if_bnx.c revision 1.55 1 /* $NetBSD: if_bnx.c,v 1.55 2014/07/01 15:23:35 msaitoh Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3
4 /*-
5 * Copyright (c) 2006 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.55 2014/07/01 15:23:35 msaitoh Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 * BCM5706C A0, A1
52 * BCM5706S A0, A1
53 * BCM5708C A0, B0
54 * BCM5708S A0, B0
55 * BCM5709C A0 B0, B1, B2 (pre-production)
56 * BCM5709S A0, B0, B1, B2 (pre-production)
57 */
58
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64
65 #include <dev/microcode/bnx/bnxfw.h>
66
67 /****************************************************************************/
68 /* BNX Driver Version */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION "v0.9.6"
71
72 /****************************************************************************/
73 /* BNX Debug Options */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77
78 /* 0 = Never */
79 /* 1 = 1 in 2,147,483,648 */
80 /* 256 = 1 in 8,388,608 */
81 /* 2048 = 1 in 1,048,576 */
82 /* 65536 = 1 in 32,768 */
83 /* 1048576 = 1 in 2,048 */
84 /* 268435456 = 1 in 8 */
85 /* 536870912 = 1 in 4 */
86 /* 1073741824 = 1 in 2 */
87
88 /* Controls how often the l2_fhdr frame error check will fail. */
89 int bnx_debug_l2fhdr_status_check = 0;
90
91 /* Controls how often the unexpected attention check will fail. */
92 int bnx_debug_unexpected_attention = 0;
93
94 /* Controls how often to simulate an mbuf allocation failure. */
95 int bnx_debug_mbuf_allocation_failure = 0;
96
97 /* Controls how often to simulate a DMA mapping failure. */
98 int bnx_debug_dma_map_addr_failure = 0;
99
100 /* Controls how often to simulate a bootcode failure. */
101 int bnx_debug_bootcode_running_failure = 0;
102 #endif
103
104 /****************************************************************************/
105 /* PCI Device ID Table */
106 /* */
107 /* Used by bnx_probe() to identify the devices supported by this driver. */
108 /****************************************************************************/
109 static const struct bnx_product {
110 pci_vendor_id_t bp_vendor;
111 pci_product_id_t bp_product;
112 pci_vendor_id_t bp_subvendor;
113 pci_product_id_t bp_subproduct;
114 const char *bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 {
118 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 "HP NC370T Multifunction Gigabit Server Adapter"
121 },
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 {
125 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 "HP NC370i Multifunction Gigabit Server Adapter"
128 },
129 #endif
130 {
131 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 0, 0,
133 "Broadcom NetXtreme II BCM5706 1000Base-T"
134 },
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 {
137 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 "HP NC370F Multifunction Gigabit Server Adapter"
140 },
141 #endif
142 {
143 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 0, 0,
145 "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 },
147 {
148 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 0, 0,
150 "Broadcom NetXtreme II BCM5708 1000Base-T"
151 },
152 {
153 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 0, 0,
155 "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 },
157 {
158 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 0, 0,
160 "Broadcom NetXtreme II BCM5709 1000Base-T"
161 },
162 {
163 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 0, 0,
165 "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 },
167 {
168 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 0, 0,
170 "Broadcom NetXtreme II BCM5716 1000Base-T"
171 },
172 {
173 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 0, 0,
175 "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 },
177 };
178
179 /****************************************************************************/
180 /* Supported Flash NVRAM device data. */
181 /****************************************************************************/
182 static struct flash_spec flash_table[] =
183 {
184 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
185 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
186 /* Slow EEPROM */
187 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
188 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
189 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
190 "EEPROM - slow"},
191 /* Expansion entry 0001 */
192 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
193 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 "Entry 0001"},
196 /* Saifun SA25F010 (non-buffered flash) */
197 /* strap, cfg1, & write1 need updates */
198 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
199 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
200 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
201 "Non-buffered flash (128kB)"},
202 /* Saifun SA25F020 (non-buffered flash) */
203 /* strap, cfg1, & write1 need updates */
204 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
205 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
206 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
207 "Non-buffered flash (256kB)"},
208 /* Expansion entry 0100 */
209 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
210 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
211 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
212 "Entry 0100"},
213 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
214 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
215 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
216 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
217 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
218 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
219 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
220 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
221 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
222 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
223 /* Saifun SA25F005 (non-buffered flash) */
224 /* strap, cfg1, & write1 need updates */
225 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
226 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
228 "Non-buffered flash (64kB)"},
229 /* Fast EEPROM */
230 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
231 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
232 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
233 "EEPROM - fast"},
234 /* Expansion entry 1001 */
235 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
236 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
237 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
238 "Entry 1001"},
239 /* Expansion entry 1010 */
240 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
241 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
242 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
243 "Entry 1010"},
244 /* ATMEL AT45DB011B (buffered flash) */
245 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
246 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
247 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
248 "Buffered flash (128kB)"},
249 /* Expansion entry 1100 */
250 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
251 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
252 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
253 "Entry 1100"},
254 /* Expansion entry 1101 */
255 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
256 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
257 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
258 "Entry 1101"},
259 /* Ateml Expansion entry 1110 */
260 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
261 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
262 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
263 "Entry 1110 (Atmel)"},
264 /* ATMEL AT45DB021B (buffered flash) */
265 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
266 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
267 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
268 "Buffered flash (256kB)"},
269 };
270
271 /*
272 * The BCM5709 controllers transparently handle the
273 * differences between Atmel 264 byte pages and all
274 * flash devices which use 256 byte pages, so no
275 * logical-to-physical mapping is required in the
276 * driver.
277 */
278 static struct flash_spec flash_5709 = {
279 .flags = BNX_NV_BUFFERED,
280 .page_bits = BCM5709_FLASH_PAGE_BITS,
281 .page_size = BCM5709_FLASH_PAGE_SIZE,
282 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
283 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
284 .name = "5709 buffered flash (256kB)",
285 };
286
287 /****************************************************************************/
288 /* OpenBSD device entry points. */
289 /****************************************************************************/
290 static int bnx_probe(device_t, cfdata_t, void *);
291 void bnx_attach(device_t, device_t, void *);
292 int bnx_detach(device_t, int);
293
294 /****************************************************************************/
295 /* BNX Debug Data Structure Dump Routines */
296 /****************************************************************************/
297 #ifdef BNX_DEBUG
298 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
299 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
300 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
301 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
302 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
303 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
304 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
305 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
306 void bnx_dump_status_block(struct bnx_softc *);
307 void bnx_dump_stats_block(struct bnx_softc *);
308 void bnx_dump_driver_state(struct bnx_softc *);
309 void bnx_dump_hw_state(struct bnx_softc *);
310 void bnx_breakpoint(struct bnx_softc *);
311 #endif
312
313 /****************************************************************************/
314 /* BNX Register/Memory Access Routines */
315 /****************************************************************************/
316 uint32_t bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
317 void bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
318 void bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
319 int bnx_miibus_read_reg(device_t, int, int);
320 void bnx_miibus_write_reg(device_t, int, int, int);
321 void bnx_miibus_statchg(struct ifnet *);
322
323 /****************************************************************************/
324 /* BNX NVRAM Access Routines */
325 /****************************************************************************/
326 int bnx_acquire_nvram_lock(struct bnx_softc *);
327 int bnx_release_nvram_lock(struct bnx_softc *);
328 void bnx_enable_nvram_access(struct bnx_softc *);
329 void bnx_disable_nvram_access(struct bnx_softc *);
330 int bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
331 uint32_t);
332 int bnx_init_nvram(struct bnx_softc *);
333 int bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
334 int bnx_nvram_test(struct bnx_softc *);
335 #ifdef BNX_NVRAM_WRITE_SUPPORT
336 int bnx_enable_nvram_write(struct bnx_softc *);
337 void bnx_disable_nvram_write(struct bnx_softc *);
338 int bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
339 int bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
340 uint32_t);
341 int bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
342 #endif
343
344 /****************************************************************************/
345 /* */
346 /****************************************************************************/
347 void bnx_get_media(struct bnx_softc *);
348 void bnx_init_media(struct bnx_softc *);
349 int bnx_dma_alloc(struct bnx_softc *);
350 void bnx_dma_free(struct bnx_softc *);
351 void bnx_release_resources(struct bnx_softc *);
352
353 /****************************************************************************/
354 /* BNX Firmware Synchronization and Load */
355 /****************************************************************************/
356 int bnx_fw_sync(struct bnx_softc *, uint32_t);
357 void bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t,
358 uint32_t);
359 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
360 struct fw_info *);
361 void bnx_init_cpus(struct bnx_softc *);
362
363 void bnx_stop(struct ifnet *, int);
364 int bnx_reset(struct bnx_softc *, uint32_t);
365 int bnx_chipinit(struct bnx_softc *);
366 int bnx_blockinit(struct bnx_softc *);
367 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
368 uint16_t *, uint32_t *);
369 int bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
370
371 int bnx_init_tx_chain(struct bnx_softc *);
372 void bnx_init_tx_context(struct bnx_softc *);
373 int bnx_init_rx_chain(struct bnx_softc *);
374 void bnx_init_rx_context(struct bnx_softc *);
375 void bnx_free_rx_chain(struct bnx_softc *);
376 void bnx_free_tx_chain(struct bnx_softc *);
377
378 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
379 void bnx_start(struct ifnet *);
380 int bnx_ioctl(struct ifnet *, u_long, void *);
381 void bnx_watchdog(struct ifnet *);
382 int bnx_init(struct ifnet *);
383
384 void bnx_init_context(struct bnx_softc *);
385 void bnx_get_mac_addr(struct bnx_softc *);
386 void bnx_set_mac_addr(struct bnx_softc *);
387 void bnx_phy_intr(struct bnx_softc *);
388 void bnx_rx_intr(struct bnx_softc *);
389 void bnx_tx_intr(struct bnx_softc *);
390 void bnx_disable_intr(struct bnx_softc *);
391 void bnx_enable_intr(struct bnx_softc *);
392
393 int bnx_intr(void *);
394 void bnx_iff(struct bnx_softc *);
395 void bnx_stats_update(struct bnx_softc *);
396 void bnx_tick(void *);
397
398 struct pool *bnx_tx_pool = NULL;
399 void bnx_alloc_pkts(struct work *, void *);
400
401 /****************************************************************************/
402 /* OpenBSD device dispatch table. */
403 /****************************************************************************/
404 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
405 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
406
407 /****************************************************************************/
408 /* Device probe function. */
409 /* */
410 /* Compares the device to the driver's list of supported devices and */
411 /* reports back to the OS whether this is the right driver for the device. */
412 /* */
413 /* Returns: */
414 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
415 /****************************************************************************/
416 static const struct bnx_product *
417 bnx_lookup(const struct pci_attach_args *pa)
418 {
419 int i;
420 pcireg_t subid;
421
422 for (i = 0; i < __arraycount(bnx_devices); i++) {
423 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
424 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
425 continue;
426 if (!bnx_devices[i].bp_subvendor)
427 return &bnx_devices[i];
428 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
429 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
430 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
431 return &bnx_devices[i];
432 }
433
434 return NULL;
435 }
436 static int
437 bnx_probe(device_t parent, cfdata_t match, void *aux)
438 {
439 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
440
441 if (bnx_lookup(pa) != NULL)
442 return 1;
443
444 return 0;
445 }
446
447 /****************************************************************************/
448 /* Device attach function. */
449 /* */
450 /* Allocates device resources, performs secondary chip identification, */
451 /* resets and initializes the hardware, and initializes driver instance */
452 /* variables. */
453 /* */
454 /* Returns: */
455 /* 0 on success, positive value on failure. */
456 /****************************************************************************/
457 void
458 bnx_attach(device_t parent, device_t self, void *aux)
459 {
460 const struct bnx_product *bp;
461 struct bnx_softc *sc = device_private(self);
462 prop_dictionary_t dict;
463 struct pci_attach_args *pa = aux;
464 pci_chipset_tag_t pc = pa->pa_pc;
465 pci_intr_handle_t ih;
466 const char *intrstr = NULL;
467 uint32_t command;
468 struct ifnet *ifp;
469 uint32_t val;
470 int mii_flags = MIIF_FORCEANEG;
471 pcireg_t memtype;
472 char intrbuf[PCI_INTRSTR_LEN];
473
474 if (bnx_tx_pool == NULL) {
475 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
476 if (bnx_tx_pool != NULL) {
477 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
478 0, 0, 0, "bnxpkts", NULL, IPL_NET);
479 } else {
480 aprint_error(": can't alloc bnx_tx_pool\n");
481 return;
482 }
483 }
484
485 bp = bnx_lookup(pa);
486 if (bp == NULL)
487 panic("unknown device");
488
489 sc->bnx_dev = self;
490
491 aprint_naive("\n");
492 aprint_normal(": %s\n", bp->bp_name);
493
494 sc->bnx_pa = *pa;
495
496 /*
497 * Map control/status registers.
498 */
499 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
500 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
501 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
502 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
503
504 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
505 aprint_error_dev(sc->bnx_dev,
506 "failed to enable memory mapping!\n");
507 return;
508 }
509
510 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
511 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
512 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
513 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
514 return;
515 }
516
517 if (pci_intr_map(pa, &ih)) {
518 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
519 goto bnx_attach_fail;
520 }
521
522 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
523
524 /*
525 * Configure byte swap and enable indirect register access.
526 * Rely on CPU to do target byte swapping on big endian systems.
527 * Access to registers outside of PCI configurtion space are not
528 * valid until this is done.
529 */
530 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
531 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
532 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
533
534 /* Save ASIC revsion info. */
535 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
536
537 /*
538 * Find the base address for shared memory access.
539 * Newer versions of bootcode use a signature and offset
540 * while older versions use a fixed address.
541 */
542 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
543 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
544 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
545 (sc->bnx_pa.pa_function << 2));
546 else
547 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
548
549 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
550
551 /* Set initial device and PHY flags */
552 sc->bnx_flags = 0;
553 sc->bnx_phy_flags = 0;
554
555 /* Get PCI bus information (speed and type). */
556 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
557 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
558 uint32_t clkreg;
559
560 sc->bnx_flags |= BNX_PCIX_FLAG;
561
562 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
563
564 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
565 switch (clkreg) {
566 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
567 sc->bus_speed_mhz = 133;
568 break;
569
570 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
571 sc->bus_speed_mhz = 100;
572 break;
573
574 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
575 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
576 sc->bus_speed_mhz = 66;
577 break;
578
579 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
580 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
581 sc->bus_speed_mhz = 50;
582 break;
583
584 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
585 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
586 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
587 sc->bus_speed_mhz = 33;
588 break;
589 }
590 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
591 sc->bus_speed_mhz = 66;
592 else
593 sc->bus_speed_mhz = 33;
594
595 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
596 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
597
598 /* Reset the controller. */
599 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
600 goto bnx_attach_fail;
601
602 /* Initialize the controller. */
603 if (bnx_chipinit(sc)) {
604 aprint_error_dev(sc->bnx_dev,
605 "Controller initialization failed!\n");
606 goto bnx_attach_fail;
607 }
608
609 /* Perform NVRAM test. */
610 if (bnx_nvram_test(sc)) {
611 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
612 goto bnx_attach_fail;
613 }
614
615 /* Fetch the permanent Ethernet MAC address. */
616 bnx_get_mac_addr(sc);
617 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
618 ether_sprintf(sc->eaddr));
619
620 /*
621 * Trip points control how many BDs
622 * should be ready before generating an
623 * interrupt while ticks control how long
624 * a BD can sit in the chain before
625 * generating an interrupt. Set the default
626 * values for the RX and TX rings.
627 */
628
629 #ifdef BNX_DEBUG
630 /* Force more frequent interrupts. */
631 sc->bnx_tx_quick_cons_trip_int = 1;
632 sc->bnx_tx_quick_cons_trip = 1;
633 sc->bnx_tx_ticks_int = 0;
634 sc->bnx_tx_ticks = 0;
635
636 sc->bnx_rx_quick_cons_trip_int = 1;
637 sc->bnx_rx_quick_cons_trip = 1;
638 sc->bnx_rx_ticks_int = 0;
639 sc->bnx_rx_ticks = 0;
640 #else
641 sc->bnx_tx_quick_cons_trip_int = 20;
642 sc->bnx_tx_quick_cons_trip = 20;
643 sc->bnx_tx_ticks_int = 80;
644 sc->bnx_tx_ticks = 80;
645
646 sc->bnx_rx_quick_cons_trip_int = 6;
647 sc->bnx_rx_quick_cons_trip = 6;
648 sc->bnx_rx_ticks_int = 18;
649 sc->bnx_rx_ticks = 18;
650 #endif
651
652 /* Update statistics once every second. */
653 sc->bnx_stats_ticks = 1000000 & 0xffff00;
654
655 /* Find the media type for the adapter. */
656 bnx_get_media(sc);
657
658 /*
659 * Store config data needed by the PHY driver for
660 * backplane applications
661 */
662 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
663 BNX_SHARED_HW_CFG_CONFIG);
664 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
665 BNX_PORT_HW_CFG_CONFIG);
666
667 /* Allocate DMA memory resources. */
668 sc->bnx_dmatag = pa->pa_dmat;
669 if (bnx_dma_alloc(sc)) {
670 aprint_error_dev(sc->bnx_dev,
671 "DMA resource allocation failed!\n");
672 goto bnx_attach_fail;
673 }
674
675 /* Initialize the ifnet interface. */
676 ifp = &sc->bnx_ec.ec_if;
677 ifp->if_softc = sc;
678 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
679 ifp->if_ioctl = bnx_ioctl;
680 ifp->if_stop = bnx_stop;
681 ifp->if_start = bnx_start;
682 ifp->if_init = bnx_init;
683 ifp->if_timer = 0;
684 ifp->if_watchdog = bnx_watchdog;
685 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
686 IFQ_SET_READY(&ifp->if_snd);
687 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
688
689 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
690 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
691
692 ifp->if_capabilities |=
693 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
694 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
695 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
696
697 /* Hookup IRQ last. */
698 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
699 if (sc->bnx_intrhand == NULL) {
700 aprint_error_dev(self, "couldn't establish interrupt");
701 if (intrstr != NULL)
702 aprint_error(" at %s", intrstr);
703 aprint_error("\n");
704 goto bnx_attach_fail;
705 }
706 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
707
708 /* create workqueue to handle packet allocations */
709 if (workqueue_create(&sc->bnx_wq, device_xname(self),
710 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
711 aprint_error_dev(self, "failed to create workqueue\n");
712 goto bnx_attach_fail;
713 }
714
715 sc->bnx_mii.mii_ifp = ifp;
716 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
717 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
718 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
719
720 /* Handle any special PHY initialization for SerDes PHYs. */
721 bnx_init_media(sc);
722
723 sc->bnx_ec.ec_mii = &sc->bnx_mii;
724 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
725 ether_mediastatus);
726
727 /* set phyflags and chipid before mii_attach() */
728 dict = device_properties(self);
729 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
730 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
731 prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
732 prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
733
734 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
735 mii_flags |= MIIF_HAVEFIBER;
736 mii_attach(self, &sc->bnx_mii, 0xffffffff,
737 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
738
739 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
740 aprint_error_dev(self, "no PHY found!\n");
741 ifmedia_add(&sc->bnx_mii.mii_media,
742 IFM_ETHER|IFM_MANUAL, 0, NULL);
743 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
744 } else
745 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
746
747 /* Attach to the Ethernet interface list. */
748 if_attach(ifp);
749 ether_ifattach(ifp,sc->eaddr);
750
751 callout_init(&sc->bnx_timeout, 0);
752
753 if (pmf_device_register(self, NULL, NULL))
754 pmf_class_network_register(self, ifp);
755 else
756 aprint_error_dev(self, "couldn't establish power handler\n");
757
758 /* Print some important debugging info. */
759 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
760
761 goto bnx_attach_exit;
762
763 bnx_attach_fail:
764 bnx_release_resources(sc);
765
766 bnx_attach_exit:
767 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
768 }
769
770 /****************************************************************************/
771 /* Device detach function. */
772 /* */
773 /* Stops the controller, resets the controller, and releases resources. */
774 /* */
775 /* Returns: */
776 /* 0 on success, positive value on failure. */
777 /****************************************************************************/
778 int
779 bnx_detach(device_t dev, int flags)
780 {
781 int s;
782 struct bnx_softc *sc;
783 struct ifnet *ifp;
784
785 sc = device_private(dev);
786 ifp = &sc->bnx_ec.ec_if;
787
788 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
789
790 /* Stop and reset the controller. */
791 s = splnet();
792 if (ifp->if_flags & IFF_RUNNING)
793 bnx_stop(ifp, 1);
794 else {
795 /* Disable the transmit/receive blocks. */
796 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
797 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
798 DELAY(20);
799 bnx_disable_intr(sc);
800 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
801 }
802
803 splx(s);
804
805 pmf_device_deregister(dev);
806 callout_destroy(&sc->bnx_timeout);
807 ether_ifdetach(ifp);
808 workqueue_destroy(sc->bnx_wq);
809
810 /* Delete all remaining media. */
811 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
812
813 if_detach(ifp);
814 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
815
816 /* Release all remaining resources. */
817 bnx_release_resources(sc);
818
819 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
820
821 return 0;
822 }
823
824 /****************************************************************************/
825 /* Indirect register read. */
826 /* */
827 /* Reads NetXtreme II registers using an index/data register pair in PCI */
828 /* configuration space. Using this mechanism avoids issues with posted */
829 /* reads but is much slower than memory-mapped I/O. */
830 /* */
831 /* Returns: */
832 /* The value of the register. */
833 /****************************************************************************/
834 uint32_t
835 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
836 {
837 struct pci_attach_args *pa = &(sc->bnx_pa);
838
839 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
840 offset);
841 #ifdef BNX_DEBUG
842 {
843 uint32_t val;
844 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
845 BNX_PCICFG_REG_WINDOW);
846 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
847 "val = 0x%08X\n", __func__, offset, val);
848 return val;
849 }
850 #else
851 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
852 #endif
853 }
854
855 /****************************************************************************/
856 /* Indirect register write. */
857 /* */
858 /* Writes NetXtreme II registers using an index/data register pair in PCI */
859 /* configuration space. Using this mechanism avoids issues with posted */
860 /* writes but is muchh slower than memory-mapped I/O. */
861 /* */
862 /* Returns: */
863 /* Nothing. */
864 /****************************************************************************/
865 void
866 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
867 {
868 struct pci_attach_args *pa = &(sc->bnx_pa);
869
870 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
871 __func__, offset, val);
872
873 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
874 offset);
875 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
876 }
877
878 /****************************************************************************/
879 /* Context memory write. */
880 /* */
881 /* The NetXtreme II controller uses context memory to track connection */
882 /* information for L2 and higher network protocols. */
883 /* */
884 /* Returns: */
885 /* Nothing. */
886 /****************************************************************************/
887 void
888 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
889 uint32_t ctx_val)
890 {
891 uint32_t idx, offset = ctx_offset + cid_addr;
892 uint32_t val, retry_cnt = 5;
893
894 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
895 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
896 REG_WR(sc, BNX_CTX_CTX_CTRL,
897 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
898
899 for (idx = 0; idx < retry_cnt; idx++) {
900 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
901 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
902 break;
903 DELAY(5);
904 }
905
906 #if 0
907 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
908 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
909 "cid_addr = 0x%08X, offset = 0x%08X!\n",
910 __FILE__, __LINE__, cid_addr, ctx_offset);
911 #endif
912
913 } else {
914 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
915 REG_WR(sc, BNX_CTX_DATA, ctx_val);
916 }
917 }
918
919 /****************************************************************************/
920 /* PHY register read. */
921 /* */
922 /* Implements register reads on the MII bus. */
923 /* */
924 /* Returns: */
925 /* The value of the register. */
926 /****************************************************************************/
927 int
928 bnx_miibus_read_reg(device_t dev, int phy, int reg)
929 {
930 struct bnx_softc *sc = device_private(dev);
931 uint32_t val;
932 int i;
933
934 /* Make sure we are accessing the correct PHY address. */
935 if (phy != sc->bnx_phy_addr) {
936 DBPRINT(sc, BNX_VERBOSE,
937 "Invalid PHY address %d for PHY read!\n", phy);
938 return 0;
939 }
940
941 /*
942 * The BCM5709S PHY is an IEEE Clause 45 PHY
943 * with special mappings to work with IEEE
944 * Clause 22 register accesses.
