if_bnx.c revision 1.64 1 /* $NetBSD: if_bnx.c,v 1.64 2018/05/08 04:11:09 msaitoh Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
3
4 /*-
5 * Copyright (c) 2006-2010 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.64 2018/05/08 04:11:09 msaitoh Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 * BCM5706C A0, A1
52 * BCM5706S A0, A1
53 * BCM5708C A0, B0
54 * BCM5708S A0, B0
55 * BCM5709C A0 B0, B1, B2 (pre-production)
56 * BCM5709S A0, B0, B1, B2 (pre-production)
57 */
58
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64
65 #include <dev/microcode/bnx/bnxfw.h>
66
67 /****************************************************************************/
68 /* BNX Driver Version */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION "v0.9.6"
71
72 /****************************************************************************/
73 /* BNX Debug Options */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77
78 /* 0 = Never */
79 /* 1 = 1 in 2,147,483,648 */
80 /* 256 = 1 in 8,388,608 */
81 /* 2048 = 1 in 1,048,576 */
82 /* 65536 = 1 in 32,768 */
83 /* 1048576 = 1 in 2,048 */
84 /* 268435456 = 1 in 8 */
85 /* 536870912 = 1 in 4 */
86 /* 1073741824 = 1 in 2 */
87
88 /* Controls how often the l2_fhdr frame error check will fail. */
89 int bnx_debug_l2fhdr_status_check = 0;
90
91 /* Controls how often the unexpected attention check will fail. */
92 int bnx_debug_unexpected_attention = 0;
93
94 /* Controls how often to simulate an mbuf allocation failure. */
95 int bnx_debug_mbuf_allocation_failure = 0;
96
97 /* Controls how often to simulate a DMA mapping failure. */
98 int bnx_debug_dma_map_addr_failure = 0;
99
100 /* Controls how often to simulate a bootcode failure. */
101 int bnx_debug_bootcode_running_failure = 0;
102 #endif
103
104 /****************************************************************************/
105 /* PCI Device ID Table */
106 /* */
107 /* Used by bnx_probe() to identify the devices supported by this driver. */
108 /****************************************************************************/
109 static const struct bnx_product {
110 pci_vendor_id_t bp_vendor;
111 pci_product_id_t bp_product;
112 pci_vendor_id_t bp_subvendor;
113 pci_product_id_t bp_subproduct;
114 const char *bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 {
118 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 "HP NC370T Multifunction Gigabit Server Adapter"
121 },
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 {
125 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 "HP NC370i Multifunction Gigabit Server Adapter"
128 },
129 #endif
130 {
131 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 0, 0,
133 "Broadcom NetXtreme II BCM5706 1000Base-T"
134 },
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 {
137 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 "HP NC370F Multifunction Gigabit Server Adapter"
140 },
141 #endif
142 {
143 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 0, 0,
145 "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 },
147 {
148 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 0, 0,
150 "Broadcom NetXtreme II BCM5708 1000Base-T"
151 },
152 {
153 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 0, 0,
155 "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 },
157 {
158 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 0, 0,
160 "Broadcom NetXtreme II BCM5709 1000Base-T"
161 },
162 {
163 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 0, 0,
165 "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 },
167 {
168 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 0, 0,
170 "Broadcom NetXtreme II BCM5716 1000Base-T"
171 },
172 {
173 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 0, 0,
175 "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 },
177 };
178
179 /****************************************************************************/
180 /* Supported Flash NVRAM device data. */
181 /****************************************************************************/
182 static struct flash_spec flash_table[] =
183 {
184 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
185 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
186 /* Slow EEPROM */
187 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
188 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
189 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
190 "EEPROM - slow"},
191 /* Expansion entry 0001 */
192 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
193 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 "Entry 0001"},
196 /* Saifun SA25F010 (non-buffered flash) */
197 /* strap, cfg1, & write1 need updates */
198 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
199 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
200 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
201 "Non-buffered flash (128kB)"},
202 /* Saifun SA25F020 (non-buffered flash) */
203 /* strap, cfg1, & write1 need updates */
204 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
205 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
206 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
207 "Non-buffered flash (256kB)"},
208 /* Expansion entry 0100 */
209 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
210 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
211 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
212 "Entry 0100"},
213 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
214 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
215 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
216 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
217 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
218 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
219 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
220 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
221 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
222 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
223 /* Saifun SA25F005 (non-buffered flash) */
224 /* strap, cfg1, & write1 need updates */
225 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
226 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
228 "Non-buffered flash (64kB)"},
229 /* Fast EEPROM */
230 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
231 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
232 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
233 "EEPROM - fast"},
234 /* Expansion entry 1001 */
235 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
236 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
237 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
238 "Entry 1001"},
239 /* Expansion entry 1010 */
240 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
241 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
242 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
243 "Entry 1010"},
244 /* ATMEL AT45DB011B (buffered flash) */
245 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
246 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
247 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
248 "Buffered flash (128kB)"},
249 /* Expansion entry 1100 */
250 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
251 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
252 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
253 "Entry 1100"},
254 /* Expansion entry 1101 */
255 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
256 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
257 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
258 "Entry 1101"},
259 /* Ateml Expansion entry 1110 */
260 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
261 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
262 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
263 "Entry 1110 (Atmel)"},
264 /* ATMEL AT45DB021B (buffered flash) */
265 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
266 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
267 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
268 "Buffered flash (256kB)"},
269 };
270
271 /*
272 * The BCM5709 controllers transparently handle the
273 * differences between Atmel 264 byte pages and all
274 * flash devices which use 256 byte pages, so no
275 * logical-to-physical mapping is required in the
276 * driver.
277 */
278 static struct flash_spec flash_5709 = {
279 .flags = BNX_NV_BUFFERED,
280 .page_bits = BCM5709_FLASH_PAGE_BITS,
281 .page_size = BCM5709_FLASH_PAGE_SIZE,
282 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
283 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
284 .name = "5709 buffered flash (256kB)",
285 };
286
287 /****************************************************************************/
288 /* OpenBSD device entry points. */
289 /****************************************************************************/
290 static int bnx_probe(device_t, cfdata_t, void *);
291 void bnx_attach(device_t, device_t, void *);
292 int bnx_detach(device_t, int);
293
294 /****************************************************************************/
295 /* BNX Debug Data Structure Dump Routines */
296 /****************************************************************************/
297 #ifdef BNX_DEBUG
298 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
299 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
300 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
301 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
302 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
303 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
304 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
305 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
306 void bnx_dump_status_block(struct bnx_softc *);
307 void bnx_dump_stats_block(struct bnx_softc *);
308 void bnx_dump_driver_state(struct bnx_softc *);
309 void bnx_dump_hw_state(struct bnx_softc *);
310 void bnx_breakpoint(struct bnx_softc *);
311 #endif
312
313 /****************************************************************************/
314 /* BNX Register/Memory Access Routines */
315 /****************************************************************************/
316 uint32_t bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
317 void bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
318 void bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
319 int bnx_miibus_read_reg(device_t, int, int);
320 void bnx_miibus_write_reg(device_t, int, int, int);
321 void bnx_miibus_statchg(struct ifnet *);
322
323 /****************************************************************************/
324 /* BNX NVRAM Access Routines */
325 /****************************************************************************/
326 int bnx_acquire_nvram_lock(struct bnx_softc *);
327 int bnx_release_nvram_lock(struct bnx_softc *);
328 void bnx_enable_nvram_access(struct bnx_softc *);
329 void bnx_disable_nvram_access(struct bnx_softc *);
330 int bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
331 uint32_t);
332 int bnx_init_nvram(struct bnx_softc *);
333 int bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
334 int bnx_nvram_test(struct bnx_softc *);
335 #ifdef BNX_NVRAM_WRITE_SUPPORT
336 int bnx_enable_nvram_write(struct bnx_softc *);
337 void bnx_disable_nvram_write(struct bnx_softc *);
338 int bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
339 int bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
340 uint32_t);
341 int bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
342 #endif
343
344 /****************************************************************************/
345 /* */
346 /****************************************************************************/
347 void bnx_get_media(struct bnx_softc *);
348 void bnx_init_media(struct bnx_softc *);
349 int bnx_dma_alloc(struct bnx_softc *);
350 void bnx_dma_free(struct bnx_softc *);
351 void bnx_release_resources(struct bnx_softc *);
352
353 /****************************************************************************/
354 /* BNX Firmware Synchronization and Load */
355 /****************************************************************************/
356 int bnx_fw_sync(struct bnx_softc *, uint32_t);
357 void bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t,
358 uint32_t);
359 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
360 struct fw_info *);
361 void bnx_init_cpus(struct bnx_softc *);
362
363 static void bnx_print_adapter_info(struct bnx_softc *);
364 static void bnx_probe_pci_caps(struct bnx_softc *);
365 void bnx_stop(struct ifnet *, int);
366 int bnx_reset(struct bnx_softc *, uint32_t);
367 int bnx_chipinit(struct bnx_softc *);
368 int bnx_blockinit(struct bnx_softc *);
369 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
370 uint16_t *, uint32_t *);
371 int bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
372
373 int bnx_init_tx_chain(struct bnx_softc *);
374 void bnx_init_tx_context(struct bnx_softc *);
375 int bnx_init_rx_chain(struct bnx_softc *);
376 void bnx_init_rx_context(struct bnx_softc *);
377 void bnx_free_rx_chain(struct bnx_softc *);
378 void bnx_free_tx_chain(struct bnx_softc *);
379
380 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
381 void bnx_start(struct ifnet *);
382 int bnx_ioctl(struct ifnet *, u_long, void *);
383 void bnx_watchdog(struct ifnet *);
384 int bnx_init(struct ifnet *);
385
386 void bnx_init_context(struct bnx_softc *);
387 void bnx_get_mac_addr(struct bnx_softc *);
388 void bnx_set_mac_addr(struct bnx_softc *);
389 void bnx_phy_intr(struct bnx_softc *);
390 void bnx_rx_intr(struct bnx_softc *);
391 void bnx_tx_intr(struct bnx_softc *);
392 void bnx_disable_intr(struct bnx_softc *);
393 void bnx_enable_intr(struct bnx_softc *);
394
395 int bnx_intr(void *);
396 void bnx_iff(struct bnx_softc *);
397 void bnx_stats_update(struct bnx_softc *);
398 void bnx_tick(void *);
399
400 struct pool *bnx_tx_pool = NULL;
401 void bnx_alloc_pkts(struct work *, void *);
402
403 /****************************************************************************/
404 /* OpenBSD device dispatch table. */
405 /****************************************************************************/
406 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
407 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
408
409 /****************************************************************************/
410 /* Device probe function. */
411 /* */
412 /* Compares the device to the driver's list of supported devices and */
413 /* reports back to the OS whether this is the right driver for the device. */
414 /* */
415 /* Returns: */
416 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
417 /****************************************************************************/
418 static const struct bnx_product *
419 bnx_lookup(const struct pci_attach_args *pa)
420 {
421 int i;
422 pcireg_t subid;
423
424 for (i = 0; i < __arraycount(bnx_devices); i++) {
425 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
426 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
427 continue;
428 if (!bnx_devices[i].bp_subvendor)
429 return &bnx_devices[i];
430 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
431 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
432 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
433 return &bnx_devices[i];
434 }
435
436 return NULL;
437 }
438 static int
439 bnx_probe(device_t parent, cfdata_t match, void *aux)
440 {
441 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
442
443 if (bnx_lookup(pa) != NULL)
444 return 1;
445
446 return 0;
447 }
448
449 /****************************************************************************/
450 /* PCI Capabilities Probe Function. */
451 /* */
452 /* Walks the PCI capabiites list for the device to find what features are */
453 /* supported. */
454 /* */
455 /* Returns: */
456 /* None. */
457 /****************************************************************************/
458 static void
459 bnx_print_adapter_info(struct bnx_softc *sc)
460 {
461
462 aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
463 BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
464 (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
465 ? "Serdes " : "", sc->bnx_chipid);
466
467 /* Bus info. */
468 if (sc->bnx_flags & BNX_PCIE_FLAG) {
469 aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
470 sc->link_width);
471 switch (sc->link_speed) {
472 case 1: aprint_normal("2.5Gbps\n"); break;
473 case 2: aprint_normal("5Gbps\n"); break;
474 default: aprint_normal("Unknown link speed\n");
475 }
476 } else {
477 aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
478 ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
479 (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
480 sc->bus_speed_mhz);
481 }
482
483 aprint_normal_dev(sc->bnx_dev,
484 "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
485 sc->bnx_rx_quick_cons_trip_int,
486 sc->bnx_rx_quick_cons_trip,
487 sc->bnx_rx_ticks_int,
488 sc->bnx_rx_ticks,
489 sc->bnx_tx_quick_cons_trip_int,
490 sc->bnx_tx_quick_cons_trip,
491 sc->bnx_tx_ticks_int,
492 sc->bnx_tx_ticks);
493 }
494
495
496 /****************************************************************************/
497 /* PCI Capabilities Probe Function. */
498 /* */
499 /* Walks the PCI capabiites list for the device to find what features are */
500 /* supported. */
501 /* */
502 /* Returns: */
503 /* None. */
504 /****************************************************************************/
505 static void
506 bnx_probe_pci_caps(struct bnx_softc *sc)
507 {
508 struct pci_attach_args *pa = &(sc->bnx_pa);
509 pcireg_t reg;
510
511 /* Check if PCI-X capability is enabled. */
512 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, ®,
513 NULL) != 0) {
514 sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
515 }
516
517 /* Check if PCIe capability is enabled. */
518 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, ®,
519 NULL) != 0) {
520 pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
521 reg + PCIE_LCSR);
522 DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
523 "0x%08X\n", link_status);
524 sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
525 sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
526 sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
527 sc->bnx_flags |= BNX_PCIE_FLAG;
528 }
529
530 /* Check if MSI capability is enabled. */
531 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, ®,
532 NULL) != 0)
533 sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
534
535 /* Check if MSI-X capability is enabled. */
536 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, ®,
537 NULL) != 0)
538 sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
539 }
540
541
542 /****************************************************************************/
543 /* Device attach function. */
544 /* */
545 /* Allocates device resources, performs secondary chip identification, */
546 /* resets and initializes the hardware, and initializes driver instance */
547 /* variables. */
548 /* */
549 /* Returns: */
550 /* 0 on success, positive value on failure. */
551 /****************************************************************************/
552 void
553 bnx_attach(device_t parent, device_t self, void *aux)
554 {
555 const struct bnx_product *bp;
556 struct bnx_softc *sc = device_private(self);
557 prop_dictionary_t dict;
558 struct pci_attach_args *pa = aux;
559 pci_chipset_tag_t pc = pa->pa_pc;
560 pci_intr_handle_t ih;
561 const char *intrstr = NULL;
562 uint32_t command;
563 struct ifnet *ifp;
564 uint32_t val;
565 int mii_flags = MIIF_FORCEANEG;
566 pcireg_t memtype;
567 char intrbuf[PCI_INTRSTR_LEN];
568
569 if (bnx_tx_pool == NULL) {
570 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
571 if (bnx_tx_pool != NULL) {
572 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
573 0, 0, 0, "bnxpkts", NULL, IPL_NET);
574 } else {
575 aprint_error(": can't alloc bnx_tx_pool\n");
576 return;
577 }
578 }
579
580 bp = bnx_lookup(pa);
581 if (bp == NULL)
582 panic("unknown device");
583
584 sc->bnx_dev = self;
585
586 aprint_naive("\n");
587 aprint_normal(": %s\n", bp->bp_name);
588
589 sc->bnx_pa = *pa;
590
591 /*
592 * Map control/status registers.
593 */
594 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
595 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
596 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
597 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
598
599 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
600 aprint_error_dev(sc->bnx_dev,
601 "failed to enable memory mapping!\n");
602 return;
603 }
604
605 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
606 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
607 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
608 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
609 return;
610 }
611
612 if (pci_intr_map(pa, &ih)) {
613 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
614 goto bnx_attach_fail;
615 }
616
617 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
618
619 /*
620 * Configure byte swap and enable indirect register access.
621 * Rely on CPU to do target byte swapping on big endian systems.
622 * Access to registers outside of PCI configurtion space are not
623 * valid until this is done.
624 */
625 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
626 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
627 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
628
629 /* Save ASIC revsion info. */
630 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
631
632 /*
633 * Find the base address for shared memory access.
634 * Newer versions of bootcode use a signature and offset
635 * while older versions use a fixed address.
636 */
637 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
638 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
639 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
640 (sc->bnx_pa.pa_function << 2));
641 else
642 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
643
644 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
645
646 /* Set initial device and PHY flags */
647 sc->bnx_flags = 0;
648 sc->bnx_phy_flags = 0;
649
650 bnx_probe_pci_caps(sc);
651
652 /* Get PCI bus information (speed and type). */
653 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
654 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
655 uint32_t clkreg;
656
657 sc->bnx_flags |= BNX_PCIX_FLAG;
658
659 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
660
661 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
662 switch (clkreg) {
663 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
664 sc->bus_speed_mhz = 133;
665 break;
666
667 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
668 sc->bus_speed_mhz = 100;
669 break;
670
671 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
672 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
673 sc->bus_speed_mhz = 66;
674 break;
675
676 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
677 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
678 sc->bus_speed_mhz = 50;
679 break;
680
681 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
682 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
683 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
684 sc->bus_speed_mhz = 33;
685 break;
686 }
687 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
688 sc->bus_speed_mhz = 66;
689 else
690 sc->bus_speed_mhz = 33;
691
692 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
693 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
694
695 /* Reset the controller. */
696 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
697 goto bnx_attach_fail;
698
699 /* Initialize the controller. */
700 if (bnx_chipinit(sc)) {
701 aprint_error_dev(sc->bnx_dev,
702 "Controller initialization failed!\n");
703 goto bnx_attach_fail;
704 }
705
706 /* Perform NVRAM test. */
707 if (bnx_nvram_test(sc)) {
708 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
709 goto bnx_attach_fail;
710 }
711
712 /* Fetch the permanent Ethernet MAC address. */
713 bnx_get_mac_addr(sc);
714 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
715 ether_sprintf(sc->eaddr));
716
717 /*
718 * Trip points control how many BDs
719 * should be ready before generating an
720 * interrupt while ticks control how long
721 * a BD can sit in the chain before
722 * generating an interrupt. Set the default
723 * values for the RX and TX rings.
