if_bnx.c revision 1.60 1 /* $NetBSD: if_bnx.c,v 1.60 2016/12/08 01:12:01 ozaki-r Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3
4 /*-
5 * Copyright (c) 2006-2010 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.60 2016/12/08 01:12:01 ozaki-r Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 * BCM5706C A0, A1
52 * BCM5706S A0, A1
53 * BCM5708C A0, B0
54 * BCM5708S A0, B0
55 * BCM5709C A0 B0, B1, B2 (pre-production)
56 * BCM5709S A0, B0, B1, B2 (pre-production)
57 */
58
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64
65 #include <dev/microcode/bnx/bnxfw.h>
66
67 /****************************************************************************/
68 /* BNX Driver Version */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION "v0.9.6"
71
72 /****************************************************************************/
73 /* BNX Debug Options */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77
78 /* 0 = Never */
79 /* 1 = 1 in 2,147,483,648 */
80 /* 256 = 1 in 8,388,608 */
81 /* 2048 = 1 in 1,048,576 */
82 /* 65536 = 1 in 32,768 */
83 /* 1048576 = 1 in 2,048 */
84 /* 268435456 = 1 in 8 */
85 /* 536870912 = 1 in 4 */
86 /* 1073741824 = 1 in 2 */
87
88 /* Controls how often the l2_fhdr frame error check will fail. */
89 int bnx_debug_l2fhdr_status_check = 0;
90
91 /* Controls how often the unexpected attention check will fail. */
92 int bnx_debug_unexpected_attention = 0;
93
94 /* Controls how often to simulate an mbuf allocation failure. */
95 int bnx_debug_mbuf_allocation_failure = 0;
96
97 /* Controls how often to simulate a DMA mapping failure. */
98 int bnx_debug_dma_map_addr_failure = 0;
99
100 /* Controls how often to simulate a bootcode failure. */
101 int bnx_debug_bootcode_running_failure = 0;
102 #endif
103
104 /****************************************************************************/
105 /* PCI Device ID Table */
106 /* */
107 /* Used by bnx_probe() to identify the devices supported by this driver. */
108 /****************************************************************************/
109 static const struct bnx_product {
110 pci_vendor_id_t bp_vendor;
111 pci_product_id_t bp_product;
112 pci_vendor_id_t bp_subvendor;
113 pci_product_id_t bp_subproduct;
114 const char *bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 {
118 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 "HP NC370T Multifunction Gigabit Server Adapter"
121 },
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 {
125 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 "HP NC370i Multifunction Gigabit Server Adapter"
128 },
129 #endif
130 {
131 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 0, 0,
133 "Broadcom NetXtreme II BCM5706 1000Base-T"
134 },
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 {
137 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 "HP NC370F Multifunction Gigabit Server Adapter"
140 },
141 #endif
142 {
143 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 0, 0,
145 "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 },
147 {
148 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 0, 0,
150 "Broadcom NetXtreme II BCM5708 1000Base-T"
151 },
152 {
153 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 0, 0,
155 "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 },
157 {
158 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 0, 0,
160 "Broadcom NetXtreme II BCM5709 1000Base-T"
161 },
162 {
163 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 0, 0,
165 "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 },
167 {
168 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 0, 0,
170 "Broadcom NetXtreme II BCM5716 1000Base-T"
171 },
172 {
173 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 0, 0,
175 "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 },
177 };
178
179 /****************************************************************************/
180 /* Supported Flash NVRAM device data. */
181 /****************************************************************************/
182 static struct flash_spec flash_table[] =
183 {
184 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
185 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
186 /* Slow EEPROM */
187 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
188 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
189 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
190 "EEPROM - slow"},
191 /* Expansion entry 0001 */
192 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
193 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 "Entry 0001"},
196 /* Saifun SA25F010 (non-buffered flash) */
197 /* strap, cfg1, & write1 need updates */
198 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
199 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
200 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
201 "Non-buffered flash (128kB)"},
202 /* Saifun SA25F020 (non-buffered flash) */
203 /* strap, cfg1, & write1 need updates */
204 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
205 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
206 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
207 "Non-buffered flash (256kB)"},
208 /* Expansion entry 0100 */
209 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
210 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
211 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
212 "Entry 0100"},
213 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
214 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
215 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
216 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
217 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
218 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
219 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
220 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
221 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
222 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
223 /* Saifun SA25F005 (non-buffered flash) */
224 /* strap, cfg1, & write1 need updates */
225 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
226 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
228 "Non-buffered flash (64kB)"},
229 /* Fast EEPROM */
230 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
231 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
232 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
233 "EEPROM - fast"},
234 /* Expansion entry 1001 */
235 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
236 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
237 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
238 "Entry 1001"},
239 /* Expansion entry 1010 */
240 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
241 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
242 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
243 "Entry 1010"},
244 /* ATMEL AT45DB011B (buffered flash) */
245 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
246 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
247 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
248 "Buffered flash (128kB)"},
249 /* Expansion entry 1100 */
250 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
251 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
252 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
253 "Entry 1100"},
254 /* Expansion entry 1101 */
255 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
256 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
257 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
258 "Entry 1101"},
259 /* Ateml Expansion entry 1110 */
260 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
261 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
262 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
263 "Entry 1110 (Atmel)"},
264 /* ATMEL AT45DB021B (buffered flash) */
265 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
266 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
267 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
268 "Buffered flash (256kB)"},
269 };
270
271 /*
272 * The BCM5709 controllers transparently handle the
273 * differences between Atmel 264 byte pages and all
274 * flash devices which use 256 byte pages, so no
275 * logical-to-physical mapping is required in the
276 * driver.
277 */
278 static struct flash_spec flash_5709 = {
279 .flags = BNX_NV_BUFFERED,
280 .page_bits = BCM5709_FLASH_PAGE_BITS,
281 .page_size = BCM5709_FLASH_PAGE_SIZE,
282 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
283 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
284 .name = "5709 buffered flash (256kB)",
285 };
286
287 /****************************************************************************/
288 /* OpenBSD device entry points. */
289 /****************************************************************************/
290 static int bnx_probe(device_t, cfdata_t, void *);
291 void bnx_attach(device_t, device_t, void *);
292 int bnx_detach(device_t, int);
293
294 /****************************************************************************/
295 /* BNX Debug Data Structure Dump Routines */
296 /****************************************************************************/
297 #ifdef BNX_DEBUG
298 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
299 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
300 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
301 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
302 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
303 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
304 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
305 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
306 void bnx_dump_status_block(struct bnx_softc *);
307 void bnx_dump_stats_block(struct bnx_softc *);
308 void bnx_dump_driver_state(struct bnx_softc *);
309 void bnx_dump_hw_state(struct bnx_softc *);
310 void bnx_breakpoint(struct bnx_softc *);
311 #endif
312
313 /****************************************************************************/
314 /* BNX Register/Memory Access Routines */
315 /****************************************************************************/
316 uint32_t bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
317 void bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
318 void bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
319 int bnx_miibus_read_reg(device_t, int, int);
320 void bnx_miibus_write_reg(device_t, int, int, int);
321 void bnx_miibus_statchg(struct ifnet *);
322
323 /****************************************************************************/
324 /* BNX NVRAM Access Routines */
325 /****************************************************************************/
326 int bnx_acquire_nvram_lock(struct bnx_softc *);
327 int bnx_release_nvram_lock(struct bnx_softc *);
328 void bnx_enable_nvram_access(struct bnx_softc *);
329 void bnx_disable_nvram_access(struct bnx_softc *);
330 int bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
331 uint32_t);
332 int bnx_init_nvram(struct bnx_softc *);
333 int bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
334 int bnx_nvram_test(struct bnx_softc *);
335 #ifdef BNX_NVRAM_WRITE_SUPPORT
336 int bnx_enable_nvram_write(struct bnx_softc *);
337 void bnx_disable_nvram_write(struct bnx_softc *);
338 int bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
339 int bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
340 uint32_t);
341 int bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
342 #endif
343
344 /****************************************************************************/
345 /* */
346 /****************************************************************************/
347 void bnx_get_media(struct bnx_softc *);
348 void bnx_init_media(struct bnx_softc *);
349 int bnx_dma_alloc(struct bnx_softc *);
350 void bnx_dma_free(struct bnx_softc *);
351 void bnx_release_resources(struct bnx_softc *);
352
353 /****************************************************************************/
354 /* BNX Firmware Synchronization and Load */
355 /****************************************************************************/
356 int bnx_fw_sync(struct bnx_softc *, uint32_t);
357 void bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t,
358 uint32_t);
359 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
360 struct fw_info *);
361 void bnx_init_cpus(struct bnx_softc *);
362
363 static void bnx_print_adapter_info(struct bnx_softc *);
364 static void bnx_probe_pci_caps(struct bnx_softc *);
365 void bnx_stop(struct ifnet *, int);
366 int bnx_reset(struct bnx_softc *, uint32_t);
367 int bnx_chipinit(struct bnx_softc *);
368 int bnx_blockinit(struct bnx_softc *);
369 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
370 uint16_t *, uint32_t *);
371 int bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
372
373 int bnx_init_tx_chain(struct bnx_softc *);
374 void bnx_init_tx_context(struct bnx_softc *);
375 int bnx_init_rx_chain(struct bnx_softc *);
376 void bnx_init_rx_context(struct bnx_softc *);
377 void bnx_free_rx_chain(struct bnx_softc *);
378 void bnx_free_tx_chain(struct bnx_softc *);
379
380 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
381 void bnx_start(struct ifnet *);
382 int bnx_ioctl(struct ifnet *, u_long, void *);
383 void bnx_watchdog(struct ifnet *);
384 int bnx_init(struct ifnet *);
385
386 void bnx_init_context(struct bnx_softc *);
387 void bnx_get_mac_addr(struct bnx_softc *);
388 void bnx_set_mac_addr(struct bnx_softc *);
389 void bnx_phy_intr(struct bnx_softc *);
390 void bnx_rx_intr(struct bnx_softc *);
391 void bnx_tx_intr(struct bnx_softc *);
392 void bnx_disable_intr(struct bnx_softc *);
393 void bnx_enable_intr(struct bnx_softc *);
394
395 int bnx_intr(void *);
396 void bnx_iff(struct bnx_softc *);
397 void bnx_stats_update(struct bnx_softc *);
398 void bnx_tick(void *);
399
400 struct pool *bnx_tx_pool = NULL;
401 void bnx_alloc_pkts(struct work *, void *);
402
403 /****************************************************************************/
404 /* OpenBSD device dispatch table. */
405 /****************************************************************************/
406 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
407 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
408
409 /****************************************************************************/
410 /* Device probe function. */
411 /* */
412 /* Compares the device to the driver's list of supported devices and */
413 /* reports back to the OS whether this is the right driver for the device. */
414 /* */
415 /* Returns: */
416 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
417 /****************************************************************************/
418 static const struct bnx_product *
419 bnx_lookup(const struct pci_attach_args *pa)
420 {
421 int i;
422 pcireg_t subid;
423
424 for (i = 0; i < __arraycount(bnx_devices); i++) {
425 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
426 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
427 continue;
428 if (!bnx_devices[i].bp_subvendor)
429 return &bnx_devices[i];
430 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
431 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
432 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
433 return &bnx_devices[i];
434 }
435
436 return NULL;
437 }
438 static int
439 bnx_probe(device_t parent, cfdata_t match, void *aux)
440 {
441 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
442
443 if (bnx_lookup(pa) != NULL)
444 return 1;
445
446 return 0;
447 }
448
449 /****************************************************************************/
450 /* PCI Capabilities Probe Function. */
451 /* */
452 /* Walks the PCI capabiites list for the device to find what features are */
453 /* supported. */
454 /* */
455 /* Returns: */
456 /* None. */
457 /****************************************************************************/
458 static void
459 bnx_print_adapter_info(struct bnx_softc *sc)
460 {
461
462 aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
463 BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
464 (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
465 ? "Serdes " : "", sc->bnx_chipid);
466
467 /* Bus info. */
468 if (sc->bnx_flags & BNX_PCIE_FLAG) {
469 aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
470 sc->link_width);
471 switch (sc->link_speed) {
472 case 1: aprint_normal("2.5Gbps\n"); break;
473 case 2: aprint_normal("5Gbps\n"); break;
474 default: aprint_normal("Unknown link speed\n");
475 }
476 } else {
477 aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
478 ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
479 (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
480 sc->bus_speed_mhz);
481 }
482
483 aprint_normal_dev(sc->bnx_dev,
484 "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
485 sc->bnx_rx_quick_cons_trip_int,
486 sc->bnx_rx_quick_cons_trip,
487 sc->bnx_rx_ticks_int,
488 sc->bnx_rx_ticks,
489 sc->bnx_tx_quick_cons_trip_int,
490 sc->bnx_tx_quick_cons_trip,
491 sc->bnx_tx_ticks_int,
492 sc->bnx_tx_ticks);
493 }
494
495
496 /****************************************************************************/
497 /* PCI Capabilities Probe Function. */
498 /* */
499 /* Walks the PCI capabiites list for the device to find what features are */
500 /* supported. */
501 /* */
502 /* Returns: */
503 /* None. */
504 /****************************************************************************/
505 static void
506 bnx_probe_pci_caps(struct bnx_softc *sc)
507 {
508 struct pci_attach_args *pa = &(sc->bnx_pa);
509 pcireg_t reg;
510
511 /* Check if PCI-X capability is enabled. */
512 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, ®,
513 NULL) != 0) {
514 sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
515 }
516
517 /* Check if PCIe capability is enabled. */
518 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, ®,
519 NULL) != 0) {
520 pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
521 reg + PCIE_LCSR);
522 DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
523 "0x%08X\n", link_status);
524 sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
525 sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
526 sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
527 sc->bnx_flags |= BNX_PCIE_FLAG;
528 }
529
530 /* Check if MSI capability is enabled. */
531 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, ®,
532 NULL) != 0)
533 sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
534
535 /* Check if MSI-X capability is enabled. */
536 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, ®,
537 NULL) != 0)
538 sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
539 }
540
541
542 /****************************************************************************/
543 /* Device attach function. */
544 /* */
545 /* Allocates device resources, performs secondary chip identification, */
546 /* resets and initializes the hardware, and initializes driver instance */
547 /* variables. */
548 /* */
549 /* Returns: */
550 /* 0 on success, positive value on failure. */
551 /****************************************************************************/
552 void
553 bnx_attach(device_t parent, device_t self, void *aux)
554 {
555 const struct bnx_product *bp;
556 struct bnx_softc *sc = device_private(self);
557 prop_dictionary_t dict;
558 struct pci_attach_args *pa = aux;
559 pci_chipset_tag_t pc = pa->pa_pc;
560 pci_intr_handle_t ih;
561 const char *intrstr = NULL;
562 uint32_t command;
563 struct ifnet *ifp;
564 uint32_t val;
565 int mii_flags = MIIF_FORCEANEG;
566 pcireg_t memtype;
567 char intrbuf[PCI_INTRSTR_LEN];
568
569 if (bnx_tx_pool == NULL) {
570 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
571 if (bnx_tx_pool != NULL) {
572 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
573 0, 0, 0, "bnxpkts", NULL, IPL_NET);
574 } else {
575 aprint_error(": can't alloc bnx_tx_pool\n");
576 return;
577 }
578 }
579
580 bp = bnx_lookup(pa);
581 if (bp == NULL)
582 panic("unknown device");
583
584 sc->bnx_dev = self;
585
586 aprint_naive("\n");
587 aprint_normal(": %s\n", bp->bp_name);
588
589 sc->bnx_pa = *pa;
590
591 /*
592 * Map control/status registers.
593 */
594 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
595 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
596 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
597 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
598
599 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
600 aprint_error_dev(sc->bnx_dev,
601 "failed to enable memory mapping!\n");
602 return;
603 }
604
605 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
606 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
607 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
608 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
609 return;
610 }
611
612 if (pci_intr_map(pa, &ih)) {
613 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
614 goto bnx_attach_fail;
615 }
616
617 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
618
619 /*
620 * Configure byte swap and enable indirect register access.
621 * Rely on CPU to do target byte swapping on big endian systems.
622 * Access to registers outside of PCI configurtion space are not
623 * valid until this is done.
624 */
625 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
626 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
627 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
628
629 /* Save ASIC revsion info. */
630 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
631
632 /*
633 * Find the base address for shared memory access.
634 * Newer versions of bootcode use a signature and offset
635 * while older versions use a fixed address.
636 */
637 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
638 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
639 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
640 (sc->bnx_pa.pa_function << 2));
641 else
642 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
643
644 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
645
646 /* Set initial device and PHY flags */
647 sc->bnx_flags = 0;
648 sc->bnx_phy_flags = 0;
649
650 bnx_probe_pci_caps(sc);
651
652 /* Get PCI bus information (speed and type). */
653 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
654 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
655 uint32_t clkreg;
656
657 sc->bnx_flags |= BNX_PCIX_FLAG;
658
659 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
660
661 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
662 switch (clkreg) {
663 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
664 sc->bus_speed_mhz = 133;
665 break;
666
667 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
668 sc->bus_speed_mhz = 100;
669 break;
670
671 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
672 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
673 sc->bus_speed_mhz = 66;
674 break;
675
676 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
677 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
678 sc->bus_speed_mhz = 50;
679 break;
680
681 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
682 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
683 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
684 sc->bus_speed_mhz = 33;
685 break;
686 }
687 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
688 sc->bus_speed_mhz = 66;
689 else
690 sc->bus_speed_mhz = 33;
691
692 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
693 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
694
695 /* Reset the controller. */
696 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
697 goto bnx_attach_fail;
698
699 /* Initialize the controller. */
700 if (bnx_chipinit(sc)) {
701 aprint_error_dev(sc->bnx_dev,
702 "Controller initialization failed!\n");
703 goto bnx_attach_fail;
704 }
705
706 /* Perform NVRAM test. */
707 if (bnx_nvram_test(sc)) {
708 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
709 goto bnx_attach_fail;
710 }
711
712 /* Fetch the permanent Ethernet MAC address. */
713 bnx_get_mac_addr(sc);
714 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
715 ether_sprintf(sc->eaddr));
716
717 /*
718 * Trip points control how many BDs
719 * should be ready before generating an
720 * interrupt while ticks control how long
721 * a BD can sit in the chain before
722 * generating an interrupt. Set the default
723 * values for the RX and TX rings.
