Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.55
      1 /*	$NetBSD: if_bnx.c,v 1.55 2014/07/01 15:23:35 msaitoh Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
      3 
      4 /*-
      5  * Copyright (c) 2006 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.55 2014/07/01 15:23:35 msaitoh Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, B0, B1, B2 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/pci/if_bnxvar.h>
     64 
     65 #include <dev/microcode/bnx/bnxfw.h>
     66 
     67 /****************************************************************************/
     68 /* BNX Driver Version                                                       */
     69 /****************************************************************************/
     70 #define BNX_DRIVER_VERSION	"v0.9.6"
     71 
     72 /****************************************************************************/
     73 /* BNX Debug Options                                                        */
     74 /****************************************************************************/
     75 #ifdef BNX_DEBUG
     76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     77 
     78 	/*          0 = Never              */
     79 	/*          1 = 1 in 2,147,483,648 */
     80 	/*        256 = 1 in     8,388,608 */
     81 	/*       2048 = 1 in     1,048,576 */
     82 	/*      65536 = 1 in        32,768 */
     83 	/*    1048576 = 1 in         2,048 */
     84 	/*  268435456 =	1 in             8 */
     85 	/*  536870912 = 1 in             4 */
     86 	/* 1073741824 = 1 in             2 */
     87 
     88 	/* Controls how often the l2_fhdr frame error check will fail. */
     89 	int bnx_debug_l2fhdr_status_check = 0;
     90 
     91 	/* Controls how often the unexpected attention check will fail. */
     92 	int bnx_debug_unexpected_attention = 0;
     93 
     94 	/* Controls how often to simulate an mbuf allocation failure. */
     95 	int bnx_debug_mbuf_allocation_failure = 0;
     96 
     97 	/* Controls how often to simulate a DMA mapping failure. */
     98 	int bnx_debug_dma_map_addr_failure = 0;
     99 
    100 	/* Controls how often to simulate a bootcode failure. */
    101 	int bnx_debug_bootcode_running_failure = 0;
    102 #endif
    103 
    104 /****************************************************************************/
    105 /* PCI Device ID Table                                                      */
    106 /*                                                                          */
    107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    108 /****************************************************************************/
    109 static const struct bnx_product {
    110 	pci_vendor_id_t		bp_vendor;
    111 	pci_product_id_t	bp_product;
    112 	pci_vendor_id_t		bp_subvendor;
    113 	pci_product_id_t	bp_subproduct;
    114 	const char		*bp_name;
    115 } bnx_devices[] = {
    116 #ifdef PCI_SUBPRODUCT_HP_NC370T
    117 	{
    118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    120 	  "HP NC370T Multifunction Gigabit Server Adapter"
    121 	},
    122 #endif
    123 #ifdef PCI_SUBPRODUCT_HP_NC370i
    124 	{
    125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    127 	  "HP NC370i Multifunction Gigabit Server Adapter"
    128 	},
    129 #endif
    130 	{
    131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    132 	  0, 0,
    133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    134 	},
    135 #ifdef PCI_SUBPRODUCT_HP_NC370F
    136 	{
    137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    139 	  "HP NC370F Multifunction Gigabit Server Adapter"
    140 	},
    141 #endif
    142 	{
    143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    144 	  0, 0,
    145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    146 	},
    147 	{
    148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    149 	  0, 0,
    150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    151 	},
    152 	{
    153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    154 	  0, 0,
    155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    156 	},
    157 	{
    158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    159 	  0, 0,
    160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    161 	},
    162 	{
    163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    164 	  0, 0,
    165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    166 	},
    167 	{
    168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    169 	  0, 0,
    170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    171 	},
    172 	{
    173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    174 	  0, 0,
    175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    176 	},
    177 };
    178 
    179 /****************************************************************************/
    180 /* Supported Flash NVRAM device data.                                       */
    181 /****************************************************************************/
    182 static struct flash_spec flash_table[] =
    183 {
    184 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    185 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    186 	/* Slow EEPROM */
    187 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    188 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    189 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    190 	 "EEPROM - slow"},
    191 	/* Expansion entry 0001 */
    192 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    195 	 "Entry 0001"},
    196 	/* Saifun SA25F010 (non-buffered flash) */
    197 	/* strap, cfg1, & write1 need updates */
    198 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    199 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    200 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    201 	 "Non-buffered flash (128kB)"},
    202 	/* Saifun SA25F020 (non-buffered flash) */
    203 	/* strap, cfg1, & write1 need updates */
    204 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    205 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    206 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    207 	 "Non-buffered flash (256kB)"},
    208 	/* Expansion entry 0100 */
    209 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    210 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    211 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    212 	 "Entry 0100"},
    213 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    214 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    215 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    216 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    217 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    218 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    219 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    220 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    221 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    222 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    223 	/* Saifun SA25F005 (non-buffered flash) */
    224 	/* strap, cfg1, & write1 need updates */
    225 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    228 	 "Non-buffered flash (64kB)"},
    229 	/* Fast EEPROM */
    230 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    231 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    232 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    233 	 "EEPROM - fast"},
    234 	/* Expansion entry 1001 */
    235 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    236 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    237 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    238 	 "Entry 1001"},
    239 	/* Expansion entry 1010 */
    240 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    241 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    242 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    243 	 "Entry 1010"},
    244 	/* ATMEL AT45DB011B (buffered flash) */
    245 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    246 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    247 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    248 	 "Buffered flash (128kB)"},
    249 	/* Expansion entry 1100 */
    250 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    251 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    252 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    253 	 "Entry 1100"},
    254 	/* Expansion entry 1101 */
    255 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    256 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    257 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    258 	 "Entry 1101"},
    259 	/* Ateml Expansion entry 1110 */
    260 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    261 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    262 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    263 	 "Entry 1110 (Atmel)"},
    264 	/* ATMEL AT45DB021B (buffered flash) */
    265 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    266 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    267 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    268 	 "Buffered flash (256kB)"},
    269 };
    270 
    271 /*
    272  * The BCM5709 controllers transparently handle the
    273  * differences between Atmel 264 byte pages and all
    274  * flash devices which use 256 byte pages, so no
    275  * logical-to-physical mapping is required in the
    276  * driver.
    277  */
    278 static struct flash_spec flash_5709 = {
    279 	.flags		= BNX_NV_BUFFERED,
    280 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    281 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    282 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    283 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    284 	.name		= "5709 buffered flash (256kB)",
    285 };
    286 
    287 /****************************************************************************/
    288 /* OpenBSD device entry points.                                             */
    289 /****************************************************************************/
    290 static int	bnx_probe(device_t, cfdata_t, void *);
    291 void	bnx_attach(device_t, device_t, void *);
    292 int	bnx_detach(device_t, int);
    293 
    294 /****************************************************************************/
    295 /* BNX Debug Data Structure Dump Routines                                   */
    296 /****************************************************************************/
    297 #ifdef BNX_DEBUG
    298 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    299 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    300 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    301 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    302 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    303 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    304 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    305 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    306 void	bnx_dump_status_block(struct bnx_softc *);
    307 void	bnx_dump_stats_block(struct bnx_softc *);
    308 void	bnx_dump_driver_state(struct bnx_softc *);
    309 void	bnx_dump_hw_state(struct bnx_softc *);
    310 void	bnx_breakpoint(struct bnx_softc *);
    311 #endif
    312 
    313 /****************************************************************************/
    314 /* BNX Register/Memory Access Routines                                      */
    315 /****************************************************************************/
    316 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
    317 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
    318 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
    319 int	bnx_miibus_read_reg(device_t, int, int);
    320 void	bnx_miibus_write_reg(device_t, int, int, int);
    321 void	bnx_miibus_statchg(struct ifnet *);
    322 
    323 /****************************************************************************/
    324 /* BNX NVRAM Access Routines                                                */
    325 /****************************************************************************/
    326 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    327 int	bnx_release_nvram_lock(struct bnx_softc *);
    328 void	bnx_enable_nvram_access(struct bnx_softc *);
    329 void	bnx_disable_nvram_access(struct bnx_softc *);
    330 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
    331 	    uint32_t);
    332 int	bnx_init_nvram(struct bnx_softc *);
    333 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
    334 int	bnx_nvram_test(struct bnx_softc *);
    335 #ifdef BNX_NVRAM_WRITE_SUPPORT
    336 int	bnx_enable_nvram_write(struct bnx_softc *);
    337 void	bnx_disable_nvram_write(struct bnx_softc *);
    338 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
    339 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
    340 	    uint32_t);
    341 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
    342 #endif
    343 
    344 /****************************************************************************/
    345 /*                                                                          */
    346 /****************************************************************************/
    347 void	bnx_get_media(struct bnx_softc *);
    348 void	bnx_init_media(struct bnx_softc *);
    349 int	bnx_dma_alloc(struct bnx_softc *);
    350 void	bnx_dma_free(struct bnx_softc *);
    351 void	bnx_release_resources(struct bnx_softc *);
    352 
    353 /****************************************************************************/
    354 /* BNX Firmware Synchronization and Load                                    */
    355 /****************************************************************************/
    356 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
    357 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t,
    358 	    uint32_t);
    359 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    360 	    struct fw_info *);
    361 void	bnx_init_cpus(struct bnx_softc *);
    362 
    363 void	bnx_stop(struct ifnet *, int);
    364 int	bnx_reset(struct bnx_softc *, uint32_t);
    365 int	bnx_chipinit(struct bnx_softc *);
    366 int	bnx_blockinit(struct bnx_softc *);
    367 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
    368 	    uint16_t *, uint32_t *);
    369 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
    370 
    371 int	bnx_init_tx_chain(struct bnx_softc *);
    372 void	bnx_init_tx_context(struct bnx_softc *);
    373 int	bnx_init_rx_chain(struct bnx_softc *);
    374 void	bnx_init_rx_context(struct bnx_softc *);
    375 void	bnx_free_rx_chain(struct bnx_softc *);
    376 void	bnx_free_tx_chain(struct bnx_softc *);
    377 
    378 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    379 void	bnx_start(struct ifnet *);
    380 int	bnx_ioctl(struct ifnet *, u_long, void *);
    381 void	bnx_watchdog(struct ifnet *);
    382 int	bnx_init(struct ifnet *);
    383 
    384 void	bnx_init_context(struct bnx_softc *);
    385 void	bnx_get_mac_addr(struct bnx_softc *);
    386 void	bnx_set_mac_addr(struct bnx_softc *);
    387 void	bnx_phy_intr(struct bnx_softc *);
    388 void	bnx_rx_intr(struct bnx_softc *);
    389 void	bnx_tx_intr(struct bnx_softc *);
    390 void	bnx_disable_intr(struct bnx_softc *);
    391 void	bnx_enable_intr(struct bnx_softc *);
    392 
    393 int	bnx_intr(void *);
    394 void	bnx_iff(struct bnx_softc *);
    395 void	bnx_stats_update(struct bnx_softc *);
    396 void	bnx_tick(void *);
    397 
    398 struct pool *bnx_tx_pool = NULL;
    399 void	bnx_alloc_pkts(struct work *, void *);
    400 
    401 /****************************************************************************/
    402 /* OpenBSD device dispatch table.                                           */
    403 /****************************************************************************/
    404 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    405     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    406 
    407 /****************************************************************************/
    408 /* Device probe function.                                                   */
    409 /*                                                                          */
    410 /* Compares the device to the driver's list of supported devices and        */
    411 /* reports back to the OS whether this is the right driver for the device.  */
    412 /*                                                                          */
    413 /* Returns:                                                                 */
    414 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    415 /****************************************************************************/
    416 static const struct bnx_product *
    417 bnx_lookup(const struct pci_attach_args *pa)
    418 {
    419 	int i;
    420 	pcireg_t subid;
    421 
    422 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    423 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    424 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    425 			continue;
    426 		if (!bnx_devices[i].bp_subvendor)
    427 			return &bnx_devices[i];
    428 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    429 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    430 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    431 			return &bnx_devices[i];
    432 	}
    433 
    434 	return NULL;
    435 }
    436 static int
    437 bnx_probe(device_t parent, cfdata_t match, void *aux)
    438 {
    439 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    440 
    441 	if (bnx_lookup(pa) != NULL)
    442 		return 1;
    443 
    444 	return 0;
    445 }
    446 
    447 /****************************************************************************/
    448 /* Device attach function.                                                  */
    449 /*                                                                          */
    450 /* Allocates device resources, performs secondary chip identification,      */
    451 /* resets and initializes the hardware, and initializes driver instance     */
    452 /* variables.                                                               */
    453 /*                                                                          */
    454 /* Returns:                                                                 */
    455 /*   0 on success, positive value on failure.                               */
    456 /****************************************************************************/
    457 void
    458 bnx_attach(device_t parent, device_t self, void *aux)
    459 {
    460 	const struct bnx_product *bp;
    461 	struct bnx_softc	*sc = device_private(self);
    462 	prop_dictionary_t	dict;
    463 	struct pci_attach_args	*pa = aux;
    464 	pci_chipset_tag_t	pc = pa->pa_pc;
    465 	pci_intr_handle_t	ih;
    466 	const char 		*intrstr = NULL;
    467 	uint32_t		command;
    468 	struct ifnet		*ifp;
    469 	uint32_t		val;
    470 	int			mii_flags = MIIF_FORCEANEG;
    471 	pcireg_t		memtype;
    472 	char intrbuf[PCI_INTRSTR_LEN];
    473 
    474 	if (bnx_tx_pool == NULL) {
    475 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    476 		if (bnx_tx_pool != NULL) {
    477 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    478 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    479 		} else {
    480 			aprint_error(": can't alloc bnx_tx_pool\n");
    481 			return;
    482 		}
    483 	}
    484 
    485 	bp = bnx_lookup(pa);
    486 	if (bp == NULL)
    487 		panic("unknown device");
    488 
    489 	sc->bnx_dev = self;
    490 
    491 	aprint_naive("\n");
    492 	aprint_normal(": %s\n", bp->bp_name);
    493 
    494 	sc->bnx_pa = *pa;
    495 
    496 	/*
    497 	 * Map control/status registers.
    498 	*/
    499 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    500 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    501 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    502 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    503 
    504 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    505 		aprint_error_dev(sc->bnx_dev,
    506 		    "failed to enable memory mapping!\n");
    507 		return;
    508 	}
    509 
    510 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    511 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    512 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    513 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    514 		return;
    515 	}
    516 
    517 	if (pci_intr_map(pa, &ih)) {
    518 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    519 		goto bnx_attach_fail;
    520 	}
    521 
    522 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    523 
    524 	/*
    525 	 * Configure byte swap and enable indirect register access.
    526 	 * Rely on CPU to do target byte swapping on big endian systems.
    527 	 * Access to registers outside of PCI configurtion space are not
    528 	 * valid until this is done.
    529 	 */
    530 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    531 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    532 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    533 
    534 	/* Save ASIC revsion info. */
    535 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    536 
    537 	/*
    538 	 * Find the base address for shared memory access.
    539 	 * Newer versions of bootcode use a signature and offset
    540 	 * while older versions use a fixed address.
    541 	 */
    542 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    543 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    544 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    545 		    (sc->bnx_pa.pa_function << 2));
    546 	else
    547 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    548 
    549 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    550 
    551 	/* Set initial device and PHY flags */
    552 	sc->bnx_flags = 0;
    553 	sc->bnx_phy_flags = 0;
    554 
    555 	/* Get PCI bus information (speed and type). */
    556 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    557 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    558 		uint32_t clkreg;
    559 
    560 		sc->bnx_flags |= BNX_PCIX_FLAG;
    561 
    562 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    563 
    564 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    565 		switch (clkreg) {
    566 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    567 			sc->bus_speed_mhz = 133;
    568 			break;
    569 
    570 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    571 			sc->bus_speed_mhz = 100;
    572 			break;
    573 
    574 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    575 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    576 			sc->bus_speed_mhz = 66;
    577 			break;
    578 
    579 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    580 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    581 			sc->bus_speed_mhz = 50;
    582 			break;
    583 
    584 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    585 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    586 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    587 			sc->bus_speed_mhz = 33;
    588 			break;
    589 		}
    590 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    591 			sc->bus_speed_mhz = 66;
    592 		else
    593 			sc->bus_speed_mhz = 33;
    594 
    595 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    596 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    597 
    598 	/* Reset the controller. */
    599 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    600 		goto bnx_attach_fail;
    601 
    602 	/* Initialize the controller. */
    603 	if (bnx_chipinit(sc)) {
    604 		aprint_error_dev(sc->bnx_dev,
    605 		    "Controller initialization failed!\n");
    606 		goto bnx_attach_fail;
    607 	}
    608 
    609 	/* Perform NVRAM test. */
    610 	if (bnx_nvram_test(sc)) {
    611 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    612 		goto bnx_attach_fail;
    613 	}
    614 
    615 	/* Fetch the permanent Ethernet MAC address. */
    616 	bnx_get_mac_addr(sc);
    617 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    618 	    ether_sprintf(sc->eaddr));
    619 
    620 	/*
    621 	 * Trip points control how many BDs
    622 	 * should be ready before generating an
    623 	 * interrupt while ticks control how long
    624 	 * a BD can sit in the chain before
    625 	 * generating an interrupt.  Set the default
    626 	 * values for the RX and TX rings.
    627 	 */
    628 
    629 #ifdef BNX_DEBUG
    630 	/* Force more frequent interrupts. */
    631 	sc->bnx_tx_quick_cons_trip_int = 1;
    632 	sc->bnx_tx_quick_cons_trip     = 1;
    633 	sc->bnx_tx_ticks_int           = 0;
    634 	sc->bnx_tx_ticks               = 0;
    635 
    636 	sc->bnx_rx_quick_cons_trip_int = 1;
    637 	sc->bnx_rx_quick_cons_trip     = 1;
    638 	sc->bnx_rx_ticks_int           = 0;
    639 	sc->bnx_rx_ticks               = 0;
    640 #else
    641 	sc->bnx_tx_quick_cons_trip_int = 20;
    642 	sc->bnx_tx_quick_cons_trip     = 20;
    643 	sc->bnx_tx_ticks_int           = 80;
    644 	sc->bnx_tx_ticks               = 80;
    645 
    646 	sc->bnx_rx_quick_cons_trip_int = 6;
    647 	sc->bnx_rx_quick_cons_trip     = 6;
    648 	sc->bnx_rx_ticks_int           = 18;
    649 	sc->bnx_rx_ticks               = 18;
    650 #endif
    651 
    652 	/* Update statistics once every second. */
    653 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    654 
    655 	/* Find the media type for the adapter. */
    656 	bnx_get_media(sc);
    657 
    658 	/*
    659 	 * Store config data needed by the PHY driver for
    660 	 * backplane applications
    661 	 */
    662 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    663 	    BNX_SHARED_HW_CFG_CONFIG);
    664 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    665 	    BNX_PORT_HW_CFG_CONFIG);
    666 
    667 	/* Allocate DMA memory resources. */
    668 	sc->bnx_dmatag = pa->pa_dmat;
    669 	if (bnx_dma_alloc(sc)) {
    670 		aprint_error_dev(sc->bnx_dev,
    671 		    "DMA resource allocation failed!\n");
    672 		goto bnx_attach_fail;
    673 	}
    674 
    675 	/* Initialize the ifnet interface. */
    676 	ifp = &sc->bnx_ec.ec_if;
    677 	ifp->if_softc = sc;
    678 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    679 	ifp->if_ioctl = bnx_ioctl;
    680 	ifp->if_stop = bnx_stop;
    681 	ifp->if_start = bnx_start;
    682 	ifp->if_init = bnx_init;
    683 	ifp->if_timer = 0;
    684 	ifp->if_watchdog = bnx_watchdog;
    685 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    686 	IFQ_SET_READY(&ifp->if_snd);
    687 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    688 
    689 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    690 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    691 
    692 	ifp->if_capabilities |=
    693 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    694 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    695 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    696 
    697 	/* Hookup IRQ last. */
    698 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    699 	if (sc->bnx_intrhand == NULL) {
    700 		aprint_error_dev(self, "couldn't establish interrupt");
    701 		if (intrstr != NULL)
    702 			aprint_error(" at %s", intrstr);
    703 		aprint_error("\n");
    704 		goto bnx_attach_fail;
    705 	}
    706 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    707 
    708 	/* create workqueue to handle packet allocations */
    709 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    710 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    711 		aprint_error_dev(self, "failed to create workqueue\n");
    712 		goto bnx_attach_fail;
    713 	}
    714 
    715 	sc->bnx_mii.mii_ifp = ifp;
    716 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    717 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    718 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    719 
    720 	/* Handle any special PHY initialization for SerDes PHYs. */
    721 	bnx_init_media(sc);
    722 
    723 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    724 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    725 	    ether_mediastatus);
    726 
    727 	/* set phyflags and chipid before mii_attach() */
    728 	dict = device_properties(self);
    729 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    730 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    731 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
    732 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
    733 
    734 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    735 		mii_flags |= MIIF_HAVEFIBER;
    736 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    737 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    738 
    739 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    740 		aprint_error_dev(self, "no PHY found!\n");
    741 		ifmedia_add(&sc->bnx_mii.mii_media,
    742 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    743 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
    744 	} else
    745 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
    746 
    747 	/* Attach to the Ethernet interface list. */
    748 	if_attach(ifp);
    749 	ether_ifattach(ifp,sc->eaddr);
    750 
    751 	callout_init(&sc->bnx_timeout, 0);
    752 
    753 	if (pmf_device_register(self, NULL, NULL))
    754 		pmf_class_network_register(self, ifp);
    755 	else
    756 		aprint_error_dev(self, "couldn't establish power handler\n");
    757 
    758 	/* Print some important debugging info. */
    759 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    760 
    761 	goto bnx_attach_exit;
    762 
    763 bnx_attach_fail:
    764 	bnx_release_resources(sc);
    765 
    766 bnx_attach_exit:
    767 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    768 }
    769 
    770 /****************************************************************************/
    771 /* Device detach function.                                                  */
    772 /*                                                                          */
    773 /* Stops the controller, resets the controller, and releases resources.     */
    774 /*                                                                          */
    775 /* Returns:                                                                 */
    776 /*   0 on success, positive value on failure.                               */
    777 /****************************************************************************/
    778 int
    779 bnx_detach(device_t dev, int flags)
    780 {
    781 	int s;
    782 	struct bnx_softc *sc;
    783 	struct ifnet *ifp;
    784 
    785 	sc = device_private(dev);
    786 	ifp = &sc->bnx_ec.ec_if;
    787 
    788 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    789 
    790 	/* Stop and reset the controller. */
    791 	s = splnet();
    792 	if (ifp->if_flags & IFF_RUNNING)
    793 		bnx_stop(ifp, 1);
    794 	else {
    795 		/* Disable the transmit/receive blocks. */
    796 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
    797 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
    798 		DELAY(20);
    799 		bnx_disable_intr(sc);
    800 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
    801 	}
    802 
    803 	splx(s);
    804 
    805 	pmf_device_deregister(dev);
    806 	callout_destroy(&sc->bnx_timeout);
    807 	ether_ifdetach(ifp);
    808 	workqueue_destroy(sc->bnx_wq);
    809 
    810 	/* Delete all remaining media. */
    811 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    812 
    813 	if_detach(ifp);
    814 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    815 
    816 	/* Release all remaining resources. */
    817 	bnx_release_resources(sc);
    818 
    819 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    820 
    821 	return 0;
    822 }
    823 
    824 /****************************************************************************/
    825 /* Indirect register read.                                                  */
    826 /*                                                                          */
    827 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    828 /* configuration space.  Using this mechanism avoids issues with posted     */
    829 /* reads but is much slower than memory-mapped I/O.                         */
    830 /*                                                                          */
    831 /* Returns:                                                                 */
    832 /*   The value of the register.                                             */
    833 /****************************************************************************/
    834 uint32_t
    835 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
    836 {
    837 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    838 
    839 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    840 	    offset);
    841 #ifdef BNX_DEBUG
    842 	{
    843 		uint32_t val;
    844 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    845 		    BNX_PCICFG_REG_WINDOW);
    846 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    847 		    "val = 0x%08X\n", __func__, offset, val);
    848 		return val;
    849 	}
    850 #else
    851 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    852 #endif
    853 }
    854 
    855 /****************************************************************************/
    856 /* Indirect register write.                                                 */
    857 /*                                                                          */
    858 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    859 /* configuration space.  Using this mechanism avoids issues with posted     */
    860 /* writes but is muchh slower than memory-mapped I/O.                       */
    861 /*                                                                          */
    862 /* Returns:                                                                 */
    863 /*   Nothing.                                                               */
    864 /****************************************************************************/
    865 void
    866 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
    867 {
    868 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    869 
    870 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    871 		__func__, offset, val);
    872 
    873 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    874 	    offset);
    875 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    876 }
    877 
    878 /****************************************************************************/
    879 /* Context memory write.                                                    */
    880 /*                                                                          */
    881 /* The NetXtreme II controller uses context memory to track connection      */
    882 /* information for L2 and higher network protocols.                         */
    883 /*                                                                          */
    884 /* Returns:                                                                 */
    885 /*   Nothing.                                                               */
    886 /****************************************************************************/
    887 void
    888 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
    889     uint32_t ctx_val)
    890 {
    891 	uint32_t idx, offset = ctx_offset + cid_addr;
    892 	uint32_t val, retry_cnt = 5;
    893 
    894 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
    895 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
    896 		REG_WR(sc, BNX_CTX_CTX_CTRL,
    897 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
    898 
    899 		for (idx = 0; idx < retry_cnt; idx++) {
    900 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
    901 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
    902 				break;
    903 			DELAY(5);
    904 		}
    905 
    906 #if 0
    907 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
    908 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
    909 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
    910 				__FILE__, __LINE__, cid_addr, ctx_offset);
    911 #endif
    912 
    913 	} else {
    914 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
    915 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
    916 	}
    917 }
    918 
    919 /****************************************************************************/
    920 /* PHY register read.                                                       */
    921 /*                                                                          */
    922 /* Implements register reads on the MII bus.                                */
    923 /*                                                                          */
    924 /* Returns:                                                                 */
    925 /*   The value of the register.                                             */
    926 /****************************************************************************/
    927 int
    928 bnx_miibus_read_reg(device_t dev, int phy, int reg)
    929 {
    930 	struct bnx_softc	*sc = device_private(dev);
    931 	uint32_t		val;
    932 	int			i;
    933 
    934 	/* Make sure we are accessing the correct PHY address. */
    935 	if (phy != sc->bnx_phy_addr) {
    936 		DBPRINT(sc, BNX_VERBOSE,
    937 		    "Invalid PHY address %d for PHY read!\n", phy);
    938 		return 0;
    939 	}
    940 
    941 	/*
    942 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
    943 	 * with special mappings to work with IEEE
    944 	 * Clause 22 register accesses.
