Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.60
      1 /*	$NetBSD: if_bnx.c,v 1.60 2016/12/08 01:12:01 ozaki-r Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
      3 
      4 /*-
      5  * Copyright (c) 2006-2010 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.60 2016/12/08 01:12:01 ozaki-r Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, B0, B1, B2 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/pci/if_bnxvar.h>
     64 
     65 #include <dev/microcode/bnx/bnxfw.h>
     66 
     67 /****************************************************************************/
     68 /* BNX Driver Version                                                       */
     69 /****************************************************************************/
     70 #define BNX_DRIVER_VERSION	"v0.9.6"
     71 
     72 /****************************************************************************/
     73 /* BNX Debug Options                                                        */
     74 /****************************************************************************/
     75 #ifdef BNX_DEBUG
     76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     77 
     78 	/*          0 = Never              */
     79 	/*          1 = 1 in 2,147,483,648 */
     80 	/*        256 = 1 in     8,388,608 */
     81 	/*       2048 = 1 in     1,048,576 */
     82 	/*      65536 = 1 in        32,768 */
     83 	/*    1048576 = 1 in         2,048 */
     84 	/*  268435456 =	1 in             8 */
     85 	/*  536870912 = 1 in             4 */
     86 	/* 1073741824 = 1 in             2 */
     87 
     88 	/* Controls how often the l2_fhdr frame error check will fail. */
     89 	int bnx_debug_l2fhdr_status_check = 0;
     90 
     91 	/* Controls how often the unexpected attention check will fail. */
     92 	int bnx_debug_unexpected_attention = 0;
     93 
     94 	/* Controls how often to simulate an mbuf allocation failure. */
     95 	int bnx_debug_mbuf_allocation_failure = 0;
     96 
     97 	/* Controls how often to simulate a DMA mapping failure. */
     98 	int bnx_debug_dma_map_addr_failure = 0;
     99 
    100 	/* Controls how often to simulate a bootcode failure. */
    101 	int bnx_debug_bootcode_running_failure = 0;
    102 #endif
    103 
    104 /****************************************************************************/
    105 /* PCI Device ID Table                                                      */
    106 /*                                                                          */
    107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    108 /****************************************************************************/
    109 static const struct bnx_product {
    110 	pci_vendor_id_t		bp_vendor;
    111 	pci_product_id_t	bp_product;
    112 	pci_vendor_id_t		bp_subvendor;
    113 	pci_product_id_t	bp_subproduct;
    114 	const char		*bp_name;
    115 } bnx_devices[] = {
    116 #ifdef PCI_SUBPRODUCT_HP_NC370T
    117 	{
    118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    120 	  "HP NC370T Multifunction Gigabit Server Adapter"
    121 	},
    122 #endif
    123 #ifdef PCI_SUBPRODUCT_HP_NC370i
    124 	{
    125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    127 	  "HP NC370i Multifunction Gigabit Server Adapter"
    128 	},
    129 #endif
    130 	{
    131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    132 	  0, 0,
    133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    134 	},
    135 #ifdef PCI_SUBPRODUCT_HP_NC370F
    136 	{
    137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    139 	  "HP NC370F Multifunction Gigabit Server Adapter"
    140 	},
    141 #endif
    142 	{
    143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    144 	  0, 0,
    145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    146 	},
    147 	{
    148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    149 	  0, 0,
    150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    151 	},
    152 	{
    153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    154 	  0, 0,
    155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    156 	},
    157 	{
    158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    159 	  0, 0,
    160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    161 	},
    162 	{
    163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    164 	  0, 0,
    165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    166 	},
    167 	{
    168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    169 	  0, 0,
    170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    171 	},
    172 	{
    173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    174 	  0, 0,
    175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    176 	},
    177 };
    178 
    179 /****************************************************************************/
    180 /* Supported Flash NVRAM device data.                                       */
    181 /****************************************************************************/
    182 static struct flash_spec flash_table[] =
    183 {
    184 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    185 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    186 	/* Slow EEPROM */
    187 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    188 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    189 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    190 	 "EEPROM - slow"},
    191 	/* Expansion entry 0001 */
    192 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    195 	 "Entry 0001"},
    196 	/* Saifun SA25F010 (non-buffered flash) */
    197 	/* strap, cfg1, & write1 need updates */
    198 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    199 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    200 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    201 	 "Non-buffered flash (128kB)"},
    202 	/* Saifun SA25F020 (non-buffered flash) */
    203 	/* strap, cfg1, & write1 need updates */
    204 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    205 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    206 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    207 	 "Non-buffered flash (256kB)"},
    208 	/* Expansion entry 0100 */
    209 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    210 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    211 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    212 	 "Entry 0100"},
    213 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    214 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    215 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    216 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    217 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    218 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    219 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    220 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    221 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    222 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    223 	/* Saifun SA25F005 (non-buffered flash) */
    224 	/* strap, cfg1, & write1 need updates */
    225 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    228 	 "Non-buffered flash (64kB)"},
    229 	/* Fast EEPROM */
    230 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    231 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    232 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    233 	 "EEPROM - fast"},
    234 	/* Expansion entry 1001 */
    235 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    236 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    237 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    238 	 "Entry 1001"},
    239 	/* Expansion entry 1010 */
    240 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    241 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    242 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    243 	 "Entry 1010"},
    244 	/* ATMEL AT45DB011B (buffered flash) */
    245 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    246 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    247 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    248 	 "Buffered flash (128kB)"},
    249 	/* Expansion entry 1100 */
    250 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    251 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    252 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    253 	 "Entry 1100"},
    254 	/* Expansion entry 1101 */
    255 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    256 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    257 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    258 	 "Entry 1101"},
    259 	/* Ateml Expansion entry 1110 */
    260 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    261 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    262 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    263 	 "Entry 1110 (Atmel)"},
    264 	/* ATMEL AT45DB021B (buffered flash) */
    265 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    266 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    267 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    268 	 "Buffered flash (256kB)"},
    269 };
    270 
    271 /*
    272  * The BCM5709 controllers transparently handle the
    273  * differences between Atmel 264 byte pages and all
    274  * flash devices which use 256 byte pages, so no
    275  * logical-to-physical mapping is required in the
    276  * driver.
    277  */
    278 static struct flash_spec flash_5709 = {
    279 	.flags		= BNX_NV_BUFFERED,
    280 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    281 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    282 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    283 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    284 	.name		= "5709 buffered flash (256kB)",
    285 };
    286 
    287 /****************************************************************************/
    288 /* OpenBSD device entry points.                                             */
    289 /****************************************************************************/
    290 static int	bnx_probe(device_t, cfdata_t, void *);
    291 void	bnx_attach(device_t, device_t, void *);
    292 int	bnx_detach(device_t, int);
    293 
    294 /****************************************************************************/
    295 /* BNX Debug Data Structure Dump Routines                                   */
    296 /****************************************************************************/
    297 #ifdef BNX_DEBUG
    298 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    299 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    300 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    301 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    302 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    303 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    304 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    305 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    306 void	bnx_dump_status_block(struct bnx_softc *);
    307 void	bnx_dump_stats_block(struct bnx_softc *);
    308 void	bnx_dump_driver_state(struct bnx_softc *);
    309 void	bnx_dump_hw_state(struct bnx_softc *);
    310 void	bnx_breakpoint(struct bnx_softc *);
    311 #endif
    312 
    313 /****************************************************************************/
    314 /* BNX Register/Memory Access Routines                                      */
    315 /****************************************************************************/
    316 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
    317 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
    318 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
    319 int	bnx_miibus_read_reg(device_t, int, int);
    320 void	bnx_miibus_write_reg(device_t, int, int, int);
    321 void	bnx_miibus_statchg(struct ifnet *);
    322 
    323 /****************************************************************************/
    324 /* BNX NVRAM Access Routines                                                */
    325 /****************************************************************************/
    326 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    327 int	bnx_release_nvram_lock(struct bnx_softc *);
    328 void	bnx_enable_nvram_access(struct bnx_softc *);
    329 void	bnx_disable_nvram_access(struct bnx_softc *);
    330 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
    331 	    uint32_t);
    332 int	bnx_init_nvram(struct bnx_softc *);
    333 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
    334 int	bnx_nvram_test(struct bnx_softc *);
    335 #ifdef BNX_NVRAM_WRITE_SUPPORT
    336 int	bnx_enable_nvram_write(struct bnx_softc *);
    337 void	bnx_disable_nvram_write(struct bnx_softc *);
    338 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
    339 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
    340 	    uint32_t);
    341 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
    342 #endif
    343 
    344 /****************************************************************************/
    345 /*                                                                          */
    346 /****************************************************************************/
    347 void	bnx_get_media(struct bnx_softc *);
    348 void	bnx_init_media(struct bnx_softc *);
    349 int	bnx_dma_alloc(struct bnx_softc *);
    350 void	bnx_dma_free(struct bnx_softc *);
    351 void	bnx_release_resources(struct bnx_softc *);
    352 
    353 /****************************************************************************/
    354 /* BNX Firmware Synchronization and Load                                    */
    355 /****************************************************************************/
    356 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
    357 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t,
    358 	    uint32_t);
    359 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    360 	    struct fw_info *);
    361 void	bnx_init_cpus(struct bnx_softc *);
    362 
    363 static void bnx_print_adapter_info(struct bnx_softc *);
    364 static void bnx_probe_pci_caps(struct bnx_softc *);
    365 void	bnx_stop(struct ifnet *, int);
    366 int	bnx_reset(struct bnx_softc *, uint32_t);
    367 int	bnx_chipinit(struct bnx_softc *);
    368 int	bnx_blockinit(struct bnx_softc *);
    369 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
    370 	    uint16_t *, uint32_t *);
    371 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
    372 
    373 int	bnx_init_tx_chain(struct bnx_softc *);
    374 void	bnx_init_tx_context(struct bnx_softc *);
    375 int	bnx_init_rx_chain(struct bnx_softc *);
    376 void	bnx_init_rx_context(struct bnx_softc *);
    377 void	bnx_free_rx_chain(struct bnx_softc *);
    378 void	bnx_free_tx_chain(struct bnx_softc *);
    379 
    380 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    381 void	bnx_start(struct ifnet *);
    382 int	bnx_ioctl(struct ifnet *, u_long, void *);
    383 void	bnx_watchdog(struct ifnet *);
    384 int	bnx_init(struct ifnet *);
    385 
    386 void	bnx_init_context(struct bnx_softc *);
    387 void	bnx_get_mac_addr(struct bnx_softc *);
    388 void	bnx_set_mac_addr(struct bnx_softc *);
    389 void	bnx_phy_intr(struct bnx_softc *);
    390 void	bnx_rx_intr(struct bnx_softc *);
    391 void	bnx_tx_intr(struct bnx_softc *);
    392 void	bnx_disable_intr(struct bnx_softc *);
    393 void	bnx_enable_intr(struct bnx_softc *);
    394 
    395 int	bnx_intr(void *);
    396 void	bnx_iff(struct bnx_softc *);
    397 void	bnx_stats_update(struct bnx_softc *);
    398 void	bnx_tick(void *);
    399 
    400 struct pool *bnx_tx_pool = NULL;
    401 void	bnx_alloc_pkts(struct work *, void *);
    402 
    403 /****************************************************************************/
    404 /* OpenBSD device dispatch table.                                           */
    405 /****************************************************************************/
    406 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    407     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    408 
    409 /****************************************************************************/
    410 /* Device probe function.                                                   */
    411 /*                                                                          */
    412 /* Compares the device to the driver's list of supported devices and        */
    413 /* reports back to the OS whether this is the right driver for the device.  */
    414 /*                                                                          */
    415 /* Returns:                                                                 */
    416 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    417 /****************************************************************************/
    418 static const struct bnx_product *
    419 bnx_lookup(const struct pci_attach_args *pa)
    420 {
    421 	int i;
    422 	pcireg_t subid;
    423 
    424 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    425 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    426 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    427 			continue;
    428 		if (!bnx_devices[i].bp_subvendor)
    429 			return &bnx_devices[i];
    430 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    431 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    432 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    433 			return &bnx_devices[i];
    434 	}
    435 
    436 	return NULL;
    437 }
    438 static int
    439 bnx_probe(device_t parent, cfdata_t match, void *aux)
    440 {
    441 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    442 
    443 	if (bnx_lookup(pa) != NULL)
    444 		return 1;
    445 
    446 	return 0;
    447 }
    448 
    449 /****************************************************************************/
    450 /* PCI Capabilities Probe Function.                                         */
    451 /*                                                                          */
    452 /* Walks the PCI capabiites list for the device to find what features are   */
    453 /* supported.                                                               */
    454 /*                                                                          */
    455 /* Returns:                                                                 */
    456 /*   None.                                                                  */
    457 /****************************************************************************/
    458 static void
    459 bnx_print_adapter_info(struct bnx_softc *sc)
    460 {
    461 
    462 	aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
    463 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
    464 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
    465 	    ? "Serdes " : "", sc->bnx_chipid);
    466 
    467 	/* Bus info. */
    468 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
    469 		aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
    470 		    sc->link_width);
    471 		switch (sc->link_speed) {
    472 		case 1: aprint_normal("2.5Gbps\n"); break;
    473 		case 2:	aprint_normal("5Gbps\n"); break;
    474 		default: aprint_normal("Unknown link speed\n");
    475 		}
    476 	} else {
    477 		aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
    478 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
    479 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
    480 		    sc->bus_speed_mhz);
    481 	}
    482 
    483 	aprint_normal_dev(sc->bnx_dev,
    484 	    "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
    485 	    sc->bnx_rx_quick_cons_trip_int,
    486 	    sc->bnx_rx_quick_cons_trip,
    487 	    sc->bnx_rx_ticks_int,
    488 	    sc->bnx_rx_ticks,
    489 	    sc->bnx_tx_quick_cons_trip_int,
    490 	    sc->bnx_tx_quick_cons_trip,
    491 	    sc->bnx_tx_ticks_int,
    492 	    sc->bnx_tx_ticks);
    493 }
    494 
    495 
    496 /****************************************************************************/
    497 /* PCI Capabilities Probe Function.                                         */
    498 /*                                                                          */
    499 /* Walks the PCI capabiites list for the device to find what features are   */
    500 /* supported.                                                               */
    501 /*                                                                          */
    502 /* Returns:                                                                 */
    503 /*   None.                                                                  */
    504 /****************************************************************************/
    505 static void
    506 bnx_probe_pci_caps(struct bnx_softc *sc)
    507 {
    508 	struct pci_attach_args *pa = &(sc->bnx_pa);
    509 	pcireg_t reg;
    510 
    511 	/* Check if PCI-X capability is enabled. */
    512 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
    513 		NULL) != 0) {
    514 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
    515 	}
    516 
    517 	/* Check if PCIe capability is enabled. */
    518 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
    519 		NULL) != 0) {
    520 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
    521 		    reg + PCIE_LCSR);
    522 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
    523 		    "0x%08X\n",	link_status);
    524 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
    525 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
    526 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
    527 		sc->bnx_flags |= BNX_PCIE_FLAG;
    528 	}
    529 
    530 	/* Check if MSI capability is enabled. */
    531 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
    532 		NULL) != 0)
    533 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
    534 
    535 	/* Check if MSI-X capability is enabled. */
    536 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
    537 		NULL) != 0)
    538 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
    539 }
    540 
    541 
    542 /****************************************************************************/
    543 /* Device attach function.                                                  */
    544 /*                                                                          */
    545 /* Allocates device resources, performs secondary chip identification,      */
    546 /* resets and initializes the hardware, and initializes driver instance     */
    547 /* variables.                                                               */
    548 /*                                                                          */
    549 /* Returns:                                                                 */
    550 /*   0 on success, positive value on failure.                               */
    551 /****************************************************************************/
    552 void
    553 bnx_attach(device_t parent, device_t self, void *aux)
    554 {
    555 	const struct bnx_product *bp;
    556 	struct bnx_softc	*sc = device_private(self);
    557 	prop_dictionary_t	dict;
    558 	struct pci_attach_args	*pa = aux;
    559 	pci_chipset_tag_t	pc = pa->pa_pc;
    560 	pci_intr_handle_t	ih;
    561 	const char 		*intrstr = NULL;
    562 	uint32_t		command;
    563 	struct ifnet		*ifp;
    564 	uint32_t		val;
    565 	int			mii_flags = MIIF_FORCEANEG;
    566 	pcireg_t		memtype;
    567 	char intrbuf[PCI_INTRSTR_LEN];
    568 
    569 	if (bnx_tx_pool == NULL) {
    570 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    571 		if (bnx_tx_pool != NULL) {
    572 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    573 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    574 		} else {
    575 			aprint_error(": can't alloc bnx_tx_pool\n");
    576 			return;
    577 		}
    578 	}
    579 
    580 	bp = bnx_lookup(pa);
    581 	if (bp == NULL)
    582 		panic("unknown device");
    583 
    584 	sc->bnx_dev = self;
    585 
    586 	aprint_naive("\n");
    587 	aprint_normal(": %s\n", bp->bp_name);
    588 
    589 	sc->bnx_pa = *pa;
    590 
    591 	/*
    592 	 * Map control/status registers.
    593 	*/
    594 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    595 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    596 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    597 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    598 
    599 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    600 		aprint_error_dev(sc->bnx_dev,
    601 		    "failed to enable memory mapping!\n");
    602 		return;
    603 	}
    604 
    605 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    606 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    607 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    608 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    609 		return;
    610 	}
    611 
    612 	if (pci_intr_map(pa, &ih)) {
    613 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    614 		goto bnx_attach_fail;
    615 	}
    616 
    617 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    618 
    619 	/*
    620 	 * Configure byte swap and enable indirect register access.
    621 	 * Rely on CPU to do target byte swapping on big endian systems.
    622 	 * Access to registers outside of PCI configurtion space are not
    623 	 * valid until this is done.
    624 	 */
    625 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    626 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    627 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    628 
    629 	/* Save ASIC revsion info. */
    630 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    631 
    632 	/*
    633 	 * Find the base address for shared memory access.
    634 	 * Newer versions of bootcode use a signature and offset
    635 	 * while older versions use a fixed address.
    636 	 */
    637 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    638 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    639 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    640 		    (sc->bnx_pa.pa_function << 2));
    641 	else
    642 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    643 
    644 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    645 
    646 	/* Set initial device and PHY flags */
    647 	sc->bnx_flags = 0;
    648 	sc->bnx_phy_flags = 0;
    649 
    650 	bnx_probe_pci_caps(sc);
    651 
    652 	/* Get PCI bus information (speed and type). */
    653 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    654 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    655 		uint32_t clkreg;
    656 
    657 		sc->bnx_flags |= BNX_PCIX_FLAG;
    658 
    659 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    660 
    661 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    662 		switch (clkreg) {
    663 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    664 			sc->bus_speed_mhz = 133;
    665 			break;
    666 
    667 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    668 			sc->bus_speed_mhz = 100;
    669 			break;
    670 
    671 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    672 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    673 			sc->bus_speed_mhz = 66;
    674 			break;
    675 
    676 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    677 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    678 			sc->bus_speed_mhz = 50;
    679 			break;
    680 
    681 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    682 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    683 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    684 			sc->bus_speed_mhz = 33;
    685 			break;
    686 		}
    687 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    688 			sc->bus_speed_mhz = 66;
    689 		else
    690 			sc->bus_speed_mhz = 33;
    691 
    692 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    693 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    694 
    695 	/* Reset the controller. */
    696 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    697 		goto bnx_attach_fail;
    698 
    699 	/* Initialize the controller. */
    700 	if (bnx_chipinit(sc)) {
    701 		aprint_error_dev(sc->bnx_dev,
    702 		    "Controller initialization failed!\n");
    703 		goto bnx_attach_fail;
    704 	}
    705 
    706 	/* Perform NVRAM test. */
    707 	if (bnx_nvram_test(sc)) {
    708 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    709 		goto bnx_attach_fail;
    710 	}
    711 
    712 	/* Fetch the permanent Ethernet MAC address. */
    713 	bnx_get_mac_addr(sc);
    714 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    715 	    ether_sprintf(sc->eaddr));
    716 
    717 	/*
    718 	 * Trip points control how many BDs
    719 	 * should be ready before generating an
    720 	 * interrupt while ticks control how long
    721 	 * a BD can sit in the chain before
    722 	 * generating an interrupt.  Set the default
    723 	 * values for the RX and TX rings.