724 */
725
726 #ifdef BNX_DEBUG
727 /* Force more frequent interrupts. */
728 sc->bnx_tx_quick_cons_trip_int = 1;
729 sc->bnx_tx_quick_cons_trip = 1;
730 sc->bnx_tx_ticks_int = 0;
731 sc->bnx_tx_ticks = 0;
732
733 sc->bnx_rx_quick_cons_trip_int = 1;
734 sc->bnx_rx_quick_cons_trip = 1;
735 sc->bnx_rx_ticks_int = 0;
736 sc->bnx_rx_ticks = 0;
737 #else
738 sc->bnx_tx_quick_cons_trip_int = 20;
739 sc->bnx_tx_quick_cons_trip = 20;
740 sc->bnx_tx_ticks_int = 80;
741 sc->bnx_tx_ticks = 80;
742
743 sc->bnx_rx_quick_cons_trip_int = 6;
744 sc->bnx_rx_quick_cons_trip = 6;
745 sc->bnx_rx_ticks_int = 18;
746 sc->bnx_rx_ticks = 18;
747 #endif
748
749 /* Update statistics once every second. */
750 sc->bnx_stats_ticks = 1000000 & 0xffff00;
751
752 /* Find the media type for the adapter. */
753 bnx_get_media(sc);
754
755 /*
756 * Store config data needed by the PHY driver for
757 * backplane applications
758 */
759 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
760 BNX_SHARED_HW_CFG_CONFIG);
761 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
762 BNX_PORT_HW_CFG_CONFIG);
763
764 /* Allocate DMA memory resources. */
765 sc->bnx_dmatag = pa->pa_dmat;
766 if (bnx_dma_alloc(sc)) {
767 aprint_error_dev(sc->bnx_dev,
768 "DMA resource allocation failed!\n");
769 goto bnx_attach_fail;
770 }
771
772 /* Initialize the ifnet interface. */
773 ifp = &sc->bnx_ec.ec_if;
774 ifp->if_softc = sc;
775 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
776 ifp->if_ioctl = bnx_ioctl;
777 ifp->if_stop = bnx_stop;
778 ifp->if_start = bnx_start;
779 ifp->if_init = bnx_init;
780 ifp->if_timer = 0;
781 ifp->if_watchdog = bnx_watchdog;
782 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
783 IFQ_SET_READY(&ifp->if_snd);
784 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
785
786 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
787 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
788
789 ifp->if_capabilities |=
790 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
791 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
792 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
793
794 /* Hookup IRQ last. */
795 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
796 if (sc->bnx_intrhand == NULL) {
797 aprint_error_dev(self, "couldn't establish interrupt");
798 if (intrstr != NULL)
799 aprint_error(" at %s", intrstr);
800 aprint_error("\n");
801 goto bnx_attach_fail;
802 }
803 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
804
805 /* create workqueue to handle packet allocations */
806 if (workqueue_create(&sc->bnx_wq, device_xname(self),
807 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
808 aprint_error_dev(self, "failed to create workqueue\n");
809 goto bnx_attach_fail;
810 }
811
812 sc->bnx_mii.mii_ifp = ifp;
813 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
814 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
815 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
816
817 /* Handle any special PHY initialization for SerDes PHYs. */
818 bnx_init_media(sc);
819
820 sc->bnx_ec.ec_mii = &sc->bnx_mii;
821 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
822 ether_mediastatus);
823
824 /* set phyflags and chipid before mii_attach() */
825 dict = device_properties(self);
826 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
827 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
828 prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
829 prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
830
831 /* Print some useful adapter info */
832 bnx_print_adapter_info(sc);
833
834 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
835 mii_flags |= MIIF_HAVEFIBER;
836 mii_attach(self, &sc->bnx_mii, 0xffffffff,
837 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
838
839 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
840 aprint_error_dev(self, "no PHY found!\n");
841 ifmedia_add(&sc->bnx_mii.mii_media,
842 IFM_ETHER|IFM_MANUAL, 0, NULL);
843 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
844 } else
845 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
846
847 /* Attach to the Ethernet interface list. */
848 if_attach(ifp);
849 if_deferred_start_init(ifp, NULL);
850 ether_ifattach(ifp,sc->eaddr);
851
852 callout_init(&sc->bnx_timeout, 0);
853
854 if (pmf_device_register(self, NULL, NULL))
855 pmf_class_network_register(self, ifp);
856 else
857 aprint_error_dev(self, "couldn't establish power handler\n");
858
859 /* Print some important debugging info. */
860 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
861
862 goto bnx_attach_exit;
863
864 bnx_attach_fail:
865 bnx_release_resources(sc);
866
867 bnx_attach_exit:
868 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
869 }
870
871 /****************************************************************************/
872 /* Device detach function. */
873 /* */
874 /* Stops the controller, resets the controller, and releases resources. */
875 /* */
876 /* Returns: */
877 /* 0 on success, positive value on failure. */
878 /****************************************************************************/
879 int
880 bnx_detach(device_t dev, int flags)
881 {
882 int s;
883 struct bnx_softc *sc;
884 struct ifnet *ifp;
885
886 sc = device_private(dev);
887 ifp = &sc->bnx_ec.ec_if;
888
889 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
890
891 /* Stop and reset the controller. */
892 s = splnet();
893 if (ifp->if_flags & IFF_RUNNING)
894 bnx_stop(ifp, 1);
895 else {
896 /* Disable the transmit/receive blocks. */
897 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
898 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
899 DELAY(20);
900 bnx_disable_intr(sc);
901 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
902 }
903
904 splx(s);
905
906 pmf_device_deregister(dev);
907 callout_destroy(&sc->bnx_timeout);
908 ether_ifdetach(ifp);
909 workqueue_destroy(sc->bnx_wq);
910
911 /* Delete all remaining media. */
912 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
913
914 if_detach(ifp);
915 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
916
917 /* Release all remaining resources. */
918 bnx_release_resources(sc);
919
920 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
921
922 return 0;
923 }
924
925 /****************************************************************************/
926 /* Indirect register read. */
927 /* */
928 /* Reads NetXtreme II registers using an index/data register pair in PCI */
929 /* configuration space. Using this mechanism avoids issues with posted */
930 /* reads but is much slower than memory-mapped I/O. */
931 /* */
932 /* Returns: */
933 /* The value of the register. */
934 /****************************************************************************/
935 uint32_t
936 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
937 {
938 struct pci_attach_args *pa = &(sc->bnx_pa);
939
940 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
941 offset);
942 #ifdef BNX_DEBUG
943 {
944 uint32_t val;
945 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
946 BNX_PCICFG_REG_WINDOW);
947 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
948 "val = 0x%08X\n", __func__, offset, val);
949 return val;
950 }
951 #else
952 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
953 #endif
954 }
955
956 /****************************************************************************/
957 /* Indirect register write. */
958 /* */
959 /* Writes NetXtreme II registers using an index/data register pair in PCI */
960 /* configuration space. Using this mechanism avoids issues with posted */
961 /* writes but is muchh slower than memory-mapped I/O. */
962 /* */
963 /* Returns: */
964 /* Nothing. */
965 /****************************************************************************/
966 void
967 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
968 {
969 struct pci_attach_args *pa = &(sc->bnx_pa);
970
971 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
972 __func__, offset, val);
973
974 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
975 offset);
976 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
977 }
978
979 /****************************************************************************/
980 /* Context memory write. */
981 /* */
982 /* The NetXtreme II controller uses context memory to track connection */
983 /* information for L2 and higher network protocols. */
984 /* */
985 /* Returns: */
986 /* Nothing. */
987 /****************************************************************************/
988 void
989 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
990 uint32_t ctx_val)
991 {
992 uint32_t idx, offset = ctx_offset + cid_addr;
993 uint32_t val, retry_cnt = 5;
994
995 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
996 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
997 REG_WR(sc, BNX_CTX_CTX_CTRL,
998 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
999
1000 for (idx = 0; idx < retry_cnt; idx++) {
1001 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
1002 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
1003 break;
1004 DELAY(5);
1005 }
1006
1007 #if 0
1008 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1009 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1010 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1011 __FILE__, __LINE__, cid_addr, ctx_offset);
1012 #endif
1013
1014 } else {
1015 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1016 REG_WR(sc, BNX_CTX_DATA, ctx_val);
1017 }
1018 }
1019
1020 /****************************************************************************/
1021 /* PHY register read. */
1022 /* */
1023 /* Implements register reads on the MII bus. */
1024 /* */
1025 /* Returns: */
1026 /* The value of the register. */
1027 /****************************************************************************/
1028 int
1029 bnx_miibus_read_reg(device_t dev, int phy, int reg)
1030 {
1031 struct bnx_softc *sc = device_private(dev);
1032 uint32_t val;
1033 int i;
1034
1035 /* Make sure we are accessing the correct PHY address. */
1036 if (phy != sc->bnx_phy_addr) {
1037 DBPRINT(sc, BNX_VERBOSE,
1038 "Invalid PHY address %d for PHY read!\n", phy);
1039 return 0;
1040 }
1041
1042 /*
1043 * The BCM5709S PHY is an IEEE Clause 45 PHY
1044 * with special mappings to work with IEEE
1045 * Clause 22 register accesses.
1046 */
1047 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1048 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1049 reg += 0x10;
1050 }
1051
1052 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1053 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1054 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1055
1056 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
1057 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1058
1059 DELAY(40);
1060 }
1061
1062 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1063 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1064 BNX_EMAC_MDIO_COMM_START_BUSY;
1065 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
1066
1067 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1068 DELAY(10);
1069
1070 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1071 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1072 DELAY(5);
1073
1074 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1075 val &= BNX_EMAC_MDIO_COMM_DATA;
1076
1077 break;
1078 }
1079 }
1080
1081 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
1082 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1083 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1084 val = 0x0;
1085 } else
1086 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1087
1088 DBPRINT(sc, BNX_EXCESSIVE,
1089 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
1090 (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1091
1092 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1093 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1094 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1095
1096 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
1097 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1098
1099 DELAY(40);
1100 }
1101
1102 return (val & 0xffff);
1103 }
1104
1105 /****************************************************************************/
1106 /* PHY register write. */
1107 /* */
1108 /* Implements register writes on the MII bus. */
1109 /* */
1110 /* Returns: */
1111 /* The value of the register. */
1112 /****************************************************************************/
1113 void
1114 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1115 {
1116 struct bnx_softc *sc = device_private(dev);
1117 uint32_t val1;
1118 int i;
1119
1120 /* Make sure we are accessing the correct PHY address. */
1121 if (phy != sc->bnx_phy_addr) {
1122 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1123 phy);
1124 return;
1125 }
1126
1127 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1128 "val = 0x%04X\n", __func__,
1129 phy, (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1130
1131 /*
1132 * The BCM5709S PHY is an IEEE Clause 45 PHY
1133 * with special mappings to work with IEEE
1134 * Clause 22 register accesses.
1135 */
1136 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1137 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1138 reg += 0x10;
1139 }
1140
1141 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1142 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1143 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1144
1145 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1146 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1147
1148 DELAY(40);
1149 }
1150
1151 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1152 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1153 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1154 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1155
1156 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1157 DELAY(10);
1158
1159 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1160 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1161 DELAY(5);
1162 break;
1163 }
1164 }
1165
1166 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1167 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1168 __LINE__);
1169 }
1170
1171 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1172 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1173 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1174
1175 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1176 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1177
1178 DELAY(40);
1179 }
1180 }
1181
1182 /****************************************************************************/
1183 /* MII bus status change. */
1184 /* */
1185 /* Called by the MII bus driver when the PHY establishes link to set the */
1186 /* MAC interface registers. */
1187 /* */
1188 /* Returns: */
1189 /* Nothing. */
1190 /****************************************************************************/
1191 void
1192 bnx_miibus_statchg(struct ifnet *ifp)
1193 {
1194 struct bnx_softc *sc = ifp->if_softc;
1195 struct mii_data *mii = &sc->bnx_mii;
1196 int val;
1197
1198 val = REG_RD(sc, BNX_EMAC_MODE);
1199 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1200 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1201 BNX_EMAC_MODE_25G);
1202
1203 /* Set MII or GMII interface based on the speed
1204 * negotiated by the PHY.
1205 */
1206 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1207 case IFM_10_T:
1208 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1209 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1210 val |= BNX_EMAC_MODE_PORT_MII_10;
1211 break;
1212 }
1213 /* FALLTHROUGH */
1214 case IFM_100_TX:
1215 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1216 val |= BNX_EMAC_MODE_PORT_MII;
1217 break;
1218 case IFM_2500_SX:
1219 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1220 val |= BNX_EMAC_MODE_25G;
1221 /* FALLTHROUGH */
1222 case IFM_1000_T:
1223 case IFM_1000_SX:
1224 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1225 val |= BNX_EMAC_MODE_PORT_GMII;
1226 break;
1227 default:
1228 val |= BNX_EMAC_MODE_PORT_GMII;
1229 break;
1230 }
1231
1232 /* Set half or full duplex based on the duplicity
1233 * negotiated by the PHY.
1234 */
1235 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1236 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1237 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1238 } else {
1239 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1240 }
1241
1242 REG_WR(sc, BNX_EMAC_MODE, val);
1243 }
1244
1245 /****************************************************************************/
1246 /* Acquire NVRAM lock. */
1247 /* */
1248 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1249 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1250 /* for use by the driver. */
1251 /* */
1252 /* Returns: */
1253 /* 0 on success, positive value on failure. */
1254 /****************************************************************************/
1255 int
1256 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1257 {
1258 uint32_t val;
1259 int j;
1260
1261 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1262
1263 /* Request access to the flash interface. */
1264 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1265 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1266 val = REG_RD(sc, BNX_NVM_SW_ARB);
1267 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1268 break;
1269
1270 DELAY(5);
1271 }
1272
1273 if (j >= NVRAM_TIMEOUT_COUNT) {
1274 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1275 return EBUSY;
1276 }
1277
1278 return 0;
1279 }
1280
1281 /****************************************************************************/
1282 /* Release NVRAM lock. */
1283 /* */
1284 /* When the caller is finished accessing NVRAM the lock must be released. */
1285 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1286 /* for use by the driver. */
1287 /* */
1288 /* Returns: */
1289 /* 0 on success, positive value on failure. */
1290 /****************************************************************************/
1291 int
1292 bnx_release_nvram_lock(struct bnx_softc *sc)
1293 {
1294 int j;
1295 uint32_t val;
1296
1297 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1298
1299 /* Relinquish nvram interface. */
1300 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1301
1302 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1303 val = REG_RD(sc, BNX_NVM_SW_ARB);
1304 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1305 break;
1306
1307 DELAY(5);
1308 }
1309
1310 if (j >= NVRAM_TIMEOUT_COUNT) {
1311 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1312 return EBUSY;
1313 }
1314
1315 return 0;
1316 }
1317
1318 #ifdef BNX_NVRAM_WRITE_SUPPORT
1319 /****************************************************************************/
1320 /* Enable NVRAM write access. */
1321 /* */
1322 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1323 /* */
1324 /* Returns: */
1325 /* 0 on success, positive value on failure. */
1326 /****************************************************************************/
1327 int
1328 bnx_enable_nvram_write(struct bnx_softc *sc)
1329 {
1330 uint32_t val;
1331
1332 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1333
1334 val = REG_RD(sc, BNX_MISC_CFG);
1335 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1336
1337 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1338 int j;
1339
1340 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1341 REG_WR(sc, BNX_NVM_COMMAND,
1342 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1343
1344 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1345 DELAY(5);
1346
1347 val = REG_RD(sc, BNX_NVM_COMMAND);
1348 if (val & BNX_NVM_COMMAND_DONE)
1349 break;
1350 }
1351
1352 if (j >= NVRAM_TIMEOUT_COUNT) {
1353 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1354 return EBUSY;
1355 }
1356 }
1357
1358 return 0;
1359 }
1360
1361 /****************************************************************************/
1362 /* Disable NVRAM write access. */
1363 /* */
1364 /* When the caller is finished writing to NVRAM write access must be */
1365 /* disabled. */
1366 /* */
1367 /* Returns: */
1368 /* Nothing. */
1369 /****************************************************************************/
1370 void
1371 bnx_disable_nvram_write(struct bnx_softc *sc)
1372 {
1373 uint32_t val;
1374
1375 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1376
1377 val = REG_RD(sc, BNX_MISC_CFG);
1378 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1379 }
1380 #endif
1381
1382 /****************************************************************************/
1383 /* Enable NVRAM access. */
1384 /* */
1385 /* Before accessing NVRAM for read or write operations the caller must */
1386 /* enabled NVRAM access. */
1387 /* */
1388 /* Returns: */
1389 /* Nothing. */
1390 /****************************************************************************/
1391 void
1392 bnx_enable_nvram_access(struct bnx_softc *sc)
1393 {
1394 uint32_t val;
1395
1396 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1397
1398 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1399 /* Enable both bits, even on read. */
1400 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1401 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1402 }
1403
1404 /****************************************************************************/
1405 /* Disable NVRAM access. */
1406 /* */
1407 /* When the caller is finished accessing NVRAM access must be disabled. */
1408 /* */
1409 /* Returns: */
1410 /* Nothing. */
1411 /****************************************************************************/
1412 void
1413 bnx_disable_nvram_access(struct bnx_softc *sc)
1414 {
1415 uint32_t val;
1416
1417 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1418
1419 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1420
1421 /* Disable both bits, even after read. */
1422 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1423 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1424 }
1425
1426 #ifdef BNX_NVRAM_WRITE_SUPPORT
1427 /****************************************************************************/
1428 /* Erase NVRAM page before writing. */
1429 /* */
1430 /* Non-buffered flash parts require that a page be erased before it is */
1431 /* written. */
1432 /* */
1433 /* Returns: */
1434 /* 0 on success, positive value on failure. */
1435 /****************************************************************************/
1436 int
1437 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1438 {
1439 uint32_t cmd;
1440 int j;
1441
1442 /* Buffered flash doesn't require an erase. */
1443 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1444 return 0;
1445
1446 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1447
1448 /* Build an erase command. */
1449 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1450 BNX_NVM_COMMAND_DOIT;
1451
1452 /*
1453 * Clear the DONE bit separately, set the NVRAM address to erase,
1454 * and issue the erase command.
1455 */
1456 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1457 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1458 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1459
1460 /* Wait for completion. */
1461 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1462 uint32_t val;
1463
1464 DELAY(5);
1465
1466 val = REG_RD(sc, BNX_NVM_COMMAND);
1467 if (val & BNX_NVM_COMMAND_DONE)
1468 break;
1469 }
1470
1471 if (j >= NVRAM_TIMEOUT_COUNT) {
1472 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1473 return EBUSY;
1474 }
1475
1476 return 0;
1477 }
1478 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1479
1480 /****************************************************************************/
1481 /* Read a dword (32 bits) from NVRAM. */
1482 /* */
1483 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1484 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1485 /* */
1486 /* Returns: */
1487 /* 0 on success and the 32 bit value read, positive value on failure. */
1488 /****************************************************************************/
1489 int
1490 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1491 uint8_t *ret_val, uint32_t cmd_flags)
1492 {
1493 uint32_t cmd;
1494 int i, rc = 0;
1495
1496 /* Build the command word. */
1497 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1498
1499 /* Calculate the offset for buffered flash if translation is used. */
1500 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1501 offset = ((offset / sc->bnx_flash_info->page_size) <<
1502 sc->bnx_flash_info->page_bits) +
1503 (offset % sc->bnx_flash_info->page_size);
1504 }
1505
1506 /*
1507 * Clear the DONE bit separately, set the address to read,
1508 * and issue the read.
1509 */
1510 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1511 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1512 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1513
1514 /* Wait for completion. */
1515 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1516 uint32_t val;
1517
1518 DELAY(5);
1519
1520 val = REG_RD(sc, BNX_NVM_COMMAND);
1521 if (val & BNX_NVM_COMMAND_DONE) {
1522 val = REG_RD(sc, BNX_NVM_READ);
1523
1524 val = bnx_be32toh(val);
1525 memcpy(ret_val, &val, 4);
1526 break;
1527 }
1528 }
1529
1530 /* Check for errors. */
1531 if (i >= NVRAM_TIMEOUT_COUNT) {
1532 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1533 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1534 rc = EBUSY;
1535 }
1536
1537 return rc;
1538 }
1539
1540 #ifdef BNX_NVRAM_WRITE_SUPPORT
1541 /****************************************************************************/
1542 /* Write a dword (32 bits) to NVRAM. */
1543 /* */
1544 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1545 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1546 /* enabled NVRAM write access. */
1547 /* */
1548 /* Returns: */
1549 /* 0 on success, positive value on failure. */
1550 /****************************************************************************/
1551 int
1552 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1553 uint32_t cmd_flags)
1554 {
1555 uint32_t cmd, val32;
1556 int j;
1557
1558 /* Build the command word. */
1559 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1560
1561 /* Calculate the offset for buffered flash if translation is used. */
1562 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1563 offset = ((offset / sc->bnx_flash_info->page_size) <<
1564 sc->bnx_flash_info->page_bits) +
1565 (offset % sc->bnx_flash_info->page_size);
1566 }
1567
1568 /*
1569 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1570 * set the NVRAM address to write, and issue the write command
1571 */
1572 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1573 memcpy(&val32, val, 4);
1574 val32 = htobe32(val32);
1575 REG_WR(sc, BNX_NVM_WRITE, val32);
1576 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1577 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1578
1579 /* Wait for completion. */
1580 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1581 DELAY(5);
1582
1583 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1584 break;
1585 }
1586 if (j >= NVRAM_TIMEOUT_COUNT) {
1587 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1588 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1589 return EBUSY;
1590 }
1591
1592 return 0;
1593 }
1594 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1595
1596 /****************************************************************************/
1597 /* Initialize NVRAM access. */
1598 /* */
1599 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1600 /* access that device. */
1601 /* */
1602 /* Returns: */
1603 /* 0 on success, positive value on failure. */
1604 /****************************************************************************/
1605 int
1606 bnx_init_nvram(struct bnx_softc *sc)
1607 {
1608 uint32_t val;
1609 int j, entry_count, rc = 0;
1610 struct flash_spec *flash;
1611
1612 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1613
1614 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1615 sc->bnx_flash_info = &flash_5709;
1616 goto bnx_init_nvram_get_flash_size;
1617 }
1618
1619 /* Determine the selected interface. */
1620 val = REG_RD(sc, BNX_NVM_CFG1);
1621
1622 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1623
1624 /*
1625 * Flash reconfiguration is required to support additional
1626 * NVRAM devices not directly supported in hardware.
1627 * Check if the flash interface was reconfigured
1628 * by the bootcode.
1629 */
1630
1631 if (val & 0x40000000) {
1632 /* Flash interface reconfigured by bootcode. */
1633
1634 DBPRINT(sc,BNX_INFO_LOAD,
1635 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1636
1637 for (j = 0, flash = &flash_table[0]; j < entry_count;
1638 j++, flash++) {
1639 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1640 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1641 sc->bnx_flash_info = flash;
1642 break;
1643 }
1644 }
1645 } else {
1646 /* Flash interface not yet reconfigured. */
1647 uint32_t mask;
1648
1649 DBPRINT(sc,BNX_INFO_LOAD,
1650 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1651
1652 if (val & (1 << 23))
1653 mask = FLASH_BACKUP_STRAP_MASK;
1654 else
1655 mask = FLASH_STRAP_MASK;
1656
1657 /* Look for the matching NVRAM device configuration data. */
1658 for (j = 0, flash = &flash_table[0]; j < entry_count;
1659 j++, flash++) {
1660 /* Check if the dev matches any of the known devices. */
1661 if ((val & mask) == (flash->strapping & mask)) {
1662 /* Found a device match. */
1663 sc->bnx_flash_info = flash;
1664
1665 /* Request access to the flash interface. */
1666 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1667 return rc;
1668
1669 /* Reconfigure the flash interface. */
1670 bnx_enable_nvram_access(sc);
1671 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1672 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1673 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1674 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1675 bnx_disable_nvram_access(sc);
1676 bnx_release_nvram_lock(sc);
1677
1678 break;
1679 }
1680 }
1681 }
1682
1683 /* Check if a matching device was found. */
1684 if (j == entry_count) {
1685 sc->bnx_flash_info = NULL;
1686 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1687 __FILE__, __LINE__);
1688 rc = ENODEV;
1689 }
1690
1691 bnx_init_nvram_get_flash_size:
1692 /* Write the flash config data to the shared memory interface. */
1693 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1694 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1695 if (val)
1696 sc->bnx_flash_size = val;
1697 else
1698 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1699
1700 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1701 "0x%08X\n", sc->bnx_flash_info->total_size);
1702
1703 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1704
1705 return rc;
1706 }
1707
1708 /****************************************************************************/
1709 /* Read an arbitrary range of data from NVRAM. */
1710 /* */
1711 /* Prepares the NVRAM interface for access and reads the requested data */
1712 /* into the supplied buffer. */
1713 /* */
1714 /* Returns: */
1715 /* 0 on success and the data read, positive value on failure. */
1716 /****************************************************************************/
1717 int
1718 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1719 int buf_size)
1720 {
1721 int rc = 0;
1722 uint32_t cmd_flags, offset32, len32, extra;
1723
1724 if (buf_size == 0)
1725 return 0;
1726
1727 /* Request access to the flash interface. */
1728 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1729 return rc;
1730
1731 /* Enable access to flash interface */
1732 bnx_enable_nvram_access(sc);
1733
1734 len32 = buf_size;
1735 offset32 = offset;
1736 extra = 0;
1737
1738 cmd_flags = 0;
1739
1740 if (offset32 & 3) {
1741 uint8_t buf[4];
1742 uint32_t pre_len;
1743
1744 offset32 &= ~3;
1745 pre_len = 4 - (offset & 3);
1746
1747 if (pre_len >= len32) {
1748 pre_len = len32;
1749 cmd_flags =
1750 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1751 } else
1752 cmd_flags = BNX_NVM_COMMAND_FIRST;
1753
1754 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1755
1756 if (rc)
1757 return rc;
1758
1759 memcpy(ret_buf, buf + (offset & 3), pre_len);
1760
1761 offset32 += 4;
1762 ret_buf += pre_len;
1763 len32 -= pre_len;
1764 }
1765
1766 if (len32 & 3) {
1767 extra = 4 - (len32 & 3);
1768 len32 = (len32 + 4) & ~3;
1769 }
1770
1771 if (len32 == 4) {
1772 uint8_t buf[4];
1773
1774 if (cmd_flags)
1775 cmd_flags = BNX_NVM_COMMAND_LAST;
1776 else
1777 cmd_flags =
1778 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1779
1780 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1781
1782 memcpy(ret_buf, buf, 4 - extra);
1783 } else if (len32 > 0) {
1784 uint8_t buf[4];
1785
1786 /* Read the first word. */
1787 if (cmd_flags)
1788 cmd_flags = 0;
1789 else
1790 cmd_flags = BNX_NVM_COMMAND_FIRST;
1791
1792 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1793
1794 /* Advance to the next dword. */
1795 offset32 += 4;
1796 ret_buf += 4;
1797 len32 -= 4;
1798
1799 while (len32 > 4 && rc == 0) {
1800 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1801
1802 /* Advance to the next dword. */
1803 offset32 += 4;
1804 ret_buf += 4;
1805 len32 -= 4;
1806 }
1807
1808 if (rc)
1809 return rc;
1810
1811 cmd_flags = BNX_NVM_COMMAND_LAST;
1812 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1813
1814 memcpy(ret_buf, buf, 4 - extra);
1815 }
1816
1817 /* Disable access to flash interface and release the lock. */
1818 bnx_disable_nvram_access(sc);
1819 bnx_release_nvram_lock(sc);
1820
1821 return rc;
1822 }
1823
1824 #ifdef BNX_NVRAM_WRITE_SUPPORT
1825 /****************************************************************************/
1826 /* Write an arbitrary range of data from NVRAM. */
1827 /* */
1828 /* Prepares the NVRAM interface for write access and writes the requested */
1829 /* data from the supplied buffer. The caller is responsible for */
1830 /* calculating any appropriate CRCs. */
1831 /* */
1832 /* Returns: */
1833 /* 0 on success, positive value on failure. */
1834 /****************************************************************************/
1835 int
1836 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1837 int buf_size)
1838 {
1839 uint32_t written, offset32, len32;
1840 uint8_t *buf, start[4], end[4];
1841 int rc = 0;
1842 int align_start, align_end;
1843
1844 buf = data_buf;
1845 offset32 = offset;
1846 len32 = buf_size;
1847 align_start = align_end = 0;
1848
1849 if ((align_start = (offset32 & 3))) {
1850 offset32 &= ~3;
1851 len32 += align_start;
1852 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1853 return rc;
1854 }
1855
1856 if (len32 & 3) {
1857 if ((len32 > 4) || !align_start) {
1858 align_end = 4 - (len32 & 3);
1859 len32 += align_end;
1860 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1861 end, 4)))
1862 return rc;
1863 }
1864 }
1865
1866 if (align_start || align_end) {
1867 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1868 if (buf == 0)
1869 return ENOMEM;
1870
1871 if (align_start)
1872 memcpy(buf, start, 4);
1873
1874 if (align_end)
1875 memcpy(buf + len32 - 4, end, 4);
1876
1877 memcpy(buf + align_start, data_buf, buf_size);
1878 }
1879
1880 written = 0;
1881 while ((written < len32) && (rc == 0)) {
1882 uint32_t page_start, page_end, data_start, data_end;
1883 uint32_t addr, cmd_flags;
1884 int i;
1885 uint8_t flash_buffer[264];
1886
1887 /* Find the page_start addr */
1888 page_start = offset32 + written;
1889 page_start -= (page_start % sc->bnx_flash_info->page_size);
1890 /* Find the page_end addr */
1891 page_end = page_start + sc->bnx_flash_info->page_size;
1892 /* Find the data_start addr */
1893 data_start = (written == 0) ? offset32 : page_start;
1894 /* Find the data_end addr */
1895 data_end = (page_end > offset32 + len32) ?
