 	/*
    526 	 * Configure byte swap and enable indirect register access.
    527 	 * Rely on CPU to do target byte swapping on big endian systems.
    528 	 * Access to registers outside of PCI configurtion space are not
    529 	 * valid until this is done.
    530 	 */
    531 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    532 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    533 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    534 
    535 	/* Save ASIC revsion info. */
    536 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    537 
    538 	/*
    539 	 * Find the base address for shared memory access.
    540 	 * Newer versions of bootcode use a signature and offset
    541 	 * while older versions use a fixed address.
    542 	 */
    543 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    544 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    545 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    546 		    (sc->bnx_pa.pa_function << 2));
    547 	else
    548 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    549 
    550 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    551 
    552 	/* Set initial device and PHY flags */
    553 	sc->bnx_flags = 0;
    554 	sc->bnx_phy_flags = 0;
    555 
    556 	/* Get PCI bus information (speed and type). */
    557 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    558 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    559 		u_int32_t clkreg;
    560 
    561 		sc->bnx_flags |= BNX_PCIX_FLAG;
    562 
    563 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    564 
    565 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    566 		switch (clkreg) {
    567 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    568 			sc->bus_speed_mhz = 133;
    569 			break;
    570 
    571 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    572 			sc->bus_speed_mhz = 100;
    573 			break;
    574 
    575 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    576 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    577 			sc->bus_speed_mhz = 66;
    578 			break;
    579 
    580 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    581 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    582 			sc->bus_speed_mhz = 50;
    583 			break;
    584 
    585 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    586 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    587 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    588 			sc->bus_speed_mhz = 33;
    589 			break;
    590 		}
    591 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    592 			sc->bus_speed_mhz = 66;
    593 		else
    594 			sc->bus_speed_mhz = 33;
    595 
    596 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    597 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    598 
    599 	/* Reset the controller. */
    600 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    601 		goto bnx_attach_fail;
    602 
    603 	/* Initialize the controller. */
    604 	if (bnx_chipinit(sc)) {
    605 		aprint_error_dev(sc->bnx_dev,
    606 		    "Controller initialization failed!\n");
    607 		goto bnx_attach_fail;
    608 	}
    609 
    610 	/* Perform NVRAM test. */
    611 	if (bnx_nvram_test(sc)) {
    612 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    613 		goto bnx_attach_fail;
    614 	}
    615 
    616 	/* Fetch the permanent Ethernet MAC address. */
    617 	bnx_get_mac_addr(sc);
    618 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    619 	    ether_sprintf(sc->eaddr));
    620 
    621 	/*
    622 	 * Trip points control how many BDs
    623 	 * should be ready before generating an
    624 	 * interrupt while ticks control how long
    625 	 * a BD can sit in the chain before
    626 	 * generating an interrupt.  Set the default
    627 	 * values for the RX and TX rings.
    628 	 */
    629 
    630 #ifdef BNX_DEBUG
    631 	/* Force more frequent interrupts. */
    632 	sc->bnx_tx_quick_cons_trip_int = 1;
    633 	sc->bnx_tx_quick_cons_trip     = 1;
    634 	sc->bnx_tx_ticks_int           = 0;
    635 	sc->bnx_tx_ticks               = 0;
    636 
    637 	sc->bnx_rx_quick_cons_trip_int = 1;
    638 	sc->bnx_rx_quick_cons_trip     = 1;
    639 	sc->bnx_rx_ticks_int           = 0;
    640 	sc->bnx_rx_ticks               = 0;
    641 #else
    642 	sc->bnx_tx_quick_cons_trip_int = 20;
    643 	sc->bnx_tx_quick_cons_trip     = 20;
    644 	sc->bnx_tx_ticks_int           = 80;
    645 	sc->bnx_tx_ticks               = 80;
    646 
    647 	sc->bnx_rx_quick_cons_trip_int = 6;
    648 	sc->bnx_rx_quick_cons_trip     = 6;
    649 	sc->bnx_rx_ticks_int           = 18;
    650 	sc->bnx_rx_ticks               = 18;
    651 #endif
    652 
    653 	/* Update statistics once every second. */
    654 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    655 
    656 	/* Find the media type for the adapter. */
    657 	bnx_get_media(sc);
    658 
    659 	/*
    660 	 * Store config data needed by the PHY driver for
    661 	 * backplane applications
    662 	 */
    663 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    664 	    BNX_SHARED_HW_CFG_CONFIG);
    665 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    666 	    BNX_PORT_HW_CFG_CONFIG);
    667 
    668 	/* Allocate DMA memory resources. */
    669 	sc->bnx_dmatag = pa->pa_dmat;
    670 	if (bnx_dma_alloc(sc)) {
    671 		aprint_error_dev(sc->bnx_dev,
    672 		    "DMA resource allocation failed!\n");
    673 		goto bnx_attach_fail;
    674 	}
    675 
    676 	/* Initialize the ifnet interface. */
    677 	ifp = &sc->bnx_ec.ec_if;
    678 	ifp->if_softc = sc;
    679 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    680 	ifp->if_ioctl = bnx_ioctl;
    681 	ifp->if_stop = bnx_stop;
    682 	ifp->if_start = bnx_start;
    683 	ifp->if_init = bnx_init;
    684 	ifp->if_timer = 0;
    685 	ifp->if_watchdog = bnx_watchdog;
    686 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    687 	IFQ_SET_READY(&ifp->if_snd);
    688 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    689 
    690 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    691 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    692 
    693 	ifp->if_capabilities |=
    694 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    695 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    696 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    697 
    698 	/* Hookup IRQ last. */
    699 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    700 	if (sc->bnx_intrhand == NULL) {
    701 		aprint_error_dev(self, "couldn't establish interrupt");
    702 		if (intrstr != NULL)
    703 			aprint_error(" at %s", intrstr);
    704 		aprint_error("\n");
    705 		goto bnx_attach_fail;
    706 	}
    707 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    708 
    709 	/* create workqueue to handle packet allocations */
    710 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    711 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    712 		aprint_error_dev(self, "failed to create workqueue\n");
    713 		goto bnx_attach_fail;
    714 	}
    715 
    716 	sc->bnx_mii.mii_ifp = ifp;
    717 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    718 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    719 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    720 
    721 	/* Handle any special PHY initialization for SerDes PHYs. */
    722 	bnx_init_media(sc);
    723 
    724 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    725 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    726 	    ether_mediastatus);
    727 
    728 	/* set phyflags and chipid before mii_attach() */
    729 	dict = device_properties(self);
    730 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    731 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    732 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
    733 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
    734 
    735 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    736 		mii_flags |= MIIF_HAVEFIBER;
    737 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    738 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    739 
    740 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    741 		aprint_error_dev(self, "no PHY found!\n");
    742 		ifmedia_add(&sc->bnx_mii.mii_media,
    743 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    744 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
    745 	} else
    746 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
    747 
    748 	/* Attach to the Ethernet interface list. */
    749 	if_attach(ifp);
    750 	ether_ifattach(ifp,sc->eaddr);
    751 
    752 	callout_init(&sc->bnx_timeout, 0);
    753 
    754 	if (pmf_device_register(self, NULL, NULL))
    755 		pmf_class_network_register(self, ifp);
    756 	else
    757 		aprint_error_dev(self, "couldn't establish power handler\n");
    758 
    759 	/* Print some important debugging info. */
    760 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    761 
    762 	goto bnx_attach_exit;
    763 
    764 bnx_attach_fail:
    765 	bnx_release_resources(sc);
    766 
    767 bnx_attach_exit:
    768 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    769 }
    770 
    771 /****************************************************************************/
    772 /* Device detach function.                                                  */
    773 /*                                                                          */
    774 /* Stops the controller, resets the controller, and releases resources.     */
    775 /*                                                                          */
    776 /* Returns:                                                                 */
    777 /*   0 on success, positive value on failure.                               */
    778 /****************************************************************************/
    779 int
    780 bnx_detach(device_t dev, int flags)
    781 {
    782 	int s;
    783 	struct bnx_softc *sc;
    784 	struct ifnet *ifp;
    785 
    786 	sc = device_private(dev);
    787 	ifp = &sc->bnx_ec.ec_if;
    788 
    789 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    790 
    791 	/* Stop and reset the controller. */
    792 	s = splnet();
    793 	if (ifp->if_flags & IFF_RUNNING)
    794 		bnx_stop(ifp, 1);
    795 	else {
    796 		/* Disable the transmit/receive blocks. */
    797 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
    798 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
    799 		DELAY(20);
    800 		bnx_disable_intr(sc);
    801 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
    802 	}
    803 
    804 	splx(s);
    805 
    806 	pmf_device_deregister(dev);
    807 	callout_destroy(&sc->bnx_timeout);
    808 	ether_ifdetach(ifp);
    809 	workqueue_destroy(sc->bnx_wq);
    810 
    811 	/* Delete all remaining media. */
    812 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    813 
    814 	if_detach(ifp);
    815 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    816 
    817 	/* Release all remaining resources. */
    818 	bnx_release_resources(sc);
    819 
    820 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    821 
    822 	return 0;
    823 }
    824 
    825 /****************************************************************************/
    826 /* Indirect register read.                                                  */
    827 /*                                                                          */
    828 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    829 /* configuration space.  Using this mechanism avoids issues with posted     */
    830 /* reads but is much slower than memory-mapped I/O.                         */
    831 /*                                                                          */
    832 /* Returns:                                                                 */
    833 /*   The value of the register.                                             */
    834 /****************************************************************************/
    835 u_int32_t
    836 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
    837 {
    838 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    839 
    840 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    841 	    offset);
    842 #ifdef BNX_DEBUG
    843 	{
    844 		u_int32_t val;
    845 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    846 		    BNX_PCICFG_REG_WINDOW);
    847 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    848 		    "val = 0x%08X\n", __func__, offset, val);
    849 		return val;
    850 	}
    851 #else
    852 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    853 #endif
    854 }
    855 
    856 /****************************************************************************/
    857 /* Indirect register write.                                                 */
    858 /*                                                                          */
    859 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    860 /* configuration space.  Using this mechanism avoids issues with posted     */
    861 /* writes but is muchh slower than memory-mapped I/O.                       */
    862 /*                                                                          */
    863 /* Returns:                                                                 */
    864 /*   Nothing.                                                               */
    865 /****************************************************************************/
    866 void
    867 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
    868 {
    869 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    870 
    871 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    872 		__func__, offset, val);
    873 
    874 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    875 	    offset);
    876 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    877 }
    878 
    879 /****************************************************************************/
    880 /* Context memory write.                                                    */
    881 /*                                                                          */
    882 /* The NetXtreme II controller uses context memory to track connection      */
    883 /* information for L2 and higher network protocols.                         */
    884 /*                                                                          */
    885 /* Returns:                                                                 */
    886 /*   Nothing.                                                               */
    887 /****************************************************************************/
    888 void
    889 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
    890     u_int32_t ctx_val)
    891 {
    892 	u_int32_t idx, offset = ctx_offset + cid_addr;
    893 	u_int32_t val, retry_cnt = 5;
    894 
    895 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
    896 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
    897 		REG_WR(sc, BNX_CTX_CTX_CTRL,
    898 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
    899 
    900 		for (idx = 0; idx < retry_cnt; idx++) {
    901 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
    902 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
    903 				break;
    904 			DELAY(5);
    905 		}
    906 
    907 #if 0
    908 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
    909 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
    910 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
    911 				__FILE__, __LINE__, cid_addr, ctx_offset);
    912 #endif
    913 
    914 	} else {
    915 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
    916 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
    917 	}
    918 }
    919 
    920 /****************************************************************************/
    921 /* PHY register read.                                                       */
    922 /*                                                                          */
    923 /* Implements register reads on the MII bus.                                */
    924 /*                                                                          */
    925 /* Returns:                                                                 */
    926 /*   The value of the register.                                             */
    927 /****************************************************************************/
    928 int
    929 bnx_miibus_read_reg(device_t dev, int phy, int reg)
    930 {
    931 	struct bnx_softc	*sc = device_private(dev);
    932 	u_int32_t		val;
    933 	int			i;
    934 
    935 	/* Make sure we are accessing the correct PHY address. */
    936 	if (phy != sc->bnx_phy_addr) {
    937 		DBPRINT(sc, BNX_VERBOSE,
    938 		    "Invalid PHY address %d for PHY read!\n", phy);
    939 		return 0;
    940 	}
    941 
    942 	/*
    943 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
    944 	 * with special mappings to work with IEEE
    945 	 * Clause 22 register accesses.
    946 	 */
    947 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
    948 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
    949 			reg += 0x10;
    950 	}
    951 
    952 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    953 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    954 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    955 
    956 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    957 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    958 
    959 		DELAY(40);
    960 	}
    961 
    962 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
    963 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
    964 	    BNX_EMAC_MDIO_COMM_START_BUSY;
    965 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
    966 
    967 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    968 		DELAY(10);
    969 
    970 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    971 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    972 			DELAY(5);
    973 
    974 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    975 			val &= BNX_EMAC_MDIO_COMM_DATA;
    976 
    977 			break;
    978 		}
    979 	}
    980 
    981 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
    982 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
    983 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
    984 		val = 0x0;
    985 	} else
    986 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    987 
    988 	DBPRINT(sc, BNX_EXCESSIVE,
    989 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
    990 	    (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
    991 
    992 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    993 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    994 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    995 
    996 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    997 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    998 
    999 		DELAY(40);
   1000 	}
   1001 
   1002 	return (val & 0xffff);
   1003 }
   1004 
   1005 /****************************************************************************/
   1006 /* PHY register write.                                                      */
   1007 /*                                                                          */
   1008 /* Implements register writes on the MII bus.                               */
   1009 /*                                                                          */
   1010 /* Returns:                                                                 */
   1011 /*   The value of the register.                                             */
   1012 /****************************************************************************/
   1013 void
   1014 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
   1015 {
   1016 	struct bnx_softc	*sc = device_private(dev);
   1017 	u_int32_t		val1;
   1018 	int			i;
   1019 
   1020 	/* Make sure we are accessing the correct PHY address. */
   1021 	if (phy != sc->bnx_phy_addr) {
   1022 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
   1023 		    phy);
   1024 		return;
   1025 	}
   1026 
   1027 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1028 	    "val = 0x%04X\n", __func__,
   1029 	    phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
   1030 
   1031 	/*
   1032 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1033 	 * with special mappings to work with IEEE
   1034 	 * Clause 22 register accesses.
   1035 	 */
   1036 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1037 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1038 			reg += 0x10;
   1039 	}
   1040 
   1041 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1042 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1043 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1044 
   1045 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1046 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1047 
   1048 		DELAY(40);
   1049 	}
   1050 
   1051 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1052 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1053 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1054 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1055 
   1056 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1057 		DELAY(10);
   1058 
   1059 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1060 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1061 			DELAY(5);
   1062 			break;
   1063 		}
   1064 	}
   1065 
   1066 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1067 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1068 		    __LINE__);
   1069 	}
   1070 
   1071 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1072 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1073 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1074 
   1075 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1076 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1077 
   1078 		DELAY(40);
   1079 	}
   1080 }
   1081 
   1082 /****************************************************************************/
   1083 /* MII bus status change.                                                   */
   1084 /*                                                                          */
   1085 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1086 /* MAC interface registers.                                                 */
   1087 /*                                                                          */
   1088 /* Returns:                                                                 */
   1089 /*   Nothing.                                                               */
   1090 /****************************************************************************/
   1091 void
   1092 bnx_miibus_statchg(struct ifnet *ifp)
   1093 {
   1094 	struct bnx_softc	*sc = ifp->if_softc;
   1095 	struct mii_data		*mii = &sc->bnx_mii;
   1096 	int			val;
   1097 
   1098 	val = REG_RD(sc, BNX_EMAC_MODE);
   1099 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1100 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1101 	    BNX_EMAC_MODE_25G);
   1102 
   1103 	/* Set MII or GMII interface based on the speed
   1104 	 * negotiated by the PHY.
   1105 	 */
   1106 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1107 	case IFM_10_T:
   1108 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1109 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1110 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1111 			break;
   1112 		}
   1113 		/* FALLTHROUGH */
   1114 	case IFM_100_TX:
   1115 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1116 		val |= BNX_EMAC_MODE_PORT_MII;
   1117 		break;
   1118 	case IFM_2500_SX:
   1119 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1120 		val |= BNX_EMAC_MODE_25G;
   1121 		/* FALLTHROUGH */
   1122 	case IFM_1000_T:
   1123 	case IFM_1000_SX:
   1124 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1125 		val |= BNX_EMAC_MODE_PORT_GMII;
   1126 		break;
   1127 	default:
   1128 		val |= BNX_EMAC_MODE_PORT_GMII;
   1129 		break;
   1130 	}
   1131 
   1132 	/* Set half or full duplex based on the duplicity
   1133 	 * negotiated by the PHY.
   1134 	 */
   1135 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1136 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1137 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1138 	} else {
   1139 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1140 	}
   1141 
   1142 	REG_WR(sc, BNX_EMAC_MODE, val);
   1143 }
   1144 
   1145 /****************************************************************************/
   1146 /* Acquire NVRAM lock.                                                      */
   1147 /*                                                                          */
   1148 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1149 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1150 /* for use by the driver.                                                   */
   1151 /*                                                                          */
   1152 /* Returns:                                                                 */
   1153 /*   0 on success, positive value on failure.                               */
   1154 /****************************************************************************/
   1155 int
   1156 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1157 {
   1158 	u_int32_t		val;
   1159 	int			j;
   1160 
   1161 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1162 
   1163 	/* Request access to the flash interface. */
   1164 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1165 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1166 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1167 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1168 			break;
   1169 
   1170 		DELAY(5);
   1171 	}
   1172 
   1173 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1174 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1175 		return EBUSY;
   1176 	}
   1177 
   1178 	return 0;
   1179 }
   1180 
   1181 /****************************************************************************/
   1182 /* Release NVRAM lock.                                                      */
   1183 /*                                                                          */
   1184 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1185 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1186 /* for use by the driver.                                                   */
   1187 /*                                                                          */
   1188 /* Returns:                                                                 */
   1189 /*   0 on success, positive value on failure.                               */
   1190 /****************************************************************************/
   1191 int
   1192 bnx_release_nvram_lock(struct bnx_softc *sc)
   1193 {
   1194 	int			j;
   1195 	u_int32_t		val;
   1196 
   1197 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1198 
   1199 	/* Relinquish nvram interface. */
   1200 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1201 
   1202 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1203 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1204 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1205 			break;
   1206 
   1207 		DELAY(5);
   1208 	}
   1209 
   1210 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1211 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1212 		return EBUSY;
   1213 	}
   1214 
   1215 	return 0;
   1216 }
   1217 
   1218 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1219 /****************************************************************************/
   1220 /* Enable NVRAM write access.                                               */
   1221 /*                                                                          */
   1222 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1223 /*                                                                          */
   1224 /* Returns:                                                                 */
   1225 /*   0 on success, positive value on failure.                               */
   1226 /****************************************************************************/
   1227 int
   1228 bnx_enable_nvram_write(struct bnx_softc *sc)
   1229 {
   1230 	u_int32_t		val;
   1231 
   1232 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1233 
   1234 	val = REG_RD(sc, BNX_MISC_CFG);
   1235 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1236 
   1237 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1238 		int j;
   1239 
   1240 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1241 		REG_WR(sc, BNX_NVM_COMMAND,
   1242 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1243 
   1244 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1245 			DELAY(5);
   1246 
   1247 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1248 			if (val & BNX_NVM_COMMAND_DONE)
   1249 				break;
   1250 		}
   1251 
   1252 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1253 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1254 			return EBUSY;
   1255 		}
   1256 	}
   1257 
   1258 	return 0;
   1259 }
   1260 
   1261 /****************************************************************************/
   1262 /* Disable NVRAM write access.                                              */
   1263 /*                                                                          */
   1264 /* When the caller is finished writing to NVRAM write access must be        */
   1265 /* disabled.                                                                */
   1266 /*                                                                          */
   1267 /* Returns:                                                                 */
   1268 /*   Nothing.                                                               */
   1269 /****************************************************************************/
   1270 void
   1271 bnx_disable_nvram_write(struct bnx_softc *sc)
   1272 {
   1273 	u_int32_t		val;
   1274 
   1275 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1276 
   1277 	val = REG_RD(sc, BNX_MISC_CFG);
   1278 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1279 }
   1280 #endif
   1281 
   1282 /****************************************************************************/
   1283 /* Enable NVRAM access.                                                     */
   1284 /*                                                                          */
   1285 /* Before accessing NVRAM for read or write operations the caller must      */
   1286 /* enabled NVRAM access.                                                    */
   1287 /*                                                                          */
   1288 /* Returns:                                                                 */
   1289 /*   Nothing.                                                               */
   1290 /****************************************************************************/
   1291 void
   1292 bnx_enable_nvram_access(struct bnx_softc *sc)
   1293 {
   1294 	u_int32_t		val;
   1295 
   1296 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1297 
   1298 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1299 	/* Enable both bits, even on read. */
   1300 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1301 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1302 }
   1303 
   1304 /****************************************************************************/
   1305 /* Disable NVRAM access.                                                    */
   1306 /*                                                                          */
   1307 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1308 /*                                                                          */
   1309 /* Returns:                                                                 */
   1310 /*   Nothing.                                                               */
   1311 /****************************************************************************/
   1312 void
   1313 bnx_disable_nvram_access(struct bnx_softc *sc)
   1314 {
   1315 	u_int32_t		val;
   1316 
   1317 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1318 
   1319 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1320 
   1321 	/* Disable both bits, even after read. */
   1322 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1323 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1324 }
   1325 
   1326 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1327 /****************************************************************************/
   1328 /* Erase NVRAM page before writing.                                         */
   1329 /*                                                                          */
   1330 /* Non-buffered flash parts require that a page be erased before it is      */
   1331 /* written.                                                                 */
   1332 /*                                                                          */
   1333 /* Returns:                                                                 */
   1334 /*   0 on success, positive value on failure.                               */
   1335 /****************************************************************************/
   1336 int
   1337 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
   1338 {
   1339 	u_int32_t		cmd;
   1340 	int			j;
   1341 
   1342 	/* Buffered flash doesn't require an erase. */
   1343 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1344 		return 0;
   1345 
   1346 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1347 
   1348 	/* Build an erase command. */
   1349 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1350 	    BNX_NVM_COMMAND_DOIT;
   1351 
   1352 	/*
   1353 	 * Clear the DONE bit separately, set the NVRAM address to erase,
   1354 	 * and issue the erase command.
