if_bnx.c revision 1.53 1 /* $NetBSD: if_bnx.c,v 1.53 2014/06/17 21:37:20 msaitoh Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.53 2014/06/17 21:37:20 msaitoh Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 *
52 * BCM5706C A0, A1
53 * BCM5706S A0, A1
54 * BCM5708C A0, B0
55 * BCM5708S A0, B0
56 * BCM5709C A0 B0, B1, B2 (pre-production)
57 * BCM5709S A0, B0, B1, B2 (pre-production)
58 */
59
60 #include <sys/callout.h>
61 #include <sys/mutex.h>
62
63 #include <dev/pci/if_bnxreg.h>
64 #include <dev/pci/if_bnxvar.h>
65
66 #include <dev/microcode/bnx/bnxfw.h>
67
68 /****************************************************************************/
69 /* BNX Driver Version */
70 /****************************************************************************/
71 #define BNX_DRIVER_VERSION "v0.9.6"
72
73 /****************************************************************************/
74 /* BNX Debug Options */
75 /****************************************************************************/
76 #ifdef BNX_DEBUG
77 u_int32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
78
79 /* 0 = Never */
80 /* 1 = 1 in 2,147,483,648 */
81 /* 256 = 1 in 8,388,608 */
82 /* 2048 = 1 in 1,048,576 */
83 /* 65536 = 1 in 32,768 */
84 /* 1048576 = 1 in 2,048 */
85 /* 268435456 = 1 in 8 */
86 /* 536870912 = 1 in 4 */
87 /* 1073741824 = 1 in 2 */
88
89 /* Controls how often the l2_fhdr frame error check will fail. */
90 int bnx_debug_l2fhdr_status_check = 0;
91
92 /* Controls how often the unexpected attention check will fail. */
93 int bnx_debug_unexpected_attention = 0;
94
95 /* Controls how often to simulate an mbuf allocation failure. */
96 int bnx_debug_mbuf_allocation_failure = 0;
97
98 /* Controls how often to simulate a DMA mapping failure. */
99 int bnx_debug_dma_map_addr_failure = 0;
100
101 /* Controls how often to simulate a bootcode failure. */
102 int bnx_debug_bootcode_running_failure = 0;
103 #endif
104
105 /****************************************************************************/
106 /* PCI Device ID Table */
107 /* */
108 /* Used by bnx_probe() to identify the devices supported by this driver. */
109 /****************************************************************************/
110 static const struct bnx_product {
111 pci_vendor_id_t bp_vendor;
112 pci_product_id_t bp_product;
113 pci_vendor_id_t bp_subvendor;
114 pci_product_id_t bp_subproduct;
115 const char *bp_name;
116 } bnx_devices[] = {
117 #ifdef PCI_SUBPRODUCT_HP_NC370T
118 {
119 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
120 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
121 "HP NC370T Multifunction Gigabit Server Adapter"
122 },
123 #endif
124 #ifdef PCI_SUBPRODUCT_HP_NC370i
125 {
126 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
127 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
128 "HP NC370i Multifunction Gigabit Server Adapter"
129 },
130 #endif
131 {
132 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
133 0, 0,
134 "Broadcom NetXtreme II BCM5706 1000Base-T"
135 },
136 #ifdef PCI_SUBPRODUCT_HP_NC370F
137 {
138 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
139 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
140 "HP NC370F Multifunction Gigabit Server Adapter"
141 },
142 #endif
143 {
144 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
145 0, 0,
146 "Broadcom NetXtreme II BCM5706 1000Base-SX"
147 },
148 {
149 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
150 0, 0,
151 "Broadcom NetXtreme II BCM5708 1000Base-T"
152 },
153 {
154 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
155 0, 0,
156 "Broadcom NetXtreme II BCM5708 1000Base-SX"
157 },
158 {
159 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
160 0, 0,
161 "Broadcom NetXtreme II BCM5709 1000Base-T"
162 },
163 {
164 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
165 0, 0,
166 "Broadcom NetXtreme II BCM5709 1000Base-SX"
167 },
168 {
169 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
170 0, 0,
171 "Broadcom NetXtreme II BCM5716 1000Base-T"
172 },
173 {
174 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
175 0, 0,
176 "Broadcom NetXtreme II BCM5716 1000Base-SX"
177 },
178 };
179
180 /****************************************************************************/
181 /* Supported Flash NVRAM device data. */
182 /****************************************************************************/
183 static struct flash_spec flash_table[] =
184 {
185 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
186 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
187 /* Slow EEPROM */
188 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
189 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
190 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
191 "EEPROM - slow"},
192 /* Expansion entry 0001 */
193 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
194 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
195 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
196 "Entry 0001"},
197 /* Saifun SA25F010 (non-buffered flash) */
198 /* strap, cfg1, & write1 need updates */
199 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
200 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
201 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
202 "Non-buffered flash (128kB)"},
203 /* Saifun SA25F020 (non-buffered flash) */
204 /* strap, cfg1, & write1 need updates */
205 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
206 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
207 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
208 "Non-buffered flash (256kB)"},
209 /* Expansion entry 0100 */
210 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
211 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
212 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
213 "Entry 0100"},
214 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
215 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
216 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
217 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
218 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
219 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
220 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
221 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
222 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
223 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
224 /* Saifun SA25F005 (non-buffered flash) */
225 /* strap, cfg1, & write1 need updates */
226 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
227 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
228 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
229 "Non-buffered flash (64kB)"},
230 /* Fast EEPROM */
231 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
232 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
233 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
234 "EEPROM - fast"},
235 /* Expansion entry 1001 */
236 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
237 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
238 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
239 "Entry 1001"},
240 /* Expansion entry 1010 */
241 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
242 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
243 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
244 "Entry 1010"},
245 /* ATMEL AT45DB011B (buffered flash) */
246 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
247 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
248 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
249 "Buffered flash (128kB)"},
250 /* Expansion entry 1100 */
251 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
252 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
253 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
254 "Entry 1100"},
255 /* Expansion entry 1101 */
256 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
257 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
258 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
259 "Entry 1101"},
260 /* Ateml Expansion entry 1110 */
261 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
262 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
263 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
264 "Entry 1110 (Atmel)"},
265 /* ATMEL AT45DB021B (buffered flash) */
266 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
267 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
268 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
269 "Buffered flash (256kB)"},
270 };
271
272 /*
273 * The BCM5709 controllers transparently handle the
274 * differences between Atmel 264 byte pages and all
275 * flash devices which use 256 byte pages, so no
276 * logical-to-physical mapping is required in the
277 * driver.
278 */
279 static struct flash_spec flash_5709 = {
280 .flags = BNX_NV_BUFFERED,
281 .page_bits = BCM5709_FLASH_PAGE_BITS,
282 .page_size = BCM5709_FLASH_PAGE_SIZE,
283 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
284 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
285 .name = "5709 buffered flash (256kB)",
286 };
287
288 /****************************************************************************/
289 /* OpenBSD device entry points. */
290 /****************************************************************************/
291 static int bnx_probe(device_t, cfdata_t, void *);
292 void bnx_attach(device_t, device_t, void *);
293 int bnx_detach(device_t, int);
294
295 /****************************************************************************/
296 /* BNX Debug Data Structure Dump Routines */
297 /****************************************************************************/
298 #ifdef BNX_DEBUG
299 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
300 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
301 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
302 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
303 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
304 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
305 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
306 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
307 void bnx_dump_status_block(struct bnx_softc *);
308 void bnx_dump_stats_block(struct bnx_softc *);
309 void bnx_dump_driver_state(struct bnx_softc *);
310 void bnx_dump_hw_state(struct bnx_softc *);
311 void bnx_breakpoint(struct bnx_softc *);
312 #endif
313
314 /****************************************************************************/
315 /* BNX Register/Memory Access Routines */
316 /****************************************************************************/
317 u_int32_t bnx_reg_rd_ind(struct bnx_softc *, u_int32_t);
318 void bnx_reg_wr_ind(struct bnx_softc *, u_int32_t, u_int32_t);
319 void bnx_ctx_wr(struct bnx_softc *, u_int32_t, u_int32_t, u_int32_t);
320 int bnx_miibus_read_reg(device_t, int, int);
321 void bnx_miibus_write_reg(device_t, int, int, int);
322 void bnx_miibus_statchg(struct ifnet *);
323
324 /****************************************************************************/
325 /* BNX NVRAM Access Routines */
326 /****************************************************************************/
327 int bnx_acquire_nvram_lock(struct bnx_softc *);
328 int bnx_release_nvram_lock(struct bnx_softc *);
329 void bnx_enable_nvram_access(struct bnx_softc *);
330 void bnx_disable_nvram_access(struct bnx_softc *);
331 int bnx_nvram_read_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
332 u_int32_t);
333 int bnx_init_nvram(struct bnx_softc *);
334 int bnx_nvram_read(struct bnx_softc *, u_int32_t, u_int8_t *, int);
335 int bnx_nvram_test(struct bnx_softc *);
336 #ifdef BNX_NVRAM_WRITE_SUPPORT
337 int bnx_enable_nvram_write(struct bnx_softc *);
338 void bnx_disable_nvram_write(struct bnx_softc *);
339 int bnx_nvram_erase_page(struct bnx_softc *, u_int32_t);
340 int bnx_nvram_write_dword(struct bnx_softc *, u_int32_t, u_int8_t *,
341 u_int32_t);
342 int bnx_nvram_write(struct bnx_softc *, u_int32_t, u_int8_t *, int);
343 #endif
344
345 /****************************************************************************/
346 /* */
347 /****************************************************************************/
348 void bnx_get_media(struct bnx_softc *);
349 void bnx_init_media(struct bnx_softc *);
350 int bnx_dma_alloc(struct bnx_softc *);
351 void bnx_dma_free(struct bnx_softc *);
352 void bnx_release_resources(struct bnx_softc *);
353
354 /****************************************************************************/
355 /* BNX Firmware Synchronization and Load */
356 /****************************************************************************/
357 int bnx_fw_sync(struct bnx_softc *, u_int32_t);
358 void bnx_load_rv2p_fw(struct bnx_softc *, u_int32_t *, u_int32_t,
359 u_int32_t);
360 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
361 struct fw_info *);
362 void bnx_init_cpus(struct bnx_softc *);
363
364 void bnx_stop(struct ifnet *, int);
365 int bnx_reset(struct bnx_softc *, u_int32_t);
366 int bnx_chipinit(struct bnx_softc *);
367 int bnx_blockinit(struct bnx_softc *);
368 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, u_int16_t *,
369 u_int16_t *, u_int32_t *);
370 int bnx_get_buf(struct bnx_softc *, u_int16_t *, u_int16_t *, u_int32_t *);
371
372 int bnx_init_tx_chain(struct bnx_softc *);
373 void bnx_init_tx_context(struct bnx_softc *);
374 int bnx_init_rx_chain(struct bnx_softc *);
375 void bnx_init_rx_context(struct bnx_softc *);
376 void bnx_free_rx_chain(struct bnx_softc *);
377 void bnx_free_tx_chain(struct bnx_softc *);
378
379 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
380 void bnx_start(struct ifnet *);
381 int bnx_ioctl(struct ifnet *, u_long, void *);
382 void bnx_watchdog(struct ifnet *);
383 int bnx_init(struct ifnet *);
384
385 void bnx_init_context(struct bnx_softc *);
386 void bnx_get_mac_addr(struct bnx_softc *);
387 void bnx_set_mac_addr(struct bnx_softc *);
388 void bnx_phy_intr(struct bnx_softc *);
389 void bnx_rx_intr(struct bnx_softc *);
390 void bnx_tx_intr(struct bnx_softc *);
391 void bnx_disable_intr(struct bnx_softc *);
392 void bnx_enable_intr(struct bnx_softc *);
393
394 int bnx_intr(void *);
395 void bnx_iff(struct bnx_softc *);
396 void bnx_stats_update(struct bnx_softc *);
397 void bnx_tick(void *);
398
399 struct pool *bnx_tx_pool = NULL;
400 void bnx_alloc_pkts(struct work *, void *);
401
402 /****************************************************************************/
403 /* OpenBSD device dispatch table. */
404 /****************************************************************************/
405 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
406 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
407
408 /****************************************************************************/
409 /* Device probe function. */
410 /* */
411 /* Compares the device to the driver's list of supported devices and */
412 /* reports back to the OS whether this is the right driver for the device. */
413 /* */
414 /* Returns: */
415 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
416 /****************************************************************************/
417 static const struct bnx_product *
418 bnx_lookup(const struct pci_attach_args *pa)
419 {
420 int i;
421 pcireg_t subid;
422
423 for (i = 0; i < __arraycount(bnx_devices); i++) {
424 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
425 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
426 continue;
427 if (!bnx_devices[i].bp_subvendor)
428 return &bnx_devices[i];
429 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
430 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
431 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
432 return &bnx_devices[i];
433 }
434
435 return NULL;
436 }
437 static int
438 bnx_probe(device_t parent, cfdata_t match, void *aux)
439 {
440 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
441
442 if (bnx_lookup(pa) != NULL)
443 return 1;
444
445 return 0;
446 }
447
448 /****************************************************************************/
449 /* Device attach function. */
450 /* */
451 /* Allocates device resources, performs secondary chip identification, */
452 /* resets and initializes the hardware, and initializes driver instance */
453 /* variables. */
454 /* */
455 /* Returns: */
456 /* 0 on success, positive value on failure. */
457 /****************************************************************************/
458 void
459 bnx_attach(device_t parent, device_t self, void *aux)
460 {
461 const struct bnx_product *bp;
462 struct bnx_softc *sc = device_private(self);
463 prop_dictionary_t dict;
464 struct pci_attach_args *pa = aux;
465 pci_chipset_tag_t pc = pa->pa_pc;
466 pci_intr_handle_t ih;
467 const char *intrstr = NULL;
468 u_int32_t command;
469 struct ifnet *ifp;
470 u_int32_t val;
471 int mii_flags = MIIF_FORCEANEG;
472 pcireg_t memtype;
473 char intrbuf[PCI_INTRSTR_LEN];
474
475 if (bnx_tx_pool == NULL) {
476 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
477 if (bnx_tx_pool != NULL) {
478 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
479 0, 0, 0, "bnxpkts", NULL, IPL_NET);
480 } else {
481 aprint_error(": can't alloc bnx_tx_pool\n");
482 return;
483 }
484 }
485
486 bp = bnx_lookup(pa);
487 if (bp == NULL)
488 panic("unknown device");
489
490 sc->bnx_dev = self;
491
492 aprint_naive("\n");
493 aprint_normal(": %s\n", bp->bp_name);
494
495 sc->bnx_pa = *pa;
496
497 /*
498 * Map control/status registers.
499 */
500 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
501 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
502 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
503 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
504
505 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
506 aprint_error_dev(sc->bnx_dev,
507 "failed to enable memory mapping!\n");
508 return;
509 }
510
511 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
512 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
513 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
514 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
515 return;
516 }
517
518 if (pci_intr_map(pa, &ih)) {
519 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
520 goto bnx_attach_fail;
521 }
522
523 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
524
525 /*
526 * Configure byte swap and enable indirect register access.
527 * Rely on CPU to do target byte swapping on big endian systems.
528 * Access to registers outside of PCI configurtion space are not
529 * valid until this is done.
530 */
531 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
532 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
533 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
534
535 /* Save ASIC revsion info. */
536 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
537
538 /*
539 * Find the base address for shared memory access.
540 * Newer versions of bootcode use a signature and offset
541 * while older versions use a fixed address.
542 */
543 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
544 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
545 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
546 (sc->bnx_pa.pa_function << 2));
547 else
548 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
549
550 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
551
552 /* Set initial device and PHY flags */
553 sc->bnx_flags = 0;
554 sc->bnx_phy_flags = 0;
555
556 /* Get PCI bus information (speed and type). */
557 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
558 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
559 u_int32_t clkreg;
560
561 sc->bnx_flags |= BNX_PCIX_FLAG;
562
563 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
564
565 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
566 switch (clkreg) {
567 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
568 sc->bus_speed_mhz = 133;
569 break;
570
571 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
572 sc->bus_speed_mhz = 100;
573 break;
574
575 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
576 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
577 sc->bus_speed_mhz = 66;
578 break;
579
580 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
581 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
582 sc->bus_speed_mhz = 50;
583 break;
584
585 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
586 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
587 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
588 sc->bus_speed_mhz = 33;
589 break;
590 }
591 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
592 sc->bus_speed_mhz = 66;
593 else
594 sc->bus_speed_mhz = 33;
595
596 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
597 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
598
599 /* Reset the controller. */
600 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
601 goto bnx_attach_fail;
602
603 /* Initialize the controller. */
604 if (bnx_chipinit(sc)) {
605 aprint_error_dev(sc->bnx_dev,
606 "Controller initialization failed!\n");
607 goto bnx_attach_fail;
608 }
609
610 /* Perform NVRAM test. */
611 if (bnx_nvram_test(sc)) {
612 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
613 goto bnx_attach_fail;
614 }
615
616 /* Fetch the permanent Ethernet MAC address. */
617 bnx_get_mac_addr(sc);
618 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
619 ether_sprintf(sc->eaddr));
620
621 /*
622 * Trip points control how many BDs
623 * should be ready before generating an
624 * interrupt while ticks control how long
625 * a BD can sit in the chain before
626 * generating an interrupt. Set the default
627 * values for the RX and TX rings.
628 */
629
630 #ifdef BNX_DEBUG
631 /* Force more frequent interrupts. */
632 sc->bnx_tx_quick_cons_trip_int = 1;
633 sc->bnx_tx_quick_cons_trip = 1;
634 sc->bnx_tx_ticks_int = 0;
635 sc->bnx_tx_ticks = 0;
636
637 sc->bnx_rx_quick_cons_trip_int = 1;
638 sc->bnx_rx_quick_cons_trip = 1;
639 sc->bnx_rx_ticks_int = 0;
640 sc->bnx_rx_ticks = 0;
641 #else
642 sc->bnx_tx_quick_cons_trip_int = 20;
643 sc->bnx_tx_quick_cons_trip = 20;
644 sc->bnx_tx_ticks_int = 80;
645 sc->bnx_tx_ticks = 80;
646
647 sc->bnx_rx_quick_cons_trip_int = 6;
648 sc->bnx_rx_quick_cons_trip = 6;
649 sc->bnx_rx_ticks_int = 18;
650 sc->bnx_rx_ticks = 18;
651 #endif
652
653 /* Update statistics once every second. */
654 sc->bnx_stats_ticks = 1000000 & 0xffff00;
655
656 /* Find the media type for the adapter. */
657 bnx_get_media(sc);
658
659 /*
660 * Store config data needed by the PHY driver for
661 * backplane applications
662 */
663 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
664 BNX_SHARED_HW_CFG_CONFIG);
665 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
666 BNX_PORT_HW_CFG_CONFIG);
667
668 /* Allocate DMA memory resources. */
669 sc->bnx_dmatag = pa->pa_dmat;
670 if (bnx_dma_alloc(sc)) {
671 aprint_error_dev(sc->bnx_dev,
672 "DMA resource allocation failed!\n");
673 goto bnx_attach_fail;
674 }
675
676 /* Initialize the ifnet interface. */
677 ifp = &sc->bnx_ec.ec_if;
678 ifp->if_softc = sc;
679 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
680 ifp->if_ioctl = bnx_ioctl;
681 ifp->if_stop = bnx_stop;
682 ifp->if_start = bnx_start;
683 ifp->if_init = bnx_init;
684 ifp->if_timer = 0;
685 ifp->if_watchdog = bnx_watchdog;
686 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
687 IFQ_SET_READY(&ifp->if_snd);
688 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
689
690 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
691 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
692
693 ifp->if_capabilities |=
694 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
695 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
696 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
697
698 /* Hookup IRQ last. */
699 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
700 if (sc->bnx_intrhand == NULL) {
701 aprint_error_dev(self, "couldn't establish interrupt");
702 if (intrstr != NULL)
703 aprint_error(" at %s", intrstr);
704 aprint_error("\n");
705 goto bnx_attach_fail;
706 }
707 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
708
709 /* create workqueue to handle packet allocations */
710 if (workqueue_create(&sc->bnx_wq, device_xname(self),
711 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
712 aprint_error_dev(self, "failed to create workqueue\n");
713 goto bnx_attach_fail;
714 }
715
716 sc->bnx_mii.mii_ifp = ifp;
717 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
718 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
719 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
720
721 /* Handle any special PHY initialization for SerDes PHYs. */
722 bnx_init_media(sc);
723
724 sc->bnx_ec.ec_mii = &sc->bnx_mii;
725 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
726 ether_mediastatus);
727
728 /* set phyflags and chipid before mii_attach() */
729 dict = device_properties(self);
730 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
731 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
732 prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
733 prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
734
735 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
736 mii_flags |= MIIF_HAVEFIBER;
737 mii_attach(self, &sc->bnx_mii, 0xffffffff,
738 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
739
740 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
741 aprint_error_dev(self, "no PHY found!\n");
742 ifmedia_add(&sc->bnx_mii.mii_media,
743 IFM_ETHER|IFM_MANUAL, 0, NULL);
744 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
745 } else
746 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
747
748 /* Attach to the Ethernet interface list. */
749 if_attach(ifp);
750 ether_ifattach(ifp,sc->eaddr);
751
752 callout_init(&sc->bnx_timeout, 0);
753
754 if (pmf_device_register(self, NULL, NULL))
755 pmf_class_network_register(self, ifp);
756 else
757 aprint_error_dev(self, "couldn't establish power handler\n");
758
759 /* Print some important debugging info. */
760 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
761
762 goto bnx_attach_exit;
763
764 bnx_attach_fail:
765 bnx_release_resources(sc);
766
767 bnx_attach_exit:
768 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
769 }
770
771 /****************************************************************************/
772 /* Device detach function. */
773 /* */
774 /* Stops the controller, resets the controller, and releases resources. */
775 /* */
776 /* Returns: */
777 /* 0 on success, positive value on failure. */
778 /****************************************************************************/
779 int
780 bnx_detach(device_t dev, int flags)
781 {
782 int s;
783 struct bnx_softc *sc;
784 struct ifnet *ifp;
785
786 sc = device_private(dev);
787 ifp = &sc->bnx_ec.ec_if;
788
789 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
790
791 /* Stop and reset the controller. */
792 s = splnet();
793 if (ifp->if_flags & IFF_RUNNING)
794 bnx_stop(ifp, 1);
795 else {
796 /* Disable the transmit/receive blocks. */
797 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
798 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
799 DELAY(20);
800 bnx_disable_intr(sc);
801 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
802 }
803
804 splx(s);
805
806 pmf_device_deregister(dev);
807 callout_destroy(&sc->bnx_timeout);
808 ether_ifdetach(ifp);
809 workqueue_destroy(sc->bnx_wq);
810
811 /* Delete all remaining media. */
812 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
813
814 if_detach(ifp);
815 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
816
817 /* Release all remaining resources. */
818 bnx_release_resources(sc);
819
820 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
821
822 return 0;
823 }
824
825 /****************************************************************************/
826 /* Indirect register read. */
827 /* */
828 /* Reads NetXtreme II registers using an index/data register pair in PCI */
829 /* configuration space. Using this mechanism avoids issues with posted */
830 /* reads but is much slower than memory-mapped I/O. */
831 /* */
832 /* Returns: */
833 /* The value of the register. */
834 /****************************************************************************/
835 u_int32_t
836 bnx_reg_rd_ind(struct bnx_softc *sc, u_int32_t offset)
837 {
838 struct pci_attach_args *pa = &(sc->bnx_pa);
839
840 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
841 offset);
842 #ifdef BNX_DEBUG
843 {
844 u_int32_t val;
845 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
846 BNX_PCICFG_REG_WINDOW);
847 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
848 "val = 0x%08X\n", __func__, offset, val);
849 return val;
850 }
851 #else
852 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
853 #endif
854 }
855
856 /****************************************************************************/
857 /* Indirect register write. */
858 /* */
859 /* Writes NetXtreme II registers using an index/data register pair in PCI */
860 /* configuration space. Using this mechanism avoids issues with posted */
861 /* writes but is muchh slower than memory-mapped I/O. */
862 /* */
863 /* Returns: */
864 /* Nothing. */
865 /****************************************************************************/
866 void
867 bnx_reg_wr_ind(struct bnx_softc *sc, u_int32_t offset, u_int32_t val)
868 {
869 struct pci_attach_args *pa = &(sc->bnx_pa);
870
871 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
872 __func__, offset, val);
873
874 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
875 offset);
876 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
877 }
878
879 /****************************************************************************/
880 /* Context memory write. */
881 /* */
882 /* The NetXtreme II controller uses context memory to track connection */
883 /* information for L2 and higher network protocols. */
884 /* */
885 /* Returns: */
886 /* Nothing. */
887 /****************************************************************************/
888 void
889 bnx_ctx_wr(struct bnx_softc *sc, u_int32_t cid_addr, u_int32_t ctx_offset,
890 u_int32_t ctx_val)
891 {
892 u_int32_t idx, offset = ctx_offset + cid_addr;
893 u_int32_t val, retry_cnt = 5;
894
895 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
896 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
897 REG_WR(sc, BNX_CTX_CTX_CTRL,
898 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
899
900 for (idx = 0; idx < retry_cnt; idx++) {
901 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
902 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
903 break;
904 DELAY(5);
905 }
906
907 #if 0
908 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
909 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
910 "cid_addr = 0x%08X, offset = 0x%08X!\n",
911 __FILE__, __LINE__, cid_addr, ctx_offset);
912 #endif
913
914 } else {
915 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
916 REG_WR(sc, BNX_CTX_DATA, ctx_val);
917 }
918 }
919
920 /****************************************************************************/
921 /* PHY register read. */
922 /* */
923 /* Implements register reads on the MII bus. */
924 /* */
925 /* Returns: */
926 /* The value of the register. */
927 /****************************************************************************/
928 int
929 bnx_miibus_read_reg(device_t dev, int phy, int reg)
930 {
931 struct bnx_softc *sc = device_private(dev);
932 u_int32_t val;
933 int i;
934
935 /* Make sure we are accessing the correct PHY address. */
936 if (phy != sc->bnx_phy_addr) {
937 DBPRINT(sc, BNX_VERBOSE,
938 "Invalid PHY address %d for PHY read!\n", phy);
939 return 0;
940 }
941
942 /*
943 * The BCM5709S PHY is an IEEE Clause 45 PHY
944 * with special mappings to work with IEEE
945 * Clause 22 register accesses.