945 */
946 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
947 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
948 reg += 0x10;
949 }
950
951 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
952 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
953 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
954
955 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
956 REG_RD(sc, BNX_EMAC_MDIO_MODE);
957
958 DELAY(40);
959 }
960
961 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
962 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
963 BNX_EMAC_MDIO_COMM_START_BUSY;
964 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
965
966 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
967 DELAY(10);
968
969 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
970 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
971 DELAY(5);
972
973 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
974 val &= BNX_EMAC_MDIO_COMM_DATA;
975
976 break;
977 }
978 }
979
980 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
981 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
982 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
983 val = 0x0;
984 } else
985 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
986
987 DBPRINT(sc, BNX_EXCESSIVE,
988 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
989 (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
990
991 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
992 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
993 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
994
995 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
996 REG_RD(sc, BNX_EMAC_MDIO_MODE);
997
998 DELAY(40);
999 }
1000
1001 return (val & 0xffff);
1002 }
1003
1004 /****************************************************************************/
1005 /* PHY register write. */
1006 /* */
1007 /* Implements register writes on the MII bus. */
1008 /* */
1009 /* Returns: */
1010 /* The value of the register. */
1011 /****************************************************************************/
1012 void
1013 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1014 {
1015 struct bnx_softc *sc = device_private(dev);
1016 uint32_t val1;
1017 int i;
1018
1019 /* Make sure we are accessing the correct PHY address. */
1020 if (phy != sc->bnx_phy_addr) {
1021 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1022 phy);
1023 return;
1024 }
1025
1026 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1027 "val = 0x%04X\n", __func__,
1028 phy, (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1029
1030 /*
1031 * The BCM5709S PHY is an IEEE Clause 45 PHY
1032 * with special mappings to work with IEEE
1033 * Clause 22 register accesses.
1034 */
1035 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1036 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1037 reg += 0x10;
1038 }
1039
1040 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1041 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1042 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1043
1044 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1045 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1046
1047 DELAY(40);
1048 }
1049
1050 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1051 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1052 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1053 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1054
1055 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1056 DELAY(10);
1057
1058 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1059 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1060 DELAY(5);
1061 break;
1062 }
1063 }
1064
1065 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1066 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1067 __LINE__);
1068 }
1069
1070 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1071 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1072 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1073
1074 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1075 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1076
1077 DELAY(40);
1078 }
1079 }
1080
1081 /****************************************************************************/
1082 /* MII bus status change. */
1083 /* */
1084 /* Called by the MII bus driver when the PHY establishes link to set the */
1085 /* MAC interface registers. */
1086 /* */
1087 /* Returns: */
1088 /* Nothing. */
1089 /****************************************************************************/
1090 void
1091 bnx_miibus_statchg(struct ifnet *ifp)
1092 {
1093 struct bnx_softc *sc = ifp->if_softc;
1094 struct mii_data *mii = &sc->bnx_mii;
1095 int val;
1096
1097 val = REG_RD(sc, BNX_EMAC_MODE);
1098 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1099 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1100 BNX_EMAC_MODE_25G);
1101
1102 /* Set MII or GMII interface based on the speed
1103 * negotiated by the PHY.
1104 */
1105 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1106 case IFM_10_T:
1107 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1108 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1109 val |= BNX_EMAC_MODE_PORT_MII_10;
1110 break;
1111 }
1112 /* FALLTHROUGH */
1113 case IFM_100_TX:
1114 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1115 val |= BNX_EMAC_MODE_PORT_MII;
1116 break;
1117 case IFM_2500_SX:
1118 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1119 val |= BNX_EMAC_MODE_25G;
1120 /* FALLTHROUGH */
1121 case IFM_1000_T:
1122 case IFM_1000_SX:
1123 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1124 val |= BNX_EMAC_MODE_PORT_GMII;
1125 break;
1126 default:
1127 val |= BNX_EMAC_MODE_PORT_GMII;
1128 break;
1129 }
1130
1131 /* Set half or full duplex based on the duplicity
1132 * negotiated by the PHY.
1133 */
1134 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1135 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1136 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1137 } else {
1138 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1139 }
1140
1141 REG_WR(sc, BNX_EMAC_MODE, val);
1142 }
1143
1144 /****************************************************************************/
1145 /* Acquire NVRAM lock. */
1146 /* */
1147 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1148 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1149 /* for use by the driver. */
1150 /* */
1151 /* Returns: */
1152 /* 0 on success, positive value on failure. */
1153 /****************************************************************************/
1154 int
1155 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1156 {
1157 uint32_t val;
1158 int j;
1159
1160 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1161
1162 /* Request access to the flash interface. */
1163 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1164 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1165 val = REG_RD(sc, BNX_NVM_SW_ARB);
1166 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1167 break;
1168
1169 DELAY(5);
1170 }
1171
1172 if (j >= NVRAM_TIMEOUT_COUNT) {
1173 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1174 return EBUSY;
1175 }
1176
1177 return 0;
1178 }
1179
1180 /****************************************************************************/
1181 /* Release NVRAM lock. */
1182 /* */
1183 /* When the caller is finished accessing NVRAM the lock must be released. */
1184 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1185 /* for use by the driver. */
1186 /* */
1187 /* Returns: */
1188 /* 0 on success, positive value on failure. */
1189 /****************************************************************************/
1190 int
1191 bnx_release_nvram_lock(struct bnx_softc *sc)
1192 {
1193 int j;
1194 uint32_t val;
1195
1196 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1197
1198 /* Relinquish nvram interface. */
1199 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1200
1201 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1202 val = REG_RD(sc, BNX_NVM_SW_ARB);
1203 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1204 break;
1205
1206 DELAY(5);
1207 }
1208
1209 if (j >= NVRAM_TIMEOUT_COUNT) {
1210 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1211 return EBUSY;
1212 }
1213
1214 return 0;
1215 }
1216
1217 #ifdef BNX_NVRAM_WRITE_SUPPORT
1218 /****************************************************************************/
1219 /* Enable NVRAM write access. */
1220 /* */
1221 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1222 /* */
1223 /* Returns: */
1224 /* 0 on success, positive value on failure. */
1225 /****************************************************************************/
1226 int
1227 bnx_enable_nvram_write(struct bnx_softc *sc)
1228 {
1229 uint32_t val;
1230
1231 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1232
1233 val = REG_RD(sc, BNX_MISC_CFG);
1234 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1235
1236 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1237 int j;
1238
1239 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1240 REG_WR(sc, BNX_NVM_COMMAND,
1241 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1242
1243 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1244 DELAY(5);
1245
1246 val = REG_RD(sc, BNX_NVM_COMMAND);
1247 if (val & BNX_NVM_COMMAND_DONE)
1248 break;
1249 }
1250
1251 if (j >= NVRAM_TIMEOUT_COUNT) {
1252 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1253 return EBUSY;
1254 }
1255 }
1256
1257 return 0;
1258 }
1259
1260 /****************************************************************************/
1261 /* Disable NVRAM write access. */
1262 /* */
1263 /* When the caller is finished writing to NVRAM write access must be */
1264 /* disabled. */
1265 /* */
1266 /* Returns: */
1267 /* Nothing. */
1268 /****************************************************************************/
1269 void
1270 bnx_disable_nvram_write(struct bnx_softc *sc)
1271 {
1272 uint32_t val;
1273
1274 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1275
1276 val = REG_RD(sc, BNX_MISC_CFG);
1277 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1278 }
1279 #endif
1280
1281 /****************************************************************************/
1282 /* Enable NVRAM access. */
1283 /* */
1284 /* Before accessing NVRAM for read or write operations the caller must */
1285 /* enabled NVRAM access. */
1286 /* */
1287 /* Returns: */
1288 /* Nothing. */
1289 /****************************************************************************/
1290 void
1291 bnx_enable_nvram_access(struct bnx_softc *sc)
1292 {
1293 uint32_t val;
1294
1295 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1296
1297 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1298 /* Enable both bits, even on read. */
1299 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1300 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1301 }
1302
1303 /****************************************************************************/
1304 /* Disable NVRAM access. */
1305 /* */
1306 /* When the caller is finished accessing NVRAM access must be disabled. */
1307 /* */
1308 /* Returns: */
1309 /* Nothing. */
1310 /****************************************************************************/
1311 void
1312 bnx_disable_nvram_access(struct bnx_softc *sc)
1313 {
1314 uint32_t val;
1315
1316 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1317
1318 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1319
1320 /* Disable both bits, even after read. */
1321 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1322 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1323 }
1324
1325 #ifdef BNX_NVRAM_WRITE_SUPPORT
1326 /****************************************************************************/
1327 /* Erase NVRAM page before writing. */
1328 /* */
1329 /* Non-buffered flash parts require that a page be erased before it is */
1330 /* written. */
1331 /* */
1332 /* Returns: */
1333 /* 0 on success, positive value on failure. */
1334 /****************************************************************************/
1335 int
1336 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1337 {
1338 uint32_t cmd;
1339 int j;
1340
1341 /* Buffered flash doesn't require an erase. */
1342 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1343 return 0;
1344
1345 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1346
1347 /* Build an erase command. */
1348 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1349 BNX_NVM_COMMAND_DOIT;
1350
1351 /*
1352 * Clear the DONE bit separately, set the NVRAM address to erase,
1353 * and issue the erase command.
1354 */
1355 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1356 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1357 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1358
1359 /* Wait for completion. */
1360 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1361 uint32_t val;
1362
1363 DELAY(5);
1364
1365 val = REG_RD(sc, BNX_NVM_COMMAND);
1366 if (val & BNX_NVM_COMMAND_DONE)
1367 break;
1368 }
1369
1370 if (j >= NVRAM_TIMEOUT_COUNT) {
1371 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1372 return EBUSY;
1373 }
1374
1375 return 0;
1376 }
1377 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1378
1379 /****************************************************************************/
1380 /* Read a dword (32 bits) from NVRAM. */
1381 /* */
1382 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1383 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1384 /* */
1385 /* Returns: */
1386 /* 0 on success and the 32 bit value read, positive value on failure. */
1387 /****************************************************************************/
1388 int
1389 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1390 uint8_t *ret_val, uint32_t cmd_flags)
1391 {
1392 uint32_t cmd;
1393 int i, rc = 0;
1394
1395 /* Build the command word. */
1396 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1397
1398 /* Calculate the offset for buffered flash if translation is used. */
1399 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1400 offset = ((offset / sc->bnx_flash_info->page_size) <<
1401 sc->bnx_flash_info->page_bits) +
1402 (offset % sc->bnx_flash_info->page_size);
1403 }
1404
1405 /*
1406 * Clear the DONE bit separately, set the address to read,
1407 * and issue the read.
1408 */
1409 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1410 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1411 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1412
1413 /* Wait for completion. */
1414 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1415 uint32_t val;
1416
1417 DELAY(5);
1418
1419 val = REG_RD(sc, BNX_NVM_COMMAND);
1420 if (val & BNX_NVM_COMMAND_DONE) {
1421 val = REG_RD(sc, BNX_NVM_READ);
1422
1423 val = bnx_be32toh(val);
1424 memcpy(ret_val, &val, 4);
1425 break;
1426 }
1427 }
1428
1429 /* Check for errors. */
1430 if (i >= NVRAM_TIMEOUT_COUNT) {
1431 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1432 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1433 rc = EBUSY;
1434 }
1435
1436 return rc;
1437 }
1438
1439 #ifdef BNX_NVRAM_WRITE_SUPPORT
1440 /****************************************************************************/
1441 /* Write a dword (32 bits) to NVRAM. */
1442 /* */
1443 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1444 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1445 /* enabled NVRAM write access. */
1446 /* */
1447 /* Returns: */
1448 /* 0 on success, positive value on failure. */
1449 /****************************************************************************/
1450 int
1451 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1452 uint32_t cmd_flags)
1453 {
1454 uint32_t cmd, val32;
1455 int j;
1456
1457 /* Build the command word. */
1458 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1459
1460 /* Calculate the offset for buffered flash if translation is used. */
1461 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1462 offset = ((offset / sc->bnx_flash_info->page_size) <<
1463 sc->bnx_flash_info->page_bits) +
1464 (offset % sc->bnx_flash_info->page_size);
1465 }
1466
1467 /*
1468 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1469 * set the NVRAM address to write, and issue the write command
1470 */
1471 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1472 memcpy(&val32, val, 4);
1473 val32 = htobe32(val32);
1474 REG_WR(sc, BNX_NVM_WRITE, val32);
1475 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1476 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1477
1478 /* Wait for completion. */
1479 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1480 DELAY(5);
1481
1482 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1483 break;
1484 }
1485 if (j >= NVRAM_TIMEOUT_COUNT) {
1486 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1487 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1488 return EBUSY;
1489 }
1490
1491 return 0;
1492 }
1493 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1494
1495 /****************************************************************************/
1496 /* Initialize NVRAM access. */
1497 /* */
1498 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1499 /* access that device. */
1500 /* */
1501 /* Returns: */
1502 /* 0 on success, positive value on failure. */
1503 /****************************************************************************/
1504 int
1505 bnx_init_nvram(struct bnx_softc *sc)
1506 {
1507 uint32_t val;
1508 int j, entry_count, rc = 0;
1509 struct flash_spec *flash;
1510
1511 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1512
1513 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1514 sc->bnx_flash_info = &flash_5709;
1515 goto bnx_init_nvram_get_flash_size;
1516 }
1517
1518 /* Determine the selected interface. */
1519 val = REG_RD(sc, BNX_NVM_CFG1);
1520
1521 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1522
1523 /*
1524 * Flash reconfiguration is required to support additional
1525 * NVRAM devices not directly supported in hardware.
1526 * Check if the flash interface was reconfigured
1527 * by the bootcode.
1528 */
1529
1530 if (val & 0x40000000) {
1531 /* Flash interface reconfigured by bootcode. */
1532
1533 DBPRINT(sc,BNX_INFO_LOAD,
1534 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1535
1536 for (j = 0, flash = &flash_table[0]; j < entry_count;
1537 j++, flash++) {
1538 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1539 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1540 sc->bnx_flash_info = flash;
1541 break;
1542 }
1543 }
1544 } else {
1545 /* Flash interface not yet reconfigured. */
1546 uint32_t mask;
1547
1548 DBPRINT(sc,BNX_INFO_LOAD,
1549 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1550
1551 if (val & (1 << 23))
1552 mask = FLASH_BACKUP_STRAP_MASK;
1553 else
1554 mask = FLASH_STRAP_MASK;
1555
1556 /* Look for the matching NVRAM device configuration data. */
1557 for (j = 0, flash = &flash_table[0]; j < entry_count;
1558 j++, flash++) {
1559 /* Check if the dev matches any of the known devices. */
1560 if ((val & mask) == (flash->strapping & mask)) {
1561 /* Found a device match. */
1562 sc->bnx_flash_info = flash;
1563
1564 /* Request access to the flash interface. */
1565 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1566 return rc;
1567
1568 /* Reconfigure the flash interface. */
1569 bnx_enable_nvram_access(sc);
1570 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1571 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1572 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1573 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1574 bnx_disable_nvram_access(sc);
1575 bnx_release_nvram_lock(sc);
1576
1577 break;
1578 }
1579 }
1580 }
1581
1582 /* Check if a matching device was found. */
1583 if (j == entry_count) {
1584 sc->bnx_flash_info = NULL;
1585 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1586 __FILE__, __LINE__);
1587 rc = ENODEV;
1588 }
1589
1590 bnx_init_nvram_get_flash_size:
1591 /* Write the flash config data to the shared memory interface. */
1592 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1593 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1594 if (val)
1595 sc->bnx_flash_size = val;
1596 else
1597 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1598
1599 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1600 "0x%08X\n", sc->bnx_flash_info->total_size);
1601
1602 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1603
1604 return rc;
1605 }
1606
1607 /****************************************************************************/
1608 /* Read an arbitrary range of data from NVRAM. */
1609 /* */
1610 /* Prepares the NVRAM interface for access and reads the requested data */
1611 /* into the supplied buffer. */
1612 /* */
1613 /* Returns: */
1614 /* 0 on success and the data read, positive value on failure. */
1615 /****************************************************************************/
1616 int
1617 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1618 int buf_size)
1619 {
1620 int rc = 0;
1621 uint32_t cmd_flags, offset32, len32, extra;
1622
1623 if (buf_size == 0)
1624 return 0;
1625
1626 /* Request access to the flash interface. */
1627 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1628 return rc;
1629
1630 /* Enable access to flash interface */
1631 bnx_enable_nvram_access(sc);
1632
1633 len32 = buf_size;
1634 offset32 = offset;
1635 extra = 0;
1636
1637 cmd_flags = 0;
1638
1639 if (offset32 & 3) {
1640 uint8_t buf[4];
1641 uint32_t pre_len;
1642
1643 offset32 &= ~3;
1644 pre_len = 4 - (offset & 3);
1645
1646 if (pre_len >= len32) {
1647 pre_len = len32;
1648 cmd_flags =
1649 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1650 } else
1651 cmd_flags = BNX_NVM_COMMAND_FIRST;
1652
1653 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1654
1655 if (rc)
1656 return rc;
1657
1658 memcpy(ret_buf, buf + (offset & 3), pre_len);
1659
1660 offset32 += 4;
1661 ret_buf += pre_len;
1662 len32 -= pre_len;
1663 }
1664
1665 if (len32 & 3) {
1666 extra = 4 - (len32 & 3);
1667 len32 = (len32 + 4) & ~3;
1668 }
1669
1670 if (len32 == 4) {
1671 uint8_t buf[4];
1672
1673 if (cmd_flags)
1674 cmd_flags = BNX_NVM_COMMAND_LAST;
1675 else
1676 cmd_flags =
1677 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1678
1679 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1680
1681 memcpy(ret_buf, buf, 4 - extra);
1682 } else if (len32 > 0) {
1683 uint8_t buf[4];
1684
1685 /* Read the first word. */
1686 if (cmd_flags)
1687 cmd_flags = 0;
1688 else
1689 cmd_flags = BNX_NVM_COMMAND_FIRST;
1690
1691 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1692
1693 /* Advance to the next dword. */
1694 offset32 += 4;
1695 ret_buf += 4;
1696 len32 -= 4;
1697
1698 while (len32 > 4 && rc == 0) {
1699 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1700
1701 /* Advance to the next dword. */
1702 offset32 += 4;
1703 ret_buf += 4;
1704 len32 -= 4;
1705 }
1706
1707 if (rc)
1708 return rc;
1709
1710 cmd_flags = BNX_NVM_COMMAND_LAST;
1711 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1712
1713 memcpy(ret_buf, buf, 4 - extra);
1714 }
1715
1716 /* Disable access to flash interface and release the lock. */
1717 bnx_disable_nvram_access(sc);
1718 bnx_release_nvram_lock(sc);
1719
1720 return rc;
1721 }
1722
1723 #ifdef BNX_NVRAM_WRITE_SUPPORT
1724 /****************************************************************************/
1725 /* Write an arbitrary range of data from NVRAM. */
1726 /* */
1727 /* Prepares the NVRAM interface for write access and writes the requested */
1728 /* data from the supplied buffer. The caller is responsible for */
1729 /* calculating any appropriate CRCs. */
1730 /* */
1731 /* Returns: */
1732 /* 0 on success, positive value on failure. */
1733 /****************************************************************************/
1734 int
1735 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1736 int buf_size)
1737 {
1738 uint32_t written, offset32, len32;
1739 uint8_t *buf, start[4], end[4];
1740 int rc = 0;
1741 int align_start, align_end;
1742
1743 buf = data_buf;
1744 offset32 = offset;
1745 len32 = buf_size;
1746 align_start = align_end = 0;
1747
1748 if ((align_start = (offset32 & 3))) {
1749 offset32 &= ~3;
1750 len32 += align_start;
1751 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1752 return rc;
1753 }
1754
1755 if (len32 & 3) {
1756 if ((len32 > 4) || !align_start) {
1757 align_end = 4 - (len32 & 3);
1758 len32 += align_end;
1759 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1760 end, 4)))
1761 return rc;
1762 }
1763 }
1764
1765 if (align_start || align_end) {
1766 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1767 if (buf == 0)
1768 return ENOMEM;
1769
1770 if (align_start)
1771 memcpy(buf, start, 4);
1772
1773 if (align_end)
1774 memcpy(buf + len32 - 4, end, 4);
1775
1776 memcpy(buf + align_start, data_buf, buf_size);
1777 }
1778
1779 written = 0;
1780 while ((written < len32) && (rc == 0)) {
1781 uint32_t page_start, page_end, data_start, data_end;
1782 uint32_t addr, cmd_flags;
1783 int i;
1784 uint8_t flash_buffer[264];
1785
1786 /* Find the page_start addr */
1787 page_start = offset32 + written;
1788 page_start -= (page_start % sc->bnx_flash_info->page_size);
1789 /* Find the page_end addr */
1790 page_end = page_start + sc->bnx_flash_info->page_size;
1791 /* Find the data_start addr */
1792 data_start = (written == 0) ? offset32 : page_start;
1793 /* Find the data_end addr */
1794 data_end = (page_end > offset32 + len32) ?
