if_bnx.c revision 1.63.2.3 1 /* $NetBSD: if_bnx.c,v 1.63.2.3 2019/01/18 08:50:27 pgoyette Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3
4 /*-
5 * Copyright (c) 2006-2010 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.63.2.3 2019/01/18 08:50:27 pgoyette Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 * BCM5706C A0, A1
52 * BCM5706S A0, A1
53 * BCM5708C A0, B0
54 * BCM5708S A0, B0
55 * BCM5709C A0 B0, B1, B2 (pre-production)
56 * BCM5709S A0, B0, B1, B2 (pre-production)
57 */
58
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64
65 #include <dev/microcode/bnx/bnxfw.h>
66
67 /****************************************************************************/
68 /* BNX Driver Version */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION "v0.9.6"
71
72 /****************************************************************************/
73 /* BNX Debug Options */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77
78 /* 0 = Never */
79 /* 1 = 1 in 2,147,483,648 */
80 /* 256 = 1 in 8,388,608 */
81 /* 2048 = 1 in 1,048,576 */
82 /* 65536 = 1 in 32,768 */
83 /* 1048576 = 1 in 2,048 */
84 /* 268435456 = 1 in 8 */
85 /* 536870912 = 1 in 4 */
86 /* 1073741824 = 1 in 2 */
87
88 /* Controls how often the l2_fhdr frame error check will fail. */
89 int bnx_debug_l2fhdr_status_check = 0;
90
91 /* Controls how often the unexpected attention check will fail. */
92 int bnx_debug_unexpected_attention = 0;
93
94 /* Controls how often to simulate an mbuf allocation failure. */
95 int bnx_debug_mbuf_allocation_failure = 0;
96
97 /* Controls how often to simulate a DMA mapping failure. */
98 int bnx_debug_dma_map_addr_failure = 0;
99
100 /* Controls how often to simulate a bootcode failure. */
101 int bnx_debug_bootcode_running_failure = 0;
102 #endif
103
104 /****************************************************************************/
105 /* PCI Device ID Table */
106 /* */
107 /* Used by bnx_probe() to identify the devices supported by this driver. */
108 /****************************************************************************/
109 static const struct bnx_product {
110 pci_vendor_id_t bp_vendor;
111 pci_product_id_t bp_product;
112 pci_vendor_id_t bp_subvendor;
113 pci_product_id_t bp_subproduct;
114 const char *bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 {
118 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 "HP NC370T Multifunction Gigabit Server Adapter"
121 },
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 {
125 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 "HP NC370i Multifunction Gigabit Server Adapter"
128 },
129 #endif
130 {
131 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 0, 0,
133 "Broadcom NetXtreme II BCM5706 1000Base-T"
134 },
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 {
137 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 "HP NC370F Multifunction Gigabit Server Adapter"
140 },
141 #endif
142 {
143 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 0, 0,
145 "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 },
147 {
148 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 0, 0,
150 "Broadcom NetXtreme II BCM5708 1000Base-T"
151 },
152 {
153 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 0, 0,
155 "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 },
157 {
158 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 0, 0,
160 "Broadcom NetXtreme II BCM5709 1000Base-T"
161 },
162 {
163 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 0, 0,
165 "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 },
167 {
168 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 0, 0,
170 "Broadcom NetXtreme II BCM5716 1000Base-T"
171 },
172 {
173 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 0, 0,
175 "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 },
177 };
178
179 /****************************************************************************/
180 /* Supported Flash NVRAM device data. */
181 /****************************************************************************/
182 static struct flash_spec flash_table[] =
183 {
184 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
185 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
186 /* Slow EEPROM */
187 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
188 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
189 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
190 "EEPROM - slow"},
191 /* Expansion entry 0001 */
192 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
193 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 "Entry 0001"},
196 /* Saifun SA25F010 (non-buffered flash) */
197 /* strap, cfg1, & write1 need updates */
198 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
199 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
200 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
201 "Non-buffered flash (128kB)"},
202 /* Saifun SA25F020 (non-buffered flash) */
203 /* strap, cfg1, & write1 need updates */
204 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
205 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
206 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
207 "Non-buffered flash (256kB)"},
208 /* Expansion entry 0100 */
209 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
210 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
211 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
212 "Entry 0100"},
213 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
214 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
215 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
216 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
217 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
218 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
219 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
220 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
221 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
222 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
223 /* Saifun SA25F005 (non-buffered flash) */
224 /* strap, cfg1, & write1 need updates */
225 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
226 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
228 "Non-buffered flash (64kB)"},
229 /* Fast EEPROM */
230 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
231 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
232 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
233 "EEPROM - fast"},
234 /* Expansion entry 1001 */
235 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
236 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
237 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
238 "Entry 1001"},
239 /* Expansion entry 1010 */
240 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
241 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
242 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
243 "Entry 1010"},
244 /* ATMEL AT45DB011B (buffered flash) */
245 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
246 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
247 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
248 "Buffered flash (128kB)"},
249 /* Expansion entry 1100 */
250 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
251 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
252 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
253 "Entry 1100"},
254 /* Expansion entry 1101 */
255 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
256 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
257 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
258 "Entry 1101"},
259 /* Ateml Expansion entry 1110 */
260 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
261 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
262 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
263 "Entry 1110 (Atmel)"},
264 /* ATMEL AT45DB021B (buffered flash) */
265 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
266 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
267 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
268 "Buffered flash (256kB)"},
269 };
270
271 /*
272 * The BCM5709 controllers transparently handle the
273 * differences between Atmel 264 byte pages and all
274 * flash devices which use 256 byte pages, so no
275 * logical-to-physical mapping is required in the
276 * driver.
277 */
278 static struct flash_spec flash_5709 = {
279 .flags = BNX_NV_BUFFERED,
280 .page_bits = BCM5709_FLASH_PAGE_BITS,
281 .page_size = BCM5709_FLASH_PAGE_SIZE,
282 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
283 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
284 .name = "5709 buffered flash (256kB)",
285 };
286
287 /****************************************************************************/
288 /* OpenBSD device entry points. */
289 /****************************************************************************/
290 static int bnx_probe(device_t, cfdata_t, void *);
291 void bnx_attach(device_t, device_t, void *);
292 int bnx_detach(device_t, int);
293
294 /****************************************************************************/
295 /* BNX Debug Data Structure Dump Routines */
296 /****************************************************************************/
297 #ifdef BNX_DEBUG
298 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
299 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
300 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
301 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
302 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
303 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
304 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
305 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
306 void bnx_dump_status_block(struct bnx_softc *);
307 void bnx_dump_stats_block(struct bnx_softc *);
308 void bnx_dump_driver_state(struct bnx_softc *);
309 void bnx_dump_hw_state(struct bnx_softc *);
310 void bnx_breakpoint(struct bnx_softc *);
311 #endif
312
313 /****************************************************************************/
314 /* BNX Register/Memory Access Routines */
315 /****************************************************************************/
316 uint32_t bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
317 void bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
318 void bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
319 int bnx_miibus_read_reg(device_t, int, int);
320 void bnx_miibus_write_reg(device_t, int, int, int);
321 void bnx_miibus_statchg(struct ifnet *);
322
323 /****************************************************************************/
324 /* BNX NVRAM Access Routines */
325 /****************************************************************************/
326 int bnx_acquire_nvram_lock(struct bnx_softc *);
327 int bnx_release_nvram_lock(struct bnx_softc *);
328 void bnx_enable_nvram_access(struct bnx_softc *);
329 void bnx_disable_nvram_access(struct bnx_softc *);
330 int bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
331 uint32_t);
332 int bnx_init_nvram(struct bnx_softc *);
333 int bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
334 int bnx_nvram_test(struct bnx_softc *);
335 #ifdef BNX_NVRAM_WRITE_SUPPORT
336 int bnx_enable_nvram_write(struct bnx_softc *);
337 void bnx_disable_nvram_write(struct bnx_softc *);
338 int bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
339 int bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
340 uint32_t);
341 int bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
342 #endif
343
344 /****************************************************************************/
345 /* */
346 /****************************************************************************/
347 void bnx_get_media(struct bnx_softc *);
348 void bnx_init_media(struct bnx_softc *);
349 int bnx_dma_alloc(struct bnx_softc *);
350 void bnx_dma_free(struct bnx_softc *);
351 void bnx_release_resources(struct bnx_softc *);
352
353 /****************************************************************************/
354 /* BNX Firmware Synchronization and Load */
355 /****************************************************************************/
356 int bnx_fw_sync(struct bnx_softc *, uint32_t);
357 void bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
358 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
359 struct fw_info *);
360 void bnx_init_cpus(struct bnx_softc *);
361
362 static void bnx_print_adapter_info(struct bnx_softc *);
363 static void bnx_probe_pci_caps(struct bnx_softc *);
364 void bnx_stop(struct ifnet *, int);
365 int bnx_reset(struct bnx_softc *, uint32_t);
366 int bnx_chipinit(struct bnx_softc *);
367 int bnx_blockinit(struct bnx_softc *);
368 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
369 uint16_t *, uint32_t *);
370 int bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
371
372 int bnx_init_tx_chain(struct bnx_softc *);
373 void bnx_init_tx_context(struct bnx_softc *);
374 int bnx_init_rx_chain(struct bnx_softc *);
375 void bnx_init_rx_context(struct bnx_softc *);
376 void bnx_free_rx_chain(struct bnx_softc *);
377 void bnx_free_tx_chain(struct bnx_softc *);
378
379 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
380 void bnx_start(struct ifnet *);
381 int bnx_ioctl(struct ifnet *, u_long, void *);
382 void bnx_watchdog(struct ifnet *);
383 int bnx_init(struct ifnet *);
384
385 void bnx_init_context(struct bnx_softc *);
386 void bnx_get_mac_addr(struct bnx_softc *);
387 void bnx_set_mac_addr(struct bnx_softc *);
388 void bnx_phy_intr(struct bnx_softc *);
389 void bnx_rx_intr(struct bnx_softc *);
390 void bnx_tx_intr(struct bnx_softc *);
391 void bnx_disable_intr(struct bnx_softc *);
392 void bnx_enable_intr(struct bnx_softc *);
393
394 int bnx_intr(void *);
395 void bnx_iff(struct bnx_softc *);
396 void bnx_stats_update(struct bnx_softc *);
397 void bnx_tick(void *);
398
399 struct pool *bnx_tx_pool = NULL;
400 void bnx_alloc_pkts(struct work *, void *);
401
402 /****************************************************************************/
403 /* OpenBSD device dispatch table. */
404 /****************************************************************************/
405 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
406 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
407
408 /****************************************************************************/
409 /* Device probe function. */
410 /* */
411 /* Compares the device to the driver's list of supported devices and */
412 /* reports back to the OS whether this is the right driver for the device. */
413 /* */
414 /* Returns: */
415 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
416 /****************************************************************************/
417 static const struct bnx_product *
418 bnx_lookup(const struct pci_attach_args *pa)
419 {
420 int i;
421 pcireg_t subid;
422
423 for (i = 0; i < __arraycount(bnx_devices); i++) {
424 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
425 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
426 continue;
427 if (!bnx_devices[i].bp_subvendor)
428 return &bnx_devices[i];
429 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
430 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
431 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
432 return &bnx_devices[i];
433 }
434
435 return NULL;
436 }
437 static int
438 bnx_probe(device_t parent, cfdata_t match, void *aux)
439 {
440 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
441
442 if (bnx_lookup(pa) != NULL)
443 return 1;
444
445 return 0;
446 }
447
448 /****************************************************************************/
449 /* PCI Capabilities Probe Function. */
450 /* */
451 /* Walks the PCI capabiites list for the device to find what features are */
452 /* supported. */
453 /* */
454 /* Returns: */
455 /* None. */
456 /****************************************************************************/
457 static void
458 bnx_print_adapter_info(struct bnx_softc *sc)
459 {
460
461 aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
462 BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
463 (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
464 ? "Serdes " : "", sc->bnx_chipid);
465
466 /* Bus info. */
467 if (sc->bnx_flags & BNX_PCIE_FLAG) {
468 aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
469 sc->link_width);
470 switch (sc->link_speed) {
471 case 1: aprint_normal("2.5Gbps\n"); break;
472 case 2: aprint_normal("5Gbps\n"); break;
473 default: aprint_normal("Unknown link speed\n");
474 }
475 } else {
476 aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
477 ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
478 (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
479 sc->bus_speed_mhz);
480 }
481
482 aprint_normal_dev(sc->bnx_dev,
483 "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
484 sc->bnx_rx_quick_cons_trip_int,
485 sc->bnx_rx_quick_cons_trip,
486 sc->bnx_rx_ticks_int,
487 sc->bnx_rx_ticks,
488 sc->bnx_tx_quick_cons_trip_int,
489 sc->bnx_tx_quick_cons_trip,
490 sc->bnx_tx_ticks_int,
491 sc->bnx_tx_ticks);
492 }
493
494
495 /****************************************************************************/
496 /* PCI Capabilities Probe Function. */
497 /* */
498 /* Walks the PCI capabiites list for the device to find what features are */
499 /* supported. */
500 /* */
501 /* Returns: */
502 /* None. */
503 /****************************************************************************/
504 static void
505 bnx_probe_pci_caps(struct bnx_softc *sc)
506 {
507 struct pci_attach_args *pa = &(sc->bnx_pa);
508 pcireg_t reg;
509
510 /* Check if PCI-X capability is enabled. */
511 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, ®,
512 NULL) != 0) {
513 sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
514 }
515
516 /* Check if PCIe capability is enabled. */
517 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, ®,
518 NULL) != 0) {
519 pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
520 reg + PCIE_LCSR);
521 DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
522 "0x%08X\n", link_status);
523 sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
524 sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
525 sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
526 sc->bnx_flags |= BNX_PCIE_FLAG;
527 }
528
529 /* Check if MSI capability is enabled. */
530 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, ®,
531 NULL) != 0)
532 sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
533
534 /* Check if MSI-X capability is enabled. */
535 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, ®,
536 NULL) != 0)
537 sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
538 }
539
540
541 /****************************************************************************/
542 /* Device attach function. */
543 /* */
544 /* Allocates device resources, performs secondary chip identification, */
545 /* resets and initializes the hardware, and initializes driver instance */
546 /* variables. */
547 /* */
548 /* Returns: */
549 /* 0 on success, positive value on failure. */
550 /****************************************************************************/
551 void
552 bnx_attach(device_t parent, device_t self, void *aux)
553 {
554 const struct bnx_product *bp;
555 struct bnx_softc *sc = device_private(self);
556 prop_dictionary_t dict;
557 struct pci_attach_args *pa = aux;
558 pci_chipset_tag_t pc = pa->pa_pc;
559 pci_intr_handle_t ih;
560 const char *intrstr = NULL;
561 uint32_t command;
562 struct ifnet *ifp;
563 uint32_t val;
564 int mii_flags = MIIF_FORCEANEG;
565 pcireg_t memtype;
566 char intrbuf[PCI_INTRSTR_LEN];
567
568 if (bnx_tx_pool == NULL) {
569 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
570 if (bnx_tx_pool != NULL) {
571 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
572 0, 0, 0, "bnxpkts", NULL, IPL_NET);
573 } else {
574 aprint_error(": can't alloc bnx_tx_pool\n");
575 return;
576 }
577 }
578
579 bp = bnx_lookup(pa);
580 if (bp == NULL)
581 panic("unknown device");
582
583 sc->bnx_dev = self;
584
585 aprint_naive("\n");
586 aprint_normal(": %s\n", bp->bp_name);
587
588 sc->bnx_pa = *pa;
589
590 /*
591 * Map control/status registers.
592 */
593 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
594 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
595 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
596 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
597
598 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
599 aprint_error_dev(sc->bnx_dev,
600 "failed to enable memory mapping!\n");
601 return;
602 }
603
604 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
605 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
606 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
607 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
608 return;
609 }
610
611 if (pci_intr_map(pa, &ih)) {
612 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
613 goto bnx_attach_fail;
614 }
615
616 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
617
618 /*
619 * Configure byte swap and enable indirect register access.
620 * Rely on CPU to do target byte swapping on big endian systems.
621 * Access to registers outside of PCI configurtion space are not
622 * valid until this is done.
623 */
624 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
625 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
626 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
627
628 /* Save ASIC revsion info. */
629 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
630
631 /*
632 * Find the base address for shared memory access.
633 * Newer versions of bootcode use a signature and offset
634 * while older versions use a fixed address.
635 */
636 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
637 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
638 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
639 (sc->bnx_pa.pa_function << 2));
640 else
641 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
642
643 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
644
645 /* Set initial device and PHY flags */
646 sc->bnx_flags = 0;
647 sc->bnx_phy_flags = 0;
648
649 bnx_probe_pci_caps(sc);
650
651 /* Get PCI bus information (speed and type). */
652 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
653 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
654 uint32_t clkreg;
655
656 sc->bnx_flags |= BNX_PCIX_FLAG;
657
658 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
659
660 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
661 switch (clkreg) {
662 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
663 sc->bus_speed_mhz = 133;
664 break;
665
666 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
667 sc->bus_speed_mhz = 100;
668 break;
669
670 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
671 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
672 sc->bus_speed_mhz = 66;
673 break;
674
675 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
676 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
677 sc->bus_speed_mhz = 50;
678 break;
679
680 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
681 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
682 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
683 sc->bus_speed_mhz = 33;
684 break;
685 }
686 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
687 sc->bus_speed_mhz = 66;
688 else
689 sc->bus_speed_mhz = 33;
690
691 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
692 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
693
694 /* Reset the controller. */
695 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
696 goto bnx_attach_fail;
697
698 /* Initialize the controller. */
699 if (bnx_chipinit(sc)) {
700 aprint_error_dev(sc->bnx_dev,
701 "Controller initialization failed!\n");
702 goto bnx_attach_fail;
703 }
704
705 /* Perform NVRAM test. */
706 if (bnx_nvram_test(sc)) {
707 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
708 goto bnx_attach_fail;
709 }
710
711 /* Fetch the permanent Ethernet MAC address. */
712 bnx_get_mac_addr(sc);
713 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
714 ether_sprintf(sc->eaddr));
715
716 /*
717 * Trip points control how many BDs
718 * should be ready before generating an
719 * interrupt while ticks control how long
720 * a BD can sit in the chain before
721 * generating an interrupt. Set the default
722 * values for the RX and TX rings.