    724 	 */
    725 
    726 #ifdef BNX_DEBUG
    727 	/* Force more frequent interrupts. */
    728 	sc->bnx_tx_quick_cons_trip_int = 1;
    729 	sc->bnx_tx_quick_cons_trip     = 1;
    730 	sc->bnx_tx_ticks_int           = 0;
    731 	sc->bnx_tx_ticks               = 0;
    732 
    733 	sc->bnx_rx_quick_cons_trip_int = 1;
    734 	sc->bnx_rx_quick_cons_trip     = 1;
    735 	sc->bnx_rx_ticks_int           = 0;
    736 	sc->bnx_rx_ticks               = 0;
    737 #else
    738 	sc->bnx_tx_quick_cons_trip_int = 20;
    739 	sc->bnx_tx_quick_cons_trip     = 20;
    740 	sc->bnx_tx_ticks_int           = 80;
    741 	sc->bnx_tx_ticks               = 80;
    742 
    743 	sc->bnx_rx_quick_cons_trip_int = 6;
    744 	sc->bnx_rx_quick_cons_trip     = 6;
    745 	sc->bnx_rx_ticks_int           = 18;
    746 	sc->bnx_rx_ticks               = 18;
    747 #endif
    748 
    749 	/* Update statistics once every second. */
    750 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    751 
    752 	/* Find the media type for the adapter. */
    753 	bnx_get_media(sc);
    754 
    755 	/*
    756 	 * Store config data needed by the PHY driver for
    757 	 * backplane applications
    758 	 */
    759 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    760 	    BNX_SHARED_HW_CFG_CONFIG);
    761 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    762 	    BNX_PORT_HW_CFG_CONFIG);
    763 
    764 	/* Allocate DMA memory resources. */
    765 	sc->bnx_dmatag = pa->pa_dmat;
    766 	if (bnx_dma_alloc(sc)) {
    767 		aprint_error_dev(sc->bnx_dev,
    768 		    "DMA resource allocation failed!\n");
    769 		goto bnx_attach_fail;
    770 	}
    771 
    772 	/* Initialize the ifnet interface. */
    773 	ifp = &sc->bnx_ec.ec_if;
    774 	ifp->if_softc = sc;
    775 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    776 	ifp->if_ioctl = bnx_ioctl;
    777 	ifp->if_stop = bnx_stop;
    778 	ifp->if_start = bnx_start;
    779 	ifp->if_init = bnx_init;
    780 	ifp->if_timer = 0;
    781 	ifp->if_watchdog = bnx_watchdog;
    782 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    783 	IFQ_SET_READY(&ifp->if_snd);
    784 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    785 
    786 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    787 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    788 
    789 	ifp->if_capabilities |=
    790 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    791 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    792 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    793 
    794 	/* Hookup IRQ last. */
    795 	sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
    796 	if (sc->bnx_intrhand == NULL) {
    797 		aprint_error_dev(self, "couldn't establish interrupt");
    798 		if (intrstr != NULL)
    799 			aprint_error(" at %s", intrstr);
    800 		aprint_error("\n");
    801 		goto bnx_attach_fail;
    802 	}
    803 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    804 
    805 	/* create workqueue to handle packet allocations */
    806 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    807 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    808 		aprint_error_dev(self, "failed to create workqueue\n");
    809 		goto bnx_attach_fail;
    810 	}
    811 
    812 	sc->bnx_mii.mii_ifp = ifp;
    813 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    814 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    815 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    816 
    817 	/* Handle any special PHY initialization for SerDes PHYs. */
    818 	bnx_init_media(sc);
    819 
    820 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    821 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    822 	    ether_mediastatus);
    823 
    824 	/* set phyflags and chipid before mii_attach() */
    825 	dict = device_properties(self);
    826 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    827 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    828 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
    829 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
    830 
    831 	/* Print some useful adapter info */
    832 	bnx_print_adapter_info(sc);
    833 
    834 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    835 		mii_flags |= MIIF_HAVEFIBER;
    836 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    837 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    838 
    839 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    840 		aprint_error_dev(self, "no PHY found!\n");
    841 		ifmedia_add(&sc->bnx_mii.mii_media,
    842 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    843 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
    844 	} else
    845 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
    846 
    847 	/* Attach to the Ethernet interface list. */
    848 	if_attach(ifp);
    849 	if_deferred_start_init(ifp, NULL);
    850 	ether_ifattach(ifp,sc->eaddr);
    851 
    852 	callout_init(&sc->bnx_timeout, 0);
    853 
    854 	if (pmf_device_register(self, NULL, NULL))
    855 		pmf_class_network_register(self, ifp);
    856 	else
    857 		aprint_error_dev(self, "couldn't establish power handler\n");
    858 
    859 	/* Print some important debugging info. */
    860 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    861 
    862 	goto bnx_attach_exit;
    863 
    864 bnx_attach_fail:
    865 	bnx_release_resources(sc);
    866 
    867 bnx_attach_exit:
    868 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    869 }
    870 
    871 /****************************************************************************/
    872 /* Device detach function.                                                  */
    873 /*                                                                          */
    874 /* Stops the controller, resets the controller, and releases resources.     */
    875 /*                                                                          */
    876 /* Returns:                                                                 */
    877 /*   0 on success, positive value on failure.                               */
    878 /****************************************************************************/
    879 int
    880 bnx_detach(device_t dev, int flags)
    881 {
    882 	int s;
    883 	struct bnx_softc *sc;
    884 	struct ifnet *ifp;
    885 
    886 	sc = device_private(dev);
    887 	ifp = &sc->bnx_ec.ec_if;
    888 
    889 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    890 
    891 	/* Stop and reset the controller. */
    892 	s = splnet();
    893 	if (ifp->if_flags & IFF_RUNNING)
    894 		bnx_stop(ifp, 1);
    895 	else {
    896 		/* Disable the transmit/receive blocks. */
    897 		REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
    898 		REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
    899 		DELAY(20);
    900 		bnx_disable_intr(sc);
    901 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
    902 	}
    903 
    904 	splx(s);
    905 
    906 	pmf_device_deregister(dev);
    907 	callout_destroy(&sc->bnx_timeout);
    908 	ether_ifdetach(ifp);
    909 	workqueue_destroy(sc->bnx_wq);
    910 
    911 	/* Delete all remaining media. */
    912 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    913 
    914 	if_detach(ifp);
    915 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    916 
    917 	/* Release all remaining resources. */
    918 	bnx_release_resources(sc);
    919 
    920 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    921 
    922 	return 0;
    923 }
    924 
    925 /****************************************************************************/
    926 /* Indirect register read.                                                  */
    927 /*                                                                          */
    928 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    929 /* configuration space.  Using this mechanism avoids issues with posted     */
    930 /* reads but is much slower than memory-mapped I/O.                         */
    931 /*                                                                          */
    932 /* Returns:                                                                 */
    933 /*   The value of the register.                                             */
    934 /****************************************************************************/
    935 uint32_t
    936 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
    937 {
    938 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    939 
    940 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    941 	    offset);
    942 #ifdef BNX_DEBUG
    943 	{
    944 		uint32_t val;
    945 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    946 		    BNX_PCICFG_REG_WINDOW);
    947 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    948 		    "val = 0x%08X\n", __func__, offset, val);
    949 		return val;
    950 	}
    951 #else
    952 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    953 #endif
    954 }
    955 
    956 /****************************************************************************/
    957 /* Indirect register write.                                                 */
    958 /*                                                                          */
    959 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    960 /* configuration space.  Using this mechanism avoids issues with posted     */
    961 /* writes but is muchh slower than memory-mapped I/O.                       */
    962 /*                                                                          */
    963 /* Returns:                                                                 */
    964 /*   Nothing.                                                               */
    965 /****************************************************************************/
    966 void
    967 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
    968 {
    969 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    970 
    971 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    972 		__func__, offset, val);
    973 
    974 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    975 	    offset);
    976 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    977 }
    978 
    979 /****************************************************************************/
    980 /* Context memory write.                                                    */
    981 /*                                                                          */
    982 /* The NetXtreme II controller uses context memory to track connection      */
    983 /* information for L2 and higher network protocols.                         */
    984 /*                                                                          */
    985 /* Returns:                                                                 */
    986 /*   Nothing.                                                               */
    987 /****************************************************************************/
    988 void
    989 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
    990     uint32_t ctx_val)
    991 {
    992 	uint32_t idx, offset = ctx_offset + cid_addr;
    993 	uint32_t val, retry_cnt = 5;
    994 
    995 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
    996 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
    997 		REG_WR(sc, BNX_CTX_CTX_CTRL,
    998 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
    999 
   1000 		for (idx = 0; idx < retry_cnt; idx++) {
   1001 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
   1002 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
   1003 				break;
   1004 			DELAY(5);
   1005 		}
   1006 
   1007 #if 0
   1008 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
   1009 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
   1010 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
   1011 				__FILE__, __LINE__, cid_addr, ctx_offset);
   1012 #endif
   1013 
   1014 	} else {
   1015 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
   1016 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
   1017 	}
   1018 }
   1019 
   1020 /****************************************************************************/
   1021 /* PHY register read.                                                       */
   1022 /*                                                                          */
   1023 /* Implements register reads on the MII bus.                                */
   1024 /*                                                                          */
   1025 /* Returns:                                                                 */
   1026 /*   The value of the register.                                             */
   1027 /****************************************************************************/
   1028 int
   1029 bnx_miibus_read_reg(device_t dev, int phy, int reg)
   1030 {
   1031 	struct bnx_softc	*sc = device_private(dev);
   1032 	uint32_t		val;
   1033 	int			i;
   1034 
   1035 	/* Make sure we are accessing the correct PHY address. */
   1036 	if (phy != sc->bnx_phy_addr) {
   1037 		DBPRINT(sc, BNX_VERBOSE,
   1038 		    "Invalid PHY address %d for PHY read!\n", phy);
   1039 		return 0;
   1040 	}
   1041 
   1042 	/*
   1043 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1044 	 * with special mappings to work with IEEE
   1045 	 * Clause 22 register accesses.
   1046 	 */
   1047 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1048 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1049 			reg += 0x10;
   1050 	}
   1051 
   1052 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1053 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1054 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1055 
   1056 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
   1057 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1058 
   1059 		DELAY(40);
   1060 	}
   1061 
   1062 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
   1063 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
   1064 	    BNX_EMAC_MDIO_COMM_START_BUSY;
   1065 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
   1066 
   1067 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1068 		DELAY(10);
   1069 
   1070 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1071 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1072 			DELAY(5);
   1073 
   1074 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1075 			val &= BNX_EMAC_MDIO_COMM_DATA;
   1076 
   1077 			break;
   1078 		}
   1079 	}
   1080 
   1081 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1082 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
   1083 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
   1084 		val = 0x0;
   1085 	} else
   1086 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1087 
   1088 	DBPRINT(sc, BNX_EXCESSIVE,
   1089 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
   1090 	    (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
   1091 
   1092 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1093 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1094 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1095 
   1096 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
   1097 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1098 
   1099 		DELAY(40);
   1100 	}
   1101 
   1102 	return (val & 0xffff);
   1103 }
   1104 
   1105 /****************************************************************************/
   1106 /* PHY register write.                                                      */
   1107 /*                                                                          */
   1108 /* Implements register writes on the MII bus.                               */
   1109 /*                                                                          */
   1110 /* Returns:                                                                 */
   1111 /*   The value of the register.                                             */
   1112 /****************************************************************************/
   1113 void
   1114 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
   1115 {
   1116 	struct bnx_softc	*sc = device_private(dev);
   1117 	uint32_t		val1;
   1118 	int			i;
   1119 
   1120 	/* Make sure we are accessing the correct PHY address. */
   1121 	if (phy != sc->bnx_phy_addr) {
   1122 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
   1123 		    phy);
   1124 		return;
   1125 	}
   1126 
   1127 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1128 	    "val = 0x%04X\n", __func__,
   1129 	    phy, (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
   1130 
   1131 	/*
   1132 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1133 	 * with special mappings to work with IEEE
   1134 	 * Clause 22 register accesses.
   1135 	 */
   1136 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1137 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1138 			reg += 0x10;
   1139 	}
   1140 
   1141 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1142 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1143 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1144 
   1145 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1146 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1147 
   1148 		DELAY(40);
   1149 	}
   1150 
   1151 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1152 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1153 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1154 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1155 
   1156 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1157 		DELAY(10);
   1158 
   1159 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1160 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1161 			DELAY(5);
   1162 			break;
   1163 		}
   1164 	}
   1165 
   1166 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1167 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1168 		    __LINE__);
   1169 	}
   1170 
   1171 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1172 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1173 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1174 
   1175 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1176 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1177 
   1178 		DELAY(40);
   1179 	}
   1180 }
   1181 
   1182 /****************************************************************************/
   1183 /* MII bus status change.                                                   */
   1184 /*                                                                          */
   1185 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1186 /* MAC interface registers.                                                 */
   1187 /*                                                                          */
   1188 /* Returns:                                                                 */
   1189 /*   Nothing.                                                               */
   1190 /****************************************************************************/
   1191 void
   1192 bnx_miibus_statchg(struct ifnet *ifp)
   1193 {
   1194 	struct bnx_softc	*sc = ifp->if_softc;
   1195 	struct mii_data		*mii = &sc->bnx_mii;
   1196 	int			val;
   1197 
   1198 	val = REG_RD(sc, BNX_EMAC_MODE);
   1199 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1200 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1201 	    BNX_EMAC_MODE_25G);
   1202 
   1203 	/* Set MII or GMII interface based on the speed
   1204 	 * negotiated by the PHY.
   1205 	 */
   1206 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1207 	case IFM_10_T:
   1208 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1209 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1210 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1211 			break;
   1212 		}
   1213 		/* FALLTHROUGH */
   1214 	case IFM_100_TX:
   1215 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1216 		val |= BNX_EMAC_MODE_PORT_MII;
   1217 		break;
   1218 	case IFM_2500_SX:
   1219 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1220 		val |= BNX_EMAC_MODE_25G;
   1221 		/* FALLTHROUGH */
   1222 	case IFM_1000_T:
   1223 	case IFM_1000_SX:
   1224 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1225 		val |= BNX_EMAC_MODE_PORT_GMII;
   1226 		break;
   1227 	default:
   1228 		val |= BNX_EMAC_MODE_PORT_GMII;
   1229 		break;
   1230 	}
   1231 
   1232 	/* Set half or full duplex based on the duplicity
   1233 	 * negotiated by the PHY.
   1234 	 */
   1235 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1236 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1237 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1238 	} else {
   1239 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1240 	}
   1241 
   1242 	REG_WR(sc, BNX_EMAC_MODE, val);
   1243 }
   1244 
   1245 /****************************************************************************/
   1246 /* Acquire NVRAM lock.                                                      */
   1247 /*                                                                          */
   1248 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1249 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1250 /* for use by the driver.                                                   */
   1251 /*                                                                          */
   1252 /* Returns:                                                                 */
   1253 /*   0 on success, positive value on failure.                               */
   1254 /****************************************************************************/
   1255 int
   1256 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1257 {
   1258 	uint32_t		val;
   1259 	int			j;
   1260 
   1261 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1262 
   1263 	/* Request access to the flash interface. */
   1264 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1265 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1266 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1267 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1268 			break;
   1269 
   1270 		DELAY(5);
   1271 	}
   1272 
   1273 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1274 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1275 		return EBUSY;
   1276 	}
   1277 
   1278 	return 0;
   1279 }
   1280 
   1281 /****************************************************************************/
   1282 /* Release NVRAM lock.                                                      */
   1283 /*                                                                          */
   1284 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1285 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1286 /* for use by the driver.                                                   */
   1287 /*                                                                          */
   1288 /* Returns:                                                                 */
   1289 /*   0 on success, positive value on failure.                               */
   1290 /****************************************************************************/
   1291 int
   1292 bnx_release_nvram_lock(struct bnx_softc *sc)
   1293 {
   1294 	int			j;
   1295 	uint32_t		val;
   1296 
   1297 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1298 
   1299 	/* Relinquish nvram interface. */
   1300 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1301 
   1302 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1303 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1304 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1305 			break;
   1306 
   1307 		DELAY(5);
   1308 	}
   1309 
   1310 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1311 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1312 		return EBUSY;
   1313 	}
   1314 
   1315 	return 0;
   1316 }
   1317 
   1318 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1319 /****************************************************************************/
   1320 /* Enable NVRAM write access.                                               */
   1321 /*                                                                          */
   1322 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1323 /*                                                                          */
   1324 /* Returns:                                                                 */
   1325 /*   0 on success, positive value on failure.                               */
   1326 /****************************************************************************/
   1327 int
   1328 bnx_enable_nvram_write(struct bnx_softc *sc)
   1329 {
   1330 	uint32_t		val;
   1331 
   1332 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1333 
   1334 	val = REG_RD(sc, BNX_MISC_CFG);
   1335 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1336 
   1337 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1338 		int j;
   1339 
   1340 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1341 		REG_WR(sc, BNX_NVM_COMMAND,
   1342 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1343 
   1344 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1345 			DELAY(5);
   1346 
   1347 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1348 			if (val & BNX_NVM_COMMAND_DONE)
   1349 				break;
   1350 		}
   1351 
   1352 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1353 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1354 			return EBUSY;
   1355 		}
   1356 	}
   1357 
   1358 	return 0;
   1359 }
   1360 
   1361 /****************************************************************************/
   1362 /* Disable NVRAM write access.                                              */
   1363 /*                                                                          */
   1364 /* When the caller is finished writing to NVRAM write access must be        */
   1365 /* disabled.                                                                */
   1366 /*                                                                          */
   1367 /* Returns:                                                                 */
   1368 /*   Nothing.                                                               */
   1369 /****************************************************************************/
   1370 void
   1371 bnx_disable_nvram_write(struct bnx_softc *sc)
   1372 {
   1373 	uint32_t		val;
   1374 
   1375 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1376 
   1377 	val = REG_RD(sc, BNX_MISC_CFG);
   1378 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1379 }
   1380 #endif
   1381 
   1382 /****************************************************************************/
   1383 /* Enable NVRAM access.                                                     */
   1384 /*                                                                          */
   1385 /* Before accessing NVRAM for read or write operations the caller must      */
   1386 /* enabled NVRAM access.                                                    */
   1387 /*                                                                          */
   1388 /* Returns:                                                                 */
   1389 /*   Nothing.                                                               */
   1390 /****************************************************************************/
   1391 void
   1392 bnx_enable_nvram_access(struct bnx_softc *sc)
   1393 {
   1394 	uint32_t		val;
   1395 
   1396 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1397 
   1398 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1399 	/* Enable both bits, even on read. */
   1400 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1401 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1402 }
   1403 
   1404 /****************************************************************************/
   1405 /* Disable NVRAM access.                                                    */
   1406 /*                                                                          */
   1407 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1408 /*                                                                          */
   1409 /* Returns:                                                                 */
   1410 /*   Nothing.                                                               */
   1411 /****************************************************************************/
   1412 void
   1413 bnx_disable_nvram_access(struct bnx_softc *sc)
   1414 {
   1415 	uint32_t		val;
   1416 
   1417 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1418 
   1419 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1420 
   1421 	/* Disable both bits, even after read. */
   1422 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1423 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1424 }
   1425 
   1426 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1427 /****************************************************************************/
   1428 /* Erase NVRAM page before writing.                                         */
   1429 /*                                                                          */
   1430 /* Non-buffered flash parts require that a page be erased before it is      */
   1431 /* written.                                                                 */
   1432 /*                                                                          */
   1433 /* Returns:                                                                 */
   1434 /*   0 on success, positive value on failure.                               */
   1435 /****************************************************************************/
   1436 int
   1437 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
   1438 {
   1439 	uint32_t		cmd;
   1440 	int			j;
   1441 
   1442 	/* Buffered flash doesn't require an erase. */
   1443 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1444 		return 0;
   1445 
   1446 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1447 
   1448 	/* Build an erase command. */
   1449 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1450 	    BNX_NVM_COMMAND_DOIT;
   1451 
   1452 	/*
   1453 	 * Clear the DONE bit separately, set the NVRAM address to erase,
   1454 	 * and issue the erase command.
   1455 	 */
   1456 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1457 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1458 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1459 
   1460 	/* Wait for completion. */
   1461 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1462 		uint32_t val;
   1463 
   1464 		DELAY(5);
   1465 
   1466 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1467 		if (val & BNX_NVM_COMMAND_DONE)
   1468 			break;
   1469 	}
   1470 
   1471 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1472 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1473 		return EBUSY;
   1474 	}
   1475 
   1476 	return 0;
   1477 }
   1478 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1479 
   1480 /****************************************************************************/
   1481 /* Read a dword (32 bits) from NVRAM.                                       */
   1482 /*                                                                          */
   1483 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1484 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1485 /*                                                                          */
   1486 /* Returns:                                                                 */
   1487 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1488 /****************************************************************************/
   1489 int
   1490 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
   1491     uint8_t *ret_val, uint32_t cmd_flags)
   1492 {
   1493 	uint32_t		cmd;
   1494 	int			i, rc = 0;
   1495 
   1496 	/* Build the command word. */
   1497 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1498 
   1499 	/* Calculate the offset for buffered flash if translation is used. */
   1500 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1501 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1502 		    sc->bnx_flash_info->page_bits) +
   1503 		    (offset % sc->bnx_flash_info->page_size);
   1504 	}
   1505 
   1506 	/*
   1507 	 * Clear the DONE bit separately, set the address to read,
   1508 	 * and issue the read.
   1509 	 */
   1510 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1511 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1512 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1513 
   1514 	/* Wait for completion. */
   1515 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1516 		uint32_t val;
   1517 
   1518 		DELAY(5);
   1519 
   1520 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1521 		if (val & BNX_NVM_COMMAND_DONE) {
   1522 			val = REG_RD(sc, BNX_NVM_READ);
   1523 
   1524 			val = bnx_be32toh(val);
   1525 			memcpy(ret_val, &val, 4);
   1526 			break;
   1527 		}
   1528 	}
   1529 
   1530 	/* Check for errors. */
   1531 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1532 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1533 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1534 		rc = EBUSY;
   1535 	}
   1536 
   1537 	return rc;
   1538 }
   1539 
   1540 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1541 /****************************************************************************/
   1542 /* Write a dword (32 bits) to NVRAM.                                        */
   1543 /*                                                                          */
   1544 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1545 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1546 /* enabled NVRAM write access.                                              */
   1547 /*                                                                          */
   1548 /* Returns:                                                                 */
   1549 /*   0 on success, positive value on failure.                               */
   1550 /****************************************************************************/
   1551 int
   1552 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
   1553     uint32_t cmd_flags)
   1554 {
   1555 	uint32_t		cmd, val32;
   1556 	int			j;
   1557 
   1558 	/* Build the command word. */
   1559 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1560 
   1561 	/* Calculate the offset for buffered flash if translation is used. */
   1562 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1563 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1564 		    sc->bnx_flash_info->page_bits) +
   1565 		    (offset % sc->bnx_flash_info->page_size);
   1566 	}
   1567 
   1568 	/*
   1569 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1570 	 * set the NVRAM address to write, and issue the write command
   1571 	 */
   1572 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1573 	memcpy(&val32, val, 4);
   1574 	val32 = htobe32(val32);
   1575 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1576 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1577 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1578 
   1579 	/* Wait for completion. */
   1580 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1581 		DELAY(5);
   1582 
   1583 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1584 			break;
   1585 	}
   1586 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1587 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1588 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1589 		return EBUSY;
   1590 	}
   1591 
   1592 	return 0;
   1593 }
   1594 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1595 
   1596 /****************************************************************************/
   1597 /* Initialize NVRAM access.                                                 */
   1598 /*                                                                          */
   1599 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1600 /* access that device.                                                      */
   1601 /*                                                                          */
   1602 /* Returns:                                                                 */
   1603 /*   0 on success, positive value on failure.                               */
   1604 /****************************************************************************/
   1605 int
   1606 bnx_init_nvram(struct bnx_softc *sc)
   1607 {
   1608 	uint32_t		val;
   1609 	int			j, entry_count, rc = 0;
   1610 	struct flash_spec	*flash;
   1611 
   1612 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1613 
   1614 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1615 		sc->bnx_flash_info = &flash_5709;
   1616 		goto bnx_init_nvram_get_flash_size;
   1617 	}
   1618 
   1619 	/* Determine the selected interface. */
   1620 	val = REG_RD(sc, BNX_NVM_CFG1);
   1621 
   1622 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1623 
   1624 	/*
   1625 	 * Flash reconfiguration is required to support additional
   1626 	 * NVRAM devices not directly supported in hardware.
   1627 	 * Check if the flash interface was reconfigured
   1628 	 * by the bootcode.