    945 	 */
    946 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
    947 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
    948 			reg += 0x10;
    949 	}
    950 
    951 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    952 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    953 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
    954 
    955 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    956 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    957 
    958 		DELAY(40);
    959 	}
    960 
    961 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
    962 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
    963 	    BNX_EMAC_MDIO_COMM_START_BUSY;
    964 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
    965 
    966 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
    967 		DELAY(10);
    968 
    969 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    970 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
    971 			DELAY(5);
    972 
    973 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    974 			val &= BNX_EMAC_MDIO_COMM_DATA;
    975 
    976 			break;
    977 		}
    978 	}
    979 
    980 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
    981 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
    982 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
    983 		val = 0x0;
    984 	} else
    985 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
    986 
    987 	DBPRINT(sc, BNX_EXCESSIVE,
    988 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
    989 	    (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
    990 
    991 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
    992 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
    993 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
    994 
    995 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
    996 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
    997 
    998 		DELAY(40);
    999 	}
   1000 
   1001 	return (val & 0xffff);
   1002 }
   1003 
   1004 /****************************************************************************/
   1005 /* PHY register write.                                                      */
   1006 /*                                                                          */
   1007 /* Implements register writes on the MII bus.                               */
   1008 /*                                                                          */
   1009 /* Returns:                                                                 */
   1010 /*   The value of the register.                                             */
   1011 /****************************************************************************/
   1012 void
   1013 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
   1014 {
   1015 	struct bnx_softc	*sc = device_private(dev);
   1016 	uint32_t		val1;
   1017 	int			i;
   1018 
   1019 	/* Make sure we are accessing the correct PHY address. */
   1020 	if (phy != sc->bnx_phy_addr) {
   1021 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
   1022 		    phy);
   1023 		return;
   1024 	}
   1025 
   1026 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1027 	    "val = 0x%04X\n", __func__,
   1028 	    phy, (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
   1029 
   1030 	/*
   1031 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1032 	 * with special mappings to work with IEEE
   1033 	 * Clause 22 register accesses.
   1034 	 */
   1035 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1036 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1037 			reg += 0x10;
   1038 	}
   1039 
   1040 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1041 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1042 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1043 
   1044 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1045 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1046 
   1047 		DELAY(40);
   1048 	}
   1049 
   1050 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1051 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1052 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1053 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1054 
   1055 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1056 		DELAY(10);
   1057 
   1058 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1059 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1060 			DELAY(5);
   1061 			break;
   1062 		}
   1063 	}
   1064 
   1065 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1066 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1067 		    __LINE__);
   1068 	}
   1069 
   1070 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1071 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1072 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1073 
   1074 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1075 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1076 
   1077 		DELAY(40);
   1078 	}
   1079 }
   1080 
   1081 /****************************************************************************/
   1082 /* MII bus status change.                                                   */
   1083 /*                                                                          */
   1084 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1085 /* MAC interface registers.                                                 */
   1086 /*                                                                          */
   1087 /* Returns:                                                                 */
   1088 /*   Nothing.                                                               */
   1089 /****************************************************************************/
   1090 void
   1091 bnx_miibus_statchg(struct ifnet *ifp)
   1092 {
   1093 	struct bnx_softc	*sc = ifp->if_softc;
   1094 	struct mii_data		*mii = &sc->bnx_mii;
   1095 	int			val;
   1096 
   1097 	val = REG_RD(sc, BNX_EMAC_MODE);
   1098 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1099 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1100 	    BNX_EMAC_MODE_25G);
   1101 
   1102 	/* Set MII or GMII interface based on the speed
   1103 	 * negotiated by the PHY.
   1104 	 */
   1105 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1106 	case IFM_10_T:
   1107 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1108 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1109 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1110 			break;
   1111 		}
   1112 		/* FALLTHROUGH */
   1113 	case IFM_100_TX:
   1114 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1115 		val |= BNX_EMAC_MODE_PORT_MII;
   1116 		break;
   1117 	case IFM_2500_SX:
   1118 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1119 		val |= BNX_EMAC_MODE_25G;
   1120 		/* FALLTHROUGH */
   1121 	case IFM_1000_T:
   1122 	case IFM_1000_SX:
   1123 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1124 		val |= BNX_EMAC_MODE_PORT_GMII;
   1125 		break;
   1126 	default:
   1127 		val |= BNX_EMAC_MODE_PORT_GMII;
   1128 		break;
   1129 	}
   1130 
   1131 	/* Set half or full duplex based on the duplicity
   1132 	 * negotiated by the PHY.
   1133 	 */
   1134 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1135 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1136 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1137 	} else {
   1138 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1139 	}
   1140 
   1141 	REG_WR(sc, BNX_EMAC_MODE, val);
   1142 }
   1143 
   1144 /****************************************************************************/
   1145 /* Acquire NVRAM lock.                                                      */
   1146 /*                                                                          */
   1147 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1148 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1149 /* for use by the driver.                                                   */
   1150 /*                                                                          */
   1151 /* Returns:                                                                 */
   1152 /*   0 on success, positive value on failure.                               */
   1153 /****************************************************************************/
   1154 int
   1155 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1156 {
   1157 	uint32_t		val;
   1158 	int			j;
   1159 
   1160 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1161 
   1162 	/* Request access to the flash interface. */
   1163 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1164 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1165 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1166 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1167 			break;
   1168 
   1169 		DELAY(5);
   1170 	}
   1171 
   1172 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1173 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1174 		return EBUSY;
   1175 	}
   1176 
   1177 	return 0;
   1178 }
   1179 
   1180 /****************************************************************************/
   1181 /* Release NVRAM lock.                                                      */
   1182 /*                                                                          */
   1183 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1184 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1185 /* for use by the driver.                                                   */
   1186 /*                                                                          */
   1187 /* Returns:                                                                 */
   1188 /*   0 on success, positive value on failure.                               */
   1189 /****************************************************************************/
   1190 int
   1191 bnx_release_nvram_lock(struct bnx_softc *sc)
   1192 {
   1193 	int			j;
   1194 	uint32_t		val;
   1195 
   1196 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1197 
   1198 	/* Relinquish nvram interface. */
   1199 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1200 
   1201 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1202 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1203 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1204 			break;
   1205 
   1206 		DELAY(5);
   1207 	}
   1208 
   1209 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1210 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1211 		return EBUSY;
   1212 	}
   1213 
   1214 	return 0;
   1215 }
   1216 
   1217 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1218 /****************************************************************************/
   1219 /* Enable NVRAM write access.                                               */
   1220 /*                                                                          */
   1221 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1222 /*                                                                          */
   1223 /* Returns:                                                                 */
   1224 /*   0 on success, positive value on failure.                               */
   1225 /****************************************************************************/
   1226 int
   1227 bnx_enable_nvram_write(struct bnx_softc *sc)
   1228 {
   1229 	uint32_t		val;
   1230 
   1231 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1232 
   1233 	val = REG_RD(sc, BNX_MISC_CFG);
   1234 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1235 
   1236 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1237 		int j;
   1238 
   1239 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1240 		REG_WR(sc, BNX_NVM_COMMAND,
   1241 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1242 
   1243 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1244 			DELAY(5);
   1245 
   1246 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1247 			if (val & BNX_NVM_COMMAND_DONE)
   1248 				break;
   1249 		}
   1250 
   1251 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1252 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1253 			return EBUSY;
   1254 		}
   1255 	}
   1256 
   1257 	return 0;
   1258 }
   1259 
   1260 /****************************************************************************/
   1261 /* Disable NVRAM write access.                                              */
   1262 /*                                                                          */
   1263 /* When the caller is finished writing to NVRAM write access must be        */
   1264 /* disabled.                                                                */
   1265 /*                                                                          */
   1266 /* Returns:                                                                 */
   1267 /*   Nothing.                                                               */
   1268 /****************************************************************************/
   1269 void
   1270 bnx_disable_nvram_write(struct bnx_softc *sc)
   1271 {
   1272 	uint32_t		val;
   1273 
   1274 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1275 
   1276 	val = REG_RD(sc, BNX_MISC_CFG);
   1277 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1278 }
   1279 #endif
   1280 
   1281 /****************************************************************************/
   1282 /* Enable NVRAM access.                                                     */
   1283 /*                                                                          */
   1284 /* Before accessing NVRAM for read or write operations the caller must      */
   1285 /* enabled NVRAM access.                                                    */
   1286 /*                                                                          */
   1287 /* Returns:                                                                 */
   1288 /*   Nothing.                                                               */
   1289 /****************************************************************************/
   1290 void
   1291 bnx_enable_nvram_access(struct bnx_softc *sc)
   1292 {
   1293 	uint32_t		val;
   1294 
   1295 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1296 
   1297 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1298 	/* Enable both bits, even on read. */
   1299 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1300 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1301 }
   1302 
   1303 /****************************************************************************/
   1304 /* Disable NVRAM access.                                                    */
   1305 /*                                                                          */
   1306 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1307 /*                                                                          */
   1308 /* Returns:                                                                 */
   1309 /*   Nothing.                                                               */
   1310 /****************************************************************************/
   1311 void
   1312 bnx_disable_nvram_access(struct bnx_softc *sc)
   1313 {
   1314 	uint32_t		val;
   1315 
   1316 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1317 
   1318 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1319 
   1320 	/* Disable both bits, even after read. */
   1321 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1322 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1323 }
   1324 
   1325 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1326 /****************************************************************************/
   1327 /* Erase NVRAM page before writing.                                         */
   1328 /*                                                                          */
   1329 /* Non-buffered flash parts require that a page be erased before it is      */
   1330 /* written.                                                                 */
   1331 /*                                                                          */
   1332 /* Returns:                                                                 */
   1333 /*   0 on success, positive value on failure.                               */
   1334 /****************************************************************************/
   1335 int
   1336 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
   1337 {
   1338 	uint32_t		cmd;
   1339 	int			j;
   1340 
   1341 	/* Buffered flash doesn't require an erase. */
   1342 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1343 		return 0;
   1344 
   1345 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1346 
   1347 	/* Build an erase command. */
   1348 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1349 	    BNX_NVM_COMMAND_DOIT;
   1350 
   1351 	/*
   1352 	 * Clear the DONE bit separately, set the NVRAM address to erase,
   1353 	 * and issue the erase command.
   1354 	 */
   1355 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1356 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1357 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1358 
   1359 	/* Wait for completion. */
   1360 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1361 		uint32_t val;
   1362 
   1363 		DELAY(5);
   1364 
   1365 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1366 		if (val & BNX_NVM_COMMAND_DONE)
   1367 			break;
   1368 	}
   1369 
   1370 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1371 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1372 		return EBUSY;
   1373 	}
   1374 
   1375 	return 0;
   1376 }
   1377 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1378 
   1379 /****************************************************************************/
   1380 /* Read a dword (32 bits) from NVRAM.                                       */
   1381 /*                                                                          */
   1382 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1383 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1384 /*                                                                          */
   1385 /* Returns:                                                                 */
   1386 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1387 /****************************************************************************/
   1388 int
   1389 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
   1390     uint8_t *ret_val, uint32_t cmd_flags)
   1391 {
   1392 	uint32_t		cmd;
   1393 	int			i, rc = 0;
   1394 
   1395 	/* Build the command word. */
   1396 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1397 
   1398 	/* Calculate the offset for buffered flash if translation is used. */
   1399 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1400 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1401 		    sc->bnx_flash_info->page_bits) +
   1402 		    (offset % sc->bnx_flash_info->page_size);
   1403 	}
   1404 
   1405 	/*
   1406 	 * Clear the DONE bit separately, set the address to read,
   1407 	 * and issue the read.
   1408 	 */
   1409 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1410 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1411 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1412 
   1413 	/* Wait for completion. */
   1414 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1415 		uint32_t val;
   1416 
   1417 		DELAY(5);
   1418 
   1419 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1420 		if (val & BNX_NVM_COMMAND_DONE) {
   1421 			val = REG_RD(sc, BNX_NVM_READ);
   1422 
   1423 			val = bnx_be32toh(val);
   1424 			memcpy(ret_val, &val, 4);
   1425 			break;
   1426 		}
   1427 	}
   1428 
   1429 	/* Check for errors. */
   1430 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1431 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1432 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1433 		rc = EBUSY;
   1434 	}
   1435 
   1436 	return rc;
   1437 }
   1438 
   1439 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1440 /****************************************************************************/
   1441 /* Write a dword (32 bits) to NVRAM.                                        */
   1442 /*                                                                          */
   1443 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1444 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1445 /* enabled NVRAM write access.                                              */
   1446 /*                                                                          */
   1447 /* Returns:                                                                 */
   1448 /*   0 on success, positive value on failure.                               */
   1449 /****************************************************************************/
   1450 int
   1451 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
   1452     uint32_t cmd_flags)
   1453 {
   1454 	uint32_t		cmd, val32;
   1455 	int			j;
   1456 
   1457 	/* Build the command word. */
   1458 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1459 
   1460 	/* Calculate the offset for buffered flash if translation is used. */
   1461 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1462 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1463 		    sc->bnx_flash_info->page_bits) +
   1464 		    (offset % sc->bnx_flash_info->page_size);
   1465 	}
   1466 
   1467 	/*
   1468 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1469 	 * set the NVRAM address to write, and issue the write command
   1470 	 */
   1471 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1472 	memcpy(&val32, val, 4);
   1473 	val32 = htobe32(val32);
   1474 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1475 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1476 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1477 
   1478 	/* Wait for completion. */
   1479 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1480 		DELAY(5);
   1481 
   1482 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1483 			break;
   1484 	}
   1485 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1486 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1487 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1488 		return EBUSY;
   1489 	}
   1490 
   1491 	return 0;
   1492 }
   1493 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1494 
   1495 /****************************************************************************/
   1496 /* Initialize NVRAM access.                                                 */
   1497 /*                                                                          */
   1498 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1499 /* access that device.                                                      */
   1500 /*                                                                          */
   1501 /* Returns:                                                                 */
   1502 /*   0 on success, positive value on failure.                               */
   1503 /****************************************************************************/
   1504 int
   1505 bnx_init_nvram(struct bnx_softc *sc)
   1506 {
   1507 	uint32_t		val;
   1508 	int			j, entry_count, rc = 0;
   1509 	struct flash_spec	*flash;
   1510 
   1511 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1512 
   1513 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1514 		sc->bnx_flash_info = &flash_5709;
   1515 		goto bnx_init_nvram_get_flash_size;
   1516 	}
   1517 
   1518 	/* Determine the selected interface. */
   1519 	val = REG_RD(sc, BNX_NVM_CFG1);
   1520 
   1521 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1522 
   1523 	/*
   1524 	 * Flash reconfiguration is required to support additional
   1525 	 * NVRAM devices not directly supported in hardware.
   1526 	 * Check if the flash interface was reconfigured
   1527 	 * by the bootcode.
   1528 	 */
   1529 
   1530 	if (val & 0x40000000) {
   1531 		/* Flash interface reconfigured by bootcode. */
   1532 
   1533 		DBPRINT(sc,BNX_INFO_LOAD,
   1534 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1535 
   1536 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1537 		     j++, flash++) {
   1538 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1539 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1540 				sc->bnx_flash_info = flash;
   1541 				break;
   1542 			}
   1543 		}
   1544 	} else {
   1545 		/* Flash interface not yet reconfigured. */
   1546 		uint32_t mask;
   1547 
   1548 		DBPRINT(sc,BNX_INFO_LOAD,
   1549 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1550 
   1551 		if (val & (1 << 23))
   1552 			mask = FLASH_BACKUP_STRAP_MASK;
   1553 		else
   1554 			mask = FLASH_STRAP_MASK;
   1555 
   1556 		/* Look for the matching NVRAM device configuration data. */
   1557 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1558 		    j++, flash++) {
   1559 			/* Check if the dev matches any of the known devices. */
   1560 			if ((val & mask) == (flash->strapping & mask)) {
   1561 				/* Found a device match. */
   1562 				sc->bnx_flash_info = flash;
   1563 
   1564 				/* Request access to the flash interface. */
   1565 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1566 					return rc;
   1567 
   1568 				/* Reconfigure the flash interface. */
   1569 				bnx_enable_nvram_access(sc);
   1570 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1571 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1572 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1573 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1574 				bnx_disable_nvram_access(sc);
   1575 				bnx_release_nvram_lock(sc);
   1576 
   1577 				break;
   1578 			}
   1579 		}
   1580 	}
   1581 
   1582 	/* Check if a matching device was found. */
   1583 	if (j == entry_count) {
   1584 		sc->bnx_flash_info = NULL;
   1585 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1586 			__FILE__, __LINE__);
   1587 		rc = ENODEV;
   1588 	}
   1589 
   1590 bnx_init_nvram_get_flash_size:
   1591 	/* Write the flash config data to the shared memory interface. */
   1592 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1593 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1594 	if (val)
   1595 		sc->bnx_flash_size = val;
   1596 	else
   1597 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1598 
   1599 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1600 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1601 
   1602 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1603 
   1604 	return rc;
   1605 }
   1606 
   1607 /****************************************************************************/
   1608 /* Read an arbitrary range of data from NVRAM.                              */
   1609 /*                                                                          */
   1610 /* Prepares the NVRAM interface for access and reads the requested data     */
   1611 /* into the supplied buffer.                                                */
   1612 /*                                                                          */
   1613 /* Returns:                                                                 */
   1614 /*   0 on success and the data read, positive value on failure.             */
   1615 /****************************************************************************/
   1616 int
   1617 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
   1618     int buf_size)
   1619 {
   1620 	int			rc = 0;
   1621 	uint32_t		cmd_flags, offset32, len32, extra;
   1622 
   1623 	if (buf_size == 0)
   1624 		return 0;
   1625 
   1626 	/* Request access to the flash interface. */
   1627 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1628 		return rc;
   1629 
   1630 	/* Enable access to flash interface */
   1631 	bnx_enable_nvram_access(sc);
   1632 
   1633 	len32 = buf_size;
   1634 	offset32 = offset;
   1635 	extra = 0;
   1636 
   1637 	cmd_flags = 0;
   1638 
   1639 	if (offset32 & 3) {
   1640 		uint8_t buf[4];
   1641 		uint32_t pre_len;
   1642 
   1643 		offset32 &= ~3;
   1644 		pre_len = 4 - (offset & 3);
   1645 
   1646 		if (pre_len >= len32) {
   1647 			pre_len = len32;
   1648 			cmd_flags =
   1649 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1650 		} else
   1651 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1652 
   1653 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1654 
   1655 		if (rc)
   1656 			return rc;
   1657 
   1658 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1659 
   1660 		offset32 += 4;
   1661 		ret_buf += pre_len;
   1662 		len32 -= pre_len;
   1663 	}
   1664 
   1665 	if (len32 & 3) {
   1666 		extra = 4 - (len32 & 3);
   1667 		len32 = (len32 + 4) & ~3;
   1668 	}
   1669 
   1670 	if (len32 == 4) {
   1671 		uint8_t buf[4];
   1672 
   1673 		if (cmd_flags)
   1674 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1675 		else
   1676 			cmd_flags =
   1677 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1678 
   1679 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1680 
   1681 		memcpy(ret_buf, buf, 4 - extra);
   1682 	} else if (len32 > 0) {
   1683 		uint8_t buf[4];
   1684 
   1685 		/* Read the first word. */
   1686 		if (cmd_flags)
   1687 			cmd_flags = 0;
   1688 		else
   1689 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1690 
   1691 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1692 
   1693 		/* Advance to the next dword. */
   1694 		offset32 += 4;
   1695 		ret_buf += 4;
   1696 		len32 -= 4;
   1697 
   1698 		while (len32 > 4 && rc == 0) {
   1699 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1700 
   1701 			/* Advance to the next dword. */
   1702 			offset32 += 4;
   1703 			ret_buf += 4;
   1704 			len32 -= 4;
   1705 		}
   1706 
   1707 		if (rc)
   1708 			return rc;
   1709 
   1710 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1711 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1712 
   1713 		memcpy(ret_buf, buf, 4 - extra);
   1714 	}
   1715 
   1716 	/* Disable access to flash interface and release the lock. */
   1717 	bnx_disable_nvram_access(sc);
   1718 	bnx_release_nvram_lock(sc);
   1719 
   1720 	return rc;
   1721 }
   1722 
   1723 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1724 /****************************************************************************/
   1725 /* Write an arbitrary range of data from NVRAM.                             */
   1726 /*                                                                          */
   1727 /* Prepares the NVRAM interface for write access and writes the requested   */
   1728 /* data from the supplied buffer.  The caller is responsible for            */
   1729 /* calculating any appropriate CRCs.                                        */
   1730 /*                                                                          */
   1731 /* Returns:                                                                 */
   1732 /*   0 on success, positive value on failure.                               */
   1733 /****************************************************************************/
   1734 int
   1735 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
   1736     int buf_size)
   1737 {
   1738 	uint32_t		written, offset32, len32;
   1739 	uint8_t		*buf, start[4], end[4];
   1740 	int			rc = 0;
   1741 	int			align_start, align_end;
   1742 
   1743 	buf = data_buf;
   1744 	offset32 = offset;
   1745 	len32 = buf_size;
   1746 	align_start = align_end = 0;
   1747 
   1748 	if ((align_start = (offset32 & 3))) {
   1749 		offset32 &= ~3;
   1750 		len32 += align_start;
   1751 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1752 			return rc;
   1753 	}
   1754 
   1755 	if (len32 & 3) {
   1756 		if ((len32 > 4) || !align_start) {
   1757 			align_end = 4 - (len32 & 3);
   1758 			len32 += align_end;
   1759 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1760 			    end, 4)))
   1761 				return rc;
   1762 		}
   1763 	}
   1764 
   1765 	if (align_start || align_end) {
   1766 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1767 		if (buf == 0)
   1768 			return ENOMEM;
   1769 
   1770 		if (align_start)
   1771 			memcpy(buf, start, 4);
   1772 
   1773 		if (align_end)
   1774 			memcpy(buf + len32 - 4, end, 4);
   1775 
   1776 		memcpy(buf + align_start, data_buf, buf_size);
   1777 	}
   1778 
   1779 	written = 0;
   1780 	while ((written < len32) && (rc == 0)) {
   1781 		uint32_t page_start, page_end, data_start, data_end;
   1782 		uint32_t addr, cmd_flags;
   1783 		int i;
   1784 		uint8_t flash_buffer[264];
   1785 
   1786 	    /* Find the page_start addr */
   1787 		page_start = offset32 + written;
   1788 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1789 		/* Find the page_end addr */
   1790 		page_end = page_start + sc->bnx_flash_info->page_size;
   1791 		/* Find the data_start addr */
   1792 		data_start = (written == 0) ? offset32 : page_start;
   1793 		/* Find the data_end addr */
   1794 		data_end = (page_end > offset32 + len32) ?