724 */
725
726 #ifdef BNX_DEBUG
727 /* Force more frequent interrupts. */
728 sc->bnx_tx_quick_cons_trip_int = 1;
729 sc->bnx_tx_quick_cons_trip = 1;
730 sc->bnx_tx_ticks_int = 0;
731 sc->bnx_tx_ticks = 0;
732
733 sc->bnx_rx_quick_cons_trip_int = 1;
734 sc->bnx_rx_quick_cons_trip = 1;
735 sc->bnx_rx_ticks_int = 0;
736 sc->bnx_rx_ticks = 0;
737 #else
738 sc->bnx_tx_quick_cons_trip_int = 20;
739 sc->bnx_tx_quick_cons_trip = 20;
740 sc->bnx_tx_ticks_int = 80;
741 sc->bnx_tx_ticks = 80;
742
743 sc->bnx_rx_quick_cons_trip_int = 6;
744 sc->bnx_rx_quick_cons_trip = 6;
745 sc->bnx_rx_ticks_int = 18;
746 sc->bnx_rx_ticks = 18;
747 #endif
748
749 /* Update statistics once every second. */
750 sc->bnx_stats_ticks = 1000000 & 0xffff00;
751
752 /* Find the media type for the adapter. */
753 bnx_get_media(sc);
754
755 /*
756 * Store config data needed by the PHY driver for
757 * backplane applications
758 */
759 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
760 BNX_SHARED_HW_CFG_CONFIG);
761 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
762 BNX_PORT_HW_CFG_CONFIG);
763
764 /* Allocate DMA memory resources. */
765 sc->bnx_dmatag = pa->pa_dmat;
766 if (bnx_dma_alloc(sc)) {
767 aprint_error_dev(sc->bnx_dev,
768 "DMA resource allocation failed!\n");
769 goto bnx_attach_fail;
770 }
771
772 /* Initialize the ifnet interface. */
773 ifp = &sc->bnx_ec.ec_if;
774 ifp->if_softc = sc;
775 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
776 ifp->if_ioctl = bnx_ioctl;
777 ifp->if_stop = bnx_stop;
778 ifp->if_start = bnx_start;
779 ifp->if_init = bnx_init;
780 ifp->if_timer = 0;
781 ifp->if_watchdog = bnx_watchdog;
782 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
783 IFQ_SET_READY(&ifp->if_snd);
784 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
785
786 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
787 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
788
789 ifp->if_capabilities |=
790 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
791 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
792 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
793
794 /* Hookup IRQ last. */
795 sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
796 sc, device_xname(self));
797 if (sc->bnx_intrhand == NULL) {
798 aprint_error_dev(self, "couldn't establish interrupt");
799 if (intrstr != NULL)
800 aprint_error(" at %s", intrstr);
801 aprint_error("\n");
802 goto bnx_attach_fail;
803 }
804 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
805
806 /* create workqueue to handle packet allocations */
807 if (workqueue_create(&sc->bnx_wq, device_xname(self),
808 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
809 aprint_error_dev(self, "failed to create workqueue\n");
810 goto bnx_attach_fail;
811 }
812
813 sc->bnx_mii.mii_ifp = ifp;
814 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
815 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
816 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
817
818 /* Handle any special PHY initialization for SerDes PHYs. */
819 bnx_init_media(sc);
820
821 sc->bnx_ec.ec_mii = &sc->bnx_mii;
822 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
823 ether_mediastatus);
824
825 /* set phyflags and chipid before mii_attach() */
826 dict = device_properties(self);
827 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
828 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
829 prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
830 prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
831
832 /* Print some useful adapter info */
833 bnx_print_adapter_info(sc);
834
835 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
836 mii_flags |= MIIF_HAVEFIBER;
837 mii_attach(self, &sc->bnx_mii, 0xffffffff,
838 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
839
840 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
841 aprint_error_dev(self, "no PHY found!\n");
842 ifmedia_add(&sc->bnx_mii.mii_media,
843 IFM_ETHER|IFM_MANUAL, 0, NULL);
844 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
845 } else
846 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
847
848 /* Attach to the Ethernet interface list. */
849 if_attach(ifp);
850 if_deferred_start_init(ifp, NULL);
851 ether_ifattach(ifp,sc->eaddr);
852
853 callout_init(&sc->bnx_timeout, 0);
854
855 if (pmf_device_register(self, NULL, NULL))
856 pmf_class_network_register(self, ifp);
857 else
858 aprint_error_dev(self, "couldn't establish power handler\n");
859
860 /* Print some important debugging info. */
861 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
862
863 goto bnx_attach_exit;
864
865 bnx_attach_fail:
866 bnx_release_resources(sc);
867
868 bnx_attach_exit:
869 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
870 }
871
872 /****************************************************************************/
873 /* Device detach function. */
874 /* */
875 /* Stops the controller, resets the controller, and releases resources. */
876 /* */
877 /* Returns: */
878 /* 0 on success, positive value on failure. */
879 /****************************************************************************/
880 int
881 bnx_detach(device_t dev, int flags)
882 {
883 int s;
884 struct bnx_softc *sc;
885 struct ifnet *ifp;
886
887 sc = device_private(dev);
888 ifp = &sc->bnx_ec.ec_if;
889
890 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
891
892 /* Stop and reset the controller. */
893 s = splnet();
894 bnx_stop(ifp, 1);
895 splx(s);
896
897 pmf_device_deregister(dev);
898 callout_destroy(&sc->bnx_timeout);
899 ether_ifdetach(ifp);
900 workqueue_destroy(sc->bnx_wq);
901
902 /* Delete all remaining media. */
903 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
904
905 if_detach(ifp);
906 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
907
908 /* Release all remaining resources. */
909 bnx_release_resources(sc);
910
911 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
912
913 return 0;
914 }
915
916 /****************************************************************************/
917 /* Indirect register read. */
918 /* */
919 /* Reads NetXtreme II registers using an index/data register pair in PCI */
920 /* configuration space. Using this mechanism avoids issues with posted */
921 /* reads but is much slower than memory-mapped I/O. */
922 /* */
923 /* Returns: */
924 /* The value of the register. */
925 /****************************************************************************/
926 uint32_t
927 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
928 {
929 struct pci_attach_args *pa = &(sc->bnx_pa);
930
931 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
932 offset);
933 #ifdef BNX_DEBUG
934 {
935 uint32_t val;
936 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
937 BNX_PCICFG_REG_WINDOW);
938 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
939 "val = 0x%08X\n", __func__, offset, val);
940 return val;
941 }
942 #else
943 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
944 #endif
945 }
946
947 /****************************************************************************/
948 /* Indirect register write. */
949 /* */
950 /* Writes NetXtreme II registers using an index/data register pair in PCI */
951 /* configuration space. Using this mechanism avoids issues with posted */
952 /* writes but is muchh slower than memory-mapped I/O. */
953 /* */
954 /* Returns: */
955 /* Nothing. */
956 /****************************************************************************/
957 void
958 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
959 {
960 struct pci_attach_args *pa = &(sc->bnx_pa);
961
962 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
963 __func__, offset, val);
964
965 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
966 offset);
967 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
968 }
969
970 /****************************************************************************/
971 /* Context memory write. */
972 /* */
973 /* The NetXtreme II controller uses context memory to track connection */
974 /* information for L2 and higher network protocols. */
975 /* */
976 /* Returns: */
977 /* Nothing. */
978 /****************************************************************************/
979 void
980 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
981 uint32_t ctx_val)
982 {
983 uint32_t idx, offset = ctx_offset + cid_addr;
984 uint32_t val, retry_cnt = 5;
985
986 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
987 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
988 REG_WR(sc, BNX_CTX_CTX_CTRL,
989 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
990
991 for (idx = 0; idx < retry_cnt; idx++) {
992 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
993 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
994 break;
995 DELAY(5);
996 }
997
998 #if 0
999 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1000 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1001 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1002 __FILE__, __LINE__, cid_addr, ctx_offset);
1003 #endif
1004
1005 } else {
1006 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1007 REG_WR(sc, BNX_CTX_DATA, ctx_val);
1008 }
1009 }
1010
1011 /****************************************************************************/
1012 /* PHY register read. */
1013 /* */
1014 /* Implements register reads on the MII bus. */
1015 /* */
1016 /* Returns: */
1017 /* The value of the register. */
1018 /****************************************************************************/
1019 int
1020 bnx_miibus_read_reg(device_t dev, int phy, int reg)
1021 {
1022 struct bnx_softc *sc = device_private(dev);
1023 uint32_t val;
1024 int i;
1025
1026 /* Make sure we are accessing the correct PHY address. */
1027 if (phy != sc->bnx_phy_addr) {
1028 DBPRINT(sc, BNX_VERBOSE,
1029 "Invalid PHY address %d for PHY read!\n", phy);
1030 return 0;
1031 }
1032
1033 /*
1034 * The BCM5709S PHY is an IEEE Clause 45 PHY
1035 * with special mappings to work with IEEE
1036 * Clause 22 register accesses.
1037 */
1038 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1039 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1040 reg += 0x10;
1041 }
1042
1043 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1044 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1045 val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1046
1047 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
1048 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1049
1050 DELAY(40);
1051 }
1052
1053 val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1054 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1055 BNX_EMAC_MDIO_COMM_START_BUSY;
1056 REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
1057
1058 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1059 DELAY(10);
1060
1061 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1062 if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1063 DELAY(5);
1064
1065 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1066 val &= BNX_EMAC_MDIO_COMM_DATA;
1067
1068 break;
1069 }
1070 }
1071
1072 if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
1073 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1074 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1075 val = 0x0;
1076 } else
1077 val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1078
1079 DBPRINT(sc, BNX_EXCESSIVE,
1080 "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
1081 (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1082
1083 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1084 val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1085 val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1086
1087 REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
1088 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1089
1090 DELAY(40);
1091 }
1092
1093 return (val & 0xffff);
1094 }
1095
1096 /****************************************************************************/
1097 /* PHY register write. */
1098 /* */
1099 /* Implements register writes on the MII bus. */
1100 /* */
1101 /* Returns: */
1102 /* The value of the register. */
1103 /****************************************************************************/
1104 void
1105 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
1106 {
1107 struct bnx_softc *sc = device_private(dev);
1108 uint32_t val1;
1109 int i;
1110
1111 /* Make sure we are accessing the correct PHY address. */
1112 if (phy != sc->bnx_phy_addr) {
1113 DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
1114 phy);
1115 return;
1116 }
1117
1118 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1119 "val = 0x%04X\n", __func__,
1120 phy, (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
1121
1122 /*
1123 * The BCM5709S PHY is an IEEE Clause 45 PHY
1124 * with special mappings to work with IEEE
1125 * Clause 22 register accesses.
1126 */
1127 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1128 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1129 reg += 0x10;
1130 }
1131
1132 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1133 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1134 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1135
1136 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1137 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1138
1139 DELAY(40);
1140 }
1141
1142 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1143 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1144 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1145 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1146
1147 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1148 DELAY(10);
1149
1150 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1151 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1152 DELAY(5);
1153 break;
1154 }
1155 }
1156
1157 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1158 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1159 __LINE__);
1160 }
1161
1162 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1163 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1164 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1165
1166 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1167 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1168
1169 DELAY(40);
1170 }
1171 }
1172
1173 /****************************************************************************/
1174 /* MII bus status change. */
1175 /* */
1176 /* Called by the MII bus driver when the PHY establishes link to set the */
1177 /* MAC interface registers. */
1178 /* */
1179 /* Returns: */
1180 /* Nothing. */
1181 /****************************************************************************/
1182 void
1183 bnx_miibus_statchg(struct ifnet *ifp)
1184 {
1185 struct bnx_softc *sc = ifp->if_softc;
1186 struct mii_data *mii = &sc->bnx_mii;
1187 int val;
1188
1189 val = REG_RD(sc, BNX_EMAC_MODE);
1190 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1191 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1192 BNX_EMAC_MODE_25G);
1193
1194 /* Set MII or GMII interface based on the speed
1195 * negotiated by the PHY.
1196 */
1197 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1198 case IFM_10_T:
1199 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1200 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1201 val |= BNX_EMAC_MODE_PORT_MII_10;
1202 break;
1203 }
1204 /* FALLTHROUGH */
1205 case IFM_100_TX:
1206 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1207 val |= BNX_EMAC_MODE_PORT_MII;
1208 break;
1209 case IFM_2500_SX:
1210 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1211 val |= BNX_EMAC_MODE_25G;
1212 /* FALLTHROUGH */
1213 case IFM_1000_T:
1214 case IFM_1000_SX:
1215 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1216 val |= BNX_EMAC_MODE_PORT_GMII;
1217 break;
1218 default:
1219 val |= BNX_EMAC_MODE_PORT_GMII;
1220 break;
1221 }
1222
1223 /* Set half or full duplex based on the duplicity
1224 * negotiated by the PHY.
1225 */
1226 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1227 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1228 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1229 } else {
1230 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1231 }
1232
1233 REG_WR(sc, BNX_EMAC_MODE, val);
1234 }
1235
1236 /****************************************************************************/
1237 /* Acquire NVRAM lock. */
1238 /* */
1239 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1240 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1241 /* for use by the driver. */
1242 /* */
1243 /* Returns: */
1244 /* 0 on success, positive value on failure. */
1245 /****************************************************************************/
1246 int
1247 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1248 {
1249 uint32_t val;
1250 int j;
1251
1252 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1253
1254 /* Request access to the flash interface. */
1255 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1256 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1257 val = REG_RD(sc, BNX_NVM_SW_ARB);
1258 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1259 break;
1260
1261 DELAY(5);
1262 }
1263
1264 if (j >= NVRAM_TIMEOUT_COUNT) {
1265 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1266 return EBUSY;
1267 }
1268
1269 return 0;
1270 }
1271
1272 /****************************************************************************/
1273 /* Release NVRAM lock. */
1274 /* */
1275 /* When the caller is finished accessing NVRAM the lock must be released. */
1276 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1277 /* for use by the driver. */
1278 /* */
1279 /* Returns: */
1280 /* 0 on success, positive value on failure. */
1281 /****************************************************************************/
1282 int
1283 bnx_release_nvram_lock(struct bnx_softc *sc)
1284 {
1285 int j;
1286 uint32_t val;
1287
1288 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1289
1290 /* Relinquish nvram interface. */
1291 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1292
1293 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1294 val = REG_RD(sc, BNX_NVM_SW_ARB);
1295 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1296 break;
1297
1298 DELAY(5);
1299 }
1300
1301 if (j >= NVRAM_TIMEOUT_COUNT) {
1302 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1303 return EBUSY;
1304 }
1305
1306 return 0;
1307 }
1308
1309 #ifdef BNX_NVRAM_WRITE_SUPPORT
1310 /****************************************************************************/
1311 /* Enable NVRAM write access. */
1312 /* */
1313 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1314 /* */
1315 /* Returns: */
1316 /* 0 on success, positive value on failure. */
1317 /****************************************************************************/
1318 int
1319 bnx_enable_nvram_write(struct bnx_softc *sc)
1320 {
1321 uint32_t val;
1322
1323 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1324
1325 val = REG_RD(sc, BNX_MISC_CFG);
1326 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1327
1328 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1329 int j;
1330
1331 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1332 REG_WR(sc, BNX_NVM_COMMAND,
1333 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1334
1335 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1336 DELAY(5);
1337
1338 val = REG_RD(sc, BNX_NVM_COMMAND);
1339 if (val & BNX_NVM_COMMAND_DONE)
1340 break;
1341 }
1342
1343 if (j >= NVRAM_TIMEOUT_COUNT) {
1344 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1345 return EBUSY;
1346 }
1347 }
1348
1349 return 0;
1350 }
1351
1352 /****************************************************************************/
1353 /* Disable NVRAM write access. */
1354 /* */
1355 /* When the caller is finished writing to NVRAM write access must be */
1356 /* disabled. */
1357 /* */
1358 /* Returns: */
1359 /* Nothing. */
1360 /****************************************************************************/
1361 void
1362 bnx_disable_nvram_write(struct bnx_softc *sc)
1363 {
1364 uint32_t val;
1365
1366 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1367
1368 val = REG_RD(sc, BNX_MISC_CFG);
1369 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1370 }
1371 #endif
1372
1373 /****************************************************************************/
1374 /* Enable NVRAM access. */
1375 /* */
1376 /* Before accessing NVRAM for read or write operations the caller must */
1377 /* enabled NVRAM access. */
1378 /* */
1379 /* Returns: */
1380 /* Nothing. */
1381 /****************************************************************************/
1382 void
1383 bnx_enable_nvram_access(struct bnx_softc *sc)
1384 {
1385 uint32_t val;
1386
1387 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1388
1389 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1390 /* Enable both bits, even on read. */
1391 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1392 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1393 }
1394
1395 /****************************************************************************/
1396 /* Disable NVRAM access. */
1397 /* */
1398 /* When the caller is finished accessing NVRAM access must be disabled. */
1399 /* */
1400 /* Returns: */
1401 /* Nothing. */
1402 /****************************************************************************/
1403 void
1404 bnx_disable_nvram_access(struct bnx_softc *sc)
1405 {
1406 uint32_t val;
1407
1408 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1409
1410 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1411
1412 /* Disable both bits, even after read. */
1413 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1414 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1415 }
1416
1417 #ifdef BNX_NVRAM_WRITE_SUPPORT
1418 /****************************************************************************/
1419 /* Erase NVRAM page before writing. */
1420 /* */
1421 /* Non-buffered flash parts require that a page be erased before it is */
1422 /* written. */
1423 /* */
1424 /* Returns: */
1425 /* 0 on success, positive value on failure. */
1426 /****************************************************************************/
1427 int
1428 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1429 {
1430 uint32_t cmd;
1431 int j;
1432
1433 /* Buffered flash doesn't require an erase. */
1434 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1435 return 0;
1436
1437 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1438
1439 /* Build an erase command. */
1440 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1441 BNX_NVM_COMMAND_DOIT;
1442
1443 /*
1444 * Clear the DONE bit separately, set the NVRAM address to erase,
1445 * and issue the erase command.
1446 */
1447 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1448 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1449 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1450
1451 /* Wait for completion. */
1452 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1453 uint32_t val;
1454
1455 DELAY(5);
1456
1457 val = REG_RD(sc, BNX_NVM_COMMAND);
1458 if (val & BNX_NVM_COMMAND_DONE)
1459 break;
1460 }
1461
1462 if (j >= NVRAM_TIMEOUT_COUNT) {
1463 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1464 return EBUSY;
1465 }
1466
1467 return 0;
1468 }
1469 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1470
1471 /****************************************************************************/
1472 /* Read a dword (32 bits) from NVRAM. */
1473 /* */
1474 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1475 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1476 /* */
1477 /* Returns: */
1478 /* 0 on success and the 32 bit value read, positive value on failure. */
1479 /****************************************************************************/
1480 int
1481 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1482 uint8_t *ret_val, uint32_t cmd_flags)
1483 {
1484 uint32_t cmd;
1485 int i, rc = 0;
1486
1487 /* Build the command word. */
1488 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1489
1490 /* Calculate the offset for buffered flash if translation is used. */
1491 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1492 offset = ((offset / sc->bnx_flash_info->page_size) <<
1493 sc->bnx_flash_info->page_bits) +
1494 (offset % sc->bnx_flash_info->page_size);
1495 }
1496
1497 /*
1498 * Clear the DONE bit separately, set the address to read,
1499 * and issue the read.
1500 */
1501 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1502 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1503 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1504
1505 /* Wait for completion. */
1506 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1507 uint32_t val;
1508
1509 DELAY(5);
1510
1511 val = REG_RD(sc, BNX_NVM_COMMAND);
1512 if (val & BNX_NVM_COMMAND_DONE) {
1513 val = REG_RD(sc, BNX_NVM_READ);
1514
1515 val = bnx_be32toh(val);
1516 memcpy(ret_val, &val, 4);
1517 break;
1518 }
1519 }
1520
1521 /* Check for errors. */
1522 if (i >= NVRAM_TIMEOUT_COUNT) {
1523 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1524 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1525 rc = EBUSY;
1526 }
1527
1528 return rc;
1529 }
1530
1531 #ifdef BNX_NVRAM_WRITE_SUPPORT
1532 /****************************************************************************/
1533 /* Write a dword (32 bits) to NVRAM. */
1534 /* */
1535 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1536 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1537 /* enabled NVRAM write access. */
1538 /* */
1539 /* Returns: */
1540 /* 0 on success, positive value on failure. */
1541 /****************************************************************************/
1542 int
1543 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1544 uint32_t cmd_flags)
1545 {
1546 uint32_t cmd, val32;
1547 int j;
1548
1549 /* Build the command word. */
1550 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1551
1552 /* Calculate the offset for buffered flash if translation is used. */
1553 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1554 offset = ((offset / sc->bnx_flash_info->page_size) <<
1555 sc->bnx_flash_info->page_bits) +
1556 (offset % sc->bnx_flash_info->page_size);
1557 }
1558
1559 /*
1560 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1561 * set the NVRAM address to write, and issue the write command
1562 */
1563 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1564 memcpy(&val32, val, 4);
1565 val32 = htobe32(val32);
1566 REG_WR(sc, BNX_NVM_WRITE, val32);
1567 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1568 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1569
1570 /* Wait for completion. */
1571 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1572 DELAY(5);
1573
1574 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1575 break;
1576 }
1577 if (j >= NVRAM_TIMEOUT_COUNT) {
1578 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1579 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1580 return EBUSY;
1581 }
1582
1583 return 0;
1584 }
1585 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1586
1587 /****************************************************************************/
1588 /* Initialize NVRAM access. */
1589 /* */
1590 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1591 /* access that device. */
1592 /* */
1593 /* Returns: */
1594 /* 0 on success, positive value on failure. */
1595 /****************************************************************************/
1596 int
1597 bnx_init_nvram(struct bnx_softc *sc)
1598 {
1599 uint32_t val;
1600 int j, entry_count, rc = 0;
1601 struct flash_spec *flash;
1602
1603 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1604
1605 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1606 sc->bnx_flash_info = &flash_5709;
1607 goto bnx_init_nvram_get_flash_size;
1608 }
1609
1610 /* Determine the selected interface. */
1611 val = REG_RD(sc, BNX_NVM_CFG1);
1612
1613 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1614
1615 /*
1616 * Flash reconfiguration is required to support additional
1617 * NVRAM devices not directly supported in hardware.
1618 * Check if the flash interface was reconfigured
1619 * by the bootcode.
1620 */
1621
1622 if (val & 0x40000000) {
1623 /* Flash interface reconfigured by bootcode. */
1624
1625 DBPRINT(sc,BNX_INFO_LOAD,
1626 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1627
1628 for (j = 0, flash = &flash_table[0]; j < entry_count;
1629 j++, flash++) {
1630 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1631 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1632 sc->bnx_flash_info = flash;
1633 break;
1634 }
1635 }
1636 } else {
1637 /* Flash interface not yet reconfigured. */
1638 uint32_t mask;
1639
1640 DBPRINT(sc,BNX_INFO_LOAD,
1641 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1642
1643 if (val & (1 << 23))
1644 mask = FLASH_BACKUP_STRAP_MASK;
1645 else
1646 mask = FLASH_STRAP_MASK;
1647
1648 /* Look for the matching NVRAM device configuration data. */
1649 for (j = 0, flash = &flash_table[0]; j < entry_count;
1650 j++, flash++) {
1651 /* Check if the dev matches any of the known devices. */
1652 if ((val & mask) == (flash->strapping & mask)) {
1653 /* Found a device match. */
1654 sc->bnx_flash_info = flash;
1655
1656 /* Request access to the flash interface. */
1657 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1658 return rc;
1659
1660 /* Reconfigure the flash interface. */
1661 bnx_enable_nvram_access(sc);
1662 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1663 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1664 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1665 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1666 bnx_disable_nvram_access(sc);
1667 bnx_release_nvram_lock(sc);
1668
1669 break;
1670 }
1671 }
1672 }
1673
1674 /* Check if a matching device was found. */
1675 if (j == entry_count) {
1676 sc->bnx_flash_info = NULL;
1677 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1678 __FILE__, __LINE__);
1679 rc = ENODEV;
1680 }
1681
1682 bnx_init_nvram_get_flash_size:
1683 /* Write the flash config data to the shared memory interface. */
1684 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1685 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1686 if (val)
1687 sc->bnx_flash_size = val;
1688 else
1689 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1690
1691 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1692 "0x%08X\n", sc->bnx_flash_info->total_size);
1693
1694 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1695
1696 return rc;
1697 }
1698
1699 /****************************************************************************/
1700 /* Read an arbitrary range of data from NVRAM. */
1701 /* */
1702 /* Prepares the NVRAM interface for access and reads the requested data */
1703 /* into the supplied buffer. */
1704 /* */
1705 /* Returns: */
1706 /* 0 on success and the data read, positive value on failure. */
1707 /****************************************************************************/
1708 int
1709 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1710 int buf_size)
1711 {
1712 int rc = 0;
1713 uint32_t cmd_flags, offset32, len32, extra;
1714
1715 if (buf_size == 0)
1716 return 0;
1717
1718 /* Request access to the flash interface. */
1719 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1720 return rc;
1721
1722 /* Enable access to flash interface */
1723 bnx_enable_nvram_access(sc);
1724
1725 len32 = buf_size;
1726 offset32 = offset;
1727 extra = 0;
1728
1729 cmd_flags = 0;
1730
1731 if (offset32 & 3) {
1732 uint8_t buf[4];
1733 uint32_t pre_len;
1734
1735 offset32 &= ~3;
1736 pre_len = 4 - (offset & 3);
1737
1738 if (pre_len >= len32) {
1739 pre_len = len32;
1740 cmd_flags =
1741 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1742 } else
1743 cmd_flags = BNX_NVM_COMMAND_FIRST;
1744
1745 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1746
1747 if (rc)
1748 return rc;
1749
1750 memcpy(ret_buf, buf + (offset & 3), pre_len);
1751
1752 offset32 += 4;
1753 ret_buf += pre_len;
1754 len32 -= pre_len;
1755 }
1756
1757 if (len32 & 3) {
1758 extra = 4 - (len32 & 3);
1759 len32 = (len32 + 4) & ~3;
1760 }
1761
1762 if (len32 == 4) {
1763 uint8_t buf[4];
1764
1765 if (cmd_flags)
1766 cmd_flags = BNX_NVM_COMMAND_LAST;
1767 else
1768 cmd_flags =
1769 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1770
1771 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1772
1773 memcpy(ret_buf, buf, 4 - extra);
1774 } else if (len32 > 0) {
1775 uint8_t buf[4];
1776
1777 /* Read the first word. */
1778 if (cmd_flags)
1779 cmd_flags = 0;
1780 else
1781 cmd_flags = BNX_NVM_COMMAND_FIRST;
1782
1783 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1784
1785 /* Advance to the next dword. */
1786 offset32 += 4;
1787 ret_buf += 4;
1788 len32 -= 4;
1789
1790 while (len32 > 4 && rc == 0) {
1791 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1792
1793 /* Advance to the next dword. */
1794 offset32 += 4;
1795 ret_buf += 4;
1796 len32 -= 4;
1797 }
1798
1799 if (rc)
1800 return rc;
1801
1802 cmd_flags = BNX_NVM_COMMAND_LAST;
1803 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1804
1805 memcpy(ret_buf, buf, 4 - extra);
1806 }
1807
1808 /* Disable access to flash interface and release the lock. */
1809 bnx_disable_nvram_access(sc);
1810 bnx_release_nvram_lock(sc);
1811
1812 return rc;
1813 }
1814
1815 #ifdef BNX_NVRAM_WRITE_SUPPORT
1816 /****************************************************************************/
1817 /* Write an arbitrary range of data from NVRAM. */
1818 /* */
1819 /* Prepares the NVRAM interface for write access and writes the requested */
1820 /* data from the supplied buffer. The caller is responsible for */
1821 /* calculating any appropriate CRCs. */
1822 /* */
1823 /* Returns: */
1824 /* 0 on success, positive value on failure. */
1825 /****************************************************************************/
1826 int
1827 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1828 int buf_size)
1829 {
1830 uint32_t written, offset32, len32;
1831 uint8_t *buf, start[4], end[4];
1832 int rc = 0;
1833 int align_start, align_end;
1834
1835 buf = data_buf;
1836 offset32 = offset;
1837 len32 = buf_size;
1838 align_start = align_end = 0;
1839
1840 if ((align_start = (offset32 & 3))) {
1841 offset32 &= ~3;
1842 len32 += align_start;
1843 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1844 return rc;
1845 }
1846
1847 if (len32 & 3) {
1848 if ((len32 > 4) || !align_start) {
1849 align_end = 4 - (len32 & 3);
1850 len32 += align_end;
1851 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1852 end, 4)))
1853 return rc;
1854 }
1855 }
1856
1857 if (align_start || align_end) {
1858 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1859 if (buf == 0)
1860 return ENOMEM;
1861
1862 if (align_start)
1863 memcpy(buf, start, 4);
1864
1865 if (align_end)
1866 memcpy(buf + len32 - 4, end, 4);
1867
1868 memcpy(buf + align_start, data_buf, buf_size);
1869 }
1870
1871 written = 0;
1872 while ((written < len32) && (rc == 0)) {
1873 uint32_t page_start, page_end, data_start, data_end;
1874 uint32_t addr, cmd_flags;
1875 int i;
1876 uint8_t flash_buffer[264];
1877
1878 /* Find the page_start addr */
1879 page_start = offset32 + written;
1880 page_start -= (page_start % sc->bnx_flash_info->page_size);
1881 /* Find the page_end addr */
1882 page_end = page_start + sc->bnx_flash_info->page_size;
1883 /* Find the data_start addr */
1884 data_start = (written == 0) ? offset32 : page_start;
1885 /* Find the data_end addr */
1886 data_end = (page_end > offset32 + len32) ?
