Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.57
      1 /*	$NetBSD: if_bnx.c,v 1.57 2014/07/09 16:30:11 msaitoh Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
      3 
      4 /*-
      5  * Copyright (c) 2006-2010 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.57 2014/07/09 16:30:11 msaitoh Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, B0, B1, B2 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/pci/if_bnxvar.h>
     64 
     65 #include <dev/microcode/bnx/bnxfw.h>
     66 
     67 /****************************************************************************/
     68 /* BNX Driver Version                                                       */
     69 /****************************************************************************/
     70 #define BNX_DRIVER_VERSION	"v0.9.6"
     71 
     72 /****************************************************************************/
     73 /* BNX Debug Options                                                        */
     74 /****************************************************************************/
     75 #ifdef BNX_DEBUG
     76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     77 
     78 	/*          0 = Never              */
     79 	/*          1 = 1 in 2,147,483,648 */
     80 	/*        256 = 1 in     8,388,608 */
     81 	/*       2048 = 1 in     1,048,576 */
     82 	/*      65536 = 1 in        32,768 */
     83 	/*    1048576 = 1 in         2,048 */
     84 	/*  268435456 =	1 in             8 */
     85 	/*  536870912 = 1 in             4 */
     86 	/* 1073741824 = 1 in             2 */
     87 
     88 	/* Controls how often the l2_fhdr frame error check will fail. */
     89 	int bnx_debug_l2fhdr_status_check = 0;
     90 
     91 	/* Controls how often the unexpected attention check will fail. */
     92 	int bnx_debug_unexpected_attention = 0;
     93 
     94 	/* Controls how often to simulate an mbuf allocation failure. */
     95 	int bnx_debug_mbuf_allocation_failure = 0;
     96 
     97 	/* Controls how often to simulate a DMA mapping failure. */
     98 	int bnx_debug_dma_map_addr_failure = 0;
     99 
    100 	/* Controls how often to simulate a bootcode failure. */
    101 	int bnx_debug_bootcode_running_failure = 0;
    102 #endif
    103 
    104 /****************************************************************************/
    105 /* PCI Device ID Table                                                      */
    106 /*                                                                          */
    107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    108 /****************************************************************************/
    109 static const struct bnx_product {
    110 	pci_vendor_id_t		bp_vendor;
    111 	pci_product_id_t	bp_product;
    112 	pci_vendor_id_t		bp_subvendor;
    113 	pci_product_id_t	bp_subproduct;
    114 	const char		*bp_name;
    115 } bnx_devices[] = {
    116 #ifdef PCI_SUBPRODUCT_HP_NC370T
    117 	{
    118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    120 	  "HP NC370T Multifunction Gigabit Server Adapter"
    121 	},
    122 #endif
    123 #ifdef PCI_SUBPRODUCT_HP_NC370i
    124 	{
    125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    127 	  "HP NC370i Multifunction Gigabit Server Adapter"
    128 	},
    129 #endif
    130 	{
    131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    132 	  0, 0,
    133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    134 	},
    135 #ifdef PCI_SUBPRODUCT_HP_NC370F
    136 	{
    137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    139 	  "HP NC370F Multifunction Gigabit Server Adapter"
    140 	},
    141 #endif
    142 	{
    143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    144 	  0, 0,
    145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    146 	},
    147 	{
    148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    149 	  0, 0,
    150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    151 	},
    152 	{
    153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    154 	  0, 0,
    155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    156 	},
    157 	{
    158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    159 	  0, 0,
    160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    161 	},
    162 	{
    163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    164 	  0, 0,
    165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    166 	},
    167 	{
    168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    169 	  0, 0,
    170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    171 	},
    172 	{
    173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    174 	  0, 0,
    175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    176 	},
    177 };
    178 
    179 /****************************************************************************/
    180 /* Supported Flash NVRAM device data.                                       */
    181 /****************************************************************************/
    182 static struct flash_spec flash_table[] =
    183 {
    184 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    185 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    186 	/* Slow EEPROM */
    187 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    188 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    189 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    190 	 "EEPROM - slow"},
    191 	/* Expansion entry 0001 */
    192 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    195 	 "Entry 0001"},
    196 	/* Saifun SA25F010 (non-buffered flash) */
    197 	/* strap, cfg1, & write1 need updates */
    198 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    199 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    200 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    201 	 "Non-buffered flash (128kB)"},
    202 	/* Saifun SA25F020 (non-buffered flash) */
    203 	/* strap, cfg1, & write1 need updates */
    204 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    205 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    206 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    207 	 "Non-buffered flash (256kB)"},
    208 	/* Expansion entry 0100 */
    209 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    210 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    211 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    212 	 "Entry 0100"},
    213 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    214 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    215 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    216 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    217 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    218 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    219 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    220 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    221 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    222 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    223 	/* Saifun SA25F005 (non-buffered flash) */
    224 	/* strap, cfg1, & write1 need updates */
    225 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    228 	 "Non-buffered flash (64kB)"},
    229 	/* Fast EEPROM */
    230 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    231 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    232 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    233 	 "EEPROM - fast"},
    234 	/* Expansion entry 1001 */
    235 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    236 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    237 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    238 	 "Entry 1001"},
    239 	/* Expansion entry 1010 */
    240 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    241 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    242 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    243 	 "Entry 1010"},
    244 	/* ATMEL AT45DB011B (buffered flash) */
    245 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    246 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    247 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    248 	 "Buffered flash (128kB)"},
    249 	/* Expansion entry 1100 */
    250 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    251 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    252 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    253 	 "Entry 1100"},
    254 	/* Expansion entry 1101 */
    255 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    256 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    257 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    258 	 "Entry 1101"},
    259 	/* Ateml Expansion entry 1110 */
    260 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    261 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    262 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    263 	 "Entry 1110 (Atmel)"},
    264 	/* ATMEL AT45DB021B (buffered flash) */
    265 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    266 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    267 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    268 	 "Buffered flash (256kB)"},
    269 };
    270 
    271 /*
    272  * The BCM5709 controllers transparently handle the
    273  * differences between Atmel 264 byte pages and all
    274  * flash devices which use 256 byte pages, so no
    275  * logical-to-physical mapping is required in the
    276  * driver.
    277  */
    278 static struct flash_spec flash_5709 = {
    279 	.flags		= BNX_NV_BUFFERED,
    280 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    281 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    282 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    283 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    284 	.name		= "5709 buffered flash (256kB)",
    285 };
    286 
    287 /****************************************************************************/
    288 /* OpenBSD device entry points.                                             */
    289 /****************************************************************************/
    290 static int	bnx_probe(device_t, cfdata_t, void *);
    291 void	bnx_attach(device_t, device_t, void *);
    292 int	bnx_detach(device_t, int);
    293 
    294 /****************************************************************************/
    295 /* BNX Debug Data Structure Dump Routines                                   */
    296 /****************************************************************************/
    297 #ifdef BNX_DEBUG
    298 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    299 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    300 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    301 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    302 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    303 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    304 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    305 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    306 void	bnx_dump_status_block(struct bnx_softc *);
    307 void	bnx_dump_stats_block(struct bnx_softc *);
    308 void	bnx_dump_driver_state(struct bnx_softc *);
    309 void	bnx_dump_hw_state(struct bnx_softc *);
    310 void	bnx_breakpoint(struct bnx_softc *);
    311 #endif
    312 
    313 /****************************************************************************/
    314 /* BNX Register/Memory Access Routines                                      */
    315 /****************************************************************************/
    316 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
    317 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
    318 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
    319 int	bnx_miibus_read_reg(device_t, int, int);
    320 void	bnx_miibus_write_reg(device_t, int, int, int);
    321 void	bnx_miibus_statchg(struct ifnet *);
    322 
    323 /****************************************************************************/
    324 /* BNX NVRAM Access Routines                                                */
    325 /****************************************************************************/
    326 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    327 int	bnx_release_nvram_lock(struct bnx_softc *);
    328 void	bnx_enable_nvram_access(struct bnx_softc *);
    329 void	bnx_disable_nvram_access(struct bnx_softc *);
    330 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
    331 	    uint32_t);
    332 int	bnx_init_nvram(struct bnx_softc *);
    333 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
    334 int	bnx_nvram_test(struct bnx_softc *);
    335 #ifdef BNX_NVRAM_WRITE_SUPPORT
    336 int	bnx_enable_nvram_write(struct bnx_softc *);
    337 void	bnx_disable_nvram_write(struct bnx_softc *);
    338 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
    339 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
    340 	    uint32_t);
    341 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
    342 #endif
    343 
    344 /****************************************************************************/
    345 /*                                                                          */
    346 /****************************************************************************/
    347 void	bnx_get_media(struct bnx_softc *);
    348 void	bnx_init_media(struct bnx_softc *);
    349 int	bnx_dma_alloc(struct bnx_softc *);
    350 void	bnx_dma_free(struct bnx_softc *);
    351 void	bnx_release_resources(struct bnx_softc *);
    352 
    353 /****************************************************************************/
    354 /* BNX Firmware Synchronization and Load                                    */
    355 /****************************************************************************/
    356 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
    357 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t,
    358 	    uint32_t);
    359 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    360 	    struct fw_info *);
    361 void	bnx_init_cpus(struct bnx_softc *);
    362 
    363 static void bnx_print_adapter_info(struct bnx_softc *);
    364 static void bnx_probe_pci_caps(struct bnx_softc *);
    365 void	bnx_stop(struct ifnet *, int);
    366 int	bnx_reset(struct bnx_softc *, uint32_t);
    367 int	bnx_chipinit(struct bnx_softc *);
    368 int	bnx_blockinit(struct bnx_softc *);
    369 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
    370 	    uint16_t *, uint32_t *);
    371 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
    372 
    373 int	bnx_init_tx_chain(struct bnx_softc *);
    374 void	bnx_init_tx_context(struct bnx_softc *);
    375 int	bnx_init_rx_chain(struct bnx_softc *);
    376 void	bnx_init_rx_context(struct bnx_softc *);
    377 void	bnx_free_rx_chain(struct bnx_softc *);
    378 void	bnx_free_tx_chain(struct bnx_softc *);
    379 
    380 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    381 void	bnx_start(struct ifnet *);
    382 int	bnx_ioctl(struct ifnet *, u_long, void *);
    383 void	bnx_watchdog(struct ifnet *);
    384 int	bnx_init(struct ifnet *);
    385 
    386 void	bnx_init_context(struct bnx_softc *);
    387 void	bnx_get_mac_addr(struct bnx_softc *);
    388 void	bnx_set_mac_addr(struct bnx_softc *);
    389 void	bnx_phy_intr(struct bnx_softc *);
    390 void	bnx_rx_intr(struct bnx_softc *);
    391 void	bnx_tx_intr(struct bnx_softc *);
    392 void	bnx_disable_intr(struct bnx_softc *);
    393 void	bnx_enable_intr(struct bnx_softc *);
    394 
    395 int	bnx_intr(void *);
    396 void	bnx_iff(struct bnx_softc *);
    397 void	bnx_stats_update(struct bnx_softc *);
    398 void	bnx_tick(void *);
    399 
    400 struct pool *bnx_tx_pool = NULL;
    401 void	bnx_alloc_pkts(struct work *, void *);
    402 
    403 /****************************************************************************/
    404 /* OpenBSD device dispatch table.                                           */
    405 /****************************************************************************/
    406 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    407     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    408 
    409 /****************************************************************************/
    410 /* Device probe function.                                                   */
    411 /*                                                                          */
    412 /* Compares the device to the driver's list of supported devices and        */
    413 /* reports back to the OS whether this is the right driver for the device.  */
    414 /*                                                                          */
    415 /* Returns:                                                                 */
    416 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    417 /****************************************************************************/
    418 static const struct bnx_product *
    419 bnx_lookup(const struct pci_attach_args *pa)
    420 {
    421 	int i;
    422 	pcireg_t subid;
    423 
    424 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    425 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    426 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    427 			continue;
    428 		if (!bnx_devices[i].bp_subvendor)
    429 			return &bnx_devices[i];
    430 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    431 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    432 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    433 			return &bnx_devices[i];
    434 	}
    435 
    436 	return NULL;
    437 }
    438 static int
    439 bnx_probe(device_t parent, cfdata_t match, void *aux)
    440 {
    441 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    442 
    443 	if (bnx_lookup(pa) != NULL)
    444 		return 1;
    445 
    446 	return 0;
    447 }
    448 
    449 /****************************************************************************/
    450 /* PCI Capabilities Probe Function.                                         */
    451 /*                                                                          */
    452 /* Walks the PCI capabiites list for the device to find what features are   */
    453 /* supported.                                                               */
    454 /*                                                                          */
    455 /* Returns:                                                                 */
    456 /*   None.                                                                  */
    457 /****************************************************************************/
    458 static void
    459 bnx_print_adapter_info(struct bnx_softc *sc)
    460 {
    461 
    462 	aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
    463 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
    464 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
    465 	    ? "Serdes " : "", sc->bnx_chipid);
    466 
    467 	/* Bus info. */
    468 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
    469 		aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
    470 		    sc->link_width);
    471 		switch (sc->link_speed) {
    472 		case 1: aprint_normal("2.5Gbps\n"); break;
    473 		case 2:	aprint_normal("5Gbps\n"); break;
    474 		default: aprint_normal("Unknown link speed\n");
    475 		}
    476 	} else {
    477 		aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
    478 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
    479 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
    480 		    sc->bus_speed_mhz);
    481 	}
    482 
    483 	aprint_normal_dev(sc->bnx_dev,
    484 	    "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
    485 	    sc->bnx_rx_quick_cons_trip_int,
    486 	    sc->bnx_rx_quick_cons_trip,
    487 	    sc->bnx_rx_ticks_int,
    488 	    sc->bnx_rx_ticks,
    489 	    sc->bnx_tx_quick_cons_trip_int,
    490 	    sc->bnx_tx_quick_cons_trip,
    491 	    sc->bnx_tx_ticks_int,
    492 	    sc->bnx_tx_ticks);
    493 }
    494 
    495 
    496 /****************************************************************************/
    497 /* PCI Capabilities Probe Function.                                         */
    498 /*                                                                          */
    499 /* Walks the PCI capabiites list for the device to find what features are   */
    500 /* supported.                                                               */
    501 /*                                                                          */
    502 /* Returns:                                                                 */
    503 /*   None.                                                                  */
    504 /****************************************************************************/
    505 static void
    506 bnx_probe_pci_caps(struct bnx_softc *sc)
    507 {
    508 	struct pci_attach_args *pa = &(sc->bnx_pa);
    509 	pcireg_t reg;
    510 
    511 	/* Check if PCI-X capability is enabled. */
    512 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
    513 		NULL) != 0) {
    514 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
    515 	}
    516 
    517 	/* Check if PCIe capability is enabled. */
    518 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
    519 		NULL) != 0) {
    520 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
    521 		    reg + PCIE_LCSR);
    522 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
    523 		    "0x%08X\n",	link_status);
    524 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
    525 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
    526 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
    527 		sc->bnx_flags |= BNX_PCIE_FLAG;
    528 	}
    529 
    530 	/* Check if MSI capability is enabled. */
    531 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
    532 		NULL) != 0)
    533 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
    534 
    535 	/* Check if MSI-X capability is enabled. */
    536 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
    537 		NULL) != 0)
    538 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
    539 }
    540 
    541 
    542 /****************************************************************************/
    543 /* Device attach function.                                                  */
    544 /*                                                                          */
    545 /* Allocates device resources, performs secondary chip identification,      */
    546 /* resets and initializes the hardware, and initializes driver instance     */
    547 /* variables.                                                               */
    548 /*                                                                          */
    549 /* Returns:                                                                 */
    550 /*   0 on success, positive value on failure.                               */
    551 /****************************************************************************/
    552 void
    553 bnx_attach(device_t parent, device_t self, void *aux)
    554 {
    555 	const struct bnx_product *bp;
    556 	struct bnx_softc	*sc = device_private(self);
    557 	prop_dictionary_t	dict;
    558 	struct pci_attach_args	*pa = aux;
    559 	pci_chipset_tag_t	pc = pa->pa_pc;
    560 	pci_intr_handle_t	ih;
    561 	const char 		*intrstr = NULL;
    562 	uint32_t		command;
    563 	struct ifnet		*ifp;
    564 	uint32_t		val;
    565 	int			mii_flags = MIIF_FORCEANEG;
    566 	pcireg_t		memtype;
    567 	char intrbuf[PCI_INTRSTR_LEN];
    568 
    569 	if (bnx_tx_pool == NULL) {
    570 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    571 		if (bnx_tx_pool != NULL) {
    572 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    573 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    574 		} else {
    575 			aprint_error(": can't alloc bnx_tx_pool\n");
    576 			return;
    577 		}
    578 	}
    579 
    580 	bp = bnx_lookup(pa);
    581 	if (bp == NULL)
    582 		panic("unknown device");
    583 
    584 	sc->bnx_dev = self;
    585 
    586 	aprint_naive("\n");
    587 	aprint_normal(": %s\n", bp->bp_name);
    588 
    589 	sc->bnx_pa = *pa;
    590 
    591 	/*
    592 	 * Map control/status registers.
    593 	*/
    594 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    595 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    596 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    597 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    598 
    599 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    600 		aprint_error_dev(sc->bnx_dev,
    601 		    "failed to enable memory mapping!\n");
    602 		return;
    603 	}
    604 
    605 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    606 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    607 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    608 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    609 		return;
    610 	}
    611 
    612 	if (pci_intr_map(pa, &ih)) {
    613 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    614 		goto bnx_attach_fail;
    615 	}
    616 
    617 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    618 
    619 	/*
    620 	 * Configure byte swap and enable indirect register access.
    621 	 * Rely on CPU to do target byte swapping on big endian systems.
    622 	 * Access to registers outside of PCI configurtion space are not
    623 	 * valid until this is done.
    624 	 */
    625 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    626 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    627 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    628 
    629 	/* Save ASIC revsion info. */
    630 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    631 
    632 	/*
    633 	 * Find the base address for shared memory access.
    634 	 * Newer versions of bootcode use a signature and offset
    635 	 * while older versions use a fixed address.
    636 	 */
    637 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    638 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    639 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    640 		    (sc->bnx_pa.pa_function << 2));
    641 	else
    642 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    643 
    644 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    645 
    646 	/* Set initial device and PHY flags */
    647 	sc->bnx_flags = 0;
    648 	sc->bnx_phy_flags = 0;
    649 
    650 	bnx_probe_pci_caps(sc);
    651 
    652 	/* Get PCI bus information (speed and type). */
    653 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    654 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    655 		uint32_t clkreg;
    656 
    657 		sc->bnx_flags |= BNX_PCIX_FLAG;
    658 
    659 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    660 
    661 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    662 		switch (clkreg) {
    663 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    664 			sc->bus_speed_mhz = 133;
    665 			break;
    666 
    667 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    668 			sc->bus_speed_mhz = 100;
    669 			break;
    670 
    671 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    672 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    673 			sc->bus_speed_mhz = 66;
    674 			break;
    675 
    676 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    677 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    678 			sc->bus_speed_mhz = 50;
    679 			break;
    680 
    681 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    682 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    683 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    684 			sc->bus_speed_mhz = 33;
    685 			break;
    686 		}
    687 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    688 			sc->bus_speed_mhz = 66;
    689 		else
    690 			sc->bus_speed_mhz = 33;
    691 
    692 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    693 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    694 
    695 	/* Reset the controller. */
    696 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    697 		goto bnx_attach_fail;
    698 
    699 	/* Initialize the controller. */
    700 	if (bnx_chipinit(sc)) {
    701 		aprint_error_dev(sc->bnx_dev,
    702 		    "Controller initialization failed!\n");
    703 		goto bnx_attach_fail;
    704 	}
    705 
    706 	/* Perform NVRAM test. */
    707 	if (bnx_nvram_test(sc)) {
    708 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    709 		goto bnx_attach_fail;
    710 	}
    711 
    712 	/* Fetch the permanent Ethernet MAC address. */
    713 	bnx_get_mac_addr(sc);
    714 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    715 	    ether_sprintf(sc->eaddr));
    716 
    717 	/*
    718 	 * Trip points control how many BDs
    719 	 * should be ready before generating an
    720 	 * interrupt while ticks control how long
    721 	 * a BD can sit in the chain before
    722 	 * generating an interrupt.  Set the default
    723 	 * values for the RX and TX rings.