1896 (offset32 + len32) : page_end;
1897
1898 /* Request access to the flash interface. */
1899 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1900 goto nvram_write_end;
1901
1902 /* Enable access to flash interface */
1903 bnx_enable_nvram_access(sc);
1904
1905 cmd_flags = BNX_NVM_COMMAND_FIRST;
1906 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1907 int j;
1908
1909 /* Read the whole page into the buffer
1910 * (non-buffer flash only) */
1911 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1912 if (j == (sc->bnx_flash_info->page_size - 4))
1913 cmd_flags |= BNX_NVM_COMMAND_LAST;
1914
1915 rc = bnx_nvram_read_dword(sc,
1916 page_start + j,
1917 &flash_buffer[j],
1918 cmd_flags);
1919
1920 if (rc)
1921 goto nvram_write_end;
1922
1923 cmd_flags = 0;
1924 }
1925 }
1926
1927 /* Enable writes to flash interface (unlock write-protect) */
1928 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1929 goto nvram_write_end;
1930
1931 /* Erase the page */
1932 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1933 goto nvram_write_end;
1934
1935 /* Re-enable the write again for the actual write */
1936 bnx_enable_nvram_write(sc);
1937
1938 /* Loop to write back the buffer data from page_start to
1939 * data_start */
1940 i = 0;
1941 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1942 for (addr = page_start; addr < data_start;
1943 addr += 4, i += 4) {
1944
1945 rc = bnx_nvram_write_dword(sc, addr,
1946 &flash_buffer[i], cmd_flags);
1947
1948 if (rc != 0)
1949 goto nvram_write_end;
1950
1951 cmd_flags = 0;
1952 }
1953 }
1954
1955 /* Loop to write the new data from data_start to data_end */
1956 for (addr = data_start; addr < data_end; addr += 4, i++) {
1957 if ((addr == page_end - 4) ||
1958 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1959 && (addr == data_end - 4))) {
1960
1961 cmd_flags |= BNX_NVM_COMMAND_LAST;
1962 }
1963
1964 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1965
1966 if (rc != 0)
1967 goto nvram_write_end;
1968
1969 cmd_flags = 0;
1970 buf += 4;
1971 }
1972
1973 /* Loop to write back the buffer data from data_end
1974 * to page_end */
1975 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1976 for (addr = data_end; addr < page_end;
1977 addr += 4, i += 4) {
1978
1979 if (addr == page_end-4)
1980 cmd_flags = BNX_NVM_COMMAND_LAST;
1981
1982 rc = bnx_nvram_write_dword(sc, addr,
1983 &flash_buffer[i], cmd_flags);
1984
1985 if (rc != 0)
1986 goto nvram_write_end;
1987
1988 cmd_flags = 0;
1989 }
1990 }
1991
1992 /* Disable writes to flash interface (lock write-protect) */
1993 bnx_disable_nvram_write(sc);
1994
1995 /* Disable access to flash interface */
1996 bnx_disable_nvram_access(sc);
1997 bnx_release_nvram_lock(sc);
1998
1999 /* Increment written */
2000 written += data_end - data_start;
2001 }
2002
2003 nvram_write_end:
2004 if (align_start || align_end)
2005 free(buf, M_DEVBUF);
2006
2007 return rc;
2008 }
2009 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2010
2011 /****************************************************************************/
2012 /* Verifies that NVRAM is accessible and contains valid data. */
2013 /* */
2014 /* Reads the configuration data from NVRAM and verifies that the CRC is */
2015 /* correct. */
2016 /* */
2017 /* Returns: */
2018 /* 0 on success, positive value on failure. */
2019 /****************************************************************************/
2020 int
2021 bnx_nvram_test(struct bnx_softc *sc)
2022 {
2023 uint32_t buf[BNX_NVRAM_SIZE / 4];
2024 uint8_t *data = (uint8_t *) buf;
2025 int rc = 0;
2026 uint32_t magic, csum;
2027
2028 /*
2029 * Check that the device NVRAM is valid by reading
2030 * the magic value at offset 0.
2031 */
2032 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2033 goto bnx_nvram_test_done;
2034
2035 magic = bnx_be32toh(buf[0]);
2036 if (magic != BNX_NVRAM_MAGIC) {
2037 rc = ENODEV;
2038 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2039 "Expected: 0x%08X, Found: 0x%08X\n",
2040 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2041 goto bnx_nvram_test_done;
2042 }
2043
2044 /*
2045 * Verify that the device NVRAM includes valid
2046 * configuration data.
2047 */
2048 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2049 goto bnx_nvram_test_done;
2050
2051 csum = ether_crc32_le(data, 0x100);
2052 if (csum != BNX_CRC32_RESIDUAL) {
2053 rc = ENODEV;
2054 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2055 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2056 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2057 goto bnx_nvram_test_done;
2058 }
2059
2060 csum = ether_crc32_le(data + 0x100, 0x100);
2061 if (csum != BNX_CRC32_RESIDUAL) {
2062 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2063 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2064 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2065 rc = ENODEV;
2066 }
2067
2068 bnx_nvram_test_done:
2069 return rc;
2070 }
2071
2072 /****************************************************************************/
2073 /* Identifies the current media type of the controller and sets the PHY */
2074 /* address. */
2075 /* */
2076 /* Returns: */
2077 /* Nothing. */
2078 /****************************************************************************/
2079 void
2080 bnx_get_media(struct bnx_softc *sc)
2081 {
2082 sc->bnx_phy_addr = 1;
2083
2084 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2085 uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2086 uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2087 uint32_t strap;
2088
2089 /*
2090 * The BCM5709S is software configurable
2091 * for Copper or SerDes operation.
2092 */
2093 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2094 DBPRINT(sc, BNX_INFO_LOAD,
2095 "5709 bonded for copper.\n");
2096 goto bnx_get_media_exit;
2097 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2098 DBPRINT(sc, BNX_INFO_LOAD,
2099 "5709 bonded for dual media.\n");
2100 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2101 goto bnx_get_media_exit;
2102 }
2103
2104 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2105 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2106 else {
2107 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2108 >> 8;
2109 }
2110
2111 if (sc->bnx_pa.pa_function == 0) {
2112 switch (strap) {
2113 case 0x4:
2114 case 0x5:
2115 case 0x6:
2116 DBPRINT(sc, BNX_INFO_LOAD,
2117 "BCM5709 s/w configured for SerDes.\n");
2118 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2119 break;
2120 default:
2121 DBPRINT(sc, BNX_INFO_LOAD,
2122 "BCM5709 s/w configured for Copper.\n");
2123 }
2124 } else {
2125 switch (strap) {
2126 case 0x1:
2127 case 0x2:
2128 case 0x4:
2129 DBPRINT(sc, BNX_INFO_LOAD,
2130 "BCM5709 s/w configured for SerDes.\n");
2131 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2132 break;
2133 default:
2134 DBPRINT(sc, BNX_INFO_LOAD,
2135 "BCM5709 s/w configured for Copper.\n");
2136 }
2137 }
2138
2139 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2140 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2141
2142 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2143 uint32_t val;
2144
2145 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2146
2147 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2148 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2149
2150 /*
2151 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2152 * separate PHY for SerDes.
2153 */
2154 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2155 sc->bnx_phy_addr = 2;
2156 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2157 BNX_SHARED_HW_CFG_CONFIG);
2158 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2159 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2160 DBPRINT(sc, BNX_INFO_LOAD,
2161 "Found 2.5Gb capable adapter\n");
2162 }
2163 }
2164 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2165 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2166 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2167
2168 bnx_get_media_exit:
2169 DBPRINT(sc, (BNX_INFO_LOAD),
2170 "Using PHY address %d.\n", sc->bnx_phy_addr);
2171 }
2172
2173 /****************************************************************************/
2174 /* Performs PHY initialization required before MII drivers access the */
2175 /* device. */
2176 /* */
2177 /* Returns: */
2178 /* Nothing. */
2179 /****************************************************************************/
2180 void
2181 bnx_init_media(struct bnx_softc *sc)
2182 {
2183 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2184 /*
2185 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2186 * IEEE Clause 22 method. Otherwise we have no way to attach
2187 * the PHY to the mii(4) layer. PHY specific configuration
2188 * is done by the mii(4) layer.
2189 */
2190
2191 /* Select auto-negotiation MMD of the PHY. */
2192 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2193 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2194
2195 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2196 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2197
2198 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2199 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2200 }
2201 }
2202
2203 /****************************************************************************/
2204 /* Free any DMA memory owned by the driver. */
2205 /* */
2206 /* Scans through each data structre that requires DMA memory and frees */
2207 /* the memory if allocated. */
2208 /* */
2209 /* Returns: */
2210 /* Nothing. */
2211 /****************************************************************************/
2212 void
2213 bnx_dma_free(struct bnx_softc *sc)
2214 {
2215 int i;
2216
2217 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2218
2219 /* Destroy the status block. */
2220 if (sc->status_block != NULL && sc->status_map != NULL) {
2221 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2222 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2223 BNX_STATUS_BLK_SZ);
2224 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2225 sc->status_rseg);
2226 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2227 sc->status_block = NULL;
2228 sc->status_map = NULL;
2229 }
2230
2231 /* Destroy the statistics block. */
2232 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2233 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2234 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2235 BNX_STATS_BLK_SZ);
2236 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2237 sc->stats_rseg);
2238 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2239 sc->stats_block = NULL;
2240 sc->stats_map = NULL;
2241 }
2242
2243 /* Free, unmap and destroy all context memory pages. */
2244 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2245 for (i = 0; i < sc->ctx_pages; i++) {
2246 if (sc->ctx_block[i] != NULL) {
2247 bus_dmamap_unload(sc->bnx_dmatag,
2248 sc->ctx_map[i]);
2249 bus_dmamem_unmap(sc->bnx_dmatag,
2250 (void *)sc->ctx_block[i],
2251 BCM_PAGE_SIZE);
2252 bus_dmamem_free(sc->bnx_dmatag,
2253 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2254 bus_dmamap_destroy(sc->bnx_dmatag,
2255 sc->ctx_map[i]);
2256 sc->ctx_block[i] = NULL;
2257 }
2258 }
2259 }
2260
2261 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2262 for (i = 0; i < TX_PAGES; i++ ) {
2263 if (sc->tx_bd_chain[i] != NULL &&
2264 sc->tx_bd_chain_map[i] != NULL) {
2265 bus_dmamap_unload(sc->bnx_dmatag,
2266 sc->tx_bd_chain_map[i]);
2267 bus_dmamem_unmap(sc->bnx_dmatag,
2268 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2269 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2270 sc->tx_bd_chain_rseg[i]);
2271 bus_dmamap_destroy(sc->bnx_dmatag,
2272 sc->tx_bd_chain_map[i]);
2273 sc->tx_bd_chain[i] = NULL;
2274 sc->tx_bd_chain_map[i] = NULL;
2275 }
2276 }
2277
2278 /* Destroy the TX dmamaps. */
2279 /* This isn't necessary since we dont allocate them up front */
2280
2281 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2282 for (i = 0; i < RX_PAGES; i++ ) {
2283 if (sc->rx_bd_chain[i] != NULL &&
2284 sc->rx_bd_chain_map[i] != NULL) {
2285 bus_dmamap_unload(sc->bnx_dmatag,
2286 sc->rx_bd_chain_map[i]);
2287 bus_dmamem_unmap(sc->bnx_dmatag,
2288 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2289 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2290 sc->rx_bd_chain_rseg[i]);
2291
2292 bus_dmamap_destroy(sc->bnx_dmatag,
2293 sc->rx_bd_chain_map[i]);
2294 sc->rx_bd_chain[i] = NULL;
2295 sc->rx_bd_chain_map[i] = NULL;
2296 }
2297 }
2298
2299 /* Unload and destroy the RX mbuf maps. */
2300 for (i = 0; i < TOTAL_RX_BD; i++) {
2301 if (sc->rx_mbuf_map[i] != NULL) {
2302 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2303 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2304 }
2305 }
2306
2307 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2308 }
2309
2310 /****************************************************************************/
2311 /* Allocate any DMA memory needed by the driver. */
2312 /* */
2313 /* Allocates DMA memory needed for the various global structures needed by */
2314 /* hardware. */
2315 /* */
2316 /* Returns: */
2317 /* 0 for success, positive value for failure. */
2318 /****************************************************************************/
2319 int
2320 bnx_dma_alloc(struct bnx_softc *sc)
2321 {
2322 int i, rc = 0;
2323
2324 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2325
2326 /*
2327 * Allocate DMA memory for the status block, map the memory into DMA
2328 * space, and fetch the physical address of the block.
2329 */
2330 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2331 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2332 aprint_error_dev(sc->bnx_dev,
2333 "Could not create status block DMA map!\n");
2334 rc = ENOMEM;
2335 goto bnx_dma_alloc_exit;
2336 }
2337
2338 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2339 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2340 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2341 aprint_error_dev(sc->bnx_dev,
2342 "Could not allocate status block DMA memory!\n");
2343 rc = ENOMEM;
2344 goto bnx_dma_alloc_exit;
2345 }
2346
2347 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2348 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2349 aprint_error_dev(sc->bnx_dev,
2350 "Could not map status block DMA memory!\n");
2351 rc = ENOMEM;
2352 goto bnx_dma_alloc_exit;
2353 }
2354
2355 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2356 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2357 aprint_error_dev(sc->bnx_dev,
2358 "Could not load status block DMA memory!\n");
2359 rc = ENOMEM;
2360 goto bnx_dma_alloc_exit;
2361 }
2362
2363 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2364 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2365
2366 /* DRC - Fix for 64 bit addresses. */
2367 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2368 (uint32_t) sc->status_block_paddr);
2369
2370 /* BCM5709 uses host memory as cache for context memory. */
2371 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2372 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2373 if (sc->ctx_pages == 0)
2374 sc->ctx_pages = 1;
2375 if (sc->ctx_pages > 4) /* XXX */
2376 sc->ctx_pages = 4;
2377
2378 DBRUNIF((sc->ctx_pages > 512),
2379 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2380 __FILE__, __LINE__, sc->ctx_pages));
2381
2382
2383 for (i = 0; i < sc->ctx_pages; i++) {
2384 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2385 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2386 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2387 &sc->ctx_map[i]) != 0) {
2388 rc = ENOMEM;
2389 goto bnx_dma_alloc_exit;
2390 }
2391
2392 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2393 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2394 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2395 rc = ENOMEM;
2396 goto bnx_dma_alloc_exit;
2397 }
2398
2399 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2400 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2401 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2402 rc = ENOMEM;
2403 goto bnx_dma_alloc_exit;
2404 }
2405
2406 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2407 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2408 BUS_DMA_NOWAIT) != 0) {
2409 rc = ENOMEM;
2410 goto bnx_dma_alloc_exit;
2411 }
2412
2413 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2414 }
2415 }
2416
2417 /*
2418 * Allocate DMA memory for the statistics block, map the memory into
2419 * DMA space, and fetch the physical address of the block.
2420 */
2421 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2422 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2423 aprint_error_dev(sc->bnx_dev,
2424 "Could not create stats block DMA map!\n");
2425 rc = ENOMEM;
2426 goto bnx_dma_alloc_exit;
2427 }
2428
2429 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2430 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2431 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2432 aprint_error_dev(sc->bnx_dev,
2433 "Could not allocate stats block DMA memory!\n");
2434 rc = ENOMEM;
2435 goto bnx_dma_alloc_exit;
2436 }
2437
2438 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2439 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2440 aprint_error_dev(sc->bnx_dev,
2441 "Could not map stats block DMA memory!\n");
2442 rc = ENOMEM;
2443 goto bnx_dma_alloc_exit;
2444 }
2445
2446 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2447 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2448 aprint_error_dev(sc->bnx_dev,
2449 "Could not load status block DMA memory!\n");
2450 rc = ENOMEM;
2451 goto bnx_dma_alloc_exit;
2452 }
2453
2454 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2455 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2456
2457 /* DRC - Fix for 64 bit address. */
2458 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2459 (uint32_t) sc->stats_block_paddr);
2460
2461 /*
2462 * Allocate DMA memory for the TX buffer descriptor chain,
2463 * and fetch the physical address of the block.
2464 */
2465 for (i = 0; i < TX_PAGES; i++) {
2466 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2467 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2468 &sc->tx_bd_chain_map[i])) {
2469 aprint_error_dev(sc->bnx_dev,
2470 "Could not create Tx desc %d DMA map!\n", i);
2471 rc = ENOMEM;
2472 goto bnx_dma_alloc_exit;
2473 }
2474
2475 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2476 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2477 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2478 aprint_error_dev(sc->bnx_dev,
2479 "Could not allocate TX desc %d DMA memory!\n",
2480 i);
2481 rc = ENOMEM;
2482 goto bnx_dma_alloc_exit;
2483 }
2484
2485 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2486 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2487 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2488 aprint_error_dev(sc->bnx_dev,
2489 "Could not map TX desc %d DMA memory!\n", i);
2490 rc = ENOMEM;
2491 goto bnx_dma_alloc_exit;
2492 }
2493
2494 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2495 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2496 BUS_DMA_NOWAIT)) {
2497 aprint_error_dev(sc->bnx_dev,
2498 "Could not load TX desc %d DMA memory!\n", i);
2499 rc = ENOMEM;
2500 goto bnx_dma_alloc_exit;
2501 }
2502
2503 sc->tx_bd_chain_paddr[i] =
2504 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2505
2506 /* DRC - Fix for 64 bit systems. */
2507 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2508 i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2509 }
2510
2511 /*
2512 * Create lists to hold TX mbufs.
2513 */
2514 TAILQ_INIT(&sc->tx_free_pkts);
2515 TAILQ_INIT(&sc->tx_used_pkts);
2516 sc->tx_pkt_count = 0;
2517 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2518
2519 /*
2520 * Allocate DMA memory for the Rx buffer descriptor chain,
2521 * and fetch the physical address of the block.
2522 */
2523 for (i = 0; i < RX_PAGES; i++) {
2524 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2525 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2526 &sc->rx_bd_chain_map[i])) {
2527 aprint_error_dev(sc->bnx_dev,
2528 "Could not create Rx desc %d DMA map!\n", i);
2529 rc = ENOMEM;
2530 goto bnx_dma_alloc_exit;
2531 }
2532
2533 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2534 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2535 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2536 aprint_error_dev(sc->bnx_dev,
2537 "Could not allocate Rx desc %d DMA memory!\n", i);
2538 rc = ENOMEM;
2539 goto bnx_dma_alloc_exit;
2540 }
2541
2542 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2543 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2544 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2545 aprint_error_dev(sc->bnx_dev,
2546 "Could not map Rx desc %d DMA memory!\n", i);
2547 rc = ENOMEM;
2548 goto bnx_dma_alloc_exit;
2549 }
2550
2551 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2552 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2553 BUS_DMA_NOWAIT)) {
2554 aprint_error_dev(sc->bnx_dev,
2555 "Could not load Rx desc %d DMA memory!\n", i);
2556 rc = ENOMEM;
2557 goto bnx_dma_alloc_exit;
2558 }
2559
2560 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2561 sc->rx_bd_chain_paddr[i] =
2562 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2563
2564 /* DRC - Fix for 64 bit systems. */
2565 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2566 i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2567 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2568 0, BNX_RX_CHAIN_PAGE_SZ,
2569 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2570 }
2571
2572 /*
2573 * Create DMA maps for the Rx buffer mbufs.