723 */
724
725 #ifdef BNX_DEBUG
726 /* Force more frequent interrupts. */
727 sc->bnx_tx_quick_cons_trip_int = 1;
728 sc->bnx_tx_quick_cons_trip = 1;
729 sc->bnx_tx_ticks_int = 0;
730 sc->bnx_tx_ticks = 0;
731
732 sc->bnx_rx_quick_cons_trip_int = 1;
733 sc->bnx_rx_quick_cons_trip = 1;
734 sc->bnx_rx_ticks_int = 0;
735 sc->bnx_rx_ticks = 0;
736 #else
737 sc->bnx_tx_quick_cons_trip_int = 20;
738 sc->bnx_tx_quick_cons_trip = 20;
739 sc->bnx_tx_ticks_int = 80;
740 sc->bnx_tx_ticks = 80;
741
742 sc->bnx_rx_quick_cons_trip_int = 6;
743 sc->bnx_rx_quick_cons_trip = 6;
744 sc->bnx_rx_ticks_int = 18;
745 sc->bnx_rx_ticks = 18;
746 #endif
747
748 /* Update statistics once every second. */
749 sc->bnx_stats_ticks = 1000000 & 0xffff00;
750
751 /* Find the media type for the adapter. */
752 bnx_get_media(sc);
753
754 /*
755 * Store config data needed by the PHY driver for
756 * backplane applications
757 */
758 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
759 BNX_SHARED_HW_CFG_CONFIG);
760 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
761 BNX_PORT_HW_CFG_CONFIG);
762
763 /* Allocate DMA memory resources. */
764 sc->bnx_dmatag = pa->pa_dmat;
765 if (bnx_dma_alloc(sc)) {
766 aprint_error_dev(sc->bnx_dev,
767 "DMA resource allocation failed!\n");
768 goto bnx_attach_fail;
769 }
770
771 /* Initialize the ifnet interface. */
772 ifp = &sc->bnx_ec.ec_if;
773 ifp->if_softc = sc;
774 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
775 ifp->if_ioctl = bnx_ioctl;
776 ifp->if_stop = bnx_stop;
777 ifp->if_start = bnx_start;
778 ifp->if_init = bnx_init;
779 ifp->if_timer = 0;
780 ifp->if_watchdog = bnx_watchdog;
781 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
782 IFQ_SET_READY(&ifp->if_snd);
783 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
784
785 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
786 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
787
788 ifp->if_capabilities |=
789 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
790 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
791 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
792
793 /* Hookup IRQ last. */
794 sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
795 sc, device_xname(self));
796 if (sc->bnx_intrhand == NULL) {
797 aprint_error_dev(self, "couldn't establish interrupt");
798 if (intrstr != NULL)
799 aprint_error(" at %s", intrstr);
800 aprint_error("\n");
801 goto bnx_attach_fail;
802 }
803 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
804
805 /* create workqueue to handle packet allocations */
806 if (workqueue_create(&sc->bnx_wq, device_xname(self),
807 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
808 aprint_error_dev(self, "failed to create workqueue\n");
809 goto bnx_attach_fail;
810 }
811
812 sc->bnx_mii.mii_ifp = ifp;
813 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
814 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
815 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
816
817 /* Handle any special PHY initialization for SerDes PHYs. */
818 bnx_init_media(sc);
819
820 sc->bnx_ec.ec_mii = &sc->bnx_mii;
821 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
822 ether_mediastatus);
823
824 /* set phyflags and chipid before mii_attach() */
825 dict = device_properties(self);
826 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
827 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
828 prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
829 prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
830
831 /* Print some useful adapter info */
832 bnx_print_adapter_info(sc);
833
834 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
835 mii_flags |= MIIF_HAVEFIBER;
836 mii_attach(self, &sc->bnx_mii, 0xffffffff,
837 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
838
839 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
840 aprint_error_dev(self, "no PHY found!\n");
841 ifmedia_add(&sc->bnx_mii.mii_media,
842 IFM_ETHER|IFM_MANUAL, 0, NULL);
843 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
844 } else
845 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
846
847 /* Attach to the Ethernet interface list. */
848 if_attach(ifp);
849 if_deferred_start_init(ifp, NULL);
850 ether_ifattach(ifp,sc->eaddr);
851
852 callout_init(&sc->bnx_timeout, 0);
853
854 if (pmf_device_register(self, NULL, NULL))
855 pmf_class_network_register(self, ifp);
856 else
857 aprint_error_dev(self, "couldn't establish power handler\n");
858
859 /* Print some important debugging info. */
860 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
861
862 goto bnx_attach_exit;
863
864 bnx_attach_fail:
865 bnx_release_resources(sc);
866
867 bnx_attach_exit:
868 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
869 }
870
871 /****************************************************************************/
872 /* Device detach function. */
873 /* */
874 /* Stops the controller, resets the controller, and releases resources. */
875 /* */
876 /* Returns: */
877 /* 0 on success, positive value on failure. */
878 /****************************************************************************/
879 int
880 bnx_detach(device_t dev, int flags)
881 {
882 int s;
883 struct bnx_softc *sc;
884 struct ifnet *ifp;
885
886 sc = device_private(dev);
887 ifp = &sc->bnx_ec.ec_if;
888
889 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
890
891 /* Stop and reset the controller. */
892 s = splnet();
893 bnx_stop(ifp, 1);
894 splx(s);
895
896 pmf_device_deregister(dev);
897 callout_destroy(&sc->bnx_timeout);
898 ether_ifdetach(ifp);
899 workqueue_destroy(sc->bnx_wq);
900
901 /* Delete all remaining media. */
902 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
903
904 if_detach(ifp);
905 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
906
907 /* Release all remaining resources. */
908 bnx_release_resources(sc);
909
910 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
911
912 return 0;
913 }
914
915 /****************************************************************************/
916 /* Indirect register read. */
917 /* */
918 /* Reads NetXtreme II registers using an index/data register pair in PCI */
919 /* configuration space. Using this mechanism avoids issues with posted */
920 /* reads but is much slower than memory-mapped I/O. */
921 /* */
922 /* Returns: */
923 /* The value of the register. */
924 /****************************************************************************/
925 uint32_t
926 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
927 {
928 struct pci_attach_args *pa = &(sc->bnx_pa);
929
930 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
931 offset);
932 #ifdef BNX_DEBUG
933 {
934 uint32_t val;
935 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
936 BNX_PCICFG_REG_WINDOW);
937 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
938 "val = 0x%08X\n", __func__, offset, val);
939 return val;
940 }
941 #else
942 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
943 #endif
944 }
945
946 /****************************************************************************/
947 /* Indirect register write. */
948 /* */
949 /* Writes NetXtreme II registers using an index/data register pair in PCI */
950 /* configuration space. Using this mechanism avoids issues with posted */
951 /* writes but is muchh slower than memory-mapped I/O. */
952 /* */
953 /* Returns: */
954 /* Nothing. */
955 /****************************************************************************/
956 void
957 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
958 {
959 struct pci_attach_args *pa = &(sc->bnx_pa);
960
961 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
962 __func__, offset, val);
963
964 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
965 offset);
966 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
967 }
968
969 /****************************************************************************/
970 /* Context memory write. */
971 /* */
972 /* The NetXtreme II controller uses context memory to track connection */
973 /* information for L2 and higher network protocols. */
974 /* */
975 /* Returns: */
976 /* Nothing. */
977 /****************************************************************************/
978 void
979 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
980 uint32_t ctx_val)
981 {
982 uint32_t idx, offset = ctx_offset + cid_addr;
983 uint32_t val, retry_cnt = 5;
984
985 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
986 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
987 REG_WR(sc, BNX_CTX_CTX_CTRL,
988 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
989
990 for (idx = 0; idx < retry_cnt; idx++) {
991 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
992 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
993 break;
994 DELAY(5);
995 }
996
997 #if 0
998 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
999 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1000 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1001 __FILE__, __LINE__, cid_addr, ctx_offset);
1002 #endif
1003
1004 } else {
1005 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1006 REG_WR(sc, BNX_CTX_DATA, ctx_val);
1007 }
1008 }
1009
1010 /****************************************************************************/
1011 /* PHY register read. */
1012 /* */
1013 /* Implements register reads on the MII bus. */
1014 /* */
1015 /* Returns: */
1016 /* The value of the register. */
1017 /****************************************************************************/
1018 int
1019 bnx_miibus_read_reg(device_t dev, int phy, int reg)
1020 {
1021 struct bnx_softc *sc = device_private(dev);
1022 uint32_t val, data;
1023 int i;
1024
1025 /* Make sure we are accessing the correct PHY address. */
1026 if (phy != sc->bnx_phy_addr) {
1027 DBPRINT(sc, BNX_VERBOSE,
1028 "Invalid PHY address %d for PHY read!\n", phy);
1029 return 0;
1030 }
1031
1032 /*
1033 * The BCM5709S PHY is an IEEE Clause 45 PHY
1034 * with special mappings to work with IEEE
1035 * Clause 22 register accesses.
1036 */
1037 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1038 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1039 reg += 0x10;
1040 }
1041
1042 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1043 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1044 data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1045
1046 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1047 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1048
1049 DELAY(40);
1050 }
1051
1052 data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1053 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1054 BNX_EMAC_MDIO_COMM_START_BUSY;
1055 REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
1056
1057 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1058 DELAY(10);
1059
1060 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1061 if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1062 DELAY(5);
1063
1064 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1065 data &= BNX_EMAC_MDIO_COMM_DATA;
1066
1067 break;
1068 }
1069 }
1070
1071 if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
1072 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1073 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1074 val = 0x0;
1075 } else
1076 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1077
1078 DBPRINT(sc, BNX_EXCESSIVE,
1079 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
1080 (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1081
1082 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1083 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1084 data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1085
1086 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1087 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1088
1089 DELAY(40);
1090 }
1091
1092 return (val & 0xffff);
1093 }
1094
1095 /****************************************************************************/
1096 /* PHY register write. */
1097 /* */
1098 /* Implements register writes on the MII bus. */
1099 /* */
1100 /* Returns: */
1101 /* The value of the register. */
1102 /****************************************************************************/
1103 void
1104 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1105 {
1106 struct bnx_softc *sc = device_private(dev);
1107 uint32_t val1;
1108 int i;
1109
1110 /* Make sure we are accessing the correct PHY address. */
1111 if (phy != sc->bnx_phy_addr) {
1112 DBPRINT(sc, BNX_WARN,
1113 "Invalid PHY address %d for PHY write!\n", phy);
1114 return;
1115 }
1116
1117 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1118 "val = 0x%04X\n", __func__,
1119 phy, (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1120
1121 /*
1122 * The BCM5709S PHY is an IEEE Clause 45 PHY
1123 * with special mappings to work with IEEE
1124 * Clause 22 register accesses.
1125 */
1126 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1127 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1128 reg += 0x10;
1129 }
1130
1131 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1132 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1133 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1134
1135 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1136 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1137
1138 DELAY(40);
1139 }
1140
1141 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1142 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1143 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1144 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1145
1146 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1147 DELAY(10);
1148
1149 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1150 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1151 DELAY(5);
1152 break;
1153 }
1154 }
1155
1156 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1157 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1158 __LINE__);
1159 }
1160
1161 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1162 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1163 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1164
1165 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1166 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1167
1168 DELAY(40);
1169 }
1170 }
1171
1172 /****************************************************************************/
1173 /* MII bus status change. */
1174 /* */
1175 /* Called by the MII bus driver when the PHY establishes link to set the */
1176 /* MAC interface registers. */
1177 /* */
1178 /* Returns: */
1179 /* Nothing. */
1180 /****************************************************************************/
1181 void
1182 bnx_miibus_statchg(struct ifnet *ifp)
1183 {
1184 struct bnx_softc *sc = ifp->if_softc;
1185 struct mii_data *mii = &sc->bnx_mii;
1186 int val;
1187
1188 val = REG_RD(sc, BNX_EMAC_MODE);
1189 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1190 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1191 BNX_EMAC_MODE_25G);
1192
1193 /* Set MII or GMII interface based on the speed
1194 * negotiated by the PHY.
1195 */
1196 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1197 case IFM_10_T:
1198 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1199 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1200 val |= BNX_EMAC_MODE_PORT_MII_10;
1201 break;
1202 }
1203 /* FALLTHROUGH */
1204 case IFM_100_TX:
1205 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1206 val |= BNX_EMAC_MODE_PORT_MII;
1207 break;
1208 case IFM_2500_SX:
1209 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1210 val |= BNX_EMAC_MODE_25G;
1211 /* FALLTHROUGH */
1212 case IFM_1000_T:
1213 case IFM_1000_SX:
1214 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1215 val |= BNX_EMAC_MODE_PORT_GMII;
1216 break;
1217 default:
1218 val |= BNX_EMAC_MODE_PORT_GMII;
1219 break;
1220 }
1221
1222 /* Set half or full duplex based on the duplicity
1223 * negotiated by the PHY.
1224 */
1225 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1226 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1227 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1228 } else {
1229 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1230 }
1231
1232 REG_WR(sc, BNX_EMAC_MODE, val);
1233 }
1234
1235 /****************************************************************************/
1236 /* Acquire NVRAM lock. */
1237 /* */
1238 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1239 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1240 /* for use by the driver. */
1241 /* */
1242 /* Returns: */
1243 /* 0 on success, positive value on failure. */
1244 /****************************************************************************/
1245 int
1246 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1247 {
1248 uint32_t val;
1249 int j;
1250
1251 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1252
1253 /* Request access to the flash interface. */
1254 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1255 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1256 val = REG_RD(sc, BNX_NVM_SW_ARB);
1257 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1258 break;
1259
1260 DELAY(5);
1261 }
1262
1263 if (j >= NVRAM_TIMEOUT_COUNT) {
1264 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1265 return EBUSY;
1266 }
1267
1268 return 0;
1269 }
1270
1271 /****************************************************************************/
1272 /* Release NVRAM lock. */
1273 /* */
1274 /* When the caller is finished accessing NVRAM the lock must be released. */
1275 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1276 /* for use by the driver. */
1277 /* */
1278 /* Returns: */
1279 /* 0 on success, positive value on failure. */
1280 /****************************************************************************/
1281 int
1282 bnx_release_nvram_lock(struct bnx_softc *sc)
1283 {
1284 int j;
1285 uint32_t val;
1286
1287 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1288
1289 /* Relinquish nvram interface. */
1290 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1291
1292 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1293 val = REG_RD(sc, BNX_NVM_SW_ARB);
1294 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1295 break;
1296
1297 DELAY(5);
1298 }
1299
1300 if (j >= NVRAM_TIMEOUT_COUNT) {
1301 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1302 return EBUSY;
1303 }
1304
1305 return 0;
1306 }
1307
1308 #ifdef BNX_NVRAM_WRITE_SUPPORT
1309 /****************************************************************************/
1310 /* Enable NVRAM write access. */
1311 /* */
1312 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1313 /* */
1314 /* Returns: */
1315 /* 0 on success, positive value on failure. */
1316 /****************************************************************************/
1317 int
1318 bnx_enable_nvram_write(struct bnx_softc *sc)
1319 {
1320 uint32_t val;
1321
1322 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1323
1324 val = REG_RD(sc, BNX_MISC_CFG);
1325 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1326
1327 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1328 int j;
1329
1330 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1331 REG_WR(sc, BNX_NVM_COMMAND,
1332 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1333
1334 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1335 DELAY(5);
1336
1337 val = REG_RD(sc, BNX_NVM_COMMAND);
1338 if (val & BNX_NVM_COMMAND_DONE)
1339 break;
1340 }
1341
1342 if (j >= NVRAM_TIMEOUT_COUNT) {
1343 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1344 return EBUSY;
1345 }
1346 }
1347
1348 return 0;
1349 }
1350
1351 /****************************************************************************/
1352 /* Disable NVRAM write access. */
1353 /* */
1354 /* When the caller is finished writing to NVRAM write access must be */
1355 /* disabled. */
1356 /* */
1357 /* Returns: */
1358 /* Nothing. */
1359 /****************************************************************************/
1360 void
1361 bnx_disable_nvram_write(struct bnx_softc *sc)
1362 {
1363 uint32_t val;
1364
1365 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1366
1367 val = REG_RD(sc, BNX_MISC_CFG);
1368 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1369 }
1370 #endif
1371
1372 /****************************************************************************/
1373 /* Enable NVRAM access. */
1374 /* */
1375 /* Before accessing NVRAM for read or write operations the caller must */
1376 /* enabled NVRAM access. */
1377 /* */
1378 /* Returns: */
1379 /* Nothing. */
1380 /****************************************************************************/
1381 void
1382 bnx_enable_nvram_access(struct bnx_softc *sc)
1383 {
1384 uint32_t val;
1385
1386 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1387
1388 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1389 /* Enable both bits, even on read. */
1390 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1391 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1392 }
1393
1394 /****************************************************************************/
1395 /* Disable NVRAM access. */
1396 /* */
1397 /* When the caller is finished accessing NVRAM access must be disabled. */
1398 /* */
1399 /* Returns: */
1400 /* Nothing. */
1401 /****************************************************************************/
1402 void
1403 bnx_disable_nvram_access(struct bnx_softc *sc)
1404 {
1405 uint32_t val;
1406
1407 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1408
1409 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1410
1411 /* Disable both bits, even after read. */
1412 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1413 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1414 }
1415
1416 #ifdef BNX_NVRAM_WRITE_SUPPORT
1417 /****************************************************************************/
1418 /* Erase NVRAM page before writing. */
1419 /* */
1420 /* Non-buffered flash parts require that a page be erased before it is */
1421 /* written. */
1422 /* */
1423 /* Returns: */
1424 /* 0 on success, positive value on failure. */
1425 /****************************************************************************/
1426 int
1427 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1428 {
1429 uint32_t cmd;
1430 int j;
1431
1432 /* Buffered flash doesn't require an erase. */
1433 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1434 return 0;
1435
1436 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1437
1438 /* Build an erase command. */
1439 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1440 BNX_NVM_COMMAND_DOIT;
1441
1442 /*
1443 * Clear the DONE bit separately, set the NVRAM address to erase,
1444 * and issue the erase command.
1445 */
1446 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1447 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1448 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1449
1450 /* Wait for completion. */
1451 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1452 uint32_t val;
1453
1454 DELAY(5);
1455
1456 val = REG_RD(sc, BNX_NVM_COMMAND);
1457 if (val & BNX_NVM_COMMAND_DONE)
1458 break;
1459 }
1460
1461 if (j >= NVRAM_TIMEOUT_COUNT) {
1462 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1463 return EBUSY;
1464 }
1465
1466 return 0;
1467 }
1468 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1469
1470 /****************************************************************************/
1471 /* Read a dword (32 bits) from NVRAM. */
1472 /* */
1473 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1474 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1475 /* */
1476 /* Returns: */
1477 /* 0 on success and the 32 bit value read, positive value on failure. */
1478 /****************************************************************************/
1479 int
1480 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1481 uint8_t *ret_val, uint32_t cmd_flags)
1482 {
1483 uint32_t cmd;
1484 int i, rc = 0;
1485
1486 /* Build the command word. */
1487 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1488
1489 /* Calculate the offset for buffered flash if translation is used. */
1490 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1491 offset = ((offset / sc->bnx_flash_info->page_size) <<
1492 sc->bnx_flash_info->page_bits) +
1493 (offset % sc->bnx_flash_info->page_size);
1494 }
1495
1496 /*
1497 * Clear the DONE bit separately, set the address to read,
1498 * and issue the read.
1499 */
1500 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1501 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1502 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1503
1504 /* Wait for completion. */
1505 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1506 uint32_t val;
1507
1508 DELAY(5);
1509
1510 val = REG_RD(sc, BNX_NVM_COMMAND);
1511 if (val & BNX_NVM_COMMAND_DONE) {
1512 val = REG_RD(sc, BNX_NVM_READ);
1513
1514 val = bnx_be32toh(val);
1515 memcpy(ret_val, &val, 4);
1516 break;
1517 }
1518 }
1519
1520 /* Check for errors. */
1521 if (i >= NVRAM_TIMEOUT_COUNT) {
1522 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1523 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1524 rc = EBUSY;
1525 }
1526
1527 return rc;
1528 }
1529
1530 #ifdef BNX_NVRAM_WRITE_SUPPORT
1531 /****************************************************************************/
1532 /* Write a dword (32 bits) to NVRAM. */
1533 /* */
1534 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1535 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1536 /* enabled NVRAM write access. */
1537 /* */
1538 /* Returns: */
1539 /* 0 on success, positive value on failure. */
1540 /****************************************************************************/
1541 int
1542 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1543 uint32_t cmd_flags)
1544 {
1545 uint32_t cmd, val32;
1546 int j;
1547
1548 /* Build the command word. */
1549 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1550
1551 /* Calculate the offset for buffered flash if translation is used. */
1552 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1553 offset = ((offset / sc->bnx_flash_info->page_size) <<
1554 sc->bnx_flash_info->page_bits) +
1555 (offset % sc->bnx_flash_info->page_size);
1556 }
1557
1558 /*
1559 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1560 * set the NVRAM address to write, and issue the write command
1561 */
1562 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1563 memcpy(&val32, val, 4);
1564 val32 = htobe32(val32);
1565 REG_WR(sc, BNX_NVM_WRITE, val32);
1566 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1567 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1568
1569 /* Wait for completion. */
1570 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1571 DELAY(5);
1572
1573 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1574 break;
1575 }
1576 if (j >= NVRAM_TIMEOUT_COUNT) {
1577 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1578 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1579 return EBUSY;
1580 }
1581
1582 return 0;
1583 }
1584 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1585
1586 /****************************************************************************/
1587 /* Initialize NVRAM access. */
1588 /* */
1589 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1590 /* access that device. */
1591 /* */
1592 /* Returns: */
1593 /* 0 on success, positive value on failure. */
1594 /****************************************************************************/
1595 int
1596 bnx_init_nvram(struct bnx_softc *sc)
1597 {
1598 uint32_t val;
1599 int j, entry_count, rc = 0;
1600 struct flash_spec *flash;
1601
1602 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1603
1604 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1605 sc->bnx_flash_info = &flash_5709;
1606 goto bnx_init_nvram_get_flash_size;
1607 }
1608
1609 /* Determine the selected interface. */
1610 val = REG_RD(sc, BNX_NVM_CFG1);
1611
1612 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1613
1614 /*
1615 * Flash reconfiguration is required to support additional
1616 * NVRAM devices not directly supported in hardware.
1617 * Check if the flash interface was reconfigured
1618 * by the bootcode.