    724 	 */
    725 
    726 #ifdef BNX_DEBUG
    727 	/* Force more frequent interrupts. */
    728 	sc->bnx_tx_quick_cons_trip_int = 1;
    729 	sc->bnx_tx_quick_cons_trip     = 1;
    730 	sc->bnx_tx_ticks_int           = 0;
    731 	sc->bnx_tx_ticks               = 0;
    732 
    733 	sc->bnx_rx_quick_cons_trip_int = 1;
    734 	sc->bnx_rx_quick_cons_trip     = 1;
    735 	sc->bnx_rx_ticks_int           = 0;
    736 	sc->bnx_rx_ticks               = 0;
    737 #else
    738 	sc->bnx_tx_quick_cons_trip_int = 20;
    739 	sc->bnx_tx_quick_cons_trip     = 20;
    740 	sc->bnx_tx_ticks_int           = 80;
    741 	sc->bnx_tx_ticks               = 80;
    742 
    743 	sc->bnx_rx_quick_cons_trip_int = 6;
    744 	sc->bnx_rx_quick_cons_trip     = 6;
    745 	sc->bnx_rx_ticks_int           = 18;
    746 	sc->bnx_rx_ticks               = 18;
    747 #endif
    748 
    749 	/* Update statistics once every second. */
    750 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    751 
    752 	/* Find the media type for the adapter. */
    753 	bnx_get_media(sc);
    754 
    755 	/*
    756 	 * Store config data needed by the PHY driver for
    757 	 * backplane applications
    758 	 */
    759 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    760 	    BNX_SHARED_HW_CFG_CONFIG);
    761 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    762 	    BNX_PORT_HW_CFG_CONFIG);
    763 
    764 	/* Allocate DMA memory resources. */
    765 	sc->bnx_dmatag = pa->pa_dmat;
    766 	if (bnx_dma_alloc(sc)) {
    767 		aprint_error_dev(sc->bnx_dev,
    768 		    "DMA resource allocation failed!\n");
    769 		goto bnx_attach_fail;
    770 	}
    771 
    772 	/* Initialize the ifnet interface. */
    773 	ifp = &sc->bnx_ec.ec_if;
    774 	ifp->if_softc = sc;
    775 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    776 	ifp->if_ioctl = bnx_ioctl;
    777 	ifp->if_stop = bnx_stop;
    778 	ifp->if_start = bnx_start;
    779 	ifp->if_init = bnx_init;
    780 	ifp->if_timer = 0;
    781 	ifp->if_watchdog = bnx_watchdog;
    782 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    783 	IFQ_SET_READY(&ifp->if_snd);
    784 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    785 
    786 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    787 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    788 
    789 	ifp->if_capabilities |=
    790 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    791 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    792 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    793 
    794 	/* Hookup IRQ last. */
    795 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    796 	if (sc->bnx_intrhand == NULL) {
    797 		aprint_error_dev(self, "couldn't establish interrupt");
    798 		if (intrstr != NULL)
    799 			aprint_error(" at %s", intrstr);
    800 		aprint_error("\n");
    801 		goto bnx_attach_fail;
    802 	}
    803 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    804 
    805 	/* create workqueue to handle packet allocations */
    806 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    807 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    808 		aprint_error_dev(self, "failed to create workqueue\n");
    809 		goto bnx_attach_fail;
    810 	}
    811 
    812 	sc->bnx_mii.mii_ifp = ifp;
    813 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    814 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    815 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    816 
    817 	/* Handle any special PHY initialization for SerDes PHYs. */
    818 	bnx_init_media(sc);
    819 
    820 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    821 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    822 	    ether_mediastatus);
    823 
    824 	/* set phyflags and chipid before mii_attach() */
    825 	dict = device_properties(self);
    826 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    827 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    828 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
    829 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
    830 
    831 	/* Print some useful adapter info */
    832 	bnx_print_adapter_info(sc);
    833 
    834 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    835 		mii_flags |= MIIF_HAVEFIBER;
    836 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    837 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    838 
    839 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    840 		aprint_error_dev(self, "no PHY found!\n");
    841 		ifmedia_add(&sc->bnx_mii.mii_media,
    842 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    843 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
    844 	} else
    845 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
    846 
    847 	/* Attach to the Ethernet interface list. */
    848 	if_attach(ifp);
    849 	ether_ifattach(ifp,sc->eaddr);
    850 
    851 	callout_init(&sc->bnx_timeout, 0);
    852 
    853 	if (pmf_device_register(self, NULL, NULL))
    854 		pmf_class_network_register(self, ifp);
    855 	else
    856 		aprint_error_dev(self, "couldn't establish power handler\n");
    857 
    858 	/* Print some important debugging info. */
    859 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    860 
    861 	goto bnx_attach_exit;
    862 
    863 bnx_attach_fail:
    864 	bnx_release_resources(sc);
    865 
    866 bnx_attach_exit:
    867 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    868 }
    869 
    870 /****************************************************************************/
    871 /* Device detach function.                                                  */
    872 /*                                                                          */
    873 /* Stops the controller, resets the controller, and releases resources.     */
    874 /*                                                                          */
    875 /* Returns:                                                                 */
    876 /*   0 on success, positive value on failure.                               */
    877 /****************************************************************************/
    878 int
    879 bnx_detach(device_t dev, int flags)
    880 {
    881 	int s;
    882 	struct bnx_softc *sc;
    883 	struct ifnet *ifp;
    884 
    885 	sc = device_private(dev);
    886 	ifp = &sc->bnx_ec.ec_if;
    887 
    888 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    889 
    890 	/* Stop and reset the controller. */
    891 	s = splnet();
    892 	if (ifp->if_flags & IFF_RUNNING)
    893 		bnx_stop(ifp, 1);
    894 	else {
    895 		/* Disable the transmit/receive blocks. */
    896 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
    897 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
    898 		DELAY(20);
    899 		bnx_disable_intr(sc);
    900 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
    901 	}
    902 
    903 	splx(s);
    904 
    905 	pmf_device_deregister(dev);
    906 	callout_destroy(&sc->bnx_timeout);
    907 	ether_ifdetach(ifp);
    908 	workqueue_destroy(sc->bnx_wq);
    909 
    910 	/* Delete all remaining media. */
    911 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    912 
    913 	if_detach(ifp);
    914 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    915 
    916 	/* Release all remaining resources. */
    917 	bnx_release_resources(sc);
    918 
    919 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    920 
    921 	return 0;
    922 }
    923 
    924 /****************************************************************************/
    925 /* Indirect register read.                                                  */
    926 /*                                                                          */
    927 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    928 /* configuration space.  Using this mechanism avoids issues with posted     */
    929 /* reads but is much slower than memory-mapped I/O.                         */
    930 /*                                                                          */
    931 /* Returns:                                                                 */
    932 /*   The value of the register.                                             */
    933 /****************************************************************************/
    934 uint32_t
    935 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
    936 {
    937 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    938 
    939 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    940 	    offset);
    941 #ifdef BNX_DEBUG
    942 	{
    943 		uint32_t val;
    944 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    945 		    BNX_PCICFG_REG_WINDOW);
    946 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    947 		    "val = 0x%08X\n", __func__, offset, val);
    948 		return val;
    949 	}
    950 #else
    951 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    952 #endif
    953 }
    954 
    955 /****************************************************************************/
    956 /* Indirect register write.                                                 */
    957 /*                                                                          */
    958 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    959 /* configuration space.  Using this mechanism avoids issues with posted     */
    960 /* writes but is muchh slower than memory-mapped I/O.                       */
    961 /*                                                                          */
    962 /* Returns:                                                                 */
    963 /*   Nothing.                                                               */
    964 /****************************************************************************/
    965 void
    966 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
    967 {
    968 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    969 
    970 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    971 		__func__, offset, val);
    972 
    973 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    974 	    offset);
    975 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    976 }
    977 
    978 /****************************************************************************/
    979 /* Context memory write.                                                    */
    980 /*                                                                          */
    981 /* The NetXtreme II controller uses context memory to track connection      */
    982 /* information for L2 and higher network protocols.                         */
    983 /*                                                                          */
    984 /* Returns:                                                                 */
    985 /*   Nothing.                                                               */
    986 /****************************************************************************/
    987 void
    988 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
    989     uint32_t ctx_val)
    990 {
    991 	uint32_t idx, offset = ctx_offset + cid_addr;
    992 	uint32_t val, retry_cnt = 5;
    993 
    994 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
    995 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
    996 		REG_WR(sc, BNX_CTX_CTX_CTRL,
    997 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
    998 
    999 		for (idx = 0; idx < retry_cnt; idx++) {
   1000 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
   1001 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
   1002 				break;
   1003 			DELAY(5);
   1004 		}
   1005 
   1006 #if 0
   1007 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
   1008 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
   1009 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
   1010 				__FILE__, __LINE__, cid_addr, ctx_offset);
   1011 #endif
   1012 
   1013 	} else {
   1014 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
   1015 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
   1016 	}
   1017 }
   1018 
   1019 /****************************************************************************/
   1020 /* PHY register read.                                                       */
   1021 /*                                                                          */
   1022 /* Implements register reads on the MII bus.                                */
   1023 /*                                                                          */
   1024 /* Returns:                                                                 */
   1025 /*   The value of the register.                                             */
   1026 /****************************************************************************/
   1027 int
   1028 bnx_miibus_read_reg(device_t dev, int phy, int reg)
   1029 {
   1030 	struct bnx_softc	*sc = device_private(dev);
   1031 	uint32_t		val;
   1032 	int			i;
   1033 
   1034 	/* Make sure we are accessing the correct PHY address. */
   1035 	if (phy != sc->bnx_phy_addr) {
   1036 		DBPRINT(sc, BNX_VERBOSE,
   1037 		    "Invalid PHY address %d for PHY read!\n", phy);
   1038 		return 0;
   1039 	}
   1040 
   1041 	/*
   1042 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1043 	 * with special mappings to work with IEEE
   1044 	 * Clause 22 register accesses.
   1045 	 */
   1046 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1047 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1048 			reg += 0x10;
   1049 	}
   1050 
   1051 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1052 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1053 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1054 
   1055 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
   1056 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1057 
   1058 		DELAY(40);
   1059 	}
   1060 
   1061 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
   1062 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
   1063 	    BNX_EMAC_MDIO_COMM_START_BUSY;
   1064 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
   1065 
   1066 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1067 		DELAY(10);
   1068 
   1069 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1070 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1071 			DELAY(5);
   1072 
   1073 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1074 			val &= BNX_EMAC_MDIO_COMM_DATA;
   1075 
   1076 			break;
   1077 		}
   1078 	}
   1079 
   1080 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1081 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
   1082 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
   1083 		val = 0x0;
   1084 	} else
   1085 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1086 
   1087 	DBPRINT(sc, BNX_EXCESSIVE,
   1088 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
   1089 	    (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
   1090 
   1091 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1092 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1093 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1094 
   1095 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
   1096 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1097 
   1098 		DELAY(40);
   1099 	}
   1100 
   1101 	return (val & 0xffff);
   1102 }
   1103 
   1104 /****************************************************************************/
   1105 /* PHY register write.                                                      */
   1106 /*                                                                          */
   1107 /* Implements register writes on the MII bus.                               */
   1108 /*                                                                          */
   1109 /* Returns:                                                                 */
   1110 /*   The value of the register.                                             */
   1111 /****************************************************************************/
   1112 void
   1113 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
   1114 {
   1115 	struct bnx_softc	*sc = device_private(dev);
   1116 	uint32_t		val1;
   1117 	int			i;
   1118 
   1119 	/* Make sure we are accessing the correct PHY address. */
   1120 	if (phy != sc->bnx_phy_addr) {
   1121 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
   1122 		    phy);
   1123 		return;
   1124 	}
   1125 
   1126 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1127 	    "val = 0x%04X\n", __func__,
   1128 	    phy, (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
   1129 
   1130 	/*
   1131 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1132 	 * with special mappings to work with IEEE
   1133 	 * Clause 22 register accesses.
   1134 	 */
   1135 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1136 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1137 			reg += 0x10;
   1138 	}
   1139 
   1140 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1141 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1142 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1143 
   1144 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1145 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1146 
   1147 		DELAY(40);
   1148 	}
   1149 
   1150 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1151 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1152 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1153 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1154 
   1155 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1156 		DELAY(10);
   1157 
   1158 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1159 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1160 			DELAY(5);
   1161 			break;
   1162 		}
   1163 	}
   1164 
   1165 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1166 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1167 		    __LINE__);
   1168 	}
   1169 
   1170 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1171 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1172 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1173 
   1174 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1175 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1176 
   1177 		DELAY(40);
   1178 	}
   1179 }
   1180 
   1181 /****************************************************************************/
   1182 /* MII bus status change.                                                   */
   1183 /*                                                                          */
   1184 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1185 /* MAC interface registers.                                                 */
   1186 /*                                                                          */
   1187 /* Returns:                                                                 */
   1188 /*   Nothing.                                                               */
   1189 /****************************************************************************/
   1190 void
   1191 bnx_miibus_statchg(struct ifnet *ifp)
   1192 {
   1193 	struct bnx_softc	*sc = ifp->if_softc;
   1194 	struct mii_data		*mii = &sc->bnx_mii;
   1195 	int			val;
   1196 
   1197 	val = REG_RD(sc, BNX_EMAC_MODE);
   1198 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1199 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1200 	    BNX_EMAC_MODE_25G);
   1201 
   1202 	/* Set MII or GMII interface based on the speed
   1203 	 * negotiated by the PHY.
   1204 	 */
   1205 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1206 	case IFM_10_T:
   1207 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1208 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1209 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1210 			break;
   1211 		}
   1212 		/* FALLTHROUGH */
   1213 	case IFM_100_TX:
   1214 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1215 		val |= BNX_EMAC_MODE_PORT_MII;
   1216 		break;
   1217 	case IFM_2500_SX:
   1218 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1219 		val |= BNX_EMAC_MODE_25G;
   1220 		/* FALLTHROUGH */
   1221 	case IFM_1000_T:
   1222 	case IFM_1000_SX:
   1223 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1224 		val |= BNX_EMAC_MODE_PORT_GMII;
   1225 		break;
   1226 	default:
   1227 		val |= BNX_EMAC_MODE_PORT_GMII;
   1228 		break;
   1229 	}
   1230 
   1231 	/* Set half or full duplex based on the duplicity
   1232 	 * negotiated by the PHY.
   1233 	 */
   1234 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1235 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1236 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1237 	} else {
   1238 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1239 	}
   1240 
   1241 	REG_WR(sc, BNX_EMAC_MODE, val);
   1242 }
   1243 
   1244 /****************************************************************************/
   1245 /* Acquire NVRAM lock.                                                      */
   1246 /*                                                                          */
   1247 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1248 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1249 /* for use by the driver.                                                   */
   1250 /*                                                                          */
   1251 /* Returns:                                                                 */
   1252 /*   0 on success, positive value on failure.                               */
   1253 /****************************************************************************/
   1254 int
   1255 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1256 {
   1257 	uint32_t		val;
   1258 	int			j;
   1259 
   1260 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1261 
   1262 	/* Request access to the flash interface. */
   1263 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1264 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1265 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1266 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1267 			break;
   1268 
   1269 		DELAY(5);
   1270 	}
   1271 
   1272 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1273 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1274 		return EBUSY;
   1275 	}
   1276 
   1277 	return 0;
   1278 }
   1279 
   1280 /****************************************************************************/
   1281 /* Release NVRAM lock.                                                      */
   1282 /*                                                                          */
   1283 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1284 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1285 /* for use by the driver.                                                   */
   1286 /*                                                                          */
   1287 /* Returns:                                                                 */
   1288 /*   0 on success, positive value on failure.                               */
   1289 /****************************************************************************/
   1290 int
   1291 bnx_release_nvram_lock(struct bnx_softc *sc)
   1292 {
   1293 	int			j;
   1294 	uint32_t		val;
   1295 
   1296 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1297 
   1298 	/* Relinquish nvram interface. */
   1299 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1300 
   1301 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1302 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1303 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1304 			break;
   1305 
   1306 		DELAY(5);
   1307 	}
   1308 
   1309 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1310 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1311 		return EBUSY;
   1312 	}
   1313 
   1314 	return 0;
   1315 }
   1316 
   1317 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1318 /****************************************************************************/
   1319 /* Enable NVRAM write access.                                               */
   1320 /*                                                                          */
   1321 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1322 /*                                                                          */
   1323 /* Returns:                                                                 */
   1324 /*   0 on success, positive value on failure.                               */
   1325 /****************************************************************************/
   1326 int
   1327 bnx_enable_nvram_write(struct bnx_softc *sc)
   1328 {
   1329 	uint32_t		val;
   1330 
   1331 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1332 
   1333 	val = REG_RD(sc, BNX_MISC_CFG);
   1334 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1335 
   1336 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1337 		int j;
   1338 
   1339 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1340 		REG_WR(sc, BNX_NVM_COMMAND,
   1341 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1342 
   1343 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1344 			DELAY(5);
   1345 
   1346 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1347 			if (val & BNX_NVM_COMMAND_DONE)
   1348 				break;
   1349 		}
   1350 
   1351 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1352 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1353 			return EBUSY;
   1354 		}
   1355 	}
   1356 
   1357 	return 0;
   1358 }
   1359 
   1360 /****************************************************************************/
   1361 /* Disable NVRAM write access.                                              */
   1362 /*                                                                          */
   1363 /* When the caller is finished writing to NVRAM write access must be        */
   1364 /* disabled.                                                                */
   1365 /*                                                                          */
   1366 /* Returns:                                                                 */
   1367 /*   Nothing.                                                               */
   1368 /****************************************************************************/
   1369 void
   1370 bnx_disable_nvram_write(struct bnx_softc *sc)
   1371 {
   1372 	uint32_t		val;
   1373 
   1374 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1375 
   1376 	val = REG_RD(sc, BNX_MISC_CFG);
   1377 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1378 }
   1379 #endif
   1380 
   1381 /****************************************************************************/
   1382 /* Enable NVRAM access.                                                     */
   1383 /*                                                                          */
   1384 /* Before accessing NVRAM for read or write operations the caller must      */
   1385 /* enabled NVRAM access.                                                    */
   1386 /*                                                                          */
   1387 /* Returns:                                                                 */
   1388 /*   Nothing.                                                               */
   1389 /****************************************************************************/
   1390 void
   1391 bnx_enable_nvram_access(struct bnx_softc *sc)
   1392 {
   1393 	uint32_t		val;
   1394 
   1395 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1396 
   1397 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1398 	/* Enable both bits, even on read. */
   1399 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1400 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1401 }
   1402 
   1403 /****************************************************************************/
   1404 /* Disable NVRAM access.                                                    */
   1405 /*                                                                          */
   1406 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1407 /*                                                                          */
   1408 /* Returns:                                                                 */
   1409 /*   Nothing.                                                               */
   1410 /****************************************************************************/
   1411 void
   1412 bnx_disable_nvram_access(struct bnx_softc *sc)
   1413 {
   1414 	uint32_t		val;
   1415 
   1416 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1417 
   1418 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1419 
   1420 	/* Disable both bits, even after read. */
   1421 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1422 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1423 }
   1424 
   1425 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1426 /****************************************************************************/
   1427 /* Erase NVRAM page before writing.                                         */
   1428 /*                                                                          */
   1429 /* Non-buffered flash parts require that a page be erased before it is      */
   1430 /* written.                                                                 */
   1431 /*                                                                          */
   1432 /* Returns:                                                                 */
   1433 /*   0 on success, positive value on failure.                               */
   1434 /****************************************************************************/
   1435 int
   1436 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
   1437 {
   1438 	uint32_t		cmd;
   1439 	int			j;
   1440 
   1441 	/* Buffered flash doesn't require an erase. */
   1442 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1443 		return 0;
   1444 
   1445 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1446 
   1447 	/* Build an erase command. */
   1448 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1449 	    BNX_NVM_COMMAND_DOIT;
   1450 
   1451 	/*
   1452 	 * Clear the DONE bit separately, set the NVRAM address to erase,
   1453 	 * and issue the erase command.
   1454 	 */
   1455 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1456 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1457 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1458 
   1459 	/* Wait for completion. */
   1460 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1461 		uint32_t val;
   1462 
   1463 		DELAY(5);
   1464 
   1465 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1466 		if (val & BNX_NVM_COMMAND_DONE)
   1467 			break;
   1468 	}
   1469 
   1470 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1471 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1472 		return EBUSY;
   1473 	}
   1474 
   1475 	return 0;
   1476 }
   1477 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1478 
   1479 /****************************************************************************/
   1480 /* Read a dword (32 bits) from NVRAM.                                       */
   1481 /*                                                                          */
   1482 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1483 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1484 /*                                                                          */
   1485 /* Returns:                                                                 */
   1486 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1487 /****************************************************************************/
   1488 int
   1489 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
   1490     uint8_t *ret_val, uint32_t cmd_flags)
   1491 {
   1492 	uint32_t		cmd;
   1493 	int			i, rc = 0;
   1494 
   1495 	/* Build the command word. */
   1496 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1497 
   1498 	/* Calculate the offset for buffered flash if translation is used. */
   1499 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1500 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1501 		    sc->bnx_flash_info->page_bits) +
   1502 		    (offset % sc->bnx_flash_info->page_size);
   1503 	}
   1504 
   1505 	/*
   1506 	 * Clear the DONE bit separately, set the address to read,
   1507 	 * and issue the read.
   1508 	 */
   1509 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1510 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1511 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1512 
   1513 	/* Wait for completion. */
   1514 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1515 		uint32_t val;
   1516 
   1517 		DELAY(5);
   1518 
   1519 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1520 		if (val & BNX_NVM_COMMAND_DONE) {
   1521 			val = REG_RD(sc, BNX_NVM_READ);
   1522 
   1523 			val = bnx_be32toh(val);
   1524 			memcpy(ret_val, &val, 4);
   1525 			break;
   1526 		}
   1527 	}
   1528 
   1529 	/* Check for errors. */
   1530 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1531 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1532 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1533 		rc = EBUSY;
   1534 	}
   1535 
   1536 	return rc;
   1537 }
   1538 
   1539 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1540 /****************************************************************************/
   1541 /* Write a dword (32 bits) to NVRAM.                                        */
   1542 /*                                                                          */
   1543 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1544 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1545 /* enabled NVRAM write access.                                              */
   1546 /*                                                                          */
   1547 /* Returns:                                                                 */
   1548 /*   0 on success, positive value on failure.                               */
   1549 /****************************************************************************/
   1550 int
   1551 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
   1552     uint32_t cmd_flags)
   1553 {
   1554 	uint32_t		cmd, val32;
   1555 	int			j;
   1556 
   1557 	/* Build the command word. */
   1558 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1559 
   1560 	/* Calculate the offset for buffered flash if translation is used. */
   1561 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1562 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1563 		    sc->bnx_flash_info->page_bits) +
   1564 		    (offset % sc->bnx_flash_info->page_size);
   1565 	}
   1566 
   1567 	/*
   1568 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1569 	 * set the NVRAM address to write, and issue the write command
   1570 	 */
   1571 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1572 	memcpy(&val32, val, 4);
   1573 	val32 = htobe32(val32);
   1574 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1575 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1576 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1577 
   1578 	/* Wait for completion. */
   1579 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1580 		DELAY(5);
   1581 
   1582 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1583 			break;
   1584 	}
   1585 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1586 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1587 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1588 		return EBUSY;
   1589 	}
   1590 
   1591 	return 0;
   1592 }
   1593 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1594 
   1595 /****************************************************************************/
   1596 /* Initialize NVRAM access.                                                 */
   1597 /*                                                                          */
   1598 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1599 /* access that device.                                                      */
   1600 /*                                                                          */
   1601 /* Returns:                                                                 */
   1602 /*   0 on success, positive value on failure.                               */
   1603 /****************************************************************************/
   1604 int
   1605 bnx_init_nvram(struct bnx_softc *sc)
   1606 {
   1607 	uint32_t		val;
   1608 	int			j, entry_count, rc = 0;
   1609 	struct flash_spec	*flash;
   1610 
   1611 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1612 
   1613 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1614 		sc->bnx_flash_info = &flash_5709;
   1615 		goto bnx_init_nvram_get_flash_size;
   1616 	}
   1617 
   1618 	/* Determine the selected interface. */
   1619 	val = REG_RD(sc, BNX_NVM_CFG1);
   1620 
   1621 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1622 
   1623 	/*
   1624 	 * Flash reconfiguration is required to support additional
   1625 	 * NVRAM devices not directly supported in hardware.
   1626 	 * Check if the flash interface was reconfigured
   1627 	 * by the bootcode.