2574 */
2575 for (i = 0; i < TOTAL_RX_BD; i++) {
2576 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2577 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2578 &sc->rx_mbuf_map[i])) {
2579 aprint_error_dev(sc->bnx_dev,
2580 "Could not create Rx mbuf %d DMA map!\n", i);
2581 rc = ENOMEM;
2582 goto bnx_dma_alloc_exit;
2583 }
2584 }
2585
2586 bnx_dma_alloc_exit:
2587 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2588
2589 return rc;
2590 }
2591
2592 /****************************************************************************/
2593 /* Release all resources used by the driver. */
2594 /* */
2595 /* Releases all resources acquired by the driver including interrupts, */
2596 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2597 /* */
2598 /* Returns: */
2599 /* Nothing. */
2600 /****************************************************************************/
2601 void
2602 bnx_release_resources(struct bnx_softc *sc)
2603 {
2604 struct pci_attach_args *pa = &(sc->bnx_pa);
2605
2606 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2607
2608 bnx_dma_free(sc);
2609
2610 if (sc->bnx_intrhand != NULL)
2611 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2612
2613 if (sc->bnx_size)
2614 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2615
2616 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2617 }
2618
2619 /****************************************************************************/
2620 /* Firmware synchronization. */
2621 /* */
2622 /* Before performing certain events such as a chip reset, synchronize with */
2623 /* the firmware first. */
2624 /* */
2625 /* Returns: */
2626 /* 0 for success, positive value for failure. */
2627 /****************************************************************************/
2628 int
2629 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2630 {
2631 int i, rc = 0;
2632 uint32_t val;
2633
2634 /* Don't waste any time if we've timed out before. */
2635 if (sc->bnx_fw_timed_out) {
2636 rc = EBUSY;
2637 goto bnx_fw_sync_exit;
2638 }
2639
2640 /* Increment the message sequence number. */
2641 sc->bnx_fw_wr_seq++;
2642 msg_data |= sc->bnx_fw_wr_seq;
2643
2644 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2645 msg_data);
2646
2647 /* Send the message to the bootcode driver mailbox. */
2648 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2649
2650 /* Wait for the bootcode to acknowledge the message. */
2651 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2652 /* Check for a response in the bootcode firmware mailbox. */
2653 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2654 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2655 break;
2656 DELAY(1000);
2657 }
2658
2659 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2660 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2661 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2662 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2663 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2664
2665 msg_data &= ~BNX_DRV_MSG_CODE;
2666 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2667
2668 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2669
2670 sc->bnx_fw_timed_out = 1;
2671 rc = EBUSY;
2672 }
2673
2674 bnx_fw_sync_exit:
2675 return rc;
2676 }
2677
2678 /****************************************************************************/
2679 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2680 /* */
2681 /* Returns: */
2682 /* Nothing. */
2683 /****************************************************************************/
2684 void
2685 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2686 uint32_t rv2p_code_len, uint32_t rv2p_proc)
2687 {
2688 int i;
2689 uint32_t val;
2690
2691 /* Set the page size used by RV2P. */
2692 if (rv2p_proc == RV2P_PROC2) {
2693 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2694 USABLE_RX_BD_PER_PAGE);
2695 }
2696
2697 for (i = 0; i < rv2p_code_len; i += 8) {
2698 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2699 rv2p_code++;
2700 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2701 rv2p_code++;
2702
2703 if (rv2p_proc == RV2P_PROC1) {
2704 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2705 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2706 } else {
2707 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2708 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2709 }
2710 }
2711
2712 /* Reset the processor, un-stall is done later. */
2713 if (rv2p_proc == RV2P_PROC1)
2714 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2715 else
2716 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2717 }
2718
2719 /****************************************************************************/
2720 /* Load RISC processor firmware. */
2721 /* */
2722 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2723 /* associated with a particular processor. */
2724 /* */
2725 /* Returns: */
2726 /* Nothing. */
2727 /****************************************************************************/
2728 void
2729 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2730 struct fw_info *fw)
2731 {
2732 uint32_t offset;
2733 uint32_t val;
2734
2735 /* Halt the CPU. */
2736 val = REG_RD_IND(sc, cpu_reg->mode);
2737 val |= cpu_reg->mode_value_halt;
2738 REG_WR_IND(sc, cpu_reg->mode, val);
2739 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2740
2741 /* Load the Text area. */
2742 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2743 if (fw->text) {
2744 int j;
2745
2746 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2747 REG_WR_IND(sc, offset, fw->text[j]);
2748 }
2749
2750 /* Load the Data area. */
2751 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2752 if (fw->data) {
2753 int j;
2754
2755 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2756 REG_WR_IND(sc, offset, fw->data[j]);
2757 }
2758
2759 /* Load the SBSS area. */
2760 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2761 if (fw->sbss) {
2762 int j;
2763
2764 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2765 REG_WR_IND(sc, offset, fw->sbss[j]);
2766 }
2767
2768 /* Load the BSS area. */
2769 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2770 if (fw->bss) {
2771 int j;
2772
2773 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2774 REG_WR_IND(sc, offset, fw->bss[j]);
2775 }
2776
2777 /* Load the Read-Only area. */
2778 offset = cpu_reg->spad_base +
2779 (fw->rodata_addr - cpu_reg->mips_view_base);
2780 if (fw->rodata) {
2781 int j;
2782
2783 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2784 REG_WR_IND(sc, offset, fw->rodata[j]);
2785 }
2786
2787 /* Clear the pre-fetch instruction. */
2788 REG_WR_IND(sc, cpu_reg->inst, 0);
2789 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2790
2791 /* Start the CPU. */
2792 val = REG_RD_IND(sc, cpu_reg->mode);
2793 val &= ~cpu_reg->mode_value_halt;
2794 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2795 REG_WR_IND(sc, cpu_reg->mode, val);
2796 }
2797
2798 /****************************************************************************/
2799 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2800 /* */
2801 /* Loads the firmware for each CPU and starts the CPU. */
2802 /* */
2803 /* Returns: */
2804 /* Nothing. */
2805 /****************************************************************************/
2806 void
2807 bnx_init_cpus(struct bnx_softc *sc)
2808 {
2809 struct cpu_reg cpu_reg;
2810 struct fw_info fw;
2811
2812 switch(BNX_CHIP_NUM(sc)) {
2813 case BNX_CHIP_NUM_5709:
2814 /* Initialize the RV2P processor. */
2815 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2816 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2817 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2818 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2819 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2820 } else {
2821 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2822 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2823 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2824 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2825 }
2826
2827 /* Initialize the RX Processor. */
2828 cpu_reg.mode = BNX_RXP_CPU_MODE;
2829 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2830 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2831 cpu_reg.state = BNX_RXP_CPU_STATE;
2832 cpu_reg.state_value_clear = 0xffffff;
2833 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2834 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2835 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2836 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2837 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2838 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2839 cpu_reg.mips_view_base = 0x8000000;
2840
2841 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2842 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2843 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2844 fw.start_addr = bnx_RXP_b09FwStartAddr;
2845
2846 fw.text_addr = bnx_RXP_b09FwTextAddr;
2847 fw.text_len = bnx_RXP_b09FwTextLen;
2848 fw.text_index = 0;
2849 fw.text = bnx_RXP_b09FwText;
2850
2851 fw.data_addr = bnx_RXP_b09FwDataAddr;
2852 fw.data_len = bnx_RXP_b09FwDataLen;
2853 fw.data_index = 0;
2854 fw.data = bnx_RXP_b09FwData;
2855
2856 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2857 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2858 fw.sbss_index = 0;
2859 fw.sbss = bnx_RXP_b09FwSbss;
2860
2861 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2862 fw.bss_len = bnx_RXP_b09FwBssLen;
2863 fw.bss_index = 0;
2864 fw.bss = bnx_RXP_b09FwBss;
2865
2866 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2867 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2868 fw.rodata_index = 0;
2869 fw.rodata = bnx_RXP_b09FwRodata;
2870
2871 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2872 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2873
2874 /* Initialize the TX Processor. */
2875 cpu_reg.mode = BNX_TXP_CPU_MODE;
2876 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2877 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2878 cpu_reg.state = BNX_TXP_CPU_STATE;
2879 cpu_reg.state_value_clear = 0xffffff;
2880 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2881 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2882 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2883 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2884 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2885 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2886 cpu_reg.mips_view_base = 0x8000000;
2887
2888 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2889 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2890 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2891 fw.start_addr = bnx_TXP_b09FwStartAddr;
2892
2893 fw.text_addr = bnx_TXP_b09FwTextAddr;
2894 fw.text_len = bnx_TXP_b09FwTextLen;
2895 fw.text_index = 0;
2896 fw.text = bnx_TXP_b09FwText;
2897
2898 fw.data_addr = bnx_TXP_b09FwDataAddr;
2899 fw.data_len = bnx_TXP_b09FwDataLen;
2900 fw.data_index = 0;
2901 fw.data = bnx_TXP_b09FwData;
2902
2903 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2904 fw.sbss_len = bnx_TXP_b09FwSbssLen;
2905 fw.sbss_index = 0;
2906 fw.sbss = bnx_TXP_b09FwSbss;
2907
2908 fw.bss_addr = bnx_TXP_b09FwBssAddr;
2909 fw.bss_len = bnx_TXP_b09FwBssLen;
2910 fw.bss_index = 0;
2911 fw.bss = bnx_TXP_b09FwBss;
2912
2913 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2914 fw.rodata_len = bnx_TXP_b09FwRodataLen;
2915 fw.rodata_index = 0;
2916 fw.rodata = bnx_TXP_b09FwRodata;
2917
2918 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2919 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2920
2921 /* Initialize the TX Patch-up Processor. */
2922 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2923 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2924 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2925 cpu_reg.state = BNX_TPAT_CPU_STATE;
2926 cpu_reg.state_value_clear = 0xffffff;
2927 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2928 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2929 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2930 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2931 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2932 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2933 cpu_reg.mips_view_base = 0x8000000;
2934
2935 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2936 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2937 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2938 fw.start_addr = bnx_TPAT_b09FwStartAddr;
2939
2940 fw.text_addr = bnx_TPAT_b09FwTextAddr;
2941 fw.text_len = bnx_TPAT_b09FwTextLen;
2942 fw.text_index = 0;
2943 fw.text = bnx_TPAT_b09FwText;
2944
2945 fw.data_addr = bnx_TPAT_b09FwDataAddr;
2946 fw.data_len = bnx_TPAT_b09FwDataLen;
2947 fw.data_index = 0;
2948 fw.data = bnx_TPAT_b09FwData;
2949
2950 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2951 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2952 fw.sbss_index = 0;
2953 fw.sbss = bnx_TPAT_b09FwSbss;
2954
2955 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2956 fw.bss_len = bnx_TPAT_b09FwBssLen;
2957 fw.bss_index = 0;
2958 fw.bss = bnx_TPAT_b09FwBss;
2959
2960 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2961 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2962 fw.rodata_index = 0;
2963 fw.rodata = bnx_TPAT_b09FwRodata;
2964
2965 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2966 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2967
2968 /* Initialize the Completion Processor. */
2969 cpu_reg.mode = BNX_COM_CPU_MODE;
2970 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2971 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2972 cpu_reg.state = BNX_COM_CPU_STATE;
2973 cpu_reg.state_value_clear = 0xffffff;
2974 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2975 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2976 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2977 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2978 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2979 cpu_reg.spad_base = BNX_COM_SCRATCH;
2980 cpu_reg.mips_view_base = 0x8000000;
2981
2982 fw.ver_major = bnx_COM_b09FwReleaseMajor;
2983 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2984 fw.ver_fix = bnx_COM_b09FwReleaseFix;
2985 fw.start_addr = bnx_COM_b09FwStartAddr;
2986
2987 fw.text_addr = bnx_COM_b09FwTextAddr;
2988 fw.text_len = bnx_COM_b09FwTextLen;
2989 fw.text_index = 0;
2990 fw.text = bnx_COM_b09FwText;
2991
2992 fw.data_addr = bnx_COM_b09FwDataAddr;
2993 fw.data_len = bnx_COM_b09FwDataLen;
2994 fw.data_index = 0;
2995 fw.data = bnx_COM_b09FwData;
2996
2997 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2998 fw.sbss_len = bnx_COM_b09FwSbssLen;
2999 fw.sbss_index = 0;
3000 fw.sbss = bnx_COM_b09FwSbss;
3001
3002 fw.bss_addr = bnx_COM_b09FwBssAddr;
3003 fw.bss_len = bnx_COM_b09FwBssLen;
3004 fw.bss_index = 0;
3005 fw.bss = bnx_COM_b09FwBss;
3006
3007 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
3008 fw.rodata_len = bnx_COM_b09FwRodataLen;
3009 fw.rodata_index = 0;
3010 fw.rodata = bnx_COM_b09FwRodata;
3011 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3012 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3013 break;
3014 default:
3015 /* Initialize the RV2P processor. */
3016 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3017 RV2P_PROC1);
3018 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3019 RV2P_PROC2);
3020
3021 /* Initialize the RX Processor. */
3022 cpu_reg.mode = BNX_RXP_CPU_MODE;
3023 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3024 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3025 cpu_reg.state = BNX_RXP_CPU_STATE;
3026 cpu_reg.state_value_clear = 0xffffff;
3027 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3028 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3029 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3030 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3031 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3032 cpu_reg.spad_base = BNX_RXP_SCRATCH;
3033 cpu_reg.mips_view_base = 0x8000000;
3034
3035 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3036 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3037 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3038 fw.start_addr = bnx_RXP_b06FwStartAddr;
3039
3040 fw.text_addr = bnx_RXP_b06FwTextAddr;
3041 fw.text_len = bnx_RXP_b06FwTextLen;
3042 fw.text_index = 0;
3043 fw.text = bnx_RXP_b06FwText;
3044
3045 fw.data_addr = bnx_RXP_b06FwDataAddr;
3046 fw.data_len = bnx_RXP_b06FwDataLen;
3047 fw.data_index = 0;
3048 fw.data = bnx_RXP_b06FwData;
3049
3050 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3051 fw.sbss_len = bnx_RXP_b06FwSbssLen;
3052 fw.sbss_index = 0;
3053 fw.sbss = bnx_RXP_b06FwSbss;
3054
3055 fw.bss_addr = bnx_RXP_b06FwBssAddr;
3056 fw.bss_len = bnx_RXP_b06FwBssLen;
3057 fw.bss_index = 0;
3058 fw.bss = bnx_RXP_b06FwBss;
3059
3060 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3061 fw.rodata_len = bnx_RXP_b06FwRodataLen;
3062 fw.rodata_index = 0;
3063 fw.rodata = bnx_RXP_b06FwRodata;
3064
3065 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3066 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3067
3068 /* Initialize the TX Processor. */
3069 cpu_reg.mode = BNX_TXP_CPU_MODE;
3070 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3071 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3072 cpu_reg.state = BNX_TXP_CPU_STATE;
3073 cpu_reg.state_value_clear = 0xffffff;
3074 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3075 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3076 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3077 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3078 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3079 cpu_reg.spad_base = BNX_TXP_SCRATCH;
3080 cpu_reg.mips_view_base = 0x8000000;
3081
3082 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3083 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3084 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3085 fw.start_addr = bnx_TXP_b06FwStartAddr;
3086
3087 fw.text_addr = bnx_TXP_b06FwTextAddr;
3088 fw.text_len = bnx_TXP_b06FwTextLen;
3089 fw.text_index = 0;
3090 fw.text = bnx_TXP_b06FwText;
3091
3092 fw.data_addr = bnx_TXP_b06FwDataAddr;
3093 fw.data_len = bnx_TXP_b06FwDataLen;
3094 fw.data_index = 0;
3095 fw.data = bnx_TXP_b06FwData;
3096
3097 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3098 fw.sbss_len = bnx_TXP_b06FwSbssLen;
3099 fw.sbss_index = 0;
3100 fw.sbss = bnx_TXP_b06FwSbss;
3101
3102 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3103 fw.bss_len = bnx_TXP_b06FwBssLen;
3104 fw.bss_index = 0;
3105 fw.bss = bnx_TXP_b06FwBss;
3106
3107 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3108 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3109 fw.rodata_index = 0;
3110 fw.rodata = bnx_TXP_b06FwRodata;
3111
3112 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3113 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3114
3115 /* Initialize the TX Patch-up Processor. */
3116 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3117 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3118 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3119 cpu_reg.state = BNX_TPAT_CPU_STATE;
3120 cpu_reg.state_value_clear = 0xffffff;
3121 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3122 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3123 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3124 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3125 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3126 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3127 cpu_reg.mips_view_base = 0x8000000;
3128
3129 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3130 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3131 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3132 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3133
3134 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3135 fw.text_len = bnx_TPAT_b06FwTextLen;
3136 fw.text_index = 0;
3137 fw.text = bnx_TPAT_b06FwText;
3138
3139 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3140 fw.data_len = bnx_TPAT_b06FwDataLen;
3141 fw.data_index = 0;
3142 fw.data = bnx_TPAT_b06FwData;
3143
3144 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3145 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3146 fw.sbss_index = 0;
3147 fw.sbss = bnx_TPAT_b06FwSbss;
3148
3149 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3150 fw.bss_len = bnx_TPAT_b06FwBssLen;
3151 fw.bss_index = 0;
3152 fw.bss = bnx_TPAT_b06FwBss;
3153
3154 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3155 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3156 fw.rodata_index = 0;
3157 fw.rodata = bnx_TPAT_b06FwRodata;
3158
3159 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3160 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3161
3162 /* Initialize the Completion Processor. */
3163 cpu_reg.mode = BNX_COM_CPU_MODE;
3164 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3165 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3166 cpu_reg.state = BNX_COM_CPU_STATE;
3167 cpu_reg.state_value_clear = 0xffffff;
3168 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3169 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3170 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3171 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3172 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3173 cpu_reg.spad_base = BNX_COM_SCRATCH;
3174 cpu_reg.mips_view_base = 0x8000000;
3175
3176 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3177 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3178 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3179 fw.start_addr = bnx_COM_b06FwStartAddr;
3180
3181 fw.text_addr = bnx_COM_b06FwTextAddr;
3182 fw.text_len = bnx_COM_b06FwTextLen;
3183 fw.text_index = 0;
3184 fw.text = bnx_COM_b06FwText;
3185
3186 fw.data_addr = bnx_COM_b06FwDataAddr;
3187 fw.data_len = bnx_COM_b06FwDataLen;
3188 fw.data_index = 0;
3189 fw.data = bnx_COM_b06FwData;
3190
3191 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3192 fw.sbss_len = bnx_COM_b06FwSbssLen;
3193 fw.sbss_index = 0;
3194 fw.sbss = bnx_COM_b06FwSbss;
3195
3196 fw.bss_addr = bnx_COM_b06FwBssAddr;
3197 fw.bss_len = bnx_COM_b06FwBssLen;
3198 fw.bss_index = 0;
3199 fw.bss = bnx_COM_b06FwBss;
3200
3201 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3202 fw.rodata_len = bnx_COM_b06FwRodataLen;
3203 fw.rodata_index = 0;
3204 fw.rodata = bnx_COM_b06FwRodata;
3205 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3206 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3207 break;
3208 }
3209 }
3210
3211 /****************************************************************************/
3212 /* Initialize context memory. */
3213 /* */
3214 /* Clears the memory associated with each Context ID (CID). */
3215 /* */
3216 /* Returns: */
3217 /* Nothing. */
3218 /****************************************************************************/
3219 void
3220 bnx_init_context(struct bnx_softc *sc)
3221 {
3222 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3223 /* DRC: Replace this constant value with a #define. */
3224 int i, retry_cnt = 10;
3225 uint32_t val;
3226
3227 /*
3228 * BCM5709 context memory may be cached
3229 * in host memory so prepare the host memory
3230 * for access.
3231 */
3232 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3233 | (1 << 12);
3234 val |= (BCM_PAGE_BITS - 8) << 16;
3235 REG_WR(sc, BNX_CTX_COMMAND, val);
3236
3237 /* Wait for mem init command to complete. */
3238 for (i = 0; i < retry_cnt; i++) {
3239 val = REG_RD(sc, BNX_CTX_COMMAND);
3240 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3241 break;
3242 DELAY(2);
3243 }
3244
3245 /* ToDo: Consider returning an error here. */
3246
3247 for (i = 0; i < sc->ctx_pages; i++) {
3248 int j;
3249
3250 /* Set the physaddr of the context memory cache. */
3251 val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3252 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3253 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3254 val = (uint32_t)
3255 ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3256 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3257 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3258 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3259
3260 /* Verify that the context memory write was successful. */
3261 for (j = 0; j < retry_cnt; j++) {
3262 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3263 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3264 break;
3265 DELAY(5);
3266 }
3267
3268 /* ToDo: Consider returning an error here. */
3269 }
3270 } else {
3271 uint32_t vcid_addr, offset;
3272
3273 /*
3274 * For the 5706/5708, context memory is local to
3275 * the controller, so initialize the controller
3276 * context memory.
3277 */
3278
3279 vcid_addr = GET_CID_ADDR(96);
3280 while (vcid_addr) {
3281
3282 vcid_addr -= BNX_PHY_CTX_SIZE;
3283
3284 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3285 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3286
3287 for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3288 CTX_WR(sc, 0x00, offset, 0);
3289 }
3290
3291 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3292 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3293 }
3294 }
3295 }
3296
3297 /****************************************************************************/
3298 /* Fetch the permanent MAC address of the controller. */
3299 /* */
3300 /* Returns: */
3301 /* Nothing. */
3302 /****************************************************************************/
3303 void
3304 bnx_get_mac_addr(struct bnx_softc *sc)
3305 {
3306 uint32_t mac_lo = 0, mac_hi = 0;
3307
3308 /*
3309 * The NetXtreme II bootcode populates various NIC
3310 * power-on and runtime configuration items in a
3311 * shared memory area. The factory configured MAC
3312 * address is available from both NVRAM and the
3313 * shared memory area so we'll read the value from
3314 * shared memory for speed.