946 */
947 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
948 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
949 reg += 0x10;
950 }
951
952 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
953 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
954 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
955
956 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
957 REG_RD(sc, BNX_EMAC_MDIO_MODE);
958
959 DELAY(40);
960 }
961
962 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
963 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
964 BNX_EMAC_MDIO_COMM_START_BUSY;
965 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
966
967 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
968 DELAY(10);
969
970 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
971 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
972 DELAY(5);
973
974 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
975 val &= BNX_EMAC_MDIO_COMM_DATA;
976
977 break;
978 }
979 }
980
981 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
982 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
983 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
984 val = 0x0;
985 } else
986 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
987
988 DBPRINT(sc, BNX_EXCESSIVE,
989 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
990 (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
991
992 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
993 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
994 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
995
996 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
997 REG_RD(sc, BNX_EMAC_MDIO_MODE);
998
999 DELAY(40);
1000 }
1001
1002 return (val & 0xffff);
1003 }
1004
1005 /****************************************************************************/
1006 /* PHY register write. */
1007 /* */
1008 /* Implements register writes on the MII bus. */
1009 /* */
1010 /* Returns: */
1011 /* The value of the register. */
1012 /****************************************************************************/
1013 void
1014 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1015 {
1016 struct bnx_softc *sc = device_private(dev);
1017 u_int32_t val1;
1018 int i;
1019
1020 /* Make sure we are accessing the correct PHY address. */
1021 if (phy != sc->bnx_phy_addr) {
1022 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1023 phy);
1024 return;
1025 }
1026
1027 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1028 "val = 0x%04X\n", __func__,
1029 phy, (u_int16_t) reg & 0xffff, (u_int16_t) val & 0xffff);
1030
1031 /*
1032 * The BCM5709S PHY is an IEEE Clause 45 PHY
1033 * with special mappings to work with IEEE
1034 * Clause 22 register accesses.
1035 */
1036 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1037 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1038 reg += 0x10;
1039 }
1040
1041 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1042 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1043 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1044
1045 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1046 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1047
1048 DELAY(40);
1049 }
1050
1051 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1052 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1053 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1054 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1055
1056 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1057 DELAY(10);
1058
1059 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1060 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1061 DELAY(5);
1062 break;
1063 }
1064 }
1065
1066 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1067 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1068 __LINE__);
1069 }
1070
1071 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1072 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1073 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1074
1075 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1076 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1077
1078 DELAY(40);
1079 }
1080 }
1081
1082 /****************************************************************************/
1083 /* MII bus status change. */
1084 /* */
1085 /* Called by the MII bus driver when the PHY establishes link to set the */
1086 /* MAC interface registers. */
1087 /* */
1088 /* Returns: */
1089 /* Nothing. */
1090 /****************************************************************************/
1091 void
1092 bnx_miibus_statchg(struct ifnet *ifp)
1093 {
1094 struct bnx_softc *sc = ifp->if_softc;
1095 struct mii_data *mii = &sc->bnx_mii;
1096 int val;
1097
1098 val = REG_RD(sc, BNX_EMAC_MODE);
1099 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1100 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1101 BNX_EMAC_MODE_25G);
1102
1103 /* Set MII or GMII interface based on the speed
1104 * negotiated by the PHY.
1105 */
1106 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1107 case IFM_10_T:
1108 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1109 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1110 val |= BNX_EMAC_MODE_PORT_MII_10;
1111 break;
1112 }
1113 /* FALLTHROUGH */
1114 case IFM_100_TX:
1115 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1116 val |= BNX_EMAC_MODE_PORT_MII;
1117 break;
1118 case IFM_2500_SX:
1119 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1120 val |= BNX_EMAC_MODE_25G;
1121 /* FALLTHROUGH */
1122 case IFM_1000_T:
1123 case IFM_1000_SX:
1124 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1125 val |= BNX_EMAC_MODE_PORT_GMII;
1126 break;
1127 default:
1128 val |= BNX_EMAC_MODE_PORT_GMII;
1129 break;
1130 }
1131
1132 /* Set half or full duplex based on the duplicity
1133 * negotiated by the PHY.
1134 */
1135 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1136 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1137 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1138 } else {
1139 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1140 }
1141
1142 REG_WR(sc, BNX_EMAC_MODE, val);
1143 }
1144
1145 /****************************************************************************/
1146 /* Acquire NVRAM lock. */
1147 /* */
1148 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1149 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1150 /* for use by the driver. */
1151 /* */
1152 /* Returns: */
1153 /* 0 on success, positive value on failure. */
1154 /****************************************************************************/
1155 int
1156 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1157 {
1158 u_int32_t val;
1159 int j;
1160
1161 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1162
1163 /* Request access to the flash interface. */
1164 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1165 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1166 val = REG_RD(sc, BNX_NVM_SW_ARB);
1167 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1168 break;
1169
1170 DELAY(5);
1171 }
1172
1173 if (j >= NVRAM_TIMEOUT_COUNT) {
1174 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1175 return EBUSY;
1176 }
1177
1178 return 0;
1179 }
1180
1181 /****************************************************************************/
1182 /* Release NVRAM lock. */
1183 /* */
1184 /* When the caller is finished accessing NVRAM the lock must be released. */
1185 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1186 /* for use by the driver. */
1187 /* */
1188 /* Returns: */
1189 /* 0 on success, positive value on failure. */
1190 /****************************************************************************/
1191 int
1192 bnx_release_nvram_lock(struct bnx_softc *sc)
1193 {
1194 int j;
1195 u_int32_t val;
1196
1197 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1198
1199 /* Relinquish nvram interface. */
1200 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1201
1202 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1203 val = REG_RD(sc, BNX_NVM_SW_ARB);
1204 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1205 break;
1206
1207 DELAY(5);
1208 }
1209
1210 if (j >= NVRAM_TIMEOUT_COUNT) {
1211 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1212 return EBUSY;
1213 }
1214
1215 return 0;
1216 }
1217
1218 #ifdef BNX_NVRAM_WRITE_SUPPORT
1219 /****************************************************************************/
1220 /* Enable NVRAM write access. */
1221 /* */
1222 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1223 /* */
1224 /* Returns: */
1225 /* 0 on success, positive value on failure. */
1226 /****************************************************************************/
1227 int
1228 bnx_enable_nvram_write(struct bnx_softc *sc)
1229 {
1230 u_int32_t val;
1231
1232 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1233
1234 val = REG_RD(sc, BNX_MISC_CFG);
1235 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1236
1237 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1238 int j;
1239
1240 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1241 REG_WR(sc, BNX_NVM_COMMAND,
1242 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1243
1244 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1245 DELAY(5);
1246
1247 val = REG_RD(sc, BNX_NVM_COMMAND);
1248 if (val & BNX_NVM_COMMAND_DONE)
1249 break;
1250 }
1251
1252 if (j >= NVRAM_TIMEOUT_COUNT) {
1253 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1254 return EBUSY;
1255 }
1256 }
1257
1258 return 0;
1259 }
1260
1261 /****************************************************************************/
1262 /* Disable NVRAM write access. */
1263 /* */
1264 /* When the caller is finished writing to NVRAM write access must be */
1265 /* disabled. */
1266 /* */
1267 /* Returns: */
1268 /* Nothing. */
1269 /****************************************************************************/
1270 void
1271 bnx_disable_nvram_write(struct bnx_softc *sc)
1272 {
1273 u_int32_t val;
1274
1275 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1276
1277 val = REG_RD(sc, BNX_MISC_CFG);
1278 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1279 }
1280 #endif
1281
1282 /****************************************************************************/
1283 /* Enable NVRAM access. */
1284 /* */
1285 /* Before accessing NVRAM for read or write operations the caller must */
1286 /* enabled NVRAM access. */
1287 /* */
1288 /* Returns: */
1289 /* Nothing. */
1290 /****************************************************************************/
1291 void
1292 bnx_enable_nvram_access(struct bnx_softc *sc)
1293 {
1294 u_int32_t val;
1295
1296 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1297
1298 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1299 /* Enable both bits, even on read. */
1300 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1301 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1302 }
1303
1304 /****************************************************************************/
1305 /* Disable NVRAM access. */
1306 /* */
1307 /* When the caller is finished accessing NVRAM access must be disabled. */
1308 /* */
1309 /* Returns: */
1310 /* Nothing. */
1311 /****************************************************************************/
1312 void
1313 bnx_disable_nvram_access(struct bnx_softc *sc)
1314 {
1315 u_int32_t val;
1316
1317 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1318
1319 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1320
1321 /* Disable both bits, even after read. */
1322 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1323 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1324 }
1325
1326 #ifdef BNX_NVRAM_WRITE_SUPPORT
1327 /****************************************************************************/
1328 /* Erase NVRAM page before writing. */
1329 /* */
1330 /* Non-buffered flash parts require that a page be erased before it is */
1331 /* written. */
1332 /* */
1333 /* Returns: */
1334 /* 0 on success, positive value on failure. */
1335 /****************************************************************************/
1336 int
1337 bnx_nvram_erase_page(struct bnx_softc *sc, u_int32_t offset)
1338 {
1339 u_int32_t cmd;
1340 int j;
1341
1342 /* Buffered flash doesn't require an erase. */
1343 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1344 return 0;
1345
1346 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1347
1348 /* Build an erase command. */
1349 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1350 BNX_NVM_COMMAND_DOIT;
1351
1352 /*
1353 * Clear the DONE bit separately, set the NVRAM address to erase,
1354 * and issue the erase command.
1355 */
1356 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1357 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1358 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1359
1360 /* Wait for completion. */
1361 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1362 u_int32_t val;
1363
1364 DELAY(5);
1365
1366 val = REG_RD(sc, BNX_NVM_COMMAND);
1367 if (val & BNX_NVM_COMMAND_DONE)
1368 break;
1369 }
1370
1371 if (j >= NVRAM_TIMEOUT_COUNT) {
1372 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1373 return EBUSY;
1374 }
1375
1376 return 0;
1377 }
1378 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1379
1380 /****************************************************************************/
1381 /* Read a dword (32 bits) from NVRAM. */
1382 /* */
1383 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1384 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1385 /* */
1386 /* Returns: */
1387 /* 0 on success and the 32 bit value read, positive value on failure. */
1388 /****************************************************************************/
1389 int
1390 bnx_nvram_read_dword(struct bnx_softc *sc, u_int32_t offset,
1391 u_int8_t *ret_val, u_int32_t cmd_flags)
1392 {
1393 u_int32_t cmd;
1394 int i, rc = 0;
1395
1396 /* Build the command word. */
1397 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1398
1399 /* Calculate the offset for buffered flash if translation is used. */
1400 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1401 offset = ((offset / sc->bnx_flash_info->page_size) <<
1402 sc->bnx_flash_info->page_bits) +
1403 (offset % sc->bnx_flash_info->page_size);
1404 }
1405
1406 /*
1407 * Clear the DONE bit separately, set the address to read,
1408 * and issue the read.
1409 */
1410 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1411 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1412 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1413
1414 /* Wait for completion. */
1415 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1416 u_int32_t val;
1417
1418 DELAY(5);
1419
1420 val = REG_RD(sc, BNX_NVM_COMMAND);
1421 if (val & BNX_NVM_COMMAND_DONE) {
1422 val = REG_RD(sc, BNX_NVM_READ);
1423
1424 val = bnx_be32toh(val);
1425 memcpy(ret_val, &val, 4);
1426 break;
1427 }
1428 }
1429
1430 /* Check for errors. */
1431 if (i >= NVRAM_TIMEOUT_COUNT) {
1432 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1433 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1434 rc = EBUSY;
1435 }
1436
1437 return rc;
1438 }
1439
1440 #ifdef BNX_NVRAM_WRITE_SUPPORT
1441 /****************************************************************************/
1442 /* Write a dword (32 bits) to NVRAM. */
1443 /* */
1444 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1445 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1446 /* enabled NVRAM write access. */
1447 /* */
1448 /* Returns: */
1449 /* 0 on success, positive value on failure. */
1450 /****************************************************************************/
1451 int
1452 bnx_nvram_write_dword(struct bnx_softc *sc, u_int32_t offset, u_int8_t *val,
1453 u_int32_t cmd_flags)
1454 {
1455 u_int32_t cmd, val32;
1456 int j;
1457
1458 /* Build the command word. */
1459 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1460
1461 /* Calculate the offset for buffered flash if translation is used. */
1462 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1463 offset = ((offset / sc->bnx_flash_info->page_size) <<
1464 sc->bnx_flash_info->page_bits) +
1465 (offset % sc->bnx_flash_info->page_size);
1466 }
1467
1468 /*
1469 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1470 * set the NVRAM address to write, and issue the write command
1471 */
1472 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1473 memcpy(&val32, val, 4);
1474 val32 = htobe32(val32);
1475 REG_WR(sc, BNX_NVM_WRITE, val32);
1476 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1477 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1478
1479 /* Wait for completion. */
1480 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1481 DELAY(5);
1482
1483 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1484 break;
1485 }
1486 if (j >= NVRAM_TIMEOUT_COUNT) {
1487 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1488 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1489 return EBUSY;
1490 }
1491
1492 return 0;
1493 }
1494 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1495
1496 /****************************************************************************/
1497 /* Initialize NVRAM access. */
1498 /* */
1499 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1500 /* access that device. */
1501 /* */
1502 /* Returns: */
1503 /* 0 on success, positive value on failure. */
1504 /****************************************************************************/
1505 int
1506 bnx_init_nvram(struct bnx_softc *sc)
1507 {
1508 u_int32_t val;
1509 int j, entry_count, rc = 0;
1510 struct flash_spec *flash;
1511
1512 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1513
1514 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1515 sc->bnx_flash_info = &flash_5709;
1516 goto bnx_init_nvram_get_flash_size;
1517 }
1518
1519 /* Determine the selected interface. */
1520 val = REG_RD(sc, BNX_NVM_CFG1);
1521
1522 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1523
1524 /*
1525 * Flash reconfiguration is required to support additional
1526 * NVRAM devices not directly supported in hardware.
1527 * Check if the flash interface was reconfigured
1528 * by the bootcode.
1529 */
1530
1531 if (val & 0x40000000) {
1532 /* Flash interface reconfigured by bootcode. */
1533
1534 DBPRINT(sc,BNX_INFO_LOAD,
1535 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1536
1537 for (j = 0, flash = &flash_table[0]; j < entry_count;
1538 j++, flash++) {
1539 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1540 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1541 sc->bnx_flash_info = flash;
1542 break;
1543 }
1544 }
1545 } else {
1546 /* Flash interface not yet reconfigured. */
1547 u_int32_t mask;
1548
1549 DBPRINT(sc,BNX_INFO_LOAD,
1550 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1551
1552 if (val & (1 << 23))
1553 mask = FLASH_BACKUP_STRAP_MASK;
1554 else
1555 mask = FLASH_STRAP_MASK;
1556
1557 /* Look for the matching NVRAM device configuration data. */
1558 for (j = 0, flash = &flash_table[0]; j < entry_count;
1559 j++, flash++) {
1560 /* Check if the dev matches any of the known devices. */
1561 if ((val & mask) == (flash->strapping & mask)) {
1562 /* Found a device match. */
1563 sc->bnx_flash_info = flash;
1564
1565 /* Request access to the flash interface. */
1566 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1567 return rc;
1568
1569 /* Reconfigure the flash interface. */
1570 bnx_enable_nvram_access(sc);
1571 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1572 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1573 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1574 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1575 bnx_disable_nvram_access(sc);
1576 bnx_release_nvram_lock(sc);
1577
1578 break;
1579 }
1580 }
1581 }
1582
1583 /* Check if a matching device was found. */
1584 if (j == entry_count) {
1585 sc->bnx_flash_info = NULL;
1586 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1587 __FILE__, __LINE__);
1588 rc = ENODEV;
1589 }
1590
1591 bnx_init_nvram_get_flash_size:
1592 /* Write the flash config data to the shared memory interface. */
1593 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1594 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1595 if (val)
1596 sc->bnx_flash_size = val;
1597 else
1598 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1599
1600 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1601 "0x%08X\n", sc->bnx_flash_info->total_size);
1602
1603 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1604
1605 return rc;
1606 }
1607
1608 /****************************************************************************/
1609 /* Read an arbitrary range of data from NVRAM. */
1610 /* */
1611 /* Prepares the NVRAM interface for access and reads the requested data */
1612 /* into the supplied buffer. */
1613 /* */
1614 /* Returns: */
1615 /* 0 on success and the data read, positive value on failure. */
1616 /****************************************************************************/
1617 int
1618 bnx_nvram_read(struct bnx_softc *sc, u_int32_t offset, u_int8_t *ret_buf,
1619 int buf_size)
1620 {
1621 int rc = 0;
1622 u_int32_t cmd_flags, offset32, len32, extra;
1623
1624 if (buf_size == 0)
1625 return 0;
1626
1627 /* Request access to the flash interface. */
1628 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1629 return rc;
1630
1631 /* Enable access to flash interface */
1632 bnx_enable_nvram_access(sc);
1633
1634 len32 = buf_size;
1635 offset32 = offset;
1636 extra = 0;
1637
1638 cmd_flags = 0;
1639
1640 if (offset32 & 3) {
1641 u_int8_t buf[4];
1642 u_int32_t pre_len;
1643
1644 offset32 &= ~3;
1645 pre_len = 4 - (offset & 3);
1646
1647 if (pre_len >= len32) {
1648 pre_len = len32;
1649 cmd_flags =
1650 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1651 } else
1652 cmd_flags = BNX_NVM_COMMAND_FIRST;
1653
1654 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1655
1656 if (rc)
1657 return rc;
1658
1659 memcpy(ret_buf, buf + (offset & 3), pre_len);
1660
1661 offset32 += 4;
1662 ret_buf += pre_len;
1663 len32 -= pre_len;
1664 }
1665
1666 if (len32 & 3) {
1667 extra = 4 - (len32 & 3);
1668 len32 = (len32 + 4) & ~3;
1669 }
1670
1671 if (len32 == 4) {
1672 u_int8_t buf[4];
1673
1674 if (cmd_flags)
1675 cmd_flags = BNX_NVM_COMMAND_LAST;
1676 else
1677 cmd_flags =
1678 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1679
1680 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1681
1682 memcpy(ret_buf, buf, 4 - extra);
1683 } else if (len32 > 0) {
1684 u_int8_t buf[4];
1685
1686 /* Read the first word. */
1687 if (cmd_flags)
1688 cmd_flags = 0;
1689 else
1690 cmd_flags = BNX_NVM_COMMAND_FIRST;
1691
1692 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1693
1694 /* Advance to the next dword. */
1695 offset32 += 4;
1696 ret_buf += 4;
1697 len32 -= 4;
1698
1699 while (len32 > 4 && rc == 0) {
1700 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1701
1702 /* Advance to the next dword. */
1703 offset32 += 4;
1704 ret_buf += 4;
1705 len32 -= 4;
1706 }
1707
1708 if (rc)
1709 return rc;
1710
1711 cmd_flags = BNX_NVM_COMMAND_LAST;
1712 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1713
1714 memcpy(ret_buf, buf, 4 - extra);
1715 }
1716
1717 /* Disable access to flash interface and release the lock. */
1718 bnx_disable_nvram_access(sc);
1719 bnx_release_nvram_lock(sc);
1720
1721 return rc;
1722 }
1723
1724 #ifdef BNX_NVRAM_WRITE_SUPPORT
1725 /****************************************************************************/
1726 /* Write an arbitrary range of data from NVRAM. */
1727 /* */
1728 /* Prepares the NVRAM interface for write access and writes the requested */
1729 /* data from the supplied buffer. The caller is responsible for */
1730 /* calculating any appropriate CRCs. */
1731 /* */
1732 /* Returns: */
1733 /* 0 on success, positive value on failure. */
1734 /****************************************************************************/
1735 int
1736 bnx_nvram_write(struct bnx_softc *sc, u_int32_t offset, u_int8_t *data_buf,
1737 int buf_size)
1738 {
1739 u_int32_t written, offset32, len32;
1740 u_int8_t *buf, start[4], end[4];
1741 int rc = 0;
1742 int align_start, align_end;
1743
1744 buf = data_buf;
1745 offset32 = offset;
1746 len32 = buf_size;
1747 align_start = align_end = 0;
1748
1749 if ((align_start = (offset32 & 3))) {
1750 offset32 &= ~3;
1751 len32 += align_start;
1752 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1753 return rc;
1754 }
1755
1756 if (len32 & 3) {
1757 if ((len32 > 4) || !align_start) {
1758 align_end = 4 - (len32 & 3);
1759 len32 += align_end;
1760 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1761 end, 4)))
1762 return rc;
1763 }
1764 }
1765
1766 if (align_start || align_end) {
1767 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1768 if (buf == 0)
1769 return ENOMEM;
1770
1771 if (align_start)
1772 memcpy(buf, start, 4);
1773
1774 if (align_end)
1775 memcpy(buf + len32 - 4, end, 4);
1776
1777 memcpy(buf + align_start, data_buf, buf_size);
1778 }
1779
1780 written = 0;
1781 while ((written < len32) && (rc == 0)) {
1782 u_int32_t page_start, page_end, data_start, data_end;
1783 u_int32_t addr, cmd_flags;
1784 int i;
1785 u_int8_t flash_buffer[264];
1786
1787 /* Find the page_start addr */
1788 page_start = offset32 + written;
1789 page_start -= (page_start % sc->bnx_flash_info->page_size);
1790 /* Find the page_end addr */
1791 page_end = page_start + sc->bnx_flash_info->page_size;
1792 /* Find the data_start addr */
1793 data_start = (written == 0) ? offset32 : page_start;
1794 /* Find the data_end addr */
1795 data_end = (page_end > offset32 + len32) ?
