Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.65
      1 /*	$NetBSD: if_bnx.c,v 1.65 2018/06/26 06:48:01 msaitoh Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
      3 
      4 /*-
      5  * Copyright (c) 2006-2010 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.65 2018/06/26 06:48:01 msaitoh Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, B0, B1, B2 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/pci/if_bnxvar.h>
     64 
     65 #include <dev/microcode/bnx/bnxfw.h>
     66 
     67 /****************************************************************************/
     68 /* BNX Driver Version                                                       */
     69 /****************************************************************************/
     70 #define BNX_DRIVER_VERSION	"v0.9.6"
     71 
     72 /****************************************************************************/
     73 /* BNX Debug Options                                                        */
     74 /****************************************************************************/
     75 #ifdef BNX_DEBUG
     76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     77 
     78 	/*          0 = Never              */
     79 	/*          1 = 1 in 2,147,483,648 */
     80 	/*        256 = 1 in     8,388,608 */
     81 	/*       2048 = 1 in     1,048,576 */
     82 	/*      65536 = 1 in        32,768 */
     83 	/*    1048576 = 1 in         2,048 */
     84 	/*  268435456 =	1 in             8 */
     85 	/*  536870912 = 1 in             4 */
     86 	/* 1073741824 = 1 in             2 */
     87 
     88 	/* Controls how often the l2_fhdr frame error check will fail. */
     89 	int bnx_debug_l2fhdr_status_check = 0;
     90 
     91 	/* Controls how often the unexpected attention check will fail. */
     92 	int bnx_debug_unexpected_attention = 0;
     93 
     94 	/* Controls how often to simulate an mbuf allocation failure. */
     95 	int bnx_debug_mbuf_allocation_failure = 0;
     96 
     97 	/* Controls how often to simulate a DMA mapping failure. */
     98 	int bnx_debug_dma_map_addr_failure = 0;
     99 
    100 	/* Controls how often to simulate a bootcode failure. */
    101 	int bnx_debug_bootcode_running_failure = 0;
    102 #endif
    103 
    104 /****************************************************************************/
    105 /* PCI Device ID Table                                                      */
    106 /*                                                                          */
    107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    108 /****************************************************************************/
    109 static const struct bnx_product {
    110 	pci_vendor_id_t		bp_vendor;
    111 	pci_product_id_t	bp_product;
    112 	pci_vendor_id_t		bp_subvendor;
    113 	pci_product_id_t	bp_subproduct;
    114 	const char		*bp_name;
    115 } bnx_devices[] = {
    116 #ifdef PCI_SUBPRODUCT_HP_NC370T
    117 	{
    118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    120 	  "HP NC370T Multifunction Gigabit Server Adapter"
    121 	},
    122 #endif
    123 #ifdef PCI_SUBPRODUCT_HP_NC370i
    124 	{
    125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    127 	  "HP NC370i Multifunction Gigabit Server Adapter"
    128 	},
    129 #endif
    130 	{
    131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    132 	  0, 0,
    133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    134 	},
    135 #ifdef PCI_SUBPRODUCT_HP_NC370F
    136 	{
    137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    139 	  "HP NC370F Multifunction Gigabit Server Adapter"
    140 	},
    141 #endif
    142 	{
    143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    144 	  0, 0,
    145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    146 	},
    147 	{
    148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    149 	  0, 0,
    150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    151 	},
    152 	{
    153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    154 	  0, 0,
    155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    156 	},
    157 	{
    158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    159 	  0, 0,
    160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    161 	},
    162 	{
    163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    164 	  0, 0,
    165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    166 	},
    167 	{
    168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    169 	  0, 0,
    170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    171 	},
    172 	{
    173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    174 	  0, 0,
    175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    176 	},
    177 };
    178 
    179 /****************************************************************************/
    180 /* Supported Flash NVRAM device data.                                       */
    181 /****************************************************************************/
    182 static struct flash_spec flash_table[] =
    183 {
    184 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    185 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    186 	/* Slow EEPROM */
    187 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    188 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    189 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    190 	 "EEPROM - slow"},
    191 	/* Expansion entry 0001 */
    192 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    195 	 "Entry 0001"},
    196 	/* Saifun SA25F010 (non-buffered flash) */
    197 	/* strap, cfg1, & write1 need updates */
    198 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    199 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    200 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    201 	 "Non-buffered flash (128kB)"},
    202 	/* Saifun SA25F020 (non-buffered flash) */
    203 	/* strap, cfg1, & write1 need updates */
    204 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    205 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    206 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    207 	 "Non-buffered flash (256kB)"},
    208 	/* Expansion entry 0100 */
    209 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    210 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    211 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    212 	 "Entry 0100"},
    213 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    214 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    215 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    216 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    217 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    218 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    219 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    220 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    221 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    222 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    223 	/* Saifun SA25F005 (non-buffered flash) */
    224 	/* strap, cfg1, & write1 need updates */
    225 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    228 	 "Non-buffered flash (64kB)"},
    229 	/* Fast EEPROM */
    230 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    231 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    232 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    233 	 "EEPROM - fast"},
    234 	/* Expansion entry 1001 */
    235 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    236 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    237 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    238 	 "Entry 1001"},
    239 	/* Expansion entry 1010 */
    240 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    241 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    242 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    243 	 "Entry 1010"},
    244 	/* ATMEL AT45DB011B (buffered flash) */
    245 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    246 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    247 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    248 	 "Buffered flash (128kB)"},
    249 	/* Expansion entry 1100 */
    250 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    251 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    252 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    253 	 "Entry 1100"},
    254 	/* Expansion entry 1101 */
    255 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    256 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    257 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    258 	 "Entry 1101"},
    259 	/* Ateml Expansion entry 1110 */
    260 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    261 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    262 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    263 	 "Entry 1110 (Atmel)"},
    264 	/* ATMEL AT45DB021B (buffered flash) */
    265 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    266 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    267 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    268 	 "Buffered flash (256kB)"},
    269 };
    270 
    271 /*
    272  * The BCM5709 controllers transparently handle the
    273  * differences between Atmel 264 byte pages and all
    274  * flash devices which use 256 byte pages, so no
    275  * logical-to-physical mapping is required in the
    276  * driver.
    277  */
    278 static struct flash_spec flash_5709 = {
    279 	.flags		= BNX_NV_BUFFERED,
    280 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    281 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    282 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    283 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    284 	.name		= "5709 buffered flash (256kB)",
    285 };
    286 
    287 /****************************************************************************/
    288 /* OpenBSD device entry points.                                             */
    289 /****************************************************************************/
    290 static int	bnx_probe(device_t, cfdata_t, void *);
    291 void	bnx_attach(device_t, device_t, void *);
    292 int	bnx_detach(device_t, int);
    293 
    294 /****************************************************************************/
    295 /* BNX Debug Data Structure Dump Routines                                   */
    296 /****************************************************************************/
    297 #ifdef BNX_DEBUG
    298 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    299 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    300 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    301 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    302 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    303 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    304 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    305 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    306 void	bnx_dump_status_block(struct bnx_softc *);
    307 void	bnx_dump_stats_block(struct bnx_softc *);
    308 void	bnx_dump_driver_state(struct bnx_softc *);
    309 void	bnx_dump_hw_state(struct bnx_softc *);
    310 void	bnx_breakpoint(struct bnx_softc *);
    311 #endif
    312 
    313 /****************************************************************************/
    314 /* BNX Register/Memory Access Routines                                      */
    315 /****************************************************************************/
    316 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
    317 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
    318 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
    319 int	bnx_miibus_read_reg(device_t, int, int);
    320 void	bnx_miibus_write_reg(device_t, int, int, int);
    321 void	bnx_miibus_statchg(struct ifnet *);
    322 
    323 /****************************************************************************/
    324 /* BNX NVRAM Access Routines                                                */
    325 /****************************************************************************/
    326 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    327 int	bnx_release_nvram_lock(struct bnx_softc *);
    328 void	bnx_enable_nvram_access(struct bnx_softc *);
    329 void	bnx_disable_nvram_access(struct bnx_softc *);
    330 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
    331 	    uint32_t);
    332 int	bnx_init_nvram(struct bnx_softc *);
    333 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
    334 int	bnx_nvram_test(struct bnx_softc *);
    335 #ifdef BNX_NVRAM_WRITE_SUPPORT
    336 int	bnx_enable_nvram_write(struct bnx_softc *);
    337 void	bnx_disable_nvram_write(struct bnx_softc *);
    338 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
    339 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
    340 	    uint32_t);
    341 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
    342 #endif
    343 
    344 /****************************************************************************/
    345 /*                                                                          */
    346 /****************************************************************************/
    347 void	bnx_get_media(struct bnx_softc *);
    348 void	bnx_init_media(struct bnx_softc *);
    349 int	bnx_dma_alloc(struct bnx_softc *);
    350 void	bnx_dma_free(struct bnx_softc *);
    351 void	bnx_release_resources(struct bnx_softc *);
    352 
    353 /****************************************************************************/
    354 /* BNX Firmware Synchronization and Load                                    */
    355 /****************************************************************************/
    356 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
    357 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t,
    358 	    uint32_t);
    359 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    360 	    struct fw_info *);
    361 void	bnx_init_cpus(struct bnx_softc *);
    362 
    363 static void bnx_print_adapter_info(struct bnx_softc *);
    364 static void bnx_probe_pci_caps(struct bnx_softc *);
    365 void	bnx_stop(struct ifnet *, int);
    366 int	bnx_reset(struct bnx_softc *, uint32_t);
    367 int	bnx_chipinit(struct bnx_softc *);
    368 int	bnx_blockinit(struct bnx_softc *);
    369 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
    370 	    uint16_t *, uint32_t *);
    371 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
    372 
    373 int	bnx_init_tx_chain(struct bnx_softc *);
    374 void	bnx_init_tx_context(struct bnx_softc *);
    375 int	bnx_init_rx_chain(struct bnx_softc *);
    376 void	bnx_init_rx_context(struct bnx_softc *);
    377 void	bnx_free_rx_chain(struct bnx_softc *);
    378 void	bnx_free_tx_chain(struct bnx_softc *);
    379 
    380 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    381 void	bnx_start(struct ifnet *);
    382 int	bnx_ioctl(struct ifnet *, u_long, void *);
    383 void	bnx_watchdog(struct ifnet *);
    384 int	bnx_init(struct ifnet *);
    385 
    386 void	bnx_init_context(struct bnx_softc *);
    387 void	bnx_get_mac_addr(struct bnx_softc *);
    388 void	bnx_set_mac_addr(struct bnx_softc *);
    389 void	bnx_phy_intr(struct bnx_softc *);
    390 void	bnx_rx_intr(struct bnx_softc *);
    391 void	bnx_tx_intr(struct bnx_softc *);
    392 void	bnx_disable_intr(struct bnx_softc *);
    393 void	bnx_enable_intr(struct bnx_softc *);
    394 
    395 int	bnx_intr(void *);
    396 void	bnx_iff(struct bnx_softc *);
    397 void	bnx_stats_update(struct bnx_softc *);
    398 void	bnx_tick(void *);
    399 
    400 struct pool *bnx_tx_pool = NULL;
    401 void	bnx_alloc_pkts(struct work *, void *);
    402 
    403 /****************************************************************************/
    404 /* OpenBSD device dispatch table.                                           */
    405 /****************************************************************************/
    406 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    407     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    408 
    409 /****************************************************************************/
    410 /* Device probe function.                                                   */
    411 /*                                                                          */
    412 /* Compares the device to the driver's list of supported devices and        */
    413 /* reports back to the OS whether this is the right driver for the device.  */
    414 /*                                                                          */
    415 /* Returns:                                                                 */
    416 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    417 /****************************************************************************/
    418 static const struct bnx_product *
    419 bnx_lookup(const struct pci_attach_args *pa)
    420 {
    421 	int i;
    422 	pcireg_t subid;
    423 
    424 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    425 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    426 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    427 			continue;
    428 		if (!bnx_devices[i].bp_subvendor)
    429 			return &bnx_devices[i];
    430 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    431 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    432 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    433 			return &bnx_devices[i];
    434 	}
    435 
    436 	return NULL;
    437 }
    438 static int
    439 bnx_probe(device_t parent, cfdata_t match, void *aux)
    440 {
    441 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    442 
    443 	if (bnx_lookup(pa) != NULL)
    444 		return 1;
    445 
    446 	return 0;
    447 }
    448 
    449 /****************************************************************************/
    450 /* PCI Capabilities Probe Function.                                         */
    451 /*                                                                          */
    452 /* Walks the PCI capabiites list for the device to find what features are   */
    453 /* supported.                                                               */
    454 /*                                                                          */
    455 /* Returns:                                                                 */
    456 /*   None.                                                                  */
    457 /****************************************************************************/
    458 static void
    459 bnx_print_adapter_info(struct bnx_softc *sc)
    460 {
    461 
    462 	aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
    463 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
    464 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
    465 	    ? "Serdes " : "", sc->bnx_chipid);
    466 
    467 	/* Bus info. */
    468 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
    469 		aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
    470 		    sc->link_width);
    471 		switch (sc->link_speed) {
    472 		case 1: aprint_normal("2.5Gbps\n"); break;
    473 		case 2:	aprint_normal("5Gbps\n"); break;
    474 		default: aprint_normal("Unknown link speed\n");
    475 		}
    476 	} else {
    477 		aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
    478 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
    479 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
    480 		    sc->bus_speed_mhz);
    481 	}
    482 
    483 	aprint_normal_dev(sc->bnx_dev,
    484 	    "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
    485 	    sc->bnx_rx_quick_cons_trip_int,
    486 	    sc->bnx_rx_quick_cons_trip,
    487 	    sc->bnx_rx_ticks_int,
    488 	    sc->bnx_rx_ticks,
    489 	    sc->bnx_tx_quick_cons_trip_int,
    490 	    sc->bnx_tx_quick_cons_trip,
    491 	    sc->bnx_tx_ticks_int,
    492 	    sc->bnx_tx_ticks);
    493 }
    494 
    495 
    496 /****************************************************************************/
    497 /* PCI Capabilities Probe Function.                                         */
    498 /*                                                                          */
    499 /* Walks the PCI capabiites list for the device to find what features are   */
    500 /* supported.                                                               */
    501 /*                                                                          */
    502 /* Returns:                                                                 */
    503 /*   None.                                                                  */
    504 /****************************************************************************/
    505 static void
    506 bnx_probe_pci_caps(struct bnx_softc *sc)
    507 {
    508 	struct pci_attach_args *pa = &(sc->bnx_pa);
    509 	pcireg_t reg;
    510 
    511 	/* Check if PCI-X capability is enabled. */
    512 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
    513 		NULL) != 0) {
    514 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
    515 	}
    516 
    517 	/* Check if PCIe capability is enabled. */
    518 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
    519 		NULL) != 0) {
    520 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
    521 		    reg + PCIE_LCSR);
    522 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
    523 		    "0x%08X\n",	link_status);
    524 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
    525 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
    526 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
    527 		sc->bnx_flags |= BNX_PCIE_FLAG;
    528 	}
    529 
    530 	/* Check if MSI capability is enabled. */
    531 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
    532 		NULL) != 0)
    533 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
    534 
    535 	/* Check if MSI-X capability is enabled. */
    536 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
    537 		NULL) != 0)
    538 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
    539 }
    540 
    541 
    542 /****************************************************************************/
    543 /* Device attach function.                                                  */
    544 /*                                                                          */
    545 /* Allocates device resources, performs secondary chip identification,      */
    546 /* resets and initializes the hardware, and initializes driver instance     */
    547 /* variables.                                                               */
    548 /*                                                                          */
    549 /* Returns:                                                                 */
    550 /*   0 on success, positive value on failure.                               */
    551 /****************************************************************************/
    552 void
    553 bnx_attach(device_t parent, device_t self, void *aux)
    554 {
    555 	const struct bnx_product *bp;
    556 	struct bnx_softc	*sc = device_private(self);
    557 	prop_dictionary_t	dict;
    558 	struct pci_attach_args	*pa = aux;
    559 	pci_chipset_tag_t	pc = pa->pa_pc;
    560 	pci_intr_handle_t	ih;
    561 	const char 		*intrstr = NULL;
    562 	uint32_t		command;
    563 	struct ifnet		*ifp;
    564 	uint32_t		val;
    565 	int			mii_flags = MIIF_FORCEANEG;
    566 	pcireg_t		memtype;
    567 	char intrbuf[PCI_INTRSTR_LEN];
    568 
    569 	if (bnx_tx_pool == NULL) {
    570 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    571 		if (bnx_tx_pool != NULL) {
    572 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    573 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    574 		} else {
    575 			aprint_error(": can't alloc bnx_tx_pool\n");
    576 			return;
    577 		}
    578 	}
    579 
    580 	bp = bnx_lookup(pa);
    581 	if (bp == NULL)
    582 		panic("unknown device");
    583 
    584 	sc->bnx_dev = self;
    585 
    586 	aprint_naive("\n");
    587 	aprint_normal(": %s\n", bp->bp_name);
    588 
    589 	sc->bnx_pa = *pa;
    590 
    591 	/*
    592 	 * Map control/status registers.
    593 	*/
    594 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    595 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    596 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    597 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    598 
    599 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    600 		aprint_error_dev(sc->bnx_dev,
    601 		    "failed to enable memory mapping!\n");
    602 		return;
    603 	}
    604 
    605 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    606 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    607 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    608 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    609 		return;
    610 	}
    611 
    612 	if (pci_intr_map(pa, &ih)) {
    613 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    614 		goto bnx_attach_fail;
    615 	}
    616 
    617 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    618 
    619 	/*
    620 	 * Configure byte swap and enable indirect register access.
    621 	 * Rely on CPU to do target byte swapping on big endian systems.
    622 	 * Access to registers outside of PCI configurtion space are not
    623 	 * valid until this is done.
    624 	 */
    625 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    626 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    627 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    628 
    629 	/* Save ASIC revsion info. */
    630 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    631 
    632 	/*
    633 	 * Find the base address for shared memory access.
    634 	 * Newer versions of bootcode use a signature and offset
    635 	 * while older versions use a fixed address.
    636 	 */
    637 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    638 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    639 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    640 		    (sc->bnx_pa.pa_function << 2));
    641 	else
    642 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    643 
    644 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    645 
    646 	/* Set initial device and PHY flags */
    647 	sc->bnx_flags = 0;
    648 	sc->bnx_phy_flags = 0;
    649 
    650 	bnx_probe_pci_caps(sc);
    651 
    652 	/* Get PCI bus information (speed and type). */
    653 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    654 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    655 		uint32_t clkreg;
    656 
    657 		sc->bnx_flags |= BNX_PCIX_FLAG;
    658 
    659 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    660 
    661 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    662 		switch (clkreg) {
    663 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    664 			sc->bus_speed_mhz = 133;
    665 			break;
    666 
    667 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    668 			sc->bus_speed_mhz = 100;
    669 			break;
    670 
    671 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    672 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    673 			sc->bus_speed_mhz = 66;
    674 			break;
    675 
    676 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    677 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    678 			sc->bus_speed_mhz = 50;
    679 			break;
    680 
    681 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    682 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    683 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    684 			sc->bus_speed_mhz = 33;
    685 			break;
    686 		}
    687 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    688 			sc->bus_speed_mhz = 66;
    689 		else
    690 			sc->bus_speed_mhz = 33;
    691 
    692 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    693 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    694 
    695 	/* Reset the controller. */
    696 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    697 		goto bnx_attach_fail;
    698 
    699 	/* Initialize the controller. */
    700 	if (bnx_chipinit(sc)) {
    701 		aprint_error_dev(sc->bnx_dev,
    702 		    "Controller initialization failed!\n");
    703 		goto bnx_attach_fail;
    704 	}
    705 
    706 	/* Perform NVRAM test. */
    707 	if (bnx_nvram_test(sc)) {
    708 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    709 		goto bnx_attach_fail;
    710 	}
    711 
    712 	/* Fetch the permanent Ethernet MAC address. */
    713 	bnx_get_mac_addr(sc);
    714 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    715 	    ether_sprintf(sc->eaddr));
    716 
    717 	/*
    718 	 * Trip points control how many BDs
    719 	 * should be ready before generating an
    720 	 * interrupt while ticks control how long
    721 	 * a BD can sit in the chain before
    722 	 * generating an interrupt.  Set the default
    723 	 * values for the RX and TX rings.
