if_bnx.c revision 1.62 1 /* $NetBSD: if_bnx.c,v 1.62 2017/09/26 07:42:06 knakahara Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3
4 /*-
5 * Copyright (c) 2006-2010 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.62 2017/09/26 07:42:06 knakahara Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 * BCM5706C A0, A1
52 * BCM5706S A0, A1
53 * BCM5708C A0, B0
54 * BCM5708S A0, B0
55 * BCM5709C A0 B0, B1, B2 (pre-production)
56 * BCM5709S A0, B0, B1, B2 (pre-production)
57 */
58
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64
65 #include <dev/microcode/bnx/bnxfw.h>
66
67 /****************************************************************************/
68 /* BNX Driver Version */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION "v0.9.6"
71
72 /****************************************************************************/
73 /* BNX Debug Options */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77
78 /* 0 = Never */
79 /* 1 = 1 in 2,147,483,648 */
80 /* 256 = 1 in 8,388,608 */
81 /* 2048 = 1 in 1,048,576 */
82 /* 65536 = 1 in 32,768 */
83 /* 1048576 = 1 in 2,048 */
84 /* 268435456 = 1 in 8 */
85 /* 536870912 = 1 in 4 */
86 /* 1073741824 = 1 in 2 */
87
88 /* Controls how often the l2_fhdr frame error check will fail. */
89 int bnx_debug_l2fhdr_status_check = 0;
90
91 /* Controls how often the unexpected attention check will fail. */
92 int bnx_debug_unexpected_attention = 0;
93
94 /* Controls how often to simulate an mbuf allocation failure. */
95 int bnx_debug_mbuf_allocation_failure = 0;
96
97 /* Controls how often to simulate a DMA mapping failure. */
98 int bnx_debug_dma_map_addr_failure = 0;
99
100 /* Controls how often to simulate a bootcode failure. */
101 int bnx_debug_bootcode_running_failure = 0;
102 #endif
103
104 /****************************************************************************/
105 /* PCI Device ID Table */
106 /* */
107 /* Used by bnx_probe() to identify the devices supported by this driver. */
108 /****************************************************************************/
109 static const struct bnx_product {
110 pci_vendor_id_t bp_vendor;
111 pci_product_id_t bp_product;
112 pci_vendor_id_t bp_subvendor;
113 pci_product_id_t bp_subproduct;
114 const char *bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 {
118 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 "HP NC370T Multifunction Gigabit Server Adapter"
121 },
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 {
125 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 "HP NC370i Multifunction Gigabit Server Adapter"
128 },
129 #endif
130 {
131 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 0, 0,
133 "Broadcom NetXtreme II BCM5706 1000Base-T"
134 },
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 {
137 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 "HP NC370F Multifunction Gigabit Server Adapter"
140 },
141 #endif
142 {
143 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 0, 0,
145 "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 },
147 {
148 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 0, 0,
150 "Broadcom NetXtreme II BCM5708 1000Base-T"
151 },
152 {
153 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 0, 0,
155 "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 },
157 {
158 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 0, 0,
160 "Broadcom NetXtreme II BCM5709 1000Base-T"
161 },
162 {
163 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 0, 0,
165 "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 },
167 {
168 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 0, 0,
170 "Broadcom NetXtreme II BCM5716 1000Base-T"
171 },
172 {
173 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 0, 0,
175 "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 },
177 };
178
179 /****************************************************************************/
180 /* Supported Flash NVRAM device data. */
181 /****************************************************************************/
182 static struct flash_spec flash_table[] =
183 {
184 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
185 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
186 /* Slow EEPROM */
187 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
188 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
189 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
190 "EEPROM - slow"},
191 /* Expansion entry 0001 */
192 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
193 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 "Entry 0001"},
196 /* Saifun SA25F010 (non-buffered flash) */
197 /* strap, cfg1, & write1 need updates */
198 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
199 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
200 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
201 "Non-buffered flash (128kB)"},
202 /* Saifun SA25F020 (non-buffered flash) */
203 /* strap, cfg1, & write1 need updates */
204 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
205 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
206 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
207 "Non-buffered flash (256kB)"},
208 /* Expansion entry 0100 */
209 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
210 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
211 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
212 "Entry 0100"},
213 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
214 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
215 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
216 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
217 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
218 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
219 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
220 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
221 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
222 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
223 /* Saifun SA25F005 (non-buffered flash) */
224 /* strap, cfg1, & write1 need updates */
225 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
226 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
228 "Non-buffered flash (64kB)"},
229 /* Fast EEPROM */
230 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
231 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
232 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
233 "EEPROM - fast"},
234 /* Expansion entry 1001 */
235 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
236 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
237 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
238 "Entry 1001"},
239 /* Expansion entry 1010 */
240 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
241 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
242 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
243 "Entry 1010"},
244 /* ATMEL AT45DB011B (buffered flash) */
245 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
246 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
247 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
248 "Buffered flash (128kB)"},
249 /* Expansion entry 1100 */
250 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
251 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
252 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
253 "Entry 1100"},
254 /* Expansion entry 1101 */
255 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
256 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
257 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
258 "Entry 1101"},
259 /* Ateml Expansion entry 1110 */
260 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
261 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
262 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
263 "Entry 1110 (Atmel)"},
264 /* ATMEL AT45DB021B (buffered flash) */
265 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
266 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
267 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
268 "Buffered flash (256kB)"},
269 };
270
271 /*
272 * The BCM5709 controllers transparently handle the
273 * differences between Atmel 264 byte pages and all
274 * flash devices which use 256 byte pages, so no
275 * logical-to-physical mapping is required in the
276 * driver.
277 */
278 static struct flash_spec flash_5709 = {
279 .flags = BNX_NV_BUFFERED,
280 .page_bits = BCM5709_FLASH_PAGE_BITS,
281 .page_size = BCM5709_FLASH_PAGE_SIZE,
282 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
283 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
284 .name = "5709 buffered flash (256kB)",
285 };
286
287 /****************************************************************************/
288 /* OpenBSD device entry points. */
289 /****************************************************************************/
290 static int bnx_probe(device_t, cfdata_t, void *);
291 void bnx_attach(device_t, device_t, void *);
292 int bnx_detach(device_t, int);
293
294 /****************************************************************************/
295 /* BNX Debug Data Structure Dump Routines */
296 /****************************************************************************/
297 #ifdef BNX_DEBUG
298 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
299 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
300 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
301 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
302 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
303 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
304 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
305 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
306 void bnx_dump_status_block(struct bnx_softc *);
307 void bnx_dump_stats_block(struct bnx_softc *);
308 void bnx_dump_driver_state(struct bnx_softc *);
309 void bnx_dump_hw_state(struct bnx_softc *);
310 void bnx_breakpoint(struct bnx_softc *);
311 #endif
312
313 /****************************************************************************/
314 /* BNX Register/Memory Access Routines */
315 /****************************************************************************/
316 uint32_t bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
317 void bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
318 void bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
319 int bnx_miibus_read_reg(device_t, int, int);
320 void bnx_miibus_write_reg(device_t, int, int, int);
321 void bnx_miibus_statchg(struct ifnet *);
322
323 /****************************************************************************/
324 /* BNX NVRAM Access Routines */
325 /****************************************************************************/
326 int bnx_acquire_nvram_lock(struct bnx_softc *);
327 int bnx_release_nvram_lock(struct bnx_softc *);
328 void bnx_enable_nvram_access(struct bnx_softc *);
329 void bnx_disable_nvram_access(struct bnx_softc *);
330 int bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
331 uint32_t);
332 int bnx_init_nvram(struct bnx_softc *);
333 int bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
334 int bnx_nvram_test(struct bnx_softc *);
335 #ifdef BNX_NVRAM_WRITE_SUPPORT
336 int bnx_enable_nvram_write(struct bnx_softc *);
337 void bnx_disable_nvram_write(struct bnx_softc *);
338 int bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
339 int bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
340 uint32_t);
341 int bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
342 #endif
343
344 /****************************************************************************/
345 /* */
346 /****************************************************************************/
347 void bnx_get_media(struct bnx_softc *);
348 void bnx_init_media(struct bnx_softc *);
349 int bnx_dma_alloc(struct bnx_softc *);
350 void bnx_dma_free(struct bnx_softc *);
351 void bnx_release_resources(struct bnx_softc *);
352
353 /****************************************************************************/
354 /* BNX Firmware Synchronization and Load */
355 /****************************************************************************/
356 int bnx_fw_sync(struct bnx_softc *, uint32_t);
357 void bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t,
358 uint32_t);
359 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
360 struct fw_info *);
361 void bnx_init_cpus(struct bnx_softc *);
362
363 static void bnx_print_adapter_info(struct bnx_softc *);
364 static void bnx_probe_pci_caps(struct bnx_softc *);
365 void bnx_stop(struct ifnet *, int);
366 int bnx_reset(struct bnx_softc *, uint32_t);
367 int bnx_chipinit(struct bnx_softc *);
368 int bnx_blockinit(struct bnx_softc *);
369 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
370 uint16_t *, uint32_t *);
371 int bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
372
373 int bnx_init_tx_chain(struct bnx_softc *);
374 void bnx_init_tx_context(struct bnx_softc *);
375 int bnx_init_rx_chain(struct bnx_softc *);
376 void bnx_init_rx_context(struct bnx_softc *);
377 void bnx_free_rx_chain(struct bnx_softc *);
378 void bnx_free_tx_chain(struct bnx_softc *);
379
380 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
381 void bnx_start(struct ifnet *);
382 int bnx_ioctl(struct ifnet *, u_long, void *);
383 void bnx_watchdog(struct ifnet *);
384 int bnx_init(struct ifnet *);
385
386 void bnx_init_context(struct bnx_softc *);
387 void bnx_get_mac_addr(struct bnx_softc *);
388 void bnx_set_mac_addr(struct bnx_softc *);
389 void bnx_phy_intr(struct bnx_softc *);
390 void bnx_rx_intr(struct bnx_softc *);
391 void bnx_tx_intr(struct bnx_softc *);
392 void bnx_disable_intr(struct bnx_softc *);
393 void bnx_enable_intr(struct bnx_softc *);
394
395 int bnx_intr(void *);
396 void bnx_iff(struct bnx_softc *);
397 void bnx_stats_update(struct bnx_softc *);
398 void bnx_tick(void *);
399
400 struct pool *bnx_tx_pool = NULL;
401 void bnx_alloc_pkts(struct work *, void *);
402
403 /****************************************************************************/
404 /* OpenBSD device dispatch table. */
405 /****************************************************************************/
406 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
407 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
408
409 /****************************************************************************/
410 /* Device probe function. */
411 /* */
412 /* Compares the device to the driver's list of supported devices and */
413 /* reports back to the OS whether this is the right driver for the device. */
414 /* */
415 /* Returns: */
416 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
417 /****************************************************************************/
418 static const struct bnx_product *
419 bnx_lookup(const struct pci_attach_args *pa)
420 {
421 int i;
422 pcireg_t subid;
423
424 for (i = 0; i < __arraycount(bnx_devices); i++) {
425 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
426 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
427 continue;
428 if (!bnx_devices[i].bp_subvendor)
429 return &bnx_devices[i];
430 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
431 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
432 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
433 return &bnx_devices[i];
434 }
435
436 return NULL;
437 }
438 static int
439 bnx_probe(device_t parent, cfdata_t match, void *aux)
440 {
441 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
442
443 if (bnx_lookup(pa) != NULL)
444 return 1;
445
446 return 0;
447 }
448
449 /****************************************************************************/
450 /* PCI Capabilities Probe Function. */
451 /* */
452 /* Walks the PCI capabiites list for the device to find what features are */
453 /* supported. */
454 /* */
455 /* Returns: */
456 /* None. */
457 /****************************************************************************/
458 static void
459 bnx_print_adapter_info(struct bnx_softc *sc)
460 {
461
462 aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
463 BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
464 (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
465 ? "Serdes " : "", sc->bnx_chipid);
466
467 /* Bus info. */
468 if (sc->bnx_flags & BNX_PCIE_FLAG) {
469 aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
470 sc->link_width);
471 switch (sc->link_speed) {
472 case 1: aprint_normal("2.5Gbps\n"); break;
473 case 2: aprint_normal("5Gbps\n"); break;
474 default: aprint_normal("Unknown link speed\n");
475 }
476 } else {
477 aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
478 ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
479 (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
480 sc->bus_speed_mhz);
481 }
482
483 aprint_normal_dev(sc->bnx_dev,
484 "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
485 sc->bnx_rx_quick_cons_trip_int,
486 sc->bnx_rx_quick_cons_trip,
487 sc->bnx_rx_ticks_int,
488 sc->bnx_rx_ticks,
489 sc->bnx_tx_quick_cons_trip_int,
490 sc->bnx_tx_quick_cons_trip,
491 sc->bnx_tx_ticks_int,
492 sc->bnx_tx_ticks);
493 }
494
495
496 /****************************************************************************/
497 /* PCI Capabilities Probe Function. */
498 /* */
499 /* Walks the PCI capabiites list for the device to find what features are */
500 /* supported. */
501 /* */
502 /* Returns: */
503 /* None. */
504 /****************************************************************************/
505 static void
506 bnx_probe_pci_caps(struct bnx_softc *sc)
507 {
508 struct pci_attach_args *pa = &(sc->bnx_pa);
509 pcireg_t reg;
510
511 /* Check if PCI-X capability is enabled. */
512 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, ®,
513 NULL) != 0) {
514 sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
515 }
516
517 /* Check if PCIe capability is enabled. */
518 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, ®,
519 NULL) != 0) {
520 pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
521 reg + PCIE_LCSR);
522 DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
523 "0x%08X\n", link_status);
524 sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
525 sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
526 sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
527 sc->bnx_flags |= BNX_PCIE_FLAG;
528 }
529
530 /* Check if MSI capability is enabled. */
531 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, ®,
532 NULL) != 0)
533 sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
534
535 /* Check if MSI-X capability is enabled. */
536 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, ®,
537 NULL) != 0)
538 sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
539 }
540
541
542 /****************************************************************************/
543 /* Device attach function. */
544 /* */
545 /* Allocates device resources, performs secondary chip identification, */
546 /* resets and initializes the hardware, and initializes driver instance */
547 /* variables. */
548 /* */
549 /* Returns: */
550 /* 0 on success, positive value on failure. */
551 /****************************************************************************/
552 void
553 bnx_attach(device_t parent, device_t self, void *aux)
554 {
555 const struct bnx_product *bp;
556 struct bnx_softc *sc = device_private(self);
557 prop_dictionary_t dict;
558 struct pci_attach_args *pa = aux;
559 pci_chipset_tag_t pc = pa->pa_pc;
560 pci_intr_handle_t ih;
561 const char *intrstr = NULL;
562 uint32_t command;
563 struct ifnet *ifp;
564 uint32_t val;
565 int mii_flags = MIIF_FORCEANEG;
566 pcireg_t memtype;
567 char intrbuf[PCI_INTRSTR_LEN];
568
569 if (bnx_tx_pool == NULL) {
570 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
571 if (bnx_tx_pool != NULL) {
572 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
573 0, 0, 0, "bnxpkts", NULL, IPL_NET);
574 } else {
575 aprint_error(": can't alloc bnx_tx_pool\n");
576 return;
577 }
578 }
579
580 bp = bnx_lookup(pa);
581 if (bp == NULL)
582 panic("unknown device");
583
584 sc->bnx_dev = self;
585
586 aprint_naive("\n");
587 aprint_normal(": %s\n", bp->bp_name);
588
589 sc->bnx_pa = *pa;
590
591 /*
592 * Map control/status registers.
593 */
594 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
595 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
596 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
597 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
598
599 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
600 aprint_error_dev(sc->bnx_dev,
601 "failed to enable memory mapping!\n");
602 return;
603 }
604
605 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
606 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
607 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
608 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
609 return;
610 }
611
612 if (pci_intr_map(pa, &ih)) {
613 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
614 goto bnx_attach_fail;
615 }
616
617 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
618
619 /*
620 * Configure byte swap and enable indirect register access.
621 * Rely on CPU to do target byte swapping on big endian systems.
622 * Access to registers outside of PCI configurtion space are not
623 * valid until this is done.
624 */
625 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
626 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
627 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
628
629 /* Save ASIC revsion info. */
630 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
631
632 /*
633 * Find the base address for shared memory access.
634 * Newer versions of bootcode use a signature and offset
635 * while older versions use a fixed address.
636 */
637 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
638 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
639 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
640 (sc->bnx_pa.pa_function << 2));
641 else
642 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
643
644 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
645
646 /* Set initial device and PHY flags */
647 sc->bnx_flags = 0;
648 sc->bnx_phy_flags = 0;
649
650 bnx_probe_pci_caps(sc);
651
652 /* Get PCI bus information (speed and type). */
653 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
654 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
655 uint32_t clkreg;
656
657 sc->bnx_flags |= BNX_PCIX_FLAG;
658
659 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
660
661 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
662 switch (clkreg) {
663 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
664 sc->bus_speed_mhz = 133;
665 break;
666
667 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
668 sc->bus_speed_mhz = 100;
669 break;
670
671 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
672 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
673 sc->bus_speed_mhz = 66;
674 break;
675
676 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
677 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
678 sc->bus_speed_mhz = 50;
679 break;
680
681 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
682 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
683 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
684 sc->bus_speed_mhz = 33;
685 break;
686 }
687 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
688 sc->bus_speed_mhz = 66;
689 else
690 sc->bus_speed_mhz = 33;
691
692 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
693 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
694
695 /* Reset the controller. */
696 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
697 goto bnx_attach_fail;
698
699 /* Initialize the controller. */
700 if (bnx_chipinit(sc)) {
701 aprint_error_dev(sc->bnx_dev,
702 "Controller initialization failed!\n");
703 goto bnx_attach_fail;
704 }
705
706 /* Perform NVRAM test. */
707 if (bnx_nvram_test(sc)) {
708 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
709 goto bnx_attach_fail;
710 }
711
712 /* Fetch the permanent Ethernet MAC address. */
713 bnx_get_mac_addr(sc);
714 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
715 ether_sprintf(sc->eaddr));
716
717 /*
718 * Trip points control how many BDs
719 * should be ready before generating an
720 * interrupt while ticks control how long
721 * a BD can sit in the chain before
722 * generating an interrupt. Set the default
723 * values for the RX and TX rings.