1796 (offset32 + len32) : page_end;
1797
1798 /* Request access to the flash interface. */
1799 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1800 goto nvram_write_end;
1801
1802 /* Enable access to flash interface */
1803 bnx_enable_nvram_access(sc);
1804
1805 cmd_flags = BNX_NVM_COMMAND_FIRST;
1806 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1807 int j;
1808
1809 /* Read the whole page into the buffer
1810 * (non-buffer flash only) */
1811 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1812 if (j == (sc->bnx_flash_info->page_size - 4))
1813 cmd_flags |= BNX_NVM_COMMAND_LAST;
1814
1815 rc = bnx_nvram_read_dword(sc,
1816 page_start + j,
1817 &flash_buffer[j],
1818 cmd_flags);
1819
1820 if (rc)
1821 goto nvram_write_end;
1822
1823 cmd_flags = 0;
1824 }
1825 }
1826
1827 /* Enable writes to flash interface (unlock write-protect) */
1828 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1829 goto nvram_write_end;
1830
1831 /* Erase the page */
1832 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1833 goto nvram_write_end;
1834
1835 /* Re-enable the write again for the actual write */
1836 bnx_enable_nvram_write(sc);
1837
1838 /* Loop to write back the buffer data from page_start to
1839 * data_start */
1840 i = 0;
1841 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1842 for (addr = page_start; addr < data_start;
1843 addr += 4, i += 4) {
1844
1845 rc = bnx_nvram_write_dword(sc, addr,
1846 &flash_buffer[i], cmd_flags);
1847
1848 if (rc != 0)
1849 goto nvram_write_end;
1850
1851 cmd_flags = 0;
1852 }
1853 }
1854
1855 /* Loop to write the new data from data_start to data_end */
1856 for (addr = data_start; addr < data_end; addr += 4, i++) {
1857 if ((addr == page_end - 4) ||
1858 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1859 && (addr == data_end - 4))) {
1860
1861 cmd_flags |= BNX_NVM_COMMAND_LAST;
1862 }
1863
1864 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1865
1866 if (rc != 0)
1867 goto nvram_write_end;
1868
1869 cmd_flags = 0;
1870 buf += 4;
1871 }
1872
1873 /* Loop to write back the buffer data from data_end
1874 * to page_end */
1875 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1876 for (addr = data_end; addr < page_end;
1877 addr += 4, i += 4) {
1878
1879 if (addr == page_end-4)
1880 cmd_flags = BNX_NVM_COMMAND_LAST;
1881
1882 rc = bnx_nvram_write_dword(sc, addr,
1883 &flash_buffer[i], cmd_flags);
1884
1885 if (rc != 0)
1886 goto nvram_write_end;
1887
1888 cmd_flags = 0;
1889 }
1890 }
1891
1892 /* Disable writes to flash interface (lock write-protect) */
1893 bnx_disable_nvram_write(sc);
1894
1895 /* Disable access to flash interface */
1896 bnx_disable_nvram_access(sc);
1897 bnx_release_nvram_lock(sc);
1898
1899 /* Increment written */
1900 written += data_end - data_start;
1901 }
1902
1903 nvram_write_end:
1904 if (align_start || align_end)
1905 free(buf, M_DEVBUF);
1906
1907 return rc;
1908 }
1909 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1910
1911 /****************************************************************************/
1912 /* Verifies that NVRAM is accessible and contains valid data. */
1913 /* */
1914 /* Reads the configuration data from NVRAM and verifies that the CRC is */
1915 /* correct. */
1916 /* */
1917 /* Returns: */
1918 /* 0 on success, positive value on failure. */
1919 /****************************************************************************/
1920 int
1921 bnx_nvram_test(struct bnx_softc *sc)
1922 {
1923 u_int32_t buf[BNX_NVRAM_SIZE / 4];
1924 u_int8_t *data = (u_int8_t *) buf;
1925 int rc = 0;
1926 u_int32_t magic, csum;
1927
1928 /*
1929 * Check that the device NVRAM is valid by reading
1930 * the magic value at offset 0.
1931 */
1932 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1933 goto bnx_nvram_test_done;
1934
1935 magic = bnx_be32toh(buf[0]);
1936 if (magic != BNX_NVRAM_MAGIC) {
1937 rc = ENODEV;
1938 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1939 "Expected: 0x%08X, Found: 0x%08X\n",
1940 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1941 goto bnx_nvram_test_done;
1942 }
1943
1944 /*
1945 * Verify that the device NVRAM includes valid
1946 * configuration data.
1947 */
1948 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1949 goto bnx_nvram_test_done;
1950
1951 csum = ether_crc32_le(data, 0x100);
1952 if (csum != BNX_CRC32_RESIDUAL) {
1953 rc = ENODEV;
1954 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1955 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1956 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1957 goto bnx_nvram_test_done;
1958 }
1959
1960 csum = ether_crc32_le(data + 0x100, 0x100);
1961 if (csum != BNX_CRC32_RESIDUAL) {
1962 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1963 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1964 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1965 rc = ENODEV;
1966 }
1967
1968 bnx_nvram_test_done:
1969 return rc;
1970 }
1971
1972 /****************************************************************************/
1973 /* Identifies the current media type of the controller and sets the PHY */
1974 /* address. */
1975 /* */
1976 /* Returns: */
1977 /* Nothing. */
1978 /****************************************************************************/
1979 void
1980 bnx_get_media(struct bnx_softc *sc)
1981 {
1982 sc->bnx_phy_addr = 1;
1983
1984 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1985 u_int32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
1986 u_int32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1987 u_int32_t strap;
1988
1989 /*
1990 * The BCM5709S is software configurable
1991 * for Copper or SerDes operation.
1992 */
1993 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1994 DBPRINT(sc, BNX_INFO_LOAD,
1995 "5709 bonded for copper.\n");
1996 goto bnx_get_media_exit;
1997 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1998 DBPRINT(sc, BNX_INFO_LOAD,
1999 "5709 bonded for dual media.\n");
2000 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2001 goto bnx_get_media_exit;
2002 }
2003
2004 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2005 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2006 else {
2007 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2008 >> 8;
2009 }
2010
2011 if (sc->bnx_pa.pa_function == 0) {
2012 switch (strap) {
2013 case 0x4:
2014 case 0x5:
2015 case 0x6:
2016 DBPRINT(sc, BNX_INFO_LOAD,
2017 "BCM5709 s/w configured for SerDes.\n");
2018 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2019 break;
2020 default:
2021 DBPRINT(sc, BNX_INFO_LOAD,
2022 "BCM5709 s/w configured for Copper.\n");
2023 }
2024 } else {
2025 switch (strap) {
2026 case 0x1:
2027 case 0x2:
2028 case 0x4:
2029 DBPRINT(sc, BNX_INFO_LOAD,
2030 "BCM5709 s/w configured for SerDes.\n");
2031 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2032 break;
2033 default:
2034 DBPRINT(sc, BNX_INFO_LOAD,
2035 "BCM5709 s/w configured for Copper.\n");
2036 }
2037 }
2038
2039 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2040 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2041
2042 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2043 u_int32_t val;
2044
2045 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2046
2047 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2048 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2049
2050 /*
2051 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2052 * separate PHY for SerDes.
2053 */
2054 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2055 sc->bnx_phy_addr = 2;
2056 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2057 BNX_SHARED_HW_CFG_CONFIG);
2058 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2059 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2060 DBPRINT(sc, BNX_INFO_LOAD,
2061 "Found 2.5Gb capable adapter\n");
2062 }
2063 }
2064 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2065 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2066 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2067
2068 bnx_get_media_exit:
2069 DBPRINT(sc, (BNX_INFO_LOAD),
2070 "Using PHY address %d.\n", sc->bnx_phy_addr);
2071 }
2072
2073 /****************************************************************************/
2074 /* Performs PHY initialization required before MII drivers access the */
2075 /* device. */
2076 /* */
2077 /* Returns: */
2078 /* Nothing. */
2079 /****************************************************************************/
2080 void
2081 bnx_init_media(struct bnx_softc *sc)
2082 {
2083 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2084 /*
2085 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2086 * IEEE Clause 22 method. Otherwise we have no way to attach
2087 * the PHY to the mii(4) layer. PHY specific configuration
2088 * is done by the mii(4) layer.
2089 */
2090
2091 /* Select auto-negotiation MMD of the PHY. */
2092 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2093 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2094
2095 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2096 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2097
2098 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2099 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2100 }
2101 }
2102
2103 /****************************************************************************/
2104 /* Free any DMA memory owned by the driver. */
2105 /* */
2106 /* Scans through each data structre that requires DMA memory and frees */
2107 /* the memory if allocated. */
2108 /* */
2109 /* Returns: */
2110 /* Nothing. */
2111 /****************************************************************************/
2112 void
2113 bnx_dma_free(struct bnx_softc *sc)
2114 {
2115 int i;
2116
2117 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2118
2119 /* Destroy the status block. */
2120 if (sc->status_block != NULL && sc->status_map != NULL) {
2121 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2122 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2123 BNX_STATUS_BLK_SZ);
2124 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2125 sc->status_rseg);
2126 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2127 sc->status_block = NULL;
2128 sc->status_map = NULL;
2129 }
2130
2131 /* Destroy the statistics block. */
2132 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2133 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2134 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2135 BNX_STATS_BLK_SZ);
2136 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2137 sc->stats_rseg);
2138 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2139 sc->stats_block = NULL;
2140 sc->stats_map = NULL;
2141 }
2142
2143 /* Free, unmap and destroy all context memory pages. */
2144 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2145 for (i = 0; i < sc->ctx_pages; i++) {
2146 if (sc->ctx_block[i] != NULL) {
2147 bus_dmamap_unload(sc->bnx_dmatag,
2148 sc->ctx_map[i]);
2149 bus_dmamem_unmap(sc->bnx_dmatag,
2150 (void *)sc->ctx_block[i],
2151 BCM_PAGE_SIZE);
2152 bus_dmamem_free(sc->bnx_dmatag,
2153 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2154 bus_dmamap_destroy(sc->bnx_dmatag,
2155 sc->ctx_map[i]);
2156 sc->ctx_block[i] = NULL;
2157 }
2158 }
2159 }
2160
2161 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2162 for (i = 0; i < TX_PAGES; i++ ) {
2163 if (sc->tx_bd_chain[i] != NULL &&
2164 sc->tx_bd_chain_map[i] != NULL) {
2165 bus_dmamap_unload(sc->bnx_dmatag,
2166 sc->tx_bd_chain_map[i]);
2167 bus_dmamem_unmap(sc->bnx_dmatag,
2168 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2169 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2170 sc->tx_bd_chain_rseg[i]);
2171 bus_dmamap_destroy(sc->bnx_dmatag,
2172 sc->tx_bd_chain_map[i]);
2173 sc->tx_bd_chain[i] = NULL;
2174 sc->tx_bd_chain_map[i] = NULL;
2175 }
2176 }
2177
2178 /* Destroy the TX dmamaps. */
2179 /* This isn't necessary since we dont allocate them up front */
2180
2181 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2182 for (i = 0; i < RX_PAGES; i++ ) {
2183 if (sc->rx_bd_chain[i] != NULL &&
2184 sc->rx_bd_chain_map[i] != NULL) {
2185 bus_dmamap_unload(sc->bnx_dmatag,
2186 sc->rx_bd_chain_map[i]);
2187 bus_dmamem_unmap(sc->bnx_dmatag,
2188 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2189 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2190 sc->rx_bd_chain_rseg[i]);
2191
2192 bus_dmamap_destroy(sc->bnx_dmatag,
2193 sc->rx_bd_chain_map[i]);
2194 sc->rx_bd_chain[i] = NULL;
2195 sc->rx_bd_chain_map[i] = NULL;
2196 }
2197 }
2198
2199 /* Unload and destroy the RX mbuf maps. */
2200 for (i = 0; i < TOTAL_RX_BD; i++) {
2201 if (sc->rx_mbuf_map[i] != NULL) {
2202 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2203 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2204 }
2205 }
2206
2207 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2208 }
2209
2210 /****************************************************************************/
2211 /* Allocate any DMA memory needed by the driver. */
2212 /* */
2213 /* Allocates DMA memory needed for the various global structures needed by */
2214 /* hardware. */
2215 /* */
2216 /* Returns: */
2217 /* 0 for success, positive value for failure. */
2218 /****************************************************************************/
2219 int
2220 bnx_dma_alloc(struct bnx_softc *sc)
2221 {
2222 int i, rc = 0;
2223
2224 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2225
2226 /*
2227 * Allocate DMA memory for the status block, map the memory into DMA
2228 * space, and fetch the physical address of the block.
2229 */
2230 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2231 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2232 aprint_error_dev(sc->bnx_dev,
2233 "Could not create status block DMA map!\n");
2234 rc = ENOMEM;
2235 goto bnx_dma_alloc_exit;
2236 }
2237
2238 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2239 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2240 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2241 aprint_error_dev(sc->bnx_dev,
2242 "Could not allocate status block DMA memory!\n");
2243 rc = ENOMEM;
2244 goto bnx_dma_alloc_exit;
2245 }
2246
2247 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2248 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2249 aprint_error_dev(sc->bnx_dev,
2250 "Could not map status block DMA memory!\n");
2251 rc = ENOMEM;
2252 goto bnx_dma_alloc_exit;
2253 }
2254
2255 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2256 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2257 aprint_error_dev(sc->bnx_dev,
2258 "Could not load status block DMA memory!\n");
2259 rc = ENOMEM;
2260 goto bnx_dma_alloc_exit;
2261 }
2262
2263 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2264 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2265
2266 /* DRC - Fix for 64 bit addresses. */
2267 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2268 (u_int32_t) sc->status_block_paddr);
2269
2270 /* BCM5709 uses host memory as cache for context memory. */
2271 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2272 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2273 if (sc->ctx_pages == 0)
2274 sc->ctx_pages = 1;
2275 if (sc->ctx_pages > 4) /* XXX */
2276 sc->ctx_pages = 4;
2277
2278 DBRUNIF((sc->ctx_pages > 512),
2279 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2280 __FILE__, __LINE__, sc->ctx_pages));
2281
2282
2283 for (i = 0; i < sc->ctx_pages; i++) {
2284 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2285 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2286 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2287 &sc->ctx_map[i]) != 0) {
2288 rc = ENOMEM;
2289 goto bnx_dma_alloc_exit;
2290 }
2291
2292 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2293 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2294 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2295 rc = ENOMEM;
2296 goto bnx_dma_alloc_exit;
2297 }
2298
2299 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2300 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2301 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2302 rc = ENOMEM;
2303 goto bnx_dma_alloc_exit;
2304 }
2305
2306 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2307 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2308 BUS_DMA_NOWAIT) != 0) {
2309 rc = ENOMEM;
2310 goto bnx_dma_alloc_exit;
2311 }
2312
2313 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2314 }
2315 }
2316
2317 /*
2318 * Allocate DMA memory for the statistics block, map the memory into
2319 * DMA space, and fetch the physical address of the block.
2320 */
2321 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2322 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2323 aprint_error_dev(sc->bnx_dev,
2324 "Could not create stats block DMA map!\n");
2325 rc = ENOMEM;
2326 goto bnx_dma_alloc_exit;
2327 }
2328
2329 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2330 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2331 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2332 aprint_error_dev(sc->bnx_dev,
2333 "Could not allocate stats block DMA memory!\n");
2334 rc = ENOMEM;
2335 goto bnx_dma_alloc_exit;
2336 }
2337
2338 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2339 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2340 aprint_error_dev(sc->bnx_dev,
2341 "Could not map stats block DMA memory!\n");
2342 rc = ENOMEM;
2343 goto bnx_dma_alloc_exit;
2344 }
2345
2346 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2347 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2348 aprint_error_dev(sc->bnx_dev,
2349 "Could not load status block DMA memory!\n");
2350 rc = ENOMEM;
2351 goto bnx_dma_alloc_exit;
2352 }
2353
2354 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2355 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2356
2357 /* DRC - Fix for 64 bit address. */
2358 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2359 (u_int32_t) sc->stats_block_paddr);
2360
2361 /*
2362 * Allocate DMA memory for the TX buffer descriptor chain,
2363 * and fetch the physical address of the block.
2364 */
2365 for (i = 0; i < TX_PAGES; i++) {
2366 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2367 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2368 &sc->tx_bd_chain_map[i])) {
2369 aprint_error_dev(sc->bnx_dev,
2370 "Could not create Tx desc %d DMA map!\n", i);
2371 rc = ENOMEM;
2372 goto bnx_dma_alloc_exit;
2373 }
2374
2375 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2376 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2377 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2378 aprint_error_dev(sc->bnx_dev,
2379 "Could not allocate TX desc %d DMA memory!\n",
2380 i);
2381 rc = ENOMEM;
2382 goto bnx_dma_alloc_exit;
2383 }
2384
2385 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2386 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2387 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2388 aprint_error_dev(sc->bnx_dev,
2389 "Could not map TX desc %d DMA memory!\n", i);
2390 rc = ENOMEM;
2391 goto bnx_dma_alloc_exit;
2392 }
2393
2394 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2395 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2396 BUS_DMA_NOWAIT)) {
2397 aprint_error_dev(sc->bnx_dev,
2398 "Could not load TX desc %d DMA memory!\n", i);
2399 rc = ENOMEM;
2400 goto bnx_dma_alloc_exit;
2401 }
2402
2403 sc->tx_bd_chain_paddr[i] =
2404 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2405
2406 /* DRC - Fix for 64 bit systems. */
2407 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2408 i, (u_int32_t) sc->tx_bd_chain_paddr[i]);
2409 }
2410
2411 /*
2412 * Create lists to hold TX mbufs.
2413 */
2414 TAILQ_INIT(&sc->tx_free_pkts);
2415 TAILQ_INIT(&sc->tx_used_pkts);
2416 sc->tx_pkt_count = 0;
2417 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2418
2419 /*
2420 * Allocate DMA memory for the Rx buffer descriptor chain,
2421 * and fetch the physical address of the block.
2422 */
2423 for (i = 0; i < RX_PAGES; i++) {
2424 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2425 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2426 &sc->rx_bd_chain_map[i])) {
2427 aprint_error_dev(sc->bnx_dev,
2428 "Could not create Rx desc %d DMA map!\n", i);
2429 rc = ENOMEM;
2430 goto bnx_dma_alloc_exit;
2431 }
2432
2433 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2434 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2435 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2436 aprint_error_dev(sc->bnx_dev,
2437 "Could not allocate Rx desc %d DMA memory!\n", i);
2438 rc = ENOMEM;
2439 goto bnx_dma_alloc_exit;
2440 }
2441
2442 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2443 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2444 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2445 aprint_error_dev(sc->bnx_dev,
2446 "Could not map Rx desc %d DMA memory!\n", i);
2447 rc = ENOMEM;
2448 goto bnx_dma_alloc_exit;
2449 }
2450
2451 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2452 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2453 BUS_DMA_NOWAIT)) {
2454 aprint_error_dev(sc->bnx_dev,
2455 "Could not load Rx desc %d DMA memory!\n", i);
2456 rc = ENOMEM;
2457 goto bnx_dma_alloc_exit;
2458 }
2459
2460 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2461 sc->rx_bd_chain_paddr[i] =
2462 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2463
2464 /* DRC - Fix for 64 bit systems. */
2465 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2466 i, (u_int32_t) sc->rx_bd_chain_paddr[i]);
2467 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2468 0, BNX_RX_CHAIN_PAGE_SZ,
2469 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2470 }
2471
2472 /*
2473 * Create DMA maps for the Rx buffer mbufs.