    724 	 */
    725 
    726 #ifdef BNX_DEBUG
    727 	/* Force more frequent interrupts. */
    728 	sc->bnx_tx_quick_cons_trip_int = 1;
    729 	sc->bnx_tx_quick_cons_trip     = 1;
    730 	sc->bnx_tx_ticks_int           = 0;
    731 	sc->bnx_tx_ticks               = 0;
    732 
    733 	sc->bnx_rx_quick_cons_trip_int = 1;
    734 	sc->bnx_rx_quick_cons_trip     = 1;
    735 	sc->bnx_rx_ticks_int           = 0;
    736 	sc->bnx_rx_ticks               = 0;
    737 #else
    738 	sc->bnx_tx_quick_cons_trip_int = 20;
    739 	sc->bnx_tx_quick_cons_trip     = 20;
    740 	sc->bnx_tx_ticks_int           = 80;
    741 	sc->bnx_tx_ticks               = 80;
    742 
    743 	sc->bnx_rx_quick_cons_trip_int = 6;
    744 	sc->bnx_rx_quick_cons_trip     = 6;
    745 	sc->bnx_rx_ticks_int           = 18;
    746 	sc->bnx_rx_ticks               = 18;
    747 #endif
    748 
    749 	/* Update statistics once every second. */
    750 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    751 
    752 	/* Find the media type for the adapter. */
    753 	bnx_get_media(sc);
    754 
    755 	/*
    756 	 * Store config data needed by the PHY driver for
    757 	 * backplane applications
    758 	 */
    759 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    760 	    BNX_SHARED_HW_CFG_CONFIG);
    761 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    762 	    BNX_PORT_HW_CFG_CONFIG);
    763 
    764 	/* Allocate DMA memory resources. */
    765 	sc->bnx_dmatag = pa->pa_dmat;
    766 	if (bnx_dma_alloc(sc)) {
    767 		aprint_error_dev(sc->bnx_dev,
    768 		    "DMA resource allocation failed!\n");
    769 		goto bnx_attach_fail;
    770 	}
    771 
    772 	/* Initialize the ifnet interface. */
    773 	ifp = &sc->bnx_ec.ec_if;
    774 	ifp->if_softc = sc;
    775 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    776 	ifp->if_ioctl = bnx_ioctl;
    777 	ifp->if_stop = bnx_stop;
    778 	ifp->if_start = bnx_start;
    779 	ifp->if_init = bnx_init;
    780 	ifp->if_timer = 0;
    781 	ifp->if_watchdog = bnx_watchdog;
    782 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    783 	IFQ_SET_READY(&ifp->if_snd);
    784 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    785 
    786 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    787 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    788 
    789 	ifp->if_capabilities |=
    790 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    791 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    792 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    793 
    794 	/* Hookup IRQ last. */
    795 	sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
    796 	    sc, device_xname(self));
    797 	if (sc->bnx_intrhand == NULL) {
    798 		aprint_error_dev(self, "couldn't establish interrupt");
    799 		if (intrstr != NULL)
    800 			aprint_error(" at %s", intrstr);
    801 		aprint_error("\n");
    802 		goto bnx_attach_fail;
    803 	}
    804 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    805 
    806 	/* create workqueue to handle packet allocations */
    807 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    808 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    809 		aprint_error_dev(self, "failed to create workqueue\n");
    810 		goto bnx_attach_fail;
    811 	}
    812 
    813 	sc->bnx_mii.mii_ifp = ifp;
    814 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    815 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    816 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    817 
    818 	/* Handle any special PHY initialization for SerDes PHYs. */
    819 	bnx_init_media(sc);
    820 
    821 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    822 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    823 	    ether_mediastatus);
    824 
    825 	/* set phyflags and chipid before mii_attach() */
    826 	dict = device_properties(self);
    827 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    828 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    829 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
    830 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
    831 
    832 	/* Print some useful adapter info */
    833 	bnx_print_adapter_info(sc);
    834 
    835 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    836 		mii_flags |= MIIF_HAVEFIBER;
    837 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    838 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    839 
    840 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    841 		aprint_error_dev(self, "no PHY found!\n");
    842 		ifmedia_add(&sc->bnx_mii.mii_media,
    843 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    844 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
    845 	} else
    846 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
    847 
    848 	/* Attach to the Ethernet interface list. */
    849 	if_attach(ifp);
    850 	if_deferred_start_init(ifp, NULL);
    851 	ether_ifattach(ifp,sc->eaddr);
    852 
    853 	callout_init(&sc->bnx_timeout, 0);
    854 
    855 	if (pmf_device_register(self, NULL, NULL))
    856 		pmf_class_network_register(self, ifp);
    857 	else
    858 		aprint_error_dev(self, "couldn't establish power handler\n");
    859 
    860 	/* Print some important debugging info. */
    861 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    862 
    863 	goto bnx_attach_exit;
    864 
    865 bnx_attach_fail:
    866 	bnx_release_resources(sc);
    867 
    868 bnx_attach_exit:
    869 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    870 }
    871 
    872 /****************************************************************************/
    873 /* Device detach function.                                                  */
    874 /*                                                                          */
    875 /* Stops the controller, resets the controller, and releases resources.     */
    876 /*                                                                          */
    877 /* Returns:                                                                 */
    878 /*   0 on success, positive value on failure.                               */
    879 /****************************************************************************/
    880 int
    881 bnx_detach(device_t dev, int flags)
    882 {
    883 	int s;
    884 	struct bnx_softc *sc;
    885 	struct ifnet *ifp;
    886 
    887 	sc = device_private(dev);
    888 	ifp = &sc->bnx_ec.ec_if;
    889 
    890 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    891 
    892 	/* Stop and reset the controller. */
    893 	s = splnet();
    894 	bnx_stop(ifp, 1);
    895 	splx(s);
    896 
    897 	pmf_device_deregister(dev);
    898 	callout_destroy(&sc->bnx_timeout);
    899 	ether_ifdetach(ifp);
    900 	workqueue_destroy(sc->bnx_wq);
    901 
    902 	/* Delete all remaining media. */
    903 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    904 
    905 	if_detach(ifp);
    906 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    907 
    908 	/* Release all remaining resources. */
    909 	bnx_release_resources(sc);
    910 
    911 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    912 
    913 	return 0;
    914 }
    915 
    916 /****************************************************************************/
    917 /* Indirect register read.                                                  */
    918 /*                                                                          */
    919 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    920 /* configuration space.  Using this mechanism avoids issues with posted     */
    921 /* reads but is much slower than memory-mapped I/O.                         */
    922 /*                                                                          */
    923 /* Returns:                                                                 */
    924 /*   The value of the register.                                             */
    925 /****************************************************************************/
    926 uint32_t
    927 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
    928 {
    929 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    930 
    931 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    932 	    offset);
    933 #ifdef BNX_DEBUG
    934 	{
    935 		uint32_t val;
    936 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    937 		    BNX_PCICFG_REG_WINDOW);
    938 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    939 		    "val = 0x%08X\n", __func__, offset, val);
    940 		return val;
    941 	}
    942 #else
    943 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    944 #endif
    945 }
    946 
    947 /****************************************************************************/
    948 /* Indirect register write.                                                 */
    949 /*                                                                          */
    950 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    951 /* configuration space.  Using this mechanism avoids issues with posted     */
    952 /* writes but is muchh slower than memory-mapped I/O.                       */
    953 /*                                                                          */
    954 /* Returns:                                                                 */
    955 /*   Nothing.                                                               */
    956 /****************************************************************************/
    957 void
    958 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
    959 {
    960 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    961 
    962 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    963 		__func__, offset, val);
    964 
    965 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    966 	    offset);
    967 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    968 }
    969 
    970 /****************************************************************************/
    971 /* Context memory write.                                                    */
    972 /*                                                                          */
    973 /* The NetXtreme II controller uses context memory to track connection      */
    974 /* information for L2 and higher network protocols.                         */
    975 /*                                                                          */
    976 /* Returns:                                                                 */
    977 /*   Nothing.                                                               */
    978 /****************************************************************************/
    979 void
    980 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
    981     uint32_t ctx_val)
    982 {
    983 	uint32_t idx, offset = ctx_offset + cid_addr;
    984 	uint32_t val, retry_cnt = 5;
    985 
    986 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
    987 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
    988 		REG_WR(sc, BNX_CTX_CTX_CTRL,
    989 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
    990 
    991 		for (idx = 0; idx < retry_cnt; idx++) {
    992 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
    993 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
    994 				break;
    995 			DELAY(5);
    996 		}
    997 
    998 #if 0
    999 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
   1000 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
   1001 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
   1002 				__FILE__, __LINE__, cid_addr, ctx_offset);
   1003 #endif
   1004 
   1005 	} else {
   1006 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
   1007 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
   1008 	}
   1009 }
   1010 
   1011 /****************************************************************************/
   1012 /* PHY register read.                                                       */
   1013 /*                                                                          */
   1014 /* Implements register reads on the MII bus.                                */
   1015 /*                                                                          */
   1016 /* Returns:                                                                 */
   1017 /*   The value of the register.                                             */
   1018 /****************************************************************************/
   1019 int
   1020 bnx_miibus_read_reg(device_t dev, int phy, int reg)
   1021 {
   1022 	struct bnx_softc	*sc = device_private(dev);
   1023 	uint32_t		val;
   1024 	int			i;
   1025 
   1026 	/* Make sure we are accessing the correct PHY address. */
   1027 	if (phy != sc->bnx_phy_addr) {
   1028 		DBPRINT(sc, BNX_VERBOSE,
   1029 		    "Invalid PHY address %d for PHY read!\n", phy);
   1030 		return 0;
   1031 	}
   1032 
   1033 	/*
   1034 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1035 	 * with special mappings to work with IEEE
   1036 	 * Clause 22 register accesses.
   1037 	 */
   1038 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1039 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1040 			reg += 0x10;
   1041 	}
   1042 
   1043 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1044 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1045 		val &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1046 
   1047 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
   1048 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1049 
   1050 		DELAY(40);
   1051 	}
   1052 
   1053 	val = BNX_MIPHY(phy) | BNX_MIREG(reg) |
   1054 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
   1055 	    BNX_EMAC_MDIO_COMM_START_BUSY;
   1056 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val);
   1057 
   1058 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1059 		DELAY(10);
   1060 
   1061 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1062 		if (!(val & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1063 			DELAY(5);
   1064 
   1065 			val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1066 			val &= BNX_EMAC_MDIO_COMM_DATA;
   1067 
   1068 			break;
   1069 		}
   1070 	}
   1071 
   1072 	if (val & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1073 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
   1074 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
   1075 		val = 0x0;
   1076 	} else
   1077 		val = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1078 
   1079 	DBPRINT(sc, BNX_EXCESSIVE,
   1080 	    "%s(): phy = %d, reg = 0x%04X, val = 0x%04X\n", __func__, phy,
   1081 	    (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
   1082 
   1083 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1084 		val = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1085 		val |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1086 
   1087 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val);
   1088 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1089 
   1090 		DELAY(40);
   1091 	}
   1092 
   1093 	return (val & 0xffff);
   1094 }
   1095 
   1096 /****************************************************************************/
   1097 /* PHY register write.                                                      */
   1098 /*                                                                          */
   1099 /* Implements register writes on the MII bus.                               */
   1100 /*                                                                          */
   1101 /* Returns:                                                                 */
   1102 /*   The value of the register.                                             */
   1103 /****************************************************************************/
   1104 void
   1105 bnx_miibus_write_reg(device_t dev, int phy, int reg, int val)
   1106 {
   1107 	struct bnx_softc	*sc = device_private(dev);
   1108 	uint32_t		val1;
   1109 	int			i;
   1110 
   1111 	/* Make sure we are accessing the correct PHY address. */
   1112 	if (phy != sc->bnx_phy_addr) {
   1113 		DBPRINT(sc, BNX_WARN, "Invalid PHY address %d for PHY write!\n",
   1114 		    phy);
   1115 		return;
   1116 	}
   1117 
   1118 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1119 	    "val = 0x%04X\n", __func__,
   1120 	    phy, (uint16_t) reg & 0xffff, (uint16_t) val & 0xffff);
   1121 
   1122 	/*
   1123 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1124 	 * with special mappings to work with IEEE
   1125 	 * Clause 22 register accesses.
   1126 	 */
   1127 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1128 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1129 			reg += 0x10;
   1130 	}
   1131 
   1132 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1133 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1134 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1135 
   1136 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1137 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1138 
   1139 		DELAY(40);
   1140 	}
   1141 
   1142 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1143 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1144 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1145 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1146 
   1147 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1148 		DELAY(10);
   1149 
   1150 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1151 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1152 			DELAY(5);
   1153 			break;
   1154 		}
   1155 	}
   1156 
   1157 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1158 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1159 		    __LINE__);
   1160 	}
   1161 
   1162 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1163 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1164 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1165 
   1166 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1167 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1168 
   1169 		DELAY(40);
   1170 	}
   1171 }
   1172 
   1173 /****************************************************************************/
   1174 /* MII bus status change.                                                   */
   1175 /*                                                                          */
   1176 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1177 /* MAC interface registers.                                                 */
   1178 /*                                                                          */
   1179 /* Returns:                                                                 */
   1180 /*   Nothing.                                                               */
   1181 /****************************************************************************/
   1182 void
   1183 bnx_miibus_statchg(struct ifnet *ifp)
   1184 {
   1185 	struct bnx_softc	*sc = ifp->if_softc;
   1186 	struct mii_data		*mii = &sc->bnx_mii;
   1187 	int			val;
   1188 
   1189 	val = REG_RD(sc, BNX_EMAC_MODE);
   1190 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1191 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1192 	    BNX_EMAC_MODE_25G);
   1193 
   1194 	/* Set MII or GMII interface based on the speed
   1195 	 * negotiated by the PHY.
   1196 	 */
   1197 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1198 	case IFM_10_T:
   1199 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1200 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1201 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1202 			break;
   1203 		}
   1204 		/* FALLTHROUGH */
   1205 	case IFM_100_TX:
   1206 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1207 		val |= BNX_EMAC_MODE_PORT_MII;
   1208 		break;
   1209 	case IFM_2500_SX:
   1210 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1211 		val |= BNX_EMAC_MODE_25G;
   1212 		/* FALLTHROUGH */
   1213 	case IFM_1000_T:
   1214 	case IFM_1000_SX:
   1215 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1216 		val |= BNX_EMAC_MODE_PORT_GMII;
   1217 		break;
   1218 	default:
   1219 		val |= BNX_EMAC_MODE_PORT_GMII;
   1220 		break;
   1221 	}
   1222 
   1223 	/* Set half or full duplex based on the duplicity
   1224 	 * negotiated by the PHY.
   1225 	 */
   1226 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1227 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1228 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1229 	} else {
   1230 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1231 	}
   1232 
   1233 	REG_WR(sc, BNX_EMAC_MODE, val);
   1234 }
   1235 
   1236 /****************************************************************************/
   1237 /* Acquire NVRAM lock.                                                      */
   1238 /*                                                                          */
   1239 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1240 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1241 /* for use by the driver.                                                   */
   1242 /*                                                                          */
   1243 /* Returns:                                                                 */
   1244 /*   0 on success, positive value on failure.                               */
   1245 /****************************************************************************/
   1246 int
   1247 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1248 {
   1249 	uint32_t		val;
   1250 	int			j;
   1251 
   1252 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1253 
   1254 	/* Request access to the flash interface. */
   1255 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1256 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1257 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1258 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1259 			break;
   1260 
   1261 		DELAY(5);
   1262 	}
   1263 
   1264 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1265 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1266 		return EBUSY;
   1267 	}
   1268 
   1269 	return 0;
   1270 }
   1271 
   1272 /****************************************************************************/
   1273 /* Release NVRAM lock.                                                      */
   1274 /*                                                                          */
   1275 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1276 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1277 /* for use by the driver.                                                   */
   1278 /*                                                                          */
   1279 /* Returns:                                                                 */
   1280 /*   0 on success, positive value on failure.                               */
   1281 /****************************************************************************/
   1282 int
   1283 bnx_release_nvram_lock(struct bnx_softc *sc)
   1284 {
   1285 	int			j;
   1286 	uint32_t		val;
   1287 
   1288 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1289 
   1290 	/* Relinquish nvram interface. */
   1291 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1292 
   1293 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1294 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1295 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1296 			break;
   1297 
   1298 		DELAY(5);
   1299 	}
   1300 
   1301 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1302 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1303 		return EBUSY;
   1304 	}
   1305 
   1306 	return 0;
   1307 }
   1308 
   1309 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1310 /****************************************************************************/
   1311 /* Enable NVRAM write access.                                               */
   1312 /*                                                                          */
   1313 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1314 /*                                                                          */
   1315 /* Returns:                                                                 */
   1316 /*   0 on success, positive value on failure.                               */
   1317 /****************************************************************************/
   1318 int
   1319 bnx_enable_nvram_write(struct bnx_softc *sc)
   1320 {
   1321 	uint32_t		val;
   1322 
   1323 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1324 
   1325 	val = REG_RD(sc, BNX_MISC_CFG);
   1326 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1327 
   1328 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1329 		int j;
   1330 
   1331 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1332 		REG_WR(sc, BNX_NVM_COMMAND,
   1333 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1334 
   1335 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1336 			DELAY(5);
   1337 
   1338 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1339 			if (val & BNX_NVM_COMMAND_DONE)
   1340 				break;
   1341 		}
   1342 
   1343 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1344 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1345 			return EBUSY;
   1346 		}
   1347 	}
   1348 
   1349 	return 0;
   1350 }
   1351 
   1352 /****************************************************************************/
   1353 /* Disable NVRAM write access.                                              */
   1354 /*                                                                          */
   1355 /* When the caller is finished writing to NVRAM write access must be        */
   1356 /* disabled.                                                                */
   1357 /*                                                                          */
   1358 /* Returns:                                                                 */
   1359 /*   Nothing.                                                               */
   1360 /****************************************************************************/
   1361 void
   1362 bnx_disable_nvram_write(struct bnx_softc *sc)
   1363 {
   1364 	uint32_t		val;
   1365 
   1366 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1367 
   1368 	val = REG_RD(sc, BNX_MISC_CFG);
   1369 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1370 }
   1371 #endif
   1372 
   1373 /****************************************************************************/
   1374 /* Enable NVRAM access.                                                     */
   1375 /*                                                                          */
   1376 /* Before accessing NVRAM for read or write operations the caller must      */
   1377 /* enabled NVRAM access.                                                    */
   1378 /*                                                                          */
   1379 /* Returns:                                                                 */
   1380 /*   Nothing.                                                               */
   1381 /****************************************************************************/
   1382 void
   1383 bnx_enable_nvram_access(struct bnx_softc *sc)
   1384 {
   1385 	uint32_t		val;
   1386 
   1387 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1388 
   1389 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1390 	/* Enable both bits, even on read. */
   1391 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1392 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1393 }
   1394 
   1395 /****************************************************************************/
   1396 /* Disable NVRAM access.                                                    */
   1397 /*                                                                          */
   1398 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1399 /*                                                                          */
   1400 /* Returns:                                                                 */
   1401 /*   Nothing.                                                               */
   1402 /****************************************************************************/
   1403 void
   1404 bnx_disable_nvram_access(struct bnx_softc *sc)
   1405 {
   1406 	uint32_t		val;
   1407 
   1408 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1409 
   1410 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1411 
   1412 	/* Disable both bits, even after read. */
   1413 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1414 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1415 }
   1416 
   1417 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1418 /****************************************************************************/
   1419 /* Erase NVRAM page before writing.                                         */
   1420 /*                                                                          */
   1421 /* Non-buffered flash parts require that a page be erased before it is      */
   1422 /* written.                                                                 */
   1423 /*                                                                          */
   1424 /* Returns:                                                                 */
   1425 /*   0 on success, positive value on failure.                               */
   1426 /****************************************************************************/
   1427 int
   1428 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
   1429 {
   1430 	uint32_t		cmd;
   1431 	int			j;
   1432 
   1433 	/* Buffered flash doesn't require an erase. */
   1434 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1435 		return 0;
   1436 
   1437 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1438 
   1439 	/* Build an erase command. */
   1440 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1441 	    BNX_NVM_COMMAND_DOIT;
   1442 
   1443 	/*
   1444 	 * Clear the DONE bit separately, set the NVRAM address to erase,
   1445 	 * and issue the erase command.
   1446 	 */
   1447 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1448 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1449 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1450 
   1451 	/* Wait for completion. */
   1452 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1453 		uint32_t val;
   1454 
   1455 		DELAY(5);
   1456 
   1457 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1458 		if (val & BNX_NVM_COMMAND_DONE)
   1459 			break;
   1460 	}
   1461 
   1462 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1463 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1464 		return EBUSY;
   1465 	}
   1466 
   1467 	return 0;
   1468 }
   1469 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1470 
   1471 /****************************************************************************/
   1472 /* Read a dword (32 bits) from NVRAM.                                       */
   1473 /*                                                                          */
   1474 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1475 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1476 /*                                                                          */
   1477 /* Returns:                                                                 */
   1478 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1479 /****************************************************************************/
   1480 int
   1481 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
   1482     uint8_t *ret_val, uint32_t cmd_flags)
   1483 {
   1484 	uint32_t		cmd;
   1485 	int			i, rc = 0;
   1486 
   1487 	/* Build the command word. */
   1488 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1489 
   1490 	/* Calculate the offset for buffered flash if translation is used. */
   1491 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1492 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1493 		    sc->bnx_flash_info->page_bits) +
   1494 		    (offset % sc->bnx_flash_info->page_size);
   1495 	}
   1496 
   1497 	/*
   1498 	 * Clear the DONE bit separately, set the address to read,
   1499 	 * and issue the read.
   1500 	 */
   1501 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1502 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1503 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1504 
   1505 	/* Wait for completion. */
   1506 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1507 		uint32_t val;
   1508 
   1509 		DELAY(5);
   1510 
   1511 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1512 		if (val & BNX_NVM_COMMAND_DONE) {
   1513 			val = REG_RD(sc, BNX_NVM_READ);
   1514 
   1515 			val = bnx_be32toh(val);
   1516 			memcpy(ret_val, &val, 4);
   1517 			break;
   1518 		}
   1519 	}
   1520 
   1521 	/* Check for errors. */
   1522 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1523 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1524 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1525 		rc = EBUSY;
   1526 	}
   1527 
   1528 	return rc;
   1529 }
   1530 
   1531 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1532 /****************************************************************************/
   1533 /* Write a dword (32 bits) to NVRAM.                                        */
   1534 /*                                                                          */
   1535 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1536 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1537 /* enabled NVRAM write access.                                              */
   1538 /*                                                                          */
   1539 /* Returns:                                                                 */
   1540 /*   0 on success, positive value on failure.                               */
   1541 /****************************************************************************/
   1542 int
   1543 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
   1544     uint32_t cmd_flags)
   1545 {
   1546 	uint32_t		cmd, val32;
   1547 	int			j;
   1548 
   1549 	/* Build the command word. */
   1550 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1551 
   1552 	/* Calculate the offset for buffered flash if translation is used. */
   1553 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1554 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1555 		    sc->bnx_flash_info->page_bits) +
   1556 		    (offset % sc->bnx_flash_info->page_size);
   1557 	}
   1558 
   1559 	/*
   1560 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1561 	 * set the NVRAM address to write, and issue the write command
   1562 	 */
   1563 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1564 	memcpy(&val32, val, 4);
   1565 	val32 = htobe32(val32);
   1566 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1567 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1568 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1569 
   1570 	/* Wait for completion. */
   1571 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1572 		DELAY(5);
   1573 
   1574 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1575 			break;
   1576 	}
   1577 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1578 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1579 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1580 		return EBUSY;
   1581 	}
   1582 
   1583 	return 0;
   1584 }
   1585 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1586 
   1587 /****************************************************************************/
   1588 /* Initialize NVRAM access.                                                 */
   1589 /*                                                                          */
   1590 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1591 /* access that device.                                                      */
   1592 /*                                                                          */
   1593 /* Returns:                                                                 */
   1594 /*   0 on success, positive value on failure.                               */
   1595 /****************************************************************************/
   1596 int
   1597 bnx_init_nvram(struct bnx_softc *sc)
   1598 {
   1599 	uint32_t		val;
   1600 	int			j, entry_count, rc = 0;
   1601 	struct flash_spec	*flash;
   1602 
   1603 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1604 
   1605 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1606 		sc->bnx_flash_info = &flash_5709;
   1607 		goto bnx_init_nvram_get_flash_size;
   1608 	}
   1609 
   1610 	/* Determine the selected interface. */
   1611 	val = REG_RD(sc, BNX_NVM_CFG1);
   1612 
   1613 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1614 
   1615 	/*
   1616 	 * Flash reconfiguration is required to support additional
   1617 	 * NVRAM devices not directly supported in hardware.
   1618 	 * Check if the flash interface was reconfigured
   1619 	 * by the bootcode.