   1795 		    (offset32 + len32) : page_end;
   1796 
   1797 		/* Request access to the flash interface. */
   1798 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1799 			goto nvram_write_end;
   1800 
   1801 		/* Enable access to flash interface */
   1802 		bnx_enable_nvram_access(sc);
   1803 
   1804 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1805 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1806 			int j;
   1807 
   1808 			/* Read the whole page into the buffer
   1809 			 * (non-buffer flash only) */
   1810 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1811 				if (j == (sc->bnx_flash_info->page_size - 4))
   1812 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1813 
   1814 				rc = bnx_nvram_read_dword(sc,
   1815 					page_start + j,
   1816 					&flash_buffer[j],
   1817 					cmd_flags);
   1818 
   1819 				if (rc)
   1820 					goto nvram_write_end;
   1821 
   1822 				cmd_flags = 0;
   1823 			}
   1824 		}
   1825 
   1826 		/* Enable writes to flash interface (unlock write-protect) */
   1827 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1828 			goto nvram_write_end;
   1829 
   1830 		/* Erase the page */
   1831 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1832 			goto nvram_write_end;
   1833 
   1834 		/* Re-enable the write again for the actual write */
   1835 		bnx_enable_nvram_write(sc);
   1836 
   1837 		/* Loop to write back the buffer data from page_start to
   1838 		 * data_start */
   1839 		i = 0;
   1840 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1841 			for (addr = page_start; addr < data_start;
   1842 				addr += 4, i += 4) {
   1843 
   1844 				rc = bnx_nvram_write_dword(sc, addr,
   1845 				    &flash_buffer[i], cmd_flags);
   1846 
   1847 				if (rc != 0)
   1848 					goto nvram_write_end;
   1849 
   1850 				cmd_flags = 0;
   1851 			}
   1852 		}
   1853 
   1854 		/* Loop to write the new data from data_start to data_end */
   1855 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1856 			if ((addr == page_end - 4) ||
   1857 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   1858 			    && (addr == data_end - 4))) {
   1859 
   1860 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1861 			}
   1862 
   1863 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1864 
   1865 			if (rc != 0)
   1866 				goto nvram_write_end;
   1867 
   1868 			cmd_flags = 0;
   1869 			buf += 4;
   1870 		}
   1871 
   1872 		/* Loop to write back the buffer data from data_end
   1873 		 * to page_end */
   1874 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1875 			for (addr = data_end; addr < page_end;
   1876 			    addr += 4, i += 4) {
   1877 
   1878 				if (addr == page_end-4)
   1879 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1880 
   1881 				rc = bnx_nvram_write_dword(sc, addr,
   1882 				    &flash_buffer[i], cmd_flags);
   1883 
   1884 				if (rc != 0)
   1885 					goto nvram_write_end;
   1886 
   1887 				cmd_flags = 0;
   1888 			}
   1889 		}
   1890 
   1891 		/* Disable writes to flash interface (lock write-protect) */
   1892 		bnx_disable_nvram_write(sc);
   1893 
   1894 		/* Disable access to flash interface */
   1895 		bnx_disable_nvram_access(sc);
   1896 		bnx_release_nvram_lock(sc);
   1897 
   1898 		/* Increment written */
   1899 		written += data_end - data_start;
   1900 	}
   1901 
   1902 nvram_write_end:
   1903 	if (align_start || align_end)
   1904 		free(buf, M_DEVBUF);
   1905 
   1906 	return rc;
   1907 }
   1908 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1909 
   1910 /****************************************************************************/
   1911 /* Verifies that NVRAM is accessible and contains valid data.               */
   1912 /*                                                                          */
   1913 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   1914 /* correct.                                                                 */
   1915 /*                                                                          */
   1916 /* Returns:                                                                 */
   1917 /*   0 on success, positive value on failure.                               */
   1918 /****************************************************************************/
   1919 int
   1920 bnx_nvram_test(struct bnx_softc *sc)
   1921 {
   1922 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
   1923 	uint8_t		*data = (uint8_t *) buf;
   1924 	int			rc = 0;
   1925 	uint32_t		magic, csum;
   1926 
   1927 	/*
   1928 	 * Check that the device NVRAM is valid by reading
   1929 	 * the magic value at offset 0.
   1930 	 */
   1931 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   1932 		goto bnx_nvram_test_done;
   1933 
   1934 	magic = bnx_be32toh(buf[0]);
   1935 	if (magic != BNX_NVRAM_MAGIC) {
   1936 		rc = ENODEV;
   1937 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   1938 		    "Expected: 0x%08X, Found: 0x%08X\n",
   1939 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   1940 		goto bnx_nvram_test_done;
   1941 	}
   1942 
   1943 	/*
   1944 	 * Verify that the device NVRAM includes valid
   1945 	 * configuration data.
   1946 	 */
   1947 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   1948 		goto bnx_nvram_test_done;
   1949 
   1950 	csum = ether_crc32_le(data, 0x100);
   1951 	if (csum != BNX_CRC32_RESIDUAL) {
   1952 		rc = ENODEV;
   1953 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   1954 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   1955 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1956 		goto bnx_nvram_test_done;
   1957 	}
   1958 
   1959 	csum = ether_crc32_le(data + 0x100, 0x100);
   1960 	if (csum != BNX_CRC32_RESIDUAL) {
   1961 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   1962 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   1963 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   1964 		rc = ENODEV;
   1965 	}
   1966 
   1967 bnx_nvram_test_done:
   1968 	return rc;
   1969 }
   1970 
   1971 /****************************************************************************/
   1972 /* Identifies the current media type of the controller and sets the PHY     */
   1973 /* address.                                                                 */
   1974 /*                                                                          */
   1975 /* Returns:                                                                 */
   1976 /*   Nothing.                                                               */
   1977 /****************************************************************************/
   1978 void
   1979 bnx_get_media(struct bnx_softc *sc)
   1980 {
   1981 	sc->bnx_phy_addr = 1;
   1982 
   1983 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1984 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   1985 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   1986 		uint32_t strap;
   1987 
   1988 		/*
   1989 		 * The BCM5709S is software configurable
   1990 		 * for Copper or SerDes operation.
   1991 		 */
   1992 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   1993 			DBPRINT(sc, BNX_INFO_LOAD,
   1994 			    "5709 bonded for copper.\n");
   1995 			goto bnx_get_media_exit;
   1996 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   1997 			DBPRINT(sc, BNX_INFO_LOAD,
   1998 			    "5709 bonded for dual media.\n");
   1999 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2000 			goto bnx_get_media_exit;
   2001 		}
   2002 
   2003 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2004 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2005 		else {
   2006 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2007 			    >> 8;
   2008 		}
   2009 
   2010 		if (sc->bnx_pa.pa_function == 0) {
   2011 			switch (strap) {
   2012 			case 0x4:
   2013 			case 0x5:
   2014 			case 0x6:
   2015 				DBPRINT(sc, BNX_INFO_LOAD,
   2016 					"BCM5709 s/w configured for SerDes.\n");
   2017 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2018 				break;
   2019 			default:
   2020 				DBPRINT(sc, BNX_INFO_LOAD,
   2021 					"BCM5709 s/w configured for Copper.\n");
   2022 			}
   2023 		} else {
   2024 			switch (strap) {
   2025 			case 0x1:
   2026 			case 0x2:
   2027 			case 0x4:
   2028 				DBPRINT(sc, BNX_INFO_LOAD,
   2029 					"BCM5709 s/w configured for SerDes.\n");
   2030 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2031 				break;
   2032 			default:
   2033 				DBPRINT(sc, BNX_INFO_LOAD,
   2034 					"BCM5709 s/w configured for Copper.\n");
   2035 			}
   2036 		}
   2037 
   2038 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2039 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2040 
   2041 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2042 		uint32_t val;
   2043 
   2044 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2045 
   2046 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2047 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2048 
   2049 		/*
   2050 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2051 		 * separate PHY for SerDes.
   2052 		 */
   2053 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2054 			sc->bnx_phy_addr = 2;
   2055 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2056 				 BNX_SHARED_HW_CFG_CONFIG);
   2057 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2058 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2059 				DBPRINT(sc, BNX_INFO_LOAD,
   2060 				    "Found 2.5Gb capable adapter\n");
   2061 			}
   2062 		}
   2063 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2064 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2065 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2066 
   2067 bnx_get_media_exit:
   2068 	DBPRINT(sc, (BNX_INFO_LOAD),
   2069 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2070 }
   2071 
   2072 /****************************************************************************/
   2073 /* Performs PHY initialization required before MII drivers access the       */
   2074 /* device.                                                                  */
   2075 /*                                                                          */
   2076 /* Returns:                                                                 */
   2077 /*   Nothing.                                                               */
   2078 /****************************************************************************/
   2079 void
   2080 bnx_init_media(struct bnx_softc *sc)
   2081 {
   2082 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2083 		/*
   2084 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2085 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2086 		 * the PHY to the mii(4) layer. PHY specific configuration
   2087 		 * is done by the mii(4) layer.
   2088 		 */
   2089 
   2090 		/* Select auto-negotiation MMD of the PHY. */
   2091 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2092 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2093 
   2094 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2095 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2096 
   2097 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2098 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2099 	}
   2100 }
   2101 
   2102 /****************************************************************************/
   2103 /* Free any DMA memory owned by the driver.                                 */
   2104 /*                                                                          */
   2105 /* Scans through each data structre that requires DMA memory and frees      */
   2106 /* the memory if allocated.                                                 */
   2107 /*                                                                          */
   2108 /* Returns:                                                                 */
   2109 /*   Nothing.                                                               */
   2110 /****************************************************************************/
   2111 void
   2112 bnx_dma_free(struct bnx_softc *sc)
   2113 {
   2114 	int			i;
   2115 
   2116 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2117 
   2118 	/* Destroy the status block. */
   2119 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2120 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2121 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2122 		    BNX_STATUS_BLK_SZ);
   2123 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2124 		    sc->status_rseg);
   2125 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2126 		sc->status_block = NULL;
   2127 		sc->status_map = NULL;
   2128 	}
   2129 
   2130 	/* Destroy the statistics block. */
   2131 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2132 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2133 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2134 		    BNX_STATS_BLK_SZ);
   2135 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2136 		    sc->stats_rseg);
   2137 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2138 		sc->stats_block = NULL;
   2139 		sc->stats_map = NULL;
   2140 	}
   2141 
   2142 	/* Free, unmap and destroy all context memory pages. */
   2143 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2144 		for (i = 0; i < sc->ctx_pages; i++) {
   2145 			if (sc->ctx_block[i] != NULL) {
   2146 				bus_dmamap_unload(sc->bnx_dmatag,
   2147 				    sc->ctx_map[i]);
   2148 				bus_dmamem_unmap(sc->bnx_dmatag,
   2149 				    (void *)sc->ctx_block[i],
   2150 				    BCM_PAGE_SIZE);
   2151 				bus_dmamem_free(sc->bnx_dmatag,
   2152 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2153 				bus_dmamap_destroy(sc->bnx_dmatag,
   2154 				    sc->ctx_map[i]);
   2155 				sc->ctx_block[i] = NULL;
   2156 			}
   2157 		}
   2158 	}
   2159 
   2160 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2161 	for (i = 0; i < TX_PAGES; i++ ) {
   2162 		if (sc->tx_bd_chain[i] != NULL &&
   2163 		    sc->tx_bd_chain_map[i] != NULL) {
   2164 			bus_dmamap_unload(sc->bnx_dmatag,
   2165 			    sc->tx_bd_chain_map[i]);
   2166 			bus_dmamem_unmap(sc->bnx_dmatag,
   2167 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2168 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2169 			    sc->tx_bd_chain_rseg[i]);
   2170 			bus_dmamap_destroy(sc->bnx_dmatag,
   2171 			    sc->tx_bd_chain_map[i]);
   2172 			sc->tx_bd_chain[i] = NULL;
   2173 			sc->tx_bd_chain_map[i] = NULL;
   2174 		}
   2175 	}
   2176 
   2177 	/* Destroy the TX dmamaps. */
   2178 	/* This isn't necessary since we dont allocate them up front */
   2179 
   2180 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2181 	for (i = 0; i < RX_PAGES; i++ ) {
   2182 		if (sc->rx_bd_chain[i] != NULL &&
   2183 		    sc->rx_bd_chain_map[i] != NULL) {
   2184 			bus_dmamap_unload(sc->bnx_dmatag,
   2185 			    sc->rx_bd_chain_map[i]);
   2186 			bus_dmamem_unmap(sc->bnx_dmatag,
   2187 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2188 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2189 			    sc->rx_bd_chain_rseg[i]);
   2190 
   2191 			bus_dmamap_destroy(sc->bnx_dmatag,
   2192 			    sc->rx_bd_chain_map[i]);
   2193 			sc->rx_bd_chain[i] = NULL;
   2194 			sc->rx_bd_chain_map[i] = NULL;
   2195 		}
   2196 	}
   2197 
   2198 	/* Unload and destroy the RX mbuf maps. */
   2199 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2200 		if (sc->rx_mbuf_map[i] != NULL) {
   2201 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2202 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2203 		}
   2204 	}
   2205 
   2206 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2207 }
   2208 
   2209 /****************************************************************************/
   2210 /* Allocate any DMA memory needed by the driver.                            */
   2211 /*                                                                          */
   2212 /* Allocates DMA memory needed for the various global structures needed by  */
   2213 /* hardware.                                                                */
   2214 /*                                                                          */
   2215 /* Returns:                                                                 */
   2216 /*   0 for success, positive value for failure.                             */
   2217 /****************************************************************************/
   2218 int
   2219 bnx_dma_alloc(struct bnx_softc *sc)
   2220 {
   2221 	int			i, rc = 0;
   2222 
   2223 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2224 
   2225 	/*
   2226 	 * Allocate DMA memory for the status block, map the memory into DMA
   2227 	 * space, and fetch the physical address of the block.
   2228 	 */
   2229 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2230 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2231 		aprint_error_dev(sc->bnx_dev,
   2232 		    "Could not create status block DMA map!\n");
   2233 		rc = ENOMEM;
   2234 		goto bnx_dma_alloc_exit;
   2235 	}
   2236 
   2237 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2238 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2239 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2240 		aprint_error_dev(sc->bnx_dev,
   2241 		    "Could not allocate status block DMA memory!\n");
   2242 		rc = ENOMEM;
   2243 		goto bnx_dma_alloc_exit;
   2244 	}
   2245 
   2246 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2247 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2248 		aprint_error_dev(sc->bnx_dev,
   2249 		    "Could not map status block DMA memory!\n");
   2250 		rc = ENOMEM;
   2251 		goto bnx_dma_alloc_exit;
   2252 	}
   2253 
   2254 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2255 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2256 		aprint_error_dev(sc->bnx_dev,
   2257 		    "Could not load status block DMA memory!\n");
   2258 		rc = ENOMEM;
   2259 		goto bnx_dma_alloc_exit;
   2260 	}
   2261 
   2262 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2263 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2264 
   2265 	/* DRC - Fix for 64 bit addresses. */
   2266 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2267 		(uint32_t) sc->status_block_paddr);
   2268 
   2269 	/* BCM5709 uses host memory as cache for context memory. */
   2270 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2271 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2272 		if (sc->ctx_pages == 0)
   2273 			sc->ctx_pages = 1;
   2274 		if (sc->ctx_pages > 4) /* XXX */
   2275 			sc->ctx_pages = 4;
   2276 
   2277 		DBRUNIF((sc->ctx_pages > 512),
   2278 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2279 				__FILE__, __LINE__, sc->ctx_pages));
   2280 
   2281 
   2282 		for (i = 0; i < sc->ctx_pages; i++) {
   2283 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2284 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2285 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2286 			    &sc->ctx_map[i]) != 0) {
   2287 				rc = ENOMEM;
   2288 				goto bnx_dma_alloc_exit;
   2289 			}
   2290 
   2291 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2292 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2293 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2294 				rc = ENOMEM;
   2295 				goto bnx_dma_alloc_exit;
   2296 			}
   2297 
   2298 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2299 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2300 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2301 				rc = ENOMEM;
   2302 				goto bnx_dma_alloc_exit;
   2303 			}
   2304 
   2305 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2306 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2307 			    BUS_DMA_NOWAIT) != 0) {
   2308 				rc = ENOMEM;
   2309 				goto bnx_dma_alloc_exit;
   2310 			}
   2311 
   2312 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2313 		}
   2314 	}
   2315 
   2316 	/*
   2317 	 * Allocate DMA memory for the statistics block, map the memory into
   2318 	 * DMA space, and fetch the physical address of the block.
   2319 	 */
   2320 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2321 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2322 		aprint_error_dev(sc->bnx_dev,
   2323 		    "Could not create stats block DMA map!\n");
   2324 		rc = ENOMEM;
   2325 		goto bnx_dma_alloc_exit;
   2326 	}
   2327 
   2328 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2329 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2330 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2331 		aprint_error_dev(sc->bnx_dev,
   2332 		    "Could not allocate stats block DMA memory!\n");
   2333 		rc = ENOMEM;
   2334 		goto bnx_dma_alloc_exit;
   2335 	}
   2336 
   2337 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2338 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2339 		aprint_error_dev(sc->bnx_dev,
   2340 		    "Could not map stats block DMA memory!\n");
   2341 		rc = ENOMEM;
   2342 		goto bnx_dma_alloc_exit;
   2343 	}
   2344 
   2345 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2346 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2347 		aprint_error_dev(sc->bnx_dev,
   2348 		    "Could not load status block DMA memory!\n");
   2349 		rc = ENOMEM;
   2350 		goto bnx_dma_alloc_exit;
   2351 	}
   2352 
   2353 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2354 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2355 
   2356 	/* DRC - Fix for 64 bit address. */
   2357 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2358 	    (uint32_t) sc->stats_block_paddr);
   2359 
   2360 	/*
   2361 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2362 	 * and fetch the physical address of the block.
   2363 	 */
   2364 	for (i = 0; i < TX_PAGES; i++) {
   2365 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2366 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2367 		    &sc->tx_bd_chain_map[i])) {
   2368 			aprint_error_dev(sc->bnx_dev,
   2369 			    "Could not create Tx desc %d DMA map!\n", i);
   2370 			rc = ENOMEM;
   2371 			goto bnx_dma_alloc_exit;
   2372 		}
   2373 
   2374 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2375 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2376 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2377 			aprint_error_dev(sc->bnx_dev,
   2378 			    "Could not allocate TX desc %d DMA memory!\n",
   2379 			    i);
   2380 			rc = ENOMEM;
   2381 			goto bnx_dma_alloc_exit;
   2382 		}
   2383 
   2384 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2385 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2386 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2387 			aprint_error_dev(sc->bnx_dev,
   2388 			    "Could not map TX desc %d DMA memory!\n", i);
   2389 			rc = ENOMEM;
   2390 			goto bnx_dma_alloc_exit;
   2391 		}
   2392 
   2393 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2394 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2395 		    BUS_DMA_NOWAIT)) {
   2396 			aprint_error_dev(sc->bnx_dev,
   2397 			    "Could not load TX desc %d DMA memory!\n", i);
   2398 			rc = ENOMEM;
   2399 			goto bnx_dma_alloc_exit;
   2400 		}
   2401 
   2402 		sc->tx_bd_chain_paddr[i] =
   2403 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2404 
   2405 		/* DRC - Fix for 64 bit systems. */
   2406 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2407 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
   2408 	}
   2409 
   2410 	/*
   2411 	 * Create lists to hold TX mbufs.
   2412 	 */
   2413 	TAILQ_INIT(&sc->tx_free_pkts);
   2414 	TAILQ_INIT(&sc->tx_used_pkts);
   2415 	sc->tx_pkt_count = 0;
   2416 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2417 
   2418 	/*
   2419 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2420 	 * and fetch the physical address of the block.