2474 */
2475 for (i = 0; i < TOTAL_RX_BD; i++) {
2476 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2477 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2478 &sc->rx_mbuf_map[i])) {
2479 aprint_error_dev(sc->bnx_dev,
2480 "Could not create Rx mbuf %d DMA map!\n", i);
2481 rc = ENOMEM;
2482 goto bnx_dma_alloc_exit;
2483 }
2484 }
2485
2486 bnx_dma_alloc_exit:
2487 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2488
2489 return rc;
2490 }
2491
2492 /****************************************************************************/
2493 /* Release all resources used by the driver. */
2494 /* */
2495 /* Releases all resources acquired by the driver including interrupts, */
2496 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2497 /* */
2498 /* Returns: */
2499 /* Nothing. */
2500 /****************************************************************************/
2501 void
2502 bnx_release_resources(struct bnx_softc *sc)
2503 {
2504 struct pci_attach_args *pa = &(sc->bnx_pa);
2505
2506 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2507
2508 bnx_dma_free(sc);
2509
2510 if (sc->bnx_intrhand != NULL)
2511 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2512
2513 if (sc->bnx_size)
2514 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2515
2516 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2517 }
2518
2519 /****************************************************************************/
2520 /* Firmware synchronization. */
2521 /* */
2522 /* Before performing certain events such as a chip reset, synchronize with */
2523 /* the firmware first. */
2524 /* */
2525 /* Returns: */
2526 /* 0 for success, positive value for failure. */
2527 /****************************************************************************/
2528 int
2529 bnx_fw_sync(struct bnx_softc *sc, u_int32_t msg_data)
2530 {
2531 int i, rc = 0;
2532 u_int32_t val;
2533
2534 /* Don't waste any time if we've timed out before. */
2535 if (sc->bnx_fw_timed_out) {
2536 rc = EBUSY;
2537 goto bnx_fw_sync_exit;
2538 }
2539
2540 /* Increment the message sequence number. */
2541 sc->bnx_fw_wr_seq++;
2542 msg_data |= sc->bnx_fw_wr_seq;
2543
2544 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2545 msg_data);
2546
2547 /* Send the message to the bootcode driver mailbox. */
2548 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2549
2550 /* Wait for the bootcode to acknowledge the message. */
2551 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2552 /* Check for a response in the bootcode firmware mailbox. */
2553 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2554 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2555 break;
2556 DELAY(1000);
2557 }
2558
2559 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2560 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2561 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2562 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2563 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2564
2565 msg_data &= ~BNX_DRV_MSG_CODE;
2566 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2567
2568 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2569
2570 sc->bnx_fw_timed_out = 1;
2571 rc = EBUSY;
2572 }
2573
2574 bnx_fw_sync_exit:
2575 return rc;
2576 }
2577
2578 /****************************************************************************/
2579 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2580 /* */
2581 /* Returns: */
2582 /* Nothing. */
2583 /****************************************************************************/
2584 void
2585 bnx_load_rv2p_fw(struct bnx_softc *sc, u_int32_t *rv2p_code,
2586 u_int32_t rv2p_code_len, u_int32_t rv2p_proc)
2587 {
2588 int i;
2589 u_int32_t val;
2590
2591 /* Set the page size used by RV2P. */
2592 if (rv2p_proc == RV2P_PROC2) {
2593 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2594 USABLE_RX_BD_PER_PAGE);
2595 }
2596
2597 for (i = 0; i < rv2p_code_len; i += 8) {
2598 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2599 rv2p_code++;
2600 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2601 rv2p_code++;
2602
2603 if (rv2p_proc == RV2P_PROC1) {
2604 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2605 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2606 } else {
2607 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2608 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2609 }
2610 }
2611
2612 /* Reset the processor, un-stall is done later. */
2613 if (rv2p_proc == RV2P_PROC1)
2614 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2615 else
2616 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2617 }
2618
2619 /****************************************************************************/
2620 /* Load RISC processor firmware. */
2621 /* */
2622 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2623 /* associated with a particular processor. */
2624 /* */
2625 /* Returns: */
2626 /* Nothing. */
2627 /****************************************************************************/
2628 void
2629 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2630 struct fw_info *fw)
2631 {
2632 u_int32_t offset;
2633 u_int32_t val;
2634
2635 /* Halt the CPU. */
2636 val = REG_RD_IND(sc, cpu_reg->mode);
2637 val |= cpu_reg->mode_value_halt;
2638 REG_WR_IND(sc, cpu_reg->mode, val);
2639 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2640
2641 /* Load the Text area. */
2642 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2643 if (fw->text) {
2644 int j;
2645
2646 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2647 REG_WR_IND(sc, offset, fw->text[j]);
2648 }
2649
2650 /* Load the Data area. */
2651 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2652 if (fw->data) {
2653 int j;
2654
2655 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2656 REG_WR_IND(sc, offset, fw->data[j]);
2657 }
2658
2659 /* Load the SBSS area. */
2660 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2661 if (fw->sbss) {
2662 int j;
2663
2664 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2665 REG_WR_IND(sc, offset, fw->sbss[j]);
2666 }
2667
2668 /* Load the BSS area. */
2669 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2670 if (fw->bss) {
2671 int j;
2672
2673 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2674 REG_WR_IND(sc, offset, fw->bss[j]);
2675 }
2676
2677 /* Load the Read-Only area. */
2678 offset = cpu_reg->spad_base +
2679 (fw->rodata_addr - cpu_reg->mips_view_base);
2680 if (fw->rodata) {
2681 int j;
2682
2683 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2684 REG_WR_IND(sc, offset, fw->rodata[j]);
2685 }
2686
2687 /* Clear the pre-fetch instruction. */
2688 REG_WR_IND(sc, cpu_reg->inst, 0);
2689 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2690
2691 /* Start the CPU. */
2692 val = REG_RD_IND(sc, cpu_reg->mode);
2693 val &= ~cpu_reg->mode_value_halt;
2694 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2695 REG_WR_IND(sc, cpu_reg->mode, val);
2696 }
2697
2698 /****************************************************************************/
2699 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2700 /* */
2701 /* Loads the firmware for each CPU and starts the CPU. */
2702 /* */
2703 /* Returns: */
2704 /* Nothing. */
2705 /****************************************************************************/
2706 void
2707 bnx_init_cpus(struct bnx_softc *sc)
2708 {
2709 struct cpu_reg cpu_reg;
2710 struct fw_info fw;
2711
2712 switch(BNX_CHIP_NUM(sc)) {
2713 case BNX_CHIP_NUM_5709:
2714 /* Initialize the RV2P processor. */
2715 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2716 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2717 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2718 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2719 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2720 } else {
2721 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2722 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2723 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2724 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2725 }
2726
2727 /* Initialize the RX Processor. */
2728 cpu_reg.mode = BNX_RXP_CPU_MODE;
2729 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2730 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2731 cpu_reg.state = BNX_RXP_CPU_STATE;
2732 cpu_reg.state_value_clear = 0xffffff;
2733 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2734 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2735 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2736 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2737 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2738 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2739 cpu_reg.mips_view_base = 0x8000000;
2740
2741 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2742 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2743 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2744 fw.start_addr = bnx_RXP_b09FwStartAddr;
2745
2746 fw.text_addr = bnx_RXP_b09FwTextAddr;
2747 fw.text_len = bnx_RXP_b09FwTextLen;
2748 fw.text_index = 0;
2749 fw.text = bnx_RXP_b09FwText;
2750
2751 fw.data_addr = bnx_RXP_b09FwDataAddr;
2752 fw.data_len = bnx_RXP_b09FwDataLen;
2753 fw.data_index = 0;
2754 fw.data = bnx_RXP_b09FwData;
2755
2756 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2757 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2758 fw.sbss_index = 0;
2759 fw.sbss = bnx_RXP_b09FwSbss;
2760
2761 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2762 fw.bss_len = bnx_RXP_b09FwBssLen;
2763 fw.bss_index = 0;
2764 fw.bss = bnx_RXP_b09FwBss;
2765
2766 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2767 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2768 fw.rodata_index = 0;
2769 fw.rodata = bnx_RXP_b09FwRodata;
2770
2771 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2772 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2773
2774 /* Initialize the TX Processor. */
2775 cpu_reg.mode = BNX_TXP_CPU_MODE;
2776 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2777 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2778 cpu_reg.state = BNX_TXP_CPU_STATE;
2779 cpu_reg.state_value_clear = 0xffffff;
2780 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2781 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2782 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2783 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2784 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2785 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2786 cpu_reg.mips_view_base = 0x8000000;
2787
2788 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2789 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2790 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2791 fw.start_addr = bnx_TXP_b09FwStartAddr;
2792
2793 fw.text_addr = bnx_TXP_b09FwTextAddr;
2794 fw.text_len = bnx_TXP_b09FwTextLen;
2795 fw.text_index = 0;
2796 fw.text = bnx_TXP_b09FwText;
2797
2798 fw.data_addr = bnx_TXP_b09FwDataAddr;
2799 fw.data_len = bnx_TXP_b09FwDataLen;
2800 fw.data_index = 0;
2801 fw.data = bnx_TXP_b09FwData;
2802
2803 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2804 fw.sbss_len = bnx_TXP_b09FwSbssLen;
2805 fw.sbss_index = 0;
2806 fw.sbss = bnx_TXP_b09FwSbss;
2807
2808 fw.bss_addr = bnx_TXP_b09FwBssAddr;
2809 fw.bss_len = bnx_TXP_b09FwBssLen;
2810 fw.bss_index = 0;
2811 fw.bss = bnx_TXP_b09FwBss;
2812
2813 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2814 fw.rodata_len = bnx_TXP_b09FwRodataLen;
2815 fw.rodata_index = 0;
2816 fw.rodata = bnx_TXP_b09FwRodata;
2817
2818 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2819 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2820
2821 /* Initialize the TX Patch-up Processor. */
2822 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2823 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2824 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2825 cpu_reg.state = BNX_TPAT_CPU_STATE;
2826 cpu_reg.state_value_clear = 0xffffff;
2827 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2828 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2829 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2830 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2831 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2832 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2833 cpu_reg.mips_view_base = 0x8000000;
2834
2835 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2836 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2837 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2838 fw.start_addr = bnx_TPAT_b09FwStartAddr;
2839
2840 fw.text_addr = bnx_TPAT_b09FwTextAddr;
2841 fw.text_len = bnx_TPAT_b09FwTextLen;
2842 fw.text_index = 0;
2843 fw.text = bnx_TPAT_b09FwText;
2844
2845 fw.data_addr = bnx_TPAT_b09FwDataAddr;
2846 fw.data_len = bnx_TPAT_b09FwDataLen;
2847 fw.data_index = 0;
2848 fw.data = bnx_TPAT_b09FwData;
2849
2850 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2851 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2852 fw.sbss_index = 0;
2853 fw.sbss = bnx_TPAT_b09FwSbss;
2854
2855 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2856 fw.bss_len = bnx_TPAT_b09FwBssLen;
2857 fw.bss_index = 0;
2858 fw.bss = bnx_TPAT_b09FwBss;
2859
2860 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2861 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2862 fw.rodata_index = 0;
2863 fw.rodata = bnx_TPAT_b09FwRodata;
2864
2865 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2866 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2867
2868 /* Initialize the Completion Processor. */
2869 cpu_reg.mode = BNX_COM_CPU_MODE;
2870 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2871 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2872 cpu_reg.state = BNX_COM_CPU_STATE;
2873 cpu_reg.state_value_clear = 0xffffff;
2874 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2875 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2876 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2877 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2878 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2879 cpu_reg.spad_base = BNX_COM_SCRATCH;
2880 cpu_reg.mips_view_base = 0x8000000;
2881
2882 fw.ver_major = bnx_COM_b09FwReleaseMajor;
2883 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2884 fw.ver_fix = bnx_COM_b09FwReleaseFix;
2885 fw.start_addr = bnx_COM_b09FwStartAddr;
2886
2887 fw.text_addr = bnx_COM_b09FwTextAddr;
2888 fw.text_len = bnx_COM_b09FwTextLen;
2889 fw.text_index = 0;
2890 fw.text = bnx_COM_b09FwText;
2891
2892 fw.data_addr = bnx_COM_b09FwDataAddr;
2893 fw.data_len = bnx_COM_b09FwDataLen;
2894 fw.data_index = 0;
2895 fw.data = bnx_COM_b09FwData;
2896
2897 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2898 fw.sbss_len = bnx_COM_b09FwSbssLen;
2899 fw.sbss_index = 0;
2900 fw.sbss = bnx_COM_b09FwSbss;
2901
2902 fw.bss_addr = bnx_COM_b09FwBssAddr;
2903 fw.bss_len = bnx_COM_b09FwBssLen;
2904 fw.bss_index = 0;
2905 fw.bss = bnx_COM_b09FwBss;
2906
2907 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
2908 fw.rodata_len = bnx_COM_b09FwRodataLen;
2909 fw.rodata_index = 0;
2910 fw.rodata = bnx_COM_b09FwRodata;
2911 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2912 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2913 break;
2914 default:
2915 /* Initialize the RV2P processor. */
2916 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2917 RV2P_PROC1);
2918 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2919 RV2P_PROC2);
2920
2921 /* Initialize the RX Processor. */
2922 cpu_reg.mode = BNX_RXP_CPU_MODE;
2923 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2924 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2925 cpu_reg.state = BNX_RXP_CPU_STATE;
2926 cpu_reg.state_value_clear = 0xffffff;
2927 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2928 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2929 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2930 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2931 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2932 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2933 cpu_reg.mips_view_base = 0x8000000;
2934
2935 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2936 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2937 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2938 fw.start_addr = bnx_RXP_b06FwStartAddr;
2939
2940 fw.text_addr = bnx_RXP_b06FwTextAddr;
2941 fw.text_len = bnx_RXP_b06FwTextLen;
2942 fw.text_index = 0;
2943 fw.text = bnx_RXP_b06FwText;
2944
2945 fw.data_addr = bnx_RXP_b06FwDataAddr;
2946 fw.data_len = bnx_RXP_b06FwDataLen;
2947 fw.data_index = 0;
2948 fw.data = bnx_RXP_b06FwData;
2949
2950 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2951 fw.sbss_len = bnx_RXP_b06FwSbssLen;
2952 fw.sbss_index = 0;
2953 fw.sbss = bnx_RXP_b06FwSbss;
2954
2955 fw.bss_addr = bnx_RXP_b06FwBssAddr;
2956 fw.bss_len = bnx_RXP_b06FwBssLen;
2957 fw.bss_index = 0;
2958 fw.bss = bnx_RXP_b06FwBss;
2959
2960 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2961 fw.rodata_len = bnx_RXP_b06FwRodataLen;
2962 fw.rodata_index = 0;
2963 fw.rodata = bnx_RXP_b06FwRodata;
2964
2965 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2966 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2967
2968 /* Initialize the TX Processor. */
2969 cpu_reg.mode = BNX_TXP_CPU_MODE;
2970 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2971 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2972 cpu_reg.state = BNX_TXP_CPU_STATE;
2973 cpu_reg.state_value_clear = 0xffffff;
2974 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2975 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2976 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2977 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2978 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2979 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2980 cpu_reg.mips_view_base = 0x8000000;
2981
2982 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2983 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2984 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2985 fw.start_addr = bnx_TXP_b06FwStartAddr;
2986
2987 fw.text_addr = bnx_TXP_b06FwTextAddr;
2988 fw.text_len = bnx_TXP_b06FwTextLen;
2989 fw.text_index = 0;
2990 fw.text = bnx_TXP_b06FwText;
2991
2992 fw.data_addr = bnx_TXP_b06FwDataAddr;
2993 fw.data_len = bnx_TXP_b06FwDataLen;
2994 fw.data_index = 0;
2995 fw.data = bnx_TXP_b06FwData;
2996
2997 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2998 fw.sbss_len = bnx_TXP_b06FwSbssLen;
2999 fw.sbss_index = 0;
3000 fw.sbss = bnx_TXP_b06FwSbss;
3001
3002 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3003 fw.bss_len = bnx_TXP_b06FwBssLen;
3004 fw.bss_index = 0;
3005 fw.bss = bnx_TXP_b06FwBss;
3006
3007 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3008 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3009 fw.rodata_index = 0;
3010 fw.rodata = bnx_TXP_b06FwRodata;
3011
3012 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3013 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3014
3015 /* Initialize the TX Patch-up Processor. */
3016 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3017 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3018 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3019 cpu_reg.state = BNX_TPAT_CPU_STATE;
3020 cpu_reg.state_value_clear = 0xffffff;
3021 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3022 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3023 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3024 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3025 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3026 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3027 cpu_reg.mips_view_base = 0x8000000;
3028
3029 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3030 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3031 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3032 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3033
3034 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3035 fw.text_len = bnx_TPAT_b06FwTextLen;
3036 fw.text_index = 0;
3037 fw.text = bnx_TPAT_b06FwText;
3038
3039 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3040 fw.data_len = bnx_TPAT_b06FwDataLen;
3041 fw.data_index = 0;
3042 fw.data = bnx_TPAT_b06FwData;
3043
3044 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3045 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3046 fw.sbss_index = 0;
3047 fw.sbss = bnx_TPAT_b06FwSbss;
3048
3049 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3050 fw.bss_len = bnx_TPAT_b06FwBssLen;
3051 fw.bss_index = 0;
3052 fw.bss = bnx_TPAT_b06FwBss;
3053
3054 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3055 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3056 fw.rodata_index = 0;
3057 fw.rodata = bnx_TPAT_b06FwRodata;
3058
3059 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3060 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3061
3062 /* Initialize the Completion Processor. */
3063 cpu_reg.mode = BNX_COM_CPU_MODE;
3064 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3065 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3066 cpu_reg.state = BNX_COM_CPU_STATE;
3067 cpu_reg.state_value_clear = 0xffffff;
3068 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3069 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3070 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3071 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3072 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3073 cpu_reg.spad_base = BNX_COM_SCRATCH;
3074 cpu_reg.mips_view_base = 0x8000000;
3075
3076 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3077 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3078 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3079 fw.start_addr = bnx_COM_b06FwStartAddr;
3080
3081 fw.text_addr = bnx_COM_b06FwTextAddr;
3082 fw.text_len = bnx_COM_b06FwTextLen;
3083 fw.text_index = 0;
3084 fw.text = bnx_COM_b06FwText;
3085
3086 fw.data_addr = bnx_COM_b06FwDataAddr;
3087 fw.data_len = bnx_COM_b06FwDataLen;
3088 fw.data_index = 0;
3089 fw.data = bnx_COM_b06FwData;
3090
3091 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3092 fw.sbss_len = bnx_COM_b06FwSbssLen;
3093 fw.sbss_index = 0;
3094 fw.sbss = bnx_COM_b06FwSbss;
3095
3096 fw.bss_addr = bnx_COM_b06FwBssAddr;
3097 fw.bss_len = bnx_COM_b06FwBssLen;
3098 fw.bss_index = 0;
3099 fw.bss = bnx_COM_b06FwBss;
3100
3101 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3102 fw.rodata_len = bnx_COM_b06FwRodataLen;
3103 fw.rodata_index = 0;
3104 fw.rodata = bnx_COM_b06FwRodata;
3105 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3106 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3107 break;
3108 }
3109 }
3110
3111 /****************************************************************************/
3112 /* Initialize context memory. */
3113 /* */
3114 /* Clears the memory associated with each Context ID (CID). */
3115 /* */
3116 /* Returns: */
3117 /* Nothing. */
3118 /****************************************************************************/
3119 void
3120 bnx_init_context(struct bnx_softc *sc)
3121 {
3122 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3123 /* DRC: Replace this constant value with a #define. */
3124 int i, retry_cnt = 10;
3125 u_int32_t val;
3126
3127 /*
3128 * BCM5709 context memory may be cached
3129 * in host memory so prepare the host memory
3130 * for access.
3131 */
3132 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3133 | (1 << 12);
3134 val |= (BCM_PAGE_BITS - 8) << 16;
3135 REG_WR(sc, BNX_CTX_COMMAND, val);
3136
3137 /* Wait for mem init command to complete. */
3138 for (i = 0; i < retry_cnt; i++) {
3139 val = REG_RD(sc, BNX_CTX_COMMAND);
3140 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3141 break;
3142 DELAY(2);
3143 }
3144
3145
3146 /* ToDo: Consider returning an error here. */
3147
3148 for (i = 0; i < sc->ctx_pages; i++) {
3149 int j;
3150
3151
3152 /* Set the physaddr of the context memory cache. */
3153 val = (u_int32_t)(sc->ctx_segs[i].ds_addr);
3154 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3155 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3156 val = (u_int32_t)
3157 ((u_int64_t)sc->ctx_segs[i].ds_addr >> 32);
3158 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3159 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3160 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3161
3162
3163 /* Verify that the context memory write was successful. */
3164 for (j = 0; j < retry_cnt; j++) {
3165 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3166 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3167 break;
3168 DELAY(5);
3169 }
3170
3171 /* ToDo: Consider returning an error here. */
3172 }
3173 } else {
3174 u_int32_t vcid_addr, offset;
3175
3176 /*
3177 * For the 5706/5708, context memory is local to
3178 * the controller, so initialize the controller
3179 * context memory.
3180 */
3181
3182 vcid_addr = GET_CID_ADDR(96);
3183 while (vcid_addr) {
3184
3185 vcid_addr -= BNX_PHY_CTX_SIZE;
3186
3187 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3188 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3189
3190 for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3191 CTX_WR(sc, 0x00, offset, 0);
3192 }
3193
3194 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3195 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3196 }
3197 }
3198 }
3199
3200 /****************************************************************************/
3201 /* Fetch the permanent MAC address of the controller. */
3202 /* */
3203 /* Returns: */
3204 /* Nothing. */
3205 /****************************************************************************/
3206 void
3207 bnx_get_mac_addr(struct bnx_softc *sc)
3208 {
3209 u_int32_t mac_lo = 0, mac_hi = 0;
3210
3211 /*
3212 * The NetXtreme II bootcode populates various NIC
3213 * power-on and runtime configuration items in a
3214 * shared memory area. The factory configured MAC
3215 * address is available from both NVRAM and the
3216 * shared memory area so we'll read the value from
3217 * shared memory for speed.