1887 (offset32 + len32) : page_end;
1888
1889 /* Request access to the flash interface. */
1890 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1891 goto nvram_write_end;
1892
1893 /* Enable access to flash interface */
1894 bnx_enable_nvram_access(sc);
1895
1896 cmd_flags = BNX_NVM_COMMAND_FIRST;
1897 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1898 int j;
1899
1900 /* Read the whole page into the buffer
1901 * (non-buffer flash only) */
1902 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1903 if (j == (sc->bnx_flash_info->page_size - 4))
1904 cmd_flags |= BNX_NVM_COMMAND_LAST;
1905
1906 rc = bnx_nvram_read_dword(sc,
1907 page_start + j,
1908 &flash_buffer[j],
1909 cmd_flags);
1910
1911 if (rc)
1912 goto nvram_write_end;
1913
1914 cmd_flags = 0;
1915 }
1916 }
1917
1918 /* Enable writes to flash interface (unlock write-protect) */
1919 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1920 goto nvram_write_end;
1921
1922 /* Erase the page */
1923 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1924 goto nvram_write_end;
1925
1926 /* Re-enable the write again for the actual write */
1927 bnx_enable_nvram_write(sc);
1928
1929 /* Loop to write back the buffer data from page_start to
1930 * data_start */
1931 i = 0;
1932 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1933 for (addr = page_start; addr < data_start;
1934 addr += 4, i += 4) {
1935
1936 rc = bnx_nvram_write_dword(sc, addr,
1937 &flash_buffer[i], cmd_flags);
1938
1939 if (rc != 0)
1940 goto nvram_write_end;
1941
1942 cmd_flags = 0;
1943 }
1944 }
1945
1946 /* Loop to write the new data from data_start to data_end */
1947 for (addr = data_start; addr < data_end; addr += 4, i++) {
1948 if ((addr == page_end - 4) ||
1949 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1950 && (addr == data_end - 4))) {
1951
1952 cmd_flags |= BNX_NVM_COMMAND_LAST;
1953 }
1954
1955 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
1956
1957 if (rc != 0)
1958 goto nvram_write_end;
1959
1960 cmd_flags = 0;
1961 buf += 4;
1962 }
1963
1964 /* Loop to write back the buffer data from data_end
1965 * to page_end */
1966 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1967 for (addr = data_end; addr < page_end;
1968 addr += 4, i += 4) {
1969
1970 if (addr == page_end-4)
1971 cmd_flags = BNX_NVM_COMMAND_LAST;
1972
1973 rc = bnx_nvram_write_dword(sc, addr,
1974 &flash_buffer[i], cmd_flags);
1975
1976 if (rc != 0)
1977 goto nvram_write_end;
1978
1979 cmd_flags = 0;
1980 }
1981 }
1982
1983 /* Disable writes to flash interface (lock write-protect) */
1984 bnx_disable_nvram_write(sc);
1985
1986 /* Disable access to flash interface */
1987 bnx_disable_nvram_access(sc);
1988 bnx_release_nvram_lock(sc);
1989
1990 /* Increment written */
1991 written += data_end - data_start;
1992 }
1993
1994 nvram_write_end:
1995 if (align_start || align_end)
1996 free(buf, M_DEVBUF);
1997
1998 return rc;
1999 }
2000 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2001
2002 /****************************************************************************/
2003 /* Verifies that NVRAM is accessible and contains valid data. */
2004 /* */
2005 /* Reads the configuration data from NVRAM and verifies that the CRC is */
2006 /* correct. */
2007 /* */
2008 /* Returns: */
2009 /* 0 on success, positive value on failure. */
2010 /****************************************************************************/
2011 int
2012 bnx_nvram_test(struct bnx_softc *sc)
2013 {
2014 uint32_t buf[BNX_NVRAM_SIZE / 4];
2015 uint8_t *data = (uint8_t *) buf;
2016 int rc = 0;
2017 uint32_t magic, csum;
2018
2019 /*
2020 * Check that the device NVRAM is valid by reading
2021 * the magic value at offset 0.
2022 */
2023 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2024 goto bnx_nvram_test_done;
2025
2026 magic = bnx_be32toh(buf[0]);
2027 if (magic != BNX_NVRAM_MAGIC) {
2028 rc = ENODEV;
2029 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2030 "Expected: 0x%08X, Found: 0x%08X\n",
2031 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2032 goto bnx_nvram_test_done;
2033 }
2034
2035 /*
2036 * Verify that the device NVRAM includes valid
2037 * configuration data.
2038 */
2039 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2040 goto bnx_nvram_test_done;
2041
2042 csum = ether_crc32_le(data, 0x100);
2043 if (csum != BNX_CRC32_RESIDUAL) {
2044 rc = ENODEV;
2045 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2046 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2047 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2048 goto bnx_nvram_test_done;
2049 }
2050
2051 csum = ether_crc32_le(data + 0x100, 0x100);
2052 if (csum != BNX_CRC32_RESIDUAL) {
2053 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2054 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2055 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2056 rc = ENODEV;
2057 }
2058
2059 bnx_nvram_test_done:
2060 return rc;
2061 }
2062
2063 /****************************************************************************/
2064 /* Identifies the current media type of the controller and sets the PHY */
2065 /* address. */
2066 /* */
2067 /* Returns: */
2068 /* Nothing. */
2069 /****************************************************************************/
2070 void
2071 bnx_get_media(struct bnx_softc *sc)
2072 {
2073 sc->bnx_phy_addr = 1;
2074
2075 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2076 uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2077 uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2078 uint32_t strap;
2079
2080 /*
2081 * The BCM5709S is software configurable
2082 * for Copper or SerDes operation.
2083 */
2084 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2085 DBPRINT(sc, BNX_INFO_LOAD,
2086 "5709 bonded for copper.\n");
2087 goto bnx_get_media_exit;
2088 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2089 DBPRINT(sc, BNX_INFO_LOAD,
2090 "5709 bonded for dual media.\n");
2091 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2092 goto bnx_get_media_exit;
2093 }
2094
2095 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2096 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2097 else {
2098 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2099 >> 8;
2100 }
2101
2102 if (sc->bnx_pa.pa_function == 0) {
2103 switch (strap) {
2104 case 0x4:
2105 case 0x5:
2106 case 0x6:
2107 DBPRINT(sc, BNX_INFO_LOAD,
2108 "BCM5709 s/w configured for SerDes.\n");
2109 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2110 break;
2111 default:
2112 DBPRINT(sc, BNX_INFO_LOAD,
2113 "BCM5709 s/w configured for Copper.\n");
2114 }
2115 } else {
2116 switch (strap) {
2117 case 0x1:
2118 case 0x2:
2119 case 0x4:
2120 DBPRINT(sc, BNX_INFO_LOAD,
2121 "BCM5709 s/w configured for SerDes.\n");
2122 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2123 break;
2124 default:
2125 DBPRINT(sc, BNX_INFO_LOAD,
2126 "BCM5709 s/w configured for Copper.\n");
2127 }
2128 }
2129
2130 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2131 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2132
2133 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2134 uint32_t val;
2135
2136 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2137
2138 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2139 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2140
2141 /*
2142 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2143 * separate PHY for SerDes.
2144 */
2145 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2146 sc->bnx_phy_addr = 2;
2147 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2148 BNX_SHARED_HW_CFG_CONFIG);
2149 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2150 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2151 DBPRINT(sc, BNX_INFO_LOAD,
2152 "Found 2.5Gb capable adapter\n");
2153 }
2154 }
2155 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2156 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2157 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2158
2159 bnx_get_media_exit:
2160 DBPRINT(sc, (BNX_INFO_LOAD),
2161 "Using PHY address %d.\n", sc->bnx_phy_addr);
2162 }
2163
2164 /****************************************************************************/
2165 /* Performs PHY initialization required before MII drivers access the */
2166 /* device. */
2167 /* */
2168 /* Returns: */
2169 /* Nothing. */
2170 /****************************************************************************/
2171 void
2172 bnx_init_media(struct bnx_softc *sc)
2173 {
2174 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2175 /*
2176 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2177 * IEEE Clause 22 method. Otherwise we have no way to attach
2178 * the PHY to the mii(4) layer. PHY specific configuration
2179 * is done by the mii(4) layer.
2180 */
2181
2182 /* Select auto-negotiation MMD of the PHY. */
2183 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2184 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2185
2186 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2187 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2188
2189 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2190 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2191 }
2192 }
2193
2194 /****************************************************************************/
2195 /* Free any DMA memory owned by the driver. */
2196 /* */
2197 /* Scans through each data structre that requires DMA memory and frees */
2198 /* the memory if allocated. */
2199 /* */
2200 /* Returns: */
2201 /* Nothing. */
2202 /****************************************************************************/
2203 void
2204 bnx_dma_free(struct bnx_softc *sc)
2205 {
2206 int i;
2207
2208 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2209
2210 /* Destroy the status block. */
2211 if (sc->status_block != NULL && sc->status_map != NULL) {
2212 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2213 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2214 BNX_STATUS_BLK_SZ);
2215 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2216 sc->status_rseg);
2217 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2218 sc->status_block = NULL;
2219 sc->status_map = NULL;
2220 }
2221
2222 /* Destroy the statistics block. */
2223 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2224 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2225 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2226 BNX_STATS_BLK_SZ);
2227 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2228 sc->stats_rseg);
2229 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2230 sc->stats_block = NULL;
2231 sc->stats_map = NULL;
2232 }
2233
2234 /* Free, unmap and destroy all context memory pages. */
2235 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2236 for (i = 0; i < sc->ctx_pages; i++) {
2237 if (sc->ctx_block[i] != NULL) {
2238 bus_dmamap_unload(sc->bnx_dmatag,
2239 sc->ctx_map[i]);
2240 bus_dmamem_unmap(sc->bnx_dmatag,
2241 (void *)sc->ctx_block[i],
2242 BCM_PAGE_SIZE);
2243 bus_dmamem_free(sc->bnx_dmatag,
2244 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2245 bus_dmamap_destroy(sc->bnx_dmatag,
2246 sc->ctx_map[i]);
2247 sc->ctx_block[i] = NULL;
2248 }
2249 }
2250 }
2251
2252 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2253 for (i = 0; i < TX_PAGES; i++ ) {
2254 if (sc->tx_bd_chain[i] != NULL &&
2255 sc->tx_bd_chain_map[i] != NULL) {
2256 bus_dmamap_unload(sc->bnx_dmatag,
2257 sc->tx_bd_chain_map[i]);
2258 bus_dmamem_unmap(sc->bnx_dmatag,
2259 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2260 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2261 sc->tx_bd_chain_rseg[i]);
2262 bus_dmamap_destroy(sc->bnx_dmatag,
2263 sc->tx_bd_chain_map[i]);
2264 sc->tx_bd_chain[i] = NULL;
2265 sc->tx_bd_chain_map[i] = NULL;
2266 }
2267 }
2268
2269 /* Destroy the TX dmamaps. */
2270 /* This isn't necessary since we dont allocate them up front */
2271
2272 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2273 for (i = 0; i < RX_PAGES; i++ ) {
2274 if (sc->rx_bd_chain[i] != NULL &&
2275 sc->rx_bd_chain_map[i] != NULL) {
2276 bus_dmamap_unload(sc->bnx_dmatag,
2277 sc->rx_bd_chain_map[i]);
2278 bus_dmamem_unmap(sc->bnx_dmatag,
2279 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2280 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2281 sc->rx_bd_chain_rseg[i]);
2282
2283 bus_dmamap_destroy(sc->bnx_dmatag,
2284 sc->rx_bd_chain_map[i]);
2285 sc->rx_bd_chain[i] = NULL;
2286 sc->rx_bd_chain_map[i] = NULL;
2287 }
2288 }
2289
2290 /* Unload and destroy the RX mbuf maps. */
2291 for (i = 0; i < TOTAL_RX_BD; i++) {
2292 if (sc->rx_mbuf_map[i] != NULL) {
2293 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2294 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2295 }
2296 }
2297
2298 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2299 }
2300
2301 /****************************************************************************/
2302 /* Allocate any DMA memory needed by the driver. */
2303 /* */
2304 /* Allocates DMA memory needed for the various global structures needed by */
2305 /* hardware. */
2306 /* */
2307 /* Returns: */
2308 /* 0 for success, positive value for failure. */
2309 /****************************************************************************/
2310 int
2311 bnx_dma_alloc(struct bnx_softc *sc)
2312 {
2313 int i, rc = 0;
2314
2315 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2316
2317 /*
2318 * Allocate DMA memory for the status block, map the memory into DMA
2319 * space, and fetch the physical address of the block.
2320 */
2321 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2322 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2323 aprint_error_dev(sc->bnx_dev,
2324 "Could not create status block DMA map!\n");
2325 rc = ENOMEM;
2326 goto bnx_dma_alloc_exit;
2327 }
2328
2329 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2330 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2331 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2332 aprint_error_dev(sc->bnx_dev,
2333 "Could not allocate status block DMA memory!\n");
2334 rc = ENOMEM;
2335 goto bnx_dma_alloc_exit;
2336 }
2337
2338 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2339 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2340 aprint_error_dev(sc->bnx_dev,
2341 "Could not map status block DMA memory!\n");
2342 rc = ENOMEM;
2343 goto bnx_dma_alloc_exit;
2344 }
2345
2346 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2347 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2348 aprint_error_dev(sc->bnx_dev,
2349 "Could not load status block DMA memory!\n");
2350 rc = ENOMEM;
2351 goto bnx_dma_alloc_exit;
2352 }
2353
2354 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2355 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2356
2357 /* DRC - Fix for 64 bit addresses. */
2358 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2359 (uint32_t) sc->status_block_paddr);
2360
2361 /* BCM5709 uses host memory as cache for context memory. */
2362 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2363 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2364 if (sc->ctx_pages == 0)
2365 sc->ctx_pages = 1;
2366 if (sc->ctx_pages > 4) /* XXX */
2367 sc->ctx_pages = 4;
2368
2369 DBRUNIF((sc->ctx_pages > 512),
2370 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2371 __FILE__, __LINE__, sc->ctx_pages));
2372
2373
2374 for (i = 0; i < sc->ctx_pages; i++) {
2375 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2376 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2377 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2378 &sc->ctx_map[i]) != 0) {
2379 rc = ENOMEM;
2380 goto bnx_dma_alloc_exit;
2381 }
2382
2383 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2384 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2385 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2386 rc = ENOMEM;
2387 goto bnx_dma_alloc_exit;
2388 }
2389
2390 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2391 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2392 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2393 rc = ENOMEM;
2394 goto bnx_dma_alloc_exit;
2395 }
2396
2397 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2398 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2399 BUS_DMA_NOWAIT) != 0) {
2400 rc = ENOMEM;
2401 goto bnx_dma_alloc_exit;
2402 }
2403
2404 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2405 }
2406 }
2407
2408 /*
2409 * Allocate DMA memory for the statistics block, map the memory into
2410 * DMA space, and fetch the physical address of the block.
2411 */
2412 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2413 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2414 aprint_error_dev(sc->bnx_dev,
2415 "Could not create stats block DMA map!\n");
2416 rc = ENOMEM;
2417 goto bnx_dma_alloc_exit;
2418 }
2419
2420 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2421 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2422 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2423 aprint_error_dev(sc->bnx_dev,
2424 "Could not allocate stats block DMA memory!\n");
2425 rc = ENOMEM;
2426 goto bnx_dma_alloc_exit;
2427 }
2428
2429 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2430 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2431 aprint_error_dev(sc->bnx_dev,
2432 "Could not map stats block DMA memory!\n");
2433 rc = ENOMEM;
2434 goto bnx_dma_alloc_exit;
2435 }
2436
2437 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2438 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2439 aprint_error_dev(sc->bnx_dev,
2440 "Could not load status block DMA memory!\n");
2441 rc = ENOMEM;
2442 goto bnx_dma_alloc_exit;
2443 }
2444
2445 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2446 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2447
2448 /* DRC - Fix for 64 bit address. */
2449 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2450 (uint32_t) sc->stats_block_paddr);
2451
2452 /*
2453 * Allocate DMA memory for the TX buffer descriptor chain,
2454 * and fetch the physical address of the block.
2455 */
2456 for (i = 0; i < TX_PAGES; i++) {
2457 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2458 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2459 &sc->tx_bd_chain_map[i])) {
2460 aprint_error_dev(sc->bnx_dev,
2461 "Could not create Tx desc %d DMA map!\n", i);
2462 rc = ENOMEM;
2463 goto bnx_dma_alloc_exit;
2464 }
2465
2466 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2467 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2468 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2469 aprint_error_dev(sc->bnx_dev,
2470 "Could not allocate TX desc %d DMA memory!\n",
2471 i);
2472 rc = ENOMEM;
2473 goto bnx_dma_alloc_exit;
2474 }
2475
2476 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2477 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2478 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2479 aprint_error_dev(sc->bnx_dev,
2480 "Could not map TX desc %d DMA memory!\n", i);
2481 rc = ENOMEM;
2482 goto bnx_dma_alloc_exit;
2483 }
2484
2485 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2486 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2487 BUS_DMA_NOWAIT)) {
2488 aprint_error_dev(sc->bnx_dev,
2489 "Could not load TX desc %d DMA memory!\n", i);
2490 rc = ENOMEM;
2491 goto bnx_dma_alloc_exit;
2492 }
2493
2494 sc->tx_bd_chain_paddr[i] =
2495 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2496
2497 /* DRC - Fix for 64 bit systems. */
2498 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2499 i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2500 }
2501
2502 /*
2503 * Create lists to hold TX mbufs.
2504 */
2505 TAILQ_INIT(&sc->tx_free_pkts);
2506 TAILQ_INIT(&sc->tx_used_pkts);
2507 sc->tx_pkt_count = 0;
2508 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2509
2510 /*
2511 * Allocate DMA memory for the Rx buffer descriptor chain,
2512 * and fetch the physical address of the block.
2513 */
2514 for (i = 0; i < RX_PAGES; i++) {
2515 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2516 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2517 &sc->rx_bd_chain_map[i])) {
2518 aprint_error_dev(sc->bnx_dev,
2519 "Could not create Rx desc %d DMA map!\n", i);
2520 rc = ENOMEM;
2521 goto bnx_dma_alloc_exit;
2522 }
2523
2524 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2525 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2526 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2527 aprint_error_dev(sc->bnx_dev,
2528 "Could not allocate Rx desc %d DMA memory!\n", i);
2529 rc = ENOMEM;
2530 goto bnx_dma_alloc_exit;
2531 }
2532
2533 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2534 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2535 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2536 aprint_error_dev(sc->bnx_dev,
2537 "Could not map Rx desc %d DMA memory!\n", i);
2538 rc = ENOMEM;
2539 goto bnx_dma_alloc_exit;
2540 }
2541
2542 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2543 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2544 BUS_DMA_NOWAIT)) {
2545 aprint_error_dev(sc->bnx_dev,
2546 "Could not load Rx desc %d DMA memory!\n", i);
2547 rc = ENOMEM;
2548 goto bnx_dma_alloc_exit;
2549 }
2550
2551 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2552 sc->rx_bd_chain_paddr[i] =
2553 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2554
2555 /* DRC - Fix for 64 bit systems. */
2556 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2557 i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2558 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2559 0, BNX_RX_CHAIN_PAGE_SZ,
2560 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2561 }
2562
2563 /*
2564 * Create DMA maps for the Rx buffer mbufs.