724 */
725
726 #ifdef BNX_DEBUG
727 /* Force more frequent interrupts. */
728 sc->bnx_tx_quick_cons_trip_int = 1;
729 sc->bnx_tx_quick_cons_trip = 1;
730 sc->bnx_tx_ticks_int = 0;
731 sc->bnx_tx_ticks = 0;
732
733 sc->bnx_rx_quick_cons_trip_int = 1;
734 sc->bnx_rx_quick_cons_trip = 1;
735 sc->bnx_rx_ticks_int = 0;
736 sc->bnx_rx_ticks = 0;
737 #else
738 sc->bnx_tx_quick_cons_trip_int = 20;
739 sc->bnx_tx_quick_cons_trip = 20;
740 sc->bnx_tx_ticks_int = 80;
741 sc->bnx_tx_ticks = 80;
742
743 sc->bnx_rx_quick_cons_trip_int = 6;
744 sc->bnx_rx_quick_cons_trip = 6;
745 sc->bnx_rx_ticks_int = 18;
746 sc->bnx_rx_ticks = 18;
747 #endif
748
749 /* Update statistics once every second. */
750 sc->bnx_stats_ticks = 1000000 & 0xffff00;
751
752 /* Find the media type for the adapter. */
753 bnx_get_media(sc);
754
755 /*
756 * Store config data needed by the PHY driver for
757 * backplane applications
758 */
759 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
760 BNX_SHARED_HW_CFG_CONFIG);
761 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
762 BNX_PORT_HW_CFG_CONFIG);
763
764 /* Allocate DMA memory resources. */
765 sc->bnx_dmatag = pa->pa_dmat;
766 if (bnx_dma_alloc(sc)) {
767 aprint_error_dev(sc->bnx_dev,
768 "DMA resource allocation failed!\n");
769 goto bnx_attach_fail;
770 }
771
772 /* Initialize the ifnet interface. */
773 ifp = &sc->bnx_ec.ec_if;
774 ifp->if_softc = sc;
775 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
776 ifp->if_ioctl = bnx_ioctl;
777 ifp->if_stop = bnx_stop;
778 ifp->if_start = bnx_start;
779 ifp->if_init = bnx_init;
780 ifp->if_timer = 0;
781 ifp->if_watchdog = bnx_watchdog;
782 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
783 IFQ_SET_READY(&ifp->if_snd);
784 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
785
786 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
787 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
788
789 ifp->if_capabilities |=
790 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
791 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
792 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
793
794 /* Hookup IRQ last. */
795 sc->bnx_intrhand = pci_intr_establish(pc, ih, IPL_NET, bnx_intr, sc);
796 if (sc->bnx_intrhand == NULL) {
797 aprint_error_dev(self, "couldn't establish interrupt");
798 if (intrstr != NULL)
799 aprint_error(" at %s", intrstr);
800 aprint_error("\n");
801 goto bnx_attach_fail;
802 }
803 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
804
805 /* create workqueue to handle packet allocations */
806 if (workqueue_create(&sc->bnx_wq, device_xname(self),
807 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
808 aprint_error_dev(self, "failed to create workqueue\n");
809 goto bnx_attach_fail;
810 }
811
812 sc->bnx_mii.mii_ifp = ifp;
813 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
814 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
815 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
816
817 /* Handle any special PHY initialization for SerDes PHYs. */
818 bnx_init_media(sc);
819
820 sc->bnx_ec.ec_mii = &sc->bnx_mii;
821 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
822 ether_mediastatus);
823
824 /* set phyflags and chipid before mii_attach() */
825 dict = device_properties(self);
826 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
827 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
828 prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
829 prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
830
831 /* Print some useful adapter info */
832 bnx_print_adapter_info(sc);
833
834 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
835 mii_flags |= MIIF_HAVEFIBER;
836 mii_attach(self, &sc->bnx_mii, 0xffffffff,
837 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
838
839 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
840 aprint_error_dev(self, "no PHY found!\n");
841 ifmedia_add(&sc->bnx_mii.mii_media,
842 IFM_ETHER|IFM_MANUAL, 0, NULL);
843 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
844 } else
845 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
846
847 /* Attach to the Ethernet interface list. */
848 if_attach(ifp);
849 if_deferred_start_init(ifp, NULL);
850 ether_ifattach(ifp,sc->eaddr);
851
852 callout_init(&sc->bnx_timeout, 0);
853
854 if (pmf_device_register(self, NULL, NULL))
855 pmf_class_network_register(self, ifp);
856 else
857 aprint_error_dev(self, "couldn't establish power handler\n");
858
859 /* Print some important debugging info. */
860 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
861
862 goto bnx_attach_exit;
863
864 bnx_attach_fail:
865 bnx_release_resources(sc);
866
867 bnx_attach_exit:
868 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
869 }
870
871 /****************************************************************************/
872 /* Device detach function. */
873 /* */
874 /* Stops the controller, resets the controller, and releases resources. */
875 /* */
876 /* Returns: */
877 /* 0 on success, positive value on failure. */
878 /****************************************************************************/
879 int
880 bnx_detach(device_t dev, int flags)
881 {
882 int s;
883 struct bnx_softc *sc;
884 struct ifnet *ifp;
885
886 sc = device_private(dev);
887 ifp = &sc->bnx_ec.ec_if;
888
889 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
890
891 /* Stop and reset the controller. */
892 s = splnet();
893 if (ifp->if_flags & IFF_RUNNING)
894 bnx_stop(ifp, 1);
895 else {
896 /* Disable the transmit/receive blocks. */
897 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
898 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
899 DELAY(20);
900 bnx_disable_intr(sc);
901 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
902 }
903
904 splx(s);
905
906 pmf_device_deregister(dev);
907 callout_destroy(&sc->bnx_timeout);
908 ether_ifdetach(ifp);
909 workqueue_destroy(sc->bnx_wq);
910
911 /* Delete all remaining media. */
912 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
913
914 if_detach(ifp);
915 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
916
917 /* Release all remaining resources. */
918 bnx_release_resources(sc);
919
920 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
921
922 return 0;
923 }
924
925 /****************************************************************************/
926 /* Indirect register read. */
927 /* */
928 /* Reads NetXtreme II registers using an index/data register pair in PCI */
929 /* configuration space. Using this mechanism avoids issues with posted */
930 /* reads but is much slower than memory-mapped I/O. */
931 /* */
932 /* Returns: */
933 /* The value of the register. */
934 /****************************************************************************/
935 uint32_t
936 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
937 {
938 struct pci_attach_args *pa = &(sc->bnx_pa);
939
940 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
941 offset);
942 #ifdef BNX_DEBUG
943 {
944 uint32_t val;
945 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
946 BNX_PCICFG_REG_WINDOW);
947 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
948 "val = 0x%08X\n", __func__, offset, val);
949 return val;
950 }
951 #else
952 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
953 #endif
954 }
955
956 /****************************************************************************/
957 /* Indirect register write. */
958 /* */
959 /* Writes NetXtreme II registers using an index/data register pair in PCI */
960 /* configuration space. Using this mechanism avoids issues with posted */
961 /* writes but is muchh slower than memory-mapped I/O. */
962 /* */
963 /* Returns: */
964 /* Nothing. */
965 /****************************************************************************/
966 void
967 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
968 {
969 struct pci_attach_args *pa = &(sc->bnx_pa);
970
971 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
972 __func__, offset, val);
973
974 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
975 offset);
976 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
977 }
978
979 /****************************************************************************/
980 /* Context memory write. */
981 /* */
982 /* The NetXtreme II controller uses context memory to track connection */
983 /* information for L2 and higher network protocols. */
984 /* */
985 /* Returns: */
986 /* Nothing. */
987 /****************************************************************************/
988 void
989 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
990 uint32_t ctx_val)
991 {
992 uint32_t idx, offset = ctx_offset + cid_addr;
993 uint32_t val, retry_cnt = 5;
994
995 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
996 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
997 REG_WR(sc, BNX_CTX_CTX_CTRL,
998 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
999
1000 for (idx = 0; idx < retry_cnt; idx++) {
1001 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
1002 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
1003 break;
1004 DELAY(5);
1005 }
1006
1007 #if 0
1008 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1009 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1010 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1011 __FILE__, __LINE__, cid_addr, ctx_offset);
1012 #endif
1013
1014 } else {
1015 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1016 REG_WR(sc, BNX_CTX_DATA, ctx_val);
1017 }
1018 }
1019
1020 /****************************************************************************/
1021 /* PHY register read. */
1022 /* */
1023 /* Implements register reads on the MII bus. */
1024 /* */
1025 /* Returns: */
1026 /* The value of the register. */
1027 /****************************************************************************/
1028 int
1029 bnx_miibus_read_reg(device_t dev, int phy, int reg)
1030 {
1031 struct bnx_softc *sc = device_private(dev);
1032 uint32_t val;
1033 int i;
1034
1035 /* Make sure we are accessing the correct PHY address. */
1036 if (phy != sc->bnx_phy_addr) {
1037 DBPRINT(sc, BNX_VERBOSE,
1038 "Invalid PHY address %d for PHY read!\n", phy);
1039 return 0;
1040 }
1041
1042 /*
1043 * The BCM5709S PHY is an IEEE Clause 45 PHY
1044 * with special mappings to work with IEEE
1045 * Clause 22 register accesses.
1046 */
1047 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1048 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1049 reg += 0x10;
1050 }
1051
1052 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1053 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1054 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1055
1056 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
1057 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1058
1059 DELAY(40);
1060 }
1061
1062 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1063 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1064 BNX_EMAC_MDIO_COMM_START_BUSY;
1065 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
1066
1067 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1068 DELAY(10);
1069
1070 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1071 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1072 DELAY(5);
1073
1074 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1075 val &= BNX_EMAC_MDIO_COMM_DATA;
1076
1077 break;
1078 }
1079 }
1080
1081 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
1082 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1083 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1084 val = 0x0;
1085 } else
1086 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1087
1088 DBPRINT(sc, BNX_EXCESSIVE,
1089 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
1090 (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1091
1092 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1093 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1094 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1095
1096 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
1097 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1098
1099 DELAY(40);
1100 }
1101
1102 return (val & 0xffff);
1103 }
1104
1105 /****************************************************************************/
1106 /* PHY register write. */
1107 /* */
1108 /* Implements register writes on the MII bus. */
1109 /* */
1110 /* Returns: */
1111 /* The value of the register. */
1112 /****************************************************************************/
1113 void
1114 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1115 {
1116 struct bnx_softc *sc = device_private(dev);
1117 uint32_t val1;
1118 int i;
1119
1120 /* Make sure we are accessing the correct PHY address. */
1121 if (phy != sc->bnx_phy_addr) {
1122 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1123 phy);
1124 return;
1125 }
1126
1127 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1128 "val = 0x%04X\n", __func__,
1129 phy, (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1130
1131 /*
1132 * The BCM5709S PHY is an IEEE Clause 45 PHY
1133 * with special mappings to work with IEEE
1134 * Clause 22 register accesses.
1135 */
1136 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1137 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1138 reg += 0x10;
1139 }
1140
1141 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1142 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1143 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1144
1145 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1146 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1147
1148 DELAY(40);
1149 }
1150
1151 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1152 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1153 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1154 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1155
1156 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1157 DELAY(10);
1158
1159 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1160 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1161 DELAY(5);
1162 break;
1163 }
1164 }
1165
1166 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1167 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1168 __LINE__);
1169 }
1170
1171 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1172 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1173 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1174
1175 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1176 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1177
1178 DELAY(40);
1179 }
1180 }
1181
1182 /****************************************************************************/
1183 /* MII bus status change. */
1184 /* */
1185 /* Called by the MII bus driver when the PHY establishes link to set the */
1186 /* MAC interface registers. */
1187 /* */
1188 /* Returns: */
1189 /* Nothing. */
1190 /****************************************************************************/
1191 void
1192 bnx_miibus_statchg(struct ifnet *ifp)
1193 {
1194 struct bnx_softc *sc = ifp->if_softc;
1195 struct mii_data *mii = &sc->bnx_mii;
1196 int val;
1197
1198 val = REG_RD(sc, BNX_EMAC_MODE);
1199 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1200 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1201 BNX_EMAC_MODE_25G);
1202
1203 /* Set MII or GMII interface based on the speed
1204 * negotiated by the PHY.
1205 */
1206 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1207 case IFM_10_T:
1208 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1209 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1210 val |= BNX_EMAC_MODE_PORT_MII_10;
1211 break;
1212 }
1213 /* FALLTHROUGH */
1214 case IFM_100_TX:
1215 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1216 val |= BNX_EMAC_MODE_PORT_MII;
1217 break;
1218 case IFM_2500_SX:
1219 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1220 val |= BNX_EMAC_MODE_25G;
1221 /* FALLTHROUGH */
1222 case IFM_1000_T:
1223 case IFM_1000_SX:
1224 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1225 val |= BNX_EMAC_MODE_PORT_GMII;
1226 break;
1227 default:
1228 val |= BNX_EMAC_MODE_PORT_GMII;
1229 break;
1230 }
1231
1232 /* Set half or full duplex based on the duplicity
1233 * negotiated by the PHY.
1234 */
1235 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1236 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1237 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1238 } else {
1239 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1240 }
1241
1242 REG_WR(sc, BNX_EMAC_MODE, val);
1243 }
1244
1245 /****************************************************************************/
1246 /* Acquire NVRAM lock. */
1247 /* */
1248 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1249 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1250 /* for use by the driver. */
1251 /* */
1252 /* Returns: */
1253 /* 0 on success, positive value on failure. */
1254 /****************************************************************************/
1255 int
1256 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1257 {
1258 uint32_t val;
1259 int j;
1260
1261 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1262
1263 /* Request access to the flash interface. */
1264 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1265 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1266 val = REG_RD(sc, BNX_NVM_SW_ARB);
1267 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1268 break;
1269
1270 DELAY(5);
1271 }
1272
1273 if (j >= NVRAM_TIMEOUT_COUNT) {
1274 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1275 return EBUSY;
1276 }
1277
1278 return 0;
1279 }
1280
1281 /****************************************************************************/
1282 /* Release NVRAM lock. */
1283 /* */
1284 /* When the caller is finished accessing NVRAM the lock must be released. */
1285 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1286 /* for use by the driver. */
1287 /* */
1288 /* Returns: */
1289 /* 0 on success, positive value on failure. */
1290 /****************************************************************************/
1291 int
1292 bnx_release_nvram_lock(struct bnx_softc *sc)
1293 {
1294 int j;
1295 uint32_t val;
1296
1297 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1298
1299 /* Relinquish nvram interface. */
1300 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1301
1302 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1303 val = REG_RD(sc, BNX_NVM_SW_ARB);
1304 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1305 break;
1306
1307 DELAY(5);
1308 }
1309
1310 if (j >= NVRAM_TIMEOUT_COUNT) {
1311 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1312 return EBUSY;
1313 }
1314
1315 return 0;
1316 }
1317
1318 #ifdef BNX_NVRAM_WRITE_SUPPORT
1319 /****************************************************************************/
1320 /* Enable NVRAM write access. */
1321 /* */
1322 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1323 /* */
1324 /* Returns: */
1325 /* 0 on success, positive value on failure. */
1326 /****************************************************************************/
1327 int
1328 bnx_enable_nvram_write(struct bnx_softc *sc)
1329 {
1330 uint32_t val;
1331
1332 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1333
1334 val = REG_RD(sc, BNX_MISC_CFG);
1335 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1336
1337 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1338 int j;
1339
1340 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1341 REG_WR(sc, BNX_NVM_COMMAND,
1342 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1343
1344 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1345 DELAY(5);
1346
1347 val = REG_RD(sc, BNX_NVM_COMMAND);
1348 if (val & BNX_NVM_COMMAND_DONE)
1349 break;
1350 }
1351
1352 if (j >= NVRAM_TIMEOUT_COUNT) {
1353 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1354 return EBUSY;
1355 }
1356 }
1357
1358 return 0;
1359 }
1360
1361 /****************************************************************************/
1362 /* Disable NVRAM write access. */
1363 /* */
1364 /* When the caller is finished writing to NVRAM write access must be */
1365 /* disabled. */
1366 /* */
1367 /* Returns: */
1368 /* Nothing. */
1369 /****************************************************************************/
1370 void
1371 bnx_disable_nvram_write(struct bnx_softc *sc)
1372 {
1373 uint32_t val;
1374
1375 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1376
1377 val = REG_RD(sc, BNX_MISC_CFG);
1378 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1379 }
1380 #endif
1381
1382 /****************************************************************************/
1383 /* Enable NVRAM access. */
1384 /* */
1385 /* Before accessing NVRAM for read or write operations the caller must */
1386 /* enabled NVRAM access. */
1387 /* */
1388 /* Returns: */
1389 /* Nothing. */
1390 /****************************************************************************/
1391 void
1392 bnx_enable_nvram_access(struct bnx_softc *sc)
1393 {
1394 uint32_t val;
1395
1396 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1397
1398 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1399 /* Enable both bits, even on read. */
1400 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1401 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1402 }
1403
1404 /****************************************************************************/
1405 /* Disable NVRAM access. */
1406 /* */
1407 /* When the caller is finished accessing NVRAM access must be disabled. */
1408 /* */
1409 /* Returns: */
1410 /* Nothing. */
1411 /****************************************************************************/
1412 void
1413 bnx_disable_nvram_access(struct bnx_softc *sc)
1414 {
1415 uint32_t val;
1416
1417 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1418
1419 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1420
1421 /* Disable both bits, even after read. */
1422 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1423 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1424 }
1425
1426 #ifdef BNX_NVRAM_WRITE_SUPPORT
1427 /****************************************************************************/
1428 /* Erase NVRAM page before writing. */
1429 /* */
1430 /* Non-buffered flash parts require that a page be erased before it is */
1431 /* written. */
1432 /* */
1433 /* Returns: */
1434 /* 0 on success, positive value on failure. */
1435 /****************************************************************************/
1436 int
1437 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1438 {
1439 uint32_t cmd;
1440 int j;
1441
1442 /* Buffered flash doesn't require an erase. */
1443 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1444 return 0;
1445
1446 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1447
1448 /* Build an erase command. */
1449 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1450 BNX_NVM_COMMAND_DOIT;
1451
1452 /*
1453 * Clear the DONE bit separately, set the NVRAM address to erase,
1454 * and issue the erase command.
1455 */
1456 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1457 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1458 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1459
1460 /* Wait for completion. */
1461 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1462 uint32_t val;
1463
1464 DELAY(5);
1465
1466 val = REG_RD(sc, BNX_NVM_COMMAND);
1467 if (val & BNX_NVM_COMMAND_DONE)
1468 break;
1469 }
1470
1471 if (j >= NVRAM_TIMEOUT_COUNT) {
1472 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1473 return EBUSY;
1474 }
1475
1476 return 0;
1477 }
1478 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1479
1480 /****************************************************************************/
1481 /* Read a dword (32 bits) from NVRAM. */
1482 /* */
1483 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1484 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1485 /* */
1486 /* Returns: */
1487 /* 0 on success and the 32 bit value read, positive value on failure. */
1488 /****************************************************************************/
1489 int
1490 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1491 uint8_t *ret_val, uint32_t cmd_flags)
1492 {
1493 uint32_t cmd;
1494 int i, rc = 0;
1495
1496 /* Build the command word. */
1497 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1498
1499 /* Calculate the offset for buffered flash if translation is used. */
1500 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1501 offset = ((offset / sc->bnx_flash_info->page_size) <<
1502 sc->bnx_flash_info->page_bits) +
1503 (offset % sc->bnx_flash_info->page_size);
1504 }
1505
1506 /*
1507 * Clear the DONE bit separately, set the address to read,
1508 * and issue the read.
1509 */
1510 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1511 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1512 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1513
1514 /* Wait for completion. */
1515 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1516 uint32_t val;
1517
1518 DELAY(5);
1519
1520 val = REG_RD(sc, BNX_NVM_COMMAND);
1521 if (val & BNX_NVM_COMMAND_DONE) {
1522 val = REG_RD(sc, BNX_NVM_READ);
1523
1524 val = bnx_be32toh(val);
1525 memcpy(ret_val, &val, 4);
1526 break;
1527 }
1528 }
1529
1530 /* Check for errors. */
1531 if (i >= NVRAM_TIMEOUT_COUNT) {
1532 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1533 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1534 rc = EBUSY;
1535 }
1536
1537 return rc;
1538 }
1539
1540 #ifdef BNX_NVRAM_WRITE_SUPPORT
1541 /****************************************************************************/
1542 /* Write a dword (32 bits) to NVRAM. */
1543 /* */
1544 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1545 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1546 /* enabled NVRAM write access. */
1547 /* */
1548 /* Returns: */
1549 /* 0 on success, positive value on failure. */
1550 /****************************************************************************/
1551 int
1552 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1553 uint32_t cmd_flags)
1554 {
1555 uint32_t cmd, val32;
1556 int j;
1557
1558 /* Build the command word. */
1559 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1560
1561 /* Calculate the offset for buffered flash if translation is used. */
1562 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1563 offset = ((offset / sc->bnx_flash_info->page_size) <<
1564 sc->bnx_flash_info->page_bits) +
1565 (offset % sc->bnx_flash_info->page_size);
1566 }
1567
1568 /*
1569 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1570 * set the NVRAM address to write, and issue the write command
1571 */
1572 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1573 memcpy(&val32, val, 4);
1574 val32 = htobe32(val32);
1575 REG_WR(sc, BNX_NVM_WRITE, val32);
1576 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1577 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1578
1579 /* Wait for completion. */
1580 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1581 DELAY(5);
1582
1583 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1584 break;
1585 }
1586 if (j >= NVRAM_TIMEOUT_COUNT) {
1587 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1588 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1589 return EBUSY;
1590 }
1591
1592 return 0;
1593 }
1594 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1595
1596 /****************************************************************************/
1597 /* Initialize NVRAM access. */
1598 /* */
1599 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1600 /* access that device. */
1601 /* */
1602 /* Returns: */
1603 /* 0 on success, positive value on failure. */
1604 /****************************************************************************/
1605 int
1606 bnx_init_nvram(struct bnx_softc *sc)
1607 {
1608 uint32_t val;
1609 int j, entry_count, rc = 0;
1610 struct flash_spec *flash;
1611
1612 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1613
1614 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1615 sc->bnx_flash_info = &flash_5709;
1616 goto bnx_init_nvram_get_flash_size;
1617 }
1618
1619 /* Determine the selected interface. */
1620 val = REG_RD(sc, BNX_NVM_CFG1);
1621
1622 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1623
1624 /*
1625 * Flash reconfiguration is required to support additional
1626 * NVRAM devices not directly supported in hardware.
1627 * Check if the flash interface was reconfigured
1628 * by the bootcode.