1795 (offset32 + len32) : page_end;
1796
1797 /* Request access to the flash interface. */
1798 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1799 goto nvram_write_end;
1800
1801 /* Enable access to flash interface */
1802 bnx_enable_nvram_access(sc);
1803
1804 cmd_flags = BNX_NVM_COMMAND_FIRST;
1805 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1806 int j;
1807
1808 /* Read the whole page into the buffer
1809 * (non-buffer flash only) */
1810 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1811 if (j == (sc->bnx_flash_info->page_size - 4))
1812 cmd_flags |= BNX_NVM_COMMAND_LAST;
1813
1814 rc = bnx_nvram_read_dword(sc,
1815 page_start + j,
1816 &flash_buffer[j],
1817 cmd_flags);
1818
1819 if (rc)
1820 goto nvram_write_end;
1821
1822 cmd_flags = 0;
1823 }
1824 }
1825
1826 /* Enable writes to flash interface (unlock write-protect) */
1827 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1828 goto nvram_write_end;
1829
1830 /* Erase the page */
1831 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1832 goto nvram_write_end;
1833
1834 /* Re-enable the write again for the actual write */
1835 bnx_enable_nvram_write(sc);
1836
1837 /* Loop to write back the buffer data from page_start to
1838 * data_start */
1839 i = 0;
1840 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1841 for (addr = page_start; addr < data_start;
1842 addr += 4, i += 4) {
1843
1844 rc = bnx_nvram_write_dword(sc, addr,
1845 &flash_buffer[i], cmd_flags);
1846
1847 if (rc != 0)
1848 goto nvram_write_end;
1849
1850 cmd_flags = 0;
1851 }
1852 }
1853
1854 /* Loop to write the new data from data_start to data_end */
1855 for (addr = data_start; addr < data_end; addr += 4, i++) {
1856 if ((addr == page_end - 4) ||
1857 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1858 && (addr == data_end - 4))) {
1859
1860 cmd_flags |= BNX_NVM_COMMAND_LAST;
1861 }
1862
1863 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1864
1865 if (rc != 0)
1866 goto nvram_write_end;
1867
1868 cmd_flags = 0;
1869 buf += 4;
1870 }
1871
1872 /* Loop to write back the buffer data from data_end
1873 * to page_end */
1874 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1875 for (addr = data_end; addr < page_end;
1876 addr += 4, i += 4) {
1877
1878 if (addr == page_end-4)
1879 cmd_flags = BNX_NVM_COMMAND_LAST;
1880
1881 rc = bnx_nvram_write_dword(sc, addr,
1882 &flash_buffer[i], cmd_flags);
1883
1884 if (rc != 0)
1885 goto nvram_write_end;
1886
1887 cmd_flags = 0;
1888 }
1889 }
1890
1891 /* Disable writes to flash interface (lock write-protect) */
1892 bnx_disable_nvram_write(sc);
1893
1894 /* Disable access to flash interface */
1895 bnx_disable_nvram_access(sc);
1896 bnx_release_nvram_lock(sc);
1897
1898 /* Increment written */
1899 written += data_end - data_start;
1900 }
1901
1902 nvram_write_end:
1903 if (align_start || align_end)
1904 free(buf, M_DEVBUF);
1905
1906 return rc;
1907 }
1908 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1909
1910 /****************************************************************************/
1911 /* Verifies that NVRAM is accessible and contains valid data. */
1912 /* */
1913 /* Reads the configuration data from NVRAM and verifies that the CRC is */
1914 /* correct. */
1915 /* */
1916 /* Returns: */
1917 /* 0 on success, positive value on failure. */
1918 /****************************************************************************/
1919 int
1920 bnx_nvram_test(struct bnx_softc *sc)
1921 {
1922 uint32_t buf[BNX_NVRAM_SIZE / 4];
1923 uint8_t *data = (uint8_t *) buf;
1924 int rc = 0;
1925 uint32_t magic, csum;
1926
1927 /*
1928 * Check that the device NVRAM is valid by reading
1929 * the magic value at offset 0.
1930 */
1931 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
1932 goto bnx_nvram_test_done;
1933
1934 magic = bnx_be32toh(buf[0]);
1935 if (magic != BNX_NVRAM_MAGIC) {
1936 rc = ENODEV;
1937 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
1938 "Expected: 0x%08X, Found: 0x%08X\n",
1939 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
1940 goto bnx_nvram_test_done;
1941 }
1942
1943 /*
1944 * Verify that the device NVRAM includes valid
1945 * configuration data.
1946 */
1947 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
1948 goto bnx_nvram_test_done;
1949
1950 csum = ether_crc32_le(data, 0x100);
1951 if (csum != BNX_CRC32_RESIDUAL) {
1952 rc = ENODEV;
1953 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
1954 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
1955 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1956 goto bnx_nvram_test_done;
1957 }
1958
1959 csum = ether_crc32_le(data + 0x100, 0x100);
1960 if (csum != BNX_CRC32_RESIDUAL) {
1961 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
1962 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
1963 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
1964 rc = ENODEV;
1965 }
1966
1967 bnx_nvram_test_done:
1968 return rc;
1969 }
1970
1971 /****************************************************************************/
1972 /* Identifies the current media type of the controller and sets the PHY */
1973 /* address. */
1974 /* */
1975 /* Returns: */
1976 /* Nothing. */
1977 /****************************************************************************/
1978 void
1979 bnx_get_media(struct bnx_softc *sc)
1980 {
1981 sc->bnx_phy_addr = 1;
1982
1983 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1984 uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
1985 uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
1986 uint32_t strap;
1987
1988 /*
1989 * The BCM5709S is software configurable
1990 * for Copper or SerDes operation.
1991 */
1992 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
1993 DBPRINT(sc, BNX_INFO_LOAD,
1994 "5709 bonded for copper.\n");
1995 goto bnx_get_media_exit;
1996 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
1997 DBPRINT(sc, BNX_INFO_LOAD,
1998 "5709 bonded for dual media.\n");
1999 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2000 goto bnx_get_media_exit;
2001 }
2002
2003 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2004 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2005 else {
2006 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2007 >> 8;
2008 }
2009
2010 if (sc->bnx_pa.pa_function == 0) {
2011 switch (strap) {
2012 case 0x4:
2013 case 0x5:
2014 case 0x6:
2015 DBPRINT(sc, BNX_INFO_LOAD,
2016 "BCM5709 s/w configured for SerDes.\n");
2017 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2018 break;
2019 default:
2020 DBPRINT(sc, BNX_INFO_LOAD,
2021 "BCM5709 s/w configured for Copper.\n");
2022 }
2023 } else {
2024 switch (strap) {
2025 case 0x1:
2026 case 0x2:
2027 case 0x4:
2028 DBPRINT(sc, BNX_INFO_LOAD,
2029 "BCM5709 s/w configured for SerDes.\n");
2030 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2031 break;
2032 default:
2033 DBPRINT(sc, BNX_INFO_LOAD,
2034 "BCM5709 s/w configured for Copper.\n");
2035 }
2036 }
2037
2038 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2039 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2040
2041 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2042 uint32_t val;
2043
2044 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2045
2046 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2047 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2048
2049 /*
2050 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2051 * separate PHY for SerDes.
2052 */
2053 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2054 sc->bnx_phy_addr = 2;
2055 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2056 BNX_SHARED_HW_CFG_CONFIG);
2057 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2058 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2059 DBPRINT(sc, BNX_INFO_LOAD,
2060 "Found 2.5Gb capable adapter\n");
2061 }
2062 }
2063 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2064 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2065 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2066
2067 bnx_get_media_exit:
2068 DBPRINT(sc, (BNX_INFO_LOAD),
2069 "Using PHY address %d.\n", sc->bnx_phy_addr);
2070 }
2071
2072 /****************************************************************************/
2073 /* Performs PHY initialization required before MII drivers access the */
2074 /* device. */
2075 /* */
2076 /* Returns: */
2077 /* Nothing. */
2078 /****************************************************************************/
2079 void
2080 bnx_init_media(struct bnx_softc *sc)
2081 {
2082 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2083 /*
2084 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2085 * IEEE Clause 22 method. Otherwise we have no way to attach
2086 * the PHY to the mii(4) layer. PHY specific configuration
2087 * is done by the mii(4) layer.
2088 */
2089
2090 /* Select auto-negotiation MMD of the PHY. */
2091 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2092 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2093
2094 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2095 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2096
2097 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2098 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2099 }
2100 }
2101
2102 /****************************************************************************/
2103 /* Free any DMA memory owned by the driver. */
2104 /* */
2105 /* Scans through each data structre that requires DMA memory and frees */
2106 /* the memory if allocated. */
2107 /* */
2108 /* Returns: */
2109 /* Nothing. */
2110 /****************************************************************************/
2111 void
2112 bnx_dma_free(struct bnx_softc *sc)
2113 {
2114 int i;
2115
2116 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2117
2118 /* Destroy the status block. */
2119 if (sc->status_block != NULL && sc->status_map != NULL) {
2120 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2121 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2122 BNX_STATUS_BLK_SZ);
2123 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2124 sc->status_rseg);
2125 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2126 sc->status_block = NULL;
2127 sc->status_map = NULL;
2128 }
2129
2130 /* Destroy the statistics block. */
2131 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2132 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2133 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2134 BNX_STATS_BLK_SZ);
2135 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2136 sc->stats_rseg);
2137 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2138 sc->stats_block = NULL;
2139 sc->stats_map = NULL;
2140 }
2141
2142 /* Free, unmap and destroy all context memory pages. */
2143 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2144 for (i = 0; i < sc->ctx_pages; i++) {
2145 if (sc->ctx_block[i] != NULL) {
2146 bus_dmamap_unload(sc->bnx_dmatag,
2147 sc->ctx_map[i]);
2148 bus_dmamem_unmap(sc->bnx_dmatag,
2149 (void *)sc->ctx_block[i],
2150 BCM_PAGE_SIZE);
2151 bus_dmamem_free(sc->bnx_dmatag,
2152 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2153 bus_dmamap_destroy(sc->bnx_dmatag,
2154 sc->ctx_map[i]);
2155 sc->ctx_block[i] = NULL;
2156 }
2157 }
2158 }
2159
2160 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2161 for (i = 0; i < TX_PAGES; i++ ) {
2162 if (sc->tx_bd_chain[i] != NULL &&
2163 sc->tx_bd_chain_map[i] != NULL) {
2164 bus_dmamap_unload(sc->bnx_dmatag,
2165 sc->tx_bd_chain_map[i]);
2166 bus_dmamem_unmap(sc->bnx_dmatag,
2167 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2168 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2169 sc->tx_bd_chain_rseg[i]);
2170 bus_dmamap_destroy(sc->bnx_dmatag,
2171 sc->tx_bd_chain_map[i]);
2172 sc->tx_bd_chain[i] = NULL;
2173 sc->tx_bd_chain_map[i] = NULL;
2174 }
2175 }
2176
2177 /* Destroy the TX dmamaps. */
2178 /* This isn't necessary since we dont allocate them up front */
2179
2180 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2181 for (i = 0; i < RX_PAGES; i++ ) {
2182 if (sc->rx_bd_chain[i] != NULL &&
2183 sc->rx_bd_chain_map[i] != NULL) {
2184 bus_dmamap_unload(sc->bnx_dmatag,
2185 sc->rx_bd_chain_map[i]);
2186 bus_dmamem_unmap(sc->bnx_dmatag,
2187 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2188 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2189 sc->rx_bd_chain_rseg[i]);
2190
2191 bus_dmamap_destroy(sc->bnx_dmatag,
2192 sc->rx_bd_chain_map[i]);
2193 sc->rx_bd_chain[i] = NULL;
2194 sc->rx_bd_chain_map[i] = NULL;
2195 }
2196 }
2197
2198 /* Unload and destroy the RX mbuf maps. */
2199 for (i = 0; i < TOTAL_RX_BD; i++) {
2200 if (sc->rx_mbuf_map[i] != NULL) {
2201 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2202 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2203 }
2204 }
2205
2206 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2207 }
2208
2209 /****************************************************************************/
2210 /* Allocate any DMA memory needed by the driver. */
2211 /* */
2212 /* Allocates DMA memory needed for the various global structures needed by */
2213 /* hardware. */
2214 /* */
2215 /* Returns: */
2216 /* 0 for success, positive value for failure. */
2217 /****************************************************************************/
2218 int
2219 bnx_dma_alloc(struct bnx_softc *sc)
2220 {
2221 int i, rc = 0;
2222
2223 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2224
2225 /*
2226 * Allocate DMA memory for the status block, map the memory into DMA
2227 * space, and fetch the physical address of the block.
2228 */
2229 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2230 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2231 aprint_error_dev(sc->bnx_dev,
2232 "Could not create status block DMA map!\n");
2233 rc = ENOMEM;
2234 goto bnx_dma_alloc_exit;
2235 }
2236
2237 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2238 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2239 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2240 aprint_error_dev(sc->bnx_dev,
2241 "Could not allocate status block DMA memory!\n");
2242 rc = ENOMEM;
2243 goto bnx_dma_alloc_exit;
2244 }
2245
2246 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2247 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2248 aprint_error_dev(sc->bnx_dev,
2249 "Could not map status block DMA memory!\n");
2250 rc = ENOMEM;
2251 goto bnx_dma_alloc_exit;
2252 }
2253
2254 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2255 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2256 aprint_error_dev(sc->bnx_dev,
2257 "Could not load status block DMA memory!\n");
2258 rc = ENOMEM;
2259 goto bnx_dma_alloc_exit;
2260 }
2261
2262 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2263 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2264
2265 /* DRC - Fix for 64 bit addresses. */
2266 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2267 (uint32_t) sc->status_block_paddr);
2268
2269 /* BCM5709 uses host memory as cache for context memory. */
2270 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2271 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2272 if (sc->ctx_pages == 0)
2273 sc->ctx_pages = 1;
2274 if (sc->ctx_pages > 4) /* XXX */
2275 sc->ctx_pages = 4;
2276
2277 DBRUNIF((sc->ctx_pages > 512),
2278 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2279 __FILE__, __LINE__, sc->ctx_pages));
2280
2281
2282 for (i = 0; i < sc->ctx_pages; i++) {
2283 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2284 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2285 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2286 &sc->ctx_map[i]) != 0) {
2287 rc = ENOMEM;
2288 goto bnx_dma_alloc_exit;
2289 }
2290
2291 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2292 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2293 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2294 rc = ENOMEM;
2295 goto bnx_dma_alloc_exit;
2296 }
2297
2298 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2299 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2300 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2301 rc = ENOMEM;
2302 goto bnx_dma_alloc_exit;
2303 }
2304
2305 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2306 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2307 BUS_DMA_NOWAIT) != 0) {
2308 rc = ENOMEM;
2309 goto bnx_dma_alloc_exit;
2310 }
2311
2312 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2313 }
2314 }
2315
2316 /*
2317 * Allocate DMA memory for the statistics block, map the memory into
2318 * DMA space, and fetch the physical address of the block.
2319 */
2320 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2321 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2322 aprint_error_dev(sc->bnx_dev,
2323 "Could not create stats block DMA map!\n");
2324 rc = ENOMEM;
2325 goto bnx_dma_alloc_exit;
2326 }
2327
2328 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2329 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2330 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2331 aprint_error_dev(sc->bnx_dev,
2332 "Could not allocate stats block DMA memory!\n");
2333 rc = ENOMEM;
2334 goto bnx_dma_alloc_exit;
2335 }
2336
2337 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2338 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2339 aprint_error_dev(sc->bnx_dev,
2340 "Could not map stats block DMA memory!\n");
2341 rc = ENOMEM;
2342 goto bnx_dma_alloc_exit;
2343 }
2344
2345 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2346 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2347 aprint_error_dev(sc->bnx_dev,
2348 "Could not load status block DMA memory!\n");
2349 rc = ENOMEM;
2350 goto bnx_dma_alloc_exit;
2351 }
2352
2353 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2354 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2355
2356 /* DRC - Fix for 64 bit address. */
2357 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2358 (uint32_t) sc->stats_block_paddr);
2359
2360 /*
2361 * Allocate DMA memory for the TX buffer descriptor chain,
2362 * and fetch the physical address of the block.
2363 */
2364 for (i = 0; i < TX_PAGES; i++) {
2365 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2366 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2367 &sc->tx_bd_chain_map[i])) {
2368 aprint_error_dev(sc->bnx_dev,
2369 "Could not create Tx desc %d DMA map!\n", i);
2370 rc = ENOMEM;
2371 goto bnx_dma_alloc_exit;
2372 }
2373
2374 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2375 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2376 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2377 aprint_error_dev(sc->bnx_dev,
2378 "Could not allocate TX desc %d DMA memory!\n",
2379 i);
2380 rc = ENOMEM;
2381 goto bnx_dma_alloc_exit;
2382 }
2383
2384 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2385 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2386 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2387 aprint_error_dev(sc->bnx_dev,
2388 "Could not map TX desc %d DMA memory!\n", i);
2389 rc = ENOMEM;
2390 goto bnx_dma_alloc_exit;
2391 }
2392
2393 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2394 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2395 BUS_DMA_NOWAIT)) {
2396 aprint_error_dev(sc->bnx_dev,
2397 "Could not load TX desc %d DMA memory!\n", i);
2398 rc = ENOMEM;
2399 goto bnx_dma_alloc_exit;
2400 }
2401
2402 sc->tx_bd_chain_paddr[i] =
2403 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2404
2405 /* DRC - Fix for 64 bit systems. */
2406 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2407 i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2408 }
2409
2410 /*
2411 * Create lists to hold TX mbufs.
2412 */
2413 TAILQ_INIT(&sc->tx_free_pkts);
2414 TAILQ_INIT(&sc->tx_used_pkts);
2415 sc->tx_pkt_count = 0;
2416 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2417
2418 /*
2419 * Allocate DMA memory for the Rx buffer descriptor chain,
2420 * and fetch the physical address of the block.
2421 */
2422 for (i = 0; i < RX_PAGES; i++) {
2423 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2424 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2425 &sc->rx_bd_chain_map[i])) {
2426 aprint_error_dev(sc->bnx_dev,
2427 "Could not create Rx desc %d DMA map!\n", i);
2428 rc = ENOMEM;
2429 goto bnx_dma_alloc_exit;
2430 }
2431
2432 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2433 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2434 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2435 aprint_error_dev(sc->bnx_dev,
2436 "Could not allocate Rx desc %d DMA memory!\n", i);
2437 rc = ENOMEM;
2438 goto bnx_dma_alloc_exit;
2439 }
2440
2441 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2442 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2443 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2444 aprint_error_dev(sc->bnx_dev,
2445 "Could not map Rx desc %d DMA memory!\n", i);
2446 rc = ENOMEM;
2447 goto bnx_dma_alloc_exit;
2448 }
2449
2450 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2451 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2452 BUS_DMA_NOWAIT)) {
2453 aprint_error_dev(sc->bnx_dev,
2454 "Could not load Rx desc %d DMA memory!\n", i);
2455 rc = ENOMEM;
2456 goto bnx_dma_alloc_exit;
2457 }
2458
2459 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2460 sc->rx_bd_chain_paddr[i] =
2461 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2462
2463 /* DRC - Fix for 64 bit systems. */
2464 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2465 i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2466 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2467 0, BNX_RX_CHAIN_PAGE_SZ,
2468 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2469 }
2470
2471 /*
2472 * Create DMA maps for the Rx buffer mbufs.