3218 */
3219
3220 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3221 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3222
3223 if ((mac_lo == 0) && (mac_hi == 0)) {
3224 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3225 __FILE__, __LINE__);
3226 } else {
3227 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3228 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3229 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3230 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3231 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3232 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3233 }
3234
3235 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3236 "%s\n", ether_sprintf(sc->eaddr));
3237 }
3238
3239 /****************************************************************************/
3240 /* Program the MAC address. */
3241 /* */
3242 /* Returns: */
3243 /* Nothing. */
3244 /****************************************************************************/
3245 void
3246 bnx_set_mac_addr(struct bnx_softc *sc)
3247 {
3248 u_int32_t val;
3249 const u_int8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3250
3251 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3252 "%s\n", ether_sprintf(sc->eaddr));
3253
3254 val = (mac_addr[0] << 8) | mac_addr[1];
3255
3256 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3257
3258 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3259 (mac_addr[4] << 8) | mac_addr[5];
3260
3261 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3262 }
3263
3264 /****************************************************************************/
3265 /* Stop the controller. */
3266 /* */
3267 /* Returns: */
3268 /* Nothing. */
3269 /****************************************************************************/
3270 void
3271 bnx_stop(struct ifnet *ifp, int disable)
3272 {
3273 struct bnx_softc *sc = ifp->if_softc;
3274
3275 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3276
3277 if ((ifp->if_flags & IFF_RUNNING) == 0)
3278 return;
3279
3280 callout_stop(&sc->bnx_timeout);
3281
3282 mii_down(&sc->bnx_mii);
3283
3284 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3285
3286 /* Disable the transmit/receive blocks. */
3287 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3288 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3289 DELAY(20);
3290
3291 bnx_disable_intr(sc);
3292
3293 /* Tell firmware that the driver is going away. */
3294 if (disable)
3295 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3296 else
3297 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3298
3299 /* Free RX buffers. */
3300 bnx_free_rx_chain(sc);
3301
3302 /* Free TX buffers. */
3303 bnx_free_tx_chain(sc);
3304
3305 ifp->if_timer = 0;
3306
3307 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3308
3309 }
3310
3311 int
3312 bnx_reset(struct bnx_softc *sc, u_int32_t reset_code)
3313 {
3314 struct pci_attach_args *pa = &(sc->bnx_pa);
3315 u_int32_t val;
3316 int i, rc = 0;
3317
3318 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3319
3320 /* Wait for pending PCI transactions to complete. */
3321 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3322 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3323 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3324 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3325 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3326 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3327 DELAY(5);
3328
3329 /* Disable DMA */
3330 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3331 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3332 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3333 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3334 }
3335
3336 /* Assume bootcode is running. */
3337 sc->bnx_fw_timed_out = 0;
3338
3339 /* Give the firmware a chance to prepare for the reset. */
3340 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3341 if (rc)
3342 goto bnx_reset_exit;
3343
3344 /* Set a firmware reminder that this is a soft reset. */
3345 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3346 BNX_DRV_RESET_SIGNATURE_MAGIC);
3347
3348 /* Dummy read to force the chip to complete all current transactions. */
3349 val = REG_RD(sc, BNX_MISC_ID);
3350
3351 /* Chip reset. */
3352 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3353 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3354 REG_RD(sc, BNX_MISC_COMMAND);
3355 DELAY(5);
3356
3357 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3358 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3359
3360 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3361 val);
3362 } else {
3363 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3364 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3365 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3366 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3367
3368 /* Allow up to 30us for reset to complete. */
3369 for (i = 0; i < 10; i++) {
3370 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3371 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3372 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3373 break;
3374 }
3375 DELAY(10);
3376 }
3377
3378 /* Check that reset completed successfully. */
3379 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3380 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3381 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3382 __FILE__, __LINE__);
3383 rc = EBUSY;
3384 goto bnx_reset_exit;
3385 }
3386 }
3387
3388 /* Make sure byte swapping is properly configured. */
3389 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3390 if (val != 0x01020304) {
3391 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3392 __FILE__, __LINE__);
3393 rc = ENODEV;
3394 goto bnx_reset_exit;
3395 }
3396
3397 /* Just completed a reset, assume that firmware is running again. */
3398 sc->bnx_fw_timed_out = 0;
3399
3400 /* Wait for the firmware to finish its initialization. */
3401 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3402 if (rc)
3403 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3404 "initialization!\n", __FILE__, __LINE__);
3405
3406 bnx_reset_exit:
3407 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3408
3409 return rc;
3410 }
3411
3412 int
3413 bnx_chipinit(struct bnx_softc *sc)
3414 {
3415 struct pci_attach_args *pa = &(sc->bnx_pa);
3416 u_int32_t val;
3417 int rc = 0;
3418
3419 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3420
3421 /* Make sure the interrupt is not active. */
3422 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3423
3424 /* Initialize DMA byte/word swapping, configure the number of DMA */
3425 /* channels and PCI clock compensation delay. */
3426 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3427 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3428 #if BYTE_ORDER == BIG_ENDIAN
3429 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3430 #endif
3431 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3432 DMA_READ_CHANS << 12 |
3433 DMA_WRITE_CHANS << 16;
3434
3435 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3436
3437 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3438 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3439
3440 /*
3441 * This setting resolves a problem observed on certain Intel PCI
3442 * chipsets that cannot handle multiple outstanding DMA operations.
3443 * See errata E9_5706A1_65.
3444 */
3445 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3446 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3447 !(sc->bnx_flags & BNX_PCIX_FLAG))
3448 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3449
3450 REG_WR(sc, BNX_DMA_CONFIG, val);
3451
3452 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3453 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3454 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3455 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3456 val & ~0x20000);
3457 }
3458
3459 /* Enable the RX_V2P and Context state machines before access. */
3460 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3461 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3462 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3463 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3464
3465 /* Initialize context mapping and zero out the quick contexts. */
3466 bnx_init_context(sc);
3467
3468 /* Initialize the on-boards CPUs */
3469 bnx_init_cpus(sc);
3470
3471 /* Prepare NVRAM for access. */
3472 if (bnx_init_nvram(sc)) {
3473 rc = ENODEV;
3474 goto bnx_chipinit_exit;
3475 }
3476
3477 /* Set the kernel bypass block size */
3478 val = REG_RD(sc, BNX_MQ_CONFIG);
3479 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3480 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3481
3482 /* Enable bins used on the 5709. */
3483 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3484 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3485 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3486 val |= BNX_MQ_CONFIG_HALT_DIS;
3487 }
3488
3489 REG_WR(sc, BNX_MQ_CONFIG, val);
3490
3491 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3492 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3493 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3494
3495 val = (BCM_PAGE_BITS - 8) << 24;
3496 REG_WR(sc, BNX_RV2P_CONFIG, val);
3497
3498 /* Configure page size. */
3499 val = REG_RD(sc, BNX_TBDR_CONFIG);
3500 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3501 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3502 REG_WR(sc, BNX_TBDR_CONFIG, val);
3503
3504 #if 0
3505 /* Set the perfect match control register to default. */
3506 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3507 #endif
3508
3509 bnx_chipinit_exit:
3510 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3511
3512 return rc;
3513 }
3514
3515 /****************************************************************************/
3516 /* Initialize the controller in preparation to send/receive traffic. */
3517 /* */
3518 /* Returns: */
3519 /* 0 for success, positive value for failure. */
3520 /****************************************************************************/
3521 int
3522 bnx_blockinit(struct bnx_softc *sc)
3523 {
3524 u_int32_t reg, val;
3525 int rc = 0;
3526
3527 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3528
3529 /* Load the hardware default MAC address. */
3530 bnx_set_mac_addr(sc);
3531
3532 /* Set the Ethernet backoff seed value */
3533 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3534 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3535 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3536
3537 sc->last_status_idx = 0;
3538 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3539
3540 /* Set up link change interrupt generation. */
3541 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3542 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3543
3544 /* Program the physical address of the status block. */
3545 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (u_int32_t)(sc->status_block_paddr));
3546 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3547 (u_int32_t)((u_int64_t)sc->status_block_paddr >> 32));
3548
3549 /* Program the physical address of the statistics block. */
3550 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3551 (u_int32_t)(sc->stats_block_paddr));
3552 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3553 (u_int32_t)((u_int64_t)sc->stats_block_paddr >> 32));
3554
3555 /* Program various host coalescing parameters. */
3556 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3557 << 16) | sc->bnx_tx_quick_cons_trip);
3558 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3559 << 16) | sc->bnx_rx_quick_cons_trip);
3560 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3561 sc->bnx_comp_prod_trip);
3562 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3563 sc->bnx_tx_ticks);
3564 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3565 sc->bnx_rx_ticks);
3566 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3567 sc->bnx_com_ticks);
3568 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3569 sc->bnx_cmd_ticks);
3570 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3571 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3572 REG_WR(sc, BNX_HC_CONFIG,
3573 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3574 BNX_HC_CONFIG_COLLECT_STATS));
3575
3576 /* Clear the internal statistics counters. */
3577 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3578
3579 /* Verify that bootcode is running. */
3580 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3581
3582 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3583 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3584 __FILE__, __LINE__); reg = 0);
3585
3586 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3587 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3588 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3589 "Expected: 08%08X\n", __FILE__, __LINE__,
3590 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3591 BNX_DEV_INFO_SIGNATURE_MAGIC);
3592 rc = ENODEV;
3593 goto bnx_blockinit_exit;
3594 }
3595
3596 /* Check if any management firmware is running. */
3597 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3598 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3599 BNX_PORT_FEATURE_IMD_ENABLED)) {
3600 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3601 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3602 }
3603
3604 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3605 BNX_DEV_INFO_BC_REV);
3606
3607 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3608
3609 /* Enable DMA */
3610 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3611 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3612 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3613 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3614 }
3615
3616 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3617 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3618
3619 /* Enable link state change interrupt generation. */
3620 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3621 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3622 BNX_MISC_ENABLE_DEFAULT_XI);
3623 } else
3624 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3625
3626 /* Enable all remaining blocks in the MAC. */
3627 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3628 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3629 DELAY(20);
3630
3631 bnx_blockinit_exit:
3632 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3633
3634 return rc;
3635 }
3636
3637 static int
3638 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, u_int16_t *prod,
3639 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3640 {
3641 bus_dmamap_t map;
3642 struct rx_bd *rxbd;
3643 u_int32_t addr;
3644 int i;
3645 #ifdef BNX_DEBUG
3646 u_int16_t debug_chain_prod = *chain_prod;
3647 #endif
3648 u_int16_t first_chain_prod;
3649
3650 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3651
3652 /* Map the mbuf cluster into device memory. */
3653 map = sc->rx_mbuf_map[*chain_prod];
3654 first_chain_prod = *chain_prod;
3655 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3656 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3657 __FILE__, __LINE__);
3658
3659 m_freem(m_new);
3660
3661 DBRUNIF(1, sc->rx_mbuf_alloc--);
3662
3663 return ENOBUFS;
3664 }
3665 /* Make sure there is room in the receive chain. */
3666 if (map->dm_nsegs > sc->free_rx_bd) {
3667 bus_dmamap_unload(sc->bnx_dmatag, map);
3668 m_freem(m_new);
3669 return EFBIG;
3670 }
3671 #ifdef BNX_DEBUG
3672 /* Track the distribution of buffer segments. */
3673 sc->rx_mbuf_segs[map->dm_nsegs]++;
3674 #endif
3675
3676 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3677 BUS_DMASYNC_PREREAD);
3678
3679 /* Update some debug statistics counters */
3680 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3681 sc->rx_low_watermark = sc->free_rx_bd);
3682 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3683
3684 /*
3685 * Setup the rx_bd for the first segment
3686 */
3687 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3688
3689 addr = (u_int32_t)map->dm_segs[0].ds_addr;
3690 rxbd->rx_bd_haddr_lo = addr;
3691 addr = (u_int32_t)((u_int64_t)map->dm_segs[0].ds_addr >> 32);
3692 rxbd->rx_bd_haddr_hi = addr;
3693 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3694 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3695 *prod_bseq += map->dm_segs[0].ds_len;
3696 bus_dmamap_sync(sc->bnx_dmatag,
3697 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3698 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3699 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3700
3701 for (i = 1; i < map->dm_nsegs; i++) {
3702 *prod = NEXT_RX_BD(*prod);
3703 *chain_prod = RX_CHAIN_IDX(*prod);
3704
3705 rxbd =
3706 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3707
3708 addr = (u_int32_t)map->dm_segs[i].ds_addr;
3709 rxbd->rx_bd_haddr_lo = addr;
3710 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
3711 rxbd->rx_bd_haddr_hi = addr;
3712 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3713 rxbd->rx_bd_flags = 0;
3714 *prod_bseq += map->dm_segs[i].ds_len;
3715 bus_dmamap_sync(sc->bnx_dmatag,
3716 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3717 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3718 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3719 }
3720
3721 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3722 bus_dmamap_sync(sc->bnx_dmatag,
3723 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3724 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3725 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3726
3727 /*
3728 * Save the mbuf, ajust the map pointer (swap map for first and
3729 * last rx_bd entry to that rx_mbuf_ptr and rx_mbuf_map matches)
3730 * and update counter.
3731 */
3732 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3733 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3734 sc->rx_mbuf_map[*chain_prod] = map;
3735 sc->free_rx_bd -= map->dm_nsegs;
3736
3737 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3738 map->dm_nsegs));
3739 *prod = NEXT_RX_BD(*prod);
3740 *chain_prod = RX_CHAIN_IDX(*prod);
3741
3742 return 0;
3743 }
3744
3745 /****************************************************************************/
3746 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3747 /* */
3748 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3749 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3750 /* necessary. */
3751 /* */
3752 /* Returns: */
3753 /* 0 for success, positive value for failure. */
3754 /****************************************************************************/
3755 int
3756 bnx_get_buf(struct bnx_softc *sc, u_int16_t *prod,
3757 u_int16_t *chain_prod, u_int32_t *prod_bseq)
3758 {
3759 struct mbuf *m_new = NULL;
3760 int rc = 0;
3761 u_int16_t min_free_bd;
3762
3763 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3764 __func__);
3765
3766 /* Make sure the inputs are valid. */
3767 DBRUNIF((*chain_prod > MAX_RX_BD),
3768 aprint_error_dev(sc->bnx_dev,
3769 "RX producer out of range: 0x%04X > 0x%04X\n",
3770 *chain_prod, (u_int16_t)MAX_RX_BD));
3771
3772 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3773 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3774 *prod_bseq);
3775
3776 /* try to get in as many mbufs as possible */
3777 if (sc->mbuf_alloc_size == MCLBYTES)
3778 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3779 else
3780 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3781 while (sc->free_rx_bd >= min_free_bd) {
3782 /* Simulate an mbuf allocation failure. */
3783 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3784 aprint_error_dev(sc->bnx_dev,
3785 "Simulating mbuf allocation failure.\n");
3786 sc->mbuf_sim_alloc_failed++;
3787 rc = ENOBUFS;
3788 goto bnx_get_buf_exit);
3789
3790 /* This is a new mbuf allocation. */
3791 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3792 if (m_new == NULL) {
3793 DBPRINT(sc, BNX_WARN,
3794 "%s(%d): RX mbuf header allocation failed!\n",
3795 __FILE__, __LINE__);
3796
3797 sc->mbuf_alloc_failed++;
3798
3799 rc = ENOBUFS;
3800 goto bnx_get_buf_exit;
3801 }
3802
3803 DBRUNIF(1, sc->rx_mbuf_alloc++);
3804
3805 /* Simulate an mbuf cluster allocation failure. */
3806 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3807 m_freem(m_new);
3808 sc->rx_mbuf_alloc--;
3809 sc->mbuf_alloc_failed++;
3810 sc->mbuf_sim_alloc_failed++;
3811 rc = ENOBUFS;
3812 goto bnx_get_buf_exit);
3813
3814 if (sc->mbuf_alloc_size == MCLBYTES)
3815 MCLGET(m_new, M_DONTWAIT);
3816 else
3817 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3818 M_DONTWAIT);
3819 if (!(m_new->m_flags & M_EXT)) {
3820 DBPRINT(sc, BNX_WARN,
3821 "%s(%d): RX mbuf chain allocation failed!\n",
3822 __FILE__, __LINE__);
3823
3824 m_freem(m_new);
3825
3826 DBRUNIF(1, sc->rx_mbuf_alloc--);
3827 sc->mbuf_alloc_failed++;
3828
3829 rc = ENOBUFS;
3830 goto bnx_get_buf_exit;
3831 }
3832
3833 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3834 if (rc != 0)
3835 goto bnx_get_buf_exit;
3836 }
3837
3838 bnx_get_buf_exit:
3839 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3840 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3841 *chain_prod, *prod_bseq);
3842
3843 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3844 __func__);
3845
3846 return rc;
3847 }
3848
3849 void
3850 bnx_alloc_pkts(struct work * unused, void * arg)
3851 {
3852 struct bnx_softc *sc = arg;
3853 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3854 struct bnx_pkt *pkt;
3855 int i, s;
3856
3857 for (i = 0; i < 4; i++) { /* magic! */
3858 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
3859 if (pkt == NULL)
3860 break;
3861
3862 if (bus_dmamap_create(sc->bnx_dmatag,
3863 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3864 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
3865 &pkt->pkt_dmamap) != 0)
3866 goto put;
3867
3868 if (!ISSET(ifp->if_flags, IFF_UP))
3869 goto stopping;
3870
3871 mutex_enter(&sc->tx_pkt_mtx);
3872 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3873 sc->tx_pkt_count++;
3874 mutex_exit(&sc->tx_pkt_mtx);
3875 }
3876
3877 mutex_enter(&sc->tx_pkt_mtx);
3878 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
3879 mutex_exit(&sc->tx_pkt_mtx);
3880
3881 /* fire-up TX now that allocations have been done */
3882 s = splnet();
3883 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3884 bnx_start(ifp);
3885 splx(s);
3886
3887 return;
3888
3889 stopping:
3890 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3891 put:
3892 pool_put(bnx_tx_pool, pkt);
3893 return;
3894 }
3895
3896 /****************************************************************************/
3897 /* Initialize the TX context memory. */
3898 /* */
3899 /* Returns: */
3900 /* Nothing */
3901 /****************************************************************************/
3902 void
3903 bnx_init_tx_context(struct bnx_softc *sc)
3904 {
3905 u_int32_t val;
3906
3907 /* Initialize the context ID for an L2 TX chain. */
3908 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3909 /* Set the CID type to support an L2 connection. */
3910 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3911 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
3912 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3913 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
3914
3915 /* Point the hardware to the first page in the chain. */
3916 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3917 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3918 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
3919 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3920 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3921 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
3922 } else {
3923 /* Set the CID type to support an L2 connection. */
3924 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3925 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3926 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3927 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3928
3929 /* Point the hardware to the first page in the chain. */
3930 val = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[0] >> 32);
3931 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3932 val = (u_int32_t)(sc->tx_bd_chain_paddr[0]);
3933 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3934 }
3935 }
3936
3937
3938 /****************************************************************************/
3939 /* Allocate memory and initialize the TX data structures. */
3940 /* */
3941 /* Returns: */
3942 /* 0 for success, positive value for failure. */
3943 /****************************************************************************/
3944 int
3945 bnx_init_tx_chain(struct bnx_softc *sc)
3946 {
3947 struct tx_bd *txbd;
3948 u_int32_t addr;
3949 int i, rc = 0;
3950
3951 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3952
3953 /* Force an allocation of some dmamaps for tx up front */
3954 bnx_alloc_pkts(NULL, sc);
3955
3956 /* Set the initial TX producer/consumer indices. */
3957 sc->tx_prod = 0;
3958 sc->tx_cons = 0;
3959 sc->tx_prod_bseq = 0;
3960 sc->used_tx_bd = 0;
3961 sc->max_tx_bd = USABLE_TX_BD;
3962 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3963 DBRUNIF(1, sc->tx_full_count = 0);
3964
3965 /*
3966 * The NetXtreme II supports a linked-list structure called
3967 * a Buffer Descriptor Chain (or BD chain). A BD chain
3968 * consists of a series of 1 or more chain pages, each of which
3969 * consists of a fixed number of BD entries.
3970 * The last BD entry on each page is a pointer to the next page
3971 * in the chain, and the last pointer in the BD chain
3972 * points back to the beginning of the chain.
3973 */
3974
3975 /* Set the TX next pointer chain entries. */
3976 for (i = 0; i < TX_PAGES; i++) {
3977 int j;
3978
3979 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3980
3981 /* Check if we've reached the last page. */
3982 if (i == (TX_PAGES - 1))
3983 j = 0;
3984 else
3985 j = i + 1;
3986
3987 addr = (u_int32_t)sc->tx_bd_chain_paddr[j];
3988 txbd->tx_bd_haddr_lo = addr;
3989 addr = (u_int32_t)((u_int64_t)sc->tx_bd_chain_paddr[j] >> 32);
3990 txbd->tx_bd_haddr_hi = addr;
3991 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3992 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3993 }
3994
3995 /*
3996 * Initialize the context ID for an L2 TX chain.