1629 */
1630
1631 if (val & 0x40000000) {
1632 /* Flash interface reconfigured by bootcode. */
1633
1634 DBPRINT(sc,BNX_INFO_LOAD,
1635 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1636
1637 for (j = 0, flash = &flash_table[0]; j < entry_count;
1638 j++, flash++) {
1639 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1640 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1641 sc->bnx_flash_info = flash;
1642 break;
1643 }
1644 }
1645 } else {
1646 /* Flash interface not yet reconfigured. */
1647 uint32_t mask;
1648
1649 DBPRINT(sc,BNX_INFO_LOAD,
1650 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1651
1652 if (val & (1 << 23))
1653 mask = FLASH_BACKUP_STRAP_MASK;
1654 else
1655 mask = FLASH_STRAP_MASK;
1656
1657 /* Look for the matching NVRAM device configuration data. */
1658 for (j = 0, flash = &flash_table[0]; j < entry_count;
1659 j++, flash++) {
1660 /* Check if the dev matches any of the known devices. */
1661 if ((val & mask) == (flash->strapping & mask)) {
1662 /* Found a device match. */
1663 sc->bnx_flash_info = flash;
1664
1665 /* Request access to the flash interface. */
1666 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1667 return rc;
1668
1669 /* Reconfigure the flash interface. */
1670 bnx_enable_nvram_access(sc);
1671 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1672 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1673 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1674 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1675 bnx_disable_nvram_access(sc);
1676 bnx_release_nvram_lock(sc);
1677
1678 break;
1679 }
1680 }
1681 }
1682
1683 /* Check if a matching device was found. */
1684 if (j == entry_count) {
1685 sc->bnx_flash_info = NULL;
1686 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1687 __FILE__, __LINE__);
1688 rc = ENODEV;
1689 }
1690
1691 bnx_init_nvram_get_flash_size:
1692 /* Write the flash config data to the shared memory interface. */
1693 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1694 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1695 if (val)
1696 sc->bnx_flash_size = val;
1697 else
1698 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1699
1700 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1701 "0x%08X\n", sc->bnx_flash_info->total_size);
1702
1703 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1704
1705 return rc;
1706 }
1707
1708 /****************************************************************************/
1709 /* Read an arbitrary range of data from NVRAM. */
1710 /* */
1711 /* Prepares the NVRAM interface for access and reads the requested data */
1712 /* into the supplied buffer. */
1713 /* */
1714 /* Returns: */
1715 /* 0 on success and the data read, positive value on failure. */
1716 /****************************************************************************/
1717 int
1718 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1719 int buf_size)
1720 {
1721 int rc = 0;
1722 uint32_t cmd_flags, offset32, len32, extra;
1723
1724 if (buf_size == 0)
1725 return 0;
1726
1727 /* Request access to the flash interface. */
1728 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1729 return rc;
1730
1731 /* Enable access to flash interface */
1732 bnx_enable_nvram_access(sc);
1733
1734 len32 = buf_size;
1735 offset32 = offset;
1736 extra = 0;
1737
1738 cmd_flags = 0;
1739
1740 if (offset32 & 3) {
1741 uint8_t buf[4];
1742 uint32_t pre_len;
1743
1744 offset32 &= ~3;
1745 pre_len = 4 - (offset & 3);
1746
1747 if (pre_len >= len32) {
1748 pre_len = len32;
1749 cmd_flags =
1750 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1751 } else
1752 cmd_flags = BNX_NVM_COMMAND_FIRST;
1753
1754 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1755
1756 if (rc)
1757 return rc;
1758
1759 memcpy(ret_buf, buf + (offset & 3), pre_len);
1760
1761 offset32 += 4;
1762 ret_buf += pre_len;
1763 len32 -= pre_len;
1764 }
1765
1766 if (len32 & 3) {
1767 extra = 4 - (len32 & 3);
1768 len32 = (len32 + 4) & ~3;
1769 }
1770
1771 if (len32 == 4) {
1772 uint8_t buf[4];
1773
1774 if (cmd_flags)
1775 cmd_flags = BNX_NVM_COMMAND_LAST;
1776 else
1777 cmd_flags =
1778 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1779
1780 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1781
1782 memcpy(ret_buf, buf, 4 - extra);
1783 } else if (len32 > 0) {
1784 uint8_t buf[4];
1785
1786 /* Read the first word. */
1787 if (cmd_flags)
1788 cmd_flags = 0;
1789 else
1790 cmd_flags = BNX_NVM_COMMAND_FIRST;
1791
1792 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1793
1794 /* Advance to the next dword. */
1795 offset32 += 4;
1796 ret_buf += 4;
1797 len32 -= 4;
1798
1799 while (len32 > 4 && rc == 0) {
1800 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1801
1802 /* Advance to the next dword. */
1803 offset32 += 4;
1804 ret_buf += 4;
1805 len32 -= 4;
1806 }
1807
1808 if (rc)
1809 return rc;
1810
1811 cmd_flags = BNX_NVM_COMMAND_LAST;
1812 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1813
1814 memcpy(ret_buf, buf, 4 - extra);
1815 }
1816
1817 /* Disable access to flash interface and release the lock. */
1818 bnx_disable_nvram_access(sc);
1819 bnx_release_nvram_lock(sc);
1820
1821 return rc;
1822 }
1823
1824 #ifdef BNX_NVRAM_WRITE_SUPPORT
1825 /****************************************************************************/
1826 /* Write an arbitrary range of data from NVRAM. */
1827 /* */
1828 /* Prepares the NVRAM interface for write access and writes the requested */
1829 /* data from the supplied buffer. The caller is responsible for */
1830 /* calculating any appropriate CRCs. */
1831 /* */
1832 /* Returns: */
1833 /* 0 on success, positive value on failure. */
1834 /****************************************************************************/
1835 int
1836 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1837 int buf_size)
1838 {
1839 uint32_t written, offset32, len32;
1840 uint8_t *buf, start[4], end[4];
1841 int rc = 0;
1842 int align_start, align_end;
1843
1844 buf = data_buf;
1845 offset32 = offset;
1846 len32 = buf_size;
1847 align_start = align_end = 0;
1848
1849 if ((align_start = (offset32 & 3))) {
1850 offset32 &= ~3;
1851 len32 += align_start;
1852 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1853 return rc;
1854 }
1855
1856 if (len32 & 3) {
1857 if ((len32 > 4) || !align_start) {
1858 align_end = 4 - (len32 & 3);
1859 len32 += align_end;
1860 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1861 end, 4)))
1862 return rc;
1863 }
1864 }
1865
1866 if (align_start || align_end) {
1867 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1868 if (buf == 0)
1869 return ENOMEM;
1870
1871 if (align_start)
1872 memcpy(buf, start, 4);
1873
1874 if (align_end)
1875 memcpy(buf + len32 - 4, end, 4);
1876
1877 memcpy(buf + align_start, data_buf, buf_size);
1878 }
1879
1880 written = 0;
1881 while ((written < len32) && (rc == 0)) {
1882 uint32_t page_start, page_end, data_start, data_end;
1883 uint32_t addr, cmd_flags;
1884 int i;
1885 uint8_t flash_buffer[264];
1886
1887 /* Find the page_start addr */
1888 page_start = offset32 + written;
1889 page_start -= (page_start % sc->bnx_flash_info->page_size);
1890 /* Find the page_end addr */
1891 page_end = page_start + sc->bnx_flash_info->page_size;
1892 /* Find the data_start addr */
1893 data_start = (written == 0) ? offset32 : page_start;
1894 /* Find the data_end addr */
1895 data_end = (page_end > offset32 + len32) ?
1896 (offset32 + len32) : page_end;
1897
1898 /* Request access to the flash interface. */
1899 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1900 goto nvram_write_end;
1901
1902 /* Enable access to flash interface */
1903 bnx_enable_nvram_access(sc);
1904
1905 cmd_flags = BNX_NVM_COMMAND_FIRST;
1906 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1907 int j;
1908
1909 /* Read the whole page into the buffer
1910 * (non-buffer flash only) */
1911 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1912 if (j == (sc->bnx_flash_info->page_size - 4))
1913 cmd_flags |= BNX_NVM_COMMAND_LAST;
1914
1915 rc = bnx_nvram_read_dword(sc,
1916 page_start + j,
1917 &flash_buffer[j],
1918 cmd_flags);
1919
1920 if (rc)
1921 goto nvram_write_end;
1922
1923 cmd_flags = 0;
1924 }
1925 }
1926
1927 /* Enable writes to flash interface (unlock write-protect) */
1928 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1929 goto nvram_write_end;
1930
1931 /* Erase the page */
1932 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1933 goto nvram_write_end;
1934
1935 /* Re-enable the write again for the actual write */
1936 bnx_enable_nvram_write(sc);
1937
1938 /* Loop to write back the buffer data from page_start to
1939 * data_start */
1940 i = 0;
1941 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1942 for (addr = page_start; addr < data_start;
1943 addr += 4, i += 4) {
1944
1945 rc = bnx_nvram_write_dword(sc, addr,
1946 &flash_buffer[i], cmd_flags);
1947
1948 if (rc != 0)
1949 goto nvram_write_end;
1950
1951 cmd_flags = 0;
1952 }
1953 }
1954
1955 /* Loop to write the new data from data_start to data_end */
1956 for (addr = data_start; addr < data_end; addr += 4, i++) {
1957 if ((addr == page_end - 4) ||
1958 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1959 && (addr == data_end - 4))) {
1960
1961 cmd_flags |= BNX_NVM_COMMAND_LAST;
1962 }
1963
1964 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1965
1966 if (rc != 0)
1967 goto nvram_write_end;
1968
1969 cmd_flags = 0;
1970 buf += 4;
1971 }
1972
1973 /* Loop to write back the buffer data from data_end
1974 * to page_end */
1975 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1976 for (addr = data_end; addr < page_end;
1977 addr += 4, i += 4) {
1978
1979 if (addr == page_end-4)
1980 cmd_flags = BNX_NVM_COMMAND_LAST;
1981
1982 rc = bnx_nvram_write_dword(sc, addr,
1983 &flash_buffer[i], cmd_flags);
1984
1985 if (rc != 0)
1986 goto nvram_write_end;
1987
1988 cmd_flags = 0;
1989 }
1990 }
1991
1992 /* Disable writes to flash interface (lock write-protect) */
1993 bnx_disable_nvram_write(sc);
1994
1995 /* Disable access to flash interface */
1996 bnx_disable_nvram_access(sc);
1997 bnx_release_nvram_lock(sc);
1998
1999 /* Increment written */
2000 written += data_end - data_start;
2001 }
2002
2003 nvram_write_end:
2004 if (align_start || align_end)
2005 free(buf, M_DEVBUF);
2006
2007 return rc;
2008 }
2009 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2010
2011 /****************************************************************************/
2012 /* Verifies that NVRAM is accessible and contains valid data. */
2013 /* */
2014 /* Reads the configuration data from NVRAM and verifies that the CRC is */
2015 /* correct. */
2016 /* */
2017 /* Returns: */
2018 /* 0 on success, positive value on failure. */
2019 /****************************************************************************/
2020 int
2021 bnx_nvram_test(struct bnx_softc *sc)
2022 {
2023 uint32_t buf[BNX_NVRAM_SIZE / 4];
2024 uint8_t *data = (uint8_t *) buf;
2025 int rc = 0;
2026 uint32_t magic, csum;
2027
2028 /*
2029 * Check that the device NVRAM is valid by reading
2030 * the magic value at offset 0.
2031 */
2032 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2033 goto bnx_nvram_test_done;
2034
2035 magic = bnx_be32toh(buf[0]);
2036 if (magic != BNX_NVRAM_MAGIC) {
2037 rc = ENODEV;
2038 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2039 "Expected: 0x%08X, Found: 0x%08X\n",
2040 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2041 goto bnx_nvram_test_done;
2042 }
2043
2044 /*
2045 * Verify that the device NVRAM includes valid
2046 * configuration data.
2047 */
2048 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2049 goto bnx_nvram_test_done;
2050
2051 csum = ether_crc32_le(data, 0x100);
2052 if (csum != BNX_CRC32_RESIDUAL) {
2053 rc = ENODEV;
2054 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2055 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2056 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2057 goto bnx_nvram_test_done;
2058 }
2059
2060 csum = ether_crc32_le(data + 0x100, 0x100);
2061 if (csum != BNX_CRC32_RESIDUAL) {
2062 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2063 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2064 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2065 rc = ENODEV;
2066 }
2067
2068 bnx_nvram_test_done:
2069 return rc;
2070 }
2071
2072 /****************************************************************************/
2073 /* Identifies the current media type of the controller and sets the PHY */
2074 /* address. */
2075 /* */
2076 /* Returns: */
2077 /* Nothing. */
2078 /****************************************************************************/
2079 void
2080 bnx_get_media(struct bnx_softc *sc)
2081 {
2082 sc->bnx_phy_addr = 1;
2083
2084 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2085 uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2086 uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2087 uint32_t strap;
2088
2089 /*
2090 * The BCM5709S is software configurable
2091 * for Copper or SerDes operation.
2092 */
2093 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2094 DBPRINT(sc, BNX_INFO_LOAD,
2095 "5709 bonded for copper.\n");
2096 goto bnx_get_media_exit;
2097 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2098 DBPRINT(sc, BNX_INFO_LOAD,
2099 "5709 bonded for dual media.\n");
2100 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2101 goto bnx_get_media_exit;
2102 }
2103
2104 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2105 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2106 else {
2107 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2108 >> 8;
2109 }
2110
2111 if (sc->bnx_pa.pa_function == 0) {
2112 switch (strap) {
2113 case 0x4:
2114 case 0x5:
2115 case 0x6:
2116 DBPRINT(sc, BNX_INFO_LOAD,
2117 "BCM5709 s/w configured for SerDes.\n");
2118 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2119 break;
2120 default:
2121 DBPRINT(sc, BNX_INFO_LOAD,
2122 "BCM5709 s/w configured for Copper.\n");
2123 }
2124 } else {
2125 switch (strap) {
2126 case 0x1:
2127 case 0x2:
2128 case 0x4:
2129 DBPRINT(sc, BNX_INFO_LOAD,
2130 "BCM5709 s/w configured for SerDes.\n");
2131 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2132 break;
2133 default:
2134 DBPRINT(sc, BNX_INFO_LOAD,
2135 "BCM5709 s/w configured for Copper.\n");
2136 }
2137 }
2138
2139 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2140 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2141
2142 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2143 uint32_t val;
2144
2145 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2146
2147 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2148 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2149
2150 /*
2151 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2152 * separate PHY for SerDes.
2153 */
2154 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2155 sc->bnx_phy_addr = 2;
2156 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2157 BNX_SHARED_HW_CFG_CONFIG);
2158 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2159 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2160 DBPRINT(sc, BNX_INFO_LOAD,
2161 "Found 2.5Gb capable adapter\n");
2162 }
2163 }
2164 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2165 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2166 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2167
2168 bnx_get_media_exit:
2169 DBPRINT(sc, (BNX_INFO_LOAD),
2170 "Using PHY address %d.\n", sc->bnx_phy_addr);
2171 }
2172
2173 /****************************************************************************/
2174 /* Performs PHY initialization required before MII drivers access the */
2175 /* device. */
2176 /* */
2177 /* Returns: */
2178 /* Nothing. */
2179 /****************************************************************************/
2180 void
2181 bnx_init_media(struct bnx_softc *sc)
2182 {
2183 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2184 /*
2185 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2186 * IEEE Clause 22 method. Otherwise we have no way to attach
2187 * the PHY to the mii(4) layer. PHY specific configuration
2188 * is done by the mii(4) layer.
2189 */
2190
2191 /* Select auto-negotiation MMD of the PHY. */
2192 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2193 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2194
2195 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2196 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2197
2198 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2199 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2200 }
2201 }
2202
2203 /****************************************************************************/
2204 /* Free any DMA memory owned by the driver. */
2205 /* */
2206 /* Scans through each data structre that requires DMA memory and frees */
2207 /* the memory if allocated. */
2208 /* */
2209 /* Returns: */
2210 /* Nothing. */
2211 /****************************************************************************/
2212 void
2213 bnx_dma_free(struct bnx_softc *sc)
2214 {
2215 int i;
2216
2217 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2218
2219 /* Destroy the status block. */
2220 if (sc->status_block != NULL && sc->status_map != NULL) {
2221 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2222 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2223 BNX_STATUS_BLK_SZ);
2224 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2225 sc->status_rseg);
2226 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2227 sc->status_block = NULL;
2228 sc->status_map = NULL;
2229 }
2230
2231 /* Destroy the statistics block. */
2232 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2233 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2234 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2235 BNX_STATS_BLK_SZ);
2236 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2237 sc->stats_rseg);
2238 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2239 sc->stats_block = NULL;
2240 sc->stats_map = NULL;
2241 }
2242
2243 /* Free, unmap and destroy all context memory pages. */
2244 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2245 for (i = 0; i < sc->ctx_pages; i++) {
2246 if (sc->ctx_block[i] != NULL) {
2247 bus_dmamap_unload(sc->bnx_dmatag,
2248 sc->ctx_map[i]);
2249 bus_dmamem_unmap(sc->bnx_dmatag,
2250 (void *)sc->ctx_block[i],
2251 BCM_PAGE_SIZE);
2252 bus_dmamem_free(sc->bnx_dmatag,
2253 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2254 bus_dmamap_destroy(sc->bnx_dmatag,
2255 sc->ctx_map[i]);
2256 sc->ctx_block[i] = NULL;
2257 }
2258 }
2259 }
2260
2261 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2262 for (i = 0; i < TX_PAGES; i++ ) {
2263 if (sc->tx_bd_chain[i] != NULL &&
2264 sc->tx_bd_chain_map[i] != NULL) {
2265 bus_dmamap_unload(sc->bnx_dmatag,
2266 sc->tx_bd_chain_map[i]);
2267 bus_dmamem_unmap(sc->bnx_dmatag,
2268 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2269 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2270 sc->tx_bd_chain_rseg[i]);
2271 bus_dmamap_destroy(sc->bnx_dmatag,
2272 sc->tx_bd_chain_map[i]);
2273 sc->tx_bd_chain[i] = NULL;
2274 sc->tx_bd_chain_map[i] = NULL;
2275 }
2276 }
2277
2278 /* Destroy the TX dmamaps. */
2279 /* This isn't necessary since we dont allocate them up front */
2280
2281 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2282 for (i = 0; i < RX_PAGES; i++ ) {
2283 if (sc->rx_bd_chain[i] != NULL &&
2284 sc->rx_bd_chain_map[i] != NULL) {
2285 bus_dmamap_unload(sc->bnx_dmatag,
2286 sc->rx_bd_chain_map[i]);
2287 bus_dmamem_unmap(sc->bnx_dmatag,
2288 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2289 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2290 sc->rx_bd_chain_rseg[i]);
2291
2292 bus_dmamap_destroy(sc->bnx_dmatag,
2293 sc->rx_bd_chain_map[i]);
2294 sc->rx_bd_chain[i] = NULL;
2295 sc->rx_bd_chain_map[i] = NULL;
2296 }
2297 }
2298
2299 /* Unload and destroy the RX mbuf maps. */
2300 for (i = 0; i < TOTAL_RX_BD; i++) {
2301 if (sc->rx_mbuf_map[i] != NULL) {
2302 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2303 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2304 }
2305 }
2306
2307 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2308 }
2309
2310 /****************************************************************************/
2311 /* Allocate any DMA memory needed by the driver. */
2312 /* */
2313 /* Allocates DMA memory needed for the various global structures needed by */
2314 /* hardware. */
2315 /* */
2316 /* Returns: */
2317 /* 0 for success, positive value for failure. */
2318 /****************************************************************************/
2319 int
2320 bnx_dma_alloc(struct bnx_softc *sc)
2321 {
2322 int i, rc = 0;
2323
2324 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2325
2326 /*
2327 * Allocate DMA memory for the status block, map the memory into DMA
2328 * space, and fetch the physical address of the block.
2329 */
2330 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2331 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2332 aprint_error_dev(sc->bnx_dev,
2333 "Could not create status block DMA map!\n");
2334 rc = ENOMEM;
2335 goto bnx_dma_alloc_exit;
2336 }
2337
2338 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2339 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2340 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2341 aprint_error_dev(sc->bnx_dev,
2342 "Could not allocate status block DMA memory!\n");
2343 rc = ENOMEM;
2344 goto bnx_dma_alloc_exit;
2345 }
2346
2347 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2348 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2349 aprint_error_dev(sc->bnx_dev,
2350 "Could not map status block DMA memory!\n");
2351 rc = ENOMEM;
2352 goto bnx_dma_alloc_exit;
2353 }
2354
2355 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2356 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2357 aprint_error_dev(sc->bnx_dev,
2358 "Could not load status block DMA memory!\n");
2359 rc = ENOMEM;
2360 goto bnx_dma_alloc_exit;
2361 }
2362
2363 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2364 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2365
2366 /* DRC - Fix for 64 bit addresses. */
2367 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2368 (uint32_t) sc->status_block_paddr);
2369
2370 /* BCM5709 uses host memory as cache for context memory. */
2371 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2372 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2373 if (sc->ctx_pages == 0)
2374 sc->ctx_pages = 1;
2375 if (sc->ctx_pages > 4) /* XXX */
2376 sc->ctx_pages = 4;
2377
2378 DBRUNIF((sc->ctx_pages > 512),
2379 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2380 __FILE__, __LINE__, sc->ctx_pages));
2381
2382
2383 for (i = 0; i < sc->ctx_pages; i++) {
2384 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2385 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2386 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2387 &sc->ctx_map[i]) != 0) {
2388 rc = ENOMEM;
2389 goto bnx_dma_alloc_exit;
2390 }
2391
2392 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2393 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2394 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2395 rc = ENOMEM;
2396 goto bnx_dma_alloc_exit;
2397 }
2398
2399 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2400 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2401 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2402 rc = ENOMEM;
2403 goto bnx_dma_alloc_exit;
2404 }
2405
2406 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2407 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2408 BUS_DMA_NOWAIT) != 0) {
2409 rc = ENOMEM;
2410 goto bnx_dma_alloc_exit;
2411 }
2412
2413 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2414 }
2415 }
2416
2417 /*
2418 * Allocate DMA memory for the statistics block, map the memory into
2419 * DMA space, and fetch the physical address of the block.
2420 */
2421 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2422 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2423 aprint_error_dev(sc->bnx_dev,
2424 "Could not create stats block DMA map!\n");
2425 rc = ENOMEM;
2426 goto bnx_dma_alloc_exit;
2427 }
2428
2429 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2430 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2431 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2432 aprint_error_dev(sc->bnx_dev,
2433 "Could not allocate stats block DMA memory!\n");
2434 rc = ENOMEM;
2435 goto bnx_dma_alloc_exit;
2436 }
2437
2438 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2439 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2440 aprint_error_dev(sc->bnx_dev,
2441 "Could not map stats block DMA memory!\n");
2442 rc = ENOMEM;
2443 goto bnx_dma_alloc_exit;
2444 }
2445
2446 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2447 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2448 aprint_error_dev(sc->bnx_dev,
2449 "Could not load status block DMA memory!\n");
2450 rc = ENOMEM;
2451 goto bnx_dma_alloc_exit;
2452 }
2453
2454 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2455 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2456
2457 /* DRC - Fix for 64 bit address. */
2458 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2459 (uint32_t) sc->stats_block_paddr);
2460
2461 /*
2462 * Allocate DMA memory for the TX buffer descriptor chain,
2463 * and fetch the physical address of the block.
2464 */
2465 for (i = 0; i < TX_PAGES; i++) {
2466 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2467 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2468 &sc->tx_bd_chain_map[i])) {
2469 aprint_error_dev(sc->bnx_dev,
2470 "Could not create Tx desc %d DMA map!\n", i);
2471 rc = ENOMEM;
2472 goto bnx_dma_alloc_exit;
2473 }
2474
2475 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2476 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2477 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2478 aprint_error_dev(sc->bnx_dev,
2479 "Could not allocate TX desc %d DMA memory!\n",
2480 i);
2481 rc = ENOMEM;
2482 goto bnx_dma_alloc_exit;
2483 }
2484
2485 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2486 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2487 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2488 aprint_error_dev(sc->bnx_dev,
2489 "Could not map TX desc %d DMA memory!\n", i);
2490 rc = ENOMEM;
2491 goto bnx_dma_alloc_exit;
2492 }
2493
2494 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2495 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2496 BUS_DMA_NOWAIT)) {
2497 aprint_error_dev(sc->bnx_dev,
2498 "Could not load TX desc %d DMA memory!\n", i);
2499 rc = ENOMEM;
2500 goto bnx_dma_alloc_exit;
2501 }
2502
2503 sc->tx_bd_chain_paddr[i] =
2504 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2505
2506 /* DRC - Fix for 64 bit systems. */
2507 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2508 i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2509 }
2510
2511 /*
2512 * Create lists to hold TX mbufs.
2513 */
2514 TAILQ_INIT(&sc->tx_free_pkts);
2515 TAILQ_INIT(&sc->tx_used_pkts);
2516 sc->tx_pkt_count = 0;
2517 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2518
2519 /*
2520 * Allocate DMA memory for the Rx buffer descriptor chain,
2521 * and fetch the physical address of the block.