   1620 	 */
   1621 
   1622 	if (val & 0x40000000) {
   1623 		/* Flash interface reconfigured by bootcode. */
   1624 
   1625 		DBPRINT(sc,BNX_INFO_LOAD,
   1626 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1627 
   1628 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1629 		     j++, flash++) {
   1630 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1631 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1632 				sc->bnx_flash_info = flash;
   1633 				break;
   1634 			}
   1635 		}
   1636 	} else {
   1637 		/* Flash interface not yet reconfigured. */
   1638 		uint32_t mask;
   1639 
   1640 		DBPRINT(sc,BNX_INFO_LOAD,
   1641 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1642 
   1643 		if (val & (1 << 23))
   1644 			mask = FLASH_BACKUP_STRAP_MASK;
   1645 		else
   1646 			mask = FLASH_STRAP_MASK;
   1647 
   1648 		/* Look for the matching NVRAM device configuration data. */
   1649 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1650 		    j++, flash++) {
   1651 			/* Check if the dev matches any of the known devices. */
   1652 			if ((val & mask) == (flash->strapping & mask)) {
   1653 				/* Found a device match. */
   1654 				sc->bnx_flash_info = flash;
   1655 
   1656 				/* Request access to the flash interface. */
   1657 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1658 					return rc;
   1659 
   1660 				/* Reconfigure the flash interface. */
   1661 				bnx_enable_nvram_access(sc);
   1662 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1663 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1664 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1665 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1666 				bnx_disable_nvram_access(sc);
   1667 				bnx_release_nvram_lock(sc);
   1668 
   1669 				break;
   1670 			}
   1671 		}
   1672 	}
   1673 
   1674 	/* Check if a matching device was found. */
   1675 	if (j == entry_count) {
   1676 		sc->bnx_flash_info = NULL;
   1677 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1678 			__FILE__, __LINE__);
   1679 		rc = ENODEV;
   1680 	}
   1681 
   1682 bnx_init_nvram_get_flash_size:
   1683 	/* Write the flash config data to the shared memory interface. */
   1684 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1685 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1686 	if (val)
   1687 		sc->bnx_flash_size = val;
   1688 	else
   1689 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1690 
   1691 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1692 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1693 
   1694 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1695 
   1696 	return rc;
   1697 }
   1698 
   1699 /****************************************************************************/
   1700 /* Read an arbitrary range of data from NVRAM.                              */
   1701 /*                                                                          */
   1702 /* Prepares the NVRAM interface for access and reads the requested data     */
   1703 /* into the supplied buffer.                                                */
   1704 /*                                                                          */
   1705 /* Returns:                                                                 */
   1706 /*   0 on success and the data read, positive value on failure.             */
   1707 /****************************************************************************/
   1708 int
   1709 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
   1710     int buf_size)
   1711 {
   1712 	int			rc = 0;
   1713 	uint32_t		cmd_flags, offset32, len32, extra;
   1714 
   1715 	if (buf_size == 0)
   1716 		return 0;
   1717 
   1718 	/* Request access to the flash interface. */
   1719 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1720 		return rc;
   1721 
   1722 	/* Enable access to flash interface */
   1723 	bnx_enable_nvram_access(sc);
   1724 
   1725 	len32 = buf_size;
   1726 	offset32 = offset;
   1727 	extra = 0;
   1728 
   1729 	cmd_flags = 0;
   1730 
   1731 	if (offset32 & 3) {
   1732 		uint8_t buf[4];
   1733 		uint32_t pre_len;
   1734 
   1735 		offset32 &= ~3;
   1736 		pre_len = 4 - (offset & 3);
   1737 
   1738 		if (pre_len >= len32) {
   1739 			pre_len = len32;
   1740 			cmd_flags =
   1741 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1742 		} else
   1743 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1744 
   1745 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1746 
   1747 		if (rc)
   1748 			return rc;
   1749 
   1750 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1751 
   1752 		offset32 += 4;
   1753 		ret_buf += pre_len;
   1754 		len32 -= pre_len;
   1755 	}
   1756 
   1757 	if (len32 & 3) {
   1758 		extra = 4 - (len32 & 3);
   1759 		len32 = (len32 + 4) & ~3;
   1760 	}
   1761 
   1762 	if (len32 == 4) {
   1763 		uint8_t buf[4];
   1764 
   1765 		if (cmd_flags)
   1766 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1767 		else
   1768 			cmd_flags =
   1769 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1770 
   1771 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1772 
   1773 		memcpy(ret_buf, buf, 4 - extra);
   1774 	} else if (len32 > 0) {
   1775 		uint8_t buf[4];
   1776 
   1777 		/* Read the first word. */
   1778 		if (cmd_flags)
   1779 			cmd_flags = 0;
   1780 		else
   1781 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1782 
   1783 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1784 
   1785 		/* Advance to the next dword. */
   1786 		offset32 += 4;
   1787 		ret_buf += 4;
   1788 		len32 -= 4;
   1789 
   1790 		while (len32 > 4 && rc == 0) {
   1791 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1792 
   1793 			/* Advance to the next dword. */
   1794 			offset32 += 4;
   1795 			ret_buf += 4;
   1796 			len32 -= 4;
   1797 		}
   1798 
   1799 		if (rc)
   1800 			return rc;
   1801 
   1802 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1803 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1804 
   1805 		memcpy(ret_buf, buf, 4 - extra);
   1806 	}
   1807 
   1808 	/* Disable access to flash interface and release the lock. */
   1809 	bnx_disable_nvram_access(sc);
   1810 	bnx_release_nvram_lock(sc);
   1811 
   1812 	return rc;
   1813 }
   1814 
   1815 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1816 /****************************************************************************/
   1817 /* Write an arbitrary range of data from NVRAM.                             */
   1818 /*                                                                          */
   1819 /* Prepares the NVRAM interface for write access and writes the requested   */
   1820 /* data from the supplied buffer.  The caller is responsible for            */
   1821 /* calculating any appropriate CRCs.                                        */
   1822 /*                                                                          */
   1823 /* Returns:                                                                 */
   1824 /*   0 on success, positive value on failure.                               */
   1825 /****************************************************************************/
   1826 int
   1827 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
   1828     int buf_size)
   1829 {
   1830 	uint32_t		written, offset32, len32;
   1831 	uint8_t		*buf, start[4], end[4];
   1832 	int			rc = 0;
   1833 	int			align_start, align_end;
   1834 
   1835 	buf = data_buf;
   1836 	offset32 = offset;
   1837 	len32 = buf_size;
   1838 	align_start = align_end = 0;
   1839 
   1840 	if ((align_start = (offset32 & 3))) {
   1841 		offset32 &= ~3;
   1842 		len32 += align_start;
   1843 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1844 			return rc;
   1845 	}
   1846 
   1847 	if (len32 & 3) {
   1848 		if ((len32 > 4) || !align_start) {
   1849 			align_end = 4 - (len32 & 3);
   1850 			len32 += align_end;
   1851 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1852 			    end, 4)))
   1853 				return rc;
   1854 		}
   1855 	}
   1856 
   1857 	if (align_start || align_end) {
   1858 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1859 		if (buf == 0)
   1860 			return ENOMEM;
   1861 
   1862 		if (align_start)
   1863 			memcpy(buf, start, 4);
   1864 
   1865 		if (align_end)
   1866 			memcpy(buf + len32 - 4, end, 4);
   1867 
   1868 		memcpy(buf + align_start, data_buf, buf_size);
   1869 	}
   1870 
   1871 	written = 0;
   1872 	while ((written < len32) && (rc == 0)) {
   1873 		uint32_t page_start, page_end, data_start, data_end;
   1874 		uint32_t addr, cmd_flags;
   1875 		int i;
   1876 		uint8_t flash_buffer[264];
   1877 
   1878 	    /* Find the page_start addr */
   1879 		page_start = offset32 + written;
   1880 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1881 		/* Find the page_end addr */
   1882 		page_end = page_start + sc->bnx_flash_info->page_size;
   1883 		/* Find the data_start addr */
   1884 		data_start = (written == 0) ? offset32 : page_start;
   1885 		/* Find the data_end addr */
   1886 		data_end = (page_end > offset32 + len32) ?
   1887 		    (offset32 + len32) : page_end;
   1888 
   1889 		/* Request access to the flash interface. */
   1890 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1891 			goto nvram_write_end;
   1892 
   1893 		/* Enable access to flash interface */
   1894 		bnx_enable_nvram_access(sc);
   1895 
   1896 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1897 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1898 			int j;
   1899 
   1900 			/* Read the whole page into the buffer
   1901 			 * (non-buffer flash only) */
   1902 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1903 				if (j == (sc->bnx_flash_info->page_size - 4))
   1904 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1905 
   1906 				rc = bnx_nvram_read_dword(sc,
   1907 					page_start + j,
   1908 					&flash_buffer[j],
   1909 					cmd_flags);
   1910 
   1911 				if (rc)
   1912 					goto nvram_write_end;
   1913 
   1914 				cmd_flags = 0;
   1915 			}
   1916 		}
   1917 
   1918 		/* Enable writes to flash interface (unlock write-protect) */
   1919 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1920 			goto nvram_write_end;
   1921 
   1922 		/* Erase the page */
   1923 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1924 			goto nvram_write_end;
   1925 
   1926 		/* Re-enable the write again for the actual write */
   1927 		bnx_enable_nvram_write(sc);
   1928 
   1929 		/* Loop to write back the buffer data from page_start to
   1930 		 * data_start */
   1931 		i = 0;
   1932 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1933 			for (addr = page_start; addr < data_start;
   1934 				addr += 4, i += 4) {
   1935 
   1936 				rc = bnx_nvram_write_dword(sc, addr,
   1937 				    &flash_buffer[i], cmd_flags);
   1938 
   1939 				if (rc != 0)
   1940 					goto nvram_write_end;
   1941 
   1942 				cmd_flags = 0;
   1943 			}
   1944 		}
   1945 
   1946 		/* Loop to write the new data from data_start to data_end */
   1947 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1948 			if ((addr == page_end - 4) ||
   1949 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   1950 			    && (addr == data_end - 4))) {
   1951 
   1952 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1953 			}
   1954 
   1955 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1956 
   1957 			if (rc != 0)
   1958 				goto nvram_write_end;
   1959 
   1960 			cmd_flags = 0;
   1961 			buf += 4;
   1962 		}
   1963 
   1964 		/* Loop to write back the buffer data from data_end
   1965 		 * to page_end */
   1966 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1967 			for (addr = data_end; addr < page_end;
   1968 			    addr += 4, i += 4) {
   1969 
   1970 				if (addr == page_end-4)
   1971 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1972 
   1973 				rc = bnx_nvram_write_dword(sc, addr,
   1974 				    &flash_buffer[i], cmd_flags);
   1975 
   1976 				if (rc != 0)
   1977 					goto nvram_write_end;
   1978 
   1979 				cmd_flags = 0;
   1980 			}
   1981 		}
   1982 
   1983 		/* Disable writes to flash interface (lock write-protect) */
   1984 		bnx_disable_nvram_write(sc);
   1985 
   1986 		/* Disable access to flash interface */
   1987 		bnx_disable_nvram_access(sc);
   1988 		bnx_release_nvram_lock(sc);
   1989 
   1990 		/* Increment written */
   1991 		written += data_end - data_start;
   1992 	}
   1993 
   1994 nvram_write_end:
   1995 	if (align_start || align_end)
   1996 		free(buf, M_DEVBUF);
   1997 
   1998 	return rc;
   1999 }
   2000 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   2001 
   2002 /****************************************************************************/
   2003 /* Verifies that NVRAM is accessible and contains valid data.               */
   2004 /*                                                                          */
   2005 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   2006 /* correct.                                                                 */
   2007 /*                                                                          */
   2008 /* Returns:                                                                 */
   2009 /*   0 on success, positive value on failure.                               */
   2010 /****************************************************************************/
   2011 int
   2012 bnx_nvram_test(struct bnx_softc *sc)
   2013 {
   2014 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
   2015 	uint8_t		*data = (uint8_t *) buf;
   2016 	int			rc = 0;
   2017 	uint32_t		magic, csum;
   2018 
   2019 	/*
   2020 	 * Check that the device NVRAM is valid by reading
   2021 	 * the magic value at offset 0.
   2022 	 */
   2023 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   2024 		goto bnx_nvram_test_done;
   2025 
   2026 	magic = bnx_be32toh(buf[0]);
   2027 	if (magic != BNX_NVRAM_MAGIC) {
   2028 		rc = ENODEV;
   2029 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   2030 		    "Expected: 0x%08X, Found: 0x%08X\n",
   2031 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   2032 		goto bnx_nvram_test_done;
   2033 	}
   2034 
   2035 	/*
   2036 	 * Verify that the device NVRAM includes valid
   2037 	 * configuration data.
   2038 	 */
   2039 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   2040 		goto bnx_nvram_test_done;
   2041 
   2042 	csum = ether_crc32_le(data, 0x100);
   2043 	if (csum != BNX_CRC32_RESIDUAL) {
   2044 		rc = ENODEV;
   2045 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   2046 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   2047 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2048 		goto bnx_nvram_test_done;
   2049 	}
   2050 
   2051 	csum = ether_crc32_le(data + 0x100, 0x100);
   2052 	if (csum != BNX_CRC32_RESIDUAL) {
   2053 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   2054 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   2055 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2056 		rc = ENODEV;
   2057 	}
   2058 
   2059 bnx_nvram_test_done:
   2060 	return rc;
   2061 }
   2062 
   2063 /****************************************************************************/
   2064 /* Identifies the current media type of the controller and sets the PHY     */
   2065 /* address.                                                                 */
   2066 /*                                                                          */
   2067 /* Returns:                                                                 */
   2068 /*   Nothing.                                                               */
   2069 /****************************************************************************/
   2070 void
   2071 bnx_get_media(struct bnx_softc *sc)
   2072 {
   2073 	sc->bnx_phy_addr = 1;
   2074 
   2075 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2076 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   2077 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   2078 		uint32_t strap;
   2079 
   2080 		/*
   2081 		 * The BCM5709S is software configurable
   2082 		 * for Copper or SerDes operation.
   2083 		 */
   2084 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   2085 			DBPRINT(sc, BNX_INFO_LOAD,
   2086 			    "5709 bonded for copper.\n");
   2087 			goto bnx_get_media_exit;
   2088 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   2089 			DBPRINT(sc, BNX_INFO_LOAD,
   2090 			    "5709 bonded for dual media.\n");
   2091 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2092 			goto bnx_get_media_exit;
   2093 		}
   2094 
   2095 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2096 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2097 		else {
   2098 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2099 			    >> 8;
   2100 		}
   2101 
   2102 		if (sc->bnx_pa.pa_function == 0) {
   2103 			switch (strap) {
   2104 			case 0x4:
   2105 			case 0x5:
   2106 			case 0x6:
   2107 				DBPRINT(sc, BNX_INFO_LOAD,
   2108 					"BCM5709 s/w configured for SerDes.\n");
   2109 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2110 				break;
   2111 			default:
   2112 				DBPRINT(sc, BNX_INFO_LOAD,
   2113 					"BCM5709 s/w configured for Copper.\n");
   2114 			}
   2115 		} else {
   2116 			switch (strap) {
   2117 			case 0x1:
   2118 			case 0x2:
   2119 			case 0x4:
   2120 				DBPRINT(sc, BNX_INFO_LOAD,
   2121 					"BCM5709 s/w configured for SerDes.\n");
   2122 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2123 				break;
   2124 			default:
   2125 				DBPRINT(sc, BNX_INFO_LOAD,
   2126 					"BCM5709 s/w configured for Copper.\n");
   2127 			}
   2128 		}
   2129 
   2130 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2131 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2132 
   2133 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2134 		uint32_t val;
   2135 
   2136 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2137 
   2138 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2139 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2140 
   2141 		/*
   2142 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2143 		 * separate PHY for SerDes.
   2144 		 */
   2145 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2146 			sc->bnx_phy_addr = 2;
   2147 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2148 				 BNX_SHARED_HW_CFG_CONFIG);
   2149 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2150 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2151 				DBPRINT(sc, BNX_INFO_LOAD,
   2152 				    "Found 2.5Gb capable adapter\n");
   2153 			}
   2154 		}
   2155 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2156 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2157 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2158 
   2159 bnx_get_media_exit:
   2160 	DBPRINT(sc, (BNX_INFO_LOAD),
   2161 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2162 }
   2163 
   2164 /****************************************************************************/
   2165 /* Performs PHY initialization required before MII drivers access the       */
   2166 /* device.                                                                  */
   2167 /*                                                                          */
   2168 /* Returns:                                                                 */
   2169 /*   Nothing.                                                               */
   2170 /****************************************************************************/
   2171 void
   2172 bnx_init_media(struct bnx_softc *sc)
   2173 {
   2174 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2175 		/*
   2176 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2177 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2178 		 * the PHY to the mii(4) layer. PHY specific configuration
   2179 		 * is done by the mii(4) layer.
   2180 		 */
   2181 
   2182 		/* Select auto-negotiation MMD of the PHY. */
   2183 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2184 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2185 
   2186 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2187 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2188 
   2189 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2190 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2191 	}
   2192 }
   2193 
   2194 /****************************************************************************/
   2195 /* Free any DMA memory owned by the driver.                                 */
   2196 /*                                                                          */
   2197 /* Scans through each data structre that requires DMA memory and frees      */
   2198 /* the memory if allocated.                                                 */
   2199 /*                                                                          */
   2200 /* Returns:                                                                 */
   2201 /*   Nothing.                                                               */
   2202 /****************************************************************************/
   2203 void
   2204 bnx_dma_free(struct bnx_softc *sc)
   2205 {
   2206 	int			i;
   2207 
   2208 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2209 
   2210 	/* Destroy the status block. */
   2211 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2212 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2213 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2214 		    BNX_STATUS_BLK_SZ);
   2215 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2216 		    sc->status_rseg);
   2217 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2218 		sc->status_block = NULL;
   2219 		sc->status_map = NULL;
   2220 	}
   2221 
   2222 	/* Destroy the statistics block. */
   2223 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2224 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2225 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2226 		    BNX_STATS_BLK_SZ);
   2227 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2228 		    sc->stats_rseg);
   2229 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2230 		sc->stats_block = NULL;
   2231 		sc->stats_map = NULL;
   2232 	}
   2233 
   2234 	/* Free, unmap and destroy all context memory pages. */
   2235 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2236 		for (i = 0; i < sc->ctx_pages; i++) {
   2237 			if (sc->ctx_block[i] != NULL) {
   2238 				bus_dmamap_unload(sc->bnx_dmatag,
   2239 				    sc->ctx_map[i]);
   2240 				bus_dmamem_unmap(sc->bnx_dmatag,
   2241 				    (void *)sc->ctx_block[i],
   2242 				    BCM_PAGE_SIZE);
   2243 				bus_dmamem_free(sc->bnx_dmatag,
   2244 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2245 				bus_dmamap_destroy(sc->bnx_dmatag,
   2246 				    sc->ctx_map[i]);
   2247 				sc->ctx_block[i] = NULL;
   2248 			}
   2249 		}
   2250 	}
   2251 
   2252 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2253 	for (i = 0; i < TX_PAGES; i++ ) {
   2254 		if (sc->tx_bd_chain[i] != NULL &&
   2255 		    sc->tx_bd_chain_map[i] != NULL) {
   2256 			bus_dmamap_unload(sc->bnx_dmatag,
   2257 			    sc->tx_bd_chain_map[i]);
   2258 			bus_dmamem_unmap(sc->bnx_dmatag,
   2259 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2260 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2261 			    sc->tx_bd_chain_rseg[i]);
   2262 			bus_dmamap_destroy(sc->bnx_dmatag,
   2263 			    sc->tx_bd_chain_map[i]);
   2264 			sc->tx_bd_chain[i] = NULL;
   2265 			sc->tx_bd_chain_map[i] = NULL;
   2266 		}
   2267 	}
   2268 
   2269 	/* Destroy the TX dmamaps. */
   2270 	/* This isn't necessary since we dont allocate them up front */
   2271 
   2272 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2273 	for (i = 0; i < RX_PAGES; i++ ) {
   2274 		if (sc->rx_bd_chain[i] != NULL &&
   2275 		    sc->rx_bd_chain_map[i] != NULL) {
   2276 			bus_dmamap_unload(sc->bnx_dmatag,
   2277 			    sc->rx_bd_chain_map[i]);
   2278 			bus_dmamem_unmap(sc->bnx_dmatag,
   2279 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2280 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2281 			    sc->rx_bd_chain_rseg[i]);
   2282 
   2283 			bus_dmamap_destroy(sc->bnx_dmatag,
   2284 			    sc->rx_bd_chain_map[i]);
   2285 			sc->rx_bd_chain[i] = NULL;
   2286 			sc->rx_bd_chain_map[i] = NULL;
   2287 		}
   2288 	}
   2289 
   2290 	/* Unload and destroy the RX mbuf maps. */
   2291 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2292 		if (sc->rx_mbuf_map[i] != NULL) {
   2293 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2294 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2295 		}
   2296 	}
   2297 
   2298 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2299 }
   2300 
   2301 /****************************************************************************/
   2302 /* Allocate any DMA memory needed by the driver.                            */
   2303 /*                                                                          */
   2304 /* Allocates DMA memory needed for the various global structures needed by  */
   2305 /* hardware.                                                                */
   2306 /*                                                                          */
   2307 /* Returns:                                                                 */
   2308 /*   0 for success, positive value for failure.                             */
   2309 /****************************************************************************/
   2310 int
   2311 bnx_dma_alloc(struct bnx_softc *sc)
   2312 {
   2313 	int			i, rc = 0;
   2314 
   2315 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2316 
   2317 	/*
   2318 	 * Allocate DMA memory for the status block, map the memory into DMA
   2319 	 * space, and fetch the physical address of the block.
   2320 	 */
   2321 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2322 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2323 		aprint_error_dev(sc->bnx_dev,
   2324 		    "Could not create status block DMA map!\n");
   2325 		rc = ENOMEM;
   2326 		goto bnx_dma_alloc_exit;
   2327 	}
   2328 
   2329 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2330 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2331 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2332 		aprint_error_dev(sc->bnx_dev,
   2333 		    "Could not allocate status block DMA memory!\n");
   2334 		rc = ENOMEM;
   2335 		goto bnx_dma_alloc_exit;
   2336 	}
   2337 
   2338 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2339 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2340 		aprint_error_dev(sc->bnx_dev,
   2341 		    "Could not map status block DMA memory!\n");
   2342 		rc = ENOMEM;
   2343 		goto bnx_dma_alloc_exit;
   2344 	}
   2345 
   2346 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2347 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2348 		aprint_error_dev(sc->bnx_dev,
   2349 		    "Could not load status block DMA memory!\n");
   2350 		rc = ENOMEM;
   2351 		goto bnx_dma_alloc_exit;
   2352 	}
   2353 
   2354 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2355 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2356 
   2357 	/* DRC - Fix for 64 bit addresses. */
   2358 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2359 		(uint32_t) sc->status_block_paddr);
   2360 
   2361 	/* BCM5709 uses host memory as cache for context memory. */
   2362 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2363 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2364 		if (sc->ctx_pages == 0)
   2365 			sc->ctx_pages = 1;
   2366 		if (sc->ctx_pages > 4) /* XXX */
   2367 			sc->ctx_pages = 4;
   2368 
   2369 		DBRUNIF((sc->ctx_pages > 512),
   2370 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2371 				__FILE__, __LINE__, sc->ctx_pages));
   2372 
   2373 
   2374 		for (i = 0; i < sc->ctx_pages; i++) {
   2375 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2376 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2377 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2378 			    &sc->ctx_map[i]) != 0) {
   2379 				rc = ENOMEM;
   2380 				goto bnx_dma_alloc_exit;
   2381 			}
   2382 
   2383 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2384 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2385 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2386 				rc = ENOMEM;
   2387 				goto bnx_dma_alloc_exit;
   2388 			}
   2389 
   2390 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2391 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2392 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2393 				rc = ENOMEM;
   2394 				goto bnx_dma_alloc_exit;
   2395 			}
   2396 
   2397 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2398 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2399 			    BUS_DMA_NOWAIT) != 0) {
   2400 				rc = ENOMEM;
   2401 				goto bnx_dma_alloc_exit;
   2402 			}
   2403 
   2404 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2405 		}
   2406 	}
   2407 
   2408 	/*
   2409 	 * Allocate DMA memory for the statistics block, map the memory into
   2410 	 * DMA space, and fetch the physical address of the block.
   2411 	 */
   2412 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2413 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2414 		aprint_error_dev(sc->bnx_dev,
   2415 		    "Could not create stats block DMA map!\n");
   2416 		rc = ENOMEM;
   2417 		goto bnx_dma_alloc_exit;
   2418 	}
   2419 
   2420 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2421 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2422 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2423 		aprint_error_dev(sc->bnx_dev,
   2424 		    "Could not allocate stats block DMA memory!\n");
   2425 		rc = ENOMEM;
   2426 		goto bnx_dma_alloc_exit;
   2427 	}
   2428 
   2429 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2430 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2431 		aprint_error_dev(sc->bnx_dev,
   2432 		    "Could not map stats block DMA memory!\n");
   2433 		rc = ENOMEM;
   2434 		goto bnx_dma_alloc_exit;
   2435 	}
   2436 
   2437 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2438 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2439 		aprint_error_dev(sc->bnx_dev,
   2440 		    "Could not load status block DMA memory!\n");
   2441 		rc = ENOMEM;
   2442 		goto bnx_dma_alloc_exit;
   2443 	}
   2444 
   2445 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2446 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2447 
   2448 	/* DRC - Fix for 64 bit address. */
   2449 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2450 	    (uint32_t) sc->stats_block_paddr);
   2451 
   2452 	/*
   2453 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2454 	 * and fetch the physical address of the block.