   2421 	 */
   2422 	for (i = 0; i < RX_PAGES; i++) {
   2423 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2424 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2425 		    &sc->rx_bd_chain_map[i])) {
   2426 			aprint_error_dev(sc->bnx_dev,
   2427 			    "Could not create Rx desc %d DMA map!\n", i);
   2428 			rc = ENOMEM;
   2429 			goto bnx_dma_alloc_exit;
   2430 		}
   2431 
   2432 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2433 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2434 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2435 			aprint_error_dev(sc->bnx_dev,
   2436 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2437 			rc = ENOMEM;
   2438 			goto bnx_dma_alloc_exit;
   2439 		}
   2440 
   2441 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2442 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2443 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2444 			aprint_error_dev(sc->bnx_dev,
   2445 			    "Could not map Rx desc %d DMA memory!\n", i);
   2446 			rc = ENOMEM;
   2447 			goto bnx_dma_alloc_exit;
   2448 		}
   2449 
   2450 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2451 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2452 		    BUS_DMA_NOWAIT)) {
   2453 			aprint_error_dev(sc->bnx_dev,
   2454 			    "Could not load Rx desc %d DMA memory!\n", i);
   2455 			rc = ENOMEM;
   2456 			goto bnx_dma_alloc_exit;
   2457 		}
   2458 
   2459 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2460 		sc->rx_bd_chain_paddr[i] =
   2461 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2462 
   2463 		/* DRC - Fix for 64 bit systems. */
   2464 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2465 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
   2466 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2467 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2468 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2469 	}
   2470 
   2471 	/*
   2472 	 * Create DMA maps for the Rx buffer mbufs.
   2473 	 */
   2474 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2475 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2476 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2477 		    &sc->rx_mbuf_map[i])) {
   2478 			aprint_error_dev(sc->bnx_dev,
   2479 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2480 			rc = ENOMEM;
   2481 			goto bnx_dma_alloc_exit;
   2482 		}
   2483 	}
   2484 
   2485  bnx_dma_alloc_exit:
   2486 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2487 
   2488 	return rc;
   2489 }
   2490 
   2491 /****************************************************************************/
   2492 /* Release all resources used by the driver.                                */
   2493 /*                                                                          */
   2494 /* Releases all resources acquired by the driver including interrupts,      */
   2495 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2496 /*                                                                          */
   2497 /* Returns:                                                                 */
   2498 /*   Nothing.                                                               */
   2499 /****************************************************************************/
   2500 void
   2501 bnx_release_resources(struct bnx_softc *sc)
   2502 {
   2503 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2504 
   2505 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2506 
   2507 	bnx_dma_free(sc);
   2508 
   2509 	if (sc->bnx_intrhand != NULL)
   2510 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2511 
   2512 	if (sc->bnx_size)
   2513 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2514 
   2515 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2516 }
   2517 
   2518 /****************************************************************************/
   2519 /* Firmware synchronization.                                                */
   2520 /*                                                                          */
   2521 /* Before performing certain events such as a chip reset, synchronize with  */
   2522 /* the firmware first.                                                      */
   2523 /*                                                                          */
   2524 /* Returns:                                                                 */
   2525 /*   0 for success, positive value for failure.                             */
   2526 /****************************************************************************/
   2527 int
   2528 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
   2529 {
   2530 	int			i, rc = 0;
   2531 	uint32_t		val;
   2532 
   2533 	/* Don't waste any time if we've timed out before. */
   2534 	if (sc->bnx_fw_timed_out) {
   2535 		rc = EBUSY;
   2536 		goto bnx_fw_sync_exit;
   2537 	}
   2538 
   2539 	/* Increment the message sequence number. */
   2540 	sc->bnx_fw_wr_seq++;
   2541 	msg_data |= sc->bnx_fw_wr_seq;
   2542 
   2543  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2544 	    msg_data);
   2545 
   2546 	/* Send the message to the bootcode driver mailbox. */
   2547 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2548 
   2549 	/* Wait for the bootcode to acknowledge the message. */
   2550 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2551 		/* Check for a response in the bootcode firmware mailbox. */
   2552 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2553 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2554 			break;
   2555 		DELAY(1000);
   2556 	}
   2557 
   2558 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2559 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2560 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2561 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2562 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2563 
   2564 		msg_data &= ~BNX_DRV_MSG_CODE;
   2565 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2566 
   2567 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2568 
   2569 		sc->bnx_fw_timed_out = 1;
   2570 		rc = EBUSY;
   2571 	}
   2572 
   2573 bnx_fw_sync_exit:
   2574 	return rc;
   2575 }
   2576 
   2577 /****************************************************************************/
   2578 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2579 /*                                                                          */
   2580 /* Returns:                                                                 */
   2581 /*   Nothing.                                                               */
   2582 /****************************************************************************/
   2583 void
   2584 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
   2585     uint32_t rv2p_code_len, uint32_t rv2p_proc)
   2586 {
   2587 	int			i;
   2588 	uint32_t		val;
   2589 
   2590 	/* Set the page size used by RV2P. */
   2591 	if (rv2p_proc == RV2P_PROC2) {
   2592 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2593 		    USABLE_RX_BD_PER_PAGE);
   2594 	}
   2595 
   2596 	for (i = 0; i < rv2p_code_len; i += 8) {
   2597 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2598 		rv2p_code++;
   2599 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2600 		rv2p_code++;
   2601 
   2602 		if (rv2p_proc == RV2P_PROC1) {
   2603 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2604 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2605 		} else {
   2606 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2607 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2608 		}
   2609 	}
   2610 
   2611 	/* Reset the processor, un-stall is done later. */
   2612 	if (rv2p_proc == RV2P_PROC1)
   2613 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2614 	else
   2615 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2616 }
   2617 
   2618 /****************************************************************************/
   2619 /* Load RISC processor firmware.                                            */
   2620 /*                                                                          */
   2621 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2622 /* associated with a particular processor.                                  */
   2623 /*                                                                          */
   2624 /* Returns:                                                                 */
   2625 /*   Nothing.                                                               */
   2626 /****************************************************************************/
   2627 void
   2628 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2629     struct fw_info *fw)
   2630 {
   2631 	uint32_t		offset;
   2632 	uint32_t		val;
   2633 
   2634 	/* Halt the CPU. */
   2635 	val = REG_RD_IND(sc, cpu_reg->mode);
   2636 	val |= cpu_reg->mode_value_halt;
   2637 	REG_WR_IND(sc, cpu_reg->mode, val);
   2638 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2639 
   2640 	/* Load the Text area. */
   2641 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2642 	if (fw->text) {
   2643 		int j;
   2644 
   2645 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2646 			REG_WR_IND(sc, offset, fw->text[j]);
   2647 	}
   2648 
   2649 	/* Load the Data area. */
   2650 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2651 	if (fw->data) {
   2652 		int j;
   2653 
   2654 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2655 			REG_WR_IND(sc, offset, fw->data[j]);
   2656 	}
   2657 
   2658 	/* Load the SBSS area. */
   2659 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2660 	if (fw->sbss) {
   2661 		int j;
   2662 
   2663 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2664 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2665 	}
   2666 
   2667 	/* Load the BSS area. */
   2668 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2669 	if (fw->bss) {
   2670 		int j;
   2671 
   2672 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2673 			REG_WR_IND(sc, offset, fw->bss[j]);
   2674 	}
   2675 
   2676 	/* Load the Read-Only area. */
   2677 	offset = cpu_reg->spad_base +
   2678 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2679 	if (fw->rodata) {
   2680 		int j;
   2681 
   2682 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2683 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2684 	}
   2685 
   2686 	/* Clear the pre-fetch instruction. */
   2687 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2688 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2689 
   2690 	/* Start the CPU. */
   2691 	val = REG_RD_IND(sc, cpu_reg->mode);
   2692 	val &= ~cpu_reg->mode_value_halt;
   2693 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2694 	REG_WR_IND(sc, cpu_reg->mode, val);
   2695 }
   2696 
   2697 /****************************************************************************/
   2698 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2699 /*                                                                          */
   2700 /* Loads the firmware for each CPU and starts the CPU.                      */
   2701 /*                                                                          */
   2702 /* Returns:                                                                 */
   2703 /*   Nothing.                                                               */
   2704 /****************************************************************************/
   2705 void
   2706 bnx_init_cpus(struct bnx_softc *sc)
   2707 {
   2708 	struct cpu_reg cpu_reg;
   2709 	struct fw_info fw;
   2710 
   2711 	switch(BNX_CHIP_NUM(sc)) {
   2712 	case BNX_CHIP_NUM_5709:
   2713 		/* Initialize the RV2P processor. */
   2714 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2715 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2716 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2717 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2718 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2719 		} else {
   2720 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2721 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2722 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2723 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2724 		}
   2725 
   2726 		/* Initialize the RX Processor. */
   2727 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2728 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2729 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2730 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2731 		cpu_reg.state_value_clear = 0xffffff;
   2732 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2733 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2734 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2735 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2736 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2737 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2738 		cpu_reg.mips_view_base = 0x8000000;
   2739 
   2740 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2741 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2742 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2743 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2744 
   2745 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2746 		fw.text_len = bnx_RXP_b09FwTextLen;
   2747 		fw.text_index = 0;
   2748 		fw.text = bnx_RXP_b09FwText;
   2749 
   2750 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2751 		fw.data_len = bnx_RXP_b09FwDataLen;
   2752 		fw.data_index = 0;
   2753 		fw.data = bnx_RXP_b09FwData;
   2754 
   2755 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2756 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2757 		fw.sbss_index = 0;
   2758 		fw.sbss = bnx_RXP_b09FwSbss;
   2759 
   2760 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2761 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2762 		fw.bss_index = 0;
   2763 		fw.bss = bnx_RXP_b09FwBss;
   2764 
   2765 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2766 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2767 		fw.rodata_index = 0;
   2768 		fw.rodata = bnx_RXP_b09FwRodata;
   2769 
   2770 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2771 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2772 
   2773 		/* Initialize the TX Processor. */
   2774 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2775 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2776 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2777 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2778 		cpu_reg.state_value_clear = 0xffffff;
   2779 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2780 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2781 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2782 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2783 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2784 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2785 		cpu_reg.mips_view_base = 0x8000000;
   2786 
   2787 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2788 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2789 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2790 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2791 
   2792 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2793 		fw.text_len = bnx_TXP_b09FwTextLen;
   2794 		fw.text_index = 0;
   2795 		fw.text = bnx_TXP_b09FwText;
   2796 
   2797 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   2798 		fw.data_len = bnx_TXP_b09FwDataLen;
   2799 		fw.data_index = 0;
   2800 		fw.data = bnx_TXP_b09FwData;
   2801 
   2802 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   2803 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   2804 		fw.sbss_index = 0;
   2805 		fw.sbss = bnx_TXP_b09FwSbss;
   2806 
   2807 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   2808 		fw.bss_len = bnx_TXP_b09FwBssLen;
   2809 		fw.bss_index = 0;
   2810 		fw.bss = bnx_TXP_b09FwBss;
   2811 
   2812 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   2813 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   2814 		fw.rodata_index = 0;
   2815 		fw.rodata = bnx_TXP_b09FwRodata;
   2816 
   2817 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2818 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2819 
   2820 		/* Initialize the TX Patch-up Processor. */
   2821 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2822 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2823 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2824 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2825 		cpu_reg.state_value_clear = 0xffffff;
   2826 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2827 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2828 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2829 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2830 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2831 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2832 		cpu_reg.mips_view_base = 0x8000000;
   2833 
   2834 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   2835 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   2836 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   2837 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   2838 
   2839 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   2840 		fw.text_len = bnx_TPAT_b09FwTextLen;
   2841 		fw.text_index = 0;
   2842 		fw.text = bnx_TPAT_b09FwText;
   2843 
   2844 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   2845 		fw.data_len = bnx_TPAT_b09FwDataLen;
   2846 		fw.data_index = 0;
   2847 		fw.data = bnx_TPAT_b09FwData;
   2848 
   2849 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   2850 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   2851 		fw.sbss_index = 0;
   2852 		fw.sbss = bnx_TPAT_b09FwSbss;
   2853 
   2854 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   2855 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   2856 		fw.bss_index = 0;
   2857 		fw.bss = bnx_TPAT_b09FwBss;
   2858 
   2859 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   2860 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   2861 		fw.rodata_index = 0;
   2862 		fw.rodata = bnx_TPAT_b09FwRodata;
   2863 
   2864 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2865 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2866 
   2867 		/* Initialize the Completion Processor. */
   2868 		cpu_reg.mode = BNX_COM_CPU_MODE;
   2869 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2870 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2871 		cpu_reg.state = BNX_COM_CPU_STATE;
   2872 		cpu_reg.state_value_clear = 0xffffff;
   2873 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2874 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2875 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2876 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2877 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2878 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   2879 		cpu_reg.mips_view_base = 0x8000000;
   2880 
   2881 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   2882 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   2883 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   2884 		fw.start_addr = bnx_COM_b09FwStartAddr;
   2885 
   2886 		fw.text_addr = bnx_COM_b09FwTextAddr;
   2887 		fw.text_len = bnx_COM_b09FwTextLen;
   2888 		fw.text_index = 0;
   2889 		fw.text = bnx_COM_b09FwText;
   2890 
   2891 		fw.data_addr = bnx_COM_b09FwDataAddr;
   2892 		fw.data_len = bnx_COM_b09FwDataLen;
   2893 		fw.data_index = 0;
   2894 		fw.data = bnx_COM_b09FwData;
   2895 
   2896 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   2897 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   2898 		fw.sbss_index = 0;
   2899 		fw.sbss = bnx_COM_b09FwSbss;
   2900 
   2901 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   2902 		fw.bss_len = bnx_COM_b09FwBssLen;
   2903 		fw.bss_index = 0;
   2904 		fw.bss = bnx_COM_b09FwBss;
   2905 
   2906 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   2907 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   2908 		fw.rodata_index = 0;
   2909 		fw.rodata = bnx_COM_b09FwRodata;
   2910 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   2911 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2912 		break;
   2913 	default:
   2914 		/* Initialize the RV2P processor. */
   2915 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   2916 		    RV2P_PROC1);
   2917 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   2918 		    RV2P_PROC2);
   2919 
   2920 		/* Initialize the RX Processor. */
   2921 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2922 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2923 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2924 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2925 		cpu_reg.state_value_clear = 0xffffff;
   2926 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2927 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2928 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2929 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2930 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2931 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2932 		cpu_reg.mips_view_base = 0x8000000;
   2933 
   2934 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   2935 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   2936 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   2937 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   2938 
   2939 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   2940 		fw.text_len = bnx_RXP_b06FwTextLen;
   2941 		fw.text_index = 0;
   2942 		fw.text = bnx_RXP_b06FwText;
   2943 
   2944 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   2945 		fw.data_len = bnx_RXP_b06FwDataLen;
   2946 		fw.data_index = 0;
   2947 		fw.data = bnx_RXP_b06FwData;
   2948 
   2949 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   2950 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   2951 		fw.sbss_index = 0;
   2952 		fw.sbss = bnx_RXP_b06FwSbss;
   2953 
   2954 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   2955 		fw.bss_len = bnx_RXP_b06FwBssLen;
   2956 		fw.bss_index = 0;
   2957 		fw.bss = bnx_RXP_b06FwBss;
   2958 
   2959 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   2960 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   2961 		fw.rodata_index = 0;
   2962 		fw.rodata = bnx_RXP_b06FwRodata;
   2963 
   2964 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2965 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2966 
   2967 		/* Initialize the TX Processor. */
   2968 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2969 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2970 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2971 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2972 		cpu_reg.state_value_clear = 0xffffff;
   2973 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2974 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2975 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2976 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2977 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2978 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2979 		cpu_reg.mips_view_base = 0x8000000;
   2980 
   2981 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   2982 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   2983 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   2984 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   2985 
   2986 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   2987 		fw.text_len = bnx_TXP_b06FwTextLen;
   2988 		fw.text_index = 0;
   2989 		fw.text = bnx_TXP_b06FwText;
   2990 
   2991 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   2992 		fw.data_len = bnx_TXP_b06FwDataLen;
   2993 		fw.data_index = 0;
   2994 		fw.data = bnx_TXP_b06FwData;
   2995 
   2996 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   2997 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   2998 		fw.sbss_index = 0;
   2999 		fw.sbss = bnx_TXP_b06FwSbss;
   3000 
   3001 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3002 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3003 		fw.bss_index = 0;
   3004 		fw.bss = bnx_TXP_b06FwBss;
   3005 
   3006 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3007 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3008 		fw.rodata_index = 0;
   3009 		fw.rodata = bnx_TXP_b06FwRodata;
   3010 
   3011 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3012 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3013 
   3014 		/* Initialize the TX Patch-up Processor. */
   3015 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3016 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3017 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3018 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3019 		cpu_reg.state_value_clear = 0xffffff;
   3020 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3021 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3022 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3023 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3024 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3025 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3026 		cpu_reg.mips_view_base = 0x8000000;
   3027 
   3028 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3029 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3030 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3031 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3032 
   3033 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3034 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3035 		fw.text_index = 0;
   3036 		fw.text = bnx_TPAT_b06FwText;
   3037 
   3038 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3039 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3040 		fw.data_index = 0;
   3041 		fw.data = bnx_TPAT_b06FwData;
   3042 
   3043 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3044 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3045 		fw.sbss_index = 0;
   3046 		fw.sbss = bnx_TPAT_b06FwSbss;
   3047 
   3048 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3049 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3050 		fw.bss_index = 0;
   3051 		fw.bss = bnx_TPAT_b06FwBss;
   3052 
   3053 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3054 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3055 		fw.rodata_index = 0;
   3056 		fw.rodata = bnx_TPAT_b06FwRodata;
   3057 
   3058 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3059 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3060 
   3061 		/* Initialize the Completion Processor. */
   3062 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3063 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3064 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3065 		cpu_reg.state = BNX_COM_CPU_STATE;
   3066 		cpu_reg.state_value_clear = 0xffffff;
   3067 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3068 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3069 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3070 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3071 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3072 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3073 		cpu_reg.mips_view_base = 0x8000000;
   3074 
   3075 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3076 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3077 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3078 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3079 
   3080 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3081 		fw.text_len = bnx_COM_b06FwTextLen;
   3082 		fw.text_index = 0;
   3083 		fw.text = bnx_COM_b06FwText;
   3084 
   3085 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3086 		fw.data_len = bnx_COM_b06FwDataLen;
   3087 		fw.data_index = 0;
   3088 		fw.data = bnx_COM_b06FwData;
   3089 
   3090 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3091 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3092 		fw.sbss_index = 0;
   3093 		fw.sbss = bnx_COM_b06FwSbss;
   3094 
   3095 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3096 		fw.bss_len = bnx_COM_b06FwBssLen;
   3097 		fw.bss_index = 0;
   3098 		fw.bss = bnx_COM_b06FwBss;
   3099 
   3100 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3101 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3102 		fw.rodata_index = 0;
   3103 		fw.rodata = bnx_COM_b06FwRodata;
   3104 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3105 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3106 		break;
   3107 	}
   3108 }
   3109 
   3110 /****************************************************************************/
   3111 /* Initialize context memory.                                               */
   3112 /*                                                                          */
   3113 /* Clears the memory associated with each Context ID (CID).                 */
   3114 /*                                                                          */
   3115 /* Returns:                                                                 */
   3116 /*   Nothing.                                                               */
   3117 /****************************************************************************/
   3118 void
   3119 bnx_init_context(struct bnx_softc *sc)
   3120 {
   3121 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3122 		/* DRC: Replace this constant value with a #define. */
   3123 		int i, retry_cnt = 10;
   3124 		uint32_t val;
   3125 
   3126 		/*
   3127 		 * BCM5709 context memory may be cached
   3128 		 * in host memory so prepare the host memory
   3129 		 * for access.
   3130 		 */
   3131 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3132 		    | (1 << 12);
   3133 		val |= (BCM_PAGE_BITS - 8) << 16;
   3134 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3135 
   3136 		/* Wait for mem init command to complete. */
   3137 		for (i = 0; i < retry_cnt; i++) {
   3138 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3139 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3140 				break;
   3141 			DELAY(2);
   3142 		}
   3143 
   3144 		/* ToDo: Consider returning an error here. */
   3145 
   3146 		for (i = 0; i < sc->ctx_pages; i++) {
   3147 			int j;
   3148 
   3149 			/* Set the physaddr of the context memory cache. */
   3150 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
   3151 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3152 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3153 			val = (uint32_t)
   3154 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
   3155 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3156 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3157 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3158 
   3159 			/* Verify that the context memory write was successful. */
   3160 			for (j = 0; j < retry_cnt; j++) {
   3161 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3162 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3163 					break;
   3164 				DELAY(5);
   3165 			}
   3166 
   3167 			/* ToDo: Consider returning an error here. */
   3168 		}
   3169 	} else {
   3170 		uint32_t vcid_addr, offset;
   3171 
   3172 		/*
   3173 		 * For the 5706/5708, context memory is local to
   3174 		 * the controller, so initialize the controller
   3175 		 * context memory.
   3176 		 */
   3177 
   3178 		vcid_addr = GET_CID_ADDR(96);
   3179 		while (vcid_addr) {
   3180 
   3181 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3182 
   3183 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3184 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3185 
   3186 			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
   3187 				CTX_WR(sc, 0x00, offset, 0);
   3188 			}
   3189 
   3190 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3191 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3192 		}
   3193 	}
   3194 }
   3195 
   3196 /****************************************************************************/
   3197 /* Fetch the permanent MAC address of the controller.                       */
   3198 /*                                                                          */
   3199 /* Returns:                                                                 */
   3200 /*   Nothing.                                                               */
   3201 /****************************************************************************/
   3202 void
   3203 bnx_get_mac_addr(struct bnx_softc *sc)
   3204 {
   3205 	uint32_t		mac_lo = 0, mac_hi = 0;
   3206 
   3207 	/*
   3208 	 * The NetXtreme II bootcode populates various NIC
   3209 	 * power-on and runtime configuration items in a
   3210 	 * shared memory area.  The factory configured MAC
   3211 	 * address is available from both NVRAM and the
   3212 	 * shared memory area so we'll read the value from
   3213 	 * shared memory for speed.