   1628 	 */
   1629 
   1630 	if (val & 0x40000000) {
   1631 		/* Flash interface reconfigured by bootcode. */
   1632 
   1633 		DBPRINT(sc,BNX_INFO_LOAD,
   1634 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1635 
   1636 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1637 		     j++, flash++) {
   1638 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1639 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1640 				sc->bnx_flash_info = flash;
   1641 				break;
   1642 			}
   1643 		}
   1644 	} else {
   1645 		/* Flash interface not yet reconfigured. */
   1646 		uint32_t mask;
   1647 
   1648 		DBPRINT(sc,BNX_INFO_LOAD,
   1649 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1650 
   1651 		if (val & (1 << 23))
   1652 			mask = FLASH_BACKUP_STRAP_MASK;
   1653 		else
   1654 			mask = FLASH_STRAP_MASK;
   1655 
   1656 		/* Look for the matching NVRAM device configuration data. */
   1657 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1658 		    j++, flash++) {
   1659 			/* Check if the dev matches any of the known devices. */
   1660 			if ((val & mask) == (flash->strapping & mask)) {
   1661 				/* Found a device match. */
   1662 				sc->bnx_flash_info = flash;
   1663 
   1664 				/* Request access to the flash interface. */
   1665 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1666 					return rc;
   1667 
   1668 				/* Reconfigure the flash interface. */
   1669 				bnx_enable_nvram_access(sc);
   1670 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1671 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1672 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1673 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1674 				bnx_disable_nvram_access(sc);
   1675 				bnx_release_nvram_lock(sc);
   1676 
   1677 				break;
   1678 			}
   1679 		}
   1680 	}
   1681 
   1682 	/* Check if a matching device was found. */
   1683 	if (j == entry_count) {
   1684 		sc->bnx_flash_info = NULL;
   1685 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1686 			__FILE__, __LINE__);
   1687 		rc = ENODEV;
   1688 	}
   1689 
   1690 bnx_init_nvram_get_flash_size:
   1691 	/* Write the flash config data to the shared memory interface. */
   1692 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1693 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1694 	if (val)
   1695 		sc->bnx_flash_size = val;
   1696 	else
   1697 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1698 
   1699 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1700 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1701 
   1702 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1703 
   1704 	return rc;
   1705 }
   1706 
   1707 /****************************************************************************/
   1708 /* Read an arbitrary range of data from NVRAM.                              */
   1709 /*                                                                          */
   1710 /* Prepares the NVRAM interface for access and reads the requested data     */
   1711 /* into the supplied buffer.                                                */
   1712 /*                                                                          */
   1713 /* Returns:                                                                 */
   1714 /*   0 on success and the data read, positive value on failure.             */
   1715 /****************************************************************************/
   1716 int
   1717 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
   1718     int buf_size)
   1719 {
   1720 	int			rc = 0;
   1721 	uint32_t		cmd_flags, offset32, len32, extra;
   1722 
   1723 	if (buf_size == 0)
   1724 		return 0;
   1725 
   1726 	/* Request access to the flash interface. */
   1727 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1728 		return rc;
   1729 
   1730 	/* Enable access to flash interface */
   1731 	bnx_enable_nvram_access(sc);
   1732 
   1733 	len32 = buf_size;
   1734 	offset32 = offset;
   1735 	extra = 0;
   1736 
   1737 	cmd_flags = 0;
   1738 
   1739 	if (offset32 & 3) {
   1740 		uint8_t buf[4];
   1741 		uint32_t pre_len;
   1742 
   1743 		offset32 &= ~3;
   1744 		pre_len = 4 - (offset & 3);
   1745 
   1746 		if (pre_len >= len32) {
   1747 			pre_len = len32;
   1748 			cmd_flags =
   1749 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1750 		} else
   1751 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1752 
   1753 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1754 
   1755 		if (rc)
   1756 			return rc;
   1757 
   1758 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1759 
   1760 		offset32 += 4;
   1761 		ret_buf += pre_len;
   1762 		len32 -= pre_len;
   1763 	}
   1764 
   1765 	if (len32 & 3) {
   1766 		extra = 4 - (len32 & 3);
   1767 		len32 = (len32 + 4) & ~3;
   1768 	}
   1769 
   1770 	if (len32 == 4) {
   1771 		uint8_t buf[4];
   1772 
   1773 		if (cmd_flags)
   1774 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1775 		else
   1776 			cmd_flags =
   1777 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1778 
   1779 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1780 
   1781 		memcpy(ret_buf, buf, 4 - extra);
   1782 	} else if (len32 > 0) {
   1783 		uint8_t buf[4];
   1784 
   1785 		/* Read the first word. */
   1786 		if (cmd_flags)
   1787 			cmd_flags = 0;
   1788 		else
   1789 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1790 
   1791 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1792 
   1793 		/* Advance to the next dword. */
   1794 		offset32 += 4;
   1795 		ret_buf += 4;
   1796 		len32 -= 4;
   1797 
   1798 		while (len32 > 4 && rc == 0) {
   1799 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1800 
   1801 			/* Advance to the next dword. */
   1802 			offset32 += 4;
   1803 			ret_buf += 4;
   1804 			len32 -= 4;
   1805 		}
   1806 
   1807 		if (rc)
   1808 			return rc;
   1809 
   1810 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1811 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1812 
   1813 		memcpy(ret_buf, buf, 4 - extra);
   1814 	}
   1815 
   1816 	/* Disable access to flash interface and release the lock. */
   1817 	bnx_disable_nvram_access(sc);
   1818 	bnx_release_nvram_lock(sc);
   1819 
   1820 	return rc;
   1821 }
   1822 
   1823 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1824 /****************************************************************************/
   1825 /* Write an arbitrary range of data from NVRAM.                             */
   1826 /*                                                                          */
   1827 /* Prepares the NVRAM interface for write access and writes the requested   */
   1828 /* data from the supplied buffer.  The caller is responsible for            */
   1829 /* calculating any appropriate CRCs.                                        */
   1830 /*                                                                          */
   1831 /* Returns:                                                                 */
   1832 /*   0 on success, positive value on failure.                               */
   1833 /****************************************************************************/
   1834 int
   1835 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
   1836     int buf_size)
   1837 {
   1838 	uint32_t		written, offset32, len32;
   1839 	uint8_t		*buf, start[4], end[4];
   1840 	int			rc = 0;
   1841 	int			align_start, align_end;
   1842 
   1843 	buf = data_buf;
   1844 	offset32 = offset;
   1845 	len32 = buf_size;
   1846 	align_start = align_end = 0;
   1847 
   1848 	if ((align_start = (offset32 & 3))) {
   1849 		offset32 &= ~3;
   1850 		len32 += align_start;
   1851 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1852 			return rc;
   1853 	}
   1854 
   1855 	if (len32 & 3) {
   1856 		if ((len32 > 4) || !align_start) {
   1857 			align_end = 4 - (len32 & 3);
   1858 			len32 += align_end;
   1859 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1860 			    end, 4)))
   1861 				return rc;
   1862 		}
   1863 	}
   1864 
   1865 	if (align_start || align_end) {
   1866 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1867 		if (buf == 0)
   1868 			return ENOMEM;
   1869 
   1870 		if (align_start)
   1871 			memcpy(buf, start, 4);
   1872 
   1873 		if (align_end)
   1874 			memcpy(buf + len32 - 4, end, 4);
   1875 
   1876 		memcpy(buf + align_start, data_buf, buf_size);
   1877 	}
   1878 
   1879 	written = 0;
   1880 	while ((written < len32) && (rc == 0)) {
   1881 		uint32_t page_start, page_end, data_start, data_end;
   1882 		uint32_t addr, cmd_flags;
   1883 		int i;
   1884 		uint8_t flash_buffer[264];
   1885 
   1886 	    /* Find the page_start addr */
   1887 		page_start = offset32 + written;
   1888 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1889 		/* Find the page_end addr */
   1890 		page_end = page_start + sc->bnx_flash_info->page_size;
   1891 		/* Find the data_start addr */
   1892 		data_start = (written == 0) ? offset32 : page_start;
   1893 		/* Find the data_end addr */
   1894 		data_end = (page_end > offset32 + len32) ?
   1895 		    (offset32 + len32) : page_end;
   1896 
   1897 		/* Request access to the flash interface. */
   1898 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1899 			goto nvram_write_end;
   1900 
   1901 		/* Enable access to flash interface */
   1902 		bnx_enable_nvram_access(sc);
   1903 
   1904 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1905 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1906 			int j;
   1907 
   1908 			/* Read the whole page into the buffer
   1909 			 * (non-buffer flash only) */
   1910 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1911 				if (j == (sc->bnx_flash_info->page_size - 4))
   1912 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1913 
   1914 				rc = bnx_nvram_read_dword(sc,
   1915 					page_start + j,
   1916 					&flash_buffer[j],
   1917 					cmd_flags);
   1918 
   1919 				if (rc)
   1920 					goto nvram_write_end;
   1921 
   1922 				cmd_flags = 0;
   1923 			}
   1924 		}
   1925 
   1926 		/* Enable writes to flash interface (unlock write-protect) */
   1927 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1928 			goto nvram_write_end;
   1929 
   1930 		/* Erase the page */
   1931 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1932 			goto nvram_write_end;
   1933 
   1934 		/* Re-enable the write again for the actual write */
   1935 		bnx_enable_nvram_write(sc);
   1936 
   1937 		/* Loop to write back the buffer data from page_start to
   1938 		 * data_start */
   1939 		i = 0;
   1940 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1941 			for (addr = page_start; addr < data_start;
   1942 				addr += 4, i += 4) {
   1943 
   1944 				rc = bnx_nvram_write_dword(sc, addr,
   1945 				    &flash_buffer[i], cmd_flags);
   1946 
   1947 				if (rc != 0)
   1948 					goto nvram_write_end;
   1949 
   1950 				cmd_flags = 0;
   1951 			}
   1952 		}
   1953 
   1954 		/* Loop to write the new data from data_start to data_end */
   1955 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1956 			if ((addr == page_end - 4) ||
   1957 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   1958 			    && (addr == data_end - 4))) {
   1959 
   1960 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1961 			}
   1962 
   1963 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1964 
   1965 			if (rc != 0)
   1966 				goto nvram_write_end;
   1967 
   1968 			cmd_flags = 0;
   1969 			buf += 4;
   1970 		}
   1971 
   1972 		/* Loop to write back the buffer data from data_end
   1973 		 * to page_end */
   1974 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1975 			for (addr = data_end; addr < page_end;
   1976 			    addr += 4, i += 4) {
   1977 
   1978 				if (addr == page_end-4)
   1979 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1980 
   1981 				rc = bnx_nvram_write_dword(sc, addr,
   1982 				    &flash_buffer[i], cmd_flags);
   1983 
   1984 				if (rc != 0)
   1985 					goto nvram_write_end;
   1986 
   1987 				cmd_flags = 0;
   1988 			}
   1989 		}
   1990 
   1991 		/* Disable writes to flash interface (lock write-protect) */
   1992 		bnx_disable_nvram_write(sc);
   1993 
   1994 		/* Disable access to flash interface */
   1995 		bnx_disable_nvram_access(sc);
   1996 		bnx_release_nvram_lock(sc);
   1997 
   1998 		/* Increment written */
   1999 		written += data_end - data_start;
   2000 	}
   2001 
   2002 nvram_write_end:
   2003 	if (align_start || align_end)
   2004 		free(buf, M_DEVBUF);
   2005 
   2006 	return rc;
   2007 }
   2008 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   2009 
   2010 /****************************************************************************/
   2011 /* Verifies that NVRAM is accessible and contains valid data.               */
   2012 /*                                                                          */
   2013 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   2014 /* correct.                                                                 */
   2015 /*                                                                          */
   2016 /* Returns:                                                                 */
   2017 /*   0 on success, positive value on failure.                               */
   2018 /****************************************************************************/
   2019 int
   2020 bnx_nvram_test(struct bnx_softc *sc)
   2021 {
   2022 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
   2023 	uint8_t		*data = (uint8_t *) buf;
   2024 	int			rc = 0;
   2025 	uint32_t		magic, csum;
   2026 
   2027 	/*
   2028 	 * Check that the device NVRAM is valid by reading
   2029 	 * the magic value at offset 0.
   2030 	 */
   2031 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   2032 		goto bnx_nvram_test_done;
   2033 
   2034 	magic = bnx_be32toh(buf[0]);
   2035 	if (magic != BNX_NVRAM_MAGIC) {
   2036 		rc = ENODEV;
   2037 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   2038 		    "Expected: 0x%08X, Found: 0x%08X\n",
   2039 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   2040 		goto bnx_nvram_test_done;
   2041 	}
   2042 
   2043 	/*
   2044 	 * Verify that the device NVRAM includes valid
   2045 	 * configuration data.
   2046 	 */
   2047 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   2048 		goto bnx_nvram_test_done;
   2049 
   2050 	csum = ether_crc32_le(data, 0x100);
   2051 	if (csum != BNX_CRC32_RESIDUAL) {
   2052 		rc = ENODEV;
   2053 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   2054 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   2055 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2056 		goto bnx_nvram_test_done;
   2057 	}
   2058 
   2059 	csum = ether_crc32_le(data + 0x100, 0x100);
   2060 	if (csum != BNX_CRC32_RESIDUAL) {
   2061 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   2062 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   2063 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2064 		rc = ENODEV;
   2065 	}
   2066 
   2067 bnx_nvram_test_done:
   2068 	return rc;
   2069 }
   2070 
   2071 /****************************************************************************/
   2072 /* Identifies the current media type of the controller and sets the PHY     */
   2073 /* address.                                                                 */
   2074 /*                                                                          */
   2075 /* Returns:                                                                 */
   2076 /*   Nothing.                                                               */
   2077 /****************************************************************************/
   2078 void
   2079 bnx_get_media(struct bnx_softc *sc)
   2080 {
   2081 	sc->bnx_phy_addr = 1;
   2082 
   2083 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2084 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   2085 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   2086 		uint32_t strap;
   2087 
   2088 		/*
   2089 		 * The BCM5709S is software configurable
   2090 		 * for Copper or SerDes operation.
   2091 		 */
   2092 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   2093 			DBPRINT(sc, BNX_INFO_LOAD,
   2094 			    "5709 bonded for copper.\n");
   2095 			goto bnx_get_media_exit;
   2096 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   2097 			DBPRINT(sc, BNX_INFO_LOAD,
   2098 			    "5709 bonded for dual media.\n");
   2099 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2100 			goto bnx_get_media_exit;
   2101 		}
   2102 
   2103 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2104 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2105 		else {
   2106 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2107 			    >> 8;
   2108 		}
   2109 
   2110 		if (sc->bnx_pa.pa_function == 0) {
   2111 			switch (strap) {
   2112 			case 0x4:
   2113 			case 0x5:
   2114 			case 0x6:
   2115 				DBPRINT(sc, BNX_INFO_LOAD,
   2116 					"BCM5709 s/w configured for SerDes.\n");
   2117 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2118 				break;
   2119 			default:
   2120 				DBPRINT(sc, BNX_INFO_LOAD,
   2121 					"BCM5709 s/w configured for Copper.\n");
   2122 			}
   2123 		} else {
   2124 			switch (strap) {
   2125 			case 0x1:
   2126 			case 0x2:
   2127 			case 0x4:
   2128 				DBPRINT(sc, BNX_INFO_LOAD,
   2129 					"BCM5709 s/w configured for SerDes.\n");
   2130 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2131 				break;
   2132 			default:
   2133 				DBPRINT(sc, BNX_INFO_LOAD,
   2134 					"BCM5709 s/w configured for Copper.\n");
   2135 			}
   2136 		}
   2137 
   2138 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2139 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2140 
   2141 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2142 		uint32_t val;
   2143 
   2144 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2145 
   2146 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2147 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2148 
   2149 		/*
   2150 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2151 		 * separate PHY for SerDes.
   2152 		 */
   2153 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2154 			sc->bnx_phy_addr = 2;
   2155 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2156 				 BNX_SHARED_HW_CFG_CONFIG);
   2157 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2158 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2159 				DBPRINT(sc, BNX_INFO_LOAD,
   2160 				    "Found 2.5Gb capable adapter\n");
   2161 			}
   2162 		}
   2163 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2164 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2165 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2166 
   2167 bnx_get_media_exit:
   2168 	DBPRINT(sc, (BNX_INFO_LOAD),
   2169 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2170 }
   2171 
   2172 /****************************************************************************/
   2173 /* Performs PHY initialization required before MII drivers access the       */
   2174 /* device.                                                                  */
   2175 /*                                                                          */
   2176 /* Returns:                                                                 */
   2177 /*   Nothing.                                                               */
   2178 /****************************************************************************/
   2179 void
   2180 bnx_init_media(struct bnx_softc *sc)
   2181 {
   2182 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2183 		/*
   2184 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2185 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2186 		 * the PHY to the mii(4) layer. PHY specific configuration
   2187 		 * is done by the mii(4) layer.
   2188 		 */
   2189 
   2190 		/* Select auto-negotiation MMD of the PHY. */
   2191 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2192 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2193 
   2194 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2195 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2196 
   2197 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2198 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2199 	}
   2200 }
   2201 
   2202 /****************************************************************************/
   2203 /* Free any DMA memory owned by the driver.                                 */
   2204 /*                                                                          */
   2205 /* Scans through each data structre that requires DMA memory and frees      */
   2206 /* the memory if allocated.                                                 */
   2207 /*                                                                          */
   2208 /* Returns:                                                                 */
   2209 /*   Nothing.                                                               */
   2210 /****************************************************************************/
   2211 void
   2212 bnx_dma_free(struct bnx_softc *sc)
   2213 {
   2214 	int			i;
   2215 
   2216 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2217 
   2218 	/* Destroy the status block. */
   2219 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2220 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2221 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2222 		    BNX_STATUS_BLK_SZ);
   2223 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2224 		    sc->status_rseg);
   2225 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2226 		sc->status_block = NULL;
   2227 		sc->status_map = NULL;
   2228 	}
   2229 
   2230 	/* Destroy the statistics block. */
   2231 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2232 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2233 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2234 		    BNX_STATS_BLK_SZ);
   2235 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2236 		    sc->stats_rseg);
   2237 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2238 		sc->stats_block = NULL;
   2239 		sc->stats_map = NULL;
   2240 	}
   2241 
   2242 	/* Free, unmap and destroy all context memory pages. */
   2243 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2244 		for (i = 0; i < sc->ctx_pages; i++) {
   2245 			if (sc->ctx_block[i] != NULL) {
   2246 				bus_dmamap_unload(sc->bnx_dmatag,
   2247 				    sc->ctx_map[i]);
   2248 				bus_dmamem_unmap(sc->bnx_dmatag,
   2249 				    (void *)sc->ctx_block[i],
   2250 				    BCM_PAGE_SIZE);
   2251 				bus_dmamem_free(sc->bnx_dmatag,
   2252 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2253 				bus_dmamap_destroy(sc->bnx_dmatag,
   2254 				    sc->ctx_map[i]);
   2255 				sc->ctx_block[i] = NULL;
   2256 			}
   2257 		}
   2258 	}
   2259 
   2260 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2261 	for (i = 0; i < TX_PAGES; i++ ) {
   2262 		if (sc->tx_bd_chain[i] != NULL &&
   2263 		    sc->tx_bd_chain_map[i] != NULL) {
   2264 			bus_dmamap_unload(sc->bnx_dmatag,
   2265 			    sc->tx_bd_chain_map[i]);
   2266 			bus_dmamem_unmap(sc->bnx_dmatag,
   2267 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2268 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2269 			    sc->tx_bd_chain_rseg[i]);
   2270 			bus_dmamap_destroy(sc->bnx_dmatag,
   2271 			    sc->tx_bd_chain_map[i]);
   2272 			sc->tx_bd_chain[i] = NULL;
   2273 			sc->tx_bd_chain_map[i] = NULL;
   2274 		}
   2275 	}
   2276 
   2277 	/* Destroy the TX dmamaps. */
   2278 	/* This isn't necessary since we dont allocate them up front */
   2279 
   2280 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2281 	for (i = 0; i < RX_PAGES; i++ ) {
   2282 		if (sc->rx_bd_chain[i] != NULL &&
   2283 		    sc->rx_bd_chain_map[i] != NULL) {
   2284 			bus_dmamap_unload(sc->bnx_dmatag,
   2285 			    sc->rx_bd_chain_map[i]);
   2286 			bus_dmamem_unmap(sc->bnx_dmatag,
   2287 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2288 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2289 			    sc->rx_bd_chain_rseg[i]);
   2290 
   2291 			bus_dmamap_destroy(sc->bnx_dmatag,
   2292 			    sc->rx_bd_chain_map[i]);
   2293 			sc->rx_bd_chain[i] = NULL;
   2294 			sc->rx_bd_chain_map[i] = NULL;
   2295 		}
   2296 	}
   2297 
   2298 	/* Unload and destroy the RX mbuf maps. */
   2299 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2300 		if (sc->rx_mbuf_map[i] != NULL) {
   2301 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2302 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2303 		}
   2304 	}
   2305 
   2306 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2307 }
   2308 
   2309 /****************************************************************************/
   2310 /* Allocate any DMA memory needed by the driver.                            */
   2311 /*                                                                          */
   2312 /* Allocates DMA memory needed for the various global structures needed by  */
   2313 /* hardware.                                                                */
   2314 /*                                                                          */
   2315 /* Returns:                                                                 */
   2316 /*   0 for success, positive value for failure.                             */
   2317 /****************************************************************************/
   2318 int
   2319 bnx_dma_alloc(struct bnx_softc *sc)
   2320 {
   2321 	int			i, rc = 0;
   2322 
   2323 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2324 
   2325 	/*
   2326 	 * Allocate DMA memory for the status block, map the memory into DMA
   2327 	 * space, and fetch the physical address of the block.
   2328 	 */
   2329 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2330 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2331 		aprint_error_dev(sc->bnx_dev,
   2332 		    "Could not create status block DMA map!\n");
   2333 		rc = ENOMEM;
   2334 		goto bnx_dma_alloc_exit;
   2335 	}
   2336 
   2337 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2338 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2339 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2340 		aprint_error_dev(sc->bnx_dev,
   2341 		    "Could not allocate status block DMA memory!\n");
   2342 		rc = ENOMEM;
   2343 		goto bnx_dma_alloc_exit;
   2344 	}
   2345 
   2346 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2347 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2348 		aprint_error_dev(sc->bnx_dev,
   2349 		    "Could not map status block DMA memory!\n");
   2350 		rc = ENOMEM;
   2351 		goto bnx_dma_alloc_exit;
   2352 	}
   2353 
   2354 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2355 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2356 		aprint_error_dev(sc->bnx_dev,
   2357 		    "Could not load status block DMA memory!\n");
   2358 		rc = ENOMEM;
   2359 		goto bnx_dma_alloc_exit;
   2360 	}
   2361 
   2362 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2363 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2364 
   2365 	/* DRC - Fix for 64 bit addresses. */
   2366 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2367 		(uint32_t) sc->status_block_paddr);
   2368 
   2369 	/* BCM5709 uses host memory as cache for context memory. */
   2370 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2371 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2372 		if (sc->ctx_pages == 0)
   2373 			sc->ctx_pages = 1;
   2374 		if (sc->ctx_pages > 4) /* XXX */
   2375 			sc->ctx_pages = 4;
   2376 
   2377 		DBRUNIF((sc->ctx_pages > 512),
   2378 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2379 				__FILE__, __LINE__, sc->ctx_pages));
   2380 
   2381 
   2382 		for (i = 0; i < sc->ctx_pages; i++) {
   2383 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2384 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2385 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2386 			    &sc->ctx_map[i]) != 0) {
   2387 				rc = ENOMEM;
   2388 				goto bnx_dma_alloc_exit;
   2389 			}
   2390 
   2391 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2392 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2393 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2394 				rc = ENOMEM;
   2395 				goto bnx_dma_alloc_exit;
   2396 			}
   2397 
   2398 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2399 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2400 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2401 				rc = ENOMEM;
   2402 				goto bnx_dma_alloc_exit;
   2403 			}
   2404 
   2405 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2406 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2407 			    BUS_DMA_NOWAIT) != 0) {
   2408 				rc = ENOMEM;
   2409 				goto bnx_dma_alloc_exit;
   2410 			}
   2411 
   2412 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2413 		}
   2414 	}
   2415 
   2416 	/*
   2417 	 * Allocate DMA memory for the statistics block, map the memory into
   2418 	 * DMA space, and fetch the physical address of the block.
   2419 	 */
   2420 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2421 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2422 		aprint_error_dev(sc->bnx_dev,
   2423 		    "Could not create stats block DMA map!\n");
   2424 		rc = ENOMEM;
   2425 		goto bnx_dma_alloc_exit;
   2426 	}
   2427 
   2428 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2429 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2430 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2431 		aprint_error_dev(sc->bnx_dev,
   2432 		    "Could not allocate stats block DMA memory!\n");
   2433 		rc = ENOMEM;
   2434 		goto bnx_dma_alloc_exit;
   2435 	}
   2436 
   2437 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2438 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2439 		aprint_error_dev(sc->bnx_dev,
   2440 		    "Could not map stats block DMA memory!\n");
   2441 		rc = ENOMEM;
   2442 		goto bnx_dma_alloc_exit;
   2443 	}
   2444 
   2445 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2446 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2447 		aprint_error_dev(sc->bnx_dev,
   2448 		    "Could not load status block DMA memory!\n");
   2449 		rc = ENOMEM;
   2450 		goto bnx_dma_alloc_exit;
   2451 	}
   2452 
   2453 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2454 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2455 
   2456 	/* DRC - Fix for 64 bit address. */
   2457 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2458 	    (uint32_t) sc->stats_block_paddr);
   2459 
   2460 	/*
   2461 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2462 	 * and fetch the physical address of the block.