   1355 	 */
   1356 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1357 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1358 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1359 
   1360 	/* Wait for completion. */
   1361 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1362 		u_int32_t val;
   1363 
   1364 		DELAY(5);
   1365 
   1366 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1367 		if (val & BNX_NVM_COMMAND_DONE)
   1368 			break;
   1369 	}
   1370 
   1371 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1372 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1373 		return EBUSY;
   1374 	}
   1375 
   1376 	return 0;
   1377 }
   1378 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1379 
   1380 /****************************************************************************/
   1381 /* Read a dword (32 bits) from NVRAM.                                       */
   1382 /*                                                                          */
   1383 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1384 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1385 /*                                                                          */
   1386 /* Returns:                                                                 */
   1387 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1388 /****************************************************************************/
   1389 int
   1390 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
   1391     u_int8_t *ret_val, u_int32_t cmd_flags)
   1392 {
   1393 	u_int32_t		cmd;
   1394 	int			i, rc = 0;
   1395 
   1396 	/* Build the command word. */
   1397 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1398 
   1399 	/* Calculate the offset for buffered flash if translation is used. */
   1400 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1401 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1402 		    sc->bnx_flash_info->page_bits) +
   1403 		    (offset % sc->bnx_flash_info->page_size);
   1404 	}
   1405 
   1406 	/*
   1407 	 * Clear the DONE bit separately, set the address to read,
   1408 	 * and issue the read.
   1409 	 */
   1410 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1411 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1412 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1413 
   1414 	/* Wait for completion. */
   1415 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1416 		u_int32_t val;
   1417 
   1418 		DELAY(5);
   1419 
   1420 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1421 		if (val & BNX_NVM_COMMAND_DONE) {
   1422 			val = REG_RD(sc, BNX_NVM_READ);
   1423 
   1424 			val = bnx_be32toh(val);
   1425 			memcpy(ret_val, &val, 4);
   1426 			break;
   1427 		}
   1428 	}
   1429 
   1430 	/* Check for errors. */
   1431 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1432 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1433 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1434 		rc = EBUSY;
   1435 	}
   1436 
   1437 	return rc;
   1438 }
   1439 
   1440 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1441 /****************************************************************************/
   1442 /* Write a dword (32 bits) to NVRAM.                                        */
   1443 /*                                                                          */
   1444 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1445 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1446 /* enabled NVRAM write access.                                              */
   1447 /*                                                                          */
   1448 /* Returns:                                                                 */
   1449 /*   0 on success, positive value on failure.                               */
   1450 /****************************************************************************/
   1451 int
   1452 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
   1453     u_int32_t cmd_flags)
   1454 {
   1455 	u_int32_t		cmd, val32;
   1456 	int			j;
   1457 
   1458 	/* Build the command word. */
   1459 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1460 
   1461 	/* Calculate the offset for buffered flash if translation is used. */
   1462 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1463 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1464 		    sc->bnx_flash_info->page_bits) +
   1465 		    (offset % sc->bnx_flash_info->page_size);
   1466 	}
   1467 
   1468 	/*
   1469 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1470 	 * set the NVRAM address to write, and issue the write command
   1471 	 */
   1472 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1473 	memcpy(&val32, val, 4);
   1474 	val32 = htobe32(val32);
   1475 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1476 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1477 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1478 
   1479 	/* Wait for completion. */
   1480 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1481 		DELAY(5);
   1482 
   1483 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1484 			break;
   1485 	}
   1486 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1487 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1488 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1489 		return EBUSY;
   1490 	}
   1491 
   1492 	return 0;
   1493 }
   1494 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1495 
   1496 /****************************************************************************/
   1497 /* Initialize NVRAM access.                                                 */
   1498 /*                                                                          */
   1499 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1500 /* access that device.                                                      */
   1501 /*                                                                          */
   1502 /* Returns:                                                                 */
   1503 /*   0 on success, positive value on failure.                               */
   1504 /****************************************************************************/
   1505 int
   1506 bnx_init_nvram(struct bnx_softc *sc)
   1507 {
   1508 	u_int32_t		val;
   1509 	int			j, entry_count, rc = 0;
   1510 	struct flash_spec	*flash;
   1511 
   1512 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1513 
   1514 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1515 		sc->bnx_flash_info = &flash_5709;
   1516 		goto bnx_init_nvram_get_flash_size;
   1517 	}
   1518 
   1519 	/* Determine the selected interface. */
   1520 	val = REG_RD(sc, BNX_NVM_CFG1);
   1521 
   1522 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1523 
   1524 	/*
   1525 	 * Flash reconfiguration is required to support additional
   1526 	 * NVRAM devices not directly supported in hardware.
   1527 	 * Check if the flash interface was reconfigured
   1528 	 * by the bootcode.
   1529 	 */
   1530 
   1531 	if (val & 0x40000000) {
   1532 		/* Flash interface reconfigured by bootcode. */
   1533 
   1534 		DBPRINT(sc,BNX_INFO_LOAD,
   1535 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1536 
   1537 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1538 		     j++, flash++) {
   1539 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1540 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1541 				sc->bnx_flash_info = flash;
   1542 				break;
   1543 			}
   1544 		}
   1545 	} else {
   1546 		/* Flash interface not yet reconfigured. */
   1547 		u_int32_t mask;
   1548 
   1549 		DBPRINT(sc,BNX_INFO_LOAD,
   1550 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1551 
   1552 		if (val & (1 << 23))
   1553 			mask = FLASH_BACKUP_STRAP_MASK;
   1554 		else
   1555 			mask = FLASH_STRAP_MASK;
   1556 
   1557 		/* Look for the matching NVRAM device configuration data. */
   1558 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1559 		    j++, flash++) {
   1560 			/* Check if the dev matches any of the known devices. */
   1561 			if ((val & mask) == (flash->strapping & mask)) {
   1562 				/* Found a device match. */
   1563 				sc->bnx_flash_info = flash;
   1564 
   1565 				/* Request access to the flash interface. */
   1566 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1567 					return rc;
   1568 
   1569 				/* Reconfigure the flash interface. */
   1570 				bnx_enable_nvram_access(sc);
   1571 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1572 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1573 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1574 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1575 				bnx_disable_nvram_access(sc);
   1576 				bnx_release_nvram_lock(sc);
   1577 
   1578 				break;
   1579 			}
   1580 		}
   1581 	}
   1582 
   1583 	/* Check if a matching device was found. */
   1584 	if (j == entry_count) {
   1585 		sc->bnx_flash_info = NULL;
   1586 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1587 			__FILE__, __LINE__);
   1588 		rc = ENODEV;
   1589 	}
   1590 
   1591 bnx_init_nvram_get_flash_size:
   1592 	/* Write the flash config data to the shared memory interface. */
   1593 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1594 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1595 	if (val)
   1596 		sc->bnx_flash_size = val;
   1597 	else
   1598 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1599 
   1600 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1601 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1602 
   1603 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1604 
   1605 	return rc;
   1606 }
   1607 
   1608 /****************************************************************************/
   1609 /* Read an arbitrary range of data from NVRAM.                              */
   1610 /*                                                                          */
   1611 /* Prepares the NVRAM interface for access and reads the requested data     */
   1612 /* into the supplied buffer.                                                */
   1613 /*                                                                          */
   1614 /* Returns:                                                                 */
   1615 /*   0 on success and the data read, positive value on failure.             */
   1616 /****************************************************************************/
   1617 int
   1618 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
   1619     int buf_size)
   1620 {
   1621 	int			rc = 0;
   1622 	u_int32_t		cmd_flags, offset32, len32, extra;
   1623 
   1624 	if (buf_size == 0)
   1625 		return 0;
   1626 
   1627 	/* Request access to the flash interface. */
   1628 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1629 		return rc;
   1630 
   1631 	/* Enable access to flash interface */
   1632 	bnx_enable_nvram_access(sc);
   1633 
   1634 	len32 = buf_size;
   1635 	offset32 = offset;
   1636 	extra = 0;
   1637 
   1638 	cmd_flags = 0;
   1639 
   1640 	if (offset32 & 3) {
   1641 		u_int8_t buf[4];
   1642 		u_int32_t pre_len;
   1643 
   1644 		offset32 &= ~3;
   1645 		pre_len = 4 - (offset & 3);
   1646 
   1647 		if (pre_len >= len32) {
   1648 			pre_len = len32;
   1649 			cmd_flags =
   1650 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1651 		} else
   1652 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1653 
   1654 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1655 
   1656 		if (rc)
   1657 			return rc;
   1658 
   1659 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1660 
   1661 		offset32 += 4;
   1662 		ret_buf += pre_len;
   1663 		len32 -= pre_len;
   1664 	}
   1665 
   1666 	if (len32 & 3) {
   1667 		extra = 4 - (len32 & 3);
   1668 		len32 = (len32 + 4) & ~3;
   1669 	}
   1670 
   1671 	if (len32 == 4) {
   1672 		u_int8_t buf[4];
   1673 
   1674 		if (cmd_flags)
   1675 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1676 		else
   1677 			cmd_flags =
   1678 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1679 
   1680 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1681 
   1682 		memcpy(ret_buf, buf, 4 - extra);
   1683 	} else if (len32 > 0) {
   1684 		u_int8_t buf[4];
   1685 
   1686 		/* Read the first word. */
   1687 		if (cmd_flags)
   1688 			cmd_flags = 0;
   1689 		else
   1690 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1691 
   1692 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1693 
   1694 		/* Advance to the next dword. */
   1695 		offset32 += 4;
   1696 		ret_buf += 4;
   1697 		len32 -= 4;
   1698 
   1699 		while (len32 > 4 && rc == 0) {
   1700 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1701 
   1702 			/* Advance to the next dword. */
   1703 			offset32 += 4;
   1704 			ret_buf += 4;
   1705 			len32 -= 4;
   1706 		}
   1707 
   1708 		if (rc)
   1709 			return rc;
   1710 
   1711 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1712 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1713 
   1714 		memcpy(ret_buf, buf, 4 - extra);
   1715 	}
   1716 
   1717 	/* Disable access to flash interface and release the lock. */
   1718 	bnx_disable_nvram_access(sc);
   1719 	bnx_release_nvram_lock(sc);
   1720 
   1721 	return rc;
   1722 }
   1723 
   1724 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1725 /****************************************************************************/
   1726 /* Write an arbitrary range of data from NVRAM.                             */
   1727 /*                                                                          */
   1728 /* Prepares the NVRAM interface for write access and writes the requested   */
   1729 /* data from the supplied buffer.  The caller is responsible for            */
   1730 /* calculating any appropriate CRCs.                                        */
   1731 /*                                                                          */
   1732 /* Returns:                                                                 */
   1733 /*   0 on success, positive value on failure.                               */
   1734 /****************************************************************************/
   1735 int
   1736 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
   1737     int buf_size)
   1738 {
   1739 	u_int32_t		written, offset32, len32;
   1740 	u_int8_t		*buf, start[4], end[4];
   1741 	int			rc = 0;
   1742 	int			align_start, align_end;
   1743 
   1744 	buf = data_buf;
   1745 	offset32 = offset;
   1746 	len32 = buf_size;
   1747 	align_start = align_end = 0;
   1748 
   1749 	if ((align_start = (offset32 & 3))) {
   1750 		offset32 &= ~3;
   1751 		len32 += align_start;
   1752 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1753 			return rc;
   1754 	}
   1755 
   1756 	if (len32 & 3) {
   1757 	       	if ((len32 > 4) || !align_start) {
   1758 			align_end = 4 - (len32 & 3);
   1759 			len32 += align_end;
   1760 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1761 			    end, 4)))
   1762 				return rc;
   1763 		}
   1764 	}
   1765 
   1766 	if (align_start || align_end) {
   1767 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1768 		if (buf == 0)
   1769 			return ENOMEM;
   1770 
   1771 		if (align_start)
   1772 			memcpy(buf, start, 4);
   1773 
   1774 		if (align_end)
   1775 			memcpy(buf + len32 - 4, end, 4);
   1776 
   1777 		memcpy(buf + align_start, data_buf, buf_size);
   1778 	}
   1779 
   1780 	written = 0;
   1781 	while ((written < len32) && (rc == 0)) {
   1782 		u_int32_t page_start, page_end, data_start, data_end;
   1783 		u_int32_t addr, cmd_flags;
   1784 		int i;
   1785 		u_int8_t flash_buffer[264];
   1786 
   1787 	    /* Find the page_start addr */
   1788 		page_start = offset32 + written;
   1789 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1790 		/* Find the page_end addr */
   1791 		page_end = page_start + sc->bnx_flash_info->page_size;
   1792 		/* Find the data_start addr */
   1793 		data_start = (written == 0) ? offset32 : page_start;
   1794 		/* Find the data_end addr */
   1795 		data_end = (page_end > offset32 + len32) ?
   1796 		    (offset32 + len32) : page_end;
   1797 
   1798 		/* Request access to the flash interface. */
   1799 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1800 			goto nvram_write_end;
   1801 
   1802 		/* Enable access to flash interface */
   1803 		bnx_enable_nvram_access(sc);
   1804 
   1805 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1806 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1807 			int j;
   1808 
   1809 			/* Read the whole page into the buffer
   1810 			 * (non-buffer flash only) */
   1811 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1812 				if (j == (sc->bnx_flash_info->page_size - 4))
   1813 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1814 
   1815 				rc = bnx_nvram_read_dword(sc,
   1816 					page_start + j,
   1817 					&flash_buffer[j],
   1818 					cmd_flags);
   1819 
   1820 				if (rc)
   1821 					goto nvram_write_end;
   1822 
   1823 				cmd_flags = 0;
   1824 			}
   1825 		}
   1826 
   1827 		/* Enable writes to flash interface (unlock write-protect) */
   1828 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1829 			goto nvram_write_end;
   1830 
   1831 		/* Erase the page */
   1832 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1833 			goto nvram_write_end;
   1834 
   1835 		/* Re-enable the write again for the actual write */
   1836 		bnx_enable_nvram_write(sc);
   1837 
   1838 		/* Loop to write back the buffer data from page_start to
   1839 		 * data_start */
   1840 		i = 0;
   1841 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1842 			for (addr = page_start; addr < data_start;
   1843 				addr += 4, i += 4) {
   1844 
   1845 				rc = bnx_nvram_write_dword(sc, addr,
   1846 				    &flash_buffer[i], cmd_flags);
   1847 
   1848 				if (rc != 0)
   1849 					goto nvram_write_end;
   1850 
   1851 				cmd_flags = 0;
   1852 			}
   1853 		}
   1854 
   1855 		/* Loop to write the new data from data_start to data_end */
   1856 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1857 			if ((addr == page_end - 4) ||
   1858 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   1859 			    && (addr == data_end - 4))) {
   1860 
   1861 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1862 			}
   1863 
   1864 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1865 
   1866 			if (rc != 0)
   1867 				goto nvram_write_end;
   1868 
   1869 			cmd_flags = 0;
   1870 			buf += 4;
   1871 		}
   1872 
   1873 		/* Loop to write back the buffer data from data_end
   1874 		 * to page_end */
   1875 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1876 			for (addr = data_end; addr < page_end;
   1877 			    addr += 4, i += 4) {
   1878 
   1879 				if (addr == page_end-4)
   1880 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1881 
   1882 				rc = bnx_nvram_write_dword(sc, addr,
   1883 				    &flash_buffer[i], cmd_flags);
   1884 
   1885 				if (rc != 0)
   1886 					goto nvram_write_end;
   1887 
   1888 				cmd_flags = 0;
   1889 			}
   1890 		}
   1891 
   1892 		/* Disable writes to flash interface (lock write-protect) */
   1893 		bnx_disable_nvram_write(sc);
   1894 
   1895 		/* Disable access to flash interface */
   1896 		bnx_disable_nvram_access(sc);
   1897 		bnx_release_nvram_lock(sc);
   1898 
   1899 		/* Increment written */
   1900 		written += data_end - data_start;
   1901 	}
   1902 
   1903 nvram_write_end:
   1904 	if (align_start || align_end)
   1905 		free(buf, M_DEVBUF);
   1906 
   1907 	return rc;
   1908 }
   1909 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1910 
   1911 /****************************************************************************/
   1912 /* Verifies that NVRAM is accessible and contains valid data.               */
   1913 /*                                                                          */
   1914 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   1915 /* correct.                                                                 */
   1916 /*                                                                          */
   1917 /* Returns:                                                                 */
   1918 /*   0 on success, positive value on failure.                               */
   1919 /****************************************************************************/
   1920 int
   1921 bnx_nvram_test(struct bnx_softc *sc)
   1922 {
   1923 	u_int32_t		buf[BNX_NVRAM_SIZE / 4];
   1924 	u_int8_t		*data = (u_int8_t *) buf;
   1925 	int			rc = 0;
   1926 	u_int32_t		magic, csum;
   1927 
   1928 	/*
   1929 	 * Check that the device NVRAM is valid by reading
   1930 	 * the magic value at offset 0.
   1931 	 */
   1932 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   1933 		goto bnx_nvram_test_done;
   1934 
   1935 	magic = bnx_be32toh(buf[0]);
   1936 	if (magic != BNX_NVRAM_MAGIC) {
   1937 		rc = ENODEV;
   1938 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   1939 		    "Expected: 0x%08X, Found: 0x%08X\n",
   1940 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   1941 		goto bnx_nvram_test_done;
   1942 	}
   1943 
   1944 	/*
   1945 	 * Verify that the device NVRAM includes valid
   1946 	 * configuration data.
   1947 	 */
   1948 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   1949 		goto bnx_nvram_test_done;
   1950 
   1951 	csum = ether_crc32_le(data, 0x100);
   1952 	if (csum != BNX_CRC32_RESIDUAL) {
   1953 		rc = ENODEV;
   1954 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   1955 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   1956 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1957 		goto bnx_nvram_test_done;
   1958 	}
   1959 
   1960 	csum = ether_crc32_le(data + 0x100, 0x100);
   1961 	if (csum != BNX_CRC32_RESIDUAL) {
   1962 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   1963 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   1964 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1965 		rc = ENODEV;
   1966 	}
   1967 
   1968 bnx_nvram_test_done:
   1969 	return rc;
   1970 }
   1971 
   1972 /****************************************************************************/
   1973 /* Identifies the current media type of the controller and sets the PHY     */
   1974 /* address.                                                                 */
   1975 /*                                                                          */
   1976 /* Returns:                                                                 */
   1977 /*   Nothing.                                                               */
   1978 /****************************************************************************/
   1979 void
   1980 bnx_get_media(struct bnx_softc *sc)
   1981 {
   1982 	sc->bnx_phy_addr = 1;
   1983 
   1984 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1985 		u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   1986 		u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   1987 		u_int32_t strap;
   1988 
   1989 		/*
   1990 		 * The BCM5709S is software configurable
   1991 		 * for Copper or SerDes operation.
   1992 		 */
   1993 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   1994 			DBPRINT(sc, BNX_INFO_LOAD,
   1995 			    "5709 bonded for copper.\n");
   1996 			goto bnx_get_media_exit;
   1997 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   1998 			DBPRINT(sc, BNX_INFO_LOAD,
   1999 			    "5709 bonded for dual media.\n");
   2000 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2001 			goto bnx_get_media_exit;
   2002 		}
   2003 
   2004 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2005 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2006 		else {
   2007 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2008 			    >> 8;
   2009 		}
   2010 
   2011 		if (sc->bnx_pa.pa_function == 0) {
   2012 			switch (strap) {
   2013 			case 0x4:
   2014 			case 0x5:
   2015 			case 0x6:
   2016 				DBPRINT(sc, BNX_INFO_LOAD,
   2017 					"BCM5709 s/w configured for SerDes.\n");
   2018 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2019 				break;
   2020 			default:
   2021 				DBPRINT(sc, BNX_INFO_LOAD,
   2022 					"BCM5709 s/w configured for Copper.\n");
   2023 			}
   2024 		} else {
   2025 			switch (strap) {
   2026 			case 0x1:
   2027 			case 0x2:
   2028 			case 0x4:
   2029 				DBPRINT(sc, BNX_INFO_LOAD,
   2030 					"BCM5709 s/w configured for SerDes.\n");
   2031 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2032 				break;
   2033 			default:
   2034 				DBPRINT(sc, BNX_INFO_LOAD,
   2035 					"BCM5709 s/w configured for Copper.\n");
   2036 			}
   2037 		}
   2038 
   2039 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2040 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2041 
   2042 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2043 		u_int32_t val;
   2044 
   2045 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2046 
   2047 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2048 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2049 
   2050 		/*
   2051 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2052 		 * separate PHY for SerDes.