   3214 	 */
   3215 
   3216 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3217 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3218 
   3219 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3220 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3221 		    __FILE__, __LINE__);
   3222 	} else {
   3223 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3224 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3225 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3226 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3227 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3228 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3229 	}
   3230 
   3231 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3232 	    "%s\n", ether_sprintf(sc->eaddr));
   3233 }
   3234 
   3235 /****************************************************************************/
   3236 /* Program the MAC address.                                                 */
   3237 /*                                                                          */
   3238 /* Returns:                                                                 */
   3239 /*   Nothing.                                                               */
   3240 /****************************************************************************/
   3241 void
   3242 bnx_set_mac_addr(struct bnx_softc *sc)
   3243 {
   3244 	uint32_t		val;
   3245 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3246 
   3247 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3248 	    "%s\n", ether_sprintf(sc->eaddr));
   3249 
   3250 	val = (mac_addr[0] << 8) | mac_addr[1];
   3251 
   3252 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3253 
   3254 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3255 		(mac_addr[4] << 8) | mac_addr[5];
   3256 
   3257 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3258 }
   3259 
   3260 /****************************************************************************/
   3261 /* Stop the controller.                                                     */
   3262 /*                                                                          */
   3263 /* Returns:                                                                 */
   3264 /*   Nothing.                                                               */
   3265 /****************************************************************************/
   3266 void
   3267 bnx_stop(struct ifnet *ifp, int disable)
   3268 {
   3269 	struct bnx_softc *sc = ifp->if_softc;
   3270 
   3271 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3272 
   3273 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   3274 		return;
   3275 
   3276 	callout_stop(&sc->bnx_timeout);
   3277 
   3278 	mii_down(&sc->bnx_mii);
   3279 
   3280 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3281 
   3282 	/* Disable the transmit/receive blocks. */
   3283 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3284 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3285 	DELAY(20);
   3286 
   3287 	bnx_disable_intr(sc);
   3288 
   3289 	/* Tell firmware that the driver is going away. */
   3290 	if (disable)
   3291 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3292 	else
   3293 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3294 
   3295 	/* Free RX buffers. */
   3296 	bnx_free_rx_chain(sc);
   3297 
   3298 	/* Free TX buffers. */
   3299 	bnx_free_tx_chain(sc);
   3300 
   3301 	ifp->if_timer = 0;
   3302 
   3303 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3304 
   3305 }
   3306 
   3307 int
   3308 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
   3309 {
   3310 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3311 	uint32_t		val;
   3312 	int			i, rc = 0;
   3313 
   3314 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3315 
   3316 	/* Wait for pending PCI transactions to complete. */
   3317 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3318 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3319 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3320 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3321 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3322 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3323 	DELAY(5);
   3324 
   3325 	/* Disable DMA */
   3326 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3327 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3328 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3329 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3330 	}
   3331 
   3332 	/* Assume bootcode is running. */
   3333 	sc->bnx_fw_timed_out = 0;
   3334 
   3335 	/* Give the firmware a chance to prepare for the reset. */
   3336 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3337 	if (rc)
   3338 		goto bnx_reset_exit;
   3339 
   3340 	/* Set a firmware reminder that this is a soft reset. */
   3341 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3342 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3343 
   3344 	/* Dummy read to force the chip to complete all current transactions. */
   3345 	val = REG_RD(sc, BNX_MISC_ID);
   3346 
   3347 	/* Chip reset. */
   3348 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3349 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3350 		REG_RD(sc, BNX_MISC_COMMAND);
   3351 		DELAY(5);
   3352 
   3353 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3354 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3355 
   3356 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3357 		    val);
   3358 	} else {
   3359 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3360 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3361 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3362 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3363 
   3364 		/* Allow up to 30us for reset to complete. */
   3365 		for (i = 0; i < 10; i++) {
   3366 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3367 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3368 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3369 				break;
   3370 			}
   3371 			DELAY(10);
   3372 		}
   3373 
   3374 		/* Check that reset completed successfully. */
   3375 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3376 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3377 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3378 			    __FILE__, __LINE__);
   3379 			rc = EBUSY;
   3380 			goto bnx_reset_exit;
   3381 		}
   3382 	}
   3383 
   3384 	/* Make sure byte swapping is properly configured. */
   3385 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3386 	if (val != 0x01020304) {
   3387 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3388 		    __FILE__, __LINE__);
   3389 		rc = ENODEV;
   3390 		goto bnx_reset_exit;
   3391 	}
   3392 
   3393 	/* Just completed a reset, assume that firmware is running again. */
   3394 	sc->bnx_fw_timed_out = 0;
   3395 
   3396 	/* Wait for the firmware to finish its initialization. */
   3397 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3398 	if (rc)
   3399 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3400 		    "initialization!\n", __FILE__, __LINE__);
   3401 
   3402 bnx_reset_exit:
   3403 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3404 
   3405 	return rc;
   3406 }
   3407 
   3408 int
   3409 bnx_chipinit(struct bnx_softc *sc)
   3410 {
   3411 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3412 	uint32_t		val;
   3413 	int			rc = 0;
   3414 
   3415 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3416 
   3417 	/* Make sure the interrupt is not active. */
   3418 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3419 
   3420 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3421 	/* channels and PCI clock compensation delay.                      */
   3422 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3423 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3424 #if BYTE_ORDER == BIG_ENDIAN
   3425 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3426 #endif
   3427 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3428 	    DMA_READ_CHANS << 12 |
   3429 	    DMA_WRITE_CHANS << 16;
   3430 
   3431 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3432 
   3433 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3434 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3435 
   3436 	/*
   3437 	 * This setting resolves a problem observed on certain Intel PCI
   3438 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3439 	 * See errata E9_5706A1_65.
   3440 	 */
   3441 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3442 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3443 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3444 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3445 
   3446 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3447 
   3448 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3449 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3450 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3451 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3452 		    val & ~0x20000);
   3453 	}
   3454 
   3455 	/* Enable the RX_V2P and Context state machines before access. */
   3456 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3457 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3458 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3459 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3460 
   3461 	/* Initialize context mapping and zero out the quick contexts. */
   3462 	bnx_init_context(sc);
   3463 
   3464 	/* Initialize the on-boards CPUs */
   3465 	bnx_init_cpus(sc);
   3466 
   3467 	/* Prepare NVRAM for access. */
   3468 	if (bnx_init_nvram(sc)) {
   3469 		rc = ENODEV;
   3470 		goto bnx_chipinit_exit;
   3471 	}
   3472 
   3473 	/* Set the kernel bypass block size */
   3474 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3475 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3476 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3477 
   3478 	/* Enable bins used on the 5709. */
   3479 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3480 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3481 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3482 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3483 	}
   3484 
   3485 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3486 
   3487 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3488 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3489 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3490 
   3491 	val = (BCM_PAGE_BITS - 8) << 24;
   3492 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3493 
   3494 	/* Configure page size. */
   3495 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3496 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3497 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3498 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3499 
   3500 #if 0
   3501 	/* Set the perfect match control register to default. */
   3502 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3503 #endif
   3504 
   3505 bnx_chipinit_exit:
   3506 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3507 
   3508 	return rc;
   3509 }
   3510 
   3511 /****************************************************************************/
   3512 /* Initialize the controller in preparation to send/receive traffic.        */
   3513 /*                                                                          */
   3514 /* Returns:                                                                 */
   3515 /*   0 for success, positive value for failure.                             */
   3516 /****************************************************************************/
   3517 int
   3518 bnx_blockinit(struct bnx_softc *sc)
   3519 {
   3520 	uint32_t		reg, val;
   3521 	int 			rc = 0;
   3522 
   3523 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3524 
   3525 	/* Load the hardware default MAC address. */
   3526 	bnx_set_mac_addr(sc);
   3527 
   3528 	/* Set the Ethernet backoff seed value */
   3529 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3530 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3531 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3532 
   3533 	sc->last_status_idx = 0;
   3534 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3535 
   3536 	/* Set up link change interrupt generation. */
   3537 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3538 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3539 
   3540 	/* Program the physical address of the status block. */
   3541 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
   3542 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3543 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
   3544 
   3545 	/* Program the physical address of the statistics block. */
   3546 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3547 	    (uint32_t)(sc->stats_block_paddr));
   3548 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3549 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
   3550 
   3551 	/* Program various host coalescing parameters. */
   3552 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3553 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3554 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3555 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3556 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3557 	    sc->bnx_comp_prod_trip);
   3558 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3559 	    sc->bnx_tx_ticks);
   3560 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3561 	    sc->bnx_rx_ticks);
   3562 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3563 	    sc->bnx_com_ticks);
   3564 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3565 	    sc->bnx_cmd_ticks);
   3566 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3567 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3568 	REG_WR(sc, BNX_HC_CONFIG,
   3569 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3570 	    BNX_HC_CONFIG_COLLECT_STATS));
   3571 
   3572 	/* Clear the internal statistics counters. */
   3573 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3574 
   3575 	/* Verify that bootcode is running. */
   3576 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3577 
   3578 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3579 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3580 	    __FILE__, __LINE__); reg = 0);
   3581 
   3582 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3583 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3584 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3585 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3586 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3587 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3588 		rc = ENODEV;
   3589 		goto bnx_blockinit_exit;
   3590 	}
   3591 
   3592 	/* Check if any management firmware is running. */
   3593 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3594 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3595 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3596 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3597 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3598 	}
   3599 
   3600 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3601 	    BNX_DEV_INFO_BC_REV);
   3602 
   3603 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3604 
   3605 	/* Enable DMA */
   3606 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3607 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3608 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3609 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3610 	}
   3611 
   3612 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3613 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3614 
   3615 	/* Enable link state change interrupt generation. */
   3616 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3617 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3618 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3619 	} else
   3620 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3621 
   3622 	/* Enable all remaining blocks in the MAC. */
   3623 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3624 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3625 	DELAY(20);
   3626 
   3627 bnx_blockinit_exit:
   3628 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3629 
   3630 	return rc;
   3631 }
   3632 
   3633 static int
   3634 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
   3635     uint16_t *chain_prod, uint32_t *prod_bseq)
   3636 {
   3637 	bus_dmamap_t		map;
   3638 	struct rx_bd		*rxbd;
   3639 	uint32_t		addr;
   3640 	int i;
   3641 #ifdef BNX_DEBUG
   3642 	uint16_t debug_chain_prod =	*chain_prod;
   3643 #endif
   3644 	uint16_t first_chain_prod;
   3645 
   3646 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3647 
   3648 	/* Map the mbuf cluster into device memory. */
   3649 	map = sc->rx_mbuf_map[*chain_prod];
   3650 	first_chain_prod = *chain_prod;
   3651 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3652 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3653 		    __FILE__, __LINE__);
   3654 
   3655 		m_freem(m_new);
   3656 
   3657 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3658 
   3659 		return ENOBUFS;
   3660 	}
   3661 	/* Make sure there is room in the receive chain. */
   3662 	if (map->dm_nsegs > sc->free_rx_bd) {
   3663 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3664 		m_freem(m_new);
   3665 		return EFBIG;
   3666 	}
   3667 #ifdef BNX_DEBUG
   3668 	/* Track the distribution of buffer segments. */
   3669 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3670 #endif
   3671 
   3672 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3673 	    BUS_DMASYNC_PREREAD);
   3674 
   3675 	/* Update some debug statistics counters */
   3676 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3677 	    sc->rx_low_watermark = sc->free_rx_bd);
   3678 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3679 
   3680 	/*
   3681 	 * Setup the rx_bd for the first segment
   3682 	 */
   3683 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3684 
   3685 	addr = (uint32_t)map->dm_segs[0].ds_addr;
   3686 	rxbd->rx_bd_haddr_lo = addr;
   3687 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
   3688 	rxbd->rx_bd_haddr_hi = addr;
   3689 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3690 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3691 	*prod_bseq += map->dm_segs[0].ds_len;
   3692 	bus_dmamap_sync(sc->bnx_dmatag,
   3693 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3694 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3695 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3696 
   3697 	for (i = 1; i < map->dm_nsegs; i++) {
   3698 		*prod = NEXT_RX_BD(*prod);
   3699 		*chain_prod = RX_CHAIN_IDX(*prod);
   3700 
   3701 		rxbd =
   3702 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3703 
   3704 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   3705 		rxbd->rx_bd_haddr_lo = addr;
   3706 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   3707 		rxbd->rx_bd_haddr_hi = addr;
   3708 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3709 		rxbd->rx_bd_flags = 0;
   3710 		*prod_bseq += map->dm_segs[i].ds_len;
   3711 		bus_dmamap_sync(sc->bnx_dmatag,
   3712 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3713 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3714 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3715 	}
   3716 
   3717 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3718 	bus_dmamap_sync(sc->bnx_dmatag,
   3719 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3720 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3721 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3722 
   3723 	/*
   3724 	 * Save the mbuf, adjust the map pointer (swap map for first and
   3725 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
   3726 	 * and update our counter.
   3727 	 */
   3728 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3729 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3730 	sc->rx_mbuf_map[*chain_prod] = map;
   3731 	sc->free_rx_bd -= map->dm_nsegs;
   3732 
   3733 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3734 	    map->dm_nsegs));
   3735 	*prod = NEXT_RX_BD(*prod);
   3736 	*chain_prod = RX_CHAIN_IDX(*prod);
   3737 
   3738 	return 0;
   3739 }
   3740 
   3741 /****************************************************************************/
   3742 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3743 /*                                                                          */
   3744 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3745 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3746 /* necessary.                                                               */
   3747 /*                                                                          */
   3748 /* Returns:                                                                 */
   3749 /*   0 for success, positive value for failure.                             */
   3750 /****************************************************************************/
   3751 int
   3752 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
   3753     uint16_t *chain_prod, uint32_t *prod_bseq)
   3754 {
   3755 	struct mbuf 		*m_new = NULL;
   3756 	int			rc = 0;
   3757 	uint16_t min_free_bd;
   3758 
   3759 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3760 	    __func__);
   3761 
   3762 	/* Make sure the inputs are valid. */
   3763 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3764 	    aprint_error_dev(sc->bnx_dev,
   3765 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3766 		*chain_prod, (uint16_t)MAX_RX_BD));
   3767 
   3768 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3769 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3770 	    *prod_bseq);
   3771 
   3772 	/* try to get in as many mbufs as possible */
   3773 	if (sc->mbuf_alloc_size == MCLBYTES)
   3774 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3775 	else
   3776 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3777 	while (sc->free_rx_bd >= min_free_bd) {
   3778 		/* Simulate an mbuf allocation failure. */
   3779 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3780 		    aprint_error_dev(sc->bnx_dev,
   3781 		    "Simulating mbuf allocation failure.\n");
   3782 			sc->mbuf_sim_alloc_failed++;
   3783 			rc = ENOBUFS;
   3784 			goto bnx_get_buf_exit);
   3785 
   3786 		/* This is a new mbuf allocation. */
   3787 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3788 		if (m_new == NULL) {
   3789 			DBPRINT(sc, BNX_WARN,
   3790 			    "%s(%d): RX mbuf header allocation failed!\n",
   3791 			    __FILE__, __LINE__);
   3792 
   3793 			sc->mbuf_alloc_failed++;
   3794 
   3795 			rc = ENOBUFS;
   3796 			goto bnx_get_buf_exit;
   3797 		}
   3798 
   3799 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3800 
   3801 		/* Simulate an mbuf cluster allocation failure. */
   3802 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3803 			m_freem(m_new);
   3804 			sc->rx_mbuf_alloc--;
   3805 			sc->mbuf_alloc_failed++;
   3806 			sc->mbuf_sim_alloc_failed++;
   3807 			rc = ENOBUFS;
   3808 			goto bnx_get_buf_exit);
   3809 
   3810 		if (sc->mbuf_alloc_size == MCLBYTES)
   3811 			MCLGET(m_new, M_DONTWAIT);
   3812 		else
   3813 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3814 			    M_DONTWAIT);
   3815 		if (!(m_new->m_flags & M_EXT)) {
   3816 			DBPRINT(sc, BNX_WARN,
   3817 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3818 			    __FILE__, __LINE__);
   3819 
   3820 			m_freem(m_new);
   3821 
   3822 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3823 			sc->mbuf_alloc_failed++;
   3824 
   3825 			rc = ENOBUFS;
   3826 			goto bnx_get_buf_exit;
   3827 		}
   3828 
   3829 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3830 		if (rc != 0)
   3831 			goto bnx_get_buf_exit;
   3832 	}
   3833 
   3834 bnx_get_buf_exit:
   3835 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3836 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3837 	    *chain_prod, *prod_bseq);
   3838 
   3839 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3840 	    __func__);
   3841 
   3842 	return rc;
   3843 }
   3844 
   3845 void
   3846 bnx_alloc_pkts(struct work * unused, void * arg)
   3847 {
   3848 	struct bnx_softc *sc = arg;
   3849 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   3850 	struct bnx_pkt *pkt;
   3851 	int i, s;
   3852 
   3853 	for (i = 0; i < 4; i++) { /* magic! */
   3854 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   3855 		if (pkt == NULL)
   3856 			break;
   3857 
   3858 		if (bus_dmamap_create(sc->bnx_dmatag,
   3859 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   3860 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   3861 		    &pkt->pkt_dmamap) != 0)
   3862 			goto put;
   3863 
   3864 		if (!ISSET(ifp->if_flags, IFF_UP))
   3865 			goto stopping;
   3866 
   3867 		mutex_enter(&sc->tx_pkt_mtx);
   3868 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   3869 		sc->tx_pkt_count++;
   3870 		mutex_exit(&sc->tx_pkt_mtx);
   3871 	}
   3872 
   3873 	mutex_enter(&sc->tx_pkt_mtx);
   3874 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   3875 	mutex_exit(&sc->tx_pkt_mtx);
   3876 
   3877 	/* fire-up TX now that allocations have been done */
   3878 	s = splnet();
   3879 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3880 		bnx_start(ifp);
   3881 	splx(s);
   3882 
   3883 	return;
   3884 
   3885 stopping:
   3886 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   3887 put:
   3888 	pool_put(bnx_tx_pool, pkt);
   3889 	return;
   3890 }
   3891 
   3892 /****************************************************************************/
   3893 /* Initialize the TX context memory.                                        */
   3894 /*                                                                          */
   3895 /* Returns:                                                                 */
   3896 /*   Nothing                                                                */
   3897 /****************************************************************************/
   3898 void
   3899 bnx_init_tx_context(struct bnx_softc *sc)
   3900 {
   3901 	uint32_t val;
   3902 
   3903 	/* Initialize the context ID for an L2 TX chain. */
   3904 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3905 		/* Set the CID type to support an L2 connection. */
   3906 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3907 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   3908 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3909 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   3910 
   3911 		/* Point the hardware to the first page in the chain. */
   3912 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3913 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   3914 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   3915 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   3916 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   3917 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   3918 	} else {
   3919 		/* Set the CID type to support an L2 connection. */
   3920 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3921 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   3922 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   3923 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   3924 
   3925 		/* Point the hardware to the first page in the chain. */
   3926 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   3927 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   3928 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   3929 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   3930 	}
   3931 }
   3932 
   3933 
   3934 /****************************************************************************/
   3935 /* Allocate memory and initialize the TX data structures.                   */
   3936 /*                                                                          */
   3937 /* Returns:                                                                 */
   3938 /*   0 for success, positive value for failure.                             */
   3939 /****************************************************************************/
   3940 int
   3941 bnx_init_tx_chain(struct bnx_softc *sc)
   3942 {
   3943 	struct tx_bd		*txbd;
   3944 	uint32_t		addr;
   3945 	int			i, rc = 0;
   3946 
   3947 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3948 
   3949 	/* Force an allocation of some dmamaps for tx up front */
   3950 	bnx_alloc_pkts(NULL, sc);
   3951 
   3952 	/* Set the initial TX producer/consumer indices. */
   3953 	sc->tx_prod = 0;
   3954 	sc->tx_cons = 0;
   3955 	sc->tx_prod_bseq = 0;
   3956 	sc->used_tx_bd = 0;
   3957 	sc->max_tx_bd = USABLE_TX_BD;
   3958 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   3959 	DBRUNIF(1, sc->tx_full_count = 0);
   3960 
   3961 	/*
   3962 	 * The NetXtreme II supports a linked-list structure called
   3963 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   3964 	 * consists of a series of 1 or more chain pages, each of which
   3965 	 * consists of a fixed number of BD entries.
   3966 	 * The last BD entry on each page is a pointer to the next page
   3967 	 * in the chain, and the last pointer in the BD chain
   3968 	 * points back to the beginning of the chain.
   3969 	 */
   3970 
   3971 	/* Set the TX next pointer chain entries. */
   3972 	for (i = 0; i < TX_PAGES; i++) {
   3973 		int j;
   3974 
   3975 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   3976 
   3977 		/* Check if we've reached the last page. */
   3978 		if (i == (TX_PAGES - 1))
   3979 			j = 0;
   3980 		else
   3981 			j = i + 1;
   3982 
   3983 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
   3984 		txbd->tx_bd_haddr_lo = addr;
   3985 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
   3986 		txbd->tx_bd_haddr_hi = addr;
   3987 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   3988 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   3989 	}
   3990 
   3991 	/*
   3992 	 * Initialize the context ID for an L2 TX chain.