3997 */
3998 bnx_init_tx_context(sc);
3999
4000 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4001
4002 return rc;
4003 }
4004
4005 /****************************************************************************/
4006 /* Free memory and clear the TX data structures. */
4007 /* */
4008 /* Returns: */
4009 /* Nothing. */
4010 /****************************************************************************/
4011 void
4012 bnx_free_tx_chain(struct bnx_softc *sc)
4013 {
4014 struct bnx_pkt *pkt;
4015 int i;
4016
4017 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4018
4019 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4020 mutex_enter(&sc->tx_pkt_mtx);
4021 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4022 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4023 mutex_exit(&sc->tx_pkt_mtx);
4024
4025 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4026 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4027 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4028
4029 m_freem(pkt->pkt_mbuf);
4030 DBRUNIF(1, sc->tx_mbuf_alloc--);
4031
4032 mutex_enter(&sc->tx_pkt_mtx);
4033 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4034 }
4035
4036 /* Destroy all the dmamaps we allocated for TX */
4037 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4038 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4039 sc->tx_pkt_count--;
4040 mutex_exit(&sc->tx_pkt_mtx);
4041
4042 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4043 pool_put(bnx_tx_pool, pkt);
4044
4045 mutex_enter(&sc->tx_pkt_mtx);
4046 }
4047 mutex_exit(&sc->tx_pkt_mtx);
4048
4049
4050
4051 /* Clear each TX chain page. */
4052 for (i = 0; i < TX_PAGES; i++) {
4053 memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4054 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4055 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4056 }
4057
4058 sc->used_tx_bd = 0;
4059
4060 /* Check if we lost any mbufs in the process. */
4061 DBRUNIF((sc->tx_mbuf_alloc),
4062 aprint_error_dev(sc->bnx_dev,
4063 "Memory leak! Lost %d mbufs from tx chain!\n",
4064 sc->tx_mbuf_alloc));
4065
4066 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4067 }
4068
4069 /****************************************************************************/
4070 /* Initialize the RX context memory. */
4071 /* */
4072 /* Returns: */
4073 /* Nothing */
4074 /****************************************************************************/
4075 void
4076 bnx_init_rx_context(struct bnx_softc *sc)
4077 {
4078 u_int32_t val;
4079
4080 /* Initialize the context ID for an L2 RX chain. */
4081 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4082 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4083
4084 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4085 u_int32_t lo_water, hi_water;
4086
4087 lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4088 hi_water = USABLE_RX_BD / 4;
4089
4090 lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4091 hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4092
4093 if (hi_water > 0xf)
4094 hi_water = 0xf;
4095 else if (hi_water == 0)
4096 lo_water = 0;
4097 val |= lo_water |
4098 (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4099 }
4100
4101 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4102
4103 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4104 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4105 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4106 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4107 }
4108
4109 /* Point the hardware to the first page in the chain. */
4110 val = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[0] >> 32);
4111 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4112 val = (u_int32_t)(sc->rx_bd_chain_paddr[0]);
4113 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4114 }
4115
4116 /****************************************************************************/
4117 /* Allocate memory and initialize the RX data structures. */
4118 /* */
4119 /* Returns: */
4120 /* 0 for success, positive value for failure. */
4121 /****************************************************************************/
4122 int
4123 bnx_init_rx_chain(struct bnx_softc *sc)
4124 {
4125 struct rx_bd *rxbd;
4126 int i, rc = 0;
4127 u_int16_t prod, chain_prod;
4128 u_int32_t prod_bseq, addr;
4129
4130 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4131
4132 /* Initialize the RX producer and consumer indices. */
4133 sc->rx_prod = 0;
4134 sc->rx_cons = 0;
4135 sc->rx_prod_bseq = 0;
4136 sc->free_rx_bd = USABLE_RX_BD;
4137 sc->max_rx_bd = USABLE_RX_BD;
4138 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4139 DBRUNIF(1, sc->rx_empty_count = 0);
4140
4141 /* Initialize the RX next pointer chain entries. */
4142 for (i = 0; i < RX_PAGES; i++) {
4143 int j;
4144
4145 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4146
4147 /* Check if we've reached the last page. */
4148 if (i == (RX_PAGES - 1))
4149 j = 0;
4150 else
4151 j = i + 1;
4152
4153 /* Setup the chain page pointers. */
4154 addr = (u_int32_t)((u_int64_t)sc->rx_bd_chain_paddr[j] >> 32);
4155 rxbd->rx_bd_haddr_hi = addr;
4156 addr = (u_int32_t)sc->rx_bd_chain_paddr[j];
4157 rxbd->rx_bd_haddr_lo = addr;
4158 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4159 0, BNX_RX_CHAIN_PAGE_SZ,
4160 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4161 }
4162
4163 /* Allocate mbuf clusters for the rx_bd chain. */
4164 prod = prod_bseq = 0;
4165 chain_prod = RX_CHAIN_IDX(prod);
4166 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4167 BNX_PRINTF(sc,
4168 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4169 }
4170
4171 /* Save the RX chain producer index. */
4172 sc->rx_prod = prod;
4173 sc->rx_prod_bseq = prod_bseq;
4174
4175 for (i = 0; i < RX_PAGES; i++)
4176 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4177 sc->rx_bd_chain_map[i]->dm_mapsize,
4178 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4179
4180 /* Tell the chip about the waiting rx_bd's. */
4181 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4182 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4183
4184 bnx_init_rx_context(sc);
4185
4186 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4187
4188 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4189
4190 return rc;
4191 }
4192
4193 /****************************************************************************/
4194 /* Free memory and clear the RX data structures. */
4195 /* */
4196 /* Returns: */
4197 /* Nothing. */
4198 /****************************************************************************/
4199 void
4200 bnx_free_rx_chain(struct bnx_softc *sc)
4201 {
4202 int i;
4203
4204 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4205
4206 /* Free any mbufs still in the RX mbuf chain. */
4207 for (i = 0; i < TOTAL_RX_BD; i++) {
4208 if (sc->rx_mbuf_ptr[i] != NULL) {
4209 if (sc->rx_mbuf_map[i] != NULL) {
4210 bus_dmamap_sync(sc->bnx_dmatag,
4211 sc->rx_mbuf_map[i], 0,
4212 sc->rx_mbuf_map[i]->dm_mapsize,
4213 BUS_DMASYNC_POSTREAD);
4214 bus_dmamap_unload(sc->bnx_dmatag,
4215 sc->rx_mbuf_map[i]);
4216 }
4217 m_freem(sc->rx_mbuf_ptr[i]);
4218 sc->rx_mbuf_ptr[i] = NULL;
4219 DBRUNIF(1, sc->rx_mbuf_alloc--);
4220 }
4221 }
4222
4223 /* Clear each RX chain page. */
4224 for (i = 0; i < RX_PAGES; i++)
4225 memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4226
4227 sc->free_rx_bd = sc->max_rx_bd;
4228
4229 /* Check if we lost any mbufs in the process. */
4230 DBRUNIF((sc->rx_mbuf_alloc),
4231 aprint_error_dev(sc->bnx_dev,
4232 "Memory leak! Lost %d mbufs from rx chain!\n",
4233 sc->rx_mbuf_alloc));
4234
4235 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4236 }
4237
4238 /****************************************************************************/
4239 /* Handles PHY generated interrupt events. */
4240 /* */
4241 /* Returns: */
4242 /* Nothing. */
4243 /****************************************************************************/
4244 void
4245 bnx_phy_intr(struct bnx_softc *sc)
4246 {
4247 u_int32_t new_link_state, old_link_state;
4248
4249 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4250 BUS_DMASYNC_POSTREAD);
4251 new_link_state = sc->status_block->status_attn_bits &
4252 STATUS_ATTN_BITS_LINK_STATE;
4253 old_link_state = sc->status_block->status_attn_bits_ack &
4254 STATUS_ATTN_BITS_LINK_STATE;
4255
4256 /* Handle any changes if the link state has changed. */
4257 if (new_link_state != old_link_state) {
4258 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4259
4260 callout_stop(&sc->bnx_timeout);
4261 bnx_tick(sc);
4262
4263 /* Update the status_attn_bits_ack field in the status block. */
4264 if (new_link_state) {
4265 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4266 STATUS_ATTN_BITS_LINK_STATE);
4267 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4268 } else {
4269 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4270 STATUS_ATTN_BITS_LINK_STATE);
4271 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4272 }
4273 }
4274
4275 /* Acknowledge the link change interrupt. */
4276 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4277 }
4278
4279 /****************************************************************************/
4280 /* Handles received frame interrupt events. */
4281 /* */
4282 /* Returns: */
4283 /* Nothing. */
4284 /****************************************************************************/
4285 void
4286 bnx_rx_intr(struct bnx_softc *sc)
4287 {
4288 struct status_block *sblk = sc->status_block;
4289 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4290 u_int16_t hw_cons, sw_cons, sw_chain_cons;
4291 u_int16_t sw_prod, sw_chain_prod;
4292 u_int32_t sw_prod_bseq;
4293 struct l2_fhdr *l2fhdr;
4294 int i;
4295
4296 DBRUNIF(1, sc->rx_interrupts++);
4297 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4298 BUS_DMASYNC_POSTREAD);
4299
4300 /* Prepare the RX chain pages to be accessed by the host CPU. */
4301 for (i = 0; i < RX_PAGES; i++)
4302 bus_dmamap_sync(sc->bnx_dmatag,
4303 sc->rx_bd_chain_map[i], 0,
4304 sc->rx_bd_chain_map[i]->dm_mapsize,
4305 BUS_DMASYNC_POSTWRITE);
4306
4307 /* Get the hardware's view of the RX consumer index. */
4308 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4309 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4310 hw_cons++;
4311
4312 /* Get working copies of the driver's view of the RX indices. */
4313 sw_cons = sc->rx_cons;
4314 sw_prod = sc->rx_prod;
4315 sw_prod_bseq = sc->rx_prod_bseq;
4316
4317 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4318 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4319 __func__, sw_prod, sw_cons, sw_prod_bseq);
4320
4321 /* Prevent speculative reads from getting ahead of the status block. */
4322 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4323 BUS_SPACE_BARRIER_READ);
4324
4325 /* Update some debug statistics counters */
4326 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4327 sc->rx_low_watermark = sc->free_rx_bd);
4328 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4329
4330 /*
4331 * Scan through the receive chain as long
4332 * as there is work to do.
4333 */
4334 while (sw_cons != hw_cons) {
4335 struct mbuf *m;
4336 struct rx_bd *rxbd __diagused;
4337 unsigned int len;
4338 u_int32_t status;
4339
4340 /* Convert the producer/consumer indices to an actual
4341 * rx_bd index.
4342 */
4343 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4344 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4345
4346 /* Get the used rx_bd. */
4347 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4348 sc->free_rx_bd++;
4349
4350 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4351 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4352
4353 /* The mbuf is stored with the last rx_bd entry of a packet. */
4354 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4355 #ifdef DIAGNOSTIC
4356 /* Validate that this is the last rx_bd. */
4357 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4358 printf("%s: Unexpected mbuf found in "
4359 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4360 sw_chain_cons);
4361 }
4362 #endif
4363
4364 /* DRC - ToDo: If the received packet is small, say less
4365 * than 128 bytes, allocate a new mbuf here,
4366 * copy the data to that mbuf, and recycle
4367 * the mapped jumbo frame.
4368 */
4369
4370 /* Unmap the mbuf from DMA space. */
4371 #ifdef DIAGNOSTIC
4372 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4373 printf("invalid map sw_cons 0x%x "
4374 "sw_prod 0x%x "
4375 "sw_chain_cons 0x%x "
4376 "sw_chain_prod 0x%x "
4377 "hw_cons 0x%x "
4378 "TOTAL_RX_BD_PER_PAGE 0x%x "
4379 "TOTAL_RX_BD 0x%x\n",
4380 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4381 hw_cons,
4382 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4383 }
4384 #endif
4385 bus_dmamap_sync(sc->bnx_dmatag,
4386 sc->rx_mbuf_map[sw_chain_cons], 0,
4387 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4388 BUS_DMASYNC_POSTREAD);
4389 bus_dmamap_unload(sc->bnx_dmatag,
4390 sc->rx_mbuf_map[sw_chain_cons]);
4391
4392 /* Remove the mbuf from the driver's chain. */
4393 m = sc->rx_mbuf_ptr[sw_chain_cons];
4394 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4395
4396 /*
4397 * Frames received on the NetXteme II are prepended
4398 * with the l2_fhdr structure which provides status
4399 * information about the received frame (including
4400 * VLAN tags and checksum info) and are also
4401 * automatically adjusted to align the IP header
4402 * (i.e. two null bytes are inserted before the
4403 * Ethernet header).
4404 */
4405 l2fhdr = mtod(m, struct l2_fhdr *);
4406
4407 len = l2fhdr->l2_fhdr_pkt_len;
4408 status = l2fhdr->l2_fhdr_status;
4409
4410 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4411 aprint_error("Simulating l2_fhdr status error.\n");
4412 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4413
4414 /* Watch for unusual sized frames. */
4415 DBRUNIF(((len < BNX_MIN_MTU) ||
4416 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4417 aprint_error_dev(sc->bnx_dev,
4418 "Unusual frame size found. "
4419 "Min(%d), Actual(%d), Max(%d)\n",
4420 (int)BNX_MIN_MTU, len,
4421 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4422
4423 bnx_dump_mbuf(sc, m);
4424 bnx_breakpoint(sc));
4425
4426 len -= ETHER_CRC_LEN;
4427
4428 /* Check the received frame for errors. */
4429 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4430 L2_FHDR_ERRORS_PHY_DECODE |
4431 L2_FHDR_ERRORS_ALIGNMENT |
4432 L2_FHDR_ERRORS_TOO_SHORT |
4433 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4434 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4435 len >
4436 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4437 ifp->if_ierrors++;
4438 DBRUNIF(1, sc->l2fhdr_status_errors++);
4439
4440 /* Reuse the mbuf for a new frame. */
4441 if (bnx_add_buf(sc, m, &sw_prod,
4442 &sw_chain_prod, &sw_prod_bseq)) {
4443 DBRUNIF(1, bnx_breakpoint(sc));
4444 panic("%s: Can't reuse RX mbuf!\n",
4445 device_xname(sc->bnx_dev));
4446 }
4447 continue;
4448 }
4449
4450 /*
4451 * Get a new mbuf for the rx_bd. If no new
4452 * mbufs are available then reuse the current mbuf,
4453 * log an ierror on the interface, and generate
4454 * an error in the system log.
4455 */
4456 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4457 &sw_prod_bseq)) {
4458 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4459 "Failed to allocate "
4460 "new mbuf, incoming frame dropped!\n"));
4461
4462 ifp->if_ierrors++;
4463
4464 /* Try and reuse the exisitng mbuf. */
4465 if (bnx_add_buf(sc, m, &sw_prod,
4466 &sw_chain_prod, &sw_prod_bseq)) {
4467 DBRUNIF(1, bnx_breakpoint(sc));
4468 panic("%s: Double mbuf allocation "
4469 "failure!",
4470 device_xname(sc->bnx_dev));
4471 }
4472 continue;
4473 }
4474
4475 /* Skip over the l2_fhdr when passing the data up
4476 * the stack.
4477 */
4478 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4479
4480 /* Adjust the pckt length to match the received data. */
4481 m->m_pkthdr.len = m->m_len = len;
4482
4483 /* Send the packet to the appropriate interface. */
4484 m->m_pkthdr.rcvif = ifp;
4485
4486 DBRUN(BNX_VERBOSE_RECV,
4487 struct ether_header *eh;
4488 eh = mtod(m, struct ether_header *);
4489 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4490 __func__, ether_sprintf(eh->ether_dhost),
4491 ether_sprintf(eh->ether_shost),
4492 htons(eh->ether_type)));
4493
4494 /* Validate the checksum. */
4495
4496 /* Check for an IP datagram. */
4497 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4498 /* Check if the IP checksum is valid. */
4499 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4500 == 0)
4501 m->m_pkthdr.csum_flags |=
4502 M_CSUM_IPv4;
4503 #ifdef BNX_DEBUG
4504 else
4505 DBPRINT(sc, BNX_WARN_SEND,
4506 "%s(): Invalid IP checksum "
4507 "= 0x%04X!\n",
4508 __func__,
4509 l2fhdr->l2_fhdr_ip_xsum
4510 );
4511 #endif
4512 }
4513
4514 /* Check for a valid TCP/UDP frame. */
4515 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4516 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4517 /* Check for a good TCP/UDP checksum. */
4518 if ((status &
4519 (L2_FHDR_ERRORS_TCP_XSUM |
4520 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4521 m->m_pkthdr.csum_flags |=
4522 M_CSUM_TCPv4 |
4523 M_CSUM_UDPv4;
4524 } else {
4525 DBPRINT(sc, BNX_WARN_SEND,
4526 "%s(): Invalid TCP/UDP "
4527 "checksum = 0x%04X!\n",
4528 __func__,
4529 l2fhdr->l2_fhdr_tcp_udp_xsum);
4530 }
4531 }
4532
4533 /*
4534 * If we received a packet with a vlan tag,
4535 * attach that information to the packet.
4536 */
4537 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4538 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4539 VLAN_INPUT_TAG(ifp, m,
4540 l2fhdr->l2_fhdr_vlan_tag,
4541 continue);
4542 }
4543
4544 /*
4545 * Handle BPF listeners. Let the BPF
4546 * user see the packet.
4547 */
4548 bpf_mtap(ifp, m);
4549
4550 /* Pass the mbuf off to the upper layers. */
4551 ifp->if_ipackets++;
4552 DBPRINT(sc, BNX_VERBOSE_RECV,
4553 "%s(): Passing received frame up.\n", __func__);
4554 (*ifp->if_input)(ifp, m);
4555 DBRUNIF(1, sc->rx_mbuf_alloc--);
4556
4557 }
4558
4559 sw_cons = NEXT_RX_BD(sw_cons);
4560
4561 /* Refresh hw_cons to see if there's new work */
4562 if (sw_cons == hw_cons) {
4563 hw_cons = sc->hw_rx_cons =
4564 sblk->status_rx_quick_consumer_index0;
4565 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4566 USABLE_RX_BD_PER_PAGE)
4567 hw_cons++;
4568 }
4569
4570 /* Prevent speculative reads from getting ahead of
4571 * the status block.
4572 */
4573 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4574 BUS_SPACE_BARRIER_READ);
4575 }
4576
4577 for (i = 0; i < RX_PAGES; i++)
4578 bus_dmamap_sync(sc->bnx_dmatag,
4579 sc->rx_bd_chain_map[i], 0,
4580 sc->rx_bd_chain_map[i]->dm_mapsize,
4581 BUS_DMASYNC_PREWRITE);
4582
4583 sc->rx_cons = sw_cons;
4584 sc->rx_prod = sw_prod;
4585 sc->rx_prod_bseq = sw_prod_bseq;
4586
4587 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4588 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4589
4590 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4591 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4592 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4593 }
4594
4595 /****************************************************************************/
4596 /* Handles transmit completion interrupt events. */
4597 /* */
4598 /* Returns: */
4599 /* Nothing. */
4600 /****************************************************************************/
4601 void
4602 bnx_tx_intr(struct bnx_softc *sc)
4603 {
4604 struct status_block *sblk = sc->status_block;
4605 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4606 struct bnx_pkt *pkt;
4607 bus_dmamap_t map;
4608 u_int16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4609
4610 DBRUNIF(1, sc->tx_interrupts++);
4611 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4612 BUS_DMASYNC_POSTREAD);
4613
4614 /* Get the hardware's view of the TX consumer index. */
4615 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4616
4617 /* Skip to the next entry if this is a chain page pointer. */
4618 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4619 hw_tx_cons++;
4620
4621 sw_tx_cons = sc->tx_cons;
4622
4623 /* Prevent speculative reads from getting ahead of the status block. */
4624 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4625 BUS_SPACE_BARRIER_READ);
4626
4627 /* Cycle through any completed TX chain page entries. */
4628 while (sw_tx_cons != hw_tx_cons) {
4629 #ifdef BNX_DEBUG
4630 struct tx_bd *txbd = NULL;
4631 #endif
4632 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4633
4634 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4635 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4636 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4637
4638 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4639 aprint_error_dev(sc->bnx_dev,
4640 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4641 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4642
4643 DBRUNIF(1, txbd = &sc->tx_bd_chain
4644 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4645
4646 DBRUNIF((txbd == NULL),
4647 aprint_error_dev(sc->bnx_dev,
4648 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4649 bnx_breakpoint(sc));
4650
4651 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4652 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4653
4654
4655 mutex_enter(&sc->tx_pkt_mtx);
4656 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4657 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4658 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4659 mutex_exit(&sc->tx_pkt_mtx);
4660 /*
4661 * Free the associated mbuf. Remember
4662 * that only the last tx_bd of a packet
4663 * has an mbuf pointer and DMA map.
4664 */
4665 map = pkt->pkt_dmamap;
4666 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4667 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4668 bus_dmamap_unload(sc->bnx_dmatag, map);
4669
4670 m_freem(pkt->pkt_mbuf);
4671 DBRUNIF(1, sc->tx_mbuf_alloc--);
4672
4673 ifp->if_opackets++;
4674
4675 mutex_enter(&sc->tx_pkt_mtx);
4676 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4677 }
4678 mutex_exit(&sc->tx_pkt_mtx);
4679
4680 sc->used_tx_bd--;
4681 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4682 __FILE__, __LINE__, sc->used_tx_bd);
4683
4684 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4685
4686 /* Refresh hw_cons to see if there's new work. */
4687 hw_tx_cons = sc->hw_tx_cons =
4688 sblk->status_tx_quick_consumer_index0;
4689 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4690 USABLE_TX_BD_PER_PAGE)
4691 hw_tx_cons++;
4692
4693 /* Prevent speculative reads from getting ahead of
4694 * the status block.
4695 */
4696 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4697 BUS_SPACE_BARRIER_READ);
4698 }
4699
4700 /* Clear the TX timeout timer. */
4701 ifp->if_timer = 0;
4702
4703 /* Clear the tx hardware queue full flag. */
4704 if (sc->used_tx_bd < sc->max_tx_bd) {
4705 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4706 aprint_debug_dev(sc->bnx_dev,
4707 "Open TX chain! %d/%d (used/total)\n",
4708 sc->used_tx_bd, sc->max_tx_bd));
4709 ifp->if_flags &= ~IFF_OACTIVE;
4710 }
4711
4712 sc->tx_cons = sw_tx_cons;
4713 }
4714
4715 /****************************************************************************/
4716 /* Disables interrupt generation. */
4717 /* */
4718 /* Returns: */
4719 /* Nothing. */
4720 /****************************************************************************/
4721 void
4722 bnx_disable_intr(struct bnx_softc *sc)
4723 {
4724 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4725 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4726 }
4727
4728 /****************************************************************************/
4729 /* Enables interrupt generation. */
4730 /* */
4731 /* Returns: */
4732 /* Nothing. */
4733 /****************************************************************************/
4734 void
4735 bnx_enable_intr(struct bnx_softc *sc)
4736 {
4737 u_int32_t val;
4738
4739 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4740 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4741
4742 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4743 sc->last_status_idx);
4744
4745 val = REG_RD(sc, BNX_HC_COMMAND);
4746 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4747 }
4748
4749 /****************************************************************************/
4750 /* Handles controller initialization. */
4751 /* */
4752 /****************************************************************************/
4753 int
4754 bnx_init(struct ifnet *ifp)
4755 {
4756 struct bnx_softc *sc = ifp->if_softc;
4757 u_int32_t ether_mtu;
4758 int s, error = 0;
4759
4760 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4761
4762 s = splnet();
4763
4764 bnx_stop(ifp, 0);
4765
4766 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4767 aprint_error_dev(sc->bnx_dev,
4768 "Controller reset failed!\n");
4769 goto bnx_init_exit;
4770 }
4771
4772 if ((error = bnx_chipinit(sc)) != 0) {
4773 aprint_error_dev(sc->bnx_dev,
4774 "Controller initialization failed!\n");
4775 goto bnx_init_exit;
4776 }
4777
4778 if ((error = bnx_blockinit(sc)) != 0) {
4779 aprint_error_dev(sc->bnx_dev,
4780 "Block initialization failed!\n");
4781 goto bnx_init_exit;
4782 }
4783
4784 /* Calculate and program the Ethernet MRU size. */
4785 if (ifp->if_mtu <= ETHERMTU) {
4786 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4787 sc->mbuf_alloc_size = MCLBYTES;
4788 } else {
4789 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4790 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4791 }
4792
4793
4794 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4795 __func__, ether_mtu);
4796
4797 /*
4798 * Program the MRU and enable Jumbo frame
4799 * support.