   2463 	 */
   2464 	for (i = 0; i < TX_PAGES; i++) {
   2465 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2466 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2467 		    &sc->tx_bd_chain_map[i])) {
   2468 			aprint_error_dev(sc->bnx_dev,
   2469 			    "Could not create Tx desc %d DMA map!\n", i);
   2470 			rc = ENOMEM;
   2471 			goto bnx_dma_alloc_exit;
   2472 		}
   2473 
   2474 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2475 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2476 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2477 			aprint_error_dev(sc->bnx_dev,
   2478 			    "Could not allocate TX desc %d DMA memory!\n",
   2479 			    i);
   2480 			rc = ENOMEM;
   2481 			goto bnx_dma_alloc_exit;
   2482 		}
   2483 
   2484 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2485 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2486 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2487 			aprint_error_dev(sc->bnx_dev,
   2488 			    "Could not map TX desc %d DMA memory!\n", i);
   2489 			rc = ENOMEM;
   2490 			goto bnx_dma_alloc_exit;
   2491 		}
   2492 
   2493 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2494 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2495 		    BUS_DMA_NOWAIT)) {
   2496 			aprint_error_dev(sc->bnx_dev,
   2497 			    "Could not load TX desc %d DMA memory!\n", i);
   2498 			rc = ENOMEM;
   2499 			goto bnx_dma_alloc_exit;
   2500 		}
   2501 
   2502 		sc->tx_bd_chain_paddr[i] =
   2503 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2504 
   2505 		/* DRC - Fix for 64 bit systems. */
   2506 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2507 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
   2508 	}
   2509 
   2510 	/*
   2511 	 * Create lists to hold TX mbufs.
   2512 	 */
   2513 	TAILQ_INIT(&sc->tx_free_pkts);
   2514 	TAILQ_INIT(&sc->tx_used_pkts);
   2515 	sc->tx_pkt_count = 0;
   2516 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2517 
   2518 	/*
   2519 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2520 	 * and fetch the physical address of the block.
   2521 	 */
   2522 	for (i = 0; i < RX_PAGES; i++) {
   2523 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2524 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2525 		    &sc->rx_bd_chain_map[i])) {
   2526 			aprint_error_dev(sc->bnx_dev,
   2527 			    "Could not create Rx desc %d DMA map!\n", i);
   2528 			rc = ENOMEM;
   2529 			goto bnx_dma_alloc_exit;
   2530 		}
   2531 
   2532 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2533 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2534 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2535 			aprint_error_dev(sc->bnx_dev,
   2536 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2537 			rc = ENOMEM;
   2538 			goto bnx_dma_alloc_exit;
   2539 		}
   2540 
   2541 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2542 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2543 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2544 			aprint_error_dev(sc->bnx_dev,
   2545 			    "Could not map Rx desc %d DMA memory!\n", i);
   2546 			rc = ENOMEM;
   2547 			goto bnx_dma_alloc_exit;
   2548 		}
   2549 
   2550 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2551 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2552 		    BUS_DMA_NOWAIT)) {
   2553 			aprint_error_dev(sc->bnx_dev,
   2554 			    "Could not load Rx desc %d DMA memory!\n", i);
   2555 			rc = ENOMEM;
   2556 			goto bnx_dma_alloc_exit;
   2557 		}
   2558 
   2559 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2560 		sc->rx_bd_chain_paddr[i] =
   2561 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2562 
   2563 		/* DRC - Fix for 64 bit systems. */
   2564 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2565 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
   2566 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2567 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2568 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2569 	}
   2570 
   2571 	/*
   2572 	 * Create DMA maps for the Rx buffer mbufs.
   2573 	 */
   2574 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2575 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2576 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2577 		    &sc->rx_mbuf_map[i])) {
   2578 			aprint_error_dev(sc->bnx_dev,
   2579 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2580 			rc = ENOMEM;
   2581 			goto bnx_dma_alloc_exit;
   2582 		}
   2583 	}
   2584 
   2585  bnx_dma_alloc_exit:
   2586 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2587 
   2588 	return rc;
   2589 }
   2590 
   2591 /****************************************************************************/
   2592 /* Release all resources used by the driver.                                */
   2593 /*                                                                          */
   2594 /* Releases all resources acquired by the driver including interrupts,      */
   2595 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2596 /*                                                                          */
   2597 /* Returns:                                                                 */
   2598 /*   Nothing.                                                               */
   2599 /****************************************************************************/
   2600 void
   2601 bnx_release_resources(struct bnx_softc *sc)
   2602 {
   2603 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2604 
   2605 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2606 
   2607 	bnx_dma_free(sc);
   2608 
   2609 	if (sc->bnx_intrhand != NULL)
   2610 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2611 
   2612 	if (sc->bnx_size)
   2613 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2614 
   2615 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2616 }
   2617 
   2618 /****************************************************************************/
   2619 /* Firmware synchronization.                                                */
   2620 /*                                                                          */
   2621 /* Before performing certain events such as a chip reset, synchronize with  */
   2622 /* the firmware first.                                                      */
   2623 /*                                                                          */
   2624 /* Returns:                                                                 */
   2625 /*   0 for success, positive value for failure.                             */
   2626 /****************************************************************************/
   2627 int
   2628 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
   2629 {
   2630 	int			i, rc = 0;
   2631 	uint32_t		val;
   2632 
   2633 	/* Don't waste any time if we've timed out before. */
   2634 	if (sc->bnx_fw_timed_out) {
   2635 		rc = EBUSY;
   2636 		goto bnx_fw_sync_exit;
   2637 	}
   2638 
   2639 	/* Increment the message sequence number. */
   2640 	sc->bnx_fw_wr_seq++;
   2641 	msg_data |= sc->bnx_fw_wr_seq;
   2642 
   2643  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2644 	    msg_data);
   2645 
   2646 	/* Send the message to the bootcode driver mailbox. */
   2647 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2648 
   2649 	/* Wait for the bootcode to acknowledge the message. */
   2650 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2651 		/* Check for a response in the bootcode firmware mailbox. */
   2652 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2653 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2654 			break;
   2655 		DELAY(1000);
   2656 	}
   2657 
   2658 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2659 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2660 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2661 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2662 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2663 
   2664 		msg_data &= ~BNX_DRV_MSG_CODE;
   2665 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2666 
   2667 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2668 
   2669 		sc->bnx_fw_timed_out = 1;
   2670 		rc = EBUSY;
   2671 	}
   2672 
   2673 bnx_fw_sync_exit:
   2674 	return rc;
   2675 }
   2676 
   2677 /****************************************************************************/
   2678 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2679 /*                                                                          */
   2680 /* Returns:                                                                 */
   2681 /*   Nothing.                                                               */
   2682 /****************************************************************************/
   2683 void
   2684 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
   2685     uint32_t rv2p_code_len, uint32_t rv2p_proc)
   2686 {
   2687 	int			i;
   2688 	uint32_t		val;
   2689 
   2690 	/* Set the page size used by RV2P. */
   2691 	if (rv2p_proc == RV2P_PROC2) {
   2692 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2693 		    USABLE_RX_BD_PER_PAGE);
   2694 	}
   2695 
   2696 	for (i = 0; i < rv2p_code_len; i += 8) {
   2697 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2698 		rv2p_code++;
   2699 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2700 		rv2p_code++;
   2701 
   2702 		if (rv2p_proc == RV2P_PROC1) {
   2703 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2704 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2705 		} else {
   2706 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2707 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2708 		}
   2709 	}
   2710 
   2711 	/* Reset the processor, un-stall is done later. */
   2712 	if (rv2p_proc == RV2P_PROC1)
   2713 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2714 	else
   2715 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2716 }
   2717 
   2718 /****************************************************************************/
   2719 /* Load RISC processor firmware.                                            */
   2720 /*                                                                          */
   2721 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2722 /* associated with a particular processor.                                  */
   2723 /*                                                                          */
   2724 /* Returns:                                                                 */
   2725 /*   Nothing.                                                               */
   2726 /****************************************************************************/
   2727 void
   2728 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2729     struct fw_info *fw)
   2730 {
   2731 	uint32_t		offset;
   2732 	uint32_t		val;
   2733 
   2734 	/* Halt the CPU. */
   2735 	val = REG_RD_IND(sc, cpu_reg->mode);
   2736 	val |= cpu_reg->mode_value_halt;
   2737 	REG_WR_IND(sc, cpu_reg->mode, val);
   2738 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2739 
   2740 	/* Load the Text area. */
   2741 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2742 	if (fw->text) {
   2743 		int j;
   2744 
   2745 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2746 			REG_WR_IND(sc, offset, fw->text[j]);
   2747 	}
   2748 
   2749 	/* Load the Data area. */
   2750 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2751 	if (fw->data) {
   2752 		int j;
   2753 
   2754 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2755 			REG_WR_IND(sc, offset, fw->data[j]);
   2756 	}
   2757 
   2758 	/* Load the SBSS area. */
   2759 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2760 	if (fw->sbss) {
   2761 		int j;
   2762 
   2763 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2764 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2765 	}
   2766 
   2767 	/* Load the BSS area. */
   2768 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2769 	if (fw->bss) {
   2770 		int j;
   2771 
   2772 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2773 			REG_WR_IND(sc, offset, fw->bss[j]);
   2774 	}
   2775 
   2776 	/* Load the Read-Only area. */
   2777 	offset = cpu_reg->spad_base +
   2778 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2779 	if (fw->rodata) {
   2780 		int j;
   2781 
   2782 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2783 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2784 	}
   2785 
   2786 	/* Clear the pre-fetch instruction. */
   2787 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2788 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2789 
   2790 	/* Start the CPU. */
   2791 	val = REG_RD_IND(sc, cpu_reg->mode);
   2792 	val &= ~cpu_reg->mode_value_halt;
   2793 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2794 	REG_WR_IND(sc, cpu_reg->mode, val);
   2795 }
   2796 
   2797 /****************************************************************************/
   2798 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2799 /*                                                                          */
   2800 /* Loads the firmware for each CPU and starts the CPU.                      */
   2801 /*                                                                          */
   2802 /* Returns:                                                                 */
   2803 /*   Nothing.                                                               */
   2804 /****************************************************************************/
   2805 void
   2806 bnx_init_cpus(struct bnx_softc *sc)
   2807 {
   2808 	struct cpu_reg cpu_reg;
   2809 	struct fw_info fw;
   2810 
   2811 	switch(BNX_CHIP_NUM(sc)) {
   2812 	case BNX_CHIP_NUM_5709:
   2813 		/* Initialize the RV2P processor. */
   2814 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2815 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2816 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2817 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2818 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2819 		} else {
   2820 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2821 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2822 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2823 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2824 		}
   2825 
   2826 		/* Initialize the RX Processor. */
   2827 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2828 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2829 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2830 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2831 		cpu_reg.state_value_clear = 0xffffff;
   2832 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2833 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2834 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2835 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2836 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2837 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2838 		cpu_reg.mips_view_base = 0x8000000;
   2839 
   2840 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2841 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2842 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2843 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2844 
   2845 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2846 		fw.text_len = bnx_RXP_b09FwTextLen;
   2847 		fw.text_index = 0;
   2848 		fw.text = bnx_RXP_b09FwText;
   2849 
   2850 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2851 		fw.data_len = bnx_RXP_b09FwDataLen;
   2852 		fw.data_index = 0;
   2853 		fw.data = bnx_RXP_b09FwData;
   2854 
   2855 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2856 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2857 		fw.sbss_index = 0;
   2858 		fw.sbss = bnx_RXP_b09FwSbss;
   2859 
   2860 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2861 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2862 		fw.bss_index = 0;
   2863 		fw.bss = bnx_RXP_b09FwBss;
   2864 
   2865 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2866 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2867 		fw.rodata_index = 0;
   2868 		fw.rodata = bnx_RXP_b09FwRodata;
   2869 
   2870 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2871 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2872 
   2873 		/* Initialize the TX Processor. */
   2874 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2875 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2876 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2877 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2878 		cpu_reg.state_value_clear = 0xffffff;
   2879 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2880 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2881 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2882 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2883 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2884 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2885 		cpu_reg.mips_view_base = 0x8000000;
   2886 
   2887 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2888 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2889 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2890 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2891 
   2892 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2893 		fw.text_len = bnx_TXP_b09FwTextLen;
   2894 		fw.text_index = 0;
   2895 		fw.text = bnx_TXP_b09FwText;
   2896 
   2897 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   2898 		fw.data_len = bnx_TXP_b09FwDataLen;
   2899 		fw.data_index = 0;
   2900 		fw.data = bnx_TXP_b09FwData;
   2901 
   2902 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   2903 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   2904 		fw.sbss_index = 0;
   2905 		fw.sbss = bnx_TXP_b09FwSbss;
   2906 
   2907 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   2908 		fw.bss_len = bnx_TXP_b09FwBssLen;
   2909 		fw.bss_index = 0;
   2910 		fw.bss = bnx_TXP_b09FwBss;
   2911 
   2912 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   2913 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   2914 		fw.rodata_index = 0;
   2915 		fw.rodata = bnx_TXP_b09FwRodata;
   2916 
   2917 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2918 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2919 
   2920 		/* Initialize the TX Patch-up Processor. */
   2921 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2922 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2923 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2924 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2925 		cpu_reg.state_value_clear = 0xffffff;
   2926 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2927 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2928 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2929 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2930 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2931 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2932 		cpu_reg.mips_view_base = 0x8000000;
   2933 
   2934 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   2935 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   2936 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   2937 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   2938 
   2939 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   2940 		fw.text_len = bnx_TPAT_b09FwTextLen;
   2941 		fw.text_index = 0;
   2942 		fw.text = bnx_TPAT_b09FwText;
   2943 
   2944 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   2945 		fw.data_len = bnx_TPAT_b09FwDataLen;
   2946 		fw.data_index = 0;
   2947 		fw.data = bnx_TPAT_b09FwData;
   2948 
   2949 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   2950 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   2951 		fw.sbss_index = 0;
   2952 		fw.sbss = bnx_TPAT_b09FwSbss;
   2953 
   2954 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   2955 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   2956 		fw.bss_index = 0;
   2957 		fw.bss = bnx_TPAT_b09FwBss;
   2958 
   2959 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   2960 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   2961 		fw.rodata_index = 0;
   2962 		fw.rodata = bnx_TPAT_b09FwRodata;
   2963 
   2964 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2965 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2966 
   2967 		/* Initialize the Completion Processor. */
   2968 		cpu_reg.mode = BNX_COM_CPU_MODE;
   2969 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2970 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2971 		cpu_reg.state = BNX_COM_CPU_STATE;
   2972 		cpu_reg.state_value_clear = 0xffffff;
   2973 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2974 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2975 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2976 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2977 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2978 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   2979 		cpu_reg.mips_view_base = 0x8000000;
   2980 
   2981 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   2982 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   2983 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   2984 		fw.start_addr = bnx_COM_b09FwStartAddr;
   2985 
   2986 		fw.text_addr = bnx_COM_b09FwTextAddr;
   2987 		fw.text_len = bnx_COM_b09FwTextLen;
   2988 		fw.text_index = 0;
   2989 		fw.text = bnx_COM_b09FwText;
   2990 
   2991 		fw.data_addr = bnx_COM_b09FwDataAddr;
   2992 		fw.data_len = bnx_COM_b09FwDataLen;
   2993 		fw.data_index = 0;
   2994 		fw.data = bnx_COM_b09FwData;
   2995 
   2996 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   2997 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   2998 		fw.sbss_index = 0;
   2999 		fw.sbss = bnx_COM_b09FwSbss;
   3000 
   3001 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   3002 		fw.bss_len = bnx_COM_b09FwBssLen;
   3003 		fw.bss_index = 0;
   3004 		fw.bss = bnx_COM_b09FwBss;
   3005 
   3006 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   3007 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   3008 		fw.rodata_index = 0;
   3009 		fw.rodata = bnx_COM_b09FwRodata;
   3010 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3011 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3012 		break;
   3013 	default:
   3014 		/* Initialize the RV2P processor. */
   3015 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   3016 		    RV2P_PROC1);
   3017 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   3018 		    RV2P_PROC2);
   3019 
   3020 		/* Initialize the RX Processor. */
   3021 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   3022 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   3023 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   3024 		cpu_reg.state = BNX_RXP_CPU_STATE;
   3025 		cpu_reg.state_value_clear = 0xffffff;
   3026 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   3027 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   3028 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   3029 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   3030 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   3031 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   3032 		cpu_reg.mips_view_base = 0x8000000;
   3033 
   3034 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   3035 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   3036 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   3037 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   3038 
   3039 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   3040 		fw.text_len = bnx_RXP_b06FwTextLen;
   3041 		fw.text_index = 0;
   3042 		fw.text = bnx_RXP_b06FwText;
   3043 
   3044 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   3045 		fw.data_len = bnx_RXP_b06FwDataLen;
   3046 		fw.data_index = 0;
   3047 		fw.data = bnx_RXP_b06FwData;
   3048 
   3049 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   3050 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   3051 		fw.sbss_index = 0;
   3052 		fw.sbss = bnx_RXP_b06FwSbss;
   3053 
   3054 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   3055 		fw.bss_len = bnx_RXP_b06FwBssLen;
   3056 		fw.bss_index = 0;
   3057 		fw.bss = bnx_RXP_b06FwBss;
   3058 
   3059 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   3060 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   3061 		fw.rodata_index = 0;
   3062 		fw.rodata = bnx_RXP_b06FwRodata;
   3063 
   3064 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   3065 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3066 
   3067 		/* Initialize the TX Processor. */
   3068 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   3069 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   3070 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   3071 		cpu_reg.state = BNX_TXP_CPU_STATE;
   3072 		cpu_reg.state_value_clear = 0xffffff;
   3073 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   3074 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   3075 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   3076 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   3077 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   3078 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   3079 		cpu_reg.mips_view_base = 0x8000000;
   3080 
   3081 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   3082 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   3083 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   3084 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   3085 
   3086 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   3087 		fw.text_len = bnx_TXP_b06FwTextLen;
   3088 		fw.text_index = 0;
   3089 		fw.text = bnx_TXP_b06FwText;
   3090 
   3091 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   3092 		fw.data_len = bnx_TXP_b06FwDataLen;
   3093 		fw.data_index = 0;
   3094 		fw.data = bnx_TXP_b06FwData;
   3095 
   3096 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   3097 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   3098 		fw.sbss_index = 0;
   3099 		fw.sbss = bnx_TXP_b06FwSbss;
   3100 
   3101 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3102 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3103 		fw.bss_index = 0;
   3104 		fw.bss = bnx_TXP_b06FwBss;
   3105 
   3106 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3107 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3108 		fw.rodata_index = 0;
   3109 		fw.rodata = bnx_TXP_b06FwRodata;
   3110 
   3111 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3112 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3113 
   3114 		/* Initialize the TX Patch-up Processor. */
   3115 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3116 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3117 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3118 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3119 		cpu_reg.state_value_clear = 0xffffff;
   3120 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3121 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3122 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3123 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3124 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3125 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3126 		cpu_reg.mips_view_base = 0x8000000;
   3127 
   3128 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3129 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3130 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3131 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3132 
   3133 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3134 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3135 		fw.text_index = 0;
   3136 		fw.text = bnx_TPAT_b06FwText;
   3137 
   3138 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3139 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3140 		fw.data_index = 0;
   3141 		fw.data = bnx_TPAT_b06FwData;
   3142 
   3143 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3144 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3145 		fw.sbss_index = 0;
   3146 		fw.sbss = bnx_TPAT_b06FwSbss;
   3147 
   3148 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3149 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3150 		fw.bss_index = 0;
   3151 		fw.bss = bnx_TPAT_b06FwBss;
   3152 
   3153 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3154 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3155 		fw.rodata_index = 0;
   3156 		fw.rodata = bnx_TPAT_b06FwRodata;
   3157 
   3158 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3159 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3160 
   3161 		/* Initialize the Completion Processor. */
   3162 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3163 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3164 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3165 		cpu_reg.state = BNX_COM_CPU_STATE;
   3166 		cpu_reg.state_value_clear = 0xffffff;
   3167 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3168 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3169 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3170 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3171 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3172 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3173 		cpu_reg.mips_view_base = 0x8000000;
   3174 
   3175 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3176 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3177 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3178 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3179 
   3180 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3181 		fw.text_len = bnx_COM_b06FwTextLen;
   3182 		fw.text_index = 0;
   3183 		fw.text = bnx_COM_b06FwText;
   3184 
   3185 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3186 		fw.data_len = bnx_COM_b06FwDataLen;
   3187 		fw.data_index = 0;
   3188 		fw.data = bnx_COM_b06FwData;
   3189 
   3190 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3191 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3192 		fw.sbss_index = 0;
   3193 		fw.sbss = bnx_COM_b06FwSbss;
   3194 
   3195 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3196 		fw.bss_len = bnx_COM_b06FwBssLen;
   3197 		fw.bss_index = 0;
   3198 		fw.bss = bnx_COM_b06FwBss;
   3199 
   3200 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3201 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3202 		fw.rodata_index = 0;
   3203 		fw.rodata = bnx_COM_b06FwRodata;
   3204 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3205 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3206 		break;
   3207 	}
   3208 }
   3209 
   3210 /****************************************************************************/
   3211 /* Initialize context memory.                                               */
   3212 /*                                                                          */
   3213 /* Clears the memory associated with each Context ID (CID).                 */
   3214 /*                                                                          */
   3215 /* Returns:                                                                 */
   3216 /*   Nothing.                                                               */
   3217 /****************************************************************************/
   3218 void
   3219 bnx_init_context(struct bnx_softc *sc)
   3220 {
   3221 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3222 		/* DRC: Replace this constant value with a #define. */
   3223 		int i, retry_cnt = 10;
   3224 		uint32_t val;
   3225 
   3226 		/*
   3227 		 * BCM5709 context memory may be cached
   3228 		 * in host memory so prepare the host memory
   3229 		 * for access.
   3230 		 */
   3231 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3232 		    | (1 << 12);
   3233 		val |= (BCM_PAGE_BITS - 8) << 16;
   3234 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3235 
   3236 		/* Wait for mem init command to complete. */
   3237 		for (i = 0; i < retry_cnt; i++) {
   3238 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3239 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3240 				break;
   3241 			DELAY(2);
   3242 		}
   3243 
   3244 		/* ToDo: Consider returning an error here. */
   3245 
   3246 		for (i = 0; i < sc->ctx_pages; i++) {
   3247 			int j;
   3248 
   3249 			/* Set the physaddr of the context memory cache. */
   3250 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
   3251 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3252 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3253 			val = (uint32_t)
   3254 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
   3255 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3256 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3257 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3258 
   3259 			/* Verify that the context memory write was successful. */
   3260 			for (j = 0; j < retry_cnt; j++) {
   3261 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3262 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3263 					break;
   3264 				DELAY(5);
   3265 			}
   3266 
   3267 			/* ToDo: Consider returning an error here. */
   3268 		}
   3269 	} else {
   3270 		uint32_t vcid_addr, offset;
   3271 
   3272 		/*
   3273 		 * For the 5706/5708, context memory is local to
   3274 		 * the controller, so initialize the controller
   3275 		 * context memory.