   1629 	 */
   1630 
   1631 	if (val & 0x40000000) {
   1632 		/* Flash interface reconfigured by bootcode. */
   1633 
   1634 		DBPRINT(sc,BNX_INFO_LOAD,
   1635 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1636 
   1637 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1638 		     j++, flash++) {
   1639 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1640 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1641 				sc->bnx_flash_info = flash;
   1642 				break;
   1643 			}
   1644 		}
   1645 	} else {
   1646 		/* Flash interface not yet reconfigured. */
   1647 		uint32_t mask;
   1648 
   1649 		DBPRINT(sc,BNX_INFO_LOAD,
   1650 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1651 
   1652 		if (val & (1 << 23))
   1653 			mask = FLASH_BACKUP_STRAP_MASK;
   1654 		else
   1655 			mask = FLASH_STRAP_MASK;
   1656 
   1657 		/* Look for the matching NVRAM device configuration data. */
   1658 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1659 		    j++, flash++) {
   1660 			/* Check if the dev matches any of the known devices. */
   1661 			if ((val & mask) == (flash->strapping & mask)) {
   1662 				/* Found a device match. */
   1663 				sc->bnx_flash_info = flash;
   1664 
   1665 				/* Request access to the flash interface. */
   1666 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1667 					return rc;
   1668 
   1669 				/* Reconfigure the flash interface. */
   1670 				bnx_enable_nvram_access(sc);
   1671 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1672 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1673 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1674 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1675 				bnx_disable_nvram_access(sc);
   1676 				bnx_release_nvram_lock(sc);
   1677 
   1678 				break;
   1679 			}
   1680 		}
   1681 	}
   1682 
   1683 	/* Check if a matching device was found. */
   1684 	if (j == entry_count) {
   1685 		sc->bnx_flash_info = NULL;
   1686 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1687 			__FILE__, __LINE__);
   1688 		rc = ENODEV;
   1689 	}
   1690 
   1691 bnx_init_nvram_get_flash_size:
   1692 	/* Write the flash config data to the shared memory interface. */
   1693 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1694 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1695 	if (val)
   1696 		sc->bnx_flash_size = val;
   1697 	else
   1698 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1699 
   1700 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1701 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1702 
   1703 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1704 
   1705 	return rc;
   1706 }
   1707 
   1708 /****************************************************************************/
   1709 /* Read an arbitrary range of data from NVRAM.                              */
   1710 /*                                                                          */
   1711 /* Prepares the NVRAM interface for access and reads the requested data     */
   1712 /* into the supplied buffer.                                                */
   1713 /*                                                                          */
   1714 /* Returns:                                                                 */
   1715 /*   0 on success and the data read, positive value on failure.             */
   1716 /****************************************************************************/
   1717 int
   1718 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
   1719     int buf_size)
   1720 {
   1721 	int			rc = 0;
   1722 	uint32_t		cmd_flags, offset32, len32, extra;
   1723 
   1724 	if (buf_size == 0)
   1725 		return 0;
   1726 
   1727 	/* Request access to the flash interface. */
   1728 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1729 		return rc;
   1730 
   1731 	/* Enable access to flash interface */
   1732 	bnx_enable_nvram_access(sc);
   1733 
   1734 	len32 = buf_size;
   1735 	offset32 = offset;
   1736 	extra = 0;
   1737 
   1738 	cmd_flags = 0;
   1739 
   1740 	if (offset32 & 3) {
   1741 		uint8_t buf[4];
   1742 		uint32_t pre_len;
   1743 
   1744 		offset32 &= ~3;
   1745 		pre_len = 4 - (offset & 3);
   1746 
   1747 		if (pre_len >= len32) {
   1748 			pre_len = len32;
   1749 			cmd_flags =
   1750 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1751 		} else
   1752 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1753 
   1754 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1755 
   1756 		if (rc)
   1757 			return rc;
   1758 
   1759 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1760 
   1761 		offset32 += 4;
   1762 		ret_buf += pre_len;
   1763 		len32 -= pre_len;
   1764 	}
   1765 
   1766 	if (len32 & 3) {
   1767 		extra = 4 - (len32 & 3);
   1768 		len32 = (len32 + 4) & ~3;
   1769 	}
   1770 
   1771 	if (len32 == 4) {
   1772 		uint8_t buf[4];
   1773 
   1774 		if (cmd_flags)
   1775 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1776 		else
   1777 			cmd_flags =
   1778 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1779 
   1780 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1781 
   1782 		memcpy(ret_buf, buf, 4 - extra);
   1783 	} else if (len32 > 0) {
   1784 		uint8_t buf[4];
   1785 
   1786 		/* Read the first word. */
   1787 		if (cmd_flags)
   1788 			cmd_flags = 0;
   1789 		else
   1790 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1791 
   1792 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1793 
   1794 		/* Advance to the next dword. */
   1795 		offset32 += 4;
   1796 		ret_buf += 4;
   1797 		len32 -= 4;
   1798 
   1799 		while (len32 > 4 && rc == 0) {
   1800 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1801 
   1802 			/* Advance to the next dword. */
   1803 			offset32 += 4;
   1804 			ret_buf += 4;
   1805 			len32 -= 4;
   1806 		}
   1807 
   1808 		if (rc)
   1809 			return rc;
   1810 
   1811 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1812 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1813 
   1814 		memcpy(ret_buf, buf, 4 - extra);
   1815 	}
   1816 
   1817 	/* Disable access to flash interface and release the lock. */
   1818 	bnx_disable_nvram_access(sc);
   1819 	bnx_release_nvram_lock(sc);
   1820 
   1821 	return rc;
   1822 }
   1823 
   1824 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1825 /****************************************************************************/
   1826 /* Write an arbitrary range of data from NVRAM.                             */
   1827 /*                                                                          */
   1828 /* Prepares the NVRAM interface for write access and writes the requested   */
   1829 /* data from the supplied buffer.  The caller is responsible for            */
   1830 /* calculating any appropriate CRCs.                                        */
   1831 /*                                                                          */
   1832 /* Returns:                                                                 */
   1833 /*   0 on success, positive value on failure.                               */
   1834 /****************************************************************************/
   1835 int
   1836 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
   1837     int buf_size)
   1838 {
   1839 	uint32_t		written, offset32, len32;
   1840 	uint8_t		*buf, start[4], end[4];
   1841 	int			rc = 0;
   1842 	int			align_start, align_end;
   1843 
   1844 	buf = data_buf;
   1845 	offset32 = offset;
   1846 	len32 = buf_size;
   1847 	align_start = align_end = 0;
   1848 
   1849 	if ((align_start = (offset32 & 3))) {
   1850 		offset32 &= ~3;
   1851 		len32 += align_start;
   1852 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1853 			return rc;
   1854 	}
   1855 
   1856 	if (len32 & 3) {
   1857 		if ((len32 > 4) || !align_start) {
   1858 			align_end = 4 - (len32 & 3);
   1859 			len32 += align_end;
   1860 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1861 			    end, 4)))
   1862 				return rc;
   1863 		}
   1864 	}
   1865 
   1866 	if (align_start || align_end) {
   1867 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1868 		if (buf == 0)
   1869 			return ENOMEM;
   1870 
   1871 		if (align_start)
   1872 			memcpy(buf, start, 4);
   1873 
   1874 		if (align_end)
   1875 			memcpy(buf + len32 - 4, end, 4);
   1876 
   1877 		memcpy(buf + align_start, data_buf, buf_size);
   1878 	}
   1879 
   1880 	written = 0;
   1881 	while ((written < len32) && (rc == 0)) {
   1882 		uint32_t page_start, page_end, data_start, data_end;
   1883 		uint32_t addr, cmd_flags;
   1884 		int i;
   1885 		uint8_t flash_buffer[264];
   1886 
   1887 	    /* Find the page_start addr */
   1888 		page_start = offset32 + written;
   1889 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1890 		/* Find the page_end addr */
   1891 		page_end = page_start + sc->bnx_flash_info->page_size;
   1892 		/* Find the data_start addr */
   1893 		data_start = (written == 0) ? offset32 : page_start;
   1894 		/* Find the data_end addr */
   1895 		data_end = (page_end > offset32 + len32) ?
   1896 		    (offset32 + len32) : page_end;
   1897 
   1898 		/* Request access to the flash interface. */
   1899 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1900 			goto nvram_write_end;
   1901 
   1902 		/* Enable access to flash interface */
   1903 		bnx_enable_nvram_access(sc);
   1904 
   1905 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1906 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1907 			int j;
   1908 
   1909 			/* Read the whole page into the buffer
   1910 			 * (non-buffer flash only) */
   1911 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1912 				if (j == (sc->bnx_flash_info->page_size - 4))
   1913 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1914 
   1915 				rc = bnx_nvram_read_dword(sc,
   1916 					page_start + j,
   1917 					&flash_buffer[j],
   1918 					cmd_flags);
   1919 
   1920 				if (rc)
   1921 					goto nvram_write_end;
   1922 
   1923 				cmd_flags = 0;
   1924 			}
   1925 		}
   1926 
   1927 		/* Enable writes to flash interface (unlock write-protect) */
   1928 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1929 			goto nvram_write_end;
   1930 
   1931 		/* Erase the page */
   1932 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1933 			goto nvram_write_end;
   1934 
   1935 		/* Re-enable the write again for the actual write */
   1936 		bnx_enable_nvram_write(sc);
   1937 
   1938 		/* Loop to write back the buffer data from page_start to
   1939 		 * data_start */
   1940 		i = 0;
   1941 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1942 			for (addr = page_start; addr < data_start;
   1943 				addr += 4, i += 4) {
   1944 
   1945 				rc = bnx_nvram_write_dword(sc, addr,
   1946 				    &flash_buffer[i], cmd_flags);
   1947 
   1948 				if (rc != 0)
   1949 					goto nvram_write_end;
   1950 
   1951 				cmd_flags = 0;
   1952 			}
   1953 		}
   1954 
   1955 		/* Loop to write the new data from data_start to data_end */
   1956 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1957 			if ((addr == page_end - 4) ||
   1958 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   1959 			    && (addr == data_end - 4))) {
   1960 
   1961 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1962 			}
   1963 
   1964 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1965 
   1966 			if (rc != 0)
   1967 				goto nvram_write_end;
   1968 
   1969 			cmd_flags = 0;
   1970 			buf += 4;
   1971 		}
   1972 
   1973 		/* Loop to write back the buffer data from data_end
   1974 		 * to page_end */
   1975 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1976 			for (addr = data_end; addr < page_end;
   1977 			    addr += 4, i += 4) {
   1978 
   1979 				if (addr == page_end-4)
   1980 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1981 
   1982 				rc = bnx_nvram_write_dword(sc, addr,
   1983 				    &flash_buffer[i], cmd_flags);
   1984 
   1985 				if (rc != 0)
   1986 					goto nvram_write_end;
   1987 
   1988 				cmd_flags = 0;
   1989 			}
   1990 		}
   1991 
   1992 		/* Disable writes to flash interface (lock write-protect) */
   1993 		bnx_disable_nvram_write(sc);
   1994 
   1995 		/* Disable access to flash interface */
   1996 		bnx_disable_nvram_access(sc);
   1997 		bnx_release_nvram_lock(sc);
   1998 
   1999 		/* Increment written */
   2000 		written += data_end - data_start;
   2001 	}
   2002 
   2003 nvram_write_end:
   2004 	if (align_start || align_end)
   2005 		free(buf, M_DEVBUF);
   2006 
   2007 	return rc;
   2008 }
   2009 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   2010 
   2011 /****************************************************************************/
   2012 /* Verifies that NVRAM is accessible and contains valid data.               */
   2013 /*                                                                          */
   2014 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   2015 /* correct.                                                                 */
   2016 /*                                                                          */
   2017 /* Returns:                                                                 */
   2018 /*   0 on success, positive value on failure.                               */
   2019 /****************************************************************************/
   2020 int
   2021 bnx_nvram_test(struct bnx_softc *sc)
   2022 {
   2023 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
   2024 	uint8_t		*data = (uint8_t *) buf;
   2025 	int			rc = 0;
   2026 	uint32_t		magic, csum;
   2027 
   2028 	/*
   2029 	 * Check that the device NVRAM is valid by reading
   2030 	 * the magic value at offset 0.
   2031 	 */
   2032 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   2033 		goto bnx_nvram_test_done;
   2034 
   2035 	magic = bnx_be32toh(buf[0]);
   2036 	if (magic != BNX_NVRAM_MAGIC) {
   2037 		rc = ENODEV;
   2038 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   2039 		    "Expected: 0x%08X, Found: 0x%08X\n",
   2040 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   2041 		goto bnx_nvram_test_done;
   2042 	}
   2043 
   2044 	/*
   2045 	 * Verify that the device NVRAM includes valid
   2046 	 * configuration data.
   2047 	 */
   2048 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   2049 		goto bnx_nvram_test_done;
   2050 
   2051 	csum = ether_crc32_le(data, 0x100);
   2052 	if (csum != BNX_CRC32_RESIDUAL) {
   2053 		rc = ENODEV;
   2054 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   2055 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   2056 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2057 		goto bnx_nvram_test_done;
   2058 	}
   2059 
   2060 	csum = ether_crc32_le(data + 0x100, 0x100);
   2061 	if (csum != BNX_CRC32_RESIDUAL) {
   2062 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   2063 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   2064 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2065 		rc = ENODEV;
   2066 	}
   2067 
   2068 bnx_nvram_test_done:
   2069 	return rc;
   2070 }
   2071 
   2072 /****************************************************************************/
   2073 /* Identifies the current media type of the controller and sets the PHY     */
   2074 /* address.                                                                 */
   2075 /*                                                                          */
   2076 /* Returns:                                                                 */
   2077 /*   Nothing.                                                               */
   2078 /****************************************************************************/
   2079 void
   2080 bnx_get_media(struct bnx_softc *sc)
   2081 {
   2082 	sc->bnx_phy_addr = 1;
   2083 
   2084 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2085 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   2086 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   2087 		uint32_t strap;
   2088 
   2089 		/*
   2090 		 * The BCM5709S is software configurable
   2091 		 * for Copper or SerDes operation.
   2092 		 */
   2093 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   2094 			DBPRINT(sc, BNX_INFO_LOAD,
   2095 			    "5709 bonded for copper.\n");
   2096 			goto bnx_get_media_exit;
   2097 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   2098 			DBPRINT(sc, BNX_INFO_LOAD,
   2099 			    "5709 bonded for dual media.\n");
   2100 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2101 			goto bnx_get_media_exit;
   2102 		}
   2103 
   2104 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2105 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2106 		else {
   2107 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2108 			    >> 8;
   2109 		}
   2110 
   2111 		if (sc->bnx_pa.pa_function == 0) {
   2112 			switch (strap) {
   2113 			case 0x4:
   2114 			case 0x5:
   2115 			case 0x6:
   2116 				DBPRINT(sc, BNX_INFO_LOAD,
   2117 					"BCM5709 s/w configured for SerDes.\n");
   2118 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2119 				break;
   2120 			default:
   2121 				DBPRINT(sc, BNX_INFO_LOAD,
   2122 					"BCM5709 s/w configured for Copper.\n");
   2123 			}
   2124 		} else {
   2125 			switch (strap) {
   2126 			case 0x1:
   2127 			case 0x2:
   2128 			case 0x4:
   2129 				DBPRINT(sc, BNX_INFO_LOAD,
   2130 					"BCM5709 s/w configured for SerDes.\n");
   2131 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2132 				break;
   2133 			default:
   2134 				DBPRINT(sc, BNX_INFO_LOAD,
   2135 					"BCM5709 s/w configured for Copper.\n");
   2136 			}
   2137 		}
   2138 
   2139 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2140 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2141 
   2142 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2143 		uint32_t val;
   2144 
   2145 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2146 
   2147 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2148 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2149 
   2150 		/*
   2151 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2152 		 * separate PHY for SerDes.
   2153 		 */
   2154 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2155 			sc->bnx_phy_addr = 2;
   2156 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2157 				 BNX_SHARED_HW_CFG_CONFIG);
   2158 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2159 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2160 				DBPRINT(sc, BNX_INFO_LOAD,
   2161 				    "Found 2.5Gb capable adapter\n");
   2162 			}
   2163 		}
   2164 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2165 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2166 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2167 
   2168 bnx_get_media_exit:
   2169 	DBPRINT(sc, (BNX_INFO_LOAD),
   2170 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2171 }
   2172 
   2173 /****************************************************************************/
   2174 /* Performs PHY initialization required before MII drivers access the       */
   2175 /* device.                                                                  */
   2176 /*                                                                          */
   2177 /* Returns:                                                                 */
   2178 /*   Nothing.                                                               */
   2179 /****************************************************************************/
   2180 void
   2181 bnx_init_media(struct bnx_softc *sc)
   2182 {
   2183 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2184 		/*
   2185 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2186 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2187 		 * the PHY to the mii(4) layer. PHY specific configuration
   2188 		 * is done by the mii(4) layer.
   2189 		 */
   2190 
   2191 		/* Select auto-negotiation MMD of the PHY. */
   2192 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2193 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2194 
   2195 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2196 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2197 
   2198 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2199 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2200 	}
   2201 }
   2202 
   2203 /****************************************************************************/
   2204 /* Free any DMA memory owned by the driver.                                 */
   2205 /*                                                                          */
   2206 /* Scans through each data structre that requires DMA memory and frees      */
   2207 /* the memory if allocated.                                                 */
   2208 /*                                                                          */
   2209 /* Returns:                                                                 */
   2210 /*   Nothing.                                                               */
   2211 /****************************************************************************/
   2212 void
   2213 bnx_dma_free(struct bnx_softc *sc)
   2214 {
   2215 	int			i;
   2216 
   2217 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2218 
   2219 	/* Destroy the status block. */
   2220 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2221 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2222 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2223 		    BNX_STATUS_BLK_SZ);
   2224 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2225 		    sc->status_rseg);
   2226 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2227 		sc->status_block = NULL;
   2228 		sc->status_map = NULL;
   2229 	}
   2230 
   2231 	/* Destroy the statistics block. */
   2232 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2233 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2234 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2235 		    BNX_STATS_BLK_SZ);
   2236 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2237 		    sc->stats_rseg);
   2238 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2239 		sc->stats_block = NULL;
   2240 		sc->stats_map = NULL;
   2241 	}
   2242 
   2243 	/* Free, unmap and destroy all context memory pages. */
   2244 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2245 		for (i = 0; i < sc->ctx_pages; i++) {
   2246 			if (sc->ctx_block[i] != NULL) {
   2247 				bus_dmamap_unload(sc->bnx_dmatag,
   2248 				    sc->ctx_map[i]);
   2249 				bus_dmamem_unmap(sc->bnx_dmatag,
   2250 				    (void *)sc->ctx_block[i],
   2251 				    BCM_PAGE_SIZE);
   2252 				bus_dmamem_free(sc->bnx_dmatag,
   2253 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2254 				bus_dmamap_destroy(sc->bnx_dmatag,
   2255 				    sc->ctx_map[i]);
   2256 				sc->ctx_block[i] = NULL;
   2257 			}
   2258 		}
   2259 	}
   2260 
   2261 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2262 	for (i = 0; i < TX_PAGES; i++ ) {
   2263 		if (sc->tx_bd_chain[i] != NULL &&
   2264 		    sc->tx_bd_chain_map[i] != NULL) {
   2265 			bus_dmamap_unload(sc->bnx_dmatag,
   2266 			    sc->tx_bd_chain_map[i]);
   2267 			bus_dmamem_unmap(sc->bnx_dmatag,
   2268 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2269 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2270 			    sc->tx_bd_chain_rseg[i]);
   2271 			bus_dmamap_destroy(sc->bnx_dmatag,
   2272 			    sc->tx_bd_chain_map[i]);
   2273 			sc->tx_bd_chain[i] = NULL;
   2274 			sc->tx_bd_chain_map[i] = NULL;
   2275 		}
   2276 	}
   2277 
   2278 	/* Destroy the TX dmamaps. */
   2279 	/* This isn't necessary since we dont allocate them up front */
   2280 
   2281 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2282 	for (i = 0; i < RX_PAGES; i++ ) {
   2283 		if (sc->rx_bd_chain[i] != NULL &&
   2284 		    sc->rx_bd_chain_map[i] != NULL) {
   2285 			bus_dmamap_unload(sc->bnx_dmatag,
   2286 			    sc->rx_bd_chain_map[i]);
   2287 			bus_dmamem_unmap(sc->bnx_dmatag,
   2288 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2289 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2290 			    sc->rx_bd_chain_rseg[i]);
   2291 
   2292 			bus_dmamap_destroy(sc->bnx_dmatag,
   2293 			    sc->rx_bd_chain_map[i]);
   2294 			sc->rx_bd_chain[i] = NULL;
   2295 			sc->rx_bd_chain_map[i] = NULL;
   2296 		}
   2297 	}
   2298 
   2299 	/* Unload and destroy the RX mbuf maps. */
   2300 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2301 		if (sc->rx_mbuf_map[i] != NULL) {
   2302 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2303 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2304 		}
   2305 	}
   2306 
   2307 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2308 }
   2309 
   2310 /****************************************************************************/
   2311 /* Allocate any DMA memory needed by the driver.                            */
   2312 /*                                                                          */
   2313 /* Allocates DMA memory needed for the various global structures needed by  */
   2314 /* hardware.                                                                */
   2315 /*                                                                          */
   2316 /* Returns:                                                                 */
   2317 /*   0 for success, positive value for failure.                             */
   2318 /****************************************************************************/
   2319 int
   2320 bnx_dma_alloc(struct bnx_softc *sc)
   2321 {
   2322 	int			i, rc = 0;
   2323 
   2324 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2325 
   2326 	/*
   2327 	 * Allocate DMA memory for the status block, map the memory into DMA
   2328 	 * space, and fetch the physical address of the block.
   2329 	 */
   2330 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2331 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2332 		aprint_error_dev(sc->bnx_dev,
   2333 		    "Could not create status block DMA map!\n");
   2334 		rc = ENOMEM;
   2335 		goto bnx_dma_alloc_exit;
   2336 	}
   2337 
   2338 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2339 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2340 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2341 		aprint_error_dev(sc->bnx_dev,
   2342 		    "Could not allocate status block DMA memory!\n");
   2343 		rc = ENOMEM;
   2344 		goto bnx_dma_alloc_exit;
   2345 	}
   2346 
   2347 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2348 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2349 		aprint_error_dev(sc->bnx_dev,
   2350 		    "Could not map status block DMA memory!\n");
   2351 		rc = ENOMEM;
   2352 		goto bnx_dma_alloc_exit;
   2353 	}
   2354 
   2355 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2356 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2357 		aprint_error_dev(sc->bnx_dev,
   2358 		    "Could not load status block DMA memory!\n");
   2359 		rc = ENOMEM;
   2360 		goto bnx_dma_alloc_exit;
   2361 	}
   2362 
   2363 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2364 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2365 
   2366 	/* DRC - Fix for 64 bit addresses. */
   2367 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2368 		(uint32_t) sc->status_block_paddr);
   2369 
   2370 	/* BCM5709 uses host memory as cache for context memory. */
   2371 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2372 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2373 		if (sc->ctx_pages == 0)
   2374 			sc->ctx_pages = 1;
   2375 		if (sc->ctx_pages > 4) /* XXX */
   2376 			sc->ctx_pages = 4;
   2377 
   2378 		DBRUNIF((sc->ctx_pages > 512),
   2379 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2380 				__FILE__, __LINE__, sc->ctx_pages));
   2381 
   2382 
   2383 		for (i = 0; i < sc->ctx_pages; i++) {
   2384 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2385 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2386 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2387 			    &sc->ctx_map[i]) != 0) {
   2388 				rc = ENOMEM;
   2389 				goto bnx_dma_alloc_exit;
   2390 			}
   2391 
   2392 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2393 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2394 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2395 				rc = ENOMEM;
   2396 				goto bnx_dma_alloc_exit;
   2397 			}
   2398 
   2399 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2400 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2401 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2402 				rc = ENOMEM;
   2403 				goto bnx_dma_alloc_exit;
   2404 			}
   2405 
   2406 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2407 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2408 			    BUS_DMA_NOWAIT) != 0) {
   2409 				rc = ENOMEM;
   2410 				goto bnx_dma_alloc_exit;
   2411 			}
   2412 
   2413 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2414 		}
   2415 	}
   2416 
   2417 	/*
   2418 	 * Allocate DMA memory for the statistics block, map the memory into
   2419 	 * DMA space, and fetch the physical address of the block.
   2420 	 */
   2421 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2422 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2423 		aprint_error_dev(sc->bnx_dev,
   2424 		    "Could not create stats block DMA map!\n");
   2425 		rc = ENOMEM;
   2426 		goto bnx_dma_alloc_exit;
   2427 	}
   2428 
   2429 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2430 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2431 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2432 		aprint_error_dev(sc->bnx_dev,
   2433 		    "Could not allocate stats block DMA memory!\n");
   2434 		rc = ENOMEM;
   2435 		goto bnx_dma_alloc_exit;
   2436 	}
   2437 
   2438 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2439 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2440 		aprint_error_dev(sc->bnx_dev,
   2441 		    "Could not map stats block DMA memory!\n");
   2442 		rc = ENOMEM;
   2443 		goto bnx_dma_alloc_exit;
   2444 	}
   2445 
   2446 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2447 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2448 		aprint_error_dev(sc->bnx_dev,
   2449 		    "Could not load status block DMA memory!\n");
   2450 		rc = ENOMEM;
   2451 		goto bnx_dma_alloc_exit;
   2452 	}
   2453 
   2454 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2455 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2456 
   2457 	/* DRC - Fix for 64 bit address. */
   2458 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2459 	    (uint32_t) sc->stats_block_paddr);
   2460 
   2461 	/*
   2462 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2463 	 * and fetch the physical address of the block.