4800 */
4801 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4802 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4803
4804 /* Calculate the RX Ethernet frame size for rx_bd's. */
4805 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4806
4807 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4808 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4809 sc->mbuf_alloc_size, sc->max_frame_size);
4810
4811 /* Program appropriate promiscuous/multicast filtering. */
4812 bnx_iff(sc);
4813
4814 /* Init RX buffer descriptor chain. */
4815 bnx_init_rx_chain(sc);
4816
4817 /* Init TX buffer descriptor chain. */
4818 bnx_init_tx_chain(sc);
4819
4820 /* Enable host interrupts. */
4821 bnx_enable_intr(sc);
4822
4823 if ((error = ether_mediachange(ifp)) != 0)
4824 goto bnx_init_exit;
4825
4826 SET(ifp->if_flags, IFF_RUNNING);
4827 CLR(ifp->if_flags, IFF_OACTIVE);
4828
4829 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4830
4831 bnx_init_exit:
4832 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4833
4834 splx(s);
4835
4836 return error;
4837 }
4838
4839 /****************************************************************************/
4840 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4841 /* memory visible to the controller. */
4842 /* */
4843 /* Returns: */
4844 /* 0 for success, positive value for failure. */
4845 /****************************************************************************/
4846 int
4847 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4848 {
4849 struct bnx_pkt *pkt;
4850 bus_dmamap_t map;
4851 struct tx_bd *txbd = NULL;
4852 u_int16_t vlan_tag = 0, flags = 0;
4853 u_int16_t chain_prod, prod;
4854 #ifdef BNX_DEBUG
4855 u_int16_t debug_prod;
4856 #endif
4857 u_int32_t addr, prod_bseq;
4858 int i, error;
4859 struct m_tag *mtag;
4860 static struct work bnx_wk; /* Dummy work. Statically allocated. */
4861
4862 mutex_enter(&sc->tx_pkt_mtx);
4863 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4864 if (pkt == NULL) {
4865 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4866 mutex_exit(&sc->tx_pkt_mtx);
4867 return ENETDOWN;
4868 }
4869
4870 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
4871 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
4872 workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
4873 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4874 }
4875
4876 mutex_exit(&sc->tx_pkt_mtx);
4877 return ENOMEM;
4878 }
4879 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4880 mutex_exit(&sc->tx_pkt_mtx);
4881
4882 /* Transfer any checksum offload flags to the bd. */
4883 if (m->m_pkthdr.csum_flags) {
4884 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4885 flags |= TX_BD_FLAGS_IP_CKSUM;
4886 if (m->m_pkthdr.csum_flags &
4887 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4888 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4889 }
4890
4891 /* Transfer any VLAN tags to the bd. */
4892 mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4893 if (mtag != NULL) {
4894 flags |= TX_BD_FLAGS_VLAN_TAG;
4895 vlan_tag = VLAN_TAG_VALUE(mtag);
4896 }
4897
4898 /* Map the mbuf into DMAable memory. */
4899 prod = sc->tx_prod;
4900 chain_prod = TX_CHAIN_IDX(prod);
4901 map = pkt->pkt_dmamap;
4902
4903 /* Map the mbuf into our DMA address space. */
4904 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4905 if (error != 0) {
4906 aprint_error_dev(sc->bnx_dev,
4907 "Error mapping mbuf into TX chain!\n");
4908 sc->tx_dma_map_failures++;
4909 goto maperr;
4910 }
4911 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4912 BUS_DMASYNC_PREWRITE);
4913 /* Make sure there's room in the chain */
4914 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
4915 goto nospace;
4916
4917 /* prod points to an empty tx_bd at this point. */
4918 prod_bseq = sc->tx_prod_bseq;
4919 #ifdef BNX_DEBUG
4920 debug_prod = chain_prod;
4921 #endif
4922 DBPRINT(sc, BNX_INFO_SEND,
4923 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4924 "prod_bseq = 0x%08X\n",
4925 __func__, prod, chain_prod, prod_bseq);
4926
4927 /*
4928 * Cycle through each mbuf segment that makes up
4929 * the outgoing frame, gathering the mapping info
4930 * for that segment and creating a tx_bd for the
4931 * mbuf.
4932 */
4933 for (i = 0; i < map->dm_nsegs ; i++) {
4934 chain_prod = TX_CHAIN_IDX(prod);
4935 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4936
4937 addr = (u_int32_t)map->dm_segs[i].ds_addr;
4938 txbd->tx_bd_haddr_lo = addr;
4939 addr = (u_int32_t)((u_int64_t)map->dm_segs[i].ds_addr >> 32);
4940 txbd->tx_bd_haddr_hi = addr;
4941 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
4942 txbd->tx_bd_vlan_tag = vlan_tag;
4943 txbd->tx_bd_flags = flags;
4944 prod_bseq += map->dm_segs[i].ds_len;
4945 if (i == 0)
4946 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
4947 prod = NEXT_TX_BD(prod);
4948 }
4949 /* Set the END flag on the last TX buffer descriptor. */
4950 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
4951
4952 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
4953
4954 DBPRINT(sc, BNX_INFO_SEND,
4955 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
4956 "prod_bseq = 0x%08X\n",
4957 __func__, prod, chain_prod, prod_bseq);
4958
4959 pkt->pkt_mbuf = m;
4960 pkt->pkt_end_desc = chain_prod;
4961
4962 mutex_enter(&sc->tx_pkt_mtx);
4963 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
4964 mutex_exit(&sc->tx_pkt_mtx);
4965
4966 sc->used_tx_bd += map->dm_nsegs;
4967 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4968 __FILE__, __LINE__, sc->used_tx_bd);
4969
4970 /* Update some debug statistics counters */
4971 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4972 sc->tx_hi_watermark = sc->used_tx_bd);
4973 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
4974 DBRUNIF(1, sc->tx_mbuf_alloc++);
4975
4976 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4977 map->dm_nsegs));
4978
4979 /* prod points to the next free tx_bd at this point. */
4980 sc->tx_prod = prod;
4981 sc->tx_prod_bseq = prod_bseq;
4982
4983 return 0;
4984
4985
4986 nospace:
4987 bus_dmamap_unload(sc->bnx_dmatag, map);
4988 maperr:
4989 mutex_enter(&sc->tx_pkt_mtx);
4990 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4991 mutex_exit(&sc->tx_pkt_mtx);
4992
4993 return ENOMEM;
4994 }
4995
4996 /****************************************************************************/
4997 /* Main transmit routine. */
4998 /* */
4999 /* Returns: */
5000 /* Nothing. */
5001 /****************************************************************************/
5002 void
5003 bnx_start(struct ifnet *ifp)
5004 {
5005 struct bnx_softc *sc = ifp->if_softc;
5006 struct mbuf *m_head = NULL;
5007 int count = 0;
5008 #ifdef BNX_DEBUG
5009 u_int16_t tx_chain_prod;
5010 #endif
5011
5012 /* If there's no link or the transmit queue is empty then just exit. */
5013 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
5014 DBPRINT(sc, BNX_INFO_SEND,
5015 "%s(): output active or device not running.\n", __func__);
5016 goto bnx_start_exit;
5017 }
5018
5019 /* prod points to the next free tx_bd. */
5020 #ifdef BNX_DEBUG
5021 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5022 #endif
5023
5024 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5025 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5026 "used_tx %d max_tx %d\n",
5027 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5028 sc->used_tx_bd, sc->max_tx_bd);
5029
5030 /*
5031 * Keep adding entries while there is space in the ring.
5032 */
5033 while (sc->used_tx_bd < sc->max_tx_bd) {
5034 /* Check for any frames to send. */
5035 IFQ_POLL(&ifp->if_snd, m_head);
5036 if (m_head == NULL)
5037 break;
5038
5039 /*
5040 * Pack the data into the transmit ring. If we
5041 * don't have room, set the OACTIVE flag to wait
5042 * for the NIC to drain the chain.
5043 */
5044 if (bnx_tx_encap(sc, m_head)) {
5045 ifp->if_flags |= IFF_OACTIVE;
5046 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5047 "business! Total tx_bd used = %d\n",
5048 sc->used_tx_bd);
5049 break;
5050 }
5051
5052 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5053 count++;
5054
5055 /* Send a copy of the frame to any BPF listeners. */
5056 bpf_mtap(ifp, m_head);
5057 }
5058
5059 if (count == 0) {
5060 /* no packets were dequeued */
5061 DBPRINT(sc, BNX_VERBOSE_SEND,
5062 "%s(): No packets were dequeued\n", __func__);
5063 goto bnx_start_exit;
5064 }
5065
5066 /* Update the driver's counters. */
5067 #ifdef BNX_DEBUG
5068 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5069 #endif
5070
5071 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
5072 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
5073 tx_chain_prod, sc->tx_prod_bseq);
5074
5075 /* Start the transmit. */
5076 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5077 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5078
5079 /* Set the tx timeout. */
5080 ifp->if_timer = BNX_TX_TIMEOUT;
5081
5082 bnx_start_exit:
5083 return;
5084 }
5085
5086 /****************************************************************************/
5087 /* Handles any IOCTL calls from the operating system. */
5088 /* */
5089 /* Returns: */
5090 /* 0 for success, positive value for failure. */
5091 /****************************************************************************/
5092 int
5093 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5094 {
5095 struct bnx_softc *sc = ifp->if_softc;
5096 struct ifreq *ifr = (struct ifreq *) data;
5097 struct mii_data *mii = &sc->bnx_mii;
5098 int s, error = 0;
5099
5100 s = splnet();
5101
5102 switch (command) {
5103 case SIOCSIFFLAGS:
5104 if ((error = ifioctl_common(ifp, command, data)) != 0)
5105 break;
5106 /* XXX set an ifflags callback and let ether_ioctl
5107 * handle all of this.
5108 */
5109 if (ISSET(ifp->if_flags, IFF_UP)) {
5110 if (ifp->if_flags & IFF_RUNNING)
5111 error = ENETRESET;
5112 else
5113 bnx_init(ifp);
5114 } else if (ifp->if_flags & IFF_RUNNING)
5115 bnx_stop(ifp, 1);
5116 break;
5117
5118 case SIOCSIFMEDIA:
5119 case SIOCGIFMEDIA:
5120 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5121 sc->bnx_phy_flags);
5122
5123 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5124 break;
5125
5126 default:
5127 error = ether_ioctl(ifp, command, data);
5128 }
5129
5130 if (error == ENETRESET) {
5131 if (ifp->if_flags & IFF_RUNNING)
5132 bnx_iff(sc);
5133 error = 0;
5134 }
5135
5136 splx(s);
5137 return error;
5138 }
5139
5140 /****************************************************************************/
5141 /* Transmit timeout handler. */
5142 /* */
5143 /* Returns: */
5144 /* Nothing. */
5145 /****************************************************************************/
5146 void
5147 bnx_watchdog(struct ifnet *ifp)
5148 {
5149 struct bnx_softc *sc = ifp->if_softc;
5150
5151 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5152 bnx_dump_status_block(sc));
5153 /*
5154 * If we are in this routine because of pause frames, then
5155 * don't reset the hardware.
5156 */
5157 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5158 return;
5159
5160 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5161
5162 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5163
5164 bnx_init(ifp);
5165
5166 ifp->if_oerrors++;
5167 }
5168
5169 /*
5170 * Interrupt handler.
5171 */
5172 /****************************************************************************/
5173 /* Main interrupt entry point. Verifies that the controller generated the */
5174 /* interrupt and then calls a separate routine for handle the various */
5175 /* interrupt causes (PHY, TX, RX). */
5176 /* */
5177 /* Returns: */
5178 /* 0 for success, positive value for failure. */
5179 /****************************************************************************/
5180 int
5181 bnx_intr(void *xsc)
5182 {
5183 struct bnx_softc *sc;
5184 struct ifnet *ifp;
5185 u_int32_t status_attn_bits;
5186 const struct status_block *sblk;
5187
5188 sc = xsc;
5189
5190 ifp = &sc->bnx_ec.ec_if;
5191
5192 if (!device_is_active(sc->bnx_dev) ||
5193 (ifp->if_flags & IFF_RUNNING) == 0)
5194 return 0;
5195
5196 DBRUNIF(1, sc->interrupts_generated++);
5197
5198 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5199 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5200
5201 /*
5202 * If the hardware status block index
5203 * matches the last value read by the
5204 * driver and we haven't asserted our
5205 * interrupt then there's nothing to do.
5206 */
5207 if ((sc->status_block->status_idx == sc->last_status_idx) &&
5208 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5209 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5210 return 0;
5211
5212 /* Ack the interrupt and stop others from occuring. */
5213 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5214 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5215 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5216
5217 /* Keep processing data as long as there is work to do. */
5218 for (;;) {
5219 sblk = sc->status_block;
5220 status_attn_bits = sblk->status_attn_bits;
5221
5222 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5223 aprint_debug("Simulating unexpected status attention bit set.");
5224 status_attn_bits = status_attn_bits |
5225 STATUS_ATTN_BITS_PARITY_ERROR);
5226
5227 /* Was it a link change interrupt? */
5228 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5229 (sblk->status_attn_bits_ack &
5230 STATUS_ATTN_BITS_LINK_STATE))
5231 bnx_phy_intr(sc);
5232
5233 /* If any other attention is asserted then the chip is toast. */
5234 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5235 (sblk->status_attn_bits_ack &
5236 ~STATUS_ATTN_BITS_LINK_STATE))) {
5237 DBRUN(1, sc->unexpected_attentions++);
5238
5239 BNX_PRINTF(sc,
5240 "Fatal attention detected: 0x%08X\n",
5241 sblk->status_attn_bits);
5242
5243 DBRUN(BNX_FATAL,
5244 if (bnx_debug_unexpected_attention == 0)
5245 bnx_breakpoint(sc));
5246
5247 bnx_init(ifp);
5248 return 1;
5249 }
5250
5251 /* Check for any completed RX frames. */
5252 if (sblk->status_rx_quick_consumer_index0 !=
5253 sc->hw_rx_cons)
5254 bnx_rx_intr(sc);
5255
5256 /* Check for any completed TX frames. */
5257 if (sblk->status_tx_quick_consumer_index0 !=
5258 sc->hw_tx_cons)
5259 bnx_tx_intr(sc);
5260
5261 /* Save the status block index value for use during the
5262 * next interrupt.
5263 */
5264 sc->last_status_idx = sblk->status_idx;
5265
5266 /* Prevent speculative reads from getting ahead of the
5267 * status block.
5268 */
5269 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5270 BUS_SPACE_BARRIER_READ);
5271
5272 /* If there's no work left then exit the isr. */
5273 if ((sblk->status_rx_quick_consumer_index0 ==
5274 sc->hw_rx_cons) &&
5275 (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
5276 break;
5277 }
5278
5279 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5280 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5281
5282 /* Re-enable interrupts. */
5283 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5284 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5285 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5286 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5287 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5288
5289 /* Handle any frames that arrived while handling the interrupt. */
5290 if (!IFQ_IS_EMPTY(&ifp->if_snd))
5291 bnx_start(ifp);
5292
5293 return 1;
5294 }
5295
5296 /****************************************************************************/
5297 /* Programs the various packet receive modes (broadcast and multicast). */
5298 /* */
5299 /* Returns: */
5300 /* Nothing. */
5301 /****************************************************************************/
5302 void
5303 bnx_iff(struct bnx_softc *sc)
5304 {
5305 struct ethercom *ec = &sc->bnx_ec;
5306 struct ifnet *ifp = &ec->ec_if;
5307 struct ether_multi *enm;
5308 struct ether_multistep step;
5309 u_int32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5310 u_int32_t rx_mode, sort_mode;
5311 int h, i;
5312
5313 /* Initialize receive mode default settings. */
5314 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5315 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5316 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5317 ifp->if_flags &= ~IFF_ALLMULTI;
5318
5319 /*
5320 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5321 * be enbled.
5322 */
5323 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5324 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5325
5326 /*
5327 * Check for promiscuous, all multicast, or selected
5328 * multicast address filtering.
5329 */
5330 if (ifp->if_flags & IFF_PROMISC) {
5331 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5332
5333 ifp->if_flags |= IFF_ALLMULTI;
5334 /* Enable promiscuous mode. */
5335 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5336 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5337 } else if (ifp->if_flags & IFF_ALLMULTI) {
5338 allmulti:
5339 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5340
5341 ifp->if_flags |= IFF_ALLMULTI;
5342 /* Enable all multicast addresses. */
5343 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5344 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5345 0xffffffff);
5346 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5347 } else {
5348 /* Accept one or more multicast(s). */
5349 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5350
5351 ETHER_FIRST_MULTI(step, ec, enm);
5352 while (enm != NULL) {
5353 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5354 ETHER_ADDR_LEN)) {
5355 goto allmulti;
5356 }
5357 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5358 0xFF;
5359 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5360 ETHER_NEXT_MULTI(step, enm);
5361 }
5362
5363 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5364 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5365 hashes[i]);
5366
5367 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5368 }
5369
5370 /* Only make changes if the recive mode has actually changed. */
5371 if (rx_mode != sc->rx_mode) {
5372 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5373 rx_mode);
5374
5375 sc->rx_mode = rx_mode;
5376 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5377 }
5378
5379 /* Disable and clear the exisitng sort before enabling a new sort. */
5380 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5381 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5382 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5383 }
5384
5385 /****************************************************************************/
5386 /* Called periodically to updates statistics from the controllers */
5387 /* statistics block. */
5388 /* */
5389 /* Returns: */
5390 /* Nothing. */
5391 /****************************************************************************/
5392 void
5393 bnx_stats_update(struct bnx_softc *sc)
5394 {
5395 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5396 struct statistics_block *stats;
5397
5398 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5399 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5400 BUS_DMASYNC_POSTREAD);
5401
5402 stats = (struct statistics_block *)sc->stats_block;
5403
5404 /*
5405 * Update the interface statistics from the
5406 * hardware statistics.
5407 */
5408 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5409
5410 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5411 (u_long)stats->stat_EtherStatsOverrsizePkts +
5412 (u_long)stats->stat_IfInMBUFDiscards +
5413 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5414 (u_long)stats->stat_Dot3StatsFCSErrors;
5415
5416 ifp->if_oerrors = (u_long)
5417 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5418 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5419 (u_long)stats->stat_Dot3StatsLateCollisions;
5420
5421 /*
5422 * Certain controllers don't report
5423 * carrier sense errors correctly.
5424 * See errata E11_5708CA0_1165.
5425 */
5426 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5427 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5428 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5429
5430 /*
5431 * Update the sysctl statistics from the
5432 * hardware statistics.
5433 */
5434 sc->stat_IfHCInOctets = ((u_int64_t)stats->stat_IfHCInOctets_hi << 32) +
5435 (u_int64_t) stats->stat_IfHCInOctets_lo;
5436
5437 sc->stat_IfHCInBadOctets =
5438 ((u_int64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5439 (u_int64_t) stats->stat_IfHCInBadOctets_lo;
5440
5441 sc->stat_IfHCOutOctets =
5442 ((u_int64_t) stats->stat_IfHCOutOctets_hi << 32) +
5443 (u_int64_t) stats->stat_IfHCOutOctets_lo;
5444
5445 sc->stat_IfHCOutBadOctets =
5446 ((u_int64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5447 (u_int64_t) stats->stat_IfHCOutBadOctets_lo;
5448
5449 sc->stat_IfHCInUcastPkts =
5450 ((u_int64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5451 (u_int64_t) stats->stat_IfHCInUcastPkts_lo;
5452
5453 sc->stat_IfHCInMulticastPkts =
5454 ((u_int64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5455 (u_int64_t) stats->stat_IfHCInMulticastPkts_lo;
5456
5457 sc->stat_IfHCInBroadcastPkts =
5458 ((u_int64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5459 (u_int64_t) stats->stat_IfHCInBroadcastPkts_lo;
5460
5461 sc->stat_IfHCOutUcastPkts =
5462 ((u_int64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5463 (u_int64_t) stats->stat_IfHCOutUcastPkts_lo;
5464
5465 sc->stat_IfHCOutMulticastPkts =
5466 ((u_int64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5467 (u_int64_t) stats->stat_IfHCOutMulticastPkts_lo;
5468
5469 sc->stat_IfHCOutBroadcastPkts =
5470 ((u_int64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5471 (u_int64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5472
5473 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5474 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5475
5476 sc->stat_Dot3StatsCarrierSenseErrors =
5477 stats->stat_Dot3StatsCarrierSenseErrors;
5478
5479 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5480
5481 sc->stat_Dot3StatsAlignmentErrors =
5482 stats->stat_Dot3StatsAlignmentErrors;
5483
5484 sc->stat_Dot3StatsSingleCollisionFrames =
5485 stats->stat_Dot3StatsSingleCollisionFrames;
5486
5487 sc->stat_Dot3StatsMultipleCollisionFrames =
5488 stats->stat_Dot3StatsMultipleCollisionFrames;
5489
5490 sc->stat_Dot3StatsDeferredTransmissions =
5491 stats->stat_Dot3StatsDeferredTransmissions;
5492
5493 sc->stat_Dot3StatsExcessiveCollisions =
5494 stats->stat_Dot3StatsExcessiveCollisions;
5495
5496 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5497
5498 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5499
5500 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5501
5502 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5503
5504 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5505
5506 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5507
5508 sc->stat_EtherStatsPktsRx64Octets =
5509 stats->stat_EtherStatsPktsRx64Octets;
5510
5511 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5512 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5513
5514 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5515 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5516
5517 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5518 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5519
5520 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5521 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5522
5523 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5524 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5525
5526 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5527 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5528
5529 sc->stat_EtherStatsPktsTx64Octets =
5530 stats->stat_EtherStatsPktsTx64Octets;
5531
5532 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5533 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5534
5535 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5536 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5537
5538 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5539 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5540
5541 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5542 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5543
5544 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5545 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5546
5547 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5548 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5549
5550 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5551
5552 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5553
5554 sc->stat_OutXonSent = stats->stat_OutXonSent;
5555
5556 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5557
5558 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5559
5560 sc->stat_MacControlFramesReceived =
5561 stats->stat_MacControlFramesReceived;
5562
5563 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5564
5565 sc->stat_IfInFramesL2FilterDiscards =
5566 stats->stat_IfInFramesL2FilterDiscards;
5567
5568 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5569
5570 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5571
5572 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5573
5574 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5575
5576 sc->stat_CatchupInRuleCheckerDiscards =
5577 stats->stat_CatchupInRuleCheckerDiscards;
5578
5579 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5580
5581 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5582
5583 sc->stat_CatchupInRuleCheckerP4Hit =
5584 stats->stat_CatchupInRuleCheckerP4Hit;
5585
5586 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5587 }
5588
5589 void
5590 bnx_tick(void *xsc)
5591 {
5592 struct bnx_softc *sc = xsc;
5593 struct mii_data *mii;
5594 u_int32_t msg;
5595 u_int16_t prod, chain_prod;
5596 u_int32_t prod_bseq;
5597 int s = splnet();
5598
5599 /* Tell the firmware that the driver is still running. */
5600 #ifdef BNX_DEBUG
5601 msg = (u_int32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5602 #else
5603 msg = (u_int32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5604 #endif
5605 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5606
5607 /* Update the statistics from the hardware statistics block. */
5608 bnx_stats_update(sc);
5609
5610 /* Schedule the next tick. */
5611 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5612
5613 mii = &sc->bnx_mii;
5614 mii_tick(mii);
5615
5616 /* try to get more RX buffers, just in case */
5617 prod = sc->rx_prod;
5618 prod_bseq = sc->rx_prod_bseq;
5619 chain_prod = RX_CHAIN_IDX(prod);
5620 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5621 sc->rx_prod = prod;
5622 sc->rx_prod_bseq = prod_bseq;
5623 splx(s);
5624 return;
5625 }
5626
5627 /****************************************************************************/
5628 /* BNX Debug Routines */
5629 /****************************************************************************/
5630 #ifdef BNX_DEBUG
5631
5632 /****************************************************************************/
5633 /* Prints out information about an mbuf. */
5634 /* */
5635 /* Returns: */
5636 /* Nothing. */
5637 /****************************************************************************/
5638 void
5639 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5640 {
5641 struct mbuf *mp = m;
5642
5643 if (m == NULL) {
5644 /* Index out of range. */
5645 aprint_error("mbuf ptr is null!\n");
5646 return;
5647 }
5648
5649 while (mp) {
5650 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5651 mp, mp->m_len);
5652
5653 if (mp->m_flags & M_EXT)
5654 aprint_debug("M_EXT ");
5655 if (mp->m_flags & M_PKTHDR)
5656 aprint_debug("M_PKTHDR ");
5657 aprint_debug("\n");
5658
5659 if (mp->m_flags & M_EXT)
5660 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5661 mp, mp->m_ext.ext_size);
5662
5663 mp = mp->m_next;
5664 }
5665 }
5666
5667 /****************************************************************************/
5668 /* Prints out the mbufs in the TX mbuf chain. */
5669 /* */
5670 /* Returns: */
5671 /* Nothing. */
5672 /****************************************************************************/
5673 void
5674 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5675 {
5676 #if 0
5677 struct mbuf *m;
5678 int i;
5679
5680 aprint_debug_dev(sc->bnx_dev,
5681 "----------------------------"
5682 " tx mbuf data "
5683 "----------------------------\n");
5684
5685 for (i = 0; i < count; i++) {
5686 m = sc->tx_mbuf_ptr[chain_prod];
5687 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5688 bnx_dump_mbuf(sc, m);
5689 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5690 }
5691
5692 aprint_debug_dev(sc->bnx_dev,
5693 "--------------------------------------------"
5694 "----------------------------\n");
5695 #endif
5696 }
5697
5698 /*
5699 * This routine prints the RX mbuf chain.