   2053 		 */
   2054 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2055 			sc->bnx_phy_addr = 2;
   2056 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2057 				 BNX_SHARED_HW_CFG_CONFIG);
   2058 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2059 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2060 				DBPRINT(sc, BNX_INFO_LOAD,
   2061 				    "Found 2.5Gb capable adapter\n");
   2062 			}
   2063 		}
   2064 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2065 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2066 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2067 
   2068 bnx_get_media_exit:
   2069 	DBPRINT(sc, (BNX_INFO_LOAD),
   2070 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2071 }
   2072 
   2073 /****************************************************************************/
   2074 /* Performs PHY initialization required before MII drivers access the       */
   2075 /* device.                                                                  */
   2076 /*                                                                          */
   2077 /* Returns:                                                                 */
   2078 /*   Nothing.                                                               */
   2079 /****************************************************************************/
   2080 void
   2081 bnx_init_media(struct bnx_softc *sc)
   2082 {
   2083 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2084 		/*
   2085 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2086 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2087 		 * the PHY to the mii(4) layer. PHY specific configuration
   2088 		 * is done by the mii(4) layer.
   2089 		 */
   2090 
   2091 		/* Select auto-negotiation MMD of the PHY. */
   2092 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2093 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2094 
   2095 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2096 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2097 
   2098 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2099 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2100 	}
   2101 }
   2102 
   2103 /****************************************************************************/
   2104 /* Free any DMA memory owned by the driver.                                 */
   2105 /*                                                                          */
   2106 /* Scans through each data structre that requires DMA memory and frees      */
   2107 /* the memory if allocated.                                                 */
   2108 /*                                                                          */
   2109 /* Returns:                                                                 */
   2110 /*   Nothing.                                                               */
   2111 /****************************************************************************/
   2112 void
   2113 bnx_dma_free(struct bnx_softc *sc)
   2114 {
   2115 	int			i;
   2116 
   2117 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2118 
   2119 	/* Destroy the status block. */
   2120 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2121 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2122 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2123 		    BNX_STATUS_BLK_SZ);
   2124 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2125 		    sc->status_rseg);
   2126 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2127 		sc->status_block = NULL;
   2128 		sc->status_map = NULL;
   2129 	}
   2130 
   2131 	/* Destroy the statistics block. */
   2132 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2133 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2134 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2135 		    BNX_STATS_BLK_SZ);
   2136 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2137 		    sc->stats_rseg);
   2138 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2139 		sc->stats_block = NULL;
   2140 		sc->stats_map = NULL;
   2141 	}
   2142 
   2143 	/* Free, unmap and destroy all context memory pages. */
   2144 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2145 		for (i = 0; i < sc->ctx_pages; i++) {
   2146 			if (sc->ctx_block[i] != NULL) {
   2147 				bus_dmamap_unload(sc->bnx_dmatag,
   2148 				    sc->ctx_map[i]);
   2149 				bus_dmamem_unmap(sc->bnx_dmatag,
   2150 				    (void *)sc->ctx_block[i],
   2151 				    BCM_PAGE_SIZE);
   2152 				bus_dmamem_free(sc->bnx_dmatag,
   2153 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2154 				bus_dmamap_destroy(sc->bnx_dmatag,
   2155 				    sc->ctx_map[i]);
   2156 				sc->ctx_block[i] = NULL;
   2157 			}
   2158 		}
   2159 	}
   2160 
   2161 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2162 	for (i = 0; i < TX_PAGES; i++ ) {
   2163 		if (sc->tx_bd_chain[i] != NULL &&
   2164 		    sc->tx_bd_chain_map[i] != NULL) {
   2165 			bus_dmamap_unload(sc->bnx_dmatag,
   2166 			    sc->tx_bd_chain_map[i]);
   2167 			bus_dmamem_unmap(sc->bnx_dmatag,
   2168 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2169 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2170 			    sc->tx_bd_chain_rseg[i]);
   2171 			bus_dmamap_destroy(sc->bnx_dmatag,
   2172 			    sc->tx_bd_chain_map[i]);
   2173 			sc->tx_bd_chain[i] = NULL;
   2174 			sc->tx_bd_chain_map[i] = NULL;
   2175 		}
   2176 	}
   2177 
   2178 	/* Destroy the TX dmamaps. */
   2179 	/* This isn't necessary since we dont allocate them up front */
   2180 
   2181 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2182 	for (i = 0; i < RX_PAGES; i++ ) {
   2183 		if (sc->rx_bd_chain[i] != NULL &&
   2184 		    sc->rx_bd_chain_map[i] != NULL) {
   2185 			bus_dmamap_unload(sc->bnx_dmatag,
   2186 			    sc->rx_bd_chain_map[i]);
   2187 			bus_dmamem_unmap(sc->bnx_dmatag,
   2188 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2189 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2190 			    sc->rx_bd_chain_rseg[i]);
   2191 
   2192 			bus_dmamap_destroy(sc->bnx_dmatag,
   2193 			    sc->rx_bd_chain_map[i]);
   2194 			sc->rx_bd_chain[i] = NULL;
   2195 			sc->rx_bd_chain_map[i] = NULL;
   2196 		}
   2197 	}
   2198 
   2199 	/* Unload and destroy the RX mbuf maps. */
   2200 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2201 		if (sc->rx_mbuf_map[i] != NULL) {
   2202 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2203 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2204 		}
   2205 	}
   2206 
   2207 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2208 }
   2209 
   2210 /****************************************************************************/
   2211 /* Allocate any DMA memory needed by the driver.                            */
   2212 /*                                                                          */
   2213 /* Allocates DMA memory needed for the various global structures needed by  */
   2214 /* hardware.                                                                */
   2215 /*                                                                          */
   2216 /* Returns:                                                                 */
   2217 /*   0 for success, positive value for failure.                             */
   2218 /****************************************************************************/
   2219 int
   2220 bnx_dma_alloc(struct bnx_softc *sc)
   2221 {
   2222 	int			i, rc = 0;
   2223 
   2224 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2225 
   2226 	/*
   2227 	 * Allocate DMA memory for the status block, map the memory into DMA
   2228 	 * space, and fetch the physical address of the block.
   2229 	 */
   2230 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2231 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2232 		aprint_error_dev(sc->bnx_dev,
   2233 		    "Could not create status block DMA map!\n");
   2234 		rc = ENOMEM;
   2235 		goto bnx_dma_alloc_exit;
   2236 	}
   2237 
   2238 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2239 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2240 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2241 		aprint_error_dev(sc->bnx_dev,
   2242 		    "Could not allocate status block DMA memory!\n");
   2243 		rc = ENOMEM;
   2244 		goto bnx_dma_alloc_exit;
   2245 	}
   2246 
   2247 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2248 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2249 		aprint_error_dev(sc->bnx_dev,
   2250 		    "Could not map status block DMA memory!\n");
   2251 		rc = ENOMEM;
   2252 		goto bnx_dma_alloc_exit;
   2253 	}
   2254 
   2255 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2256 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2257 		aprint_error_dev(sc->bnx_dev,
   2258 		    "Could not load status block DMA memory!\n");
   2259 		rc = ENOMEM;
   2260 		goto bnx_dma_alloc_exit;
   2261 	}
   2262 
   2263 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2264 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2265 
   2266 	/* DRC - Fix for 64 bit addresses. */
   2267 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2268 		(u_int32_t) sc->status_block_paddr);
   2269 
   2270 	/* BCM5709 uses host memory as cache for context memory. */
   2271 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2272 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2273 		if (sc->ctx_pages == 0)
   2274 			sc->ctx_pages = 1;
   2275 		if (sc->ctx_pages > 4) /* XXX */
   2276 			sc->ctx_pages = 4;
   2277 
   2278 		DBRUNIF((sc->ctx_pages > 512),
   2279 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2280 				__FILE__, __LINE__, sc->ctx_pages));
   2281 
   2282 
   2283 		for (i = 0; i < sc->ctx_pages; i++) {
   2284 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2285 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2286 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2287 			    &sc->ctx_map[i]) != 0) {
   2288 				rc = ENOMEM;
   2289 				goto bnx_dma_alloc_exit;
   2290 			}
   2291 
   2292 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2293 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2294 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2295 				rc = ENOMEM;
   2296 				goto bnx_dma_alloc_exit;
   2297 			}
   2298 
   2299 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2300 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2301 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2302 				rc = ENOMEM;
   2303 				goto bnx_dma_alloc_exit;
   2304 			}
   2305 
   2306 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2307 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2308 			    BUS_DMA_NOWAIT) != 0) {
   2309 				rc = ENOMEM;
   2310 				goto bnx_dma_alloc_exit;
   2311 			}
   2312 
   2313 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2314 		}
   2315 	}
   2316 
   2317 	/*
   2318 	 * Allocate DMA memory for the statistics block, map the memory into
   2319 	 * DMA space, and fetch the physical address of the block.
   2320 	 */
   2321 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2322 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2323 		aprint_error_dev(sc->bnx_dev,
   2324 		    "Could not create stats block DMA map!\n");
   2325 		rc = ENOMEM;
   2326 		goto bnx_dma_alloc_exit;
   2327 	}
   2328 
   2329 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2330 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2331 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2332 		aprint_error_dev(sc->bnx_dev,
   2333 		    "Could not allocate stats block DMA memory!\n");
   2334 		rc = ENOMEM;
   2335 		goto bnx_dma_alloc_exit;
   2336 	}
   2337 
   2338 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2339 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2340 		aprint_error_dev(sc->bnx_dev,
   2341 		    "Could not map stats block DMA memory!\n");
   2342 		rc = ENOMEM;
   2343 		goto bnx_dma_alloc_exit;
   2344 	}
   2345 
   2346 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2347 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2348 		aprint_error_dev(sc->bnx_dev,
   2349 		    "Could not load status block DMA memory!\n");
   2350 		rc = ENOMEM;
   2351 		goto bnx_dma_alloc_exit;
   2352 	}
   2353 
   2354 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2355 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2356 
   2357 	/* DRC - Fix for 64 bit address. */
   2358 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2359 	    (u_int32_t) sc->stats_block_paddr);
   2360 
   2361 	/*
   2362 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2363 	 * and fetch the physical address of the block.
   2364 	 */
   2365 	for (i = 0; i < TX_PAGES; i++) {
   2366 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2367 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2368 		    &sc->tx_bd_chain_map[i])) {
   2369 			aprint_error_dev(sc->bnx_dev,
   2370 			    "Could not create Tx desc %d DMA map!\n", i);
   2371 			rc = ENOMEM;
   2372 			goto bnx_dma_alloc_exit;
   2373 		}
   2374 
   2375 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2376 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2377 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2378 			aprint_error_dev(sc->bnx_dev,
   2379 			    "Could not allocate TX desc %d DMA memory!\n",
   2380 			    i);
   2381 			rc = ENOMEM;
   2382 			goto bnx_dma_alloc_exit;
   2383 		}
   2384 
   2385 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2386 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2387 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2388 			aprint_error_dev(sc->bnx_dev,
   2389 			    "Could not map TX desc %d DMA memory!\n", i);
   2390 			rc = ENOMEM;
   2391 			goto bnx_dma_alloc_exit;
   2392 		}
   2393 
   2394 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2395 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2396 		    BUS_DMA_NOWAIT)) {
   2397 			aprint_error_dev(sc->bnx_dev,
   2398 			    "Could not load TX desc %d DMA memory!\n", i);
   2399 			rc = ENOMEM;
   2400 			goto bnx_dma_alloc_exit;
   2401 		}
   2402 
   2403 		sc->tx_bd_chain_paddr[i] =
   2404 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2405 
   2406 		/* DRC - Fix for 64 bit systems. */
   2407 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2408 		    i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
   2409 	}
   2410 
   2411 	/*
   2412 	 * Create lists to hold TX mbufs.
   2413 	 */
   2414 	TAILQ_INIT(&sc->tx_free_pkts);
   2415 	TAILQ_INIT(&sc->tx_used_pkts);
   2416 	sc->tx_pkt_count = 0;
   2417 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2418 
   2419 	/*
   2420 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2421 	 * and fetch the physical address of the block.
   2422 	 */
   2423 	for (i = 0; i < RX_PAGES; i++) {
   2424 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2425 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2426 		    &sc->rx_bd_chain_map[i])) {
   2427 			aprint_error_dev(sc->bnx_dev,
   2428 			    "Could not create Rx desc %d DMA map!\n", i);
   2429 			rc = ENOMEM;
   2430 			goto bnx_dma_alloc_exit;
   2431 		}
   2432 
   2433 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2434 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2435 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2436 			aprint_error_dev(sc->bnx_dev,
   2437 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2438 			rc = ENOMEM;
   2439 			goto bnx_dma_alloc_exit;
   2440 		}
   2441 
   2442 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2443 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2444 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2445 			aprint_error_dev(sc->bnx_dev,
   2446 			    "Could not map Rx desc %d DMA memory!\n", i);
   2447 			rc = ENOMEM;
   2448 			goto bnx_dma_alloc_exit;
   2449 		}
   2450 
   2451 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2452 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2453 		    BUS_DMA_NOWAIT)) {
   2454 			aprint_error_dev(sc->bnx_dev,
   2455 			    "Could not load Rx desc %d DMA memory!\n", i);
   2456 			rc = ENOMEM;
   2457 			goto bnx_dma_alloc_exit;
   2458 		}
   2459 
   2460 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2461 		sc->rx_bd_chain_paddr[i] =
   2462 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2463 
   2464 		/* DRC - Fix for 64 bit systems. */
   2465 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2466 		    i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
   2467 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2468 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2469 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2470 	}
   2471 
   2472 	/*
   2473 	 * Create DMA maps for the Rx buffer mbufs.
   2474 	 */
   2475 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2476 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2477 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2478 		    &sc->rx_mbuf_map[i])) {
   2479 			aprint_error_dev(sc->bnx_dev,
   2480 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2481 			rc = ENOMEM;
   2482 			goto bnx_dma_alloc_exit;
   2483 		}
   2484 	}
   2485 
   2486  bnx_dma_alloc_exit:
   2487 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2488 
   2489 	return rc;
   2490 }
   2491 
   2492 /****************************************************************************/
   2493 /* Release all resources used by the driver.                                */
   2494 /*                                                                          */
   2495 /* Releases all resources acquired by the driver including interrupts,      */
   2496 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2497 /*                                                                          */
   2498 /* Returns:                                                                 */
   2499 /*   Nothing.                                                               */
   2500 /****************************************************************************/
   2501 void
   2502 bnx_release_resources(struct bnx_softc *sc)
   2503 {
   2504 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2505 
   2506 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2507 
   2508 	bnx_dma_free(sc);
   2509 
   2510 	if (sc->bnx_intrhand != NULL)
   2511 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2512 
   2513 	if (sc->bnx_size)
   2514 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2515 
   2516 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2517 }
   2518 
   2519 /****************************************************************************/
   2520 /* Firmware synchronization.                                                */
   2521 /*                                                                          */
   2522 /* Before performing certain events such as a chip reset, synchronize with  */
   2523 /* the firmware first.                                                      */
   2524 /*                                                                          */
   2525 /* Returns:                                                                 */
   2526 /*   0 for success, positive value for failure.                             */
   2527 /****************************************************************************/
   2528 int
   2529 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
   2530 {
   2531 	int			i, rc = 0;
   2532 	u_int32_t		val;
   2533 
   2534 	/* Don't waste any time if we've timed out before. */
   2535 	if (sc->bnx_fw_timed_out) {
   2536 		rc = EBUSY;
   2537 		goto bnx_fw_sync_exit;
   2538 	}
   2539 
   2540 	/* Increment the message sequence number. */
   2541 	sc->bnx_fw_wr_seq++;
   2542 	msg_data |= sc->bnx_fw_wr_seq;
   2543 
   2544  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2545 	    msg_data);
   2546 
   2547 	/* Send the message to the bootcode driver mailbox. */
   2548 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2549 
   2550 	/* Wait for the bootcode to acknowledge the message. */
   2551 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2552 		/* Check for a response in the bootcode firmware mailbox. */
   2553 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2554 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2555 			break;
   2556 		DELAY(1000);
   2557 	}
   2558 
   2559 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2560 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2561 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2562 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2563 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2564 
   2565 		msg_data &= ~BNX_DRV_MSG_CODE;
   2566 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2567 
   2568 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2569 
   2570 		sc->bnx_fw_timed_out = 1;
   2571 		rc = EBUSY;
   2572 	}
   2573 
   2574 bnx_fw_sync_exit:
   2575 	return rc;
   2576 }
   2577 
   2578 /****************************************************************************/
   2579 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2580 /*                                                                          */
   2581 /* Returns:                                                                 */
   2582 /*   Nothing.                                                               */
   2583 /****************************************************************************/
   2584 void
   2585 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
   2586     u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
   2587 {
   2588 	int			i;
   2589 	u_int32_t		val;
   2590 
   2591 	/* Set the page size used by RV2P. */
   2592 	if (rv2p_proc == RV2P_PROC2) {
   2593 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2594 		    USABLE_RX_BD_PER_PAGE);
   2595 	}
   2596 
   2597 	for (i = 0; i < rv2p_code_len; i += 8) {
   2598 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2599 		rv2p_code++;
   2600 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2601 		rv2p_code++;
   2602 
   2603 		if (rv2p_proc == RV2P_PROC1) {
   2604 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2605 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2606 		} else {
   2607 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2608 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2609 		}
   2610 	}
   2611 
   2612 	/* Reset the processor, un-stall is done later. */
   2613 	if (rv2p_proc == RV2P_PROC1)
   2614 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2615 	else
   2616 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2617 }
   2618 
   2619 /****************************************************************************/
   2620 /* Load RISC processor firmware.                                            */
   2621 /*                                                                          */
   2622 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2623 /* associated with a particular processor.                                  */
   2624 /*                                                                          */
   2625 /* Returns:                                                                 */
   2626 /*   Nothing.                                                               */
   2627 /****************************************************************************/
   2628 void
   2629 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2630     struct fw_info *fw)
   2631 {
   2632 	u_int32_t		offset;
   2633 	u_int32_t		val;
   2634 
   2635 	/* Halt the CPU. */
   2636 	val = REG_RD_IND(sc, cpu_reg->mode);
   2637 	val |= cpu_reg->mode_value_halt;
   2638 	REG_WR_IND(sc, cpu_reg->mode, val);
   2639 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2640 
   2641 	/* Load the Text area. */
   2642 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2643 	if (fw->text) {
   2644 		int j;
   2645 
   2646 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2647 			REG_WR_IND(sc, offset, fw->text[j]);
   2648 	}
   2649 
   2650 	/* Load the Data area. */
   2651 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2652 	if (fw->data) {
   2653 		int j;
   2654 
   2655 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2656 			REG_WR_IND(sc, offset, fw->data[j]);
   2657 	}
   2658 
   2659 	/* Load the SBSS area. */
   2660 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2661 	if (fw->sbss) {
   2662 		int j;
   2663 
   2664 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2665 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2666 	}
   2667 
   2668 	/* Load the BSS area. */
   2669 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2670 	if (fw->bss) {
   2671 		int j;
   2672 
   2673 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2674 			REG_WR_IND(sc, offset, fw->bss[j]);
   2675 	}
   2676 
   2677 	/* Load the Read-Only area. */
   2678 	offset = cpu_reg->spad_base +
   2679 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2680 	if (fw->rodata) {
   2681 		int j;
   2682 
   2683 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2684 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2685 	}
   2686 
   2687 	/* Clear the pre-fetch instruction. */
   2688 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2689 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2690 
   2691 	/* Start the CPU. */
   2692 	val = REG_RD_IND(sc, cpu_reg->mode);
   2693 	val &= ~cpu_reg->mode_value_halt;
   2694 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2695 	REG_WR_IND(sc, cpu_reg->mode, val);
   2696 }
   2697 
   2698 /****************************************************************************/
   2699 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2700 /*                                                                          */
   2701 /* Loads the firmware for each CPU and starts the CPU.                      */
   2702 /*                                                                          */
   2703 /* Returns:                                                                 */
   2704 /*   Nothing.                                                               */
   2705 /****************************************************************************/
   2706 void
   2707 bnx_init_cpus(struct bnx_softc *sc)
   2708 {
   2709 	struct cpu_reg cpu_reg;
   2710 	struct fw_info fw;
   2711 
   2712 	switch(BNX_CHIP_NUM(sc)) {
   2713 	case BNX_CHIP_NUM_5709:
   2714 		/* Initialize the RV2P processor. */
   2715 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2716 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2717 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2718 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2719 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2720 		} else {
   2721 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2722 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2723 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2724 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2725 		}
   2726 
   2727 		/* Initialize the RX Processor. */
   2728 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2729 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2730 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2731 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2732 		cpu_reg.state_value_clear = 0xffffff;
   2733 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2734 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2735 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2736 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2737 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2738 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2739 		cpu_reg.mips_view_base = 0x8000000;
   2740 
   2741 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2742 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2743 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2744 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2745 
   2746 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2747 		fw.text_len = bnx_RXP_b09FwTextLen;
   2748 		fw.text_index = 0;
   2749 		fw.text = bnx_RXP_b09FwText;
   2750 