1619 */
1620
1621 if (val & 0x40000000) {
1622 /* Flash interface reconfigured by bootcode. */
1623
1624 DBPRINT(sc,BNX_INFO_LOAD,
1625 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1626
1627 for (j = 0, flash = &flash_table[0]; j < entry_count;
1628 j++, flash++) {
1629 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1630 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1631 sc->bnx_flash_info = flash;
1632 break;
1633 }
1634 }
1635 } else {
1636 /* Flash interface not yet reconfigured. */
1637 uint32_t mask;
1638
1639 DBPRINT(sc,BNX_INFO_LOAD,
1640 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1641
1642 if (val & (1 << 23))
1643 mask = FLASH_BACKUP_STRAP_MASK;
1644 else
1645 mask = FLASH_STRAP_MASK;
1646
1647 /* Look for the matching NVRAM device configuration data. */
1648 for (j = 0, flash = &flash_table[0]; j < entry_count;
1649 j++, flash++) {
1650 /* Check if the dev matches any of the known devices. */
1651 if ((val & mask) == (flash->strapping & mask)) {
1652 /* Found a device match. */
1653 sc->bnx_flash_info = flash;
1654
1655 /* Request access to the flash interface. */
1656 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1657 return rc;
1658
1659 /* Reconfigure the flash interface. */
1660 bnx_enable_nvram_access(sc);
1661 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1662 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1663 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1664 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1665 bnx_disable_nvram_access(sc);
1666 bnx_release_nvram_lock(sc);
1667
1668 break;
1669 }
1670 }
1671 }
1672
1673 /* Check if a matching device was found. */
1674 if (j == entry_count) {
1675 sc->bnx_flash_info = NULL;
1676 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1677 __FILE__, __LINE__);
1678 rc = ENODEV;
1679 }
1680
1681 bnx_init_nvram_get_flash_size:
1682 /* Write the flash config data to the shared memory interface. */
1683 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1684 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1685 if (val)
1686 sc->bnx_flash_size = val;
1687 else
1688 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1689
1690 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1691 "0x%08X\n", sc->bnx_flash_info->total_size);
1692
1693 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1694
1695 return rc;
1696 }
1697
1698 /****************************************************************************/
1699 /* Read an arbitrary range of data from NVRAM. */
1700 /* */
1701 /* Prepares the NVRAM interface for access and reads the requested data */
1702 /* into the supplied buffer. */
1703 /* */
1704 /* Returns: */
1705 /* 0 on success and the data read, positive value on failure. */
1706 /****************************************************************************/
1707 int
1708 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1709 int buf_size)
1710 {
1711 int rc = 0;
1712 uint32_t cmd_flags, offset32, len32, extra;
1713
1714 if (buf_size == 0)
1715 return 0;
1716
1717 /* Request access to the flash interface. */
1718 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1719 return rc;
1720
1721 /* Enable access to flash interface */
1722 bnx_enable_nvram_access(sc);
1723
1724 len32 = buf_size;
1725 offset32 = offset;
1726 extra = 0;
1727
1728 cmd_flags = 0;
1729
1730 if (offset32 & 3) {
1731 uint8_t buf[4];
1732 uint32_t pre_len;
1733
1734 offset32 &= ~3;
1735 pre_len = 4 - (offset & 3);
1736
1737 if (pre_len >= len32) {
1738 pre_len = len32;
1739 cmd_flags =
1740 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1741 } else
1742 cmd_flags = BNX_NVM_COMMAND_FIRST;
1743
1744 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1745
1746 if (rc)
1747 return rc;
1748
1749 memcpy(ret_buf, buf + (offset & 3), pre_len);
1750
1751 offset32 += 4;
1752 ret_buf += pre_len;
1753 len32 -= pre_len;
1754 }
1755
1756 if (len32 & 3) {
1757 extra = 4 - (len32 & 3);
1758 len32 = (len32 + 4) & ~3;
1759 }
1760
1761 if (len32 == 4) {
1762 uint8_t buf[4];
1763
1764 if (cmd_flags)
1765 cmd_flags = BNX_NVM_COMMAND_LAST;
1766 else
1767 cmd_flags =
1768 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1769
1770 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1771
1772 memcpy(ret_buf, buf, 4 - extra);
1773 } else if (len32 > 0) {
1774 uint8_t buf[4];
1775
1776 /* Read the first word. */
1777 if (cmd_flags)
1778 cmd_flags = 0;
1779 else
1780 cmd_flags = BNX_NVM_COMMAND_FIRST;
1781
1782 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1783
1784 /* Advance to the next dword. */
1785 offset32 += 4;
1786 ret_buf += 4;
1787 len32 -= 4;
1788
1789 while (len32 > 4 && rc == 0) {
1790 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1791
1792 /* Advance to the next dword. */
1793 offset32 += 4;
1794 ret_buf += 4;
1795 len32 -= 4;
1796 }
1797
1798 if (rc)
1799 return rc;
1800
1801 cmd_flags = BNX_NVM_COMMAND_LAST;
1802 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1803
1804 memcpy(ret_buf, buf, 4 - extra);
1805 }
1806
1807 /* Disable access to flash interface and release the lock. */
1808 bnx_disable_nvram_access(sc);
1809 bnx_release_nvram_lock(sc);
1810
1811 return rc;
1812 }
1813
1814 #ifdef BNX_NVRAM_WRITE_SUPPORT
1815 /****************************************************************************/
1816 /* Write an arbitrary range of data from NVRAM. */
1817 /* */
1818 /* Prepares the NVRAM interface for write access and writes the requested */
1819 /* data from the supplied buffer. The caller is responsible for */
1820 /* calculating any appropriate CRCs. */
1821 /* */
1822 /* Returns: */
1823 /* 0 on success, positive value on failure. */
1824 /****************************************************************************/
1825 int
1826 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1827 int buf_size)
1828 {
1829 uint32_t written, offset32, len32;
1830 uint8_t *buf, start[4], end[4];
1831 int rc = 0;
1832 int align_start, align_end;
1833
1834 buf = data_buf;
1835 offset32 = offset;
1836 len32 = buf_size;
1837 align_start = align_end = 0;
1838
1839 if ((align_start = (offset32 & 3))) {
1840 offset32 &= ~3;
1841 len32 += align_start;
1842 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1843 return rc;
1844 }
1845
1846 if (len32 & 3) {
1847 if ((len32 > 4) || !align_start) {
1848 align_end = 4 - (len32 & 3);
1849 len32 += align_end;
1850 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1851 end, 4)))
1852 return rc;
1853 }
1854 }
1855
1856 if (align_start || align_end) {
1857 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1858 if (buf == 0)
1859 return ENOMEM;
1860
1861 if (align_start)
1862 memcpy(buf, start, 4);
1863
1864 if (align_end)
1865 memcpy(buf + len32 - 4, end, 4);
1866
1867 memcpy(buf + align_start, data_buf, buf_size);
1868 }
1869
1870 written = 0;
1871 while ((written < len32) && (rc == 0)) {
1872 uint32_t page_start, page_end, data_start, data_end;
1873 uint32_t addr, cmd_flags;
1874 int i;
1875 uint8_t flash_buffer[264];
1876
1877 /* Find the page_start addr */
1878 page_start = offset32 + written;
1879 page_start -= (page_start % sc->bnx_flash_info->page_size);
1880 /* Find the page_end addr */
1881 page_end = page_start + sc->bnx_flash_info->page_size;
1882 /* Find the data_start addr */
1883 data_start = (written == 0) ? offset32 : page_start;
1884 /* Find the data_end addr */
1885 data_end = (page_end > offset32 + len32) ?
1886 (offset32 + len32) : page_end;
1887
1888 /* Request access to the flash interface. */
1889 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1890 goto nvram_write_end;
1891
1892 /* Enable access to flash interface */
1893 bnx_enable_nvram_access(sc);
1894
1895 cmd_flags = BNX_NVM_COMMAND_FIRST;
1896 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1897 int j;
1898
1899 /* Read the whole page into the buffer
1900 * (non-buffer flash only) */
1901 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1902 if (j == (sc->bnx_flash_info->page_size - 4))
1903 cmd_flags |= BNX_NVM_COMMAND_LAST;
1904
1905 rc = bnx_nvram_read_dword(sc,
1906 page_start + j,
1907 &flash_buffer[j],
1908 cmd_flags);
1909
1910 if (rc)
1911 goto nvram_write_end;
1912
1913 cmd_flags = 0;
1914 }
1915 }
1916
1917 /* Enable writes to flash interface (unlock write-protect) */
1918 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1919 goto nvram_write_end;
1920
1921 /* Erase the page */
1922 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1923 goto nvram_write_end;
1924
1925 /* Re-enable the write again for the actual write */
1926 bnx_enable_nvram_write(sc);
1927
1928 /* Loop to write back the buffer data from page_start to
1929 * data_start */
1930 i = 0;
1931 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1932 for (addr = page_start; addr < data_start;
1933 addr += 4, i += 4) {
1934
1935 rc = bnx_nvram_write_dword(sc, addr,
1936 &flash_buffer[i], cmd_flags);
1937
1938 if (rc != 0)
1939 goto nvram_write_end;
1940
1941 cmd_flags = 0;
1942 }
1943 }
1944
1945 /* Loop to write the new data from data_start to data_end */
1946 for (addr = data_start; addr < data_end; addr += 4, i++) {
1947 if ((addr == page_end - 4) ||
1948 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1949 && (addr == data_end - 4))) {
1950
1951 cmd_flags |= BNX_NVM_COMMAND_LAST;
1952 }
1953
1954 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1955
1956 if (rc != 0)
1957 goto nvram_write_end;
1958
1959 cmd_flags = 0;
1960 buf += 4;
1961 }
1962
1963 /* Loop to write back the buffer data from data_end
1964 * to page_end */
1965 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1966 for (addr = data_end; addr < page_end;
1967 addr += 4, i += 4) {
1968
1969 if (addr == page_end-4)
1970 cmd_flags = BNX_NVM_COMMAND_LAST;
1971
1972 rc = bnx_nvram_write_dword(sc, addr,
1973 &flash_buffer[i], cmd_flags);
1974
1975 if (rc != 0)
1976 goto nvram_write_end;
1977
1978 cmd_flags = 0;
1979 }
1980 }
1981
1982 /* Disable writes to flash interface (lock write-protect) */
1983 bnx_disable_nvram_write(sc);
1984
1985 /* Disable access to flash interface */
1986 bnx_disable_nvram_access(sc);
1987 bnx_release_nvram_lock(sc);
1988
1989 /* Increment written */
1990 written += data_end - data_start;
1991 }
1992
1993 nvram_write_end:
1994 if (align_start || align_end)
1995 free(buf, M_DEVBUF);
1996
1997 return rc;
1998 }
1999 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2000
2001 /****************************************************************************/
2002 /* Verifies that NVRAM is accessible and contains valid data. */
2003 /* */
2004 /* Reads the configuration data from NVRAM and verifies that the CRC is */
2005 /* correct. */
2006 /* */
2007 /* Returns: */
2008 /* 0 on success, positive value on failure. */
2009 /****************************************************************************/
2010 int
2011 bnx_nvram_test(struct bnx_softc *sc)
2012 {
2013 uint32_t buf[BNX_NVRAM_SIZE / 4];
2014 uint8_t *data = (uint8_t *) buf;
2015 int rc = 0;
2016 uint32_t magic, csum;
2017
2018 /*
2019 * Check that the device NVRAM is valid by reading
2020 * the magic value at offset 0.
2021 */
2022 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2023 goto bnx_nvram_test_done;
2024
2025 magic = bnx_be32toh(buf[0]);
2026 if (magic != BNX_NVRAM_MAGIC) {
2027 rc = ENODEV;
2028 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2029 "Expected: 0x%08X, Found: 0x%08X\n",
2030 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2031 goto bnx_nvram_test_done;
2032 }
2033
2034 /*
2035 * Verify that the device NVRAM includes valid
2036 * configuration data.
2037 */
2038 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2039 goto bnx_nvram_test_done;
2040
2041 csum = ether_crc32_le(data, 0x100);
2042 if (csum != BNX_CRC32_RESIDUAL) {
2043 rc = ENODEV;
2044 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2045 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2046 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2047 goto bnx_nvram_test_done;
2048 }
2049
2050 csum = ether_crc32_le(data + 0x100, 0x100);
2051 if (csum != BNX_CRC32_RESIDUAL) {
2052 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2053 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2054 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2055 rc = ENODEV;
2056 }
2057
2058 bnx_nvram_test_done:
2059 return rc;
2060 }
2061
2062 /****************************************************************************/
2063 /* Identifies the current media type of the controller and sets the PHY */
2064 /* address. */
2065 /* */
2066 /* Returns: */
2067 /* Nothing. */
2068 /****************************************************************************/
2069 void
2070 bnx_get_media(struct bnx_softc *sc)
2071 {
2072 sc->bnx_phy_addr = 1;
2073
2074 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2075 uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2076 uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2077 uint32_t strap;
2078
2079 /*
2080 * The BCM5709S is software configurable
2081 * for Copper or SerDes operation.
2082 */
2083 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2084 DBPRINT(sc, BNX_INFO_LOAD,
2085 "5709 bonded for copper.\n");
2086 goto bnx_get_media_exit;
2087 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2088 DBPRINT(sc, BNX_INFO_LOAD,
2089 "5709 bonded for dual media.\n");
2090 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2091 goto bnx_get_media_exit;
2092 }
2093
2094 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2095 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2096 else {
2097 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2098 >> 8;
2099 }
2100
2101 if (sc->bnx_pa.pa_function == 0) {
2102 switch (strap) {
2103 case 0x4:
2104 case 0x5:
2105 case 0x6:
2106 DBPRINT(sc, BNX_INFO_LOAD,
2107 "BCM5709 s/w configured for SerDes.\n");
2108 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2109 break;
2110 default:
2111 DBPRINT(sc, BNX_INFO_LOAD,
2112 "BCM5709 s/w configured for Copper.\n");
2113 }
2114 } else {
2115 switch (strap) {
2116 case 0x1:
2117 case 0x2:
2118 case 0x4:
2119 DBPRINT(sc, BNX_INFO_LOAD,
2120 "BCM5709 s/w configured for SerDes.\n");
2121 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2122 break;
2123 default:
2124 DBPRINT(sc, BNX_INFO_LOAD,
2125 "BCM5709 s/w configured for Copper.\n");
2126 }
2127 }
2128
2129 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2130 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2131
2132 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2133 uint32_t val;
2134
2135 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2136
2137 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2138 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2139
2140 /*
2141 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2142 * separate PHY for SerDes.
2143 */
2144 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2145 sc->bnx_phy_addr = 2;
2146 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2147 BNX_SHARED_HW_CFG_CONFIG);
2148 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2149 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2150 DBPRINT(sc, BNX_INFO_LOAD,
2151 "Found 2.5Gb capable adapter\n");
2152 }
2153 }
2154 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2155 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2156 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2157
2158 bnx_get_media_exit:
2159 DBPRINT(sc, (BNX_INFO_LOAD),
2160 "Using PHY address %d.\n", sc->bnx_phy_addr);
2161 }
2162
2163 /****************************************************************************/
2164 /* Performs PHY initialization required before MII drivers access the */
2165 /* device. */
2166 /* */
2167 /* Returns: */
2168 /* Nothing. */
2169 /****************************************************************************/
2170 void
2171 bnx_init_media(struct bnx_softc *sc)
2172 {
2173 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2174 /*
2175 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2176 * IEEE Clause 22 method. Otherwise we have no way to attach
2177 * the PHY to the mii(4) layer. PHY specific configuration
2178 * is done by the mii(4) layer.
2179 */
2180
2181 /* Select auto-negotiation MMD of the PHY. */
2182 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2183 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2184
2185 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2186 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2187
2188 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2189 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2190 }
2191 }
2192
2193 /****************************************************************************/
2194 /* Free any DMA memory owned by the driver. */
2195 /* */
2196 /* Scans through each data structre that requires DMA memory and frees */
2197 /* the memory if allocated. */
2198 /* */
2199 /* Returns: */
2200 /* Nothing. */
2201 /****************************************************************************/
2202 void
2203 bnx_dma_free(struct bnx_softc *sc)
2204 {
2205 int i;
2206
2207 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2208
2209 /* Destroy the status block. */
2210 if (sc->status_block != NULL && sc->status_map != NULL) {
2211 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2212 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2213 BNX_STATUS_BLK_SZ);
2214 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2215 sc->status_rseg);
2216 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2217 sc->status_block = NULL;
2218 sc->status_map = NULL;
2219 }
2220
2221 /* Destroy the statistics block. */
2222 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2223 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2224 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2225 BNX_STATS_BLK_SZ);
2226 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2227 sc->stats_rseg);
2228 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2229 sc->stats_block = NULL;
2230 sc->stats_map = NULL;
2231 }
2232
2233 /* Free, unmap and destroy all context memory pages. */
2234 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2235 for (i = 0; i < sc->ctx_pages; i++) {
2236 if (sc->ctx_block[i] != NULL) {
2237 bus_dmamap_unload(sc->bnx_dmatag,
2238 sc->ctx_map[i]);
2239 bus_dmamem_unmap(sc->bnx_dmatag,
2240 (void *)sc->ctx_block[i],
2241 BCM_PAGE_SIZE);
2242 bus_dmamem_free(sc->bnx_dmatag,
2243 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2244 bus_dmamap_destroy(sc->bnx_dmatag,
2245 sc->ctx_map[i]);
2246 sc->ctx_block[i] = NULL;
2247 }
2248 }
2249 }
2250
2251 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2252 for (i = 0; i < TX_PAGES; i++ ) {
2253 if (sc->tx_bd_chain[i] != NULL &&
2254 sc->tx_bd_chain_map[i] != NULL) {
2255 bus_dmamap_unload(sc->bnx_dmatag,
2256 sc->tx_bd_chain_map[i]);
2257 bus_dmamem_unmap(sc->bnx_dmatag,
2258 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2259 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2260 sc->tx_bd_chain_rseg[i]);
2261 bus_dmamap_destroy(sc->bnx_dmatag,
2262 sc->tx_bd_chain_map[i]);
2263 sc->tx_bd_chain[i] = NULL;
2264 sc->tx_bd_chain_map[i] = NULL;
2265 }
2266 }
2267
2268 /* Destroy the TX dmamaps. */
2269 /* This isn't necessary since we dont allocate them up front */
2270
2271 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2272 for (i = 0; i < RX_PAGES; i++ ) {
2273 if (sc->rx_bd_chain[i] != NULL &&
2274 sc->rx_bd_chain_map[i] != NULL) {
2275 bus_dmamap_unload(sc->bnx_dmatag,
2276 sc->rx_bd_chain_map[i]);
2277 bus_dmamem_unmap(sc->bnx_dmatag,
2278 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2279 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2280 sc->rx_bd_chain_rseg[i]);
2281
2282 bus_dmamap_destroy(sc->bnx_dmatag,
2283 sc->rx_bd_chain_map[i]);
2284 sc->rx_bd_chain[i] = NULL;
2285 sc->rx_bd_chain_map[i] = NULL;
2286 }
2287 }
2288
2289 /* Unload and destroy the RX mbuf maps. */
2290 for (i = 0; i < TOTAL_RX_BD; i++) {
2291 if (sc->rx_mbuf_map[i] != NULL) {
2292 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2293 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2294 }
2295 }
2296
2297 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2298 }
2299
2300 /****************************************************************************/
2301 /* Allocate any DMA memory needed by the driver. */
2302 /* */
2303 /* Allocates DMA memory needed for the various global structures needed by */
2304 /* hardware. */
2305 /* */
2306 /* Returns: */
2307 /* 0 for success, positive value for failure. */
2308 /****************************************************************************/
2309 int
2310 bnx_dma_alloc(struct bnx_softc *sc)
2311 {
2312 int i, rc = 0;
2313
2314 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2315
2316 /*
2317 * Allocate DMA memory for the status block, map the memory into DMA
2318 * space, and fetch the physical address of the block.
2319 */
2320 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2321 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2322 aprint_error_dev(sc->bnx_dev,
2323 "Could not create status block DMA map!\n");
2324 rc = ENOMEM;
2325 goto bnx_dma_alloc_exit;
2326 }
2327
2328 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2329 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2330 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2331 aprint_error_dev(sc->bnx_dev,
2332 "Could not allocate status block DMA memory!\n");
2333 rc = ENOMEM;
2334 goto bnx_dma_alloc_exit;
2335 }
2336
2337 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2338 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2339 aprint_error_dev(sc->bnx_dev,
2340 "Could not map status block DMA memory!\n");
2341 rc = ENOMEM;
2342 goto bnx_dma_alloc_exit;
2343 }
2344
2345 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2346 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2347 aprint_error_dev(sc->bnx_dev,
2348 "Could not load status block DMA memory!\n");
2349 rc = ENOMEM;
2350 goto bnx_dma_alloc_exit;
2351 }
2352
2353 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2354 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2355
2356 /* DRC - Fix for 64 bit addresses. */
2357 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2358 (uint32_t) sc->status_block_paddr);
2359
2360 /* BCM5709 uses host memory as cache for context memory. */
2361 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2362 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2363 if (sc->ctx_pages == 0)
2364 sc->ctx_pages = 1;
2365 if (sc->ctx_pages > 4) /* XXX */
2366 sc->ctx_pages = 4;
2367
2368 DBRUNIF((sc->ctx_pages > 512),
2369 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2370 __FILE__, __LINE__, sc->ctx_pages));
2371
2372
2373 for (i = 0; i < sc->ctx_pages; i++) {
2374 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2375 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2376 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2377 &sc->ctx_map[i]) != 0) {
2378 rc = ENOMEM;
2379 goto bnx_dma_alloc_exit;
2380 }
2381
2382 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2383 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2384 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2385 rc = ENOMEM;
2386 goto bnx_dma_alloc_exit;
2387 }
2388
2389 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2390 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2391 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2392 rc = ENOMEM;
2393 goto bnx_dma_alloc_exit;
2394 }
2395
2396 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2397 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2398 BUS_DMA_NOWAIT) != 0) {
2399 rc = ENOMEM;
2400 goto bnx_dma_alloc_exit;
2401 }
2402
2403 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2404 }
2405 }
2406
2407 /*
2408 * Allocate DMA memory for the statistics block, map the memory into
2409 * DMA space, and fetch the physical address of the block.
2410 */
2411 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2412 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2413 aprint_error_dev(sc->bnx_dev,
2414 "Could not create stats block DMA map!\n");
2415 rc = ENOMEM;
2416 goto bnx_dma_alloc_exit;
2417 }
2418
2419 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2420 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2421 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2422 aprint_error_dev(sc->bnx_dev,
2423 "Could not allocate stats block DMA memory!\n");
2424 rc = ENOMEM;
2425 goto bnx_dma_alloc_exit;
2426 }
2427
2428 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2429 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2430 aprint_error_dev(sc->bnx_dev,
2431 "Could not map stats block DMA memory!\n");
2432 rc = ENOMEM;
2433 goto bnx_dma_alloc_exit;
2434 }
2435
2436 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2437 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2438 aprint_error_dev(sc->bnx_dev,
2439 "Could not load status block DMA memory!\n");
2440 rc = ENOMEM;
2441 goto bnx_dma_alloc_exit;
2442 }
2443
2444 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2445 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2446
2447 /* DRC - Fix for 64 bit address. */
2448 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2449 (uint32_t) sc->stats_block_paddr);
2450
2451 /*
2452 * Allocate DMA memory for the TX buffer descriptor chain,
2453 * and fetch the physical address of the block.
2454 */
2455 for (i = 0; i < TX_PAGES; i++) {
2456 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2457 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2458 &sc->tx_bd_chain_map[i])) {
2459 aprint_error_dev(sc->bnx_dev,
2460 "Could not create Tx desc %d DMA map!\n", i);
2461 rc = ENOMEM;
2462 goto bnx_dma_alloc_exit;
2463 }
2464
2465 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2466 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2467 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2468 aprint_error_dev(sc->bnx_dev,
2469 "Could not allocate TX desc %d DMA memory!\n",
2470 i);
2471 rc = ENOMEM;
2472 goto bnx_dma_alloc_exit;
2473 }
2474
2475 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2476 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2477 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2478 aprint_error_dev(sc->bnx_dev,
2479 "Could not map TX desc %d DMA memory!\n", i);
2480 rc = ENOMEM;
2481 goto bnx_dma_alloc_exit;
2482 }
2483
2484 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2485 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2486 BUS_DMA_NOWAIT)) {
2487 aprint_error_dev(sc->bnx_dev,
2488 "Could not load TX desc %d DMA memory!\n", i);
2489 rc = ENOMEM;
2490 goto bnx_dma_alloc_exit;
2491 }
2492
2493 sc->tx_bd_chain_paddr[i] =
2494 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2495
2496 /* DRC - Fix for 64 bit systems. */
2497 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2498 i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2499 }
2500
2501 /*
2502 * Create lists to hold TX mbufs.
2503 */
2504 TAILQ_INIT(&sc->tx_free_pkts);
2505 TAILQ_INIT(&sc->tx_used_pkts);
2506 sc->tx_pkt_count = 0;
2507 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2508
2509 /*
2510 * Allocate DMA memory for the Rx buffer descriptor chain,
2511 * and fetch the physical address of the block.
