Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.63.2.3
      1 /*	$NetBSD: if_bnx.c,v 1.63.2.3 2019/01/18 08:50:27 pgoyette Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
      3 
      4 /*-
      5  * Copyright (c) 2006-2010 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.63.2.3 2019/01/18 08:50:27 pgoyette Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, B0, B1, B2 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/pci/if_bnxvar.h>
     64 
     65 #include <dev/microcode/bnx/bnxfw.h>
     66 
     67 /****************************************************************************/
     68 /* BNX Driver Version                                                       */
     69 /****************************************************************************/
     70 #define BNX_DRIVER_VERSION	"v0.9.6"
     71 
     72 /****************************************************************************/
     73 /* BNX Debug Options                                                        */
     74 /****************************************************************************/
     75 #ifdef BNX_DEBUG
     76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     77 
     78 	/*          0 = Never              */
     79 	/*          1 = 1 in 2,147,483,648 */
     80 	/*        256 = 1 in     8,388,608 */
     81 	/*       2048 = 1 in     1,048,576 */
     82 	/*      65536 = 1 in        32,768 */
     83 	/*    1048576 = 1 in         2,048 */
     84 	/*  268435456 =	1 in             8 */
     85 	/*  536870912 = 1 in             4 */
     86 	/* 1073741824 = 1 in             2 */
     87 
     88 	/* Controls how often the l2_fhdr frame error check will fail. */
     89 	int bnx_debug_l2fhdr_status_check = 0;
     90 
     91 	/* Controls how often the unexpected attention check will fail. */
     92 	int bnx_debug_unexpected_attention = 0;
     93 
     94 	/* Controls how often to simulate an mbuf allocation failure. */
     95 	int bnx_debug_mbuf_allocation_failure = 0;
     96 
     97 	/* Controls how often to simulate a DMA mapping failure. */
     98 	int bnx_debug_dma_map_addr_failure = 0;
     99 
    100 	/* Controls how often to simulate a bootcode failure. */
    101 	int bnx_debug_bootcode_running_failure = 0;
    102 #endif
    103 
    104 /****************************************************************************/
    105 /* PCI Device ID Table                                                      */
    106 /*                                                                          */
    107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    108 /****************************************************************************/
    109 static const struct bnx_product {
    110 	pci_vendor_id_t		bp_vendor;
    111 	pci_product_id_t	bp_product;
    112 	pci_vendor_id_t		bp_subvendor;
    113 	pci_product_id_t	bp_subproduct;
    114 	const char		*bp_name;
    115 } bnx_devices[] = {
    116 #ifdef PCI_SUBPRODUCT_HP_NC370T
    117 	{
    118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    120 	  "HP NC370T Multifunction Gigabit Server Adapter"
    121 	},
    122 #endif
    123 #ifdef PCI_SUBPRODUCT_HP_NC370i
    124 	{
    125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    127 	  "HP NC370i Multifunction Gigabit Server Adapter"
    128 	},
    129 #endif
    130 	{
    131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    132 	  0, 0,
    133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    134 	},
    135 #ifdef PCI_SUBPRODUCT_HP_NC370F
    136 	{
    137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    139 	  "HP NC370F Multifunction Gigabit Server Adapter"
    140 	},
    141 #endif
    142 	{
    143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    144 	  0, 0,
    145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    146 	},
    147 	{
    148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    149 	  0, 0,
    150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    151 	},
    152 	{
    153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    154 	  0, 0,
    155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    156 	},
    157 	{
    158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    159 	  0, 0,
    160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    161 	},
    162 	{
    163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    164 	  0, 0,
    165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    166 	},
    167 	{
    168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    169 	  0, 0,
    170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    171 	},
    172 	{
    173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    174 	  0, 0,
    175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    176 	},
    177 };
    178 
    179 /****************************************************************************/
    180 /* Supported Flash NVRAM device data.                                       */
    181 /****************************************************************************/
    182 static struct flash_spec flash_table[] =
    183 {
    184 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    185 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    186 	/* Slow EEPROM */
    187 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    188 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    189 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    190 	 "EEPROM - slow"},
    191 	/* Expansion entry 0001 */
    192 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    195 	 "Entry 0001"},
    196 	/* Saifun SA25F010 (non-buffered flash) */
    197 	/* strap, cfg1, & write1 need updates */
    198 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    199 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    200 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    201 	 "Non-buffered flash (128kB)"},
    202 	/* Saifun SA25F020 (non-buffered flash) */
    203 	/* strap, cfg1, & write1 need updates */
    204 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    205 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    206 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    207 	 "Non-buffered flash (256kB)"},
    208 	/* Expansion entry 0100 */
    209 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    210 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    211 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    212 	 "Entry 0100"},
    213 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    214 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    215 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    216 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    217 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    218 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    219 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    220 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    221 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    222 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    223 	/* Saifun SA25F005 (non-buffered flash) */
    224 	/* strap, cfg1, & write1 need updates */
    225 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    228 	 "Non-buffered flash (64kB)"},
    229 	/* Fast EEPROM */
    230 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    231 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    232 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    233 	 "EEPROM - fast"},
    234 	/* Expansion entry 1001 */
    235 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    236 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    237 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    238 	 "Entry 1001"},
    239 	/* Expansion entry 1010 */
    240 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    241 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    242 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    243 	 "Entry 1010"},
    244 	/* ATMEL AT45DB011B (buffered flash) */
    245 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    246 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    247 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    248 	 "Buffered flash (128kB)"},
    249 	/* Expansion entry 1100 */
    250 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    251 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    252 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    253 	 "Entry 1100"},
    254 	/* Expansion entry 1101 */
    255 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    256 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    257 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    258 	 "Entry 1101"},
    259 	/* Ateml Expansion entry 1110 */
    260 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    261 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    262 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    263 	 "Entry 1110 (Atmel)"},
    264 	/* ATMEL AT45DB021B (buffered flash) */
    265 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    266 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    267 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    268 	 "Buffered flash (256kB)"},
    269 };
    270 
    271 /*
    272  * The BCM5709 controllers transparently handle the
    273  * differences between Atmel 264 byte pages and all
    274  * flash devices which use 256 byte pages, so no
    275  * logical-to-physical mapping is required in the
    276  * driver.
    277  */
    278 static struct flash_spec flash_5709 = {
    279 	.flags		= BNX_NV_BUFFERED,
    280 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    281 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    282 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    283 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    284 	.name		= "5709 buffered flash (256kB)",
    285 };
    286 
    287 /****************************************************************************/
    288 /* OpenBSD device entry points.                                             */
    289 /****************************************************************************/
    290 static int	bnx_probe(device_t, cfdata_t, void *);
    291 void	bnx_attach(device_t, device_t, void *);
    292 int	bnx_detach(device_t, int);
    293 
    294 /****************************************************************************/
    295 /* BNX Debug Data Structure Dump Routines                                   */
    296 /****************************************************************************/
    297 #ifdef BNX_DEBUG
    298 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    299 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    300 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    301 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    302 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    303 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    304 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    305 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    306 void	bnx_dump_status_block(struct bnx_softc *);
    307 void	bnx_dump_stats_block(struct bnx_softc *);
    308 void	bnx_dump_driver_state(struct bnx_softc *);
    309 void	bnx_dump_hw_state(struct bnx_softc *);
    310 void	bnx_breakpoint(struct bnx_softc *);
    311 #endif
    312 
    313 /****************************************************************************/
    314 /* BNX Register/Memory Access Routines                                      */
    315 /****************************************************************************/
    316 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
    317 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
    318 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
    319 int	bnx_miibus_read_reg(device_t, int, int);
    320 void	bnx_miibus_write_reg(device_t, int, int, int);
    321 void	bnx_miibus_statchg(struct ifnet *);
    322 
    323 /****************************************************************************/
    324 /* BNX NVRAM Access Routines                                                */
    325 /****************************************************************************/
    326 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    327 int	bnx_release_nvram_lock(struct bnx_softc *);
    328 void	bnx_enable_nvram_access(struct bnx_softc *);
    329 void	bnx_disable_nvram_access(struct bnx_softc *);
    330 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
    331 	    uint32_t);
    332 int	bnx_init_nvram(struct bnx_softc *);
    333 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
    334 int	bnx_nvram_test(struct bnx_softc *);
    335 #ifdef BNX_NVRAM_WRITE_SUPPORT
    336 int	bnx_enable_nvram_write(struct bnx_softc *);
    337 void	bnx_disable_nvram_write(struct bnx_softc *);
    338 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
    339 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
    340 	    uint32_t);
    341 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
    342 #endif
    343 
    344 /****************************************************************************/
    345 /*                                                                          */
    346 /****************************************************************************/
    347 void	bnx_get_media(struct bnx_softc *);
    348 void	bnx_init_media(struct bnx_softc *);
    349 int	bnx_dma_alloc(struct bnx_softc *);
    350 void	bnx_dma_free(struct bnx_softc *);
    351 void	bnx_release_resources(struct bnx_softc *);
    352 
    353 /****************************************************************************/
    354 /* BNX Firmware Synchronization and Load                                    */
    355 /****************************************************************************/
    356 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
    357 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
    358 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    359 	    struct fw_info *);
    360 void	bnx_init_cpus(struct bnx_softc *);
    361 
    362 static void bnx_print_adapter_info(struct bnx_softc *);
    363 static void bnx_probe_pci_caps(struct bnx_softc *);
    364 void	bnx_stop(struct ifnet *, int);
    365 int	bnx_reset(struct bnx_softc *, uint32_t);
    366 int	bnx_chipinit(struct bnx_softc *);
    367 int	bnx_blockinit(struct bnx_softc *);
    368 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
    369 	    uint16_t *, uint32_t *);
    370 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
    371 
    372 int	bnx_init_tx_chain(struct bnx_softc *);
    373 void	bnx_init_tx_context(struct bnx_softc *);
    374 int	bnx_init_rx_chain(struct bnx_softc *);
    375 void	bnx_init_rx_context(struct bnx_softc *);
    376 void	bnx_free_rx_chain(struct bnx_softc *);
    377 void	bnx_free_tx_chain(struct bnx_softc *);
    378 
    379 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    380 void	bnx_start(struct ifnet *);
    381 int	bnx_ioctl(struct ifnet *, u_long, void *);
    382 void	bnx_watchdog(struct ifnet *);
    383 int	bnx_init(struct ifnet *);
    384 
    385 void	bnx_init_context(struct bnx_softc *);
    386 void	bnx_get_mac_addr(struct bnx_softc *);
    387 void	bnx_set_mac_addr(struct bnx_softc *);
    388 void	bnx_phy_intr(struct bnx_softc *);
    389 void	bnx_rx_intr(struct bnx_softc *);
    390 void	bnx_tx_intr(struct bnx_softc *);
    391 void	bnx_disable_intr(struct bnx_softc *);
    392 void	bnx_enable_intr(struct bnx_softc *);
    393 
    394 int	bnx_intr(void *);
    395 void	bnx_iff(struct bnx_softc *);
    396 void	bnx_stats_update(struct bnx_softc *);
    397 void	bnx_tick(void *);
    398 
    399 struct pool *bnx_tx_pool = NULL;
    400 void	bnx_alloc_pkts(struct work *, void *);
    401 
    402 /****************************************************************************/
    403 /* OpenBSD device dispatch table.                                           */
    404 /****************************************************************************/
    405 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    406     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    407 
    408 /****************************************************************************/
    409 /* Device probe function.                                                   */
    410 /*                                                                          */
    411 /* Compares the device to the driver's list of supported devices and        */
    412 /* reports back to the OS whether this is the right driver for the device.  */
    413 /*                                                                          */
    414 /* Returns:                                                                 */
    415 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    416 /****************************************************************************/
    417 static const struct bnx_product *
    418 bnx_lookup(const struct pci_attach_args *pa)
    419 {
    420 	int i;
    421 	pcireg_t subid;
    422 
    423 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    424 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    425 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    426 			continue;
    427 		if (!bnx_devices[i].bp_subvendor)
    428 			return &bnx_devices[i];
    429 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    430 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    431 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    432 			return &bnx_devices[i];
    433 	}
    434 
    435 	return NULL;
    436 }
    437 static int
    438 bnx_probe(device_t parent, cfdata_t match, void *aux)
    439 {
    440 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    441 
    442 	if (bnx_lookup(pa) != NULL)
    443 		return 1;
    444 
    445 	return 0;
    446 }
    447 
    448 /****************************************************************************/
    449 /* PCI Capabilities Probe Function.                                         */
    450 /*                                                                          */
    451 /* Walks the PCI capabiites list for the device to find what features are   */
    452 /* supported.                                                               */
    453 /*                                                                          */
    454 /* Returns:                                                                 */
    455 /*   None.                                                                  */
    456 /****************************************************************************/
    457 static void
    458 bnx_print_adapter_info(struct bnx_softc *sc)
    459 {
    460 
    461 	aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
    462 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
    463 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
    464 	    ? "Serdes " : "", sc->bnx_chipid);
    465 
    466 	/* Bus info. */
    467 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
    468 		aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
    469 		    sc->link_width);
    470 		switch (sc->link_speed) {
    471 		case 1: aprint_normal("2.5Gbps\n"); break;
    472 		case 2:	aprint_normal("5Gbps\n"); break;
    473 		default: aprint_normal("Unknown link speed\n");
    474 		}
    475 	} else {
    476 		aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
    477 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
    478 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
    479 		    sc->bus_speed_mhz);
    480 	}
    481 
    482 	aprint_normal_dev(sc->bnx_dev,
    483 	    "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
    484 	    sc->bnx_rx_quick_cons_trip_int,
    485 	    sc->bnx_rx_quick_cons_trip,
    486 	    sc->bnx_rx_ticks_int,
    487 	    sc->bnx_rx_ticks,
    488 	    sc->bnx_tx_quick_cons_trip_int,
    489 	    sc->bnx_tx_quick_cons_trip,
    490 	    sc->bnx_tx_ticks_int,
    491 	    sc->bnx_tx_ticks);
    492 }
    493 
    494 
    495 /****************************************************************************/
    496 /* PCI Capabilities Probe Function.                                         */
    497 /*                                                                          */
    498 /* Walks the PCI capabiites list for the device to find what features are   */
    499 /* supported.                                                               */
    500 /*                                                                          */
    501 /* Returns:                                                                 */
    502 /*   None.                                                                  */
    503 /****************************************************************************/
    504 static void
    505 bnx_probe_pci_caps(struct bnx_softc *sc)
    506 {
    507 	struct pci_attach_args *pa = &(sc->bnx_pa);
    508 	pcireg_t reg;
    509 
    510 	/* Check if PCI-X capability is enabled. */
    511 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
    512 		NULL) != 0) {
    513 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
    514 	}
    515 
    516 	/* Check if PCIe capability is enabled. */
    517 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
    518 		NULL) != 0) {
    519 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
    520 		    reg + PCIE_LCSR);
    521 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
    522 		    "0x%08X\n",	link_status);
    523 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
    524 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
    525 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
    526 		sc->bnx_flags |= BNX_PCIE_FLAG;
    527 	}
    528 
    529 	/* Check if MSI capability is enabled. */
    530 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
    531 		NULL) != 0)
    532 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
    533 
    534 	/* Check if MSI-X capability is enabled. */
    535 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
    536 		NULL) != 0)
    537 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
    538 }
    539 
    540 
    541 /****************************************************************************/
    542 /* Device attach function.                                                  */
    543 /*                                                                          */
    544 /* Allocates device resources, performs secondary chip identification,      */
    545 /* resets and initializes the hardware, and initializes driver instance     */
    546 /* variables.                                                               */
    547 /*                                                                          */
    548 /* Returns:                                                                 */
    549 /*   0 on success, positive value on failure.                               */
    550 /****************************************************************************/
    551 void
    552 bnx_attach(device_t parent, device_t self, void *aux)
    553 {
    554 	const struct bnx_product *bp;
    555 	struct bnx_softc	*sc = device_private(self);
    556 	prop_dictionary_t	dict;
    557 	struct pci_attach_args	*pa = aux;
    558 	pci_chipset_tag_t	pc = pa->pa_pc;
    559 	pci_intr_handle_t	ih;
    560 	const char 		*intrstr = NULL;
    561 	uint32_t		command;
    562 	struct ifnet		*ifp;
    563 	uint32_t		val;
    564 	int			mii_flags = MIIF_FORCEANEG;
    565 	pcireg_t		memtype;
    566 	char intrbuf[PCI_INTRSTR_LEN];
    567 
    568 	if (bnx_tx_pool == NULL) {
    569 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    570 		if (bnx_tx_pool != NULL) {
    571 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    572 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    573 		} else {
    574 			aprint_error(": can't alloc bnx_tx_pool\n");
    575 			return;
    576 		}
    577 	}
    578 
    579 	bp = bnx_lookup(pa);
    580 	if (bp == NULL)
    581 		panic("unknown device");
    582 
    583 	sc->bnx_dev = self;
    584 
    585 	aprint_naive("\n");
    586 	aprint_normal(": %s\n", bp->bp_name);
    587 
    588 	sc->bnx_pa = *pa;
    589 
    590 	/*
    591 	 * Map control/status registers.
    592 	*/
    593 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    594 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    595 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    596 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    597 
    598 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    599 		aprint_error_dev(sc->bnx_dev,
    600 		    "failed to enable memory mapping!\n");
    601 		return;
    602 	}
    603 
    604 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    605 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    606 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    607 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    608 		return;
    609 	}
    610 
    611 	if (pci_intr_map(pa, &ih)) {
    612 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    613 		goto bnx_attach_fail;
    614 	}
    615 
    616 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    617 
    618 	/*
    619 	 * Configure byte swap and enable indirect register access.
    620 	 * Rely on CPU to do target byte swapping on big endian systems.
    621 	 * Access to registers outside of PCI configurtion space are not
    622 	 * valid until this is done.
    623 	 */
    624 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    625 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    626 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    627 
    628 	/* Save ASIC revsion info. */
    629 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    630 
    631 	/*
    632 	 * Find the base address for shared memory access.
    633 	 * Newer versions of bootcode use a signature and offset
    634 	 * while older versions use a fixed address.
    635 	 */
    636 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    637 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    638 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    639 		    (sc->bnx_pa.pa_function << 2));
    640 	else
    641 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    642 
    643 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    644 
    645 	/* Set initial device and PHY flags */
    646 	sc->bnx_flags = 0;
    647 	sc->bnx_phy_flags = 0;
    648 
    649 	bnx_probe_pci_caps(sc);
    650 
    651 	/* Get PCI bus information (speed and type). */
    652 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    653 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    654 		uint32_t clkreg;
    655 
    656 		sc->bnx_flags |= BNX_PCIX_FLAG;
    657 
    658 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    659 
    660 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    661 		switch (clkreg) {
    662 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    663 			sc->bus_speed_mhz = 133;
    664 			break;
    665 
    666 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    667 			sc->bus_speed_mhz = 100;
    668 			break;
    669 
    670 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    671 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    672 			sc->bus_speed_mhz = 66;
    673 			break;
    674 
    675 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    676 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    677 			sc->bus_speed_mhz = 50;
    678 			break;
    679 
    680 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    681 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    682 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    683 			sc->bus_speed_mhz = 33;
    684 			break;
    685 		}
    686 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    687 			sc->bus_speed_mhz = 66;
    688 		else
    689 			sc->bus_speed_mhz = 33;
    690 
    691 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    692 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    693 
    694 	/* Reset the controller. */
    695 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    696 		goto bnx_attach_fail;
    697 
    698 	/* Initialize the controller. */
    699 	if (bnx_chipinit(sc)) {
    700 		aprint_error_dev(sc->bnx_dev,
    701 		    "Controller initialization failed!\n");
    702 		goto bnx_attach_fail;
    703 	}
    704 
    705 	/* Perform NVRAM test. */
    706 	if (bnx_nvram_test(sc)) {
    707 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    708 		goto bnx_attach_fail;
    709 	}
    710 
    711 	/* Fetch the permanent Ethernet MAC address. */
    712 	bnx_get_mac_addr(sc);
    713 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    714 	    ether_sprintf(sc->eaddr));
    715 
    716 	/*
    717 	 * Trip points control how many BDs
    718 	 * should be ready before generating an
    719 	 * interrupt while ticks control how long
    720 	 * a BD can sit in the chain before
    721 	 * generating an interrupt.  Set the default
    722 	 * values for the RX and TX rings.