   2455 	 */
   2456 	for (i = 0; i < TX_PAGES; i++) {
   2457 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2458 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2459 		    &sc->tx_bd_chain_map[i])) {
   2460 			aprint_error_dev(sc->bnx_dev,
   2461 			    "Could not create Tx desc %d DMA map!\n", i);
   2462 			rc = ENOMEM;
   2463 			goto bnx_dma_alloc_exit;
   2464 		}
   2465 
   2466 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2467 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2468 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2469 			aprint_error_dev(sc->bnx_dev,
   2470 			    "Could not allocate TX desc %d DMA memory!\n",
   2471 			    i);
   2472 			rc = ENOMEM;
   2473 			goto bnx_dma_alloc_exit;
   2474 		}
   2475 
   2476 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2477 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2478 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2479 			aprint_error_dev(sc->bnx_dev,
   2480 			    "Could not map TX desc %d DMA memory!\n", i);
   2481 			rc = ENOMEM;
   2482 			goto bnx_dma_alloc_exit;
   2483 		}
   2484 
   2485 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2486 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2487 		    BUS_DMA_NOWAIT)) {
   2488 			aprint_error_dev(sc->bnx_dev,
   2489 			    "Could not load TX desc %d DMA memory!\n", i);
   2490 			rc = ENOMEM;
   2491 			goto bnx_dma_alloc_exit;
   2492 		}
   2493 
   2494 		sc->tx_bd_chain_paddr[i] =
   2495 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2496 
   2497 		/* DRC - Fix for 64 bit systems. */
   2498 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2499 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
   2500 	}
   2501 
   2502 	/*
   2503 	 * Create lists to hold TX mbufs.
   2504 	 */
   2505 	TAILQ_INIT(&sc->tx_free_pkts);
   2506 	TAILQ_INIT(&sc->tx_used_pkts);
   2507 	sc->tx_pkt_count = 0;
   2508 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2509 
   2510 	/*
   2511 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2512 	 * and fetch the physical address of the block.
   2513 	 */
   2514 	for (i = 0; i < RX_PAGES; i++) {
   2515 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2516 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2517 		    &sc->rx_bd_chain_map[i])) {
   2518 			aprint_error_dev(sc->bnx_dev,
   2519 			    "Could not create Rx desc %d DMA map!\n", i);
   2520 			rc = ENOMEM;
   2521 			goto bnx_dma_alloc_exit;
   2522 		}
   2523 
   2524 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2525 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2526 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2527 			aprint_error_dev(sc->bnx_dev,
   2528 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2529 			rc = ENOMEM;
   2530 			goto bnx_dma_alloc_exit;
   2531 		}
   2532 
   2533 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2534 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2535 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2536 			aprint_error_dev(sc->bnx_dev,
   2537 			    "Could not map Rx desc %d DMA memory!\n", i);
   2538 			rc = ENOMEM;
   2539 			goto bnx_dma_alloc_exit;
   2540 		}
   2541 
   2542 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2543 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2544 		    BUS_DMA_NOWAIT)) {
   2545 			aprint_error_dev(sc->bnx_dev,
   2546 			    "Could not load Rx desc %d DMA memory!\n", i);
   2547 			rc = ENOMEM;
   2548 			goto bnx_dma_alloc_exit;
   2549 		}
   2550 
   2551 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2552 		sc->rx_bd_chain_paddr[i] =
   2553 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2554 
   2555 		/* DRC - Fix for 64 bit systems. */
   2556 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2557 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
   2558 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2559 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2560 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2561 	}
   2562 
   2563 	/*
   2564 	 * Create DMA maps for the Rx buffer mbufs.
   2565 	 */
   2566 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2567 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2568 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2569 		    &sc->rx_mbuf_map[i])) {
   2570 			aprint_error_dev(sc->bnx_dev,
   2571 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2572 			rc = ENOMEM;
   2573 			goto bnx_dma_alloc_exit;
   2574 		}
   2575 	}
   2576 
   2577  bnx_dma_alloc_exit:
   2578 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2579 
   2580 	return rc;
   2581 }
   2582 
   2583 /****************************************************************************/
   2584 /* Release all resources used by the driver.                                */
   2585 /*                                                                          */
   2586 /* Releases all resources acquired by the driver including interrupts,      */
   2587 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2588 /*                                                                          */
   2589 /* Returns:                                                                 */
   2590 /*   Nothing.                                                               */
   2591 /****************************************************************************/
   2592 void
   2593 bnx_release_resources(struct bnx_softc *sc)
   2594 {
   2595 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2596 
   2597 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2598 
   2599 	bnx_dma_free(sc);
   2600 
   2601 	if (sc->bnx_intrhand != NULL)
   2602 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2603 
   2604 	if (sc->bnx_size)
   2605 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2606 
   2607 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2608 }
   2609 
   2610 /****************************************************************************/
   2611 /* Firmware synchronization.                                                */
   2612 /*                                                                          */
   2613 /* Before performing certain events such as a chip reset, synchronize with  */
   2614 /* the firmware first.                                                      */
   2615 /*                                                                          */
   2616 /* Returns:                                                                 */
   2617 /*   0 for success, positive value for failure.                             */
   2618 /****************************************************************************/
   2619 int
   2620 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
   2621 {
   2622 	int			i, rc = 0;
   2623 	uint32_t		val;
   2624 
   2625 	/* Don't waste any time if we've timed out before. */
   2626 	if (sc->bnx_fw_timed_out) {
   2627 		rc = EBUSY;
   2628 		goto bnx_fw_sync_exit;
   2629 	}
   2630 
   2631 	/* Increment the message sequence number. */
   2632 	sc->bnx_fw_wr_seq++;
   2633 	msg_data |= sc->bnx_fw_wr_seq;
   2634 
   2635  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2636 	    msg_data);
   2637 
   2638 	/* Send the message to the bootcode driver mailbox. */
   2639 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2640 
   2641 	/* Wait for the bootcode to acknowledge the message. */
   2642 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2643 		/* Check for a response in the bootcode firmware mailbox. */
   2644 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2645 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2646 			break;
   2647 		DELAY(1000);
   2648 	}
   2649 
   2650 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2651 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2652 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2653 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2654 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2655 
   2656 		msg_data &= ~BNX_DRV_MSG_CODE;
   2657 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2658 
   2659 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2660 
   2661 		sc->bnx_fw_timed_out = 1;
   2662 		rc = EBUSY;
   2663 	}
   2664 
   2665 bnx_fw_sync_exit:
   2666 	return rc;
   2667 }
   2668 
   2669 /****************************************************************************/
   2670 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2671 /*                                                                          */
   2672 /* Returns:                                                                 */
   2673 /*   Nothing.                                                               */
   2674 /****************************************************************************/
   2675 void
   2676 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
   2677     uint32_t rv2p_code_len, uint32_t rv2p_proc)
   2678 {
   2679 	int			i;
   2680 	uint32_t		val;
   2681 
   2682 	/* Set the page size used by RV2P. */
   2683 	if (rv2p_proc == RV2P_PROC2) {
   2684 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2685 		    USABLE_RX_BD_PER_PAGE);
   2686 	}
   2687 
   2688 	for (i = 0; i < rv2p_code_len; i += 8) {
   2689 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2690 		rv2p_code++;
   2691 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2692 		rv2p_code++;
   2693 
   2694 		if (rv2p_proc == RV2P_PROC1) {
   2695 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2696 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2697 		} else {
   2698 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2699 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2700 		}
   2701 	}
   2702 
   2703 	/* Reset the processor, un-stall is done later. */
   2704 	if (rv2p_proc == RV2P_PROC1)
   2705 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2706 	else
   2707 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2708 }
   2709 
   2710 /****************************************************************************/
   2711 /* Load RISC processor firmware.                                            */
   2712 /*                                                                          */
   2713 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2714 /* associated with a particular processor.                                  */
   2715 /*                                                                          */
   2716 /* Returns:                                                                 */
   2717 /*   Nothing.                                                               */
   2718 /****************************************************************************/
   2719 void
   2720 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2721     struct fw_info *fw)
   2722 {
   2723 	uint32_t		offset;
   2724 	uint32_t		val;
   2725 
   2726 	/* Halt the CPU. */
   2727 	val = REG_RD_IND(sc, cpu_reg->mode);
   2728 	val |= cpu_reg->mode_value_halt;
   2729 	REG_WR_IND(sc, cpu_reg->mode, val);
   2730 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2731 
   2732 	/* Load the Text area. */
   2733 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2734 	if (fw->text) {
   2735 		int j;
   2736 
   2737 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2738 			REG_WR_IND(sc, offset, fw->text[j]);
   2739 	}
   2740 
   2741 	/* Load the Data area. */
   2742 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2743 	if (fw->data) {
   2744 		int j;
   2745 
   2746 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2747 			REG_WR_IND(sc, offset, fw->data[j]);
   2748 	}
   2749 
   2750 	/* Load the SBSS area. */
   2751 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2752 	if (fw->sbss) {
   2753 		int j;
   2754 
   2755 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2756 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2757 	}
   2758 
   2759 	/* Load the BSS area. */
   2760 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2761 	if (fw->bss) {
   2762 		int j;
   2763 
   2764 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2765 			REG_WR_IND(sc, offset, fw->bss[j]);
   2766 	}
   2767 
   2768 	/* Load the Read-Only area. */
   2769 	offset = cpu_reg->spad_base +
   2770 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2771 	if (fw->rodata) {
   2772 		int j;
   2773 
   2774 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2775 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2776 	}
   2777 
   2778 	/* Clear the pre-fetch instruction. */
   2779 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2780 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2781 
   2782 	/* Start the CPU. */
   2783 	val = REG_RD_IND(sc, cpu_reg->mode);
   2784 	val &= ~cpu_reg->mode_value_halt;
   2785 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2786 	REG_WR_IND(sc, cpu_reg->mode, val);
   2787 }
   2788 
   2789 /****************************************************************************/
   2790 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2791 /*                                                                          */
   2792 /* Loads the firmware for each CPU and starts the CPU.                      */
   2793 /*                                                                          */
   2794 /* Returns:                                                                 */
   2795 /*   Nothing.                                                               */
   2796 /****************************************************************************/
   2797 void
   2798 bnx_init_cpus(struct bnx_softc *sc)
   2799 {
   2800 	struct cpu_reg cpu_reg;
   2801 	struct fw_info fw;
   2802 
   2803 	switch(BNX_CHIP_NUM(sc)) {
   2804 	case BNX_CHIP_NUM_5709:
   2805 		/* Initialize the RV2P processor. */
   2806 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2807 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2808 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2809 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2810 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2811 		} else {
   2812 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2813 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2814 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2815 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2816 		}
   2817 
   2818 		/* Initialize the RX Processor. */
   2819 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2820 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2821 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2822 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2823 		cpu_reg.state_value_clear = 0xffffff;
   2824 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2825 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2826 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2827 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2828 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2829 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2830 		cpu_reg.mips_view_base = 0x8000000;
   2831 
   2832 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2833 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2834 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2835 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2836 
   2837 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2838 		fw.text_len = bnx_RXP_b09FwTextLen;
   2839 		fw.text_index = 0;
   2840 		fw.text = bnx_RXP_b09FwText;
   2841 
   2842 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2843 		fw.data_len = bnx_RXP_b09FwDataLen;
   2844 		fw.data_index = 0;
   2845 		fw.data = bnx_RXP_b09FwData;
   2846 
   2847 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2848 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2849 		fw.sbss_index = 0;
   2850 		fw.sbss = bnx_RXP_b09FwSbss;
   2851 
   2852 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2853 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2854 		fw.bss_index = 0;
   2855 		fw.bss = bnx_RXP_b09FwBss;
   2856 
   2857 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2858 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2859 		fw.rodata_index = 0;
   2860 		fw.rodata = bnx_RXP_b09FwRodata;
   2861 
   2862 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2863 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2864 
   2865 		/* Initialize the TX Processor. */
   2866 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2867 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2868 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2869 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2870 		cpu_reg.state_value_clear = 0xffffff;
   2871 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2872 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2873 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2874 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2875 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2876 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2877 		cpu_reg.mips_view_base = 0x8000000;
   2878 
   2879 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2880 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2881 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2882 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2883 
   2884 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2885 		fw.text_len = bnx_TXP_b09FwTextLen;
   2886 		fw.text_index = 0;
   2887 		fw.text = bnx_TXP_b09FwText;
   2888 
   2889 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   2890 		fw.data_len = bnx_TXP_b09FwDataLen;
   2891 		fw.data_index = 0;
   2892 		fw.data = bnx_TXP_b09FwData;
   2893 
   2894 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   2895 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   2896 		fw.sbss_index = 0;
   2897 		fw.sbss = bnx_TXP_b09FwSbss;
   2898 
   2899 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   2900 		fw.bss_len = bnx_TXP_b09FwBssLen;
   2901 		fw.bss_index = 0;
   2902 		fw.bss = bnx_TXP_b09FwBss;
   2903 
   2904 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   2905 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   2906 		fw.rodata_index = 0;
   2907 		fw.rodata = bnx_TXP_b09FwRodata;
   2908 
   2909 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2910 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2911 
   2912 		/* Initialize the TX Patch-up Processor. */
   2913 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2914 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2915 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2916 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2917 		cpu_reg.state_value_clear = 0xffffff;
   2918 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2919 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2920 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2921 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2922 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2923 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2924 		cpu_reg.mips_view_base = 0x8000000;
   2925 
   2926 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   2927 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   2928 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   2929 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   2930 
   2931 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   2932 		fw.text_len = bnx_TPAT_b09FwTextLen;
   2933 		fw.text_index = 0;
   2934 		fw.text = bnx_TPAT_b09FwText;
   2935 
   2936 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   2937 		fw.data_len = bnx_TPAT_b09FwDataLen;
   2938 		fw.data_index = 0;
   2939 		fw.data = bnx_TPAT_b09FwData;
   2940 
   2941 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   2942 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   2943 		fw.sbss_index = 0;
   2944 		fw.sbss = bnx_TPAT_b09FwSbss;
   2945 
   2946 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   2947 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   2948 		fw.bss_index = 0;
   2949 		fw.bss = bnx_TPAT_b09FwBss;
   2950 
   2951 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   2952 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   2953 		fw.rodata_index = 0;
   2954 		fw.rodata = bnx_TPAT_b09FwRodata;
   2955 
   2956 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2957 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2958 
   2959 		/* Initialize the Completion Processor. */
   2960 		cpu_reg.mode = BNX_COM_CPU_MODE;
   2961 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2962 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2963 		cpu_reg.state = BNX_COM_CPU_STATE;
   2964 		cpu_reg.state_value_clear = 0xffffff;
   2965 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2966 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2967 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2968 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2969 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2970 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   2971 		cpu_reg.mips_view_base = 0x8000000;
   2972 
   2973 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   2974 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   2975 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   2976 		fw.start_addr = bnx_COM_b09FwStartAddr;
   2977 
   2978 		fw.text_addr = bnx_COM_b09FwTextAddr;
   2979 		fw.text_len = bnx_COM_b09FwTextLen;
   2980 		fw.text_index = 0;
   2981 		fw.text = bnx_COM_b09FwText;
   2982 
   2983 		fw.data_addr = bnx_COM_b09FwDataAddr;
   2984 		fw.data_len = bnx_COM_b09FwDataLen;
   2985 		fw.data_index = 0;
   2986 		fw.data = bnx_COM_b09FwData;
   2987 
   2988 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   2989 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   2990 		fw.sbss_index = 0;
   2991 		fw.sbss = bnx_COM_b09FwSbss;
   2992 
   2993 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   2994 		fw.bss_len = bnx_COM_b09FwBssLen;
   2995 		fw.bss_index = 0;
   2996 		fw.bss = bnx_COM_b09FwBss;
   2997 
   2998 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   2999 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   3000 		fw.rodata_index = 0;
   3001 		fw.rodata = bnx_COM_b09FwRodata;
   3002 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3003 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3004 		break;
   3005 	default:
   3006 		/* Initialize the RV2P processor. */
   3007 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   3008 		    RV2P_PROC1);
   3009 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   3010 		    RV2P_PROC2);
   3011 
   3012 		/* Initialize the RX Processor. */
   3013 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   3014 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   3015 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   3016 		cpu_reg.state = BNX_RXP_CPU_STATE;
   3017 		cpu_reg.state_value_clear = 0xffffff;
   3018 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   3019 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   3020 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   3021 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   3022 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   3023 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   3024 		cpu_reg.mips_view_base = 0x8000000;
   3025 
   3026 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   3027 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   3028 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   3029 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   3030 
   3031 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   3032 		fw.text_len = bnx_RXP_b06FwTextLen;
   3033 		fw.text_index = 0;
   3034 		fw.text = bnx_RXP_b06FwText;
   3035 
   3036 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   3037 		fw.data_len = bnx_RXP_b06FwDataLen;
   3038 		fw.data_index = 0;
   3039 		fw.data = bnx_RXP_b06FwData;
   3040 
   3041 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   3042 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   3043 		fw.sbss_index = 0;
   3044 		fw.sbss = bnx_RXP_b06FwSbss;
   3045 
   3046 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   3047 		fw.bss_len = bnx_RXP_b06FwBssLen;
   3048 		fw.bss_index = 0;
   3049 		fw.bss = bnx_RXP_b06FwBss;
   3050 
   3051 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   3052 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   3053 		fw.rodata_index = 0;
   3054 		fw.rodata = bnx_RXP_b06FwRodata;
   3055 
   3056 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   3057 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3058 
   3059 		/* Initialize the TX Processor. */
   3060 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   3061 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   3062 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   3063 		cpu_reg.state = BNX_TXP_CPU_STATE;
   3064 		cpu_reg.state_value_clear = 0xffffff;
   3065 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   3066 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   3067 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   3068 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   3069 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   3070 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   3071 		cpu_reg.mips_view_base = 0x8000000;
   3072 
   3073 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   3074 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   3075 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   3076 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   3077 
   3078 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   3079 		fw.text_len = bnx_TXP_b06FwTextLen;
   3080 		fw.text_index = 0;
   3081 		fw.text = bnx_TXP_b06FwText;
   3082 
   3083 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   3084 		fw.data_len = bnx_TXP_b06FwDataLen;
   3085 		fw.data_index = 0;
   3086 		fw.data = bnx_TXP_b06FwData;
   3087 
   3088 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   3089 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   3090 		fw.sbss_index = 0;
   3091 		fw.sbss = bnx_TXP_b06FwSbss;
   3092 
   3093 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3094 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3095 		fw.bss_index = 0;
   3096 		fw.bss = bnx_TXP_b06FwBss;
   3097 
   3098 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3099 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3100 		fw.rodata_index = 0;
   3101 		fw.rodata = bnx_TXP_b06FwRodata;
   3102 
   3103 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3104 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3105 
   3106 		/* Initialize the TX Patch-up Processor. */
   3107 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3108 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3109 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3110 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3111 		cpu_reg.state_value_clear = 0xffffff;
   3112 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3113 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3114 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3115 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3116 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3117 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3118 		cpu_reg.mips_view_base = 0x8000000;
   3119 
   3120 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3121 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3122 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3123 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3124 
   3125 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3126 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3127 		fw.text_index = 0;
   3128 		fw.text = bnx_TPAT_b06FwText;
   3129 
   3130 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3131 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3132 		fw.data_index = 0;
   3133 		fw.data = bnx_TPAT_b06FwData;
   3134 
   3135 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3136 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3137 		fw.sbss_index = 0;
   3138 		fw.sbss = bnx_TPAT_b06FwSbss;
   3139 
   3140 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3141 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3142 		fw.bss_index = 0;
   3143 		fw.bss = bnx_TPAT_b06FwBss;
   3144 
   3145 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3146 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3147 		fw.rodata_index = 0;
   3148 		fw.rodata = bnx_TPAT_b06FwRodata;
   3149 
   3150 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3151 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3152 
   3153 		/* Initialize the Completion Processor. */
   3154 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3155 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3156 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3157 		cpu_reg.state = BNX_COM_CPU_STATE;
   3158 		cpu_reg.state_value_clear = 0xffffff;
   3159 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3160 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3161 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3162 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3163 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3164 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3165 		cpu_reg.mips_view_base = 0x8000000;
   3166 
   3167 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3168 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3169 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3170 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3171 
   3172 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3173 		fw.text_len = bnx_COM_b06FwTextLen;
   3174 		fw.text_index = 0;
   3175 		fw.text = bnx_COM_b06FwText;
   3176 
   3177 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3178 		fw.data_len = bnx_COM_b06FwDataLen;
   3179 		fw.data_index = 0;
   3180 		fw.data = bnx_COM_b06FwData;
   3181 
   3182 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3183 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3184 		fw.sbss_index = 0;
   3185 		fw.sbss = bnx_COM_b06FwSbss;
   3186 
   3187 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3188 		fw.bss_len = bnx_COM_b06FwBssLen;
   3189 		fw.bss_index = 0;
   3190 		fw.bss = bnx_COM_b06FwBss;
   3191 
   3192 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3193 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3194 		fw.rodata_index = 0;
   3195 		fw.rodata = bnx_COM_b06FwRodata;
   3196 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3197 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3198 		break;
   3199 	}
   3200 }
   3201 
   3202 /****************************************************************************/
   3203 /* Initialize context memory.                                               */
   3204 /*                                                                          */
   3205 /* Clears the memory associated with each Context ID (CID).                 */
   3206 /*                                                                          */
   3207 /* Returns:                                                                 */
   3208 /*   Nothing.                                                               */
   3209 /****************************************************************************/
   3210 void
   3211 bnx_init_context(struct bnx_softc *sc)
   3212 {
   3213 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3214 		/* DRC: Replace this constant value with a #define. */
   3215 		int i, retry_cnt = 10;
   3216 		uint32_t val;
   3217 
   3218 		/*
   3219 		 * BCM5709 context memory may be cached
   3220 		 * in host memory so prepare the host memory
   3221 		 * for access.
   3222 		 */
   3223 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3224 		    | (1 << 12);
   3225 		val |= (BCM_PAGE_BITS - 8) << 16;
   3226 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3227 
   3228 		/* Wait for mem init command to complete. */
   3229 		for (i = 0; i < retry_cnt; i++) {
   3230 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3231 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3232 				break;
   3233 			DELAY(2);
   3234 		}
   3235 
   3236 		/* ToDo: Consider returning an error here. */
   3237 
   3238 		for (i = 0; i < sc->ctx_pages; i++) {
   3239 			int j;
   3240 
   3241 			/* Set the physaddr of the context memory cache. */
   3242 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
   3243 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3244 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3245 			val = (uint32_t)
   3246 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
   3247 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3248 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3249 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3250 
   3251 			/* Verify that the context memory write was successful. */
   3252 			for (j = 0; j < retry_cnt; j++) {
   3253 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3254 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3255 					break;
   3256 				DELAY(5);
   3257 			}
   3258 
   3259 			/* ToDo: Consider returning an error here. */
   3260 		}
   3261 	} else {
   3262 		uint32_t vcid_addr, offset;
   3263 
   3264 		/*
   3265 		 * For the 5706/5708, context memory is local to
   3266 		 * the controller, so initialize the controller
   3267 		 * context memory.