   2464 	 */
   2465 	for (i = 0; i < TX_PAGES; i++) {
   2466 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2467 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2468 		    &sc->tx_bd_chain_map[i])) {
   2469 			aprint_error_dev(sc->bnx_dev,
   2470 			    "Could not create Tx desc %d DMA map!\n", i);
   2471 			rc = ENOMEM;
   2472 			goto bnx_dma_alloc_exit;
   2473 		}
   2474 
   2475 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2476 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2477 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2478 			aprint_error_dev(sc->bnx_dev,
   2479 			    "Could not allocate TX desc %d DMA memory!\n",
   2480 			    i);
   2481 			rc = ENOMEM;
   2482 			goto bnx_dma_alloc_exit;
   2483 		}
   2484 
   2485 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2486 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2487 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2488 			aprint_error_dev(sc->bnx_dev,
   2489 			    "Could not map TX desc %d DMA memory!\n", i);
   2490 			rc = ENOMEM;
   2491 			goto bnx_dma_alloc_exit;
   2492 		}
   2493 
   2494 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2495 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2496 		    BUS_DMA_NOWAIT)) {
   2497 			aprint_error_dev(sc->bnx_dev,
   2498 			    "Could not load TX desc %d DMA memory!\n", i);
   2499 			rc = ENOMEM;
   2500 			goto bnx_dma_alloc_exit;
   2501 		}
   2502 
   2503 		sc->tx_bd_chain_paddr[i] =
   2504 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2505 
   2506 		/* DRC - Fix for 64 bit systems. */
   2507 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2508 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
   2509 	}
   2510 
   2511 	/*
   2512 	 * Create lists to hold TX mbufs.
   2513 	 */
   2514 	TAILQ_INIT(&sc->tx_free_pkts);
   2515 	TAILQ_INIT(&sc->tx_used_pkts);
   2516 	sc->tx_pkt_count = 0;
   2517 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2518 
   2519 	/*
   2520 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2521 	 * and fetch the physical address of the block.
   2522 	 */
   2523 	for (i = 0; i < RX_PAGES; i++) {
   2524 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2525 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2526 		    &sc->rx_bd_chain_map[i])) {
   2527 			aprint_error_dev(sc->bnx_dev,
   2528 			    "Could not create Rx desc %d DMA map!\n", i);
   2529 			rc = ENOMEM;
   2530 			goto bnx_dma_alloc_exit;
   2531 		}
   2532 
   2533 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2534 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2535 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2536 			aprint_error_dev(sc->bnx_dev,
   2537 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2538 			rc = ENOMEM;
   2539 			goto bnx_dma_alloc_exit;
   2540 		}
   2541 
   2542 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2543 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2544 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2545 			aprint_error_dev(sc->bnx_dev,
   2546 			    "Could not map Rx desc %d DMA memory!\n", i);
   2547 			rc = ENOMEM;
   2548 			goto bnx_dma_alloc_exit;
   2549 		}
   2550 
   2551 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2552 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2553 		    BUS_DMA_NOWAIT)) {
   2554 			aprint_error_dev(sc->bnx_dev,
   2555 			    "Could not load Rx desc %d DMA memory!\n", i);
   2556 			rc = ENOMEM;
   2557 			goto bnx_dma_alloc_exit;
   2558 		}
   2559 
   2560 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2561 		sc->rx_bd_chain_paddr[i] =
   2562 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2563 
   2564 		/* DRC - Fix for 64 bit systems. */
   2565 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2566 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
   2567 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2568 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2569 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2570 	}
   2571 
   2572 	/*
   2573 	 * Create DMA maps for the Rx buffer mbufs.
   2574 	 */
   2575 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2576 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2577 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2578 		    &sc->rx_mbuf_map[i])) {
   2579 			aprint_error_dev(sc->bnx_dev,
   2580 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2581 			rc = ENOMEM;
   2582 			goto bnx_dma_alloc_exit;
   2583 		}
   2584 	}
   2585 
   2586  bnx_dma_alloc_exit:
   2587 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2588 
   2589 	return rc;
   2590 }
   2591 
   2592 /****************************************************************************/
   2593 /* Release all resources used by the driver.                                */
   2594 /*                                                                          */
   2595 /* Releases all resources acquired by the driver including interrupts,      */
   2596 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2597 /*                                                                          */
   2598 /* Returns:                                                                 */
   2599 /*   Nothing.                                                               */
   2600 /****************************************************************************/
   2601 void
   2602 bnx_release_resources(struct bnx_softc *sc)
   2603 {
   2604 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2605 
   2606 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2607 
   2608 	bnx_dma_free(sc);
   2609 
   2610 	if (sc->bnx_intrhand != NULL)
   2611 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2612 
   2613 	if (sc->bnx_size)
   2614 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2615 
   2616 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2617 }
   2618 
   2619 /****************************************************************************/
   2620 /* Firmware synchronization.                                                */
   2621 /*                                                                          */
   2622 /* Before performing certain events such as a chip reset, synchronize with  */
   2623 /* the firmware first.                                                      */
   2624 /*                                                                          */
   2625 /* Returns:                                                                 */
   2626 /*   0 for success, positive value for failure.                             */
   2627 /****************************************************************************/
   2628 int
   2629 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
   2630 {
   2631 	int			i, rc = 0;
   2632 	uint32_t		val;
   2633 
   2634 	/* Don't waste any time if we've timed out before. */
   2635 	if (sc->bnx_fw_timed_out) {
   2636 		rc = EBUSY;
   2637 		goto bnx_fw_sync_exit;
   2638 	}
   2639 
   2640 	/* Increment the message sequence number. */
   2641 	sc->bnx_fw_wr_seq++;
   2642 	msg_data |= sc->bnx_fw_wr_seq;
   2643 
   2644  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2645 	    msg_data);
   2646 
   2647 	/* Send the message to the bootcode driver mailbox. */
   2648 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2649 
   2650 	/* Wait for the bootcode to acknowledge the message. */
   2651 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2652 		/* Check for a response in the bootcode firmware mailbox. */
   2653 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2654 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2655 			break;
   2656 		DELAY(1000);
   2657 	}
   2658 
   2659 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2660 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2661 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2662 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2663 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2664 
   2665 		msg_data &= ~BNX_DRV_MSG_CODE;
   2666 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2667 
   2668 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2669 
   2670 		sc->bnx_fw_timed_out = 1;
   2671 		rc = EBUSY;
   2672 	}
   2673 
   2674 bnx_fw_sync_exit:
   2675 	return rc;
   2676 }
   2677 
   2678 /****************************************************************************/
   2679 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2680 /*                                                                          */
   2681 /* Returns:                                                                 */
   2682 /*   Nothing.                                                               */
   2683 /****************************************************************************/
   2684 void
   2685 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
   2686     uint32_t rv2p_code_len, uint32_t rv2p_proc)
   2687 {
   2688 	int			i;
   2689 	uint32_t		val;
   2690 
   2691 	/* Set the page size used by RV2P. */
   2692 	if (rv2p_proc == RV2P_PROC2) {
   2693 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2694 		    USABLE_RX_BD_PER_PAGE);
   2695 	}
   2696 
   2697 	for (i = 0; i < rv2p_code_len; i += 8) {
   2698 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2699 		rv2p_code++;
   2700 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2701 		rv2p_code++;
   2702 
   2703 		if (rv2p_proc == RV2P_PROC1) {
   2704 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2705 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2706 		} else {
   2707 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2708 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2709 		}
   2710 	}
   2711 
   2712 	/* Reset the processor, un-stall is done later. */
   2713 	if (rv2p_proc == RV2P_PROC1)
   2714 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2715 	else
   2716 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2717 }
   2718 
   2719 /****************************************************************************/
   2720 /* Load RISC processor firmware.                                            */
   2721 /*                                                                          */
   2722 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2723 /* associated with a particular processor.                                  */
   2724 /*                                                                          */
   2725 /* Returns:                                                                 */
   2726 /*   Nothing.                                                               */
   2727 /****************************************************************************/
   2728 void
   2729 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2730     struct fw_info *fw)
   2731 {
   2732 	uint32_t		offset;
   2733 	uint32_t		val;
   2734 
   2735 	/* Halt the CPU. */
   2736 	val = REG_RD_IND(sc, cpu_reg->mode);
   2737 	val |= cpu_reg->mode_value_halt;
   2738 	REG_WR_IND(sc, cpu_reg->mode, val);
   2739 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2740 
   2741 	/* Load the Text area. */
   2742 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2743 	if (fw->text) {
   2744 		int j;
   2745 
   2746 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2747 			REG_WR_IND(sc, offset, fw->text[j]);
   2748 	}
   2749 
   2750 	/* Load the Data area. */
   2751 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2752 	if (fw->data) {
   2753 		int j;
   2754 
   2755 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2756 			REG_WR_IND(sc, offset, fw->data[j]);
   2757 	}
   2758 
   2759 	/* Load the SBSS area. */
   2760 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2761 	if (fw->sbss) {
   2762 		int j;
   2763 
   2764 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2765 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2766 	}
   2767 
   2768 	/* Load the BSS area. */
   2769 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2770 	if (fw->bss) {
   2771 		int j;
   2772 
   2773 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2774 			REG_WR_IND(sc, offset, fw->bss[j]);
   2775 	}
   2776 
   2777 	/* Load the Read-Only area. */
   2778 	offset = cpu_reg->spad_base +
   2779 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2780 	if (fw->rodata) {
   2781 		int j;
   2782 
   2783 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2784 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2785 	}
   2786 
   2787 	/* Clear the pre-fetch instruction. */
   2788 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2789 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2790 
   2791 	/* Start the CPU. */
   2792 	val = REG_RD_IND(sc, cpu_reg->mode);
   2793 	val &= ~cpu_reg->mode_value_halt;
   2794 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2795 	REG_WR_IND(sc, cpu_reg->mode, val);
   2796 }
   2797 
   2798 /****************************************************************************/
   2799 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2800 /*                                                                          */
   2801 /* Loads the firmware for each CPU and starts the CPU.                      */
   2802 /*                                                                          */
   2803 /* Returns:                                                                 */
   2804 /*   Nothing.                                                               */
   2805 /****************************************************************************/
   2806 void
   2807 bnx_init_cpus(struct bnx_softc *sc)
   2808 {
   2809 	struct cpu_reg cpu_reg;
   2810 	struct fw_info fw;
   2811 
   2812 	switch(BNX_CHIP_NUM(sc)) {
   2813 	case BNX_CHIP_NUM_5709:
   2814 		/* Initialize the RV2P processor. */
   2815 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2816 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2817 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2818 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2819 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2820 		} else {
   2821 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2822 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2823 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2824 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2825 		}
   2826 
   2827 		/* Initialize the RX Processor. */
   2828 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2829 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2830 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2831 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2832 		cpu_reg.state_value_clear = 0xffffff;
   2833 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2834 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2835 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2836 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2837 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2838 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2839 		cpu_reg.mips_view_base = 0x8000000;
   2840 
   2841 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2842 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2843 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2844 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2845 
   2846 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2847 		fw.text_len = bnx_RXP_b09FwTextLen;
   2848 		fw.text_index = 0;
   2849 		fw.text = bnx_RXP_b09FwText;
   2850 
   2851 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2852 		fw.data_len = bnx_RXP_b09FwDataLen;
   2853 		fw.data_index = 0;
   2854 		fw.data = bnx_RXP_b09FwData;
   2855 
   2856 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2857 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2858 		fw.sbss_index = 0;
   2859 		fw.sbss = bnx_RXP_b09FwSbss;
   2860 
   2861 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2862 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2863 		fw.bss_index = 0;
   2864 		fw.bss = bnx_RXP_b09FwBss;
   2865 
   2866 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2867 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2868 		fw.rodata_index = 0;
   2869 		fw.rodata = bnx_RXP_b09FwRodata;
   2870 
   2871 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2872 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2873 
   2874 		/* Initialize the TX Processor. */
   2875 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2876 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2877 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2878 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2879 		cpu_reg.state_value_clear = 0xffffff;
   2880 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2881 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2882 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2883 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2884 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2885 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2886 		cpu_reg.mips_view_base = 0x8000000;
   2887 
   2888 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2889 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2890 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2891 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2892 
   2893 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2894 		fw.text_len = bnx_TXP_b09FwTextLen;
   2895 		fw.text_index = 0;
   2896 		fw.text = bnx_TXP_b09FwText;
   2897 
   2898 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   2899 		fw.data_len = bnx_TXP_b09FwDataLen;
   2900 		fw.data_index = 0;
   2901 		fw.data = bnx_TXP_b09FwData;
   2902 
   2903 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   2904 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   2905 		fw.sbss_index = 0;
   2906 		fw.sbss = bnx_TXP_b09FwSbss;
   2907 
   2908 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   2909 		fw.bss_len = bnx_TXP_b09FwBssLen;
   2910 		fw.bss_index = 0;
   2911 		fw.bss = bnx_TXP_b09FwBss;
   2912 
   2913 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   2914 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   2915 		fw.rodata_index = 0;
   2916 		fw.rodata = bnx_TXP_b09FwRodata;
   2917 
   2918 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2919 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2920 
   2921 		/* Initialize the TX Patch-up Processor. */
   2922 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2923 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2924 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2925 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2926 		cpu_reg.state_value_clear = 0xffffff;
   2927 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2928 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2929 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2930 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2931 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2932 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2933 		cpu_reg.mips_view_base = 0x8000000;
   2934 
   2935 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   2936 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   2937 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   2938 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   2939 
   2940 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   2941 		fw.text_len = bnx_TPAT_b09FwTextLen;
   2942 		fw.text_index = 0;
   2943 		fw.text = bnx_TPAT_b09FwText;
   2944 
   2945 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   2946 		fw.data_len = bnx_TPAT_b09FwDataLen;
   2947 		fw.data_index = 0;
   2948 		fw.data = bnx_TPAT_b09FwData;
   2949 
   2950 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   2951 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   2952 		fw.sbss_index = 0;
   2953 		fw.sbss = bnx_TPAT_b09FwSbss;
   2954 
   2955 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   2956 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   2957 		fw.bss_index = 0;
   2958 		fw.bss = bnx_TPAT_b09FwBss;
   2959 
   2960 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   2961 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   2962 		fw.rodata_index = 0;
   2963 		fw.rodata = bnx_TPAT_b09FwRodata;
   2964 
   2965 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2966 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2967 
   2968 		/* Initialize the Completion Processor. */
   2969 		cpu_reg.mode = BNX_COM_CPU_MODE;
   2970 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2971 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2972 		cpu_reg.state = BNX_COM_CPU_STATE;
   2973 		cpu_reg.state_value_clear = 0xffffff;
   2974 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2975 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2976 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2977 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2978 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2979 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   2980 		cpu_reg.mips_view_base = 0x8000000;
   2981 
   2982 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   2983 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   2984 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   2985 		fw.start_addr = bnx_COM_b09FwStartAddr;
   2986 
   2987 		fw.text_addr = bnx_COM_b09FwTextAddr;
   2988 		fw.text_len = bnx_COM_b09FwTextLen;
   2989 		fw.text_index = 0;
   2990 		fw.text = bnx_COM_b09FwText;
   2991 
   2992 		fw.data_addr = bnx_COM_b09FwDataAddr;
   2993 		fw.data_len = bnx_COM_b09FwDataLen;
   2994 		fw.data_index = 0;
   2995 		fw.data = bnx_COM_b09FwData;
   2996 
   2997 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   2998 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   2999 		fw.sbss_index = 0;
   3000 		fw.sbss = bnx_COM_b09FwSbss;
   3001 
   3002 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   3003 		fw.bss_len = bnx_COM_b09FwBssLen;
   3004 		fw.bss_index = 0;
   3005 		fw.bss = bnx_COM_b09FwBss;
   3006 
   3007 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   3008 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   3009 		fw.rodata_index = 0;
   3010 		fw.rodata = bnx_COM_b09FwRodata;
   3011 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3012 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3013 		break;
   3014 	default:
   3015 		/* Initialize the RV2P processor. */
   3016 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   3017 		    RV2P_PROC1);
   3018 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   3019 		    RV2P_PROC2);
   3020 
   3021 		/* Initialize the RX Processor. */
   3022 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   3023 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   3024 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   3025 		cpu_reg.state = BNX_RXP_CPU_STATE;
   3026 		cpu_reg.state_value_clear = 0xffffff;
   3027 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   3028 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   3029 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   3030 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   3031 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   3032 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   3033 		cpu_reg.mips_view_base = 0x8000000;
   3034 
   3035 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   3036 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   3037 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   3038 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   3039 
   3040 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   3041 		fw.text_len = bnx_RXP_b06FwTextLen;
   3042 		fw.text_index = 0;
   3043 		fw.text = bnx_RXP_b06FwText;
   3044 
   3045 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   3046 		fw.data_len = bnx_RXP_b06FwDataLen;
   3047 		fw.data_index = 0;
   3048 		fw.data = bnx_RXP_b06FwData;
   3049 
   3050 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   3051 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   3052 		fw.sbss_index = 0;
   3053 		fw.sbss = bnx_RXP_b06FwSbss;
   3054 
   3055 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   3056 		fw.bss_len = bnx_RXP_b06FwBssLen;
   3057 		fw.bss_index = 0;
   3058 		fw.bss = bnx_RXP_b06FwBss;
   3059 
   3060 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   3061 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   3062 		fw.rodata_index = 0;
   3063 		fw.rodata = bnx_RXP_b06FwRodata;
   3064 
   3065 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   3066 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3067 
   3068 		/* Initialize the TX Processor. */
   3069 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   3070 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   3071 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   3072 		cpu_reg.state = BNX_TXP_CPU_STATE;
   3073 		cpu_reg.state_value_clear = 0xffffff;
   3074 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   3075 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   3076 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   3077 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   3078 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   3079 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   3080 		cpu_reg.mips_view_base = 0x8000000;
   3081 
   3082 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   3083 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   3084 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   3085 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   3086 
   3087 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   3088 		fw.text_len = bnx_TXP_b06FwTextLen;
   3089 		fw.text_index = 0;
   3090 		fw.text = bnx_TXP_b06FwText;
   3091 
   3092 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   3093 		fw.data_len = bnx_TXP_b06FwDataLen;
   3094 		fw.data_index = 0;
   3095 		fw.data = bnx_TXP_b06FwData;
   3096 
   3097 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   3098 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   3099 		fw.sbss_index = 0;
   3100 		fw.sbss = bnx_TXP_b06FwSbss;
   3101 
   3102 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3103 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3104 		fw.bss_index = 0;
   3105 		fw.bss = bnx_TXP_b06FwBss;
   3106 
   3107 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3108 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3109 		fw.rodata_index = 0;
   3110 		fw.rodata = bnx_TXP_b06FwRodata;
   3111 
   3112 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3113 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3114 
   3115 		/* Initialize the TX Patch-up Processor. */
   3116 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3117 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3118 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3119 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3120 		cpu_reg.state_value_clear = 0xffffff;
   3121 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3122 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3123 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3124 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3125 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3126 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3127 		cpu_reg.mips_view_base = 0x8000000;
   3128 
   3129 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3130 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3131 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3132 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3133 
   3134 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3135 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3136 		fw.text_index = 0;
   3137 		fw.text = bnx_TPAT_b06FwText;
   3138 
   3139 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3140 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3141 		fw.data_index = 0;
   3142 		fw.data = bnx_TPAT_b06FwData;
   3143 
   3144 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3145 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3146 		fw.sbss_index = 0;
   3147 		fw.sbss = bnx_TPAT_b06FwSbss;
   3148 
   3149 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3150 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3151 		fw.bss_index = 0;
   3152 		fw.bss = bnx_TPAT_b06FwBss;
   3153 
   3154 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3155 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3156 		fw.rodata_index = 0;
   3157 		fw.rodata = bnx_TPAT_b06FwRodata;
   3158 
   3159 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3160 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3161 
   3162 		/* Initialize the Completion Processor. */
   3163 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3164 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3165 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3166 		cpu_reg.state = BNX_COM_CPU_STATE;
   3167 		cpu_reg.state_value_clear = 0xffffff;
   3168 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3169 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3170 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3171 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3172 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3173 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3174 		cpu_reg.mips_view_base = 0x8000000;
   3175 
   3176 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3177 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3178 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3179 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3180 
   3181 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3182 		fw.text_len = bnx_COM_b06FwTextLen;
   3183 		fw.text_index = 0;
   3184 		fw.text = bnx_COM_b06FwText;
   3185 
   3186 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3187 		fw.data_len = bnx_COM_b06FwDataLen;
   3188 		fw.data_index = 0;
   3189 		fw.data = bnx_COM_b06FwData;
   3190 
   3191 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3192 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3193 		fw.sbss_index = 0;
   3194 		fw.sbss = bnx_COM_b06FwSbss;
   3195 
   3196 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3197 		fw.bss_len = bnx_COM_b06FwBssLen;
   3198 		fw.bss_index = 0;
   3199 		fw.bss = bnx_COM_b06FwBss;
   3200 
   3201 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3202 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3203 		fw.rodata_index = 0;
   3204 		fw.rodata = bnx_COM_b06FwRodata;
   3205 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3206 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3207 		break;
   3208 	}
   3209 }
   3210 
   3211 /****************************************************************************/
   3212 /* Initialize context memory.                                               */
   3213 /*                                                                          */
   3214 /* Clears the memory associated with each Context ID (CID).                 */
   3215 /*                                                                          */
   3216 /* Returns:                                                                 */
   3217 /*   Nothing.                                                               */
   3218 /****************************************************************************/
   3219 void
   3220 bnx_init_context(struct bnx_softc *sc)
   3221 {
   3222 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3223 		/* DRC: Replace this constant value with a #define. */
   3224 		int i, retry_cnt = 10;
   3225 		uint32_t val;
   3226 
   3227 		/*
   3228 		 * BCM5709 context memory may be cached
   3229 		 * in host memory so prepare the host memory
   3230 		 * for access.
   3231 		 */
   3232 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3233 		    | (1 << 12);
   3234 		val |= (BCM_PAGE_BITS - 8) << 16;
   3235 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3236 
   3237 		/* Wait for mem init command to complete. */
   3238 		for (i = 0; i < retry_cnt; i++) {
   3239 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3240 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3241 				break;
   3242 			DELAY(2);
   3243 		}
   3244 
   3245 		/* ToDo: Consider returning an error here. */
   3246 
   3247 		for (i = 0; i < sc->ctx_pages; i++) {
   3248 			int j;
   3249 
   3250 			/* Set the physaddr of the context memory cache. */
   3251 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
   3252 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3253 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3254 			val = (uint32_t)
   3255 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
   3256 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3257 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3258 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3259 
   3260 			/* Verify that the context memory write was successful. */
   3261 			for (j = 0; j < retry_cnt; j++) {
   3262 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3263 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3264 					break;
   3265 				DELAY(5);
   3266 			}
   3267 
   3268 			/* ToDo: Consider returning an error here. */
   3269 		}
   3270 	} else {
   3271 		uint32_t vcid_addr, offset;
   3272 
   3273 		/*
   3274 		 * For the 5706/5708, context memory is local to
   3275 		 * the controller, so initialize the controller
   3276 		 * context memory.