    723 	 */
    724 
    725 #ifdef BNX_DEBUG
    726 	/* Force more frequent interrupts. */
    727 	sc->bnx_tx_quick_cons_trip_int = 1;
    728 	sc->bnx_tx_quick_cons_trip     = 1;
    729 	sc->bnx_tx_ticks_int           = 0;
    730 	sc->bnx_tx_ticks               = 0;
    731 
    732 	sc->bnx_rx_quick_cons_trip_int = 1;
    733 	sc->bnx_rx_quick_cons_trip     = 1;
    734 	sc->bnx_rx_ticks_int           = 0;
    735 	sc->bnx_rx_ticks               = 0;
    736 #else
    737 	sc->bnx_tx_quick_cons_trip_int = 20;
    738 	sc->bnx_tx_quick_cons_trip     = 20;
    739 	sc->bnx_tx_ticks_int           = 80;
    740 	sc->bnx_tx_ticks               = 80;
    741 
    742 	sc->bnx_rx_quick_cons_trip_int = 6;
    743 	sc->bnx_rx_quick_cons_trip     = 6;
    744 	sc->bnx_rx_ticks_int           = 18;
    745 	sc->bnx_rx_ticks               = 18;
    746 #endif
    747 
    748 	/* Update statistics once every second. */
    749 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    750 
    751 	/* Find the media type for the adapter. */
    752 	bnx_get_media(sc);
    753 
    754 	/*
    755 	 * Store config data needed by the PHY driver for
    756 	 * backplane applications
    757 	 */
    758 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    759 	    BNX_SHARED_HW_CFG_CONFIG);
    760 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    761 	    BNX_PORT_HW_CFG_CONFIG);
    762 
    763 	/* Allocate DMA memory resources. */
    764 	sc->bnx_dmatag = pa->pa_dmat;
    765 	if (bnx_dma_alloc(sc)) {
    766 		aprint_error_dev(sc->bnx_dev,
    767 		    "DMA resource allocation failed!\n");
    768 		goto bnx_attach_fail;
    769 	}
    770 
    771 	/* Initialize the ifnet interface. */
    772 	ifp = &sc->bnx_ec.ec_if;
    773 	ifp->if_softc = sc;
    774 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    775 	ifp->if_ioctl = bnx_ioctl;
    776 	ifp->if_stop = bnx_stop;
    777 	ifp->if_start = bnx_start;
    778 	ifp->if_init = bnx_init;
    779 	ifp->if_timer = 0;
    780 	ifp->if_watchdog = bnx_watchdog;
    781 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    782 	IFQ_SET_READY(&ifp->if_snd);
    783 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    784 
    785 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    786 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    787 
    788 	ifp->if_capabilities |=
    789 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    790 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    791 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    792 
    793 	/* Hookup IRQ last. */
    794 	sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
    795 	    sc, device_xname(self));
    796 	if (sc->bnx_intrhand == NULL) {
    797 		aprint_error_dev(self, "couldn't establish interrupt");
    798 		if (intrstr != NULL)
    799 			aprint_error(" at %s", intrstr);
    800 		aprint_error("\n");
    801 		goto bnx_attach_fail;
    802 	}
    803 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    804 
    805 	/* create workqueue to handle packet allocations */
    806 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    807 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    808 		aprint_error_dev(self, "failed to create workqueue\n");
    809 		goto bnx_attach_fail;
    810 	}
    811 
    812 	sc->bnx_mii.mii_ifp = ifp;
    813 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    814 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    815 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    816 
    817 	/* Handle any special PHY initialization for SerDes PHYs. */
    818 	bnx_init_media(sc);
    819 
    820 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    821 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    822 	    ether_mediastatus);
    823 
    824 	/* set phyflags and chipid before mii_attach() */
    825 	dict = device_properties(self);
    826 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    827 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    828 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
    829 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
    830 
    831 	/* Print some useful adapter info */
    832 	bnx_print_adapter_info(sc);
    833 
    834 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    835 		mii_flags |= MIIF_HAVEFIBER;
    836 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    837 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    838 
    839 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    840 		aprint_error_dev(self, "no PHY found!\n");
    841 		ifmedia_add(&sc->bnx_mii.mii_media,
    842 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    843 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
    844 	} else
    845 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
    846 
    847 	/* Attach to the Ethernet interface list. */
    848 	if_attach(ifp);
    849 	if_deferred_start_init(ifp, NULL);
    850 	ether_ifattach(ifp,sc->eaddr);
    851 
    852 	callout_init(&sc->bnx_timeout, 0);
    853 
    854 	if (pmf_device_register(self, NULL, NULL))
    855 		pmf_class_network_register(self, ifp);
    856 	else
    857 		aprint_error_dev(self, "couldn't establish power handler\n");
    858 
    859 	/* Print some important debugging info. */
    860 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    861 
    862 	goto bnx_attach_exit;
    863 
    864 bnx_attach_fail:
    865 	bnx_release_resources(sc);
    866 
    867 bnx_attach_exit:
    868 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    869 }
    870 
    871 /****************************************************************************/
    872 /* Device detach function.                                                  */
    873 /*                                                                          */
    874 /* Stops the controller, resets the controller, and releases resources.     */
    875 /*                                                                          */
    876 /* Returns:                                                                 */
    877 /*   0 on success, positive value on failure.                               */
    878 /****************************************************************************/
    879 int
    880 bnx_detach(device_t dev, int flags)
    881 {
    882 	int s;
    883 	struct bnx_softc *sc;
    884 	struct ifnet *ifp;
    885 
    886 	sc = device_private(dev);
    887 	ifp = &sc->bnx_ec.ec_if;
    888 
    889 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    890 
    891 	/* Stop and reset the controller. */
    892 	s = splnet();
    893 	bnx_stop(ifp, 1);
    894 	splx(s);
    895 
    896 	pmf_device_deregister(dev);
    897 	callout_destroy(&sc->bnx_timeout);
    898 	ether_ifdetach(ifp);
    899 	workqueue_destroy(sc->bnx_wq);
    900 
    901 	/* Delete all remaining media. */
    902 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    903 
    904 	if_detach(ifp);
    905 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    906 
    907 	/* Release all remaining resources. */
    908 	bnx_release_resources(sc);
    909 
    910 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    911 
    912 	return 0;
    913 }
    914 
    915 /****************************************************************************/
    916 /* Indirect register read.                                                  */
    917 /*                                                                          */
    918 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    919 /* configuration space.  Using this mechanism avoids issues with posted     */
    920 /* reads but is much slower than memory-mapped I/O.                         */
    921 /*                                                                          */
    922 /* Returns:                                                                 */
    923 /*   The value of the register.                                             */
    924 /****************************************************************************/
    925 uint32_t
    926 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
    927 {
    928 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    929 
    930 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    931 	    offset);
    932 #ifdef BNX_DEBUG
    933 	{
    934 		uint32_t val;
    935 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    936 		    BNX_PCICFG_REG_WINDOW);
    937 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    938 		    "val = 0x%08X\n", __func__, offset, val);
    939 		return val;
    940 	}
    941 #else
    942 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    943 #endif
    944 }
    945 
    946 /****************************************************************************/
    947 /* Indirect register write.                                                 */
    948 /*                                                                          */
    949 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    950 /* configuration space.  Using this mechanism avoids issues with posted     */
    951 /* writes but is muchh slower than memory-mapped I/O.                       */
    952 /*                                                                          */
    953 /* Returns:                                                                 */
    954 /*   Nothing.                                                               */
    955 /****************************************************************************/
    956 void
    957 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
    958 {
    959 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    960 
    961 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    962 		__func__, offset, val);
    963 
    964 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    965 	    offset);
    966 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    967 }
    968 
    969 /****************************************************************************/
    970 /* Context memory write.                                                    */
    971 /*                                                                          */
    972 /* The NetXtreme II controller uses context memory to track connection      */
    973 /* information for L2 and higher network protocols.                         */
    974 /*                                                                          */
    975 /* Returns:                                                                 */
    976 /*   Nothing.                                                               */
    977 /****************************************************************************/
    978 void
    979 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
    980     uint32_t ctx_val)
    981 {
    982 	uint32_t idx, offset = ctx_offset + cid_addr;
    983 	uint32_t val, retry_cnt = 5;
    984 
    985 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
    986 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
    987 		REG_WR(sc, BNX_CTX_CTX_CTRL,
    988 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
    989 
    990 		for (idx = 0; idx < retry_cnt; idx++) {
    991 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
    992 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
    993 				break;
    994 			DELAY(5);
    995 		}
    996 
    997 #if 0
    998 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
    999 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
   1000 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
   1001 				__FILE__, __LINE__, cid_addr, ctx_offset);
   1002 #endif
   1003 
   1004 	} else {
   1005 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
   1006 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
   1007 	}
   1008 }
   1009 
   1010 /****************************************************************************/
   1011 /* PHY register read.                                                       */
   1012 /*                                                                          */
   1013 /* Implements register reads on the MII bus.                                */
   1014 /*                                                                          */
   1015 /* Returns:                                                                 */
   1016 /*   The value of the register.                                             */
   1017 /****************************************************************************/
   1018 int
   1019 bnx_miibus_read_reg(device_t dev, int phy, int reg)
   1020 {
   1021 	struct bnx_softc	*sc = device_private(dev);
   1022 	uint32_t		val, data;
   1023 	int			i;
   1024 
   1025 	/* Make sure we are accessing the correct PHY address. */
   1026 	if (phy != sc->bnx_phy_addr) {
   1027 		DBPRINT(sc, BNX_VERBOSE,
   1028 		    "Invalid PHY address %d for PHY read!\n", phy);
   1029 		return 0;
   1030 	}
   1031 
   1032 	/*
   1033 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1034 	 * with special mappings to work with IEEE
   1035 	 * Clause 22 register accesses.
   1036 	 */
   1037 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1038 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1039 			reg += 0x10;
   1040 	}
   1041 
   1042 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1043 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1044 		data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1045 
   1046 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1047 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1048 
   1049 		DELAY(40);
   1050 	}
   1051 
   1052 	data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
   1053 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
   1054 	    BNX_EMAC_MDIO_COMM_START_BUSY;
   1055 	REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
   1056 
   1057 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1058 		DELAY(10);
   1059 
   1060 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1061 		if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1062 			DELAY(5);
   1063 
   1064 			data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1065 			data &= BNX_EMAC_MDIO_COMM_DATA;
   1066 
   1067 			break;
   1068 		}
   1069 	}
   1070 
   1071 	if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1072 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
   1073 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
   1074 		val = 0x0;
   1075 	} else
   1076 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1077 
   1078 	DBPRINT(sc, BNX_EXCESSIVE,
   1079 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
   1080 	    (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
   1081 
   1082 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1083 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1084 		data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1085 
   1086 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1087 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1088 
   1089 		DELAY(40);
   1090 	}
   1091 
   1092 	return (val & 0xffff);
   1093 }
   1094 
   1095 /****************************************************************************/
   1096 /* PHY register write.                                                      */
   1097 /*                                                                          */
   1098 /* Implements register writes on the MII bus.                               */
   1099 /*                                                                          */
   1100 /* Returns:                                                                 */
   1101 /*   The value of the register.                                             */
   1102 /****************************************************************************/
   1103 void
   1104 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
   1105 {
   1106 	struct bnx_softc	*sc = device_private(dev);
   1107 	uint32_t		val1;
   1108 	int			i;
   1109 
   1110 	/* Make sure we are accessing the correct PHY address. */
   1111 	if (phy != sc->bnx_phy_addr) {
   1112 		DBPRINT(sc, BNX_WARN,
   1113 		    "Invalid PHY address %d for PHY write!\n", phy);
   1114 		return;
   1115 	}
   1116 
   1117 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1118 	    "val = 0x%04X\n", __func__,
   1119 	    phy, (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
   1120 
   1121 	/*
   1122 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1123 	 * with special mappings to work with IEEE
   1124 	 * Clause 22 register accesses.
   1125 	 */
   1126 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1127 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1128 			reg += 0x10;
   1129 	}
   1130 
   1131 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1132 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1133 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1134 
   1135 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1136 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1137 
   1138 		DELAY(40);
   1139 	}
   1140 
   1141 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1142 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1143 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1144 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1145 
   1146 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1147 		DELAY(10);
   1148 
   1149 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1150 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1151 			DELAY(5);
   1152 			break;
   1153 		}
   1154 	}
   1155 
   1156 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1157 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1158 		    __LINE__);
   1159 	}
   1160 
   1161 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1162 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1163 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1164 
   1165 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1166 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1167 
   1168 		DELAY(40);
   1169 	}
   1170 }
   1171 
   1172 /****************************************************************************/
   1173 /* MII bus status change.                                                   */
   1174 /*                                                                          */
   1175 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1176 /* MAC interface registers.                                                 */
   1177 /*                                                                          */
   1178 /* Returns:                                                                 */
   1179 /*   Nothing.                                                               */
   1180 /****************************************************************************/
   1181 void
   1182 bnx_miibus_statchg(struct ifnet *ifp)
   1183 {
   1184 	struct bnx_softc	*sc = ifp->if_softc;
   1185 	struct mii_data		*mii = &sc->bnx_mii;
   1186 	int			val;
   1187 
   1188 	val = REG_RD(sc, BNX_EMAC_MODE);
   1189 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1190 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1191 	    BNX_EMAC_MODE_25G);
   1192 
   1193 	/* Set MII or GMII interface based on the speed
   1194 	 * negotiated by the PHY.
   1195 	 */
   1196 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1197 	case IFM_10_T:
   1198 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1199 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1200 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1201 			break;
   1202 		}
   1203 		/* FALLTHROUGH */
   1204 	case IFM_100_TX:
   1205 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1206 		val |= BNX_EMAC_MODE_PORT_MII;
   1207 		break;
   1208 	case IFM_2500_SX:
   1209 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1210 		val |= BNX_EMAC_MODE_25G;
   1211 		/* FALLTHROUGH */
   1212 	case IFM_1000_T:
   1213 	case IFM_1000_SX:
   1214 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1215 		val |= BNX_EMAC_MODE_PORT_GMII;
   1216 		break;
   1217 	default:
   1218 		val |= BNX_EMAC_MODE_PORT_GMII;
   1219 		break;
   1220 	}
   1221 
   1222 	/* Set half or full duplex based on the duplicity
   1223 	 * negotiated by the PHY.
   1224 	 */
   1225 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1226 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1227 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1228 	} else {
   1229 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1230 	}
   1231 
   1232 	REG_WR(sc, BNX_EMAC_MODE, val);
   1233 }
   1234 
   1235 /****************************************************************************/
   1236 /* Acquire NVRAM lock.                                                      */
   1237 /*                                                                          */
   1238 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1239 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1240 /* for use by the driver.                                                   */
   1241 /*                                                                          */
   1242 /* Returns:                                                                 */
   1243 /*   0 on success, positive value on failure.                               */
   1244 /****************************************************************************/
   1245 int
   1246 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1247 {
   1248 	uint32_t		val;
   1249 	int			j;
   1250 
   1251 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1252 
   1253 	/* Request access to the flash interface. */
   1254 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1255 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1256 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1257 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1258 			break;
   1259 
   1260 		DELAY(5);
   1261 	}
   1262 
   1263 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1264 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1265 		return EBUSY;
   1266 	}
   1267 
   1268 	return 0;
   1269 }
   1270 
   1271 /****************************************************************************/
   1272 /* Release NVRAM lock.                                                      */
   1273 /*                                                                          */
   1274 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1275 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1276 /* for use by the driver.                                                   */
   1277 /*                                                                          */
   1278 /* Returns:                                                                 */
   1279 /*   0 on success, positive value on failure.                               */
   1280 /****************************************************************************/
   1281 int
   1282 bnx_release_nvram_lock(struct bnx_softc *sc)
   1283 {
   1284 	int			j;
   1285 	uint32_t		val;
   1286 
   1287 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1288 
   1289 	/* Relinquish nvram interface. */
   1290 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1291 
   1292 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1293 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1294 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1295 			break;
   1296 
   1297 		DELAY(5);
   1298 	}
   1299 
   1300 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1301 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1302 		return EBUSY;
   1303 	}
   1304 
   1305 	return 0;
   1306 }
   1307 
   1308 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1309 /****************************************************************************/
   1310 /* Enable NVRAM write access.                                               */
   1311 /*                                                                          */
   1312 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1313 /*                                                                          */
   1314 /* Returns:                                                                 */
   1315 /*   0 on success, positive value on failure.                               */
   1316 /****************************************************************************/
   1317 int
   1318 bnx_enable_nvram_write(struct bnx_softc *sc)
   1319 {
   1320 	uint32_t		val;
   1321 
   1322 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1323 
   1324 	val = REG_RD(sc, BNX_MISC_CFG);
   1325 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1326 
   1327 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1328 		int j;
   1329 
   1330 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1331 		REG_WR(sc, BNX_NVM_COMMAND,
   1332 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1333 
   1334 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1335 			DELAY(5);
   1336 
   1337 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1338 			if (val & BNX_NVM_COMMAND_DONE)
   1339 				break;
   1340 		}
   1341 
   1342 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1343 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1344 			return EBUSY;
   1345 		}
   1346 	}
   1347 
   1348 	return 0;
   1349 }
   1350 
   1351 /****************************************************************************/
   1352 /* Disable NVRAM write access.                                              */
   1353 /*                                                                          */
   1354 /* When the caller is finished writing to NVRAM write access must be        */
   1355 /* disabled.                                                                */
   1356 /*                                                                          */
   1357 /* Returns:                                                                 */
   1358 /*   Nothing.                                                               */
   1359 /****************************************************************************/
   1360 void
   1361 bnx_disable_nvram_write(struct bnx_softc *sc)
   1362 {
   1363 	uint32_t		val;
   1364 
   1365 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1366 
   1367 	val = REG_RD(sc, BNX_MISC_CFG);
   1368 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1369 }
   1370 #endif
   1371 
   1372 /****************************************************************************/
   1373 /* Enable NVRAM access.                                                     */
   1374 /*                                                                          */
   1375 /* Before accessing NVRAM for read or write operations the caller must      */
   1376 /* enabled NVRAM access.                                                    */
   1377 /*                                                                          */
   1378 /* Returns:                                                                 */
   1379 /*   Nothing.                                                               */
   1380 /****************************************************************************/
   1381 void
   1382 bnx_enable_nvram_access(struct bnx_softc *sc)
   1383 {
   1384 	uint32_t		val;
   1385 
   1386 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1387 
   1388 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1389 	/* Enable both bits, even on read. */
   1390 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1391 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1392 }
   1393 
   1394 /****************************************************************************/
   1395 /* Disable NVRAM access.                                                    */
   1396 /*                                                                          */
   1397 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1398 /*                                                                          */
   1399 /* Returns:                                                                 */
   1400 /*   Nothing.                                                               */
   1401 /****************************************************************************/
   1402 void
   1403 bnx_disable_nvram_access(struct bnx_softc *sc)
   1404 {
   1405 	uint32_t		val;
   1406 
   1407 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1408 
   1409 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1410 
   1411 	/* Disable both bits, even after read. */
   1412 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1413 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1414 }
   1415 
   1416 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1417 /****************************************************************************/
   1418 /* Erase NVRAM page before writing.                                         */
   1419 /*                                                                          */
   1420 /* Non-buffered flash parts require that a page be erased before it is      */
   1421 /* written.                                                                 */
   1422 /*                                                                          */
   1423 /* Returns:                                                                 */
   1424 /*   0 on success, positive value on failure.                               */
   1425 /****************************************************************************/
   1426 int
   1427 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
   1428 {
   1429 	uint32_t		cmd;
   1430 	int			j;
   1431 
   1432 	/* Buffered flash doesn't require an erase. */
   1433 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1434 		return 0;
   1435 
   1436 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1437 
   1438 	/* Build an erase command. */
   1439 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1440 	    BNX_NVM_COMMAND_DOIT;
   1441 
   1442 	/*
   1443 	 * Clear the DONE bit separately, set the NVRAM address to erase,
   1444 	 * and issue the erase command.
   1445 	 */
   1446 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1447 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1448 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1449 
   1450 	/* Wait for completion. */
   1451 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1452 		uint32_t val;
   1453 
   1454 		DELAY(5);
   1455 
   1456 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1457 		if (val & BNX_NVM_COMMAND_DONE)
   1458 			break;
   1459 	}
   1460 
   1461 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1462 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1463 		return EBUSY;
   1464 	}
   1465 
   1466 	return 0;
   1467 }
   1468 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1469 
   1470 /****************************************************************************/
   1471 /* Read a dword (32 bits) from NVRAM.                                       */
   1472 /*                                                                          */
   1473 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1474 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1475 /*                                                                          */
   1476 /* Returns:                                                                 */
   1477 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1478 /****************************************************************************/
   1479 int
   1480 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
   1481     uint8_t *ret_val, uint32_t cmd_flags)
   1482 {
   1483 	uint32_t		cmd;
   1484 	int			i, rc = 0;
   1485 
   1486 	/* Build the command word. */
   1487 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1488 
   1489 	/* Calculate the offset for buffered flash if translation is used. */
   1490 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1491 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1492 		    sc->bnx_flash_info->page_bits) +
   1493 		    (offset % sc->bnx_flash_info->page_size);
   1494 	}
   1495 
   1496 	/*
   1497 	 * Clear the DONE bit separately, set the address to read,
   1498 	 * and issue the read.
   1499 	 */
   1500 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1501 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1502 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1503 
   1504 	/* Wait for completion. */
   1505 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1506 		uint32_t val;
   1507 
   1508 		DELAY(5);
   1509 
   1510 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1511 		if (val & BNX_NVM_COMMAND_DONE) {
   1512 			val = REG_RD(sc, BNX_NVM_READ);
   1513 
   1514 			val = bnx_be32toh(val);
   1515 			memcpy(ret_val, &val, 4);
   1516 			break;
   1517 		}
   1518 	}
   1519 
   1520 	/* Check for errors. */
   1521 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1522 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1523 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1524 		rc = EBUSY;
   1525 	}
   1526 
   1527 	return rc;
   1528 }
   1529 
   1530 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1531 /****************************************************************************/
   1532 /* Write a dword (32 bits) to NVRAM.                                        */
   1533 /*                                                                          */
   1534 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1535 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1536 /* enabled NVRAM write access.                                              */
   1537 /*                                                                          */
   1538 /* Returns:                                                                 */
   1539 /*   0 on success, positive value on failure.                               */
   1540 /****************************************************************************/
   1541 int
   1542 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
   1543     uint32_t cmd_flags)
   1544 {
   1545 	uint32_t		cmd, val32;
   1546 	int			j;
   1547 
   1548 	/* Build the command word. */
   1549 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1550 
   1551 	/* Calculate the offset for buffered flash if translation is used. */
   1552 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1553 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1554 		    sc->bnx_flash_info->page_bits) +
   1555 		    (offset % sc->bnx_flash_info->page_size);
   1556 	}
   1557 
   1558 	/*
   1559 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1560 	 * set the NVRAM address to write, and issue the write command
   1561 	 */
   1562 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1563 	memcpy(&val32, val, 4);
   1564 	val32 = htobe32(val32);
   1565 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1566 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1567 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1568 
   1569 	/* Wait for completion. */
   1570 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1571 		DELAY(5);
   1572 
   1573 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1574 			break;
   1575 	}
   1576 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1577 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1578 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1579 		return EBUSY;
   1580 	}
   1581 
   1582 	return 0;
   1583 }
   1584 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1585 
   1586 /****************************************************************************/
   1587 /* Initialize NVRAM access.                                                 */
   1588 /*                                                                          */
   1589 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1590 /* access that device.                                                      */
   1591 /*                                                                          */
   1592 /* Returns:                                                                 */
   1593 /*   0 on success, positive value on failure.                               */
   1594 /****************************************************************************/
   1595 int
   1596 bnx_init_nvram(struct bnx_softc *sc)
   1597 {
   1598 	uint32_t		val;
   1599 	int			j, entry_count, rc = 0;
   1600 	struct flash_spec	*flash;
   1601 
   1602 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1603 
   1604 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1605 		sc->bnx_flash_info = &flash_5709;
   1606 		goto bnx_init_nvram_get_flash_size;
   1607 	}
   1608 
   1609 	/* Determine the selected interface. */
   1610 	val = REG_RD(sc, BNX_NVM_CFG1);
   1611 
   1612 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1613 
   1614 	/*
   1615 	 * Flash reconfiguration is required to support additional
   1616 	 * NVRAM devices not directly supported in hardware.
   1617 	 * Check if the flash interface was reconfigured
   1618 	 * by the bootcode.