   2751 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2752 		fw.data_len = bnx_RXP_b09FwDataLen;
   2753 		fw.data_index = 0;
   2754 		fw.data = bnx_RXP_b09FwData;
   2755 
   2756 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2757 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2758 		fw.sbss_index = 0;
   2759 		fw.sbss = bnx_RXP_b09FwSbss;
   2760 
   2761 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2762 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2763 		fw.bss_index = 0;
   2764 		fw.bss = bnx_RXP_b09FwBss;
   2765 
   2766 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2767 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2768 		fw.rodata_index = 0;
   2769 		fw.rodata = bnx_RXP_b09FwRodata;
   2770 
   2771 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2772 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2773 
   2774 		/* Initialize the TX Processor. */
   2775 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2776 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2777 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2778 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2779 		cpu_reg.state_value_clear = 0xffffff;
   2780 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2781 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2782 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2783 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2784 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2785 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2786 		cpu_reg.mips_view_base = 0x8000000;
   2787 
   2788 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2789 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2790 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2791 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2792 
   2793 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2794 		fw.text_len = bnx_TXP_b09FwTextLen;
   2795 		fw.text_index = 0;
   2796 		fw.text = bnx_TXP_b09FwText;
   2797 
   2798 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   2799 		fw.data_len = bnx_TXP_b09FwDataLen;
   2800 		fw.data_index = 0;
   2801 		fw.data = bnx_TXP_b09FwData;
   2802 
   2803 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   2804 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   2805 		fw.sbss_index = 0;
   2806 		fw.sbss = bnx_TXP_b09FwSbss;
   2807 
   2808 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   2809 		fw.bss_len = bnx_TXP_b09FwBssLen;
   2810 		fw.bss_index = 0;
   2811 		fw.bss = bnx_TXP_b09FwBss;
   2812 
   2813 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   2814 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   2815 		fw.rodata_index = 0;
   2816 		fw.rodata = bnx_TXP_b09FwRodata;
   2817 
   2818 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2819 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2820 
   2821 		/* Initialize the TX Patch-up Processor. */
   2822 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2823 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2824 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2825 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2826 		cpu_reg.state_value_clear = 0xffffff;
   2827 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2828 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2829 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2830 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2831 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2832 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2833 		cpu_reg.mips_view_base = 0x8000000;
   2834 
   2835 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   2836 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   2837 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   2838 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   2839 
   2840 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   2841 		fw.text_len = bnx_TPAT_b09FwTextLen;
   2842 		fw.text_index = 0;
   2843 		fw.text = bnx_TPAT_b09FwText;
   2844 
   2845 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   2846 		fw.data_len = bnx_TPAT_b09FwDataLen;
   2847 		fw.data_index = 0;
   2848 		fw.data = bnx_TPAT_b09FwData;
   2849 
   2850 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   2851 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   2852 		fw.sbss_index = 0;
   2853 		fw.sbss = bnx_TPAT_b09FwSbss;
   2854 
   2855 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   2856 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   2857 		fw.bss_index = 0;
   2858 		fw.bss = bnx_TPAT_b09FwBss;
   2859 
   2860 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   2861 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   2862 		fw.rodata_index = 0;
   2863 		fw.rodata = bnx_TPAT_b09FwRodata;
   2864 
   2865 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2866 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2867 
   2868 		/* Initialize the Completion Processor. */
   2869 		cpu_reg.mode = BNX_COM_CPU_MODE;
   2870 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2871 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2872 		cpu_reg.state = BNX_COM_CPU_STATE;
   2873 		cpu_reg.state_value_clear = 0xffffff;
   2874 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2875 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2876 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2877 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2878 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2879 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   2880 		cpu_reg.mips_view_base = 0x8000000;
   2881 
   2882 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   2883 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   2884 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   2885 		fw.start_addr = bnx_COM_b09FwStartAddr;
   2886 
   2887 		fw.text_addr = bnx_COM_b09FwTextAddr;
   2888 		fw.text_len = bnx_COM_b09FwTextLen;
   2889 		fw.text_index = 0;
   2890 		fw.text = bnx_COM_b09FwText;
   2891 
   2892 		fw.data_addr = bnx_COM_b09FwDataAddr;
   2893 		fw.data_len = bnx_COM_b09FwDataLen;
   2894 		fw.data_index = 0;
   2895 		fw.data = bnx_COM_b09FwData;
   2896 
   2897 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   2898 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   2899 		fw.sbss_index = 0;
   2900 		fw.sbss = bnx_COM_b09FwSbss;
   2901 
   2902 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   2903 		fw.bss_len = bnx_COM_b09FwBssLen;
   2904 		fw.bss_index = 0;
   2905 		fw.bss = bnx_COM_b09FwBss;
   2906 
   2907 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   2908 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   2909 		fw.rodata_index = 0;
   2910 		fw.rodata = bnx_COM_b09FwRodata;
   2911 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   2912 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2913 		break;
   2914 	default:
   2915 		/* Initialize the RV2P processor. */
   2916 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   2917 		    RV2P_PROC1);
   2918 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   2919 		    RV2P_PROC2);
   2920 
   2921 		/* Initialize the RX Processor. */
   2922 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2923 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2924 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2925 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2926 		cpu_reg.state_value_clear = 0xffffff;
   2927 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2928 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2929 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2930 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2931 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2932 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2933 		cpu_reg.mips_view_base = 0x8000000;
   2934 
   2935 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   2936 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   2937 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   2938 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   2939 
   2940 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   2941 		fw.text_len = bnx_RXP_b06FwTextLen;
   2942 		fw.text_index = 0;
   2943 		fw.text = bnx_RXP_b06FwText;
   2944 
   2945 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   2946 		fw.data_len = bnx_RXP_b06FwDataLen;
   2947 		fw.data_index = 0;
   2948 		fw.data = bnx_RXP_b06FwData;
   2949 
   2950 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   2951 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   2952 		fw.sbss_index = 0;
   2953 		fw.sbss = bnx_RXP_b06FwSbss;
   2954 
   2955 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   2956 		fw.bss_len = bnx_RXP_b06FwBssLen;
   2957 		fw.bss_index = 0;
   2958 		fw.bss = bnx_RXP_b06FwBss;
   2959 
   2960 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   2961 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   2962 		fw.rodata_index = 0;
   2963 		fw.rodata = bnx_RXP_b06FwRodata;
   2964 
   2965 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2966 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2967 
   2968 		/* Initialize the TX Processor. */
   2969 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2970 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2971 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2972 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2973 		cpu_reg.state_value_clear = 0xffffff;
   2974 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2975 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2976 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2977 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2978 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2979 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2980 		cpu_reg.mips_view_base = 0x8000000;
   2981 
   2982 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   2983 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   2984 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   2985 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   2986 
   2987 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   2988 		fw.text_len = bnx_TXP_b06FwTextLen;
   2989 		fw.text_index = 0;
   2990 		fw.text = bnx_TXP_b06FwText;
   2991 
   2992 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   2993 		fw.data_len = bnx_TXP_b06FwDataLen;
   2994 		fw.data_index = 0;
   2995 		fw.data = bnx_TXP_b06FwData;
   2996 
   2997 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   2998 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   2999 		fw.sbss_index = 0;
   3000 		fw.sbss = bnx_TXP_b06FwSbss;
   3001 
   3002 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3003 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3004 		fw.bss_index = 0;
   3005 		fw.bss = bnx_TXP_b06FwBss;
   3006 
   3007 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3008 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3009 		fw.rodata_index = 0;
   3010 		fw.rodata = bnx_TXP_b06FwRodata;
   3011 
   3012 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3013 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3014 
   3015 		/* Initialize the TX Patch-up Processor. */
   3016 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3017 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3018 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3019 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3020 		cpu_reg.state_value_clear = 0xffffff;
   3021 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3022 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3023 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3024 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3025 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3026 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3027 		cpu_reg.mips_view_base = 0x8000000;
   3028 
   3029 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3030 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3031 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3032 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3033 
   3034 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3035 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3036 		fw.text_index = 0;
   3037 		fw.text = bnx_TPAT_b06FwText;
   3038 
   3039 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3040 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3041 		fw.data_index = 0;
   3042 		fw.data = bnx_TPAT_b06FwData;
   3043 
   3044 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3045 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3046 		fw.sbss_index = 0;
   3047 		fw.sbss = bnx_TPAT_b06FwSbss;
   3048 
   3049 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3050 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3051 		fw.bss_index = 0;
   3052 		fw.bss = bnx_TPAT_b06FwBss;
   3053 
   3054 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3055 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3056 		fw.rodata_index = 0;
   3057 		fw.rodata = bnx_TPAT_b06FwRodata;
   3058 
   3059 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3060 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3061 
   3062 		/* Initialize the Completion Processor. */
   3063 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3064 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3065 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3066 		cpu_reg.state = BNX_COM_CPU_STATE;
   3067 		cpu_reg.state_value_clear = 0xffffff;
   3068 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3069 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3070 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3071 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3072 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3073 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3074 		cpu_reg.mips_view_base = 0x8000000;
   3075 
   3076 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3077 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3078 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3079 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3080 
   3081 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3082 		fw.text_len = bnx_COM_b06FwTextLen;
   3083 		fw.text_index = 0;
   3084 		fw.text = bnx_COM_b06FwText;
   3085 
   3086 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3087 		fw.data_len = bnx_COM_b06FwDataLen;
   3088 		fw.data_index = 0;
   3089 		fw.data = bnx_COM_b06FwData;
   3090 
   3091 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3092 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3093 		fw.sbss_index = 0;
   3094 		fw.sbss = bnx_COM_b06FwSbss;
   3095 
   3096 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3097 		fw.bss_len = bnx_COM_b06FwBssLen;
   3098 		fw.bss_index = 0;
   3099 		fw.bss = bnx_COM_b06FwBss;
   3100 
   3101 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3102 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3103 		fw.rodata_index = 0;
   3104 		fw.rodata = bnx_COM_b06FwRodata;
   3105 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3106 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3107 		break;
   3108 	}
   3109 }
   3110 
   3111 /****************************************************************************/
   3112 /* Initialize context memory.                                               */
   3113 /*                                                                          */
   3114 /* Clears the memory associated with each Context ID (CID).                 */
   3115 /*                                                                          */
   3116 /* Returns:                                                                 */
   3117 /*   Nothing.                                                               */
   3118 /****************************************************************************/
   3119 void
   3120 bnx_init_context(struct bnx_softc *sc)
   3121 {
   3122 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3123 		/* DRC: Replace this constant value with a #define. */
   3124 		int i, retry_cnt = 10;
   3125 		u_int32_t val;
   3126 
   3127 		/*
   3128 		 * BCM5709 context memory may be cached
   3129 		 * in host memory so prepare the host memory
   3130 		 * for access.
   3131 		 */
   3132 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3133 		    | (1 << 12);
   3134 		val |= (BCM_PAGE_BITS - 8) << 16;
   3135 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3136 
   3137 		/* Wait for mem init command to complete. */
   3138 		for (i = 0; i < retry_cnt; i++) {
   3139 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3140 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3141 				break;
   3142 			DELAY(2);
   3143 		}
   3144 
   3145 
   3146 		/* ToDo: Consider returning an error here. */
   3147 
   3148 		for (i = 0; i < sc->ctx_pages; i++) {
   3149 			int j;
   3150 
   3151 
   3152 			/* Set the physaddr of the context memory cache. */
   3153 			val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
   3154 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3155 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3156 			val = (u_int32_t)
   3157 			    ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
   3158 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3159 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3160 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3161 
   3162 
   3163 			/* Verify that the context memory write was successful. */
   3164 			for (j = 0; j < retry_cnt; j++) {
   3165 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3166 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3167 					break;
   3168 				DELAY(5);
   3169 			}
   3170 
   3171 			/* ToDo: Consider returning an error here. */
   3172 		}
   3173 	} else {
   3174 		u_int32_t vcid_addr, offset;
   3175 
   3176 		/*
   3177 		 * For the 5706/5708, context memory is local to
   3178 		 * the controller, so initialize the controller
   3179 		 * context memory.
   3180 		 */
   3181 
   3182 		vcid_addr = GET_CID_ADDR(96);
   3183 		while (vcid_addr) {
   3184 
   3185 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3186 
   3187 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3188 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3189 
   3190 			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
   3191 				CTX_WR(sc, 0x00, offset, 0);
   3192 			}
   3193 
   3194 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3195 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3196 		}
   3197 	}
   3198 }
   3199 
   3200 /****************************************************************************/
   3201 /* Fetch the permanent MAC address of the controller.                       */
   3202 /*                                                                          */
   3203 /* Returns:                                                                 */
   3204 /*   Nothing.                                                               */
   3205 /****************************************************************************/
   3206 void
   3207 bnx_get_mac_addr(struct bnx_softc *sc)
   3208 {
   3209 	u_int32_t		mac_lo = 0, mac_hi = 0;
   3210 
   3211 	/*
   3212 	 * The NetXtreme II bootcode populates various NIC
   3213 	 * power-on and runtime configuration items in a
   3214 	 * shared memory area.  The factory configured MAC
   3215 	 * address is available from both NVRAM and the
   3216 	 * shared memory area so we'll read the value from
   3217 	 * shared memory for speed.
   3218 	 */
   3219 
   3220 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3221 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3222 
   3223 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3224 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3225 		    __FILE__, __LINE__);
   3226 	} else {
   3227 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3228 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3229 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3230 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3231 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3232 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3233 	}
   3234 
   3235 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3236 	    "%s\n", ether_sprintf(sc->eaddr));
   3237 }
   3238 
   3239 /****************************************************************************/
   3240 /* Program the MAC address.                                                 */
   3241 /*                                                                          */
   3242 /* Returns:                                                                 */
   3243 /*   Nothing.                                                               */
   3244 /****************************************************************************/
   3245 void
   3246 bnx_set_mac_addr(struct bnx_softc *sc)
   3247 {
   3248 	u_int32_t		val;
   3249 	const u_int8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3250 
   3251 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3252 	    "%s\n", ether_sprintf(sc->eaddr));
   3253 
   3254 	val = (mac_addr[0] << 8) | mac_addr[1];
   3255 
   3256 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3257 
   3258 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3259 		(mac_addr[4] << 8) | mac_addr[5];
   3260 
   3261 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3262 }
   3263 
   3264 /****************************************************************************/
   3265 /* Stop the controller.                                                     */
   3266 /*                                                                          */
   3267 /* Returns:                                                                 */
   3268 /*   Nothing.                                                               */
   3269 /****************************************************************************/
   3270 void
   3271 bnx_stop(struct ifnet *ifp, int disable)
   3272 {
   3273 	struct bnx_softc *sc = ifp->if_softc;
   3274 
   3275 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3276 
   3277 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   3278 		return;
   3279 
   3280 	callout_stop(&sc->bnx_timeout);
   3281 
   3282 	mii_down(&sc->bnx_mii);
   3283 
   3284 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3285 
   3286 	/* Disable the transmit/receive blocks. */
   3287 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3288 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3289 	DELAY(20);
   3290 
   3291 	bnx_disable_intr(sc);
   3292 
   3293 	/* Tell firmware that the driver is going away. */
   3294 	if (disable)
   3295 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3296 	else
   3297 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3298 
   3299 	/* Free RX buffers. */
   3300 	bnx_free_rx_chain(sc);
   3301 
   3302 	/* Free TX buffers. */
   3303 	bnx_free_tx_chain(sc);
   3304 
   3305 	ifp->if_timer = 0;
   3306 
   3307 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3308 
   3309 }
   3310 
   3311 int
   3312 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
   3313 {
   3314 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3315 	u_int32_t		val;
   3316 	int			i, rc = 0;
   3317 
   3318 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3319 
   3320 	/* Wait for pending PCI transactions to complete. */
   3321 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3322 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3323 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3324 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3325 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3326 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3327 	DELAY(5);
   3328 
   3329 	/* Disable DMA */
   3330 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3331 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3332 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3333 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3334 	}
   3335 
   3336 	/* Assume bootcode is running. */
   3337 	sc->bnx_fw_timed_out = 0;
   3338 
   3339 	/* Give the firmware a chance to prepare for the reset. */
   3340 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3341 	if (rc)
   3342 		goto bnx_reset_exit;
   3343 
   3344 	/* Set a firmware reminder that this is a soft reset. */
   3345 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3346 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3347 
   3348 	/* Dummy read to force the chip to complete all current transactions. */
   3349 	val = REG_RD(sc, BNX_MISC_ID);
   3350 
   3351 	/* Chip reset. */
   3352 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3353 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3354 		REG_RD(sc, BNX_MISC_COMMAND);
   3355 		DELAY(5);
   3356 
   3357 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3358 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3359 
   3360 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3361 		    val);
   3362 	} else {
   3363 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3364 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3365 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3366 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3367 
   3368 		/* Allow up to 30us for reset to complete. */
   3369 		for (i = 0; i < 10; i++) {
   3370 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3371 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3372 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3373 				break;
   3374 			}
   3375 			DELAY(10);
   3376 		}
   3377 
   3378 		/* Check that reset completed successfully. */
   3379 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3380 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3381 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3382 			    __FILE__, __LINE__);
   3383 			rc = EBUSY;
   3384 			goto bnx_reset_exit;
   3385 		}
   3386 	}
   3387 
   3388 	/* Make sure byte swapping is properly configured. */
   3389 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3390 	if (val != 0x01020304) {
   3391 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3392 		    __FILE__, __LINE__);
   3393 		rc = ENODEV;
   3394 		goto bnx_reset_exit;
   3395 	}
   3396 
   3397 	/* Just completed a reset, assume that firmware is running again. */
   3398 	sc->bnx_fw_timed_out = 0;
   3399 
   3400 	/* Wait for the firmware to finish its initialization. */
   3401 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3402 	if (rc)
   3403 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3404 		    "initialization!\n", __FILE__, __LINE__);
   3405 
   3406 bnx_reset_exit:
   3407 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3408 
   3409 	return rc;
   3410 }
   3411 
   3412 int
   3413 bnx_chipinit(struct bnx_softc *sc)
   3414 {
   3415 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3416 	u_int32_t		val;
   3417 	int			rc = 0;
   3418 
   3419 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3420 
   3421 	/* Make sure the interrupt is not active. */
   3422 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3423 
   3424 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3425 	/* channels and PCI clock compensation delay.                      */
   3426 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3427 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3428 #if BYTE_ORDER == BIG_ENDIAN
   3429 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3430 #endif
   3431 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3432 	    DMA_READ_CHANS << 12 |
   3433 	    DMA_WRITE_CHANS << 16;
   3434 
   3435 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3436 
   3437 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3438 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3439 
   3440 	/*
   3441 	 * This setting resolves a problem observed on certain Intel PCI
   3442 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3443 	 * See errata E9_5706A1_65.