2473 */
2474 for (i = 0; i < TOTAL_RX_BD; i++) {
2475 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2476 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2477 &sc->rx_mbuf_map[i])) {
2478 aprint_error_dev(sc->bnx_dev,
2479 "Could not create Rx mbuf %d DMA map!\n", i);
2480 rc = ENOMEM;
2481 goto bnx_dma_alloc_exit;
2482 }
2483 }
2484
2485 bnx_dma_alloc_exit:
2486 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2487
2488 return rc;
2489 }
2490
2491 /****************************************************************************/
2492 /* Release all resources used by the driver. */
2493 /* */
2494 /* Releases all resources acquired by the driver including interrupts, */
2495 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2496 /* */
2497 /* Returns: */
2498 /* Nothing. */
2499 /****************************************************************************/
2500 void
2501 bnx_release_resources(struct bnx_softc *sc)
2502 {
2503 struct pci_attach_args *pa = &(sc->bnx_pa);
2504
2505 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2506
2507 bnx_dma_free(sc);
2508
2509 if (sc->bnx_intrhand != NULL)
2510 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2511
2512 if (sc->bnx_size)
2513 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2514
2515 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2516 }
2517
2518 /****************************************************************************/
2519 /* Firmware synchronization. */
2520 /* */
2521 /* Before performing certain events such as a chip reset, synchronize with */
2522 /* the firmware first. */
2523 /* */
2524 /* Returns: */
2525 /* 0 for success, positive value for failure. */
2526 /****************************************************************************/
2527 int
2528 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2529 {
2530 int i, rc = 0;
2531 uint32_t val;
2532
2533 /* Don't waste any time if we've timed out before. */
2534 if (sc->bnx_fw_timed_out) {
2535 rc = EBUSY;
2536 goto bnx_fw_sync_exit;
2537 }
2538
2539 /* Increment the message sequence number. */
2540 sc->bnx_fw_wr_seq++;
2541 msg_data |= sc->bnx_fw_wr_seq;
2542
2543 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2544 msg_data);
2545
2546 /* Send the message to the bootcode driver mailbox. */
2547 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2548
2549 /* Wait for the bootcode to acknowledge the message. */
2550 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2551 /* Check for a response in the bootcode firmware mailbox. */
2552 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2553 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2554 break;
2555 DELAY(1000);
2556 }
2557
2558 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2559 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2560 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2561 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2562 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2563
2564 msg_data &= ~BNX_DRV_MSG_CODE;
2565 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2566
2567 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2568
2569 sc->bnx_fw_timed_out = 1;
2570 rc = EBUSY;
2571 }
2572
2573 bnx_fw_sync_exit:
2574 return rc;
2575 }
2576
2577 /****************************************************************************/
2578 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2579 /* */
2580 /* Returns: */
2581 /* Nothing. */
2582 /****************************************************************************/
2583 void
2584 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2585 uint32_t rv2p_code_len, uint32_t rv2p_proc)
2586 {
2587 int i;
2588 uint32_t val;
2589
2590 /* Set the page size used by RV2P. */
2591 if (rv2p_proc == RV2P_PROC2) {
2592 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2593 USABLE_RX_BD_PER_PAGE);
2594 }
2595
2596 for (i = 0; i < rv2p_code_len; i += 8) {
2597 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2598 rv2p_code++;
2599 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2600 rv2p_code++;
2601
2602 if (rv2p_proc == RV2P_PROC1) {
2603 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2604 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2605 } else {
2606 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2607 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2608 }
2609 }
2610
2611 /* Reset the processor, un-stall is done later. */
2612 if (rv2p_proc == RV2P_PROC1)
2613 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2614 else
2615 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2616 }
2617
2618 /****************************************************************************/
2619 /* Load RISC processor firmware. */
2620 /* */
2621 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2622 /* associated with a particular processor. */
2623 /* */
2624 /* Returns: */
2625 /* Nothing. */
2626 /****************************************************************************/
2627 void
2628 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2629 struct fw_info *fw)
2630 {
2631 uint32_t offset;
2632 uint32_t val;
2633
2634 /* Halt the CPU. */
2635 val = REG_RD_IND(sc, cpu_reg->mode);
2636 val |= cpu_reg->mode_value_halt;
2637 REG_WR_IND(sc, cpu_reg->mode, val);
2638 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2639
2640 /* Load the Text area. */
2641 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2642 if (fw->text) {
2643 int j;
2644
2645 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2646 REG_WR_IND(sc, offset, fw->text[j]);
2647 }
2648
2649 /* Load the Data area. */
2650 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2651 if (fw->data) {
2652 int j;
2653
2654 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2655 REG_WR_IND(sc, offset, fw->data[j]);
2656 }
2657
2658 /* Load the SBSS area. */
2659 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2660 if (fw->sbss) {
2661 int j;
2662
2663 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2664 REG_WR_IND(sc, offset, fw->sbss[j]);
2665 }
2666
2667 /* Load the BSS area. */
2668 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2669 if (fw->bss) {
2670 int j;
2671
2672 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2673 REG_WR_IND(sc, offset, fw->bss[j]);
2674 }
2675
2676 /* Load the Read-Only area. */
2677 offset = cpu_reg->spad_base +
2678 (fw->rodata_addr - cpu_reg->mips_view_base);
2679 if (fw->rodata) {
2680 int j;
2681
2682 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2683 REG_WR_IND(sc, offset, fw->rodata[j]);
2684 }
2685
2686 /* Clear the pre-fetch instruction. */
2687 REG_WR_IND(sc, cpu_reg->inst, 0);
2688 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2689
2690 /* Start the CPU. */
2691 val = REG_RD_IND(sc, cpu_reg->mode);
2692 val &= ~cpu_reg->mode_value_halt;
2693 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2694 REG_WR_IND(sc, cpu_reg->mode, val);
2695 }
2696
2697 /****************************************************************************/
2698 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2699 /* */
2700 /* Loads the firmware for each CPU and starts the CPU. */
2701 /* */
2702 /* Returns: */
2703 /* Nothing. */
2704 /****************************************************************************/
2705 void
2706 bnx_init_cpus(struct bnx_softc *sc)
2707 {
2708 struct cpu_reg cpu_reg;
2709 struct fw_info fw;
2710
2711 switch(BNX_CHIP_NUM(sc)) {
2712 case BNX_CHIP_NUM_5709:
2713 /* Initialize the RV2P processor. */
2714 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2715 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2716 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2717 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2718 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2719 } else {
2720 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2721 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2722 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2723 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2724 }
2725
2726 /* Initialize the RX Processor. */
2727 cpu_reg.mode = BNX_RXP_CPU_MODE;
2728 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2729 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2730 cpu_reg.state = BNX_RXP_CPU_STATE;
2731 cpu_reg.state_value_clear = 0xffffff;
2732 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2733 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2734 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2735 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2736 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2737 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2738 cpu_reg.mips_view_base = 0x8000000;
2739
2740 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2741 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2742 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2743 fw.start_addr = bnx_RXP_b09FwStartAddr;
2744
2745 fw.text_addr = bnx_RXP_b09FwTextAddr;
2746 fw.text_len = bnx_RXP_b09FwTextLen;
2747 fw.text_index = 0;
2748 fw.text = bnx_RXP_b09FwText;
2749
2750 fw.data_addr = bnx_RXP_b09FwDataAddr;
2751 fw.data_len = bnx_RXP_b09FwDataLen;
2752 fw.data_index = 0;
2753 fw.data = bnx_RXP_b09FwData;
2754
2755 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2756 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2757 fw.sbss_index = 0;
2758 fw.sbss = bnx_RXP_b09FwSbss;
2759
2760 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2761 fw.bss_len = bnx_RXP_b09FwBssLen;
2762 fw.bss_index = 0;
2763 fw.bss = bnx_RXP_b09FwBss;
2764
2765 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2766 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2767 fw.rodata_index = 0;
2768 fw.rodata = bnx_RXP_b09FwRodata;
2769
2770 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2771 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2772
2773 /* Initialize the TX Processor. */
2774 cpu_reg.mode = BNX_TXP_CPU_MODE;
2775 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2776 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2777 cpu_reg.state = BNX_TXP_CPU_STATE;
2778 cpu_reg.state_value_clear = 0xffffff;
2779 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2780 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2781 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2782 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2783 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2784 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2785 cpu_reg.mips_view_base = 0x8000000;
2786
2787 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2788 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2789 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2790 fw.start_addr = bnx_TXP_b09FwStartAddr;
2791
2792 fw.text_addr = bnx_TXP_b09FwTextAddr;
2793 fw.text_len = bnx_TXP_b09FwTextLen;
2794 fw.text_index = 0;
2795 fw.text = bnx_TXP_b09FwText;
2796
2797 fw.data_addr = bnx_TXP_b09FwDataAddr;
2798 fw.data_len = bnx_TXP_b09FwDataLen;
2799 fw.data_index = 0;
2800 fw.data = bnx_TXP_b09FwData;
2801
2802 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2803 fw.sbss_len = bnx_TXP_b09FwSbssLen;
2804 fw.sbss_index = 0;
2805 fw.sbss = bnx_TXP_b09FwSbss;
2806
2807 fw.bss_addr = bnx_TXP_b09FwBssAddr;
2808 fw.bss_len = bnx_TXP_b09FwBssLen;
2809 fw.bss_index = 0;
2810 fw.bss = bnx_TXP_b09FwBss;
2811
2812 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2813 fw.rodata_len = bnx_TXP_b09FwRodataLen;
2814 fw.rodata_index = 0;
2815 fw.rodata = bnx_TXP_b09FwRodata;
2816
2817 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2818 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2819
2820 /* Initialize the TX Patch-up Processor. */
2821 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2822 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2823 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2824 cpu_reg.state = BNX_TPAT_CPU_STATE;
2825 cpu_reg.state_value_clear = 0xffffff;
2826 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2827 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2828 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2829 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2830 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2831 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2832 cpu_reg.mips_view_base = 0x8000000;
2833
2834 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2835 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2836 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2837 fw.start_addr = bnx_TPAT_b09FwStartAddr;
2838
2839 fw.text_addr = bnx_TPAT_b09FwTextAddr;
2840 fw.text_len = bnx_TPAT_b09FwTextLen;
2841 fw.text_index = 0;
2842 fw.text = bnx_TPAT_b09FwText;
2843
2844 fw.data_addr = bnx_TPAT_b09FwDataAddr;
2845 fw.data_len = bnx_TPAT_b09FwDataLen;
2846 fw.data_index = 0;
2847 fw.data = bnx_TPAT_b09FwData;
2848
2849 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2850 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2851 fw.sbss_index = 0;
2852 fw.sbss = bnx_TPAT_b09FwSbss;
2853
2854 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2855 fw.bss_len = bnx_TPAT_b09FwBssLen;
2856 fw.bss_index = 0;
2857 fw.bss = bnx_TPAT_b09FwBss;
2858
2859 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2860 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2861 fw.rodata_index = 0;
2862 fw.rodata = bnx_TPAT_b09FwRodata;
2863
2864 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2865 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2866
2867 /* Initialize the Completion Processor. */
2868 cpu_reg.mode = BNX_COM_CPU_MODE;
2869 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2870 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2871 cpu_reg.state = BNX_COM_CPU_STATE;
2872 cpu_reg.state_value_clear = 0xffffff;
2873 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2874 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2875 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2876 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2877 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2878 cpu_reg.spad_base = BNX_COM_SCRATCH;
2879 cpu_reg.mips_view_base = 0x8000000;
2880
2881 fw.ver_major = bnx_COM_b09FwReleaseMajor;
2882 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2883 fw.ver_fix = bnx_COM_b09FwReleaseFix;
2884 fw.start_addr = bnx_COM_b09FwStartAddr;
2885
2886 fw.text_addr = bnx_COM_b09FwTextAddr;
2887 fw.text_len = bnx_COM_b09FwTextLen;
2888 fw.text_index = 0;
2889 fw.text = bnx_COM_b09FwText;
2890
2891 fw.data_addr = bnx_COM_b09FwDataAddr;
2892 fw.data_len = bnx_COM_b09FwDataLen;
2893 fw.data_index = 0;
2894 fw.data = bnx_COM_b09FwData;
2895
2896 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2897 fw.sbss_len = bnx_COM_b09FwSbssLen;
2898 fw.sbss_index = 0;
2899 fw.sbss = bnx_COM_b09FwSbss;
2900
2901 fw.bss_addr = bnx_COM_b09FwBssAddr;
2902 fw.bss_len = bnx_COM_b09FwBssLen;
2903 fw.bss_index = 0;
2904 fw.bss = bnx_COM_b09FwBss;
2905
2906 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
2907 fw.rodata_len = bnx_COM_b09FwRodataLen;
2908 fw.rodata_index = 0;
2909 fw.rodata = bnx_COM_b09FwRodata;
2910 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
2911 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2912 break;
2913 default:
2914 /* Initialize the RV2P processor. */
2915 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
2916 RV2P_PROC1);
2917 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
2918 RV2P_PROC2);
2919
2920 /* Initialize the RX Processor. */
2921 cpu_reg.mode = BNX_RXP_CPU_MODE;
2922 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2923 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2924 cpu_reg.state = BNX_RXP_CPU_STATE;
2925 cpu_reg.state_value_clear = 0xffffff;
2926 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2927 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2928 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2929 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2930 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2931 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2932 cpu_reg.mips_view_base = 0x8000000;
2933
2934 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
2935 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
2936 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
2937 fw.start_addr = bnx_RXP_b06FwStartAddr;
2938
2939 fw.text_addr = bnx_RXP_b06FwTextAddr;
2940 fw.text_len = bnx_RXP_b06FwTextLen;
2941 fw.text_index = 0;
2942 fw.text = bnx_RXP_b06FwText;
2943
2944 fw.data_addr = bnx_RXP_b06FwDataAddr;
2945 fw.data_len = bnx_RXP_b06FwDataLen;
2946 fw.data_index = 0;
2947 fw.data = bnx_RXP_b06FwData;
2948
2949 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
2950 fw.sbss_len = bnx_RXP_b06FwSbssLen;
2951 fw.sbss_index = 0;
2952 fw.sbss = bnx_RXP_b06FwSbss;
2953
2954 fw.bss_addr = bnx_RXP_b06FwBssAddr;
2955 fw.bss_len = bnx_RXP_b06FwBssLen;
2956 fw.bss_index = 0;
2957 fw.bss = bnx_RXP_b06FwBss;
2958
2959 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
2960 fw.rodata_len = bnx_RXP_b06FwRodataLen;
2961 fw.rodata_index = 0;
2962 fw.rodata = bnx_RXP_b06FwRodata;
2963
2964 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2965 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2966
2967 /* Initialize the TX Processor. */
2968 cpu_reg.mode = BNX_TXP_CPU_MODE;
2969 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2970 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2971 cpu_reg.state = BNX_TXP_CPU_STATE;
2972 cpu_reg.state_value_clear = 0xffffff;
2973 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2974 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2975 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2976 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2977 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2978 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2979 cpu_reg.mips_view_base = 0x8000000;
2980
2981 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
2982 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
2983 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
2984 fw.start_addr = bnx_TXP_b06FwStartAddr;
2985
2986 fw.text_addr = bnx_TXP_b06FwTextAddr;
2987 fw.text_len = bnx_TXP_b06FwTextLen;
2988 fw.text_index = 0;
2989 fw.text = bnx_TXP_b06FwText;
2990
2991 fw.data_addr = bnx_TXP_b06FwDataAddr;
2992 fw.data_len = bnx_TXP_b06FwDataLen;
2993 fw.data_index = 0;
2994 fw.data = bnx_TXP_b06FwData;
2995
2996 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
2997 fw.sbss_len = bnx_TXP_b06FwSbssLen;
2998 fw.sbss_index = 0;
2999 fw.sbss = bnx_TXP_b06FwSbss;
3000
3001 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3002 fw.bss_len = bnx_TXP_b06FwBssLen;
3003 fw.bss_index = 0;
3004 fw.bss = bnx_TXP_b06FwBss;
3005
3006 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3007 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3008 fw.rodata_index = 0;
3009 fw.rodata = bnx_TXP_b06FwRodata;
3010
3011 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3012 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3013
3014 /* Initialize the TX Patch-up Processor. */
3015 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3016 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3017 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3018 cpu_reg.state = BNX_TPAT_CPU_STATE;
3019 cpu_reg.state_value_clear = 0xffffff;
3020 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3021 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3022 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3023 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3024 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3025 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3026 cpu_reg.mips_view_base = 0x8000000;
3027
3028 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3029 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3030 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3031 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3032
3033 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3034 fw.text_len = bnx_TPAT_b06FwTextLen;
3035 fw.text_index = 0;
3036 fw.text = bnx_TPAT_b06FwText;
3037
3038 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3039 fw.data_len = bnx_TPAT_b06FwDataLen;
3040 fw.data_index = 0;
3041 fw.data = bnx_TPAT_b06FwData;
3042
3043 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3044 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3045 fw.sbss_index = 0;
3046 fw.sbss = bnx_TPAT_b06FwSbss;
3047
3048 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3049 fw.bss_len = bnx_TPAT_b06FwBssLen;
3050 fw.bss_index = 0;
3051 fw.bss = bnx_TPAT_b06FwBss;
3052
3053 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3054 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3055 fw.rodata_index = 0;
3056 fw.rodata = bnx_TPAT_b06FwRodata;
3057
3058 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3059 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3060
3061 /* Initialize the Completion Processor. */
3062 cpu_reg.mode = BNX_COM_CPU_MODE;
3063 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3064 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3065 cpu_reg.state = BNX_COM_CPU_STATE;
3066 cpu_reg.state_value_clear = 0xffffff;
3067 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3068 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3069 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3070 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3071 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3072 cpu_reg.spad_base = BNX_COM_SCRATCH;
3073 cpu_reg.mips_view_base = 0x8000000;
3074
3075 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3076 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3077 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3078 fw.start_addr = bnx_COM_b06FwStartAddr;
3079
3080 fw.text_addr = bnx_COM_b06FwTextAddr;
3081 fw.text_len = bnx_COM_b06FwTextLen;
3082 fw.text_index = 0;
3083 fw.text = bnx_COM_b06FwText;
3084
3085 fw.data_addr = bnx_COM_b06FwDataAddr;
3086 fw.data_len = bnx_COM_b06FwDataLen;
3087 fw.data_index = 0;
3088 fw.data = bnx_COM_b06FwData;
3089
3090 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3091 fw.sbss_len = bnx_COM_b06FwSbssLen;
3092 fw.sbss_index = 0;
3093 fw.sbss = bnx_COM_b06FwSbss;
3094
3095 fw.bss_addr = bnx_COM_b06FwBssAddr;
3096 fw.bss_len = bnx_COM_b06FwBssLen;
3097 fw.bss_index = 0;
3098 fw.bss = bnx_COM_b06FwBss;
3099
3100 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3101 fw.rodata_len = bnx_COM_b06FwRodataLen;
3102 fw.rodata_index = 0;
3103 fw.rodata = bnx_COM_b06FwRodata;
3104 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3105 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3106 break;
3107 }
3108 }
3109
3110 /****************************************************************************/
3111 /* Initialize context memory. */
3112 /* */
3113 /* Clears the memory associated with each Context ID (CID). */
3114 /* */
3115 /* Returns: */
3116 /* Nothing. */
3117 /****************************************************************************/
3118 void
3119 bnx_init_context(struct bnx_softc *sc)
3120 {
3121 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3122 /* DRC: Replace this constant value with a #define. */
3123 int i, retry_cnt = 10;
3124 uint32_t val;
3125
3126 /*
3127 * BCM5709 context memory may be cached
3128 * in host memory so prepare the host memory
3129 * for access.
3130 */
3131 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3132 | (1 << 12);
3133 val |= (BCM_PAGE_BITS - 8) << 16;
3134 REG_WR(sc, BNX_CTX_COMMAND, val);
3135
3136 /* Wait for mem init command to complete. */
3137 for (i = 0; i < retry_cnt; i++) {
3138 val = REG_RD(sc, BNX_CTX_COMMAND);
3139 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3140 break;
3141 DELAY(2);
3142 }
3143
3144 /* ToDo: Consider returning an error here. */
3145
3146 for (i = 0; i < sc->ctx_pages; i++) {
3147 int j;
3148
3149 /* Set the physaddr of the context memory cache. */
3150 val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3151 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3152 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3153 val = (uint32_t)
3154 ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3155 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3156 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3157 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3158
3159 /* Verify that the context memory write was successful. */
3160 for (j = 0; j < retry_cnt; j++) {
3161 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3162 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3163 break;
3164 DELAY(5);
3165 }
3166
3167 /* ToDo: Consider returning an error here. */
3168 }
3169 } else {
3170 uint32_t vcid_addr, offset;
3171
3172 /*
3173 * For the 5706/5708, context memory is local to
3174 * the controller, so initialize the controller
3175 * context memory.
3176 */
3177
3178 vcid_addr = GET_CID_ADDR(96);
3179 while (vcid_addr) {
3180
3181 vcid_addr -= BNX_PHY_CTX_SIZE;
3182
3183 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3184 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3185
3186 for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3187 CTX_WR(sc, 0x00, offset, 0);
3188 }
3189
3190 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3191 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3192 }
3193 }
3194 }
3195
3196 /****************************************************************************/
3197 /* Fetch the permanent MAC address of the controller. */
3198 /* */
3199 /* Returns: */
3200 /* Nothing. */
3201 /****************************************************************************/
3202 void
3203 bnx_get_mac_addr(struct bnx_softc *sc)
3204 {
3205 uint32_t mac_lo = 0, mac_hi = 0;
3206
3207 /*
3208 * The NetXtreme II bootcode populates various NIC
3209 * power-on and runtime configuration items in a
3210 * shared memory area. The factory configured MAC
3211 * address is available from both NVRAM and the
3212 * shared memory area so we'll read the value from
3213 * shared memory for speed.