   1619 	 */
   1620 
   1621 	if (val & 0x40000000) {
   1622 		/* Flash interface reconfigured by bootcode. */
   1623 
   1624 		DBPRINT(sc,BNX_INFO_LOAD,
   1625 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1626 
   1627 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1628 		     j++, flash++) {
   1629 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1630 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1631 				sc->bnx_flash_info = flash;
   1632 				break;
   1633 			}
   1634 		}
   1635 	} else {
   1636 		/* Flash interface not yet reconfigured. */
   1637 		uint32_t mask;
   1638 
   1639 		DBPRINT(sc,BNX_INFO_LOAD,
   1640 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1641 
   1642 		if (val & (1 << 23))
   1643 			mask = FLASH_BACKUP_STRAP_MASK;
   1644 		else
   1645 			mask = FLASH_STRAP_MASK;
   1646 
   1647 		/* Look for the matching NVRAM device configuration data. */
   1648 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1649 		    j++, flash++) {
   1650 			/* Check if the dev matches any of the known devices. */
   1651 			if ((val & mask) == (flash->strapping & mask)) {
   1652 				/* Found a device match. */
   1653 				sc->bnx_flash_info = flash;
   1654 
   1655 				/* Request access to the flash interface. */
   1656 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1657 					return rc;
   1658 
   1659 				/* Reconfigure the flash interface. */
   1660 				bnx_enable_nvram_access(sc);
   1661 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1662 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1663 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1664 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1665 				bnx_disable_nvram_access(sc);
   1666 				bnx_release_nvram_lock(sc);
   1667 
   1668 				break;
   1669 			}
   1670 		}
   1671 	}
   1672 
   1673 	/* Check if a matching device was found. */
   1674 	if (j == entry_count) {
   1675 		sc->bnx_flash_info = NULL;
   1676 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1677 			__FILE__, __LINE__);
   1678 		rc = ENODEV;
   1679 	}
   1680 
   1681 bnx_init_nvram_get_flash_size:
   1682 	/* Write the flash config data to the shared memory interface. */
   1683 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1684 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1685 	if (val)
   1686 		sc->bnx_flash_size = val;
   1687 	else
   1688 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1689 
   1690 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1691 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1692 
   1693 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1694 
   1695 	return rc;
   1696 }
   1697 
   1698 /****************************************************************************/
   1699 /* Read an arbitrary range of data from NVRAM.                              */
   1700 /*                                                                          */
   1701 /* Prepares the NVRAM interface for access and reads the requested data     */
   1702 /* into the supplied buffer.                                                */
   1703 /*                                                                          */
   1704 /* Returns:                                                                 */
   1705 /*   0 on success and the data read, positive value on failure.             */
   1706 /****************************************************************************/
   1707 int
   1708 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
   1709     int buf_size)
   1710 {
   1711 	int			rc = 0;
   1712 	uint32_t		cmd_flags, offset32, len32, extra;
   1713 
   1714 	if (buf_size == 0)
   1715 		return 0;
   1716 
   1717 	/* Request access to the flash interface. */
   1718 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1719 		return rc;
   1720 
   1721 	/* Enable access to flash interface */
   1722 	bnx_enable_nvram_access(sc);
   1723 
   1724 	len32 = buf_size;
   1725 	offset32 = offset;
   1726 	extra = 0;
   1727 
   1728 	cmd_flags = 0;
   1729 
   1730 	if (offset32 & 3) {
   1731 		uint8_t buf[4];
   1732 		uint32_t pre_len;
   1733 
   1734 		offset32 &= ~3;
   1735 		pre_len = 4 - (offset & 3);
   1736 
   1737 		if (pre_len >= len32) {
   1738 			pre_len = len32;
   1739 			cmd_flags =
   1740 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1741 		} else
   1742 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1743 
   1744 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1745 
   1746 		if (rc)
   1747 			return rc;
   1748 
   1749 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1750 
   1751 		offset32 += 4;
   1752 		ret_buf += pre_len;
   1753 		len32 -= pre_len;
   1754 	}
   1755 
   1756 	if (len32 & 3) {
   1757 		extra = 4 - (len32 & 3);
   1758 		len32 = (len32 + 4) & ~3;
   1759 	}
   1760 
   1761 	if (len32 == 4) {
   1762 		uint8_t buf[4];
   1763 
   1764 		if (cmd_flags)
   1765 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1766 		else
   1767 			cmd_flags =
   1768 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1769 
   1770 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1771 
   1772 		memcpy(ret_buf, buf, 4 - extra);
   1773 	} else if (len32 > 0) {
   1774 		uint8_t buf[4];
   1775 
   1776 		/* Read the first word. */
   1777 		if (cmd_flags)
   1778 			cmd_flags = 0;
   1779 		else
   1780 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1781 
   1782 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1783 
   1784 		/* Advance to the next dword. */
   1785 		offset32 += 4;
   1786 		ret_buf += 4;
   1787 		len32 -= 4;
   1788 
   1789 		while (len32 > 4 && rc == 0) {
   1790 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1791 
   1792 			/* Advance to the next dword. */
   1793 			offset32 += 4;
   1794 			ret_buf += 4;
   1795 			len32 -= 4;
   1796 		}
   1797 
   1798 		if (rc)
   1799 			return rc;
   1800 
   1801 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1802 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1803 
   1804 		memcpy(ret_buf, buf, 4 - extra);
   1805 	}
   1806 
   1807 	/* Disable access to flash interface and release the lock. */
   1808 	bnx_disable_nvram_access(sc);
   1809 	bnx_release_nvram_lock(sc);
   1810 
   1811 	return rc;
   1812 }
   1813 
   1814 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1815 /****************************************************************************/
   1816 /* Write an arbitrary range of data from NVRAM.                             */
   1817 /*                                                                          */
   1818 /* Prepares the NVRAM interface for write access and writes the requested   */
   1819 /* data from the supplied buffer.  The caller is responsible for            */
   1820 /* calculating any appropriate CRCs.                                        */
   1821 /*                                                                          */
   1822 /* Returns:                                                                 */
   1823 /*   0 on success, positive value on failure.                               */
   1824 /****************************************************************************/
   1825 int
   1826 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
   1827     int buf_size)
   1828 {
   1829 	uint32_t		written, offset32, len32;
   1830 	uint8_t		*buf, start[4], end[4];
   1831 	int			rc = 0;
   1832 	int			align_start, align_end;
   1833 
   1834 	buf = data_buf;
   1835 	offset32 = offset;
   1836 	len32 = buf_size;
   1837 	align_start = align_end = 0;
   1838 
   1839 	if ((align_start = (offset32 & 3))) {
   1840 		offset32 &= ~3;
   1841 		len32 += align_start;
   1842 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1843 			return rc;
   1844 	}
   1845 
   1846 	if (len32 & 3) {
   1847 		if ((len32 > 4) || !align_start) {
   1848 			align_end = 4 - (len32 & 3);
   1849 			len32 += align_end;
   1850 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1851 			    end, 4)))
   1852 				return rc;
   1853 		}
   1854 	}
   1855 
   1856 	if (align_start || align_end) {
   1857 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1858 		if (buf == 0)
   1859 			return ENOMEM;
   1860 
   1861 		if (align_start)
   1862 			memcpy(buf, start, 4);
   1863 
   1864 		if (align_end)
   1865 			memcpy(buf + len32 - 4, end, 4);
   1866 
   1867 		memcpy(buf + align_start, data_buf, buf_size);
   1868 	}
   1869 
   1870 	written = 0;
   1871 	while ((written < len32) && (rc == 0)) {
   1872 		uint32_t page_start, page_end, data_start, data_end;
   1873 		uint32_t addr, cmd_flags;
   1874 		int i;
   1875 		uint8_t flash_buffer[264];
   1876 
   1877 	    /* Find the page_start addr */
   1878 		page_start = offset32 + written;
   1879 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1880 		/* Find the page_end addr */
   1881 		page_end = page_start + sc->bnx_flash_info->page_size;
   1882 		/* Find the data_start addr */
   1883 		data_start = (written == 0) ? offset32 : page_start;
   1884 		/* Find the data_end addr */
   1885 		data_end = (page_end > offset32 + len32) ?
   1886 		    (offset32 + len32) : page_end;
   1887 
   1888 		/* Request access to the flash interface. */
   1889 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1890 			goto nvram_write_end;
   1891 
   1892 		/* Enable access to flash interface */
   1893 		bnx_enable_nvram_access(sc);
   1894 
   1895 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1896 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1897 			int j;
   1898 
   1899 			/* Read the whole page into the buffer
   1900 			 * (non-buffer flash only) */
   1901 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1902 				if (j == (sc->bnx_flash_info->page_size - 4))
   1903 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1904 
   1905 				rc = bnx_nvram_read_dword(sc,
   1906 					page_start + j,
   1907 					&flash_buffer[j],
   1908 					cmd_flags);
   1909 
   1910 				if (rc)
   1911 					goto nvram_write_end;
   1912 
   1913 				cmd_flags = 0;
   1914 			}
   1915 		}
   1916 
   1917 		/* Enable writes to flash interface (unlock write-protect) */
   1918 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1919 			goto nvram_write_end;
   1920 
   1921 		/* Erase the page */
   1922 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1923 			goto nvram_write_end;
   1924 
   1925 		/* Re-enable the write again for the actual write */
   1926 		bnx_enable_nvram_write(sc);
   1927 
   1928 		/* Loop to write back the buffer data from page_start to
   1929 		 * data_start */
   1930 		i = 0;
   1931 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1932 			for (addr = page_start; addr < data_start;
   1933 				addr += 4, i += 4) {
   1934 
   1935 				rc = bnx_nvram_write_dword(sc, addr,
   1936 				    &flash_buffer[i], cmd_flags);
   1937 
   1938 				if (rc != 0)
   1939 					goto nvram_write_end;
   1940 
   1941 				cmd_flags = 0;
   1942 			}
   1943 		}
   1944 
   1945 		/* Loop to write the new data from data_start to data_end */
   1946 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1947 			if ((addr == page_end - 4) ||
   1948 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   1949 			    && (addr == data_end - 4))) {
   1950 
   1951 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1952 			}
   1953 
   1954 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1955 
   1956 			if (rc != 0)
   1957 				goto nvram_write_end;
   1958 
   1959 			cmd_flags = 0;
   1960 			buf += 4;
   1961 		}
   1962 
   1963 		/* Loop to write back the buffer data from data_end
   1964 		 * to page_end */
   1965 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1966 			for (addr = data_end; addr < page_end;
   1967 			    addr += 4, i += 4) {
   1968 
   1969 				if (addr == page_end-4)
   1970 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1971 
   1972 				rc = bnx_nvram_write_dword(sc, addr,
   1973 				    &flash_buffer[i], cmd_flags);
   1974 
   1975 				if (rc != 0)
   1976 					goto nvram_write_end;
   1977 
   1978 				cmd_flags = 0;
   1979 			}
   1980 		}
   1981 
   1982 		/* Disable writes to flash interface (lock write-protect) */
   1983 		bnx_disable_nvram_write(sc);
   1984 
   1985 		/* Disable access to flash interface */
   1986 		bnx_disable_nvram_access(sc);
   1987 		bnx_release_nvram_lock(sc);
   1988 
   1989 		/* Increment written */
   1990 		written += data_end - data_start;
   1991 	}
   1992 
   1993 nvram_write_end:
   1994 	if (align_start || align_end)
   1995 		free(buf, M_DEVBUF);
   1996 
   1997 	return rc;
   1998 }
   1999 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   2000 
   2001 /****************************************************************************/
   2002 /* Verifies that NVRAM is accessible and contains valid data.               */
   2003 /*                                                                          */
   2004 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   2005 /* correct.                                                                 */
   2006 /*                                                                          */
   2007 /* Returns:                                                                 */
   2008 /*   0 on success, positive value on failure.                               */
   2009 /****************************************************************************/
   2010 int
   2011 bnx_nvram_test(struct bnx_softc *sc)
   2012 {
   2013 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
   2014 	uint8_t		*data = (uint8_t *) buf;
   2015 	int			rc = 0;
   2016 	uint32_t		magic, csum;
   2017 
   2018 	/*
   2019 	 * Check that the device NVRAM is valid by reading
   2020 	 * the magic value at offset 0.
   2021 	 */
   2022 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   2023 		goto bnx_nvram_test_done;
   2024 
   2025 	magic = bnx_be32toh(buf[0]);
   2026 	if (magic != BNX_NVRAM_MAGIC) {
   2027 		rc = ENODEV;
   2028 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   2029 		    "Expected: 0x%08X, Found: 0x%08X\n",
   2030 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   2031 		goto bnx_nvram_test_done;
   2032 	}
   2033 
   2034 	/*
   2035 	 * Verify that the device NVRAM includes valid
   2036 	 * configuration data.
   2037 	 */
   2038 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   2039 		goto bnx_nvram_test_done;
   2040 
   2041 	csum = ether_crc32_le(data, 0x100);
   2042 	if (csum != BNX_CRC32_RESIDUAL) {
   2043 		rc = ENODEV;
   2044 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   2045 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   2046 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2047 		goto bnx_nvram_test_done;
   2048 	}
   2049 
   2050 	csum = ether_crc32_le(data + 0x100, 0x100);
   2051 	if (csum != BNX_CRC32_RESIDUAL) {
   2052 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   2053 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   2054 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2055 		rc = ENODEV;
   2056 	}
   2057 
   2058 bnx_nvram_test_done:
   2059 	return rc;
   2060 }
   2061 
   2062 /****************************************************************************/
   2063 /* Identifies the current media type of the controller and sets the PHY     */
   2064 /* address.                                                                 */
   2065 /*                                                                          */
   2066 /* Returns:                                                                 */
   2067 /*   Nothing.                                                               */
   2068 /****************************************************************************/
   2069 void
   2070 bnx_get_media(struct bnx_softc *sc)
   2071 {
   2072 	sc->bnx_phy_addr = 1;
   2073 
   2074 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2075 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   2076 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   2077 		uint32_t strap;
   2078 
   2079 		/*
   2080 		 * The BCM5709S is software configurable
   2081 		 * for Copper or SerDes operation.
   2082 		 */
   2083 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   2084 			DBPRINT(sc, BNX_INFO_LOAD,
   2085 			    "5709 bonded for copper.\n");
   2086 			goto bnx_get_media_exit;
   2087 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   2088 			DBPRINT(sc, BNX_INFO_LOAD,
   2089 			    "5709 bonded for dual media.\n");
   2090 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2091 			goto bnx_get_media_exit;
   2092 		}
   2093 
   2094 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2095 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2096 		else {
   2097 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2098 			    >> 8;
   2099 		}
   2100 
   2101 		if (sc->bnx_pa.pa_function == 0) {
   2102 			switch (strap) {
   2103 			case 0x4:
   2104 			case 0x5:
   2105 			case 0x6:
   2106 				DBPRINT(sc, BNX_INFO_LOAD,
   2107 					"BCM5709 s/w configured for SerDes.\n");
   2108 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2109 				break;
   2110 			default:
   2111 				DBPRINT(sc, BNX_INFO_LOAD,
   2112 					"BCM5709 s/w configured for Copper.\n");
   2113 			}
   2114 		} else {
   2115 			switch (strap) {
   2116 			case 0x1:
   2117 			case 0x2:
   2118 			case 0x4:
   2119 				DBPRINT(sc, BNX_INFO_LOAD,
   2120 					"BCM5709 s/w configured for SerDes.\n");
   2121 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2122 				break;
   2123 			default:
   2124 				DBPRINT(sc, BNX_INFO_LOAD,
   2125 					"BCM5709 s/w configured for Copper.\n");
   2126 			}
   2127 		}
   2128 
   2129 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2130 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2131 
   2132 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2133 		uint32_t val;
   2134 
   2135 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2136 
   2137 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2138 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2139 
   2140 		/*
   2141 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2142 		 * separate PHY for SerDes.
   2143 		 */
   2144 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2145 			sc->bnx_phy_addr = 2;
   2146 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2147 				 BNX_SHARED_HW_CFG_CONFIG);
   2148 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2149 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2150 				DBPRINT(sc, BNX_INFO_LOAD,
   2151 				    "Found 2.5Gb capable adapter\n");
   2152 			}
   2153 		}
   2154 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2155 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2156 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2157 
   2158 bnx_get_media_exit:
   2159 	DBPRINT(sc, (BNX_INFO_LOAD),
   2160 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2161 }
   2162 
   2163 /****************************************************************************/
   2164 /* Performs PHY initialization required before MII drivers access the       */
   2165 /* device.                                                                  */
   2166 /*                                                                          */
   2167 /* Returns:                                                                 */
   2168 /*   Nothing.                                                               */
   2169 /****************************************************************************/
   2170 void
   2171 bnx_init_media(struct bnx_softc *sc)
   2172 {
   2173 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2174 		/*
   2175 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2176 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2177 		 * the PHY to the mii(4) layer. PHY specific configuration
   2178 		 * is done by the mii(4) layer.
   2179 		 */
   2180 
   2181 		/* Select auto-negotiation MMD of the PHY. */
   2182 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2183 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2184 
   2185 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2186 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2187 
   2188 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2189 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2190 	}
   2191 }
   2192 
   2193 /****************************************************************************/
   2194 /* Free any DMA memory owned by the driver.                                 */
   2195 /*                                                                          */
   2196 /* Scans through each data structre that requires DMA memory and frees      */
   2197 /* the memory if allocated.                                                 */
   2198 /*                                                                          */
   2199 /* Returns:                                                                 */
   2200 /*   Nothing.                                                               */
   2201 /****************************************************************************/
   2202 void
   2203 bnx_dma_free(struct bnx_softc *sc)
   2204 {
   2205 	int			i;
   2206 
   2207 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2208 
   2209 	/* Destroy the status block. */
   2210 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2211 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2212 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2213 		    BNX_STATUS_BLK_SZ);
   2214 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2215 		    sc->status_rseg);
   2216 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2217 		sc->status_block = NULL;
   2218 		sc->status_map = NULL;
   2219 	}
   2220 
   2221 	/* Destroy the statistics block. */
   2222 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2223 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2224 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2225 		    BNX_STATS_BLK_SZ);
   2226 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2227 		    sc->stats_rseg);
   2228 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2229 		sc->stats_block = NULL;
   2230 		sc->stats_map = NULL;
   2231 	}
   2232 
   2233 	/* Free, unmap and destroy all context memory pages. */
   2234 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2235 		for (i = 0; i < sc->ctx_pages; i++) {
   2236 			if (sc->ctx_block[i] != NULL) {
   2237 				bus_dmamap_unload(sc->bnx_dmatag,
   2238 				    sc->ctx_map[i]);
   2239 				bus_dmamem_unmap(sc->bnx_dmatag,
   2240 				    (void *)sc->ctx_block[i],
   2241 				    BCM_PAGE_SIZE);
   2242 				bus_dmamem_free(sc->bnx_dmatag,
   2243 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2244 				bus_dmamap_destroy(sc->bnx_dmatag,
   2245 				    sc->ctx_map[i]);
   2246 				sc->ctx_block[i] = NULL;
   2247 			}
   2248 		}
   2249 	}
   2250 
   2251 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2252 	for (i = 0; i < TX_PAGES; i++ ) {
   2253 		if (sc->tx_bd_chain[i] != NULL &&
   2254 		    sc->tx_bd_chain_map[i] != NULL) {
   2255 			bus_dmamap_unload(sc->bnx_dmatag,
   2256 			    sc->tx_bd_chain_map[i]);
   2257 			bus_dmamem_unmap(sc->bnx_dmatag,
   2258 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2259 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2260 			    sc->tx_bd_chain_rseg[i]);
   2261 			bus_dmamap_destroy(sc->bnx_dmatag,
   2262 			    sc->tx_bd_chain_map[i]);
   2263 			sc->tx_bd_chain[i] = NULL;
   2264 			sc->tx_bd_chain_map[i] = NULL;
   2265 		}
   2266 	}
   2267 
   2268 	/* Destroy the TX dmamaps. */
   2269 	/* This isn't necessary since we dont allocate them up front */
   2270 
   2271 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2272 	for (i = 0; i < RX_PAGES; i++ ) {
   2273 		if (sc->rx_bd_chain[i] != NULL &&
   2274 		    sc->rx_bd_chain_map[i] != NULL) {
   2275 			bus_dmamap_unload(sc->bnx_dmatag,
   2276 			    sc->rx_bd_chain_map[i]);
   2277 			bus_dmamem_unmap(sc->bnx_dmatag,
   2278 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2279 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2280 			    sc->rx_bd_chain_rseg[i]);
   2281 
   2282 			bus_dmamap_destroy(sc->bnx_dmatag,
   2283 			    sc->rx_bd_chain_map[i]);
   2284 			sc->rx_bd_chain[i] = NULL;
   2285 			sc->rx_bd_chain_map[i] = NULL;
   2286 		}
   2287 	}
   2288 
   2289 	/* Unload and destroy the RX mbuf maps. */
   2290 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2291 		if (sc->rx_mbuf_map[i] != NULL) {
   2292 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2293 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2294 		}
   2295 	}
   2296 
   2297 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2298 }
   2299 
   2300 /****************************************************************************/
   2301 /* Allocate any DMA memory needed by the driver.                            */
   2302 /*                                                                          */
   2303 /* Allocates DMA memory needed for the various global structures needed by  */
   2304 /* hardware.                                                                */
   2305 /*                                                                          */
   2306 /* Returns:                                                                 */
   2307 /*   0 for success, positive value for failure.                             */
   2308 /****************************************************************************/
   2309 int
   2310 bnx_dma_alloc(struct bnx_softc *sc)
   2311 {
   2312 	int			i, rc = 0;
   2313 
   2314 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2315 
   2316 	/*
   2317 	 * Allocate DMA memory for the status block, map the memory into DMA
   2318 	 * space, and fetch the physical address of the block.
   2319 	 */
   2320 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2321 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2322 		aprint_error_dev(sc->bnx_dev,
   2323 		    "Could not create status block DMA map!\n");
   2324 		rc = ENOMEM;
   2325 		goto bnx_dma_alloc_exit;
   2326 	}
   2327 
   2328 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2329 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2330 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2331 		aprint_error_dev(sc->bnx_dev,
   2332 		    "Could not allocate status block DMA memory!\n");
   2333 		rc = ENOMEM;
   2334 		goto bnx_dma_alloc_exit;
   2335 	}
   2336 
   2337 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2338 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2339 		aprint_error_dev(sc->bnx_dev,
   2340 		    "Could not map status block DMA memory!\n");
   2341 		rc = ENOMEM;
   2342 		goto bnx_dma_alloc_exit;
   2343 	}
   2344 
   2345 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2346 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2347 		aprint_error_dev(sc->bnx_dev,
   2348 		    "Could not load status block DMA memory!\n");
   2349 		rc = ENOMEM;
   2350 		goto bnx_dma_alloc_exit;
   2351 	}
   2352 
   2353 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2354 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2355 
   2356 	/* DRC - Fix for 64 bit addresses. */
   2357 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2358 		(uint32_t) sc->status_block_paddr);
   2359 
   2360 	/* BCM5709 uses host memory as cache for context memory. */
   2361 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2362 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2363 		if (sc->ctx_pages == 0)
   2364 			sc->ctx_pages = 1;
   2365 		if (sc->ctx_pages > 4) /* XXX */
   2366 			sc->ctx_pages = 4;
   2367 
   2368 		DBRUNIF((sc->ctx_pages > 512),
   2369 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2370 				__FILE__, __LINE__, sc->ctx_pages));
   2371 
   2372 
   2373 		for (i = 0; i < sc->ctx_pages; i++) {
   2374 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2375 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2376 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2377 			    &sc->ctx_map[i]) != 0) {
   2378 				rc = ENOMEM;
   2379 				goto bnx_dma_alloc_exit;
   2380 			}
   2381 
   2382 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2383 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2384 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2385 				rc = ENOMEM;
   2386 				goto bnx_dma_alloc_exit;
   2387 			}
   2388 
   2389 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2390 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2391 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2392 				rc = ENOMEM;
   2393 				goto bnx_dma_alloc_exit;
   2394 			}
   2395 
   2396 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2397 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2398 			    BUS_DMA_NOWAIT) != 0) {
   2399 				rc = ENOMEM;
   2400 				goto bnx_dma_alloc_exit;
   2401 			}
   2402 
   2403 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2404 		}
   2405 	}
   2406 
   2407 	/*
   2408 	 * Allocate DMA memory for the statistics block, map the memory into
   2409 	 * DMA space, and fetch the physical address of the block.
   2410 	 */
   2411 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2412 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2413 		aprint_error_dev(sc->bnx_dev,
   2414 		    "Could not create stats block DMA map!\n");
   2415 		rc = ENOMEM;
   2416 		goto bnx_dma_alloc_exit;
   2417 	}
   2418 
   2419 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2420 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2421 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2422 		aprint_error_dev(sc->bnx_dev,
   2423 		    "Could not allocate stats block DMA memory!\n");
   2424 		rc = ENOMEM;
   2425 		goto bnx_dma_alloc_exit;
   2426 	}
   2427 
   2428 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2429 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2430 		aprint_error_dev(sc->bnx_dev,
   2431 		    "Could not map stats block DMA memory!\n");
   2432 		rc = ENOMEM;
   2433 		goto bnx_dma_alloc_exit;
   2434 	}
   2435 
   2436 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2437 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2438 		aprint_error_dev(sc->bnx_dev,
   2439 		    "Could not load status block DMA memory!\n");
   2440 		rc = ENOMEM;
   2441 		goto bnx_dma_alloc_exit;
   2442 	}
   2443 
   2444 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2445 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2446 
   2447 	/* DRC - Fix for 64 bit address. */
   2448 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2449 	    (uint32_t) sc->stats_block_paddr);
   2450 
   2451 	/*
   2452 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2453 	 * and fetch the physical address of the block.