2512 */
2513 for (i = 0; i < RX_PAGES; i++) {
2514 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2515 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2516 &sc->rx_bd_chain_map[i])) {
2517 aprint_error_dev(sc->bnx_dev,
2518 "Could not create Rx desc %d DMA map!\n", i);
2519 rc = ENOMEM;
2520 goto bnx_dma_alloc_exit;
2521 }
2522
2523 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2524 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2525 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2526 aprint_error_dev(sc->bnx_dev,
2527 "Could not allocate Rx desc %d DMA memory!\n", i);
2528 rc = ENOMEM;
2529 goto bnx_dma_alloc_exit;
2530 }
2531
2532 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2533 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2534 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2535 aprint_error_dev(sc->bnx_dev,
2536 "Could not map Rx desc %d DMA memory!\n", i);
2537 rc = ENOMEM;
2538 goto bnx_dma_alloc_exit;
2539 }
2540
2541 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2542 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2543 BUS_DMA_NOWAIT)) {
2544 aprint_error_dev(sc->bnx_dev,
2545 "Could not load Rx desc %d DMA memory!\n", i);
2546 rc = ENOMEM;
2547 goto bnx_dma_alloc_exit;
2548 }
2549
2550 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2551 sc->rx_bd_chain_paddr[i] =
2552 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2553
2554 /* DRC - Fix for 64 bit systems. */
2555 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2556 i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2557 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2558 0, BNX_RX_CHAIN_PAGE_SZ,
2559 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2560 }
2561
2562 /*
2563 * Create DMA maps for the Rx buffer mbufs.
2564 */
2565 for (i = 0; i < TOTAL_RX_BD; i++) {
2566 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2567 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2568 &sc->rx_mbuf_map[i])) {
2569 aprint_error_dev(sc->bnx_dev,
2570 "Could not create Rx mbuf %d DMA map!\n", i);
2571 rc = ENOMEM;
2572 goto bnx_dma_alloc_exit;
2573 }
2574 }
2575
2576 bnx_dma_alloc_exit:
2577 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2578
2579 return rc;
2580 }
2581
2582 /****************************************************************************/
2583 /* Release all resources used by the driver. */
2584 /* */
2585 /* Releases all resources acquired by the driver including interrupts, */
2586 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2587 /* */
2588 /* Returns: */
2589 /* Nothing. */
2590 /****************************************************************************/
2591 void
2592 bnx_release_resources(struct bnx_softc *sc)
2593 {
2594 struct pci_attach_args *pa = &(sc->bnx_pa);
2595
2596 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2597
2598 bnx_dma_free(sc);
2599
2600 if (sc->bnx_intrhand != NULL)
2601 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2602
2603 if (sc->bnx_size)
2604 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2605
2606 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2607 }
2608
2609 /****************************************************************************/
2610 /* Firmware synchronization. */
2611 /* */
2612 /* Before performing certain events such as a chip reset, synchronize with */
2613 /* the firmware first. */
2614 /* */
2615 /* Returns: */
2616 /* 0 for success, positive value for failure. */
2617 /****************************************************************************/
2618 int
2619 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2620 {
2621 int i, rc = 0;
2622 uint32_t val;
2623
2624 /* Don't waste any time if we've timed out before. */
2625 if (sc->bnx_fw_timed_out) {
2626 rc = EBUSY;
2627 goto bnx_fw_sync_exit;
2628 }
2629
2630 /* Increment the message sequence number. */
2631 sc->bnx_fw_wr_seq++;
2632 msg_data |= sc->bnx_fw_wr_seq;
2633
2634 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2635 msg_data);
2636
2637 /* Send the message to the bootcode driver mailbox. */
2638 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2639
2640 /* Wait for the bootcode to acknowledge the message. */
2641 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2642 /* Check for a response in the bootcode firmware mailbox. */
2643 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2644 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2645 break;
2646 DELAY(1000);
2647 }
2648
2649 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2650 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2651 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2652 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2653 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2654
2655 msg_data &= ~BNX_DRV_MSG_CODE;
2656 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2657
2658 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2659
2660 sc->bnx_fw_timed_out = 1;
2661 rc = EBUSY;
2662 }
2663
2664 bnx_fw_sync_exit:
2665 return rc;
2666 }
2667
2668 /****************************************************************************/
2669 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2670 /* */
2671 /* Returns: */
2672 /* Nothing. */
2673 /****************************************************************************/
2674 void
2675 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2676 uint32_t rv2p_code_len, uint32_t rv2p_proc)
2677 {
2678 int i;
2679 uint32_t val;
2680
2681 /* Set the page size used by RV2P. */
2682 if (rv2p_proc == RV2P_PROC2) {
2683 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2684 USABLE_RX_BD_PER_PAGE);
2685 }
2686
2687 for (i = 0; i < rv2p_code_len; i += 8) {
2688 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2689 rv2p_code++;
2690 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2691 rv2p_code++;
2692
2693 if (rv2p_proc == RV2P_PROC1) {
2694 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2695 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2696 } else {
2697 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2698 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2699 }
2700 }
2701
2702 /* Reset the processor, un-stall is done later. */
2703 if (rv2p_proc == RV2P_PROC1)
2704 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2705 else
2706 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2707 }
2708
2709 /****************************************************************************/
2710 /* Load RISC processor firmware. */
2711 /* */
2712 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2713 /* associated with a particular processor. */
2714 /* */
2715 /* Returns: */
2716 /* Nothing. */
2717 /****************************************************************************/
2718 void
2719 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2720 struct fw_info *fw)
2721 {
2722 uint32_t offset;
2723 uint32_t val;
2724
2725 /* Halt the CPU. */
2726 val = REG_RD_IND(sc, cpu_reg->mode);
2727 val |= cpu_reg->mode_value_halt;
2728 REG_WR_IND(sc, cpu_reg->mode, val);
2729 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2730
2731 /* Load the Text area. */
2732 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2733 if (fw->text) {
2734 int j;
2735
2736 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2737 REG_WR_IND(sc, offset, fw->text[j]);
2738 }
2739
2740 /* Load the Data area. */
2741 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2742 if (fw->data) {
2743 int j;
2744
2745 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2746 REG_WR_IND(sc, offset, fw->data[j]);
2747 }
2748
2749 /* Load the SBSS area. */
2750 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2751 if (fw->sbss) {
2752 int j;
2753
2754 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2755 REG_WR_IND(sc, offset, fw->sbss[j]);
2756 }
2757
2758 /* Load the BSS area. */
2759 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2760 if (fw->bss) {
2761 int j;
2762
2763 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2764 REG_WR_IND(sc, offset, fw->bss[j]);
2765 }
2766
2767 /* Load the Read-Only area. */
2768 offset = cpu_reg->spad_base +
2769 (fw->rodata_addr - cpu_reg->mips_view_base);
2770 if (fw->rodata) {
2771 int j;
2772
2773 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2774 REG_WR_IND(sc, offset, fw->rodata[j]);
2775 }
2776
2777 /* Clear the pre-fetch instruction. */
2778 REG_WR_IND(sc, cpu_reg->inst, 0);
2779 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2780
2781 /* Start the CPU. */
2782 val = REG_RD_IND(sc, cpu_reg->mode);
2783 val &= ~cpu_reg->mode_value_halt;
2784 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2785 REG_WR_IND(sc, cpu_reg->mode, val);
2786 }
2787
2788 /****************************************************************************/
2789 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2790 /* */
2791 /* Loads the firmware for each CPU and starts the CPU. */
2792 /* */
2793 /* Returns: */
2794 /* Nothing. */
2795 /****************************************************************************/
2796 void
2797 bnx_init_cpus(struct bnx_softc *sc)
2798 {
2799 struct cpu_reg cpu_reg;
2800 struct fw_info fw;
2801
2802 switch(BNX_CHIP_NUM(sc)) {
2803 case BNX_CHIP_NUM_5709:
2804 /* Initialize the RV2P processor. */
2805 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2806 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2807 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2808 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2809 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2810 } else {
2811 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2812 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2813 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2814 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2815 }
2816
2817 /* Initialize the RX Processor. */
2818 cpu_reg.mode = BNX_RXP_CPU_MODE;
2819 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2820 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2821 cpu_reg.state = BNX_RXP_CPU_STATE;
2822 cpu_reg.state_value_clear = 0xffffff;
2823 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2824 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2825 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2826 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2827 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2828 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2829 cpu_reg.mips_view_base = 0x8000000;
2830
2831 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2832 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2833 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2834 fw.start_addr = bnx_RXP_b09FwStartAddr;
2835
2836 fw.text_addr = bnx_RXP_b09FwTextAddr;
2837 fw.text_len = bnx_RXP_b09FwTextLen;
2838 fw.text_index = 0;
2839 fw.text = bnx_RXP_b09FwText;
2840
2841 fw.data_addr = bnx_RXP_b09FwDataAddr;
2842 fw.data_len = bnx_RXP_b09FwDataLen;
2843 fw.data_index = 0;
2844 fw.data = bnx_RXP_b09FwData;
2845
2846 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2847 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2848 fw.sbss_index = 0;
2849 fw.sbss = bnx_RXP_b09FwSbss;
2850
2851 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2852 fw.bss_len = bnx_RXP_b09FwBssLen;
2853 fw.bss_index = 0;
2854 fw.bss = bnx_RXP_b09FwBss;
2855
2856 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2857 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2858 fw.rodata_index = 0;
2859 fw.rodata = bnx_RXP_b09FwRodata;
2860
2861 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2862 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2863
2864 /* Initialize the TX Processor. */
2865 cpu_reg.mode = BNX_TXP_CPU_MODE;
2866 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2867 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2868 cpu_reg.state = BNX_TXP_CPU_STATE;
2869 cpu_reg.state_value_clear = 0xffffff;
2870 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2871 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2872 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2873 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2874 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2875 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2876 cpu_reg.mips_view_base = 0x8000000;
2877
2878 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2879 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2880 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2881 fw.start_addr = bnx_TXP_b09FwStartAddr;
2882
2883 fw.text_addr = bnx_TXP_b09FwTextAddr;
2884 fw.text_len = bnx_TXP_b09FwTextLen;
2885 fw.text_index = 0;
2886 fw.text = bnx_TXP_b09FwText;
2887
2888 fw.data_addr = bnx_TXP_b09FwDataAddr;
2889 fw.data_len = bnx_TXP_b09FwDataLen;
2890 fw.data_index = 0;
2891 fw.data = bnx_TXP_b09FwData;
2892
2893 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2894 fw.sbss_len = bnx_TXP_b09FwSbssLen;
2895 fw.sbss_index = 0;
2896 fw.sbss = bnx_TXP_b09FwSbss;
2897
2898 fw.bss_addr = bnx_TXP_b09FwBssAddr;
2899 fw.bss_len = bnx_TXP_b09FwBssLen;
2900 fw.bss_index = 0;
2901 fw.bss = bnx_TXP_b09FwBss;
2902
2903 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2904 fw.rodata_len = bnx_TXP_b09FwRodataLen;
2905 fw.rodata_index = 0;
2906 fw.rodata = bnx_TXP_b09FwRodata;
2907
2908 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2909 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2910
2911 /* Initialize the TX Patch-up Processor. */
2912 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2913 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2914 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2915 cpu_reg.state = BNX_TPAT_CPU_STATE;
2916 cpu_reg.state_value_clear = 0xffffff;
2917 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2918 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2919 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2920 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2921 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2922 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2923 cpu_reg.mips_view_base = 0x8000000;
2924
2925 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2926 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2927 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2928 fw.start_addr = bnx_TPAT_b09FwStartAddr;
2929
2930 fw.text_addr = bnx_TPAT_b09FwTextAddr;
2931 fw.text_len = bnx_TPAT_b09FwTextLen;
2932 fw.text_index = 0;
2933 fw.text = bnx_TPAT_b09FwText;
2934
2935 fw.data_addr = bnx_TPAT_b09FwDataAddr;
2936 fw.data_len = bnx_TPAT_b09FwDataLen;
2937 fw.data_index = 0;
2938 fw.data = bnx_TPAT_b09FwData;
2939
2940 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2941 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2942 fw.sbss_index = 0;
2943 fw.sbss = bnx_TPAT_b09FwSbss;
2944
2945 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2946 fw.bss_len = bnx_TPAT_b09FwBssLen;
2947 fw.bss_index = 0;
2948 fw.bss = bnx_TPAT_b09FwBss;
2949
2950 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2951 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2952 fw.rodata_index = 0;
2953 fw.rodata = bnx_TPAT_b09FwRodata;
2954
2955 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2956 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2957
2958 /* Initialize the Completion Processor. */
2959 cpu_reg.mode = BNX_COM_CPU_MODE;
2960 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2961 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2962 cpu_reg.state = BNX_COM_CPU_STATE;
2963 cpu_reg.state_value_clear = 0xffffff;
2964 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2965 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2966 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2967 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2968 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2969 cpu_reg.spad_base = BNX_COM_SCRATCH;
2970 cpu_reg.mips_view_base = 0x8000000;
2971
2972 fw.ver_major = bnx_COM_b09FwReleaseMajor;
2973 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2974 fw.ver_fix = bnx_COM_b09FwReleaseFix;
2975 fw.start_addr = bnx_COM_b09FwStartAddr;
2976
2977 fw.text_addr = bnx_COM_b09FwTextAddr;
2978 fw.text_len = bnx_COM_b09FwTextLen;
2979 fw.text_index = 0;
2980 fw.text = bnx_COM_b09FwText;
2981
2982 fw.data_addr = bnx_COM_b09FwDataAddr;
2983 fw.data_len = bnx_COM_b09FwDataLen;
2984 fw.data_index = 0;
2985 fw.data = bnx_COM_b09FwData;
2986
2987 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2988 fw.sbss_len = bnx_COM_b09FwSbssLen;
2989 fw.sbss_index = 0;
2990 fw.sbss = bnx_COM_b09FwSbss;
2991
2992 fw.bss_addr = bnx_COM_b09FwBssAddr;
2993 fw.bss_len = bnx_COM_b09FwBssLen;
2994 fw.bss_index = 0;
2995 fw.bss = bnx_COM_b09FwBss;
2996
2997 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
2998 fw.rodata_len = bnx_COM_b09FwRodataLen;
2999 fw.rodata_index = 0;
3000 fw.rodata = bnx_COM_b09FwRodata;
3001 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3002 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3003 break;
3004 default:
3005 /* Initialize the RV2P processor. */
3006 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3007 RV2P_PROC1);
3008 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3009 RV2P_PROC2);
3010
3011 /* Initialize the RX Processor. */
3012 cpu_reg.mode = BNX_RXP_CPU_MODE;
3013 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3014 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3015 cpu_reg.state = BNX_RXP_CPU_STATE;
3016 cpu_reg.state_value_clear = 0xffffff;
3017 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3018 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3019 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3020 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3021 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3022 cpu_reg.spad_base = BNX_RXP_SCRATCH;
3023 cpu_reg.mips_view_base = 0x8000000;
3024
3025 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3026 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3027 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3028 fw.start_addr = bnx_RXP_b06FwStartAddr;
3029
3030 fw.text_addr = bnx_RXP_b06FwTextAddr;
3031 fw.text_len = bnx_RXP_b06FwTextLen;
3032 fw.text_index = 0;
3033 fw.text = bnx_RXP_b06FwText;
3034
3035 fw.data_addr = bnx_RXP_b06FwDataAddr;
3036 fw.data_len = bnx_RXP_b06FwDataLen;
3037 fw.data_index = 0;
3038 fw.data = bnx_RXP_b06FwData;
3039
3040 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3041 fw.sbss_len = bnx_RXP_b06FwSbssLen;
3042 fw.sbss_index = 0;
3043 fw.sbss = bnx_RXP_b06FwSbss;
3044
3045 fw.bss_addr = bnx_RXP_b06FwBssAddr;
3046 fw.bss_len = bnx_RXP_b06FwBssLen;
3047 fw.bss_index = 0;
3048 fw.bss = bnx_RXP_b06FwBss;
3049
3050 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3051 fw.rodata_len = bnx_RXP_b06FwRodataLen;
3052 fw.rodata_index = 0;
3053 fw.rodata = bnx_RXP_b06FwRodata;
3054
3055 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3056 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3057
3058 /* Initialize the TX Processor. */
3059 cpu_reg.mode = BNX_TXP_CPU_MODE;
3060 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3061 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3062 cpu_reg.state = BNX_TXP_CPU_STATE;
3063 cpu_reg.state_value_clear = 0xffffff;
3064 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3065 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3066 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3067 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3068 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3069 cpu_reg.spad_base = BNX_TXP_SCRATCH;
3070 cpu_reg.mips_view_base = 0x8000000;
3071
3072 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3073 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3074 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3075 fw.start_addr = bnx_TXP_b06FwStartAddr;
3076
3077 fw.text_addr = bnx_TXP_b06FwTextAddr;
3078 fw.text_len = bnx_TXP_b06FwTextLen;
3079 fw.text_index = 0;
3080 fw.text = bnx_TXP_b06FwText;
3081
3082 fw.data_addr = bnx_TXP_b06FwDataAddr;
3083 fw.data_len = bnx_TXP_b06FwDataLen;
3084 fw.data_index = 0;
3085 fw.data = bnx_TXP_b06FwData;
3086
3087 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3088 fw.sbss_len = bnx_TXP_b06FwSbssLen;
3089 fw.sbss_index = 0;
3090 fw.sbss = bnx_TXP_b06FwSbss;
3091
3092 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3093 fw.bss_len = bnx_TXP_b06FwBssLen;
3094 fw.bss_index = 0;
3095 fw.bss = bnx_TXP_b06FwBss;
3096
3097 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3098 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3099 fw.rodata_index = 0;
3100 fw.rodata = bnx_TXP_b06FwRodata;
3101
3102 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3103 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3104
3105 /* Initialize the TX Patch-up Processor. */
3106 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3107 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3108 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3109 cpu_reg.state = BNX_TPAT_CPU_STATE;
3110 cpu_reg.state_value_clear = 0xffffff;
3111 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3112 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3113 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3114 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3115 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3116 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3117 cpu_reg.mips_view_base = 0x8000000;
3118
3119 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3120 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3121 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3122 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3123
3124 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3125 fw.text_len = bnx_TPAT_b06FwTextLen;
3126 fw.text_index = 0;
3127 fw.text = bnx_TPAT_b06FwText;
3128
3129 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3130 fw.data_len = bnx_TPAT_b06FwDataLen;
3131 fw.data_index = 0;
3132 fw.data = bnx_TPAT_b06FwData;
3133
3134 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3135 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3136 fw.sbss_index = 0;
3137 fw.sbss = bnx_TPAT_b06FwSbss;
3138
3139 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3140 fw.bss_len = bnx_TPAT_b06FwBssLen;
3141 fw.bss_index = 0;
3142 fw.bss = bnx_TPAT_b06FwBss;
3143
3144 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3145 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3146 fw.rodata_index = 0;
3147 fw.rodata = bnx_TPAT_b06FwRodata;
3148
3149 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3150 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3151
3152 /* Initialize the Completion Processor. */
3153 cpu_reg.mode = BNX_COM_CPU_MODE;
3154 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3155 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3156 cpu_reg.state = BNX_COM_CPU_STATE;
3157 cpu_reg.state_value_clear = 0xffffff;
3158 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3159 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3160 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3161 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3162 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3163 cpu_reg.spad_base = BNX_COM_SCRATCH;
3164 cpu_reg.mips_view_base = 0x8000000;
3165
3166 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3167 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3168 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3169 fw.start_addr = bnx_COM_b06FwStartAddr;
3170
3171 fw.text_addr = bnx_COM_b06FwTextAddr;
3172 fw.text_len = bnx_COM_b06FwTextLen;
3173 fw.text_index = 0;
3174 fw.text = bnx_COM_b06FwText;
3175
3176 fw.data_addr = bnx_COM_b06FwDataAddr;
3177 fw.data_len = bnx_COM_b06FwDataLen;
3178 fw.data_index = 0;
3179 fw.data = bnx_COM_b06FwData;
3180
3181 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3182 fw.sbss_len = bnx_COM_b06FwSbssLen;
3183 fw.sbss_index = 0;
3184 fw.sbss = bnx_COM_b06FwSbss;
3185
3186 fw.bss_addr = bnx_COM_b06FwBssAddr;
3187 fw.bss_len = bnx_COM_b06FwBssLen;
3188 fw.bss_index = 0;
3189 fw.bss = bnx_COM_b06FwBss;
3190
3191 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3192 fw.rodata_len = bnx_COM_b06FwRodataLen;
3193 fw.rodata_index = 0;
3194 fw.rodata = bnx_COM_b06FwRodata;
3195 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3196 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3197 break;
3198 }
3199 }
3200
3201 /****************************************************************************/
3202 /* Initialize context memory. */
3203 /* */
3204 /* Clears the memory associated with each Context ID (CID). */
3205 /* */
3206 /* Returns: */
3207 /* Nothing. */
3208 /****************************************************************************/
3209 void
3210 bnx_init_context(struct bnx_softc *sc)
3211 {
3212 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3213 /* DRC: Replace this constant value with a #define. */
3214 int i, retry_cnt = 10;
3215 uint32_t val;
3216
3217 /*
3218 * BCM5709 context memory may be cached
3219 * in host memory so prepare the host memory
3220 * for access.
3221 */
3222 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3223 | (1 << 12);
3224 val |= (BCM_PAGE_BITS - 8) << 16;
3225 REG_WR(sc, BNX_CTX_COMMAND, val);
3226
3227 /* Wait for mem init command to complete. */
3228 for (i = 0; i < retry_cnt; i++) {
3229 val = REG_RD(sc, BNX_CTX_COMMAND);
3230 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3231 break;
3232 DELAY(2);
3233 }
3234
3235 /* ToDo: Consider returning an error here. */
3236
3237 for (i = 0; i < sc->ctx_pages; i++) {
3238 int j;
3239
3240 /* Set the physaddr of the context memory cache. */
3241 val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3242 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3243 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3244 val = (uint32_t)
3245 ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3246 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3247 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3248 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3249
3250 /* Verify that the context memory write was successful. */
3251 for (j = 0; j < retry_cnt; j++) {
3252 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3253 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3254 break;
3255 DELAY(5);
3256 }
3257
3258 /* ToDo: Consider returning an error here. */
3259 }
3260 } else {
3261 uint32_t vcid_addr, offset;
3262
3263 /*
3264 * For the 5706/5708, context memory is local to the
3265 * controller, so initialize the controller context memory.