   3993 	 */
   3994 	bnx_init_tx_context(sc);
   3995 
   3996 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3997 
   3998 	return rc;
   3999 }
   4000 
   4001 /****************************************************************************/
   4002 /* Free memory and clear the TX data structures.                            */
   4003 /*                                                                          */
   4004 /* Returns:                                                                 */
   4005 /*   Nothing.                                                               */
   4006 /****************************************************************************/
   4007 void
   4008 bnx_free_tx_chain(struct bnx_softc *sc)
   4009 {
   4010 	struct bnx_pkt		*pkt;
   4011 	int			i;
   4012 
   4013 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4014 
   4015 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4016 	mutex_enter(&sc->tx_pkt_mtx);
   4017 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4018 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4019 		mutex_exit(&sc->tx_pkt_mtx);
   4020 
   4021 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4022 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4023 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4024 
   4025 		m_freem(pkt->pkt_mbuf);
   4026 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4027 
   4028 		mutex_enter(&sc->tx_pkt_mtx);
   4029 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4030 	}
   4031 
   4032 	/* Destroy all the dmamaps we allocated for TX */
   4033 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   4034 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4035 		sc->tx_pkt_count--;
   4036 		mutex_exit(&sc->tx_pkt_mtx);
   4037 
   4038 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4039 		pool_put(bnx_tx_pool, pkt);
   4040 
   4041 		mutex_enter(&sc->tx_pkt_mtx);
   4042 	}
   4043 	mutex_exit(&sc->tx_pkt_mtx);
   4044 
   4045 
   4046 
   4047 	/* Clear each TX chain page. */
   4048 	for (i = 0; i < TX_PAGES; i++) {
   4049 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4050 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4051 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4052 	}
   4053 
   4054 	sc->used_tx_bd = 0;
   4055 
   4056 	/* Check if we lost any mbufs in the process. */
   4057 	DBRUNIF((sc->tx_mbuf_alloc),
   4058 	    aprint_error_dev(sc->bnx_dev,
   4059 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   4060 		sc->tx_mbuf_alloc));
   4061 
   4062 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4063 }
   4064 
   4065 /****************************************************************************/
   4066 /* Initialize the RX context memory.                                        */
   4067 /*                                                                          */
   4068 /* Returns:                                                                 */
   4069 /*   Nothing                                                                */
   4070 /****************************************************************************/
   4071 void
   4072 bnx_init_rx_context(struct bnx_softc *sc)
   4073 {
   4074 	uint32_t val;
   4075 
   4076 	/* Initialize the context ID for an L2 RX chain. */
   4077 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4078 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4079 
   4080 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4081 		uint32_t lo_water, hi_water;
   4082 
   4083 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
   4084 		hi_water = USABLE_RX_BD / 4;
   4085 
   4086 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
   4087 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
   4088 
   4089 		if (hi_water > 0xf)
   4090 			hi_water = 0xf;
   4091 		else if (hi_water == 0)
   4092 			lo_water = 0;
   4093 		val |= lo_water |
   4094 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
   4095 	}
   4096 
   4097  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4098 
   4099 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4100 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4101 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4102 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4103 	}
   4104 
   4105 	/* Point the hardware to the first page in the chain. */
   4106 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4107 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4108 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
   4109 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4110 }
   4111 
   4112 /****************************************************************************/
   4113 /* Allocate memory and initialize the RX data structures.                   */
   4114 /*                                                                          */
   4115 /* Returns:                                                                 */
   4116 /*   0 for success, positive value for failure.                             */
   4117 /****************************************************************************/
   4118 int
   4119 bnx_init_rx_chain(struct bnx_softc *sc)
   4120 {
   4121 	struct rx_bd		*rxbd;
   4122 	int			i, rc = 0;
   4123 	uint16_t		prod, chain_prod;
   4124 	uint32_t		prod_bseq, addr;
   4125 
   4126 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4127 
   4128 	/* Initialize the RX producer and consumer indices. */
   4129 	sc->rx_prod = 0;
   4130 	sc->rx_cons = 0;
   4131 	sc->rx_prod_bseq = 0;
   4132 	sc->free_rx_bd = USABLE_RX_BD;
   4133 	sc->max_rx_bd = USABLE_RX_BD;
   4134 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4135 	DBRUNIF(1, sc->rx_empty_count = 0);
   4136 
   4137 	/* Initialize the RX next pointer chain entries. */
   4138 	for (i = 0; i < RX_PAGES; i++) {
   4139 		int j;
   4140 
   4141 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4142 
   4143 		/* Check if we've reached the last page. */
   4144 		if (i == (RX_PAGES - 1))
   4145 			j = 0;
   4146 		else
   4147 			j = i + 1;
   4148 
   4149 		/* Setup the chain page pointers. */
   4150 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4151 		rxbd->rx_bd_haddr_hi = addr;
   4152 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
   4153 		rxbd->rx_bd_haddr_lo = addr;
   4154 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4155 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4156 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4157 	}
   4158 
   4159 	/* Allocate mbuf clusters for the rx_bd chain. */
   4160 	prod = prod_bseq = 0;
   4161 	chain_prod = RX_CHAIN_IDX(prod);
   4162 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4163 		BNX_PRINTF(sc,
   4164 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4165 	}
   4166 
   4167 	/* Save the RX chain producer index. */
   4168 	sc->rx_prod = prod;
   4169 	sc->rx_prod_bseq = prod_bseq;
   4170 
   4171 	for (i = 0; i < RX_PAGES; i++)
   4172 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4173 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4174 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4175 
   4176 	/* Tell the chip about the waiting rx_bd's. */
   4177 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4178 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4179 
   4180 	bnx_init_rx_context(sc);
   4181 
   4182 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4183 
   4184 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4185 
   4186 	return rc;
   4187 }
   4188 
   4189 /****************************************************************************/
   4190 /* Free memory and clear the RX data structures.                            */
   4191 /*                                                                          */
   4192 /* Returns:                                                                 */
   4193 /*   Nothing.                                                               */
   4194 /****************************************************************************/
   4195 void
   4196 bnx_free_rx_chain(struct bnx_softc *sc)
   4197 {
   4198 	int			i;
   4199 
   4200 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4201 
   4202 	/* Free any mbufs still in the RX mbuf chain. */
   4203 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4204 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4205 			if (sc->rx_mbuf_map[i] != NULL) {
   4206 				bus_dmamap_sync(sc->bnx_dmatag,
   4207 				    sc->rx_mbuf_map[i],	0,
   4208 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4209 				    BUS_DMASYNC_POSTREAD);
   4210 				bus_dmamap_unload(sc->bnx_dmatag,
   4211 				    sc->rx_mbuf_map[i]);
   4212 			}
   4213 			m_freem(sc->rx_mbuf_ptr[i]);
   4214 			sc->rx_mbuf_ptr[i] = NULL;
   4215 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4216 		}
   4217 	}
   4218 
   4219 	/* Clear each RX chain page. */
   4220 	for (i = 0; i < RX_PAGES; i++)
   4221 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4222 
   4223 	sc->free_rx_bd = sc->max_rx_bd;
   4224 
   4225 	/* Check if we lost any mbufs in the process. */
   4226 	DBRUNIF((sc->rx_mbuf_alloc),
   4227 	    aprint_error_dev(sc->bnx_dev,
   4228 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   4229 		sc->rx_mbuf_alloc));
   4230 
   4231 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4232 }
   4233 
   4234 /****************************************************************************/
   4235 /* Handles PHY generated interrupt events.                                  */
   4236 /*                                                                          */
   4237 /* Returns:                                                                 */
   4238 /*   Nothing.                                                               */
   4239 /****************************************************************************/
   4240 void
   4241 bnx_phy_intr(struct bnx_softc *sc)
   4242 {
   4243 	uint32_t		new_link_state, old_link_state;
   4244 
   4245 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4246 	    BUS_DMASYNC_POSTREAD);
   4247 	new_link_state = sc->status_block->status_attn_bits &
   4248 	    STATUS_ATTN_BITS_LINK_STATE;
   4249 	old_link_state = sc->status_block->status_attn_bits_ack &
   4250 	    STATUS_ATTN_BITS_LINK_STATE;
   4251 
   4252 	/* Handle any changes if the link state has changed. */
   4253 	if (new_link_state != old_link_state) {
   4254 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4255 
   4256 		callout_stop(&sc->bnx_timeout);
   4257 		bnx_tick(sc);
   4258 
   4259 		/* Update the status_attn_bits_ack field in the status block. */
   4260 		if (new_link_state) {
   4261 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4262 			    STATUS_ATTN_BITS_LINK_STATE);
   4263 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4264 		} else {
   4265 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4266 			    STATUS_ATTN_BITS_LINK_STATE);
   4267 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4268 		}
   4269 	}
   4270 
   4271 	/* Acknowledge the link change interrupt. */
   4272 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4273 }
   4274 
   4275 /****************************************************************************/
   4276 /* Handles received frame interrupt events.                                 */
   4277 /*                                                                          */
   4278 /* Returns:                                                                 */
   4279 /*   Nothing.                                                               */
   4280 /****************************************************************************/
   4281 void
   4282 bnx_rx_intr(struct bnx_softc *sc)
   4283 {
   4284 	struct status_block	*sblk = sc->status_block;
   4285 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4286 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
   4287 	uint16_t		sw_prod, sw_chain_prod;
   4288 	uint32_t		sw_prod_bseq;
   4289 	struct l2_fhdr		*l2fhdr;
   4290 	int			i;
   4291 
   4292 	DBRUNIF(1, sc->rx_interrupts++);
   4293 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4294 	    BUS_DMASYNC_POSTREAD);
   4295 
   4296 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4297 	for (i = 0; i < RX_PAGES; i++)
   4298 		bus_dmamap_sync(sc->bnx_dmatag,
   4299 		    sc->rx_bd_chain_map[i], 0,
   4300 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4301 		    BUS_DMASYNC_POSTWRITE);
   4302 
   4303 	/* Get the hardware's view of the RX consumer index. */
   4304 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4305 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4306 		hw_cons++;
   4307 
   4308 	/* Get working copies of the driver's view of the RX indices. */
   4309 	sw_cons = sc->rx_cons;
   4310 	sw_prod = sc->rx_prod;
   4311 	sw_prod_bseq = sc->rx_prod_bseq;
   4312 
   4313 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4314 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4315 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4316 
   4317 	/* Prevent speculative reads from getting ahead of the status block. */
   4318 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4319 	    BUS_SPACE_BARRIER_READ);
   4320 
   4321 	/* Update some debug statistics counters */
   4322 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4323 	    sc->rx_low_watermark = sc->free_rx_bd);
   4324 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4325 
   4326 	/*
   4327 	 * Scan through the receive chain as long
   4328 	 * as there is work to do.
   4329 	 */
   4330 	while (sw_cons != hw_cons) {
   4331 		struct mbuf *m;
   4332 		struct rx_bd *rxbd __diagused;
   4333 		unsigned int len;
   4334 		uint32_t status;
   4335 
   4336 		/* Convert the producer/consumer indices to an actual
   4337 		 * rx_bd index.
   4338 		 */
   4339 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4340 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4341 
   4342 		/* Get the used rx_bd. */
   4343 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4344 		sc->free_rx_bd++;
   4345 
   4346 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4347 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4348 
   4349 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4350 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4351 #ifdef DIAGNOSTIC
   4352 			/* Validate that this is the last rx_bd. */
   4353 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4354 			    printf("%s: Unexpected mbuf found in "
   4355 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4356 			        sw_chain_cons);
   4357 			}
   4358 #endif
   4359 
   4360 			/* DRC - ToDo: If the received packet is small, say less
   4361 			 *             than 128 bytes, allocate a new mbuf here,
   4362 			 *             copy the data to that mbuf, and recycle
   4363 			 *             the mapped jumbo frame.
   4364 			 */
   4365 
   4366 			/* Unmap the mbuf from DMA space. */
   4367 #ifdef DIAGNOSTIC
   4368 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4369 				printf("invalid map sw_cons 0x%x "
   4370 				"sw_prod 0x%x "
   4371 				"sw_chain_cons 0x%x "
   4372 				"sw_chain_prod 0x%x "
   4373 				"hw_cons 0x%x "
   4374 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4375 				"TOTAL_RX_BD 0x%x\n",
   4376 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4377 				hw_cons,
   4378 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4379 			}
   4380 #endif
   4381 			bus_dmamap_sync(sc->bnx_dmatag,
   4382 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4383 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4384 			    BUS_DMASYNC_POSTREAD);
   4385 			bus_dmamap_unload(sc->bnx_dmatag,
   4386 			    sc->rx_mbuf_map[sw_chain_cons]);
   4387 
   4388 			/* Remove the mbuf from the driver's chain. */
   4389 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4390 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4391 
   4392 			/*
   4393 			 * Frames received on the NetXteme II are prepended
   4394 			 * with the l2_fhdr structure which provides status
   4395 			 * information about the received frame (including
   4396 			 * VLAN tags and checksum info) and are also
   4397 			 * automatically adjusted to align the IP header
   4398 			 * (i.e. two null bytes are inserted before the
   4399 			 * Ethernet header).
   4400 			 */
   4401 			l2fhdr = mtod(m, struct l2_fhdr *);
   4402 
   4403 			len    = l2fhdr->l2_fhdr_pkt_len;
   4404 			status = l2fhdr->l2_fhdr_status;
   4405 
   4406 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4407 			    aprint_error("Simulating l2_fhdr status error.\n");
   4408 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4409 
   4410 			/* Watch for unusual sized frames. */
   4411 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4412 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4413 			    aprint_error_dev(sc->bnx_dev,
   4414 			        "Unusual frame size found. "
   4415 				"Min(%d), Actual(%d), Max(%d)\n",
   4416 				(int)BNX_MIN_MTU, len,
   4417 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4418 
   4419 			bnx_dump_mbuf(sc, m);
   4420 			bnx_breakpoint(sc));
   4421 
   4422 			len -= ETHER_CRC_LEN;
   4423 
   4424 			/* Check the received frame for errors. */
   4425 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4426 			    L2_FHDR_ERRORS_PHY_DECODE |
   4427 			    L2_FHDR_ERRORS_ALIGNMENT |
   4428 			    L2_FHDR_ERRORS_TOO_SHORT |
   4429 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4430 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4431 			    len >
   4432 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4433 				ifp->if_ierrors++;
   4434 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4435 
   4436 				/* Reuse the mbuf for a new frame. */
   4437 				if (bnx_add_buf(sc, m, &sw_prod,
   4438 				    &sw_chain_prod, &sw_prod_bseq)) {
   4439 					DBRUNIF(1, bnx_breakpoint(sc));
   4440 					panic("%s: Can't reuse RX mbuf!\n",
   4441 					    device_xname(sc->bnx_dev));
   4442 				}
   4443 				continue;
   4444 			}
   4445 
   4446 			/*
   4447 			 * Get a new mbuf for the rx_bd.   If no new
   4448 			 * mbufs are available then reuse the current mbuf,
   4449 			 * log an ierror on the interface, and generate
   4450 			 * an error in the system log.
   4451 			 */
   4452 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4453 			    &sw_prod_bseq)) {
   4454 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4455 				    "Failed to allocate "
   4456 				    "new mbuf, incoming frame dropped!\n"));
   4457 
   4458 				ifp->if_ierrors++;
   4459 
   4460 				/* Try and reuse the exisitng mbuf. */
   4461 				if (bnx_add_buf(sc, m, &sw_prod,
   4462 				    &sw_chain_prod, &sw_prod_bseq)) {
   4463 					DBRUNIF(1, bnx_breakpoint(sc));
   4464 					panic("%s: Double mbuf allocation "
   4465 					    "failure!",
   4466 					    device_xname(sc->bnx_dev));
   4467 				}
   4468 				continue;
   4469 			}
   4470 
   4471 			/* Skip over the l2_fhdr when passing the data up
   4472 			 * the stack.
   4473 			 */
   4474 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4475 
   4476 			/* Adjust the pckt length to match the received data. */
   4477 			m->m_pkthdr.len = m->m_len = len;
   4478 
   4479 			/* Send the packet to the appropriate interface. */
   4480 			m->m_pkthdr.rcvif = ifp;
   4481 
   4482 			DBRUN(BNX_VERBOSE_RECV,
   4483 			    struct ether_header *eh;
   4484 			    eh = mtod(m, struct ether_header *);
   4485 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4486 			    __func__, ether_sprintf(eh->ether_dhost),
   4487 			    ether_sprintf(eh->ether_shost),
   4488 			    htons(eh->ether_type)));
   4489 
   4490 			/* Validate the checksum. */
   4491 
   4492 			/* Check for an IP datagram. */
   4493 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4494 				/* Check if the IP checksum is valid. */
   4495 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   4496 				    == 0)
   4497 					m->m_pkthdr.csum_flags |=
   4498 					    M_CSUM_IPv4;
   4499 #ifdef BNX_DEBUG
   4500 				else
   4501 					DBPRINT(sc, BNX_WARN_SEND,
   4502 					    "%s(): Invalid IP checksum "
   4503 					        "= 0x%04X!\n",
   4504 						__func__,
   4505 						l2fhdr->l2_fhdr_ip_xsum
   4506 						);
   4507 #endif
   4508 			}
   4509 
   4510 			/* Check for a valid TCP/UDP frame. */
   4511 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4512 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4513 				/* Check for a good TCP/UDP checksum. */
   4514 				if ((status &
   4515 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4516 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4517 					m->m_pkthdr.csum_flags |=
   4518 					    M_CSUM_TCPv4 |
   4519 					    M_CSUM_UDPv4;
   4520 				} else {
   4521 					DBPRINT(sc, BNX_WARN_SEND,
   4522 					    "%s(): Invalid TCP/UDP "
   4523 					    "checksum = 0x%04X!\n",
   4524 					    __func__,
   4525 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4526 				}
   4527 			}
   4528 
   4529 			/*
   4530 			 * If we received a packet with a vlan tag,
   4531 			 * attach that information to the packet.
   4532 			 */
   4533 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4534 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4535 				VLAN_INPUT_TAG(ifp, m,
   4536 				    l2fhdr->l2_fhdr_vlan_tag,
   4537 				    continue);
   4538 			}
   4539 
   4540 			/*
   4541 			 * Handle BPF listeners. Let the BPF
   4542 			 * user see the packet.
   4543 			 */
   4544 			bpf_mtap(ifp, m);
   4545 
   4546 			/* Pass the mbuf off to the upper layers. */
   4547 			ifp->if_ipackets++;
   4548 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4549 			    "%s(): Passing received frame up.\n", __func__);
   4550 			(*ifp->if_input)(ifp, m);
   4551 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4552 
   4553 		}
   4554 
   4555 		sw_cons = NEXT_RX_BD(sw_cons);
   4556 
   4557 		/* Refresh hw_cons to see if there's new work */
   4558 		if (sw_cons == hw_cons) {
   4559 			hw_cons = sc->hw_rx_cons =
   4560 			    sblk->status_rx_quick_consumer_index0;
   4561 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4562 			    USABLE_RX_BD_PER_PAGE)
   4563 				hw_cons++;
   4564 		}
   4565 
   4566 		/* Prevent speculative reads from getting ahead of
   4567 		 * the status block.
   4568 		 */
   4569 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4570 		    BUS_SPACE_BARRIER_READ);
   4571 	}
   4572 
   4573 	for (i = 0; i < RX_PAGES; i++)
   4574 		bus_dmamap_sync(sc->bnx_dmatag,
   4575 		    sc->rx_bd_chain_map[i], 0,
   4576 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4577 		    BUS_DMASYNC_PREWRITE);
   4578 
   4579 	sc->rx_cons = sw_cons;
   4580 	sc->rx_prod = sw_prod;
   4581 	sc->rx_prod_bseq = sw_prod_bseq;
   4582 
   4583 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4584 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4585 
   4586 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4587 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4588 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4589 }
   4590 
   4591 /****************************************************************************/
   4592 /* Handles transmit completion interrupt events.                            */
   4593 /*                                                                          */
   4594 /* Returns:                                                                 */
   4595 /*   Nothing.                                                               */
   4596 /****************************************************************************/
   4597 void
   4598 bnx_tx_intr(struct bnx_softc *sc)
   4599 {
   4600 	struct status_block	*sblk = sc->status_block;
   4601 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4602 	struct bnx_pkt		*pkt;
   4603 	bus_dmamap_t		map;
   4604 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4605 
   4606 	DBRUNIF(1, sc->tx_interrupts++);
   4607 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4608 	    BUS_DMASYNC_POSTREAD);
   4609 
   4610 	/* Get the hardware's view of the TX consumer index. */
   4611 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4612 
   4613 	/* Skip to the next entry if this is a chain page pointer. */
   4614 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4615 		hw_tx_cons++;
   4616 
   4617 	sw_tx_cons = sc->tx_cons;
   4618 
   4619 	/* Prevent speculative reads from getting ahead of the status block. */
   4620 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4621 	    BUS_SPACE_BARRIER_READ);
   4622 
   4623 	/* Cycle through any completed TX chain page entries. */
   4624 	while (sw_tx_cons != hw_tx_cons) {
   4625 #ifdef BNX_DEBUG
   4626 		struct tx_bd *txbd = NULL;
   4627 #endif
   4628 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4629 
   4630 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4631 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4632 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4633 
   4634 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4635 		    aprint_error_dev(sc->bnx_dev,
   4636 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4637 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4638 
   4639 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4640 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4641 
   4642 		DBRUNIF((txbd == NULL),
   4643 		    aprint_error_dev(sc->bnx_dev,
   4644 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4645 		    bnx_breakpoint(sc));
   4646 
   4647 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4648 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4649 
   4650 
   4651 		mutex_enter(&sc->tx_pkt_mtx);
   4652 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4653 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4654 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4655 			mutex_exit(&sc->tx_pkt_mtx);
   4656 			/*
   4657 			 * Free the associated mbuf. Remember
   4658 			 * that only the last tx_bd of a packet
   4659 			 * has an mbuf pointer and DMA map.
   4660 			 */
   4661 			map = pkt->pkt_dmamap;
   4662 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4663 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4664 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4665 
   4666 			m_freem(pkt->pkt_mbuf);
   4667 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4668 
   4669 			ifp->if_opackets++;
   4670 
   4671 			mutex_enter(&sc->tx_pkt_mtx);
   4672 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4673 		}
   4674 		mutex_exit(&sc->tx_pkt_mtx);
   4675 
   4676 		sc->used_tx_bd--;
   4677 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4678 			__FILE__, __LINE__, sc->used_tx_bd);
   4679 
   4680 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4681 
   4682 		/* Refresh hw_cons to see if there's new work. */
   4683 		hw_tx_cons = sc->hw_tx_cons =
   4684 		    sblk->status_tx_quick_consumer_index0;
   4685 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4686 		    USABLE_TX_BD_PER_PAGE)
   4687 			hw_tx_cons++;
   4688 
   4689 		/* Prevent speculative reads from getting ahead of
   4690 		 * the status block.
   4691 		 */
   4692 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4693 		    BUS_SPACE_BARRIER_READ);
   4694 	}
   4695 
   4696 	/* Clear the TX timeout timer. */
   4697 	ifp->if_timer = 0;
   4698 
   4699 	/* Clear the tx hardware queue full flag. */
   4700 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4701 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4702 		    aprint_debug_dev(sc->bnx_dev,
   4703 		        "Open TX chain! %d/%d (used/total)\n",
   4704 			sc->used_tx_bd, sc->max_tx_bd));
   4705 		ifp->if_flags &= ~IFF_OACTIVE;
   4706 	}
   4707 
   4708 	sc->tx_cons = sw_tx_cons;
   4709 }
   4710 
   4711 /****************************************************************************/
   4712 /* Disables interrupt generation.                                           */
   4713 /*                                                                          */
   4714 /* Returns:                                                                 */
   4715 /*   Nothing.                                                               */
   4716 /****************************************************************************/
   4717 void
   4718 bnx_disable_intr(struct bnx_softc *sc)
   4719 {
   4720 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4721 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4722 }
   4723 
   4724 /****************************************************************************/
   4725 /* Enables interrupt generation.                                            */
   4726 /*                                                                          */
   4727 /* Returns:                                                                 */
   4728 /*   Nothing.                                                               */
   4729 /****************************************************************************/
   4730 void
   4731 bnx_enable_intr(struct bnx_softc *sc)
   4732 {
   4733 	uint32_t		val;
   4734 
   4735 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4736 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4737 
   4738 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4739 	    sc->last_status_idx);
   4740 
   4741 	val = REG_RD(sc, BNX_HC_COMMAND);
   4742 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4743 }
   4744 
   4745 /****************************************************************************/
   4746 /* Handles controller initialization.                                       */
   4747 /*                                                                          */
   4748 /****************************************************************************/
   4749 int
   4750 bnx_init(struct ifnet *ifp)
   4751 {
   4752 	struct bnx_softc	*sc = ifp->if_softc;
   4753 	uint32_t		ether_mtu;
   4754 	int			s, error = 0;
   4755 
   4756 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4757 
   4758 	s = splnet();
   4759 
   4760 	bnx_stop(ifp, 0);
   4761 
   4762 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4763 		aprint_error_dev(sc->bnx_dev,
   4764 		    "Controller reset failed!\n");
   4765 		goto bnx_init_exit;
   4766 	}
   4767 
   4768 	if ((error = bnx_chipinit(sc)) != 0) {
   4769 		aprint_error_dev(sc->bnx_dev,
   4770 		    "Controller initialization failed!\n");
   4771 		goto bnx_init_exit;
   4772 	}
   4773 
   4774 	if ((error = bnx_blockinit(sc)) != 0) {
   4775 		aprint_error_dev(sc->bnx_dev,
   4776 		    "Block initialization failed!\n");
   4777 		goto bnx_init_exit;
   4778 	}
   4779 
   4780 	/* Calculate and program the Ethernet MRU size. */
   4781 	if (ifp->if_mtu <= ETHERMTU) {
   4782 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4783 		sc->mbuf_alloc_size = MCLBYTES;
   4784 	} else {
   4785 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4786 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   4787 	}
   4788 
   4789 
   4790 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4791 	    __func__, ether_mtu);
   4792 
   4793 	/*
   4794 	 * Program the MRU and enable Jumbo frame
   4795 	 * support.