3315 */
3316
3317 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3318 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3319
3320 if ((mac_lo == 0) && (mac_hi == 0)) {
3321 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3322 __FILE__, __LINE__);
3323 } else {
3324 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3325 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3326 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3327 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3328 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3329 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3330 }
3331
3332 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3333 "%s\n", ether_sprintf(sc->eaddr));
3334 }
3335
3336 /****************************************************************************/
3337 /* Program the MAC address. */
3338 /* */
3339 /* Returns: */
3340 /* Nothing. */
3341 /****************************************************************************/
3342 void
3343 bnx_set_mac_addr(struct bnx_softc *sc)
3344 {
3345 uint32_t val;
3346 const uint8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3347
3348 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3349 "%s\n", ether_sprintf(sc->eaddr));
3350
3351 val = (mac_addr[0] << 8) | mac_addr[1];
3352
3353 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3354
3355 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3356 (mac_addr[4] << 8) | mac_addr[5];
3357
3358 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3359 }
3360
3361 /****************************************************************************/
3362 /* Stop the controller. */
3363 /* */
3364 /* Returns: */
3365 /* Nothing. */
3366 /****************************************************************************/
3367 void
3368 bnx_stop(struct ifnet *ifp, int disable)
3369 {
3370 struct bnx_softc *sc = ifp->if_softc;
3371
3372 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3373
3374 if ((ifp->if_flags & IFF_RUNNING) == 0)
3375 return;
3376
3377 callout_stop(&sc->bnx_timeout);
3378
3379 mii_down(&sc->bnx_mii);
3380
3381 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3382
3383 /* Disable the transmit/receive blocks. */
3384 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3385 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3386 DELAY(20);
3387
3388 bnx_disable_intr(sc);
3389
3390 /* Tell firmware that the driver is going away. */
3391 if (disable)
3392 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3393 else
3394 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3395
3396 /* Free RX buffers. */
3397 bnx_free_rx_chain(sc);
3398
3399 /* Free TX buffers. */
3400 bnx_free_tx_chain(sc);
3401
3402 ifp->if_timer = 0;
3403
3404 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3405
3406 }
3407
3408 int
3409 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3410 {
3411 struct pci_attach_args *pa = &(sc->bnx_pa);
3412 uint32_t val;
3413 int i, rc = 0;
3414
3415 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3416
3417 /* Wait for pending PCI transactions to complete. */
3418 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3419 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3420 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3421 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3422 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3423 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3424 DELAY(5);
3425
3426 /* Disable DMA */
3427 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3428 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3429 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3430 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3431 }
3432
3433 /* Assume bootcode is running. */
3434 sc->bnx_fw_timed_out = 0;
3435
3436 /* Give the firmware a chance to prepare for the reset. */
3437 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3438 if (rc)
3439 goto bnx_reset_exit;
3440
3441 /* Set a firmware reminder that this is a soft reset. */
3442 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3443 BNX_DRV_RESET_SIGNATURE_MAGIC);
3444
3445 /* Dummy read to force the chip to complete all current transactions. */
3446 val = REG_RD(sc, BNX_MISC_ID);
3447
3448 /* Chip reset. */
3449 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3450 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3451 REG_RD(sc, BNX_MISC_COMMAND);
3452 DELAY(5);
3453
3454 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3455 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3456
3457 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3458 val);
3459 } else {
3460 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3461 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3462 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3463 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3464
3465 /* Allow up to 30us for reset to complete. */
3466 for (i = 0; i < 10; i++) {
3467 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3468 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3469 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3470 break;
3471 }
3472 DELAY(10);
3473 }
3474
3475 /* Check that reset completed successfully. */
3476 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3477 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3478 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3479 __FILE__, __LINE__);
3480 rc = EBUSY;
3481 goto bnx_reset_exit;
3482 }
3483 }
3484
3485 /* Make sure byte swapping is properly configured. */
3486 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3487 if (val != 0x01020304) {
3488 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3489 __FILE__, __LINE__);
3490 rc = ENODEV;
3491 goto bnx_reset_exit;
3492 }
3493
3494 /* Just completed a reset, assume that firmware is running again. */
3495 sc->bnx_fw_timed_out = 0;
3496
3497 /* Wait for the firmware to finish its initialization. */
3498 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3499 if (rc)
3500 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3501 "initialization!\n", __FILE__, __LINE__);
3502
3503 bnx_reset_exit:
3504 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3505
3506 return rc;
3507 }
3508
3509 int
3510 bnx_chipinit(struct bnx_softc *sc)
3511 {
3512 struct pci_attach_args *pa = &(sc->bnx_pa);
3513 uint32_t val;
3514 int rc = 0;
3515
3516 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3517
3518 /* Make sure the interrupt is not active. */
3519 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3520
3521 /* Initialize DMA byte/word swapping, configure the number of DMA */
3522 /* channels and PCI clock compensation delay. */
3523 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3524 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3525 #if BYTE_ORDER == BIG_ENDIAN
3526 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3527 #endif
3528 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3529 DMA_READ_CHANS << 12 |
3530 DMA_WRITE_CHANS << 16;
3531
3532 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3533
3534 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3535 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3536
3537 /*
3538 * This setting resolves a problem observed on certain Intel PCI
3539 * chipsets that cannot handle multiple outstanding DMA operations.
3540 * See errata E9_5706A1_65.
3541 */
3542 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3543 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3544 !(sc->bnx_flags & BNX_PCIX_FLAG))
3545 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3546
3547 REG_WR(sc, BNX_DMA_CONFIG, val);
3548
3549 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3550 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3551 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3552 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3553 val & ~0x20000);
3554 }
3555
3556 /* Enable the RX_V2P and Context state machines before access. */
3557 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3558 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3559 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3560 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3561
3562 /* Initialize context mapping and zero out the quick contexts. */
3563 bnx_init_context(sc);
3564
3565 /* Initialize the on-boards CPUs */
3566 bnx_init_cpus(sc);
3567
3568 /* Prepare NVRAM for access. */
3569 if (bnx_init_nvram(sc)) {
3570 rc = ENODEV;
3571 goto bnx_chipinit_exit;
3572 }
3573
3574 /* Set the kernel bypass block size */
3575 val = REG_RD(sc, BNX_MQ_CONFIG);
3576 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3577 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3578
3579 /* Enable bins used on the 5709. */
3580 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3581 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3582 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3583 val |= BNX_MQ_CONFIG_HALT_DIS;
3584 }
3585
3586 REG_WR(sc, BNX_MQ_CONFIG, val);
3587
3588 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3589 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3590 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3591
3592 val = (BCM_PAGE_BITS - 8) << 24;
3593 REG_WR(sc, BNX_RV2P_CONFIG, val);
3594
3595 /* Configure page size. */
3596 val = REG_RD(sc, BNX_TBDR_CONFIG);
3597 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3598 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3599 REG_WR(sc, BNX_TBDR_CONFIG, val);
3600
3601 #if 0
3602 /* Set the perfect match control register to default. */
3603 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3604 #endif
3605
3606 bnx_chipinit_exit:
3607 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3608
3609 return rc;
3610 }
3611
3612 /****************************************************************************/
3613 /* Initialize the controller in preparation to send/receive traffic. */
3614 /* */
3615 /* Returns: */
3616 /* 0 for success, positive value for failure. */
3617 /****************************************************************************/
3618 int
3619 bnx_blockinit(struct bnx_softc *sc)
3620 {
3621 uint32_t reg, val;
3622 int rc = 0;
3623
3624 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3625
3626 /* Load the hardware default MAC address. */
3627 bnx_set_mac_addr(sc);
3628
3629 /* Set the Ethernet backoff seed value */
3630 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3631 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3632 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3633
3634 sc->last_status_idx = 0;
3635 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3636
3637 /* Set up link change interrupt generation. */
3638 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3639 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3640
3641 /* Program the physical address of the status block. */
3642 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3643 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3644 (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3645
3646 /* Program the physical address of the statistics block. */
3647 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3648 (uint32_t)(sc->stats_block_paddr));
3649 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3650 (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3651
3652 /* Program various host coalescing parameters. */
3653 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3654 << 16) | sc->bnx_tx_quick_cons_trip);
3655 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3656 << 16) | sc->bnx_rx_quick_cons_trip);
3657 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3658 sc->bnx_comp_prod_trip);
3659 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3660 sc->bnx_tx_ticks);
3661 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3662 sc->bnx_rx_ticks);
3663 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3664 sc->bnx_com_ticks);
3665 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3666 sc->bnx_cmd_ticks);
3667 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3668 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3669 REG_WR(sc, BNX_HC_CONFIG,
3670 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3671 BNX_HC_CONFIG_COLLECT_STATS));
3672
3673 /* Clear the internal statistics counters. */
3674 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3675
3676 /* Verify that bootcode is running. */
3677 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3678
3679 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3680 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3681 __FILE__, __LINE__); reg = 0);
3682
3683 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3684 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3685 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3686 "Expected: 08%08X\n", __FILE__, __LINE__,
3687 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3688 BNX_DEV_INFO_SIGNATURE_MAGIC);
3689 rc = ENODEV;
3690 goto bnx_blockinit_exit;
3691 }
3692
3693 /* Check if any management firmware is running. */
3694 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3695 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3696 BNX_PORT_FEATURE_IMD_ENABLED)) {
3697 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3698 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3699 }
3700
3701 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3702 BNX_DEV_INFO_BC_REV);
3703
3704 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3705
3706 /* Enable DMA */
3707 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3708 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3709 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3710 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3711 }
3712
3713 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3714 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3715
3716 /* Enable link state change interrupt generation. */
3717 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3718 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3719 BNX_MISC_ENABLE_DEFAULT_XI);
3720 } else
3721 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3722
3723 /* Enable all remaining blocks in the MAC. */
3724 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3725 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3726 DELAY(20);
3727
3728 bnx_blockinit_exit:
3729 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3730
3731 return rc;
3732 }
3733
3734 static int
3735 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3736 uint16_t *chain_prod, uint32_t *prod_bseq)
3737 {
3738 bus_dmamap_t map;
3739 struct rx_bd *rxbd;
3740 uint32_t addr;
3741 int i;
3742 #ifdef BNX_DEBUG
3743 uint16_t debug_chain_prod = *chain_prod;
3744 #endif
3745 uint16_t first_chain_prod;
3746
3747 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3748
3749 /* Map the mbuf cluster into device memory. */
3750 map = sc->rx_mbuf_map[*chain_prod];
3751 first_chain_prod = *chain_prod;
3752 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3753 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3754 __FILE__, __LINE__);
3755
3756 m_freem(m_new);
3757
3758 DBRUNIF(1, sc->rx_mbuf_alloc--);
3759
3760 return ENOBUFS;
3761 }
3762 /* Make sure there is room in the receive chain. */
3763 if (map->dm_nsegs > sc->free_rx_bd) {
3764 bus_dmamap_unload(sc->bnx_dmatag, map);
3765 m_freem(m_new);
3766 return EFBIG;
3767 }
3768 #ifdef BNX_DEBUG
3769 /* Track the distribution of buffer segments. */
3770 sc->rx_mbuf_segs[map->dm_nsegs]++;
3771 #endif
3772
3773 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3774 BUS_DMASYNC_PREREAD);
3775
3776 /* Update some debug statistics counters */
3777 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3778 sc->rx_low_watermark = sc->free_rx_bd);
3779 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3780
3781 /*
3782 * Setup the rx_bd for the first segment
3783 */
3784 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3785
3786 addr = (uint32_t)map->dm_segs[0].ds_addr;
3787 rxbd->rx_bd_haddr_lo = addr;
3788 addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3789 rxbd->rx_bd_haddr_hi = addr;
3790 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3791 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3792 *prod_bseq += map->dm_segs[0].ds_len;
3793 bus_dmamap_sync(sc->bnx_dmatag,
3794 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3795 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3796 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3797
3798 for (i = 1; i < map->dm_nsegs; i++) {
3799 *prod = NEXT_RX_BD(*prod);
3800 *chain_prod = RX_CHAIN_IDX(*prod);
3801
3802 rxbd =
3803 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3804
3805 addr = (uint32_t)map->dm_segs[i].ds_addr;
3806 rxbd->rx_bd_haddr_lo = addr;
3807 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3808 rxbd->rx_bd_haddr_hi = addr;
3809 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3810 rxbd->rx_bd_flags = 0;
3811 *prod_bseq += map->dm_segs[i].ds_len;
3812 bus_dmamap_sync(sc->bnx_dmatag,
3813 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3814 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3815 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3816 }
3817
3818 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3819 bus_dmamap_sync(sc->bnx_dmatag,
3820 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3821 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3822 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3823
3824 /*
3825 * Save the mbuf, adjust the map pointer (swap map for first and
3826 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3827 * and update our counter.
3828 */
3829 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3830 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3831 sc->rx_mbuf_map[*chain_prod] = map;
3832 sc->free_rx_bd -= map->dm_nsegs;
3833
3834 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3835 map->dm_nsegs));
3836 *prod = NEXT_RX_BD(*prod);
3837 *chain_prod = RX_CHAIN_IDX(*prod);
3838
3839 return 0;
3840 }
3841
3842 /****************************************************************************/
3843 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3844 /* */
3845 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3846 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3847 /* necessary. */
3848 /* */
3849 /* Returns: */
3850 /* 0 for success, positive value for failure. */
3851 /****************************************************************************/
3852 int
3853 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3854 uint16_t *chain_prod, uint32_t *prod_bseq)
3855 {
3856 struct mbuf *m_new = NULL;
3857 int rc = 0;
3858 uint16_t min_free_bd;
3859
3860 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3861 __func__);
3862
3863 /* Make sure the inputs are valid. */
3864 DBRUNIF((*chain_prod > MAX_RX_BD),
3865 aprint_error_dev(sc->bnx_dev,
3866 "RX producer out of range: 0x%04X > 0x%04X\n",
3867 *chain_prod, (uint16_t)MAX_RX_BD));
3868
3869 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3870 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3871 *prod_bseq);
3872
3873 /* try to get in as many mbufs as possible */
3874 if (sc->mbuf_alloc_size == MCLBYTES)
3875 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3876 else
3877 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3878 while (sc->free_rx_bd >= min_free_bd) {
3879 /* Simulate an mbuf allocation failure. */
3880 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3881 aprint_error_dev(sc->bnx_dev,
3882 "Simulating mbuf allocation failure.\n");
3883 sc->mbuf_sim_alloc_failed++;
3884 rc = ENOBUFS;
3885 goto bnx_get_buf_exit);
3886
3887 /* This is a new mbuf allocation. */
3888 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3889 if (m_new == NULL) {
3890 DBPRINT(sc, BNX_WARN,
3891 "%s(%d): RX mbuf header allocation failed!\n",
3892 __FILE__, __LINE__);
3893
3894 sc->mbuf_alloc_failed++;
3895
3896 rc = ENOBUFS;
3897 goto bnx_get_buf_exit;
3898 }
3899
3900 DBRUNIF(1, sc->rx_mbuf_alloc++);
3901
3902 /* Simulate an mbuf cluster allocation failure. */
3903 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3904 m_freem(m_new);
3905 sc->rx_mbuf_alloc--;
3906 sc->mbuf_alloc_failed++;
3907 sc->mbuf_sim_alloc_failed++;
3908 rc = ENOBUFS;
3909 goto bnx_get_buf_exit);
3910
3911 if (sc->mbuf_alloc_size == MCLBYTES)
3912 MCLGET(m_new, M_DONTWAIT);
3913 else
3914 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3915 M_DONTWAIT);
3916 if (!(m_new->m_flags & M_EXT)) {
3917 DBPRINT(sc, BNX_WARN,
3918 "%s(%d): RX mbuf chain allocation failed!\n",
3919 __FILE__, __LINE__);
3920
3921 m_freem(m_new);
3922
3923 DBRUNIF(1, sc->rx_mbuf_alloc--);
3924 sc->mbuf_alloc_failed++;
3925
3926 rc = ENOBUFS;
3927 goto bnx_get_buf_exit;
3928 }
3929
3930 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3931 if (rc != 0)
3932 goto bnx_get_buf_exit;
3933 }
3934
3935 bnx_get_buf_exit:
3936 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3937 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3938 *chain_prod, *prod_bseq);
3939
3940 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3941 __func__);
3942
3943 return rc;
3944 }
3945
3946 void
3947 bnx_alloc_pkts(struct work * unused, void * arg)
3948 {
3949 struct bnx_softc *sc = arg;
3950 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3951 struct bnx_pkt *pkt;
3952 int i, s;
3953
3954 for (i = 0; i < 4; i++) { /* magic! */
3955 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
3956 if (pkt == NULL)
3957 break;
3958
3959 if (bus_dmamap_create(sc->bnx_dmatag,
3960 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3961 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
3962 &pkt->pkt_dmamap) != 0)
3963 goto put;
3964
3965 if (!ISSET(ifp->if_flags, IFF_UP))
3966 goto stopping;
3967
3968 mutex_enter(&sc->tx_pkt_mtx);
3969 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3970 sc->tx_pkt_count++;
3971 mutex_exit(&sc->tx_pkt_mtx);
3972 }
3973
3974 mutex_enter(&sc->tx_pkt_mtx);
3975 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
3976 mutex_exit(&sc->tx_pkt_mtx);
3977
3978 /* fire-up TX now that allocations have been done */
3979 s = splnet();
3980 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3981 bnx_start(ifp);
3982 splx(s);
3983
3984 return;
3985
3986 stopping:
3987 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3988 put:
3989 pool_put(bnx_tx_pool, pkt);
3990 return;
3991 }
3992
3993 /****************************************************************************/
3994 /* Initialize the TX context memory. */
3995 /* */
3996 /* Returns: */
3997 /* Nothing */
3998 /****************************************************************************/
3999 void
4000 bnx_init_tx_context(struct bnx_softc *sc)
4001 {
4002 uint32_t val;
4003
4004 /* Initialize the context ID for an L2 TX chain. */
4005 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4006 /* Set the CID type to support an L2 connection. */
4007 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4008 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4009 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4010 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4011
4012 /* Point the hardware to the first page in the chain. */
4013 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4014 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4015 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4016 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4017 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4018 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4019 } else {
4020 /* Set the CID type to support an L2 connection. */
4021 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4022 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4023 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4024 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4025
4026 /* Point the hardware to the first page in the chain. */
4027 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4028 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4029 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4030 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4031 }
4032 }
4033
4034
4035 /****************************************************************************/
4036 /* Allocate memory and initialize the TX data structures. */
4037 /* */
4038 /* Returns: */
4039 /* 0 for success, positive value for failure. */
4040 /****************************************************************************/
4041 int
4042 bnx_init_tx_chain(struct bnx_softc *sc)
4043 {
4044 struct tx_bd *txbd;
4045 uint32_t addr;
4046 int i, rc = 0;
4047
4048 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4049
4050 /* Force an allocation of some dmamaps for tx up front */
4051 bnx_alloc_pkts(NULL, sc);
4052
4053 /* Set the initial TX producer/consumer indices. */
4054 sc->tx_prod = 0;
4055 sc->tx_cons = 0;
4056 sc->tx_prod_bseq = 0;
4057 sc->used_tx_bd = 0;
4058 sc->max_tx_bd = USABLE_TX_BD;
4059 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4060 DBRUNIF(1, sc->tx_full_count = 0);
4061
4062 /*
4063 * The NetXtreme II supports a linked-list structure called
4064 * a Buffer Descriptor Chain (or BD chain). A BD chain
4065 * consists of a series of 1 or more chain pages, each of which
4066 * consists of a fixed number of BD entries.
4067 * The last BD entry on each page is a pointer to the next page
4068 * in the chain, and the last pointer in the BD chain
4069 * points back to the beginning of the chain.
4070 */
4071
4072 /* Set the TX next pointer chain entries. */
4073 for (i = 0; i < TX_PAGES; i++) {
4074 int j;
4075
4076 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4077
4078 /* Check if we've reached the last page. */
4079 if (i == (TX_PAGES - 1))
4080 j = 0;
4081 else
4082 j = i + 1;
4083
4084 addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4085 txbd->tx_bd_haddr_lo = addr;
4086 addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4087 txbd->tx_bd_haddr_hi = addr;
4088 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4089 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4090 }
4091
4092 /*
4093 * Initialize the context ID for an L2 TX chain.