   3276 		 */
   3277 
   3278 		vcid_addr = GET_CID_ADDR(96);
   3279 		while (vcid_addr) {
   3280 
   3281 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3282 
   3283 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3284 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3285 
   3286 			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
   3287 				CTX_WR(sc, 0x00, offset, 0);
   3288 			}
   3289 
   3290 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3291 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3292 		}
   3293 	}
   3294 }
   3295 
   3296 /****************************************************************************/
   3297 /* Fetch the permanent MAC address of the controller.                       */
   3298 /*                                                                          */
   3299 /* Returns:                                                                 */
   3300 /*   Nothing.                                                               */
   3301 /****************************************************************************/
   3302 void
   3303 bnx_get_mac_addr(struct bnx_softc *sc)
   3304 {
   3305 	uint32_t		mac_lo = 0, mac_hi = 0;
   3306 
   3307 	/*
   3308 	 * The NetXtreme II bootcode populates various NIC
   3309 	 * power-on and runtime configuration items in a
   3310 	 * shared memory area.  The factory configured MAC
   3311 	 * address is available from both NVRAM and the
   3312 	 * shared memory area so we'll read the value from
   3313 	 * shared memory for speed.
   3314 	 */
   3315 
   3316 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3317 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3318 
   3319 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3320 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3321 		    __FILE__, __LINE__);
   3322 	} else {
   3323 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3324 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3325 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3326 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3327 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3328 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3329 	}
   3330 
   3331 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3332 	    "%s\n", ether_sprintf(sc->eaddr));
   3333 }
   3334 
   3335 /****************************************************************************/
   3336 /* Program the MAC address.                                                 */
   3337 /*                                                                          */
   3338 /* Returns:                                                                 */
   3339 /*   Nothing.                                                               */
   3340 /****************************************************************************/
   3341 void
   3342 bnx_set_mac_addr(struct bnx_softc *sc)
   3343 {
   3344 	uint32_t		val;
   3345 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3346 
   3347 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3348 	    "%s\n", ether_sprintf(sc->eaddr));
   3349 
   3350 	val = (mac_addr[0] << 8) | mac_addr[1];
   3351 
   3352 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3353 
   3354 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3355 		(mac_addr[4] << 8) | mac_addr[5];
   3356 
   3357 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3358 }
   3359 
   3360 /****************************************************************************/
   3361 /* Stop the controller.                                                     */
   3362 /*                                                                          */
   3363 /* Returns:                                                                 */
   3364 /*   Nothing.                                                               */
   3365 /****************************************************************************/
   3366 void
   3367 bnx_stop(struct ifnet *ifp, int disable)
   3368 {
   3369 	struct bnx_softc *sc = ifp->if_softc;
   3370 
   3371 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3372 
   3373 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   3374 		return;
   3375 
   3376 	callout_stop(&sc->bnx_timeout);
   3377 
   3378 	mii_down(&sc->bnx_mii);
   3379 
   3380 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3381 
   3382 	/* Disable the transmit/receive blocks. */
   3383 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3384 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3385 	DELAY(20);
   3386 
   3387 	bnx_disable_intr(sc);
   3388 
   3389 	/* Tell firmware that the driver is going away. */
   3390 	if (disable)
   3391 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3392 	else
   3393 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3394 
   3395 	/* Free RX buffers. */
   3396 	bnx_free_rx_chain(sc);
   3397 
   3398 	/* Free TX buffers. */
   3399 	bnx_free_tx_chain(sc);
   3400 
   3401 	ifp->if_timer = 0;
   3402 
   3403 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3404 
   3405 }
   3406 
   3407 int
   3408 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
   3409 {
   3410 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3411 	uint32_t		val;
   3412 	int			i, rc = 0;
   3413 
   3414 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3415 
   3416 	/* Wait for pending PCI transactions to complete. */
   3417 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3418 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3419 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3420 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3421 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3422 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3423 	DELAY(5);
   3424 
   3425 	/* Disable DMA */
   3426 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3427 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3428 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3429 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3430 	}
   3431 
   3432 	/* Assume bootcode is running. */
   3433 	sc->bnx_fw_timed_out = 0;
   3434 
   3435 	/* Give the firmware a chance to prepare for the reset. */
   3436 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3437 	if (rc)
   3438 		goto bnx_reset_exit;
   3439 
   3440 	/* Set a firmware reminder that this is a soft reset. */
   3441 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3442 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3443 
   3444 	/* Dummy read to force the chip to complete all current transactions. */
   3445 	val = REG_RD(sc, BNX_MISC_ID);
   3446 
   3447 	/* Chip reset. */
   3448 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3449 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3450 		REG_RD(sc, BNX_MISC_COMMAND);
   3451 		DELAY(5);
   3452 
   3453 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3454 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3455 
   3456 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3457 		    val);
   3458 	} else {
   3459 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3460 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3461 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3462 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3463 
   3464 		/* Allow up to 30us for reset to complete. */
   3465 		for (i = 0; i < 10; i++) {
   3466 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3467 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3468 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3469 				break;
   3470 			}
   3471 			DELAY(10);
   3472 		}
   3473 
   3474 		/* Check that reset completed successfully. */
   3475 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3476 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3477 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3478 			    __FILE__, __LINE__);
   3479 			rc = EBUSY;
   3480 			goto bnx_reset_exit;
   3481 		}
   3482 	}
   3483 
   3484 	/* Make sure byte swapping is properly configured. */
   3485 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3486 	if (val != 0x01020304) {
   3487 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3488 		    __FILE__, __LINE__);
   3489 		rc = ENODEV;
   3490 		goto bnx_reset_exit;
   3491 	}
   3492 
   3493 	/* Just completed a reset, assume that firmware is running again. */
   3494 	sc->bnx_fw_timed_out = 0;
   3495 
   3496 	/* Wait for the firmware to finish its initialization. */
   3497 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3498 	if (rc)
   3499 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3500 		    "initialization!\n", __FILE__, __LINE__);
   3501 
   3502 bnx_reset_exit:
   3503 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3504 
   3505 	return rc;
   3506 }
   3507 
   3508 int
   3509 bnx_chipinit(struct bnx_softc *sc)
   3510 {
   3511 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3512 	uint32_t		val;
   3513 	int			rc = 0;
   3514 
   3515 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3516 
   3517 	/* Make sure the interrupt is not active. */
   3518 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3519 
   3520 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3521 	/* channels and PCI clock compensation delay.                      */
   3522 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3523 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3524 #if BYTE_ORDER == BIG_ENDIAN
   3525 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3526 #endif
   3527 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3528 	    DMA_READ_CHANS << 12 |
   3529 	    DMA_WRITE_CHANS << 16;
   3530 
   3531 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3532 
   3533 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3534 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3535 
   3536 	/*
   3537 	 * This setting resolves a problem observed on certain Intel PCI
   3538 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3539 	 * See errata E9_5706A1_65.
   3540 	 */
   3541 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3542 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3543 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3544 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3545 
   3546 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3547 
   3548 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3549 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3550 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3551 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3552 		    val & ~0x20000);
   3553 	}
   3554 
   3555 	/* Enable the RX_V2P and Context state machines before access. */
   3556 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3557 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3558 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3559 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3560 
   3561 	/* Initialize context mapping and zero out the quick contexts. */
   3562 	bnx_init_context(sc);
   3563 
   3564 	/* Initialize the on-boards CPUs */
   3565 	bnx_init_cpus(sc);
   3566 
   3567 	/* Prepare NVRAM for access. */
   3568 	if (bnx_init_nvram(sc)) {
   3569 		rc = ENODEV;
   3570 		goto bnx_chipinit_exit;
   3571 	}
   3572 
   3573 	/* Set the kernel bypass block size */
   3574 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3575 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3576 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3577 
   3578 	/* Enable bins used on the 5709. */
   3579 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3580 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3581 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3582 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3583 	}
   3584 
   3585 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3586 
   3587 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3588 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3589 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3590 
   3591 	val = (BCM_PAGE_BITS - 8) << 24;
   3592 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3593 
   3594 	/* Configure page size. */
   3595 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3596 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3597 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3598 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3599 
   3600 #if 0
   3601 	/* Set the perfect match control register to default. */
   3602 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3603 #endif
   3604 
   3605 bnx_chipinit_exit:
   3606 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3607 
   3608 	return rc;
   3609 }
   3610 
   3611 /****************************************************************************/
   3612 /* Initialize the controller in preparation to send/receive traffic.        */
   3613 /*                                                                          */
   3614 /* Returns:                                                                 */
   3615 /*   0 for success, positive value for failure.                             */
   3616 /****************************************************************************/
   3617 int
   3618 bnx_blockinit(struct bnx_softc *sc)
   3619 {
   3620 	uint32_t		reg, val;
   3621 	int 			rc = 0;
   3622 
   3623 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3624 
   3625 	/* Load the hardware default MAC address. */
   3626 	bnx_set_mac_addr(sc);
   3627 
   3628 	/* Set the Ethernet backoff seed value */
   3629 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3630 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3631 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3632 
   3633 	sc->last_status_idx = 0;
   3634 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3635 
   3636 	/* Set up link change interrupt generation. */
   3637 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3638 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3639 
   3640 	/* Program the physical address of the status block. */
   3641 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
   3642 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3643 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
   3644 
   3645 	/* Program the physical address of the statistics block. */
   3646 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3647 	    (uint32_t)(sc->stats_block_paddr));
   3648 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3649 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
   3650 
   3651 	/* Program various host coalescing parameters. */
   3652 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3653 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3654 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3655 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3656 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3657 	    sc->bnx_comp_prod_trip);
   3658 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3659 	    sc->bnx_tx_ticks);
   3660 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3661 	    sc->bnx_rx_ticks);
   3662 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3663 	    sc->bnx_com_ticks);
   3664 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3665 	    sc->bnx_cmd_ticks);
   3666 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3667 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3668 	REG_WR(sc, BNX_HC_CONFIG,
   3669 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3670 	    BNX_HC_CONFIG_COLLECT_STATS));
   3671 
   3672 	/* Clear the internal statistics counters. */
   3673 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3674 
   3675 	/* Verify that bootcode is running. */
   3676 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3677 
   3678 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3679 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3680 	    __FILE__, __LINE__); reg = 0);
   3681 
   3682 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3683 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3684 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3685 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3686 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3687 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3688 		rc = ENODEV;
   3689 		goto bnx_blockinit_exit;
   3690 	}
   3691 
   3692 	/* Check if any management firmware is running. */
   3693 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3694 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3695 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3696 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3697 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3698 	}
   3699 
   3700 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3701 	    BNX_DEV_INFO_BC_REV);
   3702 
   3703 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3704 
   3705 	/* Enable DMA */
   3706 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3707 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3708 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3709 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3710 	}
   3711 
   3712 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3713 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3714 
   3715 	/* Enable link state change interrupt generation. */
   3716 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3717 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3718 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3719 	} else
   3720 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3721 
   3722 	/* Enable all remaining blocks in the MAC. */
   3723 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3724 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3725 	DELAY(20);
   3726 
   3727 bnx_blockinit_exit:
   3728 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3729 
   3730 	return rc;
   3731 }
   3732 
   3733 static int
   3734 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
   3735     uint16_t *chain_prod, uint32_t *prod_bseq)
   3736 {
   3737 	bus_dmamap_t		map;
   3738 	struct rx_bd		*rxbd;
   3739 	uint32_t		addr;
   3740 	int i;
   3741 #ifdef BNX_DEBUG
   3742 	uint16_t debug_chain_prod =	*chain_prod;
   3743 #endif
   3744 	uint16_t first_chain_prod;
   3745 
   3746 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3747 
   3748 	/* Map the mbuf cluster into device memory. */
   3749 	map = sc->rx_mbuf_map[*chain_prod];
   3750 	first_chain_prod = *chain_prod;
   3751 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3752 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3753 		    __FILE__, __LINE__);
   3754 
   3755 		m_freem(m_new);
   3756 
   3757 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3758 
   3759 		return ENOBUFS;
   3760 	}
   3761 	/* Make sure there is room in the receive chain. */
   3762 	if (map->dm_nsegs > sc->free_rx_bd) {
   3763 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3764 		m_freem(m_new);
   3765 		return EFBIG;
   3766 	}
   3767 #ifdef BNX_DEBUG
   3768 	/* Track the distribution of buffer segments. */
   3769 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3770 #endif
   3771 
   3772 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3773 	    BUS_DMASYNC_PREREAD);
   3774 
   3775 	/* Update some debug statistics counters */
   3776 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3777 	    sc->rx_low_watermark = sc->free_rx_bd);
   3778 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3779 
   3780 	/*
   3781 	 * Setup the rx_bd for the first segment
   3782 	 */
   3783 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3784 
   3785 	addr = (uint32_t)map->dm_segs[0].ds_addr;
   3786 	rxbd->rx_bd_haddr_lo = addr;
   3787 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
   3788 	rxbd->rx_bd_haddr_hi = addr;
   3789 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3790 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3791 	*prod_bseq += map->dm_segs[0].ds_len;
   3792 	bus_dmamap_sync(sc->bnx_dmatag,
   3793 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3794 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3795 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3796 
   3797 	for (i = 1; i < map->dm_nsegs; i++) {
   3798 		*prod = NEXT_RX_BD(*prod);
   3799 		*chain_prod = RX_CHAIN_IDX(*prod);
   3800 
   3801 		rxbd =
   3802 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3803 
   3804 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   3805 		rxbd->rx_bd_haddr_lo = addr;
   3806 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   3807 		rxbd->rx_bd_haddr_hi = addr;
   3808 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3809 		rxbd->rx_bd_flags = 0;
   3810 		*prod_bseq += map->dm_segs[i].ds_len;
   3811 		bus_dmamap_sync(sc->bnx_dmatag,
   3812 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3813 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3814 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3815 	}
   3816 
   3817 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3818 	bus_dmamap_sync(sc->bnx_dmatag,
   3819 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3820 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3821 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3822 
   3823 	/*
   3824 	 * Save the mbuf, adjust the map pointer (swap map for first and
   3825 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
   3826 	 * and update our counter.
   3827 	 */
   3828 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3829 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3830 	sc->rx_mbuf_map[*chain_prod] = map;
   3831 	sc->free_rx_bd -= map->dm_nsegs;
   3832 
   3833 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3834 	    map->dm_nsegs));
   3835 	*prod = NEXT_RX_BD(*prod);
   3836 	*chain_prod = RX_CHAIN_IDX(*prod);
   3837 
   3838 	return 0;
   3839 }
   3840 
   3841 /****************************************************************************/
   3842 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3843 /*                                                                          */
   3844 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3845 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3846 /* necessary.                                                               */
   3847 /*                                                                          */
   3848 /* Returns:                                                                 */
   3849 /*   0 for success, positive value for failure.                             */
   3850 /****************************************************************************/
   3851 int
   3852 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
   3853     uint16_t *chain_prod, uint32_t *prod_bseq)
   3854 {
   3855 	struct mbuf 		*m_new = NULL;
   3856 	int			rc = 0;
   3857 	uint16_t min_free_bd;
   3858 
   3859 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3860 	    __func__);
   3861 
   3862 	/* Make sure the inputs are valid. */
   3863 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3864 	    aprint_error_dev(sc->bnx_dev,
   3865 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3866 		*chain_prod, (uint16_t)MAX_RX_BD));
   3867 
   3868 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3869 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3870 	    *prod_bseq);
   3871 
   3872 	/* try to get in as many mbufs as possible */
   3873 	if (sc->mbuf_alloc_size == MCLBYTES)
   3874 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3875 	else
   3876 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3877 	while (sc->free_rx_bd >= min_free_bd) {
   3878 		/* Simulate an mbuf allocation failure. */
   3879 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3880 		    aprint_error_dev(sc->bnx_dev,
   3881 		    "Simulating mbuf allocation failure.\n");
   3882 			sc->mbuf_sim_alloc_failed++;
   3883 			rc = ENOBUFS;
   3884 			goto bnx_get_buf_exit);
   3885 
   3886 		/* This is a new mbuf allocation. */
   3887 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3888 		if (m_new == NULL) {
   3889 			DBPRINT(sc, BNX_WARN,
   3890 			    "%s(%d): RX mbuf header allocation failed!\n",
   3891 			    __FILE__, __LINE__);
   3892 
   3893 			sc->mbuf_alloc_failed++;
   3894 
   3895 			rc = ENOBUFS;
   3896 			goto bnx_get_buf_exit;
   3897 		}
   3898 
   3899 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3900 
   3901 		/* Simulate an mbuf cluster allocation failure. */
   3902 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3903 			m_freem(m_new);
   3904 			sc->rx_mbuf_alloc--;
   3905 			sc->mbuf_alloc_failed++;
   3906 			sc->mbuf_sim_alloc_failed++;
   3907 			rc = ENOBUFS;
   3908 			goto bnx_get_buf_exit);
   3909 
   3910 		if (sc->mbuf_alloc_size == MCLBYTES)
   3911 			MCLGET(m_new, M_DONTWAIT);
   3912 		else
   3913 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3914 			    M_DONTWAIT);
   3915 		if (!(m_new->m_flags & M_EXT)) {
   3916 			DBPRINT(sc, BNX_WARN,
   3917 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3918 			    __FILE__, __LINE__);
   3919 
   3920 			m_freem(m_new);
   3921 
   3922 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3923 			sc->mbuf_alloc_failed++;
   3924 
   3925 			rc = ENOBUFS;
   3926 			goto bnx_get_buf_exit;
   3927 		}
   3928 
   3929 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3930 		if (rc != 0)
   3931 			goto bnx_get_buf_exit;
   3932 	}
   3933 
   3934 bnx_get_buf_exit:
   3935 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3936 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3937 	    *chain_prod, *prod_bseq);
   3938 
   3939 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3940 	    __func__);
   3941 
   3942 	return rc;
   3943 }
   3944 
   3945 void
   3946 bnx_alloc_pkts(struct work * unused, void * arg)
   3947 {
   3948 	struct bnx_softc *sc = arg;
   3949 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   3950 	struct bnx_pkt *pkt;
   3951 	int i, s;
   3952 
   3953 	for (i = 0; i < 4; i++) { /* magic! */
   3954 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   3955 		if (pkt == NULL)
   3956 			break;
   3957 
   3958 		if (bus_dmamap_create(sc->bnx_dmatag,
   3959 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   3960 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   3961 		    &pkt->pkt_dmamap) != 0)
   3962 			goto put;
   3963 
   3964 		if (!ISSET(ifp->if_flags, IFF_UP))
   3965 			goto stopping;
   3966 
   3967 		mutex_enter(&sc->tx_pkt_mtx);
   3968 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   3969 		sc->tx_pkt_count++;
   3970 		mutex_exit(&sc->tx_pkt_mtx);
   3971 	}
   3972 
   3973 	mutex_enter(&sc->tx_pkt_mtx);
   3974 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   3975 	mutex_exit(&sc->tx_pkt_mtx);
   3976 
   3977 	/* fire-up TX now that allocations have been done */
   3978 	s = splnet();
   3979 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3980 		bnx_start(ifp);
   3981 	splx(s);
   3982 
   3983 	return;
   3984 
   3985 stopping:
   3986 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   3987 put:
   3988 	pool_put(bnx_tx_pool, pkt);
   3989 	return;
   3990 }
   3991 
   3992 /****************************************************************************/
   3993 /* Initialize the TX context memory.                                        */
   3994 /*                                                                          */
   3995 /* Returns:                                                                 */
   3996 /*   Nothing                                                                */
   3997 /****************************************************************************/
   3998 void
   3999 bnx_init_tx_context(struct bnx_softc *sc)
   4000 {
   4001 	uint32_t val;
   4002 
   4003 	/* Initialize the context ID for an L2 TX chain. */
   4004 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4005 		/* Set the CID type to support an L2 connection. */
   4006 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4007 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   4008 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4009 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   4010 
   4011 		/* Point the hardware to the first page in the chain. */
   4012 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4013 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4014 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   4015 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4016 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4017 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   4018 	} else {
   4019 		/* Set the CID type to support an L2 connection. */
   4020 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4021 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   4022 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4023 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   4024 
   4025 		/* Point the hardware to the first page in the chain. */
   4026 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4027 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   4028 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4029 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   4030 	}
   4031 }
   4032 
   4033 
   4034 /****************************************************************************/
   4035 /* Allocate memory and initialize the TX data structures.                   */
   4036 /*                                                                          */
   4037 /* Returns:                                                                 */
   4038 /*   0 for success, positive value for failure.                             */
   4039 /****************************************************************************/
   4040 int
   4041 bnx_init_tx_chain(struct bnx_softc *sc)
   4042 {
   4043 	struct tx_bd		*txbd;
   4044 	uint32_t		addr;
   4045 	int			i, rc = 0;
   4046 
   4047 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4048 
   4049 	/* Force an allocation of some dmamaps for tx up front */
   4050 	bnx_alloc_pkts(NULL, sc);
   4051 
   4052 	/* Set the initial TX producer/consumer indices. */
   4053 	sc->tx_prod = 0;
   4054 	sc->tx_cons = 0;
   4055 	sc->tx_prod_bseq = 0;
   4056 	sc->used_tx_bd = 0;
   4057 	sc->max_tx_bd = USABLE_TX_BD;
   4058 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   4059 	DBRUNIF(1, sc->tx_full_count = 0);
   4060 
   4061 	/*
   4062 	 * The NetXtreme II supports a linked-list structure called
   4063 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   4064 	 * consists of a series of 1 or more chain pages, each of which
   4065 	 * consists of a fixed number of BD entries.
   4066 	 * The last BD entry on each page is a pointer to the next page
   4067 	 * in the chain, and the last pointer in the BD chain
   4068 	 * points back to the beginning of the chain.
   4069 	 */
   4070 
   4071 	/* Set the TX next pointer chain entries. */
   4072 	for (i = 0; i < TX_PAGES; i++) {
   4073 		int j;
   4074 
   4075 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   4076 
   4077 		/* Check if we've reached the last page. */
   4078 		if (i == (TX_PAGES - 1))
   4079 			j = 0;
   4080 		else
   4081 			j = i + 1;
   4082 
   4083 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
   4084 		txbd->tx_bd_haddr_lo = addr;
   4085 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
   4086 		txbd->tx_bd_haddr_hi = addr;
   4087 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4088 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4089 	}
   4090 
   4091 	/*
   4092 	 * Initialize the context ID for an L2 TX chain.