   2454 	 */
   2455 	for (i = 0; i < TX_PAGES; i++) {
   2456 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2457 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2458 		    &sc->tx_bd_chain_map[i])) {
   2459 			aprint_error_dev(sc->bnx_dev,
   2460 			    "Could not create Tx desc %d DMA map!\n", i);
   2461 			rc = ENOMEM;
   2462 			goto bnx_dma_alloc_exit;
   2463 		}
   2464 
   2465 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2466 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2467 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2468 			aprint_error_dev(sc->bnx_dev,
   2469 			    "Could not allocate TX desc %d DMA memory!\n",
   2470 			    i);
   2471 			rc = ENOMEM;
   2472 			goto bnx_dma_alloc_exit;
   2473 		}
   2474 
   2475 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2476 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2477 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2478 			aprint_error_dev(sc->bnx_dev,
   2479 			    "Could not map TX desc %d DMA memory!\n", i);
   2480 			rc = ENOMEM;
   2481 			goto bnx_dma_alloc_exit;
   2482 		}
   2483 
   2484 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2485 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2486 		    BUS_DMA_NOWAIT)) {
   2487 			aprint_error_dev(sc->bnx_dev,
   2488 			    "Could not load TX desc %d DMA memory!\n", i);
   2489 			rc = ENOMEM;
   2490 			goto bnx_dma_alloc_exit;
   2491 		}
   2492 
   2493 		sc->tx_bd_chain_paddr[i] =
   2494 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2495 
   2496 		/* DRC - Fix for 64 bit systems. */
   2497 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2498 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
   2499 	}
   2500 
   2501 	/*
   2502 	 * Create lists to hold TX mbufs.
   2503 	 */
   2504 	TAILQ_INIT(&sc->tx_free_pkts);
   2505 	TAILQ_INIT(&sc->tx_used_pkts);
   2506 	sc->tx_pkt_count = 0;
   2507 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2508 
   2509 	/*
   2510 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2511 	 * and fetch the physical address of the block.
   2512 	 */
   2513 	for (i = 0; i < RX_PAGES; i++) {
   2514 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2515 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2516 		    &sc->rx_bd_chain_map[i])) {
   2517 			aprint_error_dev(sc->bnx_dev,
   2518 			    "Could not create Rx desc %d DMA map!\n", i);
   2519 			rc = ENOMEM;
   2520 			goto bnx_dma_alloc_exit;
   2521 		}
   2522 
   2523 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2524 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2525 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2526 			aprint_error_dev(sc->bnx_dev,
   2527 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2528 			rc = ENOMEM;
   2529 			goto bnx_dma_alloc_exit;
   2530 		}
   2531 
   2532 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2533 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2534 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2535 			aprint_error_dev(sc->bnx_dev,
   2536 			    "Could not map Rx desc %d DMA memory!\n", i);
   2537 			rc = ENOMEM;
   2538 			goto bnx_dma_alloc_exit;
   2539 		}
   2540 
   2541 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2542 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2543 		    BUS_DMA_NOWAIT)) {
   2544 			aprint_error_dev(sc->bnx_dev,
   2545 			    "Could not load Rx desc %d DMA memory!\n", i);
   2546 			rc = ENOMEM;
   2547 			goto bnx_dma_alloc_exit;
   2548 		}
   2549 
   2550 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2551 		sc->rx_bd_chain_paddr[i] =
   2552 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2553 
   2554 		/* DRC - Fix for 64 bit systems. */
   2555 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2556 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
   2557 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2558 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2559 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2560 	}
   2561 
   2562 	/*
   2563 	 * Create DMA maps for the Rx buffer mbufs.
   2564 	 */
   2565 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2566 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2567 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2568 		    &sc->rx_mbuf_map[i])) {
   2569 			aprint_error_dev(sc->bnx_dev,
   2570 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2571 			rc = ENOMEM;
   2572 			goto bnx_dma_alloc_exit;
   2573 		}
   2574 	}
   2575 
   2576  bnx_dma_alloc_exit:
   2577 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2578 
   2579 	return rc;
   2580 }
   2581 
   2582 /****************************************************************************/
   2583 /* Release all resources used by the driver.                                */
   2584 /*                                                                          */
   2585 /* Releases all resources acquired by the driver including interrupts,      */
   2586 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2587 /*                                                                          */
   2588 /* Returns:                                                                 */
   2589 /*   Nothing.                                                               */
   2590 /****************************************************************************/
   2591 void
   2592 bnx_release_resources(struct bnx_softc *sc)
   2593 {
   2594 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2595 
   2596 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2597 
   2598 	bnx_dma_free(sc);
   2599 
   2600 	if (sc->bnx_intrhand != NULL)
   2601 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2602 
   2603 	if (sc->bnx_size)
   2604 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2605 
   2606 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2607 }
   2608 
   2609 /****************************************************************************/
   2610 /* Firmware synchronization.                                                */
   2611 /*                                                                          */
   2612 /* Before performing certain events such as a chip reset, synchronize with  */
   2613 /* the firmware first.                                                      */
   2614 /*                                                                          */
   2615 /* Returns:                                                                 */
   2616 /*   0 for success, positive value for failure.                             */
   2617 /****************************************************************************/
   2618 int
   2619 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
   2620 {
   2621 	int			i, rc = 0;
   2622 	uint32_t		val;
   2623 
   2624 	/* Don't waste any time if we've timed out before. */
   2625 	if (sc->bnx_fw_timed_out) {
   2626 		rc = EBUSY;
   2627 		goto bnx_fw_sync_exit;
   2628 	}
   2629 
   2630 	/* Increment the message sequence number. */
   2631 	sc->bnx_fw_wr_seq++;
   2632 	msg_data |= sc->bnx_fw_wr_seq;
   2633 
   2634  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2635 	    msg_data);
   2636 
   2637 	/* Send the message to the bootcode driver mailbox. */
   2638 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2639 
   2640 	/* Wait for the bootcode to acknowledge the message. */
   2641 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2642 		/* Check for a response in the bootcode firmware mailbox. */
   2643 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2644 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2645 			break;
   2646 		DELAY(1000);
   2647 	}
   2648 
   2649 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2650 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2651 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2652 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2653 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2654 
   2655 		msg_data &= ~BNX_DRV_MSG_CODE;
   2656 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2657 
   2658 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2659 
   2660 		sc->bnx_fw_timed_out = 1;
   2661 		rc = EBUSY;
   2662 	}
   2663 
   2664 bnx_fw_sync_exit:
   2665 	return rc;
   2666 }
   2667 
   2668 /****************************************************************************/
   2669 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2670 /*                                                                          */
   2671 /* Returns:                                                                 */
   2672 /*   Nothing.                                                               */
   2673 /****************************************************************************/
   2674 void
   2675 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
   2676     uint32_t rv2p_code_len, uint32_t rv2p_proc)
   2677 {
   2678 	int			i;
   2679 	uint32_t		val;
   2680 
   2681 	/* Set the page size used by RV2P. */
   2682 	if (rv2p_proc == RV2P_PROC2) {
   2683 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2684 		    USABLE_RX_BD_PER_PAGE);
   2685 	}
   2686 
   2687 	for (i = 0; i < rv2p_code_len; i += 8) {
   2688 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2689 		rv2p_code++;
   2690 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2691 		rv2p_code++;
   2692 
   2693 		if (rv2p_proc == RV2P_PROC1) {
   2694 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2695 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2696 		} else {
   2697 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2698 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2699 		}
   2700 	}
   2701 
   2702 	/* Reset the processor, un-stall is done later. */
   2703 	if (rv2p_proc == RV2P_PROC1)
   2704 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2705 	else
   2706 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2707 }
   2708 
   2709 /****************************************************************************/
   2710 /* Load RISC processor firmware.                                            */
   2711 /*                                                                          */
   2712 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2713 /* associated with a particular processor.                                  */
   2714 /*                                                                          */
   2715 /* Returns:                                                                 */
   2716 /*   Nothing.                                                               */
   2717 /****************************************************************************/
   2718 void
   2719 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2720     struct fw_info *fw)
   2721 {
   2722 	uint32_t		offset;
   2723 	uint32_t		val;
   2724 
   2725 	/* Halt the CPU. */
   2726 	val = REG_RD_IND(sc, cpu_reg->mode);
   2727 	val |= cpu_reg->mode_value_halt;
   2728 	REG_WR_IND(sc, cpu_reg->mode, val);
   2729 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2730 
   2731 	/* Load the Text area. */
   2732 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2733 	if (fw->text) {
   2734 		int j;
   2735 
   2736 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2737 			REG_WR_IND(sc, offset, fw->text[j]);
   2738 	}
   2739 
   2740 	/* Load the Data area. */
   2741 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2742 	if (fw->data) {
   2743 		int j;
   2744 
   2745 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2746 			REG_WR_IND(sc, offset, fw->data[j]);
   2747 	}
   2748 
   2749 	/* Load the SBSS area. */
   2750 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2751 	if (fw->sbss) {
   2752 		int j;
   2753 
   2754 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2755 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2756 	}
   2757 
   2758 	/* Load the BSS area. */
   2759 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2760 	if (fw->bss) {
   2761 		int j;
   2762 
   2763 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2764 			REG_WR_IND(sc, offset, fw->bss[j]);
   2765 	}
   2766 
   2767 	/* Load the Read-Only area. */
   2768 	offset = cpu_reg->spad_base +
   2769 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2770 	if (fw->rodata) {
   2771 		int j;
   2772 
   2773 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2774 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2775 	}
   2776 
   2777 	/* Clear the pre-fetch instruction. */
   2778 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2779 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2780 
   2781 	/* Start the CPU. */
   2782 	val = REG_RD_IND(sc, cpu_reg->mode);
   2783 	val &= ~cpu_reg->mode_value_halt;
   2784 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2785 	REG_WR_IND(sc, cpu_reg->mode, val);
   2786 }
   2787 
   2788 /****************************************************************************/
   2789 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2790 /*                                                                          */
   2791 /* Loads the firmware for each CPU and starts the CPU.                      */
   2792 /*                                                                          */
   2793 /* Returns:                                                                 */
   2794 /*   Nothing.                                                               */
   2795 /****************************************************************************/
   2796 void
   2797 bnx_init_cpus(struct bnx_softc *sc)
   2798 {
   2799 	struct cpu_reg cpu_reg;
   2800 	struct fw_info fw;
   2801 
   2802 	switch(BNX_CHIP_NUM(sc)) {
   2803 	case BNX_CHIP_NUM_5709:
   2804 		/* Initialize the RV2P processor. */
   2805 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2806 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2807 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2808 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2809 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2810 		} else {
   2811 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2812 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2813 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2814 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2815 		}
   2816 
   2817 		/* Initialize the RX Processor. */
   2818 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2819 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2820 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2821 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2822 		cpu_reg.state_value_clear = 0xffffff;
   2823 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2824 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2825 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2826 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2827 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2828 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2829 		cpu_reg.mips_view_base = 0x8000000;
   2830 
   2831 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2832 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2833 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2834 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2835 
   2836 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2837 		fw.text_len = bnx_RXP_b09FwTextLen;
   2838 		fw.text_index = 0;
   2839 		fw.text = bnx_RXP_b09FwText;
   2840 
   2841 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2842 		fw.data_len = bnx_RXP_b09FwDataLen;
   2843 		fw.data_index = 0;
   2844 		fw.data = bnx_RXP_b09FwData;
   2845 
   2846 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2847 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2848 		fw.sbss_index = 0;
   2849 		fw.sbss = bnx_RXP_b09FwSbss;
   2850 
   2851 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2852 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2853 		fw.bss_index = 0;
   2854 		fw.bss = bnx_RXP_b09FwBss;
   2855 
   2856 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2857 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2858 		fw.rodata_index = 0;
   2859 		fw.rodata = bnx_RXP_b09FwRodata;
   2860 
   2861 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2862 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2863 
   2864 		/* Initialize the TX Processor. */
   2865 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2866 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2867 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2868 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2869 		cpu_reg.state_value_clear = 0xffffff;
   2870 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2871 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2872 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2873 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2874 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2875 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2876 		cpu_reg.mips_view_base = 0x8000000;
   2877 
   2878 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2879 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2880 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2881 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2882 
   2883 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2884 		fw.text_len = bnx_TXP_b09FwTextLen;
   2885 		fw.text_index = 0;
   2886 		fw.text = bnx_TXP_b09FwText;
   2887 
   2888 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   2889 		fw.data_len = bnx_TXP_b09FwDataLen;
   2890 		fw.data_index = 0;
   2891 		fw.data = bnx_TXP_b09FwData;
   2892 
   2893 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   2894 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   2895 		fw.sbss_index = 0;
   2896 		fw.sbss = bnx_TXP_b09FwSbss;
   2897 
   2898 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   2899 		fw.bss_len = bnx_TXP_b09FwBssLen;
   2900 		fw.bss_index = 0;
   2901 		fw.bss = bnx_TXP_b09FwBss;
   2902 
   2903 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   2904 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   2905 		fw.rodata_index = 0;
   2906 		fw.rodata = bnx_TXP_b09FwRodata;
   2907 
   2908 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2909 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2910 
   2911 		/* Initialize the TX Patch-up Processor. */
   2912 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2913 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2914 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2915 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2916 		cpu_reg.state_value_clear = 0xffffff;
   2917 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2918 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2919 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2920 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2921 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2922 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2923 		cpu_reg.mips_view_base = 0x8000000;
   2924 
   2925 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   2926 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   2927 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   2928 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   2929 
   2930 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   2931 		fw.text_len = bnx_TPAT_b09FwTextLen;
   2932 		fw.text_index = 0;
   2933 		fw.text = bnx_TPAT_b09FwText;
   2934 
   2935 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   2936 		fw.data_len = bnx_TPAT_b09FwDataLen;
   2937 		fw.data_index = 0;
   2938 		fw.data = bnx_TPAT_b09FwData;
   2939 
   2940 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   2941 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   2942 		fw.sbss_index = 0;
   2943 		fw.sbss = bnx_TPAT_b09FwSbss;
   2944 
   2945 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   2946 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   2947 		fw.bss_index = 0;
   2948 		fw.bss = bnx_TPAT_b09FwBss;
   2949 
   2950 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   2951 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   2952 		fw.rodata_index = 0;
   2953 		fw.rodata = bnx_TPAT_b09FwRodata;
   2954 
   2955 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2956 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2957 
   2958 		/* Initialize the Completion Processor. */
   2959 		cpu_reg.mode = BNX_COM_CPU_MODE;
   2960 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2961 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2962 		cpu_reg.state = BNX_COM_CPU_STATE;
   2963 		cpu_reg.state_value_clear = 0xffffff;
   2964 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2965 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2966 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2967 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2968 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2969 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   2970 		cpu_reg.mips_view_base = 0x8000000;
   2971 
   2972 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   2973 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   2974 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   2975 		fw.start_addr = bnx_COM_b09FwStartAddr;
   2976 
   2977 		fw.text_addr = bnx_COM_b09FwTextAddr;
   2978 		fw.text_len = bnx_COM_b09FwTextLen;
   2979 		fw.text_index = 0;
   2980 		fw.text = bnx_COM_b09FwText;
   2981 
   2982 		fw.data_addr = bnx_COM_b09FwDataAddr;
   2983 		fw.data_len = bnx_COM_b09FwDataLen;
   2984 		fw.data_index = 0;
   2985 		fw.data = bnx_COM_b09FwData;
   2986 
   2987 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   2988 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   2989 		fw.sbss_index = 0;
   2990 		fw.sbss = bnx_COM_b09FwSbss;
   2991 
   2992 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   2993 		fw.bss_len = bnx_COM_b09FwBssLen;
   2994 		fw.bss_index = 0;
   2995 		fw.bss = bnx_COM_b09FwBss;
   2996 
   2997 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   2998 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   2999 		fw.rodata_index = 0;
   3000 		fw.rodata = bnx_COM_b09FwRodata;
   3001 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3002 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3003 		break;
   3004 	default:
   3005 		/* Initialize the RV2P processor. */
   3006 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   3007 		    RV2P_PROC1);
   3008 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   3009 		    RV2P_PROC2);
   3010 
   3011 		/* Initialize the RX Processor. */
   3012 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   3013 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   3014 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   3015 		cpu_reg.state = BNX_RXP_CPU_STATE;
   3016 		cpu_reg.state_value_clear = 0xffffff;
   3017 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   3018 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   3019 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   3020 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   3021 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   3022 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   3023 		cpu_reg.mips_view_base = 0x8000000;
   3024 
   3025 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   3026 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   3027 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   3028 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   3029 
   3030 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   3031 		fw.text_len = bnx_RXP_b06FwTextLen;
   3032 		fw.text_index = 0;
   3033 		fw.text = bnx_RXP_b06FwText;
   3034 
   3035 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   3036 		fw.data_len = bnx_RXP_b06FwDataLen;
   3037 		fw.data_index = 0;
   3038 		fw.data = bnx_RXP_b06FwData;
   3039 
   3040 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   3041 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   3042 		fw.sbss_index = 0;
   3043 		fw.sbss = bnx_RXP_b06FwSbss;
   3044 
   3045 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   3046 		fw.bss_len = bnx_RXP_b06FwBssLen;
   3047 		fw.bss_index = 0;
   3048 		fw.bss = bnx_RXP_b06FwBss;
   3049 
   3050 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   3051 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   3052 		fw.rodata_index = 0;
   3053 		fw.rodata = bnx_RXP_b06FwRodata;
   3054 
   3055 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   3056 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3057 
   3058 		/* Initialize the TX Processor. */
   3059 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   3060 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   3061 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   3062 		cpu_reg.state = BNX_TXP_CPU_STATE;
   3063 		cpu_reg.state_value_clear = 0xffffff;
   3064 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   3065 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   3066 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   3067 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   3068 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   3069 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   3070 		cpu_reg.mips_view_base = 0x8000000;
   3071 
   3072 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   3073 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   3074 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   3075 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   3076 
   3077 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   3078 		fw.text_len = bnx_TXP_b06FwTextLen;
   3079 		fw.text_index = 0;
   3080 		fw.text = bnx_TXP_b06FwText;
   3081 
   3082 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   3083 		fw.data_len = bnx_TXP_b06FwDataLen;
   3084 		fw.data_index = 0;
   3085 		fw.data = bnx_TXP_b06FwData;
   3086 
   3087 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   3088 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   3089 		fw.sbss_index = 0;
   3090 		fw.sbss = bnx_TXP_b06FwSbss;
   3091 
   3092 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3093 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3094 		fw.bss_index = 0;
   3095 		fw.bss = bnx_TXP_b06FwBss;
   3096 
   3097 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3098 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3099 		fw.rodata_index = 0;
   3100 		fw.rodata = bnx_TXP_b06FwRodata;
   3101 
   3102 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3103 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3104 
   3105 		/* Initialize the TX Patch-up Processor. */
   3106 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3107 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3108 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3109 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3110 		cpu_reg.state_value_clear = 0xffffff;
   3111 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3112 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3113 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3114 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3115 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3116 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3117 		cpu_reg.mips_view_base = 0x8000000;
   3118 
   3119 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3120 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3121 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3122 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3123 
   3124 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3125 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3126 		fw.text_index = 0;
   3127 		fw.text = bnx_TPAT_b06FwText;
   3128 
   3129 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3130 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3131 		fw.data_index = 0;
   3132 		fw.data = bnx_TPAT_b06FwData;
   3133 
   3134 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3135 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3136 		fw.sbss_index = 0;
   3137 		fw.sbss = bnx_TPAT_b06FwSbss;
   3138 
   3139 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3140 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3141 		fw.bss_index = 0;
   3142 		fw.bss = bnx_TPAT_b06FwBss;
   3143 
   3144 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3145 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3146 		fw.rodata_index = 0;
   3147 		fw.rodata = bnx_TPAT_b06FwRodata;
   3148 
   3149 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3150 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3151 
   3152 		/* Initialize the Completion Processor. */
   3153 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3154 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3155 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3156 		cpu_reg.state = BNX_COM_CPU_STATE;
   3157 		cpu_reg.state_value_clear = 0xffffff;
   3158 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3159 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3160 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3161 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3162 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3163 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3164 		cpu_reg.mips_view_base = 0x8000000;
   3165 
   3166 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3167 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3168 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3169 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3170 
   3171 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3172 		fw.text_len = bnx_COM_b06FwTextLen;
   3173 		fw.text_index = 0;
   3174 		fw.text = bnx_COM_b06FwText;
   3175 
   3176 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3177 		fw.data_len = bnx_COM_b06FwDataLen;
   3178 		fw.data_index = 0;
   3179 		fw.data = bnx_COM_b06FwData;
   3180 
   3181 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3182 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3183 		fw.sbss_index = 0;
   3184 		fw.sbss = bnx_COM_b06FwSbss;
   3185 
   3186 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3187 		fw.bss_len = bnx_COM_b06FwBssLen;
   3188 		fw.bss_index = 0;
   3189 		fw.bss = bnx_COM_b06FwBss;
   3190 
   3191 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3192 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3193 		fw.rodata_index = 0;
   3194 		fw.rodata = bnx_COM_b06FwRodata;
   3195 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3196 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3197 		break;
   3198 	}
   3199 }
   3200 
   3201 /****************************************************************************/
   3202 /* Initialize context memory.                                               */
   3203 /*                                                                          */
   3204 /* Clears the memory associated with each Context ID (CID).                 */
   3205 /*                                                                          */
   3206 /* Returns:                                                                 */
   3207 /*   Nothing.                                                               */
   3208 /****************************************************************************/
   3209 void
   3210 bnx_init_context(struct bnx_softc *sc)
   3211 {
   3212 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3213 		/* DRC: Replace this constant value with a #define. */
   3214 		int i, retry_cnt = 10;
   3215 		uint32_t val;
   3216 
   3217 		/*
   3218 		 * BCM5709 context memory may be cached
   3219 		 * in host memory so prepare the host memory
   3220 		 * for access.
   3221 		 */
   3222 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3223 		    | (1 << 12);
   3224 		val |= (BCM_PAGE_BITS - 8) << 16;
   3225 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3226 
   3227 		/* Wait for mem init command to complete. */
   3228 		for (i = 0; i < retry_cnt; i++) {
   3229 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3230 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3231 				break;
   3232 			DELAY(2);
   3233 		}
   3234 
   3235 		/* ToDo: Consider returning an error here. */
   3236 
   3237 		for (i = 0; i < sc->ctx_pages; i++) {
   3238 			int j;
   3239 
   3240 			/* Set the physaddr of the context memory cache. */
   3241 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
   3242 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3243 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3244 			val = (uint32_t)
   3245 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
   3246 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3247 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3248 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3249 
   3250 			/* Verify that the context memory write was successful. */
   3251 			for (j = 0; j < retry_cnt; j++) {
   3252 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3253 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3254 					break;
   3255 				DELAY(5);
   3256 			}
   3257 
   3258 			/* ToDo: Consider returning an error here. */
   3259 		}
   3260 	} else {
   3261 		uint32_t vcid_addr, offset;
   3262 
   3263 		/*
   3264 		 * For the 5706/5708, context memory is local to the
   3265 		 * controller, so initialize the controller context memory.