   3444 	 */
   3445 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3446 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3447 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3448 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3449 
   3450 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3451 
   3452 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3453 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3454 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3455 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3456 		    val & ~0x20000);
   3457 	}
   3458 
   3459 	/* Enable the RX_V2P and Context state machines before access. */
   3460 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3461 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3462 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3463 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3464 
   3465 	/* Initialize context mapping and zero out the quick contexts. */
   3466 	bnx_init_context(sc);
   3467 
   3468 	/* Initialize the on-boards CPUs */
   3469 	bnx_init_cpus(sc);
   3470 
   3471 	/* Prepare NVRAM for access. */
   3472 	if (bnx_init_nvram(sc)) {
   3473 		rc = ENODEV;
   3474 		goto bnx_chipinit_exit;
   3475 	}
   3476 
   3477 	/* Set the kernel bypass block size */
   3478 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3479 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3480 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3481 
   3482 	/* Enable bins used on the 5709. */
   3483 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3484 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3485 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3486 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3487 	}
   3488 
   3489 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3490 
   3491 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3492 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3493 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3494 
   3495 	val = (BCM_PAGE_BITS - 8) << 24;
   3496 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3497 
   3498 	/* Configure page size. */
   3499 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3500 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3501 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3502 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3503 
   3504 #if 0
   3505 	/* Set the perfect match control register to default. */
   3506 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3507 #endif
   3508 
   3509 bnx_chipinit_exit:
   3510 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3511 
   3512 	return rc;
   3513 }
   3514 
   3515 /****************************************************************************/
   3516 /* Initialize the controller in preparation to send/receive traffic.        */
   3517 /*                                                                          */
   3518 /* Returns:                                                                 */
   3519 /*   0 for success, positive value for failure.                             */
   3520 /****************************************************************************/
   3521 int
   3522 bnx_blockinit(struct bnx_softc *sc)
   3523 {
   3524 	u_int32_t		reg, val;
   3525 	int 			rc = 0;
   3526 
   3527 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3528 
   3529 	/* Load the hardware default MAC address. */
   3530 	bnx_set_mac_addr(sc);
   3531 
   3532 	/* Set the Ethernet backoff seed value */
   3533 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3534 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3535 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3536 
   3537 	sc->last_status_idx = 0;
   3538 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3539 
   3540 	/* Set up link change interrupt generation. */
   3541 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3542 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3543 
   3544 	/* Program the physical address of the status block. */
   3545 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
   3546 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3547 	    (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
   3548 
   3549 	/* Program the physical address of the statistics block. */
   3550 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3551 	    (u_int32_t)(sc->stats_block_paddr));
   3552 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3553 	    (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
   3554 
   3555 	/* Program various host coalescing parameters. */
   3556 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3557 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3558 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3559 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3560 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3561 	    sc->bnx_comp_prod_trip);
   3562 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3563 	    sc->bnx_tx_ticks);
   3564 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3565 	    sc->bnx_rx_ticks);
   3566 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3567 	    sc->bnx_com_ticks);
   3568 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3569 	    sc->bnx_cmd_ticks);
   3570 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3571 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3572 	REG_WR(sc, BNX_HC_CONFIG,
   3573 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3574 	    BNX_HC_CONFIG_COLLECT_STATS));
   3575 
   3576 	/* Clear the internal statistics counters. */
   3577 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3578 
   3579 	/* Verify that bootcode is running. */
   3580 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3581 
   3582 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3583 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3584 	    __FILE__, __LINE__); reg = 0);
   3585 
   3586 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3587 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3588 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3589 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3590 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3591 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3592 		rc = ENODEV;
   3593 		goto bnx_blockinit_exit;
   3594 	}
   3595 
   3596 	/* Check if any management firmware is running. */
   3597 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3598 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3599 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3600 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3601 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3602 	}
   3603 
   3604 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3605 	    BNX_DEV_INFO_BC_REV);
   3606 
   3607 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3608 
   3609 	/* Enable DMA */
   3610 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3611 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3612 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3613 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3614 	}
   3615 
   3616 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3617 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3618 
   3619 	/* Enable link state change interrupt generation. */
   3620 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3621 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3622 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3623 	} else
   3624 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3625 
   3626 	/* Enable all remaining blocks in the MAC. */
   3627 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3628 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3629 	DELAY(20);
   3630 
   3631 bnx_blockinit_exit:
   3632 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3633 
   3634 	return rc;
   3635 }
   3636 
   3637 static int
   3638 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
   3639     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3640 {
   3641 	bus_dmamap_t		map;
   3642 	struct rx_bd		*rxbd;
   3643 	u_int32_t		addr;
   3644 	int i;
   3645 #ifdef BNX_DEBUG
   3646 	u_int16_t debug_chain_prod =	*chain_prod;
   3647 #endif
   3648 	u_int16_t first_chain_prod;
   3649 
   3650 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3651 
   3652 	/* Map the mbuf cluster into device memory. */
   3653 	map = sc->rx_mbuf_map[*chain_prod];
   3654 	first_chain_prod = *chain_prod;
   3655 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3656 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3657 		    __FILE__, __LINE__);
   3658 
   3659 		m_freem(m_new);
   3660 
   3661 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3662 
   3663 		return ENOBUFS;
   3664 	}
   3665 	/* Make sure there is room in the receive chain. */
   3666 	if (map->dm_nsegs > sc->free_rx_bd) {
   3667 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3668 		m_freem(m_new);
   3669 		return EFBIG;
   3670 	}
   3671 #ifdef BNX_DEBUG
   3672 	/* Track the distribution of buffer segments. */
   3673 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3674 #endif
   3675 
   3676 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3677 	    BUS_DMASYNC_PREREAD);
   3678 
   3679 	/* Update some debug statistics counters */
   3680 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3681 	    sc->rx_low_watermark = sc->free_rx_bd);
   3682 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3683 
   3684 	/*
   3685 	 * Setup the rx_bd for the first segment
   3686 	 */
   3687 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3688 
   3689 	addr = (u_int32_t)map->dm_segs[0].ds_addr;
   3690 	rxbd->rx_bd_haddr_lo = addr;
   3691 	addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
   3692 	rxbd->rx_bd_haddr_hi = addr;
   3693 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3694 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3695 	*prod_bseq += map->dm_segs[0].ds_len;
   3696 	bus_dmamap_sync(sc->bnx_dmatag,
   3697 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3698 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3699 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3700 
   3701 	for (i = 1; i < map->dm_nsegs; i++) {
   3702 		*prod = NEXT_RX_BD(*prod);
   3703 		*chain_prod = RX_CHAIN_IDX(*prod);
   3704 
   3705 		rxbd =
   3706 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3707 
   3708 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
   3709 		rxbd->rx_bd_haddr_lo = addr;
   3710 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   3711 		rxbd->rx_bd_haddr_hi = addr;
   3712 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3713 		rxbd->rx_bd_flags = 0;
   3714 		*prod_bseq += map->dm_segs[i].ds_len;
   3715 		bus_dmamap_sync(sc->bnx_dmatag,
   3716 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3717 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3718 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3719 	}
   3720 
   3721 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3722 	bus_dmamap_sync(sc->bnx_dmatag,
   3723 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3724 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3725 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3726 
   3727 	/*
   3728 	 * Save the mbuf, ajust the map pointer (swap map for first and
   3729 	 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
   3730 	 * and update counter.
   3731 	 */
   3732 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3733 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3734 	sc->rx_mbuf_map[*chain_prod] = map;
   3735 	sc->free_rx_bd -= map->dm_nsegs;
   3736 
   3737 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3738 	    map->dm_nsegs));
   3739 	*prod = NEXT_RX_BD(*prod);
   3740 	*chain_prod = RX_CHAIN_IDX(*prod);
   3741 
   3742 	return 0;
   3743 }
   3744 
   3745 /****************************************************************************/
   3746 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3747 /*                                                                          */
   3748 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3749 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3750 /* necessary.                                                               */
   3751 /*                                                                          */
   3752 /* Returns:                                                                 */
   3753 /*   0 for success, positive value for failure.                             */
   3754 /****************************************************************************/
   3755 int
   3756 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
   3757     u_int16_t *chain_prod, u_int32_t *prod_bseq)
   3758 {
   3759 	struct mbuf 		*m_new = NULL;
   3760 	int			rc = 0;
   3761 	u_int16_t min_free_bd;
   3762 
   3763 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3764 	    __func__);
   3765 
   3766 	/* Make sure the inputs are valid. */
   3767 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3768 	    aprint_error_dev(sc->bnx_dev,
   3769 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3770 		*chain_prod, (u_int16_t)MAX_RX_BD));
   3771 
   3772 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3773 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3774 	    *prod_bseq);
   3775 
   3776 	/* try to get in as many mbufs as possible */
   3777 	if (sc->mbuf_alloc_size == MCLBYTES)
   3778 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3779 	else
   3780 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3781 	while (sc->free_rx_bd >= min_free_bd) {
   3782 		/* Simulate an mbuf allocation failure. */
   3783 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3784 		    aprint_error_dev(sc->bnx_dev,
   3785 		    "Simulating mbuf allocation failure.\n");
   3786 			sc->mbuf_sim_alloc_failed++;
   3787 			rc = ENOBUFS;
   3788 			goto bnx_get_buf_exit);
   3789 
   3790 		/* This is a new mbuf allocation. */
   3791 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3792 		if (m_new == NULL) {
   3793 			DBPRINT(sc, BNX_WARN,
   3794 			    "%s(%d): RX mbuf header allocation failed!\n",
   3795 			    __FILE__, __LINE__);
   3796 
   3797 			sc->mbuf_alloc_failed++;
   3798 
   3799 			rc = ENOBUFS;
   3800 			goto bnx_get_buf_exit;
   3801 		}
   3802 
   3803 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3804 
   3805 		/* Simulate an mbuf cluster allocation failure. */
   3806 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3807 			m_freem(m_new);
   3808 			sc->rx_mbuf_alloc--;
   3809 			sc->mbuf_alloc_failed++;
   3810 			sc->mbuf_sim_alloc_failed++;
   3811 			rc = ENOBUFS;
   3812 			goto bnx_get_buf_exit);
   3813 
   3814 		if (sc->mbuf_alloc_size == MCLBYTES)
   3815 			MCLGET(m_new, M_DONTWAIT);
   3816 		else
   3817 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3818 			    M_DONTWAIT);
   3819 		if (!(m_new->m_flags & M_EXT)) {
   3820 			DBPRINT(sc, BNX_WARN,
   3821 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3822 			    __FILE__, __LINE__);
   3823 
   3824 			m_freem(m_new);
   3825 
   3826 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3827 			sc->mbuf_alloc_failed++;
   3828 
   3829 			rc = ENOBUFS;
   3830 			goto bnx_get_buf_exit;
   3831 		}
   3832 
   3833 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3834 		if (rc != 0)
   3835 			goto bnx_get_buf_exit;
   3836 	}
   3837 
   3838 bnx_get_buf_exit:
   3839 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3840 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3841 	    *chain_prod, *prod_bseq);
   3842 
   3843 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3844 	    __func__);
   3845 
   3846 	return rc;
   3847 }
   3848 
   3849 void
   3850 bnx_alloc_pkts(struct work * unused, void * arg)
   3851 {
   3852 	struct bnx_softc *sc = arg;
   3853 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   3854 	struct bnx_pkt *pkt;
   3855 	int i, s;
   3856 
   3857 	for (i = 0; i < 4; i++) { /* magic! */
   3858 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   3859 		if (pkt == NULL)
   3860 			break;
   3861 
   3862 		if (bus_dmamap_create(sc->bnx_dmatag,
   3863 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   3864 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   3865 		    &pkt->pkt_dmamap) != 0)
   3866 			goto put;
   3867 
   3868 		if (!ISSET(ifp->if_flags, IFF_UP))
   3869 			goto stopping;
   3870 
   3871 		mutex_enter(&sc->tx_pkt_mtx);
   3872 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   3873 		sc->tx_pkt_count++;
   3874 		mutex_exit(&sc->tx_pkt_mtx);
   3875 	}
   3876 
   3877 	mutex_enter(&sc->tx_pkt_mtx);
   3878 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   3879 	mutex_exit(&sc->tx_pkt_mtx);
   3880 
   3881 	/* fire-up TX now that allocations have been done */
   3882 	s = splnet();
   3883 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3884 		bnx_start(ifp);
   3885 	splx(s);
   3886 
   3887 	return;
   3888 
   3889 stopping:
   3890 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   3891 put:
   3892 	pool_put(bnx_tx_pool, pkt);
   3893 	return;
   3894 }
   3895 
   3896 /****************************************************************************/
   3897 /* Initialize the TX context memory.                                        */
   3898 /*                                                                          */
   3899 /* Returns:                                                                 */
   3900 /*   Nothing                                                                */
   3901 /****************************************************************************/
   3902 void
   3903 bnx_init_tx_context(struct bnx_softc *sc)
   3904 {
   3905 	u_int32_t val;
   3906 
   3907 	/* Initialize the context ID for an L2 TX chain. */
   3908 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3909 		/* Set the CID type to support an L2 connection. */
   3910 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3911 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   3912 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3913 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   3914 
   3915 		/* Point the hardware to the first page in the chain. */
   3916 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3917 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   3918 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   3919 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3920 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   3921 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   3922 	} else {
   3923 		/* Set the CID type to support an L2 connection. */
   3924 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3925 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   3926 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3927 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   3928 
   3929 		/* Point the hardware to the first page in the chain. */
   3930 		val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3931 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   3932 		val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
   3933 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   3934 	}
   3935 }
   3936 
   3937 
   3938 /****************************************************************************/
   3939 /* Allocate memory and initialize the TX data structures.                   */
   3940 /*                                                                          */
   3941 /* Returns:                                                                 */
   3942 /*   0 for success, positive value for failure.                             */
   3943 /****************************************************************************/
   3944 int
   3945 bnx_init_tx_chain(struct bnx_softc *sc)
   3946 {
   3947 	struct tx_bd		*txbd;
   3948 	u_int32_t		addr;
   3949 	int			i, rc = 0;
   3950 
   3951 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3952 
   3953 	/* Force an allocation of some dmamaps for tx up front */
   3954 	bnx_alloc_pkts(NULL, sc);
   3955 
   3956 	/* Set the initial TX producer/consumer indices. */
   3957 	sc->tx_prod = 0;
   3958 	sc->tx_cons = 0;
   3959 	sc->tx_prod_bseq = 0;
   3960 	sc->used_tx_bd = 0;
   3961 	sc->max_tx_bd = USABLE_TX_BD;
   3962 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   3963 	DBRUNIF(1, sc->tx_full_count = 0);
   3964 
   3965 	/*
   3966 	 * The NetXtreme II supports a linked-list structure called
   3967 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   3968 	 * consists of a series of 1 or more chain pages, each of which
   3969 	 * consists of a fixed number of BD entries.
   3970 	 * The last BD entry on each page is a pointer to the next page
   3971 	 * in the chain, and the last pointer in the BD chain
   3972 	 * points back to the beginning of the chain.
   3973 	 */
   3974 
   3975 	/* Set the TX next pointer chain entries. */
   3976 	for (i = 0; i < TX_PAGES; i++) {
   3977 		int j;
   3978 
   3979 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   3980 
   3981 		/* Check if we've reached the last page. */
   3982 		if (i == (TX_PAGES - 1))
   3983 			j = 0;
   3984 		else
   3985 			j = i + 1;
   3986 
   3987 		addr = (u_int32_t)sc->tx_bd_chain_paddr[j];
   3988 		txbd->tx_bd_haddr_lo = addr;
   3989 		addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
   3990 		txbd->tx_bd_haddr_hi = addr;
   3991 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3992 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3993 	}
   3994 
   3995 	/*
   3996 	 * Initialize the context ID for an L2 TX chain.
   3997 	 */
   3998 	bnx_init_tx_context(sc);
   3999 
   4000 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4001 
   4002 	return rc;
   4003 }
   4004 
   4005 /****************************************************************************/
   4006 /* Free memory and clear the TX data structures.                            */
   4007 /*                                                                          */
   4008 /* Returns:                                                                 */
   4009 /*   Nothing.                                                               */
   4010 /****************************************************************************/
   4011 void
   4012 bnx_free_tx_chain(struct bnx_softc *sc)
   4013 {
   4014 	struct bnx_pkt		*pkt;
   4015 	int			i;
   4016 
   4017 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4018 
   4019 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4020 	mutex_enter(&sc->tx_pkt_mtx);
   4021 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4022 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4023 		mutex_exit(&sc->tx_pkt_mtx);
   4024 
   4025 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4026 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4027 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4028 
   4029 		m_freem(pkt->pkt_mbuf);
   4030 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4031 
   4032 		mutex_enter(&sc->tx_pkt_mtx);
   4033 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4034         }
   4035 
   4036 	/* Destroy all the dmamaps we allocated for TX */
   4037 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   4038 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4039 		sc->tx_pkt_count--;
   4040 		mutex_exit(&sc->tx_pkt_mtx);
   4041 
   4042 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4043 		pool_put(bnx_tx_pool, pkt);
   4044 
   4045 		mutex_enter(&sc->tx_pkt_mtx);
   4046 	}
   4047 	mutex_exit(&sc->tx_pkt_mtx);
   4048 
   4049 
   4050 
   4051 	/* Clear each TX chain page. */
   4052 	for (i = 0; i < TX_PAGES; i++) {
   4053 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4054 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4055 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4056 	}
   4057 
   4058 	sc->used_tx_bd = 0;
   4059 
   4060 	/* Check if we lost any mbufs in the process. */
   4061 	DBRUNIF((sc->tx_mbuf_alloc),
   4062 	    aprint_error_dev(sc->bnx_dev,
   4063 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   4064 		sc->tx_mbuf_alloc));
   4065 
   4066 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4067 }
   4068 
   4069 /****************************************************************************/
   4070 /* Initialize the RX context memory.                                        */
   4071 /*                                                                          */
   4072 /* Returns:                                                                 */
   4073 /*   Nothing                                                                */
   4074 /****************************************************************************/
   4075 void
   4076 bnx_init_rx_context(struct bnx_softc *sc)
   4077 {
   4078 	u_int32_t val;
   4079 
   4080 	/* Initialize the context ID for an L2 RX chain. */
   4081 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4082 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4083 
   4084 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4085 		u_int32_t lo_water, hi_water;
   4086 
   4087 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
   4088 		hi_water = USABLE_RX_BD / 4;
   4089 
   4090 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
   4091 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
   4092 
   4093 		if (hi_water > 0xf)
   4094 			hi_water = 0xf;
   4095 		else if (hi_water == 0)
   4096 			lo_water = 0;
   4097 		val |= lo_water |
   4098 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
   4099 	}
   4100 
   4101  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4102 
   4103 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4104 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4105 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4106 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4107 	}
   4108 
   4109 	/* Point the hardware to the first page in the chain. */
   4110 	val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4111 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4112 	val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
   4113 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4114 }
   4115 
   4116 /****************************************************************************/
   4117 /* Allocate memory and initialize the RX data structures.                   */
   4118 /*                                                                          */
   4119 /* Returns:                                                                 */
   4120 /*   0 for success, positive value for failure.                             */
   4121 /****************************************************************************/
   4122 int
   4123 bnx_init_rx_chain(struct bnx_softc *sc)
   4124 {
   4125 	struct rx_bd		*rxbd;
   4126 	int			i, rc = 0;
   4127 	u_int16_t		prod, chain_prod;
   4128 	u_int32_t		prod_bseq, addr;
   4129 
   4130 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4131 
   4132 	/* Initialize the RX producer and consumer indices. */
   4133 	sc->rx_prod = 0;
   4134 	sc->rx_cons = 0;
   4135 	sc->rx_prod_bseq = 0;
   4136 	sc->free_rx_bd = USABLE_RX_BD;
   4137 	sc->max_rx_bd = USABLE_RX_BD;
   4138 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4139 	DBRUNIF(1, sc->rx_empty_count = 0);
   4140 
   4141 	/* Initialize the RX next pointer chain entries. */
   4142 	for (i = 0; i < RX_PAGES; i++) {
   4143 		int j;
   4144 
   4145 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4146 
   4147 		/* Check if we've reached the last page. */
   4148 		if (i == (RX_PAGES - 1))
   4149 			j = 0;
   4150 		else
   4151 			j = i + 1;
   4152 
   4153 		/* Setup the chain page pointers. */
   4154 		addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4155 		rxbd->rx_bd_haddr_hi = addr;
   4156 		addr = (u_int32_t)sc->rx_bd_chain_paddr[j];
   4157 		rxbd->rx_bd_haddr_lo = addr;
   4158 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4159 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4160 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4161 	}
   4162 
   4163 	/* Allocate mbuf clusters for the rx_bd chain. */
   4164 	prod = prod_bseq = 0;
   4165 	chain_prod = RX_CHAIN_IDX(prod);
   4166 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4167 		BNX_PRINTF(sc,
   4168 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4169 	}
   4170 
   4171 	/* Save the RX chain producer index. */
   4172 	sc->rx_prod = prod;
   4173 	sc->rx_prod_bseq = prod_bseq;
   4174 
   4175 	for (i = 0; i < RX_PAGES; i++)
   4176 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4177 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4178 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4179 
   4180 	/* Tell the chip about the waiting rx_bd's. */
   4181 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4182 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4183 
   4184 	bnx_init_rx_context(sc);
   4185 
   4186 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4187 
   4188 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4189 
   4190 	return rc;
   4191 }
   4192 
   4193 /****************************************************************************/
   4194 /* Free memory and clear the RX data structures.                            */
   4195 /*                                                                          */
   4196 /* Returns:                                                                 */
   4197 /*   Nothing.                                                               */
   4198 /****************************************************************************/
   4199 void
   4200 bnx_free_rx_chain(struct bnx_softc *sc)
   4201 {
   4202 	int			i;
   4203 
   4204 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4205 
   4206 	/* Free any mbufs still in the RX mbuf chain. */
   4207 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4208 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4209 			if (sc->rx_mbuf_map[i] != NULL) {
   4210 				bus_dmamap_sync(sc->bnx_dmatag,
   4211 				    sc->rx_mbuf_map[i],	0,
   4212 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4213 				    BUS_DMASYNC_POSTREAD);
   4214 				bus_dmamap_unload(sc->bnx_dmatag,
   4215 				    sc->rx_mbuf_map[i]);
   4216 			}
   4217 			m_freem(sc->rx_mbuf_ptr[i]);
   4218 			sc->rx_mbuf_ptr[i] = NULL;
   4219 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4220 		}
   4221 	}
   4222 
   4223 	/* Clear each RX chain page. */
   4224 	for (i = 0; i < RX_PAGES; i++)
   4225 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4226 
   4227 	sc->free_rx_bd = sc->max_rx_bd;
   4228 
   4229 	/* Check if we lost any mbufs in the process. */
   4230 	DBRUNIF((sc->rx_mbuf_alloc),
   4231 	    aprint_error_dev(sc->bnx_dev,
   4232 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   4233 		sc->rx_mbuf_alloc));
   4234 
   4235 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4236 }
   4237 
   4238 /****************************************************************************/
   4239 /* Handles PHY generated interrupt events.                                  */
   4240 /*                                                                          */
   4241 /* Returns:                                                                 */
   4242 /*   Nothing.                                                               */
   4243 /****************************************************************************/
   4244 void
   4245 bnx_phy_intr(struct bnx_softc *sc)
   4246 {
   4247 	u_int32_t		new_link_state, old_link_state;
   4248 
   4249 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4250 	    BUS_DMASYNC_POSTREAD);
   4251 	new_link_state = sc->status_block->status_attn_bits &
   4252 	    STATUS_ATTN_BITS_LINK_STATE;
   4253 	old_link_state = sc->status_block->status_attn_bits_ack &
   4254 	    STATUS_ATTN_BITS_LINK_STATE;
   4255 
   4256 	/* Handle any changes if the link state has changed. */
   4257 	if (new_link_state != old_link_state) {
   4258 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4259 
   4260 		callout_stop(&sc->bnx_timeout);
   4261 		bnx_tick(sc);
   4262 
   4263 		/* Update the status_attn_bits_ack field in the status block. */
   4264 		if (new_link_state) {
   4265 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4266 			    STATUS_ATTN_BITS_LINK_STATE);
   4267 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4268 		} else {
   4269 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4270 			    STATUS_ATTN_BITS_LINK_STATE);
   4271 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4272 		}
   4273 	}
   4274 
   4275 	/* Acknowledge the link change interrupt. */
   4276 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4277 }
   4278 
   4279 /****************************************************************************/
   4280 /* Handles received frame interrupt events.                                 */
   4281 /*                                                                          */
   4282 /* Returns:                                                                 */
   4283 /*   Nothing.                                                               */
   4284 /****************************************************************************/
   4285 void
   4286 bnx_rx_intr(struct bnx_softc *sc)
   4287 {
   4288 	struct status_block	*sblk = sc->status_block;
   4289 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4290 	u_int16_t		hw_cons, sw_cons, sw_chain_cons;
   4291 	u_int16_t		sw_prod, sw_chain_prod;
   4292 	u_int32_t		sw_prod_bseq;
   4293 	struct l2_fhdr		*l2fhdr;
   4294 	int			i;
   4295 
   4296 	DBRUNIF(1, sc->rx_interrupts++);
   4297 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4298 	    BUS_DMASYNC_POSTREAD);
   4299 
   4300 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4301 	for (i = 0; i < RX_PAGES; i++)
   4302 		bus_dmamap_sync(sc->bnx_dmatag,
   4303 		    sc->rx_bd_chain_map[i], 0,
   4304 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4305 		    BUS_DMASYNC_POSTWRITE);
   4306 
   4307 	/* Get the hardware's view of the RX consumer index. */
   4308 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4309 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4310 		hw_cons++;
   4311 
   4312 	/* Get working copies of the driver's view of the RX indices. */
   4313 	sw_cons = sc->rx_cons;
   4314 	sw_prod = sc->rx_prod;
   4315 	sw_prod_bseq = sc->rx_prod_bseq;
   4316 
   4317 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4318 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4319 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4320 
   4321 	/* Prevent speculative reads from getting ahead of the status block. */
   4322 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4323 	    BUS_SPACE_BARRIER_READ);
   4324 
   4325 	/* Update some debug statistics counters */
   4326 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4327 	    sc->rx_low_watermark = sc->free_rx_bd);
   4328 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4329 
   4330 	/*
   4331 	 * Scan through the receive chain as long
   4332 	 * as there is work to do.