   4093 	 */
   4094 	bnx_init_tx_context(sc);
   4095 
   4096 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4097 
   4098 	return rc;
   4099 }
   4100 
   4101 /****************************************************************************/
   4102 /* Free memory and clear the TX data structures.                            */
   4103 /*                                                                          */
   4104 /* Returns:                                                                 */
   4105 /*   Nothing.                                                               */
   4106 /****************************************************************************/
   4107 void
   4108 bnx_free_tx_chain(struct bnx_softc *sc)
   4109 {
   4110 	struct bnx_pkt		*pkt;
   4111 	int			i;
   4112 
   4113 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4114 
   4115 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4116 	mutex_enter(&sc->tx_pkt_mtx);
   4117 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4118 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4119 		mutex_exit(&sc->tx_pkt_mtx);
   4120 
   4121 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4122 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4123 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4124 
   4125 		m_freem(pkt->pkt_mbuf);
   4126 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4127 
   4128 		mutex_enter(&sc->tx_pkt_mtx);
   4129 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4130 	}
   4131 
   4132 	/* Destroy all the dmamaps we allocated for TX */
   4133 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   4134 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4135 		sc->tx_pkt_count--;
   4136 		mutex_exit(&sc->tx_pkt_mtx);
   4137 
   4138 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4139 		pool_put(bnx_tx_pool, pkt);
   4140 
   4141 		mutex_enter(&sc->tx_pkt_mtx);
   4142 	}
   4143 	mutex_exit(&sc->tx_pkt_mtx);
   4144 
   4145 
   4146 
   4147 	/* Clear each TX chain page. */
   4148 	for (i = 0; i < TX_PAGES; i++) {
   4149 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4150 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4151 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4152 	}
   4153 
   4154 	sc->used_tx_bd = 0;
   4155 
   4156 	/* Check if we lost any mbufs in the process. */
   4157 	DBRUNIF((sc->tx_mbuf_alloc),
   4158 	    aprint_error_dev(sc->bnx_dev,
   4159 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   4160 		sc->tx_mbuf_alloc));
   4161 
   4162 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4163 }
   4164 
   4165 /****************************************************************************/
   4166 /* Initialize the RX context memory.                                        */
   4167 /*                                                                          */
   4168 /* Returns:                                                                 */
   4169 /*   Nothing                                                                */
   4170 /****************************************************************************/
   4171 void
   4172 bnx_init_rx_context(struct bnx_softc *sc)
   4173 {
   4174 	uint32_t val;
   4175 
   4176 	/* Initialize the context ID for an L2 RX chain. */
   4177 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4178 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4179 
   4180 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4181 		uint32_t lo_water, hi_water;
   4182 
   4183 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
   4184 		hi_water = USABLE_RX_BD / 4;
   4185 
   4186 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
   4187 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
   4188 
   4189 		if (hi_water > 0xf)
   4190 			hi_water = 0xf;
   4191 		else if (hi_water == 0)
   4192 			lo_water = 0;
   4193 		val |= lo_water |
   4194 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
   4195 	}
   4196 
   4197  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4198 
   4199 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4200 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4201 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4202 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4203 	}
   4204 
   4205 	/* Point the hardware to the first page in the chain. */
   4206 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4207 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4208 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
   4209 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4210 }
   4211 
   4212 /****************************************************************************/
   4213 /* Allocate memory and initialize the RX data structures.                   */
   4214 /*                                                                          */
   4215 /* Returns:                                                                 */
   4216 /*   0 for success, positive value for failure.                             */
   4217 /****************************************************************************/
   4218 int
   4219 bnx_init_rx_chain(struct bnx_softc *sc)
   4220 {
   4221 	struct rx_bd		*rxbd;
   4222 	int			i, rc = 0;
   4223 	uint16_t		prod, chain_prod;
   4224 	uint32_t		prod_bseq, addr;
   4225 
   4226 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4227 
   4228 	/* Initialize the RX producer and consumer indices. */
   4229 	sc->rx_prod = 0;
   4230 	sc->rx_cons = 0;
   4231 	sc->rx_prod_bseq = 0;
   4232 	sc->free_rx_bd = USABLE_RX_BD;
   4233 	sc->max_rx_bd = USABLE_RX_BD;
   4234 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4235 	DBRUNIF(1, sc->rx_empty_count = 0);
   4236 
   4237 	/* Initialize the RX next pointer chain entries. */
   4238 	for (i = 0; i < RX_PAGES; i++) {
   4239 		int j;
   4240 
   4241 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4242 
   4243 		/* Check if we've reached the last page. */
   4244 		if (i == (RX_PAGES - 1))
   4245 			j = 0;
   4246 		else
   4247 			j = i + 1;
   4248 
   4249 		/* Setup the chain page pointers. */
   4250 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4251 		rxbd->rx_bd_haddr_hi = addr;
   4252 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
   4253 		rxbd->rx_bd_haddr_lo = addr;
   4254 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4255 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4256 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4257 	}
   4258 
   4259 	/* Allocate mbuf clusters for the rx_bd chain. */
   4260 	prod = prod_bseq = 0;
   4261 	chain_prod = RX_CHAIN_IDX(prod);
   4262 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4263 		BNX_PRINTF(sc,
   4264 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4265 	}
   4266 
   4267 	/* Save the RX chain producer index. */
   4268 	sc->rx_prod = prod;
   4269 	sc->rx_prod_bseq = prod_bseq;
   4270 
   4271 	for (i = 0; i < RX_PAGES; i++)
   4272 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4273 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4274 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4275 
   4276 	/* Tell the chip about the waiting rx_bd's. */
   4277 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4278 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4279 
   4280 	bnx_init_rx_context(sc);
   4281 
   4282 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4283 
   4284 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4285 
   4286 	return rc;
   4287 }
   4288 
   4289 /****************************************************************************/
   4290 /* Free memory and clear the RX data structures.                            */
   4291 /*                                                                          */
   4292 /* Returns:                                                                 */
   4293 /*   Nothing.                                                               */
   4294 /****************************************************************************/
   4295 void
   4296 bnx_free_rx_chain(struct bnx_softc *sc)
   4297 {
   4298 	int			i;
   4299 
   4300 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4301 
   4302 	/* Free any mbufs still in the RX mbuf chain. */
   4303 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4304 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4305 			if (sc->rx_mbuf_map[i] != NULL) {
   4306 				bus_dmamap_sync(sc->bnx_dmatag,
   4307 				    sc->rx_mbuf_map[i],	0,
   4308 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4309 				    BUS_DMASYNC_POSTREAD);
   4310 				bus_dmamap_unload(sc->bnx_dmatag,
   4311 				    sc->rx_mbuf_map[i]);
   4312 			}
   4313 			m_freem(sc->rx_mbuf_ptr[i]);
   4314 			sc->rx_mbuf_ptr[i] = NULL;
   4315 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4316 		}
   4317 	}
   4318 
   4319 	/* Clear each RX chain page. */
   4320 	for (i = 0; i < RX_PAGES; i++)
   4321 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4322 
   4323 	sc->free_rx_bd = sc->max_rx_bd;
   4324 
   4325 	/* Check if we lost any mbufs in the process. */
   4326 	DBRUNIF((sc->rx_mbuf_alloc),
   4327 	    aprint_error_dev(sc->bnx_dev,
   4328 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   4329 		sc->rx_mbuf_alloc));
   4330 
   4331 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4332 }
   4333 
   4334 /****************************************************************************/
   4335 /* Handles PHY generated interrupt events.                                  */
   4336 /*                                                                          */
   4337 /* Returns:                                                                 */
   4338 /*   Nothing.                                                               */
   4339 /****************************************************************************/
   4340 void
   4341 bnx_phy_intr(struct bnx_softc *sc)
   4342 {
   4343 	uint32_t		new_link_state, old_link_state;
   4344 
   4345 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4346 	    BUS_DMASYNC_POSTREAD);
   4347 	new_link_state = sc->status_block->status_attn_bits &
   4348 	    STATUS_ATTN_BITS_LINK_STATE;
   4349 	old_link_state = sc->status_block->status_attn_bits_ack &
   4350 	    STATUS_ATTN_BITS_LINK_STATE;
   4351 
   4352 	/* Handle any changes if the link state has changed. */
   4353 	if (new_link_state != old_link_state) {
   4354 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4355 
   4356 		callout_stop(&sc->bnx_timeout);
   4357 		bnx_tick(sc);
   4358 
   4359 		/* Update the status_attn_bits_ack field in the status block. */
   4360 		if (new_link_state) {
   4361 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4362 			    STATUS_ATTN_BITS_LINK_STATE);
   4363 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4364 		} else {
   4365 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4366 			    STATUS_ATTN_BITS_LINK_STATE);
   4367 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4368 		}
   4369 	}
   4370 
   4371 	/* Acknowledge the link change interrupt. */
   4372 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4373 }
   4374 
   4375 /****************************************************************************/
   4376 /* Handles received frame interrupt events.                                 */
   4377 /*                                                                          */
   4378 /* Returns:                                                                 */
   4379 /*   Nothing.                                                               */
   4380 /****************************************************************************/
   4381 void
   4382 bnx_rx_intr(struct bnx_softc *sc)
   4383 {
   4384 	struct status_block	*sblk = sc->status_block;
   4385 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4386 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
   4387 	uint16_t		sw_prod, sw_chain_prod;
   4388 	uint32_t		sw_prod_bseq;
   4389 	struct l2_fhdr		*l2fhdr;
   4390 	int			i;
   4391 
   4392 	DBRUNIF(1, sc->rx_interrupts++);
   4393 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4394 	    BUS_DMASYNC_POSTREAD);
   4395 
   4396 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4397 	for (i = 0; i < RX_PAGES; i++)
   4398 		bus_dmamap_sync(sc->bnx_dmatag,
   4399 		    sc->rx_bd_chain_map[i], 0,
   4400 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4401 		    BUS_DMASYNC_POSTWRITE);
   4402 
   4403 	/* Get the hardware's view of the RX consumer index. */
   4404 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4405 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4406 		hw_cons++;
   4407 
   4408 	/* Get working copies of the driver's view of the RX indices. */
   4409 	sw_cons = sc->rx_cons;
   4410 	sw_prod = sc->rx_prod;
   4411 	sw_prod_bseq = sc->rx_prod_bseq;
   4412 
   4413 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4414 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4415 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4416 
   4417 	/* Prevent speculative reads from getting ahead of the status block. */
   4418 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4419 	    BUS_SPACE_BARRIER_READ);
   4420 
   4421 	/* Update some debug statistics counters */
   4422 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4423 	    sc->rx_low_watermark = sc->free_rx_bd);
   4424 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4425 
   4426 	/*
   4427 	 * Scan through the receive chain as long
   4428 	 * as there is work to do.
   4429 	 */
   4430 	while (sw_cons != hw_cons) {
   4431 		struct mbuf *m;
   4432 		struct rx_bd *rxbd __diagused;
   4433 		unsigned int len;
   4434 		uint32_t status;
   4435 
   4436 		/* Convert the producer/consumer indices to an actual
   4437 		 * rx_bd index.
   4438 		 */
   4439 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4440 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4441 
   4442 		/* Get the used rx_bd. */
   4443 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4444 		sc->free_rx_bd++;
   4445 
   4446 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4447 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4448 
   4449 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4450 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4451 #ifdef DIAGNOSTIC
   4452 			/* Validate that this is the last rx_bd. */
   4453 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4454 			    printf("%s: Unexpected mbuf found in "
   4455 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4456 			        sw_chain_cons);
   4457 			}
   4458 #endif
   4459 
   4460 			/* DRC - ToDo: If the received packet is small, say less
   4461 			 *             than 128 bytes, allocate a new mbuf here,
   4462 			 *             copy the data to that mbuf, and recycle
   4463 			 *             the mapped jumbo frame.
   4464 			 */
   4465 
   4466 			/* Unmap the mbuf from DMA space. */
   4467 #ifdef DIAGNOSTIC
   4468 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4469 				printf("invalid map sw_cons 0x%x "
   4470 				"sw_prod 0x%x "
   4471 				"sw_chain_cons 0x%x "
   4472 				"sw_chain_prod 0x%x "
   4473 				"hw_cons 0x%x "
   4474 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4475 				"TOTAL_RX_BD 0x%x\n",
   4476 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4477 				hw_cons,
   4478 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4479 			}
   4480 #endif
   4481 			bus_dmamap_sync(sc->bnx_dmatag,
   4482 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4483 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4484 			    BUS_DMASYNC_POSTREAD);
   4485 			bus_dmamap_unload(sc->bnx_dmatag,
   4486 			    sc->rx_mbuf_map[sw_chain_cons]);
   4487 
   4488 			/* Remove the mbuf from the driver's chain. */
   4489 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4490 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4491 
   4492 			/*
   4493 			 * Frames received on the NetXteme II are prepended
   4494 			 * with the l2_fhdr structure which provides status
   4495 			 * information about the received frame (including
   4496 			 * VLAN tags and checksum info) and are also
   4497 			 * automatically adjusted to align the IP header
   4498 			 * (i.e. two null bytes are inserted before the
   4499 			 * Ethernet header).
   4500 			 */
   4501 			l2fhdr = mtod(m, struct l2_fhdr *);
   4502 
   4503 			len    = l2fhdr->l2_fhdr_pkt_len;
   4504 			status = l2fhdr->l2_fhdr_status;
   4505 
   4506 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4507 			    aprint_error("Simulating l2_fhdr status error.\n");
   4508 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4509 
   4510 			/* Watch for unusual sized frames. */
   4511 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4512 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4513 			    aprint_error_dev(sc->bnx_dev,
   4514 			        "Unusual frame size found. "
   4515 				"Min(%d), Actual(%d), Max(%d)\n",
   4516 				(int)BNX_MIN_MTU, len,
   4517 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4518 
   4519 			bnx_dump_mbuf(sc, m);
   4520 			bnx_breakpoint(sc));
   4521 
   4522 			len -= ETHER_CRC_LEN;
   4523 
   4524 			/* Check the received frame for errors. */
   4525 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4526 			    L2_FHDR_ERRORS_PHY_DECODE |
   4527 			    L2_FHDR_ERRORS_ALIGNMENT |
   4528 			    L2_FHDR_ERRORS_TOO_SHORT |
   4529 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4530 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4531 			    len >
   4532 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4533 				ifp->if_ierrors++;
   4534 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4535 
   4536 				/* Reuse the mbuf for a new frame. */
   4537 				if (bnx_add_buf(sc, m, &sw_prod,
   4538 				    &sw_chain_prod, &sw_prod_bseq)) {
   4539 					DBRUNIF(1, bnx_breakpoint(sc));
   4540 					panic("%s: Can't reuse RX mbuf!\n",
   4541 					    device_xname(sc->bnx_dev));
   4542 				}
   4543 				continue;
   4544 			}
   4545 
   4546 			/*
   4547 			 * Get a new mbuf for the rx_bd.   If no new
   4548 			 * mbufs are available then reuse the current mbuf,
   4549 			 * log an ierror on the interface, and generate
   4550 			 * an error in the system log.
   4551 			 */
   4552 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4553 			    &sw_prod_bseq)) {
   4554 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4555 				    "Failed to allocate "
   4556 				    "new mbuf, incoming frame dropped!\n"));
   4557 
   4558 				ifp->if_ierrors++;
   4559 
   4560 				/* Try and reuse the exisitng mbuf. */
   4561 				if (bnx_add_buf(sc, m, &sw_prod,
   4562 				    &sw_chain_prod, &sw_prod_bseq)) {
   4563 					DBRUNIF(1, bnx_breakpoint(sc));
   4564 					panic("%s: Double mbuf allocation "
   4565 					    "failure!",
   4566 					    device_xname(sc->bnx_dev));
   4567 				}
   4568 				continue;
   4569 			}
   4570 
   4571 			/* Skip over the l2_fhdr when passing the data up
   4572 			 * the stack.
   4573 			 */
   4574 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4575 
   4576 			/* Adjust the pckt length to match the received data. */
   4577 			m->m_pkthdr.len = m->m_len = len;
   4578 
   4579 			/* Send the packet to the appropriate interface. */
   4580 			m->m_pkthdr.rcvif = ifp;
   4581 
   4582 			DBRUN(BNX_VERBOSE_RECV,
   4583 			    struct ether_header *eh;
   4584 			    eh = mtod(m, struct ether_header *);
   4585 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4586 			    __func__, ether_sprintf(eh->ether_dhost),
   4587 			    ether_sprintf(eh->ether_shost),
   4588 			    htons(eh->ether_type)));
   4589 
   4590 			/* Validate the checksum. */
   4591 
   4592 			/* Check for an IP datagram. */
   4593 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4594 				/* Check if the IP checksum is valid. */
   4595 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   4596 				    == 0)
   4597 					m->m_pkthdr.csum_flags |=
   4598 					    M_CSUM_IPv4;
   4599 #ifdef BNX_DEBUG
   4600 				else
   4601 					DBPRINT(sc, BNX_WARN_SEND,
   4602 					    "%s(): Invalid IP checksum "
   4603 					        "= 0x%04X!\n",
   4604 						__func__,
   4605 						l2fhdr->l2_fhdr_ip_xsum
   4606 						);
   4607 #endif
   4608 			}
   4609 
   4610 			/* Check for a valid TCP/UDP frame. */
   4611 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4612 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4613 				/* Check for a good TCP/UDP checksum. */
   4614 				if ((status &
   4615 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4616 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4617 					m->m_pkthdr.csum_flags |=
   4618 					    M_CSUM_TCPv4 |
   4619 					    M_CSUM_UDPv4;
   4620 				} else {
   4621 					DBPRINT(sc, BNX_WARN_SEND,
   4622 					    "%s(): Invalid TCP/UDP "
   4623 					    "checksum = 0x%04X!\n",
   4624 					    __func__,
   4625 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4626 				}
   4627 			}
   4628 
   4629 			/*
   4630 			 * If we received a packet with a vlan tag,
   4631 			 * attach that information to the packet.
   4632 			 */
   4633 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4634 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4635 				VLAN_INPUT_TAG(ifp, m,
   4636 				    l2fhdr->l2_fhdr_vlan_tag,
   4637 				    continue);
   4638 			}
   4639 
   4640 			/*
   4641 			 * Handle BPF listeners. Let the BPF
   4642 			 * user see the packet.
   4643 			 */
   4644 			bpf_mtap(ifp, m);
   4645 
   4646 			/* Pass the mbuf off to the upper layers. */
   4647 			ifp->if_ipackets++;
   4648 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4649 			    "%s(): Passing received frame up.\n", __func__);
   4650 			(*ifp->if_input)(ifp, m);
   4651 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4652 
   4653 		}
   4654 
   4655 		sw_cons = NEXT_RX_BD(sw_cons);
   4656 
   4657 		/* Refresh hw_cons to see if there's new work */
   4658 		if (sw_cons == hw_cons) {
   4659 			hw_cons = sc->hw_rx_cons =
   4660 			    sblk->status_rx_quick_consumer_index0;
   4661 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4662 			    USABLE_RX_BD_PER_PAGE)
   4663 				hw_cons++;
   4664 		}
   4665 
   4666 		/* Prevent speculative reads from getting ahead of
   4667 		 * the status block.
   4668 		 */
   4669 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4670 		    BUS_SPACE_BARRIER_READ);
   4671 	}
   4672 
   4673 	for (i = 0; i < RX_PAGES; i++)
   4674 		bus_dmamap_sync(sc->bnx_dmatag,
   4675 		    sc->rx_bd_chain_map[i], 0,
   4676 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4677 		    BUS_DMASYNC_PREWRITE);
   4678 
   4679 	sc->rx_cons = sw_cons;
   4680 	sc->rx_prod = sw_prod;
   4681 	sc->rx_prod_bseq = sw_prod_bseq;
   4682 
   4683 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4684 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4685 
   4686 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4687 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4688 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4689 }
   4690 
   4691 /****************************************************************************/
   4692 /* Handles transmit completion interrupt events.                            */
   4693 /*                                                                          */
   4694 /* Returns:                                                                 */
   4695 /*   Nothing.                                                               */
   4696 /****************************************************************************/
   4697 void
   4698 bnx_tx_intr(struct bnx_softc *sc)
   4699 {
   4700 	struct status_block	*sblk = sc->status_block;
   4701 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4702 	struct bnx_pkt		*pkt;
   4703 	bus_dmamap_t		map;
   4704 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4705 
   4706 	DBRUNIF(1, sc->tx_interrupts++);
   4707 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4708 	    BUS_DMASYNC_POSTREAD);
   4709 
   4710 	/* Get the hardware's view of the TX consumer index. */
   4711 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4712 
   4713 	/* Skip to the next entry if this is a chain page pointer. */
   4714 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4715 		hw_tx_cons++;
   4716 
   4717 	sw_tx_cons = sc->tx_cons;
   4718 
   4719 	/* Prevent speculative reads from getting ahead of the status block. */
   4720 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4721 	    BUS_SPACE_BARRIER_READ);
   4722 
   4723 	/* Cycle through any completed TX chain page entries. */
   4724 	while (sw_tx_cons != hw_tx_cons) {
   4725 #ifdef BNX_DEBUG
   4726 		struct tx_bd *txbd = NULL;
   4727 #endif
   4728 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4729 
   4730 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4731 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4732 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4733 
   4734 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4735 		    aprint_error_dev(sc->bnx_dev,
   4736 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4737 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4738 
   4739 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4740 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4741 
   4742 		DBRUNIF((txbd == NULL),
   4743 		    aprint_error_dev(sc->bnx_dev,
   4744 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4745 		    bnx_breakpoint(sc));
   4746 
   4747 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4748 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4749 
   4750 
   4751 		mutex_enter(&sc->tx_pkt_mtx);
   4752 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4753 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4754 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4755 			mutex_exit(&sc->tx_pkt_mtx);
   4756 			/*
   4757 			 * Free the associated mbuf. Remember
   4758 			 * that only the last tx_bd of a packet
   4759 			 * has an mbuf pointer and DMA map.
   4760 			 */
   4761 			map = pkt->pkt_dmamap;
   4762 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4763 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4764 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4765 
   4766 			m_freem(pkt->pkt_mbuf);
   4767 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4768 
   4769 			ifp->if_opackets++;
   4770 
   4771 			mutex_enter(&sc->tx_pkt_mtx);
   4772 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4773 		}
   4774 		mutex_exit(&sc->tx_pkt_mtx);
   4775 
   4776 		sc->used_tx_bd--;
   4777 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4778 			__FILE__, __LINE__, sc->used_tx_bd);
   4779 
   4780 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4781 
   4782 		/* Refresh hw_cons to see if there's new work. */
   4783 		hw_tx_cons = sc->hw_tx_cons =
   4784 		    sblk->status_tx_quick_consumer_index0;
   4785 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4786 		    USABLE_TX_BD_PER_PAGE)
   4787 			hw_tx_cons++;
   4788 
   4789 		/* Prevent speculative reads from getting ahead of
   4790 		 * the status block.
   4791 		 */
   4792 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4793 		    BUS_SPACE_BARRIER_READ);
   4794 	}
   4795 
   4796 	/* Clear the TX timeout timer. */
   4797 	ifp->if_timer = 0;
   4798 
   4799 	/* Clear the tx hardware queue full flag. */
   4800 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4801 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4802 		    aprint_debug_dev(sc->bnx_dev,
   4803 		        "Open TX chain! %d/%d (used/total)\n",
   4804 			sc->used_tx_bd, sc->max_tx_bd));
   4805 		ifp->if_flags &= ~IFF_OACTIVE;
   4806 	}
   4807 
   4808 	sc->tx_cons = sw_tx_cons;
   4809 }
   4810 
   4811 /****************************************************************************/
   4812 /* Disables interrupt generation.                                           */
   4813 /*                                                                          */
   4814 /* Returns:                                                                 */
   4815 /*   Nothing.                                                               */
   4816 /****************************************************************************/
   4817 void
   4818 bnx_disable_intr(struct bnx_softc *sc)
   4819 {
   4820 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4821 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4822 }
   4823 
   4824 /****************************************************************************/
   4825 /* Enables interrupt generation.                                            */
   4826 /*                                                                          */
   4827 /* Returns:                                                                 */
   4828 /*   Nothing.                                                               */
   4829 /****************************************************************************/
   4830 void
   4831 bnx_enable_intr(struct bnx_softc *sc)
   4832 {
   4833 	uint32_t		val;
   4834 
   4835 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4836 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4837 
   4838 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4839 	    sc->last_status_idx);
   4840 
   4841 	val = REG_RD(sc, BNX_HC_COMMAND);
   4842 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4843 }
   4844 
   4845 /****************************************************************************/
   4846 /* Handles controller initialization.                                       */
   4847 /*                                                                          */
   4848 /****************************************************************************/
   4849 int
   4850 bnx_init(struct ifnet *ifp)
   4851 {
   4852 	struct bnx_softc	*sc = ifp->if_softc;
   4853 	uint32_t		ether_mtu;
   4854 	int			s, error = 0;
   4855 
   4856 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4857 
   4858 	s = splnet();
   4859 
   4860 	bnx_stop(ifp, 0);
   4861 
   4862 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4863 		aprint_error_dev(sc->bnx_dev,
   4864 		    "Controller reset failed!\n");
   4865 		goto bnx_init_exit;
   4866 	}
   4867 
   4868 	if ((error = bnx_chipinit(sc)) != 0) {
   4869 		aprint_error_dev(sc->bnx_dev,
   4870 		    "Controller initialization failed!\n");
   4871 		goto bnx_init_exit;
   4872 	}
   4873 
   4874 	if ((error = bnx_blockinit(sc)) != 0) {
   4875 		aprint_error_dev(sc->bnx_dev,
   4876 		    "Block initialization failed!\n");
   4877 		goto bnx_init_exit;
   4878 	}
   4879 
   4880 	/* Calculate and program the Ethernet MRU size. */
   4881 	if (ifp->if_mtu <= ETHERMTU) {
   4882 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4883 		sc->mbuf_alloc_size = MCLBYTES;
   4884 	} else {
   4885 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4886 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   4887 	}
   4888 
   4889 
   4890 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4891 	    __func__, ether_mtu);
   4892 
   4893 	/*
   4894 	 * Program the MRU and enable Jumbo frame
   4895 	 * support.