   3266 		 */
   3267 
   3268 		vcid_addr = GET_CID_ADDR(96);
   3269 		while (vcid_addr) {
   3270 
   3271 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3272 
   3273 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3274 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3275 
   3276 			for (offset = 0; offset < BNX_PHY_CTX_SIZE;
   3277 			     offset += 4)
   3278 				CTX_WR(sc, 0x00, offset, 0);
   3279 
   3280 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3281 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3282 		}
   3283 	}
   3284 }
   3285 
   3286 /****************************************************************************/
   3287 /* Fetch the permanent MAC address of the controller.                       */
   3288 /*                                                                          */
   3289 /* Returns:                                                                 */
   3290 /*   Nothing.                                                               */
   3291 /****************************************************************************/
   3292 void
   3293 bnx_get_mac_addr(struct bnx_softc *sc)
   3294 {
   3295 	uint32_t		mac_lo = 0, mac_hi = 0;
   3296 
   3297 	/*
   3298 	 * The NetXtreme II bootcode populates various NIC
   3299 	 * power-on and runtime configuration items in a
   3300 	 * shared memory area.  The factory configured MAC
   3301 	 * address is available from both NVRAM and the
   3302 	 * shared memory area so we'll read the value from
   3303 	 * shared memory for speed.
   3304 	 */
   3305 
   3306 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3307 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3308 
   3309 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3310 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3311 		    __FILE__, __LINE__);
   3312 	} else {
   3313 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3314 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3315 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3316 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3317 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3318 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3319 	}
   3320 
   3321 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3322 	    "%s\n", ether_sprintf(sc->eaddr));
   3323 }
   3324 
   3325 /****************************************************************************/
   3326 /* Program the MAC address.                                                 */
   3327 /*                                                                          */
   3328 /* Returns:                                                                 */
   3329 /*   Nothing.                                                               */
   3330 /****************************************************************************/
   3331 void
   3332 bnx_set_mac_addr(struct bnx_softc *sc)
   3333 {
   3334 	uint32_t		val;
   3335 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3336 
   3337 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3338 	    "%s\n", ether_sprintf(sc->eaddr));
   3339 
   3340 	val = (mac_addr[0] << 8) | mac_addr[1];
   3341 
   3342 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3343 
   3344 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3345 		(mac_addr[4] << 8) | mac_addr[5];
   3346 
   3347 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3348 }
   3349 
   3350 /****************************************************************************/
   3351 /* Stop the controller.                                                     */
   3352 /*                                                                          */
   3353 /* Returns:                                                                 */
   3354 /*   Nothing.                                                               */
   3355 /****************************************************************************/
   3356 void
   3357 bnx_stop(struct ifnet *ifp, int disable)
   3358 {
   3359 	struct bnx_softc *sc = ifp->if_softc;
   3360 
   3361 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3362 
   3363 	if (disable) {
   3364 		sc->bnx_detaching = 1;
   3365 		callout_halt(&sc->bnx_timeout, NULL);
   3366 	} else
   3367 		callout_stop(&sc->bnx_timeout);
   3368 
   3369 	mii_down(&sc->bnx_mii);
   3370 
   3371 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3372 
   3373 	/* Disable the transmit/receive blocks. */
   3374 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3375 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3376 	DELAY(20);
   3377 
   3378 	bnx_disable_intr(sc);
   3379 
   3380 	/* Tell firmware that the driver is going away. */
   3381 	if (disable)
   3382 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3383 	else
   3384 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3385 
   3386 	/* Free RX buffers. */
   3387 	bnx_free_rx_chain(sc);
   3388 
   3389 	/* Free TX buffers. */
   3390 	bnx_free_tx_chain(sc);
   3391 
   3392 	ifp->if_timer = 0;
   3393 
   3394 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3395 
   3396 }
   3397 
   3398 int
   3399 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
   3400 {
   3401 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3402 	uint32_t		val;
   3403 	int			i, rc = 0;
   3404 
   3405 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3406 
   3407 	/* Wait for pending PCI transactions to complete. */
   3408 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3409 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3410 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3411 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3412 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3413 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3414 	DELAY(5);
   3415 
   3416 	/* Disable DMA */
   3417 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3418 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3419 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3420 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3421 	}
   3422 
   3423 	/* Assume bootcode is running. */
   3424 	sc->bnx_fw_timed_out = 0;
   3425 
   3426 	/* Give the firmware a chance to prepare for the reset. */
   3427 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3428 	if (rc)
   3429 		goto bnx_reset_exit;
   3430 
   3431 	/* Set a firmware reminder that this is a soft reset. */
   3432 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3433 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3434 
   3435 	/* Dummy read to force the chip to complete all current transactions. */
   3436 	val = REG_RD(sc, BNX_MISC_ID);
   3437 
   3438 	/* Chip reset. */
   3439 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3440 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3441 		REG_RD(sc, BNX_MISC_COMMAND);
   3442 		DELAY(5);
   3443 
   3444 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3445 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3446 
   3447 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3448 		    val);
   3449 	} else {
   3450 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3451 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3452 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3453 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3454 
   3455 		/* Allow up to 30us for reset to complete. */
   3456 		for (i = 0; i < 10; i++) {
   3457 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3458 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3459 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3460 				break;
   3461 			}
   3462 			DELAY(10);
   3463 		}
   3464 
   3465 		/* Check that reset completed successfully. */
   3466 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3467 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3468 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3469 			    __FILE__, __LINE__);
   3470 			rc = EBUSY;
   3471 			goto bnx_reset_exit;
   3472 		}
   3473 	}
   3474 
   3475 	/* Make sure byte swapping is properly configured. */
   3476 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3477 	if (val != 0x01020304) {
   3478 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3479 		    __FILE__, __LINE__);
   3480 		rc = ENODEV;
   3481 		goto bnx_reset_exit;
   3482 	}
   3483 
   3484 	/* Just completed a reset, assume that firmware is running again. */
   3485 	sc->bnx_fw_timed_out = 0;
   3486 
   3487 	/* Wait for the firmware to finish its initialization. */
   3488 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3489 	if (rc)
   3490 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3491 		    "initialization!\n", __FILE__, __LINE__);
   3492 
   3493 bnx_reset_exit:
   3494 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3495 
   3496 	return rc;
   3497 }
   3498 
   3499 int
   3500 bnx_chipinit(struct bnx_softc *sc)
   3501 {
   3502 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3503 	uint32_t		val;
   3504 	int			rc = 0;
   3505 
   3506 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3507 
   3508 	/* Make sure the interrupt is not active. */
   3509 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3510 
   3511 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3512 	/* channels and PCI clock compensation delay.                      */
   3513 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3514 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3515 #if BYTE_ORDER == BIG_ENDIAN
   3516 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3517 #endif
   3518 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3519 	    DMA_READ_CHANS << 12 |
   3520 	    DMA_WRITE_CHANS << 16;
   3521 
   3522 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3523 
   3524 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3525 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3526 
   3527 	/*
   3528 	 * This setting resolves a problem observed on certain Intel PCI
   3529 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3530 	 * See errata E9_5706A1_65.
   3531 	 */
   3532 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3533 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3534 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3535 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3536 
   3537 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3538 
   3539 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3540 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3541 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3542 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3543 		    val & ~0x20000);
   3544 	}
   3545 
   3546 	/* Enable the RX_V2P and Context state machines before access. */
   3547 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3548 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3549 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3550 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3551 
   3552 	/* Initialize context mapping and zero out the quick contexts. */
   3553 	bnx_init_context(sc);
   3554 
   3555 	/* Initialize the on-boards CPUs */
   3556 	bnx_init_cpus(sc);
   3557 
   3558 	/* Prepare NVRAM for access. */
   3559 	if (bnx_init_nvram(sc)) {
   3560 		rc = ENODEV;
   3561 		goto bnx_chipinit_exit;
   3562 	}
   3563 
   3564 	/* Set the kernel bypass block size */
   3565 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3566 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3567 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3568 
   3569 	/* Enable bins used on the 5709. */
   3570 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3571 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3572 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3573 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3574 	}
   3575 
   3576 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3577 
   3578 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3579 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3580 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3581 
   3582 	val = (BCM_PAGE_BITS - 8) << 24;
   3583 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3584 
   3585 	/* Configure page size. */
   3586 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3587 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3588 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3589 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3590 
   3591 #if 0
   3592 	/* Set the perfect match control register to default. */
   3593 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3594 #endif
   3595 
   3596 bnx_chipinit_exit:
   3597 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3598 
   3599 	return rc;
   3600 }
   3601 
   3602 /****************************************************************************/
   3603 /* Initialize the controller in preparation to send/receive traffic.        */
   3604 /*                                                                          */
   3605 /* Returns:                                                                 */
   3606 /*   0 for success, positive value for failure.                             */
   3607 /****************************************************************************/
   3608 int
   3609 bnx_blockinit(struct bnx_softc *sc)
   3610 {
   3611 	uint32_t		reg, val;
   3612 	int 			rc = 0;
   3613 
   3614 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3615 
   3616 	/* Load the hardware default MAC address. */
   3617 	bnx_set_mac_addr(sc);
   3618 
   3619 	/* Set the Ethernet backoff seed value */
   3620 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3621 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3622 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3623 
   3624 	sc->last_status_idx = 0;
   3625 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3626 
   3627 	/* Set up link change interrupt generation. */
   3628 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3629 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3630 
   3631 	/* Program the physical address of the status block. */
   3632 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
   3633 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3634 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
   3635 
   3636 	/* Program the physical address of the statistics block. */
   3637 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3638 	    (uint32_t)(sc->stats_block_paddr));
   3639 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3640 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
   3641 
   3642 	/* Program various host coalescing parameters. */
   3643 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3644 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3645 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3646 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3647 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3648 	    sc->bnx_comp_prod_trip);
   3649 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3650 	    sc->bnx_tx_ticks);
   3651 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3652 	    sc->bnx_rx_ticks);
   3653 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3654 	    sc->bnx_com_ticks);
   3655 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3656 	    sc->bnx_cmd_ticks);
   3657 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3658 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3659 	REG_WR(sc, BNX_HC_CONFIG,
   3660 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3661 	    BNX_HC_CONFIG_COLLECT_STATS));
   3662 
   3663 	/* Clear the internal statistics counters. */
   3664 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3665 
   3666 	/* Verify that bootcode is running. */
   3667 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3668 
   3669 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3670 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3671 	    __FILE__, __LINE__); reg = 0);
   3672 
   3673 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3674 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3675 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3676 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3677 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3678 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3679 		rc = ENODEV;
   3680 		goto bnx_blockinit_exit;
   3681 	}
   3682 
   3683 	/* Check if any management firmware is running. */
   3684 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3685 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3686 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3687 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3688 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3689 	}
   3690 
   3691 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3692 	    BNX_DEV_INFO_BC_REV);
   3693 
   3694 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3695 
   3696 	/* Enable DMA */
   3697 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3698 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3699 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3700 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3701 	}
   3702 
   3703 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3704 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3705 
   3706 	/* Enable link state change interrupt generation. */
   3707 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3708 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3709 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3710 	} else
   3711 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3712 
   3713 	/* Enable all remaining blocks in the MAC. */
   3714 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3715 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3716 	DELAY(20);
   3717 
   3718 bnx_blockinit_exit:
   3719 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3720 
   3721 	return rc;
   3722 }
   3723 
   3724 static int
   3725 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
   3726     uint16_t *chain_prod, uint32_t *prod_bseq)
   3727 {
   3728 	bus_dmamap_t		map;
   3729 	struct rx_bd		*rxbd;
   3730 	uint32_t		addr;
   3731 	int i;
   3732 #ifdef BNX_DEBUG
   3733 	uint16_t debug_chain_prod =	*chain_prod;
   3734 #endif
   3735 	uint16_t first_chain_prod;
   3736 
   3737 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3738 
   3739 	/* Map the mbuf cluster into device memory. */
   3740 	map = sc->rx_mbuf_map[*chain_prod];
   3741 	first_chain_prod = *chain_prod;
   3742 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3743 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3744 		    __FILE__, __LINE__);
   3745 
   3746 		m_freem(m_new);
   3747 
   3748 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3749 
   3750 		return ENOBUFS;
   3751 	}
   3752 	/* Make sure there is room in the receive chain. */
   3753 	if (map->dm_nsegs > sc->free_rx_bd) {
   3754 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3755 		m_freem(m_new);
   3756 		return EFBIG;
   3757 	}
   3758 #ifdef BNX_DEBUG
   3759 	/* Track the distribution of buffer segments. */
   3760 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3761 #endif
   3762 
   3763 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3764 	    BUS_DMASYNC_PREREAD);
   3765 
   3766 	/* Update some debug statistics counters */
   3767 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3768 	    sc->rx_low_watermark = sc->free_rx_bd);
   3769 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3770 
   3771 	/*
   3772 	 * Setup the rx_bd for the first segment
   3773 	 */
   3774 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3775 
   3776 	addr = (uint32_t)map->dm_segs[0].ds_addr;
   3777 	rxbd->rx_bd_haddr_lo = addr;
   3778 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
   3779 	rxbd->rx_bd_haddr_hi = addr;
   3780 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3781 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3782 	*prod_bseq += map->dm_segs[0].ds_len;
   3783 	bus_dmamap_sync(sc->bnx_dmatag,
   3784 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3785 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3786 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3787 
   3788 	for (i = 1; i < map->dm_nsegs; i++) {
   3789 		*prod = NEXT_RX_BD(*prod);
   3790 		*chain_prod = RX_CHAIN_IDX(*prod);
   3791 
   3792 		rxbd =
   3793 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3794 
   3795 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   3796 		rxbd->rx_bd_haddr_lo = addr;
   3797 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   3798 		rxbd->rx_bd_haddr_hi = addr;
   3799 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3800 		rxbd->rx_bd_flags = 0;
   3801 		*prod_bseq += map->dm_segs[i].ds_len;
   3802 		bus_dmamap_sync(sc->bnx_dmatag,
   3803 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3804 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3805 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3806 	}
   3807 
   3808 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3809 	bus_dmamap_sync(sc->bnx_dmatag,
   3810 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3811 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3812 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3813 
   3814 	/*
   3815 	 * Save the mbuf, adjust the map pointer (swap map for first and
   3816 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
   3817 	 * and update our counter.
   3818 	 */
   3819 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3820 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3821 	sc->rx_mbuf_map[*chain_prod] = map;
   3822 	sc->free_rx_bd -= map->dm_nsegs;
   3823 
   3824 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3825 	    map->dm_nsegs));
   3826 	*prod = NEXT_RX_BD(*prod);
   3827 	*chain_prod = RX_CHAIN_IDX(*prod);
   3828 
   3829 	return 0;
   3830 }
   3831 
   3832 /****************************************************************************/
   3833 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3834 /*                                                                          */
   3835 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3836 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3837 /* necessary.                                                               */
   3838 /*                                                                          */
   3839 /* Returns:                                                                 */
   3840 /*   0 for success, positive value for failure.                             */
   3841 /****************************************************************************/
   3842 int
   3843 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
   3844     uint16_t *chain_prod, uint32_t *prod_bseq)
   3845 {
   3846 	struct mbuf 		*m_new = NULL;
   3847 	int			rc = 0;
   3848 	uint16_t min_free_bd;
   3849 
   3850 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3851 	    __func__);
   3852 
   3853 	/* Make sure the inputs are valid. */
   3854 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3855 	    aprint_error_dev(sc->bnx_dev,
   3856 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3857 		*chain_prod, (uint16_t)MAX_RX_BD));
   3858 
   3859 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3860 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3861 	    *prod_bseq);
   3862 
   3863 	/* try to get in as many mbufs as possible */
   3864 	if (sc->mbuf_alloc_size == MCLBYTES)
   3865 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3866 	else
   3867 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3868 	while (sc->free_rx_bd >= min_free_bd) {
   3869 		/* Simulate an mbuf allocation failure. */
   3870 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3871 		    aprint_error_dev(sc->bnx_dev,
   3872 		    "Simulating mbuf allocation failure.\n");
   3873 			sc->mbuf_sim_alloc_failed++;
   3874 			rc = ENOBUFS;
   3875 			goto bnx_get_buf_exit);
   3876 
   3877 		/* This is a new mbuf allocation. */
   3878 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3879 		if (m_new == NULL) {
   3880 			DBPRINT(sc, BNX_WARN,
   3881 			    "%s(%d): RX mbuf header allocation failed!\n",
   3882 			    __FILE__, __LINE__);
   3883 
   3884 			sc->mbuf_alloc_failed++;
   3885 
   3886 			rc = ENOBUFS;
   3887 			goto bnx_get_buf_exit;
   3888 		}
   3889 
   3890 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3891 
   3892 		/* Simulate an mbuf cluster allocation failure. */
   3893 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3894 			m_freem(m_new);
   3895 			sc->rx_mbuf_alloc--;
   3896 			sc->mbuf_alloc_failed++;
   3897 			sc->mbuf_sim_alloc_failed++;
   3898 			rc = ENOBUFS;
   3899 			goto bnx_get_buf_exit);
   3900 
   3901 		if (sc->mbuf_alloc_size == MCLBYTES)
   3902 			MCLGET(m_new, M_DONTWAIT);
   3903 		else
   3904 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3905 			    M_DONTWAIT);
   3906 		if (!(m_new->m_flags & M_EXT)) {
   3907 			DBPRINT(sc, BNX_WARN,
   3908 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3909 			    __FILE__, __LINE__);
   3910 
   3911 			m_freem(m_new);
   3912 
   3913 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3914 			sc->mbuf_alloc_failed++;
   3915 
   3916 			rc = ENOBUFS;
   3917 			goto bnx_get_buf_exit;
   3918 		}
   3919 
   3920 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3921 		if (rc != 0)
   3922 			goto bnx_get_buf_exit;
   3923 	}
   3924 
   3925 bnx_get_buf_exit:
   3926 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3927 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3928 	    *chain_prod, *prod_bseq);
   3929 
   3930 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3931 	    __func__);
   3932 
   3933 	return rc;
   3934 }
   3935 
   3936 void
   3937 bnx_alloc_pkts(struct work * unused, void * arg)
   3938 {
   3939 	struct bnx_softc *sc = arg;
   3940 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   3941 	struct bnx_pkt *pkt;
   3942 	int i, s;
   3943 
   3944 	for (i = 0; i < 4; i++) { /* magic! */
   3945 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   3946 		if (pkt == NULL)
   3947 			break;
   3948 
   3949 		if (bus_dmamap_create(sc->bnx_dmatag,
   3950 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   3951 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   3952 		    &pkt->pkt_dmamap) != 0)
   3953 			goto put;
   3954 
   3955 		if (!ISSET(ifp->if_flags, IFF_UP))
   3956 			goto stopping;
   3957 
   3958 		mutex_enter(&sc->tx_pkt_mtx);
   3959 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   3960 		sc->tx_pkt_count++;
   3961 		mutex_exit(&sc->tx_pkt_mtx);
   3962 	}
   3963 
   3964 	mutex_enter(&sc->tx_pkt_mtx);
   3965 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   3966 	mutex_exit(&sc->tx_pkt_mtx);
   3967 
   3968 	/* fire-up TX now that allocations have been done */
   3969 	s = splnet();
   3970 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3971 		bnx_start(ifp);
   3972 	splx(s);
   3973 
   3974 	return;
   3975 
   3976 stopping:
   3977 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   3978 put:
   3979 	pool_put(bnx_tx_pool, pkt);
   3980 	return;
   3981 }
   3982 
   3983 /****************************************************************************/
   3984 /* Initialize the TX context memory.                                        */
   3985 /*                                                                          */
   3986 /* Returns:                                                                 */
   3987 /*   Nothing                                                                */
   3988 /****************************************************************************/
   3989 void
   3990 bnx_init_tx_context(struct bnx_softc *sc)
   3991 {
   3992 	uint32_t val;
   3993 
   3994 	/* Initialize the context ID for an L2 TX chain. */
   3995 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3996 		/* Set the CID type to support an L2 connection. */
   3997 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   3998 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   3999 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4000 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   4001 
   4002 		/* Point the hardware to the first page in the chain. */
   4003 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4004 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4005 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   4006 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4007 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4008 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   4009 	} else {
   4010 		/* Set the CID type to support an L2 connection. */
   4011 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4012 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   4013 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4014 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   4015 
   4016 		/* Point the hardware to the first page in the chain. */
   4017 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4018 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   4019 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4020 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   4021 	}
   4022 }
   4023 
   4024 
   4025 /****************************************************************************/
   4026 /* Allocate memory and initialize the TX data structures.                   */
   4027 /*                                                                          */
   4028 /* Returns:                                                                 */
   4029 /*   0 for success, positive value for failure.                             */
   4030 /****************************************************************************/
   4031 int
   4032 bnx_init_tx_chain(struct bnx_softc *sc)
   4033 {
   4034 	struct tx_bd		*txbd;
   4035 	uint32_t		addr;
   4036 	int			i, rc = 0;
   4037 
   4038 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4039 
   4040 	/* Force an allocation of some dmamaps for tx up front */
   4041 	bnx_alloc_pkts(NULL, sc);
   4042 
   4043 	/* Set the initial TX producer/consumer indices. */
   4044 	sc->tx_prod = 0;
   4045 	sc->tx_cons = 0;
   4046 	sc->tx_prod_bseq = 0;
   4047 	sc->used_tx_bd = 0;
   4048 	sc->max_tx_bd = USABLE_TX_BD;
   4049 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   4050 	DBRUNIF(1, sc->tx_full_count = 0);
   4051 
   4052 	/*
   4053 	 * The NetXtreme II supports a linked-list structure called
   4054 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   4055 	 * consists of a series of 1 or more chain pages, each of which
   4056 	 * consists of a fixed number of BD entries.
   4057 	 * The last BD entry on each page is a pointer to the next page
   4058 	 * in the chain, and the last pointer in the BD chain
   4059 	 * points back to the beginning of the chain.
   4060 	 */
   4061 
   4062 	/* Set the TX next pointer chain entries. */
   4063 	for (i = 0; i < TX_PAGES; i++) {
   4064 		int j;
   4065 
   4066 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   4067 
   4068 		/* Check if we've reached the last page. */
   4069 		if (i == (TX_PAGES - 1))
   4070 			j = 0;
   4071 		else
   4072 			j = i + 1;
   4073 
   4074 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
   4075 		txbd->tx_bd_haddr_lo = addr;
   4076 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
   4077 		txbd->tx_bd_haddr_hi = addr;
   4078 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4079 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4080 	}
   4081 
   4082 	/*
   4083 	 * Initialize the context ID for an L2 TX chain.