   4333 	 */
   4334 	while (sw_cons != hw_cons) {
   4335 		struct mbuf *m;
   4336 		struct rx_bd *rxbd __diagused;
   4337 		unsigned int len;
   4338 		u_int32_t status;
   4339 
   4340 		/* Convert the producer/consumer indices to an actual
   4341 		 * rx_bd index.
   4342 		 */
   4343 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4344 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4345 
   4346 		/* Get the used rx_bd. */
   4347 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4348 		sc->free_rx_bd++;
   4349 
   4350 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4351 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4352 
   4353 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4354 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4355 #ifdef DIAGNOSTIC
   4356 			/* Validate that this is the last rx_bd. */
   4357 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4358 			    printf("%s: Unexpected mbuf found in "
   4359 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4360 			        sw_chain_cons);
   4361 			}
   4362 #endif
   4363 
   4364 			/* DRC - ToDo: If the received packet is small, say less
   4365 			 *             than 128 bytes, allocate a new mbuf here,
   4366 			 *             copy the data to that mbuf, and recycle
   4367 			 *             the mapped jumbo frame.
   4368 			 */
   4369 
   4370 			/* Unmap the mbuf from DMA space. */
   4371 #ifdef DIAGNOSTIC
   4372 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4373 				printf("invalid map sw_cons 0x%x "
   4374 				"sw_prod 0x%x "
   4375 				"sw_chain_cons 0x%x "
   4376 				"sw_chain_prod 0x%x "
   4377 				"hw_cons 0x%x "
   4378 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4379 				"TOTAL_RX_BD 0x%x\n",
   4380 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4381 				hw_cons,
   4382 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4383 			}
   4384 #endif
   4385 			bus_dmamap_sync(sc->bnx_dmatag,
   4386 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4387 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4388 			    BUS_DMASYNC_POSTREAD);
   4389 			bus_dmamap_unload(sc->bnx_dmatag,
   4390 			    sc->rx_mbuf_map[sw_chain_cons]);
   4391 
   4392 			/* Remove the mbuf from the driver's chain. */
   4393 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4394 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4395 
   4396 			/*
   4397 			 * Frames received on the NetXteme II are prepended
   4398 			 * with the l2_fhdr structure which provides status
   4399 			 * information about the received frame (including
   4400 			 * VLAN tags and checksum info) and are also
   4401 			 * automatically adjusted to align the IP header
   4402 			 * (i.e. two null bytes are inserted before the
   4403 			 * Ethernet header).
   4404 			 */
   4405 			l2fhdr = mtod(m, struct l2_fhdr *);
   4406 
   4407 			len    = l2fhdr->l2_fhdr_pkt_len;
   4408 			status = l2fhdr->l2_fhdr_status;
   4409 
   4410 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4411 			    aprint_error("Simulating l2_fhdr status error.\n");
   4412 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4413 
   4414 			/* Watch for unusual sized frames. */
   4415 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4416 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4417 			    aprint_error_dev(sc->bnx_dev,
   4418 			        "Unusual frame size found. "
   4419 				"Min(%d), Actual(%d), Max(%d)\n",
   4420 				(int)BNX_MIN_MTU, len,
   4421 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4422 
   4423 			bnx_dump_mbuf(sc, m);
   4424 			bnx_breakpoint(sc));
   4425 
   4426 			len -= ETHER_CRC_LEN;
   4427 
   4428 			/* Check the received frame for errors. */
   4429 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4430 			    L2_FHDR_ERRORS_PHY_DECODE |
   4431 			    L2_FHDR_ERRORS_ALIGNMENT |
   4432 			    L2_FHDR_ERRORS_TOO_SHORT |
   4433 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4434 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4435 			    len >
   4436 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4437 				ifp->if_ierrors++;
   4438 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4439 
   4440 				/* Reuse the mbuf for a new frame. */
   4441 				if (bnx_add_buf(sc, m, &sw_prod,
   4442 				    &sw_chain_prod, &sw_prod_bseq)) {
   4443 					DBRUNIF(1, bnx_breakpoint(sc));
   4444 					panic("%s: Can't reuse RX mbuf!\n",
   4445 					    device_xname(sc->bnx_dev));
   4446 				}
   4447 				continue;
   4448 			}
   4449 
   4450 			/*
   4451 			 * Get a new mbuf for the rx_bd.   If no new
   4452 			 * mbufs are available then reuse the current mbuf,
   4453 			 * log an ierror on the interface, and generate
   4454 			 * an error in the system log.
   4455 			 */
   4456 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4457 			    &sw_prod_bseq)) {
   4458 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4459 				    "Failed to allocate "
   4460 				    "new mbuf, incoming frame dropped!\n"));
   4461 
   4462 				ifp->if_ierrors++;
   4463 
   4464 				/* Try and reuse the exisitng mbuf. */
   4465 				if (bnx_add_buf(sc, m, &sw_prod,
   4466 				    &sw_chain_prod, &sw_prod_bseq)) {
   4467 					DBRUNIF(1, bnx_breakpoint(sc));
   4468 					panic("%s: Double mbuf allocation "
   4469 					    "failure!",
   4470 					    device_xname(sc->bnx_dev));
   4471 				}
   4472 				continue;
   4473 			}
   4474 
   4475 			/* Skip over the l2_fhdr when passing the data up
   4476 			 * the stack.
   4477 			 */
   4478 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4479 
   4480 			/* Adjust the pckt length to match the received data. */
   4481 			m->m_pkthdr.len = m->m_len = len;
   4482 
   4483 			/* Send the packet to the appropriate interface. */
   4484 			m->m_pkthdr.rcvif = ifp;
   4485 
   4486 			DBRUN(BNX_VERBOSE_RECV,
   4487 			    struct ether_header *eh;
   4488 			    eh = mtod(m, struct ether_header *);
   4489 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4490 			    __func__, ether_sprintf(eh->ether_dhost),
   4491 			    ether_sprintf(eh->ether_shost),
   4492 			    htons(eh->ether_type)));
   4493 
   4494 			/* Validate the checksum. */
   4495 
   4496 			/* Check for an IP datagram. */
   4497 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4498 				/* Check if the IP checksum is valid. */
   4499 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   4500 				    == 0)
   4501 					m->m_pkthdr.csum_flags |=
   4502 					    M_CSUM_IPv4;
   4503 #ifdef BNX_DEBUG
   4504 				else
   4505 					DBPRINT(sc, BNX_WARN_SEND,
   4506 					    "%s(): Invalid IP checksum "
   4507 					        "= 0x%04X!\n",
   4508 						__func__,
   4509 						l2fhdr->l2_fhdr_ip_xsum
   4510 						);
   4511 #endif
   4512 			}
   4513 
   4514 			/* Check for a valid TCP/UDP frame. */
   4515 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4516 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4517 				/* Check for a good TCP/UDP checksum. */
   4518 				if ((status &
   4519 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4520 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4521 					m->m_pkthdr.csum_flags |=
   4522 					    M_CSUM_TCPv4 |
   4523 					    M_CSUM_UDPv4;
   4524 				} else {
   4525 					DBPRINT(sc, BNX_WARN_SEND,
   4526 					    "%s(): Invalid TCP/UDP "
   4527 					    "checksum = 0x%04X!\n",
   4528 					    __func__,
   4529 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4530 				}
   4531 			}
   4532 
   4533 			/*
   4534 			 * If we received a packet with a vlan tag,
   4535 			 * attach that information to the packet.
   4536 			 */
   4537 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4538 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4539 				VLAN_INPUT_TAG(ifp, m,
   4540 				    l2fhdr->l2_fhdr_vlan_tag,
   4541 				    continue);
   4542 			}
   4543 
   4544 			/*
   4545 			 * Handle BPF listeners. Let the BPF
   4546 			 * user see the packet.
   4547 			 */
   4548 			bpf_mtap(ifp, m);
   4549 
   4550 			/* Pass the mbuf off to the upper layers. */
   4551 			ifp->if_ipackets++;
   4552 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4553 			    "%s(): Passing received frame up.\n", __func__);
   4554 			(*ifp->if_input)(ifp, m);
   4555 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4556 
   4557 		}
   4558 
   4559 		sw_cons = NEXT_RX_BD(sw_cons);
   4560 
   4561 		/* Refresh hw_cons to see if there's new work */
   4562 		if (sw_cons == hw_cons) {
   4563 			hw_cons = sc->hw_rx_cons =
   4564 			    sblk->status_rx_quick_consumer_index0;
   4565 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4566 			    USABLE_RX_BD_PER_PAGE)
   4567 				hw_cons++;
   4568 		}
   4569 
   4570 		/* Prevent speculative reads from getting ahead of
   4571 		 * the status block.
   4572 		 */
   4573 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4574 		    BUS_SPACE_BARRIER_READ);
   4575 	}
   4576 
   4577 	for (i = 0; i < RX_PAGES; i++)
   4578 		bus_dmamap_sync(sc->bnx_dmatag,
   4579 		    sc->rx_bd_chain_map[i], 0,
   4580 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4581 		    BUS_DMASYNC_PREWRITE);
   4582 
   4583 	sc->rx_cons = sw_cons;
   4584 	sc->rx_prod = sw_prod;
   4585 	sc->rx_prod_bseq = sw_prod_bseq;
   4586 
   4587 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4588 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4589 
   4590 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4591 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4592 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4593 }
   4594 
   4595 /****************************************************************************/
   4596 /* Handles transmit completion interrupt events.                            */
   4597 /*                                                                          */
   4598 /* Returns:                                                                 */
   4599 /*   Nothing.                                                               */
   4600 /****************************************************************************/
   4601 void
   4602 bnx_tx_intr(struct bnx_softc *sc)
   4603 {
   4604 	struct status_block	*sblk = sc->status_block;
   4605 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4606 	struct bnx_pkt		*pkt;
   4607 	bus_dmamap_t		map;
   4608 	u_int16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4609 
   4610 	DBRUNIF(1, sc->tx_interrupts++);
   4611 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4612 	    BUS_DMASYNC_POSTREAD);
   4613 
   4614 	/* Get the hardware's view of the TX consumer index. */
   4615 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4616 
   4617 	/* Skip to the next entry if this is a chain page pointer. */
   4618 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4619 		hw_tx_cons++;
   4620 
   4621 	sw_tx_cons = sc->tx_cons;
   4622 
   4623 	/* Prevent speculative reads from getting ahead of the status block. */
   4624 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4625 	    BUS_SPACE_BARRIER_READ);
   4626 
   4627 	/* Cycle through any completed TX chain page entries. */
   4628 	while (sw_tx_cons != hw_tx_cons) {
   4629 #ifdef BNX_DEBUG
   4630 		struct tx_bd *txbd = NULL;
   4631 #endif
   4632 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4633 
   4634 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4635 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4636 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4637 
   4638 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4639 		    aprint_error_dev(sc->bnx_dev,
   4640 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4641 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4642 
   4643 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4644 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4645 
   4646 		DBRUNIF((txbd == NULL),
   4647 		    aprint_error_dev(sc->bnx_dev,
   4648 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4649 		    bnx_breakpoint(sc));
   4650 
   4651 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4652 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4653 
   4654 
   4655 		mutex_enter(&sc->tx_pkt_mtx);
   4656 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4657 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4658 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4659 			mutex_exit(&sc->tx_pkt_mtx);
   4660 			/*
   4661 			 * Free the associated mbuf. Remember
   4662 			 * that only the last tx_bd of a packet
   4663 			 * has an mbuf pointer and DMA map.
   4664 			 */
   4665 			map = pkt->pkt_dmamap;
   4666 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4667 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4668 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4669 
   4670 			m_freem(pkt->pkt_mbuf);
   4671 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4672 
   4673 			ifp->if_opackets++;
   4674 
   4675 			mutex_enter(&sc->tx_pkt_mtx);
   4676 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4677 		}
   4678 		mutex_exit(&sc->tx_pkt_mtx);
   4679 
   4680 		sc->used_tx_bd--;
   4681 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4682 			__FILE__, __LINE__, sc->used_tx_bd);
   4683 
   4684 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4685 
   4686 		/* Refresh hw_cons to see if there's new work. */
   4687 		hw_tx_cons = sc->hw_tx_cons =
   4688 		    sblk->status_tx_quick_consumer_index0;
   4689 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4690 		    USABLE_TX_BD_PER_PAGE)
   4691 			hw_tx_cons++;
   4692 
   4693 		/* Prevent speculative reads from getting ahead of
   4694 		 * the status block.
   4695 		 */
   4696 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4697 		    BUS_SPACE_BARRIER_READ);
   4698 	}
   4699 
   4700 	/* Clear the TX timeout timer. */
   4701 	ifp->if_timer = 0;
   4702 
   4703 	/* Clear the tx hardware queue full flag. */
   4704 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4705 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4706 		    aprint_debug_dev(sc->bnx_dev,
   4707 		        "Open TX chain! %d/%d (used/total)\n",
   4708 			sc->used_tx_bd, sc->max_tx_bd));
   4709 		ifp->if_flags &= ~IFF_OACTIVE;
   4710 	}
   4711 
   4712 	sc->tx_cons = sw_tx_cons;
   4713 }
   4714 
   4715 /****************************************************************************/
   4716 /* Disables interrupt generation.                                           */
   4717 /*                                                                          */
   4718 /* Returns:                                                                 */
   4719 /*   Nothing.                                                               */
   4720 /****************************************************************************/
   4721 void
   4722 bnx_disable_intr(struct bnx_softc *sc)
   4723 {
   4724 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4725 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4726 }
   4727 
   4728 /****************************************************************************/
   4729 /* Enables interrupt generation.                                            */
   4730 /*                                                                          */
   4731 /* Returns:                                                                 */
   4732 /*   Nothing.                                                               */
   4733 /****************************************************************************/
   4734 void
   4735 bnx_enable_intr(struct bnx_softc *sc)
   4736 {
   4737 	u_int32_t		val;
   4738 
   4739 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4740 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4741 
   4742 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4743 	    sc->last_status_idx);
   4744 
   4745 	val = REG_RD(sc, BNX_HC_COMMAND);
   4746 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4747 }
   4748 
   4749 /****************************************************************************/
   4750 /* Handles controller initialization.                                       */
   4751 /*                                                                          */
   4752 /****************************************************************************/
   4753 int
   4754 bnx_init(struct ifnet *ifp)
   4755 {
   4756 	struct bnx_softc	*sc = ifp->if_softc;
   4757 	u_int32_t		ether_mtu;
   4758 	int			s, error = 0;
   4759 
   4760 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4761 
   4762 	s = splnet();
   4763 
   4764 	bnx_stop(ifp, 0);
   4765 
   4766 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4767 		aprint_error_dev(sc->bnx_dev,
   4768 		    "Controller reset failed!\n");
   4769 		goto bnx_init_exit;
   4770 	}
   4771 
   4772 	if ((error = bnx_chipinit(sc)) != 0) {
   4773 		aprint_error_dev(sc->bnx_dev,
   4774 		    "Controller initialization failed!\n");
   4775 		goto bnx_init_exit;
   4776 	}
   4777 
   4778 	if ((error = bnx_blockinit(sc)) != 0) {
   4779 		aprint_error_dev(sc->bnx_dev,
   4780 		    "Block initialization failed!\n");
   4781 		goto bnx_init_exit;
   4782 	}
   4783 
   4784 	/* Calculate and program the Ethernet MRU size. */
   4785 	if (ifp->if_mtu <= ETHERMTU) {
   4786 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4787 		sc->mbuf_alloc_size = MCLBYTES;
   4788 	} else {
   4789 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4790 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   4791 	}
   4792 
   4793 
   4794 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4795 	    __func__, ether_mtu);
   4796 
   4797 	/*
   4798 	 * Program the MRU and enable Jumbo frame
   4799 	 * support.
   4800 	 */
   4801 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4802 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4803 
   4804 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4805 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4806 
   4807 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4808 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4809 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4810 
   4811 	/* Program appropriate promiscuous/multicast filtering. */
   4812 	bnx_iff(sc);
   4813 
   4814 	/* Init RX buffer descriptor chain. */
   4815 	bnx_init_rx_chain(sc);
   4816 
   4817 	/* Init TX buffer descriptor chain. */
   4818 	bnx_init_tx_chain(sc);
   4819 
   4820 	/* Enable host interrupts. */
   4821 	bnx_enable_intr(sc);
   4822 
   4823 	if ((error = ether_mediachange(ifp)) != 0)
   4824 		goto bnx_init_exit;
   4825 
   4826 	SET(ifp->if_flags, IFF_RUNNING);
   4827 	CLR(ifp->if_flags, IFF_OACTIVE);
   4828 
   4829 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4830 
   4831 bnx_init_exit:
   4832 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4833 
   4834 	splx(s);
   4835 
   4836 	return error;
   4837 }
   4838 
   4839 /****************************************************************************/
   4840 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4841 /* memory visible to the controller.                                        */
   4842 /*                                                                          */
   4843 /* Returns:                                                                 */
   4844 /*   0 for success, positive value for failure.                             */
   4845 /****************************************************************************/
   4846 int
   4847 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   4848 {
   4849 	struct bnx_pkt		*pkt;
   4850 	bus_dmamap_t		map;
   4851 	struct tx_bd		*txbd = NULL;
   4852 	u_int16_t		vlan_tag = 0, flags = 0;
   4853 	u_int16_t		chain_prod, prod;
   4854 #ifdef BNX_DEBUG
   4855 	u_int16_t		debug_prod;
   4856 #endif
   4857 	u_int32_t		addr, prod_bseq;
   4858 	int			i, error;
   4859 	struct m_tag		*mtag;
   4860 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
   4861 
   4862 	mutex_enter(&sc->tx_pkt_mtx);
   4863 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   4864 	if (pkt == NULL) {
   4865 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   4866 			mutex_exit(&sc->tx_pkt_mtx);
   4867 			return ENETDOWN;
   4868 		}
   4869 
   4870 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   4871 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   4872 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
   4873 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4874 		}
   4875 
   4876 		mutex_exit(&sc->tx_pkt_mtx);
   4877 		return ENOMEM;
   4878 	}
   4879 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4880 	mutex_exit(&sc->tx_pkt_mtx);
   4881 
   4882 	/* Transfer any checksum offload flags to the bd. */
   4883 	if (m->m_pkthdr.csum_flags) {
   4884 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4885 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4886 		if (m->m_pkthdr.csum_flags &
   4887 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4888 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4889 	}
   4890 
   4891 	/* Transfer any VLAN tags to the bd. */
   4892 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
   4893 	if (mtag != NULL) {
   4894 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4895 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4896 	}
   4897 
   4898 	/* Map the mbuf into DMAable memory. */
   4899 	prod = sc->tx_prod;
   4900 	chain_prod = TX_CHAIN_IDX(prod);
   4901 	map = pkt->pkt_dmamap;
   4902 
   4903 	/* Map the mbuf into our DMA address space. */
   4904 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   4905 	if (error != 0) {
   4906 		aprint_error_dev(sc->bnx_dev,
   4907 		    "Error mapping mbuf into TX chain!\n");
   4908 		sc->tx_dma_map_failures++;
   4909 		goto maperr;
   4910 	}
   4911 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4912 	    BUS_DMASYNC_PREWRITE);
   4913         /* Make sure there's room in the chain */
   4914 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   4915                 goto nospace;
   4916 
   4917 	/* prod points to an empty tx_bd at this point. */
   4918 	prod_bseq = sc->tx_prod_bseq;
   4919 #ifdef BNX_DEBUG
   4920 	debug_prod = chain_prod;
   4921 #endif
   4922 	DBPRINT(sc, BNX_INFO_SEND,
   4923 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   4924 		"prod_bseq = 0x%08X\n",
   4925 		__func__, prod, chain_prod, prod_bseq);
   4926 
   4927 	/*
   4928 	 * Cycle through each mbuf segment that makes up
   4929 	 * the outgoing frame, gathering the mapping info
   4930 	 * for that segment and creating a tx_bd for the
   4931 	 * mbuf.