3214 */
3215
3216 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3217 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3218
3219 if ((mac_lo == 0) && (mac_hi == 0)) {
3220 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3221 __FILE__, __LINE__);
3222 } else {
3223 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3224 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3225 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3226 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3227 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3228 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3229 }
3230
3231 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3232 "%s\n", ether_sprintf(sc->eaddr));
3233 }
3234
3235 /****************************************************************************/
3236 /* Program the MAC address. */
3237 /* */
3238 /* Returns: */
3239 /* Nothing. */
3240 /****************************************************************************/
3241 void
3242 bnx_set_mac_addr(struct bnx_softc *sc)
3243 {
3244 uint32_t val;
3245 const uint8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3246
3247 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3248 "%s\n", ether_sprintf(sc->eaddr));
3249
3250 val = (mac_addr[0] << 8) | mac_addr[1];
3251
3252 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3253
3254 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3255 (mac_addr[4] << 8) | mac_addr[5];
3256
3257 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3258 }
3259
3260 /****************************************************************************/
3261 /* Stop the controller. */
3262 /* */
3263 /* Returns: */
3264 /* Nothing. */
3265 /****************************************************************************/
3266 void
3267 bnx_stop(struct ifnet *ifp, int disable)
3268 {
3269 struct bnx_softc *sc = ifp->if_softc;
3270
3271 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3272
3273 if ((ifp->if_flags & IFF_RUNNING) == 0)
3274 return;
3275
3276 callout_stop(&sc->bnx_timeout);
3277
3278 mii_down(&sc->bnx_mii);
3279
3280 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3281
3282 /* Disable the transmit/receive blocks. */
3283 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3284 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3285 DELAY(20);
3286
3287 bnx_disable_intr(sc);
3288
3289 /* Tell firmware that the driver is going away. */
3290 if (disable)
3291 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3292 else
3293 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3294
3295 /* Free RX buffers. */
3296 bnx_free_rx_chain(sc);
3297
3298 /* Free TX buffers. */
3299 bnx_free_tx_chain(sc);
3300
3301 ifp->if_timer = 0;
3302
3303 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3304
3305 }
3306
3307 int
3308 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3309 {
3310 struct pci_attach_args *pa = &(sc->bnx_pa);
3311 uint32_t val;
3312 int i, rc = 0;
3313
3314 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3315
3316 /* Wait for pending PCI transactions to complete. */
3317 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3318 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3319 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3320 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3321 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3322 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3323 DELAY(5);
3324
3325 /* Disable DMA */
3326 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3327 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3328 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3329 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3330 }
3331
3332 /* Assume bootcode is running. */
3333 sc->bnx_fw_timed_out = 0;
3334
3335 /* Give the firmware a chance to prepare for the reset. */
3336 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3337 if (rc)
3338 goto bnx_reset_exit;
3339
3340 /* Set a firmware reminder that this is a soft reset. */
3341 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3342 BNX_DRV_RESET_SIGNATURE_MAGIC);
3343
3344 /* Dummy read to force the chip to complete all current transactions. */
3345 val = REG_RD(sc, BNX_MISC_ID);
3346
3347 /* Chip reset. */
3348 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3349 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3350 REG_RD(sc, BNX_MISC_COMMAND);
3351 DELAY(5);
3352
3353 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3354 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3355
3356 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3357 val);
3358 } else {
3359 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3360 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3361 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3362 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3363
3364 /* Allow up to 30us for reset to complete. */
3365 for (i = 0; i < 10; i++) {
3366 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3367 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3368 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3369 break;
3370 }
3371 DELAY(10);
3372 }
3373
3374 /* Check that reset completed successfully. */
3375 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3376 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3377 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3378 __FILE__, __LINE__);
3379 rc = EBUSY;
3380 goto bnx_reset_exit;
3381 }
3382 }
3383
3384 /* Make sure byte swapping is properly configured. */
3385 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3386 if (val != 0x01020304) {
3387 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3388 __FILE__, __LINE__);
3389 rc = ENODEV;
3390 goto bnx_reset_exit;
3391 }
3392
3393 /* Just completed a reset, assume that firmware is running again. */
3394 sc->bnx_fw_timed_out = 0;
3395
3396 /* Wait for the firmware to finish its initialization. */
3397 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3398 if (rc)
3399 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3400 "initialization!\n", __FILE__, __LINE__);
3401
3402 bnx_reset_exit:
3403 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3404
3405 return rc;
3406 }
3407
3408 int
3409 bnx_chipinit(struct bnx_softc *sc)
3410 {
3411 struct pci_attach_args *pa = &(sc->bnx_pa);
3412 uint32_t val;
3413 int rc = 0;
3414
3415 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3416
3417 /* Make sure the interrupt is not active. */
3418 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3419
3420 /* Initialize DMA byte/word swapping, configure the number of DMA */
3421 /* channels and PCI clock compensation delay. */
3422 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3423 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3424 #if BYTE_ORDER == BIG_ENDIAN
3425 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3426 #endif
3427 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3428 DMA_READ_CHANS << 12 |
3429 DMA_WRITE_CHANS << 16;
3430
3431 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3432
3433 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3434 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3435
3436 /*
3437 * This setting resolves a problem observed on certain Intel PCI
3438 * chipsets that cannot handle multiple outstanding DMA operations.
3439 * See errata E9_5706A1_65.
3440 */
3441 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3442 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3443 !(sc->bnx_flags & BNX_PCIX_FLAG))
3444 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3445
3446 REG_WR(sc, BNX_DMA_CONFIG, val);
3447
3448 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3449 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3450 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3451 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3452 val & ~0x20000);
3453 }
3454
3455 /* Enable the RX_V2P and Context state machines before access. */
3456 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3457 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3458 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3459 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3460
3461 /* Initialize context mapping and zero out the quick contexts. */
3462 bnx_init_context(sc);
3463
3464 /* Initialize the on-boards CPUs */
3465 bnx_init_cpus(sc);
3466
3467 /* Prepare NVRAM for access. */
3468 if (bnx_init_nvram(sc)) {
3469 rc = ENODEV;
3470 goto bnx_chipinit_exit;
3471 }
3472
3473 /* Set the kernel bypass block size */
3474 val = REG_RD(sc, BNX_MQ_CONFIG);
3475 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3476 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3477
3478 /* Enable bins used on the 5709. */
3479 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3480 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3481 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3482 val |= BNX_MQ_CONFIG_HALT_DIS;
3483 }
3484
3485 REG_WR(sc, BNX_MQ_CONFIG, val);
3486
3487 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3488 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3489 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3490
3491 val = (BCM_PAGE_BITS - 8) << 24;
3492 REG_WR(sc, BNX_RV2P_CONFIG, val);
3493
3494 /* Configure page size. */
3495 val = REG_RD(sc, BNX_TBDR_CONFIG);
3496 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3497 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3498 REG_WR(sc, BNX_TBDR_CONFIG, val);
3499
3500 #if 0
3501 /* Set the perfect match control register to default. */
3502 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3503 #endif
3504
3505 bnx_chipinit_exit:
3506 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3507
3508 return rc;
3509 }
3510
3511 /****************************************************************************/
3512 /* Initialize the controller in preparation to send/receive traffic. */
3513 /* */
3514 /* Returns: */
3515 /* 0 for success, positive value for failure. */
3516 /****************************************************************************/
3517 int
3518 bnx_blockinit(struct bnx_softc *sc)
3519 {
3520 uint32_t reg, val;
3521 int rc = 0;
3522
3523 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3524
3525 /* Load the hardware default MAC address. */
3526 bnx_set_mac_addr(sc);
3527
3528 /* Set the Ethernet backoff seed value */
3529 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3530 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3531 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3532
3533 sc->last_status_idx = 0;
3534 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3535
3536 /* Set up link change interrupt generation. */
3537 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3538 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3539
3540 /* Program the physical address of the status block. */
3541 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3542 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3543 (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3544
3545 /* Program the physical address of the statistics block. */
3546 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3547 (uint32_t)(sc->stats_block_paddr));
3548 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3549 (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3550
3551 /* Program various host coalescing parameters. */
3552 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3553 << 16) | sc->bnx_tx_quick_cons_trip);
3554 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3555 << 16) | sc->bnx_rx_quick_cons_trip);
3556 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3557 sc->bnx_comp_prod_trip);
3558 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3559 sc->bnx_tx_ticks);
3560 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3561 sc->bnx_rx_ticks);
3562 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3563 sc->bnx_com_ticks);
3564 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3565 sc->bnx_cmd_ticks);
3566 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3567 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3568 REG_WR(sc, BNX_HC_CONFIG,
3569 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3570 BNX_HC_CONFIG_COLLECT_STATS));
3571
3572 /* Clear the internal statistics counters. */
3573 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3574
3575 /* Verify that bootcode is running. */
3576 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3577
3578 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3579 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3580 __FILE__, __LINE__); reg = 0);
3581
3582 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3583 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3584 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3585 "Expected: 08%08X\n", __FILE__, __LINE__,
3586 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3587 BNX_DEV_INFO_SIGNATURE_MAGIC);
3588 rc = ENODEV;
3589 goto bnx_blockinit_exit;
3590 }
3591
3592 /* Check if any management firmware is running. */
3593 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3594 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3595 BNX_PORT_FEATURE_IMD_ENABLED)) {
3596 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3597 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3598 }
3599
3600 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3601 BNX_DEV_INFO_BC_REV);
3602
3603 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3604
3605 /* Enable DMA */
3606 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3607 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3608 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3609 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3610 }
3611
3612 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3613 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3614
3615 /* Enable link state change interrupt generation. */
3616 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3617 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3618 BNX_MISC_ENABLE_DEFAULT_XI);
3619 } else
3620 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3621
3622 /* Enable all remaining blocks in the MAC. */
3623 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3624 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3625 DELAY(20);
3626
3627 bnx_blockinit_exit:
3628 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3629
3630 return rc;
3631 }
3632
3633 static int
3634 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3635 uint16_t *chain_prod, uint32_t *prod_bseq)
3636 {
3637 bus_dmamap_t map;
3638 struct rx_bd *rxbd;
3639 uint32_t addr;
3640 int i;
3641 #ifdef BNX_DEBUG
3642 uint16_t debug_chain_prod = *chain_prod;
3643 #endif
3644 uint16_t first_chain_prod;
3645
3646 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3647
3648 /* Map the mbuf cluster into device memory. */
3649 map = sc->rx_mbuf_map[*chain_prod];
3650 first_chain_prod = *chain_prod;
3651 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3652 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3653 __FILE__, __LINE__);
3654
3655 m_freem(m_new);
3656
3657 DBRUNIF(1, sc->rx_mbuf_alloc--);
3658
3659 return ENOBUFS;
3660 }
3661 /* Make sure there is room in the receive chain. */
3662 if (map->dm_nsegs > sc->free_rx_bd) {
3663 bus_dmamap_unload(sc->bnx_dmatag, map);
3664 m_freem(m_new);
3665 return EFBIG;
3666 }
3667 #ifdef BNX_DEBUG
3668 /* Track the distribution of buffer segments. */
3669 sc->rx_mbuf_segs[map->dm_nsegs]++;
3670 #endif
3671
3672 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3673 BUS_DMASYNC_PREREAD);
3674
3675 /* Update some debug statistics counters */
3676 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3677 sc->rx_low_watermark = sc->free_rx_bd);
3678 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3679
3680 /*
3681 * Setup the rx_bd for the first segment
3682 */
3683 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3684
3685 addr = (uint32_t)map->dm_segs[0].ds_addr;
3686 rxbd->rx_bd_haddr_lo = addr;
3687 addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3688 rxbd->rx_bd_haddr_hi = addr;
3689 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3690 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3691 *prod_bseq += map->dm_segs[0].ds_len;
3692 bus_dmamap_sync(sc->bnx_dmatag,
3693 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3694 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3695 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3696
3697 for (i = 1; i < map->dm_nsegs; i++) {
3698 *prod = NEXT_RX_BD(*prod);
3699 *chain_prod = RX_CHAIN_IDX(*prod);
3700
3701 rxbd =
3702 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3703
3704 addr = (uint32_t)map->dm_segs[i].ds_addr;
3705 rxbd->rx_bd_haddr_lo = addr;
3706 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3707 rxbd->rx_bd_haddr_hi = addr;
3708 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3709 rxbd->rx_bd_flags = 0;
3710 *prod_bseq += map->dm_segs[i].ds_len;
3711 bus_dmamap_sync(sc->bnx_dmatag,
3712 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3713 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3714 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3715 }
3716
3717 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3718 bus_dmamap_sync(sc->bnx_dmatag,
3719 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3720 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3721 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3722
3723 /*
3724 * Save the mbuf, adjust the map pointer (swap map for first and
3725 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3726 * and update our counter.
3727 */
3728 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3729 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3730 sc->rx_mbuf_map[*chain_prod] = map;
3731 sc->free_rx_bd -= map->dm_nsegs;
3732
3733 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3734 map->dm_nsegs));
3735 *prod = NEXT_RX_BD(*prod);
3736 *chain_prod = RX_CHAIN_IDX(*prod);
3737
3738 return 0;
3739 }
3740
3741 /****************************************************************************/
3742 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3743 /* */
3744 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3745 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3746 /* necessary. */
3747 /* */
3748 /* Returns: */
3749 /* 0 for success, positive value for failure. */
3750 /****************************************************************************/
3751 int
3752 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3753 uint16_t *chain_prod, uint32_t *prod_bseq)
3754 {
3755 struct mbuf *m_new = NULL;
3756 int rc = 0;
3757 uint16_t min_free_bd;
3758
3759 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3760 __func__);
3761
3762 /* Make sure the inputs are valid. */
3763 DBRUNIF((*chain_prod > MAX_RX_BD),
3764 aprint_error_dev(sc->bnx_dev,
3765 "RX producer out of range: 0x%04X > 0x%04X\n",
3766 *chain_prod, (uint16_t)MAX_RX_BD));
3767
3768 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3769 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3770 *prod_bseq);
3771
3772 /* try to get in as many mbufs as possible */
3773 if (sc->mbuf_alloc_size == MCLBYTES)
3774 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3775 else
3776 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3777 while (sc->free_rx_bd >= min_free_bd) {
3778 /* Simulate an mbuf allocation failure. */
3779 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3780 aprint_error_dev(sc->bnx_dev,
3781 "Simulating mbuf allocation failure.\n");
3782 sc->mbuf_sim_alloc_failed++;
3783 rc = ENOBUFS;
3784 goto bnx_get_buf_exit);
3785
3786 /* This is a new mbuf allocation. */
3787 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3788 if (m_new == NULL) {
3789 DBPRINT(sc, BNX_WARN,
3790 "%s(%d): RX mbuf header allocation failed!\n",
3791 __FILE__, __LINE__);
3792
3793 sc->mbuf_alloc_failed++;
3794
3795 rc = ENOBUFS;
3796 goto bnx_get_buf_exit;
3797 }
3798
3799 DBRUNIF(1, sc->rx_mbuf_alloc++);
3800
3801 /* Simulate an mbuf cluster allocation failure. */
3802 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3803 m_freem(m_new);
3804 sc->rx_mbuf_alloc--;
3805 sc->mbuf_alloc_failed++;
3806 sc->mbuf_sim_alloc_failed++;
3807 rc = ENOBUFS;
3808 goto bnx_get_buf_exit);
3809
3810 if (sc->mbuf_alloc_size == MCLBYTES)
3811 MCLGET(m_new, M_DONTWAIT);
3812 else
3813 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3814 M_DONTWAIT);
3815 if (!(m_new->m_flags & M_EXT)) {
3816 DBPRINT(sc, BNX_WARN,
3817 "%s(%d): RX mbuf chain allocation failed!\n",
3818 __FILE__, __LINE__);
3819
3820 m_freem(m_new);
3821
3822 DBRUNIF(1, sc->rx_mbuf_alloc--);
3823 sc->mbuf_alloc_failed++;
3824
3825 rc = ENOBUFS;
3826 goto bnx_get_buf_exit;
3827 }
3828
3829 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3830 if (rc != 0)
3831 goto bnx_get_buf_exit;
3832 }
3833
3834 bnx_get_buf_exit:
3835 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3836 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3837 *chain_prod, *prod_bseq);
3838
3839 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3840 __func__);
3841
3842 return rc;
3843 }
3844
3845 void
3846 bnx_alloc_pkts(struct work * unused, void * arg)
3847 {
3848 struct bnx_softc *sc = arg;
3849 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3850 struct bnx_pkt *pkt;
3851 int i, s;
3852
3853 for (i = 0; i < 4; i++) { /* magic! */
3854 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
3855 if (pkt == NULL)
3856 break;
3857
3858 if (bus_dmamap_create(sc->bnx_dmatag,
3859 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3860 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
3861 &pkt->pkt_dmamap) != 0)
3862 goto put;
3863
3864 if (!ISSET(ifp->if_flags, IFF_UP))
3865 goto stopping;
3866
3867 mutex_enter(&sc->tx_pkt_mtx);
3868 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3869 sc->tx_pkt_count++;
3870 mutex_exit(&sc->tx_pkt_mtx);
3871 }
3872
3873 mutex_enter(&sc->tx_pkt_mtx);
3874 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
3875 mutex_exit(&sc->tx_pkt_mtx);
3876
3877 /* fire-up TX now that allocations have been done */
3878 s = splnet();
3879 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3880 bnx_start(ifp);
3881 splx(s);
3882
3883 return;
3884
3885 stopping:
3886 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3887 put:
3888 pool_put(bnx_tx_pool, pkt);
3889 return;
3890 }
3891
3892 /****************************************************************************/
3893 /* Initialize the TX context memory. */
3894 /* */
3895 /* Returns: */
3896 /* Nothing */
3897 /****************************************************************************/
3898 void
3899 bnx_init_tx_context(struct bnx_softc *sc)
3900 {
3901 uint32_t val;
3902
3903 /* Initialize the context ID for an L2 TX chain. */
3904 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3905 /* Set the CID type to support an L2 connection. */
3906 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3907 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
3908 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3909 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
3910
3911 /* Point the hardware to the first page in the chain. */
3912 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
3913 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3914 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
3915 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
3916 CTX_WR(sc, GET_CID_ADDR(TX_CID),
3917 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
3918 } else {
3919 /* Set the CID type to support an L2 connection. */
3920 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3921 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
3922 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
3923 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
3924
3925 /* Point the hardware to the first page in the chain. */
3926 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
3927 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
3928 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
3929 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
3930 }
3931 }
3932
3933
3934 /****************************************************************************/
3935 /* Allocate memory and initialize the TX data structures. */
3936 /* */
3937 /* Returns: */
3938 /* 0 for success, positive value for failure. */
3939 /****************************************************************************/
3940 int
3941 bnx_init_tx_chain(struct bnx_softc *sc)
3942 {
3943 struct tx_bd *txbd;
3944 uint32_t addr;
3945 int i, rc = 0;
3946
3947 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3948
3949 /* Force an allocation of some dmamaps for tx up front */
3950 bnx_alloc_pkts(NULL, sc);
3951
3952 /* Set the initial TX producer/consumer indices. */
3953 sc->tx_prod = 0;
3954 sc->tx_cons = 0;
3955 sc->tx_prod_bseq = 0;
3956 sc->used_tx_bd = 0;
3957 sc->max_tx_bd = USABLE_TX_BD;
3958 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
3959 DBRUNIF(1, sc->tx_full_count = 0);
3960
3961 /*
3962 * The NetXtreme II supports a linked-list structure called
3963 * a Buffer Descriptor Chain (or BD chain). A BD chain
3964 * consists of a series of 1 or more chain pages, each of which
3965 * consists of a fixed number of BD entries.
3966 * The last BD entry on each page is a pointer to the next page
3967 * in the chain, and the last pointer in the BD chain
3968 * points back to the beginning of the chain.
3969 */
3970
3971 /* Set the TX next pointer chain entries. */
3972 for (i = 0; i < TX_PAGES; i++) {
3973 int j;
3974
3975 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
3976
3977 /* Check if we've reached the last page. */
3978 if (i == (TX_PAGES - 1))
3979 j = 0;
3980 else
3981 j = i + 1;
3982
3983 addr = (uint32_t)sc->tx_bd_chain_paddr[j];
3984 txbd->tx_bd_haddr_lo = addr;
3985 addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
3986 txbd->tx_bd_haddr_hi = addr;
3987 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
3988 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
3989 }
3990
3991 /*
3992 * Initialize the context ID for an L2 TX chain.