4094 */
4095 bnx_init_tx_context(sc);
4096
4097 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4098
4099 return rc;
4100 }
4101
4102 /****************************************************************************/
4103 /* Free memory and clear the TX data structures. */
4104 /* */
4105 /* Returns: */
4106 /* Nothing. */
4107 /****************************************************************************/
4108 void
4109 bnx_free_tx_chain(struct bnx_softc *sc)
4110 {
4111 struct bnx_pkt *pkt;
4112 int i;
4113
4114 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4115
4116 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4117 mutex_enter(&sc->tx_pkt_mtx);
4118 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4119 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4120 mutex_exit(&sc->tx_pkt_mtx);
4121
4122 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4123 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4124 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4125
4126 m_freem(pkt->pkt_mbuf);
4127 DBRUNIF(1, sc->tx_mbuf_alloc--);
4128
4129 mutex_enter(&sc->tx_pkt_mtx);
4130 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4131 }
4132
4133 /* Destroy all the dmamaps we allocated for TX */
4134 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4135 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4136 sc->tx_pkt_count--;
4137 mutex_exit(&sc->tx_pkt_mtx);
4138
4139 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4140 pool_put(bnx_tx_pool, pkt);
4141
4142 mutex_enter(&sc->tx_pkt_mtx);
4143 }
4144 mutex_exit(&sc->tx_pkt_mtx);
4145
4146
4147
4148 /* Clear each TX chain page. */
4149 for (i = 0; i < TX_PAGES; i++) {
4150 memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4151 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4152 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4153 }
4154
4155 sc->used_tx_bd = 0;
4156
4157 /* Check if we lost any mbufs in the process. */
4158 DBRUNIF((sc->tx_mbuf_alloc),
4159 aprint_error_dev(sc->bnx_dev,
4160 "Memory leak! Lost %d mbufs from tx chain!\n",
4161 sc->tx_mbuf_alloc));
4162
4163 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4164 }
4165
4166 /****************************************************************************/
4167 /* Initialize the RX context memory. */
4168 /* */
4169 /* Returns: */
4170 /* Nothing */
4171 /****************************************************************************/
4172 void
4173 bnx_init_rx_context(struct bnx_softc *sc)
4174 {
4175 uint32_t val;
4176
4177 /* Initialize the context ID for an L2 RX chain. */
4178 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4179 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4180
4181 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4182 uint32_t lo_water, hi_water;
4183
4184 lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4185 hi_water = USABLE_RX_BD / 4;
4186
4187 lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4188 hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4189
4190 if (hi_water > 0xf)
4191 hi_water = 0xf;
4192 else if (hi_water == 0)
4193 lo_water = 0;
4194 val |= lo_water |
4195 (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4196 }
4197
4198 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4199
4200 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4201 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4202 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4203 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4204 }
4205
4206 /* Point the hardware to the first page in the chain. */
4207 val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4208 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4209 val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4210 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4211 }
4212
4213 /****************************************************************************/
4214 /* Allocate memory and initialize the RX data structures. */
4215 /* */
4216 /* Returns: */
4217 /* 0 for success, positive value for failure. */
4218 /****************************************************************************/
4219 int
4220 bnx_init_rx_chain(struct bnx_softc *sc)
4221 {
4222 struct rx_bd *rxbd;
4223 int i, rc = 0;
4224 uint16_t prod, chain_prod;
4225 uint32_t prod_bseq, addr;
4226
4227 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4228
4229 /* Initialize the RX producer and consumer indices. */
4230 sc->rx_prod = 0;
4231 sc->rx_cons = 0;
4232 sc->rx_prod_bseq = 0;
4233 sc->free_rx_bd = USABLE_RX_BD;
4234 sc->max_rx_bd = USABLE_RX_BD;
4235 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4236 DBRUNIF(1, sc->rx_empty_count = 0);
4237
4238 /* Initialize the RX next pointer chain entries. */
4239 for (i = 0; i < RX_PAGES; i++) {
4240 int j;
4241
4242 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4243
4244 /* Check if we've reached the last page. */
4245 if (i == (RX_PAGES - 1))
4246 j = 0;
4247 else
4248 j = i + 1;
4249
4250 /* Setup the chain page pointers. */
4251 addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4252 rxbd->rx_bd_haddr_hi = addr;
4253 addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4254 rxbd->rx_bd_haddr_lo = addr;
4255 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4256 0, BNX_RX_CHAIN_PAGE_SZ,
4257 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4258 }
4259
4260 /* Allocate mbuf clusters for the rx_bd chain. */
4261 prod = prod_bseq = 0;
4262 chain_prod = RX_CHAIN_IDX(prod);
4263 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4264 BNX_PRINTF(sc,
4265 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4266 }
4267
4268 /* Save the RX chain producer index. */
4269 sc->rx_prod = prod;
4270 sc->rx_prod_bseq = prod_bseq;
4271
4272 for (i = 0; i < RX_PAGES; i++)
4273 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4274 sc->rx_bd_chain_map[i]->dm_mapsize,
4275 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4276
4277 /* Tell the chip about the waiting rx_bd's. */
4278 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4279 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4280
4281 bnx_init_rx_context(sc);
4282
4283 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4284
4285 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4286
4287 return rc;
4288 }
4289
4290 /****************************************************************************/
4291 /* Free memory and clear the RX data structures. */
4292 /* */
4293 /* Returns: */
4294 /* Nothing. */
4295 /****************************************************************************/
4296 void
4297 bnx_free_rx_chain(struct bnx_softc *sc)
4298 {
4299 int i;
4300
4301 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4302
4303 /* Free any mbufs still in the RX mbuf chain. */
4304 for (i = 0; i < TOTAL_RX_BD; i++) {
4305 if (sc->rx_mbuf_ptr[i] != NULL) {
4306 if (sc->rx_mbuf_map[i] != NULL) {
4307 bus_dmamap_sync(sc->bnx_dmatag,
4308 sc->rx_mbuf_map[i], 0,
4309 sc->rx_mbuf_map[i]->dm_mapsize,
4310 BUS_DMASYNC_POSTREAD);
4311 bus_dmamap_unload(sc->bnx_dmatag,
4312 sc->rx_mbuf_map[i]);
4313 }
4314 m_freem(sc->rx_mbuf_ptr[i]);
4315 sc->rx_mbuf_ptr[i] = NULL;
4316 DBRUNIF(1, sc->rx_mbuf_alloc--);
4317 }
4318 }
4319
4320 /* Clear each RX chain page. */
4321 for (i = 0; i < RX_PAGES; i++)
4322 memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4323
4324 sc->free_rx_bd = sc->max_rx_bd;
4325
4326 /* Check if we lost any mbufs in the process. */
4327 DBRUNIF((sc->rx_mbuf_alloc),
4328 aprint_error_dev(sc->bnx_dev,
4329 "Memory leak! Lost %d mbufs from rx chain!\n",
4330 sc->rx_mbuf_alloc));
4331
4332 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4333 }
4334
4335 /****************************************************************************/
4336 /* Handles PHY generated interrupt events. */
4337 /* */
4338 /* Returns: */
4339 /* Nothing. */
4340 /****************************************************************************/
4341 void
4342 bnx_phy_intr(struct bnx_softc *sc)
4343 {
4344 uint32_t new_link_state, old_link_state;
4345
4346 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4347 BUS_DMASYNC_POSTREAD);
4348 new_link_state = sc->status_block->status_attn_bits &
4349 STATUS_ATTN_BITS_LINK_STATE;
4350 old_link_state = sc->status_block->status_attn_bits_ack &
4351 STATUS_ATTN_BITS_LINK_STATE;
4352
4353 /* Handle any changes if the link state has changed. */
4354 if (new_link_state != old_link_state) {
4355 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4356
4357 callout_stop(&sc->bnx_timeout);
4358 bnx_tick(sc);
4359
4360 /* Update the status_attn_bits_ack field in the status block. */
4361 if (new_link_state) {
4362 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4363 STATUS_ATTN_BITS_LINK_STATE);
4364 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4365 } else {
4366 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4367 STATUS_ATTN_BITS_LINK_STATE);
4368 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4369 }
4370 }
4371
4372 /* Acknowledge the link change interrupt. */
4373 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4374 }
4375
4376 /****************************************************************************/
4377 /* Handles received frame interrupt events. */
4378 /* */
4379 /* Returns: */
4380 /* Nothing. */
4381 /****************************************************************************/
4382 void
4383 bnx_rx_intr(struct bnx_softc *sc)
4384 {
4385 struct status_block *sblk = sc->status_block;
4386 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4387 uint16_t hw_cons, sw_cons, sw_chain_cons;
4388 uint16_t sw_prod, sw_chain_prod;
4389 uint32_t sw_prod_bseq;
4390 struct l2_fhdr *l2fhdr;
4391 int i;
4392
4393 DBRUNIF(1, sc->rx_interrupts++);
4394 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4395 BUS_DMASYNC_POSTREAD);
4396
4397 /* Prepare the RX chain pages to be accessed by the host CPU. */
4398 for (i = 0; i < RX_PAGES; i++)
4399 bus_dmamap_sync(sc->bnx_dmatag,
4400 sc->rx_bd_chain_map[i], 0,
4401 sc->rx_bd_chain_map[i]->dm_mapsize,
4402 BUS_DMASYNC_POSTWRITE);
4403
4404 /* Get the hardware's view of the RX consumer index. */
4405 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4406 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4407 hw_cons++;
4408
4409 /* Get working copies of the driver's view of the RX indices. */
4410 sw_cons = sc->rx_cons;
4411 sw_prod = sc->rx_prod;
4412 sw_prod_bseq = sc->rx_prod_bseq;
4413
4414 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4415 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4416 __func__, sw_prod, sw_cons, sw_prod_bseq);
4417
4418 /* Prevent speculative reads from getting ahead of the status block. */
4419 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4420 BUS_SPACE_BARRIER_READ);
4421
4422 /* Update some debug statistics counters */
4423 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4424 sc->rx_low_watermark = sc->free_rx_bd);
4425 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4426
4427 /*
4428 * Scan through the receive chain as long
4429 * as there is work to do.
4430 */
4431 while (sw_cons != hw_cons) {
4432 struct mbuf *m;
4433 struct rx_bd *rxbd __diagused;
4434 unsigned int len;
4435 uint32_t status;
4436
4437 /* Convert the producer/consumer indices to an actual
4438 * rx_bd index.
4439 */
4440 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4441 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4442
4443 /* Get the used rx_bd. */
4444 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4445 sc->free_rx_bd++;
4446
4447 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4448 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4449
4450 /* The mbuf is stored with the last rx_bd entry of a packet. */
4451 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4452 #ifdef DIAGNOSTIC
4453 /* Validate that this is the last rx_bd. */
4454 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4455 printf("%s: Unexpected mbuf found in "
4456 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4457 sw_chain_cons);
4458 }
4459 #endif
4460
4461 /* DRC - ToDo: If the received packet is small, say less
4462 * than 128 bytes, allocate a new mbuf here,
4463 * copy the data to that mbuf, and recycle
4464 * the mapped jumbo frame.
4465 */
4466
4467 /* Unmap the mbuf from DMA space. */
4468 #ifdef DIAGNOSTIC
4469 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4470 printf("invalid map sw_cons 0x%x "
4471 "sw_prod 0x%x "
4472 "sw_chain_cons 0x%x "
4473 "sw_chain_prod 0x%x "
4474 "hw_cons 0x%x "
4475 "TOTAL_RX_BD_PER_PAGE 0x%x "
4476 "TOTAL_RX_BD 0x%x\n",
4477 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4478 hw_cons,
4479 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4480 }
4481 #endif
4482 bus_dmamap_sync(sc->bnx_dmatag,
4483 sc->rx_mbuf_map[sw_chain_cons], 0,
4484 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4485 BUS_DMASYNC_POSTREAD);
4486 bus_dmamap_unload(sc->bnx_dmatag,
4487 sc->rx_mbuf_map[sw_chain_cons]);
4488
4489 /* Remove the mbuf from the driver's chain. */
4490 m = sc->rx_mbuf_ptr[sw_chain_cons];
4491 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4492
4493 /*
4494 * Frames received on the NetXteme II are prepended
4495 * with the l2_fhdr structure which provides status
4496 * information about the received frame (including
4497 * VLAN tags and checksum info) and are also
4498 * automatically adjusted to align the IP header
4499 * (i.e. two null bytes are inserted before the
4500 * Ethernet header).
4501 */
4502 l2fhdr = mtod(m, struct l2_fhdr *);
4503
4504 len = l2fhdr->l2_fhdr_pkt_len;
4505 status = l2fhdr->l2_fhdr_status;
4506
4507 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4508 aprint_error("Simulating l2_fhdr status error.\n");
4509 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4510
4511 /* Watch for unusual sized frames. */
4512 DBRUNIF(((len < BNX_MIN_MTU) ||
4513 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4514 aprint_error_dev(sc->bnx_dev,
4515 "Unusual frame size found. "
4516 "Min(%d), Actual(%d), Max(%d)\n",
4517 (int)BNX_MIN_MTU, len,
4518 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4519
4520 bnx_dump_mbuf(sc, m);
4521 bnx_breakpoint(sc));
4522
4523 len -= ETHER_CRC_LEN;
4524
4525 /* Check the received frame for errors. */
4526 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4527 L2_FHDR_ERRORS_PHY_DECODE |
4528 L2_FHDR_ERRORS_ALIGNMENT |
4529 L2_FHDR_ERRORS_TOO_SHORT |
4530 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4531 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4532 len >
4533 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4534 ifp->if_ierrors++;
4535 DBRUNIF(1, sc->l2fhdr_status_errors++);
4536
4537 /* Reuse the mbuf for a new frame. */
4538 if (bnx_add_buf(sc, m, &sw_prod,
4539 &sw_chain_prod, &sw_prod_bseq)) {
4540 DBRUNIF(1, bnx_breakpoint(sc));
4541 panic("%s: Can't reuse RX mbuf!\n",
4542 device_xname(sc->bnx_dev));
4543 }
4544 continue;
4545 }
4546
4547 /*
4548 * Get a new mbuf for the rx_bd. If no new
4549 * mbufs are available then reuse the current mbuf,
4550 * log an ierror on the interface, and generate
4551 * an error in the system log.
4552 */
4553 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4554 &sw_prod_bseq)) {
4555 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4556 "Failed to allocate "
4557 "new mbuf, incoming frame dropped!\n"));
4558
4559 ifp->if_ierrors++;
4560
4561 /* Try and reuse the exisitng mbuf. */
4562 if (bnx_add_buf(sc, m, &sw_prod,
4563 &sw_chain_prod, &sw_prod_bseq)) {
4564 DBRUNIF(1, bnx_breakpoint(sc));
4565 panic("%s: Double mbuf allocation "
4566 "failure!",
4567 device_xname(sc->bnx_dev));
4568 }
4569 continue;
4570 }
4571
4572 /* Skip over the l2_fhdr when passing the data up
4573 * the stack.
4574 */
4575 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4576
4577 /* Adjust the pckt length to match the received data. */
4578 m->m_pkthdr.len = m->m_len = len;
4579
4580 /* Send the packet to the appropriate interface. */
4581 m_set_rcvif(m, ifp);
4582
4583 DBRUN(BNX_VERBOSE_RECV,
4584 struct ether_header *eh;
4585 eh = mtod(m, struct ether_header *);
4586 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4587 __func__, ether_sprintf(eh->ether_dhost),
4588 ether_sprintf(eh->ether_shost),
4589 htons(eh->ether_type)));
4590
4591 /* Validate the checksum. */
4592
4593 /* Check for an IP datagram. */
4594 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4595 /* Check if the IP checksum is valid. */
4596 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4597 == 0)
4598 m->m_pkthdr.csum_flags |=
4599 M_CSUM_IPv4;
4600 #ifdef BNX_DEBUG
4601 else
4602 DBPRINT(sc, BNX_WARN_SEND,
4603 "%s(): Invalid IP checksum "
4604 "= 0x%04X!\n",
4605 __func__,
4606 l2fhdr->l2_fhdr_ip_xsum
4607 );
4608 #endif
4609 }
4610
4611 /* Check for a valid TCP/UDP frame. */
4612 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4613 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4614 /* Check for a good TCP/UDP checksum. */
4615 if ((status &
4616 (L2_FHDR_ERRORS_TCP_XSUM |
4617 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4618 m->m_pkthdr.csum_flags |=
4619 M_CSUM_TCPv4 |
4620 M_CSUM_UDPv4;
4621 } else {
4622 DBPRINT(sc, BNX_WARN_SEND,
4623 "%s(): Invalid TCP/UDP "
4624 "checksum = 0x%04X!\n",
4625 __func__,
4626 l2fhdr->l2_fhdr_tcp_udp_xsum);
4627 }
4628 }
4629
4630 /*
4631 * If we received a packet with a vlan tag,
4632 * attach that information to the packet.
4633 */
4634 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4635 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4636 VLAN_INPUT_TAG(ifp, m,
4637 l2fhdr->l2_fhdr_vlan_tag,
4638 continue);
4639 }
4640
4641 /*
4642 * Handle BPF listeners. Let the BPF
4643 * user see the packet.
4644 */
4645 bpf_mtap(ifp, m);
4646
4647 /* Pass the mbuf off to the upper layers. */
4648 ifp->if_ipackets++;
4649 DBPRINT(sc, BNX_VERBOSE_RECV,
4650 "%s(): Passing received frame up.\n", __func__);
4651 if_percpuq_enqueue(ifp->if_percpuq, m);
4652 DBRUNIF(1, sc->rx_mbuf_alloc--);
4653
4654 }
4655
4656 sw_cons = NEXT_RX_BD(sw_cons);
4657
4658 /* Refresh hw_cons to see if there's new work */
4659 if (sw_cons == hw_cons) {
4660 hw_cons = sc->hw_rx_cons =
4661 sblk->status_rx_quick_consumer_index0;
4662 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4663 USABLE_RX_BD_PER_PAGE)
4664 hw_cons++;
4665 }
4666
4667 /* Prevent speculative reads from getting ahead of
4668 * the status block.
4669 */
4670 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4671 BUS_SPACE_BARRIER_READ);
4672 }
4673
4674 for (i = 0; i < RX_PAGES; i++)
4675 bus_dmamap_sync(sc->bnx_dmatag,
4676 sc->rx_bd_chain_map[i], 0,
4677 sc->rx_bd_chain_map[i]->dm_mapsize,
4678 BUS_DMASYNC_PREWRITE);
4679
4680 sc->rx_cons = sw_cons;
4681 sc->rx_prod = sw_prod;
4682 sc->rx_prod_bseq = sw_prod_bseq;
4683
4684 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4685 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4686
4687 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4688 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4689 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4690 }
4691
4692 /****************************************************************************/
4693 /* Handles transmit completion interrupt events. */
4694 /* */
4695 /* Returns: */
4696 /* Nothing. */
4697 /****************************************************************************/
4698 void
4699 bnx_tx_intr(struct bnx_softc *sc)
4700 {
4701 struct status_block *sblk = sc->status_block;
4702 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4703 struct bnx_pkt *pkt;
4704 bus_dmamap_t map;
4705 uint16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4706
4707 DBRUNIF(1, sc->tx_interrupts++);
4708 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4709 BUS_DMASYNC_POSTREAD);
4710
4711 /* Get the hardware's view of the TX consumer index. */
4712 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4713
4714 /* Skip to the next entry if this is a chain page pointer. */
4715 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4716 hw_tx_cons++;
4717
4718 sw_tx_cons = sc->tx_cons;
4719
4720 /* Prevent speculative reads from getting ahead of the status block. */
4721 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4722 BUS_SPACE_BARRIER_READ);
4723
4724 /* Cycle through any completed TX chain page entries. */
4725 while (sw_tx_cons != hw_tx_cons) {
4726 #ifdef BNX_DEBUG
4727 struct tx_bd *txbd = NULL;
4728 #endif
4729 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4730
4731 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4732 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4733 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4734
4735 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4736 aprint_error_dev(sc->bnx_dev,
4737 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4738 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4739
4740 DBRUNIF(1, txbd = &sc->tx_bd_chain
4741 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4742
4743 DBRUNIF((txbd == NULL),
4744 aprint_error_dev(sc->bnx_dev,
4745 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4746 bnx_breakpoint(sc));
4747
4748 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4749 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4750
4751
4752 mutex_enter(&sc->tx_pkt_mtx);
4753 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4754 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4755 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4756 mutex_exit(&sc->tx_pkt_mtx);
4757 /*
4758 * Free the associated mbuf. Remember
4759 * that only the last tx_bd of a packet
4760 * has an mbuf pointer and DMA map.
4761 */
4762 map = pkt->pkt_dmamap;
4763 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4764 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4765 bus_dmamap_unload(sc->bnx_dmatag, map);
4766
4767 m_freem(pkt->pkt_mbuf);
4768 DBRUNIF(1, sc->tx_mbuf_alloc--);
4769
4770 ifp->if_opackets++;
4771
4772 mutex_enter(&sc->tx_pkt_mtx);
4773 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4774 }
4775 mutex_exit(&sc->tx_pkt_mtx);
4776
4777 sc->used_tx_bd--;
4778 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4779 __FILE__, __LINE__, sc->used_tx_bd);
4780
4781 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4782
4783 /* Refresh hw_cons to see if there's new work. */
4784 hw_tx_cons = sc->hw_tx_cons =
4785 sblk->status_tx_quick_consumer_index0;
4786 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4787 USABLE_TX_BD_PER_PAGE)
4788 hw_tx_cons++;
4789
4790 /* Prevent speculative reads from getting ahead of
4791 * the status block.
4792 */
4793 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4794 BUS_SPACE_BARRIER_READ);
4795 }
4796
4797 /* Clear the TX timeout timer. */
4798 ifp->if_timer = 0;
4799
4800 /* Clear the tx hardware queue full flag. */
4801 if (sc->used_tx_bd < sc->max_tx_bd) {
4802 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4803 aprint_debug_dev(sc->bnx_dev,
4804 "Open TX chain! %d/%d (used/total)\n",
4805 sc->used_tx_bd, sc->max_tx_bd));
4806 ifp->if_flags &= ~IFF_OACTIVE;
4807 }
4808
4809 sc->tx_cons = sw_tx_cons;
4810 }
4811
4812 /****************************************************************************/
4813 /* Disables interrupt generation. */
4814 /* */
4815 /* Returns: */
4816 /* Nothing. */
4817 /****************************************************************************/
4818 void
4819 bnx_disable_intr(struct bnx_softc *sc)
4820 {
4821 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4822 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4823 }
4824
4825 /****************************************************************************/
4826 /* Enables interrupt generation. */
4827 /* */
4828 /* Returns: */
4829 /* Nothing. */
4830 /****************************************************************************/
4831 void
4832 bnx_enable_intr(struct bnx_softc *sc)
4833 {
4834 uint32_t val;
4835
4836 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4837 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4838
4839 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4840 sc->last_status_idx);
4841
4842 val = REG_RD(sc, BNX_HC_COMMAND);
4843 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4844 }
4845
4846 /****************************************************************************/
4847 /* Handles controller initialization. */
4848 /* */
4849 /****************************************************************************/
4850 int
4851 bnx_init(struct ifnet *ifp)
4852 {
4853 struct bnx_softc *sc = ifp->if_softc;
4854 uint32_t ether_mtu;
4855 int s, error = 0;
4856
4857 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4858
4859 s = splnet();
4860
4861 bnx_stop(ifp, 0);
4862
4863 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4864 aprint_error_dev(sc->bnx_dev,
4865 "Controller reset failed!\n");
4866 goto bnx_init_exit;
4867 }
4868
4869 if ((error = bnx_chipinit(sc)) != 0) {
4870 aprint_error_dev(sc->bnx_dev,
4871 "Controller initialization failed!\n");
4872 goto bnx_init_exit;
4873 }
4874
4875 if ((error = bnx_blockinit(sc)) != 0) {
4876 aprint_error_dev(sc->bnx_dev,
4877 "Block initialization failed!\n");
4878 goto bnx_init_exit;
4879 }
4880
4881 /* Calculate and program the Ethernet MRU size. */
4882 if (ifp->if_mtu <= ETHERMTU) {
4883 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4884 sc->mbuf_alloc_size = MCLBYTES;
4885 } else {
4886 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4887 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4888 }
4889
4890
4891 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4892 __func__, ether_mtu);
4893
4894 /*
4895 * Program the MRU and enable Jumbo frame
4896 * support.