   3268 		 */
   3269 
   3270 		vcid_addr = GET_CID_ADDR(96);
   3271 		while (vcid_addr) {
   3272 
   3273 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3274 
   3275 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3276 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3277 
   3278 			for(offset = 0; offset < BNX_PHY_CTX_SIZE; offset += 4) {
   3279 				CTX_WR(sc, 0x00, offset, 0);
   3280 			}
   3281 
   3282 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3283 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3284 		}
   3285 	}
   3286 }
   3287 
   3288 /****************************************************************************/
   3289 /* Fetch the permanent MAC address of the controller.                       */
   3290 /*                                                                          */
   3291 /* Returns:                                                                 */
   3292 /*   Nothing.                                                               */
   3293 /****************************************************************************/
   3294 void
   3295 bnx_get_mac_addr(struct bnx_softc *sc)
   3296 {
   3297 	uint32_t		mac_lo = 0, mac_hi = 0;
   3298 
   3299 	/*
   3300 	 * The NetXtreme II bootcode populates various NIC
   3301 	 * power-on and runtime configuration items in a
   3302 	 * shared memory area.  The factory configured MAC
   3303 	 * address is available from both NVRAM and the
   3304 	 * shared memory area so we'll read the value from
   3305 	 * shared memory for speed.
   3306 	 */
   3307 
   3308 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3309 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3310 
   3311 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3312 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3313 		    __FILE__, __LINE__);
   3314 	} else {
   3315 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3316 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3317 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3318 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3319 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3320 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3321 	}
   3322 
   3323 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3324 	    "%s\n", ether_sprintf(sc->eaddr));
   3325 }
   3326 
   3327 /****************************************************************************/
   3328 /* Program the MAC address.                                                 */
   3329 /*                                                                          */
   3330 /* Returns:                                                                 */
   3331 /*   Nothing.                                                               */
   3332 /****************************************************************************/
   3333 void
   3334 bnx_set_mac_addr(struct bnx_softc *sc)
   3335 {
   3336 	uint32_t		val;
   3337 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3338 
   3339 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3340 	    "%s\n", ether_sprintf(sc->eaddr));
   3341 
   3342 	val = (mac_addr[0] << 8) | mac_addr[1];
   3343 
   3344 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3345 
   3346 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3347 		(mac_addr[4] << 8) | mac_addr[5];
   3348 
   3349 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3350 }
   3351 
   3352 /****************************************************************************/
   3353 /* Stop the controller.                                                     */
   3354 /*                                                                          */
   3355 /* Returns:                                                                 */
   3356 /*   Nothing.                                                               */
   3357 /****************************************************************************/
   3358 void
   3359 bnx_stop(struct ifnet *ifp, int disable)
   3360 {
   3361 	struct bnx_softc *sc = ifp->if_softc;
   3362 
   3363 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3364 
   3365 	if (disable) {
   3366 		sc->bnx_detaching = 1;
   3367 		callout_halt(&sc->bnx_timeout, NULL);
   3368 	} else
   3369 		callout_stop(&sc->bnx_timeout);
   3370 
   3371 	mii_down(&sc->bnx_mii);
   3372 
   3373 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3374 
   3375 	/* Disable the transmit/receive blocks. */
   3376 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3377 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3378 	DELAY(20);
   3379 
   3380 	bnx_disable_intr(sc);
   3381 
   3382 	/* Tell firmware that the driver is going away. */
   3383 	if (disable)
   3384 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3385 	else
   3386 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3387 
   3388 	/* Free RX buffers. */
   3389 	bnx_free_rx_chain(sc);
   3390 
   3391 	/* Free TX buffers. */
   3392 	bnx_free_tx_chain(sc);
   3393 
   3394 	ifp->if_timer = 0;
   3395 
   3396 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3397 
   3398 }
   3399 
   3400 int
   3401 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
   3402 {
   3403 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3404 	uint32_t		val;
   3405 	int			i, rc = 0;
   3406 
   3407 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3408 
   3409 	/* Wait for pending PCI transactions to complete. */
   3410 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3411 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3412 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3413 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3414 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3415 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3416 	DELAY(5);
   3417 
   3418 	/* Disable DMA */
   3419 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3420 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3421 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3422 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3423 	}
   3424 
   3425 	/* Assume bootcode is running. */
   3426 	sc->bnx_fw_timed_out = 0;
   3427 
   3428 	/* Give the firmware a chance to prepare for the reset. */
   3429 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3430 	if (rc)
   3431 		goto bnx_reset_exit;
   3432 
   3433 	/* Set a firmware reminder that this is a soft reset. */
   3434 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3435 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3436 
   3437 	/* Dummy read to force the chip to complete all current transactions. */
   3438 	val = REG_RD(sc, BNX_MISC_ID);
   3439 
   3440 	/* Chip reset. */
   3441 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3442 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3443 		REG_RD(sc, BNX_MISC_COMMAND);
   3444 		DELAY(5);
   3445 
   3446 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3447 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3448 
   3449 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3450 		    val);
   3451 	} else {
   3452 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3453 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3454 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3455 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3456 
   3457 		/* Allow up to 30us for reset to complete. */
   3458 		for (i = 0; i < 10; i++) {
   3459 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3460 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3461 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3462 				break;
   3463 			}
   3464 			DELAY(10);
   3465 		}
   3466 
   3467 		/* Check that reset completed successfully. */
   3468 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3469 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3470 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3471 			    __FILE__, __LINE__);
   3472 			rc = EBUSY;
   3473 			goto bnx_reset_exit;
   3474 		}
   3475 	}
   3476 
   3477 	/* Make sure byte swapping is properly configured. */
   3478 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3479 	if (val != 0x01020304) {
   3480 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3481 		    __FILE__, __LINE__);
   3482 		rc = ENODEV;
   3483 		goto bnx_reset_exit;
   3484 	}
   3485 
   3486 	/* Just completed a reset, assume that firmware is running again. */
   3487 	sc->bnx_fw_timed_out = 0;
   3488 
   3489 	/* Wait for the firmware to finish its initialization. */
   3490 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3491 	if (rc)
   3492 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3493 		    "initialization!\n", __FILE__, __LINE__);
   3494 
   3495 bnx_reset_exit:
   3496 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3497 
   3498 	return rc;
   3499 }
   3500 
   3501 int
   3502 bnx_chipinit(struct bnx_softc *sc)
   3503 {
   3504 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3505 	uint32_t		val;
   3506 	int			rc = 0;
   3507 
   3508 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3509 
   3510 	/* Make sure the interrupt is not active. */
   3511 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3512 
   3513 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3514 	/* channels and PCI clock compensation delay.                      */
   3515 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3516 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3517 #if BYTE_ORDER == BIG_ENDIAN
   3518 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3519 #endif
   3520 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3521 	    DMA_READ_CHANS << 12 |
   3522 	    DMA_WRITE_CHANS << 16;
   3523 
   3524 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3525 
   3526 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3527 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3528 
   3529 	/*
   3530 	 * This setting resolves a problem observed on certain Intel PCI
   3531 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3532 	 * See errata E9_5706A1_65.
   3533 	 */
   3534 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3535 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3536 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3537 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3538 
   3539 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3540 
   3541 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3542 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3543 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3544 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3545 		    val & ~0x20000);
   3546 	}
   3547 
   3548 	/* Enable the RX_V2P and Context state machines before access. */
   3549 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3550 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3551 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3552 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3553 
   3554 	/* Initialize context mapping and zero out the quick contexts. */
   3555 	bnx_init_context(sc);
   3556 
   3557 	/* Initialize the on-boards CPUs */
   3558 	bnx_init_cpus(sc);
   3559 
   3560 	/* Prepare NVRAM for access. */
   3561 	if (bnx_init_nvram(sc)) {
   3562 		rc = ENODEV;
   3563 		goto bnx_chipinit_exit;
   3564 	}
   3565 
   3566 	/* Set the kernel bypass block size */
   3567 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3568 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3569 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3570 
   3571 	/* Enable bins used on the 5709. */
   3572 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3573 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3574 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3575 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3576 	}
   3577 
   3578 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3579 
   3580 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3581 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3582 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3583 
   3584 	val = (BCM_PAGE_BITS - 8) << 24;
   3585 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3586 
   3587 	/* Configure page size. */
   3588 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3589 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3590 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3591 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3592 
   3593 #if 0
   3594 	/* Set the perfect match control register to default. */
   3595 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3596 #endif
   3597 
   3598 bnx_chipinit_exit:
   3599 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3600 
   3601 	return rc;
   3602 }
   3603 
   3604 /****************************************************************************/
   3605 /* Initialize the controller in preparation to send/receive traffic.        */
   3606 /*                                                                          */
   3607 /* Returns:                                                                 */
   3608 /*   0 for success, positive value for failure.                             */
   3609 /****************************************************************************/
   3610 int
   3611 bnx_blockinit(struct bnx_softc *sc)
   3612 {
   3613 	uint32_t		reg, val;
   3614 	int 			rc = 0;
   3615 
   3616 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3617 
   3618 	/* Load the hardware default MAC address. */
   3619 	bnx_set_mac_addr(sc);
   3620 
   3621 	/* Set the Ethernet backoff seed value */
   3622 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3623 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3624 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3625 
   3626 	sc->last_status_idx = 0;
   3627 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3628 
   3629 	/* Set up link change interrupt generation. */
   3630 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3631 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3632 
   3633 	/* Program the physical address of the status block. */
   3634 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
   3635 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3636 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
   3637 
   3638 	/* Program the physical address of the statistics block. */
   3639 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3640 	    (uint32_t)(sc->stats_block_paddr));
   3641 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3642 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
   3643 
   3644 	/* Program various host coalescing parameters. */
   3645 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3646 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3647 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3648 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3649 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3650 	    sc->bnx_comp_prod_trip);
   3651 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3652 	    sc->bnx_tx_ticks);
   3653 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3654 	    sc->bnx_rx_ticks);
   3655 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3656 	    sc->bnx_com_ticks);
   3657 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3658 	    sc->bnx_cmd_ticks);
   3659 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3660 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3661 	REG_WR(sc, BNX_HC_CONFIG,
   3662 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3663 	    BNX_HC_CONFIG_COLLECT_STATS));
   3664 
   3665 	/* Clear the internal statistics counters. */
   3666 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3667 
   3668 	/* Verify that bootcode is running. */
   3669 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3670 
   3671 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3672 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3673 	    __FILE__, __LINE__); reg = 0);
   3674 
   3675 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3676 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3677 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3678 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3679 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3680 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3681 		rc = ENODEV;
   3682 		goto bnx_blockinit_exit;
   3683 	}
   3684 
   3685 	/* Check if any management firmware is running. */
   3686 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3687 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3688 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3689 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3690 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3691 	}
   3692 
   3693 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3694 	    BNX_DEV_INFO_BC_REV);
   3695 
   3696 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3697 
   3698 	/* Enable DMA */
   3699 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3700 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3701 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3702 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3703 	}
   3704 
   3705 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3706 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3707 
   3708 	/* Enable link state change interrupt generation. */
   3709 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3710 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3711 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3712 	} else
   3713 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3714 
   3715 	/* Enable all remaining blocks in the MAC. */
   3716 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3717 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3718 	DELAY(20);
   3719 
   3720 bnx_blockinit_exit:
   3721 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3722 
   3723 	return rc;
   3724 }
   3725 
   3726 static int
   3727 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
   3728     uint16_t *chain_prod, uint32_t *prod_bseq)
   3729 {
   3730 	bus_dmamap_t		map;
   3731 	struct rx_bd		*rxbd;
   3732 	uint32_t		addr;
   3733 	int i;
   3734 #ifdef BNX_DEBUG
   3735 	uint16_t debug_chain_prod =	*chain_prod;
   3736 #endif
   3737 	uint16_t first_chain_prod;
   3738 
   3739 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3740 
   3741 	/* Map the mbuf cluster into device memory. */
   3742 	map = sc->rx_mbuf_map[*chain_prod];
   3743 	first_chain_prod = *chain_prod;
   3744 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3745 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3746 		    __FILE__, __LINE__);
   3747 
   3748 		m_freem(m_new);
   3749 
   3750 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3751 
   3752 		return ENOBUFS;
   3753 	}
   3754 	/* Make sure there is room in the receive chain. */
   3755 	if (map->dm_nsegs > sc->free_rx_bd) {
   3756 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3757 		m_freem(m_new);
   3758 		return EFBIG;
   3759 	}
   3760 #ifdef BNX_DEBUG
   3761 	/* Track the distribution of buffer segments. */
   3762 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3763 #endif
   3764 
   3765 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3766 	    BUS_DMASYNC_PREREAD);
   3767 
   3768 	/* Update some debug statistics counters */
   3769 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3770 	    sc->rx_low_watermark = sc->free_rx_bd);
   3771 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3772 
   3773 	/*
   3774 	 * Setup the rx_bd for the first segment
   3775 	 */
   3776 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3777 
   3778 	addr = (uint32_t)map->dm_segs[0].ds_addr;
   3779 	rxbd->rx_bd_haddr_lo = addr;
   3780 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
   3781 	rxbd->rx_bd_haddr_hi = addr;
   3782 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3783 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3784 	*prod_bseq += map->dm_segs[0].ds_len;
   3785 	bus_dmamap_sync(sc->bnx_dmatag,
   3786 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3787 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3788 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3789 
   3790 	for (i = 1; i < map->dm_nsegs; i++) {
   3791 		*prod = NEXT_RX_BD(*prod);
   3792 		*chain_prod = RX_CHAIN_IDX(*prod);
   3793 
   3794 		rxbd =
   3795 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3796 
   3797 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   3798 		rxbd->rx_bd_haddr_lo = addr;
   3799 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   3800 		rxbd->rx_bd_haddr_hi = addr;
   3801 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3802 		rxbd->rx_bd_flags = 0;
   3803 		*prod_bseq += map->dm_segs[i].ds_len;
   3804 		bus_dmamap_sync(sc->bnx_dmatag,
   3805 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3806 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3807 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3808 	}
   3809 
   3810 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3811 	bus_dmamap_sync(sc->bnx_dmatag,
   3812 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3813 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3814 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3815 
   3816 	/*
   3817 	 * Save the mbuf, adjust the map pointer (swap map for first and
   3818 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
   3819 	 * and update our counter.
   3820 	 */
   3821 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3822 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3823 	sc->rx_mbuf_map[*chain_prod] = map;
   3824 	sc->free_rx_bd -= map->dm_nsegs;
   3825 
   3826 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3827 	    map->dm_nsegs));
   3828 	*prod = NEXT_RX_BD(*prod);
   3829 	*chain_prod = RX_CHAIN_IDX(*prod);
   3830 
   3831 	return 0;
   3832 }
   3833 
   3834 /****************************************************************************/
   3835 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3836 /*                                                                          */
   3837 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3838 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3839 /* necessary.                                                               */
   3840 /*                                                                          */
   3841 /* Returns:                                                                 */
   3842 /*   0 for success, positive value for failure.                             */
   3843 /****************************************************************************/
   3844 int
   3845 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
   3846     uint16_t *chain_prod, uint32_t *prod_bseq)
   3847 {
   3848 	struct mbuf 		*m_new = NULL;
   3849 	int			rc = 0;
   3850 	uint16_t min_free_bd;
   3851 
   3852 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3853 	    __func__);
   3854 
   3855 	/* Make sure the inputs are valid. */
   3856 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3857 	    aprint_error_dev(sc->bnx_dev,
   3858 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3859 		*chain_prod, (uint16_t)MAX_RX_BD));
   3860 
   3861 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3862 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3863 	    *prod_bseq);
   3864 
   3865 	/* try to get in as many mbufs as possible */
   3866 	if (sc->mbuf_alloc_size == MCLBYTES)
   3867 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3868 	else
   3869 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3870 	while (sc->free_rx_bd >= min_free_bd) {
   3871 		/* Simulate an mbuf allocation failure. */
   3872 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3873 		    aprint_error_dev(sc->bnx_dev,
   3874 		    "Simulating mbuf allocation failure.\n");
   3875 			sc->mbuf_sim_alloc_failed++;
   3876 			rc = ENOBUFS;
   3877 			goto bnx_get_buf_exit);
   3878 
   3879 		/* This is a new mbuf allocation. */
   3880 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3881 		if (m_new == NULL) {
   3882 			DBPRINT(sc, BNX_WARN,
   3883 			    "%s(%d): RX mbuf header allocation failed!\n",
   3884 			    __FILE__, __LINE__);
   3885 
   3886 			sc->mbuf_alloc_failed++;
   3887 
   3888 			rc = ENOBUFS;
   3889 			goto bnx_get_buf_exit;
   3890 		}
   3891 
   3892 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3893 
   3894 		/* Simulate an mbuf cluster allocation failure. */
   3895 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3896 			m_freem(m_new);
   3897 			sc->rx_mbuf_alloc--;
   3898 			sc->mbuf_alloc_failed++;
   3899 			sc->mbuf_sim_alloc_failed++;
   3900 			rc = ENOBUFS;
   3901 			goto bnx_get_buf_exit);
   3902 
   3903 		if (sc->mbuf_alloc_size == MCLBYTES)
   3904 			MCLGET(m_new, M_DONTWAIT);
   3905 		else
   3906 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3907 			    M_DONTWAIT);
   3908 		if (!(m_new->m_flags & M_EXT)) {
   3909 			DBPRINT(sc, BNX_WARN,
   3910 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3911 			    __FILE__, __LINE__);
   3912 
   3913 			m_freem(m_new);
   3914 
   3915 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3916 			sc->mbuf_alloc_failed++;
   3917 
   3918 			rc = ENOBUFS;
   3919 			goto bnx_get_buf_exit;
   3920 		}
   3921 
   3922 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3923 		if (rc != 0)
   3924 			goto bnx_get_buf_exit;
   3925 	}
   3926 
   3927 bnx_get_buf_exit:
   3928 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3929 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3930 	    *chain_prod, *prod_bseq);
   3931 
   3932 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3933 	    __func__);
   3934 
   3935 	return rc;
   3936 }
   3937 
   3938 void
   3939 bnx_alloc_pkts(struct work * unused, void * arg)
   3940 {
   3941 	struct bnx_softc *sc = arg;
   3942 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   3943 	struct bnx_pkt *pkt;
   3944 	int i, s;
   3945 
   3946 	for (i = 0; i < 4; i++) { /* magic! */
   3947 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   3948 		if (pkt == NULL)
   3949 			break;
   3950 
   3951 		if (bus_dmamap_create(sc->bnx_dmatag,
   3952 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   3953 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   3954 		    &pkt->pkt_dmamap) != 0)
   3955 			goto put;
   3956 
   3957 		if (!ISSET(ifp->if_flags, IFF_UP))
   3958 			goto stopping;
   3959 
   3960 		mutex_enter(&sc->tx_pkt_mtx);
   3961 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   3962 		sc->tx_pkt_count++;
   3963 		mutex_exit(&sc->tx_pkt_mtx);
   3964 	}
   3965 
   3966 	mutex_enter(&sc->tx_pkt_mtx);
   3967 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   3968 	mutex_exit(&sc->tx_pkt_mtx);
   3969 
   3970 	/* fire-up TX now that allocations have been done */
   3971 	s = splnet();
   3972 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3973 		bnx_start(ifp);
   3974 	splx(s);
   3975 
   3976 	return;
   3977 
   3978 stopping:
   3979 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   3980 put:
   3981 	pool_put(bnx_tx_pool, pkt);
   3982 	return;
   3983 }
   3984 
   3985 /****************************************************************************/
   3986 /* Initialize the TX context memory.                                        */
   3987 /*                                                                          */
   3988 /* Returns:                                                                 */
   3989 /*   Nothing                                                                */
   3990 /****************************************************************************/
   3991 void
   3992 bnx_init_tx_context(struct bnx_softc *sc)
   3993 {
   3994 	uint32_t val;
   3995 
   3996 	/* Initialize the context ID for an L2 TX chain. */
   3997 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3998 		/* Set the CID type to support an L2 connection. */
   3999 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4000 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   4001 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4002 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   4003 
   4004 		/* Point the hardware to the first page in the chain. */
   4005 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4006 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4007 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   4008 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4009 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4010 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   4011 	} else {
   4012 		/* Set the CID type to support an L2 connection. */
   4013 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4014 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   4015 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4016 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   4017 
   4018 		/* Point the hardware to the first page in the chain. */
   4019 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4020 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   4021 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4022 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   4023 	}
   4024 }
   4025 
   4026 
   4027 /****************************************************************************/
   4028 /* Allocate memory and initialize the TX data structures.                   */
   4029 /*                                                                          */
   4030 /* Returns:                                                                 */
   4031 /*   0 for success, positive value for failure.                             */
   4032 /****************************************************************************/
   4033 int
   4034 bnx_init_tx_chain(struct bnx_softc *sc)
   4035 {
   4036 	struct tx_bd		*txbd;
   4037 	uint32_t		addr;
   4038 	int			i, rc = 0;
   4039 
   4040 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4041 
   4042 	/* Force an allocation of some dmamaps for tx up front */
   4043 	bnx_alloc_pkts(NULL, sc);
   4044 
   4045 	/* Set the initial TX producer/consumer indices. */
   4046 	sc->tx_prod = 0;
   4047 	sc->tx_cons = 0;
   4048 	sc->tx_prod_bseq = 0;
   4049 	sc->used_tx_bd = 0;
   4050 	sc->max_tx_bd = USABLE_TX_BD;
   4051 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   4052 	DBRUNIF(1, sc->tx_full_count = 0);
   4053 
   4054 	/*
   4055 	 * The NetXtreme II supports a linked-list structure called
   4056 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   4057 	 * consists of a series of 1 or more chain pages, each of which
   4058 	 * consists of a fixed number of BD entries.
   4059 	 * The last BD entry on each page is a pointer to the next page
   4060 	 * in the chain, and the last pointer in the BD chain
   4061 	 * points back to the beginning of the chain.
   4062 	 */
   4063 
   4064 	/* Set the TX next pointer chain entries. */
   4065 	for (i = 0; i < TX_PAGES; i++) {
   4066 		int j;
   4067 
   4068 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   4069 
   4070 		/* Check if we've reached the last page. */
   4071 		if (i == (TX_PAGES - 1))
   4072 			j = 0;
   4073 		else
   4074 			j = i + 1;
   4075 
   4076 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
   4077 		txbd->tx_bd_haddr_lo = addr;
   4078 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
   4079 		txbd->tx_bd_haddr_hi = addr;
   4080 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4081 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4082 	}
   4083 
   4084 	/*
   4085 	 * Initialize the context ID for an L2 TX chain.