3266 */
3267
3268 vcid_addr = GET_CID_ADDR(96);
3269 while (vcid_addr) {
3270
3271 vcid_addr -= BNX_PHY_CTX_SIZE;
3272
3273 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3274 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3275
3276 for (offset = 0; offset < BNX_PHY_CTX_SIZE;
3277 offset += 4)
3278 CTX_WR(sc, 0x00, offset, 0);
3279
3280 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3281 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3282 }
3283 }
3284 }
3285
3286 /****************************************************************************/
3287 /* Fetch the permanent MAC address of the controller. */
3288 /* */
3289 /* Returns: */
3290 /* Nothing. */
3291 /****************************************************************************/
3292 void
3293 bnx_get_mac_addr(struct bnx_softc *sc)
3294 {
3295 uint32_t mac_lo = 0, mac_hi = 0;
3296
3297 /*
3298 * The NetXtreme II bootcode populates various NIC
3299 * power-on and runtime configuration items in a
3300 * shared memory area. The factory configured MAC
3301 * address is available from both NVRAM and the
3302 * shared memory area so we'll read the value from
3303 * shared memory for speed.
3304 */
3305
3306 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3307 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3308
3309 if ((mac_lo == 0) && (mac_hi == 0)) {
3310 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3311 __FILE__, __LINE__);
3312 } else {
3313 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3314 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3315 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3316 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3317 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3318 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3319 }
3320
3321 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3322 "%s\n", ether_sprintf(sc->eaddr));
3323 }
3324
3325 /****************************************************************************/
3326 /* Program the MAC address. */
3327 /* */
3328 /* Returns: */
3329 /* Nothing. */
3330 /****************************************************************************/
3331 void
3332 bnx_set_mac_addr(struct bnx_softc *sc)
3333 {
3334 uint32_t val;
3335 const uint8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3336
3337 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3338 "%s\n", ether_sprintf(sc->eaddr));
3339
3340 val = (mac_addr[0] << 8) | mac_addr[1];
3341
3342 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3343
3344 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3345 (mac_addr[4] << 8) | mac_addr[5];
3346
3347 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3348 }
3349
3350 /****************************************************************************/
3351 /* Stop the controller. */
3352 /* */
3353 /* Returns: */
3354 /* Nothing. */
3355 /****************************************************************************/
3356 void
3357 bnx_stop(struct ifnet *ifp, int disable)
3358 {
3359 struct bnx_softc *sc = ifp->if_softc;
3360
3361 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3362
3363 if (disable) {
3364 sc->bnx_detaching = 1;
3365 callout_halt(&sc->bnx_timeout, NULL);
3366 } else
3367 callout_stop(&sc->bnx_timeout);
3368
3369 mii_down(&sc->bnx_mii);
3370
3371 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3372
3373 /* Disable the transmit/receive blocks. */
3374 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3375 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3376 DELAY(20);
3377
3378 bnx_disable_intr(sc);
3379
3380 /* Tell firmware that the driver is going away. */
3381 if (disable)
3382 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3383 else
3384 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3385
3386 /* Free RX buffers. */
3387 bnx_free_rx_chain(sc);
3388
3389 /* Free TX buffers. */
3390 bnx_free_tx_chain(sc);
3391
3392 ifp->if_timer = 0;
3393
3394 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3395
3396 }
3397
3398 int
3399 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3400 {
3401 struct pci_attach_args *pa = &(sc->bnx_pa);
3402 uint32_t val;
3403 int i, rc = 0;
3404
3405 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3406
3407 /* Wait for pending PCI transactions to complete. */
3408 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3409 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3410 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3411 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3412 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3413 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3414 DELAY(5);
3415
3416 /* Disable DMA */
3417 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3418 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3419 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3420 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3421 }
3422
3423 /* Assume bootcode is running. */
3424 sc->bnx_fw_timed_out = 0;
3425
3426 /* Give the firmware a chance to prepare for the reset. */
3427 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3428 if (rc)
3429 goto bnx_reset_exit;
3430
3431 /* Set a firmware reminder that this is a soft reset. */
3432 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3433 BNX_DRV_RESET_SIGNATURE_MAGIC);
3434
3435 /* Dummy read to force the chip to complete all current transactions. */
3436 val = REG_RD(sc, BNX_MISC_ID);
3437
3438 /* Chip reset. */
3439 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3440 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3441 REG_RD(sc, BNX_MISC_COMMAND);
3442 DELAY(5);
3443
3444 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3445 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3446
3447 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3448 val);
3449 } else {
3450 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3451 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3452 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3453 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3454
3455 /* Allow up to 30us for reset to complete. */
3456 for (i = 0; i < 10; i++) {
3457 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3458 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3459 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3460 break;
3461 }
3462 DELAY(10);
3463 }
3464
3465 /* Check that reset completed successfully. */
3466 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3467 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3468 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3469 __FILE__, __LINE__);
3470 rc = EBUSY;
3471 goto bnx_reset_exit;
3472 }
3473 }
3474
3475 /* Make sure byte swapping is properly configured. */
3476 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3477 if (val != 0x01020304) {
3478 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3479 __FILE__, __LINE__);
3480 rc = ENODEV;
3481 goto bnx_reset_exit;
3482 }
3483
3484 /* Just completed a reset, assume that firmware is running again. */
3485 sc->bnx_fw_timed_out = 0;
3486
3487 /* Wait for the firmware to finish its initialization. */
3488 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3489 if (rc)
3490 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3491 "initialization!\n", __FILE__, __LINE__);
3492
3493 bnx_reset_exit:
3494 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3495
3496 return rc;
3497 }
3498
3499 int
3500 bnx_chipinit(struct bnx_softc *sc)
3501 {
3502 struct pci_attach_args *pa = &(sc->bnx_pa);
3503 uint32_t val;
3504 int rc = 0;
3505
3506 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3507
3508 /* Make sure the interrupt is not active. */
3509 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3510
3511 /* Initialize DMA byte/word swapping, configure the number of DMA */
3512 /* channels and PCI clock compensation delay. */
3513 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3514 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3515 #if BYTE_ORDER == BIG_ENDIAN
3516 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3517 #endif
3518 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3519 DMA_READ_CHANS << 12 |
3520 DMA_WRITE_CHANS << 16;
3521
3522 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3523
3524 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3525 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3526
3527 /*
3528 * This setting resolves a problem observed on certain Intel PCI
3529 * chipsets that cannot handle multiple outstanding DMA operations.
3530 * See errata E9_5706A1_65.
3531 */
3532 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3533 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3534 !(sc->bnx_flags & BNX_PCIX_FLAG))
3535 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3536
3537 REG_WR(sc, BNX_DMA_CONFIG, val);
3538
3539 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3540 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3541 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3542 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3543 val & ~0x20000);
3544 }
3545
3546 /* Enable the RX_V2P and Context state machines before access. */
3547 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3548 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3549 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3550 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3551
3552 /* Initialize context mapping and zero out the quick contexts. */
3553 bnx_init_context(sc);
3554
3555 /* Initialize the on-boards CPUs */
3556 bnx_init_cpus(sc);
3557
3558 /* Prepare NVRAM for access. */
3559 if (bnx_init_nvram(sc)) {
3560 rc = ENODEV;
3561 goto bnx_chipinit_exit;
3562 }
3563
3564 /* Set the kernel bypass block size */
3565 val = REG_RD(sc, BNX_MQ_CONFIG);
3566 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3567 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3568
3569 /* Enable bins used on the 5709. */
3570 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3571 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3572 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3573 val |= BNX_MQ_CONFIG_HALT_DIS;
3574 }
3575
3576 REG_WR(sc, BNX_MQ_CONFIG, val);
3577
3578 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3579 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3580 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3581
3582 val = (BCM_PAGE_BITS - 8) << 24;
3583 REG_WR(sc, BNX_RV2P_CONFIG, val);
3584
3585 /* Configure page size. */
3586 val = REG_RD(sc, BNX_TBDR_CONFIG);
3587 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3588 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3589 REG_WR(sc, BNX_TBDR_CONFIG, val);
3590
3591 #if 0
3592 /* Set the perfect match control register to default. */
3593 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3594 #endif
3595
3596 bnx_chipinit_exit:
3597 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3598
3599 return rc;
3600 }
3601
3602 /****************************************************************************/
3603 /* Initialize the controller in preparation to send/receive traffic. */
3604 /* */
3605 /* Returns: */
3606 /* 0 for success, positive value for failure. */
3607 /****************************************************************************/
3608 int
3609 bnx_blockinit(struct bnx_softc *sc)
3610 {
3611 uint32_t reg, val;
3612 int rc = 0;
3613
3614 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3615
3616 /* Load the hardware default MAC address. */
3617 bnx_set_mac_addr(sc);
3618
3619 /* Set the Ethernet backoff seed value */
3620 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3621 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3622 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3623
3624 sc->last_status_idx = 0;
3625 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3626
3627 /* Set up link change interrupt generation. */
3628 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3629 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3630
3631 /* Program the physical address of the status block. */
3632 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3633 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3634 (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3635
3636 /* Program the physical address of the statistics block. */
3637 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3638 (uint32_t)(sc->stats_block_paddr));
3639 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3640 (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3641
3642 /* Program various host coalescing parameters. */
3643 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3644 << 16) | sc->bnx_tx_quick_cons_trip);
3645 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3646 << 16) | sc->bnx_rx_quick_cons_trip);
3647 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3648 sc->bnx_comp_prod_trip);
3649 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3650 sc->bnx_tx_ticks);
3651 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3652 sc->bnx_rx_ticks);
3653 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3654 sc->bnx_com_ticks);
3655 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3656 sc->bnx_cmd_ticks);
3657 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3658 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3659 REG_WR(sc, BNX_HC_CONFIG,
3660 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3661 BNX_HC_CONFIG_COLLECT_STATS));
3662
3663 /* Clear the internal statistics counters. */
3664 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3665
3666 /* Verify that bootcode is running. */
3667 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3668
3669 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3670 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3671 __FILE__, __LINE__); reg = 0);
3672
3673 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3674 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3675 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3676 "Expected: 08%08X\n", __FILE__, __LINE__,
3677 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3678 BNX_DEV_INFO_SIGNATURE_MAGIC);
3679 rc = ENODEV;
3680 goto bnx_blockinit_exit;
3681 }
3682
3683 /* Check if any management firmware is running. */
3684 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3685 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3686 BNX_PORT_FEATURE_IMD_ENABLED)) {
3687 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3688 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3689 }
3690
3691 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3692 BNX_DEV_INFO_BC_REV);
3693
3694 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3695
3696 /* Enable DMA */
3697 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3698 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3699 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3700 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3701 }
3702
3703 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3704 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3705
3706 /* Enable link state change interrupt generation. */
3707 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3708 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3709 BNX_MISC_ENABLE_DEFAULT_XI);
3710 } else
3711 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3712
3713 /* Enable all remaining blocks in the MAC. */
3714 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3715 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3716 DELAY(20);
3717
3718 bnx_blockinit_exit:
3719 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3720
3721 return rc;
3722 }
3723
3724 static int
3725 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3726 uint16_t *chain_prod, uint32_t *prod_bseq)
3727 {
3728 bus_dmamap_t map;
3729 struct rx_bd *rxbd;
3730 uint32_t addr;
3731 int i;
3732 #ifdef BNX_DEBUG
3733 uint16_t debug_chain_prod = *chain_prod;
3734 #endif
3735 uint16_t first_chain_prod;
3736
3737 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3738
3739 /* Map the mbuf cluster into device memory. */
3740 map = sc->rx_mbuf_map[*chain_prod];
3741 first_chain_prod = *chain_prod;
3742 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3743 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3744 __FILE__, __LINE__);
3745
3746 m_freem(m_new);
3747
3748 DBRUNIF(1, sc->rx_mbuf_alloc--);
3749
3750 return ENOBUFS;
3751 }
3752 /* Make sure there is room in the receive chain. */
3753 if (map->dm_nsegs > sc->free_rx_bd) {
3754 bus_dmamap_unload(sc->bnx_dmatag, map);
3755 m_freem(m_new);
3756 return EFBIG;
3757 }
3758 #ifdef BNX_DEBUG
3759 /* Track the distribution of buffer segments. */
3760 sc->rx_mbuf_segs[map->dm_nsegs]++;
3761 #endif
3762
3763 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3764 BUS_DMASYNC_PREREAD);
3765
3766 /* Update some debug statistics counters */
3767 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3768 sc->rx_low_watermark = sc->free_rx_bd);
3769 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3770
3771 /*
3772 * Setup the rx_bd for the first segment
3773 */
3774 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3775
3776 addr = (uint32_t)map->dm_segs[0].ds_addr;
3777 rxbd->rx_bd_haddr_lo = addr;
3778 addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3779 rxbd->rx_bd_haddr_hi = addr;
3780 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3781 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3782 *prod_bseq += map->dm_segs[0].ds_len;
3783 bus_dmamap_sync(sc->bnx_dmatag,
3784 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3785 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3786 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3787
3788 for (i = 1; i < map->dm_nsegs; i++) {
3789 *prod = NEXT_RX_BD(*prod);
3790 *chain_prod = RX_CHAIN_IDX(*prod);
3791
3792 rxbd =
3793 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3794
3795 addr = (uint32_t)map->dm_segs[i].ds_addr;
3796 rxbd->rx_bd_haddr_lo = addr;
3797 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3798 rxbd->rx_bd_haddr_hi = addr;
3799 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3800 rxbd->rx_bd_flags = 0;
3801 *prod_bseq += map->dm_segs[i].ds_len;
3802 bus_dmamap_sync(sc->bnx_dmatag,
3803 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3804 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3805 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3806 }
3807
3808 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3809 bus_dmamap_sync(sc->bnx_dmatag,
3810 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3811 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3812 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3813
3814 /*
3815 * Save the mbuf, adjust the map pointer (swap map for first and
3816 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3817 * and update our counter.
3818 */
3819 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3820 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3821 sc->rx_mbuf_map[*chain_prod] = map;
3822 sc->free_rx_bd -= map->dm_nsegs;
3823
3824 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3825 map->dm_nsegs));
3826 *prod = NEXT_RX_BD(*prod);
3827 *chain_prod = RX_CHAIN_IDX(*prod);
3828
3829 return 0;
3830 }
3831
3832 /****************************************************************************/
3833 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3834 /* */
3835 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3836 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3837 /* necessary. */
3838 /* */
3839 /* Returns: */
3840 /* 0 for success, positive value for failure. */
3841 /****************************************************************************/
3842 int
3843 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3844 uint16_t *chain_prod, uint32_t *prod_bseq)
3845 {
3846 struct mbuf *m_new = NULL;
3847 int rc = 0;
3848 uint16_t min_free_bd;
3849
3850 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3851 __func__);
3852
3853 /* Make sure the inputs are valid. */
3854 DBRUNIF((*chain_prod > MAX_RX_BD),
3855 aprint_error_dev(sc->bnx_dev,
3856 "RX producer out of range: 0x%04X > 0x%04X\n",
3857 *chain_prod, (uint16_t)MAX_RX_BD));
3858
3859 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3860 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3861 *prod_bseq);
3862
3863 /* try to get in as many mbufs as possible */
3864 if (sc->mbuf_alloc_size == MCLBYTES)
3865 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3866 else
3867 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3868 while (sc->free_rx_bd >= min_free_bd) {
3869 /* Simulate an mbuf allocation failure. */
3870 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3871 aprint_error_dev(sc->bnx_dev,
3872 "Simulating mbuf allocation failure.\n");
3873 sc->mbuf_sim_alloc_failed++;
3874 rc = ENOBUFS;
3875 goto bnx_get_buf_exit);
3876
3877 /* This is a new mbuf allocation. */
3878 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3879 if (m_new == NULL) {
3880 DBPRINT(sc, BNX_WARN,
3881 "%s(%d): RX mbuf header allocation failed!\n",
3882 __FILE__, __LINE__);
3883
3884 sc->mbuf_alloc_failed++;
3885
3886 rc = ENOBUFS;
3887 goto bnx_get_buf_exit;
3888 }
3889
3890 DBRUNIF(1, sc->rx_mbuf_alloc++);
3891
3892 /* Simulate an mbuf cluster allocation failure. */
3893 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3894 m_freem(m_new);
3895 sc->rx_mbuf_alloc--;
3896 sc->mbuf_alloc_failed++;
3897 sc->mbuf_sim_alloc_failed++;
3898 rc = ENOBUFS;
3899 goto bnx_get_buf_exit);
3900
3901 if (sc->mbuf_alloc_size == MCLBYTES)
3902 MCLGET(m_new, M_DONTWAIT);
3903 else
3904 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3905 M_DONTWAIT);
3906 if (!(m_new->m_flags & M_EXT)) {
3907 DBPRINT(sc, BNX_WARN,
3908 "%s(%d): RX mbuf chain allocation failed!\n",
3909 __FILE__, __LINE__);
3910
3911 m_freem(m_new);
3912
3913 DBRUNIF(1, sc->rx_mbuf_alloc--);
3914 sc->mbuf_alloc_failed++;
3915
3916 rc = ENOBUFS;
3917 goto bnx_get_buf_exit;
3918 }
3919
3920 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3921 if (rc != 0)
3922 goto bnx_get_buf_exit;
3923 }
3924
3925 bnx_get_buf_exit:
3926 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3927 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3928 *chain_prod, *prod_bseq);
3929
3930 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3931 __func__);
3932
3933 return rc;
3934 }
3935
3936 void
3937 bnx_alloc_pkts(struct work * unused, void * arg)
3938 {
3939 struct bnx_softc *sc = arg;
3940 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3941 struct bnx_pkt *pkt;
3942 int i, s;
3943
3944 for (i = 0; i < 4; i++) { /* magic! */
3945 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
3946 if (pkt == NULL)
3947 break;
3948
3949 if (bus_dmamap_create(sc->bnx_dmatag,
3950 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3951 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
3952 &pkt->pkt_dmamap) != 0)
3953 goto put;
3954
3955 if (!ISSET(ifp->if_flags, IFF_UP))
3956 goto stopping;
3957
3958 mutex_enter(&sc->tx_pkt_mtx);
3959 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3960 sc->tx_pkt_count++;
3961 mutex_exit(&sc->tx_pkt_mtx);
3962 }
3963
3964 mutex_enter(&sc->tx_pkt_mtx);
3965 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
3966 mutex_exit(&sc->tx_pkt_mtx);
3967
3968 /* fire-up TX now that allocations have been done */
3969 s = splnet();
3970 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3971 bnx_start(ifp);
3972 splx(s);
3973
3974 return;
3975
3976 stopping:
3977 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3978 put:
3979 pool_put(bnx_tx_pool, pkt);
3980 return;
3981 }
3982
3983 /****************************************************************************/
3984 /* Initialize the TX context memory. */
3985 /* */
3986 /* Returns: */
3987 /* Nothing */
3988 /****************************************************************************/
3989 void
3990 bnx_init_tx_context(struct bnx_softc *sc)
3991 {
3992 uint32_t val;
3993
3994 /* Initialize the context ID for an L2 TX chain. */
3995 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3996 /* Set the CID type to support an L2 connection. */
3997 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
3998 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
3999 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4000 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4001
4002 /* Point the hardware to the first page in the chain. */
4003 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4004 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4005 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4006 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4007 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4008 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4009 } else {
4010 /* Set the CID type to support an L2 connection. */
4011 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4012 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4013 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4014 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4015
4016 /* Point the hardware to the first page in the chain. */
4017 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4018 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4019 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4020 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4021 }
4022 }
4023
4024
4025 /****************************************************************************/
4026 /* Allocate memory and initialize the TX data structures. */
4027 /* */
4028 /* Returns: */
4029 /* 0 for success, positive value for failure. */
4030 /****************************************************************************/
4031 int
4032 bnx_init_tx_chain(struct bnx_softc *sc)
4033 {
4034 struct tx_bd *txbd;
4035 uint32_t addr;
4036 int i, rc = 0;
4037
4038 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4039
4040 /* Force an allocation of some dmamaps for tx up front */
4041 bnx_alloc_pkts(NULL, sc);
4042
4043 /* Set the initial TX producer/consumer indices. */
4044 sc->tx_prod = 0;
4045 sc->tx_cons = 0;
4046 sc->tx_prod_bseq = 0;
4047 sc->used_tx_bd = 0;
4048 sc->max_tx_bd = USABLE_TX_BD;
4049 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4050 DBRUNIF(1, sc->tx_full_count = 0);
4051
4052 /*
4053 * The NetXtreme II supports a linked-list structure called
4054 * a Buffer Descriptor Chain (or BD chain). A BD chain
4055 * consists of a series of 1 or more chain pages, each of which
4056 * consists of a fixed number of BD entries.
4057 * The last BD entry on each page is a pointer to the next page
4058 * in the chain, and the last pointer in the BD chain
4059 * points back to the beginning of the chain.
4060 */
4061
4062 /* Set the TX next pointer chain entries. */
4063 for (i = 0; i < TX_PAGES; i++) {
4064 int j;
4065
4066 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4067
4068 /* Check if we've reached the last page. */
4069 if (i == (TX_PAGES - 1))
4070 j = 0;
4071 else
4072 j = i + 1;
4073
4074 addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4075 txbd->tx_bd_haddr_lo = addr;
4076 addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4077 txbd->tx_bd_haddr_hi = addr;
4078 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4079 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4080 }
4081
4082 /*
4083 * Initialize the context ID for an L2 TX chain.