2565 */
2566 for (i = 0; i < TOTAL_RX_BD; i++) {
2567 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2568 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2569 &sc->rx_mbuf_map[i])) {
2570 aprint_error_dev(sc->bnx_dev,
2571 "Could not create Rx mbuf %d DMA map!\n", i);
2572 rc = ENOMEM;
2573 goto bnx_dma_alloc_exit;
2574 }
2575 }
2576
2577 bnx_dma_alloc_exit:
2578 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2579
2580 return rc;
2581 }
2582
2583 /****************************************************************************/
2584 /* Release all resources used by the driver. */
2585 /* */
2586 /* Releases all resources acquired by the driver including interrupts, */
2587 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2588 /* */
2589 /* Returns: */
2590 /* Nothing. */
2591 /****************************************************************************/
2592 void
2593 bnx_release_resources(struct bnx_softc *sc)
2594 {
2595 struct pci_attach_args *pa = &(sc->bnx_pa);
2596
2597 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2598
2599 bnx_dma_free(sc);
2600
2601 if (sc->bnx_intrhand != NULL)
2602 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2603
2604 if (sc->bnx_size)
2605 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2606
2607 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2608 }
2609
2610 /****************************************************************************/
2611 /* Firmware synchronization. */
2612 /* */
2613 /* Before performing certain events such as a chip reset, synchronize with */
2614 /* the firmware first. */
2615 /* */
2616 /* Returns: */
2617 /* 0 for success, positive value for failure. */
2618 /****************************************************************************/
2619 int
2620 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2621 {
2622 int i, rc = 0;
2623 uint32_t val;
2624
2625 /* Don't waste any time if we've timed out before. */
2626 if (sc->bnx_fw_timed_out) {
2627 rc = EBUSY;
2628 goto bnx_fw_sync_exit;
2629 }
2630
2631 /* Increment the message sequence number. */
2632 sc->bnx_fw_wr_seq++;
2633 msg_data |= sc->bnx_fw_wr_seq;
2634
2635 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2636 msg_data);
2637
2638 /* Send the message to the bootcode driver mailbox. */
2639 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2640
2641 /* Wait for the bootcode to acknowledge the message. */
2642 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2643 /* Check for a response in the bootcode firmware mailbox. */
2644 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2645 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2646 break;
2647 DELAY(1000);
2648 }
2649
2650 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2651 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2652 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2653 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2654 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2655
2656 msg_data &= ~BNX_DRV_MSG_CODE;
2657 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2658
2659 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2660
2661 sc->bnx_fw_timed_out = 1;
2662 rc = EBUSY;
2663 }
2664
2665 bnx_fw_sync_exit:
2666 return rc;
2667 }
2668
2669 /****************************************************************************/
2670 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2671 /* */
2672 /* Returns: */
2673 /* Nothing. */
2674 /****************************************************************************/
2675 void
2676 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2677 uint32_t rv2p_code_len, uint32_t rv2p_proc)
2678 {
2679 int i;
2680 uint32_t val;
2681
2682 /* Set the page size used by RV2P. */
2683 if (rv2p_proc == RV2P_PROC2) {
2684 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2685 USABLE_RX_BD_PER_PAGE);
2686 }
2687
2688 for (i = 0; i < rv2p_code_len; i += 8) {
2689 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2690 rv2p_code++;
2691 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2692 rv2p_code++;
2693
2694 if (rv2p_proc == RV2P_PROC1) {
2695 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2696 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2697 } else {
2698 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2699 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2700 }
2701 }
2702
2703 /* Reset the processor, un-stall is done later. */
2704 if (rv2p_proc == RV2P_PROC1)
2705 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2706 else
2707 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2708 }
2709
2710 /****************************************************************************/
2711 /* Load RISC processor firmware. */
2712 /* */
2713 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2714 /* associated with a particular processor. */
2715 /* */
2716 /* Returns: */
2717 /* Nothing. */
2718 /****************************************************************************/
2719 void
2720 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2721 struct fw_info *fw)
2722 {
2723 uint32_t offset;
2724 uint32_t val;
2725
2726 /* Halt the CPU. */
2727 val = REG_RD_IND(sc, cpu_reg->mode);
2728 val |= cpu_reg->mode_value_halt;
2729 REG_WR_IND(sc, cpu_reg->mode, val);
2730 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2731
2732 /* Load the Text area. */
2733 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2734 if (fw->text) {
2735 int j;
2736
2737 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2738 REG_WR_IND(sc, offset, fw->text[j]);
2739 }
2740
2741 /* Load the Data area. */
2742 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2743 if (fw->data) {
2744 int j;
2745
2746 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2747 REG_WR_IND(sc, offset, fw->data[j]);
2748 }
2749
2750 /* Load the SBSS area. */
2751 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2752 if (fw->sbss) {
2753 int j;
2754
2755 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2756 REG_WR_IND(sc, offset, fw->sbss[j]);
2757 }
2758
2759 /* Load the BSS area. */
2760 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2761 if (fw->bss) {
2762 int j;
2763
2764 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2765 REG_WR_IND(sc, offset, fw->bss[j]);
2766 }
2767
2768 /* Load the Read-Only area. */
2769 offset = cpu_reg->spad_base +
2770 (fw->rodata_addr - cpu_reg->mips_view_base);
2771 if (fw->rodata) {
2772 int j;
2773
2774 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2775 REG_WR_IND(sc, offset, fw->rodata[j]);
2776 }
2777
2778 /* Clear the pre-fetch instruction. */
2779 REG_WR_IND(sc, cpu_reg->inst, 0);
2780 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2781
2782 /* Start the CPU. */
2783 val = REG_RD_IND(sc, cpu_reg->mode);
2784 val &= ~cpu_reg->mode_value_halt;
2785 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2786 REG_WR_IND(sc, cpu_reg->mode, val);
2787 }
2788
2789 /****************************************************************************/
2790 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2791 /* */
2792 /* Loads the firmware for each CPU and starts the CPU. */
2793 /* */
2794 /* Returns: */
2795 /* Nothing. */
2796 /****************************************************************************/
2797 void
2798 bnx_init_cpus(struct bnx_softc *sc)
2799 {
2800 struct cpu_reg cpu_reg;
2801 struct fw_info fw;
2802
2803 switch(BNX_CHIP_NUM(sc)) {
2804 case BNX_CHIP_NUM_5709:
2805 /* Initialize the RV2P processor. */
2806 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2807 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2808 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2809 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2810 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2811 } else {
2812 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2813 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2814 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2815 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2816 }
2817
2818 /* Initialize the RX Processor. */
2819 cpu_reg.mode = BNX_RXP_CPU_MODE;
2820 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2821 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2822 cpu_reg.state = BNX_RXP_CPU_STATE;
2823 cpu_reg.state_value_clear = 0xffffff;
2824 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2825 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2826 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2827 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2828 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2829 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2830 cpu_reg.mips_view_base = 0x8000000;
2831
2832 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2833 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2834 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2835 fw.start_addr = bnx_RXP_b09FwStartAddr;
2836
2837 fw.text_addr = bnx_RXP_b09FwTextAddr;
2838 fw.text_len = bnx_RXP_b09FwTextLen;
2839 fw.text_index = 0;
2840 fw.text = bnx_RXP_b09FwText;
2841
2842 fw.data_addr = bnx_RXP_b09FwDataAddr;
2843 fw.data_len = bnx_RXP_b09FwDataLen;
2844 fw.data_index = 0;
2845 fw.data = bnx_RXP_b09FwData;
2846
2847 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2848 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2849 fw.sbss_index = 0;
2850 fw.sbss = bnx_RXP_b09FwSbss;
2851
2852 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2853 fw.bss_len = bnx_RXP_b09FwBssLen;
2854 fw.bss_index = 0;
2855 fw.bss = bnx_RXP_b09FwBss;
2856
2857 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2858 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2859 fw.rodata_index = 0;
2860 fw.rodata = bnx_RXP_b09FwRodata;
2861
2862 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2863 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2864
2865 /* Initialize the TX Processor. */
2866 cpu_reg.mode = BNX_TXP_CPU_MODE;
2867 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2868 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2869 cpu_reg.state = BNX_TXP_CPU_STATE;
2870 cpu_reg.state_value_clear = 0xffffff;
2871 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2872 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2873 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2874 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2875 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2876 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2877 cpu_reg.mips_view_base = 0x8000000;
2878
2879 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2880 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2881 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2882 fw.start_addr = bnx_TXP_b09FwStartAddr;
2883
2884 fw.text_addr = bnx_TXP_b09FwTextAddr;
2885 fw.text_len = bnx_TXP_b09FwTextLen;
2886 fw.text_index = 0;
2887 fw.text = bnx_TXP_b09FwText;
2888
2889 fw.data_addr = bnx_TXP_b09FwDataAddr;
2890 fw.data_len = bnx_TXP_b09FwDataLen;
2891 fw.data_index = 0;
2892 fw.data = bnx_TXP_b09FwData;
2893
2894 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2895 fw.sbss_len = bnx_TXP_b09FwSbssLen;
2896 fw.sbss_index = 0;
2897 fw.sbss = bnx_TXP_b09FwSbss;
2898
2899 fw.bss_addr = bnx_TXP_b09FwBssAddr;
2900 fw.bss_len = bnx_TXP_b09FwBssLen;
2901 fw.bss_index = 0;
2902 fw.bss = bnx_TXP_b09FwBss;
2903
2904 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2905 fw.rodata_len = bnx_TXP_b09FwRodataLen;
2906 fw.rodata_index = 0;
2907 fw.rodata = bnx_TXP_b09FwRodata;
2908
2909 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2910 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2911
2912 /* Initialize the TX Patch-up Processor. */
2913 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2914 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2915 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2916 cpu_reg.state = BNX_TPAT_CPU_STATE;
2917 cpu_reg.state_value_clear = 0xffffff;
2918 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2919 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2920 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2921 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2922 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2923 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2924 cpu_reg.mips_view_base = 0x8000000;
2925
2926 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2927 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2928 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2929 fw.start_addr = bnx_TPAT_b09FwStartAddr;
2930
2931 fw.text_addr = bnx_TPAT_b09FwTextAddr;
2932 fw.text_len = bnx_TPAT_b09FwTextLen;
2933 fw.text_index = 0;
2934 fw.text = bnx_TPAT_b09FwText;
2935
2936 fw.data_addr = bnx_TPAT_b09FwDataAddr;
2937 fw.data_len = bnx_TPAT_b09FwDataLen;
2938 fw.data_index = 0;
2939 fw.data = bnx_TPAT_b09FwData;
2940
2941 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2942 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2943 fw.sbss_index = 0;
2944 fw.sbss = bnx_TPAT_b09FwSbss;
2945
2946 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2947 fw.bss_len = bnx_TPAT_b09FwBssLen;
2948 fw.bss_index = 0;
2949 fw.bss = bnx_TPAT_b09FwBss;
2950
2951 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
2952 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
2953 fw.rodata_index = 0;
2954 fw.rodata = bnx_TPAT_b09FwRodata;
2955
2956 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
2957 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2958
2959 /* Initialize the Completion Processor. */
2960 cpu_reg.mode = BNX_COM_CPU_MODE;
2961 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
2962 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
2963 cpu_reg.state = BNX_COM_CPU_STATE;
2964 cpu_reg.state_value_clear = 0xffffff;
2965 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
2966 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
2967 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
2968 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
2969 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
2970 cpu_reg.spad_base = BNX_COM_SCRATCH;
2971 cpu_reg.mips_view_base = 0x8000000;
2972
2973 fw.ver_major = bnx_COM_b09FwReleaseMajor;
2974 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
2975 fw.ver_fix = bnx_COM_b09FwReleaseFix;
2976 fw.start_addr = bnx_COM_b09FwStartAddr;
2977
2978 fw.text_addr = bnx_COM_b09FwTextAddr;
2979 fw.text_len = bnx_COM_b09FwTextLen;
2980 fw.text_index = 0;
2981 fw.text = bnx_COM_b09FwText;
2982
2983 fw.data_addr = bnx_COM_b09FwDataAddr;
2984 fw.data_len = bnx_COM_b09FwDataLen;
2985 fw.data_index = 0;
2986 fw.data = bnx_COM_b09FwData;
2987
2988 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
2989 fw.sbss_len = bnx_COM_b09FwSbssLen;
2990 fw.sbss_index = 0;
2991 fw.sbss = bnx_COM_b09FwSbss;
2992
2993 fw.bss_addr = bnx_COM_b09FwBssAddr;
2994 fw.bss_len = bnx_COM_b09FwBssLen;
2995 fw.bss_index = 0;
2996 fw.bss = bnx_COM_b09FwBss;
2997
2998 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
2999 fw.rodata_len = bnx_COM_b09FwRodataLen;
3000 fw.rodata_index = 0;
3001 fw.rodata = bnx_COM_b09FwRodata;
3002 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3003 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3004 break;
3005 default:
3006 /* Initialize the RV2P processor. */
3007 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3008 RV2P_PROC1);
3009 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3010 RV2P_PROC2);
3011
3012 /* Initialize the RX Processor. */
3013 cpu_reg.mode = BNX_RXP_CPU_MODE;
3014 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3015 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3016 cpu_reg.state = BNX_RXP_CPU_STATE;
3017 cpu_reg.state_value_clear = 0xffffff;
3018 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3019 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3020 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3021 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3022 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3023 cpu_reg.spad_base = BNX_RXP_SCRATCH;
3024 cpu_reg.mips_view_base = 0x8000000;
3025
3026 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3027 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3028 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3029 fw.start_addr = bnx_RXP_b06FwStartAddr;
3030
3031 fw.text_addr = bnx_RXP_b06FwTextAddr;
3032 fw.text_len = bnx_RXP_b06FwTextLen;
3033 fw.text_index = 0;
3034 fw.text = bnx_RXP_b06FwText;
3035
3036 fw.data_addr = bnx_RXP_b06FwDataAddr;
3037 fw.data_len = bnx_RXP_b06FwDataLen;
3038 fw.data_index = 0;
3039 fw.data = bnx_RXP_b06FwData;
3040
3041 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3042 fw.sbss_len = bnx_RXP_b06FwSbssLen;
3043 fw.sbss_index = 0;
3044 fw.sbss = bnx_RXP_b06FwSbss;
3045
3046 fw.bss_addr = bnx_RXP_b06FwBssAddr;
3047 fw.bss_len = bnx_RXP_b06FwBssLen;
3048 fw.bss_index = 0;
3049 fw.bss = bnx_RXP_b06FwBss;
3050
3051 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3052 fw.rodata_len = bnx_RXP_b06FwRodataLen;
3053 fw.rodata_index = 0;
3054 fw.rodata = bnx_RXP_b06FwRodata;
3055
3056 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3057 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3058
3059 /* Initialize the TX Processor. */
3060 cpu_reg.mode = BNX_TXP_CPU_MODE;
3061 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3062 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3063 cpu_reg.state = BNX_TXP_CPU_STATE;
3064 cpu_reg.state_value_clear = 0xffffff;
3065 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3066 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3067 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3068 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3069 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3070 cpu_reg.spad_base = BNX_TXP_SCRATCH;
3071 cpu_reg.mips_view_base = 0x8000000;
3072
3073 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3074 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3075 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3076 fw.start_addr = bnx_TXP_b06FwStartAddr;
3077
3078 fw.text_addr = bnx_TXP_b06FwTextAddr;
3079 fw.text_len = bnx_TXP_b06FwTextLen;
3080 fw.text_index = 0;
3081 fw.text = bnx_TXP_b06FwText;
3082
3083 fw.data_addr = bnx_TXP_b06FwDataAddr;
3084 fw.data_len = bnx_TXP_b06FwDataLen;
3085 fw.data_index = 0;
3086 fw.data = bnx_TXP_b06FwData;
3087
3088 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3089 fw.sbss_len = bnx_TXP_b06FwSbssLen;
3090 fw.sbss_index = 0;
3091 fw.sbss = bnx_TXP_b06FwSbss;
3092
3093 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3094 fw.bss_len = bnx_TXP_b06FwBssLen;
3095 fw.bss_index = 0;
3096 fw.bss = bnx_TXP_b06FwBss;
3097
3098 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3099 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3100 fw.rodata_index = 0;
3101 fw.rodata = bnx_TXP_b06FwRodata;
3102
3103 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3104 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3105
3106 /* Initialize the TX Patch-up Processor. */
3107 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3108 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3109 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3110 cpu_reg.state = BNX_TPAT_CPU_STATE;
3111 cpu_reg.state_value_clear = 0xffffff;
3112 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3113 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3114 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3115 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3116 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3117 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3118 cpu_reg.mips_view_base = 0x8000000;
3119
3120 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3121 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3122 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3123 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3124
3125 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3126 fw.text_len = bnx_TPAT_b06FwTextLen;
3127 fw.text_index = 0;
3128 fw.text = bnx_TPAT_b06FwText;
3129
3130 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3131 fw.data_len = bnx_TPAT_b06FwDataLen;
3132 fw.data_index = 0;
3133 fw.data = bnx_TPAT_b06FwData;
3134
3135 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3136 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3137 fw.sbss_index = 0;
3138 fw.sbss = bnx_TPAT_b06FwSbss;
3139
3140 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3141 fw.bss_len = bnx_TPAT_b06FwBssLen;
3142 fw.bss_index = 0;
3143 fw.bss = bnx_TPAT_b06FwBss;
3144
3145 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3146 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3147 fw.rodata_index = 0;
3148 fw.rodata = bnx_TPAT_b06FwRodata;
3149
3150 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3151 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3152
3153 /* Initialize the Completion Processor. */
3154 cpu_reg.mode = BNX_COM_CPU_MODE;
3155 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3156 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3157 cpu_reg.state = BNX_COM_CPU_STATE;
3158 cpu_reg.state_value_clear = 0xffffff;
3159 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3160 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3161 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3162 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3163 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3164 cpu_reg.spad_base = BNX_COM_SCRATCH;
3165 cpu_reg.mips_view_base = 0x8000000;
3166
3167 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3168 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3169 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3170 fw.start_addr = bnx_COM_b06FwStartAddr;
3171
3172 fw.text_addr = bnx_COM_b06FwTextAddr;
3173 fw.text_len = bnx_COM_b06FwTextLen;
3174 fw.text_index = 0;
3175 fw.text = bnx_COM_b06FwText;
3176
3177 fw.data_addr = bnx_COM_b06FwDataAddr;
3178 fw.data_len = bnx_COM_b06FwDataLen;
3179 fw.data_index = 0;
3180 fw.data = bnx_COM_b06FwData;
3181
3182 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3183 fw.sbss_len = bnx_COM_b06FwSbssLen;
3184 fw.sbss_index = 0;
3185 fw.sbss = bnx_COM_b06FwSbss;
3186
3187 fw.bss_addr = bnx_COM_b06FwBssAddr;
3188 fw.bss_len = bnx_COM_b06FwBssLen;
3189 fw.bss_index = 0;
3190 fw.bss = bnx_COM_b06FwBss;
3191
3192 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3193 fw.rodata_len = bnx_COM_b06FwRodataLen;
3194 fw.rodata_index = 0;
3195 fw.rodata = bnx_COM_b06FwRodata;
3196 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3197 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3198 break;
3199 }
3200 }
3201
3202 /****************************************************************************/
3203 /* Initialize context memory. */
3204 /* */
3205 /* Clears the memory associated with each Context ID (CID). */
3206 /* */
3207 /* Returns: */
3208 /* Nothing. */
3209 /****************************************************************************/
3210 void
3211 bnx_init_context(struct bnx_softc *sc)
3212 {
3213 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3214 /* DRC: Replace this constant value with a #define. */
3215 int i, retry_cnt = 10;
3216 uint32_t val;
3217
3218 /*
3219 * BCM5709 context memory may be cached
3220 * in host memory so prepare the host memory
3221 * for access.
3222 */
3223 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3224 | (1 << 12);
3225 val |= (BCM_PAGE_BITS - 8) << 16;
3226 REG_WR(sc, BNX_CTX_COMMAND, val);
3227
3228 /* Wait for mem init command to complete. */
3229 for (i = 0; i < retry_cnt; i++) {
3230 val = REG_RD(sc, BNX_CTX_COMMAND);
3231 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3232 break;
3233 DELAY(2);
3234 }
3235
3236 /* ToDo: Consider returning an error here. */
3237
3238 for (i = 0; i < sc->ctx_pages; i++) {
3239 int j;
3240
3241 /* Set the physaddr of the context memory cache. */
3242 val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3243 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3244 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3245 val = (uint32_t)
3246 ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3247 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3248 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3249 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3250
3251 /* Verify that the context memory write was successful. */
3252 for (j = 0; j < retry_cnt; j++) {
3253 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3254 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3255 break;
3256 DELAY(5);
3257 }
3258
3259 /* ToDo: Consider returning an error here. */
3260 }
3261 } else {
3262 uint32_t vcid_addr, offset;
3263
3264 /*
3265 * For the 5706/5708, context memory is local to
3266 * the controller, so initialize the controller
3267 * context memory.
3268 */
3269
3270 vcid_addr = GET_CID_ADDR(96);
3271 while (vcid_addr) {
3272
3273 vcid_addr -= BNX_PHY_CTX_SIZE;
3274
3275 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3276 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3277
3278 for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
3279 CTX_WR(sc, 0x00, offset, 0);
3280 }
3281
3282 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3283 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3284 }
3285 }
3286 }
3287
3288 /****************************************************************************/
3289 /* Fetch the permanent MAC address of the controller. */
3290 /* */
3291 /* Returns: */
3292 /* Nothing. */
3293 /****************************************************************************/
3294 void
3295 bnx_get_mac_addr(struct bnx_softc *sc)
3296 {
3297 uint32_t mac_lo = 0, mac_hi = 0;
3298
3299 /*
3300 * The NetXtreme II bootcode populates various NIC
3301 * power-on and runtime configuration items in a
3302 * shared memory area. The factory configured MAC
3303 * address is available from both NVRAM and the
3304 * shared memory area so we'll read the value from
3305 * shared memory for speed.