   4932 	 */
   4933 	for (i = 0; i < map->dm_nsegs ; i++) {
   4934 		chain_prod = TX_CHAIN_IDX(prod);
   4935 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   4936 
   4937 		addr = (u_int32_t)map->dm_segs[i].ds_addr;
   4938 		txbd->tx_bd_haddr_lo = addr;
   4939 		addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
   4940 		txbd->tx_bd_haddr_hi = addr;
   4941 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   4942 		txbd->tx_bd_vlan_tag = vlan_tag;
   4943 		txbd->tx_bd_flags = flags;
   4944 		prod_bseq += map->dm_segs[i].ds_len;
   4945 		if (i == 0)
   4946 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   4947 		prod = NEXT_TX_BD(prod);
   4948 	}
   4949 	/* Set the END flag on the last TX buffer descriptor. */
   4950 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   4951 
   4952 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   4953 
   4954 	DBPRINT(sc, BNX_INFO_SEND,
   4955 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   4956 		"prod_bseq = 0x%08X\n",
   4957 		__func__, prod, chain_prod, prod_bseq);
   4958 
   4959 	pkt->pkt_mbuf = m;
   4960 	pkt->pkt_end_desc = chain_prod;
   4961 
   4962 	mutex_enter(&sc->tx_pkt_mtx);
   4963 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   4964 	mutex_exit(&sc->tx_pkt_mtx);
   4965 
   4966 	sc->used_tx_bd += map->dm_nsegs;
   4967 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4968 		__FILE__, __LINE__, sc->used_tx_bd);
   4969 
   4970 	/* Update some debug statistics counters */
   4971 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   4972 	    sc->tx_hi_watermark = sc->used_tx_bd);
   4973 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   4974 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   4975 
   4976 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   4977 	    map->dm_nsegs));
   4978 
   4979 	/* prod points to the next free tx_bd at this point. */
   4980 	sc->tx_prod = prod;
   4981 	sc->tx_prod_bseq = prod_bseq;
   4982 
   4983 	return 0;
   4984 
   4985 
   4986 nospace:
   4987 	bus_dmamap_unload(sc->bnx_dmatag, map);
   4988 maperr:
   4989 	mutex_enter(&sc->tx_pkt_mtx);
   4990 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4991 	mutex_exit(&sc->tx_pkt_mtx);
   4992 
   4993 	return ENOMEM;
   4994 }
   4995 
   4996 /****************************************************************************/
   4997 /* Main transmit routine.                                                   */
   4998 /*                                                                          */
   4999 /* Returns:                                                                 */
   5000 /*   Nothing.                                                               */
   5001 /****************************************************************************/
   5002 void
   5003 bnx_start(struct ifnet *ifp)
   5004 {
   5005 	struct bnx_softc	*sc = ifp->if_softc;
   5006 	struct mbuf		*m_head = NULL;
   5007 	int			count = 0;
   5008 #ifdef BNX_DEBUG
   5009 	u_int16_t		tx_chain_prod;
   5010 #endif
   5011 
   5012 	/* If there's no link or the transmit queue is empty then just exit. */
   5013 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   5014 		DBPRINT(sc, BNX_INFO_SEND,
   5015 		    "%s(): output active or device not running.\n", __func__);
   5016 		goto bnx_start_exit;
   5017 	}
   5018 
   5019 	/* prod points to the next free tx_bd. */
   5020 #ifdef BNX_DEBUG
   5021 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5022 #endif
   5023 
   5024 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5025 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5026 	    "used_tx %d max_tx %d\n",
   5027 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5028 	    sc->used_tx_bd, sc->max_tx_bd);
   5029 
   5030 	/*
   5031 	 * Keep adding entries while there is space in the ring.
   5032 	 */
   5033 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5034 		/* Check for any frames to send. */
   5035 		IFQ_POLL(&ifp->if_snd, m_head);
   5036 		if (m_head == NULL)
   5037 			break;
   5038 
   5039 		/*
   5040 		 * Pack the data into the transmit ring. If we
   5041 		 * don't have room, set the OACTIVE flag to wait
   5042 		 * for the NIC to drain the chain.
   5043 		 */
   5044 		if (bnx_tx_encap(sc, m_head)) {
   5045 			ifp->if_flags |= IFF_OACTIVE;
   5046 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5047 			    "business! Total tx_bd used = %d\n",
   5048 			    sc->used_tx_bd);
   5049 			break;
   5050 		}
   5051 
   5052 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5053 		count++;
   5054 
   5055 		/* Send a copy of the frame to any BPF listeners. */
   5056 		bpf_mtap(ifp, m_head);
   5057 	}
   5058 
   5059 	if (count == 0) {
   5060 		/* no packets were dequeued */
   5061 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5062 		    "%s(): No packets were dequeued\n", __func__);
   5063 		goto bnx_start_exit;
   5064 	}
   5065 
   5066 	/* Update the driver's counters. */
   5067 #ifdef BNX_DEBUG
   5068 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5069 #endif
   5070 
   5071 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   5072 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
   5073 	    tx_chain_prod, sc->tx_prod_bseq);
   5074 
   5075 	/* Start the transmit. */
   5076 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5077 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5078 
   5079 	/* Set the tx timeout. */
   5080 	ifp->if_timer = BNX_TX_TIMEOUT;
   5081 
   5082 bnx_start_exit:
   5083 	return;
   5084 }
   5085 
   5086 /****************************************************************************/
   5087 /* Handles any IOCTL calls from the operating system.                       */
   5088 /*                                                                          */
   5089 /* Returns:                                                                 */
   5090 /*   0 for success, positive value for failure.                             */
   5091 /****************************************************************************/
   5092 int
   5093 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5094 {
   5095 	struct bnx_softc	*sc = ifp->if_softc;
   5096 	struct ifreq		*ifr = (struct ifreq *) data;
   5097 	struct mii_data		*mii = &sc->bnx_mii;
   5098 	int			s, error = 0;
   5099 
   5100 	s = splnet();
   5101 
   5102 	switch (command) {
   5103 	case SIOCSIFFLAGS:
   5104 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5105 			break;
   5106 		/* XXX set an ifflags callback and let ether_ioctl
   5107 		 * handle all of this.
   5108 		 */
   5109 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5110 			if (ifp->if_flags & IFF_RUNNING)
   5111 				error = ENETRESET;
   5112 			else
   5113 				bnx_init(ifp);
   5114 		} else if (ifp->if_flags & IFF_RUNNING)
   5115 			bnx_stop(ifp, 1);
   5116 		break;
   5117 
   5118 	case SIOCSIFMEDIA:
   5119 	case SIOCGIFMEDIA:
   5120 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5121 		    sc->bnx_phy_flags);
   5122 
   5123 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5124 		break;
   5125 
   5126 	default:
   5127 		error = ether_ioctl(ifp, command, data);
   5128 	}
   5129 
   5130 	if (error == ENETRESET) {
   5131 		if (ifp->if_flags & IFF_RUNNING)
   5132 			bnx_iff(sc);
   5133 		error = 0;
   5134 	}
   5135 
   5136 	splx(s);
   5137 	return error;
   5138 }
   5139 
   5140 /****************************************************************************/
   5141 /* Transmit timeout handler.                                                */
   5142 /*                                                                          */
   5143 /* Returns:                                                                 */
   5144 /*   Nothing.                                                               */
   5145 /****************************************************************************/
   5146 void
   5147 bnx_watchdog(struct ifnet *ifp)
   5148 {
   5149 	struct bnx_softc	*sc = ifp->if_softc;
   5150 
   5151 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5152 	    bnx_dump_status_block(sc));
   5153 	/*
   5154 	 * If we are in this routine because of pause frames, then
   5155 	 * don't reset the hardware.
   5156 	 */
   5157 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5158 		return;
   5159 
   5160 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5161 
   5162 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5163 
   5164 	bnx_init(ifp);
   5165 
   5166 	ifp->if_oerrors++;
   5167 }
   5168 
   5169 /*
   5170  * Interrupt handler.
   5171  */
   5172 /****************************************************************************/
   5173 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5174 /* interrupt and then calls a separate routine for handle the various       */
   5175 /* interrupt causes (PHY, TX, RX).                                          */
   5176 /*                                                                          */
   5177 /* Returns:                                                                 */
   5178 /*   0 for success, positive value for failure.                             */
   5179 /****************************************************************************/
   5180 int
   5181 bnx_intr(void *xsc)
   5182 {
   5183 	struct bnx_softc	*sc;
   5184 	struct ifnet		*ifp;
   5185 	u_int32_t		status_attn_bits;
   5186 	const struct status_block *sblk;
   5187 
   5188 	sc = xsc;
   5189 
   5190 	ifp = &sc->bnx_ec.ec_if;
   5191 
   5192 	if (!device_is_active(sc->bnx_dev) ||
   5193 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5194 		return 0;
   5195 
   5196 	DBRUNIF(1, sc->interrupts_generated++);
   5197 
   5198 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5199 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   5200 
   5201 	/*
   5202 	 * If the hardware status block index
   5203 	 * matches the last value read by the
   5204 	 * driver and we haven't asserted our
   5205 	 * interrupt then there's nothing to do.
   5206 	 */
   5207 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   5208 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   5209 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   5210 		return 0;
   5211 
   5212 	/* Ack the interrupt and stop others from occuring. */
   5213 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5214 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   5215 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5216 
   5217 	/* Keep processing data as long as there is work to do. */
   5218 	for (;;) {
   5219 		sblk = sc->status_block;
   5220 		status_attn_bits = sblk->status_attn_bits;
   5221 
   5222 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5223 		    aprint_debug("Simulating unexpected status attention bit set.");
   5224 		    status_attn_bits = status_attn_bits |
   5225 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5226 
   5227 		/* Was it a link change interrupt? */
   5228 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5229 		    (sblk->status_attn_bits_ack &
   5230 		    STATUS_ATTN_BITS_LINK_STATE))
   5231 			bnx_phy_intr(sc);
   5232 
   5233 		/* If any other attention is asserted then the chip is toast. */
   5234 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5235 		    (sblk->status_attn_bits_ack &
   5236 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5237 			DBRUN(1, sc->unexpected_attentions++);
   5238 
   5239 			BNX_PRINTF(sc,
   5240 			    "Fatal attention detected: 0x%08X\n",
   5241 			    sblk->status_attn_bits);
   5242 
   5243 			DBRUN(BNX_FATAL,
   5244 			    if (bnx_debug_unexpected_attention == 0)
   5245 			    bnx_breakpoint(sc));
   5246 
   5247 			bnx_init(ifp);
   5248 			return 1;
   5249 		}
   5250 
   5251 		/* Check for any completed RX frames. */
   5252 		if (sblk->status_rx_quick_consumer_index0 !=
   5253 		    sc->hw_rx_cons)
   5254 			bnx_rx_intr(sc);
   5255 
   5256 		/* Check for any completed TX frames. */
   5257 		if (sblk->status_tx_quick_consumer_index0 !=
   5258 		    sc->hw_tx_cons)
   5259 			bnx_tx_intr(sc);
   5260 
   5261 		/* Save the status block index value for use during the
   5262 		 * next interrupt.
   5263 		 */
   5264 		sc->last_status_idx = sblk->status_idx;
   5265 
   5266 		/* Prevent speculative reads from getting ahead of the
   5267 		 * status block.
   5268 		 */
   5269 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   5270 		    BUS_SPACE_BARRIER_READ);
   5271 
   5272 		/* If there's no work left then exit the isr. */
   5273 		if ((sblk->status_rx_quick_consumer_index0 ==
   5274 			sc->hw_rx_cons) &&
   5275 		    (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
   5276 			break;
   5277 	}
   5278 
   5279 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5280 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   5281 
   5282 	/* Re-enable interrupts. */
   5283 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5284 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   5285 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5286 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5287 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   5288 
   5289 	/* Handle any frames that arrived while handling the interrupt. */
   5290 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   5291 		bnx_start(ifp);
   5292 
   5293 	return 1;
   5294 }
   5295 
   5296 /****************************************************************************/
   5297 /* Programs the various packet receive modes (broadcast and multicast).     */
   5298 /*                                                                          */
   5299 /* Returns:                                                                 */
   5300 /*   Nothing.                                                               */
   5301 /****************************************************************************/
   5302 void
   5303 bnx_iff(struct bnx_softc *sc)
   5304 {
   5305 	struct ethercom		*ec = &sc->bnx_ec;
   5306 	struct ifnet		*ifp = &ec->ec_if;
   5307 	struct ether_multi	*enm;
   5308 	struct ether_multistep	step;
   5309 	u_int32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5310 	u_int32_t		rx_mode, sort_mode;
   5311 	int			h, i;
   5312 
   5313 	/* Initialize receive mode default settings. */
   5314 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5315 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5316 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5317 	ifp->if_flags &= ~IFF_ALLMULTI;
   5318 
   5319 	/*
   5320 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5321 	 * be enbled.
   5322 	 */
   5323 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5324 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5325 
   5326 	/*
   5327 	 * Check for promiscuous, all multicast, or selected
   5328 	 * multicast address filtering.
   5329 	 */
   5330 	if (ifp->if_flags & IFF_PROMISC) {
   5331 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5332 
   5333 		ifp->if_flags |= IFF_ALLMULTI;
   5334 		/* Enable promiscuous mode. */
   5335 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5336 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5337 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5338 allmulti:
   5339 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5340 
   5341 		ifp->if_flags |= IFF_ALLMULTI;
   5342 		/* Enable all multicast addresses. */
   5343 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5344 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5345 			    0xffffffff);
   5346 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5347 	} else {
   5348 		/* Accept one or more multicast(s). */
   5349 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5350 
   5351 		ETHER_FIRST_MULTI(step, ec, enm);
   5352 		while (enm != NULL) {
   5353 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5354 			    ETHER_ADDR_LEN)) {
   5355 				goto allmulti;
   5356 			}
   5357 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5358 			    0xFF;
   5359 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5360 			ETHER_NEXT_MULTI(step, enm);
   5361 		}
   5362 
   5363 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5364 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5365 			    hashes[i]);
   5366 
   5367 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5368 	}
   5369 
   5370 	/* Only make changes if the recive mode has actually changed. */
   5371 	if (rx_mode != sc->rx_mode) {
   5372 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5373 		    rx_mode);
   5374 
   5375 		sc->rx_mode = rx_mode;
   5376 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5377 	}
   5378 
   5379 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5380 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5381 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5382 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5383 }
   5384 
   5385 /****************************************************************************/
   5386 /* Called periodically to updates statistics from the controllers           */
   5387 /* statistics block.                                                        */
   5388 /*                                                                          */
   5389 /* Returns:                                                                 */
   5390 /*   Nothing.                                                               */
   5391 /****************************************************************************/
   5392 void
   5393 bnx_stats_update(struct bnx_softc *sc)
   5394 {
   5395 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5396 	struct statistics_block	*stats;
   5397 
   5398 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5399 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5400 	    BUS_DMASYNC_POSTREAD);
   5401 
   5402 	stats = (struct statistics_block *)sc->stats_block;
   5403 
   5404 	/*
   5405 	 * Update the interface statistics from the
   5406 	 * hardware statistics.
   5407 	 */
   5408 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5409 
   5410 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5411 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5412 	    (u_long)stats->stat_IfInMBUFDiscards +
   5413 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5414 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5415 
   5416 	ifp->if_oerrors = (u_long)
   5417 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5418 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5419 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5420 
   5421 	/*
   5422 	 * Certain controllers don't report
   5423 	 * carrier sense errors correctly.
   5424 	 * See errata E11_5708CA0_1165.
   5425 	 */
   5426 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5427 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5428 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5429 
   5430 	/*
   5431 	 * Update the sysctl statistics from the
   5432 	 * hardware statistics.
   5433 	 */
   5434 	sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
   5435 	    (u_int64_t) stats->stat_IfHCInOctets_lo;
   5436 
   5437 	sc->stat_IfHCInBadOctets =
   5438 	    ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5439 	    (u_int64_t) stats->stat_IfHCInBadOctets_lo;
   5440 
   5441 	sc->stat_IfHCOutOctets =
   5442 	    ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5443 	    (u_int64_t) stats->stat_IfHCOutOctets_lo;
   5444 
   5445 	sc->stat_IfHCOutBadOctets =
   5446 	    ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5447 	    (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
   5448 
   5449 	sc->stat_IfHCInUcastPkts =
   5450 	    ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5451 	    (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
   5452 
   5453 	sc->stat_IfHCInMulticastPkts =
   5454 	    ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5455 	    (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
   5456 
   5457 	sc->stat_IfHCInBroadcastPkts =
   5458 	    ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5459 	    (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5460 
   5461 	sc->stat_IfHCOutUcastPkts =
   5462 	   ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5463 	    (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
   5464 
   5465 	sc->stat_IfHCOutMulticastPkts =
   5466 	    ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5467 	    (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5468 
   5469 	sc->stat_IfHCOutBroadcastPkts =
   5470 	    ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5471 	    (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5472 
   5473 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5474 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5475 
   5476 	sc->stat_Dot3StatsCarrierSenseErrors =
   5477 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5478 
   5479 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5480 
   5481 	sc->stat_Dot3StatsAlignmentErrors =
   5482 	    stats->stat_Dot3StatsAlignmentErrors;
   5483 
   5484 	sc->stat_Dot3StatsSingleCollisionFrames =
   5485 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5486 
   5487 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5488 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5489 
   5490 	sc->stat_Dot3StatsDeferredTransmissions =
   5491 	    stats->stat_Dot3StatsDeferredTransmissions;
   5492 
   5493 	sc->stat_Dot3StatsExcessiveCollisions =
   5494 	    stats->stat_Dot3StatsExcessiveCollisions;
   5495 
   5496 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5497 
   5498 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5499 
   5500 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5501 
   5502 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5503 
   5504 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5505 
   5506 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5507 
   5508 	sc->stat_EtherStatsPktsRx64Octets =
   5509 	    stats->stat_EtherStatsPktsRx64Octets;
   5510 
   5511 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5512 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5513 
   5514 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5515 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5516 
   5517 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5518 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5519 
   5520 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5521 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5522 
   5523 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5524 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5525 
   5526 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5527 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5528 
   5529 	sc->stat_EtherStatsPktsTx64Octets =
   5530 	    stats->stat_EtherStatsPktsTx64Octets;
   5531 
   5532 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5533 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5534 
   5535 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5536 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5537 
   5538 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5539 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5540 
   5541 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5542 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5543 
   5544 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5545 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5546 
   5547 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5548 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5549 
   5550 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5551 
   5552 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5553 
   5554 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5555 
   5556 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5557 
   5558 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5559 
   5560 	sc->stat_MacControlFramesReceived =
   5561 	    stats->stat_MacControlFramesReceived;
   5562 
   5563 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5564 
   5565 	sc->stat_IfInFramesL2FilterDiscards =
   5566 	    stats->stat_IfInFramesL2FilterDiscards;
   5567 
   5568 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5569 
   5570 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5571 
   5572 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5573 
   5574 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5575 
   5576 	sc->stat_CatchupInRuleCheckerDiscards =
   5577 	    stats->stat_CatchupInRuleCheckerDiscards;
   5578 
   5579 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5580 
   5581 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5582 
   5583 	sc->stat_CatchupInRuleCheckerP4Hit =
   5584 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5585 
   5586 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5587 }
   5588 
   5589 void
   5590 bnx_tick(void *xsc)
   5591 {
   5592 	struct bnx_softc	*sc = xsc;
   5593 	struct mii_data		*mii;
   5594 	u_int32_t		msg;
   5595 	u_int16_t		prod, chain_prod;
   5596 	u_int32_t		prod_bseq;
   5597 	int s = splnet();
   5598 
   5599 	/* Tell the firmware that the driver is still running. */
   5600 #ifdef BNX_DEBUG
   5601 	msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5602 #else
   5603 	msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5604 #endif
   5605 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5606 
   5607 	/* Update the statistics from the hardware statistics block. */
   5608 	bnx_stats_update(sc);
   5609 
   5610 	/* Schedule the next tick. */
   5611 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5612 
   5613 	mii = &sc->bnx_mii;
   5614 	mii_tick(mii);
   5615 
   5616 	/* try to get more RX buffers, just in case */
   5617 	prod = sc->rx_prod;
   5618 	prod_bseq = sc->rx_prod_bseq;
   5619 	chain_prod = RX_CHAIN_IDX(prod);
   5620 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5621 	sc->rx_prod = prod;
   5622 	sc->rx_prod_bseq = prod_bseq;
   5623 	splx(s);
   5624 	return;
   5625 }
   5626 
   5627 /****************************************************************************/
   5628 /* BNX Debug Routines                                                       */
   5629 /****************************************************************************/
   5630 #ifdef BNX_DEBUG
   5631 
   5632 /****************************************************************************/
   5633 /* Prints out information about an mbuf.                                    */
   5634 /*                                                                          */
   5635 /* Returns:                                                                 */
   5636 /*   Nothing.                                                               */
   5637 /****************************************************************************/
   5638 void
   5639 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5640 {
   5641 	struct mbuf		*mp = m;
   5642 
   5643 	if (m == NULL) {
   5644 		/* Index out of range. */
   5645 		aprint_error("mbuf ptr is null!\n");
   5646 		return;
   5647 	}
   5648 
   5649 	while (mp) {
   5650 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5651 		    mp, mp->m_len);
   5652 
   5653 		if (mp->m_flags & M_EXT)
   5654 			aprint_debug("M_EXT ");
   5655 		if (mp->m_flags & M_PKTHDR)
   5656 			aprint_debug("M_PKTHDR ");
   5657 		aprint_debug("\n");
   5658 
   5659 		if (mp->m_flags & M_EXT)
   5660 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   5661 			    mp, mp->m_ext.ext_size);
   5662 
   5663 		mp = mp->m_next;
   5664 	}
   5665 }
   5666 
   5667 /****************************************************************************/
   5668 /* Prints out the mbufs in the TX mbuf chain.                               */
   5669 /*                                                                          */
   5670 /* Returns:                                                                 */
   5671 /*   Nothing.                                                               */
   5672 /****************************************************************************/
   5673 void
   5674 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5675 {
   5676 #if 0
   5677 	struct mbuf		*m;
   5678 	int			i;
   5679 
   5680 	aprint_debug_dev(sc->bnx_dev,
   5681 	    "----------------------------"
   5682 	    "  tx mbuf data  "
   5683 	    "----------------------------\n");
   5684 
   5685 	for (i = 0; i < count; i++) {
   5686 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5687 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5688 		bnx_dump_mbuf(sc, m);
   5689 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5690 	}
   5691 
   5692 	aprint_debug_dev(sc->bnx_dev,
   5693 	    "--------------------------------------------"
   5694 	    "----------------------------\n");
   5695 #endif
   5696 }
   5697 
   5698 /*
   5699  * This routine prints the RX mbuf chain.