2522 */
2523 for (i = 0; i < RX_PAGES; i++) {
2524 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2525 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2526 &sc->rx_bd_chain_map[i])) {
2527 aprint_error_dev(sc->bnx_dev,
2528 "Could not create Rx desc %d DMA map!\n", i);
2529 rc = ENOMEM;
2530 goto bnx_dma_alloc_exit;
2531 }
2532
2533 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2534 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2535 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2536 aprint_error_dev(sc->bnx_dev,
2537 "Could not allocate Rx desc %d DMA memory!\n", i);
2538 rc = ENOMEM;
2539 goto bnx_dma_alloc_exit;
2540 }
2541
2542 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2543 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2544 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2545 aprint_error_dev(sc->bnx_dev,
2546 "Could not map Rx desc %d DMA memory!\n", i);
2547 rc = ENOMEM;
2548 goto bnx_dma_alloc_exit;
2549 }
2550
2551 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2552 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2553 BUS_DMA_NOWAIT)) {
2554 aprint_error_dev(sc->bnx_dev,
2555 "Could not load Rx desc %d DMA memory!\n", i);
2556 rc = ENOMEM;
2557 goto bnx_dma_alloc_exit;
2558 }
2559
2560 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2561 sc->rx_bd_chain_paddr[i] =
2562 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2563
2564 /* DRC - Fix for 64 bit systems. */
2565 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2566 i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2567 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2568 0, BNX_RX_CHAIN_PAGE_SZ,
2569 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2570 }
2571
2572 /*
2573 * Create DMA maps for the Rx buffer mbufs.
2574 */
2575 for (i = 0; i < TOTAL_RX_BD; i++) {
2576 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2577 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2578 &sc->rx_mbuf_map[i])) {
2579 aprint_error_dev(sc->bnx_dev,
2580 "Could not create Rx mbuf %d DMA map!\n", i);
2581 rc = ENOMEM;
2582 goto bnx_dma_alloc_exit;
2583 }
2584 }
2585
2586 bnx_dma_alloc_exit:
2587 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2588
2589 return rc;
2590 }
2591
2592 /****************************************************************************/
2593 /* Release all resources used by the driver. */
2594 /* */
2595 /* Releases all resources acquired by the driver including interrupts, */
2596 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2597 /* */
2598 /* Returns: */
2599 /* Nothing. */
2600 /****************************************************************************/
2601 void
2602 bnx_release_resources(struct bnx_softc *sc)
2603 {
2604 struct pci_attach_args *pa = &(sc->bnx_pa);
2605
2606 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2607
2608 bnx_dma_free(sc);
2609
2610 if (sc->bnx_intrhand != NULL)
2611 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2612
2613 if (sc->bnx_size)
2614 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2615
2616 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2617 }
2618
2619 /****************************************************************************/
2620 /* Firmware synchronization. */
2621 /* */
2622 /* Before performing certain events such as a chip reset, synchronize with */
2623 /* the firmware first. */
2624 /* */
2625 /* Returns: */
2626 /* 0 for success, positive value for failure. */
2627 /****************************************************************************/
2628 int
2629 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2630 {
2631 int i, rc = 0;
2632 uint32_t val;
2633
2634 /* Don't waste any time if we've timed out before. */
2635 if (sc->bnx_fw_timed_out) {
2636 rc = EBUSY;
2637 goto bnx_fw_sync_exit;
2638 }
2639
2640 /* Increment the message sequence number. */
2641 sc->bnx_fw_wr_seq++;
2642 msg_data |= sc->bnx_fw_wr_seq;
2643
2644 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2645 msg_data);
2646
2647 /* Send the message to the bootcode driver mailbox. */
2648 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2649
2650 /* Wait for the bootcode to acknowledge the message. */
2651 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2652 /* Check for a response in the bootcode firmware mailbox. */
2653 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2654 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2655 break;
2656 DELAY(1000);
2657 }
2658
2659 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2660 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2661 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2662 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2663 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2664
2665 msg_data &= ~BNX_DRV_MSG_CODE;
2666 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2667
2668 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2669
2670 sc->bnx_fw_timed_out = 1;
2671 rc = EBUSY;
2672 }
2673
2674 bnx_fw_sync_exit:
2675 return rc;
2676 }
2677
2678 /****************************************************************************/
2679 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2680 /* */
2681 /* Returns: */
2682 /* Nothing. */
2683 /****************************************************************************/
2684 void
2685 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2686 uint32_t rv2p_code_len, uint32_t rv2p_proc)
2687 {
2688 int i;
2689 uint32_t val;
2690
2691 /* Set the page size used by RV2P. */
2692 if (rv2p_proc == RV2P_PROC2) {
2693 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2694 USABLE_RX_BD_PER_PAGE);
2695 }
2696
2697 for (i = 0; i < rv2p_code_len; i += 8) {
2698 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2699 rv2p_code++;
2700 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2701 rv2p_code++;
2702
2703 if (rv2p_proc == RV2P_PROC1) {
2704 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2705 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2706 } else {
2707 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2708 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2709 }
2710 }
2711
2712 /* Reset the processor, un-stall is done later. */
2713 if (rv2p_proc == RV2P_PROC1)
2714 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2715 else
2716 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2717 }
2718
2719 /****************************************************************************/
2720 /* Load RISC processor firmware. */
2721 /* */
2722 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2723 /* associated with a particular processor. */
2724 /* */
2725 /* Returns: */
2726 /* Nothing. */
2727 /****************************************************************************/
2728 void
2729 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2730 struct fw_info *fw)
2731 {
2732 uint32_t offset;
2733 uint32_t val;
2734
2735 /* Halt the CPU. */
2736 val = REG_RD_IND(sc, cpu_reg->mode);
2737 val |= cpu_reg->mode_value_halt;
2738 REG_WR_IND(sc, cpu_reg->mode, val);
2739 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2740
2741 /* Load the Text area. */
2742 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2743 if (fw->text) {
2744 int j;
2745
2746 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2747 REG_WR_IND(sc, offset, fw->text[j]);
2748 }
2749
2750 /* Load the Data area. */
2751 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2752 if (fw->data) {
2753 int j;
2754
2755 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2756 REG_WR_IND(sc, offset, fw->data[j]);
2757 }
2758
2759 /* Load the SBSS area. */
2760 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2761 if (fw->sbss) {
2762 int j;
2763
2764 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2765 REG_WR_IND(sc, offset, fw->sbss[j]);
2766 }
2767
2768 /* Load the BSS area. */
2769 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2770 if (fw->bss) {
2771 int j;
2772
2773 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2774 REG_WR_IND(sc, offset, fw->bss[j]);
2775 }
2776
2777 /* Load the Read-Only area. */
2778 offset = cpu_reg->spad_base +
2779 (fw->rodata_addr - cpu_reg->mips_view_base);
2780 if (fw->rodata) {
2781 int j;
2782
2783 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2784 REG_WR_IND(sc, offset, fw->rodata[j]);
2785 }
2786
2787 /* Clear the pre-fetch instruction. */
2788 REG_WR_IND(sc, cpu_reg->inst, 0);
2789 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2790
2791 /* Start the CPU. */
2792 val = REG_RD_IND(sc, cpu_reg->mode);
2793 val &= ~cpu_reg->mode_value_halt;
2794 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2795 REG_WR_IND(sc, cpu_reg->mode, val);
2796 }
2797
2798 /****************************************************************************/
2799 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2800 /* */
2801 /* Loads the firmware for each CPU and starts the CPU. */
2802 /* */
2803 /* Returns: */
2804 /* Nothing. */
2805 /****************************************************************************/
2806 void
2807 bnx_init_cpus(struct bnx_softc *sc)
2808 {
2809 struct cpu_reg cpu_reg;
2810 struct fw_info fw;
2811
2812 switch(BNX_CHIP_NUM(sc)) {
2813 case BNX_CHIP_NUM_5709:
2814 /* Initialize the RV2P processor. */
2815 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2816 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2817 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2818 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2819 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2820 } else {
2821 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2822 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2823 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2824 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2825 }
2826
2827 /* Initialize the RX Processor. */
2828 cpu_reg.mode = BNX_RXP_CPU_MODE;
2829 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2830 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2831 cpu_reg.state = BNX_RXP_CPU_STATE;
2832 cpu_reg.state_value_clear = 0xffffff;
2833 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2834 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2835 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2836 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2837 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2838 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2839 cpu_reg.mips_view_base = 0x8000000;
2840
2841 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2842 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2843 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2844 fw.start_addr = bnx_RXP_b09FwStartAddr;
2845
2846 fw.text_addr = bnx_RXP_b09FwTextAddr;
2847 fw.text_len = bnx_RXP_b09FwTextLen;
2848 fw.text_index = 0;
2849 fw.text = bnx_RXP_b09FwText;
2850
2851 fw.data_addr = bnx_RXP_b09FwDataAddr;
2852 fw.data_len = bnx_RXP_b09FwDataLen;
2853 fw.data_index = 0;
2854 fw.data = bnx_RXP_b09FwData;
2855
2856 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2857 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2858 fw.sbss_index = 0;
2859 fw.sbss = bnx_RXP_b09FwSbss;
2860
2861 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2862 fw.bss_len = bnx_RXP_b09FwBssLen;
2863 fw.bss_index = 0;
2864 fw.bss = bnx_RXP_b09FwBss;
2865
2866 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2867 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2868 fw.rodata_index = 0;
2869 fw.rodata = bnx_RXP_b09FwRodata;
2870
2871 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2872 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2873
2874 /* Initialize the TX Processor. */
2875 cpu_reg.mode = BNX_TXP_CPU_MODE;
2876 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2877 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2878 cpu_reg.state = BNX_TXP_CPU_STATE;
2879 cpu_reg.state_value_clear = 0xffffff;
2880 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2881 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2882 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2883 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2884 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2885 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2886 cpu_reg.mips_view_base = 0x8000000;
2887
2888 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2889 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2890 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2891 fw.start_addr = bnx_TXP_b09FwStartAddr;
2892
2893 fw.text_addr = bnx_TXP_b09FwTextAddr;
2894 fw.text_len = bnx_TXP_b09FwTextLen;
2895 fw.text_index = 0;
2896 fw.text = bnx_TXP_b09FwText;
2897
2898 fw.data_addr = bnx_TXP_b09FwDataAddr;
2899 fw.data_len = bnx_TXP_b09FwDataLen;
2900 fw.data_index = 0;
2901 fw.data = bnx_TXP_b09FwData;
2902
2903 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2904 fw.sbss_len = bnx_TXP_b09FwSbssLen;
2905 fw.sbss_index = 0;
2906 fw.sbss = bnx_TXP_b09FwSbss;
2907
2908 fw.bss_addr = bnx_TXP_b09FwBssAddr;
2909 fw.bss_len = bnx_TXP_b09FwBssLen;
2910 fw.bss_index = 0;
2911 fw.bss = bnx_TXP_b09FwBss;
2912
2913 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2914 fw.rodata_len = bnx_TXP_b09FwRodataLen;
2915 fw.rodata_index = 0;
2916 fw.rodata = bnx_TXP_b09FwRodata;
2917
2918 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2919 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2920
2921 /* Initialize the TX Patch-up Processor. */
2922 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2923 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2924 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2925 cpu_reg.state = BNX_TPAT_CPU_STATE;
2926 cpu_reg.state_value_clear = 0xffffff;
2927 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2928 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2929 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2930 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2931 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2932 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2933 cpu_reg.mips_view_base = 0x8000000;
2934
2935 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2936 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2937 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2938 fw.start_addr = bnx_TPAT_b09FwStartAddr;
2939
2940 fw.text_addr = bnx_TPAT_b09FwTextAddr;
2941 fw.text_len = bnx_TPAT_b09FwTextLen;
2942 fw.text_index = 0;
2943 fw.text = bnx_TPAT_b09FwText;
2944
2945 fw.data_addr = bnx_TPAT_b09FwDataAddr;
2946 fw.data_len = bnx_TPAT_b09FwDataLen;
2947 fw.data_index = 0;
2948 fw.data = bnx_TPAT_b09FwData;
2949
2950 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2951 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2952 fw.sbss_index = 0;
2953 fw.sbss = bnx_TPAT_b09FwSbss;
2954
2955 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2956 fw.bss_len = bnx_TPAT_b09FwBssLen;
2957 fw.bss_index = 0;
2958 fw.bss = bnx_TPAT_b09FwBss;
2959
2960 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2961 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2962 fw.rodata_index = 0;
2963 fw.rodata = bnx_TPAT_b09FwRodata;
2964
2965 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2966 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2967
2968 /* Initialize the Completion Processor. */
2969 cpu_reg.mode = BNX_COM_CPU_MODE;
2970 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2971 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2972 cpu_reg.state = BNX_COM_CPU_STATE;
2973 cpu_reg.state_value_clear = 0xffffff;
2974 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2975 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2976 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2977 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2978 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2979 cpu_reg.spad_base = BNX_COM_SCRATCH;
2980 cpu_reg.mips_view_base = 0x8000000;
2981
2982 fw.ver_major = bnx_COM_b09FwReleaseMajor;
2983 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2984 fw.ver_fix = bnx_COM_b09FwReleaseFix;
2985 fw.start_addr = bnx_COM_b09FwStartAddr;
2986
2987 fw.text_addr = bnx_COM_b09FwTextAddr;
2988 fw.text_len = bnx_COM_b09FwTextLen;
2989 fw.text_index = 0;
2990 fw.text = bnx_COM_b09FwText;
2991
2992 fw.data_addr = bnx_COM_b09FwDataAddr;
2993 fw.data_len = bnx_COM_b09FwDataLen;
2994 fw.data_index = 0;
2995 fw.data = bnx_COM_b09FwData;
2996
2997 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2998 fw.sbss_len = bnx_COM_b09FwSbssLen;
2999 fw.sbss_index = 0;
3000 fw.sbss = bnx_COM_b09FwSbss;
3001
3002 fw.bss_addr = bnx_COM_b09FwBssAddr;
3003 fw.bss_len = bnx_COM_b09FwBssLen;
3004 fw.bss_index = 0;
3005 fw.bss = bnx_COM_b09FwBss;
3006
3007 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
3008 fw.rodata_len = bnx_COM_b09FwRodataLen;
3009 fw.rodata_index = 0;
3010 fw.rodata = bnx_COM_b09FwRodata;
3011 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3012 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3013 break;
3014 default:
3015 /* Initialize the RV2P processor. */
3016 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3017 RV2P_PROC1);
3018 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3019 RV2P_PROC2);
3020
3021 /* Initialize the RX Processor. */
3022 cpu_reg.mode = BNX_RXP_CPU_MODE;
3023 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3024 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3025 cpu_reg.state = BNX_RXP_CPU_STATE;
3026 cpu_reg.state_value_clear = 0xffffff;
3027 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3028 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3029 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3030 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3031 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3032 cpu_reg.spad_base = BNX_RXP_SCRATCH;
3033 cpu_reg.mips_view_base = 0x8000000;
3034
3035 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3036 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3037 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3038 fw.start_addr = bnx_RXP_b06FwStartAddr;
3039
3040 fw.text_addr = bnx_RXP_b06FwTextAddr;
3041 fw.text_len = bnx_RXP_b06FwTextLen;
3042 fw.text_index = 0;
3043 fw.text = bnx_RXP_b06FwText;
3044
3045 fw.data_addr = bnx_RXP_b06FwDataAddr;
3046 fw.data_len = bnx_RXP_b06FwDataLen;
3047 fw.data_index = 0;
3048 fw.data = bnx_RXP_b06FwData;
3049
3050 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3051 fw.sbss_len = bnx_RXP_b06FwSbssLen;
3052 fw.sbss_index = 0;
3053 fw.sbss = bnx_RXP_b06FwSbss;
3054
3055 fw.bss_addr = bnx_RXP_b06FwBssAddr;
3056 fw.bss_len = bnx_RXP_b06FwBssLen;
3057 fw.bss_index = 0;
3058 fw.bss = bnx_RXP_b06FwBss;
3059
3060 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3061 fw.rodata_len = bnx_RXP_b06FwRodataLen;
3062 fw.rodata_index = 0;
3063 fw.rodata = bnx_RXP_b06FwRodata;
3064
3065 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3066 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3067
3068 /* Initialize the TX Processor. */
3069 cpu_reg.mode = BNX_TXP_CPU_MODE;
3070 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3071 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3072 cpu_reg.state = BNX_TXP_CPU_STATE;
3073 cpu_reg.state_value_clear = 0xffffff;
3074 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3075 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3076 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3077 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3078 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3079 cpu_reg.spad_base = BNX_TXP_SCRATCH;
3080 cpu_reg.mips_view_base = 0x8000000;
3081
3082 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3083 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3084 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3085 fw.start_addr = bnx_TXP_b06FwStartAddr;
3086
3087 fw.text_addr = bnx_TXP_b06FwTextAddr;
3088 fw.text_len = bnx_TXP_b06FwTextLen;
3089 fw.text_index = 0;
3090 fw.text = bnx_TXP_b06FwText;
3091
3092 fw.data_addr = bnx_TXP_b06FwDataAddr;
3093 fw.data_len = bnx_TXP_b06FwDataLen;
3094 fw.data_index = 0;
3095 fw.data = bnx_TXP_b06FwData;
3096
3097 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3098 fw.sbss_len = bnx_TXP_b06FwSbssLen;
3099 fw.sbss_index = 0;
3100 fw.sbss = bnx_TXP_b06FwSbss;
3101
3102 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3103 fw.bss_len = bnx_TXP_b06FwBssLen;
3104 fw.bss_index = 0;
3105 fw.bss = bnx_TXP_b06FwBss;
3106
3107 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3108 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3109 fw.rodata_index = 0;
3110 fw.rodata = bnx_TXP_b06FwRodata;
3111
3112 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3113 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3114
3115 /* Initialize the TX Patch-up Processor. */
3116 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3117 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3118 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3119 cpu_reg.state = BNX_TPAT_CPU_STATE;
3120 cpu_reg.state_value_clear = 0xffffff;
3121 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3122 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3123 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3124 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3125 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3126 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3127 cpu_reg.mips_view_base = 0x8000000;
3128
3129 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3130 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3131 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3132 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3133
3134 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3135 fw.text_len = bnx_TPAT_b06FwTextLen;
3136 fw.text_index = 0;
3137 fw.text = bnx_TPAT_b06FwText;
3138
3139 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3140 fw.data_len = bnx_TPAT_b06FwDataLen;
3141 fw.data_index = 0;
3142 fw.data = bnx_TPAT_b06FwData;
3143
3144 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3145 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3146 fw.sbss_index = 0;
3147 fw.sbss = bnx_TPAT_b06FwSbss;
3148
3149 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3150 fw.bss_len = bnx_TPAT_b06FwBssLen;
3151 fw.bss_index = 0;
3152 fw.bss = bnx_TPAT_b06FwBss;
3153
3154 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3155 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3156 fw.rodata_index = 0;
3157 fw.rodata = bnx_TPAT_b06FwRodata;
3158
3159 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3160 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3161
3162 /* Initialize the Completion Processor. */
3163 cpu_reg.mode = BNX_COM_CPU_MODE;
3164 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3165 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3166 cpu_reg.state = BNX_COM_CPU_STATE;
3167 cpu_reg.state_value_clear = 0xffffff;
3168 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3169 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3170 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3171 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3172 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3173 cpu_reg.spad_base = BNX_COM_SCRATCH;
3174 cpu_reg.mips_view_base = 0x8000000;
3175
3176 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3177 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3178 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3179 fw.start_addr = bnx_COM_b06FwStartAddr;
3180
3181 fw.text_addr = bnx_COM_b06FwTextAddr;
3182 fw.text_len = bnx_COM_b06FwTextLen;
3183 fw.text_index = 0;
3184 fw.text = bnx_COM_b06FwText;
3185
3186 fw.data_addr = bnx_COM_b06FwDataAddr;
3187 fw.data_len = bnx_COM_b06FwDataLen;
3188 fw.data_index = 0;
3189 fw.data = bnx_COM_b06FwData;
3190
3191 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3192 fw.sbss_len = bnx_COM_b06FwSbssLen;
3193 fw.sbss_index = 0;
3194 fw.sbss = bnx_COM_b06FwSbss;
3195
3196 fw.bss_addr = bnx_COM_b06FwBssAddr;
3197 fw.bss_len = bnx_COM_b06FwBssLen;
3198 fw.bss_index = 0;
3199 fw.bss = bnx_COM_b06FwBss;
3200
3201 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3202 fw.rodata_len = bnx_COM_b06FwRodataLen;
3203 fw.rodata_index = 0;
3204 fw.rodata = bnx_COM_b06FwRodata;
3205 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3206 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3207 break;
3208 }
3209 }
3210
3211 /****************************************************************************/
3212 /* Initialize context memory. */
3213 /* */
3214 /* Clears the memory associated with each Context ID (CID). */
3215 /* */
3216 /* Returns: */
3217 /* Nothing. */
3218 /****************************************************************************/
3219 void
3220 bnx_init_context(struct bnx_softc *sc)
3221 {
3222 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3223 /* DRC: Replace this constant value with a #define. */
3224 int i, retry_cnt = 10;
3225 uint32_t val;
3226
3227 /*
3228 * BCM5709 context memory may be cached
3229 * in host memory so prepare the host memory
3230 * for access.
3231 */
3232 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3233 | (1 << 12);
3234 val |= (BCM_PAGE_BITS - 8) << 16;
3235 REG_WR(sc, BNX_CTX_COMMAND, val);
3236
3237 /* Wait for mem init command to complete. */
3238 for (i = 0; i < retry_cnt; i++) {
3239 val = REG_RD(sc, BNX_CTX_COMMAND);
3240 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3241 break;
3242 DELAY(2);
3243 }
3244
3245 /* ToDo: Consider returning an error here. */
3246
3247 for (i = 0; i < sc->ctx_pages; i++) {
3248 int j;
3249
3250 /* Set the physaddr of the context memory cache. */
3251 val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3252 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3253 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3254 val = (uint32_t)
3255 ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3256 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3257 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3258 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3259
3260 /* Verify that the context memory write was successful. */
3261 for (j = 0; j < retry_cnt; j++) {
3262 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3263 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3264 break;
3265 DELAY(5);
3266 }
3267
3268 /* ToDo: Consider returning an error here. */
3269 }
3270 } else {
3271 uint32_t vcid_addr, offset;
3272
3273 /*
3274 * For the 5706/5708, context memory is local to
3275 * the controller, so initialize the controller
3276 * context memory.