3306 */
3307
3308 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3309 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3310
3311 if ((mac_lo == 0) && (mac_hi == 0)) {
3312 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3313 __FILE__, __LINE__);
3314 } else {
3315 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3316 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3317 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3318 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3319 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3320 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3321 }
3322
3323 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3324 "%s\n", ether_sprintf(sc->eaddr));
3325 }
3326
3327 /****************************************************************************/
3328 /* Program the MAC address. */
3329 /* */
3330 /* Returns: */
3331 /* Nothing. */
3332 /****************************************************************************/
3333 void
3334 bnx_set_mac_addr(struct bnx_softc *sc)
3335 {
3336 uint32_t val;
3337 const uint8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3338
3339 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3340 "%s\n", ether_sprintf(sc->eaddr));
3341
3342 val = (mac_addr[0] << 8) | mac_addr[1];
3343
3344 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3345
3346 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3347 (mac_addr[4] << 8) | mac_addr[5];
3348
3349 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3350 }
3351
3352 /****************************************************************************/
3353 /* Stop the controller. */
3354 /* */
3355 /* Returns: */
3356 /* Nothing. */
3357 /****************************************************************************/
3358 void
3359 bnx_stop(struct ifnet *ifp, int disable)
3360 {
3361 struct bnx_softc *sc = ifp->if_softc;
3362
3363 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3364
3365 if (disable) {
3366 sc->bnx_detaching = 1;
3367 callout_halt(&sc->bnx_timeout, NULL);
3368 } else
3369 callout_stop(&sc->bnx_timeout);
3370
3371 mii_down(&sc->bnx_mii);
3372
3373 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3374
3375 /* Disable the transmit/receive blocks. */
3376 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3377 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3378 DELAY(20);
3379
3380 bnx_disable_intr(sc);
3381
3382 /* Tell firmware that the driver is going away. */
3383 if (disable)
3384 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3385 else
3386 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3387
3388 /* Free RX buffers. */
3389 bnx_free_rx_chain(sc);
3390
3391 /* Free TX buffers. */
3392 bnx_free_tx_chain(sc);
3393
3394 ifp->if_timer = 0;
3395
3396 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3397
3398 }
3399
3400 int
3401 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3402 {
3403 struct pci_attach_args *pa = &(sc->bnx_pa);
3404 uint32_t val;
3405 int i, rc = 0;
3406
3407 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3408
3409 /* Wait for pending PCI transactions to complete. */
3410 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3411 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3412 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3413 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3414 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3415 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3416 DELAY(5);
3417
3418 /* Disable DMA */
3419 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3420 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3421 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3422 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3423 }
3424
3425 /* Assume bootcode is running. */
3426 sc->bnx_fw_timed_out = 0;
3427
3428 /* Give the firmware a chance to prepare for the reset. */
3429 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3430 if (rc)
3431 goto bnx_reset_exit;
3432
3433 /* Set a firmware reminder that this is a soft reset. */
3434 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3435 BNX_DRV_RESET_SIGNATURE_MAGIC);
3436
3437 /* Dummy read to force the chip to complete all current transactions. */
3438 val = REG_RD(sc, BNX_MISC_ID);
3439
3440 /* Chip reset. */
3441 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3442 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3443 REG_RD(sc, BNX_MISC_COMMAND);
3444 DELAY(5);
3445
3446 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3447 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3448
3449 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3450 val);
3451 } else {
3452 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3453 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3454 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3455 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3456
3457 /* Allow up to 30us for reset to complete. */
3458 for (i = 0; i < 10; i++) {
3459 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3460 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3461 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3462 break;
3463 }
3464 DELAY(10);
3465 }
3466
3467 /* Check that reset completed successfully. */
3468 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3469 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3470 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3471 __FILE__, __LINE__);
3472 rc = EBUSY;
3473 goto bnx_reset_exit;
3474 }
3475 }
3476
3477 /* Make sure byte swapping is properly configured. */
3478 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3479 if (val != 0x01020304) {
3480 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3481 __FILE__, __LINE__);
3482 rc = ENODEV;
3483 goto bnx_reset_exit;
3484 }
3485
3486 /* Just completed a reset, assume that firmware is running again. */
3487 sc->bnx_fw_timed_out = 0;
3488
3489 /* Wait for the firmware to finish its initialization. */
3490 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3491 if (rc)
3492 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3493 "initialization!\n", __FILE__, __LINE__);
3494
3495 bnx_reset_exit:
3496 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3497
3498 return rc;
3499 }
3500
3501 int
3502 bnx_chipinit(struct bnx_softc *sc)
3503 {
3504 struct pci_attach_args *pa = &(sc->bnx_pa);
3505 uint32_t val;
3506 int rc = 0;
3507
3508 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3509
3510 /* Make sure the interrupt is not active. */
3511 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3512
3513 /* Initialize DMA byte/word swapping, configure the number of DMA */
3514 /* channels and PCI clock compensation delay. */
3515 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3516 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3517 #if BYTE_ORDER == BIG_ENDIAN
3518 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3519 #endif
3520 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3521 DMA_READ_CHANS << 12 |
3522 DMA_WRITE_CHANS << 16;
3523
3524 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3525
3526 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3527 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3528
3529 /*
3530 * This setting resolves a problem observed on certain Intel PCI
3531 * chipsets that cannot handle multiple outstanding DMA operations.
3532 * See errata E9_5706A1_65.
3533 */
3534 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3535 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3536 !(sc->bnx_flags & BNX_PCIX_FLAG))
3537 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3538
3539 REG_WR(sc, BNX_DMA_CONFIG, val);
3540
3541 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3542 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3543 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3544 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3545 val & ~0x20000);
3546 }
3547
3548 /* Enable the RX_V2P and Context state machines before access. */
3549 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3550 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3551 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3552 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3553
3554 /* Initialize context mapping and zero out the quick contexts. */
3555 bnx_init_context(sc);
3556
3557 /* Initialize the on-boards CPUs */
3558 bnx_init_cpus(sc);
3559
3560 /* Prepare NVRAM for access. */
3561 if (bnx_init_nvram(sc)) {
3562 rc = ENODEV;
3563 goto bnx_chipinit_exit;
3564 }
3565
3566 /* Set the kernel bypass block size */
3567 val = REG_RD(sc, BNX_MQ_CONFIG);
3568 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3569 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3570
3571 /* Enable bins used on the 5709. */
3572 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3573 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3574 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3575 val |= BNX_MQ_CONFIG_HALT_DIS;
3576 }
3577
3578 REG_WR(sc, BNX_MQ_CONFIG, val);
3579
3580 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3581 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3582 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3583
3584 val = (BCM_PAGE_BITS - 8) << 24;
3585 REG_WR(sc, BNX_RV2P_CONFIG, val);
3586
3587 /* Configure page size. */
3588 val = REG_RD(sc, BNX_TBDR_CONFIG);
3589 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3590 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3591 REG_WR(sc, BNX_TBDR_CONFIG, val);
3592
3593 #if 0
3594 /* Set the perfect match control register to default. */
3595 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3596 #endif
3597
3598 bnx_chipinit_exit:
3599 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3600
3601 return rc;
3602 }
3603
3604 /****************************************************************************/
3605 /* Initialize the controller in preparation to send/receive traffic. */
3606 /* */
3607 /* Returns: */
3608 /* 0 for success, positive value for failure. */
3609 /****************************************************************************/
3610 int
3611 bnx_blockinit(struct bnx_softc *sc)
3612 {
3613 uint32_t reg, val;
3614 int rc = 0;
3615
3616 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3617
3618 /* Load the hardware default MAC address. */
3619 bnx_set_mac_addr(sc);
3620
3621 /* Set the Ethernet backoff seed value */
3622 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3623 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3624 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3625
3626 sc->last_status_idx = 0;
3627 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3628
3629 /* Set up link change interrupt generation. */
3630 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3631 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3632
3633 /* Program the physical address of the status block. */
3634 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3635 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3636 (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3637
3638 /* Program the physical address of the statistics block. */
3639 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3640 (uint32_t)(sc->stats_block_paddr));
3641 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3642 (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3643
3644 /* Program various host coalescing parameters. */
3645 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3646 << 16) | sc->bnx_tx_quick_cons_trip);
3647 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3648 << 16) | sc->bnx_rx_quick_cons_trip);
3649 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3650 sc->bnx_comp_prod_trip);
3651 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3652 sc->bnx_tx_ticks);
3653 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3654 sc->bnx_rx_ticks);
3655 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3656 sc->bnx_com_ticks);
3657 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3658 sc->bnx_cmd_ticks);
3659 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3660 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3661 REG_WR(sc, BNX_HC_CONFIG,
3662 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3663 BNX_HC_CONFIG_COLLECT_STATS));
3664
3665 /* Clear the internal statistics counters. */
3666 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3667
3668 /* Verify that bootcode is running. */
3669 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3670
3671 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3672 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3673 __FILE__, __LINE__); reg = 0);
3674
3675 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3676 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3677 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3678 "Expected: 08%08X\n", __FILE__, __LINE__,
3679 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3680 BNX_DEV_INFO_SIGNATURE_MAGIC);
3681 rc = ENODEV;
3682 goto bnx_blockinit_exit;
3683 }
3684
3685 /* Check if any management firmware is running. */
3686 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3687 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3688 BNX_PORT_FEATURE_IMD_ENABLED)) {
3689 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3690 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3691 }
3692
3693 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3694 BNX_DEV_INFO_BC_REV);
3695
3696 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3697
3698 /* Enable DMA */
3699 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3700 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3701 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3702 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3703 }
3704
3705 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3706 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3707
3708 /* Enable link state change interrupt generation. */
3709 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3710 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3711 BNX_MISC_ENABLE_DEFAULT_XI);
3712 } else
3713 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3714
3715 /* Enable all remaining blocks in the MAC. */
3716 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3717 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3718 DELAY(20);
3719
3720 bnx_blockinit_exit:
3721 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3722
3723 return rc;
3724 }
3725
3726 static int
3727 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3728 uint16_t *chain_prod, uint32_t *prod_bseq)
3729 {
3730 bus_dmamap_t map;
3731 struct rx_bd *rxbd;
3732 uint32_t addr;
3733 int i;
3734 #ifdef BNX_DEBUG
3735 uint16_t debug_chain_prod = *chain_prod;
3736 #endif
3737 uint16_t first_chain_prod;
3738
3739 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3740
3741 /* Map the mbuf cluster into device memory. */
3742 map = sc->rx_mbuf_map[*chain_prod];
3743 first_chain_prod = *chain_prod;
3744 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3745 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3746 __FILE__, __LINE__);
3747
3748 m_freem(m_new);
3749
3750 DBRUNIF(1, sc->rx_mbuf_alloc--);
3751
3752 return ENOBUFS;
3753 }
3754 /* Make sure there is room in the receive chain. */
3755 if (map->dm_nsegs > sc->free_rx_bd) {
3756 bus_dmamap_unload(sc->bnx_dmatag, map);
3757 m_freem(m_new);
3758 return EFBIG;
3759 }
3760 #ifdef BNX_DEBUG
3761 /* Track the distribution of buffer segments. */
3762 sc->rx_mbuf_segs[map->dm_nsegs]++;
3763 #endif
3764
3765 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3766 BUS_DMASYNC_PREREAD);
3767
3768 /* Update some debug statistics counters */
3769 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3770 sc->rx_low_watermark = sc->free_rx_bd);
3771 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3772
3773 /*
3774 * Setup the rx_bd for the first segment
3775 */
3776 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3777
3778 addr = (uint32_t)map->dm_segs[0].ds_addr;
3779 rxbd->rx_bd_haddr_lo = addr;
3780 addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3781 rxbd->rx_bd_haddr_hi = addr;
3782 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3783 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3784 *prod_bseq += map->dm_segs[0].ds_len;
3785 bus_dmamap_sync(sc->bnx_dmatag,
3786 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3787 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3788 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3789
3790 for (i = 1; i < map->dm_nsegs; i++) {
3791 *prod = NEXT_RX_BD(*prod);
3792 *chain_prod = RX_CHAIN_IDX(*prod);
3793
3794 rxbd =
3795 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3796
3797 addr = (uint32_t)map->dm_segs[i].ds_addr;
3798 rxbd->rx_bd_haddr_lo = addr;
3799 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3800 rxbd->rx_bd_haddr_hi = addr;
3801 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3802 rxbd->rx_bd_flags = 0;
3803 *prod_bseq += map->dm_segs[i].ds_len;
3804 bus_dmamap_sync(sc->bnx_dmatag,
3805 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3806 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3807 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3808 }
3809
3810 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3811 bus_dmamap_sync(sc->bnx_dmatag,
3812 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3813 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3814 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3815
3816 /*
3817 * Save the mbuf, adjust the map pointer (swap map for first and
3818 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3819 * and update our counter.
3820 */
3821 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3822 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3823 sc->rx_mbuf_map[*chain_prod] = map;
3824 sc->free_rx_bd -= map->dm_nsegs;
3825
3826 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3827 map->dm_nsegs));
3828 *prod = NEXT_RX_BD(*prod);
3829 *chain_prod = RX_CHAIN_IDX(*prod);
3830
3831 return 0;
3832 }
3833
3834 /****************************************************************************/
3835 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3836 /* */
3837 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3838 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3839 /* necessary. */
3840 /* */
3841 /* Returns: */
3842 /* 0 for success, positive value for failure. */
3843 /****************************************************************************/
3844 int
3845 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3846 uint16_t *chain_prod, uint32_t *prod_bseq)
3847 {
3848 struct mbuf *m_new = NULL;
3849 int rc = 0;
3850 uint16_t min_free_bd;
3851
3852 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3853 __func__);
3854
3855 /* Make sure the inputs are valid. */
3856 DBRUNIF((*chain_prod > MAX_RX_BD),
3857 aprint_error_dev(sc->bnx_dev,
3858 "RX producer out of range: 0x%04X > 0x%04X\n",
3859 *chain_prod, (uint16_t)MAX_RX_BD));
3860
3861 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3862 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3863 *prod_bseq);
3864
3865 /* try to get in as many mbufs as possible */
3866 if (sc->mbuf_alloc_size == MCLBYTES)
3867 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3868 else
3869 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3870 while (sc->free_rx_bd >= min_free_bd) {
3871 /* Simulate an mbuf allocation failure. */
3872 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3873 aprint_error_dev(sc->bnx_dev,
3874 "Simulating mbuf allocation failure.\n");
3875 sc->mbuf_sim_alloc_failed++;
3876 rc = ENOBUFS;
3877 goto bnx_get_buf_exit);
3878
3879 /* This is a new mbuf allocation. */
3880 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3881 if (m_new == NULL) {
3882 DBPRINT(sc, BNX_WARN,
3883 "%s(%d): RX mbuf header allocation failed!\n",
3884 __FILE__, __LINE__);
3885
3886 sc->mbuf_alloc_failed++;
3887
3888 rc = ENOBUFS;
3889 goto bnx_get_buf_exit;
3890 }
3891
3892 DBRUNIF(1, sc->rx_mbuf_alloc++);
3893
3894 /* Simulate an mbuf cluster allocation failure. */
3895 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3896 m_freem(m_new);
3897 sc->rx_mbuf_alloc--;
3898 sc->mbuf_alloc_failed++;
3899 sc->mbuf_sim_alloc_failed++;
3900 rc = ENOBUFS;
3901 goto bnx_get_buf_exit);
3902
3903 if (sc->mbuf_alloc_size == MCLBYTES)
3904 MCLGET(m_new, M_DONTWAIT);
3905 else
3906 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3907 M_DONTWAIT);
3908 if (!(m_new->m_flags & M_EXT)) {
3909 DBPRINT(sc, BNX_WARN,
3910 "%s(%d): RX mbuf chain allocation failed!\n",
3911 __FILE__, __LINE__);
3912
3913 m_freem(m_new);
3914
3915 DBRUNIF(1, sc->rx_mbuf_alloc--);
3916 sc->mbuf_alloc_failed++;
3917
3918 rc = ENOBUFS;
3919 goto bnx_get_buf_exit;
3920 }
3921
3922 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3923 if (rc != 0)
3924 goto bnx_get_buf_exit;
3925 }
3926
3927 bnx_get_buf_exit:
3928 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3929 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3930 *chain_prod, *prod_bseq);
3931
3932 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3933 __func__);
3934
3935 return rc;
3936 }
3937
3938 void
3939 bnx_alloc_pkts(struct work * unused, void * arg)
3940 {
3941 struct bnx_softc *sc = arg;
3942 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3943 struct bnx_pkt *pkt;
3944 int i, s;
3945
3946 for (i = 0; i < 4; i++) { /* magic! */
3947 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
3948 if (pkt == NULL)
3949 break;
3950
3951 if (bus_dmamap_create(sc->bnx_dmatag,
3952 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
3953 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
3954 &pkt->pkt_dmamap) != 0)
3955 goto put;
3956
3957 if (!ISSET(ifp->if_flags, IFF_UP))
3958 goto stopping;
3959
3960 mutex_enter(&sc->tx_pkt_mtx);
3961 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
3962 sc->tx_pkt_count++;
3963 mutex_exit(&sc->tx_pkt_mtx);
3964 }
3965
3966 mutex_enter(&sc->tx_pkt_mtx);
3967 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
3968 mutex_exit(&sc->tx_pkt_mtx);
3969
3970 /* fire-up TX now that allocations have been done */
3971 s = splnet();
3972 if (!IFQ_IS_EMPTY(&ifp->if_snd))
3973 bnx_start(ifp);
3974 splx(s);
3975
3976 return;
3977
3978 stopping:
3979 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
3980 put:
3981 pool_put(bnx_tx_pool, pkt);
3982 return;
3983 }
3984
3985 /****************************************************************************/
3986 /* Initialize the TX context memory. */
3987 /* */
3988 /* Returns: */
3989 /* Nothing */
3990 /****************************************************************************/
3991 void
3992 bnx_init_tx_context(struct bnx_softc *sc)
3993 {
3994 uint32_t val;
3995
3996 /* Initialize the context ID for an L2 TX chain. */
3997 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3998 /* Set the CID type to support an L2 connection. */
3999 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4000 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4001 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4002 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4003
4004 /* Point the hardware to the first page in the chain. */
4005 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4006 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4007 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4008 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4009 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4010 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4011 } else {
4012 /* Set the CID type to support an L2 connection. */
4013 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4014 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4015 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4016 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4017
4018 /* Point the hardware to the first page in the chain. */
4019 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4020 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4021 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4022 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4023 }
4024 }
4025
4026
4027 /****************************************************************************/
4028 /* Allocate memory and initialize the TX data structures. */
4029 /* */
4030 /* Returns: */
4031 /* 0 for success, positive value for failure. */
4032 /****************************************************************************/
4033 int
4034 bnx_init_tx_chain(struct bnx_softc *sc)
4035 {
4036 struct tx_bd *txbd;
4037 uint32_t addr;
4038 int i, rc = 0;
4039
4040 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4041
4042 /* Force an allocation of some dmamaps for tx up front */
4043 bnx_alloc_pkts(NULL, sc);
4044
4045 /* Set the initial TX producer/consumer indices. */
4046 sc->tx_prod = 0;
4047 sc->tx_cons = 0;
4048 sc->tx_prod_bseq = 0;
4049 sc->used_tx_bd = 0;
4050 sc->max_tx_bd = USABLE_TX_BD;
4051 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4052 DBRUNIF(1, sc->tx_full_count = 0);
4053
4054 /*
4055 * The NetXtreme II supports a linked-list structure called
4056 * a Buffer Descriptor Chain (or BD chain). A BD chain
4057 * consists of a series of 1 or more chain pages, each of which
4058 * consists of a fixed number of BD entries.
4059 * The last BD entry on each page is a pointer to the next page
4060 * in the chain, and the last pointer in the BD chain
4061 * points back to the beginning of the chain.
4062 */
4063
4064 /* Set the TX next pointer chain entries. */
4065 for (i = 0; i < TX_PAGES; i++) {
4066 int j;
4067
4068 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4069
4070 /* Check if we've reached the last page. */
4071 if (i == (TX_PAGES - 1))
4072 j = 0;
4073 else
4074 j = i + 1;
4075
4076 addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4077 txbd->tx_bd_haddr_lo = addr;
4078 addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4079 txbd->tx_bd_haddr_hi = addr;
4080 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4081 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4082 }
4083
4084 /*
4085 * Initialize the context ID for an L2 TX chain.