4084 */
4085 bnx_init_tx_context(sc);
4086
4087 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4088
4089 return rc;
4090 }
4091
4092 /****************************************************************************/
4093 /* Free memory and clear the TX data structures. */
4094 /* */
4095 /* Returns: */
4096 /* Nothing. */
4097 /****************************************************************************/
4098 void
4099 bnx_free_tx_chain(struct bnx_softc *sc)
4100 {
4101 struct bnx_pkt *pkt;
4102 int i;
4103
4104 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4105
4106 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4107 mutex_enter(&sc->tx_pkt_mtx);
4108 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4109 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4110 mutex_exit(&sc->tx_pkt_mtx);
4111
4112 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4113 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4114 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4115
4116 m_freem(pkt->pkt_mbuf);
4117 DBRUNIF(1, sc->tx_mbuf_alloc--);
4118
4119 mutex_enter(&sc->tx_pkt_mtx);
4120 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4121 }
4122
4123 /* Destroy all the dmamaps we allocated for TX */
4124 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4125 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4126 sc->tx_pkt_count--;
4127 mutex_exit(&sc->tx_pkt_mtx);
4128
4129 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4130 pool_put(bnx_tx_pool, pkt);
4131
4132 mutex_enter(&sc->tx_pkt_mtx);
4133 }
4134 mutex_exit(&sc->tx_pkt_mtx);
4135
4136
4137
4138 /* Clear each TX chain page. */
4139 for (i = 0; i < TX_PAGES; i++) {
4140 memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4141 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4142 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4143 }
4144
4145 sc->used_tx_bd = 0;
4146
4147 /* Check if we lost any mbufs in the process. */
4148 DBRUNIF((sc->tx_mbuf_alloc),
4149 aprint_error_dev(sc->bnx_dev,
4150 "Memory leak! Lost %d mbufs from tx chain!\n",
4151 sc->tx_mbuf_alloc));
4152
4153 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4154 }
4155
4156 /****************************************************************************/
4157 /* Initialize the RX context memory. */
4158 /* */
4159 /* Returns: */
4160 /* Nothing */
4161 /****************************************************************************/
4162 void
4163 bnx_init_rx_context(struct bnx_softc *sc)
4164 {
4165 uint32_t val;
4166
4167 /* Initialize the context ID for an L2 RX chain. */
4168 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4169 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4170
4171 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4172 uint32_t lo_water, hi_water;
4173
4174 lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4175 hi_water = USABLE_RX_BD / 4;
4176
4177 lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4178 hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4179
4180 if (hi_water > 0xf)
4181 hi_water = 0xf;
4182 else if (hi_water == 0)
4183 lo_water = 0;
4184 val |= lo_water |
4185 (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4186 }
4187
4188 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4189
4190 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4191 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4192 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4193 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4194 }
4195
4196 /* Point the hardware to the first page in the chain. */
4197 val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4198 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4199 val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4200 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4201 }
4202
4203 /****************************************************************************/
4204 /* Allocate memory and initialize the RX data structures. */
4205 /* */
4206 /* Returns: */
4207 /* 0 for success, positive value for failure. */
4208 /****************************************************************************/
4209 int
4210 bnx_init_rx_chain(struct bnx_softc *sc)
4211 {
4212 struct rx_bd *rxbd;
4213 int i, rc = 0;
4214 uint16_t prod, chain_prod;
4215 uint32_t prod_bseq, addr;
4216
4217 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4218
4219 /* Initialize the RX producer and consumer indices. */
4220 sc->rx_prod = 0;
4221 sc->rx_cons = 0;
4222 sc->rx_prod_bseq = 0;
4223 sc->free_rx_bd = USABLE_RX_BD;
4224 sc->max_rx_bd = USABLE_RX_BD;
4225 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4226 DBRUNIF(1, sc->rx_empty_count = 0);
4227
4228 /* Initialize the RX next pointer chain entries. */
4229 for (i = 0; i < RX_PAGES; i++) {
4230 int j;
4231
4232 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4233
4234 /* Check if we've reached the last page. */
4235 if (i == (RX_PAGES - 1))
4236 j = 0;
4237 else
4238 j = i + 1;
4239
4240 /* Setup the chain page pointers. */
4241 addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4242 rxbd->rx_bd_haddr_hi = addr;
4243 addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4244 rxbd->rx_bd_haddr_lo = addr;
4245 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4246 0, BNX_RX_CHAIN_PAGE_SZ,
4247 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4248 }
4249
4250 /* Allocate mbuf clusters for the rx_bd chain. */
4251 prod = prod_bseq = 0;
4252 chain_prod = RX_CHAIN_IDX(prod);
4253 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4254 BNX_PRINTF(sc,
4255 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4256 }
4257
4258 /* Save the RX chain producer index. */
4259 sc->rx_prod = prod;
4260 sc->rx_prod_bseq = prod_bseq;
4261
4262 for (i = 0; i < RX_PAGES; i++)
4263 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4264 sc->rx_bd_chain_map[i]->dm_mapsize,
4265 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4266
4267 /* Tell the chip about the waiting rx_bd's. */
4268 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4269 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4270
4271 bnx_init_rx_context(sc);
4272
4273 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4274
4275 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4276
4277 return rc;
4278 }
4279
4280 /****************************************************************************/
4281 /* Free memory and clear the RX data structures. */
4282 /* */
4283 /* Returns: */
4284 /* Nothing. */
4285 /****************************************************************************/
4286 void
4287 bnx_free_rx_chain(struct bnx_softc *sc)
4288 {
4289 int i;
4290
4291 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4292
4293 /* Free any mbufs still in the RX mbuf chain. */
4294 for (i = 0; i < TOTAL_RX_BD; i++) {
4295 if (sc->rx_mbuf_ptr[i] != NULL) {
4296 if (sc->rx_mbuf_map[i] != NULL) {
4297 bus_dmamap_sync(sc->bnx_dmatag,
4298 sc->rx_mbuf_map[i], 0,
4299 sc->rx_mbuf_map[i]->dm_mapsize,
4300 BUS_DMASYNC_POSTREAD);
4301 bus_dmamap_unload(sc->bnx_dmatag,
4302 sc->rx_mbuf_map[i]);
4303 }
4304 m_freem(sc->rx_mbuf_ptr[i]);
4305 sc->rx_mbuf_ptr[i] = NULL;
4306 DBRUNIF(1, sc->rx_mbuf_alloc--);
4307 }
4308 }
4309
4310 /* Clear each RX chain page. */
4311 for (i = 0; i < RX_PAGES; i++)
4312 memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4313
4314 sc->free_rx_bd = sc->max_rx_bd;
4315
4316 /* Check if we lost any mbufs in the process. */
4317 DBRUNIF((sc->rx_mbuf_alloc),
4318 aprint_error_dev(sc->bnx_dev,
4319 "Memory leak! Lost %d mbufs from rx chain!\n",
4320 sc->rx_mbuf_alloc));
4321
4322 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4323 }
4324
4325 /****************************************************************************/
4326 /* Handles PHY generated interrupt events. */
4327 /* */
4328 /* Returns: */
4329 /* Nothing. */
4330 /****************************************************************************/
4331 void
4332 bnx_phy_intr(struct bnx_softc *sc)
4333 {
4334 uint32_t new_link_state, old_link_state;
4335
4336 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4337 BUS_DMASYNC_POSTREAD);
4338 new_link_state = sc->status_block->status_attn_bits &
4339 STATUS_ATTN_BITS_LINK_STATE;
4340 old_link_state = sc->status_block->status_attn_bits_ack &
4341 STATUS_ATTN_BITS_LINK_STATE;
4342
4343 /* Handle any changes if the link state has changed. */
4344 if (new_link_state != old_link_state) {
4345 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4346
4347 callout_stop(&sc->bnx_timeout);
4348 bnx_tick(sc);
4349
4350 /* Update the status_attn_bits_ack field in the status block. */
4351 if (new_link_state) {
4352 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4353 STATUS_ATTN_BITS_LINK_STATE);
4354 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4355 } else {
4356 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4357 STATUS_ATTN_BITS_LINK_STATE);
4358 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4359 }
4360 }
4361
4362 /* Acknowledge the link change interrupt. */
4363 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4364 }
4365
4366 /****************************************************************************/
4367 /* Handles received frame interrupt events. */
4368 /* */
4369 /* Returns: */
4370 /* Nothing. */
4371 /****************************************************************************/
4372 void
4373 bnx_rx_intr(struct bnx_softc *sc)
4374 {
4375 struct status_block *sblk = sc->status_block;
4376 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4377 uint16_t hw_cons, sw_cons, sw_chain_cons;
4378 uint16_t sw_prod, sw_chain_prod;
4379 uint32_t sw_prod_bseq;
4380 struct l2_fhdr *l2fhdr;
4381 int i;
4382
4383 DBRUNIF(1, sc->rx_interrupts++);
4384 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4385 BUS_DMASYNC_POSTREAD);
4386
4387 /* Prepare the RX chain pages to be accessed by the host CPU. */
4388 for (i = 0; i < RX_PAGES; i++)
4389 bus_dmamap_sync(sc->bnx_dmatag,
4390 sc->rx_bd_chain_map[i], 0,
4391 sc->rx_bd_chain_map[i]->dm_mapsize,
4392 BUS_DMASYNC_POSTWRITE);
4393
4394 /* Get the hardware's view of the RX consumer index. */
4395 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4396 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4397 hw_cons++;
4398
4399 /* Get working copies of the driver's view of the RX indices. */
4400 sw_cons = sc->rx_cons;
4401 sw_prod = sc->rx_prod;
4402 sw_prod_bseq = sc->rx_prod_bseq;
4403
4404 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4405 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4406 __func__, sw_prod, sw_cons, sw_prod_bseq);
4407
4408 /* Prevent speculative reads from getting ahead of the status block. */
4409 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4410 BUS_SPACE_BARRIER_READ);
4411
4412 /* Update some debug statistics counters */
4413 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4414 sc->rx_low_watermark = sc->free_rx_bd);
4415 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4416
4417 /*
4418 * Scan through the receive chain as long
4419 * as there is work to do.
4420 */
4421 while (sw_cons != hw_cons) {
4422 struct mbuf *m;
4423 struct rx_bd *rxbd __diagused;
4424 unsigned int len;
4425 uint32_t status;
4426
4427 /* Convert the producer/consumer indices to an actual
4428 * rx_bd index.
4429 */
4430 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4431 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4432
4433 /* Get the used rx_bd. */
4434 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4435 sc->free_rx_bd++;
4436
4437 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4438 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4439
4440 /* The mbuf is stored with the last rx_bd entry of a packet. */
4441 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4442 #ifdef DIAGNOSTIC
4443 /* Validate that this is the last rx_bd. */
4444 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4445 printf("%s: Unexpected mbuf found in "
4446 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4447 sw_chain_cons);
4448 }
4449 #endif
4450
4451 /* DRC - ToDo: If the received packet is small, say
4452 * less than 128 bytes, allocate a new mbuf
4453 * here, copy the data to that mbuf, and
4454 * recycle the mapped jumbo frame.
4455 */
4456
4457 /* Unmap the mbuf from DMA space. */
4458 #ifdef DIAGNOSTIC
4459 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4460 printf("invalid map sw_cons 0x%x "
4461 "sw_prod 0x%x "
4462 "sw_chain_cons 0x%x "
4463 "sw_chain_prod 0x%x "
4464 "hw_cons 0x%x "
4465 "TOTAL_RX_BD_PER_PAGE 0x%x "
4466 "TOTAL_RX_BD 0x%x\n",
4467 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4468 hw_cons,
4469 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4470 }
4471 #endif
4472 bus_dmamap_sync(sc->bnx_dmatag,
4473 sc->rx_mbuf_map[sw_chain_cons], 0,
4474 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4475 BUS_DMASYNC_POSTREAD);
4476 bus_dmamap_unload(sc->bnx_dmatag,
4477 sc->rx_mbuf_map[sw_chain_cons]);
4478
4479 /* Remove the mbuf from the driver's chain. */
4480 m = sc->rx_mbuf_ptr[sw_chain_cons];
4481 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4482
4483 /*
4484 * Frames received on the NetXteme II are prepended
4485 * with the l2_fhdr structure which provides status
4486 * information about the received frame (including
4487 * VLAN tags and checksum info) and are also
4488 * automatically adjusted to align the IP header
4489 * (i.e. two null bytes are inserted before the
4490 * Ethernet header).
4491 */
4492 l2fhdr = mtod(m, struct l2_fhdr *);
4493
4494 len = l2fhdr->l2_fhdr_pkt_len;
4495 status = l2fhdr->l2_fhdr_status;
4496
4497 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4498 aprint_error("Simulating l2_fhdr status error.\n");
4499 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4500
4501 /* Watch for unusual sized frames. */
4502 DBRUNIF(((len < BNX_MIN_MTU) ||
4503 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4504 aprint_error_dev(sc->bnx_dev,
4505 "Unusual frame size found. "
4506 "Min(%d), Actual(%d), Max(%d)\n",
4507 (int)BNX_MIN_MTU, len,
4508 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4509
4510 bnx_dump_mbuf(sc, m);
4511 bnx_breakpoint(sc));
4512
4513 len -= ETHER_CRC_LEN;
4514
4515 /* Check the received frame for errors. */
4516 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4517 L2_FHDR_ERRORS_PHY_DECODE |
4518 L2_FHDR_ERRORS_ALIGNMENT |
4519 L2_FHDR_ERRORS_TOO_SHORT |
4520 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4521 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4522 len >
4523 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4524 ifp->if_ierrors++;
4525 DBRUNIF(1, sc->l2fhdr_status_errors++);
4526
4527 /* Reuse the mbuf for a new frame. */
4528 if (bnx_add_buf(sc, m, &sw_prod,
4529 &sw_chain_prod, &sw_prod_bseq)) {
4530 DBRUNIF(1, bnx_breakpoint(sc));
4531 panic("%s: Can't reuse RX mbuf!\n",
4532 device_xname(sc->bnx_dev));
4533 }
4534 continue;
4535 }
4536
4537 /*
4538 * Get a new mbuf for the rx_bd. If no new
4539 * mbufs are available then reuse the current mbuf,
4540 * log an ierror on the interface, and generate
4541 * an error in the system log.
4542 */
4543 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4544 &sw_prod_bseq)) {
4545 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4546 "Failed to allocate "
4547 "new mbuf, incoming frame dropped!\n"));
4548
4549 ifp->if_ierrors++;
4550
4551 /* Try and reuse the exisitng mbuf. */
4552 if (bnx_add_buf(sc, m, &sw_prod,
4553 &sw_chain_prod, &sw_prod_bseq)) {
4554 DBRUNIF(1, bnx_breakpoint(sc));
4555 panic("%s: Double mbuf allocation "
4556 "failure!",
4557 device_xname(sc->bnx_dev));
4558 }
4559 continue;
4560 }
4561
4562 /* Skip over the l2_fhdr when passing the data up
4563 * the stack.
4564 */
4565 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4566
4567 /* Adjust the pckt length to match the received data. */
4568 m->m_pkthdr.len = m->m_len = len;
4569
4570 /* Send the packet to the appropriate interface. */
4571 m_set_rcvif(m, ifp);
4572
4573 DBRUN(BNX_VERBOSE_RECV,
4574 struct ether_header *eh;
4575 eh = mtod(m, struct ether_header *);
4576 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4577 __func__, ether_sprintf(eh->ether_dhost),
4578 ether_sprintf(eh->ether_shost),
4579 htons(eh->ether_type)));
4580
4581 /* Validate the checksum. */
4582
4583 /* Check for an IP datagram. */
4584 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4585 /* Check if the IP checksum is valid. */
4586 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
4587 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4588 #ifdef BNX_DEBUG
4589 else
4590 DBPRINT(sc, BNX_WARN_SEND,
4591 "%s(): Invalid IP checksum "
4592 "= 0x%04X!\n",
4593 __func__,
4594 l2fhdr->l2_fhdr_ip_xsum
4595 );
4596 #endif
4597 }
4598
4599 /* Check for a valid TCP/UDP frame. */
4600 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4601 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4602 /* Check for a good TCP/UDP checksum. */
4603 if ((status &
4604 (L2_FHDR_ERRORS_TCP_XSUM |
4605 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4606 m->m_pkthdr.csum_flags |=
4607 M_CSUM_TCPv4 |
4608 M_CSUM_UDPv4;
4609 } else {
4610 DBPRINT(sc, BNX_WARN_SEND,
4611 "%s(): Invalid TCP/UDP "
4612 "checksum = 0x%04X!\n",
4613 __func__,
4614 l2fhdr->l2_fhdr_tcp_udp_xsum);
4615 }
4616 }
4617
4618 /*
4619 * If we received a packet with a vlan tag,
4620 * attach that information to the packet.
4621 */
4622 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4623 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4624 vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
4625 }
4626
4627 /* Pass the mbuf off to the upper layers. */
4628
4629 DBPRINT(sc, BNX_VERBOSE_RECV,
4630 "%s(): Passing received frame up.\n", __func__);
4631 if_percpuq_enqueue(ifp->if_percpuq, m);
4632 DBRUNIF(1, sc->rx_mbuf_alloc--);
4633
4634 }
4635
4636 sw_cons = NEXT_RX_BD(sw_cons);
4637
4638 /* Refresh hw_cons to see if there's new work */
4639 if (sw_cons == hw_cons) {
4640 hw_cons = sc->hw_rx_cons =
4641 sblk->status_rx_quick_consumer_index0;
4642 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4643 USABLE_RX_BD_PER_PAGE)
4644 hw_cons++;
4645 }
4646
4647 /* Prevent speculative reads from getting ahead of
4648 * the status block.
4649 */
4650 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4651 BUS_SPACE_BARRIER_READ);
4652 }
4653
4654 for (i = 0; i < RX_PAGES; i++)
4655 bus_dmamap_sync(sc->bnx_dmatag,
4656 sc->rx_bd_chain_map[i], 0,
4657 sc->rx_bd_chain_map[i]->dm_mapsize,
4658 BUS_DMASYNC_PREWRITE);
4659
4660 sc->rx_cons = sw_cons;
4661 sc->rx_prod = sw_prod;
4662 sc->rx_prod_bseq = sw_prod_bseq;
4663
4664 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4665 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4666
4667 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4668 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4669 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4670 }
4671
4672 /****************************************************************************/
4673 /* Handles transmit completion interrupt events. */
4674 /* */
4675 /* Returns: */
4676 /* Nothing. */
4677 /****************************************************************************/
4678 void
4679 bnx_tx_intr(struct bnx_softc *sc)
4680 {
4681 struct status_block *sblk = sc->status_block;
4682 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4683 struct bnx_pkt *pkt;
4684 bus_dmamap_t map;
4685 uint16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4686
4687 DBRUNIF(1, sc->tx_interrupts++);
4688 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4689 BUS_DMASYNC_POSTREAD);
4690
4691 /* Get the hardware's view of the TX consumer index. */
4692 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4693
4694 /* Skip to the next entry if this is a chain page pointer. */
4695 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4696 hw_tx_cons++;
4697
4698 sw_tx_cons = sc->tx_cons;
4699
4700 /* Prevent speculative reads from getting ahead of the status block. */
4701 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4702 BUS_SPACE_BARRIER_READ);
4703
4704 /* Cycle through any completed TX chain page entries. */
4705 while (sw_tx_cons != hw_tx_cons) {
4706 #ifdef BNX_DEBUG
4707 struct tx_bd *txbd = NULL;
4708 #endif
4709 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4710
4711 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4712 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4713 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4714
4715 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4716 aprint_error_dev(sc->bnx_dev,
4717 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4718 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4719
4720 DBRUNIF(1, txbd = &sc->tx_bd_chain
4721 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4722
4723 DBRUNIF((txbd == NULL),
4724 aprint_error_dev(sc->bnx_dev,
4725 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4726 bnx_breakpoint(sc));
4727
4728 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4729 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4730
4731
4732 mutex_enter(&sc->tx_pkt_mtx);
4733 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4734 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4735 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4736 mutex_exit(&sc->tx_pkt_mtx);
4737 /*
4738 * Free the associated mbuf. Remember
4739 * that only the last tx_bd of a packet
4740 * has an mbuf pointer and DMA map.
4741 */
4742 map = pkt->pkt_dmamap;
4743 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4744 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4745 bus_dmamap_unload(sc->bnx_dmatag, map);
4746
4747 m_freem(pkt->pkt_mbuf);
4748 DBRUNIF(1, sc->tx_mbuf_alloc--);
4749
4750 ifp->if_opackets++;
4751
4752 mutex_enter(&sc->tx_pkt_mtx);
4753 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4754 }
4755 mutex_exit(&sc->tx_pkt_mtx);
4756
4757 sc->used_tx_bd--;
4758 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4759 __FILE__, __LINE__, sc->used_tx_bd);
4760
4761 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4762
4763 /* Refresh hw_cons to see if there's new work. */
4764 hw_tx_cons = sc->hw_tx_cons =
4765 sblk->status_tx_quick_consumer_index0;
4766 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4767 USABLE_TX_BD_PER_PAGE)
4768 hw_tx_cons++;
4769
4770 /* Prevent speculative reads from getting ahead of
4771 * the status block.
4772 */
4773 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4774 BUS_SPACE_BARRIER_READ);
4775 }
4776
4777 /* Clear the TX timeout timer. */
4778 ifp->if_timer = 0;
4779
4780 /* Clear the tx hardware queue full flag. */
4781 if (sc->used_tx_bd < sc->max_tx_bd) {
4782 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4783 aprint_debug_dev(sc->bnx_dev,
4784 "Open TX chain! %d/%d (used/total)\n",
4785 sc->used_tx_bd, sc->max_tx_bd));
4786 ifp->if_flags &= ~IFF_OACTIVE;
4787 }
4788
4789 sc->tx_cons = sw_tx_cons;
4790 }
4791
4792 /****************************************************************************/
4793 /* Disables interrupt generation. */
4794 /* */
4795 /* Returns: */
4796 /* Nothing. */
4797 /****************************************************************************/
4798 void
4799 bnx_disable_intr(struct bnx_softc *sc)
4800 {
4801 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4802 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4803 }
4804
4805 /****************************************************************************/
4806 /* Enables interrupt generation. */
4807 /* */
4808 /* Returns: */
4809 /* Nothing. */
4810 /****************************************************************************/
4811 void
4812 bnx_enable_intr(struct bnx_softc *sc)
4813 {
4814 uint32_t val;
4815
4816 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4817 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4818
4819 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4820 sc->last_status_idx);
4821
4822 val = REG_RD(sc, BNX_HC_COMMAND);
4823 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4824 }
4825
4826 /****************************************************************************/
4827 /* Handles controller initialization. */
4828 /* */
4829 /****************************************************************************/
4830 int
4831 bnx_init(struct ifnet *ifp)
4832 {
4833 struct bnx_softc *sc = ifp->if_softc;
4834 uint32_t ether_mtu;
4835 int s, error = 0;
4836
4837 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4838
4839 s = splnet();
4840
4841 bnx_stop(ifp, 0);
4842
4843 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4844 aprint_error_dev(sc->bnx_dev,
4845 "Controller reset failed!\n");
4846 goto bnx_init_exit;
4847 }
4848
4849 if ((error = bnx_chipinit(sc)) != 0) {
4850 aprint_error_dev(sc->bnx_dev,
4851 "Controller initialization failed!\n");
4852 goto bnx_init_exit;
4853 }
4854
4855 if ((error = bnx_blockinit(sc)) != 0) {
4856 aprint_error_dev(sc->bnx_dev,
4857 "Block initialization failed!\n");
4858 goto bnx_init_exit;
4859 }
4860
4861 /* Calculate and program the Ethernet MRU size. */
4862 if (ifp->if_mtu <= ETHERMTU) {
4863 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4864 sc->mbuf_alloc_size = MCLBYTES;
4865 } else {
4866 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4867 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4868 }
4869
4870
4871 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
4872
4873 /*
4874 * Program the MRU and enable Jumbo frame
4875 * support.