   4796 	 */
   4797 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4798 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4799 
   4800 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4801 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4802 
   4803 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4804 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4805 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4806 
   4807 	/* Program appropriate promiscuous/multicast filtering. */
   4808 	bnx_iff(sc);
   4809 
   4810 	/* Init RX buffer descriptor chain. */
   4811 	bnx_init_rx_chain(sc);
   4812 
   4813 	/* Init TX buffer descriptor chain. */
   4814 	bnx_init_tx_chain(sc);
   4815 
   4816 	/* Enable host interrupts. */
   4817 	bnx_enable_intr(sc);
   4818 
   4819 	if ((error = ether_mediachange(ifp)) != 0)
   4820 		goto bnx_init_exit;
   4821 
   4822 	SET(ifp->if_flags, IFF_RUNNING);
   4823 	CLR(ifp->if_flags, IFF_OACTIVE);
   4824 
   4825 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4826 
   4827 bnx_init_exit:
   4828 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4829 
   4830 	splx(s);
   4831 
   4832 	return error;
   4833 }
   4834 
   4835 /****************************************************************************/
   4836 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4837 /* memory visible to the controller.                                        */
   4838 /*                                                                          */
   4839 /* Returns:                                                                 */
   4840 /*   0 for success, positive value for failure.                             */
   4841 /****************************************************************************/
   4842 int
   4843 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   4844 {
   4845 	struct bnx_pkt		*pkt;
   4846 	bus_dmamap_t		map;
   4847 	struct tx_bd		*txbd = NULL;
   4848 	uint16_t		vlan_tag = 0, flags = 0;
   4849 	uint16_t		chain_prod, prod;
   4850 #ifdef BNX_DEBUG
   4851 	uint16_t		debug_prod;
   4852 #endif
   4853 	uint32_t		addr, prod_bseq;
   4854 	int			i, error;
   4855 	struct m_tag		*mtag;
   4856 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
   4857 
   4858 	mutex_enter(&sc->tx_pkt_mtx);
   4859 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   4860 	if (pkt == NULL) {
   4861 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   4862 			mutex_exit(&sc->tx_pkt_mtx);
   4863 			return ENETDOWN;
   4864 		}
   4865 
   4866 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   4867 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   4868 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
   4869 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4870 		}
   4871 
   4872 		mutex_exit(&sc->tx_pkt_mtx);
   4873 		return ENOMEM;
   4874 	}
   4875 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4876 	mutex_exit(&sc->tx_pkt_mtx);
   4877 
   4878 	/* Transfer any checksum offload flags to the bd. */
   4879 	if (m->m_pkthdr.csum_flags) {
   4880 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4881 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4882 		if (m->m_pkthdr.csum_flags &
   4883 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4884 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4885 	}
   4886 
   4887 	/* Transfer any VLAN tags to the bd. */
   4888 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
   4889 	if (mtag != NULL) {
   4890 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4891 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4892 	}
   4893 
   4894 	/* Map the mbuf into DMAable memory. */
   4895 	prod = sc->tx_prod;
   4896 	chain_prod = TX_CHAIN_IDX(prod);
   4897 	map = pkt->pkt_dmamap;
   4898 
   4899 	/* Map the mbuf into our DMA address space. */
   4900 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   4901 	if (error != 0) {
   4902 		aprint_error_dev(sc->bnx_dev,
   4903 		    "Error mapping mbuf into TX chain!\n");
   4904 		sc->tx_dma_map_failures++;
   4905 		goto maperr;
   4906 	}
   4907 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4908 	    BUS_DMASYNC_PREWRITE);
   4909         /* Make sure there's room in the chain */
   4910 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   4911                 goto nospace;
   4912 
   4913 	/* prod points to an empty tx_bd at this point. */
   4914 	prod_bseq = sc->tx_prod_bseq;
   4915 #ifdef BNX_DEBUG
   4916 	debug_prod = chain_prod;
   4917 #endif
   4918 	DBPRINT(sc, BNX_INFO_SEND,
   4919 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   4920 		"prod_bseq = 0x%08X\n",
   4921 		__func__, prod, chain_prod, prod_bseq);
   4922 
   4923 	/*
   4924 	 * Cycle through each mbuf segment that makes up
   4925 	 * the outgoing frame, gathering the mapping info
   4926 	 * for that segment and creating a tx_bd for the
   4927 	 * mbuf.
   4928 	 */
   4929 	for (i = 0; i < map->dm_nsegs ; i++) {
   4930 		chain_prod = TX_CHAIN_IDX(prod);
   4931 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   4932 
   4933 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   4934 		txbd->tx_bd_haddr_lo = addr;
   4935 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   4936 		txbd->tx_bd_haddr_hi = addr;
   4937 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   4938 		txbd->tx_bd_vlan_tag = vlan_tag;
   4939 		txbd->tx_bd_flags = flags;
   4940 		prod_bseq += map->dm_segs[i].ds_len;
   4941 		if (i == 0)
   4942 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   4943 		prod = NEXT_TX_BD(prod);
   4944 	}
   4945 	/* Set the END flag on the last TX buffer descriptor. */
   4946 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   4947 
   4948 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   4949 
   4950 	DBPRINT(sc, BNX_INFO_SEND,
   4951 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   4952 		"prod_bseq = 0x%08X\n",
   4953 		__func__, prod, chain_prod, prod_bseq);
   4954 
   4955 	pkt->pkt_mbuf = m;
   4956 	pkt->pkt_end_desc = chain_prod;
   4957 
   4958 	mutex_enter(&sc->tx_pkt_mtx);
   4959 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   4960 	mutex_exit(&sc->tx_pkt_mtx);
   4961 
   4962 	sc->used_tx_bd += map->dm_nsegs;
   4963 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4964 		__FILE__, __LINE__, sc->used_tx_bd);
   4965 
   4966 	/* Update some debug statistics counters */
   4967 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   4968 	    sc->tx_hi_watermark = sc->used_tx_bd);
   4969 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   4970 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   4971 
   4972 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   4973 	    map->dm_nsegs));
   4974 
   4975 	/* prod points to the next free tx_bd at this point. */
   4976 	sc->tx_prod = prod;
   4977 	sc->tx_prod_bseq = prod_bseq;
   4978 
   4979 	return 0;
   4980 
   4981 
   4982 nospace:
   4983 	bus_dmamap_unload(sc->bnx_dmatag, map);
   4984 maperr:
   4985 	mutex_enter(&sc->tx_pkt_mtx);
   4986 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4987 	mutex_exit(&sc->tx_pkt_mtx);
   4988 
   4989 	return ENOMEM;
   4990 }
   4991 
   4992 /****************************************************************************/
   4993 /* Main transmit routine.                                                   */
   4994 /*                                                                          */
   4995 /* Returns:                                                                 */
   4996 /*   Nothing.                                                               */
   4997 /****************************************************************************/
   4998 void
   4999 bnx_start(struct ifnet *ifp)
   5000 {
   5001 	struct bnx_softc	*sc = ifp->if_softc;
   5002 	struct mbuf		*m_head = NULL;
   5003 	int			count = 0;
   5004 #ifdef BNX_DEBUG
   5005 	uint16_t		tx_chain_prod;
   5006 #endif
   5007 
   5008 	/* If there's no link or the transmit queue is empty then just exit. */
   5009 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   5010 		DBPRINT(sc, BNX_INFO_SEND,
   5011 		    "%s(): output active or device not running.\n", __func__);
   5012 		goto bnx_start_exit;
   5013 	}
   5014 
   5015 	/* prod points to the next free tx_bd. */
   5016 #ifdef BNX_DEBUG
   5017 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5018 #endif
   5019 
   5020 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5021 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5022 	    "used_tx %d max_tx %d\n",
   5023 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5024 	    sc->used_tx_bd, sc->max_tx_bd);
   5025 
   5026 	/*
   5027 	 * Keep adding entries while there is space in the ring.
   5028 	 */
   5029 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5030 		/* Check for any frames to send. */
   5031 		IFQ_POLL(&ifp->if_snd, m_head);
   5032 		if (m_head == NULL)
   5033 			break;
   5034 
   5035 		/*
   5036 		 * Pack the data into the transmit ring. If we
   5037 		 * don't have room, set the OACTIVE flag to wait
   5038 		 * for the NIC to drain the chain.
   5039 		 */
   5040 		if (bnx_tx_encap(sc, m_head)) {
   5041 			ifp->if_flags |= IFF_OACTIVE;
   5042 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5043 			    "business! Total tx_bd used = %d\n",
   5044 			    sc->used_tx_bd);
   5045 			break;
   5046 		}
   5047 
   5048 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5049 		count++;
   5050 
   5051 		/* Send a copy of the frame to any BPF listeners. */
   5052 		bpf_mtap(ifp, m_head);
   5053 	}
   5054 
   5055 	if (count == 0) {
   5056 		/* no packets were dequeued */
   5057 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5058 		    "%s(): No packets were dequeued\n", __func__);
   5059 		goto bnx_start_exit;
   5060 	}
   5061 
   5062 	/* Update the driver's counters. */
   5063 #ifdef BNX_DEBUG
   5064 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5065 #endif
   5066 
   5067 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   5068 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
   5069 	    tx_chain_prod, sc->tx_prod_bseq);
   5070 
   5071 	/* Start the transmit. */
   5072 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5073 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5074 
   5075 	/* Set the tx timeout. */
   5076 	ifp->if_timer = BNX_TX_TIMEOUT;
   5077 
   5078 bnx_start_exit:
   5079 	return;
   5080 }
   5081 
   5082 /****************************************************************************/
   5083 /* Handles any IOCTL calls from the operating system.                       */
   5084 /*                                                                          */
   5085 /* Returns:                                                                 */
   5086 /*   0 for success, positive value for failure.                             */
   5087 /****************************************************************************/
   5088 int
   5089 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5090 {
   5091 	struct bnx_softc	*sc = ifp->if_softc;
   5092 	struct ifreq		*ifr = (struct ifreq *) data;
   5093 	struct mii_data		*mii = &sc->bnx_mii;
   5094 	int			s, error = 0;
   5095 
   5096 	s = splnet();
   5097 
   5098 	switch (command) {
   5099 	case SIOCSIFFLAGS:
   5100 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5101 			break;
   5102 		/* XXX set an ifflags callback and let ether_ioctl
   5103 		 * handle all of this.
   5104 		 */
   5105 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5106 			if (ifp->if_flags & IFF_RUNNING)
   5107 				error = ENETRESET;
   5108 			else
   5109 				bnx_init(ifp);
   5110 		} else if (ifp->if_flags & IFF_RUNNING)
   5111 			bnx_stop(ifp, 1);
   5112 		break;
   5113 
   5114 	case SIOCSIFMEDIA:
   5115 	case SIOCGIFMEDIA:
   5116 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5117 		    sc->bnx_phy_flags);
   5118 
   5119 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5120 		break;
   5121 
   5122 	default:
   5123 		error = ether_ioctl(ifp, command, data);
   5124 	}
   5125 
   5126 	if (error == ENETRESET) {
   5127 		if (ifp->if_flags & IFF_RUNNING)
   5128 			bnx_iff(sc);
   5129 		error = 0;
   5130 	}
   5131 
   5132 	splx(s);
   5133 	return error;
   5134 }
   5135 
   5136 /****************************************************************************/
   5137 /* Transmit timeout handler.                                                */
   5138 /*                                                                          */
   5139 /* Returns:                                                                 */
   5140 /*   Nothing.                                                               */
   5141 /****************************************************************************/
   5142 void
   5143 bnx_watchdog(struct ifnet *ifp)
   5144 {
   5145 	struct bnx_softc	*sc = ifp->if_softc;
   5146 
   5147 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5148 	    bnx_dump_status_block(sc));
   5149 	/*
   5150 	 * If we are in this routine because of pause frames, then
   5151 	 * don't reset the hardware.
   5152 	 */
   5153 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5154 		return;
   5155 
   5156 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5157 
   5158 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5159 
   5160 	bnx_init(ifp);
   5161 
   5162 	ifp->if_oerrors++;
   5163 }
   5164 
   5165 /*
   5166  * Interrupt handler.
   5167  */
   5168 /****************************************************************************/
   5169 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5170 /* interrupt and then calls a separate routine for handle the various       */
   5171 /* interrupt causes (PHY, TX, RX).                                          */
   5172 /*                                                                          */
   5173 /* Returns:                                                                 */
   5174 /*   0 for success, positive value for failure.                             */
   5175 /****************************************************************************/
   5176 int
   5177 bnx_intr(void *xsc)
   5178 {
   5179 	struct bnx_softc	*sc;
   5180 	struct ifnet		*ifp;
   5181 	uint32_t		status_attn_bits;
   5182 	const struct status_block *sblk;
   5183 
   5184 	sc = xsc;
   5185 
   5186 	ifp = &sc->bnx_ec.ec_if;
   5187 
   5188 	if (!device_is_active(sc->bnx_dev) ||
   5189 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5190 		return 0;
   5191 
   5192 	DBRUNIF(1, sc->interrupts_generated++);
   5193 
   5194 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5195 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   5196 
   5197 	/*
   5198 	 * If the hardware status block index
   5199 	 * matches the last value read by the
   5200 	 * driver and we haven't asserted our
   5201 	 * interrupt then there's nothing to do.
   5202 	 */
   5203 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   5204 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   5205 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   5206 		return 0;
   5207 
   5208 	/* Ack the interrupt and stop others from occuring. */
   5209 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5210 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   5211 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5212 
   5213 	/* Keep processing data as long as there is work to do. */
   5214 	for (;;) {
   5215 		sblk = sc->status_block;
   5216 		status_attn_bits = sblk->status_attn_bits;
   5217 
   5218 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5219 		    aprint_debug("Simulating unexpected status attention bit set.");
   5220 		    status_attn_bits = status_attn_bits |
   5221 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5222 
   5223 		/* Was it a link change interrupt? */
   5224 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5225 		    (sblk->status_attn_bits_ack &
   5226 		    STATUS_ATTN_BITS_LINK_STATE))
   5227 			bnx_phy_intr(sc);
   5228 
   5229 		/* If any other attention is asserted then the chip is toast. */
   5230 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5231 		    (sblk->status_attn_bits_ack &
   5232 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5233 			DBRUN(1, sc->unexpected_attentions++);
   5234 
   5235 			BNX_PRINTF(sc,
   5236 			    "Fatal attention detected: 0x%08X\n",
   5237 			    sblk->status_attn_bits);
   5238 
   5239 			DBRUN(BNX_FATAL,
   5240 			    if (bnx_debug_unexpected_attention == 0)
   5241 			    bnx_breakpoint(sc));
   5242 
   5243 			bnx_init(ifp);
   5244 			return 1;
   5245 		}
   5246 
   5247 		/* Check for any completed RX frames. */
   5248 		if (sblk->status_rx_quick_consumer_index0 !=
   5249 		    sc->hw_rx_cons)
   5250 			bnx_rx_intr(sc);
   5251 
   5252 		/* Check for any completed TX frames. */
   5253 		if (sblk->status_tx_quick_consumer_index0 !=
   5254 		    sc->hw_tx_cons)
   5255 			bnx_tx_intr(sc);
   5256 
   5257 		/*
   5258 		 * Save the status block index value for use during the
   5259 		 * next interrupt.
   5260 		 */
   5261 		sc->last_status_idx = sblk->status_idx;
   5262 
   5263 		/* Prevent speculative reads from getting ahead of the
   5264 		 * status block.
   5265 		 */
   5266 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   5267 		    BUS_SPACE_BARRIER_READ);
   5268 
   5269 		/* If there's no work left then exit the isr. */
   5270 		if ((sblk->status_rx_quick_consumer_index0 ==
   5271 			sc->hw_rx_cons) &&
   5272 		    (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
   5273 			break;
   5274 	}
   5275 
   5276 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5277 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   5278 
   5279 	/* Re-enable interrupts. */
   5280 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5281 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   5282 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5283 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5284 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   5285 
   5286 	/* Handle any frames that arrived while handling the interrupt. */
   5287 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   5288 		bnx_start(ifp);
   5289 
   5290 	return 1;
   5291 }
   5292 
   5293 /****************************************************************************/
   5294 /* Programs the various packet receive modes (broadcast and multicast).     */
   5295 /*                                                                          */
   5296 /* Returns:                                                                 */
   5297 /*   Nothing.                                                               */
   5298 /****************************************************************************/
   5299 void
   5300 bnx_iff(struct bnx_softc *sc)
   5301 {
   5302 	struct ethercom		*ec = &sc->bnx_ec;
   5303 	struct ifnet		*ifp = &ec->ec_if;
   5304 	struct ether_multi	*enm;
   5305 	struct ether_multistep	step;
   5306 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5307 	uint32_t		rx_mode, sort_mode;
   5308 	int			h, i;
   5309 
   5310 	/* Initialize receive mode default settings. */
   5311 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5312 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5313 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5314 	ifp->if_flags &= ~IFF_ALLMULTI;
   5315 
   5316 	/*
   5317 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5318 	 * be enbled.
   5319 	 */
   5320 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5321 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5322 
   5323 	/*
   5324 	 * Check for promiscuous, all multicast, or selected
   5325 	 * multicast address filtering.
   5326 	 */
   5327 	if (ifp->if_flags & IFF_PROMISC) {
   5328 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5329 
   5330 		ifp->if_flags |= IFF_ALLMULTI;
   5331 		/* Enable promiscuous mode. */
   5332 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5333 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5334 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5335 allmulti:
   5336 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5337 
   5338 		ifp->if_flags |= IFF_ALLMULTI;
   5339 		/* Enable all multicast addresses. */
   5340 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5341 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5342 			    0xffffffff);
   5343 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5344 	} else {
   5345 		/* Accept one or more multicast(s). */
   5346 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5347 
   5348 		ETHER_FIRST_MULTI(step, ec, enm);
   5349 		while (enm != NULL) {
   5350 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5351 			    ETHER_ADDR_LEN)) {
   5352 				goto allmulti;
   5353 			}
   5354 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5355 			    0xFF;
   5356 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5357 			ETHER_NEXT_MULTI(step, enm);
   5358 		}
   5359 
   5360 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5361 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5362 			    hashes[i]);
   5363 
   5364 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5365 	}
   5366 
   5367 	/* Only make changes if the recive mode has actually changed. */
   5368 	if (rx_mode != sc->rx_mode) {
   5369 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5370 		    rx_mode);
   5371 
   5372 		sc->rx_mode = rx_mode;
   5373 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5374 	}
   5375 
   5376 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5377 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5378 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5379 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5380 }
   5381 
   5382 /****************************************************************************/
   5383 /* Called periodically to updates statistics from the controllers           */
   5384 /* statistics block.                                                        */
   5385 /*                                                                          */
   5386 /* Returns:                                                                 */
   5387 /*   Nothing.                                                               */
   5388 /****************************************************************************/
   5389 void
   5390 bnx_stats_update(struct bnx_softc *sc)
   5391 {
   5392 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5393 	struct statistics_block	*stats;
   5394 
   5395 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5396 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5397 	    BUS_DMASYNC_POSTREAD);
   5398 
   5399 	stats = (struct statistics_block *)sc->stats_block;
   5400 
   5401 	/*
   5402 	 * Update the interface statistics from the
   5403 	 * hardware statistics.
   5404 	 */
   5405 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5406 
   5407 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5408 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5409 	    (u_long)stats->stat_IfInMBUFDiscards +
   5410 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5411 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5412 
   5413 	ifp->if_oerrors = (u_long)
   5414 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5415 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5416 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5417 
   5418 	/*
   5419 	 * Certain controllers don't report
   5420 	 * carrier sense errors correctly.
   5421 	 * See errata E11_5708CA0_1165.
   5422 	 */
   5423 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5424 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5425 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5426 
   5427 	/*
   5428 	 * Update the sysctl statistics from the
   5429 	 * hardware statistics.