   4084 	 */
   4085 	bnx_init_tx_context(sc);
   4086 
   4087 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4088 
   4089 	return rc;
   4090 }
   4091 
   4092 /****************************************************************************/
   4093 /* Free memory and clear the TX data structures.                            */
   4094 /*                                                                          */
   4095 /* Returns:                                                                 */
   4096 /*   Nothing.                                                               */
   4097 /****************************************************************************/
   4098 void
   4099 bnx_free_tx_chain(struct bnx_softc *sc)
   4100 {
   4101 	struct bnx_pkt		*pkt;
   4102 	int			i;
   4103 
   4104 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4105 
   4106 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4107 	mutex_enter(&sc->tx_pkt_mtx);
   4108 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4109 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4110 		mutex_exit(&sc->tx_pkt_mtx);
   4111 
   4112 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4113 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4114 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4115 
   4116 		m_freem(pkt->pkt_mbuf);
   4117 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4118 
   4119 		mutex_enter(&sc->tx_pkt_mtx);
   4120 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4121 	}
   4122 
   4123 	/* Destroy all the dmamaps we allocated for TX */
   4124 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   4125 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4126 		sc->tx_pkt_count--;
   4127 		mutex_exit(&sc->tx_pkt_mtx);
   4128 
   4129 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4130 		pool_put(bnx_tx_pool, pkt);
   4131 
   4132 		mutex_enter(&sc->tx_pkt_mtx);
   4133 	}
   4134 	mutex_exit(&sc->tx_pkt_mtx);
   4135 
   4136 
   4137 
   4138 	/* Clear each TX chain page. */
   4139 	for (i = 0; i < TX_PAGES; i++) {
   4140 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4141 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4142 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4143 	}
   4144 
   4145 	sc->used_tx_bd = 0;
   4146 
   4147 	/* Check if we lost any mbufs in the process. */
   4148 	DBRUNIF((sc->tx_mbuf_alloc),
   4149 	    aprint_error_dev(sc->bnx_dev,
   4150 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   4151 		sc->tx_mbuf_alloc));
   4152 
   4153 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4154 }
   4155 
   4156 /****************************************************************************/
   4157 /* Initialize the RX context memory.                                        */
   4158 /*                                                                          */
   4159 /* Returns:                                                                 */
   4160 /*   Nothing                                                                */
   4161 /****************************************************************************/
   4162 void
   4163 bnx_init_rx_context(struct bnx_softc *sc)
   4164 {
   4165 	uint32_t val;
   4166 
   4167 	/* Initialize the context ID for an L2 RX chain. */
   4168 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4169 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4170 
   4171 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4172 		uint32_t lo_water, hi_water;
   4173 
   4174 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
   4175 		hi_water = USABLE_RX_BD / 4;
   4176 
   4177 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
   4178 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
   4179 
   4180 		if (hi_water > 0xf)
   4181 			hi_water = 0xf;
   4182 		else if (hi_water == 0)
   4183 			lo_water = 0;
   4184 		val |= lo_water |
   4185 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
   4186 	}
   4187 
   4188  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4189 
   4190 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4191 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4192 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4193 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4194 	}
   4195 
   4196 	/* Point the hardware to the first page in the chain. */
   4197 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4198 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4199 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
   4200 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4201 }
   4202 
   4203 /****************************************************************************/
   4204 /* Allocate memory and initialize the RX data structures.                   */
   4205 /*                                                                          */
   4206 /* Returns:                                                                 */
   4207 /*   0 for success, positive value for failure.                             */
   4208 /****************************************************************************/
   4209 int
   4210 bnx_init_rx_chain(struct bnx_softc *sc)
   4211 {
   4212 	struct rx_bd		*rxbd;
   4213 	int			i, rc = 0;
   4214 	uint16_t		prod, chain_prod;
   4215 	uint32_t		prod_bseq, addr;
   4216 
   4217 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4218 
   4219 	/* Initialize the RX producer and consumer indices. */
   4220 	sc->rx_prod = 0;
   4221 	sc->rx_cons = 0;
   4222 	sc->rx_prod_bseq = 0;
   4223 	sc->free_rx_bd = USABLE_RX_BD;
   4224 	sc->max_rx_bd = USABLE_RX_BD;
   4225 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4226 	DBRUNIF(1, sc->rx_empty_count = 0);
   4227 
   4228 	/* Initialize the RX next pointer chain entries. */
   4229 	for (i = 0; i < RX_PAGES; i++) {
   4230 		int j;
   4231 
   4232 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4233 
   4234 		/* Check if we've reached the last page. */
   4235 		if (i == (RX_PAGES - 1))
   4236 			j = 0;
   4237 		else
   4238 			j = i + 1;
   4239 
   4240 		/* Setup the chain page pointers. */
   4241 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4242 		rxbd->rx_bd_haddr_hi = addr;
   4243 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
   4244 		rxbd->rx_bd_haddr_lo = addr;
   4245 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4246 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4247 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4248 	}
   4249 
   4250 	/* Allocate mbuf clusters for the rx_bd chain. */
   4251 	prod = prod_bseq = 0;
   4252 	chain_prod = RX_CHAIN_IDX(prod);
   4253 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4254 		BNX_PRINTF(sc,
   4255 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4256 	}
   4257 
   4258 	/* Save the RX chain producer index. */
   4259 	sc->rx_prod = prod;
   4260 	sc->rx_prod_bseq = prod_bseq;
   4261 
   4262 	for (i = 0; i < RX_PAGES; i++)
   4263 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4264 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4265 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4266 
   4267 	/* Tell the chip about the waiting rx_bd's. */
   4268 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4269 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4270 
   4271 	bnx_init_rx_context(sc);
   4272 
   4273 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4274 
   4275 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4276 
   4277 	return rc;
   4278 }
   4279 
   4280 /****************************************************************************/
   4281 /* Free memory and clear the RX data structures.                            */
   4282 /*                                                                          */
   4283 /* Returns:                                                                 */
   4284 /*   Nothing.                                                               */
   4285 /****************************************************************************/
   4286 void
   4287 bnx_free_rx_chain(struct bnx_softc *sc)
   4288 {
   4289 	int			i;
   4290 
   4291 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4292 
   4293 	/* Free any mbufs still in the RX mbuf chain. */
   4294 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4295 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4296 			if (sc->rx_mbuf_map[i] != NULL) {
   4297 				bus_dmamap_sync(sc->bnx_dmatag,
   4298 				    sc->rx_mbuf_map[i],	0,
   4299 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4300 				    BUS_DMASYNC_POSTREAD);
   4301 				bus_dmamap_unload(sc->bnx_dmatag,
   4302 				    sc->rx_mbuf_map[i]);
   4303 			}
   4304 			m_freem(sc->rx_mbuf_ptr[i]);
   4305 			sc->rx_mbuf_ptr[i] = NULL;
   4306 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4307 		}
   4308 	}
   4309 
   4310 	/* Clear each RX chain page. */
   4311 	for (i = 0; i < RX_PAGES; i++)
   4312 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4313 
   4314 	sc->free_rx_bd = sc->max_rx_bd;
   4315 
   4316 	/* Check if we lost any mbufs in the process. */
   4317 	DBRUNIF((sc->rx_mbuf_alloc),
   4318 	    aprint_error_dev(sc->bnx_dev,
   4319 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   4320 		sc->rx_mbuf_alloc));
   4321 
   4322 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4323 }
   4324 
   4325 /****************************************************************************/
   4326 /* Handles PHY generated interrupt events.                                  */
   4327 /*                                                                          */
   4328 /* Returns:                                                                 */
   4329 /*   Nothing.                                                               */
   4330 /****************************************************************************/
   4331 void
   4332 bnx_phy_intr(struct bnx_softc *sc)
   4333 {
   4334 	uint32_t		new_link_state, old_link_state;
   4335 
   4336 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4337 	    BUS_DMASYNC_POSTREAD);
   4338 	new_link_state = sc->status_block->status_attn_bits &
   4339 	    STATUS_ATTN_BITS_LINK_STATE;
   4340 	old_link_state = sc->status_block->status_attn_bits_ack &
   4341 	    STATUS_ATTN_BITS_LINK_STATE;
   4342 
   4343 	/* Handle any changes if the link state has changed. */
   4344 	if (new_link_state != old_link_state) {
   4345 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4346 
   4347 		callout_stop(&sc->bnx_timeout);
   4348 		bnx_tick(sc);
   4349 
   4350 		/* Update the status_attn_bits_ack field in the status block. */
   4351 		if (new_link_state) {
   4352 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4353 			    STATUS_ATTN_BITS_LINK_STATE);
   4354 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4355 		} else {
   4356 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4357 			    STATUS_ATTN_BITS_LINK_STATE);
   4358 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4359 		}
   4360 	}
   4361 
   4362 	/* Acknowledge the link change interrupt. */
   4363 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4364 }
   4365 
   4366 /****************************************************************************/
   4367 /* Handles received frame interrupt events.                                 */
   4368 /*                                                                          */
   4369 /* Returns:                                                                 */
   4370 /*   Nothing.                                                               */
   4371 /****************************************************************************/
   4372 void
   4373 bnx_rx_intr(struct bnx_softc *sc)
   4374 {
   4375 	struct status_block	*sblk = sc->status_block;
   4376 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4377 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
   4378 	uint16_t		sw_prod, sw_chain_prod;
   4379 	uint32_t		sw_prod_bseq;
   4380 	struct l2_fhdr		*l2fhdr;
   4381 	int			i;
   4382 
   4383 	DBRUNIF(1, sc->rx_interrupts++);
   4384 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4385 	    BUS_DMASYNC_POSTREAD);
   4386 
   4387 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4388 	for (i = 0; i < RX_PAGES; i++)
   4389 		bus_dmamap_sync(sc->bnx_dmatag,
   4390 		    sc->rx_bd_chain_map[i], 0,
   4391 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4392 		    BUS_DMASYNC_POSTWRITE);
   4393 
   4394 	/* Get the hardware's view of the RX consumer index. */
   4395 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4396 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4397 		hw_cons++;
   4398 
   4399 	/* Get working copies of the driver's view of the RX indices. */
   4400 	sw_cons = sc->rx_cons;
   4401 	sw_prod = sc->rx_prod;
   4402 	sw_prod_bseq = sc->rx_prod_bseq;
   4403 
   4404 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4405 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4406 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4407 
   4408 	/* Prevent speculative reads from getting ahead of the status block. */
   4409 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4410 	    BUS_SPACE_BARRIER_READ);
   4411 
   4412 	/* Update some debug statistics counters */
   4413 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4414 	    sc->rx_low_watermark = sc->free_rx_bd);
   4415 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4416 
   4417 	/*
   4418 	 * Scan through the receive chain as long
   4419 	 * as there is work to do.
   4420 	 */
   4421 	while (sw_cons != hw_cons) {
   4422 		struct mbuf *m;
   4423 		struct rx_bd *rxbd __diagused;
   4424 		unsigned int len;
   4425 		uint32_t status;
   4426 
   4427 		/* Convert the producer/consumer indices to an actual
   4428 		 * rx_bd index.
   4429 		 */
   4430 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4431 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4432 
   4433 		/* Get the used rx_bd. */
   4434 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4435 		sc->free_rx_bd++;
   4436 
   4437 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4438 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4439 
   4440 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4441 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4442 #ifdef DIAGNOSTIC
   4443 			/* Validate that this is the last rx_bd. */
   4444 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4445 			    printf("%s: Unexpected mbuf found in "
   4446 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4447 			        sw_chain_cons);
   4448 			}
   4449 #endif
   4450 
   4451 			/* DRC - ToDo: If the received packet is small, say
   4452 			 *             less than 128 bytes, allocate a new mbuf
   4453 			 *             here, copy the data to that mbuf, and
   4454 			 *             recycle the mapped jumbo frame.
   4455 			 */
   4456 
   4457 			/* Unmap the mbuf from DMA space. */
   4458 #ifdef DIAGNOSTIC
   4459 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4460 				printf("invalid map sw_cons 0x%x "
   4461 				"sw_prod 0x%x "
   4462 				"sw_chain_cons 0x%x "
   4463 				"sw_chain_prod 0x%x "
   4464 				"hw_cons 0x%x "
   4465 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4466 				"TOTAL_RX_BD 0x%x\n",
   4467 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4468 				hw_cons,
   4469 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4470 			}
   4471 #endif
   4472 			bus_dmamap_sync(sc->bnx_dmatag,
   4473 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4474 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4475 			    BUS_DMASYNC_POSTREAD);
   4476 			bus_dmamap_unload(sc->bnx_dmatag,
   4477 			    sc->rx_mbuf_map[sw_chain_cons]);
   4478 
   4479 			/* Remove the mbuf from the driver's chain. */
   4480 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4481 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4482 
   4483 			/*
   4484 			 * Frames received on the NetXteme II are prepended
   4485 			 * with the l2_fhdr structure which provides status
   4486 			 * information about the received frame (including
   4487 			 * VLAN tags and checksum info) and are also
   4488 			 * automatically adjusted to align the IP header
   4489 			 * (i.e. two null bytes are inserted before the
   4490 			 * Ethernet header).
   4491 			 */
   4492 			l2fhdr = mtod(m, struct l2_fhdr *);
   4493 
   4494 			len    = l2fhdr->l2_fhdr_pkt_len;
   4495 			status = l2fhdr->l2_fhdr_status;
   4496 
   4497 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4498 			    aprint_error("Simulating l2_fhdr status error.\n");
   4499 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4500 
   4501 			/* Watch for unusual sized frames. */
   4502 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4503 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4504 			    aprint_error_dev(sc->bnx_dev,
   4505 			        "Unusual frame size found. "
   4506 				"Min(%d), Actual(%d), Max(%d)\n",
   4507 				(int)BNX_MIN_MTU, len,
   4508 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4509 
   4510 			bnx_dump_mbuf(sc, m);
   4511 			bnx_breakpoint(sc));
   4512 
   4513 			len -= ETHER_CRC_LEN;
   4514 
   4515 			/* Check the received frame for errors. */
   4516 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4517 			    L2_FHDR_ERRORS_PHY_DECODE |
   4518 			    L2_FHDR_ERRORS_ALIGNMENT |
   4519 			    L2_FHDR_ERRORS_TOO_SHORT |
   4520 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4521 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4522 			    len >
   4523 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4524 				ifp->if_ierrors++;
   4525 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4526 
   4527 				/* Reuse the mbuf for a new frame. */
   4528 				if (bnx_add_buf(sc, m, &sw_prod,
   4529 				    &sw_chain_prod, &sw_prod_bseq)) {
   4530 					DBRUNIF(1, bnx_breakpoint(sc));
   4531 					panic("%s: Can't reuse RX mbuf!\n",
   4532 					    device_xname(sc->bnx_dev));
   4533 				}
   4534 				continue;
   4535 			}
   4536 
   4537 			/*
   4538 			 * Get a new mbuf for the rx_bd.   If no new
   4539 			 * mbufs are available then reuse the current mbuf,
   4540 			 * log an ierror on the interface, and generate
   4541 			 * an error in the system log.
   4542 			 */
   4543 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4544 			    &sw_prod_bseq)) {
   4545 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4546 				    "Failed to allocate "
   4547 				    "new mbuf, incoming frame dropped!\n"));
   4548 
   4549 				ifp->if_ierrors++;
   4550 
   4551 				/* Try and reuse the exisitng mbuf. */
   4552 				if (bnx_add_buf(sc, m, &sw_prod,
   4553 				    &sw_chain_prod, &sw_prod_bseq)) {
   4554 					DBRUNIF(1, bnx_breakpoint(sc));
   4555 					panic("%s: Double mbuf allocation "
   4556 					    "failure!",
   4557 					    device_xname(sc->bnx_dev));
   4558 				}
   4559 				continue;
   4560 			}
   4561 
   4562 			/* Skip over the l2_fhdr when passing the data up
   4563 			 * the stack.
   4564 			 */
   4565 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4566 
   4567 			/* Adjust the pckt length to match the received data. */
   4568 			m->m_pkthdr.len = m->m_len = len;
   4569 
   4570 			/* Send the packet to the appropriate interface. */
   4571 			m_set_rcvif(m, ifp);
   4572 
   4573 			DBRUN(BNX_VERBOSE_RECV,
   4574 			    struct ether_header *eh;
   4575 			    eh = mtod(m, struct ether_header *);
   4576 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4577 			    __func__, ether_sprintf(eh->ether_dhost),
   4578 			    ether_sprintf(eh->ether_shost),
   4579 			    htons(eh->ether_type)));
   4580 
   4581 			/* Validate the checksum. */
   4582 
   4583 			/* Check for an IP datagram. */
   4584 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4585 				/* Check if the IP checksum is valid. */
   4586 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
   4587 					m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   4588 #ifdef BNX_DEBUG
   4589 				else
   4590 					DBPRINT(sc, BNX_WARN_SEND,
   4591 					    "%s(): Invalid IP checksum "
   4592 					        "= 0x%04X!\n",
   4593 						__func__,
   4594 						l2fhdr->l2_fhdr_ip_xsum
   4595 						);
   4596 #endif
   4597 			}
   4598 
   4599 			/* Check for a valid TCP/UDP frame. */
   4600 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4601 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4602 				/* Check for a good TCP/UDP checksum. */
   4603 				if ((status &
   4604 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4605 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4606 					m->m_pkthdr.csum_flags |=
   4607 					    M_CSUM_TCPv4 |
   4608 					    M_CSUM_UDPv4;
   4609 				} else {
   4610 					DBPRINT(sc, BNX_WARN_SEND,
   4611 					    "%s(): Invalid TCP/UDP "
   4612 					    "checksum = 0x%04X!\n",
   4613 					    __func__,
   4614 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4615 				}
   4616 			}
   4617 
   4618 			/*
   4619 			 * If we received a packet with a vlan tag,
   4620 			 * attach that information to the packet.
   4621 			 */
   4622 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4623 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4624 				vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
   4625 			}
   4626 
   4627 			/* Pass the mbuf off to the upper layers. */
   4628 
   4629 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4630 			    "%s(): Passing received frame up.\n", __func__);
   4631 			if_percpuq_enqueue(ifp->if_percpuq, m);
   4632 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4633 
   4634 		}
   4635 
   4636 		sw_cons = NEXT_RX_BD(sw_cons);
   4637 
   4638 		/* Refresh hw_cons to see if there's new work */
   4639 		if (sw_cons == hw_cons) {
   4640 			hw_cons = sc->hw_rx_cons =
   4641 			    sblk->status_rx_quick_consumer_index0;
   4642 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4643 			    USABLE_RX_BD_PER_PAGE)
   4644 				hw_cons++;
   4645 		}
   4646 
   4647 		/* Prevent speculative reads from getting ahead of
   4648 		 * the status block.
   4649 		 */
   4650 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4651 		    BUS_SPACE_BARRIER_READ);
   4652 	}
   4653 
   4654 	for (i = 0; i < RX_PAGES; i++)
   4655 		bus_dmamap_sync(sc->bnx_dmatag,
   4656 		    sc->rx_bd_chain_map[i], 0,
   4657 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4658 		    BUS_DMASYNC_PREWRITE);
   4659 
   4660 	sc->rx_cons = sw_cons;
   4661 	sc->rx_prod = sw_prod;
   4662 	sc->rx_prod_bseq = sw_prod_bseq;
   4663 
   4664 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4665 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4666 
   4667 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4668 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4669 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4670 }
   4671 
   4672 /****************************************************************************/
   4673 /* Handles transmit completion interrupt events.                            */
   4674 /*                                                                          */
   4675 /* Returns:                                                                 */
   4676 /*   Nothing.                                                               */
   4677 /****************************************************************************/
   4678 void
   4679 bnx_tx_intr(struct bnx_softc *sc)
   4680 {
   4681 	struct status_block	*sblk = sc->status_block;
   4682 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4683 	struct bnx_pkt		*pkt;
   4684 	bus_dmamap_t		map;
   4685 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4686 
   4687 	DBRUNIF(1, sc->tx_interrupts++);
   4688 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4689 	    BUS_DMASYNC_POSTREAD);
   4690 
   4691 	/* Get the hardware's view of the TX consumer index. */
   4692 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4693 
   4694 	/* Skip to the next entry if this is a chain page pointer. */
   4695 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4696 		hw_tx_cons++;
   4697 
   4698 	sw_tx_cons = sc->tx_cons;
   4699 
   4700 	/* Prevent speculative reads from getting ahead of the status block. */
   4701 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4702 	    BUS_SPACE_BARRIER_READ);
   4703 
   4704 	/* Cycle through any completed TX chain page entries. */
   4705 	while (sw_tx_cons != hw_tx_cons) {
   4706 #ifdef BNX_DEBUG
   4707 		struct tx_bd *txbd = NULL;
   4708 #endif
   4709 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4710 
   4711 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4712 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4713 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4714 
   4715 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4716 		    aprint_error_dev(sc->bnx_dev,
   4717 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4718 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4719 
   4720 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4721 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4722 
   4723 		DBRUNIF((txbd == NULL),
   4724 		    aprint_error_dev(sc->bnx_dev,
   4725 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4726 		    bnx_breakpoint(sc));
   4727 
   4728 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4729 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4730 
   4731 
   4732 		mutex_enter(&sc->tx_pkt_mtx);
   4733 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4734 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4735 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4736 			mutex_exit(&sc->tx_pkt_mtx);
   4737 			/*
   4738 			 * Free the associated mbuf. Remember
   4739 			 * that only the last tx_bd of a packet
   4740 			 * has an mbuf pointer and DMA map.
   4741 			 */
   4742 			map = pkt->pkt_dmamap;
   4743 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4744 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4745 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4746 
   4747 			m_freem(pkt->pkt_mbuf);
   4748 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4749 
   4750 			ifp->if_opackets++;
   4751 
   4752 			mutex_enter(&sc->tx_pkt_mtx);
   4753 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4754 		}
   4755 		mutex_exit(&sc->tx_pkt_mtx);
   4756 
   4757 		sc->used_tx_bd--;
   4758 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4759 			__FILE__, __LINE__, sc->used_tx_bd);
   4760 
   4761 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4762 
   4763 		/* Refresh hw_cons to see if there's new work. */
   4764 		hw_tx_cons = sc->hw_tx_cons =
   4765 		    sblk->status_tx_quick_consumer_index0;
   4766 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4767 		    USABLE_TX_BD_PER_PAGE)
   4768 			hw_tx_cons++;
   4769 
   4770 		/* Prevent speculative reads from getting ahead of
   4771 		 * the status block.
   4772 		 */
   4773 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4774 		    BUS_SPACE_BARRIER_READ);
   4775 	}
   4776 
   4777 	/* Clear the TX timeout timer. */
   4778 	ifp->if_timer = 0;
   4779 
   4780 	/* Clear the tx hardware queue full flag. */
   4781 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4782 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4783 		    aprint_debug_dev(sc->bnx_dev,
   4784 		        "Open TX chain! %d/%d (used/total)\n",
   4785 			sc->used_tx_bd, sc->max_tx_bd));
   4786 		ifp->if_flags &= ~IFF_OACTIVE;
   4787 	}
   4788 
   4789 	sc->tx_cons = sw_tx_cons;
   4790 }
   4791 
   4792 /****************************************************************************/
   4793 /* Disables interrupt generation.                                           */
   4794 /*                                                                          */
   4795 /* Returns:                                                                 */
   4796 /*   Nothing.                                                               */
   4797 /****************************************************************************/
   4798 void
   4799 bnx_disable_intr(struct bnx_softc *sc)
   4800 {
   4801 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4802 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4803 }
   4804 
   4805 /****************************************************************************/
   4806 /* Enables interrupt generation.                                            */
   4807 /*                                                                          */
   4808 /* Returns:                                                                 */
   4809 /*   Nothing.                                                               */
   4810 /****************************************************************************/
   4811 void
   4812 bnx_enable_intr(struct bnx_softc *sc)
   4813 {
   4814 	uint32_t		val;
   4815 
   4816 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4817 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4818 
   4819 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4820 	    sc->last_status_idx);
   4821 
   4822 	val = REG_RD(sc, BNX_HC_COMMAND);
   4823 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4824 }
   4825 
   4826 /****************************************************************************/
   4827 /* Handles controller initialization.                                       */
   4828 /*                                                                          */
   4829 /****************************************************************************/
   4830 int
   4831 bnx_init(struct ifnet *ifp)
   4832 {
   4833 	struct bnx_softc	*sc = ifp->if_softc;
   4834 	uint32_t		ether_mtu;
   4835 	int			s, error = 0;
   4836 
   4837 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4838 
   4839 	s = splnet();
   4840 
   4841 	bnx_stop(ifp, 0);
   4842 
   4843 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4844 		aprint_error_dev(sc->bnx_dev,
   4845 		    "Controller reset failed!\n");
   4846 		goto bnx_init_exit;
   4847 	}
   4848 
   4849 	if ((error = bnx_chipinit(sc)) != 0) {
   4850 		aprint_error_dev(sc->bnx_dev,
   4851 		    "Controller initialization failed!\n");
   4852 		goto bnx_init_exit;
   4853 	}
   4854 
   4855 	if ((error = bnx_blockinit(sc)) != 0) {
   4856 		aprint_error_dev(sc->bnx_dev,
   4857 		    "Block initialization failed!\n");
   4858 		goto bnx_init_exit;
   4859 	}
   4860 
   4861 	/* Calculate and program the Ethernet MRU size. */
   4862 	if (ifp->if_mtu <= ETHERMTU) {
   4863 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4864 		sc->mbuf_alloc_size = MCLBYTES;
   4865 	} else {
   4866 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4867 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   4868 	}
   4869 
   4870 
   4871 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
   4872 
   4873 	/*
   4874 	 * Program the MRU and enable Jumbo frame
   4875 	 * support.