3993 */
3994 bnx_init_tx_context(sc);
3995
3996 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3997
3998 return rc;
3999 }
4000
4001 /****************************************************************************/
4002 /* Free memory and clear the TX data structures. */
4003 /* */
4004 /* Returns: */
4005 /* Nothing. */
4006 /****************************************************************************/
4007 void
4008 bnx_free_tx_chain(struct bnx_softc *sc)
4009 {
4010 struct bnx_pkt *pkt;
4011 int i;
4012
4013 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4014
4015 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4016 mutex_enter(&sc->tx_pkt_mtx);
4017 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4018 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4019 mutex_exit(&sc->tx_pkt_mtx);
4020
4021 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4022 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4023 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4024
4025 m_freem(pkt->pkt_mbuf);
4026 DBRUNIF(1, sc->tx_mbuf_alloc--);
4027
4028 mutex_enter(&sc->tx_pkt_mtx);
4029 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4030 }
4031
4032 /* Destroy all the dmamaps we allocated for TX */
4033 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4034 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4035 sc->tx_pkt_count--;
4036 mutex_exit(&sc->tx_pkt_mtx);
4037
4038 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4039 pool_put(bnx_tx_pool, pkt);
4040
4041 mutex_enter(&sc->tx_pkt_mtx);
4042 }
4043 mutex_exit(&sc->tx_pkt_mtx);
4044
4045
4046
4047 /* Clear each TX chain page. */
4048 for (i = 0; i < TX_PAGES; i++) {
4049 memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4050 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4051 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4052 }
4053
4054 sc->used_tx_bd = 0;
4055
4056 /* Check if we lost any mbufs in the process. */
4057 DBRUNIF((sc->tx_mbuf_alloc),
4058 aprint_error_dev(sc->bnx_dev,
4059 "Memory leak! Lost %d mbufs from tx chain!\n",
4060 sc->tx_mbuf_alloc));
4061
4062 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4063 }
4064
4065 /****************************************************************************/
4066 /* Initialize the RX context memory. */
4067 /* */
4068 /* Returns: */
4069 /* Nothing */
4070 /****************************************************************************/
4071 void
4072 bnx_init_rx_context(struct bnx_softc *sc)
4073 {
4074 uint32_t val;
4075
4076 /* Initialize the context ID for an L2 RX chain. */
4077 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4078 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4079
4080 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4081 uint32_t lo_water, hi_water;
4082
4083 lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4084 hi_water = USABLE_RX_BD / 4;
4085
4086 lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4087 hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4088
4089 if (hi_water > 0xf)
4090 hi_water = 0xf;
4091 else if (hi_water == 0)
4092 lo_water = 0;
4093 val |= lo_water |
4094 (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4095 }
4096
4097 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4098
4099 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4100 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4101 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4102 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4103 }
4104
4105 /* Point the hardware to the first page in the chain. */
4106 val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4107 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4108 val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4109 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4110 }
4111
4112 /****************************************************************************/
4113 /* Allocate memory and initialize the RX data structures. */
4114 /* */
4115 /* Returns: */
4116 /* 0 for success, positive value for failure. */
4117 /****************************************************************************/
4118 int
4119 bnx_init_rx_chain(struct bnx_softc *sc)
4120 {
4121 struct rx_bd *rxbd;
4122 int i, rc = 0;
4123 uint16_t prod, chain_prod;
4124 uint32_t prod_bseq, addr;
4125
4126 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4127
4128 /* Initialize the RX producer and consumer indices. */
4129 sc->rx_prod = 0;
4130 sc->rx_cons = 0;
4131 sc->rx_prod_bseq = 0;
4132 sc->free_rx_bd = USABLE_RX_BD;
4133 sc->max_rx_bd = USABLE_RX_BD;
4134 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4135 DBRUNIF(1, sc->rx_empty_count = 0);
4136
4137 /* Initialize the RX next pointer chain entries. */
4138 for (i = 0; i < RX_PAGES; i++) {
4139 int j;
4140
4141 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4142
4143 /* Check if we've reached the last page. */
4144 if (i == (RX_PAGES - 1))
4145 j = 0;
4146 else
4147 j = i + 1;
4148
4149 /* Setup the chain page pointers. */
4150 addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4151 rxbd->rx_bd_haddr_hi = addr;
4152 addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4153 rxbd->rx_bd_haddr_lo = addr;
4154 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4155 0, BNX_RX_CHAIN_PAGE_SZ,
4156 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4157 }
4158
4159 /* Allocate mbuf clusters for the rx_bd chain. */
4160 prod = prod_bseq = 0;
4161 chain_prod = RX_CHAIN_IDX(prod);
4162 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4163 BNX_PRINTF(sc,
4164 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4165 }
4166
4167 /* Save the RX chain producer index. */
4168 sc->rx_prod = prod;
4169 sc->rx_prod_bseq = prod_bseq;
4170
4171 for (i = 0; i < RX_PAGES; i++)
4172 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4173 sc->rx_bd_chain_map[i]->dm_mapsize,
4174 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4175
4176 /* Tell the chip about the waiting rx_bd's. */
4177 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4178 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4179
4180 bnx_init_rx_context(sc);
4181
4182 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4183
4184 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4185
4186 return rc;
4187 }
4188
4189 /****************************************************************************/
4190 /* Free memory and clear the RX data structures. */
4191 /* */
4192 /* Returns: */
4193 /* Nothing. */
4194 /****************************************************************************/
4195 void
4196 bnx_free_rx_chain(struct bnx_softc *sc)
4197 {
4198 int i;
4199
4200 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4201
4202 /* Free any mbufs still in the RX mbuf chain. */
4203 for (i = 0; i < TOTAL_RX_BD; i++) {
4204 if (sc->rx_mbuf_ptr[i] != NULL) {
4205 if (sc->rx_mbuf_map[i] != NULL) {
4206 bus_dmamap_sync(sc->bnx_dmatag,
4207 sc->rx_mbuf_map[i], 0,
4208 sc->rx_mbuf_map[i]->dm_mapsize,
4209 BUS_DMASYNC_POSTREAD);
4210 bus_dmamap_unload(sc->bnx_dmatag,
4211 sc->rx_mbuf_map[i]);
4212 }
4213 m_freem(sc->rx_mbuf_ptr[i]);
4214 sc->rx_mbuf_ptr[i] = NULL;
4215 DBRUNIF(1, sc->rx_mbuf_alloc--);
4216 }
4217 }
4218
4219 /* Clear each RX chain page. */
4220 for (i = 0; i < RX_PAGES; i++)
4221 memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4222
4223 sc->free_rx_bd = sc->max_rx_bd;
4224
4225 /* Check if we lost any mbufs in the process. */
4226 DBRUNIF((sc->rx_mbuf_alloc),
4227 aprint_error_dev(sc->bnx_dev,
4228 "Memory leak! Lost %d mbufs from rx chain!\n",
4229 sc->rx_mbuf_alloc));
4230
4231 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4232 }
4233
4234 /****************************************************************************/
4235 /* Handles PHY generated interrupt events. */
4236 /* */
4237 /* Returns: */
4238 /* Nothing. */
4239 /****************************************************************************/
4240 void
4241 bnx_phy_intr(struct bnx_softc *sc)
4242 {
4243 uint32_t new_link_state, old_link_state;
4244
4245 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4246 BUS_DMASYNC_POSTREAD);
4247 new_link_state = sc->status_block->status_attn_bits &
4248 STATUS_ATTN_BITS_LINK_STATE;
4249 old_link_state = sc->status_block->status_attn_bits_ack &
4250 STATUS_ATTN_BITS_LINK_STATE;
4251
4252 /* Handle any changes if the link state has changed. */
4253 if (new_link_state != old_link_state) {
4254 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4255
4256 callout_stop(&sc->bnx_timeout);
4257 bnx_tick(sc);
4258
4259 /* Update the status_attn_bits_ack field in the status block. */
4260 if (new_link_state) {
4261 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4262 STATUS_ATTN_BITS_LINK_STATE);
4263 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4264 } else {
4265 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4266 STATUS_ATTN_BITS_LINK_STATE);
4267 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4268 }
4269 }
4270
4271 /* Acknowledge the link change interrupt. */
4272 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4273 }
4274
4275 /****************************************************************************/
4276 /* Handles received frame interrupt events. */
4277 /* */
4278 /* Returns: */
4279 /* Nothing. */
4280 /****************************************************************************/
4281 void
4282 bnx_rx_intr(struct bnx_softc *sc)
4283 {
4284 struct status_block *sblk = sc->status_block;
4285 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4286 uint16_t hw_cons, sw_cons, sw_chain_cons;
4287 uint16_t sw_prod, sw_chain_prod;
4288 uint32_t sw_prod_bseq;
4289 struct l2_fhdr *l2fhdr;
4290 int i;
4291
4292 DBRUNIF(1, sc->rx_interrupts++);
4293 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4294 BUS_DMASYNC_POSTREAD);
4295
4296 /* Prepare the RX chain pages to be accessed by the host CPU. */
4297 for (i = 0; i < RX_PAGES; i++)
4298 bus_dmamap_sync(sc->bnx_dmatag,
4299 sc->rx_bd_chain_map[i], 0,
4300 sc->rx_bd_chain_map[i]->dm_mapsize,
4301 BUS_DMASYNC_POSTWRITE);
4302
4303 /* Get the hardware's view of the RX consumer index. */
4304 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4305 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4306 hw_cons++;
4307
4308 /* Get working copies of the driver's view of the RX indices. */
4309 sw_cons = sc->rx_cons;
4310 sw_prod = sc->rx_prod;
4311 sw_prod_bseq = sc->rx_prod_bseq;
4312
4313 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4314 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4315 __func__, sw_prod, sw_cons, sw_prod_bseq);
4316
4317 /* Prevent speculative reads from getting ahead of the status block. */
4318 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4319 BUS_SPACE_BARRIER_READ);
4320
4321 /* Update some debug statistics counters */
4322 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4323 sc->rx_low_watermark = sc->free_rx_bd);
4324 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4325
4326 /*
4327 * Scan through the receive chain as long
4328 * as there is work to do.
4329 */
4330 while (sw_cons != hw_cons) {
4331 struct mbuf *m;
4332 struct rx_bd *rxbd __diagused;
4333 unsigned int len;
4334 uint32_t status;
4335
4336 /* Convert the producer/consumer indices to an actual
4337 * rx_bd index.
4338 */
4339 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4340 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4341
4342 /* Get the used rx_bd. */
4343 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4344 sc->free_rx_bd++;
4345
4346 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4347 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4348
4349 /* The mbuf is stored with the last rx_bd entry of a packet. */
4350 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4351 #ifdef DIAGNOSTIC
4352 /* Validate that this is the last rx_bd. */
4353 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4354 printf("%s: Unexpected mbuf found in "
4355 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4356 sw_chain_cons);
4357 }
4358 #endif
4359
4360 /* DRC - ToDo: If the received packet is small, say less
4361 * than 128 bytes, allocate a new mbuf here,
4362 * copy the data to that mbuf, and recycle
4363 * the mapped jumbo frame.
4364 */
4365
4366 /* Unmap the mbuf from DMA space. */
4367 #ifdef DIAGNOSTIC
4368 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4369 printf("invalid map sw_cons 0x%x "
4370 "sw_prod 0x%x "
4371 "sw_chain_cons 0x%x "
4372 "sw_chain_prod 0x%x "
4373 "hw_cons 0x%x "
4374 "TOTAL_RX_BD_PER_PAGE 0x%x "
4375 "TOTAL_RX_BD 0x%x\n",
4376 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4377 hw_cons,
4378 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4379 }
4380 #endif
4381 bus_dmamap_sync(sc->bnx_dmatag,
4382 sc->rx_mbuf_map[sw_chain_cons], 0,
4383 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4384 BUS_DMASYNC_POSTREAD);
4385 bus_dmamap_unload(sc->bnx_dmatag,
4386 sc->rx_mbuf_map[sw_chain_cons]);
4387
4388 /* Remove the mbuf from the driver's chain. */
4389 m = sc->rx_mbuf_ptr[sw_chain_cons];
4390 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4391
4392 /*
4393 * Frames received on the NetXteme II are prepended
4394 * with the l2_fhdr structure which provides status
4395 * information about the received frame (including
4396 * VLAN tags and checksum info) and are also
4397 * automatically adjusted to align the IP header
4398 * (i.e. two null bytes are inserted before the
4399 * Ethernet header).
4400 */
4401 l2fhdr = mtod(m, struct l2_fhdr *);
4402
4403 len = l2fhdr->l2_fhdr_pkt_len;
4404 status = l2fhdr->l2_fhdr_status;
4405
4406 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4407 aprint_error("Simulating l2_fhdr status error.\n");
4408 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4409
4410 /* Watch for unusual sized frames. */
4411 DBRUNIF(((len < BNX_MIN_MTU) ||
4412 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4413 aprint_error_dev(sc->bnx_dev,
4414 "Unusual frame size found. "
4415 "Min(%d), Actual(%d), Max(%d)\n",
4416 (int)BNX_MIN_MTU, len,
4417 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4418
4419 bnx_dump_mbuf(sc, m);
4420 bnx_breakpoint(sc));
4421
4422 len -= ETHER_CRC_LEN;
4423
4424 /* Check the received frame for errors. */
4425 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4426 L2_FHDR_ERRORS_PHY_DECODE |
4427 L2_FHDR_ERRORS_ALIGNMENT |
4428 L2_FHDR_ERRORS_TOO_SHORT |
4429 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4430 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4431 len >
4432 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4433 ifp->if_ierrors++;
4434 DBRUNIF(1, sc->l2fhdr_status_errors++);
4435
4436 /* Reuse the mbuf for a new frame. */
4437 if (bnx_add_buf(sc, m, &sw_prod,
4438 &sw_chain_prod, &sw_prod_bseq)) {
4439 DBRUNIF(1, bnx_breakpoint(sc));
4440 panic("%s: Can't reuse RX mbuf!\n",
4441 device_xname(sc->bnx_dev));
4442 }
4443 continue;
4444 }
4445
4446 /*
4447 * Get a new mbuf for the rx_bd. If no new
4448 * mbufs are available then reuse the current mbuf,
4449 * log an ierror on the interface, and generate
4450 * an error in the system log.
4451 */
4452 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4453 &sw_prod_bseq)) {
4454 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4455 "Failed to allocate "
4456 "new mbuf, incoming frame dropped!\n"));
4457
4458 ifp->if_ierrors++;
4459
4460 /* Try and reuse the exisitng mbuf. */
4461 if (bnx_add_buf(sc, m, &sw_prod,
4462 &sw_chain_prod, &sw_prod_bseq)) {
4463 DBRUNIF(1, bnx_breakpoint(sc));
4464 panic("%s: Double mbuf allocation "
4465 "failure!",
4466 device_xname(sc->bnx_dev));
4467 }
4468 continue;
4469 }
4470
4471 /* Skip over the l2_fhdr when passing the data up
4472 * the stack.
4473 */
4474 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4475
4476 /* Adjust the pckt length to match the received data. */
4477 m->m_pkthdr.len = m->m_len = len;
4478
4479 /* Send the packet to the appropriate interface. */
4480 m->m_pkthdr.rcvif = ifp;
4481
4482 DBRUN(BNX_VERBOSE_RECV,
4483 struct ether_header *eh;
4484 eh = mtod(m, struct ether_header *);
4485 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4486 __func__, ether_sprintf(eh->ether_dhost),
4487 ether_sprintf(eh->ether_shost),
4488 htons(eh->ether_type)));
4489
4490 /* Validate the checksum. */
4491
4492 /* Check for an IP datagram. */
4493 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4494 /* Check if the IP checksum is valid. */
4495 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4496 == 0)
4497 m->m_pkthdr.csum_flags |=
4498 M_CSUM_IPv4;
4499 #ifdef BNX_DEBUG
4500 else
4501 DBPRINT(sc, BNX_WARN_SEND,
4502 "%s(): Invalid IP checksum "
4503 "= 0x%04X!\n",
4504 __func__,
4505 l2fhdr->l2_fhdr_ip_xsum
4506 );
4507 #endif
4508 }
4509
4510 /* Check for a valid TCP/UDP frame. */
4511 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4512 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4513 /* Check for a good TCP/UDP checksum. */
4514 if ((status &
4515 (L2_FHDR_ERRORS_TCP_XSUM |
4516 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4517 m->m_pkthdr.csum_flags |=
4518 M_CSUM_TCPv4 |
4519 M_CSUM_UDPv4;
4520 } else {
4521 DBPRINT(sc, BNX_WARN_SEND,
4522 "%s(): Invalid TCP/UDP "
4523 "checksum = 0x%04X!\n",
4524 __func__,
4525 l2fhdr->l2_fhdr_tcp_udp_xsum);
4526 }
4527 }
4528
4529 /*
4530 * If we received a packet with a vlan tag,
4531 * attach that information to the packet.
4532 */
4533 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4534 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4535 VLAN_INPUT_TAG(ifp, m,
4536 l2fhdr->l2_fhdr_vlan_tag,
4537 continue);
4538 }
4539
4540 /*
4541 * Handle BPF listeners. Let the BPF
4542 * user see the packet.
4543 */
4544 bpf_mtap(ifp, m);
4545
4546 /* Pass the mbuf off to the upper layers. */
4547 ifp->if_ipackets++;
4548 DBPRINT(sc, BNX_VERBOSE_RECV,
4549 "%s(): Passing received frame up.\n", __func__);
4550 (*ifp->if_input)(ifp, m);
4551 DBRUNIF(1, sc->rx_mbuf_alloc--);
4552
4553 }
4554
4555 sw_cons = NEXT_RX_BD(sw_cons);
4556
4557 /* Refresh hw_cons to see if there's new work */
4558 if (sw_cons == hw_cons) {
4559 hw_cons = sc->hw_rx_cons =
4560 sblk->status_rx_quick_consumer_index0;
4561 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4562 USABLE_RX_BD_PER_PAGE)
4563 hw_cons++;
4564 }
4565
4566 /* Prevent speculative reads from getting ahead of
4567 * the status block.
4568 */
4569 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4570 BUS_SPACE_BARRIER_READ);
4571 }
4572
4573 for (i = 0; i < RX_PAGES; i++)
4574 bus_dmamap_sync(sc->bnx_dmatag,
4575 sc->rx_bd_chain_map[i], 0,
4576 sc->rx_bd_chain_map[i]->dm_mapsize,
4577 BUS_DMASYNC_PREWRITE);
4578
4579 sc->rx_cons = sw_cons;
4580 sc->rx_prod = sw_prod;
4581 sc->rx_prod_bseq = sw_prod_bseq;
4582
4583 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4584 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4585
4586 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4587 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4588 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4589 }
4590
4591 /****************************************************************************/
4592 /* Handles transmit completion interrupt events. */
4593 /* */
4594 /* Returns: */
4595 /* Nothing. */
4596 /****************************************************************************/
4597 void
4598 bnx_tx_intr(struct bnx_softc *sc)
4599 {
4600 struct status_block *sblk = sc->status_block;
4601 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4602 struct bnx_pkt *pkt;
4603 bus_dmamap_t map;
4604 uint16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4605
4606 DBRUNIF(1, sc->tx_interrupts++);
4607 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4608 BUS_DMASYNC_POSTREAD);
4609
4610 /* Get the hardware's view of the TX consumer index. */
4611 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4612
4613 /* Skip to the next entry if this is a chain page pointer. */
4614 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4615 hw_tx_cons++;
4616
4617 sw_tx_cons = sc->tx_cons;
4618
4619 /* Prevent speculative reads from getting ahead of the status block. */
4620 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4621 BUS_SPACE_BARRIER_READ);
4622
4623 /* Cycle through any completed TX chain page entries. */
4624 while (sw_tx_cons != hw_tx_cons) {
4625 #ifdef BNX_DEBUG
4626 struct tx_bd *txbd = NULL;
4627 #endif
4628 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4629
4630 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4631 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4632 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4633
4634 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4635 aprint_error_dev(sc->bnx_dev,
4636 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4637 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4638
4639 DBRUNIF(1, txbd = &sc->tx_bd_chain
4640 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4641
4642 DBRUNIF((txbd == NULL),
4643 aprint_error_dev(sc->bnx_dev,
4644 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4645 bnx_breakpoint(sc));
4646
4647 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4648 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4649
4650
4651 mutex_enter(&sc->tx_pkt_mtx);
4652 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4653 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4654 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4655 mutex_exit(&sc->tx_pkt_mtx);
4656 /*
4657 * Free the associated mbuf. Remember
4658 * that only the last tx_bd of a packet
4659 * has an mbuf pointer and DMA map.
4660 */
4661 map = pkt->pkt_dmamap;
4662 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4663 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4664 bus_dmamap_unload(sc->bnx_dmatag, map);
4665
4666 m_freem(pkt->pkt_mbuf);
4667 DBRUNIF(1, sc->tx_mbuf_alloc--);
4668
4669 ifp->if_opackets++;
4670
4671 mutex_enter(&sc->tx_pkt_mtx);
4672 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4673 }
4674 mutex_exit(&sc->tx_pkt_mtx);
4675
4676 sc->used_tx_bd--;
4677 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4678 __FILE__, __LINE__, sc->used_tx_bd);
4679
4680 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4681
4682 /* Refresh hw_cons to see if there's new work. */
4683 hw_tx_cons = sc->hw_tx_cons =
4684 sblk->status_tx_quick_consumer_index0;
4685 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4686 USABLE_TX_BD_PER_PAGE)
4687 hw_tx_cons++;
4688
4689 /* Prevent speculative reads from getting ahead of
4690 * the status block.
4691 */
4692 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4693 BUS_SPACE_BARRIER_READ);
4694 }
4695
4696 /* Clear the TX timeout timer. */
4697 ifp->if_timer = 0;
4698
4699 /* Clear the tx hardware queue full flag. */
4700 if (sc->used_tx_bd < sc->max_tx_bd) {
4701 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4702 aprint_debug_dev(sc->bnx_dev,
4703 "Open TX chain! %d/%d (used/total)\n",
4704 sc->used_tx_bd, sc->max_tx_bd));
4705 ifp->if_flags &= ~IFF_OACTIVE;
4706 }
4707
4708 sc->tx_cons = sw_tx_cons;
4709 }
4710
4711 /****************************************************************************/
4712 /* Disables interrupt generation. */
4713 /* */
4714 /* Returns: */
4715 /* Nothing. */
4716 /****************************************************************************/
4717 void
4718 bnx_disable_intr(struct bnx_softc *sc)
4719 {
4720 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4721 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4722 }
4723
4724 /****************************************************************************/
4725 /* Enables interrupt generation. */
4726 /* */
4727 /* Returns: */
4728 /* Nothing. */
4729 /****************************************************************************/
4730 void
4731 bnx_enable_intr(struct bnx_softc *sc)
4732 {
4733 uint32_t val;
4734
4735 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4736 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4737
4738 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4739 sc->last_status_idx);
4740
4741 val = REG_RD(sc, BNX_HC_COMMAND);
4742 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4743 }
4744
4745 /****************************************************************************/
4746 /* Handles controller initialization. */
4747 /* */
4748 /****************************************************************************/
4749 int
4750 bnx_init(struct ifnet *ifp)
4751 {
4752 struct bnx_softc *sc = ifp->if_softc;
4753 uint32_t ether_mtu;
4754 int s, error = 0;
4755
4756 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4757
4758 s = splnet();
4759
4760 bnx_stop(ifp, 0);
4761
4762 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4763 aprint_error_dev(sc->bnx_dev,
4764 "Controller reset failed!\n");
4765 goto bnx_init_exit;
4766 }
4767
4768 if ((error = bnx_chipinit(sc)) != 0) {
4769 aprint_error_dev(sc->bnx_dev,
4770 "Controller initialization failed!\n");
4771 goto bnx_init_exit;
4772 }
4773
4774 if ((error = bnx_blockinit(sc)) != 0) {
4775 aprint_error_dev(sc->bnx_dev,
4776 "Block initialization failed!\n");
4777 goto bnx_init_exit;
4778 }
4779
4780 /* Calculate and program the Ethernet MRU size. */
4781 if (ifp->if_mtu <= ETHERMTU) {
4782 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4783 sc->mbuf_alloc_size = MCLBYTES;
4784 } else {
4785 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4786 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4787 }
4788
4789
4790 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4791 __func__, ether_mtu);
4792
4793 /*
4794 * Program the MRU and enable Jumbo frame
4795 * support.