   4896 	 */
   4897 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4898 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4899 
   4900 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4901 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4902 
   4903 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4904 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4905 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4906 
   4907 	/* Program appropriate promiscuous/multicast filtering. */
   4908 	bnx_iff(sc);
   4909 
   4910 	/* Init RX buffer descriptor chain. */
   4911 	bnx_init_rx_chain(sc);
   4912 
   4913 	/* Init TX buffer descriptor chain. */
   4914 	bnx_init_tx_chain(sc);
   4915 
   4916 	/* Enable host interrupts. */
   4917 	bnx_enable_intr(sc);
   4918 
   4919 	if ((error = ether_mediachange(ifp)) != 0)
   4920 		goto bnx_init_exit;
   4921 
   4922 	SET(ifp->if_flags, IFF_RUNNING);
   4923 	CLR(ifp->if_flags, IFF_OACTIVE);
   4924 
   4925 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4926 
   4927 bnx_init_exit:
   4928 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4929 
   4930 	splx(s);
   4931 
   4932 	return error;
   4933 }
   4934 
   4935 /****************************************************************************/
   4936 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4937 /* memory visible to the controller.                                        */
   4938 /*                                                                          */
   4939 /* Returns:                                                                 */
   4940 /*   0 for success, positive value for failure.                             */
   4941 /****************************************************************************/
   4942 int
   4943 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   4944 {
   4945 	struct bnx_pkt		*pkt;
   4946 	bus_dmamap_t		map;
   4947 	struct tx_bd		*txbd = NULL;
   4948 	uint16_t		vlan_tag = 0, flags = 0;
   4949 	uint16_t		chain_prod, prod;
   4950 #ifdef BNX_DEBUG
   4951 	uint16_t		debug_prod;
   4952 #endif
   4953 	uint32_t		addr, prod_bseq;
   4954 	int			i, error;
   4955 	struct m_tag		*mtag;
   4956 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
   4957 
   4958 	mutex_enter(&sc->tx_pkt_mtx);
   4959 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   4960 	if (pkt == NULL) {
   4961 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   4962 			mutex_exit(&sc->tx_pkt_mtx);
   4963 			return ENETDOWN;
   4964 		}
   4965 
   4966 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   4967 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   4968 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
   4969 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4970 		}
   4971 
   4972 		mutex_exit(&sc->tx_pkt_mtx);
   4973 		return ENOMEM;
   4974 	}
   4975 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4976 	mutex_exit(&sc->tx_pkt_mtx);
   4977 
   4978 	/* Transfer any checksum offload flags to the bd. */
   4979 	if (m->m_pkthdr.csum_flags) {
   4980 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4981 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4982 		if (m->m_pkthdr.csum_flags &
   4983 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4984 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4985 	}
   4986 
   4987 	/* Transfer any VLAN tags to the bd. */
   4988 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
   4989 	if (mtag != NULL) {
   4990 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4991 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4992 	}
   4993 
   4994 	/* Map the mbuf into DMAable memory. */
   4995 	prod = sc->tx_prod;
   4996 	chain_prod = TX_CHAIN_IDX(prod);
   4997 	map = pkt->pkt_dmamap;
   4998 
   4999 	/* Map the mbuf into our DMA address space. */
   5000 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   5001 	if (error != 0) {
   5002 		aprint_error_dev(sc->bnx_dev,
   5003 		    "Error mapping mbuf into TX chain!\n");
   5004 		sc->tx_dma_map_failures++;
   5005 		goto maperr;
   5006 	}
   5007 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   5008 	    BUS_DMASYNC_PREWRITE);
   5009         /* Make sure there's room in the chain */
   5010 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   5011                 goto nospace;
   5012 
   5013 	/* prod points to an empty tx_bd at this point. */
   5014 	prod_bseq = sc->tx_prod_bseq;
   5015 #ifdef BNX_DEBUG
   5016 	debug_prod = chain_prod;
   5017 #endif
   5018 	DBPRINT(sc, BNX_INFO_SEND,
   5019 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   5020 		"prod_bseq = 0x%08X\n",
   5021 		__func__, prod, chain_prod, prod_bseq);
   5022 
   5023 	/*
   5024 	 * Cycle through each mbuf segment that makes up
   5025 	 * the outgoing frame, gathering the mapping info
   5026 	 * for that segment and creating a tx_bd for the
   5027 	 * mbuf.
   5028 	 */
   5029 	for (i = 0; i < map->dm_nsegs ; i++) {
   5030 		chain_prod = TX_CHAIN_IDX(prod);
   5031 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   5032 
   5033 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   5034 		txbd->tx_bd_haddr_lo = addr;
   5035 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   5036 		txbd->tx_bd_haddr_hi = addr;
   5037 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   5038 		txbd->tx_bd_vlan_tag = vlan_tag;
   5039 		txbd->tx_bd_flags = flags;
   5040 		prod_bseq += map->dm_segs[i].ds_len;
   5041 		if (i == 0)
   5042 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   5043 		prod = NEXT_TX_BD(prod);
   5044 	}
   5045 	/* Set the END flag on the last TX buffer descriptor. */
   5046 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   5047 
   5048 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   5049 
   5050 	DBPRINT(sc, BNX_INFO_SEND,
   5051 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   5052 		"prod_bseq = 0x%08X\n",
   5053 		__func__, prod, chain_prod, prod_bseq);
   5054 
   5055 	pkt->pkt_mbuf = m;
   5056 	pkt->pkt_end_desc = chain_prod;
   5057 
   5058 	mutex_enter(&sc->tx_pkt_mtx);
   5059 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   5060 	mutex_exit(&sc->tx_pkt_mtx);
   5061 
   5062 	sc->used_tx_bd += map->dm_nsegs;
   5063 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   5064 		__FILE__, __LINE__, sc->used_tx_bd);
   5065 
   5066 	/* Update some debug statistics counters */
   5067 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   5068 	    sc->tx_hi_watermark = sc->used_tx_bd);
   5069 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   5070 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   5071 
   5072 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   5073 	    map->dm_nsegs));
   5074 
   5075 	/* prod points to the next free tx_bd at this point. */
   5076 	sc->tx_prod = prod;
   5077 	sc->tx_prod_bseq = prod_bseq;
   5078 
   5079 	return 0;
   5080 
   5081 
   5082 nospace:
   5083 	bus_dmamap_unload(sc->bnx_dmatag, map);
   5084 maperr:
   5085 	mutex_enter(&sc->tx_pkt_mtx);
   5086 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   5087 	mutex_exit(&sc->tx_pkt_mtx);
   5088 
   5089 	return ENOMEM;
   5090 }
   5091 
   5092 /****************************************************************************/
   5093 /* Main transmit routine.                                                   */
   5094 /*                                                                          */
   5095 /* Returns:                                                                 */
   5096 /*   Nothing.                                                               */
   5097 /****************************************************************************/
   5098 void
   5099 bnx_start(struct ifnet *ifp)
   5100 {
   5101 	struct bnx_softc	*sc = ifp->if_softc;
   5102 	struct mbuf		*m_head = NULL;
   5103 	int			count = 0;
   5104 #ifdef BNX_DEBUG
   5105 	uint16_t		tx_chain_prod;
   5106 #endif
   5107 
   5108 	/* If there's no link or the transmit queue is empty then just exit. */
   5109 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   5110 		DBPRINT(sc, BNX_INFO_SEND,
   5111 		    "%s(): output active or device not running.\n", __func__);
   5112 		goto bnx_start_exit;
   5113 	}
   5114 
   5115 	/* prod points to the next free tx_bd. */
   5116 #ifdef BNX_DEBUG
   5117 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5118 #endif
   5119 
   5120 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5121 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5122 	    "used_tx %d max_tx %d\n",
   5123 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5124 	    sc->used_tx_bd, sc->max_tx_bd);
   5125 
   5126 	/*
   5127 	 * Keep adding entries while there is space in the ring.
   5128 	 */
   5129 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5130 		/* Check for any frames to send. */
   5131 		IFQ_POLL(&ifp->if_snd, m_head);
   5132 		if (m_head == NULL)
   5133 			break;
   5134 
   5135 		/*
   5136 		 * Pack the data into the transmit ring. If we
   5137 		 * don't have room, set the OACTIVE flag to wait
   5138 		 * for the NIC to drain the chain.
   5139 		 */
   5140 		if (bnx_tx_encap(sc, m_head)) {
   5141 			ifp->if_flags |= IFF_OACTIVE;
   5142 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5143 			    "business! Total tx_bd used = %d\n",
   5144 			    sc->used_tx_bd);
   5145 			break;
   5146 		}
   5147 
   5148 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5149 		count++;
   5150 
   5151 		/* Send a copy of the frame to any BPF listeners. */
   5152 		bpf_mtap(ifp, m_head);
   5153 	}
   5154 
   5155 	if (count == 0) {
   5156 		/* no packets were dequeued */
   5157 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5158 		    "%s(): No packets were dequeued\n", __func__);
   5159 		goto bnx_start_exit;
   5160 	}
   5161 
   5162 	/* Update the driver's counters. */
   5163 #ifdef BNX_DEBUG
   5164 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5165 #endif
   5166 
   5167 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   5168 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
   5169 	    tx_chain_prod, sc->tx_prod_bseq);
   5170 
   5171 	/* Start the transmit. */
   5172 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5173 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5174 
   5175 	/* Set the tx timeout. */
   5176 	ifp->if_timer = BNX_TX_TIMEOUT;
   5177 
   5178 bnx_start_exit:
   5179 	return;
   5180 }
   5181 
   5182 /****************************************************************************/
   5183 /* Handles any IOCTL calls from the operating system.                       */
   5184 /*                                                                          */
   5185 /* Returns:                                                                 */
   5186 /*   0 for success, positive value for failure.                             */
   5187 /****************************************************************************/
   5188 int
   5189 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5190 {
   5191 	struct bnx_softc	*sc = ifp->if_softc;
   5192 	struct ifreq		*ifr = (struct ifreq *) data;
   5193 	struct mii_data		*mii = &sc->bnx_mii;
   5194 	int			s, error = 0;
   5195 
   5196 	s = splnet();
   5197 
   5198 	switch (command) {
   5199 	case SIOCSIFFLAGS:
   5200 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5201 			break;
   5202 		/* XXX set an ifflags callback and let ether_ioctl
   5203 		 * handle all of this.
   5204 		 */
   5205 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5206 			if (ifp->if_flags & IFF_RUNNING)
   5207 				error = ENETRESET;
   5208 			else
   5209 				bnx_init(ifp);
   5210 		} else if (ifp->if_flags & IFF_RUNNING)
   5211 			bnx_stop(ifp, 1);
   5212 		break;
   5213 
   5214 	case SIOCSIFMEDIA:
   5215 	case SIOCGIFMEDIA:
   5216 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5217 		    sc->bnx_phy_flags);
   5218 
   5219 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5220 		break;
   5221 
   5222 	default:
   5223 		error = ether_ioctl(ifp, command, data);
   5224 	}
   5225 
   5226 	if (error == ENETRESET) {
   5227 		if (ifp->if_flags & IFF_RUNNING)
   5228 			bnx_iff(sc);
   5229 		error = 0;
   5230 	}
   5231 
   5232 	splx(s);
   5233 	return error;
   5234 }
   5235 
   5236 /****************************************************************************/
   5237 /* Transmit timeout handler.                                                */
   5238 /*                                                                          */
   5239 /* Returns:                                                                 */
   5240 /*   Nothing.                                                               */
   5241 /****************************************************************************/
   5242 void
   5243 bnx_watchdog(struct ifnet *ifp)
   5244 {
   5245 	struct bnx_softc	*sc = ifp->if_softc;
   5246 
   5247 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5248 	    bnx_dump_status_block(sc));
   5249 	/*
   5250 	 * If we are in this routine because of pause frames, then
   5251 	 * don't reset the hardware.
   5252 	 */
   5253 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5254 		return;
   5255 
   5256 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5257 
   5258 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5259 
   5260 	bnx_init(ifp);
   5261 
   5262 	ifp->if_oerrors++;
   5263 }
   5264 
   5265 /*
   5266  * Interrupt handler.
   5267  */
   5268 /****************************************************************************/
   5269 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5270 /* interrupt and then calls a separate routine for handle the various       */
   5271 /* interrupt causes (PHY, TX, RX).                                          */
   5272 /*                                                                          */
   5273 /* Returns:                                                                 */
   5274 /*   0 for success, positive value for failure.                             */
   5275 /****************************************************************************/
   5276 int
   5277 bnx_intr(void *xsc)
   5278 {
   5279 	struct bnx_softc	*sc;
   5280 	struct ifnet		*ifp;
   5281 	uint32_t		status_attn_bits;
   5282 	const struct status_block *sblk;
   5283 
   5284 	sc = xsc;
   5285 
   5286 	ifp = &sc->bnx_ec.ec_if;
   5287 
   5288 	if (!device_is_active(sc->bnx_dev) ||
   5289 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5290 		return 0;
   5291 
   5292 	DBRUNIF(1, sc->interrupts_generated++);
   5293 
   5294 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5295 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   5296 
   5297 	/*
   5298 	 * If the hardware status block index
   5299 	 * matches the last value read by the
   5300 	 * driver and we haven't asserted our
   5301 	 * interrupt then there's nothing to do.
   5302 	 */
   5303 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   5304 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   5305 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   5306 		return 0;
   5307 
   5308 	/* Ack the interrupt and stop others from occuring. */
   5309 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5310 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   5311 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5312 
   5313 	/* Keep processing data as long as there is work to do. */
   5314 	for (;;) {
   5315 		sblk = sc->status_block;
   5316 		status_attn_bits = sblk->status_attn_bits;
   5317 
   5318 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5319 		    aprint_debug("Simulating unexpected status attention bit set.");
   5320 		    status_attn_bits = status_attn_bits |
   5321 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5322 
   5323 		/* Was it a link change interrupt? */
   5324 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5325 		    (sblk->status_attn_bits_ack &
   5326 		    STATUS_ATTN_BITS_LINK_STATE))
   5327 			bnx_phy_intr(sc);
   5328 
   5329 		/* If any other attention is asserted then the chip is toast. */
   5330 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5331 		    (sblk->status_attn_bits_ack &
   5332 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5333 			DBRUN(1, sc->unexpected_attentions++);
   5334 
   5335 			BNX_PRINTF(sc,
   5336 			    "Fatal attention detected: 0x%08X\n",
   5337 			    sblk->status_attn_bits);
   5338 
   5339 			DBRUN(BNX_FATAL,
   5340 			    if (bnx_debug_unexpected_attention == 0)
   5341 			    bnx_breakpoint(sc));
   5342 
   5343 			bnx_init(ifp);
   5344 			return 1;
   5345 		}
   5346 
   5347 		/* Check for any completed RX frames. */
   5348 		if (sblk->status_rx_quick_consumer_index0 !=
   5349 		    sc->hw_rx_cons)
   5350 			bnx_rx_intr(sc);
   5351 
   5352 		/* Check for any completed TX frames. */
   5353 		if (sblk->status_tx_quick_consumer_index0 !=
   5354 		    sc->hw_tx_cons)
   5355 			bnx_tx_intr(sc);
   5356 
   5357 		/*
   5358 		 * Save the status block index value for use during the
   5359 		 * next interrupt.
   5360 		 */
   5361 		sc->last_status_idx = sblk->status_idx;
   5362 
   5363 		/* Prevent speculative reads from getting ahead of the
   5364 		 * status block.
   5365 		 */
   5366 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   5367 		    BUS_SPACE_BARRIER_READ);
   5368 
   5369 		/* If there's no work left then exit the isr. */
   5370 		if ((sblk->status_rx_quick_consumer_index0 ==
   5371 			sc->hw_rx_cons) &&
   5372 		    (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
   5373 			break;
   5374 	}
   5375 
   5376 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5377 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   5378 
   5379 	/* Re-enable interrupts. */
   5380 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5381 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   5382 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5383 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5384 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   5385 
   5386 	/* Handle any frames that arrived while handling the interrupt. */
   5387 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   5388 		bnx_start(ifp);
   5389 
   5390 	return 1;
   5391 }
   5392 
   5393 /****************************************************************************/
   5394 /* Programs the various packet receive modes (broadcast and multicast).     */
   5395 /*                                                                          */
   5396 /* Returns:                                                                 */
   5397 /*   Nothing.                                                               */
   5398 /****************************************************************************/
   5399 void
   5400 bnx_iff(struct bnx_softc *sc)
   5401 {
   5402 	struct ethercom		*ec = &sc->bnx_ec;
   5403 	struct ifnet		*ifp = &ec->ec_if;
   5404 	struct ether_multi	*enm;
   5405 	struct ether_multistep	step;
   5406 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5407 	uint32_t		rx_mode, sort_mode;
   5408 	int			h, i;
   5409 
   5410 	/* Initialize receive mode default settings. */
   5411 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5412 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5413 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5414 	ifp->if_flags &= ~IFF_ALLMULTI;
   5415 
   5416 	/*
   5417 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5418 	 * be enbled.
   5419 	 */
   5420 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5421 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5422 
   5423 	/*
   5424 	 * Check for promiscuous, all multicast, or selected
   5425 	 * multicast address filtering.
   5426 	 */
   5427 	if (ifp->if_flags & IFF_PROMISC) {
   5428 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5429 
   5430 		ifp->if_flags |= IFF_ALLMULTI;
   5431 		/* Enable promiscuous mode. */
   5432 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5433 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5434 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5435 allmulti:
   5436 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5437 
   5438 		ifp->if_flags |= IFF_ALLMULTI;
   5439 		/* Enable all multicast addresses. */
   5440 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5441 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5442 			    0xffffffff);
   5443 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5444 	} else {
   5445 		/* Accept one or more multicast(s). */
   5446 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5447 
   5448 		ETHER_FIRST_MULTI(step, ec, enm);
   5449 		while (enm != NULL) {
   5450 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5451 			    ETHER_ADDR_LEN)) {
   5452 				goto allmulti;
   5453 			}
   5454 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5455 			    0xFF;
   5456 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5457 			ETHER_NEXT_MULTI(step, enm);
   5458 		}
   5459 
   5460 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5461 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5462 			    hashes[i]);
   5463 
   5464 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5465 	}
   5466 
   5467 	/* Only make changes if the recive mode has actually changed. */
   5468 	if (rx_mode != sc->rx_mode) {
   5469 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5470 		    rx_mode);
   5471 
   5472 		sc->rx_mode = rx_mode;
   5473 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5474 	}
   5475 
   5476 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5477 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5478 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5479 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5480 }
   5481 
   5482 /****************************************************************************/
   5483 /* Called periodically to updates statistics from the controllers           */
   5484 /* statistics block.                                                        */
   5485 /*                                                                          */
   5486 /* Returns:                                                                 */
   5487 /*   Nothing.                                                               */
   5488 /****************************************************************************/
   5489 void
   5490 bnx_stats_update(struct bnx_softc *sc)
   5491 {
   5492 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5493 	struct statistics_block	*stats;
   5494 
   5495 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5496 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5497 	    BUS_DMASYNC_POSTREAD);
   5498 
   5499 	stats = (struct statistics_block *)sc->stats_block;
   5500 
   5501 	/*
   5502 	 * Update the interface statistics from the
   5503 	 * hardware statistics.
   5504 	 */
   5505 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5506 
   5507 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5508 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5509 	    (u_long)stats->stat_IfInMBUFDiscards +
   5510 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5511 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5512 
   5513 	ifp->if_oerrors = (u_long)
   5514 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5515 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5516 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5517 
   5518 	/*
   5519 	 * Certain controllers don't report
   5520 	 * carrier sense errors correctly.
   5521 	 * See errata E11_5708CA0_1165.
   5522 	 */
   5523 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5524 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5525 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5526 
   5527 	/*
   5528 	 * Update the sysctl statistics from the
   5529 	 * hardware statistics.