4876 */
4877 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4878 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4879
4880 /* Calculate the RX Ethernet frame size for rx_bd's. */
4881 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4882
4883 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4884 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4885 sc->mbuf_alloc_size, sc->max_frame_size);
4886
4887 /* Program appropriate promiscuous/multicast filtering. */
4888 bnx_iff(sc);
4889
4890 /* Init RX buffer descriptor chain. */
4891 bnx_init_rx_chain(sc);
4892
4893 /* Init TX buffer descriptor chain. */
4894 bnx_init_tx_chain(sc);
4895
4896 /* Enable host interrupts. */
4897 bnx_enable_intr(sc);
4898
4899 if ((error = ether_mediachange(ifp)) != 0)
4900 goto bnx_init_exit;
4901
4902 SET(ifp->if_flags, IFF_RUNNING);
4903 CLR(ifp->if_flags, IFF_OACTIVE);
4904
4905 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4906
4907 bnx_init_exit:
4908 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4909
4910 splx(s);
4911
4912 return error;
4913 }
4914
4915 /****************************************************************************/
4916 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4917 /* memory visible to the controller. */
4918 /* */
4919 /* Returns: */
4920 /* 0 for success, positive value for failure. */
4921 /****************************************************************************/
4922 int
4923 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4924 {
4925 struct bnx_pkt *pkt;
4926 bus_dmamap_t map;
4927 struct tx_bd *txbd = NULL;
4928 uint16_t vlan_tag = 0, flags = 0;
4929 uint16_t chain_prod, prod;
4930 #ifdef BNX_DEBUG
4931 uint16_t debug_prod;
4932 #endif
4933 uint32_t addr, prod_bseq;
4934 int i, error;
4935 static struct work bnx_wk; /* Dummy work. Statically allocated. */
4936
4937 mutex_enter(&sc->tx_pkt_mtx);
4938 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4939 if (pkt == NULL) {
4940 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4941 mutex_exit(&sc->tx_pkt_mtx);
4942 return ENETDOWN;
4943 }
4944
4945 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
4946 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
4947 workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
4948 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4949 }
4950
4951 mutex_exit(&sc->tx_pkt_mtx);
4952 return ENOMEM;
4953 }
4954 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4955 mutex_exit(&sc->tx_pkt_mtx);
4956
4957 /* Transfer any checksum offload flags to the bd. */
4958 if (m->m_pkthdr.csum_flags) {
4959 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4960 flags |= TX_BD_FLAGS_IP_CKSUM;
4961 if (m->m_pkthdr.csum_flags &
4962 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4963 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4964 }
4965
4966 /* Transfer any VLAN tags to the bd. */
4967 if (vlan_has_tag(m)) {
4968 flags |= TX_BD_FLAGS_VLAN_TAG;
4969 vlan_tag = vlan_get_tag(m);
4970 }
4971
4972 /* Map the mbuf into DMAable memory. */
4973 prod = sc->tx_prod;
4974 chain_prod = TX_CHAIN_IDX(prod);
4975 map = pkt->pkt_dmamap;
4976
4977 /* Map the mbuf into our DMA address space. */
4978 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4979 if (error != 0) {
4980 aprint_error_dev(sc->bnx_dev,
4981 "Error mapping mbuf into TX chain!\n");
4982 sc->tx_dma_map_failures++;
4983 goto maperr;
4984 }
4985 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4986 BUS_DMASYNC_PREWRITE);
4987 /* Make sure there's room in the chain */
4988 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
4989 goto nospace;
4990
4991 /* prod points to an empty tx_bd at this point. */
4992 prod_bseq = sc->tx_prod_bseq;
4993 #ifdef BNX_DEBUG
4994 debug_prod = chain_prod;
4995 #endif
4996 DBPRINT(sc, BNX_INFO_SEND,
4997 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
4998 "prod_bseq = 0x%08X\n",
4999 __func__, prod, chain_prod, prod_bseq);
5000
5001 /*
5002 * Cycle through each mbuf segment that makes up
5003 * the outgoing frame, gathering the mapping info
5004 * for that segment and creating a tx_bd for the
5005 * mbuf.
5006 */
5007 for (i = 0; i < map->dm_nsegs ; i++) {
5008 chain_prod = TX_CHAIN_IDX(prod);
5009 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5010
5011 addr = (uint32_t)map->dm_segs[i].ds_addr;
5012 txbd->tx_bd_haddr_lo = addr;
5013 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5014 txbd->tx_bd_haddr_hi = addr;
5015 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5016 txbd->tx_bd_vlan_tag = vlan_tag;
5017 txbd->tx_bd_flags = flags;
5018 prod_bseq += map->dm_segs[i].ds_len;
5019 if (i == 0)
5020 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5021 prod = NEXT_TX_BD(prod);
5022 }
5023 /* Set the END flag on the last TX buffer descriptor. */
5024 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5025
5026 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5027
5028 DBPRINT(sc, BNX_INFO_SEND,
5029 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
5030 "prod_bseq = 0x%08X\n",
5031 __func__, prod, chain_prod, prod_bseq);
5032
5033 pkt->pkt_mbuf = m;
5034 pkt->pkt_end_desc = chain_prod;
5035
5036 mutex_enter(&sc->tx_pkt_mtx);
5037 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5038 mutex_exit(&sc->tx_pkt_mtx);
5039
5040 sc->used_tx_bd += map->dm_nsegs;
5041 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5042 __FILE__, __LINE__, sc->used_tx_bd);
5043
5044 /* Update some debug statistics counters */
5045 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5046 sc->tx_hi_watermark = sc->used_tx_bd);
5047 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5048 DBRUNIF(1, sc->tx_mbuf_alloc++);
5049
5050 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5051 map->dm_nsegs));
5052
5053 /* prod points to the next free tx_bd at this point. */
5054 sc->tx_prod = prod;
5055 sc->tx_prod_bseq = prod_bseq;
5056
5057 return 0;
5058
5059
5060 nospace:
5061 bus_dmamap_unload(sc->bnx_dmatag, map);
5062 maperr:
5063 mutex_enter(&sc->tx_pkt_mtx);
5064 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5065 mutex_exit(&sc->tx_pkt_mtx);
5066
5067 return ENOMEM;
5068 }
5069
5070 /****************************************************************************/
5071 /* Main transmit routine. */
5072 /* */
5073 /* Returns: */
5074 /* Nothing. */
5075 /****************************************************************************/
5076 void
5077 bnx_start(struct ifnet *ifp)
5078 {
5079 struct bnx_softc *sc = ifp->if_softc;
5080 struct mbuf *m_head = NULL;
5081 int count = 0;
5082 #ifdef BNX_DEBUG
5083 uint16_t tx_chain_prod;
5084 #endif
5085
5086 /* If there's no link or the transmit queue is empty then just exit. */
5087 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
5088 DBPRINT(sc, BNX_INFO_SEND,
5089 "%s(): output active or device not running.\n", __func__);
5090 goto bnx_start_exit;
5091 }
5092
5093 /* prod points to the next free tx_bd. */
5094 #ifdef BNX_DEBUG
5095 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5096 #endif
5097
5098 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5099 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5100 "used_tx %d max_tx %d\n",
5101 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5102 sc->used_tx_bd, sc->max_tx_bd);
5103
5104 /*
5105 * Keep adding entries while there is space in the ring.
5106 */
5107 while (sc->used_tx_bd < sc->max_tx_bd) {
5108 /* Check for any frames to send. */
5109 IFQ_POLL(&ifp->if_snd, m_head);
5110 if (m_head == NULL)
5111 break;
5112
5113 /*
5114 * Pack the data into the transmit ring. If we
5115 * don't have room, set the OACTIVE flag to wait
5116 * for the NIC to drain the chain.
5117 */
5118 if (bnx_tx_encap(sc, m_head)) {
5119 ifp->if_flags |= IFF_OACTIVE;
5120 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5121 "business! Total tx_bd used = %d\n",
5122 sc->used_tx_bd);
5123 break;
5124 }
5125
5126 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5127 count++;
5128
5129 /* Send a copy of the frame to any BPF listeners. */
5130 bpf_mtap(ifp, m_head, BPF_D_OUT);
5131 }
5132
5133 if (count == 0) {
5134 /* no packets were dequeued */
5135 DBPRINT(sc, BNX_VERBOSE_SEND,
5136 "%s(): No packets were dequeued\n", __func__);
5137 goto bnx_start_exit;
5138 }
5139
5140 /* Update the driver's counters. */
5141 #ifdef BNX_DEBUG
5142 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5143 #endif
5144
5145 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
5146 "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
5147 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
5148
5149 /* Start the transmit. */
5150 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5151 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5152
5153 /* Set the tx timeout. */
5154 ifp->if_timer = BNX_TX_TIMEOUT;
5155
5156 bnx_start_exit:
5157 return;
5158 }
5159
5160 /****************************************************************************/
5161 /* Handles any IOCTL calls from the operating system. */
5162 /* */
5163 /* Returns: */
5164 /* 0 for success, positive value for failure. */
5165 /****************************************************************************/
5166 int
5167 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5168 {
5169 struct bnx_softc *sc = ifp->if_softc;
5170 struct ifreq *ifr = (struct ifreq *) data;
5171 struct mii_data *mii = &sc->bnx_mii;
5172 int s, error = 0;
5173
5174 s = splnet();
5175
5176 switch (command) {
5177 case SIOCSIFFLAGS:
5178 if ((error = ifioctl_common(ifp, command, data)) != 0)
5179 break;
5180 /* XXX set an ifflags callback and let ether_ioctl
5181 * handle all of this.
5182 */
5183 if (ISSET(ifp->if_flags, IFF_UP)) {
5184 if (ifp->if_flags & IFF_RUNNING)
5185 error = ENETRESET;
5186 else
5187 bnx_init(ifp);
5188 } else if (ifp->if_flags & IFF_RUNNING)
5189 bnx_stop(ifp, 1);
5190 break;
5191
5192 case SIOCSIFMEDIA:
5193 case SIOCGIFMEDIA:
5194 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5195 sc->bnx_phy_flags);
5196
5197 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5198 break;
5199
5200 default:
5201 error = ether_ioctl(ifp, command, data);
5202 }
5203
5204 if (error == ENETRESET) {
5205 if (ifp->if_flags & IFF_RUNNING)
5206 bnx_iff(sc);
5207 error = 0;
5208 }
5209
5210 splx(s);
5211 return error;
5212 }
5213
5214 /****************************************************************************/
5215 /* Transmit timeout handler. */
5216 /* */
5217 /* Returns: */
5218 /* Nothing. */
5219 /****************************************************************************/
5220 void
5221 bnx_watchdog(struct ifnet *ifp)
5222 {
5223 struct bnx_softc *sc = ifp->if_softc;
5224
5225 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5226 bnx_dump_status_block(sc));
5227 /*
5228 * If we are in this routine because of pause frames, then
5229 * don't reset the hardware.
5230 */
5231 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5232 return;
5233
5234 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5235
5236 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5237
5238 bnx_init(ifp);
5239
5240 ifp->if_oerrors++;
5241 }
5242
5243 /*
5244 * Interrupt handler.
5245 */
5246 /****************************************************************************/
5247 /* Main interrupt entry point. Verifies that the controller generated the */
5248 /* interrupt and then calls a separate routine for handle the various */
5249 /* interrupt causes (PHY, TX, RX). */
5250 /* */
5251 /* Returns: */
5252 /* 0 for success, positive value for failure. */
5253 /****************************************************************************/
5254 int
5255 bnx_intr(void *xsc)
5256 {
5257 struct bnx_softc *sc;
5258 struct ifnet *ifp;
5259 uint32_t status_attn_bits;
5260 const struct status_block *sblk;
5261
5262 sc = xsc;
5263
5264 ifp = &sc->bnx_ec.ec_if;
5265
5266 if (!device_is_active(sc->bnx_dev) ||
5267 (ifp->if_flags & IFF_RUNNING) == 0)
5268 return 0;
5269
5270 DBRUNIF(1, sc->interrupts_generated++);
5271
5272 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5273 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5274
5275 /*
5276 * If the hardware status block index
5277 * matches the last value read by the
5278 * driver and we haven't asserted our
5279 * interrupt then there's nothing to do.
5280 */
5281 if ((sc->status_block->status_idx == sc->last_status_idx) &&
5282 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5283 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5284 return 0;
5285
5286 /* Ack the interrupt and stop others from occurring. */
5287 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5288 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5289 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5290
5291 /* Keep processing data as long as there is work to do. */
5292 for (;;) {
5293 sblk = sc->status_block;
5294 status_attn_bits = sblk->status_attn_bits;
5295
5296 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5297 aprint_debug("Simulating unexpected status attention bit set.");
5298 status_attn_bits = status_attn_bits |
5299 STATUS_ATTN_BITS_PARITY_ERROR);
5300
5301 /* Was it a link change interrupt? */
5302 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5303 (sblk->status_attn_bits_ack &
5304 STATUS_ATTN_BITS_LINK_STATE))
5305 bnx_phy_intr(sc);
5306
5307 /* If any other attention is asserted then the chip is toast. */
5308 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5309 (sblk->status_attn_bits_ack &
5310 ~STATUS_ATTN_BITS_LINK_STATE))) {
5311 DBRUN(1, sc->unexpected_attentions++);
5312
5313 BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
5314 sblk->status_attn_bits);
5315
5316 DBRUN(BNX_FATAL,
5317 if (bnx_debug_unexpected_attention == 0)
5318 bnx_breakpoint(sc));
5319
5320 bnx_init(ifp);
5321 return 1;
5322 }
5323
5324 /* Check for any completed RX frames. */
5325 if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
5326 bnx_rx_intr(sc);
5327
5328 /* Check for any completed TX frames. */
5329 if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
5330 bnx_tx_intr(sc);
5331
5332 /*
5333 * Save the status block index value for use during the
5334 * next interrupt.
5335 */
5336 sc->last_status_idx = sblk->status_idx;
5337
5338 /* Prevent speculative reads from getting ahead of the
5339 * status block.
5340 */
5341 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5342 BUS_SPACE_BARRIER_READ);
5343
5344 /* If there's no work left then exit the isr. */
5345 if ((sblk->status_rx_quick_consumer_index0 ==
5346 sc->hw_rx_cons) &&
5347 (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
5348 break;
5349 }
5350
5351 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5352 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5353
5354 /* Re-enable interrupts. */
5355 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5356 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5357 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5358 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5359 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5360
5361 /* Handle any frames that arrived while handling the interrupt. */
5362 if_schedule_deferred_start(ifp);
5363
5364 return 1;
5365 }
5366
5367 /****************************************************************************/
5368 /* Programs the various packet receive modes (broadcast and multicast). */
5369 /* */
5370 /* Returns: */
5371 /* Nothing. */
5372 /****************************************************************************/
5373 void
5374 bnx_iff(struct bnx_softc *sc)
5375 {
5376 struct ethercom *ec = &sc->bnx_ec;
5377 struct ifnet *ifp = &ec->ec_if;
5378 struct ether_multi *enm;
5379 struct ether_multistep step;
5380 uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5381 uint32_t rx_mode, sort_mode;
5382 int h, i;
5383
5384 /* Initialize receive mode default settings. */
5385 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5386 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5387 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5388 ifp->if_flags &= ~IFF_ALLMULTI;
5389
5390 /*
5391 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5392 * be enbled.
5393 */
5394 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5395 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5396
5397 /*
5398 * Check for promiscuous, all multicast, or selected
5399 * multicast address filtering.
5400 */
5401 if (ifp->if_flags & IFF_PROMISC) {
5402 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5403
5404 ifp->if_flags |= IFF_ALLMULTI;
5405 /* Enable promiscuous mode. */
5406 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5407 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5408 } else if (ifp->if_flags & IFF_ALLMULTI) {
5409 allmulti:
5410 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5411
5412 ifp->if_flags |= IFF_ALLMULTI;
5413 /* Enable all multicast addresses. */
5414 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5415 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5416 0xffffffff);
5417 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5418 } else {
5419 /* Accept one or more multicast(s). */
5420 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5421
5422 ETHER_FIRST_MULTI(step, ec, enm);
5423 while (enm != NULL) {
5424 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5425 ETHER_ADDR_LEN)) {
5426 goto allmulti;
5427 }
5428 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5429 0xFF;
5430 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5431 ETHER_NEXT_MULTI(step, enm);
5432 }
5433
5434 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5435 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5436 hashes[i]);
5437
5438 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5439 }
5440
5441 /* Only make changes if the recive mode has actually changed. */
5442 if (rx_mode != sc->rx_mode) {
5443 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5444 rx_mode);
5445
5446 sc->rx_mode = rx_mode;
5447 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5448 }
5449
5450 /* Disable and clear the exisitng sort before enabling a new sort. */
5451 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5452 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5453 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5454 }
5455
5456 /****************************************************************************/
5457 /* Called periodically to updates statistics from the controllers */
5458 /* statistics block. */
5459 /* */
5460 /* Returns: */
5461 /* Nothing. */
5462 /****************************************************************************/
5463 void
5464 bnx_stats_update(struct bnx_softc *sc)
5465 {
5466 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5467 struct statistics_block *stats;
5468
5469 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5470 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5471 BUS_DMASYNC_POSTREAD);
5472
5473 stats = (struct statistics_block *)sc->stats_block;
5474
5475 /*
5476 * Update the interface statistics from the
5477 * hardware statistics.
5478 */
5479 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5480
5481 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5482 (u_long)stats->stat_EtherStatsOverrsizePkts +
5483 (u_long)stats->stat_IfInMBUFDiscards +
5484 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5485 (u_long)stats->stat_Dot3StatsFCSErrors;
5486
5487 ifp->if_oerrors = (u_long)
5488 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5489 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5490 (u_long)stats->stat_Dot3StatsLateCollisions;
5491
5492 /*
5493 * Certain controllers don't report
5494 * carrier sense errors correctly.
5495 * See errata E11_5708CA0_1165.
5496 */
5497 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5498 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5499 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5500
5501 /*
5502 * Update the sysctl statistics from the
5503 * hardware statistics.
5504 */
5505 sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5506 (uint64_t) stats->stat_IfHCInOctets_lo;
5507
5508 sc->stat_IfHCInBadOctets =
5509 ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5510 (uint64_t) stats->stat_IfHCInBadOctets_lo;
5511
5512 sc->stat_IfHCOutOctets =
5513 ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5514 (uint64_t) stats->stat_IfHCOutOctets_lo;
5515
5516 sc->stat_IfHCOutBadOctets =
5517 ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5518 (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5519
5520 sc->stat_IfHCInUcastPkts =
5521 ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5522 (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5523
5524 sc->stat_IfHCInMulticastPkts =
5525 ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5526 (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5527
5528 sc->stat_IfHCInBroadcastPkts =
5529 ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5530 (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5531
5532 sc->stat_IfHCOutUcastPkts =
5533 ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5534 (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5535
5536 sc->stat_IfHCOutMulticastPkts =
5537 ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5538 (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5539
5540 sc->stat_IfHCOutBroadcastPkts =
5541 ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5542 (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5543
5544 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5545 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5546
5547 sc->stat_Dot3StatsCarrierSenseErrors =
5548 stats->stat_Dot3StatsCarrierSenseErrors;
5549
5550 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5551
5552 sc->stat_Dot3StatsAlignmentErrors =
5553 stats->stat_Dot3StatsAlignmentErrors;
5554
5555 sc->stat_Dot3StatsSingleCollisionFrames =
5556 stats->stat_Dot3StatsSingleCollisionFrames;
5557
5558 sc->stat_Dot3StatsMultipleCollisionFrames =
5559 stats->stat_Dot3StatsMultipleCollisionFrames;
5560
5561 sc->stat_Dot3StatsDeferredTransmissions =
5562 stats->stat_Dot3StatsDeferredTransmissions;
5563
5564 sc->stat_Dot3StatsExcessiveCollisions =
5565 stats->stat_Dot3StatsExcessiveCollisions;
5566
5567 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5568
5569 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5570
5571 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5572
5573 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5574
5575 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5576
5577 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5578
5579 sc->stat_EtherStatsPktsRx64Octets =
5580 stats->stat_EtherStatsPktsRx64Octets;
5581
5582 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5583 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5584
5585 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5586 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5587
5588 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5589 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5590
5591 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5592 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5593
5594 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5595 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5596
5597 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5598 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5599
5600 sc->stat_EtherStatsPktsTx64Octets =
5601 stats->stat_EtherStatsPktsTx64Octets;
5602
5603 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5604 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5605
5606 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5607 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5608
5609 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5610 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5611
5612 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5613 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5614
5615 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5616 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5617
5618 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5619 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5620
5621 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5622
5623 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5624
5625 sc->stat_OutXonSent = stats->stat_OutXonSent;
5626
5627 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5628
5629 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5630
5631 sc->stat_MacControlFramesReceived =
5632 stats->stat_MacControlFramesReceived;
5633
5634 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5635
5636 sc->stat_IfInFramesL2FilterDiscards =
5637 stats->stat_IfInFramesL2FilterDiscards;
5638
5639 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5640
5641 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5642
5643 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5644
5645 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5646
5647 sc->stat_CatchupInRuleCheckerDiscards =
5648 stats->stat_CatchupInRuleCheckerDiscards;
5649
5650 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5651
5652 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5653
5654 sc->stat_CatchupInRuleCheckerP4Hit =
5655 stats->stat_CatchupInRuleCheckerP4Hit;
5656
5657 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5658 }
5659
5660 void
5661 bnx_tick(void *xsc)
5662 {
5663 struct bnx_softc *sc = xsc;
5664 struct mii_data *mii;
5665 uint32_t msg;
5666 uint16_t prod, chain_prod;
5667 uint32_t prod_bseq;
5668 int s = splnet();
5669
5670 /* Tell the firmware that the driver is still running. */
5671 #ifdef BNX_DEBUG
5672 msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5673 #else
5674 msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5675 #endif
5676 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5677
5678 /* Update the statistics from the hardware statistics block. */
5679 bnx_stats_update(sc);
5680
5681 mii = &sc->bnx_mii;
5682 mii_tick(mii);
5683
5684 /* try to get more RX buffers, just in case */
5685 prod = sc->rx_prod;
5686 prod_bseq = sc->rx_prod_bseq;
5687 chain_prod = RX_CHAIN_IDX(prod);
5688 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5689 sc->rx_prod = prod;
5690 sc->rx_prod_bseq = prod_bseq;
5691
5692 /* Schedule the next tick. */
5693 if (!sc->bnx_detaching)
5694 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5695
5696 splx(s);
5697 return;
5698 }
5699
5700 /****************************************************************************/
5701 /* BNX Debug Routines */
5702 /****************************************************************************/
5703 #ifdef BNX_DEBUG
5704
5705 /****************************************************************************/
5706 /* Prints out information about an mbuf. */
5707 /* */
5708 /* Returns: */
5709 /* Nothing. */
5710 /****************************************************************************/
5711 void
5712 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5713 {
5714 struct mbuf *mp = m;
5715
5716 if (m == NULL) {
5717 /* Index out of range. */
5718 aprint_error("mbuf ptr is null!\n");
5719 return;
5720 }
5721
5722 while (mp) {
5723 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5724 mp, mp->m_len);
5725
5726 if (mp->m_flags & M_EXT)
5727 aprint_debug("M_EXT ");
5728 if (mp->m_flags & M_PKTHDR)
5729 aprint_debug("M_PKTHDR ");
5730 aprint_debug("\n");
5731
5732 if (mp->m_flags & M_EXT)
5733 aprint_debug("- m_ext: vaddr = %p, "
5734 "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
5735
5736 mp = mp->m_next;
5737 }
5738 }
5739
5740 /****************************************************************************/
5741 /* Prints out the mbufs in the TX mbuf chain. */
5742 /* */
5743 /* Returns: */
5744 /* Nothing. */
5745 /****************************************************************************/
5746 void
5747 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5748 {
5749 #if 0
5750 struct mbuf *m;
5751 int i;
5752
5753 aprint_debug_dev(sc->bnx_dev,
5754 "----------------------------"
5755 " tx mbuf data "
5756 "----------------------------\n");
5757
5758 for (i = 0; i < count; i++) {
5759 m = sc->tx_mbuf_ptr[chain_prod];
5760 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5761 bnx_dump_mbuf(sc, m);
5762 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5763 }
5764
5765 aprint_debug_dev(sc->bnx_dev,
5766 "--------------------------------------------"
5767 "----------------------------\n");
5768 #endif
5769 }
5770
5771 /*
5772 * This routine prints the RX mbuf chain.