4796 */
4797 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4798 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4799
4800 /* Calculate the RX Ethernet frame size for rx_bd's. */
4801 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4802
4803 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4804 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4805 sc->mbuf_alloc_size, sc->max_frame_size);
4806
4807 /* Program appropriate promiscuous/multicast filtering. */
4808 bnx_iff(sc);
4809
4810 /* Init RX buffer descriptor chain. */
4811 bnx_init_rx_chain(sc);
4812
4813 /* Init TX buffer descriptor chain. */
4814 bnx_init_tx_chain(sc);
4815
4816 /* Enable host interrupts. */
4817 bnx_enable_intr(sc);
4818
4819 if ((error = ether_mediachange(ifp)) != 0)
4820 goto bnx_init_exit;
4821
4822 SET(ifp->if_flags, IFF_RUNNING);
4823 CLR(ifp->if_flags, IFF_OACTIVE);
4824
4825 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4826
4827 bnx_init_exit:
4828 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4829
4830 splx(s);
4831
4832 return error;
4833 }
4834
4835 /****************************************************************************/
4836 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4837 /* memory visible to the controller. */
4838 /* */
4839 /* Returns: */
4840 /* 0 for success, positive value for failure. */
4841 /****************************************************************************/
4842 int
4843 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4844 {
4845 struct bnx_pkt *pkt;
4846 bus_dmamap_t map;
4847 struct tx_bd *txbd = NULL;
4848 uint16_t vlan_tag = 0, flags = 0;
4849 uint16_t chain_prod, prod;
4850 #ifdef BNX_DEBUG
4851 uint16_t debug_prod;
4852 #endif
4853 uint32_t addr, prod_bseq;
4854 int i, error;
4855 struct m_tag *mtag;
4856 static struct work bnx_wk; /* Dummy work. Statically allocated. */
4857
4858 mutex_enter(&sc->tx_pkt_mtx);
4859 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4860 if (pkt == NULL) {
4861 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4862 mutex_exit(&sc->tx_pkt_mtx);
4863 return ENETDOWN;
4864 }
4865
4866 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
4867 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
4868 workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
4869 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4870 }
4871
4872 mutex_exit(&sc->tx_pkt_mtx);
4873 return ENOMEM;
4874 }
4875 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4876 mutex_exit(&sc->tx_pkt_mtx);
4877
4878 /* Transfer any checksum offload flags to the bd. */
4879 if (m->m_pkthdr.csum_flags) {
4880 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4881 flags |= TX_BD_FLAGS_IP_CKSUM;
4882 if (m->m_pkthdr.csum_flags &
4883 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4884 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4885 }
4886
4887 /* Transfer any VLAN tags to the bd. */
4888 mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4889 if (mtag != NULL) {
4890 flags |= TX_BD_FLAGS_VLAN_TAG;
4891 vlan_tag = VLAN_TAG_VALUE(mtag);
4892 }
4893
4894 /* Map the mbuf into DMAable memory. */
4895 prod = sc->tx_prod;
4896 chain_prod = TX_CHAIN_IDX(prod);
4897 map = pkt->pkt_dmamap;
4898
4899 /* Map the mbuf into our DMA address space. */
4900 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4901 if (error != 0) {
4902 aprint_error_dev(sc->bnx_dev,
4903 "Error mapping mbuf into TX chain!\n");
4904 sc->tx_dma_map_failures++;
4905 goto maperr;
4906 }
4907 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4908 BUS_DMASYNC_PREWRITE);
4909 /* Make sure there's room in the chain */
4910 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
4911 goto nospace;
4912
4913 /* prod points to an empty tx_bd at this point. */
4914 prod_bseq = sc->tx_prod_bseq;
4915 #ifdef BNX_DEBUG
4916 debug_prod = chain_prod;
4917 #endif
4918 DBPRINT(sc, BNX_INFO_SEND,
4919 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4920 "prod_bseq = 0x%08X\n",
4921 __func__, prod, chain_prod, prod_bseq);
4922
4923 /*
4924 * Cycle through each mbuf segment that makes up
4925 * the outgoing frame, gathering the mapping info
4926 * for that segment and creating a tx_bd for the
4927 * mbuf.
4928 */
4929 for (i = 0; i < map->dm_nsegs ; i++) {
4930 chain_prod = TX_CHAIN_IDX(prod);
4931 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
4932
4933 addr = (uint32_t)map->dm_segs[i].ds_addr;
4934 txbd->tx_bd_haddr_lo = addr;
4935 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
4936 txbd->tx_bd_haddr_hi = addr;
4937 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
4938 txbd->tx_bd_vlan_tag = vlan_tag;
4939 txbd->tx_bd_flags = flags;
4940 prod_bseq += map->dm_segs[i].ds_len;
4941 if (i == 0)
4942 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
4943 prod = NEXT_TX_BD(prod);
4944 }
4945 /* Set the END flag on the last TX buffer descriptor. */
4946 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
4947
4948 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
4949
4950 DBPRINT(sc, BNX_INFO_SEND,
4951 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
4952 "prod_bseq = 0x%08X\n",
4953 __func__, prod, chain_prod, prod_bseq);
4954
4955 pkt->pkt_mbuf = m;
4956 pkt->pkt_end_desc = chain_prod;
4957
4958 mutex_enter(&sc->tx_pkt_mtx);
4959 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
4960 mutex_exit(&sc->tx_pkt_mtx);
4961
4962 sc->used_tx_bd += map->dm_nsegs;
4963 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4964 __FILE__, __LINE__, sc->used_tx_bd);
4965
4966 /* Update some debug statistics counters */
4967 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
4968 sc->tx_hi_watermark = sc->used_tx_bd);
4969 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
4970 DBRUNIF(1, sc->tx_mbuf_alloc++);
4971
4972 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
4973 map->dm_nsegs));
4974
4975 /* prod points to the next free tx_bd at this point. */
4976 sc->tx_prod = prod;
4977 sc->tx_prod_bseq = prod_bseq;
4978
4979 return 0;
4980
4981
4982 nospace:
4983 bus_dmamap_unload(sc->bnx_dmatag, map);
4984 maperr:
4985 mutex_enter(&sc->tx_pkt_mtx);
4986 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4987 mutex_exit(&sc->tx_pkt_mtx);
4988
4989 return ENOMEM;
4990 }
4991
4992 /****************************************************************************/
4993 /* Main transmit routine. */
4994 /* */
4995 /* Returns: */
4996 /* Nothing. */
4997 /****************************************************************************/
4998 void
4999 bnx_start(struct ifnet *ifp)
5000 {
5001 struct bnx_softc *sc = ifp->if_softc;
5002 struct mbuf *m_head = NULL;
5003 int count = 0;
5004 #ifdef BNX_DEBUG
5005 uint16_t tx_chain_prod;
5006 #endif
5007
5008 /* If there's no link or the transmit queue is empty then just exit. */
5009 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
5010 DBPRINT(sc, BNX_INFO_SEND,
5011 "%s(): output active or device not running.\n", __func__);
5012 goto bnx_start_exit;
5013 }
5014
5015 /* prod points to the next free tx_bd. */
5016 #ifdef BNX_DEBUG
5017 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5018 #endif
5019
5020 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5021 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5022 "used_tx %d max_tx %d\n",
5023 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5024 sc->used_tx_bd, sc->max_tx_bd);
5025
5026 /*
5027 * Keep adding entries while there is space in the ring.
5028 */
5029 while (sc->used_tx_bd < sc->max_tx_bd) {
5030 /* Check for any frames to send. */
5031 IFQ_POLL(&ifp->if_snd, m_head);
5032 if (m_head == NULL)
5033 break;
5034
5035 /*
5036 * Pack the data into the transmit ring. If we
5037 * don't have room, set the OACTIVE flag to wait
5038 * for the NIC to drain the chain.
5039 */
5040 if (bnx_tx_encap(sc, m_head)) {
5041 ifp->if_flags |= IFF_OACTIVE;
5042 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5043 "business! Total tx_bd used = %d\n",
5044 sc->used_tx_bd);
5045 break;
5046 }
5047
5048 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5049 count++;
5050
5051 /* Send a copy of the frame to any BPF listeners. */
5052 bpf_mtap(ifp, m_head);
5053 }
5054
5055 if (count == 0) {
5056 /* no packets were dequeued */
5057 DBPRINT(sc, BNX_VERBOSE_SEND,
5058 "%s(): No packets were dequeued\n", __func__);
5059 goto bnx_start_exit;
5060 }
5061
5062 /* Update the driver's counters. */
5063 #ifdef BNX_DEBUG
5064 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5065 #endif
5066
5067 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
5068 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
5069 tx_chain_prod, sc->tx_prod_bseq);
5070
5071 /* Start the transmit. */
5072 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5073 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5074
5075 /* Set the tx timeout. */
5076 ifp->if_timer = BNX_TX_TIMEOUT;
5077
5078 bnx_start_exit:
5079 return;
5080 }
5081
5082 /****************************************************************************/
5083 /* Handles any IOCTL calls from the operating system. */
5084 /* */
5085 /* Returns: */
5086 /* 0 for success, positive value for failure. */
5087 /****************************************************************************/
5088 int
5089 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5090 {
5091 struct bnx_softc *sc = ifp->if_softc;
5092 struct ifreq *ifr = (struct ifreq *) data;
5093 struct mii_data *mii = &sc->bnx_mii;
5094 int s, error = 0;
5095
5096 s = splnet();
5097
5098 switch (command) {
5099 case SIOCSIFFLAGS:
5100 if ((error = ifioctl_common(ifp, command, data)) != 0)
5101 break;
5102 /* XXX set an ifflags callback and let ether_ioctl
5103 * handle all of this.
5104 */
5105 if (ISSET(ifp->if_flags, IFF_UP)) {
5106 if (ifp->if_flags & IFF_RUNNING)
5107 error = ENETRESET;
5108 else
5109 bnx_init(ifp);
5110 } else if (ifp->if_flags & IFF_RUNNING)
5111 bnx_stop(ifp, 1);
5112 break;
5113
5114 case SIOCSIFMEDIA:
5115 case SIOCGIFMEDIA:
5116 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5117 sc->bnx_phy_flags);
5118
5119 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5120 break;
5121
5122 default:
5123 error = ether_ioctl(ifp, command, data);
5124 }
5125
5126 if (error == ENETRESET) {
5127 if (ifp->if_flags & IFF_RUNNING)
5128 bnx_iff(sc);
5129 error = 0;
5130 }
5131
5132 splx(s);
5133 return error;
5134 }
5135
5136 /****************************************************************************/
5137 /* Transmit timeout handler. */
5138 /* */
5139 /* Returns: */
5140 /* Nothing. */
5141 /****************************************************************************/
5142 void
5143 bnx_watchdog(struct ifnet *ifp)
5144 {
5145 struct bnx_softc *sc = ifp->if_softc;
5146
5147 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5148 bnx_dump_status_block(sc));
5149 /*
5150 * If we are in this routine because of pause frames, then
5151 * don't reset the hardware.
5152 */
5153 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5154 return;
5155
5156 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5157
5158 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5159
5160 bnx_init(ifp);
5161
5162 ifp->if_oerrors++;
5163 }
5164
5165 /*
5166 * Interrupt handler.
5167 */
5168 /****************************************************************************/
5169 /* Main interrupt entry point. Verifies that the controller generated the */
5170 /* interrupt and then calls a separate routine for handle the various */
5171 /* interrupt causes (PHY, TX, RX). */
5172 /* */
5173 /* Returns: */
5174 /* 0 for success, positive value for failure. */
5175 /****************************************************************************/
5176 int
5177 bnx_intr(void *xsc)
5178 {
5179 struct bnx_softc *sc;
5180 struct ifnet *ifp;
5181 uint32_t status_attn_bits;
5182 const struct status_block *sblk;
5183
5184 sc = xsc;
5185
5186 ifp = &sc->bnx_ec.ec_if;
5187
5188 if (!device_is_active(sc->bnx_dev) ||
5189 (ifp->if_flags & IFF_RUNNING) == 0)
5190 return 0;
5191
5192 DBRUNIF(1, sc->interrupts_generated++);
5193
5194 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5195 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5196
5197 /*
5198 * If the hardware status block index
5199 * matches the last value read by the
5200 * driver and we haven't asserted our
5201 * interrupt then there's nothing to do.
5202 */
5203 if ((sc->status_block->status_idx == sc->last_status_idx) &&
5204 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5205 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5206 return 0;
5207
5208 /* Ack the interrupt and stop others from occuring. */
5209 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5210 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5211 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5212
5213 /* Keep processing data as long as there is work to do. */
5214 for (;;) {
5215 sblk = sc->status_block;
5216 status_attn_bits = sblk->status_attn_bits;
5217
5218 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5219 aprint_debug("Simulating unexpected status attention bit set.");
5220 status_attn_bits = status_attn_bits |
5221 STATUS_ATTN_BITS_PARITY_ERROR);
5222
5223 /* Was it a link change interrupt? */
5224 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5225 (sblk->status_attn_bits_ack &
5226 STATUS_ATTN_BITS_LINK_STATE))
5227 bnx_phy_intr(sc);
5228
5229 /* If any other attention is asserted then the chip is toast. */
5230 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5231 (sblk->status_attn_bits_ack &
5232 ~STATUS_ATTN_BITS_LINK_STATE))) {
5233 DBRUN(1, sc->unexpected_attentions++);
5234
5235 BNX_PRINTF(sc,
5236 "Fatal attention detected: 0x%08X\n",
5237 sblk->status_attn_bits);
5238
5239 DBRUN(BNX_FATAL,
5240 if (bnx_debug_unexpected_attention == 0)
5241 bnx_breakpoint(sc));
5242
5243 bnx_init(ifp);
5244 return 1;
5245 }
5246
5247 /* Check for any completed RX frames. */
5248 if (sblk->status_rx_quick_consumer_index0 !=
5249 sc->hw_rx_cons)
5250 bnx_rx_intr(sc);
5251
5252 /* Check for any completed TX frames. */
5253 if (sblk->status_tx_quick_consumer_index0 !=
5254 sc->hw_tx_cons)
5255 bnx_tx_intr(sc);
5256
5257 /*
5258 * Save the status block index value for use during the
5259 * next interrupt.
5260 */
5261 sc->last_status_idx = sblk->status_idx;
5262
5263 /* Prevent speculative reads from getting ahead of the
5264 * status block.
5265 */
5266 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5267 BUS_SPACE_BARRIER_READ);
5268
5269 /* If there's no work left then exit the isr. */
5270 if ((sblk->status_rx_quick_consumer_index0 ==
5271 sc->hw_rx_cons) &&
5272 (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
5273 break;
5274 }
5275
5276 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5277 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5278
5279 /* Re-enable interrupts. */
5280 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5281 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5282 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5283 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5284 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5285
5286 /* Handle any frames that arrived while handling the interrupt. */
5287 if (!IFQ_IS_EMPTY(&ifp->if_snd))
5288 bnx_start(ifp);
5289
5290 return 1;
5291 }
5292
5293 /****************************************************************************/
5294 /* Programs the various packet receive modes (broadcast and multicast). */
5295 /* */
5296 /* Returns: */
5297 /* Nothing. */
5298 /****************************************************************************/
5299 void
5300 bnx_iff(struct bnx_softc *sc)
5301 {
5302 struct ethercom *ec = &sc->bnx_ec;
5303 struct ifnet *ifp = &ec->ec_if;
5304 struct ether_multi *enm;
5305 struct ether_multistep step;
5306 uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5307 uint32_t rx_mode, sort_mode;
5308 int h, i;
5309
5310 /* Initialize receive mode default settings. */
5311 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5312 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5313 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5314 ifp->if_flags &= ~IFF_ALLMULTI;
5315
5316 /*
5317 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5318 * be enbled.
5319 */
5320 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5321 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5322
5323 /*
5324 * Check for promiscuous, all multicast, or selected
5325 * multicast address filtering.
5326 */
5327 if (ifp->if_flags & IFF_PROMISC) {
5328 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5329
5330 ifp->if_flags |= IFF_ALLMULTI;
5331 /* Enable promiscuous mode. */
5332 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5333 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5334 } else if (ifp->if_flags & IFF_ALLMULTI) {
5335 allmulti:
5336 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5337
5338 ifp->if_flags |= IFF_ALLMULTI;
5339 /* Enable all multicast addresses. */
5340 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5341 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5342 0xffffffff);
5343 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5344 } else {
5345 /* Accept one or more multicast(s). */
5346 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5347
5348 ETHER_FIRST_MULTI(step, ec, enm);
5349 while (enm != NULL) {
5350 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5351 ETHER_ADDR_LEN)) {
5352 goto allmulti;
5353 }
5354 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5355 0xFF;
5356 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5357 ETHER_NEXT_MULTI(step, enm);
5358 }
5359
5360 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5361 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5362 hashes[i]);
5363
5364 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5365 }
5366
5367 /* Only make changes if the recive mode has actually changed. */
5368 if (rx_mode != sc->rx_mode) {
5369 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5370 rx_mode);
5371
5372 sc->rx_mode = rx_mode;
5373 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5374 }
5375
5376 /* Disable and clear the exisitng sort before enabling a new sort. */
5377 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5378 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5379 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5380 }
5381
5382 /****************************************************************************/
5383 /* Called periodically to updates statistics from the controllers */
5384 /* statistics block. */
5385 /* */
5386 /* Returns: */
5387 /* Nothing. */
5388 /****************************************************************************/
5389 void
5390 bnx_stats_update(struct bnx_softc *sc)
5391 {
5392 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5393 struct statistics_block *stats;
5394
5395 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5396 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5397 BUS_DMASYNC_POSTREAD);
5398
5399 stats = (struct statistics_block *)sc->stats_block;
5400
5401 /*
5402 * Update the interface statistics from the
5403 * hardware statistics.
5404 */
5405 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5406
5407 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5408 (u_long)stats->stat_EtherStatsOverrsizePkts +
5409 (u_long)stats->stat_IfInMBUFDiscards +
5410 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5411 (u_long)stats->stat_Dot3StatsFCSErrors;
5412
5413 ifp->if_oerrors = (u_long)
5414 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5415 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5416 (u_long)stats->stat_Dot3StatsLateCollisions;
5417
5418 /*
5419 * Certain controllers don't report
5420 * carrier sense errors correctly.
5421 * See errata E11_5708CA0_1165.
5422 */
5423 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5424 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5425 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5426
5427 /*
5428 * Update the sysctl statistics from the
5429 * hardware statistics.
5430 */
5431 sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5432 (uint64_t) stats->stat_IfHCInOctets_lo;
5433
5434 sc->stat_IfHCInBadOctets =
5435 ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5436 (uint64_t) stats->stat_IfHCInBadOctets_lo;
5437
5438 sc->stat_IfHCOutOctets =
5439 ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5440 (uint64_t) stats->stat_IfHCOutOctets_lo;
5441
5442 sc->stat_IfHCOutBadOctets =
5443 ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5444 (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5445
5446 sc->stat_IfHCInUcastPkts =
5447 ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5448 (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5449
5450 sc->stat_IfHCInMulticastPkts =
5451 ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5452 (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5453
5454 sc->stat_IfHCInBroadcastPkts =
5455 ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5456 (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5457
5458 sc->stat_IfHCOutUcastPkts =
5459 ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5460 (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5461
5462 sc->stat_IfHCOutMulticastPkts =
5463 ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5464 (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5465
5466 sc->stat_IfHCOutBroadcastPkts =
5467 ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5468 (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5469
5470 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5471 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5472
5473 sc->stat_Dot3StatsCarrierSenseErrors =
5474 stats->stat_Dot3StatsCarrierSenseErrors;
5475
5476 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5477
5478 sc->stat_Dot3StatsAlignmentErrors =
5479 stats->stat_Dot3StatsAlignmentErrors;
5480
5481 sc->stat_Dot3StatsSingleCollisionFrames =
5482 stats->stat_Dot3StatsSingleCollisionFrames;
5483
5484 sc->stat_Dot3StatsMultipleCollisionFrames =
5485 stats->stat_Dot3StatsMultipleCollisionFrames;
5486
5487 sc->stat_Dot3StatsDeferredTransmissions =
5488 stats->stat_Dot3StatsDeferredTransmissions;
5489
5490 sc->stat_Dot3StatsExcessiveCollisions =
5491 stats->stat_Dot3StatsExcessiveCollisions;
5492
5493 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5494
5495 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5496
5497 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5498
5499 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5500
5501 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5502
5503 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5504
5505 sc->stat_EtherStatsPktsRx64Octets =
5506 stats->stat_EtherStatsPktsRx64Octets;
5507
5508 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5509 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5510
5511 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5512 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5513
5514 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5515 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5516
5517 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5518 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5519
5520 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5521 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5522
5523 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5524 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5525
5526 sc->stat_EtherStatsPktsTx64Octets =
5527 stats->stat_EtherStatsPktsTx64Octets;
5528
5529 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5530 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5531
5532 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5533 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5534
5535 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5536 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5537
5538 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5539 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5540
5541 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5542 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5543
5544 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5545 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5546
5547 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5548
5549 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5550
5551 sc->stat_OutXonSent = stats->stat_OutXonSent;
5552
5553 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5554
5555 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5556
5557 sc->stat_MacControlFramesReceived =
5558 stats->stat_MacControlFramesReceived;
5559
5560 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5561
5562 sc->stat_IfInFramesL2FilterDiscards =
5563 stats->stat_IfInFramesL2FilterDiscards;
5564
5565 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5566
5567 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5568
5569 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5570
5571 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5572
5573 sc->stat_CatchupInRuleCheckerDiscards =
5574 stats->stat_CatchupInRuleCheckerDiscards;
5575
5576 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5577
5578 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5579
5580 sc->stat_CatchupInRuleCheckerP4Hit =
5581 stats->stat_CatchupInRuleCheckerP4Hit;
5582
5583 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5584 }
5585
5586 void
5587 bnx_tick(void *xsc)
5588 {
5589 struct bnx_softc *sc = xsc;
5590 struct mii_data *mii;
5591 uint32_t msg;
5592 uint16_t prod, chain_prod;
5593 uint32_t prod_bseq;
5594 int s = splnet();
5595
5596 /* Tell the firmware that the driver is still running. */
5597 #ifdef BNX_DEBUG
5598 msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5599 #else
5600 msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5601 #endif
5602 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5603
5604 /* Update the statistics from the hardware statistics block. */
5605 bnx_stats_update(sc);
5606
5607 /* Schedule the next tick. */
5608 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5609
5610 mii = &sc->bnx_mii;
5611 mii_tick(mii);
5612
5613 /* try to get more RX buffers, just in case */
5614 prod = sc->rx_prod;
5615 prod_bseq = sc->rx_prod_bseq;
5616 chain_prod = RX_CHAIN_IDX(prod);
5617 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5618 sc->rx_prod = prod;
5619 sc->rx_prod_bseq = prod_bseq;
5620 splx(s);
5621 return;
5622 }
5623
5624 /****************************************************************************/
5625 /* BNX Debug Routines */
5626 /****************************************************************************/
5627 #ifdef BNX_DEBUG
5628
5629 /****************************************************************************/
5630 /* Prints out information about an mbuf. */
5631 /* */
5632 /* Returns: */
5633 /* Nothing. */
5634 /****************************************************************************/
5635 void
5636 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5637 {
5638 struct mbuf *mp = m;
5639
5640 if (m == NULL) {
5641 /* Index out of range. */
5642 aprint_error("mbuf ptr is null!\n");
5643 return;
5644 }
5645
5646 while (mp) {
5647 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5648 mp, mp->m_len);
5649
5650 if (mp->m_flags & M_EXT)
5651 aprint_debug("M_EXT ");
5652 if (mp->m_flags & M_PKTHDR)
5653 aprint_debug("M_PKTHDR ");
5654 aprint_debug("\n");
5655
5656 if (mp->m_flags & M_EXT)
5657 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5658 mp, mp->m_ext.ext_size);
5659
5660 mp = mp->m_next;
5661 }
5662 }
5663
5664 /****************************************************************************/
5665 /* Prints out the mbufs in the TX mbuf chain. */
5666 /* */
5667 /* Returns: */
5668 /* Nothing. */
5669 /****************************************************************************/
5670 void
5671 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5672 {
5673 #if 0
5674 struct mbuf *m;
5675 int i;
5676
5677 aprint_debug_dev(sc->bnx_dev,
5678 "----------------------------"
5679 " tx mbuf data "
5680 "----------------------------\n");
5681
5682 for (i = 0; i < count; i++) {
5683 m = sc->tx_mbuf_ptr[chain_prod];
5684 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5685 bnx_dump_mbuf(sc, m);
5686 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5687 }
5688
5689 aprint_debug_dev(sc->bnx_dev,
5690 "--------------------------------------------"
5691 "----------------------------\n");
5692 #endif
5693 }
5694
5695 /*
5696 * This routine prints the RX mbuf chain.