   4086 	 */
   4087 	bnx_init_tx_context(sc);
   4088 
   4089 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4090 
   4091 	return rc;
   4092 }
   4093 
   4094 /****************************************************************************/
   4095 /* Free memory and clear the TX data structures.                            */
   4096 /*                                                                          */
   4097 /* Returns:                                                                 */
   4098 /*   Nothing.                                                               */
   4099 /****************************************************************************/
   4100 void
   4101 bnx_free_tx_chain(struct bnx_softc *sc)
   4102 {
   4103 	struct bnx_pkt		*pkt;
   4104 	int			i;
   4105 
   4106 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4107 
   4108 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4109 	mutex_enter(&sc->tx_pkt_mtx);
   4110 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4111 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4112 		mutex_exit(&sc->tx_pkt_mtx);
   4113 
   4114 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4115 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4116 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4117 
   4118 		m_freem(pkt->pkt_mbuf);
   4119 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4120 
   4121 		mutex_enter(&sc->tx_pkt_mtx);
   4122 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4123 	}
   4124 
   4125 	/* Destroy all the dmamaps we allocated for TX */
   4126 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   4127 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4128 		sc->tx_pkt_count--;
   4129 		mutex_exit(&sc->tx_pkt_mtx);
   4130 
   4131 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4132 		pool_put(bnx_tx_pool, pkt);
   4133 
   4134 		mutex_enter(&sc->tx_pkt_mtx);
   4135 	}
   4136 	mutex_exit(&sc->tx_pkt_mtx);
   4137 
   4138 
   4139 
   4140 	/* Clear each TX chain page. */
   4141 	for (i = 0; i < TX_PAGES; i++) {
   4142 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4143 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4144 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4145 	}
   4146 
   4147 	sc->used_tx_bd = 0;
   4148 
   4149 	/* Check if we lost any mbufs in the process. */
   4150 	DBRUNIF((sc->tx_mbuf_alloc),
   4151 	    aprint_error_dev(sc->bnx_dev,
   4152 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   4153 		sc->tx_mbuf_alloc));
   4154 
   4155 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4156 }
   4157 
   4158 /****************************************************************************/
   4159 /* Initialize the RX context memory.                                        */
   4160 /*                                                                          */
   4161 /* Returns:                                                                 */
   4162 /*   Nothing                                                                */
   4163 /****************************************************************************/
   4164 void
   4165 bnx_init_rx_context(struct bnx_softc *sc)
   4166 {
   4167 	uint32_t val;
   4168 
   4169 	/* Initialize the context ID for an L2 RX chain. */
   4170 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4171 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4172 
   4173 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4174 		uint32_t lo_water, hi_water;
   4175 
   4176 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
   4177 		hi_water = USABLE_RX_BD / 4;
   4178 
   4179 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
   4180 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
   4181 
   4182 		if (hi_water > 0xf)
   4183 			hi_water = 0xf;
   4184 		else if (hi_water == 0)
   4185 			lo_water = 0;
   4186 		val |= lo_water |
   4187 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
   4188 	}
   4189 
   4190  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4191 
   4192 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4193 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4194 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4195 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4196 	}
   4197 
   4198 	/* Point the hardware to the first page in the chain. */
   4199 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4200 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4201 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
   4202 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4203 }
   4204 
   4205 /****************************************************************************/
   4206 /* Allocate memory and initialize the RX data structures.                   */
   4207 /*                                                                          */
   4208 /* Returns:                                                                 */
   4209 /*   0 for success, positive value for failure.                             */
   4210 /****************************************************************************/
   4211 int
   4212 bnx_init_rx_chain(struct bnx_softc *sc)
   4213 {
   4214 	struct rx_bd		*rxbd;
   4215 	int			i, rc = 0;
   4216 	uint16_t		prod, chain_prod;
   4217 	uint32_t		prod_bseq, addr;
   4218 
   4219 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4220 
   4221 	/* Initialize the RX producer and consumer indices. */
   4222 	sc->rx_prod = 0;
   4223 	sc->rx_cons = 0;
   4224 	sc->rx_prod_bseq = 0;
   4225 	sc->free_rx_bd = USABLE_RX_BD;
   4226 	sc->max_rx_bd = USABLE_RX_BD;
   4227 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4228 	DBRUNIF(1, sc->rx_empty_count = 0);
   4229 
   4230 	/* Initialize the RX next pointer chain entries. */
   4231 	for (i = 0; i < RX_PAGES; i++) {
   4232 		int j;
   4233 
   4234 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4235 
   4236 		/* Check if we've reached the last page. */
   4237 		if (i == (RX_PAGES - 1))
   4238 			j = 0;
   4239 		else
   4240 			j = i + 1;
   4241 
   4242 		/* Setup the chain page pointers. */
   4243 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4244 		rxbd->rx_bd_haddr_hi = addr;
   4245 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
   4246 		rxbd->rx_bd_haddr_lo = addr;
   4247 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4248 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4249 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4250 	}
   4251 
   4252 	/* Allocate mbuf clusters for the rx_bd chain. */
   4253 	prod = prod_bseq = 0;
   4254 	chain_prod = RX_CHAIN_IDX(prod);
   4255 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4256 		BNX_PRINTF(sc,
   4257 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4258 	}
   4259 
   4260 	/* Save the RX chain producer index. */
   4261 	sc->rx_prod = prod;
   4262 	sc->rx_prod_bseq = prod_bseq;
   4263 
   4264 	for (i = 0; i < RX_PAGES; i++)
   4265 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4266 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4267 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4268 
   4269 	/* Tell the chip about the waiting rx_bd's. */
   4270 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4271 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4272 
   4273 	bnx_init_rx_context(sc);
   4274 
   4275 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4276 
   4277 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4278 
   4279 	return rc;
   4280 }
   4281 
   4282 /****************************************************************************/
   4283 /* Free memory and clear the RX data structures.                            */
   4284 /*                                                                          */
   4285 /* Returns:                                                                 */
   4286 /*   Nothing.                                                               */
   4287 /****************************************************************************/
   4288 void
   4289 bnx_free_rx_chain(struct bnx_softc *sc)
   4290 {
   4291 	int			i;
   4292 
   4293 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4294 
   4295 	/* Free any mbufs still in the RX mbuf chain. */
   4296 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4297 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4298 			if (sc->rx_mbuf_map[i] != NULL) {
   4299 				bus_dmamap_sync(sc->bnx_dmatag,
   4300 				    sc->rx_mbuf_map[i],	0,
   4301 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4302 				    BUS_DMASYNC_POSTREAD);
   4303 				bus_dmamap_unload(sc->bnx_dmatag,
   4304 				    sc->rx_mbuf_map[i]);
   4305 			}
   4306 			m_freem(sc->rx_mbuf_ptr[i]);
   4307 			sc->rx_mbuf_ptr[i] = NULL;
   4308 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4309 		}
   4310 	}
   4311 
   4312 	/* Clear each RX chain page. */
   4313 	for (i = 0; i < RX_PAGES; i++)
   4314 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4315 
   4316 	sc->free_rx_bd = sc->max_rx_bd;
   4317 
   4318 	/* Check if we lost any mbufs in the process. */
   4319 	DBRUNIF((sc->rx_mbuf_alloc),
   4320 	    aprint_error_dev(sc->bnx_dev,
   4321 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   4322 		sc->rx_mbuf_alloc));
   4323 
   4324 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4325 }
   4326 
   4327 /****************************************************************************/
   4328 /* Handles PHY generated interrupt events.                                  */
   4329 /*                                                                          */
   4330 /* Returns:                                                                 */
   4331 /*   Nothing.                                                               */
   4332 /****************************************************************************/
   4333 void
   4334 bnx_phy_intr(struct bnx_softc *sc)
   4335 {
   4336 	uint32_t		new_link_state, old_link_state;
   4337 
   4338 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4339 	    BUS_DMASYNC_POSTREAD);
   4340 	new_link_state = sc->status_block->status_attn_bits &
   4341 	    STATUS_ATTN_BITS_LINK_STATE;
   4342 	old_link_state = sc->status_block->status_attn_bits_ack &
   4343 	    STATUS_ATTN_BITS_LINK_STATE;
   4344 
   4345 	/* Handle any changes if the link state has changed. */
   4346 	if (new_link_state != old_link_state) {
   4347 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4348 
   4349 		callout_stop(&sc->bnx_timeout);
   4350 		bnx_tick(sc);
   4351 
   4352 		/* Update the status_attn_bits_ack field in the status block. */
   4353 		if (new_link_state) {
   4354 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4355 			    STATUS_ATTN_BITS_LINK_STATE);
   4356 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4357 		} else {
   4358 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4359 			    STATUS_ATTN_BITS_LINK_STATE);
   4360 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4361 		}
   4362 	}
   4363 
   4364 	/* Acknowledge the link change interrupt. */
   4365 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4366 }
   4367 
   4368 /****************************************************************************/
   4369 /* Handles received frame interrupt events.                                 */
   4370 /*                                                                          */
   4371 /* Returns:                                                                 */
   4372 /*   Nothing.                                                               */
   4373 /****************************************************************************/
   4374 void
   4375 bnx_rx_intr(struct bnx_softc *sc)
   4376 {
   4377 	struct status_block	*sblk = sc->status_block;
   4378 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4379 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
   4380 	uint16_t		sw_prod, sw_chain_prod;
   4381 	uint32_t		sw_prod_bseq;
   4382 	struct l2_fhdr		*l2fhdr;
   4383 	int			i;
   4384 
   4385 	DBRUNIF(1, sc->rx_interrupts++);
   4386 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4387 	    BUS_DMASYNC_POSTREAD);
   4388 
   4389 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4390 	for (i = 0; i < RX_PAGES; i++)
   4391 		bus_dmamap_sync(sc->bnx_dmatag,
   4392 		    sc->rx_bd_chain_map[i], 0,
   4393 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4394 		    BUS_DMASYNC_POSTWRITE);
   4395 
   4396 	/* Get the hardware's view of the RX consumer index. */
   4397 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4398 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4399 		hw_cons++;
   4400 
   4401 	/* Get working copies of the driver's view of the RX indices. */
   4402 	sw_cons = sc->rx_cons;
   4403 	sw_prod = sc->rx_prod;
   4404 	sw_prod_bseq = sc->rx_prod_bseq;
   4405 
   4406 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4407 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4408 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4409 
   4410 	/* Prevent speculative reads from getting ahead of the status block. */
   4411 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4412 	    BUS_SPACE_BARRIER_READ);
   4413 
   4414 	/* Update some debug statistics counters */
   4415 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4416 	    sc->rx_low_watermark = sc->free_rx_bd);
   4417 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4418 
   4419 	/*
   4420 	 * Scan through the receive chain as long
   4421 	 * as there is work to do.
   4422 	 */
   4423 	while (sw_cons != hw_cons) {
   4424 		struct mbuf *m;
   4425 		struct rx_bd *rxbd __diagused;
   4426 		unsigned int len;
   4427 		uint32_t status;
   4428 
   4429 		/* Convert the producer/consumer indices to an actual
   4430 		 * rx_bd index.
   4431 		 */
   4432 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4433 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4434 
   4435 		/* Get the used rx_bd. */
   4436 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4437 		sc->free_rx_bd++;
   4438 
   4439 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4440 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4441 
   4442 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4443 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4444 #ifdef DIAGNOSTIC
   4445 			/* Validate that this is the last rx_bd. */
   4446 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4447 			    printf("%s: Unexpected mbuf found in "
   4448 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4449 			        sw_chain_cons);
   4450 			}
   4451 #endif
   4452 
   4453 			/* DRC - ToDo: If the received packet is small, say less
   4454 			 *             than 128 bytes, allocate a new mbuf here,
   4455 			 *             copy the data to that mbuf, and recycle
   4456 			 *             the mapped jumbo frame.
   4457 			 */
   4458 
   4459 			/* Unmap the mbuf from DMA space. */
   4460 #ifdef DIAGNOSTIC
   4461 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4462 				printf("invalid map sw_cons 0x%x "
   4463 				"sw_prod 0x%x "
   4464 				"sw_chain_cons 0x%x "
   4465 				"sw_chain_prod 0x%x "
   4466 				"hw_cons 0x%x "
   4467 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4468 				"TOTAL_RX_BD 0x%x\n",
   4469 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4470 				hw_cons,
   4471 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4472 			}
   4473 #endif
   4474 			bus_dmamap_sync(sc->bnx_dmatag,
   4475 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4476 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4477 			    BUS_DMASYNC_POSTREAD);
   4478 			bus_dmamap_unload(sc->bnx_dmatag,
   4479 			    sc->rx_mbuf_map[sw_chain_cons]);
   4480 
   4481 			/* Remove the mbuf from the driver's chain. */
   4482 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4483 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4484 
   4485 			/*
   4486 			 * Frames received on the NetXteme II are prepended
   4487 			 * with the l2_fhdr structure which provides status
   4488 			 * information about the received frame (including
   4489 			 * VLAN tags and checksum info) and are also
   4490 			 * automatically adjusted to align the IP header
   4491 			 * (i.e. two null bytes are inserted before the
   4492 			 * Ethernet header).
   4493 			 */
   4494 			l2fhdr = mtod(m, struct l2_fhdr *);
   4495 
   4496 			len    = l2fhdr->l2_fhdr_pkt_len;
   4497 			status = l2fhdr->l2_fhdr_status;
   4498 
   4499 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4500 			    aprint_error("Simulating l2_fhdr status error.\n");
   4501 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4502 
   4503 			/* Watch for unusual sized frames. */
   4504 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4505 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4506 			    aprint_error_dev(sc->bnx_dev,
   4507 			        "Unusual frame size found. "
   4508 				"Min(%d), Actual(%d), Max(%d)\n",
   4509 				(int)BNX_MIN_MTU, len,
   4510 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4511 
   4512 			bnx_dump_mbuf(sc, m);
   4513 			bnx_breakpoint(sc));
   4514 
   4515 			len -= ETHER_CRC_LEN;
   4516 
   4517 			/* Check the received frame for errors. */
   4518 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4519 			    L2_FHDR_ERRORS_PHY_DECODE |
   4520 			    L2_FHDR_ERRORS_ALIGNMENT |
   4521 			    L2_FHDR_ERRORS_TOO_SHORT |
   4522 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4523 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4524 			    len >
   4525 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4526 				ifp->if_ierrors++;
   4527 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4528 
   4529 				/* Reuse the mbuf for a new frame. */
   4530 				if (bnx_add_buf(sc, m, &sw_prod,
   4531 				    &sw_chain_prod, &sw_prod_bseq)) {
   4532 					DBRUNIF(1, bnx_breakpoint(sc));
   4533 					panic("%s: Can't reuse RX mbuf!\n",
   4534 					    device_xname(sc->bnx_dev));
   4535 				}
   4536 				continue;
   4537 			}
   4538 
   4539 			/*
   4540 			 * Get a new mbuf for the rx_bd.   If no new
   4541 			 * mbufs are available then reuse the current mbuf,
   4542 			 * log an ierror on the interface, and generate
   4543 			 * an error in the system log.
   4544 			 */
   4545 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4546 			    &sw_prod_bseq)) {
   4547 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4548 				    "Failed to allocate "
   4549 				    "new mbuf, incoming frame dropped!\n"));
   4550 
   4551 				ifp->if_ierrors++;
   4552 
   4553 				/* Try and reuse the exisitng mbuf. */
   4554 				if (bnx_add_buf(sc, m, &sw_prod,
   4555 				    &sw_chain_prod, &sw_prod_bseq)) {
   4556 					DBRUNIF(1, bnx_breakpoint(sc));
   4557 					panic("%s: Double mbuf allocation "
   4558 					    "failure!",
   4559 					    device_xname(sc->bnx_dev));
   4560 				}
   4561 				continue;
   4562 			}
   4563 
   4564 			/* Skip over the l2_fhdr when passing the data up
   4565 			 * the stack.
   4566 			 */
   4567 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4568 
   4569 			/* Adjust the pckt length to match the received data. */
   4570 			m->m_pkthdr.len = m->m_len = len;
   4571 
   4572 			/* Send the packet to the appropriate interface. */
   4573 			m_set_rcvif(m, ifp);
   4574 
   4575 			DBRUN(BNX_VERBOSE_RECV,
   4576 			    struct ether_header *eh;
   4577 			    eh = mtod(m, struct ether_header *);
   4578 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4579 			    __func__, ether_sprintf(eh->ether_dhost),
   4580 			    ether_sprintf(eh->ether_shost),
   4581 			    htons(eh->ether_type)));
   4582 
   4583 			/* Validate the checksum. */
   4584 
   4585 			/* Check for an IP datagram. */
   4586 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4587 				/* Check if the IP checksum is valid. */
   4588 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff)
   4589 				    == 0)
   4590 					m->m_pkthdr.csum_flags |=
   4591 					    M_CSUM_IPv4;
   4592 #ifdef BNX_DEBUG
   4593 				else
   4594 					DBPRINT(sc, BNX_WARN_SEND,
   4595 					    "%s(): Invalid IP checksum "
   4596 					        "= 0x%04X!\n",
   4597 						__func__,
   4598 						l2fhdr->l2_fhdr_ip_xsum
   4599 						);
   4600 #endif
   4601 			}
   4602 
   4603 			/* Check for a valid TCP/UDP frame. */
   4604 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4605 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4606 				/* Check for a good TCP/UDP checksum. */
   4607 				if ((status &
   4608 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4609 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4610 					m->m_pkthdr.csum_flags |=
   4611 					    M_CSUM_TCPv4 |
   4612 					    M_CSUM_UDPv4;
   4613 				} else {
   4614 					DBPRINT(sc, BNX_WARN_SEND,
   4615 					    "%s(): Invalid TCP/UDP "
   4616 					    "checksum = 0x%04X!\n",
   4617 					    __func__,
   4618 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4619 				}
   4620 			}
   4621 
   4622 			/*
   4623 			 * If we received a packet with a vlan tag,
   4624 			 * attach that information to the packet.
   4625 			 */
   4626 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4627 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4628 				vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
   4629 			}
   4630 
   4631 			/* Pass the mbuf off to the upper layers. */
   4632 
   4633 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4634 			    "%s(): Passing received frame up.\n", __func__);
   4635 			if_percpuq_enqueue(ifp->if_percpuq, m);
   4636 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4637 
   4638 		}
   4639 
   4640 		sw_cons = NEXT_RX_BD(sw_cons);
   4641 
   4642 		/* Refresh hw_cons to see if there's new work */
   4643 		if (sw_cons == hw_cons) {
   4644 			hw_cons = sc->hw_rx_cons =
   4645 			    sblk->status_rx_quick_consumer_index0;
   4646 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4647 			    USABLE_RX_BD_PER_PAGE)
   4648 				hw_cons++;
   4649 		}
   4650 
   4651 		/* Prevent speculative reads from getting ahead of
   4652 		 * the status block.
   4653 		 */
   4654 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4655 		    BUS_SPACE_BARRIER_READ);
   4656 	}
   4657 
   4658 	for (i = 0; i < RX_PAGES; i++)
   4659 		bus_dmamap_sync(sc->bnx_dmatag,
   4660 		    sc->rx_bd_chain_map[i], 0,
   4661 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4662 		    BUS_DMASYNC_PREWRITE);
   4663 
   4664 	sc->rx_cons = sw_cons;
   4665 	sc->rx_prod = sw_prod;
   4666 	sc->rx_prod_bseq = sw_prod_bseq;
   4667 
   4668 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4669 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4670 
   4671 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4672 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4673 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4674 }
   4675 
   4676 /****************************************************************************/
   4677 /* Handles transmit completion interrupt events.                            */
   4678 /*                                                                          */
   4679 /* Returns:                                                                 */
   4680 /*   Nothing.                                                               */
   4681 /****************************************************************************/
   4682 void
   4683 bnx_tx_intr(struct bnx_softc *sc)
   4684 {
   4685 	struct status_block	*sblk = sc->status_block;
   4686 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4687 	struct bnx_pkt		*pkt;
   4688 	bus_dmamap_t		map;
   4689 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4690 
   4691 	DBRUNIF(1, sc->tx_interrupts++);
   4692 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4693 	    BUS_DMASYNC_POSTREAD);
   4694 
   4695 	/* Get the hardware's view of the TX consumer index. */
   4696 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4697 
   4698 	/* Skip to the next entry if this is a chain page pointer. */
   4699 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4700 		hw_tx_cons++;
   4701 
   4702 	sw_tx_cons = sc->tx_cons;
   4703 
   4704 	/* Prevent speculative reads from getting ahead of the status block. */
   4705 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4706 	    BUS_SPACE_BARRIER_READ);
   4707 
   4708 	/* Cycle through any completed TX chain page entries. */
   4709 	while (sw_tx_cons != hw_tx_cons) {
   4710 #ifdef BNX_DEBUG
   4711 		struct tx_bd *txbd = NULL;
   4712 #endif
   4713 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4714 
   4715 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4716 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4717 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4718 
   4719 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4720 		    aprint_error_dev(sc->bnx_dev,
   4721 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4722 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4723 
   4724 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4725 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4726 
   4727 		DBRUNIF((txbd == NULL),
   4728 		    aprint_error_dev(sc->bnx_dev,
   4729 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4730 		    bnx_breakpoint(sc));
   4731 
   4732 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4733 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4734 
   4735 
   4736 		mutex_enter(&sc->tx_pkt_mtx);
   4737 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4738 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4739 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4740 			mutex_exit(&sc->tx_pkt_mtx);
   4741 			/*
   4742 			 * Free the associated mbuf. Remember
   4743 			 * that only the last tx_bd of a packet
   4744 			 * has an mbuf pointer and DMA map.
   4745 			 */
   4746 			map = pkt->pkt_dmamap;
   4747 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4748 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4749 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4750 
   4751 			m_freem(pkt->pkt_mbuf);
   4752 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4753 
   4754 			ifp->if_opackets++;
   4755 
   4756 			mutex_enter(&sc->tx_pkt_mtx);
   4757 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4758 		}
   4759 		mutex_exit(&sc->tx_pkt_mtx);
   4760 
   4761 		sc->used_tx_bd--;
   4762 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4763 			__FILE__, __LINE__, sc->used_tx_bd);
   4764 
   4765 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4766 
   4767 		/* Refresh hw_cons to see if there's new work. */
   4768 		hw_tx_cons = sc->hw_tx_cons =
   4769 		    sblk->status_tx_quick_consumer_index0;
   4770 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4771 		    USABLE_TX_BD_PER_PAGE)
   4772 			hw_tx_cons++;
   4773 
   4774 		/* Prevent speculative reads from getting ahead of
   4775 		 * the status block.
   4776 		 */
   4777 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4778 		    BUS_SPACE_BARRIER_READ);
   4779 	}
   4780 
   4781 	/* Clear the TX timeout timer. */
   4782 	ifp->if_timer = 0;
   4783 
   4784 	/* Clear the tx hardware queue full flag. */
   4785 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4786 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4787 		    aprint_debug_dev(sc->bnx_dev,
   4788 		        "Open TX chain! %d/%d (used/total)\n",
   4789 			sc->used_tx_bd, sc->max_tx_bd));
   4790 		ifp->if_flags &= ~IFF_OACTIVE;
   4791 	}
   4792 
   4793 	sc->tx_cons = sw_tx_cons;
   4794 }
   4795 
   4796 /****************************************************************************/
   4797 /* Disables interrupt generation.                                           */
   4798 /*                                                                          */
   4799 /* Returns:                                                                 */
   4800 /*   Nothing.                                                               */
   4801 /****************************************************************************/
   4802 void
   4803 bnx_disable_intr(struct bnx_softc *sc)
   4804 {
   4805 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4806 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4807 }
   4808 
   4809 /****************************************************************************/
   4810 /* Enables interrupt generation.                                            */
   4811 /*                                                                          */
   4812 /* Returns:                                                                 */
   4813 /*   Nothing.                                                               */
   4814 /****************************************************************************/
   4815 void
   4816 bnx_enable_intr(struct bnx_softc *sc)
   4817 {
   4818 	uint32_t		val;
   4819 
   4820 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4821 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4822 
   4823 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4824 	    sc->last_status_idx);
   4825 
   4826 	val = REG_RD(sc, BNX_HC_COMMAND);
   4827 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4828 }
   4829 
   4830 /****************************************************************************/
   4831 /* Handles controller initialization.                                       */
   4832 /*                                                                          */
   4833 /****************************************************************************/
   4834 int
   4835 bnx_init(struct ifnet *ifp)
   4836 {
   4837 	struct bnx_softc	*sc = ifp->if_softc;
   4838 	uint32_t		ether_mtu;
   4839 	int			s, error = 0;
   4840 
   4841 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4842 
   4843 	s = splnet();
   4844 
   4845 	bnx_stop(ifp, 0);
   4846 
   4847 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4848 		aprint_error_dev(sc->bnx_dev,
   4849 		    "Controller reset failed!\n");
   4850 		goto bnx_init_exit;
   4851 	}
   4852 
   4853 	if ((error = bnx_chipinit(sc)) != 0) {
   4854 		aprint_error_dev(sc->bnx_dev,
   4855 		    "Controller initialization failed!\n");
   4856 		goto bnx_init_exit;
   4857 	}
   4858 
   4859 	if ((error = bnx_blockinit(sc)) != 0) {
   4860 		aprint_error_dev(sc->bnx_dev,
   4861 		    "Block initialization failed!\n");
   4862 		goto bnx_init_exit;
   4863 	}
   4864 
   4865 	/* Calculate and program the Ethernet MRU size. */
   4866 	if (ifp->if_mtu <= ETHERMTU) {
   4867 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4868 		sc->mbuf_alloc_size = MCLBYTES;
   4869 	} else {
   4870 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4871 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   4872 	}
   4873 
   4874 
   4875 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n",
   4876 	    __func__, ether_mtu);
   4877 
   4878 	/*
   4879 	 * Program the MRU and enable Jumbo frame
   4880 	 * support.