   3277 		 */
   3278 
   3279 		vcid_addr = GET_CID_ADDR(96);
   3280 		while (vcid_addr) {
   3281 
   3282 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3283 
   3284 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3285 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3286 
   3287 			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
   3288 				CTX_WR(sc, 0x00, offset, 0);
   3289 			}
   3290 
   3291 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3292 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3293 		}
   3294 	}
   3295 }
   3296 
   3297 /****************************************************************************/
   3298 /* Fetch the permanent MAC address of the controller.                       */
   3299 /*                                                                          */
   3300 /* Returns:                                                                 */
   3301 /*   Nothing.                                                               */
   3302 /****************************************************************************/
   3303 void
   3304 bnx_get_mac_addr(struct bnx_softc *sc)
   3305 {
   3306 	uint32_t		mac_lo = 0, mac_hi = 0;
   3307 
   3308 	/*
   3309 	 * The NetXtreme II bootcode populates various NIC
   3310 	 * power-on and runtime configuration items in a
   3311 	 * shared memory area.  The factory configured MAC
   3312 	 * address is available from both NVRAM and the
   3313 	 * shared memory area so we'll read the value from
   3314 	 * shared memory for speed.
   3315 	 */
   3316 
   3317 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3318 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3319 
   3320 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3321 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3322 		    __FILE__, __LINE__);
   3323 	} else {
   3324 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3325 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3326 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3327 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3328 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3329 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3330 	}
   3331 
   3332 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3333 	    "%s\n", ether_sprintf(sc->eaddr));
   3334 }
   3335 
   3336 /****************************************************************************/
   3337 /* Program the MAC address.                                                 */
   3338 /*                                                                          */
   3339 /* Returns:                                                                 */
   3340 /*   Nothing.                                                               */
   3341 /****************************************************************************/
   3342 void
   3343 bnx_set_mac_addr(struct bnx_softc *sc)
   3344 {
   3345 	uint32_t		val;
   3346 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3347 
   3348 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3349 	    "%s\n", ether_sprintf(sc->eaddr));
   3350 
   3351 	val = (mac_addr[0] << 8) | mac_addr[1];
   3352 
   3353 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3354 
   3355 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3356 		(mac_addr[4] << 8) | mac_addr[5];
   3357 
   3358 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3359 }
   3360 
   3361 /****************************************************************************/
   3362 /* Stop the controller.                                                     */
   3363 /*                                                                          */
   3364 /* Returns:                                                                 */
   3365 /*   Nothing.                                                               */
   3366 /****************************************************************************/
   3367 void
   3368 bnx_stop(struct ifnet *ifp, int disable)
   3369 {
   3370 	struct bnx_softc *sc = ifp->if_softc;
   3371 
   3372 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3373 
   3374 	if ((ifp->if_flags & IFF_RUNNING) == 0)
   3375 		return;
   3376 
   3377 	callout_stop(&sc->bnx_timeout);
   3378 
   3379 	mii_down(&sc->bnx_mii);
   3380 
   3381 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3382 
   3383 	/* Disable the transmit/receive blocks. */
   3384 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3385 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3386 	DELAY(20);
   3387 
   3388 	bnx_disable_intr(sc);
   3389 
   3390 	/* Tell firmware that the driver is going away. */
   3391 	if (disable)
   3392 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3393 	else
   3394 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3395 
   3396 	/* Free RX buffers. */
   3397 	bnx_free_rx_chain(sc);
   3398 
   3399 	/* Free TX buffers. */
   3400 	bnx_free_tx_chain(sc);
   3401 
   3402 	ifp->if_timer = 0;
   3403 
   3404 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3405 
   3406 }
   3407 
   3408 int
   3409 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
   3410 {
   3411 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3412 	uint32_t		val;
   3413 	int			i, rc = 0;
   3414 
   3415 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3416 
   3417 	/* Wait for pending PCI transactions to complete. */
   3418 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3419 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3420 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3421 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3422 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3423 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3424 	DELAY(5);
   3425 
   3426 	/* Disable DMA */
   3427 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3428 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3429 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3430 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3431 	}
   3432 
   3433 	/* Assume bootcode is running. */
   3434 	sc->bnx_fw_timed_out = 0;
   3435 
   3436 	/* Give the firmware a chance to prepare for the reset. */
   3437 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3438 	if (rc)
   3439 		goto bnx_reset_exit;
   3440 
   3441 	/* Set a firmware reminder that this is a soft reset. */
   3442 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3443 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3444 
   3445 	/* Dummy read to force the chip to complete all current transactions. */
   3446 	val = REG_RD(sc, BNX_MISC_ID);
   3447 
   3448 	/* Chip reset. */
   3449 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3450 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3451 		REG_RD(sc, BNX_MISC_COMMAND);
   3452 		DELAY(5);
   3453 
   3454 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3455 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3456 
   3457 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3458 		    val);
   3459 	} else {
   3460 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3461 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3462 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3463 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3464 
   3465 		/* Allow up to 30us for reset to complete. */
   3466 		for (i = 0; i < 10; i++) {
   3467 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3468 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3469 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3470 				break;
   3471 			}
   3472 			DELAY(10);
   3473 		}
   3474 
   3475 		/* Check that reset completed successfully. */
   3476 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3477 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3478 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3479 			    __FILE__, __LINE__);
   3480 			rc = EBUSY;
   3481 			goto bnx_reset_exit;
   3482 		}
   3483 	}
   3484 
   3485 	/* Make sure byte swapping is properly configured. */
   3486 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3487 	if (val != 0x01020304) {
   3488 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3489 		    __FILE__, __LINE__);
   3490 		rc = ENODEV;
   3491 		goto bnx_reset_exit;
   3492 	}
   3493 
   3494 	/* Just completed a reset, assume that firmware is running again. */
   3495 	sc->bnx_fw_timed_out = 0;
   3496 
   3497 	/* Wait for the firmware to finish its initialization. */
   3498 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3499 	if (rc)
   3500 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3501 		    "initialization!\n", __FILE__, __LINE__);
   3502 
   3503 bnx_reset_exit:
   3504 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3505 
   3506 	return rc;
   3507 }
   3508 
   3509 int
   3510 bnx_chipinit(struct bnx_softc *sc)
   3511 {
   3512 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3513 	uint32_t		val;
   3514 	int			rc = 0;
   3515 
   3516 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3517 
   3518 	/* Make sure the interrupt is not active. */
   3519 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3520 
   3521 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3522 	/* channels and PCI clock compensation delay.                      */
   3523 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3524 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3525 #if BYTE_ORDER == BIG_ENDIAN
   3526 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3527 #endif
   3528 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3529 	    DMA_READ_CHANS << 12 |
   3530 	    DMA_WRITE_CHANS << 16;
   3531 
   3532 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3533 
   3534 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3535 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3536 
   3537 	/*
   3538 	 * This setting resolves a problem observed on certain Intel PCI
   3539 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3540 	 * See errata E9_5706A1_65.
   3541 	 */
   3542 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3543 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3544 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3545 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3546 
   3547 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3548 
   3549 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3550 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3551 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3552 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3553 		    val & ~0x20000);
   3554 	}
   3555 
   3556 	/* Enable the RX_V2P and Context state machines before access. */
   3557 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3558 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3559 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3560 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3561 
   3562 	/* Initialize context mapping and zero out the quick contexts. */
   3563 	bnx_init_context(sc);
   3564 
   3565 	/* Initialize the on-boards CPUs */
   3566 	bnx_init_cpus(sc);
   3567 
   3568 	/* Prepare NVRAM for access. */
   3569 	if (bnx_init_nvram(sc)) {
   3570 		rc = ENODEV;
   3571 		goto bnx_chipinit_exit;
   3572 	}
   3573 
   3574 	/* Set the kernel bypass block size */
   3575 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3576 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3577 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3578 
   3579 	/* Enable bins used on the 5709. */
   3580 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3581 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3582 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3583 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3584 	}
   3585 
   3586 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3587 
   3588 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3589 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3590 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3591 
   3592 	val = (BCM_PAGE_BITS - 8) << 24;
   3593 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3594 
   3595 	/* Configure page size. */
   3596 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3597 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3598 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3599 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3600 
   3601 #if 0
   3602 	/* Set the perfect match control register to default. */
   3603 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3604 #endif
   3605 
   3606 bnx_chipinit_exit:
   3607 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3608 
   3609 	return rc;
   3610 }
   3611 
   3612 /****************************************************************************/
   3613 /* Initialize the controller in preparation to send/receive traffic.        */
   3614 /*                                                                          */
   3615 /* Returns:                                                                 */
   3616 /*   0 for success, positive value for failure.                             */
   3617 /****************************************************************************/
   3618 int
   3619 bnx_blockinit(struct bnx_softc *sc)
   3620 {
   3621 	uint32_t		reg, val;
   3622 	int 			rc = 0;
   3623 
   3624 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3625 
   3626 	/* Load the hardware default MAC address. */
   3627 	bnx_set_mac_addr(sc);
   3628 
   3629 	/* Set the Ethernet backoff seed value */
   3630 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3631 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3632 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3633 
   3634 	sc->last_status_idx = 0;
   3635 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3636 
   3637 	/* Set up link change interrupt generation. */
   3638 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3639 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3640 
   3641 	/* Program the physical address of the status block. */
   3642 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
   3643 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3644 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
   3645 
   3646 	/* Program the physical address of the statistics block. */
   3647 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3648 	    (uint32_t)(sc->stats_block_paddr));
   3649 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3650 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
   3651 
   3652 	/* Program various host coalescing parameters. */
   3653 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3654 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3655 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3656 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3657 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3658 	    sc->bnx_comp_prod_trip);
   3659 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3660 	    sc->bnx_tx_ticks);
   3661 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3662 	    sc->bnx_rx_ticks);
   3663 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3664 	    sc->bnx_com_ticks);
   3665 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3666 	    sc->bnx_cmd_ticks);
   3667 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3668 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3669 	REG_WR(sc, BNX_HC_CONFIG,
   3670 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3671 	    BNX_HC_CONFIG_COLLECT_STATS));
   3672 
   3673 	/* Clear the internal statistics counters. */
   3674 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3675 
   3676 	/* Verify that bootcode is running. */
   3677 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3678 
   3679 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3680 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3681 	    __FILE__, __LINE__); reg = 0);
   3682 
   3683 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3684 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3685 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3686 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3687 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3688 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3689 		rc = ENODEV;
   3690 		goto bnx_blockinit_exit;
   3691 	}
   3692 
   3693 	/* Check if any management firmware is running. */
   3694 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3695 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3696 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3697 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3698 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3699 	}
   3700 
   3701 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3702 	    BNX_DEV_INFO_BC_REV);
   3703 
   3704 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3705 
   3706 	/* Enable DMA */
   3707 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3708 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3709 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3710 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3711 	}
   3712 
   3713 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3714 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3715 
   3716 	/* Enable link state change interrupt generation. */
   3717 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3718 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3719 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3720 	} else
   3721 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3722 
   3723 	/* Enable all remaining blocks in the MAC. */
   3724 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3725 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3726 	DELAY(20);
   3727 
   3728 bnx_blockinit_exit:
   3729 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3730 
   3731 	return rc;
   3732 }
   3733 
   3734 static int
   3735 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
   3736     uint16_t *chain_prod, uint32_t *prod_bseq)
   3737 {
   3738 	bus_dmamap_t		map;
   3739 	struct rx_bd		*rxbd;
   3740 	uint32_t		addr;
   3741 	int i;
   3742 #ifdef BNX_DEBUG
   3743 	uint16_t debug_chain_prod =	*chain_prod;
   3744 #endif
   3745 	uint16_t first_chain_prod;
   3746 
   3747 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3748 
   3749 	/* Map the mbuf cluster into device memory. */
   3750 	map = sc->rx_mbuf_map[*chain_prod];
   3751 	first_chain_prod = *chain_prod;
   3752 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3753 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3754 		    __FILE__, __LINE__);
   3755 
   3756 		m_freem(m_new);
   3757 
   3758 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3759 
   3760 		return ENOBUFS;
   3761 	}
   3762 	/* Make sure there is room in the receive chain. */
   3763 	if (map->dm_nsegs > sc->free_rx_bd) {
   3764 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3765 		m_freem(m_new);
   3766 		return EFBIG;
   3767 	}
   3768 #ifdef BNX_DEBUG
   3769 	/* Track the distribution of buffer segments. */
   3770 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3771 #endif
   3772 
   3773 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3774 	    BUS_DMASYNC_PREREAD);
   3775 
   3776 	/* Update some debug statistics counters */
   3777 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3778 	    sc->rx_low_watermark = sc->free_rx_bd);
   3779 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3780 
   3781 	/*
   3782 	 * Setup the rx_bd for the first segment
   3783 	 */
   3784 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3785 
   3786 	addr = (uint32_t)map->dm_segs[0].ds_addr;
   3787 	rxbd->rx_bd_haddr_lo = addr;
   3788 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
   3789 	rxbd->rx_bd_haddr_hi = addr;
   3790 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3791 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3792 	*prod_bseq += map->dm_segs[0].ds_len;
   3793 	bus_dmamap_sync(sc->bnx_dmatag,
   3794 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3795 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3796 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3797 
   3798 	for (i = 1; i < map->dm_nsegs; i++) {
   3799 		*prod = NEXT_RX_BD(*prod);
   3800 		*chain_prod = RX_CHAIN_IDX(*prod);
   3801 
   3802 		rxbd =
   3803 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3804 
   3805 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   3806 		rxbd->rx_bd_haddr_lo = addr;
   3807 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   3808 		rxbd->rx_bd_haddr_hi = addr;
   3809 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3810 		rxbd->rx_bd_flags = 0;
   3811 		*prod_bseq += map->dm_segs[i].ds_len;
   3812 		bus_dmamap_sync(sc->bnx_dmatag,
   3813 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3814 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3815 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3816 	}
   3817 
   3818 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3819 	bus_dmamap_sync(sc->bnx_dmatag,
   3820 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3821 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3822 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3823 
   3824 	/*
   3825 	 * Save the mbuf, adjust the map pointer (swap map for first and
   3826 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
   3827 	 * and update our counter.
   3828 	 */
   3829 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3830 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3831 	sc->rx_mbuf_map[*chain_prod] = map;
   3832 	sc->free_rx_bd -= map->dm_nsegs;
   3833 
   3834 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3835 	    map->dm_nsegs));
   3836 	*prod = NEXT_RX_BD(*prod);
   3837 	*chain_prod = RX_CHAIN_IDX(*prod);
   3838 
   3839 	return 0;
   3840 }
   3841 
   3842 /****************************************************************************/
   3843 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3844 /*                                                                          */
   3845 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3846 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3847 /* necessary.                                                               */
   3848 /*                                                                          */
   3849 /* Returns:                                                                 */
   3850 /*   0 for success, positive value for failure.                             */
   3851 /****************************************************************************/
   3852 int
   3853 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
   3854     uint16_t *chain_prod, uint32_t *prod_bseq)
   3855 {
   3856 	struct mbuf 		*m_new = NULL;
   3857 	int			rc = 0;
   3858 	uint16_t min_free_bd;
   3859 
   3860 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3861 	    __func__);
   3862 
   3863 	/* Make sure the inputs are valid. */
   3864 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3865 	    aprint_error_dev(sc->bnx_dev,
   3866 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3867 		*chain_prod, (uint16_t)MAX_RX_BD));
   3868 
   3869 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3870 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3871 	    *prod_bseq);
   3872 
   3873 	/* try to get in as many mbufs as possible */
   3874 	if (sc->mbuf_alloc_size == MCLBYTES)
   3875 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3876 	else
   3877 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3878 	while (sc->free_rx_bd >= min_free_bd) {
   3879 		/* Simulate an mbuf allocation failure. */
   3880 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3881 		    aprint_error_dev(sc->bnx_dev,
   3882 		    "Simulating mbuf allocation failure.\n");
   3883 			sc->mbuf_sim_alloc_failed++;
   3884 			rc = ENOBUFS;
   3885 			goto bnx_get_buf_exit);
   3886 
   3887 		/* This is a new mbuf allocation. */
   3888 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3889 		if (m_new == NULL) {
   3890 			DBPRINT(sc, BNX_WARN,
   3891 			    "%s(%d): RX mbuf header allocation failed!\n",
   3892 			    __FILE__, __LINE__);
   3893 
   3894 			sc->mbuf_alloc_failed++;
   3895 
   3896 			rc = ENOBUFS;
   3897 			goto bnx_get_buf_exit;
   3898 		}
   3899 
   3900 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3901 
   3902 		/* Simulate an mbuf cluster allocation failure. */
   3903 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3904 			m_freem(m_new);
   3905 			sc->rx_mbuf_alloc--;
   3906 			sc->mbuf_alloc_failed++;
   3907 			sc->mbuf_sim_alloc_failed++;
   3908 			rc = ENOBUFS;
   3909 			goto bnx_get_buf_exit);
   3910 
   3911 		if (sc->mbuf_alloc_size == MCLBYTES)
   3912 			MCLGET(m_new, M_DONTWAIT);
   3913 		else
   3914 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3915 			    M_DONTWAIT);
   3916 		if (!(m_new->m_flags & M_EXT)) {
   3917 			DBPRINT(sc, BNX_WARN,
   3918 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3919 			    __FILE__, __LINE__);
   3920 
   3921 			m_freem(m_new);
   3922 
   3923 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3924 			sc->mbuf_alloc_failed++;
   3925 
   3926 			rc = ENOBUFS;
   3927 			goto bnx_get_buf_exit;
   3928 		}
   3929 
   3930 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3931 		if (rc != 0)
   3932 			goto bnx_get_buf_exit;
   3933 	}
   3934 
   3935 bnx_get_buf_exit:
   3936 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3937 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3938 	    *chain_prod, *prod_bseq);
   3939 
   3940 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3941 	    __func__);
   3942 
   3943 	return rc;
   3944 }
   3945 
   3946 void
   3947 bnx_alloc_pkts(struct work * unused, void * arg)
   3948 {
   3949 	struct bnx_softc *sc = arg;
   3950 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   3951 	struct bnx_pkt *pkt;
   3952 	int i, s;
   3953 
   3954 	for (i = 0; i < 4; i++) { /* magic! */
   3955 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   3956 		if (pkt == NULL)
   3957 			break;
   3958 
   3959 		if (bus_dmamap_create(sc->bnx_dmatag,
   3960 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   3961 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   3962 		    &pkt->pkt_dmamap) != 0)
   3963 			goto put;
   3964 
   3965 		if (!ISSET(ifp->if_flags, IFF_UP))
   3966 			goto stopping;
   3967 
   3968 		mutex_enter(&sc->tx_pkt_mtx);
   3969 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   3970 		sc->tx_pkt_count++;
   3971 		mutex_exit(&sc->tx_pkt_mtx);
   3972 	}
   3973 
   3974 	mutex_enter(&sc->tx_pkt_mtx);
   3975 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   3976 	mutex_exit(&sc->tx_pkt_mtx);
   3977 
   3978 	/* fire-up TX now that allocations have been done */
   3979 	s = splnet();
   3980 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3981 		bnx_start(ifp);
   3982 	splx(s);
   3983 
   3984 	return;
   3985 
   3986 stopping:
   3987 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   3988 put:
   3989 	pool_put(bnx_tx_pool, pkt);
   3990 	return;
   3991 }
   3992 
   3993 /****************************************************************************/
   3994 /* Initialize the TX context memory.                                        */
   3995 /*                                                                          */
   3996 /* Returns:                                                                 */
   3997 /*   Nothing                                                                */
   3998 /****************************************************************************/
   3999 void
   4000 bnx_init_tx_context(struct bnx_softc *sc)
   4001 {
   4002 	uint32_t val;
   4003 
   4004 	/* Initialize the context ID for an L2 TX chain. */
   4005 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4006 		/* Set the CID type to support an L2 connection. */
   4007 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4008 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   4009 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4010 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   4011 
   4012 		/* Point the hardware to the first page in the chain. */
   4013 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4014 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4015 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   4016 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4017 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4018 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   4019 	} else {
   4020 		/* Set the CID type to support an L2 connection. */
   4021 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4022 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   4023 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4024 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   4025 
   4026 		/* Point the hardware to the first page in the chain. */
   4027 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4028 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   4029 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4030 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   4031 	}
   4032 }
   4033 
   4034 
   4035 /****************************************************************************/
   4036 /* Allocate memory and initialize the TX data structures.                   */
   4037 /*                                                                          */
   4038 /* Returns:                                                                 */
   4039 /*   0 for success, positive value for failure.                             */
   4040 /****************************************************************************/
   4041 int
   4042 bnx_init_tx_chain(struct bnx_softc *sc)
   4043 {
   4044 	struct tx_bd		*txbd;
   4045 	uint32_t		addr;
   4046 	int			i, rc = 0;
   4047 
   4048 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4049 
   4050 	/* Force an allocation of some dmamaps for tx up front */
   4051 	bnx_alloc_pkts(NULL, sc);
   4052 
   4053 	/* Set the initial TX producer/consumer indices. */
   4054 	sc->tx_prod = 0;
   4055 	sc->tx_cons = 0;
   4056 	sc->tx_prod_bseq = 0;
   4057 	sc->used_tx_bd = 0;
   4058 	sc->max_tx_bd = USABLE_TX_BD;
   4059 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   4060 	DBRUNIF(1, sc->tx_full_count = 0);
   4061 
   4062 	/*
   4063 	 * The NetXtreme II supports a linked-list structure called
   4064 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   4065 	 * consists of a series of 1 or more chain pages, each of which
   4066 	 * consists of a fixed number of BD entries.
   4067 	 * The last BD entry on each page is a pointer to the next page
   4068 	 * in the chain, and the last pointer in the BD chain
   4069 	 * points back to the beginning of the chain.
   4070 	 */
   4071 
   4072 	/* Set the TX next pointer chain entries. */
   4073 	for (i = 0; i < TX_PAGES; i++) {
   4074 		int j;
   4075 
   4076 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   4077 
   4078 		/* Check if we've reached the last page. */
   4079 		if (i == (TX_PAGES - 1))
   4080 			j = 0;
   4081 		else
   4082 			j = i + 1;
   4083 
   4084 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
   4085 		txbd->tx_bd_haddr_lo = addr;
   4086 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
   4087 		txbd->tx_bd_haddr_hi = addr;
   4088 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4089 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4090 	}
   4091 
   4092 	/*
   4093 	 * Initialize the context ID for an L2 TX chain.