5697 */
5698 void
5699 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5700 {
5701 struct mbuf *m;
5702 int i;
5703
5704 aprint_debug_dev(sc->bnx_dev,
5705 "----------------------------"
5706 " rx mbuf data "
5707 "----------------------------\n");
5708
5709 for (i = 0; i < count; i++) {
5710 m = sc->rx_mbuf_ptr[chain_prod];
5711 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5712 bnx_dump_mbuf(sc, m);
5713 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5714 }
5715
5716
5717 aprint_debug_dev(sc->bnx_dev,
5718 "--------------------------------------------"
5719 "----------------------------\n");
5720 }
5721
5722 void
5723 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5724 {
5725 if (idx > MAX_TX_BD)
5726 /* Index out of range. */
5727 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5728 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5729 /* TX Chain page pointer. */
5730 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5731 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5732 txbd->tx_bd_haddr_lo);
5733 else
5734 /* Normal tx_bd entry. */
5735 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5736 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5737 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5738 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5739 txbd->tx_bd_flags);
5740 }
5741
5742 void
5743 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5744 {
5745 if (idx > MAX_RX_BD)
5746 /* Index out of range. */
5747 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5748 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5749 /* TX Chain page pointer. */
5750 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5751 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5752 rxbd->rx_bd_haddr_lo);
5753 else
5754 /* Normal tx_bd entry. */
5755 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5756 "0x%08X, flags = 0x%08X\n", idx,
5757 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5758 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5759 }
5760
5761 void
5762 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5763 {
5764 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5765 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5766 "tcp_udp_xsum = 0x%04X\n", idx,
5767 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5768 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5769 l2fhdr->l2_fhdr_tcp_udp_xsum);
5770 }
5771
5772 /*
5773 * This routine prints the TX chain.
5774 */
5775 void
5776 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5777 {
5778 struct tx_bd *txbd;
5779 int i;
5780
5781 /* First some info about the tx_bd chain structure. */
5782 aprint_debug_dev(sc->bnx_dev,
5783 "----------------------------"
5784 " tx_bd chain "
5785 "----------------------------\n");
5786
5787 BNX_PRINTF(sc,
5788 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5789 (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
5790
5791 BNX_PRINTF(sc,
5792 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5793 (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
5794
5795 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", TOTAL_TX_BD);
5796
5797 aprint_error_dev(sc->bnx_dev, ""
5798 "-----------------------------"
5799 " tx_bd data "
5800 "-----------------------------\n");
5801
5802 /* Now print out the tx_bd's themselves. */
5803 for (i = 0; i < count; i++) {
5804 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5805 bnx_dump_txbd(sc, tx_prod, txbd);
5806 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5807 }
5808
5809 aprint_debug_dev(sc->bnx_dev,
5810 "-----------------------------"
5811 "--------------"
5812 "-----------------------------\n");
5813 }
5814
5815 /*
5816 * This routine prints the RX chain.
5817 */
5818 void
5819 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5820 {
5821 struct rx_bd *rxbd;
5822 int i;
5823
5824 /* First some info about the tx_bd chain structure. */
5825 aprint_debug_dev(sc->bnx_dev,
5826 "----------------------------"
5827 " rx_bd chain "
5828 "----------------------------\n");
5829
5830 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5831
5832 BNX_PRINTF(sc,
5833 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5834 (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
5835
5836 BNX_PRINTF(sc,
5837 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5838 (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
5839
5840 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", TOTAL_RX_BD);
5841
5842 aprint_error_dev(sc->bnx_dev,
5843 "----------------------------"
5844 " rx_bd data "
5845 "----------------------------\n");
5846
5847 /* Now print out the rx_bd's themselves. */
5848 for (i = 0; i < count; i++) {
5849 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5850 bnx_dump_rxbd(sc, rx_prod, rxbd);
5851 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5852 }
5853
5854 aprint_debug_dev(sc->bnx_dev,
5855 "----------------------------"
5856 "--------------"
5857 "----------------------------\n");
5858 }
5859
5860 /*
5861 * This routine prints the status block.
5862 */
5863 void
5864 bnx_dump_status_block(struct bnx_softc *sc)
5865 {
5866 struct status_block *sblk;
5867 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5868 BUS_DMASYNC_POSTREAD);
5869
5870 sblk = sc->status_block;
5871
5872 aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5873 "-----------------------------\n");
5874
5875 BNX_PRINTF(sc,
5876 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5877 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5878 sblk->status_idx);
5879
5880 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5881 sblk->status_rx_quick_consumer_index0,
5882 sblk->status_tx_quick_consumer_index0);
5883
5884 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5885
5886 /* Theses indices are not used for normal L2 drivers. */
5887 if (sblk->status_rx_quick_consumer_index1 ||
5888 sblk->status_tx_quick_consumer_index1)
5889 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5890 sblk->status_rx_quick_consumer_index1,
5891 sblk->status_tx_quick_consumer_index1);
5892
5893 if (sblk->status_rx_quick_consumer_index2 ||
5894 sblk->status_tx_quick_consumer_index2)
5895 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5896 sblk->status_rx_quick_consumer_index2,
5897 sblk->status_tx_quick_consumer_index2);
5898
5899 if (sblk->status_rx_quick_consumer_index3 ||
5900 sblk->status_tx_quick_consumer_index3)
5901 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5902 sblk->status_rx_quick_consumer_index3,
5903 sblk->status_tx_quick_consumer_index3);
5904
5905 if (sblk->status_rx_quick_consumer_index4 ||
5906 sblk->status_rx_quick_consumer_index5)
5907 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5908 sblk->status_rx_quick_consumer_index4,
5909 sblk->status_rx_quick_consumer_index5);
5910
5911 if (sblk->status_rx_quick_consumer_index6 ||
5912 sblk->status_rx_quick_consumer_index7)
5913 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
5914 sblk->status_rx_quick_consumer_index6,
5915 sblk->status_rx_quick_consumer_index7);
5916
5917 if (sblk->status_rx_quick_consumer_index8 ||
5918 sblk->status_rx_quick_consumer_index9)
5919 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
5920 sblk->status_rx_quick_consumer_index8,
5921 sblk->status_rx_quick_consumer_index9);
5922
5923 if (sblk->status_rx_quick_consumer_index10 ||
5924 sblk->status_rx_quick_consumer_index11)
5925 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
5926 sblk->status_rx_quick_consumer_index10,
5927 sblk->status_rx_quick_consumer_index11);
5928
5929 if (sblk->status_rx_quick_consumer_index12 ||
5930 sblk->status_rx_quick_consumer_index13)
5931 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
5932 sblk->status_rx_quick_consumer_index12,
5933 sblk->status_rx_quick_consumer_index13);
5934
5935 if (sblk->status_rx_quick_consumer_index14 ||
5936 sblk->status_rx_quick_consumer_index15)
5937 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
5938 sblk->status_rx_quick_consumer_index14,
5939 sblk->status_rx_quick_consumer_index15);
5940
5941 if (sblk->status_completion_producer_index ||
5942 sblk->status_cmd_consumer_index)
5943 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
5944 sblk->status_completion_producer_index,
5945 sblk->status_cmd_consumer_index);
5946
5947 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
5948 "-----------------------------\n");
5949 }
5950
5951 /*
5952 * This routine prints the statistics block.
5953 */
5954 void
5955 bnx_dump_stats_block(struct bnx_softc *sc)
5956 {
5957 struct statistics_block *sblk;
5958 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5959 BUS_DMASYNC_POSTREAD);
5960
5961 sblk = sc->stats_block;
5962
5963 aprint_debug_dev(sc->bnx_dev, ""
5964 "-----------------------------"
5965 " Stats Block "
5966 "-----------------------------\n");
5967
5968 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
5969 "IfHcInBadOctets = 0x%08X:%08X\n",
5970 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
5971 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
5972
5973 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
5974 "IfHcOutBadOctets = 0x%08X:%08X\n",
5975 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
5976 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
5977
5978 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
5979 "IfHcInMulticastPkts = 0x%08X:%08X\n",
5980 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
5981 sblk->stat_IfHCInMulticastPkts_hi,
5982 sblk->stat_IfHCInMulticastPkts_lo);
5983
5984 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
5985 "IfHcOutUcastPkts = 0x%08X:%08X\n",
5986 sblk->stat_IfHCInBroadcastPkts_hi,
5987 sblk->stat_IfHCInBroadcastPkts_lo,
5988 sblk->stat_IfHCOutUcastPkts_hi,
5989 sblk->stat_IfHCOutUcastPkts_lo);
5990
5991 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
5992 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
5993 sblk->stat_IfHCOutMulticastPkts_hi,
5994 sblk->stat_IfHCOutMulticastPkts_lo,
5995 sblk->stat_IfHCOutBroadcastPkts_hi,
5996 sblk->stat_IfHCOutBroadcastPkts_lo);
5997
5998 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
5999 BNX_PRINTF(sc, "0x%08X : "
6000 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6001 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6002
6003 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6004 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6005 sblk->stat_Dot3StatsCarrierSenseErrors);
6006
6007 if (sblk->stat_Dot3StatsFCSErrors)
6008 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6009 sblk->stat_Dot3StatsFCSErrors);
6010
6011 if (sblk->stat_Dot3StatsAlignmentErrors)
6012 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6013 sblk->stat_Dot3StatsAlignmentErrors);
6014
6015 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6016 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6017 sblk->stat_Dot3StatsSingleCollisionFrames);
6018
6019 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6020 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6021 sblk->stat_Dot3StatsMultipleCollisionFrames);
6022
6023 if (sblk->stat_Dot3StatsDeferredTransmissions)
6024 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6025 sblk->stat_Dot3StatsDeferredTransmissions);
6026
6027 if (sblk->stat_Dot3StatsExcessiveCollisions)
6028 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6029 sblk->stat_Dot3StatsExcessiveCollisions);
6030
6031 if (sblk->stat_Dot3StatsLateCollisions)
6032 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6033 sblk->stat_Dot3StatsLateCollisions);
6034
6035 if (sblk->stat_EtherStatsCollisions)
6036 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6037 sblk->stat_EtherStatsCollisions);
6038
6039 if (sblk->stat_EtherStatsFragments)
6040 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6041 sblk->stat_EtherStatsFragments);
6042
6043 if (sblk->stat_EtherStatsJabbers)
6044 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6045 sblk->stat_EtherStatsJabbers);
6046
6047 if (sblk->stat_EtherStatsUndersizePkts)
6048 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6049 sblk->stat_EtherStatsUndersizePkts);
6050
6051 if (sblk->stat_EtherStatsOverrsizePkts)
6052 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6053 sblk->stat_EtherStatsOverrsizePkts);
6054
6055 if (sblk->stat_EtherStatsPktsRx64Octets)
6056 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6057 sblk->stat_EtherStatsPktsRx64Octets);
6058
6059 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6060 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6061 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6062
6063 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6064 BNX_PRINTF(sc, "0x%08X : "
6065 "EtherStatsPktsRx128Octetsto255Octets\n",
6066 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6067
6068 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6069 BNX_PRINTF(sc, "0x%08X : "
6070 "EtherStatsPktsRx256Octetsto511Octets\n",
6071 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6072
6073 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6074 BNX_PRINTF(sc, "0x%08X : "
6075 "EtherStatsPktsRx512Octetsto1023Octets\n",
6076 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6077
6078 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6079 BNX_PRINTF(sc, "0x%08X : "
6080 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6081 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6082
6083 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6084 BNX_PRINTF(sc, "0x%08X : "
6085 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6086 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6087
6088 if (sblk->stat_EtherStatsPktsTx64Octets)
6089 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6090 sblk->stat_EtherStatsPktsTx64Octets);
6091
6092 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6093 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6094 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6095
6096 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6097 BNX_PRINTF(sc, "0x%08X : "
6098 "EtherStatsPktsTx128Octetsto255Octets\n",
6099 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6100
6101 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6102 BNX_PRINTF(sc, "0x%08X : "
6103 "EtherStatsPktsTx256Octetsto511Octets\n",
6104 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6105
6106 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6107 BNX_PRINTF(sc, "0x%08X : "
6108 "EtherStatsPktsTx512Octetsto1023Octets\n",
6109 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6110
6111 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6112 BNX_PRINTF(sc, "0x%08X : "
6113 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6114 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6115
6116 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6117 BNX_PRINTF(sc, "0x%08X : "
6118 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6119 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6120
6121 if (sblk->stat_XonPauseFramesReceived)
6122 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6123 sblk->stat_XonPauseFramesReceived);
6124
6125 if (sblk->stat_XoffPauseFramesReceived)
6126 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6127 sblk->stat_XoffPauseFramesReceived);
6128
6129 if (sblk->stat_OutXonSent)
6130 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6131 sblk->stat_OutXonSent);
6132
6133 if (sblk->stat_OutXoffSent)
6134 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6135 sblk->stat_OutXoffSent);
6136
6137 if (sblk->stat_FlowControlDone)
6138 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6139 sblk->stat_FlowControlDone);
6140
6141 if (sblk->stat_MacControlFramesReceived)
6142 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6143 sblk->stat_MacControlFramesReceived);
6144
6145 if (sblk->stat_XoffStateEntered)
6146 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6147 sblk->stat_XoffStateEntered);
6148
6149 if (sblk->stat_IfInFramesL2FilterDiscards)
6150 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6151 sblk->stat_IfInFramesL2FilterDiscards);
6152
6153 if (sblk->stat_IfInRuleCheckerDiscards)
6154 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6155 sblk->stat_IfInRuleCheckerDiscards);
6156
6157 if (sblk->stat_IfInFTQDiscards)
6158 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6159 sblk->stat_IfInFTQDiscards);
6160
6161 if (sblk->stat_IfInMBUFDiscards)
6162 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6163 sblk->stat_IfInMBUFDiscards);
6164
6165 if (sblk->stat_IfInRuleCheckerP4Hit)
6166 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6167 sblk->stat_IfInRuleCheckerP4Hit);
6168
6169 if (sblk->stat_CatchupInRuleCheckerDiscards)
6170 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6171 sblk->stat_CatchupInRuleCheckerDiscards);
6172
6173 if (sblk->stat_CatchupInFTQDiscards)
6174 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6175 sblk->stat_CatchupInFTQDiscards);
6176
6177 if (sblk->stat_CatchupInMBUFDiscards)
6178 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6179 sblk->stat_CatchupInMBUFDiscards);
6180
6181 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6182 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6183 sblk->stat_CatchupInRuleCheckerP4Hit);
6184
6185 aprint_debug_dev(sc->bnx_dev,
6186 "-----------------------------"
6187 "--------------"
6188 "-----------------------------\n");
6189 }
6190
6191 void
6192 bnx_dump_driver_state(struct bnx_softc *sc)
6193 {
6194 aprint_debug_dev(sc->bnx_dev,
6195 "-----------------------------"
6196 " Driver State "
6197 "-----------------------------\n");
6198
6199 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6200 "address\n", sc);
6201
6202 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6203 sc->status_block);
6204
6205 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6206 "address\n", sc->stats_block);
6207
6208 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6209 "adddress\n", sc->tx_bd_chain);
6210
6211 #if 0
6212 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6213 sc->rx_bd_chain);
6214
6215 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6216 sc->tx_mbuf_ptr);
6217 #endif
6218
6219 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6220 sc->rx_mbuf_ptr);
6221
6222 BNX_PRINTF(sc,
6223 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6224 sc->interrupts_generated);
6225
6226 BNX_PRINTF(sc,
6227 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6228 sc->rx_interrupts);
6229
6230 BNX_PRINTF(sc,
6231 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6232 sc->tx_interrupts);
6233
6234 BNX_PRINTF(sc,
6235 " 0x%08X - (sc->last_status_idx) status block index\n",
6236 sc->last_status_idx);
6237
6238 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6239 sc->tx_prod);
6240
6241 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6242 sc->tx_cons);
6243
6244 BNX_PRINTF(sc,
6245 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6246 sc->tx_prod_bseq);
6247 BNX_PRINTF(sc,
6248 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6249 sc->tx_mbuf_alloc);
6250
6251 BNX_PRINTF(sc,
6252 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6253 sc->used_tx_bd);
6254
6255 BNX_PRINTF(sc,
6256 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6257 sc->tx_hi_watermark, sc->max_tx_bd);
6258
6259
6260 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6261 sc->rx_prod);
6262
6263 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6264 sc->rx_cons);
6265
6266 BNX_PRINTF(sc,
6267 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6268 sc->rx_prod_bseq);
6269
6270 BNX_PRINTF(sc,
6271 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6272 sc->rx_mbuf_alloc);
6273
6274 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6275 sc->free_rx_bd);
6276
6277 BNX_PRINTF(sc,
6278 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6279 sc->rx_low_watermark, sc->max_rx_bd);
6280
6281 BNX_PRINTF(sc,
6282 " 0x%08X - (sc->mbuf_alloc_failed) "
6283 "mbuf alloc failures\n",
6284 sc->mbuf_alloc_failed);
6285
6286 BNX_PRINTF(sc,
6287 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6288 "simulated mbuf alloc failures\n",
6289 sc->mbuf_sim_alloc_failed);
6290
6291 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6292 "-----------------------------\n");
6293 }
6294
6295 void
6296 bnx_dump_hw_state(struct bnx_softc *sc)
6297 {
6298 uint32_t val1;
6299 int i;
6300
6301 aprint_debug_dev(sc->bnx_dev,
6302 "----------------------------"
6303 " Hardware State "
6304 "----------------------------\n");
6305
6306 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6307
6308 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6309 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6310 val1, BNX_MISC_ENABLE_STATUS_BITS);
6311
6312 val1 = REG_RD(sc, BNX_DMA_STATUS);
6313 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6314
6315 val1 = REG_RD(sc, BNX_CTX_STATUS);
6316 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6317
6318 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6319 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6320 BNX_EMAC_STATUS);
6321
6322 val1 = REG_RD(sc, BNX_RPM_STATUS);
6323 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6324
6325 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6326 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6327 BNX_TBDR_STATUS);
6328
6329 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6330 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6331 BNX_TDMA_STATUS);
6332
6333 val1 = REG_RD(sc, BNX_HC_STATUS);
6334 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6335
6336 aprint_debug_dev(sc->bnx_dev,
6337 "----------------------------"
6338 "----------------"
6339 "----------------------------\n");
6340
6341 aprint_debug_dev(sc->bnx_dev,
6342 "----------------------------"
6343 " Register Dump "
6344 "----------------------------\n");
6345
6346 for (i = 0x400; i < 0x8000; i += 0x10)
6347 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6348 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6349 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6350
6351 aprint_debug_dev(sc->bnx_dev,
6352 "----------------------------"
6353 "----------------"
6354 "----------------------------\n");
6355 }
6356
6357 void
6358 bnx_breakpoint(struct bnx_softc *sc)
6359 {
6360 /* Unreachable code to shut the compiler up about unused functions. */
6361 if (0) {
6362 bnx_dump_txbd(sc, 0, NULL);
6363 bnx_dump_rxbd(sc, 0, NULL);
6364 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6365 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6366 bnx_dump_l2fhdr(sc, 0, NULL);
6367 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6368 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6369 bnx_dump_status_block(sc);
6370 bnx_dump_stats_block(sc);
6371 bnx_dump_driver_state(sc);
6372 bnx_dump_hw_state(sc);
6373 }
6374
6375 bnx_dump_driver_state(sc);
6376 /* Print the important status block fields. */
6377 bnx_dump_status_block(sc);
6378
6379 #if 0
6380 /* Call the debugger. */
6381 breakpoint();
6382 #endif
6383
6384 return;
6385 }
6386 #endif
6387