3277 */
3278
3279 vcid_addr = GET_CID_ADDR(96);
3280 while (vcid_addr) {
3281
3282 vcid_addr -= BNX_PHY_CTX_SIZE;
3283
3284 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3285 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3286
3287 for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3288 CTX_WR(sc, 0x00, offset, 0);
3289 }
3290
3291 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3292 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3293 }
3294 }
3295 }
3296
3297 /****************************************************************************/
3298 /* Fetch the permanent MAC address of the controller. */
3299 /* */
3300 /* Returns: */
3301 /* Nothing. */
3302 /****************************************************************************/
3303 void
3304 bnx_get_mac_addr(struct bnx_softc *sc)
3305 {
3306 uint32_t mac_lo = 0, mac_hi = 0;
3307
3308 /*
3309 * The NetXtreme II bootcode populates various NIC
3310 * power-on and runtime configuration items in a
3311 * shared memory area. The factory configured MAC
3312 * address is available from both NVRAM and the
3313 * shared memory area so we'll read the value from
3314 * shared memory for speed.
3315 */
3316
3317 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3318 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3319
3320 if ((mac_lo == 0) && (mac_hi == 0)) {
3321 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3322 __FILE__, __LINE__);
3323 } else {
3324 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3325 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3326 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3327 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3328 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3329 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3330 }
3331
3332 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3333 "%s\n", ether_sprintf(sc->eaddr));
3334 }
3335
3336 /****************************************************************************/
3337 /* Program the MAC address. */
3338 /* */
3339 /* Returns: */
3340 /* Nothing. */
3341 /****************************************************************************/
3342 void
3343 bnx_set_mac_addr(struct bnx_softc *sc)
3344 {
3345 uint32_t val;
3346 const uint8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3347
3348 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3349 "%s\n", ether_sprintf(sc->eaddr));
3350
3351 val = (mac_addr[0] << 8) | mac_addr[1];
3352
3353 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3354
3355 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3356 (mac_addr[4] << 8) | mac_addr[5];
3357
3358 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3359 }
3360
3361 /****************************************************************************/
3362 /* Stop the controller. */
3363 /* */
3364 /* Returns: */
3365 /* Nothing. */
3366 /****************************************************************************/
3367 void
3368 bnx_stop(struct ifnet *ifp, int disable)
3369 {
3370 struct bnx_softc *sc = ifp->if_softc;
3371
3372 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3373
3374 if ((ifp->if_flags & IFF_RUNNING) == 0)
3375 return;
3376
3377 callout_stop(&sc->bnx_timeout);
3378
3379 mii_down(&sc->bnx_mii);
3380
3381 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3382
3383 /* Disable the transmit/receive blocks. */
3384 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3385 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3386 DELAY(20);
3387
3388 bnx_disable_intr(sc);
3389
3390 /* Tell firmware that the driver is going away. */
3391 if (disable)
3392 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3393 else
3394 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3395
3396 /* Free RX buffers. */
3397 bnx_free_rx_chain(sc);
3398
3399 /* Free TX buffers. */
3400 bnx_free_tx_chain(sc);
3401
3402 ifp->if_timer = 0;
3403
3404 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3405
3406 }
3407
3408 int
3409 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3410 {
3411 struct pci_attach_args *pa = &(sc->bnx_pa);
3412 uint32_t val;
3413 int i, rc = 0;
3414
3415 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3416
3417 /* Wait for pending PCI transactions to complete. */
3418 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3419 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3420 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3421 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3422 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3423 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3424 DELAY(5);
3425
3426 /* Disable DMA */
3427 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3428 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3429 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3430 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3431 }
3432
3433 /* Assume bootcode is running. */
3434 sc->bnx_fw_timed_out = 0;
3435
3436 /* Give the firmware a chance to prepare for the reset. */
3437 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3438 if (rc)
3439 goto bnx_reset_exit;
3440
3441 /* Set a firmware reminder that this is a soft reset. */
3442 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3443 BNX_DRV_RESET_SIGNATURE_MAGIC);
3444
3445 /* Dummy read to force the chip to complete all current transactions. */
3446 val = REG_RD(sc, BNX_MISC_ID);
3447
3448 /* Chip reset. */
3449 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3450 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3451 REG_RD(sc, BNX_MISC_COMMAND);
3452 DELAY(5);
3453
3454 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3455 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3456
3457 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3458 val);
3459 } else {
3460 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3461 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3462 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3463 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3464
3465 /* Allow up to 30us for reset to complete. */
3466 for (i = 0; i < 10; i++) {
3467 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3468 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3469 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3470 break;
3471 }
3472 DELAY(10);
3473 }
3474
3475 /* Check that reset completed successfully. */
3476 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3477 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3478 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3479 __FILE__, __LINE__);
3480 rc = EBUSY;
3481 goto bnx_reset_exit;
3482 }
3483 }
3484
3485 /* Make sure byte swapping is properly configured. */
3486 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3487 if (val != 0x01020304) {
3488 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3489 __FILE__, __LINE__);
3490 rc = ENODEV;
3491 goto bnx_reset_exit;
3492 }
3493
3494 /* Just completed a reset, assume that firmware is running again. */
3495 sc->bnx_fw_timed_out = 0;
3496
3497 /* Wait for the firmware to finish its initialization. */
3498 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3499 if (rc)
3500 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3501 "initialization!\n", __FILE__, __LINE__);
3502
3503 bnx_reset_exit:
3504 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3505
3506 return rc;
3507 }
3508
3509 int
3510 bnx_chipinit(struct bnx_softc *sc)
3511 {
3512 struct pci_attach_args *pa = &(sc->bnx_pa);
3513 uint32_t val;
3514 int rc = 0;
3515
3516 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3517
3518 /* Make sure the interrupt is not active. */
3519 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3520
3521 /* Initialize DMA byte/word swapping, configure the number of DMA */
3522 /* channels and PCI clock compensation delay. */
3523 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3524 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3525 #if BYTE_ORDER == BIG_ENDIAN
3526 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3527 #endif
3528 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3529 DMA_READ_CHANS << 12 |
3530 DMA_WRITE_CHANS << 16;
3531
3532 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3533
3534 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3535 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3536
3537 /*
3538 * This setting resolves a problem observed on certain Intel PCI
3539 * chipsets that cannot handle multiple outstanding DMA operations.
3540 * See errata E9_5706A1_65.
3541 */
3542 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3543 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3544 !(sc->bnx_flags & BNX_PCIX_FLAG))
3545 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3546
3547 REG_WR(sc, BNX_DMA_CONFIG, val);
3548
3549 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3550 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3551 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3552 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3553 val & ~0x20000);
3554 }
3555
3556 /* Enable the RX_V2P and Context state machines before access. */
3557 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3558 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3559 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3560 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3561
3562 /* Initialize context mapping and zero out the quick contexts. */
3563 bnx_init_context(sc);
3564
3565 /* Initialize the on-boards CPUs */
3566 bnx_init_cpus(sc);
3567
3568 /* Prepare NVRAM for access. */
3569 if (bnx_init_nvram(sc)) {
3570 rc = ENODEV;
3571 goto bnx_chipinit_exit;
3572 }
3573
3574 /* Set the kernel bypass block size */
3575 val = REG_RD(sc, BNX_MQ_CONFIG);
3576 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3577 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3578
3579 /* Enable bins used on the 5709. */
3580 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3581 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3582 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3583 val |= BNX_MQ_CONFIG_HALT_DIS;
3584 }
3585
3586 REG_WR(sc, BNX_MQ_CONFIG, val);
3587
3588 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3589 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3590 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3591
3592 val = (BCM_PAGE_BITS - 8) << 24;
3593 REG_WR(sc, BNX_RV2P_CONFIG, val);
3594
3595 /* Configure page size. */
3596 val = REG_RD(sc, BNX_TBDR_CONFIG);
3597 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3598 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3599 REG_WR(sc, BNX_TBDR_CONFIG, val);
3600
3601 #if 0
3602 /* Set the perfect match control register to default. */
3603 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3604 #endif
3605
3606 bnx_chipinit_exit:
3607 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3608
3609 return rc;
3610 }
3611
3612 /****************************************************************************/
3613 /* Initialize the controller in preparation to send/receive traffic. */
3614 /* */
3615 /* Returns: */
3616 /* 0 for success, positive value for failure. */
3617 /****************************************************************************/
3618 int
3619 bnx_blockinit(struct bnx_softc *sc)
3620 {
3621 uint32_t reg, val;
3622 int rc = 0;
3623
3624 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3625
3626 /* Load the hardware default MAC address. */
3627 bnx_set_mac_addr(sc);
3628
3629 /* Set the Ethernet backoff seed value */
3630 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3631 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3632 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3633
3634 sc->last_status_idx = 0;
3635 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3636
3637 /* Set up link change interrupt generation. */
3638 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3639 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3640
3641 /* Program the physical address of the status block. */
3642 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3643 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3644 (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3645
3646 /* Program the physical address of the statistics block. */
3647 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3648 (uint32_t)(sc->stats_block_paddr));
3649 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3650 (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3651
3652 /* Program various host coalescing parameters. */
3653 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3654 << 16) | sc->bnx_tx_quick_cons_trip);
3655 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3656 << 16) | sc->bnx_rx_quick_cons_trip);
3657 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3658 sc->bnx_comp_prod_trip);
3659 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3660 sc->bnx_tx_ticks);
3661 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3662 sc->bnx_rx_ticks);
3663 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3664 sc->bnx_com_ticks);
3665 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3666 sc->bnx_cmd_ticks);
3667 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3668 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3669 REG_WR(sc, BNX_HC_CONFIG,
3670 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3671 BNX_HC_CONFIG_COLLECT_STATS));
3672
3673 /* Clear the internal statistics counters. */
3674 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3675
3676 /* Verify that bootcode is running. */
3677 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3678
3679 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3680 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3681 __FILE__, __LINE__); reg = 0);
3682
3683 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3684 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3685 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3686 "Expected: 08%08X\n", __FILE__, __LINE__,
3687 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3688 BNX_DEV_INFO_SIGNATURE_MAGIC);
3689 rc = ENODEV;
3690 goto bnx_blockinit_exit;
3691 }
3692
3693 /* Check if any management firmware is running. */
3694 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3695 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3696 BNX_PORT_FEATURE_IMD_ENABLED)) {
3697 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3698 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3699 }
3700
3701 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3702 BNX_DEV_INFO_BC_REV);
3703
3704 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3705
3706 /* Enable DMA */
3707 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3708 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3709 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3710 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3711 }
3712
3713 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3714 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3715
3716 /* Enable link state change interrupt generation. */
3717 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3718 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3719 BNX_MISC_ENABLE_DEFAULT_XI);
3720 } else
3721 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3722
3723 /* Enable all remaining blocks in the MAC. */
3724 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3725 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3726 DELAY(20);
3727
3728 bnx_blockinit_exit:
3729 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3730
3731 return rc;
3732 }
3733
3734 static int
3735 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3736 uint16_t *chain_prod, uint32_t *prod_bseq)
3737 {
3738 bus_dmamap_t map;
3739 struct rx_bd *rxbd;
3740 uint32_t addr;
3741 int i;
3742 #ifdef BNX_DEBUG
3743 uint16_t debug_chain_prod = *chain_prod;
3744 #endif
3745 uint16_t first_chain_prod;
3746
3747 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3748
3749 /* Map the mbuf cluster into device memory. */
3750 map = sc->rx_mbuf_map[*chain_prod];
3751 first_chain_prod = *chain_prod;
3752 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3753 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3754 __FILE__, __LINE__);
3755
3756 m_freem(m_new);
3757
3758 DBRUNIF(1, sc->rx_mbuf_alloc--);
3759
3760 return ENOBUFS;
3761 }
3762 /* Make sure there is room in the receive chain. */
3763 if (map->dm_nsegs > sc->free_rx_bd) {
3764 bus_dmamap_unload(sc->bnx_dmatag, map);
3765 m_freem(m_new);
3766 return EFBIG;
3767 }
3768 #ifdef BNX_DEBUG
3769 /* Track the distribution of buffer segments. */
3770 sc->rx_mbuf_segs[map->dm_nsegs]++;
3771 #endif
3772
3773 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3774 BUS_DMASYNC_PREREAD);
3775
3776 /* Update some debug statistics counters */
3777 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3778 sc->rx_low_watermark = sc->free_rx_bd);
3779 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3780
3781 /*
3782 * Setup the rx_bd for the first segment
3783 */
3784 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3785
3786 addr = (uint32_t)map->dm_segs[0].ds_addr;
3787 rxbd->rx_bd_haddr_lo = addr;
3788 addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3789 rxbd->rx_bd_haddr_hi = addr;
3790 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3791 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3792 *prod_bseq += map->dm_segs[0].ds_len;
3793 bus_dmamap_sync(sc->bnx_dmatag,
3794 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3795 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3796 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3797
3798 for (i = 1; i < map->dm_nsegs; i++) {
3799 *prod = NEXT_RX_BD(*prod);
3800 *chain_prod = RX_CHAIN_IDX(*prod);
3801
3802 rxbd =
3803 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3804
3805 addr = (uint32_t)map->dm_segs[i].ds_addr;
3806 rxbd->rx_bd_haddr_lo = addr;
3807 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3808 rxbd->rx_bd_haddr_hi = addr;
3809 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3810 rxbd->rx_bd_flags = 0;
3811 *prod_bseq += map->dm_segs[i].ds_len;
3812 bus_dmamap_sync(sc->bnx_dmatag,
3813 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3814 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3815 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3816 }
3817
3818 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3819 bus_dmamap_sync(sc->bnx_dmatag,
3820 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3821 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3822 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3823
3824 /*
3825 * Save the mbuf, adjust the map pointer (swap map for first and
3826 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3827 * and update our counter.
3828 */
3829 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3830 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3831 sc->rx_mbuf_map[*chain_prod] = map;
3832 sc->free_rx_bd -= map->dm_nsegs;
3833
3834 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3835 map->dm_nsegs));
3836 *prod = NEXT_RX_BD(*prod);
3837 *chain_prod = RX_CHAIN_IDX(*prod);
3838
3839 return 0;
3840 }
3841
3842 /****************************************************************************/
3843 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3844 /* */
3845 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3846 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3847 /* necessary. */
3848 /* */
3849 /* Returns: */
3850 /* 0 for success, positive value for failure. */
3851 /****************************************************************************/
3852 int
3853 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3854 uint16_t *chain_prod, uint32_t *prod_bseq)
3855 {
3856 struct mbuf *m_new = NULL;
3857 int rc = 0;
3858 uint16_t min_free_bd;
3859
3860 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3861 __func__);
3862
3863 /* Make sure the inputs are valid. */
3864 DBRUNIF((*chain_prod > MAX_RX_BD),
3865 aprint_error_dev(sc->bnx_dev,
3866 "RX producer out of range: 0x%04X > 0x%04X\n",
3867 *chain_prod, (uint16_t)MAX_RX_BD));
3868
3869 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3870 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3871 *prod_bseq);
3872
3873 /* try to get in as many mbufs as possible */
3874 if (sc->mbuf_alloc_size == MCLBYTES)
3875 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3876 else
3877 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3878 while (sc->free_rx_bd >= min_free_bd) {
3879 /* Simulate an mbuf allocation failure. */
3880 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3881 aprint_error_dev(sc->bnx_dev,
3882 "Simulating mbuf allocation failure.\n");
3883 sc->mbuf_sim_alloc_failed++;
3884 rc = ENOBUFS;
3885 goto bnx_get_buf_exit);
3886
3887 /* This is a new mbuf allocation. */
3888 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3889 if (m_new == NULL) {
3890 DBPRINT(sc, BNX_WARN,
3891 "%s(%d): RX mbuf header allocation failed!\n",
3892 __FILE__, __LINE__);
3893
3894 sc->mbuf_alloc_failed++;
3895
3896 rc = ENOBUFS;
3897 goto bnx_get_buf_exit;
3898 }
3899
3900 DBRUNIF(1, sc->rx_mbuf_alloc++);
3901
3902 /* Simulate an mbuf cluster allocation failure. */
3903 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3904 m_freem(m_new);
3905 sc->rx_mbuf_alloc--;
3906 sc->mbuf_alloc_failed++;
3907 sc->mbuf_sim_alloc_failed++;
3908 rc = ENOBUFS;
3909 goto bnx_get_buf_exit);
3910
3911 if (sc->mbuf_alloc_size == MCLBYTES)
3912 MCLGET(m_new, M_DONTWAIT);
3913 else
3914 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3915 M_DONTWAIT);
3916 if (!(m_new->m_flags & M_EXT)) {
3917 DBPRINT(sc, BNX_WARN,
3918 "%s(%d): RX mbuf chain allocation failed!\n",
3919 __FILE__, __LINE__);
3920
3921 m_freem(m_new);
3922
3923 DBRUNIF(1, sc->rx_mbuf_alloc--);
3924 sc->mbuf_alloc_failed++;
3925
3926 rc = ENOBUFS;
3927 goto bnx_get_buf_exit;
3928 }
3929
3930 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3931 if (rc != 0)
3932 goto bnx_get_buf_exit;
3933 }
3934
3935 bnx_get_buf_exit:
3936 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3937 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3938 *chain_prod, *prod_bseq);
3939
3940 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3941 __func__);
3942
3943 return rc;
3944 }
3945
3946 void
3947 bnx_alloc_pkts(struct work * unused, void * arg)
3948 {
3949 struct bnx_softc *sc = arg;
3950 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3951 struct bnx_pkt *pkt;
3952 int i, s;
3953
3954 for (i = 0; i < 4; i++) { /* magic! */
3955 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
3956 if (pkt == NULL)
3957 break;
3958
3959 if (bus_dmamap_create(sc->bnx_dmatag,
3960 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3961 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
3962 &pkt->pkt_dmamap) != 0)
3963 goto put;
3964
3965 if (!ISSET(ifp->if_flags, IFF_UP))
3966 goto stopping;
3967
3968 mutex_enter(&sc->tx_pkt_mtx);
3969 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3970 sc->tx_pkt_count++;
3971 mutex_exit(&sc->tx_pkt_mtx);
3972 }
3973
3974 mutex_enter(&sc->tx_pkt_mtx);
3975 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
3976 mutex_exit(&sc->tx_pkt_mtx);
3977
3978 /* fire-up TX now that allocations have been done */
3979 s = splnet();
3980 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3981 bnx_start(ifp);
3982 splx(s);
3983
3984 return;
3985
3986 stopping:
3987 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3988 put:
3989 pool_put(bnx_tx_pool, pkt);
3990 return;
3991 }
3992
3993 /****************************************************************************/
3994 /* Initialize the TX context memory. */
3995 /* */
3996 /* Returns: */
3997 /* Nothing */
3998 /****************************************************************************/
3999 void
4000 bnx_init_tx_context(struct bnx_softc *sc)
4001 {
4002 uint32_t val;
4003
4004 /* Initialize the context ID for an L2 TX chain. */
4005 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4006 /* Set the CID type to support an L2 connection. */
4007 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4008 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4009 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4010 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4011
4012 /* Point the hardware to the first page in the chain. */
4013 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4014 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4015 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4016 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4017 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4018 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4019 } else {
4020 /* Set the CID type to support an L2 connection. */
4021 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4022 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4023 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4024 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4025
4026 /* Point the hardware to the first page in the chain. */
4027 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4028 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4029 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4030 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4031 }
4032 }
4033
4034
4035 /****************************************************************************/
4036 /* Allocate memory and initialize the TX data structures. */
4037 /* */
4038 /* Returns: */
4039 /* 0 for success, positive value for failure. */
4040 /****************************************************************************/
4041 int
4042 bnx_init_tx_chain(struct bnx_softc *sc)
4043 {
4044 struct tx_bd *txbd;
4045 uint32_t addr;
4046 int i, rc = 0;
4047
4048 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4049
4050 /* Force an allocation of some dmamaps for tx up front */
4051 bnx_alloc_pkts(NULL, sc);
4052
4053 /* Set the initial TX producer/consumer indices. */
4054 sc->tx_prod = 0;
4055 sc->tx_cons = 0;
4056 sc->tx_prod_bseq = 0;
4057 sc->used_tx_bd = 0;
4058 sc->max_tx_bd = USABLE_TX_BD;
4059 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4060 DBRUNIF(1, sc->tx_full_count = 0);
4061
4062 /*
4063 * The NetXtreme II supports a linked-list structure called
4064 * a Buffer Descriptor Chain (or BD chain). A BD chain
4065 * consists of a series of 1 or more chain pages, each of which
4066 * consists of a fixed number of BD entries.
4067 * The last BD entry on each page is a pointer to the next page
4068 * in the chain, and the last pointer in the BD chain
4069 * points back to the beginning of the chain.
4070 */
4071
4072 /* Set the TX next pointer chain entries. */
4073 for (i = 0; i < TX_PAGES; i++) {
4074 int j;
4075
4076 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4077
4078 /* Check if we've reached the last page. */
4079 if (i == (TX_PAGES - 1))
4080 j = 0;
4081 else
4082 j = i + 1;
4083
4084 addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4085 txbd->tx_bd_haddr_lo = addr;
4086 addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4087 txbd->tx_bd_haddr_hi = addr;
4088 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4089 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4090 }
4091
4092 /*
4093 * Initialize the context ID for an L2 TX chain.