   4094 	 */
   4095 	bnx_init_tx_context(sc);
   4096 
   4097 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4098 
   4099 	return rc;
   4100 }
   4101 
   4102 /****************************************************************************/
   4103 /* Free memory and clear the TX data structures.                            */
   4104 /*                                                                          */
   4105 /* Returns:                                                                 */
   4106 /*   Nothing.                                                               */
   4107 /****************************************************************************/
   4108 void
   4109 bnx_free_tx_chain(struct bnx_softc *sc)
   4110 {
   4111 	struct bnx_pkt		*pkt;
   4112 	int			i;
   4113 
   4114 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4115 
   4116 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4117 	mutex_enter(&sc->tx_pkt_mtx);
   4118 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4119 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4120 		mutex_exit(&sc->tx_pkt_mtx);
   4121 
   4122 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4123 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4124 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4125 
   4126 		m_freem(pkt->pkt_mbuf);
   4127 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4128 
   4129 		mutex_enter(&sc->tx_pkt_mtx);
   4130 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4131 	}
   4132 
   4133 	/* Destroy all the dmamaps we allocated for TX */
   4134 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   4135 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4136 		sc->tx_pkt_count--;
   4137 		mutex_exit(&sc->tx_pkt_mtx);
   4138 
   4139 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4140 		pool_put(bnx_tx_pool, pkt);
   4141 
   4142 		mutex_enter(&sc->tx_pkt_mtx);
   4143 	}
   4144 	mutex_exit(&sc->tx_pkt_mtx);
   4145 
   4146 
   4147 
   4148 	/* Clear each TX chain page. */
   4149 	for (i = 0; i < TX_PAGES; i++) {
   4150 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4151 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4152 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4153 	}
   4154 
   4155 	sc->used_tx_bd = 0;
   4156 
   4157 	/* Check if we lost any mbufs in the process. */
   4158 	DBRUNIF((sc->tx_mbuf_alloc),
   4159 	    aprint_error_dev(sc->bnx_dev,
   4160 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   4161 		sc->tx_mbuf_alloc));
   4162 
   4163 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4164 }
   4165 
   4166 /****************************************************************************/
   4167 /* Initialize the RX context memory.                                        */
   4168 /*                                                                          */
   4169 /* Returns:                                                                 */
   4170 /*   Nothing                                                                */
   4171 /****************************************************************************/
   4172 void
   4173 bnx_init_rx_context(struct bnx_softc *sc)
   4174 {
   4175 	uint32_t val;
   4176 
   4177 	/* Initialize the context ID for an L2 RX chain. */
   4178 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4179 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4180 
   4181 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4182 		uint32_t lo_water, hi_water;
   4183 
   4184 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
   4185 		hi_water = USABLE_RX_BD / 4;
   4186 
   4187 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
   4188 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
   4189 
   4190 		if (hi_water > 0xf)
   4191 			hi_water = 0xf;
   4192 		else if (hi_water == 0)
   4193 			lo_water = 0;
   4194 		val |= lo_water |
   4195 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
   4196 	}
   4197 
   4198  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4199 
   4200 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4201 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4202 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4203 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4204 	}
   4205 
   4206 	/* Point the hardware to the first page in the chain. */
   4207 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4208 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4209 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
   4210 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4211 }
   4212 
   4213 /****************************************************************************/
   4214 /* Allocate memory and initialize the RX data structures.                   */
   4215 /*                                                                          */
   4216 /* Returns:                                                                 */
   4217 /*   0 for success, positive value for failure.                             */
   4218 /****************************************************************************/
   4219 int
   4220 bnx_init_rx_chain(struct bnx_softc *sc)
   4221 {
   4222 	struct rx_bd		*rxbd;
   4223 	int			i, rc = 0;
   4224 	uint16_t		prod, chain_prod;
   4225 	uint32_t		prod_bseq, addr;
   4226 
   4227 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4228 
   4229 	/* Initialize the RX producer and consumer indices. */
   4230 	sc->rx_prod = 0;
   4231 	sc->rx_cons = 0;
   4232 	sc->rx_prod_bseq = 0;
   4233 	sc->free_rx_bd = USABLE_RX_BD;
   4234 	sc->max_rx_bd = USABLE_RX_BD;
   4235 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4236 	DBRUNIF(1, sc->rx_empty_count = 0);
   4237 
   4238 	/* Initialize the RX next pointer chain entries. */
   4239 	for (i = 0; i < RX_PAGES; i++) {
   4240 		int j;
   4241 
   4242 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4243 
   4244 		/* Check if we've reached the last page. */
   4245 		if (i == (RX_PAGES - 1))
   4246 			j = 0;
   4247 		else
   4248 			j = i + 1;
   4249 
   4250 		/* Setup the chain page pointers. */
   4251 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4252 		rxbd->rx_bd_haddr_hi = addr;
   4253 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
   4254 		rxbd->rx_bd_haddr_lo = addr;
   4255 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4256 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4257 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4258 	}
   4259 
   4260 	/* Allocate mbuf clusters for the rx_bd chain. */
   4261 	prod = prod_bseq = 0;
   4262 	chain_prod = RX_CHAIN_IDX(prod);
   4263 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4264 		BNX_PRINTF(sc,
   4265 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4266 	}
   4267 
   4268 	/* Save the RX chain producer index. */
   4269 	sc->rx_prod = prod;
   4270 	sc->rx_prod_bseq = prod_bseq;
   4271 
   4272 	for (i = 0; i < RX_PAGES; i++)
   4273 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4274 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4275 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4276 
   4277 	/* Tell the chip about the waiting rx_bd's. */
   4278 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4279 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4280 
   4281 	bnx_init_rx_context(sc);
   4282 
   4283 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4284 
   4285 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4286 
   4287 	return rc;
   4288 }
   4289 
   4290 /****************************************************************************/
   4291 /* Free memory and clear the RX data structures.                            */
   4292 /*                                                                          */
   4293 /* Returns:                                                                 */
   4294 /*   Nothing.                                                               */
   4295 /****************************************************************************/
   4296 void
   4297 bnx_free_rx_chain(struct bnx_softc *sc)
   4298 {
   4299 	int			i;
   4300 
   4301 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4302 
   4303 	/* Free any mbufs still in the RX mbuf chain. */
   4304 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4305 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4306 			if (sc->rx_mbuf_map[i] != NULL) {
   4307 				bus_dmamap_sync(sc->bnx_dmatag,
   4308 				    sc->rx_mbuf_map[i],	0,
   4309 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4310 				    BUS_DMASYNC_POSTREAD);
   4311 				bus_dmamap_unload(sc->bnx_dmatag,
   4312 				    sc->rx_mbuf_map[i]);
   4313 			}
   4314 			m_freem(sc->rx_mbuf_ptr[i]);
   4315 			sc->rx_mbuf_ptr[i] = NULL;
   4316 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4317 		}
   4318 	}
   4319 
   4320 	/* Clear each RX chain page. */
   4321 	for (i = 0; i < RX_PAGES; i++)
   4322 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4323 
   4324 	sc->free_rx_bd = sc->max_rx_bd;
   4325 
   4326 	/* Check if we lost any mbufs in the process. */
   4327 	DBRUNIF((sc->rx_mbuf_alloc),
   4328 	    aprint_error_dev(sc->bnx_dev,
   4329 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   4330 		sc->rx_mbuf_alloc));
   4331 
   4332 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4333 }
   4334 
   4335 /****************************************************************************/
   4336 /* Handles PHY generated interrupt events.                                  */
   4337 /*                                                                          */
   4338 /* Returns:                                                                 */
   4339 /*   Nothing.                                                               */
   4340 /****************************************************************************/
   4341 void
   4342 bnx_phy_intr(struct bnx_softc *sc)
   4343 {
   4344 	uint32_t		new_link_state, old_link_state;
   4345 
   4346 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4347 	    BUS_DMASYNC_POSTREAD);
   4348 	new_link_state = sc->status_block->status_attn_bits &
   4349 	    STATUS_ATTN_BITS_LINK_STATE;
   4350 	old_link_state = sc->status_block->status_attn_bits_ack &
   4351 	    STATUS_ATTN_BITS_LINK_STATE;
   4352 
   4353 	/* Handle any changes if the link state has changed. */
   4354 	if (new_link_state != old_link_state) {
   4355 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4356 
   4357 		callout_stop(&sc->bnx_timeout);
   4358 		bnx_tick(sc);
   4359 
   4360 		/* Update the status_attn_bits_ack field in the status block. */
   4361 		if (new_link_state) {
   4362 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4363 			    STATUS_ATTN_BITS_LINK_STATE);
   4364 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4365 		} else {
   4366 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4367 			    STATUS_ATTN_BITS_LINK_STATE);
   4368 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4369 		}
   4370 	}
   4371 
   4372 	/* Acknowledge the link change interrupt. */
   4373 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4374 }
   4375 
   4376 /****************************************************************************/
   4377 /* Handles received frame interrupt events.                                 */
   4378 /*                                                                          */
   4379 /* Returns:                                                                 */
   4380 /*   Nothing.                                                               */
   4381 /****************************************************************************/
   4382 void
   4383 bnx_rx_intr(struct bnx_softc *sc)
   4384 {
   4385 	struct status_block	*sblk = sc->status_block;
   4386 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4387 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
   4388 	uint16_t		sw_prod, sw_chain_prod;
   4389 	uint32_t		sw_prod_bseq;
   4390 	struct l2_fhdr		*l2fhdr;
   4391 	int			i;
   4392 
   4393 	DBRUNIF(1, sc->rx_interrupts++);
   4394 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4395 	    BUS_DMASYNC_POSTREAD);
   4396 
   4397 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4398 	for (i = 0; i < RX_PAGES; i++)
   4399 		bus_dmamap_sync(sc->bnx_dmatag,
   4400 		    sc->rx_bd_chain_map[i], 0,
   4401 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4402 		    BUS_DMASYNC_POSTWRITE);
   4403 
   4404 	/* Get the hardware's view of the RX consumer index. */
   4405 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4406 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4407 		hw_cons++;
   4408 
   4409 	/* Get working copies of the driver's view of the RX indices. */
   4410 	sw_cons = sc->rx_cons;
   4411 	sw_prod = sc->rx_prod;
   4412 	sw_prod_bseq = sc->rx_prod_bseq;
   4413 
   4414 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4415 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4416 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4417 
   4418 	/* Prevent speculative reads from getting ahead of the status block. */
   4419 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4420 	    BUS_SPACE_BARRIER_READ);
   4421 
   4422 	/* Update some debug statistics counters */
   4423 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4424 	    sc->rx_low_watermark = sc->free_rx_bd);
   4425 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4426 
   4427 	/*
   4428 	 * Scan through the receive chain as long
   4429 	 * as there is work to do.
   4430 	 */
   4431 	while (sw_cons != hw_cons) {
   4432 		struct mbuf *m;
   4433 		struct rx_bd *rxbd __diagused;
   4434 		unsigned int len;
   4435 		uint32_t status;
   4436 
   4437 		/* Convert the producer/consumer indices to an actual
   4438 		 * rx_bd index.
   4439 		 */
   4440 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4441 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4442 
   4443 		/* Get the used rx_bd. */
   4444 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4445 		sc->free_rx_bd++;
   4446 
   4447 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4448 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4449 
   4450 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4451 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4452 #ifdef DIAGNOSTIC
   4453 			/* Validate that this is the last rx_bd. */
   4454 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4455 			    printf("%s: Unexpected mbuf found in "
   4456 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4457 			        sw_chain_cons);
   4458 			}
   4459 #endif
   4460 
   4461 			/* DRC - ToDo: If the received packet is small, say less
   4462 			 *             than 128 bytes, allocate a new mbuf here,
   4463 			 *             copy the data to that mbuf, and recycle
   4464 			 *             the mapped jumbo frame.
   4465 			 */
   4466 
   4467 			/* Unmap the mbuf from DMA space. */
   4468 #ifdef DIAGNOSTIC
   4469 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4470 				printf("invalid map sw_cons 0x%x "
   4471 				"sw_prod 0x%x "
   4472 				"sw_chain_cons 0x%x "
   4473 				"sw_chain_prod 0x%x "
   4474 				"hw_cons 0x%x "
   4475 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4476 				"TOTAL_RX_BD 0x%x\n",
   4477 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4478 				hw_cons,
   4479 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4480 			}
   4481 #endif
   4482 			bus_dmamap_sync(sc->bnx_dmatag,
   4483 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4484 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4485 			    BUS_DMASYNC_POSTREAD);
   4486 			bus_dmamap_unload(sc->bnx_dmatag,
   4487 			    sc->rx_mbuf_map[sw_chain_cons]);
   4488 
   4489 			/* Remove the mbuf from the driver's chain. */
   4490 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4491 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4492 
   4493 			/*
   4494 			 * Frames received on the NetXteme II are prepended
   4495 			 * with the l2_fhdr structure which provides status
   4496 			 * information about the received frame (including
   4497 			 * VLAN tags and checksum info) and are also
   4498 			 * automatically adjusted to align the IP header
   4499 			 * (i.e. two null bytes are inserted before the
   4500 			 * Ethernet header).
   4501 			 */
   4502 			l2fhdr = mtod(m, struct l2_fhdr *);
   4503 
   4504 			len    = l2fhdr->l2_fhdr_pkt_len;
   4505 			status = l2fhdr->l2_fhdr_status;
   4506 
   4507 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4508 			    aprint_error("Simulating l2_fhdr status error.\n");
   4509 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4510 
   4511 			/* Watch for unusual sized frames. */
   4512 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4513 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4514 			    aprint_error_dev(sc->bnx_dev,
   4515 			        "Unusual frame size found. "
   4516 				"Min(%d), Actual(%d), Max(%d)\n",
   4517 				(int)BNX_MIN_MTU, len,
   4518 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4519 
   4520 			bnx_dump_mbuf(sc, m);
   4521 			bnx_breakpoint(sc));
   4522 
   4523 			len -= ETHER_CRC_LEN;
   4524 
   4525 			/* Check the received frame for errors. */
   4526 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4527 			    L2_FHDR_ERRORS_PHY_DECODE |
   4528 			    L2_FHDR_ERRORS_ALIGNMENT |
   4529 			    L2_FHDR_ERRORS_TOO_SHORT |
   4530 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4531 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4532 			    len >
   4533 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4534 				ifp->if_ierrors++;
   4535 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4536 
   4537 				/* Reuse the mbuf for a new frame. */
   4538 				if (bnx_add_buf(sc, m, &sw_prod,
   4539 				    &sw_chain_prod, &sw_prod_bseq)) {
   4540 					DBRUNIF(1, bnx_breakpoint(sc));
   4541 					panic("%s: Can't reuse RX mbuf!\n",
   4542 					    device_xname(sc->bnx_dev));
   4543 				}
   4544 				continue;
   4545 			}
   4546 
   4547 			/*
   4548 			 * Get a new mbuf for the rx_bd.   If no new
   4549 			 * mbufs are available then reuse the current mbuf,
   4550 			 * log an ierror on the interface, and generate
   4551 			 * an error in the system log.
   4552 			 */
   4553 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4554 			    &sw_prod_bseq)) {
   4555 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4556 				    "Failed to allocate "
   4557 				    "new mbuf, incoming frame dropped!\n"));
   4558 
   4559 				ifp->if_ierrors++;
   4560 
   4561 				/* Try and reuse the exisitng mbuf. */
   4562 				if (bnx_add_buf(sc, m, &sw_prod,
   4563 				    &sw_chain_prod, &sw_prod_bseq)) {
   4564 					DBRUNIF(1, bnx_breakpoint(sc));
   4565 					panic("%s: Double mbuf allocation "
   4566 					    "failure!",
   4567 					    device_xname(sc->bnx_dev));
   4568 				}
   4569 				continue;
   4570 			}
   4571 
   4572 			/* Skip over the l2_fhdr when passing the data up
   4573 			 * the stack.
   4574 			 */
   4575 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4576 
   4577 			/* Adjust the pckt length to match the received data. */
   4578 			m->m_pkthdr.len = m->m_len = len;
   4579 
   4580 			/* Send the packet to the appropriate interface. */
   4581 			m_set_rcvif(m, ifp);
   4582 
   4583 			DBRUN(BNX_VERBOSE_RECV,
   4584 			    struct ether_header *eh;
   4585 			    eh = mtod(m, struct ether_header *);
   4586 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4587 			    __func__, ether_sprintf(eh->ether_dhost),
   4588 			    ether_sprintf(eh->ether_shost),
   4589 			    htons(eh->ether_type)));
   4590 
   4591 			/* Validate the checksum. */
   4592 
   4593 			/* Check for an IP datagram. */
   4594 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4595 				/* Check if the IP checksum is valid. */
   4596 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   4597 				    == 0)
   4598 					m->m_pkthdr.csum_flags |=
   4599 					    M_CSUM_IPv4;
   4600 #ifdef BNX_DEBUG
   4601 				else
   4602 					DBPRINT(sc, BNX_WARN_SEND,
   4603 					    "%s(): Invalid IP checksum "
   4604 					        "= 0x%04X!\n",
   4605 						__func__,
   4606 						l2fhdr->l2_fhdr_ip_xsum
   4607 						);
   4608 #endif
   4609 			}
   4610 
   4611 			/* Check for a valid TCP/UDP frame. */
   4612 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4613 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4614 				/* Check for a good TCP/UDP checksum. */
   4615 				if ((status &
   4616 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4617 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4618 					m->m_pkthdr.csum_flags |=
   4619 					    M_CSUM_TCPv4 |
   4620 					    M_CSUM_UDPv4;
   4621 				} else {
   4622 					DBPRINT(sc, BNX_WARN_SEND,
   4623 					    "%s(): Invalid TCP/UDP "
   4624 					    "checksum = 0x%04X!\n",
   4625 					    __func__,
   4626 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4627 				}
   4628 			}
   4629 
   4630 			/*
   4631 			 * If we received a packet with a vlan tag,
   4632 			 * attach that information to the packet.
   4633 			 */
   4634 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4635 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4636 				VLAN_INPUT_TAG(ifp, m,
   4637 				    l2fhdr->l2_fhdr_vlan_tag,
   4638 				    continue);
   4639 			}
   4640 
   4641 			/*
   4642 			 * Handle BPF listeners. Let the BPF
   4643 			 * user see the packet.
   4644 			 */
   4645 			bpf_mtap(ifp, m);
   4646 
   4647 			/* Pass the mbuf off to the upper layers. */
   4648 			ifp->if_ipackets++;
   4649 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4650 			    "%s(): Passing received frame up.\n", __func__);
   4651 			if_percpuq_enqueue(ifp->if_percpuq, m);
   4652 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4653 
   4654 		}
   4655 
   4656 		sw_cons = NEXT_RX_BD(sw_cons);
   4657 
   4658 		/* Refresh hw_cons to see if there's new work */
   4659 		if (sw_cons == hw_cons) {
   4660 			hw_cons = sc->hw_rx_cons =
   4661 			    sblk->status_rx_quick_consumer_index0;
   4662 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4663 			    USABLE_RX_BD_PER_PAGE)
   4664 				hw_cons++;
   4665 		}
   4666 
   4667 		/* Prevent speculative reads from getting ahead of
   4668 		 * the status block.
   4669 		 */
   4670 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4671 		    BUS_SPACE_BARRIER_READ);
   4672 	}
   4673 
   4674 	for (i = 0; i < RX_PAGES; i++)
   4675 		bus_dmamap_sync(sc->bnx_dmatag,
   4676 		    sc->rx_bd_chain_map[i], 0,
   4677 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4678 		    BUS_DMASYNC_PREWRITE);
   4679 
   4680 	sc->rx_cons = sw_cons;
   4681 	sc->rx_prod = sw_prod;
   4682 	sc->rx_prod_bseq = sw_prod_bseq;
   4683 
   4684 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4685 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4686 
   4687 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4688 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4689 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4690 }
   4691 
   4692 /****************************************************************************/
   4693 /* Handles transmit completion interrupt events.                            */
   4694 /*                                                                          */
   4695 /* Returns:                                                                 */
   4696 /*   Nothing.                                                               */
   4697 /****************************************************************************/
   4698 void
   4699 bnx_tx_intr(struct bnx_softc *sc)
   4700 {
   4701 	struct status_block	*sblk = sc->status_block;
   4702 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4703 	struct bnx_pkt		*pkt;
   4704 	bus_dmamap_t		map;
   4705 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4706 
   4707 	DBRUNIF(1, sc->tx_interrupts++);
   4708 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4709 	    BUS_DMASYNC_POSTREAD);
   4710 
   4711 	/* Get the hardware's view of the TX consumer index. */
   4712 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4713 
   4714 	/* Skip to the next entry if this is a chain page pointer. */
   4715 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4716 		hw_tx_cons++;
   4717 
   4718 	sw_tx_cons = sc->tx_cons;
   4719 
   4720 	/* Prevent speculative reads from getting ahead of the status block. */
   4721 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4722 	    BUS_SPACE_BARRIER_READ);
   4723 
   4724 	/* Cycle through any completed TX chain page entries. */
   4725 	while (sw_tx_cons != hw_tx_cons) {
   4726 #ifdef BNX_DEBUG
   4727 		struct tx_bd *txbd = NULL;
   4728 #endif
   4729 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4730 
   4731 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4732 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4733 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4734 
   4735 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4736 		    aprint_error_dev(sc->bnx_dev,
   4737 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4738 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4739 
   4740 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4741 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4742 
   4743 		DBRUNIF((txbd == NULL),
   4744 		    aprint_error_dev(sc->bnx_dev,
   4745 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4746 		    bnx_breakpoint(sc));
   4747 
   4748 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4749 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4750 
   4751 
   4752 		mutex_enter(&sc->tx_pkt_mtx);
   4753 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4754 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4755 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4756 			mutex_exit(&sc->tx_pkt_mtx);
   4757 			/*
   4758 			 * Free the associated mbuf. Remember
   4759 			 * that only the last tx_bd of a packet
   4760 			 * has an mbuf pointer and DMA map.
   4761 			 */
   4762 			map = pkt->pkt_dmamap;
   4763 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4764 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4765 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4766 
   4767 			m_freem(pkt->pkt_mbuf);
   4768 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4769 
   4770 			ifp->if_opackets++;
   4771 
   4772 			mutex_enter(&sc->tx_pkt_mtx);
   4773 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4774 		}
   4775 		mutex_exit(&sc->tx_pkt_mtx);
   4776 
   4777 		sc->used_tx_bd--;
   4778 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4779 			__FILE__, __LINE__, sc->used_tx_bd);
   4780 
   4781 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4782 
   4783 		/* Refresh hw_cons to see if there's new work. */
   4784 		hw_tx_cons = sc->hw_tx_cons =
   4785 		    sblk->status_tx_quick_consumer_index0;
   4786 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4787 		    USABLE_TX_BD_PER_PAGE)
   4788 			hw_tx_cons++;
   4789 
   4790 		/* Prevent speculative reads from getting ahead of
   4791 		 * the status block.
   4792 		 */
   4793 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4794 		    BUS_SPACE_BARRIER_READ);
   4795 	}
   4796 
   4797 	/* Clear the TX timeout timer. */
   4798 	ifp->if_timer = 0;
   4799 
   4800 	/* Clear the tx hardware queue full flag. */
   4801 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4802 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4803 		    aprint_debug_dev(sc->bnx_dev,
   4804 		        "Open TX chain! %d/%d (used/total)\n",
   4805 			sc->used_tx_bd, sc->max_tx_bd));
   4806 		ifp->if_flags &= ~IFF_OACTIVE;
   4807 	}
   4808 
   4809 	sc->tx_cons = sw_tx_cons;
   4810 }
   4811 
   4812 /****************************************************************************/
   4813 /* Disables interrupt generation.                                           */
   4814 /*                                                                          */
   4815 /* Returns:                                                                 */
   4816 /*   Nothing.                                                               */
   4817 /****************************************************************************/
   4818 void
   4819 bnx_disable_intr(struct bnx_softc *sc)
   4820 {
   4821 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4822 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4823 }
   4824 
   4825 /****************************************************************************/
   4826 /* Enables interrupt generation.                                            */
   4827 /*                                                                          */
   4828 /* Returns:                                                                 */
   4829 /*   Nothing.                                                               */
   4830 /****************************************************************************/
   4831 void
   4832 bnx_enable_intr(struct bnx_softc *sc)
   4833 {
   4834 	uint32_t		val;
   4835 
   4836 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4837 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4838 
   4839 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4840 	    sc->last_status_idx);
   4841 
   4842 	val = REG_RD(sc, BNX_HC_COMMAND);
   4843 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4844 }
   4845 
   4846 /****************************************************************************/
   4847 /* Handles controller initialization.                                       */
   4848 /*                                                                          */
   4849 /****************************************************************************/
   4850 int
   4851 bnx_init(struct ifnet *ifp)
   4852 {
   4853 	struct bnx_softc	*sc = ifp->if_softc;
   4854 	uint32_t		ether_mtu;
   4855 	int			s, error = 0;
   4856 
   4857 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4858 
   4859 	s = splnet();
   4860 
   4861 	bnx_stop(ifp, 0);
   4862 
   4863 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4864 		aprint_error_dev(sc->bnx_dev,
   4865 		    "Controller reset failed!\n");
   4866 		goto bnx_init_exit;
   4867 	}
   4868 
   4869 	if ((error = bnx_chipinit(sc)) != 0) {
   4870 		aprint_error_dev(sc->bnx_dev,
   4871 		    "Controller initialization failed!\n");
   4872 		goto bnx_init_exit;
   4873 	}
   4874 
   4875 	if ((error = bnx_blockinit(sc)) != 0) {
   4876 		aprint_error_dev(sc->bnx_dev,
   4877 		    "Block initialization failed!\n");
   4878 		goto bnx_init_exit;
   4879 	}
   4880 
   4881 	/* Calculate and program the Ethernet MRU size. */
   4882 	if (ifp->if_mtu <= ETHERMTU) {
   4883 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4884 		sc->mbuf_alloc_size = MCLBYTES;
   4885 	} else {
   4886 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4887 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   4888 	}
   4889 
   4890 
   4891 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4892 	    __func__, ether_mtu);
   4893 
   4894 	/*
   4895 	 * Program the MRU and enable Jumbo frame
   4896 	 * support.