   5700  */
   5701 void
   5702 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5703 {
   5704 	struct mbuf		*m;
   5705 	int			i;
   5706 
   5707 	aprint_debug_dev(sc->bnx_dev,
   5708 	    "----------------------------"
   5709 	    "  rx mbuf data  "
   5710 	    "----------------------------\n");
   5711 
   5712 	for (i = 0; i < count; i++) {
   5713 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5714 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5715 		bnx_dump_mbuf(sc, m);
   5716 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5717 	}
   5718 
   5719 
   5720 	aprint_debug_dev(sc->bnx_dev,
   5721 	    "--------------------------------------------"
   5722 	    "----------------------------\n");
   5723 }
   5724 
   5725 void
   5726 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5727 {
   5728 	if (idx > MAX_TX_BD)
   5729 		/* Index out of range. */
   5730 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5731 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5732 		/* TX Chain page pointer. */
   5733 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5734 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5735 		    txbd->tx_bd_haddr_lo);
   5736 	else
   5737 		/* Normal tx_bd entry. */
   5738 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5739 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5740 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5741 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5742 		    txbd->tx_bd_flags);
   5743 }
   5744 
   5745 void
   5746 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5747 {
   5748 	if (idx > MAX_RX_BD)
   5749 		/* Index out of range. */
   5750 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5751 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5752 		/* TX Chain page pointer. */
   5753 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5754 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5755 		    rxbd->rx_bd_haddr_lo);
   5756 	else
   5757 		/* Normal tx_bd entry. */
   5758 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5759 		    "0x%08X, flags = 0x%08X\n", idx,
   5760 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5761 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5762 }
   5763 
   5764 void
   5765 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5766 {
   5767 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5768 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5769 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5770 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5771 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5772 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5773 }
   5774 
   5775 /*
   5776  * This routine prints the TX chain.
   5777  */
   5778 void
   5779 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5780 {
   5781 	struct tx_bd		*txbd;
   5782 	int			i;
   5783 
   5784 	/* First some info about the tx_bd chain structure. */
   5785 	aprint_debug_dev(sc->bnx_dev,
   5786 	    "----------------------------"
   5787 	    "  tx_bd  chain  "
   5788 	    "----------------------------\n");
   5789 
   5790 	BNX_PRINTF(sc,
   5791 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5792 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
   5793 
   5794 	BNX_PRINTF(sc,
   5795 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5796 	    (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
   5797 
   5798 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
   5799 
   5800 	aprint_error_dev(sc->bnx_dev, ""
   5801 	    "-----------------------------"
   5802 	    "   tx_bd data   "
   5803 	    "-----------------------------\n");
   5804 
   5805 	/* Now print out the tx_bd's themselves. */
   5806 	for (i = 0; i < count; i++) {
   5807 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5808 		bnx_dump_txbd(sc, tx_prod, txbd);
   5809 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5810 	}
   5811 
   5812 	aprint_debug_dev(sc->bnx_dev,
   5813 	    "-----------------------------"
   5814 	    "--------------"
   5815 	    "-----------------------------\n");
   5816 }
   5817 
   5818 /*
   5819  * This routine prints the RX chain.
   5820  */
   5821 void
   5822 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5823 {
   5824 	struct rx_bd		*rxbd;
   5825 	int			i;
   5826 
   5827 	/* First some info about the tx_bd chain structure. */
   5828 	aprint_debug_dev(sc->bnx_dev,
   5829 	    "----------------------------"
   5830 	    "  rx_bd  chain  "
   5831 	    "----------------------------\n");
   5832 
   5833 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   5834 
   5835 	BNX_PRINTF(sc,
   5836 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5837 	    (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
   5838 
   5839 	BNX_PRINTF(sc,
   5840 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5841 	    (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
   5842 
   5843 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
   5844 
   5845 	aprint_error_dev(sc->bnx_dev,
   5846 	    "----------------------------"
   5847 	    "   rx_bd data   "
   5848 	    "----------------------------\n");
   5849 
   5850 	/* Now print out the rx_bd's themselves. */
   5851 	for (i = 0; i < count; i++) {
   5852 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5853 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5854 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5855 	}
   5856 
   5857 	aprint_debug_dev(sc->bnx_dev,
   5858 	    "----------------------------"
   5859 	    "--------------"
   5860 	    "----------------------------\n");
   5861 }
   5862 
   5863 /*
   5864  * This routine prints the status block.
   5865  */
   5866 void
   5867 bnx_dump_status_block(struct bnx_softc *sc)
   5868 {
   5869 	struct status_block	*sblk;
   5870 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5871 	    BUS_DMASYNC_POSTREAD);
   5872 
   5873 	sblk = sc->status_block;
   5874 
   5875    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
   5876 	    "-----------------------------\n");
   5877 
   5878 	BNX_PRINTF(sc,
   5879 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5880 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5881 	    sblk->status_idx);
   5882 
   5883 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5884 	    sblk->status_rx_quick_consumer_index0,
   5885 	    sblk->status_tx_quick_consumer_index0);
   5886 
   5887 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5888 
   5889 	/* Theses indices are not used for normal L2 drivers. */
   5890 	if (sblk->status_rx_quick_consumer_index1 ||
   5891 		sblk->status_tx_quick_consumer_index1)
   5892 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5893 		    sblk->status_rx_quick_consumer_index1,
   5894 		    sblk->status_tx_quick_consumer_index1);
   5895 
   5896 	if (sblk->status_rx_quick_consumer_index2 ||
   5897 		sblk->status_tx_quick_consumer_index2)
   5898 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5899 		    sblk->status_rx_quick_consumer_index2,
   5900 		    sblk->status_tx_quick_consumer_index2);
   5901 
   5902 	if (sblk->status_rx_quick_consumer_index3 ||
   5903 		sblk->status_tx_quick_consumer_index3)
   5904 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5905 		    sblk->status_rx_quick_consumer_index3,
   5906 		    sblk->status_tx_quick_consumer_index3);
   5907 
   5908 	if (sblk->status_rx_quick_consumer_index4 ||
   5909 		sblk->status_rx_quick_consumer_index5)
   5910 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5911 		    sblk->status_rx_quick_consumer_index4,
   5912 		    sblk->status_rx_quick_consumer_index5);
   5913 
   5914 	if (sblk->status_rx_quick_consumer_index6 ||
   5915 		sblk->status_rx_quick_consumer_index7)
   5916 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5917 		    sblk->status_rx_quick_consumer_index6,
   5918 		    sblk->status_rx_quick_consumer_index7);
   5919 
   5920 	if (sblk->status_rx_quick_consumer_index8 ||
   5921 		sblk->status_rx_quick_consumer_index9)
   5922 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5923 		    sblk->status_rx_quick_consumer_index8,
   5924 		    sblk->status_rx_quick_consumer_index9);
   5925 
   5926 	if (sblk->status_rx_quick_consumer_index10 ||
   5927 		sblk->status_rx_quick_consumer_index11)
   5928 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   5929 		    sblk->status_rx_quick_consumer_index10,
   5930 		    sblk->status_rx_quick_consumer_index11);
   5931 
   5932 	if (sblk->status_rx_quick_consumer_index12 ||
   5933 		sblk->status_rx_quick_consumer_index13)
   5934 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   5935 		    sblk->status_rx_quick_consumer_index12,
   5936 		    sblk->status_rx_quick_consumer_index13);
   5937 
   5938 	if (sblk->status_rx_quick_consumer_index14 ||
   5939 		sblk->status_rx_quick_consumer_index15)
   5940 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   5941 		    sblk->status_rx_quick_consumer_index14,
   5942 		    sblk->status_rx_quick_consumer_index15);
   5943 
   5944 	if (sblk->status_completion_producer_index ||
   5945 		sblk->status_cmd_consumer_index)
   5946 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   5947 		    sblk->status_completion_producer_index,
   5948 		    sblk->status_cmd_consumer_index);
   5949 
   5950 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   5951 	    "-----------------------------\n");
   5952 }
   5953 
   5954 /*
   5955  * This routine prints the statistics block.
   5956  */
   5957 void
   5958 bnx_dump_stats_block(struct bnx_softc *sc)
   5959 {
   5960 	struct statistics_block	*sblk;
   5961 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5962 	    BUS_DMASYNC_POSTREAD);
   5963 
   5964 	sblk = sc->stats_block;
   5965 
   5966 	aprint_debug_dev(sc->bnx_dev, ""
   5967 	    "-----------------------------"
   5968 	    " Stats  Block "
   5969 	    "-----------------------------\n");
   5970 
   5971 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   5972 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   5973 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   5974 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   5975 
   5976 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   5977 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   5978 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   5979 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   5980 
   5981 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   5982 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   5983 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   5984 	    sblk->stat_IfHCInMulticastPkts_hi,
   5985 	    sblk->stat_IfHCInMulticastPkts_lo);
   5986 
   5987 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   5988 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   5989 	    sblk->stat_IfHCInBroadcastPkts_hi,
   5990 	    sblk->stat_IfHCInBroadcastPkts_lo,
   5991 	    sblk->stat_IfHCOutUcastPkts_hi,
   5992 	    sblk->stat_IfHCOutUcastPkts_lo);
   5993 
   5994 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   5995 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   5996 	    sblk->stat_IfHCOutMulticastPkts_hi,
   5997 	    sblk->stat_IfHCOutMulticastPkts_lo,
   5998 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   5999 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   6000 
   6001 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   6002 		BNX_PRINTF(sc, "0x%08X : "
   6003 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6004 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6005 
   6006 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6007 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6008 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6009 
   6010 	if (sblk->stat_Dot3StatsFCSErrors)
   6011 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6012 		    sblk->stat_Dot3StatsFCSErrors);
   6013 
   6014 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6015 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6016 		    sblk->stat_Dot3StatsAlignmentErrors);
   6017 
   6018 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6019 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6020 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6021 
   6022 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6023 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6024 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6025 
   6026 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6027 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6028 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6029 
   6030 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6031 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6032 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6033 
   6034 	if (sblk->stat_Dot3StatsLateCollisions)
   6035 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6036 		    sblk->stat_Dot3StatsLateCollisions);
   6037 
   6038 	if (sblk->stat_EtherStatsCollisions)
   6039 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6040 		    sblk->stat_EtherStatsCollisions);
   6041 
   6042 	if (sblk->stat_EtherStatsFragments)
   6043 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6044 		    sblk->stat_EtherStatsFragments);
   6045 
   6046 	if (sblk->stat_EtherStatsJabbers)
   6047 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6048 		    sblk->stat_EtherStatsJabbers);
   6049 
   6050 	if (sblk->stat_EtherStatsUndersizePkts)
   6051 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6052 		    sblk->stat_EtherStatsUndersizePkts);
   6053 
   6054 	if (sblk->stat_EtherStatsOverrsizePkts)
   6055 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6056 		    sblk->stat_EtherStatsOverrsizePkts);
   6057 
   6058 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6059 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6060 		    sblk->stat_EtherStatsPktsRx64Octets);
   6061 
   6062 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6063 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6064 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6065 
   6066 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6067 		BNX_PRINTF(sc, "0x%08X : "
   6068 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6069 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6070 
   6071 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6072 		BNX_PRINTF(sc, "0x%08X : "
   6073 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6074 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6075 
   6076 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6077 		BNX_PRINTF(sc, "0x%08X : "
   6078 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6079 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6080 
   6081 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6082 		BNX_PRINTF(sc, "0x%08X : "
   6083 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6084 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6085 
   6086 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6087 		BNX_PRINTF(sc, "0x%08X : "
   6088 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6089 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6090 
   6091 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6092 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6093 		    sblk->stat_EtherStatsPktsTx64Octets);
   6094 
   6095 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6096 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6097 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6098 
   6099 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6100 		BNX_PRINTF(sc, "0x%08X : "
   6101 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6102 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6103 
   6104 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6105 		BNX_PRINTF(sc, "0x%08X : "
   6106 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6107 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6108 
   6109 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6110 		BNX_PRINTF(sc, "0x%08X : "
   6111 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6112 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6113 
   6114 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6115 		BNX_PRINTF(sc, "0x%08X : "
   6116 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6117 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6118 
   6119 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6120 		BNX_PRINTF(sc, "0x%08X : "
   6121 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6122 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6123 
   6124 	if (sblk->stat_XonPauseFramesReceived)
   6125 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6126 		    sblk->stat_XonPauseFramesReceived);
   6127 
   6128 	if (sblk->stat_XoffPauseFramesReceived)
   6129 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6130 		    sblk->stat_XoffPauseFramesReceived);
   6131 
   6132 	if (sblk->stat_OutXonSent)
   6133 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6134 		    sblk->stat_OutXonSent);
   6135 
   6136 	if (sblk->stat_OutXoffSent)
   6137 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6138 		    sblk->stat_OutXoffSent);
   6139 
   6140 	if (sblk->stat_FlowControlDone)
   6141 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6142 		    sblk->stat_FlowControlDone);
   6143 
   6144 	if (sblk->stat_MacControlFramesReceived)
   6145 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6146 		    sblk->stat_MacControlFramesReceived);
   6147 
   6148 	if (sblk->stat_XoffStateEntered)
   6149 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6150 		    sblk->stat_XoffStateEntered);
   6151 
   6152 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6153 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6154 		    sblk->stat_IfInFramesL2FilterDiscards);
   6155 
   6156 	if (sblk->stat_IfInRuleCheckerDiscards)
   6157 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6158 		    sblk->stat_IfInRuleCheckerDiscards);
   6159 
   6160 	if (sblk->stat_IfInFTQDiscards)
   6161 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6162 		    sblk->stat_IfInFTQDiscards);
   6163 
   6164 	if (sblk->stat_IfInMBUFDiscards)
   6165 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6166 		    sblk->stat_IfInMBUFDiscards);
   6167 
   6168 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6169 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6170 		    sblk->stat_IfInRuleCheckerP4Hit);
   6171 
   6172 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6173 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6174 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6175 
   6176 	if (sblk->stat_CatchupInFTQDiscards)
   6177 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6178 		    sblk->stat_CatchupInFTQDiscards);
   6179 
   6180 	if (sblk->stat_CatchupInMBUFDiscards)
   6181 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6182 		    sblk->stat_CatchupInMBUFDiscards);
   6183 
   6184 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6185 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6186 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6187 
   6188 	aprint_debug_dev(sc->bnx_dev,
   6189 	    "-----------------------------"
   6190 	    "--------------"
   6191 	    "-----------------------------\n");
   6192 }
   6193 
   6194 void
   6195 bnx_dump_driver_state(struct bnx_softc *sc)
   6196 {
   6197 	aprint_debug_dev(sc->bnx_dev,
   6198 	    "-----------------------------"
   6199 	    " Driver State "
   6200 	    "-----------------------------\n");
   6201 
   6202 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6203 	    "address\n", sc);
   6204 
   6205 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6206 	    sc->status_block);
   6207 
   6208 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6209 	    "address\n", sc->stats_block);
   6210 
   6211 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6212 	    "adddress\n", sc->tx_bd_chain);
   6213 
   6214 #if 0
   6215 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6216 	    sc->rx_bd_chain);
   6217 
   6218 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6219 	    sc->tx_mbuf_ptr);
   6220 #endif
   6221 
   6222 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6223 	    sc->rx_mbuf_ptr);
   6224 
   6225 	BNX_PRINTF(sc,
   6226 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6227 	    sc->interrupts_generated);
   6228 
   6229 	BNX_PRINTF(sc,
   6230 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6231 	    sc->rx_interrupts);
   6232 
   6233 	BNX_PRINTF(sc,
   6234 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6235 	    sc->tx_interrupts);
   6236 
   6237 	BNX_PRINTF(sc,
   6238 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6239 	    sc->last_status_idx);
   6240 
   6241 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6242 	    sc->tx_prod);
   6243 
   6244 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6245 	    sc->tx_cons);
   6246 
   6247 	BNX_PRINTF(sc,
   6248 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6249 	    sc->tx_prod_bseq);
   6250 	BNX_PRINTF(sc,
   6251 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6252 	    sc->tx_mbuf_alloc);
   6253 
   6254 	BNX_PRINTF(sc,
   6255 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6256 	    sc->used_tx_bd);
   6257 
   6258 	BNX_PRINTF(sc,
   6259 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6260 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6261 
   6262 
   6263 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6264 	    sc->rx_prod);
   6265 
   6266 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6267 	    sc->rx_cons);
   6268 
   6269 	BNX_PRINTF(sc,
   6270 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6271 	    sc->rx_prod_bseq);
   6272 
   6273 	BNX_PRINTF(sc,
   6274 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6275 	    sc->rx_mbuf_alloc);
   6276 
   6277 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6278 	    sc->free_rx_bd);
   6279 
   6280 	BNX_PRINTF(sc,
   6281 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6282 	    sc->rx_low_watermark, sc->max_rx_bd);
   6283 
   6284 	BNX_PRINTF(sc,
   6285 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6286 	    "mbuf alloc failures\n",
   6287 	    sc->mbuf_alloc_failed);
   6288 
   6289 	BNX_PRINTF(sc,
   6290 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6291 	    "simulated mbuf alloc failures\n",
   6292 	    sc->mbuf_sim_alloc_failed);
   6293 
   6294 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6295 	    "-----------------------------\n");
   6296 }
   6297 
   6298 void
   6299 bnx_dump_hw_state(struct bnx_softc *sc)
   6300 {
   6301 	u_int32_t		val1;
   6302 	int			i;
   6303 
   6304 	aprint_debug_dev(sc->bnx_dev,
   6305 	    "----------------------------"
   6306 	    " Hardware State "
   6307 	    "----------------------------\n");
   6308 
   6309 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   6310 
   6311 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6312 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6313 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6314 
   6315 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6316 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6317 
   6318 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6319 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6320 
   6321 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6322 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6323 	    BNX_EMAC_STATUS);
   6324 
   6325 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6326 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6327 
   6328 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6329 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6330 	    BNX_TBDR_STATUS);
   6331 
   6332 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6333 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6334 	    BNX_TDMA_STATUS);
   6335 
   6336 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6337 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6338 
   6339 	aprint_debug_dev(sc->bnx_dev,
   6340 	    "----------------------------"
   6341 	    "----------------"
   6342 	    "----------------------------\n");
   6343 
   6344 	aprint_debug_dev(sc->bnx_dev,
   6345 	    "----------------------------"
   6346 	    " Register  Dump "
   6347 	    "----------------------------\n");
   6348 
   6349 	for (i = 0x400; i < 0x8000; i += 0x10)
   6350 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6351 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6352 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6353 
   6354 	aprint_debug_dev(sc->bnx_dev,
   6355 	    "----------------------------"
   6356 	    "----------------"
   6357 	    "----------------------------\n");
   6358 }
   6359 
   6360 void
   6361 bnx_breakpoint(struct bnx_softc *sc)
   6362 {
   6363 	/* Unreachable code to shut the compiler up about unused functions. */
   6364 	if (0) {
   6365    		bnx_dump_txbd(sc, 0, NULL);
   6366 		bnx_dump_rxbd(sc, 0, NULL);
   6367 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6368 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6369 		bnx_dump_l2fhdr(sc, 0, NULL);
   6370 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6371 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6372 		bnx_dump_status_block(sc);
   6373 		bnx_dump_stats_block(sc);
   6374 		bnx_dump_driver_state(sc);
   6375 		bnx_dump_hw_state(sc);
   6376 	}
   6377 
   6378 	bnx_dump_driver_state(sc);
   6379 	/* Print the important status block fields. */
   6380 	bnx_dump_status_block(sc);
   6381 
   6382 #if 0
   6383 	/* Call the debugger. */
   6384 	breakpoint();
   6385 #endif
   6386 
   6387 	return;
   6388 }
   6389 #endif
   6390