5700 */
5701 void
5702 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5703 {
5704 struct mbuf *m;
5705 int i;
5706
5707 aprint_debug_dev(sc->bnx_dev,
5708 "----------------------------"
5709 " rx mbuf data "
5710 "----------------------------\n");
5711
5712 for (i = 0; i < count; i++) {
5713 m = sc->rx_mbuf_ptr[chain_prod];
5714 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5715 bnx_dump_mbuf(sc, m);
5716 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5717 }
5718
5719
5720 aprint_debug_dev(sc->bnx_dev,
5721 "--------------------------------------------"
5722 "----------------------------\n");
5723 }
5724
5725 void
5726 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5727 {
5728 if (idx > MAX_TX_BD)
5729 /* Index out of range. */
5730 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5731 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5732 /* TX Chain page pointer. */
5733 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5734 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5735 txbd->tx_bd_haddr_lo);
5736 else
5737 /* Normal tx_bd entry. */
5738 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5739 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5740 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5741 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5742 txbd->tx_bd_flags);
5743 }
5744
5745 void
5746 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5747 {
5748 if (idx > MAX_RX_BD)
5749 /* Index out of range. */
5750 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5751 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5752 /* TX Chain page pointer. */
5753 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5754 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5755 rxbd->rx_bd_haddr_lo);
5756 else
5757 /* Normal tx_bd entry. */
5758 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5759 "0x%08X, flags = 0x%08X\n", idx,
5760 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5761 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5762 }
5763
5764 void
5765 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5766 {
5767 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5768 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5769 "tcp_udp_xsum = 0x%04X\n", idx,
5770 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5771 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5772 l2fhdr->l2_fhdr_tcp_udp_xsum);
5773 }
5774
5775 /*
5776 * This routine prints the TX chain.
5777 */
5778 void
5779 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5780 {
5781 struct tx_bd *txbd;
5782 int i;
5783
5784 /* First some info about the tx_bd chain structure. */
5785 aprint_debug_dev(sc->bnx_dev,
5786 "----------------------------"
5787 " tx_bd chain "
5788 "----------------------------\n");
5789
5790 BNX_PRINTF(sc,
5791 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5792 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t) TX_PAGES);
5793
5794 BNX_PRINTF(sc,
5795 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5796 (u_int32_t)TOTAL_TX_BD_PER_PAGE, (u_int32_t)USABLE_TX_BD_PER_PAGE);
5797
5798 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", TOTAL_TX_BD);
5799
5800 aprint_error_dev(sc->bnx_dev, ""
5801 "-----------------------------"
5802 " tx_bd data "
5803 "-----------------------------\n");
5804
5805 /* Now print out the tx_bd's themselves. */
5806 for (i = 0; i < count; i++) {
5807 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5808 bnx_dump_txbd(sc, tx_prod, txbd);
5809 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5810 }
5811
5812 aprint_debug_dev(sc->bnx_dev,
5813 "-----------------------------"
5814 "--------------"
5815 "-----------------------------\n");
5816 }
5817
5818 /*
5819 * This routine prints the RX chain.
5820 */
5821 void
5822 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5823 {
5824 struct rx_bd *rxbd;
5825 int i;
5826
5827 /* First some info about the tx_bd chain structure. */
5828 aprint_debug_dev(sc->bnx_dev,
5829 "----------------------------"
5830 " rx_bd chain "
5831 "----------------------------\n");
5832
5833 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5834
5835 BNX_PRINTF(sc,
5836 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5837 (u_int32_t)BCM_PAGE_SIZE, (u_int32_t)RX_PAGES);
5838
5839 BNX_PRINTF(sc,
5840 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5841 (u_int32_t)TOTAL_RX_BD_PER_PAGE, (u_int32_t)USABLE_RX_BD_PER_PAGE);
5842
5843 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", TOTAL_RX_BD);
5844
5845 aprint_error_dev(sc->bnx_dev,
5846 "----------------------------"
5847 " rx_bd data "
5848 "----------------------------\n");
5849
5850 /* Now print out the rx_bd's themselves. */
5851 for (i = 0; i < count; i++) {
5852 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5853 bnx_dump_rxbd(sc, rx_prod, rxbd);
5854 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5855 }
5856
5857 aprint_debug_dev(sc->bnx_dev,
5858 "----------------------------"
5859 "--------------"
5860 "----------------------------\n");
5861 }
5862
5863 /*
5864 * This routine prints the status block.
5865 */
5866 void
5867 bnx_dump_status_block(struct bnx_softc *sc)
5868 {
5869 struct status_block *sblk;
5870 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5871 BUS_DMASYNC_POSTREAD);
5872
5873 sblk = sc->status_block;
5874
5875 aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5876 "-----------------------------\n");
5877
5878 BNX_PRINTF(sc,
5879 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5880 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5881 sblk->status_idx);
5882
5883 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5884 sblk->status_rx_quick_consumer_index0,
5885 sblk->status_tx_quick_consumer_index0);
5886
5887 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5888
5889 /* Theses indices are not used for normal L2 drivers. */
5890 if (sblk->status_rx_quick_consumer_index1 ||
5891 sblk->status_tx_quick_consumer_index1)
5892 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5893 sblk->status_rx_quick_consumer_index1,
5894 sblk->status_tx_quick_consumer_index1);
5895
5896 if (sblk->status_rx_quick_consumer_index2 ||
5897 sblk->status_tx_quick_consumer_index2)
5898 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5899 sblk->status_rx_quick_consumer_index2,
5900 sblk->status_tx_quick_consumer_index2);
5901
5902 if (sblk->status_rx_quick_consumer_index3 ||
5903 sblk->status_tx_quick_consumer_index3)
5904 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5905 sblk->status_rx_quick_consumer_index3,
5906 sblk->status_tx_quick_consumer_index3);
5907
5908 if (sblk->status_rx_quick_consumer_index4 ||
5909 sblk->status_rx_quick_consumer_index5)
5910 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5911 sblk->status_rx_quick_consumer_index4,
5912 sblk->status_rx_quick_consumer_index5);
5913
5914 if (sblk->status_rx_quick_consumer_index6 ||
5915 sblk->status_rx_quick_consumer_index7)
5916 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
5917 sblk->status_rx_quick_consumer_index6,
5918 sblk->status_rx_quick_consumer_index7);
5919
5920 if (sblk->status_rx_quick_consumer_index8 ||
5921 sblk->status_rx_quick_consumer_index9)
5922 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
5923 sblk->status_rx_quick_consumer_index8,
5924 sblk->status_rx_quick_consumer_index9);
5925
5926 if (sblk->status_rx_quick_consumer_index10 ||
5927 sblk->status_rx_quick_consumer_index11)
5928 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
5929 sblk->status_rx_quick_consumer_index10,
5930 sblk->status_rx_quick_consumer_index11);
5931
5932 if (sblk->status_rx_quick_consumer_index12 ||
5933 sblk->status_rx_quick_consumer_index13)
5934 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
5935 sblk->status_rx_quick_consumer_index12,
5936 sblk->status_rx_quick_consumer_index13);
5937
5938 if (sblk->status_rx_quick_consumer_index14 ||
5939 sblk->status_rx_quick_consumer_index15)
5940 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
5941 sblk->status_rx_quick_consumer_index14,
5942 sblk->status_rx_quick_consumer_index15);
5943
5944 if (sblk->status_completion_producer_index ||
5945 sblk->status_cmd_consumer_index)
5946 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
5947 sblk->status_completion_producer_index,
5948 sblk->status_cmd_consumer_index);
5949
5950 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
5951 "-----------------------------\n");
5952 }
5953
5954 /*
5955 * This routine prints the statistics block.
5956 */
5957 void
5958 bnx_dump_stats_block(struct bnx_softc *sc)
5959 {
5960 struct statistics_block *sblk;
5961 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5962 BUS_DMASYNC_POSTREAD);
5963
5964 sblk = sc->stats_block;
5965
5966 aprint_debug_dev(sc->bnx_dev, ""
5967 "-----------------------------"
5968 " Stats Block "
5969 "-----------------------------\n");
5970
5971 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
5972 "IfHcInBadOctets = 0x%08X:%08X\n",
5973 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5974 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5975
5976 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
5977 "IfHcOutBadOctets = 0x%08X:%08X\n",
5978 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5979 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5980
5981 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
5982 "IfHcInMulticastPkts = 0x%08X:%08X\n",
5983 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5984 sblk->stat_IfHCInMulticastPkts_hi,
5985 sblk->stat_IfHCInMulticastPkts_lo);
5986
5987 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
5988 "IfHcOutUcastPkts = 0x%08X:%08X\n",
5989 sblk->stat_IfHCInBroadcastPkts_hi,
5990 sblk->stat_IfHCInBroadcastPkts_lo,
5991 sblk->stat_IfHCOutUcastPkts_hi,
5992 sblk->stat_IfHCOutUcastPkts_lo);
5993
5994 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5995 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5996 sblk->stat_IfHCOutMulticastPkts_hi,
5997 sblk->stat_IfHCOutMulticastPkts_lo,
5998 sblk->stat_IfHCOutBroadcastPkts_hi,
5999 sblk->stat_IfHCOutBroadcastPkts_lo);
6000
6001 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6002 BNX_PRINTF(sc, "0x%08X : "
6003 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6004 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6005
6006 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6007 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6008 sblk->stat_Dot3StatsCarrierSenseErrors);
6009
6010 if (sblk->stat_Dot3StatsFCSErrors)
6011 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6012 sblk->stat_Dot3StatsFCSErrors);
6013
6014 if (sblk->stat_Dot3StatsAlignmentErrors)
6015 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6016 sblk->stat_Dot3StatsAlignmentErrors);
6017
6018 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6019 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6020 sblk->stat_Dot3StatsSingleCollisionFrames);
6021
6022 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6023 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6024 sblk->stat_Dot3StatsMultipleCollisionFrames);
6025
6026 if (sblk->stat_Dot3StatsDeferredTransmissions)
6027 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6028 sblk->stat_Dot3StatsDeferredTransmissions);
6029
6030 if (sblk->stat_Dot3StatsExcessiveCollisions)
6031 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6032 sblk->stat_Dot3StatsExcessiveCollisions);
6033
6034 if (sblk->stat_Dot3StatsLateCollisions)
6035 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6036 sblk->stat_Dot3StatsLateCollisions);
6037
6038 if (sblk->stat_EtherStatsCollisions)
6039 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6040 sblk->stat_EtherStatsCollisions);
6041
6042 if (sblk->stat_EtherStatsFragments)
6043 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6044 sblk->stat_EtherStatsFragments);
6045
6046 if (sblk->stat_EtherStatsJabbers)
6047 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6048 sblk->stat_EtherStatsJabbers);
6049
6050 if (sblk->stat_EtherStatsUndersizePkts)
6051 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6052 sblk->stat_EtherStatsUndersizePkts);
6053
6054 if (sblk->stat_EtherStatsOverrsizePkts)
6055 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6056 sblk->stat_EtherStatsOverrsizePkts);
6057
6058 if (sblk->stat_EtherStatsPktsRx64Octets)
6059 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6060 sblk->stat_EtherStatsPktsRx64Octets);
6061
6062 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6063 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6064 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6065
6066 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6067 BNX_PRINTF(sc, "0x%08X : "
6068 "EtherStatsPktsRx128Octetsto255Octets\n",
6069 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6070
6071 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6072 BNX_PRINTF(sc, "0x%08X : "
6073 "EtherStatsPktsRx256Octetsto511Octets\n",
6074 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6075
6076 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6077 BNX_PRINTF(sc, "0x%08X : "
6078 "EtherStatsPktsRx512Octetsto1023Octets\n",
6079 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6080
6081 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6082 BNX_PRINTF(sc, "0x%08X : "
6083 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6084 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6085
6086 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6087 BNX_PRINTF(sc, "0x%08X : "
6088 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6089 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6090
6091 if (sblk->stat_EtherStatsPktsTx64Octets)
6092 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6093 sblk->stat_EtherStatsPktsTx64Octets);
6094
6095 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6096 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6097 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6098
6099 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6100 BNX_PRINTF(sc, "0x%08X : "
6101 "EtherStatsPktsTx128Octetsto255Octets\n",
6102 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6103
6104 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6105 BNX_PRINTF(sc, "0x%08X : "
6106 "EtherStatsPktsTx256Octetsto511Octets\n",
6107 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6108
6109 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6110 BNX_PRINTF(sc, "0x%08X : "
6111 "EtherStatsPktsTx512Octetsto1023Octets\n",
6112 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6113
6114 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6115 BNX_PRINTF(sc, "0x%08X : "
6116 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6117 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6118
6119 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6120 BNX_PRINTF(sc, "0x%08X : "
6121 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6122 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6123
6124 if (sblk->stat_XonPauseFramesReceived)
6125 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6126 sblk->stat_XonPauseFramesReceived);
6127
6128 if (sblk->stat_XoffPauseFramesReceived)
6129 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6130 sblk->stat_XoffPauseFramesReceived);
6131
6132 if (sblk->stat_OutXonSent)
6133 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6134 sblk->stat_OutXonSent);
6135
6136 if (sblk->stat_OutXoffSent)
6137 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6138 sblk->stat_OutXoffSent);
6139
6140 if (sblk->stat_FlowControlDone)
6141 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6142 sblk->stat_FlowControlDone);
6143
6144 if (sblk->stat_MacControlFramesReceived)
6145 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6146 sblk->stat_MacControlFramesReceived);
6147
6148 if (sblk->stat_XoffStateEntered)
6149 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6150 sblk->stat_XoffStateEntered);
6151
6152 if (sblk->stat_IfInFramesL2FilterDiscards)
6153 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6154 sblk->stat_IfInFramesL2FilterDiscards);
6155
6156 if (sblk->stat_IfInRuleCheckerDiscards)
6157 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6158 sblk->stat_IfInRuleCheckerDiscards);
6159
6160 if (sblk->stat_IfInFTQDiscards)
6161 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6162 sblk->stat_IfInFTQDiscards);
6163
6164 if (sblk->stat_IfInMBUFDiscards)
6165 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6166 sblk->stat_IfInMBUFDiscards);
6167
6168 if (sblk->stat_IfInRuleCheckerP4Hit)
6169 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6170 sblk->stat_IfInRuleCheckerP4Hit);
6171
6172 if (sblk->stat_CatchupInRuleCheckerDiscards)
6173 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6174 sblk->stat_CatchupInRuleCheckerDiscards);
6175
6176 if (sblk->stat_CatchupInFTQDiscards)
6177 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6178 sblk->stat_CatchupInFTQDiscards);
6179
6180 if (sblk->stat_CatchupInMBUFDiscards)
6181 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6182 sblk->stat_CatchupInMBUFDiscards);
6183
6184 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6185 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6186 sblk->stat_CatchupInRuleCheckerP4Hit);
6187
6188 aprint_debug_dev(sc->bnx_dev,
6189 "-----------------------------"
6190 "--------------"
6191 "-----------------------------\n");
6192 }
6193
6194 void
6195 bnx_dump_driver_state(struct bnx_softc *sc)
6196 {
6197 aprint_debug_dev(sc->bnx_dev,
6198 "-----------------------------"
6199 " Driver State "
6200 "-----------------------------\n");
6201
6202 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6203 "address\n", sc);
6204
6205 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6206 sc->status_block);
6207
6208 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6209 "address\n", sc->stats_block);
6210
6211 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6212 "adddress\n", sc->tx_bd_chain);
6213
6214 #if 0
6215 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6216 sc->rx_bd_chain);
6217
6218 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6219 sc->tx_mbuf_ptr);
6220 #endif
6221
6222 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6223 sc->rx_mbuf_ptr);
6224
6225 BNX_PRINTF(sc,
6226 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6227 sc->interrupts_generated);
6228
6229 BNX_PRINTF(sc,
6230 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6231 sc->rx_interrupts);
6232
6233 BNX_PRINTF(sc,
6234 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6235 sc->tx_interrupts);
6236
6237 BNX_PRINTF(sc,
6238 " 0x%08X - (sc->last_status_idx) status block index\n",
6239 sc->last_status_idx);
6240
6241 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6242 sc->tx_prod);
6243
6244 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6245 sc->tx_cons);
6246
6247 BNX_PRINTF(sc,
6248 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6249 sc->tx_prod_bseq);
6250 BNX_PRINTF(sc,
6251 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6252 sc->tx_mbuf_alloc);
6253
6254 BNX_PRINTF(sc,
6255 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6256 sc->used_tx_bd);
6257
6258 BNX_PRINTF(sc,
6259 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6260 sc->tx_hi_watermark, sc->max_tx_bd);
6261
6262
6263 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6264 sc->rx_prod);
6265
6266 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6267 sc->rx_cons);
6268
6269 BNX_PRINTF(sc,
6270 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6271 sc->rx_prod_bseq);
6272
6273 BNX_PRINTF(sc,
6274 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6275 sc->rx_mbuf_alloc);
6276
6277 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6278 sc->free_rx_bd);
6279
6280 BNX_PRINTF(sc,
6281 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6282 sc->rx_low_watermark, sc->max_rx_bd);
6283
6284 BNX_PRINTF(sc,
6285 " 0x%08X - (sc->mbuf_alloc_failed) "
6286 "mbuf alloc failures\n",
6287 sc->mbuf_alloc_failed);
6288
6289 BNX_PRINTF(sc,
6290 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6291 "simulated mbuf alloc failures\n",
6292 sc->mbuf_sim_alloc_failed);
6293
6294 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6295 "-----------------------------\n");
6296 }
6297
6298 void
6299 bnx_dump_hw_state(struct bnx_softc *sc)
6300 {
6301 u_int32_t val1;
6302 int i;
6303
6304 aprint_debug_dev(sc->bnx_dev,
6305 "----------------------------"
6306 " Hardware State "
6307 "----------------------------\n");
6308
6309 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6310
6311 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6312 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6313 val1, BNX_MISC_ENABLE_STATUS_BITS);
6314
6315 val1 = REG_RD(sc, BNX_DMA_STATUS);
6316 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6317
6318 val1 = REG_RD(sc, BNX_CTX_STATUS);
6319 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6320
6321 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6322 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6323 BNX_EMAC_STATUS);
6324
6325 val1 = REG_RD(sc, BNX_RPM_STATUS);
6326 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6327
6328 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6329 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6330 BNX_TBDR_STATUS);
6331
6332 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6333 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6334 BNX_TDMA_STATUS);
6335
6336 val1 = REG_RD(sc, BNX_HC_STATUS);
6337 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6338
6339 aprint_debug_dev(sc->bnx_dev,
6340 "----------------------------"
6341 "----------------"
6342 "----------------------------\n");
6343
6344 aprint_debug_dev(sc->bnx_dev,
6345 "----------------------------"
6346 " Register Dump "
6347 "----------------------------\n");
6348
6349 for (i = 0x400; i < 0x8000; i += 0x10)
6350 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6351 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6352 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6353
6354 aprint_debug_dev(sc->bnx_dev,
6355 "----------------------------"
6356 "----------------"
6357 "----------------------------\n");
6358 }
6359
6360 void
6361 bnx_breakpoint(struct bnx_softc *sc)
6362 {
6363 /* Unreachable code to shut the compiler up about unused functions. */
6364 if (0) {
6365 bnx_dump_txbd(sc, 0, NULL);
6366 bnx_dump_rxbd(sc, 0, NULL);
6367 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6368 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6369 bnx_dump_l2fhdr(sc, 0, NULL);
6370 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6371 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6372 bnx_dump_status_block(sc);
6373 bnx_dump_stats_block(sc);
6374 bnx_dump_driver_state(sc);
6375 bnx_dump_hw_state(sc);
6376 }
6377
6378 bnx_dump_driver_state(sc);
6379 /* Print the important status block fields. */
6380 bnx_dump_status_block(sc);
6381
6382 #if 0
6383 /* Call the debugger. */
6384 breakpoint();
6385 #endif
6386
6387 return;
6388 }
6389 #endif
6390