5773 */
5774 void
5775 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5776 {
5777 struct mbuf *m;
5778 int i;
5779
5780 aprint_debug_dev(sc->bnx_dev,
5781 "----------------------------"
5782 " rx mbuf data "
5783 "----------------------------\n");
5784
5785 for (i = 0; i < count; i++) {
5786 m = sc->rx_mbuf_ptr[chain_prod];
5787 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5788 bnx_dump_mbuf(sc, m);
5789 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5790 }
5791
5792
5793 aprint_debug_dev(sc->bnx_dev,
5794 "--------------------------------------------"
5795 "----------------------------\n");
5796 }
5797
5798 void
5799 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5800 {
5801 if (idx > MAX_TX_BD)
5802 /* Index out of range. */
5803 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5804 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5805 /* TX Chain page pointer. */
5806 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5807 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5808 txbd->tx_bd_haddr_lo);
5809 else
5810 /* Normal tx_bd entry. */
5811 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5812 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5813 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5814 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5815 txbd->tx_bd_flags);
5816 }
5817
5818 void
5819 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5820 {
5821 if (idx > MAX_RX_BD)
5822 /* Index out of range. */
5823 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5824 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5825 /* TX Chain page pointer. */
5826 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5827 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5828 rxbd->rx_bd_haddr_lo);
5829 else
5830 /* Normal tx_bd entry. */
5831 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5832 "0x%08X, flags = 0x%08X\n", idx,
5833 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5834 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5835 }
5836
5837 void
5838 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5839 {
5840 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5841 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5842 "tcp_udp_xsum = 0x%04X\n", idx,
5843 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5844 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5845 l2fhdr->l2_fhdr_tcp_udp_xsum);
5846 }
5847
5848 /*
5849 * This routine prints the TX chain.
5850 */
5851 void
5852 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5853 {
5854 struct tx_bd *txbd;
5855 int i;
5856
5857 /* First some info about the tx_bd chain structure. */
5858 aprint_debug_dev(sc->bnx_dev,
5859 "----------------------------"
5860 " tx_bd chain "
5861 "----------------------------\n");
5862
5863 BNX_PRINTF(sc,
5864 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5865 (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
5866
5867 BNX_PRINTF(sc,
5868 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5869 (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
5870
5871 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", TOTAL_TX_BD);
5872
5873 aprint_error_dev(sc->bnx_dev, ""
5874 "-----------------------------"
5875 " tx_bd data "
5876 "-----------------------------\n");
5877
5878 /* Now print out the tx_bd's themselves. */
5879 for (i = 0; i < count; i++) {
5880 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5881 bnx_dump_txbd(sc, tx_prod, txbd);
5882 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5883 }
5884
5885 aprint_debug_dev(sc->bnx_dev,
5886 "-----------------------------"
5887 "--------------"
5888 "-----------------------------\n");
5889 }
5890
5891 /*
5892 * This routine prints the RX chain.
5893 */
5894 void
5895 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5896 {
5897 struct rx_bd *rxbd;
5898 int i;
5899
5900 /* First some info about the tx_bd chain structure. */
5901 aprint_debug_dev(sc->bnx_dev,
5902 "----------------------------"
5903 " rx_bd chain "
5904 "----------------------------\n");
5905
5906 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5907
5908 BNX_PRINTF(sc,
5909 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5910 (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
5911
5912 BNX_PRINTF(sc,
5913 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5914 (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
5915
5916 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", TOTAL_RX_BD);
5917
5918 aprint_error_dev(sc->bnx_dev,
5919 "----------------------------"
5920 " rx_bd data "
5921 "----------------------------\n");
5922
5923 /* Now print out the rx_bd's themselves. */
5924 for (i = 0; i < count; i++) {
5925 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5926 bnx_dump_rxbd(sc, rx_prod, rxbd);
5927 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5928 }
5929
5930 aprint_debug_dev(sc->bnx_dev,
5931 "----------------------------"
5932 "--------------"
5933 "----------------------------\n");
5934 }
5935
5936 /*
5937 * This routine prints the status block.
5938 */
5939 void
5940 bnx_dump_status_block(struct bnx_softc *sc)
5941 {
5942 struct status_block *sblk;
5943 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5944 BUS_DMASYNC_POSTREAD);
5945
5946 sblk = sc->status_block;
5947
5948 aprint_debug_dev(sc->bnx_dev, "----------------------------- "
5949 "Status Block -----------------------------\n");
5950
5951 BNX_PRINTF(sc,
5952 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5953 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5954 sblk->status_idx);
5955
5956 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5957 sblk->status_rx_quick_consumer_index0,
5958 sblk->status_tx_quick_consumer_index0);
5959
5960 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5961
5962 /* Theses indices are not used for normal L2 drivers. */
5963 if (sblk->status_rx_quick_consumer_index1 ||
5964 sblk->status_tx_quick_consumer_index1)
5965 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5966 sblk->status_rx_quick_consumer_index1,
5967 sblk->status_tx_quick_consumer_index1);
5968
5969 if (sblk->status_rx_quick_consumer_index2 ||
5970 sblk->status_tx_quick_consumer_index2)
5971 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5972 sblk->status_rx_quick_consumer_index2,
5973 sblk->status_tx_quick_consumer_index2);
5974
5975 if (sblk->status_rx_quick_consumer_index3 ||
5976 sblk->status_tx_quick_consumer_index3)
5977 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5978 sblk->status_rx_quick_consumer_index3,
5979 sblk->status_tx_quick_consumer_index3);
5980
5981 if (sblk->status_rx_quick_consumer_index4 ||
5982 sblk->status_rx_quick_consumer_index5)
5983 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5984 sblk->status_rx_quick_consumer_index4,
5985 sblk->status_rx_quick_consumer_index5);
5986
5987 if (sblk->status_rx_quick_consumer_index6 ||
5988 sblk->status_rx_quick_consumer_index7)
5989 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
5990 sblk->status_rx_quick_consumer_index6,
5991 sblk->status_rx_quick_consumer_index7);
5992
5993 if (sblk->status_rx_quick_consumer_index8 ||
5994 sblk->status_rx_quick_consumer_index9)
5995 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
5996 sblk->status_rx_quick_consumer_index8,
5997 sblk->status_rx_quick_consumer_index9);
5998
5999 if (sblk->status_rx_quick_consumer_index10 ||
6000 sblk->status_rx_quick_consumer_index11)
6001 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
6002 sblk->status_rx_quick_consumer_index10,
6003 sblk->status_rx_quick_consumer_index11);
6004
6005 if (sblk->status_rx_quick_consumer_index12 ||
6006 sblk->status_rx_quick_consumer_index13)
6007 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
6008 sblk->status_rx_quick_consumer_index12,
6009 sblk->status_rx_quick_consumer_index13);
6010
6011 if (sblk->status_rx_quick_consumer_index14 ||
6012 sblk->status_rx_quick_consumer_index15)
6013 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
6014 sblk->status_rx_quick_consumer_index14,
6015 sblk->status_rx_quick_consumer_index15);
6016
6017 if (sblk->status_completion_producer_index ||
6018 sblk->status_cmd_consumer_index)
6019 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
6020 sblk->status_completion_producer_index,
6021 sblk->status_cmd_consumer_index);
6022
6023 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6024 "-----------------------------\n");
6025 }
6026
6027 /*
6028 * This routine prints the statistics block.
6029 */
6030 void
6031 bnx_dump_stats_block(struct bnx_softc *sc)
6032 {
6033 struct statistics_block *sblk;
6034 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6035 BUS_DMASYNC_POSTREAD);
6036
6037 sblk = sc->stats_block;
6038
6039 aprint_debug_dev(sc->bnx_dev, ""
6040 "-----------------------------"
6041 " Stats Block "
6042 "-----------------------------\n");
6043
6044 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
6045 "IfHcInBadOctets = 0x%08X:%08X\n",
6046 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6047 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6048
6049 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
6050 "IfHcOutBadOctets = 0x%08X:%08X\n",
6051 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6052 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6053
6054 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
6055 "IfHcInMulticastPkts = 0x%08X:%08X\n",
6056 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6057 sblk->stat_IfHCInMulticastPkts_hi,
6058 sblk->stat_IfHCInMulticastPkts_lo);
6059
6060 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
6061 "IfHcOutUcastPkts = 0x%08X:%08X\n",
6062 sblk->stat_IfHCInBroadcastPkts_hi,
6063 sblk->stat_IfHCInBroadcastPkts_lo,
6064 sblk->stat_IfHCOutUcastPkts_hi,
6065 sblk->stat_IfHCOutUcastPkts_lo);
6066
6067 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6068 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6069 sblk->stat_IfHCOutMulticastPkts_hi,
6070 sblk->stat_IfHCOutMulticastPkts_lo,
6071 sblk->stat_IfHCOutBroadcastPkts_hi,
6072 sblk->stat_IfHCOutBroadcastPkts_lo);
6073
6074 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6075 BNX_PRINTF(sc, "0x%08X : "
6076 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6077 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6078
6079 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6080 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6081 sblk->stat_Dot3StatsCarrierSenseErrors);
6082
6083 if (sblk->stat_Dot3StatsFCSErrors)
6084 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6085 sblk->stat_Dot3StatsFCSErrors);
6086
6087 if (sblk->stat_Dot3StatsAlignmentErrors)
6088 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6089 sblk->stat_Dot3StatsAlignmentErrors);
6090
6091 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6092 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6093 sblk->stat_Dot3StatsSingleCollisionFrames);
6094
6095 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6096 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6097 sblk->stat_Dot3StatsMultipleCollisionFrames);
6098
6099 if (sblk->stat_Dot3StatsDeferredTransmissions)
6100 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6101 sblk->stat_Dot3StatsDeferredTransmissions);
6102
6103 if (sblk->stat_Dot3StatsExcessiveCollisions)
6104 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6105 sblk->stat_Dot3StatsExcessiveCollisions);
6106
6107 if (sblk->stat_Dot3StatsLateCollisions)
6108 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6109 sblk->stat_Dot3StatsLateCollisions);
6110
6111 if (sblk->stat_EtherStatsCollisions)
6112 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6113 sblk->stat_EtherStatsCollisions);
6114
6115 if (sblk->stat_EtherStatsFragments)
6116 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6117 sblk->stat_EtherStatsFragments);
6118
6119 if (sblk->stat_EtherStatsJabbers)
6120 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6121 sblk->stat_EtherStatsJabbers);
6122
6123 if (sblk->stat_EtherStatsUndersizePkts)
6124 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6125 sblk->stat_EtherStatsUndersizePkts);
6126
6127 if (sblk->stat_EtherStatsOverrsizePkts)
6128 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6129 sblk->stat_EtherStatsOverrsizePkts);
6130
6131 if (sblk->stat_EtherStatsPktsRx64Octets)
6132 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6133 sblk->stat_EtherStatsPktsRx64Octets);
6134
6135 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6136 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6137 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6138
6139 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6140 BNX_PRINTF(sc, "0x%08X : "
6141 "EtherStatsPktsRx128Octetsto255Octets\n",
6142 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6143
6144 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6145 BNX_PRINTF(sc, "0x%08X : "
6146 "EtherStatsPktsRx256Octetsto511Octets\n",
6147 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6148
6149 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6150 BNX_PRINTF(sc, "0x%08X : "
6151 "EtherStatsPktsRx512Octetsto1023Octets\n",
6152 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6153
6154 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6155 BNX_PRINTF(sc, "0x%08X : "
6156 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6157 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6158
6159 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6160 BNX_PRINTF(sc, "0x%08X : "
6161 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6162 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6163
6164 if (sblk->stat_EtherStatsPktsTx64Octets)
6165 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6166 sblk->stat_EtherStatsPktsTx64Octets);
6167
6168 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6169 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6170 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6171
6172 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6173 BNX_PRINTF(sc, "0x%08X : "
6174 "EtherStatsPktsTx128Octetsto255Octets\n",
6175 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6176
6177 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6178 BNX_PRINTF(sc, "0x%08X : "
6179 "EtherStatsPktsTx256Octetsto511Octets\n",
6180 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6181
6182 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6183 BNX_PRINTF(sc, "0x%08X : "
6184 "EtherStatsPktsTx512Octetsto1023Octets\n",
6185 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6186
6187 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6188 BNX_PRINTF(sc, "0x%08X : "
6189 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6190 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6191
6192 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6193 BNX_PRINTF(sc, "0x%08X : "
6194 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6195 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6196
6197 if (sblk->stat_XonPauseFramesReceived)
6198 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6199 sblk->stat_XonPauseFramesReceived);
6200
6201 if (sblk->stat_XoffPauseFramesReceived)
6202 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6203 sblk->stat_XoffPauseFramesReceived);
6204
6205 if (sblk->stat_OutXonSent)
6206 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6207 sblk->stat_OutXonSent);
6208
6209 if (sblk->stat_OutXoffSent)
6210 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6211 sblk->stat_OutXoffSent);
6212
6213 if (sblk->stat_FlowControlDone)
6214 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6215 sblk->stat_FlowControlDone);
6216
6217 if (sblk->stat_MacControlFramesReceived)
6218 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6219 sblk->stat_MacControlFramesReceived);
6220
6221 if (sblk->stat_XoffStateEntered)
6222 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6223 sblk->stat_XoffStateEntered);
6224
6225 if (sblk->stat_IfInFramesL2FilterDiscards)
6226 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6227 sblk->stat_IfInFramesL2FilterDiscards);
6228
6229 if (sblk->stat_IfInRuleCheckerDiscards)
6230 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6231 sblk->stat_IfInRuleCheckerDiscards);
6232
6233 if (sblk->stat_IfInFTQDiscards)
6234 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6235 sblk->stat_IfInFTQDiscards);
6236
6237 if (sblk->stat_IfInMBUFDiscards)
6238 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6239 sblk->stat_IfInMBUFDiscards);
6240
6241 if (sblk->stat_IfInRuleCheckerP4Hit)
6242 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6243 sblk->stat_IfInRuleCheckerP4Hit);
6244
6245 if (sblk->stat_CatchupInRuleCheckerDiscards)
6246 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6247 sblk->stat_CatchupInRuleCheckerDiscards);
6248
6249 if (sblk->stat_CatchupInFTQDiscards)
6250 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6251 sblk->stat_CatchupInFTQDiscards);
6252
6253 if (sblk->stat_CatchupInMBUFDiscards)
6254 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6255 sblk->stat_CatchupInMBUFDiscards);
6256
6257 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6258 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6259 sblk->stat_CatchupInRuleCheckerP4Hit);
6260
6261 aprint_debug_dev(sc->bnx_dev,
6262 "-----------------------------"
6263 "--------------"
6264 "-----------------------------\n");
6265 }
6266
6267 void
6268 bnx_dump_driver_state(struct bnx_softc *sc)
6269 {
6270 aprint_debug_dev(sc->bnx_dev,
6271 "-----------------------------"
6272 " Driver State "
6273 "-----------------------------\n");
6274
6275 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6276 "address\n", sc);
6277
6278 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6279 sc->status_block);
6280
6281 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6282 "address\n", sc->stats_block);
6283
6284 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6285 "adddress\n", sc->tx_bd_chain);
6286
6287 #if 0
6288 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6289 sc->rx_bd_chain);
6290
6291 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6292 sc->tx_mbuf_ptr);
6293 #endif
6294
6295 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6296 sc->rx_mbuf_ptr);
6297
6298 BNX_PRINTF(sc,
6299 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6300 sc->interrupts_generated);
6301
6302 BNX_PRINTF(sc,
6303 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6304 sc->rx_interrupts);
6305
6306 BNX_PRINTF(sc,
6307 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6308 sc->tx_interrupts);
6309
6310 BNX_PRINTF(sc,
6311 " 0x%08X - (sc->last_status_idx) status block index\n",
6312 sc->last_status_idx);
6313
6314 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6315 sc->tx_prod);
6316
6317 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6318 sc->tx_cons);
6319
6320 BNX_PRINTF(sc,
6321 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6322 sc->tx_prod_bseq);
6323 BNX_PRINTF(sc,
6324 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6325 sc->tx_mbuf_alloc);
6326
6327 BNX_PRINTF(sc,
6328 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6329 sc->used_tx_bd);
6330
6331 BNX_PRINTF(sc,
6332 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6333 sc->tx_hi_watermark, sc->max_tx_bd);
6334
6335
6336 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6337 sc->rx_prod);
6338
6339 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6340 sc->rx_cons);
6341
6342 BNX_PRINTF(sc,
6343 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6344 sc->rx_prod_bseq);
6345
6346 BNX_PRINTF(sc,
6347 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6348 sc->rx_mbuf_alloc);
6349
6350 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6351 sc->free_rx_bd);
6352
6353 BNX_PRINTF(sc,
6354 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6355 sc->rx_low_watermark, sc->max_rx_bd);
6356
6357 BNX_PRINTF(sc,
6358 " 0x%08X - (sc->mbuf_alloc_failed) "
6359 "mbuf alloc failures\n",
6360 sc->mbuf_alloc_failed);
6361
6362 BNX_PRINTF(sc,
6363 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6364 "simulated mbuf alloc failures\n",
6365 sc->mbuf_sim_alloc_failed);
6366
6367 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6368 "-----------------------------\n");
6369 }
6370
6371 void
6372 bnx_dump_hw_state(struct bnx_softc *sc)
6373 {
6374 uint32_t val1;
6375 int i;
6376
6377 aprint_debug_dev(sc->bnx_dev,
6378 "----------------------------"
6379 " Hardware State "
6380 "----------------------------\n");
6381
6382 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6383
6384 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6385 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6386 val1, BNX_MISC_ENABLE_STATUS_BITS);
6387
6388 val1 = REG_RD(sc, BNX_DMA_STATUS);
6389 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6390
6391 val1 = REG_RD(sc, BNX_CTX_STATUS);
6392 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6393
6394 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6395 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6396 BNX_EMAC_STATUS);
6397
6398 val1 = REG_RD(sc, BNX_RPM_STATUS);
6399 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6400
6401 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6402 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6403 BNX_TBDR_STATUS);
6404
6405 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6406 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6407 BNX_TDMA_STATUS);
6408
6409 val1 = REG_RD(sc, BNX_HC_STATUS);
6410 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6411
6412 aprint_debug_dev(sc->bnx_dev,
6413 "----------------------------"
6414 "----------------"
6415 "----------------------------\n");
6416
6417 aprint_debug_dev(sc->bnx_dev,
6418 "----------------------------"
6419 " Register Dump "
6420 "----------------------------\n");
6421
6422 for (i = 0x400; i < 0x8000; i += 0x10)
6423 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6424 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6425 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6426
6427 aprint_debug_dev(sc->bnx_dev,
6428 "----------------------------"
6429 "----------------"
6430 "----------------------------\n");
6431 }
6432
6433 void
6434 bnx_breakpoint(struct bnx_softc *sc)
6435 {
6436 /* Unreachable code to shut the compiler up about unused functions. */
6437 if (0) {
6438 bnx_dump_txbd(sc, 0, NULL);
6439 bnx_dump_rxbd(sc, 0, NULL);
6440 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6441 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6442 bnx_dump_l2fhdr(sc, 0, NULL);
6443 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6444 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6445 bnx_dump_status_block(sc);
6446 bnx_dump_stats_block(sc);
6447 bnx_dump_driver_state(sc);
6448 bnx_dump_hw_state(sc);
6449 }
6450
6451 bnx_dump_driver_state(sc);
6452 /* Print the important status block fields. */
6453 bnx_dump_status_block(sc);
6454
6455 #if 0
6456 /* Call the debugger. */
6457 breakpoint();
6458 #endif
6459
6460 return;
6461 }
6462 #endif
6463