   4897 	 */
   4898 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4899 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4900 
   4901 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4902 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4903 
   4904 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4905 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4906 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4907 
   4908 	/* Program appropriate promiscuous/multicast filtering. */
   4909 	bnx_iff(sc);
   4910 
   4911 	/* Init RX buffer descriptor chain. */
   4912 	bnx_init_rx_chain(sc);
   4913 
   4914 	/* Init TX buffer descriptor chain. */
   4915 	bnx_init_tx_chain(sc);
   4916 
   4917 	/* Enable host interrupts. */
   4918 	bnx_enable_intr(sc);
   4919 
   4920 	if ((error = ether_mediachange(ifp)) != 0)
   4921 		goto bnx_init_exit;
   4922 
   4923 	SET(ifp->if_flags, IFF_RUNNING);
   4924 	CLR(ifp->if_flags, IFF_OACTIVE);
   4925 
   4926 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4927 
   4928 bnx_init_exit:
   4929 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4930 
   4931 	splx(s);
   4932 
   4933 	return error;
   4934 }
   4935 
   4936 /****************************************************************************/
   4937 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4938 /* memory visible to the controller.                                        */
   4939 /*                                                                          */
   4940 /* Returns:                                                                 */
   4941 /*   0 for success, positive value for failure.                             */
   4942 /****************************************************************************/
   4943 int
   4944 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   4945 {
   4946 	struct bnx_pkt		*pkt;
   4947 	bus_dmamap_t		map;
   4948 	struct tx_bd		*txbd = NULL;
   4949 	uint16_t		vlan_tag = 0, flags = 0;
   4950 	uint16_t		chain_prod, prod;
   4951 #ifdef BNX_DEBUG
   4952 	uint16_t		debug_prod;
   4953 #endif
   4954 	uint32_t		addr, prod_bseq;
   4955 	int			i, error;
   4956 	struct m_tag		*mtag;
   4957 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
   4958 
   4959 	mutex_enter(&sc->tx_pkt_mtx);
   4960 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   4961 	if (pkt == NULL) {
   4962 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   4963 			mutex_exit(&sc->tx_pkt_mtx);
   4964 			return ENETDOWN;
   4965 		}
   4966 
   4967 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   4968 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   4969 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
   4970 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4971 		}
   4972 
   4973 		mutex_exit(&sc->tx_pkt_mtx);
   4974 		return ENOMEM;
   4975 	}
   4976 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4977 	mutex_exit(&sc->tx_pkt_mtx);
   4978 
   4979 	/* Transfer any checksum offload flags to the bd. */
   4980 	if (m->m_pkthdr.csum_flags) {
   4981 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4982 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4983 		if (m->m_pkthdr.csum_flags &
   4984 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4985 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4986 	}
   4987 
   4988 	/* Transfer any VLAN tags to the bd. */
   4989 	mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
   4990 	if (mtag != NULL) {
   4991 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4992 		vlan_tag = VLAN_TAG_VALUE(mtag);
   4993 	}
   4994 
   4995 	/* Map the mbuf into DMAable memory. */
   4996 	prod = sc->tx_prod;
   4997 	chain_prod = TX_CHAIN_IDX(prod);
   4998 	map = pkt->pkt_dmamap;
   4999 
   5000 	/* Map the mbuf into our DMA address space. */
   5001 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   5002 	if (error != 0) {
   5003 		aprint_error_dev(sc->bnx_dev,
   5004 		    "Error mapping mbuf into TX chain!\n");
   5005 		sc->tx_dma_map_failures++;
   5006 		goto maperr;
   5007 	}
   5008 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   5009 	    BUS_DMASYNC_PREWRITE);
   5010         /* Make sure there's room in the chain */
   5011 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   5012                 goto nospace;
   5013 
   5014 	/* prod points to an empty tx_bd at this point. */
   5015 	prod_bseq = sc->tx_prod_bseq;
   5016 #ifdef BNX_DEBUG
   5017 	debug_prod = chain_prod;
   5018 #endif
   5019 	DBPRINT(sc, BNX_INFO_SEND,
   5020 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   5021 		"prod_bseq = 0x%08X\n",
   5022 		__func__, prod, chain_prod, prod_bseq);
   5023 
   5024 	/*
   5025 	 * Cycle through each mbuf segment that makes up
   5026 	 * the outgoing frame, gathering the mapping info
   5027 	 * for that segment and creating a tx_bd for the
   5028 	 * mbuf.
   5029 	 */
   5030 	for (i = 0; i < map->dm_nsegs ; i++) {
   5031 		chain_prod = TX_CHAIN_IDX(prod);
   5032 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   5033 
   5034 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   5035 		txbd->tx_bd_haddr_lo = addr;
   5036 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   5037 		txbd->tx_bd_haddr_hi = addr;
   5038 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   5039 		txbd->tx_bd_vlan_tag = vlan_tag;
   5040 		txbd->tx_bd_flags = flags;
   5041 		prod_bseq += map->dm_segs[i].ds_len;
   5042 		if (i == 0)
   5043 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   5044 		prod = NEXT_TX_BD(prod);
   5045 	}
   5046 	/* Set the END flag on the last TX buffer descriptor. */
   5047 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   5048 
   5049 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   5050 
   5051 	DBPRINT(sc, BNX_INFO_SEND,
   5052 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   5053 		"prod_bseq = 0x%08X\n",
   5054 		__func__, prod, chain_prod, prod_bseq);
   5055 
   5056 	pkt->pkt_mbuf = m;
   5057 	pkt->pkt_end_desc = chain_prod;
   5058 
   5059 	mutex_enter(&sc->tx_pkt_mtx);
   5060 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   5061 	mutex_exit(&sc->tx_pkt_mtx);
   5062 
   5063 	sc->used_tx_bd += map->dm_nsegs;
   5064 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   5065 		__FILE__, __LINE__, sc->used_tx_bd);
   5066 
   5067 	/* Update some debug statistics counters */
   5068 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   5069 	    sc->tx_hi_watermark = sc->used_tx_bd);
   5070 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   5071 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   5072 
   5073 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   5074 	    map->dm_nsegs));
   5075 
   5076 	/* prod points to the next free tx_bd at this point. */
   5077 	sc->tx_prod = prod;
   5078 	sc->tx_prod_bseq = prod_bseq;
   5079 
   5080 	return 0;
   5081 
   5082 
   5083 nospace:
   5084 	bus_dmamap_unload(sc->bnx_dmatag, map);
   5085 maperr:
   5086 	mutex_enter(&sc->tx_pkt_mtx);
   5087 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   5088 	mutex_exit(&sc->tx_pkt_mtx);
   5089 
   5090 	return ENOMEM;
   5091 }
   5092 
   5093 /****************************************************************************/
   5094 /* Main transmit routine.                                                   */
   5095 /*                                                                          */
   5096 /* Returns:                                                                 */
   5097 /*   Nothing.                                                               */
   5098 /****************************************************************************/
   5099 void
   5100 bnx_start(struct ifnet *ifp)
   5101 {
   5102 	struct bnx_softc	*sc = ifp->if_softc;
   5103 	struct mbuf		*m_head = NULL;
   5104 	int			count = 0;
   5105 #ifdef BNX_DEBUG
   5106 	uint16_t		tx_chain_prod;
   5107 #endif
   5108 
   5109 	/* If there's no link or the transmit queue is empty then just exit. */
   5110 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   5111 		DBPRINT(sc, BNX_INFO_SEND,
   5112 		    "%s(): output active or device not running.\n", __func__);
   5113 		goto bnx_start_exit;
   5114 	}
   5115 
   5116 	/* prod points to the next free tx_bd. */
   5117 #ifdef BNX_DEBUG
   5118 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5119 #endif
   5120 
   5121 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5122 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5123 	    "used_tx %d max_tx %d\n",
   5124 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5125 	    sc->used_tx_bd, sc->max_tx_bd);
   5126 
   5127 	/*
   5128 	 * Keep adding entries while there is space in the ring.
   5129 	 */
   5130 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5131 		/* Check for any frames to send. */
   5132 		IFQ_POLL(&ifp->if_snd, m_head);
   5133 		if (m_head == NULL)
   5134 			break;
   5135 
   5136 		/*
   5137 		 * Pack the data into the transmit ring. If we
   5138 		 * don't have room, set the OACTIVE flag to wait
   5139 		 * for the NIC to drain the chain.
   5140 		 */
   5141 		if (bnx_tx_encap(sc, m_head)) {
   5142 			ifp->if_flags |= IFF_OACTIVE;
   5143 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5144 			    "business! Total tx_bd used = %d\n",
   5145 			    sc->used_tx_bd);
   5146 			break;
   5147 		}
   5148 
   5149 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5150 		count++;
   5151 
   5152 		/* Send a copy of the frame to any BPF listeners. */
   5153 		bpf_mtap(ifp, m_head);
   5154 	}
   5155 
   5156 	if (count == 0) {
   5157 		/* no packets were dequeued */
   5158 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5159 		    "%s(): No packets were dequeued\n", __func__);
   5160 		goto bnx_start_exit;
   5161 	}
   5162 
   5163 	/* Update the driver's counters. */
   5164 #ifdef BNX_DEBUG
   5165 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5166 #endif
   5167 
   5168 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   5169 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
   5170 	    tx_chain_prod, sc->tx_prod_bseq);
   5171 
   5172 	/* Start the transmit. */
   5173 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5174 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5175 
   5176 	/* Set the tx timeout. */
   5177 	ifp->if_timer = BNX_TX_TIMEOUT;
   5178 
   5179 bnx_start_exit:
   5180 	return;
   5181 }
   5182 
   5183 /****************************************************************************/
   5184 /* Handles any IOCTL calls from the operating system.                       */
   5185 /*                                                                          */
   5186 /* Returns:                                                                 */
   5187 /*   0 for success, positive value for failure.                             */
   5188 /****************************************************************************/
   5189 int
   5190 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5191 {
   5192 	struct bnx_softc	*sc = ifp->if_softc;
   5193 	struct ifreq		*ifr = (struct ifreq *) data;
   5194 	struct mii_data		*mii = &sc->bnx_mii;
   5195 	int			s, error = 0;
   5196 
   5197 	s = splnet();
   5198 
   5199 	switch (command) {
   5200 	case SIOCSIFFLAGS:
   5201 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5202 			break;
   5203 		/* XXX set an ifflags callback and let ether_ioctl
   5204 		 * handle all of this.
   5205 		 */
   5206 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5207 			if (ifp->if_flags & IFF_RUNNING)
   5208 				error = ENETRESET;
   5209 			else
   5210 				bnx_init(ifp);
   5211 		} else if (ifp->if_flags & IFF_RUNNING)
   5212 			bnx_stop(ifp, 1);
   5213 		break;
   5214 
   5215 	case SIOCSIFMEDIA:
   5216 	case SIOCGIFMEDIA:
   5217 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5218 		    sc->bnx_phy_flags);
   5219 
   5220 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5221 		break;
   5222 
   5223 	default:
   5224 		error = ether_ioctl(ifp, command, data);
   5225 	}
   5226 
   5227 	if (error == ENETRESET) {
   5228 		if (ifp->if_flags & IFF_RUNNING)
   5229 			bnx_iff(sc);
   5230 		error = 0;
   5231 	}
   5232 
   5233 	splx(s);
   5234 	return error;
   5235 }
   5236 
   5237 /****************************************************************************/
   5238 /* Transmit timeout handler.                                                */
   5239 /*                                                                          */
   5240 /* Returns:                                                                 */
   5241 /*   Nothing.                                                               */
   5242 /****************************************************************************/
   5243 void
   5244 bnx_watchdog(struct ifnet *ifp)
   5245 {
   5246 	struct bnx_softc	*sc = ifp->if_softc;
   5247 
   5248 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5249 	    bnx_dump_status_block(sc));
   5250 	/*
   5251 	 * If we are in this routine because of pause frames, then
   5252 	 * don't reset the hardware.
   5253 	 */
   5254 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5255 		return;
   5256 
   5257 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5258 
   5259 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5260 
   5261 	bnx_init(ifp);
   5262 
   5263 	ifp->if_oerrors++;
   5264 }
   5265 
   5266 /*
   5267  * Interrupt handler.
   5268  */
   5269 /****************************************************************************/
   5270 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5271 /* interrupt and then calls a separate routine for handle the various       */
   5272 /* interrupt causes (PHY, TX, RX).                                          */
   5273 /*                                                                          */
   5274 /* Returns:                                                                 */
   5275 /*   0 for success, positive value for failure.                             */
   5276 /****************************************************************************/
   5277 int
   5278 bnx_intr(void *xsc)
   5279 {
   5280 	struct bnx_softc	*sc;
   5281 	struct ifnet		*ifp;
   5282 	uint32_t		status_attn_bits;
   5283 	const struct status_block *sblk;
   5284 
   5285 	sc = xsc;
   5286 
   5287 	ifp = &sc->bnx_ec.ec_if;
   5288 
   5289 	if (!device_is_active(sc->bnx_dev) ||
   5290 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5291 		return 0;
   5292 
   5293 	DBRUNIF(1, sc->interrupts_generated++);
   5294 
   5295 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5296 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   5297 
   5298 	/*
   5299 	 * If the hardware status block index
   5300 	 * matches the last value read by the
   5301 	 * driver and we haven't asserted our
   5302 	 * interrupt then there's nothing to do.
   5303 	 */
   5304 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   5305 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   5306 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   5307 		return 0;
   5308 
   5309 	/* Ack the interrupt and stop others from occuring. */
   5310 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5311 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   5312 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5313 
   5314 	/* Keep processing data as long as there is work to do. */
   5315 	for (;;) {
   5316 		sblk = sc->status_block;
   5317 		status_attn_bits = sblk->status_attn_bits;
   5318 
   5319 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5320 		    aprint_debug("Simulating unexpected status attention bit set.");
   5321 		    status_attn_bits = status_attn_bits |
   5322 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5323 
   5324 		/* Was it a link change interrupt? */
   5325 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5326 		    (sblk->status_attn_bits_ack &
   5327 		    STATUS_ATTN_BITS_LINK_STATE))
   5328 			bnx_phy_intr(sc);
   5329 
   5330 		/* If any other attention is asserted then the chip is toast. */
   5331 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5332 		    (sblk->status_attn_bits_ack &
   5333 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5334 			DBRUN(1, sc->unexpected_attentions++);
   5335 
   5336 			BNX_PRINTF(sc,
   5337 			    "Fatal attention detected: 0x%08X\n",
   5338 			    sblk->status_attn_bits);
   5339 
   5340 			DBRUN(BNX_FATAL,
   5341 			    if (bnx_debug_unexpected_attention == 0)
   5342 			    bnx_breakpoint(sc));
   5343 
   5344 			bnx_init(ifp);
   5345 			return 1;
   5346 		}
   5347 
   5348 		/* Check for any completed RX frames. */
   5349 		if (sblk->status_rx_quick_consumer_index0 !=
   5350 		    sc->hw_rx_cons)
   5351 			bnx_rx_intr(sc);
   5352 
   5353 		/* Check for any completed TX frames. */
   5354 		if (sblk->status_tx_quick_consumer_index0 !=
   5355 		    sc->hw_tx_cons)
   5356 			bnx_tx_intr(sc);
   5357 
   5358 		/*
   5359 		 * Save the status block index value for use during the
   5360 		 * next interrupt.
   5361 		 */
   5362 		sc->last_status_idx = sblk->status_idx;
   5363 
   5364 		/* Prevent speculative reads from getting ahead of the
   5365 		 * status block.
   5366 		 */
   5367 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   5368 		    BUS_SPACE_BARRIER_READ);
   5369 
   5370 		/* If there's no work left then exit the isr. */
   5371 		if ((sblk->status_rx_quick_consumer_index0 ==
   5372 			sc->hw_rx_cons) &&
   5373 		    (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
   5374 			break;
   5375 	}
   5376 
   5377 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5378 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   5379 
   5380 	/* Re-enable interrupts. */
   5381 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5382 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   5383 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5384 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5385 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   5386 
   5387 	/* Handle any frames that arrived while handling the interrupt. */
   5388 	if_schedule_deferred_start(ifp);
   5389 
   5390 	return 1;
   5391 }
   5392 
   5393 /****************************************************************************/
   5394 /* Programs the various packet receive modes (broadcast and multicast).     */
   5395 /*                                                                          */
   5396 /* Returns:                                                                 */
   5397 /*   Nothing.                                                               */
   5398 /****************************************************************************/
   5399 void
   5400 bnx_iff(struct bnx_softc *sc)
   5401 {
   5402 	struct ethercom		*ec = &sc->bnx_ec;
   5403 	struct ifnet		*ifp = &ec->ec_if;
   5404 	struct ether_multi	*enm;
   5405 	struct ether_multistep	step;
   5406 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5407 	uint32_t		rx_mode, sort_mode;
   5408 	int			h, i;
   5409 
   5410 	/* Initialize receive mode default settings. */
   5411 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5412 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5413 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5414 	ifp->if_flags &= ~IFF_ALLMULTI;
   5415 
   5416 	/*
   5417 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5418 	 * be enbled.
   5419 	 */
   5420 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5421 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5422 
   5423 	/*
   5424 	 * Check for promiscuous, all multicast, or selected
   5425 	 * multicast address filtering.
   5426 	 */
   5427 	if (ifp->if_flags & IFF_PROMISC) {
   5428 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5429 
   5430 		ifp->if_flags |= IFF_ALLMULTI;
   5431 		/* Enable promiscuous mode. */
   5432 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5433 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5434 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5435 allmulti:
   5436 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5437 
   5438 		ifp->if_flags |= IFF_ALLMULTI;
   5439 		/* Enable all multicast addresses. */
   5440 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5441 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5442 			    0xffffffff);
   5443 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5444 	} else {
   5445 		/* Accept one or more multicast(s). */
   5446 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5447 
   5448 		ETHER_FIRST_MULTI(step, ec, enm);
   5449 		while (enm != NULL) {
   5450 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5451 			    ETHER_ADDR_LEN)) {
   5452 				goto allmulti;
   5453 			}
   5454 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5455 			    0xFF;
   5456 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5457 			ETHER_NEXT_MULTI(step, enm);
   5458 		}
   5459 
   5460 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5461 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5462 			    hashes[i]);
   5463 
   5464 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5465 	}
   5466 
   5467 	/* Only make changes if the recive mode has actually changed. */
   5468 	if (rx_mode != sc->rx_mode) {
   5469 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5470 		    rx_mode);
   5471 
   5472 		sc->rx_mode = rx_mode;
   5473 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5474 	}
   5475 
   5476 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5477 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5478 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5479 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5480 }
   5481 
   5482 /****************************************************************************/
   5483 /* Called periodically to updates statistics from the controllers           */
   5484 /* statistics block.                                                        */
   5485 /*                                                                          */
   5486 /* Returns:                                                                 */
   5487 /*   Nothing.                                                               */
   5488 /****************************************************************************/
   5489 void
   5490 bnx_stats_update(struct bnx_softc *sc)
   5491 {
   5492 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5493 	struct statistics_block	*stats;
   5494 
   5495 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5496 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5497 	    BUS_DMASYNC_POSTREAD);
   5498 
   5499 	stats = (struct statistics_block *)sc->stats_block;
   5500 
   5501 	/*
   5502 	 * Update the interface statistics from the
   5503 	 * hardware statistics.
   5504 	 */
   5505 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5506 
   5507 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5508 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5509 	    (u_long)stats->stat_IfInMBUFDiscards +
   5510 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5511 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5512 
   5513 	ifp->if_oerrors = (u_long)
   5514 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5515 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5516 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5517 
   5518 	/*
   5519 	 * Certain controllers don't report
   5520 	 * carrier sense errors correctly.
   5521 	 * See errata E11_5708CA0_1165.
   5522 	 */
   5523 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5524 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5525 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5526 
   5527 	/*
   5528 	 * Update the sysctl statistics from the
   5529 	 * hardware statistics.