   4881 	 */
   4882 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4883 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4884 
   4885 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4886 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4887 
   4888 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4889 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4890 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4891 
   4892 	/* Program appropriate promiscuous/multicast filtering. */
   4893 	bnx_iff(sc);
   4894 
   4895 	/* Init RX buffer descriptor chain. */
   4896 	bnx_init_rx_chain(sc);
   4897 
   4898 	/* Init TX buffer descriptor chain. */
   4899 	bnx_init_tx_chain(sc);
   4900 
   4901 	/* Enable host interrupts. */
   4902 	bnx_enable_intr(sc);
   4903 
   4904 	if ((error = ether_mediachange(ifp)) != 0)
   4905 		goto bnx_init_exit;
   4906 
   4907 	SET(ifp->if_flags, IFF_RUNNING);
   4908 	CLR(ifp->if_flags, IFF_OACTIVE);
   4909 
   4910 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4911 
   4912 bnx_init_exit:
   4913 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4914 
   4915 	splx(s);
   4916 
   4917 	return error;
   4918 }
   4919 
   4920 /****************************************************************************/
   4921 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4922 /* memory visible to the controller.                                        */
   4923 /*                                                                          */
   4924 /* Returns:                                                                 */
   4925 /*   0 for success, positive value for failure.                             */
   4926 /****************************************************************************/
   4927 int
   4928 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   4929 {
   4930 	struct bnx_pkt		*pkt;
   4931 	bus_dmamap_t		map;
   4932 	struct tx_bd		*txbd = NULL;
   4933 	uint16_t		vlan_tag = 0, flags = 0;
   4934 	uint16_t		chain_prod, prod;
   4935 #ifdef BNX_DEBUG
   4936 	uint16_t		debug_prod;
   4937 #endif
   4938 	uint32_t		addr, prod_bseq;
   4939 	int			i, error;
   4940 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
   4941 
   4942 	mutex_enter(&sc->tx_pkt_mtx);
   4943 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   4944 	if (pkt == NULL) {
   4945 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   4946 			mutex_exit(&sc->tx_pkt_mtx);
   4947 			return ENETDOWN;
   4948 		}
   4949 
   4950 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   4951 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   4952 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
   4953 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4954 		}
   4955 
   4956 		mutex_exit(&sc->tx_pkt_mtx);
   4957 		return ENOMEM;
   4958 	}
   4959 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4960 	mutex_exit(&sc->tx_pkt_mtx);
   4961 
   4962 	/* Transfer any checksum offload flags to the bd. */
   4963 	if (m->m_pkthdr.csum_flags) {
   4964 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4965 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4966 		if (m->m_pkthdr.csum_flags &
   4967 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4968 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4969 	}
   4970 
   4971 	/* Transfer any VLAN tags to the bd. */
   4972 	if (vlan_has_tag(m)) {
   4973 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4974 		vlan_tag = vlan_get_tag(m);
   4975 	}
   4976 
   4977 	/* Map the mbuf into DMAable memory. */
   4978 	prod = sc->tx_prod;
   4979 	chain_prod = TX_CHAIN_IDX(prod);
   4980 	map = pkt->pkt_dmamap;
   4981 
   4982 	/* Map the mbuf into our DMA address space. */
   4983 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   4984 	if (error != 0) {
   4985 		aprint_error_dev(sc->bnx_dev,
   4986 		    "Error mapping mbuf into TX chain!\n");
   4987 		sc->tx_dma_map_failures++;
   4988 		goto maperr;
   4989 	}
   4990 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4991 	    BUS_DMASYNC_PREWRITE);
   4992         /* Make sure there's room in the chain */
   4993 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   4994                 goto nospace;
   4995 
   4996 	/* prod points to an empty tx_bd at this point. */
   4997 	prod_bseq = sc->tx_prod_bseq;
   4998 #ifdef BNX_DEBUG
   4999 	debug_prod = chain_prod;
   5000 #endif
   5001 	DBPRINT(sc, BNX_INFO_SEND,
   5002 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   5003 		"prod_bseq = 0x%08X\n",
   5004 		__func__, prod, chain_prod, prod_bseq);
   5005 
   5006 	/*
   5007 	 * Cycle through each mbuf segment that makes up
   5008 	 * the outgoing frame, gathering the mapping info
   5009 	 * for that segment and creating a tx_bd for the
   5010 	 * mbuf.
   5011 	 */
   5012 	for (i = 0; i < map->dm_nsegs ; i++) {
   5013 		chain_prod = TX_CHAIN_IDX(prod);
   5014 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   5015 
   5016 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   5017 		txbd->tx_bd_haddr_lo = addr;
   5018 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   5019 		txbd->tx_bd_haddr_hi = addr;
   5020 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   5021 		txbd->tx_bd_vlan_tag = vlan_tag;
   5022 		txbd->tx_bd_flags = flags;
   5023 		prod_bseq += map->dm_segs[i].ds_len;
   5024 		if (i == 0)
   5025 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   5026 		prod = NEXT_TX_BD(prod);
   5027 	}
   5028 	/* Set the END flag on the last TX buffer descriptor. */
   5029 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   5030 
   5031 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   5032 
   5033 	DBPRINT(sc, BNX_INFO_SEND,
   5034 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   5035 		"prod_bseq = 0x%08X\n",
   5036 		__func__, prod, chain_prod, prod_bseq);
   5037 
   5038 	pkt->pkt_mbuf = m;
   5039 	pkt->pkt_end_desc = chain_prod;
   5040 
   5041 	mutex_enter(&sc->tx_pkt_mtx);
   5042 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   5043 	mutex_exit(&sc->tx_pkt_mtx);
   5044 
   5045 	sc->used_tx_bd += map->dm_nsegs;
   5046 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   5047 		__FILE__, __LINE__, sc->used_tx_bd);
   5048 
   5049 	/* Update some debug statistics counters */
   5050 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   5051 	    sc->tx_hi_watermark = sc->used_tx_bd);
   5052 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   5053 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   5054 
   5055 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   5056 	    map->dm_nsegs));
   5057 
   5058 	/* prod points to the next free tx_bd at this point. */
   5059 	sc->tx_prod = prod;
   5060 	sc->tx_prod_bseq = prod_bseq;
   5061 
   5062 	return 0;
   5063 
   5064 
   5065 nospace:
   5066 	bus_dmamap_unload(sc->bnx_dmatag, map);
   5067 maperr:
   5068 	mutex_enter(&sc->tx_pkt_mtx);
   5069 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   5070 	mutex_exit(&sc->tx_pkt_mtx);
   5071 
   5072 	return ENOMEM;
   5073 }
   5074 
   5075 /****************************************************************************/
   5076 /* Main transmit routine.                                                   */
   5077 /*                                                                          */
   5078 /* Returns:                                                                 */
   5079 /*   Nothing.                                                               */
   5080 /****************************************************************************/
   5081 void
   5082 bnx_start(struct ifnet *ifp)
   5083 {
   5084 	struct bnx_softc	*sc = ifp->if_softc;
   5085 	struct mbuf		*m_head = NULL;
   5086 	int			count = 0;
   5087 #ifdef BNX_DEBUG
   5088 	uint16_t		tx_chain_prod;
   5089 #endif
   5090 
   5091 	/* If there's no link or the transmit queue is empty then just exit. */
   5092 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   5093 		DBPRINT(sc, BNX_INFO_SEND,
   5094 		    "%s(): output active or device not running.\n", __func__);
   5095 		goto bnx_start_exit;
   5096 	}
   5097 
   5098 	/* prod points to the next free tx_bd. */
   5099 #ifdef BNX_DEBUG
   5100 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5101 #endif
   5102 
   5103 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5104 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5105 	    "used_tx %d max_tx %d\n",
   5106 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5107 	    sc->used_tx_bd, sc->max_tx_bd);
   5108 
   5109 	/*
   5110 	 * Keep adding entries while there is space in the ring.
   5111 	 */
   5112 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5113 		/* Check for any frames to send. */
   5114 		IFQ_POLL(&ifp->if_snd, m_head);
   5115 		if (m_head == NULL)
   5116 			break;
   5117 
   5118 		/*
   5119 		 * Pack the data into the transmit ring. If we
   5120 		 * don't have room, set the OACTIVE flag to wait
   5121 		 * for the NIC to drain the chain.
   5122 		 */
   5123 		if (bnx_tx_encap(sc, m_head)) {
   5124 			ifp->if_flags |= IFF_OACTIVE;
   5125 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5126 			    "business! Total tx_bd used = %d\n",
   5127 			    sc->used_tx_bd);
   5128 			break;
   5129 		}
   5130 
   5131 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5132 		count++;
   5133 
   5134 		/* Send a copy of the frame to any BPF listeners. */
   5135 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5136 	}
   5137 
   5138 	if (count == 0) {
   5139 		/* no packets were dequeued */
   5140 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5141 		    "%s(): No packets were dequeued\n", __func__);
   5142 		goto bnx_start_exit;
   5143 	}
   5144 
   5145 	/* Update the driver's counters. */
   5146 #ifdef BNX_DEBUG
   5147 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5148 #endif
   5149 
   5150 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, tx_chain_prod "
   5151 	    "= 0x%04X, tx_prod_bseq = 0x%08X\n", __func__, sc->tx_prod,
   5152 	    tx_chain_prod, sc->tx_prod_bseq);
   5153 
   5154 	/* Start the transmit. */
   5155 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5156 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5157 
   5158 	/* Set the tx timeout. */
   5159 	ifp->if_timer = BNX_TX_TIMEOUT;
   5160 
   5161 bnx_start_exit:
   5162 	return;
   5163 }
   5164 
   5165 /****************************************************************************/
   5166 /* Handles any IOCTL calls from the operating system.                       */
   5167 /*                                                                          */
   5168 /* Returns:                                                                 */
   5169 /*   0 for success, positive value for failure.                             */
   5170 /****************************************************************************/
   5171 int
   5172 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5173 {
   5174 	struct bnx_softc	*sc = ifp->if_softc;
   5175 	struct ifreq		*ifr = (struct ifreq *) data;
   5176 	struct mii_data		*mii = &sc->bnx_mii;
   5177 	int			s, error = 0;
   5178 
   5179 	s = splnet();
   5180 
   5181 	switch (command) {
   5182 	case SIOCSIFFLAGS:
   5183 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5184 			break;
   5185 		/* XXX set an ifflags callback and let ether_ioctl
   5186 		 * handle all of this.
   5187 		 */
   5188 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5189 			if (ifp->if_flags & IFF_RUNNING)
   5190 				error = ENETRESET;
   5191 			else
   5192 				bnx_init(ifp);
   5193 		} else if (ifp->if_flags & IFF_RUNNING)
   5194 			bnx_stop(ifp, 1);
   5195 		break;
   5196 
   5197 	case SIOCSIFMEDIA:
   5198 	case SIOCGIFMEDIA:
   5199 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5200 		    sc->bnx_phy_flags);
   5201 
   5202 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5203 		break;
   5204 
   5205 	default:
   5206 		error = ether_ioctl(ifp, command, data);
   5207 	}
   5208 
   5209 	if (error == ENETRESET) {
   5210 		if (ifp->if_flags & IFF_RUNNING)
   5211 			bnx_iff(sc);
   5212 		error = 0;
   5213 	}
   5214 
   5215 	splx(s);
   5216 	return error;
   5217 }
   5218 
   5219 /****************************************************************************/
   5220 /* Transmit timeout handler.                                                */
   5221 /*                                                                          */
   5222 /* Returns:                                                                 */
   5223 /*   Nothing.                                                               */
   5224 /****************************************************************************/
   5225 void
   5226 bnx_watchdog(struct ifnet *ifp)
   5227 {
   5228 	struct bnx_softc	*sc = ifp->if_softc;
   5229 
   5230 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5231 	    bnx_dump_status_block(sc));
   5232 	/*
   5233 	 * If we are in this routine because of pause frames, then
   5234 	 * don't reset the hardware.
   5235 	 */
   5236 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5237 		return;
   5238 
   5239 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5240 
   5241 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5242 
   5243 	bnx_init(ifp);
   5244 
   5245 	ifp->if_oerrors++;
   5246 }
   5247 
   5248 /*
   5249  * Interrupt handler.
   5250  */
   5251 /****************************************************************************/
   5252 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5253 /* interrupt and then calls a separate routine for handle the various       */
   5254 /* interrupt causes (PHY, TX, RX).                                          */
   5255 /*                                                                          */
   5256 /* Returns:                                                                 */
   5257 /*   0 for success, positive value for failure.                             */
   5258 /****************************************************************************/
   5259 int
   5260 bnx_intr(void *xsc)
   5261 {
   5262 	struct bnx_softc	*sc;
   5263 	struct ifnet		*ifp;
   5264 	uint32_t		status_attn_bits;
   5265 	const struct status_block *sblk;
   5266 
   5267 	sc = xsc;
   5268 
   5269 	ifp = &sc->bnx_ec.ec_if;
   5270 
   5271 	if (!device_is_active(sc->bnx_dev) ||
   5272 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5273 		return 0;
   5274 
   5275 	DBRUNIF(1, sc->interrupts_generated++);
   5276 
   5277 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5278 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   5279 
   5280 	/*
   5281 	 * If the hardware status block index
   5282 	 * matches the last value read by the
   5283 	 * driver and we haven't asserted our
   5284 	 * interrupt then there's nothing to do.
   5285 	 */
   5286 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   5287 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   5288 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   5289 		return 0;
   5290 
   5291 	/* Ack the interrupt and stop others from occurring. */
   5292 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5293 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   5294 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5295 
   5296 	/* Keep processing data as long as there is work to do. */
   5297 	for (;;) {
   5298 		sblk = sc->status_block;
   5299 		status_attn_bits = sblk->status_attn_bits;
   5300 
   5301 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5302 		    aprint_debug("Simulating unexpected status attention bit set.");
   5303 		    status_attn_bits = status_attn_bits |
   5304 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5305 
   5306 		/* Was it a link change interrupt? */
   5307 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5308 		    (sblk->status_attn_bits_ack &
   5309 		    STATUS_ATTN_BITS_LINK_STATE))
   5310 			bnx_phy_intr(sc);
   5311 
   5312 		/* If any other attention is asserted then the chip is toast. */
   5313 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5314 		    (sblk->status_attn_bits_ack &
   5315 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5316 			DBRUN(1, sc->unexpected_attentions++);
   5317 
   5318 			BNX_PRINTF(sc,
   5319 			    "Fatal attention detected: 0x%08X\n",
   5320 			    sblk->status_attn_bits);
   5321 
   5322 			DBRUN(BNX_FATAL,
   5323 			    if (bnx_debug_unexpected_attention == 0)
   5324 			    bnx_breakpoint(sc));
   5325 
   5326 			bnx_init(ifp);
   5327 			return 1;
   5328 		}
   5329 
   5330 		/* Check for any completed RX frames. */
   5331 		if (sblk->status_rx_quick_consumer_index0 !=
   5332 		    sc->hw_rx_cons)
   5333 			bnx_rx_intr(sc);
   5334 
   5335 		/* Check for any completed TX frames. */
   5336 		if (sblk->status_tx_quick_consumer_index0 !=
   5337 		    sc->hw_tx_cons)
   5338 			bnx_tx_intr(sc);
   5339 
   5340 		/*
   5341 		 * Save the status block index value for use during the
   5342 		 * next interrupt.
   5343 		 */
   5344 		sc->last_status_idx = sblk->status_idx;
   5345 
   5346 		/* Prevent speculative reads from getting ahead of the
   5347 		 * status block.
   5348 		 */
   5349 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   5350 		    BUS_SPACE_BARRIER_READ);
   5351 
   5352 		/* If there's no work left then exit the isr. */
   5353 		if ((sblk->status_rx_quick_consumer_index0 ==
   5354 			sc->hw_rx_cons) &&
   5355 		    (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
   5356 			break;
   5357 	}
   5358 
   5359 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5360 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   5361 
   5362 	/* Re-enable interrupts. */
   5363 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5364 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   5365 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5366 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5367 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   5368 
   5369 	/* Handle any frames that arrived while handling the interrupt. */
   5370 	if_schedule_deferred_start(ifp);
   5371 
   5372 	return 1;
   5373 }
   5374 
   5375 /****************************************************************************/
   5376 /* Programs the various packet receive modes (broadcast and multicast).     */
   5377 /*                                                                          */
   5378 /* Returns:                                                                 */
   5379 /*   Nothing.                                                               */
   5380 /****************************************************************************/
   5381 void
   5382 bnx_iff(struct bnx_softc *sc)
   5383 {
   5384 	struct ethercom		*ec = &sc->bnx_ec;
   5385 	struct ifnet		*ifp = &ec->ec_if;
   5386 	struct ether_multi	*enm;
   5387 	struct ether_multistep	step;
   5388 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5389 	uint32_t		rx_mode, sort_mode;
   5390 	int			h, i;
   5391 
   5392 	/* Initialize receive mode default settings. */
   5393 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5394 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5395 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5396 	ifp->if_flags &= ~IFF_ALLMULTI;
   5397 
   5398 	/*
   5399 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5400 	 * be enbled.
   5401 	 */
   5402 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5403 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5404 
   5405 	/*
   5406 	 * Check for promiscuous, all multicast, or selected
   5407 	 * multicast address filtering.
   5408 	 */
   5409 	if (ifp->if_flags & IFF_PROMISC) {
   5410 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5411 
   5412 		ifp->if_flags |= IFF_ALLMULTI;
   5413 		/* Enable promiscuous mode. */
   5414 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5415 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5416 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5417 allmulti:
   5418 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5419 
   5420 		ifp->if_flags |= IFF_ALLMULTI;
   5421 		/* Enable all multicast addresses. */
   5422 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5423 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5424 			    0xffffffff);
   5425 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5426 	} else {
   5427 		/* Accept one or more multicast(s). */
   5428 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5429 
   5430 		ETHER_FIRST_MULTI(step, ec, enm);
   5431 		while (enm != NULL) {
   5432 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5433 			    ETHER_ADDR_LEN)) {
   5434 				goto allmulti;
   5435 			}
   5436 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5437 			    0xFF;
   5438 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5439 			ETHER_NEXT_MULTI(step, enm);
   5440 		}
   5441 
   5442 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5443 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5444 			    hashes[i]);
   5445 
   5446 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5447 	}
   5448 
   5449 	/* Only make changes if the recive mode has actually changed. */
   5450 	if (rx_mode != sc->rx_mode) {
   5451 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5452 		    rx_mode);
   5453 
   5454 		sc->rx_mode = rx_mode;
   5455 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5456 	}
   5457 
   5458 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5459 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5460 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5461 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5462 }
   5463 
   5464 /****************************************************************************/
   5465 /* Called periodically to updates statistics from the controllers           */
   5466 /* statistics block.                                                        */
   5467 /*                                                                          */
   5468 /* Returns:                                                                 */
   5469 /*   Nothing.                                                               */
   5470 /****************************************************************************/
   5471 void
   5472 bnx_stats_update(struct bnx_softc *sc)
   5473 {
   5474 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5475 	struct statistics_block	*stats;
   5476 
   5477 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5478 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5479 	    BUS_DMASYNC_POSTREAD);
   5480 
   5481 	stats = (struct statistics_block *)sc->stats_block;
   5482 
   5483 	/*
   5484 	 * Update the interface statistics from the
   5485 	 * hardware statistics.
   5486 	 */
   5487 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5488 
   5489 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5490 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5491 	    (u_long)stats->stat_IfInMBUFDiscards +
   5492 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5493 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5494 
   5495 	ifp->if_oerrors = (u_long)
   5496 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5497 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5498 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5499 
   5500 	/*
   5501 	 * Certain controllers don't report
   5502 	 * carrier sense errors correctly.
   5503 	 * See errata E11_5708CA0_1165.
   5504 	 */
   5505 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5506 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5507 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5508 
   5509 	/*
   5510 	 * Update the sysctl statistics from the
   5511 	 * hardware statistics.