4086 */
4087 bnx_init_tx_context(sc);
4088
4089 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4090
4091 return rc;
4092 }
4093
4094 /****************************************************************************/
4095 /* Free memory and clear the TX data structures. */
4096 /* */
4097 /* Returns: */
4098 /* Nothing. */
4099 /****************************************************************************/
4100 void
4101 bnx_free_tx_chain(struct bnx_softc *sc)
4102 {
4103 struct bnx_pkt *pkt;
4104 int i;
4105
4106 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4107
4108 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4109 mutex_enter(&sc->tx_pkt_mtx);
4110 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4111 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4112 mutex_exit(&sc->tx_pkt_mtx);
4113
4114 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4115 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4116 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4117
4118 m_freem(pkt->pkt_mbuf);
4119 DBRUNIF(1, sc->tx_mbuf_alloc--);
4120
4121 mutex_enter(&sc->tx_pkt_mtx);
4122 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4123 }
4124
4125 /* Destroy all the dmamaps we allocated for TX */
4126 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4127 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4128 sc->tx_pkt_count--;
4129 mutex_exit(&sc->tx_pkt_mtx);
4130
4131 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4132 pool_put(bnx_tx_pool, pkt);
4133
4134 mutex_enter(&sc->tx_pkt_mtx);
4135 }
4136 mutex_exit(&sc->tx_pkt_mtx);
4137
4138
4139
4140 /* Clear each TX chain page. */
4141 for (i = 0; i < TX_PAGES; i++) {
4142 memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4143 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4144 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4145 }
4146
4147 sc->used_tx_bd = 0;
4148
4149 /* Check if we lost any mbufs in the process. */
4150 DBRUNIF((sc->tx_mbuf_alloc),
4151 aprint_error_dev(sc->bnx_dev,
4152 "Memory leak! Lost %d mbufs from tx chain!\n",
4153 sc->tx_mbuf_alloc));
4154
4155 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4156 }
4157
4158 /****************************************************************************/
4159 /* Initialize the RX context memory. */
4160 /* */
4161 /* Returns: */
4162 /* Nothing */
4163 /****************************************************************************/
4164 void
4165 bnx_init_rx_context(struct bnx_softc *sc)
4166 {
4167 uint32_t val;
4168
4169 /* Initialize the context ID for an L2 RX chain. */
4170 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4171 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4172
4173 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4174 uint32_t lo_water, hi_water;
4175
4176 lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
4177 hi_water = USABLE_RX_BD / 4;
4178
4179 lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
4180 hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
4181
4182 if (hi_water > 0xf)
4183 hi_water = 0xf;
4184 else if (hi_water == 0)
4185 lo_water = 0;
4186 val |= lo_water |
4187 (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
4188 }
4189
4190 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4191
4192 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4193 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4194 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4195 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4196 }
4197
4198 /* Point the hardware to the first page in the chain. */
4199 val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4200 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4201 val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4202 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4203 }
4204
4205 /****************************************************************************/
4206 /* Allocate memory and initialize the RX data structures. */
4207 /* */
4208 /* Returns: */
4209 /* 0 for success, positive value for failure. */
4210 /****************************************************************************/
4211 int
4212 bnx_init_rx_chain(struct bnx_softc *sc)
4213 {
4214 struct rx_bd *rxbd;
4215 int i, rc = 0;
4216 uint16_t prod, chain_prod;
4217 uint32_t prod_bseq, addr;
4218
4219 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4220
4221 /* Initialize the RX producer and consumer indices. */
4222 sc->rx_prod = 0;
4223 sc->rx_cons = 0;
4224 sc->rx_prod_bseq = 0;
4225 sc->free_rx_bd = USABLE_RX_BD;
4226 sc->max_rx_bd = USABLE_RX_BD;
4227 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4228 DBRUNIF(1, sc->rx_empty_count = 0);
4229
4230 /* Initialize the RX next pointer chain entries. */
4231 for (i = 0; i < RX_PAGES; i++) {
4232 int j;
4233
4234 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4235
4236 /* Check if we've reached the last page. */
4237 if (i == (RX_PAGES - 1))
4238 j = 0;
4239 else
4240 j = i + 1;
4241
4242 /* Setup the chain page pointers. */
4243 addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4244 rxbd->rx_bd_haddr_hi = addr;
4245 addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4246 rxbd->rx_bd_haddr_lo = addr;
4247 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4248 0, BNX_RX_CHAIN_PAGE_SZ,
4249 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4250 }
4251
4252 /* Allocate mbuf clusters for the rx_bd chain. */
4253 prod = prod_bseq = 0;
4254 chain_prod = RX_CHAIN_IDX(prod);
4255 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4256 BNX_PRINTF(sc,
4257 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4258 }
4259
4260 /* Save the RX chain producer index. */
4261 sc->rx_prod = prod;
4262 sc->rx_prod_bseq = prod_bseq;
4263
4264 for (i = 0; i < RX_PAGES; i++)
4265 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4266 sc->rx_bd_chain_map[i]->dm_mapsize,
4267 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4268
4269 /* Tell the chip about the waiting rx_bd's. */
4270 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4271 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4272
4273 bnx_init_rx_context(sc);
4274
4275 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4276
4277 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4278
4279 return rc;
4280 }
4281
4282 /****************************************************************************/
4283 /* Free memory and clear the RX data structures. */
4284 /* */
4285 /* Returns: */
4286 /* Nothing. */
4287 /****************************************************************************/
4288 void
4289 bnx_free_rx_chain(struct bnx_softc *sc)
4290 {
4291 int i;
4292
4293 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4294
4295 /* Free any mbufs still in the RX mbuf chain. */
4296 for (i = 0; i < TOTAL_RX_BD; i++) {
4297 if (sc->rx_mbuf_ptr[i] != NULL) {
4298 if (sc->rx_mbuf_map[i] != NULL) {
4299 bus_dmamap_sync(sc->bnx_dmatag,
4300 sc->rx_mbuf_map[i], 0,
4301 sc->rx_mbuf_map[i]->dm_mapsize,
4302 BUS_DMASYNC_POSTREAD);
4303 bus_dmamap_unload(sc->bnx_dmatag,
4304 sc->rx_mbuf_map[i]);
4305 }
4306 m_freem(sc->rx_mbuf_ptr[i]);
4307 sc->rx_mbuf_ptr[i] = NULL;
4308 DBRUNIF(1, sc->rx_mbuf_alloc--);
4309 }
4310 }
4311
4312 /* Clear each RX chain page. */
4313 for (i = 0; i < RX_PAGES; i++)
4314 memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4315
4316 sc->free_rx_bd = sc->max_rx_bd;
4317
4318 /* Check if we lost any mbufs in the process. */
4319 DBRUNIF((sc->rx_mbuf_alloc),
4320 aprint_error_dev(sc->bnx_dev,
4321 "Memory leak! Lost %d mbufs from rx chain!\n",
4322 sc->rx_mbuf_alloc));
4323
4324 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4325 }
4326
4327 /****************************************************************************/
4328 /* Handles PHY generated interrupt events. */
4329 /* */
4330 /* Returns: */
4331 /* Nothing. */
4332 /****************************************************************************/
4333 void
4334 bnx_phy_intr(struct bnx_softc *sc)
4335 {
4336 uint32_t new_link_state, old_link_state;
4337
4338 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4339 BUS_DMASYNC_POSTREAD);
4340 new_link_state = sc->status_block->status_attn_bits &
4341 STATUS_ATTN_BITS_LINK_STATE;
4342 old_link_state = sc->status_block->status_attn_bits_ack &
4343 STATUS_ATTN_BITS_LINK_STATE;
4344
4345 /* Handle any changes if the link state has changed. */
4346 if (new_link_state != old_link_state) {
4347 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4348
4349 callout_stop(&sc->bnx_timeout);
4350 bnx_tick(sc);
4351
4352 /* Update the status_attn_bits_ack field in the status block. */
4353 if (new_link_state) {
4354 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4355 STATUS_ATTN_BITS_LINK_STATE);
4356 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4357 } else {
4358 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4359 STATUS_ATTN_BITS_LINK_STATE);
4360 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4361 }
4362 }
4363
4364 /* Acknowledge the link change interrupt. */
4365 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4366 }
4367
4368 /****************************************************************************/
4369 /* Handles received frame interrupt events. */
4370 /* */
4371 /* Returns: */
4372 /* Nothing. */
4373 /****************************************************************************/
4374 void
4375 bnx_rx_intr(struct bnx_softc *sc)
4376 {
4377 struct status_block *sblk = sc->status_block;
4378 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4379 uint16_t hw_cons, sw_cons, sw_chain_cons;
4380 uint16_t sw_prod, sw_chain_prod;
4381 uint32_t sw_prod_bseq;
4382 struct l2_fhdr *l2fhdr;
4383 int i;
4384
4385 DBRUNIF(1, sc->rx_interrupts++);
4386 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4387 BUS_DMASYNC_POSTREAD);
4388
4389 /* Prepare the RX chain pages to be accessed by the host CPU. */
4390 for (i = 0; i < RX_PAGES; i++)
4391 bus_dmamap_sync(sc->bnx_dmatag,
4392 sc->rx_bd_chain_map[i], 0,
4393 sc->rx_bd_chain_map[i]->dm_mapsize,
4394 BUS_DMASYNC_POSTWRITE);
4395
4396 /* Get the hardware's view of the RX consumer index. */
4397 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4398 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4399 hw_cons++;
4400
4401 /* Get working copies of the driver's view of the RX indices. */
4402 sw_cons = sc->rx_cons;
4403 sw_prod = sc->rx_prod;
4404 sw_prod_bseq = sc->rx_prod_bseq;
4405
4406 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4407 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4408 __func__, sw_prod, sw_cons, sw_prod_bseq);
4409
4410 /* Prevent speculative reads from getting ahead of the status block. */
4411 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4412 BUS_SPACE_BARRIER_READ);
4413
4414 /* Update some debug statistics counters */
4415 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4416 sc->rx_low_watermark = sc->free_rx_bd);
4417 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4418
4419 /*
4420 * Scan through the receive chain as long
4421 * as there is work to do.
4422 */
4423 while (sw_cons != hw_cons) {
4424 struct mbuf *m;
4425 struct rx_bd *rxbd __diagused;
4426 unsigned int len;
4427 uint32_t status;
4428
4429 /* Convert the producer/consumer indices to an actual
4430 * rx_bd index.
4431 */
4432 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4433 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4434
4435 /* Get the used rx_bd. */
4436 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4437 sc->free_rx_bd++;
4438
4439 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4440 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4441
4442 /* The mbuf is stored with the last rx_bd entry of a packet. */
4443 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4444 #ifdef DIAGNOSTIC
4445 /* Validate that this is the last rx_bd. */
4446 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4447 printf("%s: Unexpected mbuf found in "
4448 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4449 sw_chain_cons);
4450 }
4451 #endif
4452
4453 /* DRC - ToDo: If the received packet is small, say less
4454 * than 128 bytes, allocate a new mbuf here,
4455 * copy the data to that mbuf, and recycle
4456 * the mapped jumbo frame.
4457 */
4458
4459 /* Unmap the mbuf from DMA space. */
4460 #ifdef DIAGNOSTIC
4461 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4462 printf("invalid map sw_cons 0x%x "
4463 "sw_prod 0x%x "
4464 "sw_chain_cons 0x%x "
4465 "sw_chain_prod 0x%x "
4466 "hw_cons 0x%x "
4467 "TOTAL_RX_BD_PER_PAGE 0x%x "
4468 "TOTAL_RX_BD 0x%x\n",
4469 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4470 hw_cons,
4471 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4472 }
4473 #endif
4474 bus_dmamap_sync(sc->bnx_dmatag,
4475 sc->rx_mbuf_map[sw_chain_cons], 0,
4476 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4477 BUS_DMASYNC_POSTREAD);
4478 bus_dmamap_unload(sc->bnx_dmatag,
4479 sc->rx_mbuf_map[sw_chain_cons]);
4480
4481 /* Remove the mbuf from the driver's chain. */
4482 m = sc->rx_mbuf_ptr[sw_chain_cons];
4483 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4484
4485 /*
4486 * Frames received on the NetXteme II are prepended
4487 * with the l2_fhdr structure which provides status
4488 * information about the received frame (including
4489 * VLAN tags and checksum info) and are also
4490 * automatically adjusted to align the IP header
4491 * (i.e. two null bytes are inserted before the
4492 * Ethernet header).
4493 */
4494 l2fhdr = mtod(m, struct l2_fhdr *);
4495
4496 len = l2fhdr->l2_fhdr_pkt_len;
4497 status = l2fhdr->l2_fhdr_status;
4498
4499 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4500 aprint_error("Simulating l2_fhdr status error.\n");
4501 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4502
4503 /* Watch for unusual sized frames. */
4504 DBRUNIF(((len < BNX_MIN_MTU) ||
4505 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4506 aprint_error_dev(sc->bnx_dev,
4507 "Unusual frame size found. "
4508 "Min(%d), Actual(%d), Max(%d)\n",
4509 (int)BNX_MIN_MTU, len,
4510 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4511
4512 bnx_dump_mbuf(sc, m);
4513 bnx_breakpoint(sc));
4514
4515 len -= ETHER_CRC_LEN;
4516
4517 /* Check the received frame for errors. */
4518 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4519 L2_FHDR_ERRORS_PHY_DECODE |
4520 L2_FHDR_ERRORS_ALIGNMENT |
4521 L2_FHDR_ERRORS_TOO_SHORT |
4522 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4523 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4524 len >
4525 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4526 ifp->if_ierrors++;
4527 DBRUNIF(1, sc->l2fhdr_status_errors++);
4528
4529 /* Reuse the mbuf for a new frame. */
4530 if (bnx_add_buf(sc, m, &sw_prod,
4531 &sw_chain_prod, &sw_prod_bseq)) {
4532 DBRUNIF(1, bnx_breakpoint(sc));
4533 panic("%s: Can't reuse RX mbuf!\n",
4534 device_xname(sc->bnx_dev));
4535 }
4536 continue;
4537 }
4538
4539 /*
4540 * Get a new mbuf for the rx_bd. If no new
4541 * mbufs are available then reuse the current mbuf,
4542 * log an ierror on the interface, and generate
4543 * an error in the system log.
4544 */
4545 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4546 &sw_prod_bseq)) {
4547 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4548 "Failed to allocate "
4549 "new mbuf, incoming frame dropped!\n"));
4550
4551 ifp->if_ierrors++;
4552
4553 /* Try and reuse the exisitng mbuf. */
4554 if (bnx_add_buf(sc, m, &sw_prod,
4555 &sw_chain_prod, &sw_prod_bseq)) {
4556 DBRUNIF(1, bnx_breakpoint(sc));
4557 panic("%s: Double mbuf allocation "
4558 "failure!",
4559 device_xname(sc->bnx_dev));
4560 }
4561 continue;
4562 }
4563
4564 /* Skip over the l2_fhdr when passing the data up
4565 * the stack.
4566 */
4567 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4568
4569 /* Adjust the pckt length to match the received data. */
4570 m->m_pkthdr.len = m->m_len = len;
4571
4572 /* Send the packet to the appropriate interface. */
4573 m_set_rcvif(m, ifp);
4574
4575 DBRUN(BNX_VERBOSE_RECV,
4576 struct ether_header *eh;
4577 eh = mtod(m, struct ether_header *);
4578 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4579 __func__, ether_sprintf(eh->ether_dhost),
4580 ether_sprintf(eh->ether_shost),
4581 htons(eh->ether_type)));
4582
4583 /* Validate the checksum. */
4584
4585 /* Check for an IP datagram. */
4586 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4587 /* Check if the IP checksum is valid. */
4588 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
4589 == 0)
4590 m->m_pkthdr.csum_flags |=
4591 M_CSUM_IPv4;
4592 #ifdef BNX_DEBUG
4593 else
4594 DBPRINT(sc, BNX_WARN_SEND,
4595 "%s(): Invalid IP checksum "
4596 "= 0x%04X!\n",
4597 __func__,
4598 l2fhdr->l2_fhdr_ip_xsum
4599 );
4600 #endif
4601 }
4602
4603 /* Check for a valid TCP/UDP frame. */
4604 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4605 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4606 /* Check for a good TCP/UDP checksum. */
4607 if ((status &
4608 (L2_FHDR_ERRORS_TCP_XSUM |
4609 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4610 m->m_pkthdr.csum_flags |=
4611 M_CSUM_TCPv4 |
4612 M_CSUM_UDPv4;
4613 } else {
4614 DBPRINT(sc, BNX_WARN_SEND,
4615 "%s(): Invalid TCP/UDP "
4616 "checksum = 0x%04X!\n",
4617 __func__,
4618 l2fhdr->l2_fhdr_tcp_udp_xsum);
4619 }
4620 }
4621
4622 /*
4623 * If we received a packet with a vlan tag,
4624 * attach that information to the packet.
4625 */
4626 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4627 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4628 vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
4629 }
4630
4631 /* Pass the mbuf off to the upper layers. */
4632
4633 DBPRINT(sc, BNX_VERBOSE_RECV,
4634 "%s(): Passing received frame up.\n", __func__);
4635 if_percpuq_enqueue(ifp->if_percpuq, m);
4636 DBRUNIF(1, sc->rx_mbuf_alloc--);
4637
4638 }
4639
4640 sw_cons = NEXT_RX_BD(sw_cons);
4641
4642 /* Refresh hw_cons to see if there's new work */
4643 if (sw_cons == hw_cons) {
4644 hw_cons = sc->hw_rx_cons =
4645 sblk->status_rx_quick_consumer_index0;
4646 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4647 USABLE_RX_BD_PER_PAGE)
4648 hw_cons++;
4649 }
4650
4651 /* Prevent speculative reads from getting ahead of
4652 * the status block.
4653 */
4654 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4655 BUS_SPACE_BARRIER_READ);
4656 }
4657
4658 for (i = 0; i < RX_PAGES; i++)
4659 bus_dmamap_sync(sc->bnx_dmatag,
4660 sc->rx_bd_chain_map[i], 0,
4661 sc->rx_bd_chain_map[i]->dm_mapsize,
4662 BUS_DMASYNC_PREWRITE);
4663
4664 sc->rx_cons = sw_cons;
4665 sc->rx_prod = sw_prod;
4666 sc->rx_prod_bseq = sw_prod_bseq;
4667
4668 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4669 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4670
4671 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4672 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4673 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4674 }
4675
4676 /****************************************************************************/
4677 /* Handles transmit completion interrupt events. */
4678 /* */
4679 /* Returns: */
4680 /* Nothing. */
4681 /****************************************************************************/
4682 void
4683 bnx_tx_intr(struct bnx_softc *sc)
4684 {
4685 struct status_block *sblk = sc->status_block;
4686 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4687 struct bnx_pkt *pkt;
4688 bus_dmamap_t map;
4689 uint16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4690
4691 DBRUNIF(1, sc->tx_interrupts++);
4692 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4693 BUS_DMASYNC_POSTREAD);
4694
4695 /* Get the hardware's view of the TX consumer index. */
4696 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4697
4698 /* Skip to the next entry if this is a chain page pointer. */
4699 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4700 hw_tx_cons++;
4701
4702 sw_tx_cons = sc->tx_cons;
4703
4704 /* Prevent speculative reads from getting ahead of the status block. */
4705 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4706 BUS_SPACE_BARRIER_READ);
4707
4708 /* Cycle through any completed TX chain page entries. */
4709 while (sw_tx_cons != hw_tx_cons) {
4710 #ifdef BNX_DEBUG
4711 struct tx_bd *txbd = NULL;
4712 #endif
4713 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4714
4715 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4716 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4717 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4718
4719 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4720 aprint_error_dev(sc->bnx_dev,
4721 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4722 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4723
4724 DBRUNIF(1, txbd = &sc->tx_bd_chain
4725 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4726
4727 DBRUNIF((txbd == NULL),
4728 aprint_error_dev(sc->bnx_dev,
4729 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4730 bnx_breakpoint(sc));
4731
4732 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4733 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4734
4735
4736 mutex_enter(&sc->tx_pkt_mtx);
4737 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4738 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4739 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4740 mutex_exit(&sc->tx_pkt_mtx);
4741 /*
4742 * Free the associated mbuf. Remember
4743 * that only the last tx_bd of a packet
4744 * has an mbuf pointer and DMA map.
4745 */
4746 map = pkt->pkt_dmamap;
4747 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4748 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4749 bus_dmamap_unload(sc->bnx_dmatag, map);
4750
4751 m_freem(pkt->pkt_mbuf);
4752 DBRUNIF(1, sc->tx_mbuf_alloc--);
4753
4754 ifp->if_opackets++;
4755
4756 mutex_enter(&sc->tx_pkt_mtx);
4757 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4758 }
4759 mutex_exit(&sc->tx_pkt_mtx);
4760
4761 sc->used_tx_bd--;
4762 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4763 __FILE__, __LINE__, sc->used_tx_bd);
4764
4765 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4766
4767 /* Refresh hw_cons to see if there's new work. */
4768 hw_tx_cons = sc->hw_tx_cons =
4769 sblk->status_tx_quick_consumer_index0;
4770 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4771 USABLE_TX_BD_PER_PAGE)
4772 hw_tx_cons++;
4773
4774 /* Prevent speculative reads from getting ahead of
4775 * the status block.
4776 */
4777 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4778 BUS_SPACE_BARRIER_READ);
4779 }
4780
4781 /* Clear the TX timeout timer. */
4782 ifp->if_timer = 0;
4783
4784 /* Clear the tx hardware queue full flag. */
4785 if (sc->used_tx_bd < sc->max_tx_bd) {
4786 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4787 aprint_debug_dev(sc->bnx_dev,
4788 "Open TX chain! %d/%d (used/total)\n",
4789 sc->used_tx_bd, sc->max_tx_bd));
4790 ifp->if_flags &= ~IFF_OACTIVE;
4791 }
4792
4793 sc->tx_cons = sw_tx_cons;
4794 }
4795
4796 /****************************************************************************/
4797 /* Disables interrupt generation. */
4798 /* */
4799 /* Returns: */
4800 /* Nothing. */
4801 /****************************************************************************/
4802 void
4803 bnx_disable_intr(struct bnx_softc *sc)
4804 {
4805 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4806 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4807 }
4808
4809 /****************************************************************************/
4810 /* Enables interrupt generation. */
4811 /* */
4812 /* Returns: */
4813 /* Nothing. */
4814 /****************************************************************************/
4815 void
4816 bnx_enable_intr(struct bnx_softc *sc)
4817 {
4818 uint32_t val;
4819
4820 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4821 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4822
4823 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4824 sc->last_status_idx);
4825
4826 val = REG_RD(sc, BNX_HC_COMMAND);
4827 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4828 }
4829
4830 /****************************************************************************/
4831 /* Handles controller initialization. */
4832 /* */
4833 /****************************************************************************/
4834 int
4835 bnx_init(struct ifnet *ifp)
4836 {
4837 struct bnx_softc *sc = ifp->if_softc;
4838 uint32_t ether_mtu;
4839 int s, error = 0;
4840
4841 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4842
4843 s = splnet();
4844
4845 bnx_stop(ifp, 0);
4846
4847 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4848 aprint_error_dev(sc->bnx_dev,
4849 "Controller reset failed!\n");
4850 goto bnx_init_exit;
4851 }
4852
4853 if ((error = bnx_chipinit(sc)) != 0) {
4854 aprint_error_dev(sc->bnx_dev,
4855 "Controller initialization failed!\n");
4856 goto bnx_init_exit;
4857 }
4858
4859 if ((error = bnx_blockinit(sc)) != 0) {
4860 aprint_error_dev(sc->bnx_dev,
4861 "Block initialization failed!\n");
4862 goto bnx_init_exit;
4863 }
4864
4865 /* Calculate and program the Ethernet MRU size. */
4866 if (ifp->if_mtu <= ETHERMTU) {
4867 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4868 sc->mbuf_alloc_size = MCLBYTES;
4869 } else {
4870 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4871 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4872 }
4873
4874
4875 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
4876 __func__, ether_mtu);
4877
4878 /*
4879 * Program the MRU and enable Jumbo frame
4880 * support.