4094 */
4095 bnx_init_tx_context(sc);
4096
4097 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4098
4099 return rc;
4100 }
4101
4102 /****************************************************************************/
4103 /* Free memory and clear the TX data structures. */
4104 /* */
4105 /* Returns: */
4106 /* Nothing. */
4107 /****************************************************************************/
4108 void
4109 bnx_free_tx_chain(struct bnx_softc *sc)
4110 {
4111 struct bnx_pkt *pkt;
4112 int i;
4113
4114 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4115
4116 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4117 mutex_enter(&sc->tx_pkt_mtx);
4118 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4119 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4120 mutex_exit(&sc->tx_pkt_mtx);
4121
4122 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4123 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4124 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4125
4126 m_freem(pkt->pkt_mbuf);
4127 DBRUNIF(1, sc->tx_mbuf_alloc--);
4128
4129 mutex_enter(&sc->tx_pkt_mtx);
4130 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4131 }
4132
4133 /* Destroy all the dmamaps we allocated for TX */
4134 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4135 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4136 sc->tx_pkt_count--;
4137 mutex_exit(&sc->tx_pkt_mtx);
4138
4139 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4140 pool_put(bnx_tx_pool, pkt);
4141
4142 mutex_enter(&sc->tx_pkt_mtx);
4143 }
4144 mutex_exit(&sc->tx_pkt_mtx);
4145
4146
4147
4148 /* Clear each TX chain page. */
4149 for (i = 0; i < TX_PAGES; i++) {
4150 memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4151 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4152 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4153 }
4154
4155 sc->used_tx_bd = 0;
4156
4157 /* Check if we lost any mbufs in the process. */
4158 DBRUNIF((sc->tx_mbuf_alloc),
4159 aprint_error_dev(sc->bnx_dev,
4160 "Memory leak! Lost %d mbufs from tx chain!\n",
4161 sc->tx_mbuf_alloc));
4162
4163 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4164 }
4165
4166 /****************************************************************************/
4167 /* Initialize the RX context memory. */
4168 /* */
4169 /* Returns: */
4170 /* Nothing */
4171 /****************************************************************************/
4172 void
4173 bnx_init_rx_context(struct bnx_softc *sc)
4174 {
4175 uint32_t val;
4176
4177 /* Initialize the context ID for an L2 RX chain. */
4178 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4179 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4180
4181 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4182 uint32_t lo_water, hi_water;
4183
4184 lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4185 hi_water = USABLE_RX_BD / 4;
4186
4187 lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4188 hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4189
4190 if (hi_water > 0xf)
4191 hi_water = 0xf;
4192 else if (hi_water == 0)
4193 lo_water = 0;
4194 val |= lo_water |
4195 (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4196 }
4197
4198 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4199
4200 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4201 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4202 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4203 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4204 }
4205
4206 /* Point the hardware to the first page in the chain. */
4207 val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4208 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4209 val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4210 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4211 }
4212
4213 /****************************************************************************/
4214 /* Allocate memory and initialize the RX data structures. */
4215 /* */
4216 /* Returns: */
4217 /* 0 for success, positive value for failure. */
4218 /****************************************************************************/
4219 int
4220 bnx_init_rx_chain(struct bnx_softc *sc)
4221 {
4222 struct rx_bd *rxbd;
4223 int i, rc = 0;
4224 uint16_t prod, chain_prod;
4225 uint32_t prod_bseq, addr;
4226
4227 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4228
4229 /* Initialize the RX producer and consumer indices. */
4230 sc->rx_prod = 0;
4231 sc->rx_cons = 0;
4232 sc->rx_prod_bseq = 0;
4233 sc->free_rx_bd = USABLE_RX_BD;
4234 sc->max_rx_bd = USABLE_RX_BD;
4235 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4236 DBRUNIF(1, sc->rx_empty_count = 0);
4237
4238 /* Initialize the RX next pointer chain entries. */
4239 for (i = 0; i < RX_PAGES; i++) {
4240 int j;
4241
4242 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4243
4244 /* Check if we've reached the last page. */
4245 if (i == (RX_PAGES - 1))
4246 j = 0;
4247 else
4248 j = i + 1;
4249
4250 /* Setup the chain page pointers. */
4251 addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4252 rxbd->rx_bd_haddr_hi = addr;
4253 addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4254 rxbd->rx_bd_haddr_lo = addr;
4255 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4256 0, BNX_RX_CHAIN_PAGE_SZ,
4257 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4258 }
4259
4260 /* Allocate mbuf clusters for the rx_bd chain. */
4261 prod = prod_bseq = 0;
4262 chain_prod = RX_CHAIN_IDX(prod);
4263 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4264 BNX_PRINTF(sc,
4265 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4266 }
4267
4268 /* Save the RX chain producer index. */
4269 sc->rx_prod = prod;
4270 sc->rx_prod_bseq = prod_bseq;
4271
4272 for (i = 0; i < RX_PAGES; i++)
4273 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4274 sc->rx_bd_chain_map[i]->dm_mapsize,
4275 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4276
4277 /* Tell the chip about the waiting rx_bd's. */
4278 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4279 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4280
4281 bnx_init_rx_context(sc);
4282
4283 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4284
4285 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4286
4287 return rc;
4288 }
4289
4290 /****************************************************************************/
4291 /* Free memory and clear the RX data structures. */
4292 /* */
4293 /* Returns: */
4294 /* Nothing. */
4295 /****************************************************************************/
4296 void
4297 bnx_free_rx_chain(struct bnx_softc *sc)
4298 {
4299 int i;
4300
4301 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4302
4303 /* Free any mbufs still in the RX mbuf chain. */
4304 for (i = 0; i < TOTAL_RX_BD; i++) {
4305 if (sc->rx_mbuf_ptr[i] != NULL) {
4306 if (sc->rx_mbuf_map[i] != NULL) {
4307 bus_dmamap_sync(sc->bnx_dmatag,
4308 sc->rx_mbuf_map[i], 0,
4309 sc->rx_mbuf_map[i]->dm_mapsize,
4310 BUS_DMASYNC_POSTREAD);
4311 bus_dmamap_unload(sc->bnx_dmatag,
4312 sc->rx_mbuf_map[i]);
4313 }
4314 m_freem(sc->rx_mbuf_ptr[i]);
4315 sc->rx_mbuf_ptr[i] = NULL;
4316 DBRUNIF(1, sc->rx_mbuf_alloc--);
4317 }
4318 }
4319
4320 /* Clear each RX chain page. */
4321 for (i = 0; i < RX_PAGES; i++)
4322 memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4323
4324 sc->free_rx_bd = sc->max_rx_bd;
4325
4326 /* Check if we lost any mbufs in the process. */
4327 DBRUNIF((sc->rx_mbuf_alloc),
4328 aprint_error_dev(sc->bnx_dev,
4329 "Memory leak! Lost %d mbufs from rx chain!\n",
4330 sc->rx_mbuf_alloc));
4331
4332 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4333 }
4334
4335 /****************************************************************************/
4336 /* Handles PHY generated interrupt events. */
4337 /* */
4338 /* Returns: */
4339 /* Nothing. */
4340 /****************************************************************************/
4341 void
4342 bnx_phy_intr(struct bnx_softc *sc)
4343 {
4344 uint32_t new_link_state, old_link_state;
4345
4346 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4347 BUS_DMASYNC_POSTREAD);
4348 new_link_state = sc->status_block->status_attn_bits &
4349 STATUS_ATTN_BITS_LINK_STATE;
4350 old_link_state = sc->status_block->status_attn_bits_ack &
4351 STATUS_ATTN_BITS_LINK_STATE;
4352
4353 /* Handle any changes if the link state has changed. */
4354 if (new_link_state != old_link_state) {
4355 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4356
4357 callout_stop(&sc->bnx_timeout);
4358 bnx_tick(sc);
4359
4360 /* Update the status_attn_bits_ack field in the status block. */
4361 if (new_link_state) {
4362 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4363 STATUS_ATTN_BITS_LINK_STATE);
4364 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4365 } else {
4366 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4367 STATUS_ATTN_BITS_LINK_STATE);
4368 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4369 }
4370 }
4371
4372 /* Acknowledge the link change interrupt. */
4373 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4374 }
4375
4376 /****************************************************************************/
4377 /* Handles received frame interrupt events. */
4378 /* */
4379 /* Returns: */
4380 /* Nothing. */
4381 /****************************************************************************/
4382 void
4383 bnx_rx_intr(struct bnx_softc *sc)
4384 {
4385 struct status_block *sblk = sc->status_block;
4386 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4387 uint16_t hw_cons, sw_cons, sw_chain_cons;
4388 uint16_t sw_prod, sw_chain_prod;
4389 uint32_t sw_prod_bseq;
4390 struct l2_fhdr *l2fhdr;
4391 int i;
4392
4393 DBRUNIF(1, sc->rx_interrupts++);
4394 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4395 BUS_DMASYNC_POSTREAD);
4396
4397 /* Prepare the RX chain pages to be accessed by the host CPU. */
4398 for (i = 0; i < RX_PAGES; i++)
4399 bus_dmamap_sync(sc->bnx_dmatag,
4400 sc->rx_bd_chain_map[i], 0,
4401 sc->rx_bd_chain_map[i]->dm_mapsize,
4402 BUS_DMASYNC_POSTWRITE);
4403
4404 /* Get the hardware's view of the RX consumer index. */
4405 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4406 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4407 hw_cons++;
4408
4409 /* Get working copies of the driver's view of the RX indices. */
4410 sw_cons = sc->rx_cons;
4411 sw_prod = sc->rx_prod;
4412 sw_prod_bseq = sc->rx_prod_bseq;
4413
4414 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4415 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4416 __func__, sw_prod, sw_cons, sw_prod_bseq);
4417
4418 /* Prevent speculative reads from getting ahead of the status block. */
4419 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4420 BUS_SPACE_BARRIER_READ);
4421
4422 /* Update some debug statistics counters */
4423 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4424 sc->rx_low_watermark = sc->free_rx_bd);
4425 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4426
4427 /*
4428 * Scan through the receive chain as long
4429 * as there is work to do.
4430 */
4431 while (sw_cons != hw_cons) {
4432 struct mbuf *m;
4433 struct rx_bd *rxbd __diagused;
4434 unsigned int len;
4435 uint32_t status;
4436
4437 /* Convert the producer/consumer indices to an actual
4438 * rx_bd index.
4439 */
4440 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4441 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4442
4443 /* Get the used rx_bd. */
4444 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4445 sc->free_rx_bd++;
4446
4447 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4448 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4449
4450 /* The mbuf is stored with the last rx_bd entry of a packet. */
4451 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4452 #ifdef DIAGNOSTIC
4453 /* Validate that this is the last rx_bd. */
4454 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4455 printf("%s: Unexpected mbuf found in "
4456 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4457 sw_chain_cons);
4458 }
4459 #endif
4460
4461 /* DRC - ToDo: If the received packet is small, say less
4462 * than 128 bytes, allocate a new mbuf here,
4463 * copy the data to that mbuf, and recycle
4464 * the mapped jumbo frame.
4465 */
4466
4467 /* Unmap the mbuf from DMA space. */
4468 #ifdef DIAGNOSTIC
4469 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4470 printf("invalid map sw_cons 0x%x "
4471 "sw_prod 0x%x "
4472 "sw_chain_cons 0x%x "
4473 "sw_chain_prod 0x%x "
4474 "hw_cons 0x%x "
4475 "TOTAL_RX_BD_PER_PAGE 0x%x "
4476 "TOTAL_RX_BD 0x%x\n",
4477 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4478 hw_cons,
4479 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4480 }
4481 #endif
4482 bus_dmamap_sync(sc->bnx_dmatag,
4483 sc->rx_mbuf_map[sw_chain_cons], 0,
4484 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4485 BUS_DMASYNC_POSTREAD);
4486 bus_dmamap_unload(sc->bnx_dmatag,
4487 sc->rx_mbuf_map[sw_chain_cons]);
4488
4489 /* Remove the mbuf from the driver's chain. */
4490 m = sc->rx_mbuf_ptr[sw_chain_cons];
4491 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4492
4493 /*
4494 * Frames received on the NetXteme II are prepended
4495 * with the l2_fhdr structure which provides status
4496 * information about the received frame (including
4497 * VLAN tags and checksum info) and are also
4498 * automatically adjusted to align the IP header
4499 * (i.e. two null bytes are inserted before the
4500 * Ethernet header).
4501 */
4502 l2fhdr = mtod(m, struct l2_fhdr *);
4503
4504 len = l2fhdr->l2_fhdr_pkt_len;
4505 status = l2fhdr->l2_fhdr_status;
4506
4507 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4508 aprint_error("Simulating l2_fhdr status error.\n");
4509 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4510
4511 /* Watch for unusual sized frames. */
4512 DBRUNIF(((len < BNX_MIN_MTU) ||
4513 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4514 aprint_error_dev(sc->bnx_dev,
4515 "Unusual frame size found. "
4516 "Min(%d), Actual(%d), Max(%d)\n",
4517 (int)BNX_MIN_MTU, len,
4518 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4519
4520 bnx_dump_mbuf(sc, m);
4521 bnx_breakpoint(sc));
4522
4523 len -= ETHER_CRC_LEN;
4524
4525 /* Check the received frame for errors. */
4526 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4527 L2_FHDR_ERRORS_PHY_DECODE |
4528 L2_FHDR_ERRORS_ALIGNMENT |
4529 L2_FHDR_ERRORS_TOO_SHORT |
4530 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4531 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4532 len >
4533 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4534 ifp->if_ierrors++;
4535 DBRUNIF(1, sc->l2fhdr_status_errors++);
4536
4537 /* Reuse the mbuf for a new frame. */
4538 if (bnx_add_buf(sc, m, &sw_prod,
4539 &sw_chain_prod, &sw_prod_bseq)) {
4540 DBRUNIF(1, bnx_breakpoint(sc));
4541 panic("%s: Can't reuse RX mbuf!\n",
4542 device_xname(sc->bnx_dev));
4543 }
4544 continue;
4545 }
4546
4547 /*
4548 * Get a new mbuf for the rx_bd. If no new
4549 * mbufs are available then reuse the current mbuf,
4550 * log an ierror on the interface, and generate
4551 * an error in the system log.
4552 */
4553 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4554 &sw_prod_bseq)) {
4555 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4556 "Failed to allocate "
4557 "new mbuf, incoming frame dropped!\n"));
4558
4559 ifp->if_ierrors++;
4560
4561 /* Try and reuse the exisitng mbuf. */
4562 if (bnx_add_buf(sc, m, &sw_prod,
4563 &sw_chain_prod, &sw_prod_bseq)) {
4564 DBRUNIF(1, bnx_breakpoint(sc));
4565 panic("%s: Double mbuf allocation "
4566 "failure!",
4567 device_xname(sc->bnx_dev));
4568 }
4569 continue;
4570 }
4571
4572 /* Skip over the l2_fhdr when passing the data up
4573 * the stack.
4574 */
4575 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4576
4577 /* Adjust the pckt length to match the received data. */
4578 m->m_pkthdr.len = m->m_len = len;
4579
4580 /* Send the packet to the appropriate interface. */
4581 m_set_rcvif(m, ifp);
4582
4583 DBRUN(BNX_VERBOSE_RECV,
4584 struct ether_header *eh;
4585 eh = mtod(m, struct ether_header *);
4586 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4587 __func__, ether_sprintf(eh->ether_dhost),
4588 ether_sprintf(eh->ether_shost),
4589 htons(eh->ether_type)));
4590
4591 /* Validate the checksum. */
4592
4593 /* Check for an IP datagram. */
4594 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4595 /* Check if the IP checksum is valid. */
4596 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4597 == 0)
4598 m->m_pkthdr.csum_flags |=
4599 M_CSUM_IPv4;
4600 #ifdef BNX_DEBUG
4601 else
4602 DBPRINT(sc, BNX_WARN_SEND,
4603 "%s(): Invalid IP checksum "
4604 "= 0x%04X!\n",
4605 __func__,
4606 l2fhdr->l2_fhdr_ip_xsum
4607 );
4608 #endif
4609 }
4610
4611 /* Check for a valid TCP/UDP frame. */
4612 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4613 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4614 /* Check for a good TCP/UDP checksum. */
4615 if ((status &
4616 (L2_FHDR_ERRORS_TCP_XSUM |
4617 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4618 m->m_pkthdr.csum_flags |=
4619 M_CSUM_TCPv4 |
4620 M_CSUM_UDPv4;
4621 } else {
4622 DBPRINT(sc, BNX_WARN_SEND,
4623 "%s(): Invalid TCP/UDP "
4624 "checksum = 0x%04X!\n",
4625 __func__,
4626 l2fhdr->l2_fhdr_tcp_udp_xsum);
4627 }
4628 }
4629
4630 /*
4631 * If we received a packet with a vlan tag,
4632 * attach that information to the packet.
4633 */
4634 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4635 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4636 vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
4637 }
4638
4639 /* Pass the mbuf off to the upper layers. */
4640
4641 DBPRINT(sc, BNX_VERBOSE_RECV,
4642 "%s(): Passing received frame up.\n", __func__);
4643 if_percpuq_enqueue(ifp->if_percpuq, m);
4644 DBRUNIF(1, sc->rx_mbuf_alloc--);
4645
4646 }
4647
4648 sw_cons = NEXT_RX_BD(sw_cons);
4649
4650 /* Refresh hw_cons to see if there's new work */
4651 if (sw_cons == hw_cons) {
4652 hw_cons = sc->hw_rx_cons =
4653 sblk->status_rx_quick_consumer_index0;
4654 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4655 USABLE_RX_BD_PER_PAGE)
4656 hw_cons++;
4657 }
4658
4659 /* Prevent speculative reads from getting ahead of
4660 * the status block.
4661 */
4662 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4663 BUS_SPACE_BARRIER_READ);
4664 }
4665
4666 for (i = 0; i < RX_PAGES; i++)
4667 bus_dmamap_sync(sc->bnx_dmatag,
4668 sc->rx_bd_chain_map[i], 0,
4669 sc->rx_bd_chain_map[i]->dm_mapsize,
4670 BUS_DMASYNC_PREWRITE);
4671
4672 sc->rx_cons = sw_cons;
4673 sc->rx_prod = sw_prod;
4674 sc->rx_prod_bseq = sw_prod_bseq;
4675
4676 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4677 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4678
4679 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4680 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4681 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4682 }
4683
4684 /****************************************************************************/
4685 /* Handles transmit completion interrupt events. */
4686 /* */
4687 /* Returns: */
4688 /* Nothing. */
4689 /****************************************************************************/
4690 void
4691 bnx_tx_intr(struct bnx_softc *sc)
4692 {
4693 struct status_block *sblk = sc->status_block;
4694 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4695 struct bnx_pkt *pkt;
4696 bus_dmamap_t map;
4697 uint16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4698
4699 DBRUNIF(1, sc->tx_interrupts++);
4700 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4701 BUS_DMASYNC_POSTREAD);
4702
4703 /* Get the hardware's view of the TX consumer index. */
4704 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4705
4706 /* Skip to the next entry if this is a chain page pointer. */
4707 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4708 hw_tx_cons++;
4709
4710 sw_tx_cons = sc->tx_cons;
4711
4712 /* Prevent speculative reads from getting ahead of the status block. */
4713 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4714 BUS_SPACE_BARRIER_READ);
4715
4716 /* Cycle through any completed TX chain page entries. */
4717 while (sw_tx_cons != hw_tx_cons) {
4718 #ifdef BNX_DEBUG
4719 struct tx_bd *txbd = NULL;
4720 #endif
4721 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4722
4723 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4724 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4725 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4726
4727 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4728 aprint_error_dev(sc->bnx_dev,
4729 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4730 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4731
4732 DBRUNIF(1, txbd = &sc->tx_bd_chain
4733 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4734
4735 DBRUNIF((txbd == NULL),
4736 aprint_error_dev(sc->bnx_dev,
4737 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4738 bnx_breakpoint(sc));
4739
4740 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4741 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4742
4743
4744 mutex_enter(&sc->tx_pkt_mtx);
4745 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4746 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4747 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4748 mutex_exit(&sc->tx_pkt_mtx);
4749 /*
4750 * Free the associated mbuf. Remember
4751 * that only the last tx_bd of a packet
4752 * has an mbuf pointer and DMA map.
4753 */
4754 map = pkt->pkt_dmamap;
4755 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4756 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4757 bus_dmamap_unload(sc->bnx_dmatag, map);
4758
4759 m_freem(pkt->pkt_mbuf);
4760 DBRUNIF(1, sc->tx_mbuf_alloc--);
4761
4762 ifp->if_opackets++;
4763
4764 mutex_enter(&sc->tx_pkt_mtx);
4765 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4766 }
4767 mutex_exit(&sc->tx_pkt_mtx);
4768
4769 sc->used_tx_bd--;
4770 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4771 __FILE__, __LINE__, sc->used_tx_bd);
4772
4773 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4774
4775 /* Refresh hw_cons to see if there's new work. */
4776 hw_tx_cons = sc->hw_tx_cons =
4777 sblk->status_tx_quick_consumer_index0;
4778 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4779 USABLE_TX_BD_PER_PAGE)
4780 hw_tx_cons++;
4781
4782 /* Prevent speculative reads from getting ahead of
4783 * the status block.
4784 */
4785 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4786 BUS_SPACE_BARRIER_READ);
4787 }
4788
4789 /* Clear the TX timeout timer. */
4790 ifp->if_timer = 0;
4791
4792 /* Clear the tx hardware queue full flag. */
4793 if (sc->used_tx_bd < sc->max_tx_bd) {
4794 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4795 aprint_debug_dev(sc->bnx_dev,
4796 "Open TX chain! %d/%d (used/total)\n",
4797 sc->used_tx_bd, sc->max_tx_bd));
4798 ifp->if_flags &= ~IFF_OACTIVE;
4799 }
4800
4801 sc->tx_cons = sw_tx_cons;
4802 }
4803
4804 /****************************************************************************/
4805 /* Disables interrupt generation. */
4806 /* */
4807 /* Returns: */
4808 /* Nothing. */
4809 /****************************************************************************/
4810 void
4811 bnx_disable_intr(struct bnx_softc *sc)
4812 {
4813 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4814 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4815 }
4816
4817 /****************************************************************************/
4818 /* Enables interrupt generation. */
4819 /* */
4820 /* Returns: */
4821 /* Nothing. */
4822 /****************************************************************************/
4823 void
4824 bnx_enable_intr(struct bnx_softc *sc)
4825 {
4826 uint32_t val;
4827
4828 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4829 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4830
4831 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4832 sc->last_status_idx);
4833
4834 val = REG_RD(sc, BNX_HC_COMMAND);
4835 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4836 }
4837
4838 /****************************************************************************/
4839 /* Handles controller initialization. */
4840 /* */
4841 /****************************************************************************/
4842 int
4843 bnx_init(struct ifnet *ifp)
4844 {
4845 struct bnx_softc *sc = ifp->if_softc;
4846 uint32_t ether_mtu;
4847 int s, error = 0;
4848
4849 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4850
4851 s = splnet();
4852
4853 bnx_stop(ifp, 0);
4854
4855 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4856 aprint_error_dev(sc->bnx_dev,
4857 "Controller reset failed!\n");
4858 goto bnx_init_exit;
4859 }
4860
4861 if ((error = bnx_chipinit(sc)) != 0) {
4862 aprint_error_dev(sc->bnx_dev,
4863 "Controller initialization failed!\n");
4864 goto bnx_init_exit;
4865 }
4866
4867 if ((error = bnx_blockinit(sc)) != 0) {
4868 aprint_error_dev(sc->bnx_dev,
4869 "Block initialization failed!\n");
4870 goto bnx_init_exit;
4871 }
4872
4873 /* Calculate and program the Ethernet MRU size. */
4874 if (ifp->if_mtu <= ETHERMTU) {
4875 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4876 sc->mbuf_alloc_size = MCLBYTES;
4877 } else {
4878 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4879 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4880 }
4881
4882
4883 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4884 __func__, ether_mtu);
4885
4886 /*
4887 * Program the MRU and enable Jumbo frame
4888 * support.