   4876 	 */
   4877 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4878 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4879 
   4880 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4881 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4882 
   4883 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4884 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4885 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4886 
   4887 	/* Program appropriate promiscuous/multicast filtering. */
   4888 	bnx_iff(sc);
   4889 
   4890 	/* Init RX buffer descriptor chain. */
   4891 	bnx_init_rx_chain(sc);
   4892 
   4893 	/* Init TX buffer descriptor chain. */
   4894 	bnx_init_tx_chain(sc);
   4895 
   4896 	/* Enable host interrupts. */
   4897 	bnx_enable_intr(sc);
   4898 
   4899 	if ((error = ether_mediachange(ifp)) != 0)
   4900 		goto bnx_init_exit;
   4901 
   4902 	SET(ifp->if_flags, IFF_RUNNING);
   4903 	CLR(ifp->if_flags, IFF_OACTIVE);
   4904 
   4905 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4906 
   4907 bnx_init_exit:
   4908 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4909 
   4910 	splx(s);
   4911 
   4912 	return error;
   4913 }
   4914 
   4915 /****************************************************************************/
   4916 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4917 /* memory visible to the controller.                                        */
   4918 /*                                                                          */
   4919 /* Returns:                                                                 */
   4920 /*   0 for success, positive value for failure.                             */
   4921 /****************************************************************************/
   4922 int
   4923 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   4924 {
   4925 	struct bnx_pkt		*pkt;
   4926 	bus_dmamap_t		map;
   4927 	struct tx_bd		*txbd = NULL;
   4928 	uint16_t		vlan_tag = 0, flags = 0;
   4929 	uint16_t		chain_prod, prod;
   4930 #ifdef BNX_DEBUG
   4931 	uint16_t		debug_prod;
   4932 #endif
   4933 	uint32_t		addr, prod_bseq;
   4934 	int			i, error;
   4935 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
   4936 
   4937 	mutex_enter(&sc->tx_pkt_mtx);
   4938 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   4939 	if (pkt == NULL) {
   4940 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   4941 			mutex_exit(&sc->tx_pkt_mtx);
   4942 			return ENETDOWN;
   4943 		}
   4944 
   4945 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   4946 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   4947 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
   4948 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4949 		}
   4950 
   4951 		mutex_exit(&sc->tx_pkt_mtx);
   4952 		return ENOMEM;
   4953 	}
   4954 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4955 	mutex_exit(&sc->tx_pkt_mtx);
   4956 
   4957 	/* Transfer any checksum offload flags to the bd. */
   4958 	if (m->m_pkthdr.csum_flags) {
   4959 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4960 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4961 		if (m->m_pkthdr.csum_flags &
   4962 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4963 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4964 	}
   4965 
   4966 	/* Transfer any VLAN tags to the bd. */
   4967 	if (vlan_has_tag(m)) {
   4968 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4969 		vlan_tag = vlan_get_tag(m);
   4970 	}
   4971 
   4972 	/* Map the mbuf into DMAable memory. */
   4973 	prod = sc->tx_prod;
   4974 	chain_prod = TX_CHAIN_IDX(prod);
   4975 	map = pkt->pkt_dmamap;
   4976 
   4977 	/* Map the mbuf into our DMA address space. */
   4978 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   4979 	if (error != 0) {
   4980 		aprint_error_dev(sc->bnx_dev,
   4981 		    "Error mapping mbuf into TX chain!\n");
   4982 		sc->tx_dma_map_failures++;
   4983 		goto maperr;
   4984 	}
   4985 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4986 	    BUS_DMASYNC_PREWRITE);
   4987 	/* Make sure there's room in the chain */
   4988 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   4989 		goto nospace;
   4990 
   4991 	/* prod points to an empty tx_bd at this point. */
   4992 	prod_bseq = sc->tx_prod_bseq;
   4993 #ifdef BNX_DEBUG
   4994 	debug_prod = chain_prod;
   4995 #endif
   4996 	DBPRINT(sc, BNX_INFO_SEND,
   4997 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   4998 		"prod_bseq = 0x%08X\n",
   4999 		__func__, prod, chain_prod, prod_bseq);
   5000 
   5001 	/*
   5002 	 * Cycle through each mbuf segment that makes up
   5003 	 * the outgoing frame, gathering the mapping info
   5004 	 * for that segment and creating a tx_bd for the
   5005 	 * mbuf.
   5006 	 */
   5007 	for (i = 0; i < map->dm_nsegs ; i++) {
   5008 		chain_prod = TX_CHAIN_IDX(prod);
   5009 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   5010 
   5011 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   5012 		txbd->tx_bd_haddr_lo = addr;
   5013 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   5014 		txbd->tx_bd_haddr_hi = addr;
   5015 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   5016 		txbd->tx_bd_vlan_tag = vlan_tag;
   5017 		txbd->tx_bd_flags = flags;
   5018 		prod_bseq += map->dm_segs[i].ds_len;
   5019 		if (i == 0)
   5020 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   5021 		prod = NEXT_TX_BD(prod);
   5022 	}
   5023 	/* Set the END flag on the last TX buffer descriptor. */
   5024 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   5025 
   5026 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   5027 
   5028 	DBPRINT(sc, BNX_INFO_SEND,
   5029 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   5030 		"prod_bseq = 0x%08X\n",
   5031 		__func__, prod, chain_prod, prod_bseq);
   5032 
   5033 	pkt->pkt_mbuf = m;
   5034 	pkt->pkt_end_desc = chain_prod;
   5035 
   5036 	mutex_enter(&sc->tx_pkt_mtx);
   5037 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   5038 	mutex_exit(&sc->tx_pkt_mtx);
   5039 
   5040 	sc->used_tx_bd += map->dm_nsegs;
   5041 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   5042 		__FILE__, __LINE__, sc->used_tx_bd);
   5043 
   5044 	/* Update some debug statistics counters */
   5045 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   5046 	    sc->tx_hi_watermark = sc->used_tx_bd);
   5047 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   5048 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   5049 
   5050 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   5051 	    map->dm_nsegs));
   5052 
   5053 	/* prod points to the next free tx_bd at this point. */
   5054 	sc->tx_prod = prod;
   5055 	sc->tx_prod_bseq = prod_bseq;
   5056 
   5057 	return 0;
   5058 
   5059 
   5060 nospace:
   5061 	bus_dmamap_unload(sc->bnx_dmatag, map);
   5062 maperr:
   5063 	mutex_enter(&sc->tx_pkt_mtx);
   5064 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   5065 	mutex_exit(&sc->tx_pkt_mtx);
   5066 
   5067 	return ENOMEM;
   5068 }
   5069 
   5070 /****************************************************************************/
   5071 /* Main transmit routine.                                                   */
   5072 /*                                                                          */
   5073 /* Returns:                                                                 */
   5074 /*   Nothing.                                                               */
   5075 /****************************************************************************/
   5076 void
   5077 bnx_start(struct ifnet *ifp)
   5078 {
   5079 	struct bnx_softc	*sc = ifp->if_softc;
   5080 	struct mbuf		*m_head = NULL;
   5081 	int			count = 0;
   5082 #ifdef BNX_DEBUG
   5083 	uint16_t		tx_chain_prod;
   5084 #endif
   5085 
   5086 	/* If there's no link or the transmit queue is empty then just exit. */
   5087 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   5088 		DBPRINT(sc, BNX_INFO_SEND,
   5089 		    "%s(): output active or device not running.\n", __func__);
   5090 		goto bnx_start_exit;
   5091 	}
   5092 
   5093 	/* prod points to the next free tx_bd. */
   5094 #ifdef BNX_DEBUG
   5095 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5096 #endif
   5097 
   5098 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5099 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5100 	    "used_tx %d max_tx %d\n",
   5101 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5102 	    sc->used_tx_bd, sc->max_tx_bd);
   5103 
   5104 	/*
   5105 	 * Keep adding entries while there is space in the ring.
   5106 	 */
   5107 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5108 		/* Check for any frames to send. */
   5109 		IFQ_POLL(&ifp->if_snd, m_head);
   5110 		if (m_head == NULL)
   5111 			break;
   5112 
   5113 		/*
   5114 		 * Pack the data into the transmit ring. If we
   5115 		 * don't have room, set the OACTIVE flag to wait
   5116 		 * for the NIC to drain the chain.
   5117 		 */
   5118 		if (bnx_tx_encap(sc, m_head)) {
   5119 			ifp->if_flags |= IFF_OACTIVE;
   5120 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5121 			    "business! Total tx_bd used = %d\n",
   5122 			    sc->used_tx_bd);
   5123 			break;
   5124 		}
   5125 
   5126 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5127 		count++;
   5128 
   5129 		/* Send a copy of the frame to any BPF listeners. */
   5130 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5131 	}
   5132 
   5133 	if (count == 0) {
   5134 		/* no packets were dequeued */
   5135 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5136 		    "%s(): No packets were dequeued\n", __func__);
   5137 		goto bnx_start_exit;
   5138 	}
   5139 
   5140 	/* Update the driver's counters. */
   5141 #ifdef BNX_DEBUG
   5142 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5143 #endif
   5144 
   5145 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
   5146 	    "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
   5147 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   5148 
   5149 	/* Start the transmit. */
   5150 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5151 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5152 
   5153 	/* Set the tx timeout. */
   5154 	ifp->if_timer = BNX_TX_TIMEOUT;
   5155 
   5156 bnx_start_exit:
   5157 	return;
   5158 }
   5159 
   5160 /****************************************************************************/
   5161 /* Handles any IOCTL calls from the operating system.                       */
   5162 /*                                                                          */
   5163 /* Returns:                                                                 */
   5164 /*   0 for success, positive value for failure.                             */
   5165 /****************************************************************************/
   5166 int
   5167 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5168 {
   5169 	struct bnx_softc	*sc = ifp->if_softc;
   5170 	struct ifreq		*ifr = (struct ifreq *) data;
   5171 	struct mii_data		*mii = &sc->bnx_mii;
   5172 	int			s, error = 0;
   5173 
   5174 	s = splnet();
   5175 
   5176 	switch (command) {
   5177 	case SIOCSIFFLAGS:
   5178 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5179 			break;
   5180 		/* XXX set an ifflags callback and let ether_ioctl
   5181 		 * handle all of this.
   5182 		 */
   5183 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5184 			if (ifp->if_flags & IFF_RUNNING)
   5185 				error = ENETRESET;
   5186 			else
   5187 				bnx_init(ifp);
   5188 		} else if (ifp->if_flags & IFF_RUNNING)
   5189 			bnx_stop(ifp, 1);
   5190 		break;
   5191 
   5192 	case SIOCSIFMEDIA:
   5193 	case SIOCGIFMEDIA:
   5194 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5195 		    sc->bnx_phy_flags);
   5196 
   5197 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5198 		break;
   5199 
   5200 	default:
   5201 		error = ether_ioctl(ifp, command, data);
   5202 	}
   5203 
   5204 	if (error == ENETRESET) {
   5205 		if (ifp->if_flags & IFF_RUNNING)
   5206 			bnx_iff(sc);
   5207 		error = 0;
   5208 	}
   5209 
   5210 	splx(s);
   5211 	return error;
   5212 }
   5213 
   5214 /****************************************************************************/
   5215 /* Transmit timeout handler.                                                */
   5216 /*                                                                          */
   5217 /* Returns:                                                                 */
   5218 /*   Nothing.                                                               */
   5219 /****************************************************************************/
   5220 void
   5221 bnx_watchdog(struct ifnet *ifp)
   5222 {
   5223 	struct bnx_softc	*sc = ifp->if_softc;
   5224 
   5225 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5226 	    bnx_dump_status_block(sc));
   5227 	/*
   5228 	 * If we are in this routine because of pause frames, then
   5229 	 * don't reset the hardware.
   5230 	 */
   5231 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5232 		return;
   5233 
   5234 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5235 
   5236 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5237 
   5238 	bnx_init(ifp);
   5239 
   5240 	ifp->if_oerrors++;
   5241 }
   5242 
   5243 /*
   5244  * Interrupt handler.
   5245  */
   5246 /****************************************************************************/
   5247 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5248 /* interrupt and then calls a separate routine for handle the various       */
   5249 /* interrupt causes (PHY, TX, RX).                                          */
   5250 /*                                                                          */
   5251 /* Returns:                                                                 */
   5252 /*   0 for success, positive value for failure.                             */
   5253 /****************************************************************************/
   5254 int
   5255 bnx_intr(void *xsc)
   5256 {
   5257 	struct bnx_softc	*sc;
   5258 	struct ifnet		*ifp;
   5259 	uint32_t		status_attn_bits;
   5260 	const struct status_block *sblk;
   5261 
   5262 	sc = xsc;
   5263 
   5264 	ifp = &sc->bnx_ec.ec_if;
   5265 
   5266 	if (!device_is_active(sc->bnx_dev) ||
   5267 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5268 		return 0;
   5269 
   5270 	DBRUNIF(1, sc->interrupts_generated++);
   5271 
   5272 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5273 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   5274 
   5275 	/*
   5276 	 * If the hardware status block index
   5277 	 * matches the last value read by the
   5278 	 * driver and we haven't asserted our
   5279 	 * interrupt then there's nothing to do.
   5280 	 */
   5281 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   5282 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   5283 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   5284 		return 0;
   5285 
   5286 	/* Ack the interrupt and stop others from occurring. */
   5287 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5288 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   5289 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5290 
   5291 	/* Keep processing data as long as there is work to do. */
   5292 	for (;;) {
   5293 		sblk = sc->status_block;
   5294 		status_attn_bits = sblk->status_attn_bits;
   5295 
   5296 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5297 		    aprint_debug("Simulating unexpected status attention bit set.");
   5298 		    status_attn_bits = status_attn_bits |
   5299 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5300 
   5301 		/* Was it a link change interrupt? */
   5302 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5303 		    (sblk->status_attn_bits_ack &
   5304 		    STATUS_ATTN_BITS_LINK_STATE))
   5305 			bnx_phy_intr(sc);
   5306 
   5307 		/* If any other attention is asserted then the chip is toast. */
   5308 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5309 		    (sblk->status_attn_bits_ack &
   5310 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5311 			DBRUN(1, sc->unexpected_attentions++);
   5312 
   5313 			BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
   5314 			    sblk->status_attn_bits);
   5315 
   5316 			DBRUN(BNX_FATAL,
   5317 			    if (bnx_debug_unexpected_attention == 0)
   5318 			    bnx_breakpoint(sc));
   5319 
   5320 			bnx_init(ifp);
   5321 			return 1;
   5322 		}
   5323 
   5324 		/* Check for any completed RX frames. */
   5325 		if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
   5326 			bnx_rx_intr(sc);
   5327 
   5328 		/* Check for any completed TX frames. */
   5329 		if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
   5330 			bnx_tx_intr(sc);
   5331 
   5332 		/*
   5333 		 * Save the status block index value for use during the
   5334 		 * next interrupt.
   5335 		 */
   5336 		sc->last_status_idx = sblk->status_idx;
   5337 
   5338 		/* Prevent speculative reads from getting ahead of the
   5339 		 * status block.
   5340 		 */
   5341 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   5342 		    BUS_SPACE_BARRIER_READ);
   5343 
   5344 		/* If there's no work left then exit the isr. */
   5345 		if ((sblk->status_rx_quick_consumer_index0 ==
   5346 			sc->hw_rx_cons) &&
   5347 		    (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
   5348 			break;
   5349 	}
   5350 
   5351 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5352 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   5353 
   5354 	/* Re-enable interrupts. */
   5355 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5356 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   5357 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5358 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5359 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   5360 
   5361 	/* Handle any frames that arrived while handling the interrupt. */
   5362 	if_schedule_deferred_start(ifp);
   5363 
   5364 	return 1;
   5365 }
   5366 
   5367 /****************************************************************************/
   5368 /* Programs the various packet receive modes (broadcast and multicast).     */
   5369 /*                                                                          */
   5370 /* Returns:                                                                 */
   5371 /*   Nothing.                                                               */
   5372 /****************************************************************************/
   5373 void
   5374 bnx_iff(struct bnx_softc *sc)
   5375 {
   5376 	struct ethercom		*ec = &sc->bnx_ec;
   5377 	struct ifnet		*ifp = &ec->ec_if;
   5378 	struct ether_multi	*enm;
   5379 	struct ether_multistep	step;
   5380 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5381 	uint32_t		rx_mode, sort_mode;
   5382 	int			h, i;
   5383 
   5384 	/* Initialize receive mode default settings. */
   5385 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5386 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5387 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5388 	ifp->if_flags &= ~IFF_ALLMULTI;
   5389 
   5390 	/*
   5391 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5392 	 * be enbled.
   5393 	 */
   5394 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5395 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5396 
   5397 	/*
   5398 	 * Check for promiscuous, all multicast, or selected
   5399 	 * multicast address filtering.
   5400 	 */
   5401 	if (ifp->if_flags & IFF_PROMISC) {
   5402 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5403 
   5404 		ifp->if_flags |= IFF_ALLMULTI;
   5405 		/* Enable promiscuous mode. */
   5406 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5407 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5408 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5409 allmulti:
   5410 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5411 
   5412 		ifp->if_flags |= IFF_ALLMULTI;
   5413 		/* Enable all multicast addresses. */
   5414 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5415 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5416 			    0xffffffff);
   5417 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5418 	} else {
   5419 		/* Accept one or more multicast(s). */
   5420 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5421 
   5422 		ETHER_FIRST_MULTI(step, ec, enm);
   5423 		while (enm != NULL) {
   5424 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5425 			    ETHER_ADDR_LEN)) {
   5426 				goto allmulti;
   5427 			}
   5428 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5429 			    0xFF;
   5430 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5431 			ETHER_NEXT_MULTI(step, enm);
   5432 		}
   5433 
   5434 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5435 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5436 			    hashes[i]);
   5437 
   5438 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5439 	}
   5440 
   5441 	/* Only make changes if the recive mode has actually changed. */
   5442 	if (rx_mode != sc->rx_mode) {
   5443 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5444 		    rx_mode);
   5445 
   5446 		sc->rx_mode = rx_mode;
   5447 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5448 	}
   5449 
   5450 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5451 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5452 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5453 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5454 }
   5455 
   5456 /****************************************************************************/
   5457 /* Called periodically to updates statistics from the controllers           */
   5458 /* statistics block.                                                        */
   5459 /*                                                                          */
   5460 /* Returns:                                                                 */
   5461 /*   Nothing.                                                               */
   5462 /****************************************************************************/
   5463 void
   5464 bnx_stats_update(struct bnx_softc *sc)
   5465 {
   5466 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5467 	struct statistics_block	*stats;
   5468 
   5469 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5470 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5471 	    BUS_DMASYNC_POSTREAD);
   5472 
   5473 	stats = (struct statistics_block *)sc->stats_block;
   5474 
   5475 	/*
   5476 	 * Update the interface statistics from the
   5477 	 * hardware statistics.
   5478 	 */
   5479 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5480 
   5481 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5482 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5483 	    (u_long)stats->stat_IfInMBUFDiscards +
   5484 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5485 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5486 
   5487 	ifp->if_oerrors = (u_long)
   5488 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5489 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5490 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5491 
   5492 	/*
   5493 	 * Certain controllers don't report
   5494 	 * carrier sense errors correctly.
   5495 	 * See errata E11_5708CA0_1165.
   5496 	 */
   5497 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5498 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5499 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5500 
   5501 	/*
   5502 	 * Update the sysctl statistics from the
   5503 	 * hardware statistics.