   5512 	 */
   5513 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
   5514 	    (uint64_t) stats->stat_IfHCInOctets_lo;
   5515 
   5516 	sc->stat_IfHCInBadOctets =
   5517 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5518 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
   5519 
   5520 	sc->stat_IfHCOutOctets =
   5521 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5522 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
   5523 
   5524 	sc->stat_IfHCOutBadOctets =
   5525 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5526 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
   5527 
   5528 	sc->stat_IfHCInUcastPkts =
   5529 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5530 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
   5531 
   5532 	sc->stat_IfHCInMulticastPkts =
   5533 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5534 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
   5535 
   5536 	sc->stat_IfHCInBroadcastPkts =
   5537 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5538 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5539 
   5540 	sc->stat_IfHCOutUcastPkts =
   5541 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5542 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
   5543 
   5544 	sc->stat_IfHCOutMulticastPkts =
   5545 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5546 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5547 
   5548 	sc->stat_IfHCOutBroadcastPkts =
   5549 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5550 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5551 
   5552 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5553 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5554 
   5555 	sc->stat_Dot3StatsCarrierSenseErrors =
   5556 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5557 
   5558 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5559 
   5560 	sc->stat_Dot3StatsAlignmentErrors =
   5561 	    stats->stat_Dot3StatsAlignmentErrors;
   5562 
   5563 	sc->stat_Dot3StatsSingleCollisionFrames =
   5564 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5565 
   5566 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5567 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5568 
   5569 	sc->stat_Dot3StatsDeferredTransmissions =
   5570 	    stats->stat_Dot3StatsDeferredTransmissions;
   5571 
   5572 	sc->stat_Dot3StatsExcessiveCollisions =
   5573 	    stats->stat_Dot3StatsExcessiveCollisions;
   5574 
   5575 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5576 
   5577 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5578 
   5579 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5580 
   5581 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5582 
   5583 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5584 
   5585 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5586 
   5587 	sc->stat_EtherStatsPktsRx64Octets =
   5588 	    stats->stat_EtherStatsPktsRx64Octets;
   5589 
   5590 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5591 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5592 
   5593 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5594 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5595 
   5596 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5597 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5598 
   5599 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5600 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5601 
   5602 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5603 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5604 
   5605 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5606 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5607 
   5608 	sc->stat_EtherStatsPktsTx64Octets =
   5609 	    stats->stat_EtherStatsPktsTx64Octets;
   5610 
   5611 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5612 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5613 
   5614 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5615 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5616 
   5617 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5618 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5619 
   5620 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5621 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5622 
   5623 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5624 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5625 
   5626 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5627 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5628 
   5629 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5630 
   5631 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5632 
   5633 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5634 
   5635 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5636 
   5637 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5638 
   5639 	sc->stat_MacControlFramesReceived =
   5640 	    stats->stat_MacControlFramesReceived;
   5641 
   5642 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5643 
   5644 	sc->stat_IfInFramesL2FilterDiscards =
   5645 	    stats->stat_IfInFramesL2FilterDiscards;
   5646 
   5647 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5648 
   5649 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5650 
   5651 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5652 
   5653 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5654 
   5655 	sc->stat_CatchupInRuleCheckerDiscards =
   5656 	    stats->stat_CatchupInRuleCheckerDiscards;
   5657 
   5658 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5659 
   5660 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5661 
   5662 	sc->stat_CatchupInRuleCheckerP4Hit =
   5663 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5664 
   5665 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5666 }
   5667 
   5668 void
   5669 bnx_tick(void *xsc)
   5670 {
   5671 	struct bnx_softc	*sc = xsc;
   5672 	struct mii_data		*mii;
   5673 	uint32_t		msg;
   5674 	uint16_t		prod, chain_prod;
   5675 	uint32_t		prod_bseq;
   5676 	int s = splnet();
   5677 
   5678 	/* Tell the firmware that the driver is still running. */
   5679 #ifdef BNX_DEBUG
   5680 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5681 #else
   5682 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5683 #endif
   5684 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5685 
   5686 	/* Update the statistics from the hardware statistics block. */
   5687 	bnx_stats_update(sc);
   5688 
   5689 	mii = &sc->bnx_mii;
   5690 	mii_tick(mii);
   5691 
   5692 	/* try to get more RX buffers, just in case */
   5693 	prod = sc->rx_prod;
   5694 	prod_bseq = sc->rx_prod_bseq;
   5695 	chain_prod = RX_CHAIN_IDX(prod);
   5696 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5697 	sc->rx_prod = prod;
   5698 	sc->rx_prod_bseq = prod_bseq;
   5699 
   5700 	/* Schedule the next tick. */
   5701 	if (!sc->bnx_detaching)
   5702 		callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5703 
   5704 	splx(s);
   5705 	return;
   5706 }
   5707 
   5708 /****************************************************************************/
   5709 /* BNX Debug Routines                                                       */
   5710 /****************************************************************************/
   5711 #ifdef BNX_DEBUG
   5712 
   5713 /****************************************************************************/
   5714 /* Prints out information about an mbuf.                                    */
   5715 /*                                                                          */
   5716 /* Returns:                                                                 */
   5717 /*   Nothing.                                                               */
   5718 /****************************************************************************/
   5719 void
   5720 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5721 {
   5722 	struct mbuf		*mp = m;
   5723 
   5724 	if (m == NULL) {
   5725 		/* Index out of range. */
   5726 		aprint_error("mbuf ptr is null!\n");
   5727 		return;
   5728 	}
   5729 
   5730 	while (mp) {
   5731 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5732 		    mp, mp->m_len);
   5733 
   5734 		if (mp->m_flags & M_EXT)
   5735 			aprint_debug("M_EXT ");
   5736 		if (mp->m_flags & M_PKTHDR)
   5737 			aprint_debug("M_PKTHDR ");
   5738 		aprint_debug("\n");
   5739 
   5740 		if (mp->m_flags & M_EXT)
   5741 			aprint_debug("- m_ext: vaddr = %p, ext_size = 0x%04zX\n",
   5742 			    mp, mp->m_ext.ext_size);
   5743 
   5744 		mp = mp->m_next;
   5745 	}
   5746 }
   5747 
   5748 /****************************************************************************/
   5749 /* Prints out the mbufs in the TX mbuf chain.                               */
   5750 /*                                                                          */
   5751 /* Returns:                                                                 */
   5752 /*   Nothing.                                                               */
   5753 /****************************************************************************/
   5754 void
   5755 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5756 {
   5757 #if 0
   5758 	struct mbuf		*m;
   5759 	int			i;
   5760 
   5761 	aprint_debug_dev(sc->bnx_dev,
   5762 	    "----------------------------"
   5763 	    "  tx mbuf data  "
   5764 	    "----------------------------\n");
   5765 
   5766 	for (i = 0; i < count; i++) {
   5767 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5768 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5769 		bnx_dump_mbuf(sc, m);
   5770 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5771 	}
   5772 
   5773 	aprint_debug_dev(sc->bnx_dev,
   5774 	    "--------------------------------------------"
   5775 	    "----------------------------\n");
   5776 #endif
   5777 }
   5778 
   5779 /*
   5780  * This routine prints the RX mbuf chain.
   5781  */
   5782 void
   5783 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5784 {
   5785 	struct mbuf		*m;
   5786 	int			i;
   5787 
   5788 	aprint_debug_dev(sc->bnx_dev,
   5789 	    "----------------------------"
   5790 	    "  rx mbuf data  "
   5791 	    "----------------------------\n");
   5792 
   5793 	for (i = 0; i < count; i++) {
   5794 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5795 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5796 		bnx_dump_mbuf(sc, m);
   5797 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5798 	}
   5799 
   5800 
   5801 	aprint_debug_dev(sc->bnx_dev,
   5802 	    "--------------------------------------------"
   5803 	    "----------------------------\n");
   5804 }
   5805 
   5806 void
   5807 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5808 {
   5809 	if (idx > MAX_TX_BD)
   5810 		/* Index out of range. */
   5811 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5812 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5813 		/* TX Chain page pointer. */
   5814 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5815 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5816 		    txbd->tx_bd_haddr_lo);
   5817 	else
   5818 		/* Normal tx_bd entry. */
   5819 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5820 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5821 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5822 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5823 		    txbd->tx_bd_flags);
   5824 }
   5825 
   5826 void
   5827 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5828 {
   5829 	if (idx > MAX_RX_BD)
   5830 		/* Index out of range. */
   5831 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5832 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5833 		/* TX Chain page pointer. */
   5834 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5835 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5836 		    rxbd->rx_bd_haddr_lo);
   5837 	else
   5838 		/* Normal tx_bd entry. */
   5839 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5840 		    "0x%08X, flags = 0x%08X\n", idx,
   5841 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5842 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5843 }
   5844 
   5845 void
   5846 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5847 {
   5848 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5849 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5850 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5851 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5852 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5853 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5854 }
   5855 
   5856 /*
   5857  * This routine prints the TX chain.
   5858  */
   5859 void
   5860 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5861 {
   5862 	struct tx_bd		*txbd;
   5863 	int			i;
   5864 
   5865 	/* First some info about the tx_bd chain structure. */
   5866 	aprint_debug_dev(sc->bnx_dev,
   5867 	    "----------------------------"
   5868 	    "  tx_bd  chain  "
   5869 	    "----------------------------\n");
   5870 
   5871 	BNX_PRINTF(sc,
   5872 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5873 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
   5874 
   5875 	BNX_PRINTF(sc,
   5876 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5877 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
   5878 
   5879 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
   5880 
   5881 	aprint_error_dev(sc->bnx_dev, ""
   5882 	    "-----------------------------"
   5883 	    "   tx_bd data   "
   5884 	    "-----------------------------\n");
   5885 
   5886 	/* Now print out the tx_bd's themselves. */
   5887 	for (i = 0; i < count; i++) {
   5888 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5889 		bnx_dump_txbd(sc, tx_prod, txbd);
   5890 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5891 	}
   5892 
   5893 	aprint_debug_dev(sc->bnx_dev,
   5894 	    "-----------------------------"
   5895 	    "--------------"
   5896 	    "-----------------------------\n");
   5897 }
   5898 
   5899 /*
   5900  * This routine prints the RX chain.
   5901  */
   5902 void
   5903 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5904 {
   5905 	struct rx_bd		*rxbd;
   5906 	int			i;
   5907 
   5908 	/* First some info about the tx_bd chain structure. */
   5909 	aprint_debug_dev(sc->bnx_dev,
   5910 	    "----------------------------"
   5911 	    "  rx_bd  chain  "
   5912 	    "----------------------------\n");
   5913 
   5914 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   5915 
   5916 	BNX_PRINTF(sc,
   5917 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5918 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
   5919 
   5920 	BNX_PRINTF(sc,
   5921 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5922 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
   5923 
   5924 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
   5925 
   5926 	aprint_error_dev(sc->bnx_dev,
   5927 	    "----------------------------"
   5928 	    "   rx_bd data   "
   5929 	    "----------------------------\n");
   5930 
   5931 	/* Now print out the rx_bd's themselves. */
   5932 	for (i = 0; i < count; i++) {
   5933 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5934 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5935 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5936 	}
   5937 
   5938 	aprint_debug_dev(sc->bnx_dev,
   5939 	    "----------------------------"
   5940 	    "--------------"
   5941 	    "----------------------------\n");
   5942 }
   5943 
   5944 /*
   5945  * This routine prints the status block.
   5946  */
   5947 void
   5948 bnx_dump_status_block(struct bnx_softc *sc)
   5949 {
   5950 	struct status_block	*sblk;
   5951 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5952 	    BUS_DMASYNC_POSTREAD);
   5953 
   5954 	sblk = sc->status_block;
   5955 
   5956    	aprint_debug_dev(sc->bnx_dev, "----------------------------- Status Block "
   5957 	    "-----------------------------\n");
   5958 
   5959 	BNX_PRINTF(sc,
   5960 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5961 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5962 	    sblk->status_idx);
   5963 
   5964 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5965 	    sblk->status_rx_quick_consumer_index0,
   5966 	    sblk->status_tx_quick_consumer_index0);
   5967 
   5968 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5969 
   5970 	/* Theses indices are not used for normal L2 drivers. */
   5971 	if (sblk->status_rx_quick_consumer_index1 ||
   5972 		sblk->status_tx_quick_consumer_index1)
   5973 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5974 		    sblk->status_rx_quick_consumer_index1,
   5975 		    sblk->status_tx_quick_consumer_index1);
   5976 
   5977 	if (sblk->status_rx_quick_consumer_index2 ||
   5978 		sblk->status_tx_quick_consumer_index2)
   5979 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5980 		    sblk->status_rx_quick_consumer_index2,
   5981 		    sblk->status_tx_quick_consumer_index2);
   5982 
   5983 	if (sblk->status_rx_quick_consumer_index3 ||
   5984 		sblk->status_tx_quick_consumer_index3)
   5985 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5986 		    sblk->status_rx_quick_consumer_index3,
   5987 		    sblk->status_tx_quick_consumer_index3);
   5988 
   5989 	if (sblk->status_rx_quick_consumer_index4 ||
   5990 		sblk->status_rx_quick_consumer_index5)
   5991 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5992 		    sblk->status_rx_quick_consumer_index4,
   5993 		    sblk->status_rx_quick_consumer_index5);
   5994 
   5995 	if (sblk->status_rx_quick_consumer_index6 ||
   5996 		sblk->status_rx_quick_consumer_index7)
   5997 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5998 		    sblk->status_rx_quick_consumer_index6,
   5999 		    sblk->status_rx_quick_consumer_index7);
   6000 
   6001 	if (sblk->status_rx_quick_consumer_index8 ||
   6002 		sblk->status_rx_quick_consumer_index9)
   6003 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   6004 		    sblk->status_rx_quick_consumer_index8,
   6005 		    sblk->status_rx_quick_consumer_index9);
   6006 
   6007 	if (sblk->status_rx_quick_consumer_index10 ||
   6008 		sblk->status_rx_quick_consumer_index11)
   6009 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   6010 		    sblk->status_rx_quick_consumer_index10,
   6011 		    sblk->status_rx_quick_consumer_index11);
   6012 
   6013 	if (sblk->status_rx_quick_consumer_index12 ||
   6014 		sblk->status_rx_quick_consumer_index13)
   6015 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   6016 		    sblk->status_rx_quick_consumer_index12,
   6017 		    sblk->status_rx_quick_consumer_index13);
   6018 
   6019 	if (sblk->status_rx_quick_consumer_index14 ||
   6020 		sblk->status_rx_quick_consumer_index15)
   6021 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   6022 		    sblk->status_rx_quick_consumer_index14,
   6023 		    sblk->status_rx_quick_consumer_index15);
   6024 
   6025 	if (sblk->status_completion_producer_index ||
   6026 		sblk->status_cmd_consumer_index)
   6027 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   6028 		    sblk->status_completion_producer_index,
   6029 		    sblk->status_cmd_consumer_index);
   6030 
   6031 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6032 	    "-----------------------------\n");
   6033 }
   6034 
   6035 /*
   6036  * This routine prints the statistics block.
   6037  */
   6038 void
   6039 bnx_dump_stats_block(struct bnx_softc *sc)
   6040 {
   6041 	struct statistics_block	*sblk;
   6042 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6043 	    BUS_DMASYNC_POSTREAD);
   6044 
   6045 	sblk = sc->stats_block;
   6046 
   6047 	aprint_debug_dev(sc->bnx_dev, ""
   6048 	    "-----------------------------"
   6049 	    " Stats  Block "
   6050 	    "-----------------------------\n");
   6051 
   6052 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   6053 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   6054 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   6055 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   6056 
   6057 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   6058 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   6059 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   6060 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   6061 
   6062 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   6063 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   6064 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   6065 	    sblk->stat_IfHCInMulticastPkts_hi,
   6066 	    sblk->stat_IfHCInMulticastPkts_lo);
   6067 
   6068 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   6069 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   6070 	    sblk->stat_IfHCInBroadcastPkts_hi,
   6071 	    sblk->stat_IfHCInBroadcastPkts_lo,
   6072 	    sblk->stat_IfHCOutUcastPkts_hi,
   6073 	    sblk->stat_IfHCOutUcastPkts_lo);
   6074 
   6075 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   6076 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   6077 	    sblk->stat_IfHCOutMulticastPkts_hi,
   6078 	    sblk->stat_IfHCOutMulticastPkts_lo,
   6079 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   6080 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   6081 
   6082 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   6083 		BNX_PRINTF(sc, "0x%08X : "
   6084 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6085 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6086 
   6087 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6088 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6089 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6090 
   6091 	if (sblk->stat_Dot3StatsFCSErrors)
   6092 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6093 		    sblk->stat_Dot3StatsFCSErrors);
   6094 
   6095 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6096 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6097 		    sblk->stat_Dot3StatsAlignmentErrors);
   6098 
   6099 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6100 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6101 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6102 
   6103 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6104 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6105 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6106 
   6107 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6108 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6109 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6110 
   6111 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6112 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6113 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6114 
   6115 	if (sblk->stat_Dot3StatsLateCollisions)
   6116 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6117 		    sblk->stat_Dot3StatsLateCollisions);
   6118 
   6119 	if (sblk->stat_EtherStatsCollisions)
   6120 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6121 		    sblk->stat_EtherStatsCollisions);
   6122 
   6123 	if (sblk->stat_EtherStatsFragments)
   6124 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6125 		    sblk->stat_EtherStatsFragments);
   6126 
   6127 	if (sblk->stat_EtherStatsJabbers)
   6128 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6129 		    sblk->stat_EtherStatsJabbers);
   6130 
   6131 	if (sblk->stat_EtherStatsUndersizePkts)
   6132 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6133 		    sblk->stat_EtherStatsUndersizePkts);
   6134 
   6135 	if (sblk->stat_EtherStatsOverrsizePkts)
   6136 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6137 		    sblk->stat_EtherStatsOverrsizePkts);
   6138 
   6139 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6140 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6141 		    sblk->stat_EtherStatsPktsRx64Octets);
   6142 
   6143 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6144 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6145 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6146 
   6147 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6148 		BNX_PRINTF(sc, "0x%08X : "
   6149 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6150 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6151 
   6152 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6153 		BNX_PRINTF(sc, "0x%08X : "
   6154 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6155 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6156 
   6157 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6158 		BNX_PRINTF(sc, "0x%08X : "
   6159 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6160 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6161 
   6162 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6163 		BNX_PRINTF(sc, "0x%08X : "
   6164 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6165 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6166 
   6167 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6168 		BNX_PRINTF(sc, "0x%08X : "
   6169 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6170 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6171 
   6172 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6173 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6174 		    sblk->stat_EtherStatsPktsTx64Octets);
   6175 
   6176 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6177 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6178 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6179 
   6180 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6181 		BNX_PRINTF(sc, "0x%08X : "
   6182 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6183 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6184 
   6185 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6186 		BNX_PRINTF(sc, "0x%08X : "
   6187 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6188 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6189 
   6190 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6191 		BNX_PRINTF(sc, "0x%08X : "
   6192 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6193 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6194 
   6195 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6196 		BNX_PRINTF(sc, "0x%08X : "
   6197 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6198 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6199 
   6200 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6201 		BNX_PRINTF(sc, "0x%08X : "
   6202 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6203 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6204 
   6205 	if (sblk->stat_XonPauseFramesReceived)
   6206 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6207 		    sblk->stat_XonPauseFramesReceived);
   6208 
   6209 	if (sblk->stat_XoffPauseFramesReceived)
   6210 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6211 		    sblk->stat_XoffPauseFramesReceived);
   6212 
   6213 	if (sblk->stat_OutXonSent)
   6214 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6215 		    sblk->stat_OutXonSent);
   6216 
   6217 	if (sblk->stat_OutXoffSent)
   6218 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6219 		    sblk->stat_OutXoffSent);
   6220 
   6221 	if (sblk->stat_FlowControlDone)
   6222 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6223 		    sblk->stat_FlowControlDone);
   6224 
   6225 	if (sblk->stat_MacControlFramesReceived)
   6226 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6227 		    sblk->stat_MacControlFramesReceived);
   6228 
   6229 	if (sblk->stat_XoffStateEntered)
   6230 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6231 		    sblk->stat_XoffStateEntered);
   6232 
   6233 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6234 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6235 		    sblk->stat_IfInFramesL2FilterDiscards);
   6236 
   6237 	if (sblk->stat_IfInRuleCheckerDiscards)
   6238 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6239 		    sblk->stat_IfInRuleCheckerDiscards);
   6240 
   6241 	if (sblk->stat_IfInFTQDiscards)
   6242 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6243 		    sblk->stat_IfInFTQDiscards);
   6244 
   6245 	if (sblk->stat_IfInMBUFDiscards)
   6246 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6247 		    sblk->stat_IfInMBUFDiscards);
   6248 
   6249 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6250 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6251 		    sblk->stat_IfInRuleCheckerP4Hit);
   6252 
   6253 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6254 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6255 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6256 
   6257 	if (sblk->stat_CatchupInFTQDiscards)
   6258 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6259 		    sblk->stat_CatchupInFTQDiscards);
   6260 
   6261 	if (sblk->stat_CatchupInMBUFDiscards)
   6262 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6263 		    sblk->stat_CatchupInMBUFDiscards);
   6264 
   6265 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6266 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6267 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6268 
   6269 	aprint_debug_dev(sc->bnx_dev,
   6270 	    "-----------------------------"
   6271 	    "--------------"
   6272 	    "-----------------------------\n");
   6273 }
   6274 
   6275 void
   6276 bnx_dump_driver_state(struct bnx_softc *sc)
   6277 {
   6278 	aprint_debug_dev(sc->bnx_dev,
   6279 	    "-----------------------------"
   6280 	    " Driver State "
   6281 	    "-----------------------------\n");
   6282 
   6283 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6284 	    "address\n", sc);
   6285 
   6286 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6287 	    sc->status_block);
   6288 
   6289 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6290 	    "address\n", sc->stats_block);
   6291 
   6292 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6293 	    "adddress\n", sc->tx_bd_chain);
   6294 
   6295 #if 0
   6296 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6297 	    sc->rx_bd_chain);
   6298 
   6299 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6300 	    sc->tx_mbuf_ptr);
   6301 #endif
   6302 
   6303 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6304 	    sc->rx_mbuf_ptr);
   6305 
   6306 	BNX_PRINTF(sc,
   6307 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6308 	    sc->interrupts_generated);
   6309 
   6310 	BNX_PRINTF(sc,
   6311 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6312 	    sc->rx_interrupts);
   6313 
   6314 	BNX_PRINTF(sc,
   6315 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6316 	    sc->tx_interrupts);
   6317 
   6318 	BNX_PRINTF(sc,
   6319 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6320 	    sc->last_status_idx);
   6321 
   6322 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6323 	    sc->tx_prod);
   6324 
   6325 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6326 	    sc->tx_cons);
   6327 
   6328 	BNX_PRINTF(sc,
   6329 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6330 	    sc->tx_prod_bseq);
   6331 	BNX_PRINTF(sc,
   6332 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6333 	    sc->tx_mbuf_alloc);
   6334 
   6335 	BNX_PRINTF(sc,
   6336 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6337 	    sc->used_tx_bd);
   6338 
   6339 	BNX_PRINTF(sc,
   6340 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6341 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6342 
   6343 
   6344 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6345 	    sc->rx_prod);
   6346 
   6347 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6348 	    sc->rx_cons);
   6349 
   6350 	BNX_PRINTF(sc,
   6351 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6352 	    sc->rx_prod_bseq);
   6353 
   6354 	BNX_PRINTF(sc,
   6355 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6356 	    sc->rx_mbuf_alloc);
   6357 
   6358 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6359 	    sc->free_rx_bd);
   6360 
   6361 	BNX_PRINTF(sc,
   6362 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6363 	    sc->rx_low_watermark, sc->max_rx_bd);
   6364 
   6365 	BNX_PRINTF(sc,
   6366 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6367 	    "mbuf alloc failures\n",
   6368 	    sc->mbuf_alloc_failed);
   6369 
   6370 	BNX_PRINTF(sc,
   6371 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6372 	    "simulated mbuf alloc failures\n",
   6373 	    sc->mbuf_sim_alloc_failed);
   6374 
   6375 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6376 	    "-----------------------------\n");
   6377 }
   6378 
   6379 void
   6380 bnx_dump_hw_state(struct bnx_softc *sc)
   6381 {
   6382 	uint32_t		val1;
   6383 	int			i;
   6384 
   6385 	aprint_debug_dev(sc->bnx_dev,
   6386 	    "----------------------------"
   6387 	    " Hardware State "
   6388 	    "----------------------------\n");
   6389 
   6390 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   6391 
   6392 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6393 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6394 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6395 
   6396 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6397 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6398 
   6399 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6400 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6401 
   6402 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6403 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6404 	    BNX_EMAC_STATUS);
   6405 
   6406 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6407 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6408 
   6409 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6410 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6411 	    BNX_TBDR_STATUS);
   6412 
   6413 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6414 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6415 	    BNX_TDMA_STATUS);
   6416 
   6417 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6418 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6419 
   6420 	aprint_debug_dev(sc->bnx_dev,
   6421 	    "----------------------------"
   6422 	    "----------------"
   6423 	    "----------------------------\n");
   6424 
   6425 	aprint_debug_dev(sc->bnx_dev,
   6426 	    "----------------------------"
   6427 	    " Register  Dump "
   6428 	    "----------------------------\n");
   6429 
   6430 	for (i = 0x400; i < 0x8000; i += 0x10)
   6431 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6432 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6433 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6434 
   6435 	aprint_debug_dev(sc->bnx_dev,
   6436 	    "----------------------------"
   6437 	    "----------------"
   6438 	    "----------------------------\n");
   6439 }
   6440 
   6441 void
   6442 bnx_breakpoint(struct bnx_softc *sc)
   6443 {
   6444 	/* Unreachable code to shut the compiler up about unused functions. */
   6445 	if (0) {
   6446    		bnx_dump_txbd(sc, 0, NULL);
   6447 		bnx_dump_rxbd(sc, 0, NULL);
   6448 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6449 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6450 		bnx_dump_l2fhdr(sc, 0, NULL);
   6451 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6452 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6453 		bnx_dump_status_block(sc);
   6454 		bnx_dump_stats_block(sc);
   6455 		bnx_dump_driver_state(sc);
   6456 		bnx_dump_hw_state(sc);
   6457 	}
   6458 
   6459 	bnx_dump_driver_state(sc);
   6460 	/* Print the important status block fields. */
   6461 	bnx_dump_status_block(sc);
   6462 
   6463 #if 0
   6464 	/* Call the debugger. */
   6465 	breakpoint();
   6466 #endif
   6467 
   6468 	return;
   6469 }
   6470 #endif
   6471