4897 */
4898 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4899 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4900
4901 /* Calculate the RX Ethernet frame size for rx_bd's. */
4902 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4903
4904 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4905 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4906 sc->mbuf_alloc_size, sc->max_frame_size);
4907
4908 /* Program appropriate promiscuous/multicast filtering. */
4909 bnx_iff(sc);
4910
4911 /* Init RX buffer descriptor chain. */
4912 bnx_init_rx_chain(sc);
4913
4914 /* Init TX buffer descriptor chain. */
4915 bnx_init_tx_chain(sc);
4916
4917 /* Enable host interrupts. */
4918 bnx_enable_intr(sc);
4919
4920 if ((error = ether_mediachange(ifp)) != 0)
4921 goto bnx_init_exit;
4922
4923 SET(ifp->if_flags, IFF_RUNNING);
4924 CLR(ifp->if_flags, IFF_OACTIVE);
4925
4926 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4927
4928 bnx_init_exit:
4929 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4930
4931 splx(s);
4932
4933 return error;
4934 }
4935
4936 /****************************************************************************/
4937 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4938 /* memory visible to the controller. */
4939 /* */
4940 /* Returns: */
4941 /* 0 for success, positive value for failure. */
4942 /****************************************************************************/
4943 int
4944 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4945 {
4946 struct bnx_pkt *pkt;
4947 bus_dmamap_t map;
4948 struct tx_bd *txbd = NULL;
4949 uint16_t vlan_tag = 0, flags = 0;
4950 uint16_t chain_prod, prod;
4951 #ifdef BNX_DEBUG
4952 uint16_t debug_prod;
4953 #endif
4954 uint32_t addr, prod_bseq;
4955 int i, error;
4956 struct m_tag *mtag;
4957 static struct work bnx_wk; /* Dummy work. Statically allocated. */
4958
4959 mutex_enter(&sc->tx_pkt_mtx);
4960 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4961 if (pkt == NULL) {
4962 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4963 mutex_exit(&sc->tx_pkt_mtx);
4964 return ENETDOWN;
4965 }
4966
4967 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
4968 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
4969 workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
4970 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4971 }
4972
4973 mutex_exit(&sc->tx_pkt_mtx);
4974 return ENOMEM;
4975 }
4976 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4977 mutex_exit(&sc->tx_pkt_mtx);
4978
4979 /* Transfer any checksum offload flags to the bd. */
4980 if (m->m_pkthdr.csum_flags) {
4981 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4982 flags |= TX_BD_FLAGS_IP_CKSUM;
4983 if (m->m_pkthdr.csum_flags &
4984 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4985 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4986 }
4987
4988 /* Transfer any VLAN tags to the bd. */
4989 mtag = VLAN_OUTPUT_TAG(&sc->bnx_ec, m);
4990 if (mtag != NULL) {
4991 flags |= TX_BD_FLAGS_VLAN_TAG;
4992 vlan_tag = VLAN_TAG_VALUE(mtag);
4993 }
4994
4995 /* Map the mbuf into DMAable memory. */
4996 prod = sc->tx_prod;
4997 chain_prod = TX_CHAIN_IDX(prod);
4998 map = pkt->pkt_dmamap;
4999
5000 /* Map the mbuf into our DMA address space. */
5001 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
5002 if (error != 0) {
5003 aprint_error_dev(sc->bnx_dev,
5004 "Error mapping mbuf into TX chain!\n");
5005 sc->tx_dma_map_failures++;
5006 goto maperr;
5007 }
5008 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
5009 BUS_DMASYNC_PREWRITE);
5010 /* Make sure there's room in the chain */
5011 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
5012 goto nospace;
5013
5014 /* prod points to an empty tx_bd at this point. */
5015 prod_bseq = sc->tx_prod_bseq;
5016 #ifdef BNX_DEBUG
5017 debug_prod = chain_prod;
5018 #endif
5019 DBPRINT(sc, BNX_INFO_SEND,
5020 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5021 "prod_bseq = 0x%08X\n",
5022 __func__, prod, chain_prod, prod_bseq);
5023
5024 /*
5025 * Cycle through each mbuf segment that makes up
5026 * the outgoing frame, gathering the mapping info
5027 * for that segment and creating a tx_bd for the
5028 * mbuf.
5029 */
5030 for (i = 0; i < map->dm_nsegs ; i++) {
5031 chain_prod = TX_CHAIN_IDX(prod);
5032 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5033
5034 addr = (uint32_t)map->dm_segs[i].ds_addr;
5035 txbd->tx_bd_haddr_lo = addr;
5036 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5037 txbd->tx_bd_haddr_hi = addr;
5038 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5039 txbd->tx_bd_vlan_tag = vlan_tag;
5040 txbd->tx_bd_flags = flags;
5041 prod_bseq += map->dm_segs[i].ds_len;
5042 if (i == 0)
5043 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5044 prod = NEXT_TX_BD(prod);
5045 }
5046 /* Set the END flag on the last TX buffer descriptor. */
5047 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5048
5049 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5050
5051 DBPRINT(sc, BNX_INFO_SEND,
5052 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
5053 "prod_bseq = 0x%08X\n",
5054 __func__, prod, chain_prod, prod_bseq);
5055
5056 pkt->pkt_mbuf = m;
5057 pkt->pkt_end_desc = chain_prod;
5058
5059 mutex_enter(&sc->tx_pkt_mtx);
5060 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5061 mutex_exit(&sc->tx_pkt_mtx);
5062
5063 sc->used_tx_bd += map->dm_nsegs;
5064 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5065 __FILE__, __LINE__, sc->used_tx_bd);
5066
5067 /* Update some debug statistics counters */
5068 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5069 sc->tx_hi_watermark = sc->used_tx_bd);
5070 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5071 DBRUNIF(1, sc->tx_mbuf_alloc++);
5072
5073 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5074 map->dm_nsegs));
5075
5076 /* prod points to the next free tx_bd at this point. */
5077 sc->tx_prod = prod;
5078 sc->tx_prod_bseq = prod_bseq;
5079
5080 return 0;
5081
5082
5083 nospace:
5084 bus_dmamap_unload(sc->bnx_dmatag, map);
5085 maperr:
5086 mutex_enter(&sc->tx_pkt_mtx);
5087 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5088 mutex_exit(&sc->tx_pkt_mtx);
5089
5090 return ENOMEM;
5091 }
5092
5093 /****************************************************************************/
5094 /* Main transmit routine. */
5095 /* */
5096 /* Returns: */
5097 /* Nothing. */
5098 /****************************************************************************/
5099 void
5100 bnx_start(struct ifnet *ifp)
5101 {
5102 struct bnx_softc *sc = ifp->if_softc;
5103 struct mbuf *m_head = NULL;
5104 int count = 0;
5105 #ifdef BNX_DEBUG
5106 uint16_t tx_chain_prod;
5107 #endif
5108
5109 /* If there's no link or the transmit queue is empty then just exit. */
5110 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
5111 DBPRINT(sc, BNX_INFO_SEND,
5112 "%s(): output active or device not running.\n", __func__);
5113 goto bnx_start_exit;
5114 }
5115
5116 /* prod points to the next free tx_bd. */
5117 #ifdef BNX_DEBUG
5118 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5119 #endif
5120
5121 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5122 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5123 "used_tx %d max_tx %d\n",
5124 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5125 sc->used_tx_bd, sc->max_tx_bd);
5126
5127 /*
5128 * Keep adding entries while there is space in the ring.
5129 */
5130 while (sc->used_tx_bd < sc->max_tx_bd) {
5131 /* Check for any frames to send. */
5132 IFQ_POLL(&ifp->if_snd, m_head);
5133 if (m_head == NULL)
5134 break;
5135
5136 /*
5137 * Pack the data into the transmit ring. If we
5138 * don't have room, set the OACTIVE flag to wait
5139 * for the NIC to drain the chain.
5140 */
5141 if (bnx_tx_encap(sc, m_head)) {
5142 ifp->if_flags |= IFF_OACTIVE;
5143 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5144 "business! Total tx_bd used = %d\n",
5145 sc->used_tx_bd);
5146 break;
5147 }
5148
5149 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5150 count++;
5151
5152 /* Send a copy of the frame to any BPF listeners. */
5153 bpf_mtap(ifp, m_head);
5154 }
5155
5156 if (count == 0) {
5157 /* no packets were dequeued */
5158 DBPRINT(sc, BNX_VERBOSE_SEND,
5159 "%s(): No packets were dequeued\n", __func__);
5160 goto bnx_start_exit;
5161 }
5162
5163 /* Update the driver's counters. */
5164 #ifdef BNX_DEBUG
5165 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5166 #endif
5167
5168 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
5169 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
5170 tx_chain_prod, sc->tx_prod_bseq);
5171
5172 /* Start the transmit. */
5173 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5174 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5175
5176 /* Set the tx timeout. */
5177 ifp->if_timer = BNX_TX_TIMEOUT;
5178
5179 bnx_start_exit:
5180 return;
5181 }
5182
5183 /****************************************************************************/
5184 /* Handles any IOCTL calls from the operating system. */
5185 /* */
5186 /* Returns: */
5187 /* 0 for success, positive value for failure. */
5188 /****************************************************************************/
5189 int
5190 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5191 {
5192 struct bnx_softc *sc = ifp->if_softc;
5193 struct ifreq *ifr = (struct ifreq *) data;
5194 struct mii_data *mii = &sc->bnx_mii;
5195 int s, error = 0;
5196
5197 s = splnet();
5198
5199 switch (command) {
5200 case SIOCSIFFLAGS:
5201 if ((error = ifioctl_common(ifp, command, data)) != 0)
5202 break;
5203 /* XXX set an ifflags callback and let ether_ioctl
5204 * handle all of this.
5205 */
5206 if (ISSET(ifp->if_flags, IFF_UP)) {
5207 if (ifp->if_flags & IFF_RUNNING)
5208 error = ENETRESET;
5209 else
5210 bnx_init(ifp);
5211 } else if (ifp->if_flags & IFF_RUNNING)
5212 bnx_stop(ifp, 1);
5213 break;
5214
5215 case SIOCSIFMEDIA:
5216 case SIOCGIFMEDIA:
5217 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5218 sc->bnx_phy_flags);
5219
5220 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5221 break;
5222
5223 default:
5224 error = ether_ioctl(ifp, command, data);
5225 }
5226
5227 if (error == ENETRESET) {
5228 if (ifp->if_flags & IFF_RUNNING)
5229 bnx_iff(sc);
5230 error = 0;
5231 }
5232
5233 splx(s);
5234 return error;
5235 }
5236
5237 /****************************************************************************/
5238 /* Transmit timeout handler. */
5239 /* */
5240 /* Returns: */
5241 /* Nothing. */
5242 /****************************************************************************/
5243 void
5244 bnx_watchdog(struct ifnet *ifp)
5245 {
5246 struct bnx_softc *sc = ifp->if_softc;
5247
5248 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5249 bnx_dump_status_block(sc));
5250 /*
5251 * If we are in this routine because of pause frames, then
5252 * don't reset the hardware.
5253 */
5254 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5255 return;
5256
5257 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5258
5259 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5260
5261 bnx_init(ifp);
5262
5263 ifp->if_oerrors++;
5264 }
5265
5266 /*
5267 * Interrupt handler.
5268 */
5269 /****************************************************************************/
5270 /* Main interrupt entry point. Verifies that the controller generated the */
5271 /* interrupt and then calls a separate routine for handle the various */
5272 /* interrupt causes (PHY, TX, RX). */
5273 /* */
5274 /* Returns: */
5275 /* 0 for success, positive value for failure. */
5276 /****************************************************************************/
5277 int
5278 bnx_intr(void *xsc)
5279 {
5280 struct bnx_softc *sc;
5281 struct ifnet *ifp;
5282 uint32_t status_attn_bits;
5283 const struct status_block *sblk;
5284
5285 sc = xsc;
5286
5287 ifp = &sc->bnx_ec.ec_if;
5288
5289 if (!device_is_active(sc->bnx_dev) ||
5290 (ifp->if_flags & IFF_RUNNING) == 0)
5291 return 0;
5292
5293 DBRUNIF(1, sc->interrupts_generated++);
5294
5295 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5296 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5297
5298 /*
5299 * If the hardware status block index
5300 * matches the last value read by the
5301 * driver and we haven't asserted our
5302 * interrupt then there's nothing to do.
5303 */
5304 if ((sc->status_block->status_idx == sc->last_status_idx) &&
5305 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5306 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5307 return 0;
5308
5309 /* Ack the interrupt and stop others from occuring. */
5310 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5311 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5312 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5313
5314 /* Keep processing data as long as there is work to do. */
5315 for (;;) {
5316 sblk = sc->status_block;
5317 status_attn_bits = sblk->status_attn_bits;
5318
5319 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5320 aprint_debug("Simulating unexpected status attention bit set.");
5321 status_attn_bits = status_attn_bits |
5322 STATUS_ATTN_BITS_PARITY_ERROR);
5323
5324 /* Was it a link change interrupt? */
5325 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5326 (sblk->status_attn_bits_ack &
5327 STATUS_ATTN_BITS_LINK_STATE))
5328 bnx_phy_intr(sc);
5329
5330 /* If any other attention is asserted then the chip is toast. */
5331 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5332 (sblk->status_attn_bits_ack &
5333 ~STATUS_ATTN_BITS_LINK_STATE))) {
5334 DBRUN(1, sc->unexpected_attentions++);
5335
5336 BNX_PRINTF(sc,
5337 "Fatal attention detected: 0x%08X\n",
5338 sblk->status_attn_bits);
5339
5340 DBRUN(BNX_FATAL,
5341 if (bnx_debug_unexpected_attention == 0)
5342 bnx_breakpoint(sc));
5343
5344 bnx_init(ifp);
5345 return 1;
5346 }
5347
5348 /* Check for any completed RX frames. */
5349 if (sblk->status_rx_quick_consumer_index0 !=
5350 sc->hw_rx_cons)
5351 bnx_rx_intr(sc);
5352
5353 /* Check for any completed TX frames. */
5354 if (sblk->status_tx_quick_consumer_index0 !=
5355 sc->hw_tx_cons)
5356 bnx_tx_intr(sc);
5357
5358 /*
5359 * Save the status block index value for use during the
5360 * next interrupt.
5361 */
5362 sc->last_status_idx = sblk->status_idx;
5363
5364 /* Prevent speculative reads from getting ahead of the
5365 * status block.
5366 */
5367 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5368 BUS_SPACE_BARRIER_READ);
5369
5370 /* If there's no work left then exit the isr. */
5371 if ((sblk->status_rx_quick_consumer_index0 ==
5372 sc->hw_rx_cons) &&
5373 (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
5374 break;
5375 }
5376
5377 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5378 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5379
5380 /* Re-enable interrupts. */
5381 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5382 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5383 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5384 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5385 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5386
5387 /* Handle any frames that arrived while handling the interrupt. */
5388 if_schedule_deferred_start(ifp);
5389
5390 return 1;
5391 }
5392
5393 /****************************************************************************/
5394 /* Programs the various packet receive modes (broadcast and multicast). */
5395 /* */
5396 /* Returns: */
5397 /* Nothing. */
5398 /****************************************************************************/
5399 void
5400 bnx_iff(struct bnx_softc *sc)
5401 {
5402 struct ethercom *ec = &sc->bnx_ec;
5403 struct ifnet *ifp = &ec->ec_if;
5404 struct ether_multi *enm;
5405 struct ether_multistep step;
5406 uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5407 uint32_t rx_mode, sort_mode;
5408 int h, i;
5409
5410 /* Initialize receive mode default settings. */
5411 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5412 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5413 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5414 ifp->if_flags &= ~IFF_ALLMULTI;
5415
5416 /*
5417 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5418 * be enbled.
5419 */
5420 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5421 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5422
5423 /*
5424 * Check for promiscuous, all multicast, or selected
5425 * multicast address filtering.
5426 */
5427 if (ifp->if_flags & IFF_PROMISC) {
5428 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5429
5430 ifp->if_flags |= IFF_ALLMULTI;
5431 /* Enable promiscuous mode. */
5432 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5433 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5434 } else if (ifp->if_flags & IFF_ALLMULTI) {
5435 allmulti:
5436 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5437
5438 ifp->if_flags |= IFF_ALLMULTI;
5439 /* Enable all multicast addresses. */
5440 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5441 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5442 0xffffffff);
5443 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5444 } else {
5445 /* Accept one or more multicast(s). */
5446 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5447
5448 ETHER_FIRST_MULTI(step, ec, enm);
5449 while (enm != NULL) {
5450 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5451 ETHER_ADDR_LEN)) {
5452 goto allmulti;
5453 }
5454 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5455 0xFF;
5456 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5457 ETHER_NEXT_MULTI(step, enm);
5458 }
5459
5460 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5461 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5462 hashes[i]);
5463
5464 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5465 }
5466
5467 /* Only make changes if the recive mode has actually changed. */
5468 if (rx_mode != sc->rx_mode) {
5469 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5470 rx_mode);
5471
5472 sc->rx_mode = rx_mode;
5473 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5474 }
5475
5476 /* Disable and clear the exisitng sort before enabling a new sort. */
5477 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5478 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5479 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5480 }
5481
5482 /****************************************************************************/
5483 /* Called periodically to updates statistics from the controllers */
5484 /* statistics block. */
5485 /* */
5486 /* Returns: */
5487 /* Nothing. */
5488 /****************************************************************************/
5489 void
5490 bnx_stats_update(struct bnx_softc *sc)
5491 {
5492 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5493 struct statistics_block *stats;
5494
5495 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5496 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5497 BUS_DMASYNC_POSTREAD);
5498
5499 stats = (struct statistics_block *)sc->stats_block;
5500
5501 /*
5502 * Update the interface statistics from the
5503 * hardware statistics.
5504 */
5505 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5506
5507 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5508 (u_long)stats->stat_EtherStatsOverrsizePkts +
5509 (u_long)stats->stat_IfInMBUFDiscards +
5510 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5511 (u_long)stats->stat_Dot3StatsFCSErrors;
5512
5513 ifp->if_oerrors = (u_long)
5514 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5515 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5516 (u_long)stats->stat_Dot3StatsLateCollisions;
5517
5518 /*
5519 * Certain controllers don't report
5520 * carrier sense errors correctly.
5521 * See errata E11_5708CA0_1165.
5522 */
5523 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5524 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5525 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5526
5527 /*
5528 * Update the sysctl statistics from the
5529 * hardware statistics.
5530 */
5531 sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5532 (uint64_t) stats->stat_IfHCInOctets_lo;
5533
5534 sc->stat_IfHCInBadOctets =
5535 ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5536 (uint64_t) stats->stat_IfHCInBadOctets_lo;
5537
5538 sc->stat_IfHCOutOctets =
5539 ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5540 (uint64_t) stats->stat_IfHCOutOctets_lo;
5541
5542 sc->stat_IfHCOutBadOctets =
5543 ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5544 (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5545
5546 sc->stat_IfHCInUcastPkts =
5547 ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5548 (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5549
5550 sc->stat_IfHCInMulticastPkts =
5551 ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5552 (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5553
5554 sc->stat_IfHCInBroadcastPkts =
5555 ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5556 (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5557
5558 sc->stat_IfHCOutUcastPkts =
5559 ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5560 (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5561
5562 sc->stat_IfHCOutMulticastPkts =
5563 ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5564 (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5565
5566 sc->stat_IfHCOutBroadcastPkts =
5567 ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5568 (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5569
5570 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5571 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5572
5573 sc->stat_Dot3StatsCarrierSenseErrors =
5574 stats->stat_Dot3StatsCarrierSenseErrors;
5575
5576 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5577
5578 sc->stat_Dot3StatsAlignmentErrors =
5579 stats->stat_Dot3StatsAlignmentErrors;
5580
5581 sc->stat_Dot3StatsSingleCollisionFrames =
5582 stats->stat_Dot3StatsSingleCollisionFrames;
5583
5584 sc->stat_Dot3StatsMultipleCollisionFrames =
5585 stats->stat_Dot3StatsMultipleCollisionFrames;
5586
5587 sc->stat_Dot3StatsDeferredTransmissions =
5588 stats->stat_Dot3StatsDeferredTransmissions;
5589
5590 sc->stat_Dot3StatsExcessiveCollisions =
5591 stats->stat_Dot3StatsExcessiveCollisions;
5592
5593 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5594
5595 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5596
5597 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5598
5599 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5600
5601 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5602
5603 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5604
5605 sc->stat_EtherStatsPktsRx64Octets =
5606 stats->stat_EtherStatsPktsRx64Octets;
5607
5608 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5609 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5610
5611 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5612 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5613
5614 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5615 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5616
5617 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5618 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5619
5620 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5621 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5622
5623 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5624 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5625
5626 sc->stat_EtherStatsPktsTx64Octets =
5627 stats->stat_EtherStatsPktsTx64Octets;
5628
5629 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5630 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5631
5632 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5633 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5634
5635 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5636 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5637
5638 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5639 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5640
5641 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5642 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5643
5644 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5645 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5646
5647 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5648
5649 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5650
5651 sc->stat_OutXonSent = stats->stat_OutXonSent;
5652
5653 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5654
5655 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5656
5657 sc->stat_MacControlFramesReceived =
5658 stats->stat_MacControlFramesReceived;
5659
5660 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5661
5662 sc->stat_IfInFramesL2FilterDiscards =
5663 stats->stat_IfInFramesL2FilterDiscards;
5664
5665 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5666
5667 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5668
5669 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5670
5671 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5672
5673 sc->stat_CatchupInRuleCheckerDiscards =
5674 stats->stat_CatchupInRuleCheckerDiscards;
5675
5676 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5677
5678 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5679
5680 sc->stat_CatchupInRuleCheckerP4Hit =
5681 stats->stat_CatchupInRuleCheckerP4Hit;
5682
5683 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5684 }
5685
5686 void
5687 bnx_tick(void *xsc)
5688 {
5689 struct bnx_softc *sc = xsc;
5690 struct mii_data *mii;
5691 uint32_t msg;
5692 uint16_t prod, chain_prod;
5693 uint32_t prod_bseq;
5694 int s = splnet();
5695
5696 /* Tell the firmware that the driver is still running. */
5697 #ifdef BNX_DEBUG
5698 msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5699 #else
5700 msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5701 #endif
5702 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5703
5704 /* Update the statistics from the hardware statistics block. */
5705 bnx_stats_update(sc);
5706
5707 /* Schedule the next tick. */
5708 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5709
5710 mii = &sc->bnx_mii;
5711 mii_tick(mii);
5712
5713 /* try to get more RX buffers, just in case */
5714 prod = sc->rx_prod;
5715 prod_bseq = sc->rx_prod_bseq;
5716 chain_prod = RX_CHAIN_IDX(prod);
5717 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5718 sc->rx_prod = prod;
5719 sc->rx_prod_bseq = prod_bseq;
5720 splx(s);
5721 return;
5722 }
5723
5724 /****************************************************************************/
5725 /* BNX Debug Routines */
5726 /****************************************************************************/
5727 #ifdef BNX_DEBUG
5728
5729 /****************************************************************************/
5730 /* Prints out information about an mbuf. */
5731 /* */
5732 /* Returns: */
5733 /* Nothing. */
5734 /****************************************************************************/
5735 void
5736 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5737 {
5738 struct mbuf *mp = m;
5739
5740 if (m == NULL) {
5741 /* Index out of range. */
5742 aprint_error("mbuf ptr is null!\n");
5743 return;
5744 }
5745
5746 while (mp) {
5747 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5748 mp, mp->m_len);
5749
5750 if (mp->m_flags & M_EXT)
5751 aprint_debug("M_EXT ");
5752 if (mp->m_flags & M_PKTHDR)
5753 aprint_debug("M_PKTHDR ");
5754 aprint_debug("\n");
5755
5756 if (mp->m_flags & M_EXT)
5757 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5758 mp, mp->m_ext.ext_size);
5759
5760 mp = mp->m_next;
5761 }
5762 }
5763
5764 /****************************************************************************/
5765 /* Prints out the mbufs in the TX mbuf chain. */
5766 /* */
5767 /* Returns: */
5768 /* Nothing. */
5769 /****************************************************************************/
5770 void
5771 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5772 {
5773 #if 0
5774 struct mbuf *m;
5775 int i;
5776
5777 aprint_debug_dev(sc->bnx_dev,
5778 "----------------------------"
5779 " tx mbuf data "
5780 "----------------------------\n");
5781
5782 for (i = 0; i < count; i++) {
5783 m = sc->tx_mbuf_ptr[chain_prod];
5784 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5785 bnx_dump_mbuf(sc, m);
5786 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5787 }
5788
5789 aprint_debug_dev(sc->bnx_dev,
5790 "--------------------------------------------"
5791 "----------------------------\n");
5792 #endif
5793 }
5794
5795 /*
5796 * This routine prints the RX mbuf chain.