   5430 	 */
   5431 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
   5432 	    (uint64_t) stats->stat_IfHCInOctets_lo;
   5433 
   5434 	sc->stat_IfHCInBadOctets =
   5435 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5436 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
   5437 
   5438 	sc->stat_IfHCOutOctets =
   5439 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5440 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
   5441 
   5442 	sc->stat_IfHCOutBadOctets =
   5443 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5444 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
   5445 
   5446 	sc->stat_IfHCInUcastPkts =
   5447 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5448 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
   5449 
   5450 	sc->stat_IfHCInMulticastPkts =
   5451 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5452 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
   5453 
   5454 	sc->stat_IfHCInBroadcastPkts =
   5455 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5456 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5457 
   5458 	sc->stat_IfHCOutUcastPkts =
   5459 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5460 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
   5461 
   5462 	sc->stat_IfHCOutMulticastPkts =
   5463 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5464 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5465 
   5466 	sc->stat_IfHCOutBroadcastPkts =
   5467 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5468 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5469 
   5470 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5471 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5472 
   5473 	sc->stat_Dot3StatsCarrierSenseErrors =
   5474 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5475 
   5476 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5477 
   5478 	sc->stat_Dot3StatsAlignmentErrors =
   5479 	    stats->stat_Dot3StatsAlignmentErrors;
   5480 
   5481 	sc->stat_Dot3StatsSingleCollisionFrames =
   5482 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5483 
   5484 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5485 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5486 
   5487 	sc->stat_Dot3StatsDeferredTransmissions =
   5488 	    stats->stat_Dot3StatsDeferredTransmissions;
   5489 
   5490 	sc->stat_Dot3StatsExcessiveCollisions =
   5491 	    stats->stat_Dot3StatsExcessiveCollisions;
   5492 
   5493 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5494 
   5495 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5496 
   5497 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5498 
   5499 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5500 
   5501 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5502 
   5503 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5504 
   5505 	sc->stat_EtherStatsPktsRx64Octets =
   5506 	    stats->stat_EtherStatsPktsRx64Octets;
   5507 
   5508 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5509 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5510 
   5511 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5512 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5513 
   5514 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5515 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5516 
   5517 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5518 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5519 
   5520 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5521 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5522 
   5523 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5524 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5525 
   5526 	sc->stat_EtherStatsPktsTx64Octets =
   5527 	    stats->stat_EtherStatsPktsTx64Octets;
   5528 
   5529 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5530 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5531 
   5532 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5533 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5534 
   5535 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5536 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5537 
   5538 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5539 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5540 
   5541 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5542 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5543 
   5544 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5545 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5546 
   5547 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5548 
   5549 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5550 
   5551 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5552 
   5553 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5554 
   5555 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5556 
   5557 	sc->stat_MacControlFramesReceived =
   5558 	    stats->stat_MacControlFramesReceived;
   5559 
   5560 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5561 
   5562 	sc->stat_IfInFramesL2FilterDiscards =
   5563 	    stats->stat_IfInFramesL2FilterDiscards;
   5564 
   5565 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5566 
   5567 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5568 
   5569 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5570 
   5571 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5572 
   5573 	sc->stat_CatchupInRuleCheckerDiscards =
   5574 	    stats->stat_CatchupInRuleCheckerDiscards;
   5575 
   5576 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5577 
   5578 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5579 
   5580 	sc->stat_CatchupInRuleCheckerP4Hit =
   5581 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5582 
   5583 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5584 }
   5585 
   5586 void
   5587 bnx_tick(void *xsc)
   5588 {
   5589 	struct bnx_softc	*sc = xsc;
   5590 	struct mii_data		*mii;
   5591 	uint32_t		msg;
   5592 	uint16_t		prod, chain_prod;
   5593 	uint32_t		prod_bseq;
   5594 	int s = splnet();
   5595 
   5596 	/* Tell the firmware that the driver is still running. */
   5597 #ifdef BNX_DEBUG
   5598 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5599 #else
   5600 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5601 #endif
   5602 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5603 
   5604 	/* Update the statistics from the hardware statistics block. */
   5605 	bnx_stats_update(sc);
   5606 
   5607 	/* Schedule the next tick. */
   5608 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5609 
   5610 	mii = &sc->bnx_mii;
   5611 	mii_tick(mii);
   5612 
   5613 	/* try to get more RX buffers, just in case */
   5614 	prod = sc->rx_prod;
   5615 	prod_bseq = sc->rx_prod_bseq;
   5616 	chain_prod = RX_CHAIN_IDX(prod);
   5617 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5618 	sc->rx_prod = prod;
   5619 	sc->rx_prod_bseq = prod_bseq;
   5620 	splx(s);
   5621 	return;
   5622 }
   5623 
   5624 /****************************************************************************/
   5625 /* BNX Debug Routines                                                       */
   5626 /****************************************************************************/
   5627 #ifdef BNX_DEBUG
   5628 
   5629 /****************************************************************************/
   5630 /* Prints out information about an mbuf.                                    */
   5631 /*                                                                          */
   5632 /* Returns:                                                                 */
   5633 /*   Nothing.                                                               */
   5634 /****************************************************************************/
   5635 void
   5636 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5637 {
   5638 	struct mbuf		*mp = m;
   5639 
   5640 	if (m == NULL) {
   5641 		/* Index out of range. */
   5642 		aprint_error("mbuf ptr is null!\n");
   5643 		return;
   5644 	}
   5645 
   5646 	while (mp) {
   5647 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5648 		    mp, mp->m_len);
   5649 
   5650 		if (mp->m_flags & M_EXT)
   5651 			aprint_debug("M_EXT ");
   5652 		if (mp->m_flags & M_PKTHDR)
   5653 			aprint_debug("M_PKTHDR ");
   5654 		aprint_debug("\n");
   5655 
   5656 		if (mp->m_flags & M_EXT)
   5657 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   5658 			    mp, mp->m_ext.ext_size);
   5659 
   5660 		mp = mp->m_next;
   5661 	}
   5662 }
   5663 
   5664 /****************************************************************************/
   5665 /* Prints out the mbufs in the TX mbuf chain.                               */
   5666 /*                                                                          */
   5667 /* Returns:                                                                 */
   5668 /*   Nothing.                                                               */
   5669 /****************************************************************************/
   5670 void
   5671 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5672 {
   5673 #if 0
   5674 	struct mbuf		*m;
   5675 	int			i;
   5676 
   5677 	aprint_debug_dev(sc->bnx_dev,
   5678 	    "----------------------------"
   5679 	    "  tx mbuf data  "
   5680 	    "----------------------------\n");
   5681 
   5682 	for (i = 0; i < count; i++) {
   5683 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5684 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5685 		bnx_dump_mbuf(sc, m);
   5686 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5687 	}
   5688 
   5689 	aprint_debug_dev(sc->bnx_dev,
   5690 	    "--------------------------------------------"
   5691 	    "----------------------------\n");
   5692 #endif
   5693 }
   5694 
   5695 /*
   5696  * This routine prints the RX mbuf chain.
   5697  */
   5698 void
   5699 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5700 {
   5701 	struct mbuf		*m;
   5702 	int			i;
   5703 
   5704 	aprint_debug_dev(sc->bnx_dev,
   5705 	    "----------------------------"
   5706 	    "  rx mbuf data  "
   5707 	    "----------------------------\n");
   5708 
   5709 	for (i = 0; i < count; i++) {
   5710 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5711 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5712 		bnx_dump_mbuf(sc, m);
   5713 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5714 	}
   5715 
   5716 
   5717 	aprint_debug_dev(sc->bnx_dev,
   5718 	    "--------------------------------------------"
   5719 	    "----------------------------\n");
   5720 }
   5721 
   5722 void
   5723 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5724 {
   5725 	if (idx > MAX_TX_BD)
   5726 		/* Index out of range. */
   5727 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5728 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5729 		/* TX Chain page pointer. */
   5730 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5731 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5732 		    txbd->tx_bd_haddr_lo);
   5733 	else
   5734 		/* Normal tx_bd entry. */
   5735 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5736 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5737 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5738 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5739 		    txbd->tx_bd_flags);
   5740 }
   5741 
   5742 void
   5743 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5744 {
   5745 	if (idx > MAX_RX_BD)
   5746 		/* Index out of range. */
   5747 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5748 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5749 		/* TX Chain page pointer. */
   5750 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5751 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5752 		    rxbd->rx_bd_haddr_lo);
   5753 	else
   5754 		/* Normal tx_bd entry. */
   5755 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5756 		    "0x%08X, flags = 0x%08X\n", idx,
   5757 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5758 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5759 }
   5760 
   5761 void
   5762 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5763 {
   5764 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5765 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5766 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5767 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5768 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5769 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5770 }
   5771 
   5772 /*
   5773  * This routine prints the TX chain.
   5774  */
   5775 void
   5776 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5777 {
   5778 	struct tx_bd		*txbd;
   5779 	int			i;
   5780 
   5781 	/* First some info about the tx_bd chain structure. */
   5782 	aprint_debug_dev(sc->bnx_dev,
   5783 	    "----------------------------"
   5784 	    "  tx_bd  chain  "
   5785 	    "----------------------------\n");
   5786 
   5787 	BNX_PRINTF(sc,
   5788 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5789 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
   5790 
   5791 	BNX_PRINTF(sc,
   5792 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5793 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
   5794 
   5795 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
   5796 
   5797 	aprint_error_dev(sc->bnx_dev, ""
   5798 	    "-----------------------------"
   5799 	    "   tx_bd data   "
   5800 	    "-----------------------------\n");
   5801 
   5802 	/* Now print out the tx_bd's themselves. */
   5803 	for (i = 0; i < count; i++) {
   5804 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5805 		bnx_dump_txbd(sc, tx_prod, txbd);
   5806 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5807 	}
   5808 
   5809 	aprint_debug_dev(sc->bnx_dev,
   5810 	    "-----------------------------"
   5811 	    "--------------"
   5812 	    "-----------------------------\n");
   5813 }
   5814 
   5815 /*
   5816  * This routine prints the RX chain.
   5817  */
   5818 void
   5819 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5820 {
   5821 	struct rx_bd		*rxbd;
   5822 	int			i;
   5823 
   5824 	/* First some info about the tx_bd chain structure. */
   5825 	aprint_debug_dev(sc->bnx_dev,
   5826 	    "----------------------------"
   5827 	    "  rx_bd  chain  "
   5828 	    "----------------------------\n");
   5829 
   5830 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   5831 
   5832 	BNX_PRINTF(sc,
   5833 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5834 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
   5835 
   5836 	BNX_PRINTF(sc,
   5837 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5838 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
   5839 
   5840 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
   5841 
   5842 	aprint_error_dev(sc->bnx_dev,
   5843 	    "----------------------------"
   5844 	    "   rx_bd data   "
   5845 	    "----------------------------\n");
   5846 
   5847 	/* Now print out the rx_bd's themselves. */
   5848 	for (i = 0; i < count; i++) {
   5849 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5850 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5851 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5852 	}
   5853 
   5854 	aprint_debug_dev(sc->bnx_dev,
   5855 	    "----------------------------"
   5856 	    "--------------"
   5857 	    "----------------------------\n");
   5858 }
   5859 
   5860 /*
   5861  * This routine prints the status block.
   5862  */
   5863 void
   5864 bnx_dump_status_block(struct bnx_softc *sc)
   5865 {
   5866 	struct status_block	*sblk;
   5867 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5868 	    BUS_DMASYNC_POSTREAD);
   5869 
   5870 	sblk = sc->status_block;
   5871 
   5872    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
   5873 	    "-----------------------------\n");
   5874 
   5875 	BNX_PRINTF(sc,
   5876 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5877 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5878 	    sblk->status_idx);
   5879 
   5880 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5881 	    sblk->status_rx_quick_consumer_index0,
   5882 	    sblk->status_tx_quick_consumer_index0);
   5883 
   5884 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5885 
   5886 	/* Theses indices are not used for normal L2 drivers. */
   5887 	if (sblk->status_rx_quick_consumer_index1 ||
   5888 		sblk->status_tx_quick_consumer_index1)
   5889 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5890 		    sblk->status_rx_quick_consumer_index1,
   5891 		    sblk->status_tx_quick_consumer_index1);
   5892 
   5893 	if (sblk->status_rx_quick_consumer_index2 ||
   5894 		sblk->status_tx_quick_consumer_index2)
   5895 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5896 		    sblk->status_rx_quick_consumer_index2,
   5897 		    sblk->status_tx_quick_consumer_index2);
   5898 
   5899 	if (sblk->status_rx_quick_consumer_index3 ||
   5900 		sblk->status_tx_quick_consumer_index3)
   5901 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5902 		    sblk->status_rx_quick_consumer_index3,
   5903 		    sblk->status_tx_quick_consumer_index3);
   5904 
   5905 	if (sblk->status_rx_quick_consumer_index4 ||
   5906 		sblk->status_rx_quick_consumer_index5)
   5907 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5908 		    sblk->status_rx_quick_consumer_index4,
   5909 		    sblk->status_rx_quick_consumer_index5);
   5910 
   5911 	if (sblk->status_rx_quick_consumer_index6 ||
   5912 		sblk->status_rx_quick_consumer_index7)
   5913 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5914 		    sblk->status_rx_quick_consumer_index6,
   5915 		    sblk->status_rx_quick_consumer_index7);
   5916 
   5917 	if (sblk->status_rx_quick_consumer_index8 ||
   5918 		sblk->status_rx_quick_consumer_index9)
   5919 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5920 		    sblk->status_rx_quick_consumer_index8,
   5921 		    sblk->status_rx_quick_consumer_index9);
   5922 
   5923 	if (sblk->status_rx_quick_consumer_index10 ||
   5924 		sblk->status_rx_quick_consumer_index11)
   5925 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   5926 		    sblk->status_rx_quick_consumer_index10,
   5927 		    sblk->status_rx_quick_consumer_index11);
   5928 
   5929 	if (sblk->status_rx_quick_consumer_index12 ||
   5930 		sblk->status_rx_quick_consumer_index13)
   5931 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   5932 		    sblk->status_rx_quick_consumer_index12,
   5933 		    sblk->status_rx_quick_consumer_index13);
   5934 
   5935 	if (sblk->status_rx_quick_consumer_index14 ||
   5936 		sblk->status_rx_quick_consumer_index15)
   5937 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   5938 		    sblk->status_rx_quick_consumer_index14,
   5939 		    sblk->status_rx_quick_consumer_index15);
   5940 
   5941 	if (sblk->status_completion_producer_index ||
   5942 		sblk->status_cmd_consumer_index)
   5943 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   5944 		    sblk->status_completion_producer_index,
   5945 		    sblk->status_cmd_consumer_index);
   5946 
   5947 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   5948 	    "-----------------------------\n");
   5949 }
   5950 
   5951 /*
   5952  * This routine prints the statistics block.
   5953  */
   5954 void
   5955 bnx_dump_stats_block(struct bnx_softc *sc)
   5956 {
   5957 	struct statistics_block	*sblk;
   5958 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5959 	    BUS_DMASYNC_POSTREAD);
   5960 
   5961 	sblk = sc->stats_block;
   5962 
   5963 	aprint_debug_dev(sc->bnx_dev, ""
   5964 	    "-----------------------------"
   5965 	    " Stats  Block "
   5966 	    "-----------------------------\n");
   5967 
   5968 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   5969 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   5970 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   5971 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   5972 
   5973 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   5974 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   5975 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   5976 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   5977 
   5978 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   5979 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   5980 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   5981 	    sblk->stat_IfHCInMulticastPkts_hi,
   5982 	    sblk->stat_IfHCInMulticastPkts_lo);
   5983 
   5984 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   5985 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   5986 	    sblk->stat_IfHCInBroadcastPkts_hi,
   5987 	    sblk->stat_IfHCInBroadcastPkts_lo,
   5988 	    sblk->stat_IfHCOutUcastPkts_hi,
   5989 	    sblk->stat_IfHCOutUcastPkts_lo);
   5990 
   5991 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   5992 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   5993 	    sblk->stat_IfHCOutMulticastPkts_hi,
   5994 	    sblk->stat_IfHCOutMulticastPkts_lo,
   5995 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   5996 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   5997 
   5998 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   5999 		BNX_PRINTF(sc, "0x%08X : "
   6000 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6001 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6002 
   6003 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6004 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6005 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6006 
   6007 	if (sblk->stat_Dot3StatsFCSErrors)
   6008 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6009 		    sblk->stat_Dot3StatsFCSErrors);
   6010 
   6011 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6012 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6013 		    sblk->stat_Dot3StatsAlignmentErrors);
   6014 
   6015 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6016 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6017 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6018 
   6019 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6020 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6021 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6022 
   6023 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6024 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6025 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6026 
   6027 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6028 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6029 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6030 
   6031 	if (sblk->stat_Dot3StatsLateCollisions)
   6032 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6033 		    sblk->stat_Dot3StatsLateCollisions);
   6034 
   6035 	if (sblk->stat_EtherStatsCollisions)
   6036 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6037 		    sblk->stat_EtherStatsCollisions);
   6038 
   6039 	if (sblk->stat_EtherStatsFragments)
   6040 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6041 		    sblk->stat_EtherStatsFragments);
   6042 
   6043 	if (sblk->stat_EtherStatsJabbers)
   6044 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6045 		    sblk->stat_EtherStatsJabbers);
   6046 
   6047 	if (sblk->stat_EtherStatsUndersizePkts)
   6048 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6049 		    sblk->stat_EtherStatsUndersizePkts);
   6050 
   6051 	if (sblk->stat_EtherStatsOverrsizePkts)
   6052 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6053 		    sblk->stat_EtherStatsOverrsizePkts);
   6054 
   6055 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6056 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6057 		    sblk->stat_EtherStatsPktsRx64Octets);
   6058 
   6059 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6060 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6061 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6062 
   6063 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6064 		BNX_PRINTF(sc, "0x%08X : "
   6065 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6066 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6067 
   6068 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6069 		BNX_PRINTF(sc, "0x%08X : "
   6070 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6071 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6072 
   6073 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6074 		BNX_PRINTF(sc, "0x%08X : "
   6075 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6076 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6077 
   6078 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6079 		BNX_PRINTF(sc, "0x%08X : "
   6080 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6081 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6082 
   6083 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6084 		BNX_PRINTF(sc, "0x%08X : "
   6085 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6086 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6087 
   6088 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6089 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6090 		    sblk->stat_EtherStatsPktsTx64Octets);
   6091 
   6092 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6093 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6094 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6095 
   6096 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6097 		BNX_PRINTF(sc, "0x%08X : "
   6098 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6099 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6100 
   6101 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6102 		BNX_PRINTF(sc, "0x%08X : "
   6103 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6104 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6105 
   6106 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6107 		BNX_PRINTF(sc, "0x%08X : "
   6108 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6109 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6110 
   6111 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6112 		BNX_PRINTF(sc, "0x%08X : "
   6113 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6114 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6115 
   6116 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6117 		BNX_PRINTF(sc, "0x%08X : "
   6118 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6119 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6120 
   6121 	if (sblk->stat_XonPauseFramesReceived)
   6122 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6123 		    sblk->stat_XonPauseFramesReceived);
   6124 
   6125 	if (sblk->stat_XoffPauseFramesReceived)
   6126 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6127 		    sblk->stat_XoffPauseFramesReceived);
   6128 
   6129 	if (sblk->stat_OutXonSent)
   6130 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6131 		    sblk->stat_OutXonSent);
   6132 
   6133 	if (sblk->stat_OutXoffSent)
   6134 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6135 		    sblk->stat_OutXoffSent);
   6136 
   6137 	if (sblk->stat_FlowControlDone)
   6138 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6139 		    sblk->stat_FlowControlDone);
   6140 
   6141 	if (sblk->stat_MacControlFramesReceived)
   6142 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6143 		    sblk->stat_MacControlFramesReceived);
   6144 
   6145 	if (sblk->stat_XoffStateEntered)
   6146 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6147 		    sblk->stat_XoffStateEntered);
   6148 
   6149 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6150 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6151 		    sblk->stat_IfInFramesL2FilterDiscards);
   6152 
   6153 	if (sblk->stat_IfInRuleCheckerDiscards)
   6154 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6155 		    sblk->stat_IfInRuleCheckerDiscards);
   6156 
   6157 	if (sblk->stat_IfInFTQDiscards)
   6158 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6159 		    sblk->stat_IfInFTQDiscards);
   6160 
   6161 	if (sblk->stat_IfInMBUFDiscards)
   6162 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6163 		    sblk->stat_IfInMBUFDiscards);
   6164 
   6165 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6166 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6167 		    sblk->stat_IfInRuleCheckerP4Hit);
   6168 
   6169 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6170 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6171 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6172 
   6173 	if (sblk->stat_CatchupInFTQDiscards)
   6174 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6175 		    sblk->stat_CatchupInFTQDiscards);
   6176 
   6177 	if (sblk->stat_CatchupInMBUFDiscards)
   6178 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6179 		    sblk->stat_CatchupInMBUFDiscards);
   6180 
   6181 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6182 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6183 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6184 
   6185 	aprint_debug_dev(sc->bnx_dev,
   6186 	    "-----------------------------"
   6187 	    "--------------"
   6188 	    "-----------------------------\n");
   6189 }
   6190 
   6191 void
   6192 bnx_dump_driver_state(struct bnx_softc *sc)
   6193 {
   6194 	aprint_debug_dev(sc->bnx_dev,
   6195 	    "-----------------------------"
   6196 	    " Driver State "
   6197 	    "-----------------------------\n");
   6198 
   6199 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6200 	    "address\n", sc);
   6201 
   6202 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6203 	    sc->status_block);
   6204 
   6205 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6206 	    "address\n", sc->stats_block);
   6207 
   6208 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6209 	    "adddress\n", sc->tx_bd_chain);
   6210 
   6211 #if 0
   6212 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6213 	    sc->rx_bd_chain);
   6214 
   6215 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6216 	    sc->tx_mbuf_ptr);
   6217 #endif
   6218 
   6219 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6220 	    sc->rx_mbuf_ptr);
   6221 
   6222 	BNX_PRINTF(sc,
   6223 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6224 	    sc->interrupts_generated);
   6225 
   6226 	BNX_PRINTF(sc,
   6227 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6228 	    sc->rx_interrupts);
   6229 
   6230 	BNX_PRINTF(sc,
   6231 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6232 	    sc->tx_interrupts);
   6233 
   6234 	BNX_PRINTF(sc,
   6235 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6236 	    sc->last_status_idx);
   6237 
   6238 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6239 	    sc->tx_prod);
   6240 
   6241 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6242 	    sc->tx_cons);
   6243 
   6244 	BNX_PRINTF(sc,
   6245 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6246 	    sc->tx_prod_bseq);
   6247 	BNX_PRINTF(sc,
   6248 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6249 	    sc->tx_mbuf_alloc);
   6250 
   6251 	BNX_PRINTF(sc,
   6252 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6253 	    sc->used_tx_bd);
   6254 
   6255 	BNX_PRINTF(sc,
   6256 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6257 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6258 
   6259 
   6260 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6261 	    sc->rx_prod);
   6262 
   6263 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6264 	    sc->rx_cons);
   6265 
   6266 	BNX_PRINTF(sc,
   6267 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6268 	    sc->rx_prod_bseq);
   6269 
   6270 	BNX_PRINTF(sc,
   6271 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6272 	    sc->rx_mbuf_alloc);
   6273 
   6274 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6275 	    sc->free_rx_bd);
   6276 
   6277 	BNX_PRINTF(sc,
   6278 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6279 	    sc->rx_low_watermark, sc->max_rx_bd);
   6280 
   6281 	BNX_PRINTF(sc,
   6282 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6283 	    "mbuf alloc failures\n",
   6284 	    sc->mbuf_alloc_failed);
   6285 
   6286 	BNX_PRINTF(sc,
   6287 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6288 	    "simulated mbuf alloc failures\n",
   6289 	    sc->mbuf_sim_alloc_failed);
   6290 
   6291 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6292 	    "-----------------------------\n");
   6293 }
   6294 
   6295 void
   6296 bnx_dump_hw_state(struct bnx_softc *sc)
   6297 {
   6298 	uint32_t		val1;
   6299 	int			i;
   6300 
   6301 	aprint_debug_dev(sc->bnx_dev,
   6302 	    "----------------------------"
   6303 	    " Hardware State "
   6304 	    "----------------------------\n");
   6305 
   6306 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   6307 
   6308 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6309 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6310 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6311 
   6312 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6313 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6314 
   6315 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6316 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6317 
   6318 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6319 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6320 	    BNX_EMAC_STATUS);
   6321 
   6322 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6323 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6324 
   6325 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6326 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6327 	    BNX_TBDR_STATUS);
   6328 
   6329 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6330 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6331 	    BNX_TDMA_STATUS);
   6332 
   6333 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6334 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6335 
   6336 	aprint_debug_dev(sc->bnx_dev,
   6337 	    "----------------------------"
   6338 	    "----------------"
   6339 	    "----------------------------\n");
   6340 
   6341 	aprint_debug_dev(sc->bnx_dev,
   6342 	    "----------------------------"
   6343 	    " Register  Dump "
   6344 	    "----------------------------\n");
   6345 
   6346 	for (i = 0x400; i < 0x8000; i += 0x10)
   6347 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6348 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6349 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6350 
   6351 	aprint_debug_dev(sc->bnx_dev,
   6352 	    "----------------------------"
   6353 	    "----------------"
   6354 	    "----------------------------\n");
   6355 }
   6356 
   6357 void
   6358 bnx_breakpoint(struct bnx_softc *sc)
   6359 {
   6360 	/* Unreachable code to shut the compiler up about unused functions. */
   6361 	if (0) {
   6362    		bnx_dump_txbd(sc, 0, NULL);
   6363 		bnx_dump_rxbd(sc, 0, NULL);
   6364 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6365 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6366 		bnx_dump_l2fhdr(sc, 0, NULL);
   6367 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6368 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6369 		bnx_dump_status_block(sc);
   6370 		bnx_dump_stats_block(sc);
   6371 		bnx_dump_driver_state(sc);
   6372 		bnx_dump_hw_state(sc);
   6373 	}
   6374 
   6375 	bnx_dump_driver_state(sc);
   6376 	/* Print the important status block fields. */
   6377 	bnx_dump_status_block(sc);
   6378 
   6379 #if 0
   6380 	/* Call the debugger. */
   6381 	breakpoint();
   6382 #endif
   6383 
   6384 	return;
   6385 }
   6386 #endif
   6387