   5530 	 */
   5531 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
   5532 	    (uint64_t) stats->stat_IfHCInOctets_lo;
   5533 
   5534 	sc->stat_IfHCInBadOctets =
   5535 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5536 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
   5537 
   5538 	sc->stat_IfHCOutOctets =
   5539 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5540 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
   5541 
   5542 	sc->stat_IfHCOutBadOctets =
   5543 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5544 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
   5545 
   5546 	sc->stat_IfHCInUcastPkts =
   5547 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5548 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
   5549 
   5550 	sc->stat_IfHCInMulticastPkts =
   5551 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5552 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
   5553 
   5554 	sc->stat_IfHCInBroadcastPkts =
   5555 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5556 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5557 
   5558 	sc->stat_IfHCOutUcastPkts =
   5559 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5560 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
   5561 
   5562 	sc->stat_IfHCOutMulticastPkts =
   5563 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5564 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5565 
   5566 	sc->stat_IfHCOutBroadcastPkts =
   5567 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5568 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5569 
   5570 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5571 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5572 
   5573 	sc->stat_Dot3StatsCarrierSenseErrors =
   5574 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5575 
   5576 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5577 
   5578 	sc->stat_Dot3StatsAlignmentErrors =
   5579 	    stats->stat_Dot3StatsAlignmentErrors;
   5580 
   5581 	sc->stat_Dot3StatsSingleCollisionFrames =
   5582 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5583 
   5584 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5585 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5586 
   5587 	sc->stat_Dot3StatsDeferredTransmissions =
   5588 	    stats->stat_Dot3StatsDeferredTransmissions;
   5589 
   5590 	sc->stat_Dot3StatsExcessiveCollisions =
   5591 	    stats->stat_Dot3StatsExcessiveCollisions;
   5592 
   5593 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5594 
   5595 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5596 
   5597 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5598 
   5599 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5600 
   5601 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5602 
   5603 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5604 
   5605 	sc->stat_EtherStatsPktsRx64Octets =
   5606 	    stats->stat_EtherStatsPktsRx64Octets;
   5607 
   5608 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5609 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5610 
   5611 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5612 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5613 
   5614 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5615 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5616 
   5617 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5618 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5619 
   5620 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5621 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5622 
   5623 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5624 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5625 
   5626 	sc->stat_EtherStatsPktsTx64Octets =
   5627 	    stats->stat_EtherStatsPktsTx64Octets;
   5628 
   5629 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5630 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5631 
   5632 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5633 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5634 
   5635 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5636 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5637 
   5638 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5639 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5640 
   5641 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5642 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5643 
   5644 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5645 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5646 
   5647 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5648 
   5649 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5650 
   5651 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5652 
   5653 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5654 
   5655 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5656 
   5657 	sc->stat_MacControlFramesReceived =
   5658 	    stats->stat_MacControlFramesReceived;
   5659 
   5660 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5661 
   5662 	sc->stat_IfInFramesL2FilterDiscards =
   5663 	    stats->stat_IfInFramesL2FilterDiscards;
   5664 
   5665 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5666 
   5667 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5668 
   5669 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5670 
   5671 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5672 
   5673 	sc->stat_CatchupInRuleCheckerDiscards =
   5674 	    stats->stat_CatchupInRuleCheckerDiscards;
   5675 
   5676 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5677 
   5678 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5679 
   5680 	sc->stat_CatchupInRuleCheckerP4Hit =
   5681 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5682 
   5683 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5684 }
   5685 
   5686 void
   5687 bnx_tick(void *xsc)
   5688 {
   5689 	struct bnx_softc	*sc = xsc;
   5690 	struct mii_data		*mii;
   5691 	uint32_t		msg;
   5692 	uint16_t		prod, chain_prod;
   5693 	uint32_t		prod_bseq;
   5694 	int s = splnet();
   5695 
   5696 	/* Tell the firmware that the driver is still running. */
   5697 #ifdef BNX_DEBUG
   5698 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5699 #else
   5700 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5701 #endif
   5702 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5703 
   5704 	/* Update the statistics from the hardware statistics block. */
   5705 	bnx_stats_update(sc);
   5706 
   5707 	/* Schedule the next tick. */
   5708 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5709 
   5710 	mii = &sc->bnx_mii;
   5711 	mii_tick(mii);
   5712 
   5713 	/* try to get more RX buffers, just in case */
   5714 	prod = sc->rx_prod;
   5715 	prod_bseq = sc->rx_prod_bseq;
   5716 	chain_prod = RX_CHAIN_IDX(prod);
   5717 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5718 	sc->rx_prod = prod;
   5719 	sc->rx_prod_bseq = prod_bseq;
   5720 	splx(s);
   5721 	return;
   5722 }
   5723 
   5724 /****************************************************************************/
   5725 /* BNX Debug Routines                                                       */
   5726 /****************************************************************************/
   5727 #ifdef BNX_DEBUG
   5728 
   5729 /****************************************************************************/
   5730 /* Prints out information about an mbuf.                                    */
   5731 /*                                                                          */
   5732 /* Returns:                                                                 */
   5733 /*   Nothing.                                                               */
   5734 /****************************************************************************/
   5735 void
   5736 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5737 {
   5738 	struct mbuf		*mp = m;
   5739 
   5740 	if (m == NULL) {
   5741 		/* Index out of range. */
   5742 		aprint_error("mbuf ptr is null!\n");
   5743 		return;
   5744 	}
   5745 
   5746 	while (mp) {
   5747 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5748 		    mp, mp->m_len);
   5749 
   5750 		if (mp->m_flags & M_EXT)
   5751 			aprint_debug("M_EXT ");
   5752 		if (mp->m_flags & M_PKTHDR)
   5753 			aprint_debug("M_PKTHDR ");
   5754 		aprint_debug("\n");
   5755 
   5756 		if (mp->m_flags & M_EXT)
   5757 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   5758 			    mp, mp->m_ext.ext_size);
   5759 
   5760 		mp = mp->m_next;
   5761 	}
   5762 }
   5763 
   5764 /****************************************************************************/
   5765 /* Prints out the mbufs in the TX mbuf chain.                               */
   5766 /*                                                                          */
   5767 /* Returns:                                                                 */
   5768 /*   Nothing.                                                               */
   5769 /****************************************************************************/
   5770 void
   5771 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5772 {
   5773 #if 0
   5774 	struct mbuf		*m;
   5775 	int			i;
   5776 
   5777 	aprint_debug_dev(sc->bnx_dev,
   5778 	    "----------------------------"
   5779 	    "  tx mbuf data  "
   5780 	    "----------------------------\n");
   5781 
   5782 	for (i = 0; i < count; i++) {
   5783 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5784 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5785 		bnx_dump_mbuf(sc, m);
   5786 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5787 	}
   5788 
   5789 	aprint_debug_dev(sc->bnx_dev,
   5790 	    "--------------------------------------------"
   5791 	    "----------------------------\n");
   5792 #endif
   5793 }
   5794 
   5795 /*
   5796  * This routine prints the RX mbuf chain.
   5797  */
   5798 void
   5799 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5800 {
   5801 	struct mbuf		*m;
   5802 	int			i;
   5803 
   5804 	aprint_debug_dev(sc->bnx_dev,
   5805 	    "----------------------------"
   5806 	    "  rx mbuf data  "
   5807 	    "----------------------------\n");
   5808 
   5809 	for (i = 0; i < count; i++) {
   5810 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5811 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5812 		bnx_dump_mbuf(sc, m);
   5813 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5814 	}
   5815 
   5816 
   5817 	aprint_debug_dev(sc->bnx_dev,
   5818 	    "--------------------------------------------"
   5819 	    "----------------------------\n");
   5820 }
   5821 
   5822 void
   5823 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5824 {
   5825 	if (idx > MAX_TX_BD)
   5826 		/* Index out of range. */
   5827 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5828 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5829 		/* TX Chain page pointer. */
   5830 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5831 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5832 		    txbd->tx_bd_haddr_lo);
   5833 	else
   5834 		/* Normal tx_bd entry. */
   5835 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5836 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5837 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5838 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5839 		    txbd->tx_bd_flags);
   5840 }
   5841 
   5842 void
   5843 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5844 {
   5845 	if (idx > MAX_RX_BD)
   5846 		/* Index out of range. */
   5847 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5848 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5849 		/* TX Chain page pointer. */
   5850 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5851 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5852 		    rxbd->rx_bd_haddr_lo);
   5853 	else
   5854 		/* Normal tx_bd entry. */
   5855 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5856 		    "0x%08X, flags = 0x%08X\n", idx,
   5857 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5858 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5859 }
   5860 
   5861 void
   5862 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5863 {
   5864 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5865 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5866 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5867 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5868 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5869 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5870 }
   5871 
   5872 /*
   5873  * This routine prints the TX chain.
   5874  */
   5875 void
   5876 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5877 {
   5878 	struct tx_bd		*txbd;
   5879 	int			i;
   5880 
   5881 	/* First some info about the tx_bd chain structure. */
   5882 	aprint_debug_dev(sc->bnx_dev,
   5883 	    "----------------------------"
   5884 	    "  tx_bd  chain  "
   5885 	    "----------------------------\n");
   5886 
   5887 	BNX_PRINTF(sc,
   5888 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5889 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
   5890 
   5891 	BNX_PRINTF(sc,
   5892 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5893 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
   5894 
   5895 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
   5896 
   5897 	aprint_error_dev(sc->bnx_dev, ""
   5898 	    "-----------------------------"
   5899 	    "   tx_bd data   "
   5900 	    "-----------------------------\n");
   5901 
   5902 	/* Now print out the tx_bd's themselves. */
   5903 	for (i = 0; i < count; i++) {
   5904 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5905 		bnx_dump_txbd(sc, tx_prod, txbd);
   5906 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5907 	}
   5908 
   5909 	aprint_debug_dev(sc->bnx_dev,
   5910 	    "-----------------------------"
   5911 	    "--------------"
   5912 	    "-----------------------------\n");
   5913 }
   5914 
   5915 /*
   5916  * This routine prints the RX chain.
   5917  */
   5918 void
   5919 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5920 {
   5921 	struct rx_bd		*rxbd;
   5922 	int			i;
   5923 
   5924 	/* First some info about the tx_bd chain structure. */
   5925 	aprint_debug_dev(sc->bnx_dev,
   5926 	    "----------------------------"
   5927 	    "  rx_bd  chain  "
   5928 	    "----------------------------\n");
   5929 
   5930 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   5931 
   5932 	BNX_PRINTF(sc,
   5933 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5934 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
   5935 
   5936 	BNX_PRINTF(sc,
   5937 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5938 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
   5939 
   5940 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
   5941 
   5942 	aprint_error_dev(sc->bnx_dev,
   5943 	    "----------------------------"
   5944 	    "   rx_bd data   "
   5945 	    "----------------------------\n");
   5946 
   5947 	/* Now print out the rx_bd's themselves. */
   5948 	for (i = 0; i < count; i++) {
   5949 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5950 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5951 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5952 	}
   5953 
   5954 	aprint_debug_dev(sc->bnx_dev,
   5955 	    "----------------------------"
   5956 	    "--------------"
   5957 	    "----------------------------\n");
   5958 }
   5959 
   5960 /*
   5961  * This routine prints the status block.
   5962  */
   5963 void
   5964 bnx_dump_status_block(struct bnx_softc *sc)
   5965 {
   5966 	struct status_block	*sblk;
   5967 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5968 	    BUS_DMASYNC_POSTREAD);
   5969 
   5970 	sblk = sc->status_block;
   5971 
   5972    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
   5973 	    "-----------------------------\n");
   5974 
   5975 	BNX_PRINTF(sc,
   5976 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5977 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5978 	    sblk->status_idx);
   5979 
   5980 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5981 	    sblk->status_rx_quick_consumer_index0,
   5982 	    sblk->status_tx_quick_consumer_index0);
   5983 
   5984 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5985 
   5986 	/* Theses indices are not used for normal L2 drivers. */
   5987 	if (sblk->status_rx_quick_consumer_index1 ||
   5988 		sblk->status_tx_quick_consumer_index1)
   5989 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5990 		    sblk->status_rx_quick_consumer_index1,
   5991 		    sblk->status_tx_quick_consumer_index1);
   5992 
   5993 	if (sblk->status_rx_quick_consumer_index2 ||
   5994 		sblk->status_tx_quick_consumer_index2)
   5995 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5996 		    sblk->status_rx_quick_consumer_index2,
   5997 		    sblk->status_tx_quick_consumer_index2);
   5998 
   5999 	if (sblk->status_rx_quick_consumer_index3 ||
   6000 		sblk->status_tx_quick_consumer_index3)
   6001 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   6002 		    sblk->status_rx_quick_consumer_index3,
   6003 		    sblk->status_tx_quick_consumer_index3);
   6004 
   6005 	if (sblk->status_rx_quick_consumer_index4 ||
   6006 		sblk->status_rx_quick_consumer_index5)
   6007 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   6008 		    sblk->status_rx_quick_consumer_index4,
   6009 		    sblk->status_rx_quick_consumer_index5);
   6010 
   6011 	if (sblk->status_rx_quick_consumer_index6 ||
   6012 		sblk->status_rx_quick_consumer_index7)
   6013 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   6014 		    sblk->status_rx_quick_consumer_index6,
   6015 		    sblk->status_rx_quick_consumer_index7);
   6016 
   6017 	if (sblk->status_rx_quick_consumer_index8 ||
   6018 		sblk->status_rx_quick_consumer_index9)
   6019 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   6020 		    sblk->status_rx_quick_consumer_index8,
   6021 		    sblk->status_rx_quick_consumer_index9);
   6022 
   6023 	if (sblk->status_rx_quick_consumer_index10 ||
   6024 		sblk->status_rx_quick_consumer_index11)
   6025 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   6026 		    sblk->status_rx_quick_consumer_index10,
   6027 		    sblk->status_rx_quick_consumer_index11);
   6028 
   6029 	if (sblk->status_rx_quick_consumer_index12 ||
   6030 		sblk->status_rx_quick_consumer_index13)
   6031 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   6032 		    sblk->status_rx_quick_consumer_index12,
   6033 		    sblk->status_rx_quick_consumer_index13);
   6034 
   6035 	if (sblk->status_rx_quick_consumer_index14 ||
   6036 		sblk->status_rx_quick_consumer_index15)
   6037 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   6038 		    sblk->status_rx_quick_consumer_index14,
   6039 		    sblk->status_rx_quick_consumer_index15);
   6040 
   6041 	if (sblk->status_completion_producer_index ||
   6042 		sblk->status_cmd_consumer_index)
   6043 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   6044 		    sblk->status_completion_producer_index,
   6045 		    sblk->status_cmd_consumer_index);
   6046 
   6047 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6048 	    "-----------------------------\n");
   6049 }
   6050 
   6051 /*
   6052  * This routine prints the statistics block.
   6053  */
   6054 void
   6055 bnx_dump_stats_block(struct bnx_softc *sc)
   6056 {
   6057 	struct statistics_block	*sblk;
   6058 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6059 	    BUS_DMASYNC_POSTREAD);
   6060 
   6061 	sblk = sc->stats_block;
   6062 
   6063 	aprint_debug_dev(sc->bnx_dev, ""
   6064 	    "-----------------------------"
   6065 	    " Stats  Block "
   6066 	    "-----------------------------\n");
   6067 
   6068 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   6069 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   6070 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   6071 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   6072 
   6073 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   6074 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   6075 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   6076 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   6077 
   6078 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   6079 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   6080 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   6081 	    sblk->stat_IfHCInMulticastPkts_hi,
   6082 	    sblk->stat_IfHCInMulticastPkts_lo);
   6083 
   6084 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   6085 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   6086 	    sblk->stat_IfHCInBroadcastPkts_hi,
   6087 	    sblk->stat_IfHCInBroadcastPkts_lo,
   6088 	    sblk->stat_IfHCOutUcastPkts_hi,
   6089 	    sblk->stat_IfHCOutUcastPkts_lo);
   6090 
   6091 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   6092 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   6093 	    sblk->stat_IfHCOutMulticastPkts_hi,
   6094 	    sblk->stat_IfHCOutMulticastPkts_lo,
   6095 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   6096 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   6097 
   6098 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   6099 		BNX_PRINTF(sc, "0x%08X : "
   6100 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6101 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6102 
   6103 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6104 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6105 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6106 
   6107 	if (sblk->stat_Dot3StatsFCSErrors)
   6108 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6109 		    sblk->stat_Dot3StatsFCSErrors);
   6110 
   6111 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6112 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6113 		    sblk->stat_Dot3StatsAlignmentErrors);
   6114 
   6115 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6116 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6117 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6118 
   6119 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6120 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6121 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6122 
   6123 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6124 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6125 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6126 
   6127 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6128 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6129 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6130 
   6131 	if (sblk->stat_Dot3StatsLateCollisions)
   6132 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6133 		    sblk->stat_Dot3StatsLateCollisions);
   6134 
   6135 	if (sblk->stat_EtherStatsCollisions)
   6136 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6137 		    sblk->stat_EtherStatsCollisions);
   6138 
   6139 	if (sblk->stat_EtherStatsFragments)
   6140 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6141 		    sblk->stat_EtherStatsFragments);
   6142 
   6143 	if (sblk->stat_EtherStatsJabbers)
   6144 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6145 		    sblk->stat_EtherStatsJabbers);
   6146 
   6147 	if (sblk->stat_EtherStatsUndersizePkts)
   6148 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6149 		    sblk->stat_EtherStatsUndersizePkts);
   6150 
   6151 	if (sblk->stat_EtherStatsOverrsizePkts)
   6152 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6153 		    sblk->stat_EtherStatsOverrsizePkts);
   6154 
   6155 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6156 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6157 		    sblk->stat_EtherStatsPktsRx64Octets);
   6158 
   6159 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6160 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6161 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6162 
   6163 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6164 		BNX_PRINTF(sc, "0x%08X : "
   6165 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6166 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6167 
   6168 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6169 		BNX_PRINTF(sc, "0x%08X : "
   6170 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6171 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6172 
   6173 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6174 		BNX_PRINTF(sc, "0x%08X : "
   6175 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6176 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6177 
   6178 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6179 		BNX_PRINTF(sc, "0x%08X : "
   6180 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6181 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6182 
   6183 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6184 		BNX_PRINTF(sc, "0x%08X : "
   6185 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6186 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6187 
   6188 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6189 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6190 		    sblk->stat_EtherStatsPktsTx64Octets);
   6191 
   6192 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6193 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6194 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6195 
   6196 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6197 		BNX_PRINTF(sc, "0x%08X : "
   6198 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6199 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6200 
   6201 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6202 		BNX_PRINTF(sc, "0x%08X : "
   6203 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6204 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6205 
   6206 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6207 		BNX_PRINTF(sc, "0x%08X : "
   6208 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6209 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6210 
   6211 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6212 		BNX_PRINTF(sc, "0x%08X : "
   6213 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6214 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6215 
   6216 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6217 		BNX_PRINTF(sc, "0x%08X : "
   6218 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6219 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6220 
   6221 	if (sblk->stat_XonPauseFramesReceived)
   6222 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6223 		    sblk->stat_XonPauseFramesReceived);
   6224 
   6225 	if (sblk->stat_XoffPauseFramesReceived)
   6226 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6227 		    sblk->stat_XoffPauseFramesReceived);
   6228 
   6229 	if (sblk->stat_OutXonSent)
   6230 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6231 		    sblk->stat_OutXonSent);
   6232 
   6233 	if (sblk->stat_OutXoffSent)
   6234 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6235 		    sblk->stat_OutXoffSent);
   6236 
   6237 	if (sblk->stat_FlowControlDone)
   6238 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6239 		    sblk->stat_FlowControlDone);
   6240 
   6241 	if (sblk->stat_MacControlFramesReceived)
   6242 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6243 		    sblk->stat_MacControlFramesReceived);
   6244 
   6245 	if (sblk->stat_XoffStateEntered)
   6246 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6247 		    sblk->stat_XoffStateEntered);
   6248 
   6249 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6250 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6251 		    sblk->stat_IfInFramesL2FilterDiscards);
   6252 
   6253 	if (sblk->stat_IfInRuleCheckerDiscards)
   6254 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6255 		    sblk->stat_IfInRuleCheckerDiscards);
   6256 
   6257 	if (sblk->stat_IfInFTQDiscards)
   6258 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6259 		    sblk->stat_IfInFTQDiscards);
   6260 
   6261 	if (sblk->stat_IfInMBUFDiscards)
   6262 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6263 		    sblk->stat_IfInMBUFDiscards);
   6264 
   6265 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6266 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6267 		    sblk->stat_IfInRuleCheckerP4Hit);
   6268 
   6269 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6270 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6271 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6272 
   6273 	if (sblk->stat_CatchupInFTQDiscards)
   6274 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6275 		    sblk->stat_CatchupInFTQDiscards);
   6276 
   6277 	if (sblk->stat_CatchupInMBUFDiscards)
   6278 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6279 		    sblk->stat_CatchupInMBUFDiscards);
   6280 
   6281 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6282 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6283 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6284 
   6285 	aprint_debug_dev(sc->bnx_dev,
   6286 	    "-----------------------------"
   6287 	    "--------------"
   6288 	    "-----------------------------\n");
   6289 }
   6290 
   6291 void
   6292 bnx_dump_driver_state(struct bnx_softc *sc)
   6293 {
   6294 	aprint_debug_dev(sc->bnx_dev,
   6295 	    "-----------------------------"
   6296 	    " Driver State "
   6297 	    "-----------------------------\n");
   6298 
   6299 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6300 	    "address\n", sc);
   6301 
   6302 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6303 	    sc->status_block);
   6304 
   6305 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6306 	    "address\n", sc->stats_block);
   6307 
   6308 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6309 	    "adddress\n", sc->tx_bd_chain);
   6310 
   6311 #if 0
   6312 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6313 	    sc->rx_bd_chain);
   6314 
   6315 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6316 	    sc->tx_mbuf_ptr);
   6317 #endif
   6318 
   6319 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6320 	    sc->rx_mbuf_ptr);
   6321 
   6322 	BNX_PRINTF(sc,
   6323 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6324 	    sc->interrupts_generated);
   6325 
   6326 	BNX_PRINTF(sc,
   6327 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6328 	    sc->rx_interrupts);
   6329 
   6330 	BNX_PRINTF(sc,
   6331 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6332 	    sc->tx_interrupts);
   6333 
   6334 	BNX_PRINTF(sc,
   6335 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6336 	    sc->last_status_idx);
   6337 
   6338 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6339 	    sc->tx_prod);
   6340 
   6341 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6342 	    sc->tx_cons);
   6343 
   6344 	BNX_PRINTF(sc,
   6345 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6346 	    sc->tx_prod_bseq);
   6347 	BNX_PRINTF(sc,
   6348 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6349 	    sc->tx_mbuf_alloc);
   6350 
   6351 	BNX_PRINTF(sc,
   6352 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6353 	    sc->used_tx_bd);
   6354 
   6355 	BNX_PRINTF(sc,
   6356 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6357 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6358 
   6359 
   6360 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6361 	    sc->rx_prod);
   6362 
   6363 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6364 	    sc->rx_cons);
   6365 
   6366 	BNX_PRINTF(sc,
   6367 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6368 	    sc->rx_prod_bseq);
   6369 
   6370 	BNX_PRINTF(sc,
   6371 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6372 	    sc->rx_mbuf_alloc);
   6373 
   6374 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6375 	    sc->free_rx_bd);
   6376 
   6377 	BNX_PRINTF(sc,
   6378 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6379 	    sc->rx_low_watermark, sc->max_rx_bd);
   6380 
   6381 	BNX_PRINTF(sc,
   6382 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6383 	    "mbuf alloc failures\n",
   6384 	    sc->mbuf_alloc_failed);
   6385 
   6386 	BNX_PRINTF(sc,
   6387 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6388 	    "simulated mbuf alloc failures\n",
   6389 	    sc->mbuf_sim_alloc_failed);
   6390 
   6391 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6392 	    "-----------------------------\n");
   6393 }
   6394 
   6395 void
   6396 bnx_dump_hw_state(struct bnx_softc *sc)
   6397 {
   6398 	uint32_t		val1;
   6399 	int			i;
   6400 
   6401 	aprint_debug_dev(sc->bnx_dev,
   6402 	    "----------------------------"
   6403 	    " Hardware State "
   6404 	    "----------------------------\n");
   6405 
   6406 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   6407 
   6408 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6409 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6410 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6411 
   6412 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6413 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6414 
   6415 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6416 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6417 
   6418 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6419 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6420 	    BNX_EMAC_STATUS);
   6421 
   6422 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6423 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6424 
   6425 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6426 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6427 	    BNX_TBDR_STATUS);
   6428 
   6429 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6430 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6431 	    BNX_TDMA_STATUS);
   6432 
   6433 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6434 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6435 
   6436 	aprint_debug_dev(sc->bnx_dev,
   6437 	    "----------------------------"
   6438 	    "----------------"
   6439 	    "----------------------------\n");
   6440 
   6441 	aprint_debug_dev(sc->bnx_dev,
   6442 	    "----------------------------"
   6443 	    " Register  Dump "
   6444 	    "----------------------------\n");
   6445 
   6446 	for (i = 0x400; i < 0x8000; i += 0x10)
   6447 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6448 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6449 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6450 
   6451 	aprint_debug_dev(sc->bnx_dev,
   6452 	    "----------------------------"
   6453 	    "----------------"
   6454 	    "----------------------------\n");
   6455 }
   6456 
   6457 void
   6458 bnx_breakpoint(struct bnx_softc *sc)
   6459 {
   6460 	/* Unreachable code to shut the compiler up about unused functions. */
   6461 	if (0) {
   6462    		bnx_dump_txbd(sc, 0, NULL);
   6463 		bnx_dump_rxbd(sc, 0, NULL);
   6464 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6465 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6466 		bnx_dump_l2fhdr(sc, 0, NULL);
   6467 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6468 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6469 		bnx_dump_status_block(sc);
   6470 		bnx_dump_stats_block(sc);
   6471 		bnx_dump_driver_state(sc);
   6472 		bnx_dump_hw_state(sc);
   6473 	}
   6474 
   6475 	bnx_dump_driver_state(sc);
   6476 	/* Print the important status block fields. */
   6477 	bnx_dump_status_block(sc);
   6478 
   6479 #if 0
   6480 	/* Call the debugger. */
   6481 	breakpoint();
   6482 #endif
   6483 
   6484 	return;
   6485 }
   6486 #endif
   6487