4881 */
4882 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4883 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4884
4885 /* Calculate the RX Ethernet frame size for rx_bd's. */
4886 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4887
4888 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4889 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4890 sc->mbuf_alloc_size, sc->max_frame_size);
4891
4892 /* Program appropriate promiscuous/multicast filtering. */
4893 bnx_iff(sc);
4894
4895 /* Init RX buffer descriptor chain. */
4896 bnx_init_rx_chain(sc);
4897
4898 /* Init TX buffer descriptor chain. */
4899 bnx_init_tx_chain(sc);
4900
4901 /* Enable host interrupts. */
4902 bnx_enable_intr(sc);
4903
4904 if ((error = ether_mediachange(ifp)) != 0)
4905 goto bnx_init_exit;
4906
4907 SET(ifp->if_flags, IFF_RUNNING);
4908 CLR(ifp->if_flags, IFF_OACTIVE);
4909
4910 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4911
4912 bnx_init_exit:
4913 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4914
4915 splx(s);
4916
4917 return error;
4918 }
4919
4920 /****************************************************************************/
4921 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4922 /* memory visible to the controller. */
4923 /* */
4924 /* Returns: */
4925 /* 0 for success, positive value for failure. */
4926 /****************************************************************************/
4927 int
4928 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4929 {
4930 struct bnx_pkt *pkt;
4931 bus_dmamap_t map;
4932 struct tx_bd *txbd = NULL;
4933 uint16_t vlan_tag = 0, flags = 0;
4934 uint16_t chain_prod, prod;
4935 #ifdef BNX_DEBUG
4936 uint16_t debug_prod;
4937 #endif
4938 uint32_t addr, prod_bseq;
4939 int i, error;
4940 static struct work bnx_wk; /* Dummy work. Statically allocated. */
4941
4942 mutex_enter(&sc->tx_pkt_mtx);
4943 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
4944 if (pkt == NULL) {
4945 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
4946 mutex_exit(&sc->tx_pkt_mtx);
4947 return ENETDOWN;
4948 }
4949
4950 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
4951 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
4952 workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
4953 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4954 }
4955
4956 mutex_exit(&sc->tx_pkt_mtx);
4957 return ENOMEM;
4958 }
4959 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4960 mutex_exit(&sc->tx_pkt_mtx);
4961
4962 /* Transfer any checksum offload flags to the bd. */
4963 if (m->m_pkthdr.csum_flags) {
4964 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
4965 flags |= TX_BD_FLAGS_IP_CKSUM;
4966 if (m->m_pkthdr.csum_flags &
4967 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
4968 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
4969 }
4970
4971 /* Transfer any VLAN tags to the bd. */
4972 if (vlan_has_tag(m)) {
4973 flags |= TX_BD_FLAGS_VLAN_TAG;
4974 vlan_tag = vlan_get_tag(m);
4975 }
4976
4977 /* Map the mbuf into DMAable memory. */
4978 prod = sc->tx_prod;
4979 chain_prod = TX_CHAIN_IDX(prod);
4980 map = pkt->pkt_dmamap;
4981
4982 /* Map the mbuf into our DMA address space. */
4983 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
4984 if (error != 0) {
4985 aprint_error_dev(sc->bnx_dev,
4986 "Error mapping mbuf into TX chain!\n");
4987 sc->tx_dma_map_failures++;
4988 goto maperr;
4989 }
4990 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
4991 BUS_DMASYNC_PREWRITE);
4992 /* Make sure there's room in the chain */
4993 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
4994 goto nospace;
4995
4996 /* prod points to an empty tx_bd at this point. */
4997 prod_bseq = sc->tx_prod_bseq;
4998 #ifdef BNX_DEBUG
4999 debug_prod = chain_prod;
5000 #endif
5001 DBPRINT(sc, BNX_INFO_SEND,
5002 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5003 "prod_bseq = 0x%08X\n",
5004 __func__, prod, chain_prod, prod_bseq);
5005
5006 /*
5007 * Cycle through each mbuf segment that makes up
5008 * the outgoing frame, gathering the mapping info
5009 * for that segment and creating a tx_bd for the
5010 * mbuf.
5011 */
5012 for (i = 0; i < map->dm_nsegs ; i++) {
5013 chain_prod = TX_CHAIN_IDX(prod);
5014 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5015
5016 addr = (uint32_t)map->dm_segs[i].ds_addr;
5017 txbd->tx_bd_haddr_lo = addr;
5018 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5019 txbd->tx_bd_haddr_hi = addr;
5020 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5021 txbd->tx_bd_vlan_tag = vlan_tag;
5022 txbd->tx_bd_flags = flags;
5023 prod_bseq += map->dm_segs[i].ds_len;
5024 if (i == 0)
5025 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5026 prod = NEXT_TX_BD(prod);
5027 }
5028 /* Set the END flag on the last TX buffer descriptor. */
5029 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5030
5031 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5032
5033 DBPRINT(sc, BNX_INFO_SEND,
5034 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
5035 "prod_bseq = 0x%08X\n",
5036 __func__, prod, chain_prod, prod_bseq);
5037
5038 pkt->pkt_mbuf = m;
5039 pkt->pkt_end_desc = chain_prod;
5040
5041 mutex_enter(&sc->tx_pkt_mtx);
5042 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5043 mutex_exit(&sc->tx_pkt_mtx);
5044
5045 sc->used_tx_bd += map->dm_nsegs;
5046 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5047 __FILE__, __LINE__, sc->used_tx_bd);
5048
5049 /* Update some debug statistics counters */
5050 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5051 sc->tx_hi_watermark = sc->used_tx_bd);
5052 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5053 DBRUNIF(1, sc->tx_mbuf_alloc++);
5054
5055 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5056 map->dm_nsegs));
5057
5058 /* prod points to the next free tx_bd at this point. */
5059 sc->tx_prod = prod;
5060 sc->tx_prod_bseq = prod_bseq;
5061
5062 return 0;
5063
5064
5065 nospace:
5066 bus_dmamap_unload(sc->bnx_dmatag, map);
5067 maperr:
5068 mutex_enter(&sc->tx_pkt_mtx);
5069 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5070 mutex_exit(&sc->tx_pkt_mtx);
5071
5072 return ENOMEM;
5073 }
5074
5075 /****************************************************************************/
5076 /* Main transmit routine. */
5077 /* */
5078 /* Returns: */
5079 /* Nothing. */
5080 /****************************************************************************/
5081 void
5082 bnx_start(struct ifnet *ifp)
5083 {
5084 struct bnx_softc *sc = ifp->if_softc;
5085 struct mbuf *m_head = NULL;
5086 int count = 0;
5087 #ifdef BNX_DEBUG
5088 uint16_t tx_chain_prod;
5089 #endif
5090
5091 /* If there's no link or the transmit queue is empty then just exit. */
5092 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
5093 DBPRINT(sc, BNX_INFO_SEND,
5094 "%s(): output active or device not running.\n", __func__);
5095 goto bnx_start_exit;
5096 }
5097
5098 /* prod points to the next free tx_bd. */
5099 #ifdef BNX_DEBUG
5100 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5101 #endif
5102
5103 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5104 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5105 "used_tx %d max_tx %d\n",
5106 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5107 sc->used_tx_bd, sc->max_tx_bd);
5108
5109 /*
5110 * Keep adding entries while there is space in the ring.
5111 */
5112 while (sc->used_tx_bd < sc->max_tx_bd) {
5113 /* Check for any frames to send. */
5114 IFQ_POLL(&ifp->if_snd, m_head);
5115 if (m_head == NULL)
5116 break;
5117
5118 /*
5119 * Pack the data into the transmit ring. If we
5120 * don't have room, set the OACTIVE flag to wait
5121 * for the NIC to drain the chain.
5122 */
5123 if (bnx_tx_encap(sc, m_head)) {
5124 ifp->if_flags |= IFF_OACTIVE;
5125 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5126 "business! Total tx_bd used = %d\n",
5127 sc->used_tx_bd);
5128 break;
5129 }
5130
5131 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5132 count++;
5133
5134 /* Send a copy of the frame to any BPF listeners. */
5135 bpf_mtap(ifp, m_head);
5136 }
5137
5138 if (count == 0) {
5139 /* no packets were dequeued */
5140 DBPRINT(sc, BNX_VERBOSE_SEND,
5141 "%s(): No packets were dequeued\n", __func__);
5142 goto bnx_start_exit;
5143 }
5144
5145 /* Update the driver's counters. */
5146 #ifdef BNX_DEBUG
5147 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5148 #endif
5149
5150 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
5151 "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
5152 tx_chain_prod, sc->tx_prod_bseq);
5153
5154 /* Start the transmit. */
5155 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5156 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5157
5158 /* Set the tx timeout. */
5159 ifp->if_timer = BNX_TX_TIMEOUT;
5160
5161 bnx_start_exit:
5162 return;
5163 }
5164
5165 /****************************************************************************/
5166 /* Handles any IOCTL calls from the operating system. */
5167 /* */
5168 /* Returns: */
5169 /* 0 for success, positive value for failure. */
5170 /****************************************************************************/
5171 int
5172 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5173 {
5174 struct bnx_softc *sc = ifp->if_softc;
5175 struct ifreq *ifr = (struct ifreq *) data;
5176 struct mii_data *mii = &sc->bnx_mii;
5177 int s, error = 0;
5178
5179 s = splnet();
5180
5181 switch (command) {
5182 case SIOCSIFFLAGS:
5183 if ((error = ifioctl_common(ifp, command, data)) != 0)
5184 break;
5185 /* XXX set an ifflags callback and let ether_ioctl
5186 * handle all of this.
5187 */
5188 if (ISSET(ifp->if_flags, IFF_UP)) {
5189 if (ifp->if_flags & IFF_RUNNING)
5190 error = ENETRESET;
5191 else
5192 bnx_init(ifp);
5193 } else if (ifp->if_flags & IFF_RUNNING)
5194 bnx_stop(ifp, 1);
5195 break;
5196
5197 case SIOCSIFMEDIA:
5198 case SIOCGIFMEDIA:
5199 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5200 sc->bnx_phy_flags);
5201
5202 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5203 break;
5204
5205 default:
5206 error = ether_ioctl(ifp, command, data);
5207 }
5208
5209 if (error == ENETRESET) {
5210 if (ifp->if_flags & IFF_RUNNING)
5211 bnx_iff(sc);
5212 error = 0;
5213 }
5214
5215 splx(s);
5216 return error;
5217 }
5218
5219 /****************************************************************************/
5220 /* Transmit timeout handler. */
5221 /* */
5222 /* Returns: */
5223 /* Nothing. */
5224 /****************************************************************************/
5225 void
5226 bnx_watchdog(struct ifnet *ifp)
5227 {
5228 struct bnx_softc *sc = ifp->if_softc;
5229
5230 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5231 bnx_dump_status_block(sc));
5232 /*
5233 * If we are in this routine because of pause frames, then
5234 * don't reset the hardware.
5235 */
5236 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5237 return;
5238
5239 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5240
5241 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5242
5243 bnx_init(ifp);
5244
5245 ifp->if_oerrors++;
5246 }
5247
5248 /*
5249 * Interrupt handler.
5250 */
5251 /****************************************************************************/
5252 /* Main interrupt entry point. Verifies that the controller generated the */
5253 /* interrupt and then calls a separate routine for handle the various */
5254 /* interrupt causes (PHY, TX, RX). */
5255 /* */
5256 /* Returns: */
5257 /* 0 for success, positive value for failure. */
5258 /****************************************************************************/
5259 int
5260 bnx_intr(void *xsc)
5261 {
5262 struct bnx_softc *sc;
5263 struct ifnet *ifp;
5264 uint32_t status_attn_bits;
5265 const struct status_block *sblk;
5266
5267 sc = xsc;
5268
5269 ifp = &sc->bnx_ec.ec_if;
5270
5271 if (!device_is_active(sc->bnx_dev) ||
5272 (ifp->if_flags & IFF_RUNNING) == 0)
5273 return 0;
5274
5275 DBRUNIF(1, sc->interrupts_generated++);
5276
5277 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5278 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
5279
5280 /*
5281 * If the hardware status block index
5282 * matches the last value read by the
5283 * driver and we haven't asserted our
5284 * interrupt then there's nothing to do.
5285 */
5286 if ((sc->status_block->status_idx == sc->last_status_idx) &&
5287 (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
5288 BNX_PCICFG_MISC_STATUS_INTA_VALUE))
5289 return 0;
5290
5291 /* Ack the interrupt and stop others from occurring. */
5292 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5293 BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
5294 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5295
5296 /* Keep processing data as long as there is work to do. */
5297 for (;;) {
5298 sblk = sc->status_block;
5299 status_attn_bits = sblk->status_attn_bits;
5300
5301 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5302 aprint_debug("Simulating unexpected status attention bit set.");
5303 status_attn_bits = status_attn_bits |
5304 STATUS_ATTN_BITS_PARITY_ERROR);
5305
5306 /* Was it a link change interrupt? */
5307 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5308 (sblk->status_attn_bits_ack &
5309 STATUS_ATTN_BITS_LINK_STATE))
5310 bnx_phy_intr(sc);
5311
5312 /* If any other attention is asserted then the chip is toast. */
5313 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5314 (sblk->status_attn_bits_ack &
5315 ~STATUS_ATTN_BITS_LINK_STATE))) {
5316 DBRUN(1, sc->unexpected_attentions++);
5317
5318 BNX_PRINTF(sc,
5319 "Fatal attention detected: 0x%08X\n",
5320 sblk->status_attn_bits);
5321
5322 DBRUN(BNX_FATAL,
5323 if (bnx_debug_unexpected_attention == 0)
5324 bnx_breakpoint(sc));
5325
5326 bnx_init(ifp);
5327 return 1;
5328 }
5329
5330 /* Check for any completed RX frames. */
5331 if (sblk->status_rx_quick_consumer_index0 !=
5332 sc->hw_rx_cons)
5333 bnx_rx_intr(sc);
5334
5335 /* Check for any completed TX frames. */
5336 if (sblk->status_tx_quick_consumer_index0 !=
5337 sc->hw_tx_cons)
5338 bnx_tx_intr(sc);
5339
5340 /*
5341 * Save the status block index value for use during the
5342 * next interrupt.
5343 */
5344 sc->last_status_idx = sblk->status_idx;
5345
5346 /* Prevent speculative reads from getting ahead of the
5347 * status block.
5348 */
5349 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
5350 BUS_SPACE_BARRIER_READ);
5351
5352 /* If there's no work left then exit the isr. */
5353 if ((sblk->status_rx_quick_consumer_index0 ==
5354 sc->hw_rx_cons) &&
5355 (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
5356 break;
5357 }
5358
5359 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5360 sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
5361
5362 /* Re-enable interrupts. */
5363 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5364 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
5365 BNX_PCICFG_INT_ACK_CMD_MASK_INT);
5366 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5367 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
5368
5369 /* Handle any frames that arrived while handling the interrupt. */
5370 if_schedule_deferred_start(ifp);
5371
5372 return 1;
5373 }
5374
5375 /****************************************************************************/
5376 /* Programs the various packet receive modes (broadcast and multicast). */
5377 /* */
5378 /* Returns: */
5379 /* Nothing. */
5380 /****************************************************************************/
5381 void
5382 bnx_iff(struct bnx_softc *sc)
5383 {
5384 struct ethercom *ec = &sc->bnx_ec;
5385 struct ifnet *ifp = &ec->ec_if;
5386 struct ether_multi *enm;
5387 struct ether_multistep step;
5388 uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5389 uint32_t rx_mode, sort_mode;
5390 int h, i;
5391
5392 /* Initialize receive mode default settings. */
5393 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5394 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5395 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5396 ifp->if_flags &= ~IFF_ALLMULTI;
5397
5398 /*
5399 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5400 * be enbled.
5401 */
5402 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5403 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5404
5405 /*
5406 * Check for promiscuous, all multicast, or selected
5407 * multicast address filtering.
5408 */
5409 if (ifp->if_flags & IFF_PROMISC) {
5410 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5411
5412 ifp->if_flags |= IFF_ALLMULTI;
5413 /* Enable promiscuous mode. */
5414 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5415 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5416 } else if (ifp->if_flags & IFF_ALLMULTI) {
5417 allmulti:
5418 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5419
5420 ifp->if_flags |= IFF_ALLMULTI;
5421 /* Enable all multicast addresses. */
5422 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5423 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5424 0xffffffff);
5425 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5426 } else {
5427 /* Accept one or more multicast(s). */
5428 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5429
5430 ETHER_FIRST_MULTI(step, ec, enm);
5431 while (enm != NULL) {
5432 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5433 ETHER_ADDR_LEN)) {
5434 goto allmulti;
5435 }
5436 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5437 0xFF;
5438 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5439 ETHER_NEXT_MULTI(step, enm);
5440 }
5441
5442 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5443 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5444 hashes[i]);
5445
5446 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5447 }
5448
5449 /* Only make changes if the recive mode has actually changed. */
5450 if (rx_mode != sc->rx_mode) {
5451 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5452 rx_mode);
5453
5454 sc->rx_mode = rx_mode;
5455 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5456 }
5457
5458 /* Disable and clear the exisitng sort before enabling a new sort. */
5459 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5460 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5461 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5462 }
5463
5464 /****************************************************************************/
5465 /* Called periodically to updates statistics from the controllers */
5466 /* statistics block. */
5467 /* */
5468 /* Returns: */
5469 /* Nothing. */
5470 /****************************************************************************/
5471 void
5472 bnx_stats_update(struct bnx_softc *sc)
5473 {
5474 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5475 struct statistics_block *stats;
5476
5477 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5478 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5479 BUS_DMASYNC_POSTREAD);
5480
5481 stats = (struct statistics_block *)sc->stats_block;
5482
5483 /*
5484 * Update the interface statistics from the
5485 * hardware statistics.
5486 */
5487 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5488
5489 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5490 (u_long)stats->stat_EtherStatsOverrsizePkts +
5491 (u_long)stats->stat_IfInMBUFDiscards +
5492 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5493 (u_long)stats->stat_Dot3StatsFCSErrors;
5494
5495 ifp->if_oerrors = (u_long)
5496 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5497 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5498 (u_long)stats->stat_Dot3StatsLateCollisions;
5499
5500 /*
5501 * Certain controllers don't report
5502 * carrier sense errors correctly.
5503 * See errata E11_5708CA0_1165.
5504 */
5505 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5506 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5507 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5508
5509 /*
5510 * Update the sysctl statistics from the
5511 * hardware statistics.
5512 */
5513 sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5514 (uint64_t) stats->stat_IfHCInOctets_lo;
5515
5516 sc->stat_IfHCInBadOctets =
5517 ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5518 (uint64_t) stats->stat_IfHCInBadOctets_lo;
5519
5520 sc->stat_IfHCOutOctets =
5521 ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5522 (uint64_t) stats->stat_IfHCOutOctets_lo;
5523
5524 sc->stat_IfHCOutBadOctets =
5525 ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5526 (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5527
5528 sc->stat_IfHCInUcastPkts =
5529 ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5530 (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5531
5532 sc->stat_IfHCInMulticastPkts =
5533 ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5534 (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5535
5536 sc->stat_IfHCInBroadcastPkts =
5537 ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5538 (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5539
5540 sc->stat_IfHCOutUcastPkts =
5541 ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5542 (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5543
5544 sc->stat_IfHCOutMulticastPkts =
5545 ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5546 (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5547
5548 sc->stat_IfHCOutBroadcastPkts =
5549 ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5550 (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5551
5552 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5553 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5554
5555 sc->stat_Dot3StatsCarrierSenseErrors =
5556 stats->stat_Dot3StatsCarrierSenseErrors;
5557
5558 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5559
5560 sc->stat_Dot3StatsAlignmentErrors =
5561 stats->stat_Dot3StatsAlignmentErrors;
5562
5563 sc->stat_Dot3StatsSingleCollisionFrames =
5564 stats->stat_Dot3StatsSingleCollisionFrames;
5565
5566 sc->stat_Dot3StatsMultipleCollisionFrames =
5567 stats->stat_Dot3StatsMultipleCollisionFrames;
5568
5569 sc->stat_Dot3StatsDeferredTransmissions =
5570 stats->stat_Dot3StatsDeferredTransmissions;
5571
5572 sc->stat_Dot3StatsExcessiveCollisions =
5573 stats->stat_Dot3StatsExcessiveCollisions;
5574
5575 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5576
5577 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5578
5579 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5580
5581 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5582
5583 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5584
5585 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5586
5587 sc->stat_EtherStatsPktsRx64Octets =
5588 stats->stat_EtherStatsPktsRx64Octets;
5589
5590 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5591 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5592
5593 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5594 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5595
5596 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5597 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5598
5599 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5600 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5601
5602 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5603 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5604
5605 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5606 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5607
5608 sc->stat_EtherStatsPktsTx64Octets =
5609 stats->stat_EtherStatsPktsTx64Octets;
5610
5611 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5612 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5613
5614 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5615 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5616
5617 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5618 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5619
5620 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5621 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5622
5623 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5624 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5625
5626 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5627 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5628
5629 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5630
5631 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5632
5633 sc->stat_OutXonSent = stats->stat_OutXonSent;
5634
5635 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5636
5637 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5638
5639 sc->stat_MacControlFramesReceived =
5640 stats->stat_MacControlFramesReceived;
5641
5642 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5643
5644 sc->stat_IfInFramesL2FilterDiscards =
5645 stats->stat_IfInFramesL2FilterDiscards;
5646
5647 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5648
5649 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5650
5651 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5652
5653 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5654
5655 sc->stat_CatchupInRuleCheckerDiscards =
5656 stats->stat_CatchupInRuleCheckerDiscards;
5657
5658 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5659
5660 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5661
5662 sc->stat_CatchupInRuleCheckerP4Hit =
5663 stats->stat_CatchupInRuleCheckerP4Hit;
5664
5665 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5666 }
5667
5668 void
5669 bnx_tick(void *xsc)
5670 {
5671 struct bnx_softc *sc = xsc;
5672 struct mii_data *mii;
5673 uint32_t msg;
5674 uint16_t prod, chain_prod;
5675 uint32_t prod_bseq;
5676 int s = splnet();
5677
5678 /* Tell the firmware that the driver is still running. */
5679 #ifdef BNX_DEBUG
5680 msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5681 #else
5682 msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5683 #endif
5684 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5685
5686 /* Update the statistics from the hardware statistics block. */
5687 bnx_stats_update(sc);
5688
5689 mii = &sc->bnx_mii;
5690 mii_tick(mii);
5691
5692 /* try to get more RX buffers, just in case */
5693 prod = sc->rx_prod;
5694 prod_bseq = sc->rx_prod_bseq;
5695 chain_prod = RX_CHAIN_IDX(prod);
5696 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5697 sc->rx_prod = prod;
5698 sc->rx_prod_bseq = prod_bseq;
5699
5700 /* Schedule the next tick. */
5701 if (!sc->bnx_detaching)
5702 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5703
5704 splx(s);
5705 return;
5706 }
5707
5708 /****************************************************************************/
5709 /* BNX Debug Routines */
5710 /****************************************************************************/
5711 #ifdef BNX_DEBUG
5712
5713 /****************************************************************************/
5714 /* Prints out information about an mbuf. */
5715 /* */
5716 /* Returns: */
5717 /* Nothing. */
5718 /****************************************************************************/
5719 void
5720 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5721 {
5722 struct mbuf *mp = m;
5723
5724 if (m == NULL) {
5725 /* Index out of range. */
5726 aprint_error("mbuf ptr is null!\n");
5727 return;
5728 }
5729
5730 while (mp) {
5731 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5732 mp, mp->m_len);
5733
5734 if (mp->m_flags & M_EXT)
5735 aprint_debug("M_EXT ");
5736 if (mp->m_flags & M_PKTHDR)
5737 aprint_debug("M_PKTHDR ");
5738 aprint_debug("\n");
5739
5740 if (mp->m_flags & M_EXT)
5741 aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
5742 mp, mp->m_ext.ext_size);
5743
5744 mp = mp->m_next;
5745 }
5746 }
5747
5748 /****************************************************************************/
5749 /* Prints out the mbufs in the TX mbuf chain. */
5750 /* */
5751 /* Returns: */
5752 /* Nothing. */
5753 /****************************************************************************/
5754 void
5755 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5756 {
5757 #if 0
5758 struct mbuf *m;
5759 int i;
5760
5761 aprint_debug_dev(sc->bnx_dev,
5762 "----------------------------"
5763 " tx mbuf data "
5764 "----------------------------\n");
5765
5766 for (i = 0; i < count; i++) {
5767 m = sc->tx_mbuf_ptr[chain_prod];
5768 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5769 bnx_dump_mbuf(sc, m);
5770 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5771 }
5772
5773 aprint_debug_dev(sc->bnx_dev,
5774 "--------------------------------------------"
5775 "----------------------------\n");
5776 #endif
5777 }
5778
5779 /*
5780 * This routine prints the RX mbuf chain.