4889 */
4890 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4891 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4892
4893 /* Calculate the RX Ethernet frame size for rx_bd's. */
4894 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4895
4896 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4897 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4898 sc->mbuf_alloc_size, sc->max_frame_size);
4899
4900 /* Program appropriate promiscuous/multicast filtering. */
4901 bnx_iff(sc);
4902
4903 /* Init RX buffer descriptor chain. */
4904 bnx_init_rx_chain(sc);
4905
4906 /* Init TX buffer descriptor chain. */
4907 bnx_init_tx_chain(sc);
4908
4909 /* Enable host interrupts. */
4910 bnx_enable_intr(sc);
4911
4912 if ((error = ether_mediachange(ifp)) != 0)
4913 goto bnx_init_exit;
4914
4915 SET(ifp->if_flags, IFF_RUNNING);
4916 CLR(ifp->if_flags, IFF_OACTIVE);
4917
4918 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4919
4920 bnx_init_exit:
4921 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4922
4923 splx(s);
4924
4925 return error;
4926 }
4927
4928 /****************************************************************************/
4929 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4930 /* memory visible to the controller. */
4931 /* */
4932 /* Returns: */
4933 /* 0 for success, positive value for failure. */
4934 /****************************************************************************/
4935 int
4936 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4937 {
4938 struct bnx_pkt *pkt;
4939 bus_dmamap_t map;
4940 struct tx_bd *txbd = NULL;
4941 uint16_t vlan_tag = 0, flags = 0;
4942 uint16_t chain_prod, prod;
4943 #ifdef BNX_DEBUG
4944 uint16_t debug_prod;
4945 #endif
4946 uint32_t addr, prod_bseq;
4947 int i, error;
4948 static struct work bnx_wk; /* Dummy work. Statically allocated. */
4949
4950 mutex_enter(&sc->tx_pkt_mtx);
4951 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4952 if (pkt == NULL) {
4953 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4954 mutex_exit(&sc->tx_pkt_mtx);
4955 return ENETDOWN;
4956 }
4957
4958 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
4959 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
4960 workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
4961 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4962 }
4963
4964 mutex_exit(&sc->tx_pkt_mtx);
4965 return ENOMEM;
4966 }
4967 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4968 mutex_exit(&sc->tx_pkt_mtx);
4969
4970 /* Transfer any checksum offload flags to the bd. */
4971 if (m->m_pkthdr.csum_flags) {
4972 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4973 flags |= TX_BD_FLAGS_IP_CKSUM;
4974 if (m->m_pkthdr.csum_flags &
4975 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4976 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4977 }
4978
4979 /* Transfer any VLAN tags to the bd. */
4980 if (vlan_has_tag(m)) {
4981 flags |= TX_BD_FLAGS_VLAN_TAG;
4982 vlan_tag = vlan_get_tag(m);
4983 }
4984
4985 /* Map the mbuf into DMAable memory. */
4986 prod = sc->tx_prod;
4987 chain_prod = TX_CHAIN_IDX(prod);
4988 map = pkt->pkt_dmamap;
4989
4990 /* Map the mbuf into our DMA address space. */
4991 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4992 if (error != 0) {
4993 aprint_error_dev(sc->bnx_dev,
4994 "Error mapping mbuf into TX chain!\n");
4995 sc->tx_dma_map_failures++;
4996 goto maperr;
4997 }
4998 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4999 BUS_DMASYNC_PREWRITE);
5000 /* Make sure there's room in the chain */
5001 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
5002 goto nospace;
5003
5004 /* prod points to an empty tx_bd at this point. */
5005 prod_bseq = sc->tx_prod_bseq;
5006 #ifdef BNX_DEBUG
5007 debug_prod = chain_prod;
5008 #endif
5009 DBPRINT(sc, BNX_INFO_SEND,
5010 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5011 "prod_bseq = 0x%08X\n",
5012 __func__, prod, chain_prod, prod_bseq);
5013
5014 /*
5015 * Cycle through each mbuf segment that makes up
5016 * the outgoing frame, gathering the mapping info
5017 * for that segment and creating a tx_bd for the
5018 * mbuf.
5019 */
5020 for (i = 0; i < map->dm_nsegs ; i++) {
5021 chain_prod = TX_CHAIN_IDX(prod);
5022 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5023
5024 addr = (uint32_t)map->dm_segs[i].ds_addr;
5025 txbd->tx_bd_haddr_lo = addr;
5026 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5027 txbd->tx_bd_haddr_hi = addr;
5028 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5029 txbd->tx_bd_vlan_tag = vlan_tag;
5030 txbd->tx_bd_flags = flags;
5031 prod_bseq += map->dm_segs[i].ds_len;
5032 if (i == 0)
5033 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5034 prod = NEXT_TX_BD(prod);
5035 }
5036 /* Set the END flag on the last TX buffer descriptor. */
5037 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5038
5039 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5040
5041 DBPRINT(sc, BNX_INFO_SEND,
5042 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
5043 "prod_bseq = 0x%08X\n",
5044 __func__, prod, chain_prod, prod_bseq);
5045
5046 pkt->pkt_mbuf = m;
5047 pkt->pkt_end_desc = chain_prod;
5048
5049 mutex_enter(&sc->tx_pkt_mtx);
5050 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5051 mutex_exit(&sc->tx_pkt_mtx);
5052
5053 sc->used_tx_bd += map->dm_nsegs;
5054 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5055 __FILE__, __LINE__, sc->used_tx_bd);
5056
5057 /* Update some debug statistics counters */
5058 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5059 sc->tx_hi_watermark = sc->used_tx_bd);
5060 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5061 DBRUNIF(1, sc->tx_mbuf_alloc++);
5062
5063 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5064 map->dm_nsegs));
5065
5066 /* prod points to the next free tx_bd at this point. */
5067 sc->tx_prod = prod;
5068 sc->tx_prod_bseq = prod_bseq;
5069
5070 return 0;
5071
5072
5073 nospace:
5074 bus_dmamap_unload(sc->bnx_dmatag, map);
5075 maperr:
5076 mutex_enter(&sc->tx_pkt_mtx);
5077 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5078 mutex_exit(&sc->tx_pkt_mtx);
5079
5080 return ENOMEM;
5081 }
5082
5083 /****************************************************************************/
5084 /* Main transmit routine. */
5085 /* */
5086 /* Returns: */
5087 /* Nothing. */
5088 /****************************************************************************/
5089 void
5090 bnx_start(struct ifnet *ifp)
5091 {
5092 struct bnx_softc *sc = ifp->if_softc;
5093 struct mbuf *m_head = NULL;
5094 int count = 0;
5095 #ifdef BNX_DEBUG
5096 uint16_t tx_chain_prod;
5097 #endif
5098
5099 /* If there's no link or the transmit queue is empty then just exit. */
5100 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
5101 DBPRINT(sc, BNX_INFO_SEND,
5102 "%s(): output active or device not running.\n", __func__);
5103 goto bnx_start_exit;
5104 }
5105
5106 /* prod points to the next free tx_bd. */
5107 #ifdef BNX_DEBUG
5108 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5109 #endif
5110
5111 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5112 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5113 "used_tx %d max_tx %d\n",
5114 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5115 sc->used_tx_bd, sc->max_tx_bd);
5116
5117 /*
5118 * Keep adding entries while there is space in the ring.
5119 */
5120 while (sc->used_tx_bd < sc->max_tx_bd) {
5121 /* Check for any frames to send. */
5122 IFQ_POLL(&ifp->if_snd, m_head);
5123 if (m_head == NULL)
5124 break;
5125
5126 /*
5127 * Pack the data into the transmit ring. If we
5128 * don't have room, set the OACTIVE flag to wait
5129 * for the NIC to drain the chain.
5130 */
5131 if (bnx_tx_encap(sc, m_head)) {
5132 ifp->if_flags |= IFF_OACTIVE;
5133 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5134 "business! Total tx_bd used = %d\n",
5135 sc->used_tx_bd);
5136 break;
5137 }
5138
5139 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5140 count++;
5141
5142 /* Send a copy of the frame to any BPF listeners. */
5143 bpf_mtap(ifp, m_head);
5144 }
5145
5146 if (count == 0) {
5147 /* no packets were dequeued */
5148 DBPRINT(sc, BNX_VERBOSE_SEND,
5149 "%s(): No packets were dequeued\n", __func__);
5150 goto bnx_start_exit;
5151 }
5152
5153 /* Update the driver's counters. */
5154 #ifdef BNX_DEBUG
5155 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5156 #endif
5157
5158 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
5159 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
5160 tx_chain_prod, sc->tx_prod_bseq);
5161
5162 /* Start the transmit. */
5163 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5164 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5165
5166 /* Set the tx timeout. */
5167 ifp->if_timer = BNX_TX_TIMEOUT;
5168
5169 bnx_start_exit:
5170 return;
5171 }
5172
5173 /****************************************************************************/
5174 /* Handles any IOCTL calls from the operating system. */
5175 /* */
5176 /* Returns: */
5177 /* 0 for success, positive value for failure. */
5178 /****************************************************************************/
5179 int
5180 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5181 {
5182 struct bnx_softc *sc = ifp->if_softc;
5183 struct ifreq *ifr = (struct ifreq *) data;
5184 struct mii_data *mii = &sc->bnx_mii;
5185 int s, error = 0;
5186
5187 s = splnet();
5188
5189 switch (command) {
5190 case SIOCSIFFLAGS:
5191 if ((error = ifioctl_common(ifp, command, data)) != 0)
5192 break;
5193 /* XXX set an ifflags callback and let ether_ioctl
5194 * handle all of this.
5195 */
5196 if (ISSET(ifp->if_flags, IFF_UP)) {
5197 if (ifp->if_flags & IFF_RUNNING)
5198 error = ENETRESET;
5199 else
5200 bnx_init(ifp);
5201 } else if (ifp->if_flags & IFF_RUNNING)
5202 bnx_stop(ifp, 1);
5203 break;
5204
5205 case SIOCSIFMEDIA:
5206 case SIOCGIFMEDIA:
5207 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5208 sc->bnx_phy_flags);
5209
5210 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5211 break;
5212
5213 default:
5214 error = ether_ioctl(ifp, command, data);
5215 }
5216
5217 if (error == ENETRESET) {
5218 if (ifp->if_flags & IFF_RUNNING)
5219 bnx_iff(sc);
5220 error = 0;
5221 }
5222
5223 splx(s);
5224 return error;
5225 }
5226
5227 /****************************************************************************/
5228 /* Transmit timeout handler. */
5229 /* */
5230 /* Returns: */
5231 /* Nothing. */
5232 /****************************************************************************/
5233 void
5234 bnx_watchdog(struct ifnet *ifp)
5235 {
5236 struct bnx_softc *sc = ifp->if_softc;
5237
5238 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5239 bnx_dump_status_block(sc));
5240 /*
5241 * If we are in this routine because of pause frames, then
5242 * don't reset the hardware.
5243 */
5244 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5245 return;
5246
5247 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5248
5249 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5250
5251 bnx_init(ifp);
5252
5253 ifp->if_oerrors++;
5254 }
5255
5256 /*
5257 * Interrupt handler.
5258 */
5259 /****************************************************************************/
5260 /* Main interrupt entry point. Verifies that the controller generated the */
5261 /* interrupt and then calls a separate routine for handle the various */
5262 /* interrupt causes (PHY, TX, RX). */
5263 /* */
5264 /* Returns: */
5265 /* 0 for success, positive value for failure. */
5266 /****************************************************************************/
5267 int
5268 bnx_intr(void *xsc)
5269 {
5270 struct bnx_softc *sc;
5271 struct ifnet *ifp;
5272 uint32_t status_attn_bits;
5273 const struct status_block *sblk;
5274
5275 sc = xsc;
5276
5277 ifp = &sc->bnx_ec.ec_if;
5278
5279 if (!device_is_active(sc->bnx_dev) ||
5280 (ifp->if_flags & IFF_RUNNING) == 0)
5281 return 0;
5282
5283 DBRUNIF(1, sc->interrupts_generated++);
5284
5285 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5286 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5287
5288 /*
5289 * If the hardware status block index
5290 * matches the last value read by the
5291 * driver and we haven't asserted our
5292 * interrupt then there's nothing to do.
5293 */
5294 if ((sc->status_block->status_idx == sc->last_status_idx) &&
5295 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5296 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5297 return 0;
5298
5299 /* Ack the interrupt and stop others from occuring. */
5300 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5301 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5302 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5303
5304 /* Keep processing data as long as there is work to do. */
5305 for (;;) {
5306 sblk = sc->status_block;
5307 status_attn_bits = sblk->status_attn_bits;
5308
5309 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5310 aprint_debug("Simulating unexpected status attention bit set.");
5311 status_attn_bits = status_attn_bits |
5312 STATUS_ATTN_BITS_PARITY_ERROR);
5313
5314 /* Was it a link change interrupt? */
5315 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5316 (sblk->status_attn_bits_ack &
5317 STATUS_ATTN_BITS_LINK_STATE))
5318 bnx_phy_intr(sc);
5319
5320 /* If any other attention is asserted then the chip is toast. */
5321 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5322 (sblk->status_attn_bits_ack &
5323 ~STATUS_ATTN_BITS_LINK_STATE))) {
5324 DBRUN(1, sc->unexpected_attentions++);
5325
5326 BNX_PRINTF(sc,
5327 "Fatal attention detected: 0x%08X\n",
5328 sblk->status_attn_bits);
5329
5330 DBRUN(BNX_FATAL,
5331 if (bnx_debug_unexpected_attention == 0)
5332 bnx_breakpoint(sc));
5333
5334 bnx_init(ifp);
5335 return 1;
5336 }
5337
5338 /* Check for any completed RX frames. */
5339 if (sblk->status_rx_quick_consumer_index0 !=
5340 sc->hw_rx_cons)
5341 bnx_rx_intr(sc);
5342
5343 /* Check for any completed TX frames. */
5344 if (sblk->status_tx_quick_consumer_index0 !=
5345 sc->hw_tx_cons)
5346 bnx_tx_intr(sc);
5347
5348 /*
5349 * Save the status block index value for use during the
5350 * next interrupt.
5351 */
5352 sc->last_status_idx = sblk->status_idx;
5353
5354 /* Prevent speculative reads from getting ahead of the
5355 * status block.
5356 */
5357 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5358 BUS_SPACE_BARRIER_READ);
5359
5360 /* If there's no work left then exit the isr. */
5361 if ((sblk->status_rx_quick_consumer_index0 ==
5362 sc->hw_rx_cons) &&
5363 (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
5364 break;
5365 }
5366
5367 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5368 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5369
5370 /* Re-enable interrupts. */
5371 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5372 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5373 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5374 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5375 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5376
5377 /* Handle any frames that arrived while handling the interrupt. */
5378 if_schedule_deferred_start(ifp);
5379
5380 return 1;
5381 }
5382
5383 /****************************************************************************/
5384 /* Programs the various packet receive modes (broadcast and multicast). */
5385 /* */
5386 /* Returns: */
5387 /* Nothing. */
5388 /****************************************************************************/
5389 void
5390 bnx_iff(struct bnx_softc *sc)
5391 {
5392 struct ethercom *ec = &sc->bnx_ec;
5393 struct ifnet *ifp = &ec->ec_if;
5394 struct ether_multi *enm;
5395 struct ether_multistep step;
5396 uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5397 uint32_t rx_mode, sort_mode;
5398 int h, i;
5399
5400 /* Initialize receive mode default settings. */
5401 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5402 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5403 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5404 ifp->if_flags &= ~IFF_ALLMULTI;
5405
5406 /*
5407 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5408 * be enbled.
5409 */
5410 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5411 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5412
5413 /*
5414 * Check for promiscuous, all multicast, or selected
5415 * multicast address filtering.
5416 */
5417 if (ifp->if_flags & IFF_PROMISC) {
5418 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5419
5420 ifp->if_flags |= IFF_ALLMULTI;
5421 /* Enable promiscuous mode. */
5422 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5423 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5424 } else if (ifp->if_flags & IFF_ALLMULTI) {
5425 allmulti:
5426 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5427
5428 ifp->if_flags |= IFF_ALLMULTI;
5429 /* Enable all multicast addresses. */
5430 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5431 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5432 0xffffffff);
5433 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5434 } else {
5435 /* Accept one or more multicast(s). */
5436 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5437
5438 ETHER_FIRST_MULTI(step, ec, enm);
5439 while (enm != NULL) {
5440 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5441 ETHER_ADDR_LEN)) {
5442 goto allmulti;
5443 }
5444 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5445 0xFF;
5446 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5447 ETHER_NEXT_MULTI(step, enm);
5448 }
5449
5450 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5451 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5452 hashes[i]);
5453
5454 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5455 }
5456
5457 /* Only make changes if the recive mode has actually changed. */
5458 if (rx_mode != sc->rx_mode) {
5459 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5460 rx_mode);
5461
5462 sc->rx_mode = rx_mode;
5463 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5464 }
5465
5466 /* Disable and clear the exisitng sort before enabling a new sort. */
5467 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5468 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5469 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5470 }
5471
5472 /****************************************************************************/
5473 /* Called periodically to updates statistics from the controllers */
5474 /* statistics block. */
5475 /* */
5476 /* Returns: */
5477 /* Nothing. */
5478 /****************************************************************************/
5479 void
5480 bnx_stats_update(struct bnx_softc *sc)
5481 {
5482 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5483 struct statistics_block *stats;
5484
5485 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5486 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5487 BUS_DMASYNC_POSTREAD);
5488
5489 stats = (struct statistics_block *)sc->stats_block;
5490
5491 /*
5492 * Update the interface statistics from the
5493 * hardware statistics.
5494 */
5495 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5496
5497 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5498 (u_long)stats->stat_EtherStatsOverrsizePkts +
5499 (u_long)stats->stat_IfInMBUFDiscards +
5500 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5501 (u_long)stats->stat_Dot3StatsFCSErrors;
5502
5503 ifp->if_oerrors = (u_long)
5504 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5505 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5506 (u_long)stats->stat_Dot3StatsLateCollisions;
5507
5508 /*
5509 * Certain controllers don't report
5510 * carrier sense errors correctly.
5511 * See errata E11_5708CA0_1165.
5512 */
5513 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5514 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5515 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5516
5517 /*
5518 * Update the sysctl statistics from the
5519 * hardware statistics.
5520 */
5521 sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5522 (uint64_t) stats->stat_IfHCInOctets_lo;
5523
5524 sc->stat_IfHCInBadOctets =
5525 ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5526 (uint64_t) stats->stat_IfHCInBadOctets_lo;
5527
5528 sc->stat_IfHCOutOctets =
5529 ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5530 (uint64_t) stats->stat_IfHCOutOctets_lo;
5531
5532 sc->stat_IfHCOutBadOctets =
5533 ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5534 (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5535
5536 sc->stat_IfHCInUcastPkts =
5537 ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5538 (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5539
5540 sc->stat_IfHCInMulticastPkts =
5541 ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5542 (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5543
5544 sc->stat_IfHCInBroadcastPkts =
5545 ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5546 (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5547
5548 sc->stat_IfHCOutUcastPkts =
5549 ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5550 (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5551
5552 sc->stat_IfHCOutMulticastPkts =
5553 ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5554 (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5555
5556 sc->stat_IfHCOutBroadcastPkts =
5557 ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5558 (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5559
5560 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5561 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5562
5563 sc->stat_Dot3StatsCarrierSenseErrors =
5564 stats->stat_Dot3StatsCarrierSenseErrors;
5565
5566 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5567
5568 sc->stat_Dot3StatsAlignmentErrors =
5569 stats->stat_Dot3StatsAlignmentErrors;
5570
5571 sc->stat_Dot3StatsSingleCollisionFrames =
5572 stats->stat_Dot3StatsSingleCollisionFrames;
5573
5574 sc->stat_Dot3StatsMultipleCollisionFrames =
5575 stats->stat_Dot3StatsMultipleCollisionFrames;
5576
5577 sc->stat_Dot3StatsDeferredTransmissions =
5578 stats->stat_Dot3StatsDeferredTransmissions;
5579
5580 sc->stat_Dot3StatsExcessiveCollisions =
5581 stats->stat_Dot3StatsExcessiveCollisions;
5582
5583 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5584
5585 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5586
5587 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5588
5589 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5590
5591 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5592
5593 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5594
5595 sc->stat_EtherStatsPktsRx64Octets =
5596 stats->stat_EtherStatsPktsRx64Octets;
5597
5598 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5599 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5600
5601 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5602 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5603
5604 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5605 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5606
5607 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5608 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5609
5610 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5611 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5612
5613 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5614 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5615
5616 sc->stat_EtherStatsPktsTx64Octets =
5617 stats->stat_EtherStatsPktsTx64Octets;
5618
5619 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5620 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5621
5622 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5623 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5624
5625 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5626 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5627
5628 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5629 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5630
5631 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5632 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5633
5634 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5635 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5636
5637 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5638
5639 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5640
5641 sc->stat_OutXonSent = stats->stat_OutXonSent;
5642
5643 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5644
5645 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5646
5647 sc->stat_MacControlFramesReceived =
5648 stats->stat_MacControlFramesReceived;
5649
5650 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5651
5652 sc->stat_IfInFramesL2FilterDiscards =
5653 stats->stat_IfInFramesL2FilterDiscards;
5654
5655 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5656
5657 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5658
5659 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5660
5661 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5662
5663 sc->stat_CatchupInRuleCheckerDiscards =
5664 stats->stat_CatchupInRuleCheckerDiscards;
5665
5666 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5667
5668 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5669
5670 sc->stat_CatchupInRuleCheckerP4Hit =
5671 stats->stat_CatchupInRuleCheckerP4Hit;
5672
5673 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5674 }
5675
5676 void
5677 bnx_tick(void *xsc)
5678 {
5679 struct bnx_softc *sc = xsc;
5680 struct mii_data *mii;
5681 uint32_t msg;
5682 uint16_t prod, chain_prod;
5683 uint32_t prod_bseq;
5684 int s = splnet();
5685
5686 /* Tell the firmware that the driver is still running. */
5687 #ifdef BNX_DEBUG
5688 msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5689 #else
5690 msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5691 #endif
5692 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5693
5694 /* Update the statistics from the hardware statistics block. */
5695 bnx_stats_update(sc);
5696
5697 /* Schedule the next tick. */
5698 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5699
5700 mii = &sc->bnx_mii;
5701 mii_tick(mii);
5702
5703 /* try to get more RX buffers, just in case */
5704 prod = sc->rx_prod;
5705 prod_bseq = sc->rx_prod_bseq;
5706 chain_prod = RX_CHAIN_IDX(prod);
5707 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5708 sc->rx_prod = prod;
5709 sc->rx_prod_bseq = prod_bseq;
5710 splx(s);
5711 return;
5712 }
5713
5714 /****************************************************************************/
5715 /* BNX Debug Routines */
5716 /****************************************************************************/
5717 #ifdef BNX_DEBUG
5718
5719 /****************************************************************************/
5720 /* Prints out information about an mbuf. */
5721 /* */
5722 /* Returns: */
5723 /* Nothing. */
5724 /****************************************************************************/
5725 void
5726 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5727 {
5728 struct mbuf *mp = m;
5729
5730 if (m == NULL) {
5731 /* Index out of range. */
5732 aprint_error("mbuf ptr is null!\n");
5733 return;
5734 }
5735
5736 while (mp) {
5737 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5738 mp, mp->m_len);
5739
5740 if (mp->m_flags & M_EXT)
5741 aprint_debug("M_EXT ");
5742 if (mp->m_flags & M_PKTHDR)
5743 aprint_debug("M_PKTHDR ");
5744 aprint_debug("\n");
5745
5746 if (mp->m_flags & M_EXT)
5747 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5748 mp, mp->m_ext.ext_size);
5749
5750 mp = mp->m_next;
5751 }
5752 }
5753
5754 /****************************************************************************/
5755 /* Prints out the mbufs in the TX mbuf chain. */
5756 /* */
5757 /* Returns: */
5758 /* Nothing. */
5759 /****************************************************************************/
5760 void
5761 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5762 {
5763 #if 0
5764 struct mbuf *m;
5765 int i;
5766
5767 aprint_debug_dev(sc->bnx_dev,
5768 "----------------------------"
5769 " tx mbuf data "
5770 "----------------------------\n");
5771
5772 for (i = 0; i < count; i++) {
5773 m = sc->tx_mbuf_ptr[chain_prod];
5774 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5775 bnx_dump_mbuf(sc, m);
5776 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5777 }
5778
5779 aprint_debug_dev(sc->bnx_dev,
5780 "--------------------------------------------"
5781 "----------------------------\n");
5782 #endif
5783 }
5784
5785 /*
5786 * This routine prints the RX mbuf chain.