5797 */
5798 void
5799 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5800 {
5801 struct mbuf *m;
5802 int i;
5803
5804 aprint_debug_dev(sc->bnx_dev,
5805 "----------------------------"
5806 " rx mbuf data "
5807 "----------------------------\n");
5808
5809 for (i = 0; i < count; i++) {
5810 m = sc->rx_mbuf_ptr[chain_prod];
5811 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5812 bnx_dump_mbuf(sc, m);
5813 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5814 }
5815
5816
5817 aprint_debug_dev(sc->bnx_dev,
5818 "--------------------------------------------"
5819 "----------------------------\n");
5820 }
5821
5822 void
5823 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5824 {
5825 if (idx > MAX_TX_BD)
5826 /* Index out of range. */
5827 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5828 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5829 /* TX Chain page pointer. */
5830 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5831 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5832 txbd->tx_bd_haddr_lo);
5833 else
5834 /* Normal tx_bd entry. */
5835 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5836 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5837 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5838 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5839 txbd->tx_bd_flags);
5840 }
5841
5842 void
5843 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5844 {
5845 if (idx > MAX_RX_BD)
5846 /* Index out of range. */
5847 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5848 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5849 /* TX Chain page pointer. */
5850 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5851 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5852 rxbd->rx_bd_haddr_lo);
5853 else
5854 /* Normal tx_bd entry. */
5855 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5856 "0x%08X, flags = 0x%08X\n", idx,
5857 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5858 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5859 }
5860
5861 void
5862 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5863 {
5864 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5865 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5866 "tcp_udp_xsum = 0x%04X\n", idx,
5867 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5868 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5869 l2fhdr->l2_fhdr_tcp_udp_xsum);
5870 }
5871
5872 /*
5873 * This routine prints the TX chain.
5874 */
5875 void
5876 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5877 {
5878 struct tx_bd *txbd;
5879 int i;
5880
5881 /* First some info about the tx_bd chain structure. */
5882 aprint_debug_dev(sc->bnx_dev,
5883 "----------------------------"
5884 " tx_bd chain "
5885 "----------------------------\n");
5886
5887 BNX_PRINTF(sc,
5888 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5889 (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
5890
5891 BNX_PRINTF(sc,
5892 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5893 (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
5894
5895 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", TOTAL_TX_BD);
5896
5897 aprint_error_dev(sc->bnx_dev, ""
5898 "-----------------------------"
5899 " tx_bd data "
5900 "-----------------------------\n");
5901
5902 /* Now print out the tx_bd's themselves. */
5903 for (i = 0; i < count; i++) {
5904 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5905 bnx_dump_txbd(sc, tx_prod, txbd);
5906 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5907 }
5908
5909 aprint_debug_dev(sc->bnx_dev,
5910 "-----------------------------"
5911 "--------------"
5912 "-----------------------------\n");
5913 }
5914
5915 /*
5916 * This routine prints the RX chain.
5917 */
5918 void
5919 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5920 {
5921 struct rx_bd *rxbd;
5922 int i;
5923
5924 /* First some info about the tx_bd chain structure. */
5925 aprint_debug_dev(sc->bnx_dev,
5926 "----------------------------"
5927 " rx_bd chain "
5928 "----------------------------\n");
5929
5930 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5931
5932 BNX_PRINTF(sc,
5933 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5934 (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
5935
5936 BNX_PRINTF(sc,
5937 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5938 (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
5939
5940 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", TOTAL_RX_BD);
5941
5942 aprint_error_dev(sc->bnx_dev,
5943 "----------------------------"
5944 " rx_bd data "
5945 "----------------------------\n");
5946
5947 /* Now print out the rx_bd's themselves. */
5948 for (i = 0; i < count; i++) {
5949 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5950 bnx_dump_rxbd(sc, rx_prod, rxbd);
5951 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5952 }
5953
5954 aprint_debug_dev(sc->bnx_dev,
5955 "----------------------------"
5956 "--------------"
5957 "----------------------------\n");
5958 }
5959
5960 /*
5961 * This routine prints the status block.
5962 */
5963 void
5964 bnx_dump_status_block(struct bnx_softc *sc)
5965 {
5966 struct status_block *sblk;
5967 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5968 BUS_DMASYNC_POSTREAD);
5969
5970 sblk = sc->status_block;
5971
5972 aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5973 "-----------------------------\n");
5974
5975 BNX_PRINTF(sc,
5976 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5977 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5978 sblk->status_idx);
5979
5980 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5981 sblk->status_rx_quick_consumer_index0,
5982 sblk->status_tx_quick_consumer_index0);
5983
5984 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5985
5986 /* Theses indices are not used for normal L2 drivers. */
5987 if (sblk->status_rx_quick_consumer_index1 ||
5988 sblk->status_tx_quick_consumer_index1)
5989 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5990 sblk->status_rx_quick_consumer_index1,
5991 sblk->status_tx_quick_consumer_index1);
5992
5993 if (sblk->status_rx_quick_consumer_index2 ||
5994 sblk->status_tx_quick_consumer_index2)
5995 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5996 sblk->status_rx_quick_consumer_index2,
5997 sblk->status_tx_quick_consumer_index2);
5998
5999 if (sblk->status_rx_quick_consumer_index3 ||
6000 sblk->status_tx_quick_consumer_index3)
6001 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
6002 sblk->status_rx_quick_consumer_index3,
6003 sblk->status_tx_quick_consumer_index3);
6004
6005 if (sblk->status_rx_quick_consumer_index4 ||
6006 sblk->status_rx_quick_consumer_index5)
6007 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
6008 sblk->status_rx_quick_consumer_index4,
6009 sblk->status_rx_quick_consumer_index5);
6010
6011 if (sblk->status_rx_quick_consumer_index6 ||
6012 sblk->status_rx_quick_consumer_index7)
6013 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
6014 sblk->status_rx_quick_consumer_index6,
6015 sblk->status_rx_quick_consumer_index7);
6016
6017 if (sblk->status_rx_quick_consumer_index8 ||
6018 sblk->status_rx_quick_consumer_index9)
6019 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
6020 sblk->status_rx_quick_consumer_index8,
6021 sblk->status_rx_quick_consumer_index9);
6022
6023 if (sblk->status_rx_quick_consumer_index10 ||
6024 sblk->status_rx_quick_consumer_index11)
6025 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
6026 sblk->status_rx_quick_consumer_index10,
6027 sblk->status_rx_quick_consumer_index11);
6028
6029 if (sblk->status_rx_quick_consumer_index12 ||
6030 sblk->status_rx_quick_consumer_index13)
6031 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
6032 sblk->status_rx_quick_consumer_index12,
6033 sblk->status_rx_quick_consumer_index13);
6034
6035 if (sblk->status_rx_quick_consumer_index14 ||
6036 sblk->status_rx_quick_consumer_index15)
6037 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
6038 sblk->status_rx_quick_consumer_index14,
6039 sblk->status_rx_quick_consumer_index15);
6040
6041 if (sblk->status_completion_producer_index ||
6042 sblk->status_cmd_consumer_index)
6043 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
6044 sblk->status_completion_producer_index,
6045 sblk->status_cmd_consumer_index);
6046
6047 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6048 "-----------------------------\n");
6049 }
6050
6051 /*
6052 * This routine prints the statistics block.
6053 */
6054 void
6055 bnx_dump_stats_block(struct bnx_softc *sc)
6056 {
6057 struct statistics_block *sblk;
6058 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6059 BUS_DMASYNC_POSTREAD);
6060
6061 sblk = sc->stats_block;
6062
6063 aprint_debug_dev(sc->bnx_dev, ""
6064 "-----------------------------"
6065 " Stats Block "
6066 "-----------------------------\n");
6067
6068 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
6069 "IfHcInBadOctets = 0x%08X:%08X\n",
6070 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6071 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6072
6073 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
6074 "IfHcOutBadOctets = 0x%08X:%08X\n",
6075 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6076 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6077
6078 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
6079 "IfHcInMulticastPkts = 0x%08X:%08X\n",
6080 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6081 sblk->stat_IfHCInMulticastPkts_hi,
6082 sblk->stat_IfHCInMulticastPkts_lo);
6083
6084 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
6085 "IfHcOutUcastPkts = 0x%08X:%08X\n",
6086 sblk->stat_IfHCInBroadcastPkts_hi,
6087 sblk->stat_IfHCInBroadcastPkts_lo,
6088 sblk->stat_IfHCOutUcastPkts_hi,
6089 sblk->stat_IfHCOutUcastPkts_lo);
6090
6091 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6092 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6093 sblk->stat_IfHCOutMulticastPkts_hi,
6094 sblk->stat_IfHCOutMulticastPkts_lo,
6095 sblk->stat_IfHCOutBroadcastPkts_hi,
6096 sblk->stat_IfHCOutBroadcastPkts_lo);
6097
6098 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6099 BNX_PRINTF(sc, "0x%08X : "
6100 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6101 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6102
6103 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6104 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6105 sblk->stat_Dot3StatsCarrierSenseErrors);
6106
6107 if (sblk->stat_Dot3StatsFCSErrors)
6108 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6109 sblk->stat_Dot3StatsFCSErrors);
6110
6111 if (sblk->stat_Dot3StatsAlignmentErrors)
6112 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6113 sblk->stat_Dot3StatsAlignmentErrors);
6114
6115 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6116 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6117 sblk->stat_Dot3StatsSingleCollisionFrames);
6118
6119 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6120 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6121 sblk->stat_Dot3StatsMultipleCollisionFrames);
6122
6123 if (sblk->stat_Dot3StatsDeferredTransmissions)
6124 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6125 sblk->stat_Dot3StatsDeferredTransmissions);
6126
6127 if (sblk->stat_Dot3StatsExcessiveCollisions)
6128 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6129 sblk->stat_Dot3StatsExcessiveCollisions);
6130
6131 if (sblk->stat_Dot3StatsLateCollisions)
6132 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6133 sblk->stat_Dot3StatsLateCollisions);
6134
6135 if (sblk->stat_EtherStatsCollisions)
6136 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6137 sblk->stat_EtherStatsCollisions);
6138
6139 if (sblk->stat_EtherStatsFragments)
6140 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6141 sblk->stat_EtherStatsFragments);
6142
6143 if (sblk->stat_EtherStatsJabbers)
6144 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6145 sblk->stat_EtherStatsJabbers);
6146
6147 if (sblk->stat_EtherStatsUndersizePkts)
6148 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6149 sblk->stat_EtherStatsUndersizePkts);
6150
6151 if (sblk->stat_EtherStatsOverrsizePkts)
6152 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6153 sblk->stat_EtherStatsOverrsizePkts);
6154
6155 if (sblk->stat_EtherStatsPktsRx64Octets)
6156 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6157 sblk->stat_EtherStatsPktsRx64Octets);
6158
6159 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6160 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6161 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6162
6163 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6164 BNX_PRINTF(sc, "0x%08X : "
6165 "EtherStatsPktsRx128Octetsto255Octets\n",
6166 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6167
6168 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6169 BNX_PRINTF(sc, "0x%08X : "
6170 "EtherStatsPktsRx256Octetsto511Octets\n",
6171 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6172
6173 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6174 BNX_PRINTF(sc, "0x%08X : "
6175 "EtherStatsPktsRx512Octetsto1023Octets\n",
6176 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6177
6178 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6179 BNX_PRINTF(sc, "0x%08X : "
6180 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6181 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6182
6183 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6184 BNX_PRINTF(sc, "0x%08X : "
6185 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6186 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6187
6188 if (sblk->stat_EtherStatsPktsTx64Octets)
6189 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6190 sblk->stat_EtherStatsPktsTx64Octets);
6191
6192 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6193 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6194 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6195
6196 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6197 BNX_PRINTF(sc, "0x%08X : "
6198 "EtherStatsPktsTx128Octetsto255Octets\n",
6199 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6200
6201 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6202 BNX_PRINTF(sc, "0x%08X : "
6203 "EtherStatsPktsTx256Octetsto511Octets\n",
6204 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6205
6206 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6207 BNX_PRINTF(sc, "0x%08X : "
6208 "EtherStatsPktsTx512Octetsto1023Octets\n",
6209 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6210
6211 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6212 BNX_PRINTF(sc, "0x%08X : "
6213 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6214 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6215
6216 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6217 BNX_PRINTF(sc, "0x%08X : "
6218 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6219 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6220
6221 if (sblk->stat_XonPauseFramesReceived)
6222 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6223 sblk->stat_XonPauseFramesReceived);
6224
6225 if (sblk->stat_XoffPauseFramesReceived)
6226 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6227 sblk->stat_XoffPauseFramesReceived);
6228
6229 if (sblk->stat_OutXonSent)
6230 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6231 sblk->stat_OutXonSent);
6232
6233 if (sblk->stat_OutXoffSent)
6234 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6235 sblk->stat_OutXoffSent);
6236
6237 if (sblk->stat_FlowControlDone)
6238 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6239 sblk->stat_FlowControlDone);
6240
6241 if (sblk->stat_MacControlFramesReceived)
6242 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6243 sblk->stat_MacControlFramesReceived);
6244
6245 if (sblk->stat_XoffStateEntered)
6246 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6247 sblk->stat_XoffStateEntered);
6248
6249 if (sblk->stat_IfInFramesL2FilterDiscards)
6250 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6251 sblk->stat_IfInFramesL2FilterDiscards);
6252
6253 if (sblk->stat_IfInRuleCheckerDiscards)
6254 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6255 sblk->stat_IfInRuleCheckerDiscards);
6256
6257 if (sblk->stat_IfInFTQDiscards)
6258 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6259 sblk->stat_IfInFTQDiscards);
6260
6261 if (sblk->stat_IfInMBUFDiscards)
6262 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6263 sblk->stat_IfInMBUFDiscards);
6264
6265 if (sblk->stat_IfInRuleCheckerP4Hit)
6266 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6267 sblk->stat_IfInRuleCheckerP4Hit);
6268
6269 if (sblk->stat_CatchupInRuleCheckerDiscards)
6270 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6271 sblk->stat_CatchupInRuleCheckerDiscards);
6272
6273 if (sblk->stat_CatchupInFTQDiscards)
6274 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6275 sblk->stat_CatchupInFTQDiscards);
6276
6277 if (sblk->stat_CatchupInMBUFDiscards)
6278 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6279 sblk->stat_CatchupInMBUFDiscards);
6280
6281 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6282 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6283 sblk->stat_CatchupInRuleCheckerP4Hit);
6284
6285 aprint_debug_dev(sc->bnx_dev,
6286 "-----------------------------"
6287 "--------------"
6288 "-----------------------------\n");
6289 }
6290
6291 void
6292 bnx_dump_driver_state(struct bnx_softc *sc)
6293 {
6294 aprint_debug_dev(sc->bnx_dev,
6295 "-----------------------------"
6296 " Driver State "
6297 "-----------------------------\n");
6298
6299 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6300 "address\n", sc);
6301
6302 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6303 sc->status_block);
6304
6305 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6306 "address\n", sc->stats_block);
6307
6308 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6309 "adddress\n", sc->tx_bd_chain);
6310
6311 #if 0
6312 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6313 sc->rx_bd_chain);
6314
6315 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6316 sc->tx_mbuf_ptr);
6317 #endif
6318
6319 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6320 sc->rx_mbuf_ptr);
6321
6322 BNX_PRINTF(sc,
6323 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6324 sc->interrupts_generated);
6325
6326 BNX_PRINTF(sc,
6327 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6328 sc->rx_interrupts);
6329
6330 BNX_PRINTF(sc,
6331 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6332 sc->tx_interrupts);
6333
6334 BNX_PRINTF(sc,
6335 " 0x%08X - (sc->last_status_idx) status block index\n",
6336 sc->last_status_idx);
6337
6338 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6339 sc->tx_prod);
6340
6341 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6342 sc->tx_cons);
6343
6344 BNX_PRINTF(sc,
6345 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6346 sc->tx_prod_bseq);
6347 BNX_PRINTF(sc,
6348 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6349 sc->tx_mbuf_alloc);
6350
6351 BNX_PRINTF(sc,
6352 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6353 sc->used_tx_bd);
6354
6355 BNX_PRINTF(sc,
6356 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6357 sc->tx_hi_watermark, sc->max_tx_bd);
6358
6359
6360 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6361 sc->rx_prod);
6362
6363 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6364 sc->rx_cons);
6365
6366 BNX_PRINTF(sc,
6367 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6368 sc->rx_prod_bseq);
6369
6370 BNX_PRINTF(sc,
6371 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6372 sc->rx_mbuf_alloc);
6373
6374 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6375 sc->free_rx_bd);
6376
6377 BNX_PRINTF(sc,
6378 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6379 sc->rx_low_watermark, sc->max_rx_bd);
6380
6381 BNX_PRINTF(sc,
6382 " 0x%08X - (sc->mbuf_alloc_failed) "
6383 "mbuf alloc failures\n",
6384 sc->mbuf_alloc_failed);
6385
6386 BNX_PRINTF(sc,
6387 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6388 "simulated mbuf alloc failures\n",
6389 sc->mbuf_sim_alloc_failed);
6390
6391 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6392 "-----------------------------\n");
6393 }
6394
6395 void
6396 bnx_dump_hw_state(struct bnx_softc *sc)
6397 {
6398 uint32_t val1;
6399 int i;
6400
6401 aprint_debug_dev(sc->bnx_dev,
6402 "----------------------------"
6403 " Hardware State "
6404 "----------------------------\n");
6405
6406 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6407
6408 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6409 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6410 val1, BNX_MISC_ENABLE_STATUS_BITS);
6411
6412 val1 = REG_RD(sc, BNX_DMA_STATUS);
6413 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6414
6415 val1 = REG_RD(sc, BNX_CTX_STATUS);
6416 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6417
6418 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6419 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6420 BNX_EMAC_STATUS);
6421
6422 val1 = REG_RD(sc, BNX_RPM_STATUS);
6423 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6424
6425 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6426 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6427 BNX_TBDR_STATUS);
6428
6429 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6430 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6431 BNX_TDMA_STATUS);
6432
6433 val1 = REG_RD(sc, BNX_HC_STATUS);
6434 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6435
6436 aprint_debug_dev(sc->bnx_dev,
6437 "----------------------------"
6438 "----------------"
6439 "----------------------------\n");
6440
6441 aprint_debug_dev(sc->bnx_dev,
6442 "----------------------------"
6443 " Register Dump "
6444 "----------------------------\n");
6445
6446 for (i = 0x400; i < 0x8000; i += 0x10)
6447 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6448 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6449 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6450
6451 aprint_debug_dev(sc->bnx_dev,
6452 "----------------------------"
6453 "----------------"
6454 "----------------------------\n");
6455 }
6456
6457 void
6458 bnx_breakpoint(struct bnx_softc *sc)
6459 {
6460 /* Unreachable code to shut the compiler up about unused functions. */
6461 if (0) {
6462 bnx_dump_txbd(sc, 0, NULL);
6463 bnx_dump_rxbd(sc, 0, NULL);
6464 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6465 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6466 bnx_dump_l2fhdr(sc, 0, NULL);
6467 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6468 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6469 bnx_dump_status_block(sc);
6470 bnx_dump_stats_block(sc);
6471 bnx_dump_driver_state(sc);
6472 bnx_dump_hw_state(sc);
6473 }
6474
6475 bnx_dump_driver_state(sc);
6476 /* Print the important status block fields. */
6477 bnx_dump_status_block(sc);
6478
6479 #if 0
6480 /* Call the debugger. */
6481 breakpoint();
6482 #endif
6483
6484 return;
6485 }
6486 #endif
6487