5781 */
5782 void
5783 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5784 {
5785 struct mbuf *m;
5786 int i;
5787
5788 aprint_debug_dev(sc->bnx_dev,
5789 "----------------------------"
5790 " rx mbuf data "
5791 "----------------------------\n");
5792
5793 for (i = 0; i < count; i++) {
5794 m = sc->rx_mbuf_ptr[chain_prod];
5795 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5796 bnx_dump_mbuf(sc, m);
5797 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5798 }
5799
5800
5801 aprint_debug_dev(sc->bnx_dev,
5802 "--------------------------------------------"
5803 "----------------------------\n");
5804 }
5805
5806 void
5807 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5808 {
5809 if (idx > MAX_TX_BD)
5810 /* Index out of range. */
5811 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5812 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5813 /* TX Chain page pointer. */
5814 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5815 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5816 txbd->tx_bd_haddr_lo);
5817 else
5818 /* Normal tx_bd entry. */
5819 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5820 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5821 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5822 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5823 txbd->tx_bd_flags);
5824 }
5825
5826 void
5827 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5828 {
5829 if (idx > MAX_RX_BD)
5830 /* Index out of range. */
5831 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5832 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5833 /* TX Chain page pointer. */
5834 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5835 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5836 rxbd->rx_bd_haddr_lo);
5837 else
5838 /* Normal tx_bd entry. */
5839 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5840 "0x%08X, flags = 0x%08X\n", idx,
5841 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5842 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5843 }
5844
5845 void
5846 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5847 {
5848 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5849 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5850 "tcp_udp_xsum = 0x%04X\n", idx,
5851 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5852 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5853 l2fhdr->l2_fhdr_tcp_udp_xsum);
5854 }
5855
5856 /*
5857 * This routine prints the TX chain.
5858 */
5859 void
5860 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5861 {
5862 struct tx_bd *txbd;
5863 int i;
5864
5865 /* First some info about the tx_bd chain structure. */
5866 aprint_debug_dev(sc->bnx_dev,
5867 "----------------------------"
5868 " tx_bd chain "
5869 "----------------------------\n");
5870
5871 BNX_PRINTF(sc,
5872 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5873 (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
5874
5875 BNX_PRINTF(sc,
5876 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5877 (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
5878
5879 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", TOTAL_TX_BD);
5880
5881 aprint_error_dev(sc->bnx_dev, ""
5882 "-----------------------------"
5883 " tx_bd data "
5884 "-----------------------------\n");
5885
5886 /* Now print out the tx_bd's themselves. */
5887 for (i = 0; i < count; i++) {
5888 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5889 bnx_dump_txbd(sc, tx_prod, txbd);
5890 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5891 }
5892
5893 aprint_debug_dev(sc->bnx_dev,
5894 "-----------------------------"
5895 "--------------"
5896 "-----------------------------\n");
5897 }
5898
5899 /*
5900 * This routine prints the RX chain.
5901 */
5902 void
5903 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5904 {
5905 struct rx_bd *rxbd;
5906 int i;
5907
5908 /* First some info about the tx_bd chain structure. */
5909 aprint_debug_dev(sc->bnx_dev,
5910 "----------------------------"
5911 " rx_bd chain "
5912 "----------------------------\n");
5913
5914 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5915
5916 BNX_PRINTF(sc,
5917 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5918 (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
5919
5920 BNX_PRINTF(sc,
5921 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5922 (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
5923
5924 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", TOTAL_RX_BD);
5925
5926 aprint_error_dev(sc->bnx_dev,
5927 "----------------------------"
5928 " rx_bd data "
5929 "----------------------------\n");
5930
5931 /* Now print out the rx_bd's themselves. */
5932 for (i = 0; i < count; i++) {
5933 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5934 bnx_dump_rxbd(sc, rx_prod, rxbd);
5935 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5936 }
5937
5938 aprint_debug_dev(sc->bnx_dev,
5939 "----------------------------"
5940 "--------------"
5941 "----------------------------\n");
5942 }
5943
5944 /*
5945 * This routine prints the status block.
5946 */
5947 void
5948 bnx_dump_status_block(struct bnx_softc *sc)
5949 {
5950 struct status_block *sblk;
5951 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5952 BUS_DMASYNC_POSTREAD);
5953
5954 sblk = sc->status_block;
5955
5956 aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
5957 "-----------------------------\n");
5958
5959 BNX_PRINTF(sc,
5960 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
5961 sblk->status_attn_bits, sblk->status_attn_bits_ack,
5962 sblk->status_idx);
5963
5964 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
5965 sblk->status_rx_quick_consumer_index0,
5966 sblk->status_tx_quick_consumer_index0);
5967
5968 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
5969
5970 /* Theses indices are not used for normal L2 drivers. */
5971 if (sblk->status_rx_quick_consumer_index1 ||
5972 sblk->status_tx_quick_consumer_index1)
5973 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
5974 sblk->status_rx_quick_consumer_index1,
5975 sblk->status_tx_quick_consumer_index1);
5976
5977 if (sblk->status_rx_quick_consumer_index2 ||
5978 sblk->status_tx_quick_consumer_index2)
5979 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
5980 sblk->status_rx_quick_consumer_index2,
5981 sblk->status_tx_quick_consumer_index2);
5982
5983 if (sblk->status_rx_quick_consumer_index3 ||
5984 sblk->status_tx_quick_consumer_index3)
5985 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
5986 sblk->status_rx_quick_consumer_index3,
5987 sblk->status_tx_quick_consumer_index3);
5988
5989 if (sblk->status_rx_quick_consumer_index4 ||
5990 sblk->status_rx_quick_consumer_index5)
5991 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
5992 sblk->status_rx_quick_consumer_index4,
5993 sblk->status_rx_quick_consumer_index5);
5994
5995 if (sblk->status_rx_quick_consumer_index6 ||
5996 sblk->status_rx_quick_consumer_index7)
5997 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
5998 sblk->status_rx_quick_consumer_index6,
5999 sblk->status_rx_quick_consumer_index7);
6000
6001 if (sblk->status_rx_quick_consumer_index8 ||
6002 sblk->status_rx_quick_consumer_index9)
6003 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
6004 sblk->status_rx_quick_consumer_index8,
6005 sblk->status_rx_quick_consumer_index9);
6006
6007 if (sblk->status_rx_quick_consumer_index10 ||
6008 sblk->status_rx_quick_consumer_index11)
6009 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
6010 sblk->status_rx_quick_consumer_index10,
6011 sblk->status_rx_quick_consumer_index11);
6012
6013 if (sblk->status_rx_quick_consumer_index12 ||
6014 sblk->status_rx_quick_consumer_index13)
6015 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
6016 sblk->status_rx_quick_consumer_index12,
6017 sblk->status_rx_quick_consumer_index13);
6018
6019 if (sblk->status_rx_quick_consumer_index14 ||
6020 sblk->status_rx_quick_consumer_index15)
6021 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
6022 sblk->status_rx_quick_consumer_index14,
6023 sblk->status_rx_quick_consumer_index15);
6024
6025 if (sblk->status_completion_producer_index ||
6026 sblk->status_cmd_consumer_index)
6027 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
6028 sblk->status_completion_producer_index,
6029 sblk->status_cmd_consumer_index);
6030
6031 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6032 "-----------------------------\n");
6033 }
6034
6035 /*
6036 * This routine prints the statistics block.
6037 */
6038 void
6039 bnx_dump_stats_block(struct bnx_softc *sc)
6040 {
6041 struct statistics_block *sblk;
6042 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6043 BUS_DMASYNC_POSTREAD);
6044
6045 sblk = sc->stats_block;
6046
6047 aprint_debug_dev(sc->bnx_dev, ""
6048 "-----------------------------"
6049 " Stats Block "
6050 "-----------------------------\n");
6051
6052 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
6053 "IfHcInBadOctets = 0x%08X:%08X\n",
6054 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6055 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6056
6057 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
6058 "IfHcOutBadOctets = 0x%08X:%08X\n",
6059 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6060 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6061
6062 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
6063 "IfHcInMulticastPkts = 0x%08X:%08X\n",
6064 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6065 sblk->stat_IfHCInMulticastPkts_hi,
6066 sblk->stat_IfHCInMulticastPkts_lo);
6067
6068 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
6069 "IfHcOutUcastPkts = 0x%08X:%08X\n",
6070 sblk->stat_IfHCInBroadcastPkts_hi,
6071 sblk->stat_IfHCInBroadcastPkts_lo,
6072 sblk->stat_IfHCOutUcastPkts_hi,
6073 sblk->stat_IfHCOutUcastPkts_lo);
6074
6075 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6076 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6077 sblk->stat_IfHCOutMulticastPkts_hi,
6078 sblk->stat_IfHCOutMulticastPkts_lo,
6079 sblk->stat_IfHCOutBroadcastPkts_hi,
6080 sblk->stat_IfHCOutBroadcastPkts_lo);
6081
6082 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6083 BNX_PRINTF(sc, "0x%08X : "
6084 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6085 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6086
6087 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6088 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6089 sblk->stat_Dot3StatsCarrierSenseErrors);
6090
6091 if (sblk->stat_Dot3StatsFCSErrors)
6092 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6093 sblk->stat_Dot3StatsFCSErrors);
6094
6095 if (sblk->stat_Dot3StatsAlignmentErrors)
6096 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6097 sblk->stat_Dot3StatsAlignmentErrors);
6098
6099 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6100 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6101 sblk->stat_Dot3StatsSingleCollisionFrames);
6102
6103 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6104 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6105 sblk->stat_Dot3StatsMultipleCollisionFrames);
6106
6107 if (sblk->stat_Dot3StatsDeferredTransmissions)
6108 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6109 sblk->stat_Dot3StatsDeferredTransmissions);
6110
6111 if (sblk->stat_Dot3StatsExcessiveCollisions)
6112 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6113 sblk->stat_Dot3StatsExcessiveCollisions);
6114
6115 if (sblk->stat_Dot3StatsLateCollisions)
6116 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6117 sblk->stat_Dot3StatsLateCollisions);
6118
6119 if (sblk->stat_EtherStatsCollisions)
6120 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6121 sblk->stat_EtherStatsCollisions);
6122
6123 if (sblk->stat_EtherStatsFragments)
6124 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6125 sblk->stat_EtherStatsFragments);
6126
6127 if (sblk->stat_EtherStatsJabbers)
6128 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6129 sblk->stat_EtherStatsJabbers);
6130
6131 if (sblk->stat_EtherStatsUndersizePkts)
6132 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6133 sblk->stat_EtherStatsUndersizePkts);
6134
6135 if (sblk->stat_EtherStatsOverrsizePkts)
6136 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6137 sblk->stat_EtherStatsOverrsizePkts);
6138
6139 if (sblk->stat_EtherStatsPktsRx64Octets)
6140 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6141 sblk->stat_EtherStatsPktsRx64Octets);
6142
6143 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6144 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6145 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6146
6147 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6148 BNX_PRINTF(sc, "0x%08X : "
6149 "EtherStatsPktsRx128Octetsto255Octets\n",
6150 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6151
6152 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6153 BNX_PRINTF(sc, "0x%08X : "
6154 "EtherStatsPktsRx256Octetsto511Octets\n",
6155 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6156
6157 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6158 BNX_PRINTF(sc, "0x%08X : "
6159 "EtherStatsPktsRx512Octetsto1023Octets\n",
6160 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6161
6162 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6163 BNX_PRINTF(sc, "0x%08X : "
6164 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6165 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6166
6167 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6168 BNX_PRINTF(sc, "0x%08X : "
6169 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6170 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6171
6172 if (sblk->stat_EtherStatsPktsTx64Octets)
6173 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6174 sblk->stat_EtherStatsPktsTx64Octets);
6175
6176 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6177 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6178 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6179
6180 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6181 BNX_PRINTF(sc, "0x%08X : "
6182 "EtherStatsPktsTx128Octetsto255Octets\n",
6183 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6184
6185 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6186 BNX_PRINTF(sc, "0x%08X : "
6187 "EtherStatsPktsTx256Octetsto511Octets\n",
6188 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6189
6190 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6191 BNX_PRINTF(sc, "0x%08X : "
6192 "EtherStatsPktsTx512Octetsto1023Octets\n",
6193 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6194
6195 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6196 BNX_PRINTF(sc, "0x%08X : "
6197 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6198 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6199
6200 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6201 BNX_PRINTF(sc, "0x%08X : "
6202 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6203 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6204
6205 if (sblk->stat_XonPauseFramesReceived)
6206 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6207 sblk->stat_XonPauseFramesReceived);
6208
6209 if (sblk->stat_XoffPauseFramesReceived)
6210 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6211 sblk->stat_XoffPauseFramesReceived);
6212
6213 if (sblk->stat_OutXonSent)
6214 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6215 sblk->stat_OutXonSent);
6216
6217 if (sblk->stat_OutXoffSent)
6218 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6219 sblk->stat_OutXoffSent);
6220
6221 if (sblk->stat_FlowControlDone)
6222 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6223 sblk->stat_FlowControlDone);
6224
6225 if (sblk->stat_MacControlFramesReceived)
6226 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6227 sblk->stat_MacControlFramesReceived);
6228
6229 if (sblk->stat_XoffStateEntered)
6230 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6231 sblk->stat_XoffStateEntered);
6232
6233 if (sblk->stat_IfInFramesL2FilterDiscards)
6234 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6235 sblk->stat_IfInFramesL2FilterDiscards);
6236
6237 if (sblk->stat_IfInRuleCheckerDiscards)
6238 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6239 sblk->stat_IfInRuleCheckerDiscards);
6240
6241 if (sblk->stat_IfInFTQDiscards)
6242 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6243 sblk->stat_IfInFTQDiscards);
6244
6245 if (sblk->stat_IfInMBUFDiscards)
6246 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6247 sblk->stat_IfInMBUFDiscards);
6248
6249 if (sblk->stat_IfInRuleCheckerP4Hit)
6250 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6251 sblk->stat_IfInRuleCheckerP4Hit);
6252
6253 if (sblk->stat_CatchupInRuleCheckerDiscards)
6254 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6255 sblk->stat_CatchupInRuleCheckerDiscards);
6256
6257 if (sblk->stat_CatchupInFTQDiscards)
6258 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6259 sblk->stat_CatchupInFTQDiscards);
6260
6261 if (sblk->stat_CatchupInMBUFDiscards)
6262 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6263 sblk->stat_CatchupInMBUFDiscards);
6264
6265 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6266 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6267 sblk->stat_CatchupInRuleCheckerP4Hit);
6268
6269 aprint_debug_dev(sc->bnx_dev,
6270 "-----------------------------"
6271 "--------------"
6272 "-----------------------------\n");
6273 }
6274
6275 void
6276 bnx_dump_driver_state(struct bnx_softc *sc)
6277 {
6278 aprint_debug_dev(sc->bnx_dev,
6279 "-----------------------------"
6280 " Driver State "
6281 "-----------------------------\n");
6282
6283 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6284 "address\n", sc);
6285
6286 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6287 sc->status_block);
6288
6289 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6290 "address\n", sc->stats_block);
6291
6292 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6293 "adddress\n", sc->tx_bd_chain);
6294
6295 #if 0
6296 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6297 sc->rx_bd_chain);
6298
6299 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6300 sc->tx_mbuf_ptr);
6301 #endif
6302
6303 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6304 sc->rx_mbuf_ptr);
6305
6306 BNX_PRINTF(sc,
6307 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6308 sc->interrupts_generated);
6309
6310 BNX_PRINTF(sc,
6311 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6312 sc->rx_interrupts);
6313
6314 BNX_PRINTF(sc,
6315 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6316 sc->tx_interrupts);
6317
6318 BNX_PRINTF(sc,
6319 " 0x%08X - (sc->last_status_idx) status block index\n",
6320 sc->last_status_idx);
6321
6322 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6323 sc->tx_prod);
6324
6325 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6326 sc->tx_cons);
6327
6328 BNX_PRINTF(sc,
6329 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6330 sc->tx_prod_bseq);
6331 BNX_PRINTF(sc,
6332 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6333 sc->tx_mbuf_alloc);
6334
6335 BNX_PRINTF(sc,
6336 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6337 sc->used_tx_bd);
6338
6339 BNX_PRINTF(sc,
6340 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6341 sc->tx_hi_watermark, sc->max_tx_bd);
6342
6343
6344 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6345 sc->rx_prod);
6346
6347 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6348 sc->rx_cons);
6349
6350 BNX_PRINTF(sc,
6351 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6352 sc->rx_prod_bseq);
6353
6354 BNX_PRINTF(sc,
6355 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6356 sc->rx_mbuf_alloc);
6357
6358 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6359 sc->free_rx_bd);
6360
6361 BNX_PRINTF(sc,
6362 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6363 sc->rx_low_watermark, sc->max_rx_bd);
6364
6365 BNX_PRINTF(sc,
6366 " 0x%08X - (sc->mbuf_alloc_failed) "
6367 "mbuf alloc failures\n",
6368 sc->mbuf_alloc_failed);
6369
6370 BNX_PRINTF(sc,
6371 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6372 "simulated mbuf alloc failures\n",
6373 sc->mbuf_sim_alloc_failed);
6374
6375 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6376 "-----------------------------\n");
6377 }
6378
6379 void
6380 bnx_dump_hw_state(struct bnx_softc *sc)
6381 {
6382 uint32_t val1;
6383 int i;
6384
6385 aprint_debug_dev(sc->bnx_dev,
6386 "----------------------------"
6387 " Hardware State "
6388 "----------------------------\n");
6389
6390 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6391
6392 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6393 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6394 val1, BNX_MISC_ENABLE_STATUS_BITS);
6395
6396 val1 = REG_RD(sc, BNX_DMA_STATUS);
6397 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6398
6399 val1 = REG_RD(sc, BNX_CTX_STATUS);
6400 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6401
6402 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6403 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6404 BNX_EMAC_STATUS);
6405
6406 val1 = REG_RD(sc, BNX_RPM_STATUS);
6407 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6408
6409 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6410 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6411 BNX_TBDR_STATUS);
6412
6413 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6414 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6415 BNX_TDMA_STATUS);
6416
6417 val1 = REG_RD(sc, BNX_HC_STATUS);
6418 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6419
6420 aprint_debug_dev(sc->bnx_dev,
6421 "----------------------------"
6422 "----------------"
6423 "----------------------------\n");
6424
6425 aprint_debug_dev(sc->bnx_dev,
6426 "----------------------------"
6427 " Register Dump "
6428 "----------------------------\n");
6429
6430 for (i = 0x400; i < 0x8000; i += 0x10)
6431 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6432 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6433 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6434
6435 aprint_debug_dev(sc->bnx_dev,
6436 "----------------------------"
6437 "----------------"
6438 "----------------------------\n");
6439 }
6440
6441 void
6442 bnx_breakpoint(struct bnx_softc *sc)
6443 {
6444 /* Unreachable code to shut the compiler up about unused functions. */
6445 if (0) {
6446 bnx_dump_txbd(sc, 0, NULL);
6447 bnx_dump_rxbd(sc, 0, NULL);
6448 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6449 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6450 bnx_dump_l2fhdr(sc, 0, NULL);
6451 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6452 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6453 bnx_dump_status_block(sc);
6454 bnx_dump_stats_block(sc);
6455 bnx_dump_driver_state(sc);
6456 bnx_dump_hw_state(sc);
6457 }
6458
6459 bnx_dump_driver_state(sc);
6460 /* Print the important status block fields. */
6461 bnx_dump_status_block(sc);
6462
6463 #if 0
6464 /* Call the debugger. */
6465 breakpoint();
6466 #endif
6467
6468 return;
6469 }
6470 #endif
6471