5787 */
5788 void
5789 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5790 {
5791 struct mbuf *m;
5792 int i;
5793
5794 aprint_debug_dev(sc->bnx_dev,
5795 "----------------------------"
5796 " rx mbuf data "
5797 "----------------------------\n");
5798
5799 for (i = 0; i < count; i++) {
5800 m = sc->rx_mbuf_ptr[chain_prod];
5801 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5802 bnx_dump_mbuf(sc, m);
5803 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5804 }
5805
5806
5807 aprint_debug_dev(sc->bnx_dev,
5808 "--------------------------------------------"
5809 "----------------------------\n");
5810 }
5811
5812 void
5813 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5814 {
5815 if (idx > MAX_TX_BD)
5816 /* Index out of range. */
5817 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5818 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5819 /* TX Chain page pointer. */
5820 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5821 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5822 txbd->tx_bd_haddr_lo);
5823 else
5824 /* Normal tx_bd entry. */
5825 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5826 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5827 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5828 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5829 txbd->tx_bd_flags);
5830 }
5831
5832 void
5833 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5834 {
5835 if (idx > MAX_RX_BD)
5836 /* Index out of range. */
5837 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5838 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5839 /* TX Chain page pointer. */
5840 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5841 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5842 rxbd->rx_bd_haddr_lo);
5843 else
5844 /* Normal tx_bd entry. */
5845 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5846 "0x%08X, flags = 0x%08X\n", idx,
5847 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5848 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5849 }
5850
5851 void
5852 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5853 {
5854 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5855 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5856 "tcp_udp_xsum = 0x%04X\n", idx,
5857 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5858 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5859 l2fhdr->l2_fhdr_tcp_udp_xsum);
5860 }
5861
5862 /*
5863 * This routine prints the TX chain.
5864 */
5865 void
5866 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5867 {
5868 struct tx_bd *txbd;
5869 int i;
5870
5871 /* First some info about the tx_bd chain structure. */
5872 aprint_debug_dev(sc->bnx_dev,
5873 "----------------------------"
5874 " tx_bd chain "
5875 "----------------------------\n");
5876
5877 BNX_PRINTF(sc,
5878 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5879 (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
5880
5881 BNX_PRINTF(sc,
5882 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5883 (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
5884
5885 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", TOTAL_TX_BD);
5886
5887 aprint_error_dev(sc->bnx_dev, ""
5888 "-----------------------------"
5889 " tx_bd data "
5890 "-----------------------------\n");
5891
5892 /* Now print out the tx_bd's themselves. */
5893 for (i = 0; i < count; i++) {
5894 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5895 bnx_dump_txbd(sc, tx_prod, txbd);
5896 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5897 }
5898
5899 aprint_debug_dev(sc->bnx_dev,
5900 "-----------------------------"
5901 "--------------"
5902 "-----------------------------\n");
5903 }
5904
5905 /*
5906 * This routine prints the RX chain.
5907 */
5908 void
5909 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5910 {
5911 struct rx_bd *rxbd;
5912 int i;
5913
5914 /* First some info about the tx_bd chain structure. */
5915 aprint_debug_dev(sc->bnx_dev,
5916 "----------------------------"
5917 " rx_bd chain "
5918 "----------------------------\n");
5919
5920 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5921
5922 BNX_PRINTF(sc,
5923 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5924 (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
5925
5926 BNX_PRINTF(sc,
5927 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5928 (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
5929
5930 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", TOTAL_RX_BD);
5931
5932 aprint_error_dev(sc->bnx_dev,
5933 "----------------------------"
5934 " rx_bd data "
5935 "----------------------------\n");
5936
5937 /* Now print out the rx_bd's themselves. */
5938 for (i = 0; i < count; i++) {
5939 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5940 bnx_dump_rxbd(sc, rx_prod, rxbd);
5941 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5942 }
5943
5944 aprint_debug_dev(sc->bnx_dev,
5945 "----------------------------"
5946 "--------------"
5947 "----------------------------\n");
5948 }
5949
5950 /*
5951 * This routine prints the status block.
5952 */
5953 void
5954 bnx_dump_status_block(struct bnx_softc *sc)
5955 {
5956 struct status_block *sblk;
5957 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5958 BUS_DMASYNC_POSTREAD);
5959
5960 sblk = sc->status_block;
5961
5962 aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5963 "-----------------------------\n");
5964
5965 BNX_PRINTF(sc,
5966 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5967 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5968 sblk->status_idx);
5969
5970 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5971 sblk->status_rx_quick_consumer_index0,
5972 sblk->status_tx_quick_consumer_index0);
5973
5974 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5975
5976 /* Theses indices are not used for normal L2 drivers. */
5977 if (sblk->status_rx_quick_consumer_index1 ||
5978 sblk->status_tx_quick_consumer_index1)
5979 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5980 sblk->status_rx_quick_consumer_index1,
5981 sblk->status_tx_quick_consumer_index1);
5982
5983 if (sblk->status_rx_quick_consumer_index2 ||
5984 sblk->status_tx_quick_consumer_index2)
5985 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5986 sblk->status_rx_quick_consumer_index2,
5987 sblk->status_tx_quick_consumer_index2);
5988
5989 if (sblk->status_rx_quick_consumer_index3 ||
5990 sblk->status_tx_quick_consumer_index3)
5991 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5992 sblk->status_rx_quick_consumer_index3,
5993 sblk->status_tx_quick_consumer_index3);
5994
5995 if (sblk->status_rx_quick_consumer_index4 ||
5996 sblk->status_rx_quick_consumer_index5)
5997 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5998 sblk->status_rx_quick_consumer_index4,
5999 sblk->status_rx_quick_consumer_index5);
6000
6001 if (sblk->status_rx_quick_consumer_index6 ||
6002 sblk->status_rx_quick_consumer_index7)
6003 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
6004 sblk->status_rx_quick_consumer_index6,
6005 sblk->status_rx_quick_consumer_index7);
6006
6007 if (sblk->status_rx_quick_consumer_index8 ||
6008 sblk->status_rx_quick_consumer_index9)
6009 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
6010 sblk->status_rx_quick_consumer_index8,
6011 sblk->status_rx_quick_consumer_index9);
6012
6013 if (sblk->status_rx_quick_consumer_index10 ||
6014 sblk->status_rx_quick_consumer_index11)
6015 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
6016 sblk->status_rx_quick_consumer_index10,
6017 sblk->status_rx_quick_consumer_index11);
6018
6019 if (sblk->status_rx_quick_consumer_index12 ||
6020 sblk->status_rx_quick_consumer_index13)
6021 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
6022 sblk->status_rx_quick_consumer_index12,
6023 sblk->status_rx_quick_consumer_index13);
6024
6025 if (sblk->status_rx_quick_consumer_index14 ||
6026 sblk->status_rx_quick_consumer_index15)
6027 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
6028 sblk->status_rx_quick_consumer_index14,
6029 sblk->status_rx_quick_consumer_index15);
6030
6031 if (sblk->status_completion_producer_index ||
6032 sblk->status_cmd_consumer_index)
6033 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
6034 sblk->status_completion_producer_index,
6035 sblk->status_cmd_consumer_index);
6036
6037 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6038 "-----------------------------\n");
6039 }
6040
6041 /*
6042 * This routine prints the statistics block.
6043 */
6044 void
6045 bnx_dump_stats_block(struct bnx_softc *sc)
6046 {
6047 struct statistics_block *sblk;
6048 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6049 BUS_DMASYNC_POSTREAD);
6050
6051 sblk = sc->stats_block;
6052
6053 aprint_debug_dev(sc->bnx_dev, ""
6054 "-----------------------------"
6055 " Stats Block "
6056 "-----------------------------\n");
6057
6058 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
6059 "IfHcInBadOctets = 0x%08X:%08X\n",
6060 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6061 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6062
6063 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
6064 "IfHcOutBadOctets = 0x%08X:%08X\n",
6065 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6066 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6067
6068 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
6069 "IfHcInMulticastPkts = 0x%08X:%08X\n",
6070 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6071 sblk->stat_IfHCInMulticastPkts_hi,
6072 sblk->stat_IfHCInMulticastPkts_lo);
6073
6074 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
6075 "IfHcOutUcastPkts = 0x%08X:%08X\n",
6076 sblk->stat_IfHCInBroadcastPkts_hi,
6077 sblk->stat_IfHCInBroadcastPkts_lo,
6078 sblk->stat_IfHCOutUcastPkts_hi,
6079 sblk->stat_IfHCOutUcastPkts_lo);
6080
6081 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6082 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6083 sblk->stat_IfHCOutMulticastPkts_hi,
6084 sblk->stat_IfHCOutMulticastPkts_lo,
6085 sblk->stat_IfHCOutBroadcastPkts_hi,
6086 sblk->stat_IfHCOutBroadcastPkts_lo);
6087
6088 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6089 BNX_PRINTF(sc, "0x%08X : "
6090 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6091 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6092
6093 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6094 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6095 sblk->stat_Dot3StatsCarrierSenseErrors);
6096
6097 if (sblk->stat_Dot3StatsFCSErrors)
6098 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6099 sblk->stat_Dot3StatsFCSErrors);
6100
6101 if (sblk->stat_Dot3StatsAlignmentErrors)
6102 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6103 sblk->stat_Dot3StatsAlignmentErrors);
6104
6105 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6106 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6107 sblk->stat_Dot3StatsSingleCollisionFrames);
6108
6109 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6110 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6111 sblk->stat_Dot3StatsMultipleCollisionFrames);
6112
6113 if (sblk->stat_Dot3StatsDeferredTransmissions)
6114 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6115 sblk->stat_Dot3StatsDeferredTransmissions);
6116
6117 if (sblk->stat_Dot3StatsExcessiveCollisions)
6118 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6119 sblk->stat_Dot3StatsExcessiveCollisions);
6120
6121 if (sblk->stat_Dot3StatsLateCollisions)
6122 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6123 sblk->stat_Dot3StatsLateCollisions);
6124
6125 if (sblk->stat_EtherStatsCollisions)
6126 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6127 sblk->stat_EtherStatsCollisions);
6128
6129 if (sblk->stat_EtherStatsFragments)
6130 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6131 sblk->stat_EtherStatsFragments);
6132
6133 if (sblk->stat_EtherStatsJabbers)
6134 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6135 sblk->stat_EtherStatsJabbers);
6136
6137 if (sblk->stat_EtherStatsUndersizePkts)
6138 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6139 sblk->stat_EtherStatsUndersizePkts);
6140
6141 if (sblk->stat_EtherStatsOverrsizePkts)
6142 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6143 sblk->stat_EtherStatsOverrsizePkts);
6144
6145 if (sblk->stat_EtherStatsPktsRx64Octets)
6146 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6147 sblk->stat_EtherStatsPktsRx64Octets);
6148
6149 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6150 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6151 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6152
6153 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6154 BNX_PRINTF(sc, "0x%08X : "
6155 "EtherStatsPktsRx128Octetsto255Octets\n",
6156 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6157
6158 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6159 BNX_PRINTF(sc, "0x%08X : "
6160 "EtherStatsPktsRx256Octetsto511Octets\n",
6161 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6162
6163 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6164 BNX_PRINTF(sc, "0x%08X : "
6165 "EtherStatsPktsRx512Octetsto1023Octets\n",
6166 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6167
6168 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6169 BNX_PRINTF(sc, "0x%08X : "
6170 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6171 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6172
6173 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6174 BNX_PRINTF(sc, "0x%08X : "
6175 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6176 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6177
6178 if (sblk->stat_EtherStatsPktsTx64Octets)
6179 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6180 sblk->stat_EtherStatsPktsTx64Octets);
6181
6182 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6183 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6184 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6185
6186 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6187 BNX_PRINTF(sc, "0x%08X : "
6188 "EtherStatsPktsTx128Octetsto255Octets\n",
6189 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6190
6191 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6192 BNX_PRINTF(sc, "0x%08X : "
6193 "EtherStatsPktsTx256Octetsto511Octets\n",
6194 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6195
6196 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6197 BNX_PRINTF(sc, "0x%08X : "
6198 "EtherStatsPktsTx512Octetsto1023Octets\n",
6199 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6200
6201 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6202 BNX_PRINTF(sc, "0x%08X : "
6203 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6204 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6205
6206 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6207 BNX_PRINTF(sc, "0x%08X : "
6208 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6209 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6210
6211 if (sblk->stat_XonPauseFramesReceived)
6212 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6213 sblk->stat_XonPauseFramesReceived);
6214
6215 if (sblk->stat_XoffPauseFramesReceived)
6216 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6217 sblk->stat_XoffPauseFramesReceived);
6218
6219 if (sblk->stat_OutXonSent)
6220 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6221 sblk->stat_OutXonSent);
6222
6223 if (sblk->stat_OutXoffSent)
6224 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6225 sblk->stat_OutXoffSent);
6226
6227 if (sblk->stat_FlowControlDone)
6228 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6229 sblk->stat_FlowControlDone);
6230
6231 if (sblk->stat_MacControlFramesReceived)
6232 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6233 sblk->stat_MacControlFramesReceived);
6234
6235 if (sblk->stat_XoffStateEntered)
6236 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6237 sblk->stat_XoffStateEntered);
6238
6239 if (sblk->stat_IfInFramesL2FilterDiscards)
6240 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6241 sblk->stat_IfInFramesL2FilterDiscards);
6242
6243 if (sblk->stat_IfInRuleCheckerDiscards)
6244 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6245 sblk->stat_IfInRuleCheckerDiscards);
6246
6247 if (sblk->stat_IfInFTQDiscards)
6248 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6249 sblk->stat_IfInFTQDiscards);
6250
6251 if (sblk->stat_IfInMBUFDiscards)
6252 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6253 sblk->stat_IfInMBUFDiscards);
6254
6255 if (sblk->stat_IfInRuleCheckerP4Hit)
6256 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6257 sblk->stat_IfInRuleCheckerP4Hit);
6258
6259 if (sblk->stat_CatchupInRuleCheckerDiscards)
6260 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6261 sblk->stat_CatchupInRuleCheckerDiscards);
6262
6263 if (sblk->stat_CatchupInFTQDiscards)
6264 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6265 sblk->stat_CatchupInFTQDiscards);
6266
6267 if (sblk->stat_CatchupInMBUFDiscards)
6268 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6269 sblk->stat_CatchupInMBUFDiscards);
6270
6271 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6272 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6273 sblk->stat_CatchupInRuleCheckerP4Hit);
6274
6275 aprint_debug_dev(sc->bnx_dev,
6276 "-----------------------------"
6277 "--------------"
6278 "-----------------------------\n");
6279 }
6280
6281 void
6282 bnx_dump_driver_state(struct bnx_softc *sc)
6283 {
6284 aprint_debug_dev(sc->bnx_dev,
6285 "-----------------------------"
6286 " Driver State "
6287 "-----------------------------\n");
6288
6289 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6290 "address\n", sc);
6291
6292 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6293 sc->status_block);
6294
6295 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6296 "address\n", sc->stats_block);
6297
6298 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6299 "adddress\n", sc->tx_bd_chain);
6300
6301 #if 0
6302 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6303 sc->rx_bd_chain);
6304
6305 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6306 sc->tx_mbuf_ptr);
6307 #endif
6308
6309 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6310 sc->rx_mbuf_ptr);
6311
6312 BNX_PRINTF(sc,
6313 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6314 sc->interrupts_generated);
6315
6316 BNX_PRINTF(sc,
6317 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6318 sc->rx_interrupts);
6319
6320 BNX_PRINTF(sc,
6321 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6322 sc->tx_interrupts);
6323
6324 BNX_PRINTF(sc,
6325 " 0x%08X - (sc->last_status_idx) status block index\n",
6326 sc->last_status_idx);
6327
6328 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6329 sc->tx_prod);
6330
6331 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6332 sc->tx_cons);
6333
6334 BNX_PRINTF(sc,
6335 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6336 sc->tx_prod_bseq);
6337 BNX_PRINTF(sc,
6338 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6339 sc->tx_mbuf_alloc);
6340
6341 BNX_PRINTF(sc,
6342 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6343 sc->used_tx_bd);
6344
6345 BNX_PRINTF(sc,
6346 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6347 sc->tx_hi_watermark, sc->max_tx_bd);
6348
6349
6350 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6351 sc->rx_prod);
6352
6353 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6354 sc->rx_cons);
6355
6356 BNX_PRINTF(sc,
6357 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6358 sc->rx_prod_bseq);
6359
6360 BNX_PRINTF(sc,
6361 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6362 sc->rx_mbuf_alloc);
6363
6364 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6365 sc->free_rx_bd);
6366
6367 BNX_PRINTF(sc,
6368 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6369 sc->rx_low_watermark, sc->max_rx_bd);
6370
6371 BNX_PRINTF(sc,
6372 " 0x%08X - (sc->mbuf_alloc_failed) "
6373 "mbuf alloc failures\n",
6374 sc->mbuf_alloc_failed);
6375
6376 BNX_PRINTF(sc,
6377 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6378 "simulated mbuf alloc failures\n",
6379 sc->mbuf_sim_alloc_failed);
6380
6381 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6382 "-----------------------------\n");
6383 }
6384
6385 void
6386 bnx_dump_hw_state(struct bnx_softc *sc)
6387 {
6388 uint32_t val1;
6389 int i;
6390
6391 aprint_debug_dev(sc->bnx_dev,
6392 "----------------------------"
6393 " Hardware State "
6394 "----------------------------\n");
6395
6396 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6397
6398 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6399 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6400 val1, BNX_MISC_ENABLE_STATUS_BITS);
6401
6402 val1 = REG_RD(sc, BNX_DMA_STATUS);
6403 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6404
6405 val1 = REG_RD(sc, BNX_CTX_STATUS);
6406 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6407
6408 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6409 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6410 BNX_EMAC_STATUS);
6411
6412 val1 = REG_RD(sc, BNX_RPM_STATUS);
6413 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6414
6415 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6416 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6417 BNX_TBDR_STATUS);
6418
6419 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6420 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6421 BNX_TDMA_STATUS);
6422
6423 val1 = REG_RD(sc, BNX_HC_STATUS);
6424 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6425
6426 aprint_debug_dev(sc->bnx_dev,
6427 "----------------------------"
6428 "----------------"
6429 "----------------------------\n");
6430
6431 aprint_debug_dev(sc->bnx_dev,
6432 "----------------------------"
6433 " Register Dump "
6434 "----------------------------\n");
6435
6436 for (i = 0x400; i < 0x8000; i += 0x10)
6437 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6438 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6439 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6440
6441 aprint_debug_dev(sc->bnx_dev,
6442 "----------------------------"
6443 "----------------"
6444 "----------------------------\n");
6445 }
6446
6447 void
6448 bnx_breakpoint(struct bnx_softc *sc)
6449 {
6450 /* Unreachable code to shut the compiler up about unused functions. */
6451 if (0) {
6452 bnx_dump_txbd(sc, 0, NULL);
6453 bnx_dump_rxbd(sc, 0, NULL);
6454 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6455 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6456 bnx_dump_l2fhdr(sc, 0, NULL);
6457 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6458 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6459 bnx_dump_status_block(sc);
6460 bnx_dump_stats_block(sc);
6461 bnx_dump_driver_state(sc);
6462 bnx_dump_hw_state(sc);
6463 }
6464
6465 bnx_dump_driver_state(sc);
6466 /* Print the important status block fields. */
6467 bnx_dump_status_block(sc);
6468
6469 #if 0
6470 /* Call the debugger. */
6471 breakpoint();
6472 #endif
6473
6474 return;
6475 }
6476 #endif
6477