   5504 	 */
   5505 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
   5506 	    (uint64_t) stats->stat_IfHCInOctets_lo;
   5507 
   5508 	sc->stat_IfHCInBadOctets =
   5509 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5510 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
   5511 
   5512 	sc->stat_IfHCOutOctets =
   5513 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5514 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
   5515 
   5516 	sc->stat_IfHCOutBadOctets =
   5517 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5518 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
   5519 
   5520 	sc->stat_IfHCInUcastPkts =
   5521 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5522 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
   5523 
   5524 	sc->stat_IfHCInMulticastPkts =
   5525 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5526 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
   5527 
   5528 	sc->stat_IfHCInBroadcastPkts =
   5529 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5530 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5531 
   5532 	sc->stat_IfHCOutUcastPkts =
   5533 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5534 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
   5535 
   5536 	sc->stat_IfHCOutMulticastPkts =
   5537 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5538 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5539 
   5540 	sc->stat_IfHCOutBroadcastPkts =
   5541 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5542 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5543 
   5544 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5545 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5546 
   5547 	sc->stat_Dot3StatsCarrierSenseErrors =
   5548 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5549 
   5550 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5551 
   5552 	sc->stat_Dot3StatsAlignmentErrors =
   5553 	    stats->stat_Dot3StatsAlignmentErrors;
   5554 
   5555 	sc->stat_Dot3StatsSingleCollisionFrames =
   5556 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5557 
   5558 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5559 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5560 
   5561 	sc->stat_Dot3StatsDeferredTransmissions =
   5562 	    stats->stat_Dot3StatsDeferredTransmissions;
   5563 
   5564 	sc->stat_Dot3StatsExcessiveCollisions =
   5565 	    stats->stat_Dot3StatsExcessiveCollisions;
   5566 
   5567 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5568 
   5569 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5570 
   5571 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5572 
   5573 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5574 
   5575 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5576 
   5577 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5578 
   5579 	sc->stat_EtherStatsPktsRx64Octets =
   5580 	    stats->stat_EtherStatsPktsRx64Octets;
   5581 
   5582 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5583 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5584 
   5585 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5586 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5587 
   5588 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5589 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5590 
   5591 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5592 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5593 
   5594 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5595 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5596 
   5597 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5598 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5599 
   5600 	sc->stat_EtherStatsPktsTx64Octets =
   5601 	    stats->stat_EtherStatsPktsTx64Octets;
   5602 
   5603 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5604 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5605 
   5606 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5607 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5608 
   5609 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5610 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5611 
   5612 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5613 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5614 
   5615 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5616 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5617 
   5618 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5619 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5620 
   5621 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5622 
   5623 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5624 
   5625 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5626 
   5627 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5628 
   5629 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5630 
   5631 	sc->stat_MacControlFramesReceived =
   5632 	    stats->stat_MacControlFramesReceived;
   5633 
   5634 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5635 
   5636 	sc->stat_IfInFramesL2FilterDiscards =
   5637 	    stats->stat_IfInFramesL2FilterDiscards;
   5638 
   5639 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5640 
   5641 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5642 
   5643 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5644 
   5645 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5646 
   5647 	sc->stat_CatchupInRuleCheckerDiscards =
   5648 	    stats->stat_CatchupInRuleCheckerDiscards;
   5649 
   5650 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5651 
   5652 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5653 
   5654 	sc->stat_CatchupInRuleCheckerP4Hit =
   5655 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5656 
   5657 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5658 }
   5659 
   5660 void
   5661 bnx_tick(void *xsc)
   5662 {
   5663 	struct bnx_softc	*sc = xsc;
   5664 	struct mii_data		*mii;
   5665 	uint32_t		msg;
   5666 	uint16_t		prod, chain_prod;
   5667 	uint32_t		prod_bseq;
   5668 	int s = splnet();
   5669 
   5670 	/* Tell the firmware that the driver is still running. */
   5671 #ifdef BNX_DEBUG
   5672 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5673 #else
   5674 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5675 #endif
   5676 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5677 
   5678 	/* Update the statistics from the hardware statistics block. */
   5679 	bnx_stats_update(sc);
   5680 
   5681 	mii = &sc->bnx_mii;
   5682 	mii_tick(mii);
   5683 
   5684 	/* try to get more RX buffers, just in case */
   5685 	prod = sc->rx_prod;
   5686 	prod_bseq = sc->rx_prod_bseq;
   5687 	chain_prod = RX_CHAIN_IDX(prod);
   5688 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5689 	sc->rx_prod = prod;
   5690 	sc->rx_prod_bseq = prod_bseq;
   5691 
   5692 	/* Schedule the next tick. */
   5693 	if (!sc->bnx_detaching)
   5694 		callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5695 
   5696 	splx(s);
   5697 	return;
   5698 }
   5699 
   5700 /****************************************************************************/
   5701 /* BNX Debug Routines                                                       */
   5702 /****************************************************************************/
   5703 #ifdef BNX_DEBUG
   5704 
   5705 /****************************************************************************/
   5706 /* Prints out information about an mbuf.                                    */
   5707 /*                                                                          */
   5708 /* Returns:                                                                 */
   5709 /*   Nothing.                                                               */
   5710 /****************************************************************************/
   5711 void
   5712 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5713 {
   5714 	struct mbuf		*mp = m;
   5715 
   5716 	if (m == NULL) {
   5717 		/* Index out of range. */
   5718 		aprint_error("mbuf ptr is null!\n");
   5719 		return;
   5720 	}
   5721 
   5722 	while (mp) {
   5723 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5724 		    mp, mp->m_len);
   5725 
   5726 		if (mp->m_flags & M_EXT)
   5727 			aprint_debug("M_EXT ");
   5728 		if (mp->m_flags & M_PKTHDR)
   5729 			aprint_debug("M_PKTHDR ");
   5730 		aprint_debug("\n");
   5731 
   5732 		if (mp->m_flags & M_EXT)
   5733 			aprint_debug("- m_ext: vaddr = %p, "
   5734 			    "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
   5735 
   5736 		mp = mp->m_next;
   5737 	}
   5738 }
   5739 
   5740 /****************************************************************************/
   5741 /* Prints out the mbufs in the TX mbuf chain.                               */
   5742 /*                                                                          */
   5743 /* Returns:                                                                 */
   5744 /*   Nothing.                                                               */
   5745 /****************************************************************************/
   5746 void
   5747 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5748 {
   5749 #if 0
   5750 	struct mbuf		*m;
   5751 	int			i;
   5752 
   5753 	aprint_debug_dev(sc->bnx_dev,
   5754 	    "----------------------------"
   5755 	    "  tx mbuf data  "
   5756 	    "----------------------------\n");
   5757 
   5758 	for (i = 0; i < count; i++) {
   5759 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5760 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5761 		bnx_dump_mbuf(sc, m);
   5762 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5763 	}
   5764 
   5765 	aprint_debug_dev(sc->bnx_dev,
   5766 	    "--------------------------------------------"
   5767 	    "----------------------------\n");
   5768 #endif
   5769 }
   5770 
   5771 /*
   5772  * This routine prints the RX mbuf chain.
   5773  */
   5774 void
   5775 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5776 {
   5777 	struct mbuf		*m;
   5778 	int			i;
   5779 
   5780 	aprint_debug_dev(sc->bnx_dev,
   5781 	    "----------------------------"
   5782 	    "  rx mbuf data  "
   5783 	    "----------------------------\n");
   5784 
   5785 	for (i = 0; i < count; i++) {
   5786 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5787 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5788 		bnx_dump_mbuf(sc, m);
   5789 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5790 	}
   5791 
   5792 
   5793 	aprint_debug_dev(sc->bnx_dev,
   5794 	    "--------------------------------------------"
   5795 	    "----------------------------\n");
   5796 }
   5797 
   5798 void
   5799 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5800 {
   5801 	if (idx > MAX_TX_BD)
   5802 		/* Index out of range. */
   5803 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5804 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5805 		/* TX Chain page pointer. */
   5806 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5807 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5808 		    txbd->tx_bd_haddr_lo);
   5809 	else
   5810 		/* Normal tx_bd entry. */
   5811 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5812 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5813 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5814 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5815 		    txbd->tx_bd_flags);
   5816 }
   5817 
   5818 void
   5819 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5820 {
   5821 	if (idx > MAX_RX_BD)
   5822 		/* Index out of range. */
   5823 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5824 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5825 		/* TX Chain page pointer. */
   5826 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5827 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5828 		    rxbd->rx_bd_haddr_lo);
   5829 	else
   5830 		/* Normal tx_bd entry. */
   5831 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5832 		    "0x%08X, flags = 0x%08X\n", idx,
   5833 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5834 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5835 }
   5836 
   5837 void
   5838 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5839 {
   5840 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5841 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5842 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5843 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5844 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5845 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5846 }
   5847 
   5848 /*
   5849  * This routine prints the TX chain.
   5850  */
   5851 void
   5852 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5853 {
   5854 	struct tx_bd		*txbd;
   5855 	int			i;
   5856 
   5857 	/* First some info about the tx_bd chain structure. */
   5858 	aprint_debug_dev(sc->bnx_dev,
   5859 	    "----------------------------"
   5860 	    "  tx_bd  chain  "
   5861 	    "----------------------------\n");
   5862 
   5863 	BNX_PRINTF(sc,
   5864 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5865 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
   5866 
   5867 	BNX_PRINTF(sc,
   5868 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5869 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
   5870 
   5871 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
   5872 
   5873 	aprint_error_dev(sc->bnx_dev, ""
   5874 	    "-----------------------------"
   5875 	    "   tx_bd data   "
   5876 	    "-----------------------------\n");
   5877 
   5878 	/* Now print out the tx_bd's themselves. */
   5879 	for (i = 0; i < count; i++) {
   5880 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5881 		bnx_dump_txbd(sc, tx_prod, txbd);
   5882 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5883 	}
   5884 
   5885 	aprint_debug_dev(sc->bnx_dev,
   5886 	    "-----------------------------"
   5887 	    "--------------"
   5888 	    "-----------------------------\n");
   5889 }
   5890 
   5891 /*
   5892  * This routine prints the RX chain.
   5893  */
   5894 void
   5895 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5896 {
   5897 	struct rx_bd		*rxbd;
   5898 	int			i;
   5899 
   5900 	/* First some info about the tx_bd chain structure. */
   5901 	aprint_debug_dev(sc->bnx_dev,
   5902 	    "----------------------------"
   5903 	    "  rx_bd  chain  "
   5904 	    "----------------------------\n");
   5905 
   5906 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   5907 
   5908 	BNX_PRINTF(sc,
   5909 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5910 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
   5911 
   5912 	BNX_PRINTF(sc,
   5913 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5914 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
   5915 
   5916 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
   5917 
   5918 	aprint_error_dev(sc->bnx_dev,
   5919 	    "----------------------------"
   5920 	    "   rx_bd data   "
   5921 	    "----------------------------\n");
   5922 
   5923 	/* Now print out the rx_bd's themselves. */
   5924 	for (i = 0; i < count; i++) {
   5925 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5926 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5927 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5928 	}
   5929 
   5930 	aprint_debug_dev(sc->bnx_dev,
   5931 	    "----------------------------"
   5932 	    "--------------"
   5933 	    "----------------------------\n");
   5934 }
   5935 
   5936 /*
   5937  * This routine prints the status block.
   5938  */
   5939 void
   5940 bnx_dump_status_block(struct bnx_softc *sc)
   5941 {
   5942 	struct status_block	*sblk;
   5943 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5944 	    BUS_DMASYNC_POSTREAD);
   5945 
   5946 	sblk = sc->status_block;
   5947 
   5948    	aprint_debug_dev(sc->bnx_dev, "----------------------------- "
   5949 	    "Status Block -----------------------------\n");
   5950 
   5951 	BNX_PRINTF(sc,
   5952 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5953 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5954 	    sblk->status_idx);
   5955 
   5956 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5957 	    sblk->status_rx_quick_consumer_index0,
   5958 	    sblk->status_tx_quick_consumer_index0);
   5959 
   5960 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5961 
   5962 	/* Theses indices are not used for normal L2 drivers. */
   5963 	if (sblk->status_rx_quick_consumer_index1 ||
   5964 		sblk->status_tx_quick_consumer_index1)
   5965 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5966 		    sblk->status_rx_quick_consumer_index1,
   5967 		    sblk->status_tx_quick_consumer_index1);
   5968 
   5969 	if (sblk->status_rx_quick_consumer_index2 ||
   5970 		sblk->status_tx_quick_consumer_index2)
   5971 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5972 		    sblk->status_rx_quick_consumer_index2,
   5973 		    sblk->status_tx_quick_consumer_index2);
   5974 
   5975 	if (sblk->status_rx_quick_consumer_index3 ||
   5976 		sblk->status_tx_quick_consumer_index3)
   5977 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5978 		    sblk->status_rx_quick_consumer_index3,
   5979 		    sblk->status_tx_quick_consumer_index3);
   5980 
   5981 	if (sblk->status_rx_quick_consumer_index4 ||
   5982 		sblk->status_rx_quick_consumer_index5)
   5983 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5984 		    sblk->status_rx_quick_consumer_index4,
   5985 		    sblk->status_rx_quick_consumer_index5);
   5986 
   5987 	if (sblk->status_rx_quick_consumer_index6 ||
   5988 		sblk->status_rx_quick_consumer_index7)
   5989 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5990 		    sblk->status_rx_quick_consumer_index6,
   5991 		    sblk->status_rx_quick_consumer_index7);
   5992 
   5993 	if (sblk->status_rx_quick_consumer_index8 ||
   5994 		sblk->status_rx_quick_consumer_index9)
   5995 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   5996 		    sblk->status_rx_quick_consumer_index8,
   5997 		    sblk->status_rx_quick_consumer_index9);
   5998 
   5999 	if (sblk->status_rx_quick_consumer_index10 ||
   6000 		sblk->status_rx_quick_consumer_index11)
   6001 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   6002 		    sblk->status_rx_quick_consumer_index10,
   6003 		    sblk->status_rx_quick_consumer_index11);
   6004 
   6005 	if (sblk->status_rx_quick_consumer_index12 ||
   6006 		sblk->status_rx_quick_consumer_index13)
   6007 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   6008 		    sblk->status_rx_quick_consumer_index12,
   6009 		    sblk->status_rx_quick_consumer_index13);
   6010 
   6011 	if (sblk->status_rx_quick_consumer_index14 ||
   6012 		sblk->status_rx_quick_consumer_index15)
   6013 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   6014 		    sblk->status_rx_quick_consumer_index14,
   6015 		    sblk->status_rx_quick_consumer_index15);
   6016 
   6017 	if (sblk->status_completion_producer_index ||
   6018 		sblk->status_cmd_consumer_index)
   6019 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   6020 		    sblk->status_completion_producer_index,
   6021 		    sblk->status_cmd_consumer_index);
   6022 
   6023 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6024 	    "-----------------------------\n");
   6025 }
   6026 
   6027 /*
   6028  * This routine prints the statistics block.
   6029  */
   6030 void
   6031 bnx_dump_stats_block(struct bnx_softc *sc)
   6032 {
   6033 	struct statistics_block	*sblk;
   6034 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6035 	    BUS_DMASYNC_POSTREAD);
   6036 
   6037 	sblk = sc->stats_block;
   6038 
   6039 	aprint_debug_dev(sc->bnx_dev, ""
   6040 	    "-----------------------------"
   6041 	    " Stats  Block "
   6042 	    "-----------------------------\n");
   6043 
   6044 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   6045 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   6046 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   6047 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   6048 
   6049 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   6050 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   6051 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   6052 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   6053 
   6054 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   6055 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   6056 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   6057 	    sblk->stat_IfHCInMulticastPkts_hi,
   6058 	    sblk->stat_IfHCInMulticastPkts_lo);
   6059 
   6060 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   6061 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   6062 	    sblk->stat_IfHCInBroadcastPkts_hi,
   6063 	    sblk->stat_IfHCInBroadcastPkts_lo,
   6064 	    sblk->stat_IfHCOutUcastPkts_hi,
   6065 	    sblk->stat_IfHCOutUcastPkts_lo);
   6066 
   6067 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   6068 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   6069 	    sblk->stat_IfHCOutMulticastPkts_hi,
   6070 	    sblk->stat_IfHCOutMulticastPkts_lo,
   6071 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   6072 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   6073 
   6074 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   6075 		BNX_PRINTF(sc, "0x%08X : "
   6076 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6077 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6078 
   6079 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6080 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6081 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6082 
   6083 	if (sblk->stat_Dot3StatsFCSErrors)
   6084 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6085 		    sblk->stat_Dot3StatsFCSErrors);
   6086 
   6087 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6088 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6089 		    sblk->stat_Dot3StatsAlignmentErrors);
   6090 
   6091 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6092 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6093 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6094 
   6095 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6096 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6097 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6098 
   6099 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6100 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6101 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6102 
   6103 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6104 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6105 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6106 
   6107 	if (sblk->stat_Dot3StatsLateCollisions)
   6108 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6109 		    sblk->stat_Dot3StatsLateCollisions);
   6110 
   6111 	if (sblk->stat_EtherStatsCollisions)
   6112 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6113 		    sblk->stat_EtherStatsCollisions);
   6114 
   6115 	if (sblk->stat_EtherStatsFragments)
   6116 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6117 		    sblk->stat_EtherStatsFragments);
   6118 
   6119 	if (sblk->stat_EtherStatsJabbers)
   6120 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6121 		    sblk->stat_EtherStatsJabbers);
   6122 
   6123 	if (sblk->stat_EtherStatsUndersizePkts)
   6124 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6125 		    sblk->stat_EtherStatsUndersizePkts);
   6126 
   6127 	if (sblk->stat_EtherStatsOverrsizePkts)
   6128 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6129 		    sblk->stat_EtherStatsOverrsizePkts);
   6130 
   6131 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6132 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6133 		    sblk->stat_EtherStatsPktsRx64Octets);
   6134 
   6135 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6136 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6137 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6138 
   6139 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6140 		BNX_PRINTF(sc, "0x%08X : "
   6141 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6142 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6143 
   6144 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6145 		BNX_PRINTF(sc, "0x%08X : "
   6146 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6147 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6148 
   6149 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6150 		BNX_PRINTF(sc, "0x%08X : "
   6151 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6152 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6153 
   6154 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6155 		BNX_PRINTF(sc, "0x%08X : "
   6156 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6157 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6158 
   6159 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6160 		BNX_PRINTF(sc, "0x%08X : "
   6161 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6162 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6163 
   6164 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6165 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6166 		    sblk->stat_EtherStatsPktsTx64Octets);
   6167 
   6168 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6169 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6170 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6171 
   6172 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6173 		BNX_PRINTF(sc, "0x%08X : "
   6174 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6175 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6176 
   6177 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6178 		BNX_PRINTF(sc, "0x%08X : "
   6179 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6180 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6181 
   6182 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6183 		BNX_PRINTF(sc, "0x%08X : "
   6184 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6185 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6186 
   6187 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6188 		BNX_PRINTF(sc, "0x%08X : "
   6189 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6190 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6191 
   6192 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6193 		BNX_PRINTF(sc, "0x%08X : "
   6194 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6195 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6196 
   6197 	if (sblk->stat_XonPauseFramesReceived)
   6198 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6199 		    sblk->stat_XonPauseFramesReceived);
   6200 
   6201 	if (sblk->stat_XoffPauseFramesReceived)
   6202 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6203 		    sblk->stat_XoffPauseFramesReceived);
   6204 
   6205 	if (sblk->stat_OutXonSent)
   6206 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6207 		    sblk->stat_OutXonSent);
   6208 
   6209 	if (sblk->stat_OutXoffSent)
   6210 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6211 		    sblk->stat_OutXoffSent);
   6212 
   6213 	if (sblk->stat_FlowControlDone)
   6214 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6215 		    sblk->stat_FlowControlDone);
   6216 
   6217 	if (sblk->stat_MacControlFramesReceived)
   6218 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6219 		    sblk->stat_MacControlFramesReceived);
   6220 
   6221 	if (sblk->stat_XoffStateEntered)
   6222 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6223 		    sblk->stat_XoffStateEntered);
   6224 
   6225 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6226 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6227 		    sblk->stat_IfInFramesL2FilterDiscards);
   6228 
   6229 	if (sblk->stat_IfInRuleCheckerDiscards)
   6230 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6231 		    sblk->stat_IfInRuleCheckerDiscards);
   6232 
   6233 	if (sblk->stat_IfInFTQDiscards)
   6234 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6235 		    sblk->stat_IfInFTQDiscards);
   6236 
   6237 	if (sblk->stat_IfInMBUFDiscards)
   6238 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6239 		    sblk->stat_IfInMBUFDiscards);
   6240 
   6241 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6242 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6243 		    sblk->stat_IfInRuleCheckerP4Hit);
   6244 
   6245 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6246 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6247 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6248 
   6249 	if (sblk->stat_CatchupInFTQDiscards)
   6250 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6251 		    sblk->stat_CatchupInFTQDiscards);
   6252 
   6253 	if (sblk->stat_CatchupInMBUFDiscards)
   6254 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6255 		    sblk->stat_CatchupInMBUFDiscards);
   6256 
   6257 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6258 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6259 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6260 
   6261 	aprint_debug_dev(sc->bnx_dev,
   6262 	    "-----------------------------"
   6263 	    "--------------"
   6264 	    "-----------------------------\n");
   6265 }
   6266 
   6267 void
   6268 bnx_dump_driver_state(struct bnx_softc *sc)
   6269 {
   6270 	aprint_debug_dev(sc->bnx_dev,
   6271 	    "-----------------------------"
   6272 	    " Driver State "
   6273 	    "-----------------------------\n");
   6274 
   6275 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6276 	    "address\n", sc);
   6277 
   6278 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6279 	    sc->status_block);
   6280 
   6281 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6282 	    "address\n", sc->stats_block);
   6283 
   6284 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6285 	    "adddress\n", sc->tx_bd_chain);
   6286 
   6287 #if 0
   6288 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6289 	    sc->rx_bd_chain);
   6290 
   6291 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6292 	    sc->tx_mbuf_ptr);
   6293 #endif
   6294 
   6295 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6296 	    sc->rx_mbuf_ptr);
   6297 
   6298 	BNX_PRINTF(sc,
   6299 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6300 	    sc->interrupts_generated);
   6301 
   6302 	BNX_PRINTF(sc,
   6303 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6304 	    sc->rx_interrupts);
   6305 
   6306 	BNX_PRINTF(sc,
   6307 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6308 	    sc->tx_interrupts);
   6309 
   6310 	BNX_PRINTF(sc,
   6311 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6312 	    sc->last_status_idx);
   6313 
   6314 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6315 	    sc->tx_prod);
   6316 
   6317 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6318 	    sc->tx_cons);
   6319 
   6320 	BNX_PRINTF(sc,
   6321 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6322 	    sc->tx_prod_bseq);
   6323 	BNX_PRINTF(sc,
   6324 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6325 	    sc->tx_mbuf_alloc);
   6326 
   6327 	BNX_PRINTF(sc,
   6328 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6329 	    sc->used_tx_bd);
   6330 
   6331 	BNX_PRINTF(sc,
   6332 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6333 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6334 
   6335 
   6336 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6337 	    sc->rx_prod);
   6338 
   6339 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6340 	    sc->rx_cons);
   6341 
   6342 	BNX_PRINTF(sc,
   6343 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6344 	    sc->rx_prod_bseq);
   6345 
   6346 	BNX_PRINTF(sc,
   6347 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6348 	    sc->rx_mbuf_alloc);
   6349 
   6350 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6351 	    sc->free_rx_bd);
   6352 
   6353 	BNX_PRINTF(sc,
   6354 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6355 	    sc->rx_low_watermark, sc->max_rx_bd);
   6356 
   6357 	BNX_PRINTF(sc,
   6358 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6359 	    "mbuf alloc failures\n",
   6360 	    sc->mbuf_alloc_failed);
   6361 
   6362 	BNX_PRINTF(sc,
   6363 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6364 	    "simulated mbuf alloc failures\n",
   6365 	    sc->mbuf_sim_alloc_failed);
   6366 
   6367 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6368 	    "-----------------------------\n");
   6369 }
   6370 
   6371 void
   6372 bnx_dump_hw_state(struct bnx_softc *sc)
   6373 {
   6374 	uint32_t		val1;
   6375 	int			i;
   6376 
   6377 	aprint_debug_dev(sc->bnx_dev,
   6378 	    "----------------------------"
   6379 	    " Hardware State "
   6380 	    "----------------------------\n");
   6381 
   6382 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   6383 
   6384 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6385 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6386 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6387 
   6388 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6389 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6390 
   6391 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6392 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6393 
   6394 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6395 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6396 	    BNX_EMAC_STATUS);
   6397 
   6398 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6399 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6400 
   6401 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6402 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6403 	    BNX_TBDR_STATUS);
   6404 
   6405 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6406 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6407 	    BNX_TDMA_STATUS);
   6408 
   6409 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6410 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6411 
   6412 	aprint_debug_dev(sc->bnx_dev,
   6413 	    "----------------------------"
   6414 	    "----------------"
   6415 	    "----------------------------\n");
   6416 
   6417 	aprint_debug_dev(sc->bnx_dev,
   6418 	    "----------------------------"
   6419 	    " Register  Dump "
   6420 	    "----------------------------\n");
   6421 
   6422 	for (i = 0x400; i < 0x8000; i += 0x10)
   6423 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6424 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6425 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6426 
   6427 	aprint_debug_dev(sc->bnx_dev,
   6428 	    "----------------------------"
   6429 	    "----------------"
   6430 	    "----------------------------\n");
   6431 }
   6432 
   6433 void
   6434 bnx_breakpoint(struct bnx_softc *sc)
   6435 {
   6436 	/* Unreachable code to shut the compiler up about unused functions. */
   6437 	if (0) {
   6438    		bnx_dump_txbd(sc, 0, NULL);
   6439 		bnx_dump_rxbd(sc, 0, NULL);
   6440 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6441 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6442 		bnx_dump_l2fhdr(sc, 0, NULL);
   6443 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6444 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6445 		bnx_dump_status_block(sc);
   6446 		bnx_dump_stats_block(sc);
   6447 		bnx_dump_driver_state(sc);
   6448 		bnx_dump_hw_state(sc);
   6449 	}
   6450 
   6451 	bnx_dump_driver_state(sc);
   6452 	/* Print the important status block fields. */
   6453 	bnx_dump_status_block(sc);
   6454 
   6455 #if 0
   6456 	/* Call the debugger. */
   6457 	breakpoint();
   6458 #endif
   6459 
   6460 	return;
   6461 }
   6462 #endif
   6463