   5530 	 */
   5531 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
   5532 	    (uint64_t) stats->stat_IfHCInOctets_lo;
   5533 
   5534 	sc->stat_IfHCInBadOctets =
   5535 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5536 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
   5537 
   5538 	sc->stat_IfHCOutOctets =
   5539 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5540 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
   5541 
   5542 	sc->stat_IfHCOutBadOctets =
   5543 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5544 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
   5545 
   5546 	sc->stat_IfHCInUcastPkts =
   5547 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5548 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
   5549 
   5550 	sc->stat_IfHCInMulticastPkts =
   5551 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5552 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
   5553 
   5554 	sc->stat_IfHCInBroadcastPkts =
   5555 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5556 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5557 
   5558 	sc->stat_IfHCOutUcastPkts =
   5559 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5560 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
   5561 
   5562 	sc->stat_IfHCOutMulticastPkts =
   5563 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5564 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5565 
   5566 	sc->stat_IfHCOutBroadcastPkts =
   5567 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5568 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5569 
   5570 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5571 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5572 
   5573 	sc->stat_Dot3StatsCarrierSenseErrors =
   5574 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5575 
   5576 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5577 
   5578 	sc->stat_Dot3StatsAlignmentErrors =
   5579 	    stats->stat_Dot3StatsAlignmentErrors;
   5580 
   5581 	sc->stat_Dot3StatsSingleCollisionFrames =
   5582 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5583 
   5584 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5585 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5586 
   5587 	sc->stat_Dot3StatsDeferredTransmissions =
   5588 	    stats->stat_Dot3StatsDeferredTransmissions;
   5589 
   5590 	sc->stat_Dot3StatsExcessiveCollisions =
   5591 	    stats->stat_Dot3StatsExcessiveCollisions;
   5592 
   5593 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5594 
   5595 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5596 
   5597 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5598 
   5599 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5600 
   5601 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5602 
   5603 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5604 
   5605 	sc->stat_EtherStatsPktsRx64Octets =
   5606 	    stats->stat_EtherStatsPktsRx64Octets;
   5607 
   5608 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5609 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5610 
   5611 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5612 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5613 
   5614 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5615 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5616 
   5617 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5618 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5619 
   5620 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5621 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5622 
   5623 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5624 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5625 
   5626 	sc->stat_EtherStatsPktsTx64Octets =
   5627 	    stats->stat_EtherStatsPktsTx64Octets;
   5628 
   5629 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5630 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5631 
   5632 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5633 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5634 
   5635 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5636 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5637 
   5638 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5639 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5640 
   5641 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5642 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5643 
   5644 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5645 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5646 
   5647 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5648 
   5649 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5650 
   5651 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5652 
   5653 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5654 
   5655 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5656 
   5657 	sc->stat_MacControlFramesReceived =
   5658 	    stats->stat_MacControlFramesReceived;
   5659 
   5660 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5661 
   5662 	sc->stat_IfInFramesL2FilterDiscards =
   5663 	    stats->stat_IfInFramesL2FilterDiscards;
   5664 
   5665 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5666 
   5667 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5668 
   5669 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5670 
   5671 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5672 
   5673 	sc->stat_CatchupInRuleCheckerDiscards =
   5674 	    stats->stat_CatchupInRuleCheckerDiscards;
   5675 
   5676 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5677 
   5678 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5679 
   5680 	sc->stat_CatchupInRuleCheckerP4Hit =
   5681 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5682 
   5683 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5684 }
   5685 
   5686 void
   5687 bnx_tick(void *xsc)
   5688 {
   5689 	struct bnx_softc	*sc = xsc;
   5690 	struct mii_data		*mii;
   5691 	uint32_t		msg;
   5692 	uint16_t		prod, chain_prod;
   5693 	uint32_t		prod_bseq;
   5694 	int s = splnet();
   5695 
   5696 	/* Tell the firmware that the driver is still running. */
   5697 #ifdef BNX_DEBUG
   5698 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5699 #else
   5700 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5701 #endif
   5702 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5703 
   5704 	/* Update the statistics from the hardware statistics block. */
   5705 	bnx_stats_update(sc);
   5706 
   5707 	/* Schedule the next tick. */
   5708 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5709 
   5710 	mii = &sc->bnx_mii;
   5711 	mii_tick(mii);
   5712 
   5713 	/* try to get more RX buffers, just in case */
   5714 	prod = sc->rx_prod;
   5715 	prod_bseq = sc->rx_prod_bseq;
   5716 	chain_prod = RX_CHAIN_IDX(prod);
   5717 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5718 	sc->rx_prod = prod;
   5719 	sc->rx_prod_bseq = prod_bseq;
   5720 	splx(s);
   5721 	return;
   5722 }
   5723 
   5724 /****************************************************************************/
   5725 /* BNX Debug Routines                                                       */
   5726 /****************************************************************************/
   5727 #ifdef BNX_DEBUG
   5728 
   5729 /****************************************************************************/
   5730 /* Prints out information about an mbuf.                                    */
   5731 /*                                                                          */
   5732 /* Returns:                                                                 */
   5733 /*   Nothing.                                                               */
   5734 /****************************************************************************/
   5735 void
   5736 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5737 {
   5738 	struct mbuf		*mp = m;
   5739 
   5740 	if (m == NULL) {
   5741 		/* Index out of range. */
   5742 		aprint_error("mbuf ptr is null!\n");
   5743 		return;
   5744 	}
   5745 
   5746 	while (mp) {
   5747 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5748 		    mp, mp->m_len);
   5749 
   5750 		if (mp->m_flags & M_EXT)
   5751 			aprint_debug("M_EXT ");
   5752 		if (mp->m_flags & M_PKTHDR)
   5753 			aprint_debug("M_PKTHDR ");
   5754 		aprint_debug("\n");
   5755 
   5756 		if (mp->m_flags & M_EXT)
   5757 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   5758 			    mp, mp->m_ext.ext_size);
   5759 
   5760 		mp = mp->m_next;
   5761 	}
   5762 }
   5763 
   5764 /****************************************************************************/
   5765 /* Prints out the mbufs in the TX mbuf chain.                               */
   5766 /*                                                                          */
   5767 /* Returns:                                                                 */
   5768 /*   Nothing.                                                               */
   5769 /****************************************************************************/
   5770 void
   5771 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5772 {
   5773 #if 0
   5774 	struct mbuf		*m;
   5775 	int			i;
   5776 
   5777 	aprint_debug_dev(sc->bnx_dev,
   5778 	    "----------------------------"
   5779 	    "  tx mbuf data  "
   5780 	    "----------------------------\n");
   5781 
   5782 	for (i = 0; i < count; i++) {
   5783 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5784 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5785 		bnx_dump_mbuf(sc, m);
   5786 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5787 	}
   5788 
   5789 	aprint_debug_dev(sc->bnx_dev,
   5790 	    "--------------------------------------------"
   5791 	    "----------------------------\n");
   5792 #endif
   5793 }
   5794 
   5795 /*
   5796  * This routine prints the RX mbuf chain.
   5797  */
   5798 void
   5799 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5800 {
   5801 	struct mbuf		*m;
   5802 	int			i;
   5803 
   5804 	aprint_debug_dev(sc->bnx_dev,
   5805 	    "----------------------------"
   5806 	    "  rx mbuf data  "
   5807 	    "----------------------------\n");
   5808 
   5809 	for (i = 0; i < count; i++) {
   5810 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5811 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5812 		bnx_dump_mbuf(sc, m);
   5813 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5814 	}
   5815 
   5816 
   5817 	aprint_debug_dev(sc->bnx_dev,
   5818 	    "--------------------------------------------"
   5819 	    "----------------------------\n");
   5820 }
   5821 
   5822 void
   5823 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5824 {
   5825 	if (idx > MAX_TX_BD)
   5826 		/* Index out of range. */
   5827 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5828 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5829 		/* TX Chain page pointer. */
   5830 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5831 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5832 		    txbd->tx_bd_haddr_lo);
   5833 	else
   5834 		/* Normal tx_bd entry. */
   5835 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5836 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5837 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5838 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5839 		    txbd->tx_bd_flags);
   5840 }
   5841 
   5842 void
   5843 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5844 {
   5845 	if (idx > MAX_RX_BD)
   5846 		/* Index out of range. */
   5847 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5848 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5849 		/* TX Chain page pointer. */
   5850 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5851 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5852 		    rxbd->rx_bd_haddr_lo);
   5853 	else
   5854 		/* Normal tx_bd entry. */
   5855 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5856 		    "0x%08X, flags = 0x%08X\n", idx,
   5857 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5858 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5859 }
   5860 
   5861 void
   5862 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5863 {
   5864 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5865 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5866 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5867 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5868 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5869 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5870 }
   5871 
   5872 /*
   5873  * This routine prints the TX chain.
   5874  */
   5875 void
   5876 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5877 {
   5878 	struct tx_bd		*txbd;
   5879 	int			i;
   5880 
   5881 	/* First some info about the tx_bd chain structure. */
   5882 	aprint_debug_dev(sc->bnx_dev,
   5883 	    "----------------------------"
   5884 	    "  tx_bd  chain  "
   5885 	    "----------------------------\n");
   5886 
   5887 	BNX_PRINTF(sc,
   5888 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5889 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
   5890 
   5891 	BNX_PRINTF(sc,
   5892 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5893 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
   5894 
   5895 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
   5896 
   5897 	aprint_error_dev(sc->bnx_dev, ""
   5898 	    "-----------------------------"
   5899 	    "   tx_bd data   "
   5900 	    "-----------------------------\n");
   5901 
   5902 	/* Now print out the tx_bd's themselves. */
   5903 	for (i = 0; i < count; i++) {
   5904 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5905 		bnx_dump_txbd(sc, tx_prod, txbd);
   5906 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5907 	}
   5908 
   5909 	aprint_debug_dev(sc->bnx_dev,
   5910 	    "-----------------------------"
   5911 	    "--------------"
   5912 	    "-----------------------------\n");
   5913 }
   5914 
   5915 /*
   5916  * This routine prints the RX chain.
   5917  */
   5918 void
   5919 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5920 {
   5921 	struct rx_bd		*rxbd;
   5922 	int			i;
   5923 
   5924 	/* First some info about the tx_bd chain structure. */
   5925 	aprint_debug_dev(sc->bnx_dev,
   5926 	    "----------------------------"
   5927 	    "  rx_bd  chain  "
   5928 	    "----------------------------\n");
   5929 
   5930 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   5931 
   5932 	BNX_PRINTF(sc,
   5933 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5934 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
   5935 
   5936 	BNX_PRINTF(sc,
   5937 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5938 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
   5939 
   5940 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
   5941 
   5942 	aprint_error_dev(sc->bnx_dev,
   5943 	    "----------------------------"
   5944 	    "   rx_bd data   "
   5945 	    "----------------------------\n");
   5946 
   5947 	/* Now print out the rx_bd's themselves. */
   5948 	for (i = 0; i < count; i++) {
   5949 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5950 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5951 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5952 	}
   5953 
   5954 	aprint_debug_dev(sc->bnx_dev,
   5955 	    "----------------------------"
   5956 	    "--------------"
   5957 	    "----------------------------\n");
   5958 }
   5959 
   5960 /*
   5961  * This routine prints the status block.
   5962  */
   5963 void
   5964 bnx_dump_status_block(struct bnx_softc *sc)
   5965 {
   5966 	struct status_block	*sblk;
   5967 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5968 	    BUS_DMASYNC_POSTREAD);
   5969 
   5970 	sblk = sc->status_block;
   5971 
   5972    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
   5973 	    "-----------------------------\n");
   5974 
   5975 	BNX_PRINTF(sc,
   5976 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5977 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5978 	    sblk->status_idx);
   5979 
   5980 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5981 	    sblk->status_rx_quick_consumer_index0,
   5982 	    sblk->status_tx_quick_consumer_index0);
   5983 
   5984 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5985 
   5986 	/* Theses indices are not used for normal L2 drivers. */
   5987 	if (sblk->status_rx_quick_consumer_index1 ||
   5988 		sblk->status_tx_quick_consumer_index1)
   5989 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5990 		    sblk->status_rx_quick_consumer_index1,
   5991 		    sblk->status_tx_quick_consumer_index1);
   5992 
   5993 	if (sblk->status_rx_quick_consumer_index2 ||
   5994 		sblk->status_tx_quick_consumer_index2)
   5995 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5996 		    sblk->status_rx_quick_consumer_index2,
   5997 		    sblk->status_tx_quick_consumer_index2);
   5998 
   5999 	if (sblk->status_rx_quick_consumer_index3 ||
   6000 		sblk->status_tx_quick_consumer_index3)
   6001 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   6002 		    sblk->status_rx_quick_consumer_index3,
   6003 		    sblk->status_tx_quick_consumer_index3);
   6004 
   6005 	if (sblk->status_rx_quick_consumer_index4 ||
   6006 		sblk->status_rx_quick_consumer_index5)
   6007 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   6008 		    sblk->status_rx_quick_consumer_index4,
   6009 		    sblk->status_rx_quick_consumer_index5);
   6010 
   6011 	if (sblk->status_rx_quick_consumer_index6 ||
   6012 		sblk->status_rx_quick_consumer_index7)
   6013 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   6014 		    sblk->status_rx_quick_consumer_index6,
   6015 		    sblk->status_rx_quick_consumer_index7);
   6016 
   6017 	if (sblk->status_rx_quick_consumer_index8 ||
   6018 		sblk->status_rx_quick_consumer_index9)
   6019 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   6020 		    sblk->status_rx_quick_consumer_index8,
   6021 		    sblk->status_rx_quick_consumer_index9);
   6022 
   6023 	if (sblk->status_rx_quick_consumer_index10 ||
   6024 		sblk->status_rx_quick_consumer_index11)
   6025 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   6026 		    sblk->status_rx_quick_consumer_index10,
   6027 		    sblk->status_rx_quick_consumer_index11);
   6028 
   6029 	if (sblk->status_rx_quick_consumer_index12 ||
   6030 		sblk->status_rx_quick_consumer_index13)
   6031 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   6032 		    sblk->status_rx_quick_consumer_index12,
   6033 		    sblk->status_rx_quick_consumer_index13);
   6034 
   6035 	if (sblk->status_rx_quick_consumer_index14 ||
   6036 		sblk->status_rx_quick_consumer_index15)
   6037 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   6038 		    sblk->status_rx_quick_consumer_index14,
   6039 		    sblk->status_rx_quick_consumer_index15);
   6040 
   6041 	if (sblk->status_completion_producer_index ||
   6042 		sblk->status_cmd_consumer_index)
   6043 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   6044 		    sblk->status_completion_producer_index,
   6045 		    sblk->status_cmd_consumer_index);
   6046 
   6047 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6048 	    "-----------------------------\n");
   6049 }
   6050 
   6051 /*
   6052  * This routine prints the statistics block.
   6053  */
   6054 void
   6055 bnx_dump_stats_block(struct bnx_softc *sc)
   6056 {
   6057 	struct statistics_block	*sblk;
   6058 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6059 	    BUS_DMASYNC_POSTREAD);
   6060 
   6061 	sblk = sc->stats_block;
   6062 
   6063 	aprint_debug_dev(sc->bnx_dev, ""
   6064 	    "-----------------------------"
   6065 	    " Stats  Block "
   6066 	    "-----------------------------\n");
   6067 
   6068 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   6069 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   6070 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   6071 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   6072 
   6073 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   6074 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   6075 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   6076 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   6077 
   6078 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   6079 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   6080 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   6081 	    sblk->stat_IfHCInMulticastPkts_hi,
   6082 	    sblk->stat_IfHCInMulticastPkts_lo);
   6083 
   6084 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   6085 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   6086 	    sblk->stat_IfHCInBroadcastPkts_hi,
   6087 	    sblk->stat_IfHCInBroadcastPkts_lo,
   6088 	    sblk->stat_IfHCOutUcastPkts_hi,
   6089 	    sblk->stat_IfHCOutUcastPkts_lo);
   6090 
   6091 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   6092 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   6093 	    sblk->stat_IfHCOutMulticastPkts_hi,
   6094 	    sblk->stat_IfHCOutMulticastPkts_lo,
   6095 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   6096 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   6097 
   6098 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   6099 		BNX_PRINTF(sc, "0x%08X : "
   6100 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6101 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6102 
   6103 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6104 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6105 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6106 
   6107 	if (sblk->stat_Dot3StatsFCSErrors)
   6108 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6109 		    sblk->stat_Dot3StatsFCSErrors);
   6110 
   6111 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6112 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6113 		    sblk->stat_Dot3StatsAlignmentErrors);
   6114 
   6115 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6116 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6117 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6118 
   6119 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6120 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6121 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6122 
   6123 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6124 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6125 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6126 
   6127 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6128 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6129 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6130 
   6131 	if (sblk->stat_Dot3StatsLateCollisions)
   6132 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6133 		    sblk->stat_Dot3StatsLateCollisions);
   6134 
   6135 	if (sblk->stat_EtherStatsCollisions)
   6136 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6137 		    sblk->stat_EtherStatsCollisions);
   6138 
   6139 	if (sblk->stat_EtherStatsFragments)
   6140 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6141 		    sblk->stat_EtherStatsFragments);
   6142 
   6143 	if (sblk->stat_EtherStatsJabbers)
   6144 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6145 		    sblk->stat_EtherStatsJabbers);
   6146 
   6147 	if (sblk->stat_EtherStatsUndersizePkts)
   6148 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6149 		    sblk->stat_EtherStatsUndersizePkts);
   6150 
   6151 	if (sblk->stat_EtherStatsOverrsizePkts)
   6152 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6153 		    sblk->stat_EtherStatsOverrsizePkts);
   6154 
   6155 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6156 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6157 		    sblk->stat_EtherStatsPktsRx64Octets);
   6158 
   6159 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6160 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6161 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6162 
   6163 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6164 		BNX_PRINTF(sc, "0x%08X : "
   6165 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6166 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6167 
   6168 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6169 		BNX_PRINTF(sc, "0x%08X : "
   6170 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6171 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6172 
   6173 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6174 		BNX_PRINTF(sc, "0x%08X : "
   6175 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6176 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6177 
   6178 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6179 		BNX_PRINTF(sc, "0x%08X : "
   6180 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6181 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6182 
   6183 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6184 		BNX_PRINTF(sc, "0x%08X : "
   6185 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6186 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6187 
   6188 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6189 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6190 		    sblk->stat_EtherStatsPktsTx64Octets);
   6191 
   6192 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6193 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6194 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6195 
   6196 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6197 		BNX_PRINTF(sc, "0x%08X : "
   6198 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6199 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6200 
   6201 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6202 		BNX_PRINTF(sc, "0x%08X : "
   6203 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6204 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6205 
   6206 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6207 		BNX_PRINTF(sc, "0x%08X : "
   6208 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6209 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6210 
   6211 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6212 		BNX_PRINTF(sc, "0x%08X : "
   6213 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6214 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6215 
   6216 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6217 		BNX_PRINTF(sc, "0x%08X : "
   6218 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6219 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6220 
   6221 	if (sblk->stat_XonPauseFramesReceived)
   6222 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6223 		    sblk->stat_XonPauseFramesReceived);
   6224 
   6225 	if (sblk->stat_XoffPauseFramesReceived)
   6226 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6227 		    sblk->stat_XoffPauseFramesReceived);
   6228 
   6229 	if (sblk->stat_OutXonSent)
   6230 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6231 		    sblk->stat_OutXonSent);
   6232 
   6233 	if (sblk->stat_OutXoffSent)
   6234 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6235 		    sblk->stat_OutXoffSent);
   6236 
   6237 	if (sblk->stat_FlowControlDone)
   6238 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6239 		    sblk->stat_FlowControlDone);
   6240 
   6241 	if (sblk->stat_MacControlFramesReceived)
   6242 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6243 		    sblk->stat_MacControlFramesReceived);
   6244 
   6245 	if (sblk->stat_XoffStateEntered)
   6246 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6247 		    sblk->stat_XoffStateEntered);
   6248 
   6249 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6250 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6251 		    sblk->stat_IfInFramesL2FilterDiscards);
   6252 
   6253 	if (sblk->stat_IfInRuleCheckerDiscards)
   6254 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6255 		    sblk->stat_IfInRuleCheckerDiscards);
   6256 
   6257 	if (sblk->stat_IfInFTQDiscards)
   6258 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6259 		    sblk->stat_IfInFTQDiscards);
   6260 
   6261 	if (sblk->stat_IfInMBUFDiscards)
   6262 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6263 		    sblk->stat_IfInMBUFDiscards);
   6264 
   6265 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6266 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6267 		    sblk->stat_IfInRuleCheckerP4Hit);
   6268 
   6269 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6270 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6271 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6272 
   6273 	if (sblk->stat_CatchupInFTQDiscards)
   6274 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6275 		    sblk->stat_CatchupInFTQDiscards);
   6276 
   6277 	if (sblk->stat_CatchupInMBUFDiscards)
   6278 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6279 		    sblk->stat_CatchupInMBUFDiscards);
   6280 
   6281 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6282 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6283 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6284 
   6285 	aprint_debug_dev(sc->bnx_dev,
   6286 	    "-----------------------------"
   6287 	    "--------------"
   6288 	    "-----------------------------\n");
   6289 }
   6290 
   6291 void
   6292 bnx_dump_driver_state(struct bnx_softc *sc)
   6293 {
   6294 	aprint_debug_dev(sc->bnx_dev,
   6295 	    "-----------------------------"
   6296 	    " Driver State "
   6297 	    "-----------------------------\n");
   6298 
   6299 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6300 	    "address\n", sc);
   6301 
   6302 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6303 	    sc->status_block);
   6304 
   6305 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6306 	    "address\n", sc->stats_block);
   6307 
   6308 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6309 	    "adddress\n", sc->tx_bd_chain);
   6310 
   6311 #if 0
   6312 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6313 	    sc->rx_bd_chain);
   6314 
   6315 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6316 	    sc->tx_mbuf_ptr);
   6317 #endif
   6318 
   6319 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6320 	    sc->rx_mbuf_ptr);
   6321 
   6322 	BNX_PRINTF(sc,
   6323 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6324 	    sc->interrupts_generated);
   6325 
   6326 	BNX_PRINTF(sc,
   6327 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6328 	    sc->rx_interrupts);
   6329 
   6330 	BNX_PRINTF(sc,
   6331 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6332 	    sc->tx_interrupts);
   6333 
   6334 	BNX_PRINTF(sc,
   6335 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6336 	    sc->last_status_idx);
   6337 
   6338 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6339 	    sc->tx_prod);
   6340 
   6341 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6342 	    sc->tx_cons);
   6343 
   6344 	BNX_PRINTF(sc,
   6345 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6346 	    sc->tx_prod_bseq);
   6347 	BNX_PRINTF(sc,
   6348 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6349 	    sc->tx_mbuf_alloc);
   6350 
   6351 	BNX_PRINTF(sc,
   6352 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6353 	    sc->used_tx_bd);
   6354 
   6355 	BNX_PRINTF(sc,
   6356 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6357 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6358 
   6359 
   6360 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6361 	    sc->rx_prod);
   6362 
   6363 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6364 	    sc->rx_cons);
   6365 
   6366 	BNX_PRINTF(sc,
   6367 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6368 	    sc->rx_prod_bseq);
   6369 
   6370 	BNX_PRINTF(sc,
   6371 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6372 	    sc->rx_mbuf_alloc);
   6373 
   6374 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6375 	    sc->free_rx_bd);
   6376 
   6377 	BNX_PRINTF(sc,
   6378 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6379 	    sc->rx_low_watermark, sc->max_rx_bd);
   6380 
   6381 	BNX_PRINTF(sc,
   6382 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6383 	    "mbuf alloc failures\n",
   6384 	    sc->mbuf_alloc_failed);
   6385 
   6386 	BNX_PRINTF(sc,
   6387 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6388 	    "simulated mbuf alloc failures\n",
   6389 	    sc->mbuf_sim_alloc_failed);
   6390 
   6391 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6392 	    "-----------------------------\n");
   6393 }
   6394 
   6395 void
   6396 bnx_dump_hw_state(struct bnx_softc *sc)
   6397 {
   6398 	uint32_t		val1;
   6399 	int			i;
   6400 
   6401 	aprint_debug_dev(sc->bnx_dev,
   6402 	    "----------------------------"
   6403 	    " Hardware State "
   6404 	    "----------------------------\n");
   6405 
   6406 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   6407 
   6408 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6409 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6410 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6411 
   6412 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6413 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6414 
   6415 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6416 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6417 
   6418 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6419 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6420 	    BNX_EMAC_STATUS);
   6421 
   6422 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6423 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6424 
   6425 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6426 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6427 	    BNX_TBDR_STATUS);
   6428 
   6429 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6430 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6431 	    BNX_TDMA_STATUS);
   6432 
   6433 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6434 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6435 
   6436 	aprint_debug_dev(sc->bnx_dev,
   6437 	    "----------------------------"
   6438 	    "----------------"
   6439 	    "----------------------------\n");
   6440 
   6441 	aprint_debug_dev(sc->bnx_dev,
   6442 	    "----------------------------"
   6443 	    " Register  Dump "
   6444 	    "----------------------------\n");
   6445 
   6446 	for (i = 0x400; i < 0x8000; i += 0x10)
   6447 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6448 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6449 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6450 
   6451 	aprint_debug_dev(sc->bnx_dev,
   6452 	    "----------------------------"
   6453 	    "----------------"
   6454 	    "----------------------------\n");
   6455 }
   6456 
   6457 void
   6458 bnx_breakpoint(struct bnx_softc *sc)
   6459 {
   6460 	/* Unreachable code to shut the compiler up about unused functions. */
   6461 	if (0) {
   6462    		bnx_dump_txbd(sc, 0, NULL);
   6463 		bnx_dump_rxbd(sc, 0, NULL);
   6464 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6465 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6466 		bnx_dump_l2fhdr(sc, 0, NULL);
   6467 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6468 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6469 		bnx_dump_status_block(sc);
   6470 		bnx_dump_stats_block(sc);
   6471 		bnx_dump_driver_state(sc);
   6472 		bnx_dump_hw_state(sc);
   6473 	}
   6474 
   6475 	bnx_dump_driver_state(sc);
   6476 	/* Print the important status block fields. */
   6477 	bnx_dump_status_block(sc);
   6478 
   6479 #if 0
   6480 	/* Call the debugger. */
   6481 	breakpoint();
   6482 #endif
   6483 
   6484 	return;
   6485 }
   6486 #endif
   6487