Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.68
      1 /*	$NetBSD: if_bnx.c,v 1.68 2019/01/22 03:42:27 msaitoh Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.85 2009/11/09 14:32:41 dlg Exp $ */
      3 
      4 /*-
      5  * Copyright (c) 2006-2010 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.68 2019/01/22 03:42:27 msaitoh Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, B0, B1, B2 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/pci/if_bnxvar.h>
     64 
     65 #include <dev/microcode/bnx/bnxfw.h>
     66 
     67 /****************************************************************************/
     68 /* BNX Driver Version                                                       */
     69 /****************************************************************************/
     70 #define BNX_DRIVER_VERSION	"v0.9.6"
     71 
     72 /****************************************************************************/
     73 /* BNX Debug Options                                                        */
     74 /****************************************************************************/
     75 #ifdef BNX_DEBUG
     76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     77 
     78 	/*          0 = Never              */
     79 	/*          1 = 1 in 2,147,483,648 */
     80 	/*        256 = 1 in     8,388,608 */
     81 	/*       2048 = 1 in     1,048,576 */
     82 	/*      65536 = 1 in        32,768 */
     83 	/*    1048576 = 1 in         2,048 */
     84 	/*  268435456 =	1 in             8 */
     85 	/*  536870912 = 1 in             4 */
     86 	/* 1073741824 = 1 in             2 */
     87 
     88 	/* Controls how often the l2_fhdr frame error check will fail. */
     89 	int bnx_debug_l2fhdr_status_check = 0;
     90 
     91 	/* Controls how often the unexpected attention check will fail. */
     92 	int bnx_debug_unexpected_attention = 0;
     93 
     94 	/* Controls how often to simulate an mbuf allocation failure. */
     95 	int bnx_debug_mbuf_allocation_failure = 0;
     96 
     97 	/* Controls how often to simulate a DMA mapping failure. */
     98 	int bnx_debug_dma_map_addr_failure = 0;
     99 
    100 	/* Controls how often to simulate a bootcode failure. */
    101 	int bnx_debug_bootcode_running_failure = 0;
    102 #endif
    103 
    104 /****************************************************************************/
    105 /* PCI Device ID Table                                                      */
    106 /*                                                                          */
    107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    108 /****************************************************************************/
    109 static const struct bnx_product {
    110 	pci_vendor_id_t		bp_vendor;
    111 	pci_product_id_t	bp_product;
    112 	pci_vendor_id_t		bp_subvendor;
    113 	pci_product_id_t	bp_subproduct;
    114 	const char		*bp_name;
    115 } bnx_devices[] = {
    116 #ifdef PCI_SUBPRODUCT_HP_NC370T
    117 	{
    118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    120 	  "HP NC370T Multifunction Gigabit Server Adapter"
    121 	},
    122 #endif
    123 #ifdef PCI_SUBPRODUCT_HP_NC370i
    124 	{
    125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    127 	  "HP NC370i Multifunction Gigabit Server Adapter"
    128 	},
    129 #endif
    130 	{
    131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    132 	  0, 0,
    133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    134 	},
    135 #ifdef PCI_SUBPRODUCT_HP_NC370F
    136 	{
    137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    139 	  "HP NC370F Multifunction Gigabit Server Adapter"
    140 	},
    141 #endif
    142 	{
    143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    144 	  0, 0,
    145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    146 	},
    147 	{
    148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    149 	  0, 0,
    150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    151 	},
    152 	{
    153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    154 	  0, 0,
    155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    156 	},
    157 	{
    158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    159 	  0, 0,
    160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    161 	},
    162 	{
    163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    164 	  0, 0,
    165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    166 	},
    167 	{
    168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    169 	  0, 0,
    170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    171 	},
    172 	{
    173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    174 	  0, 0,
    175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    176 	},
    177 };
    178 
    179 /****************************************************************************/
    180 /* Supported Flash NVRAM device data.                                       */
    181 /****************************************************************************/
    182 static struct flash_spec flash_table[] =
    183 {
    184 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    185 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    186 	/* Slow EEPROM */
    187 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    188 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    189 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    190 	 "EEPROM - slow"},
    191 	/* Expansion entry 0001 */
    192 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    195 	 "Entry 0001"},
    196 	/* Saifun SA25F010 (non-buffered flash) */
    197 	/* strap, cfg1, & write1 need updates */
    198 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    199 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    200 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    201 	 "Non-buffered flash (128kB)"},
    202 	/* Saifun SA25F020 (non-buffered flash) */
    203 	/* strap, cfg1, & write1 need updates */
    204 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    205 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    206 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    207 	 "Non-buffered flash (256kB)"},
    208 	/* Expansion entry 0100 */
    209 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    210 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    211 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    212 	 "Entry 0100"},
    213 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    214 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    215 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    216 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    217 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    218 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    219 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    220 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    221 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    222 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    223 	/* Saifun SA25F005 (non-buffered flash) */
    224 	/* strap, cfg1, & write1 need updates */
    225 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    228 	 "Non-buffered flash (64kB)"},
    229 	/* Fast EEPROM */
    230 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    231 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    232 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    233 	 "EEPROM - fast"},
    234 	/* Expansion entry 1001 */
    235 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    236 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    237 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    238 	 "Entry 1001"},
    239 	/* Expansion entry 1010 */
    240 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    241 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    242 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    243 	 "Entry 1010"},
    244 	/* ATMEL AT45DB011B (buffered flash) */
    245 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    246 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    247 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    248 	 "Buffered flash (128kB)"},
    249 	/* Expansion entry 1100 */
    250 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    251 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    252 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    253 	 "Entry 1100"},
    254 	/* Expansion entry 1101 */
    255 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    256 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    257 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    258 	 "Entry 1101"},
    259 	/* Ateml Expansion entry 1110 */
    260 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    261 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    262 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    263 	 "Entry 1110 (Atmel)"},
    264 	/* ATMEL AT45DB021B (buffered flash) */
    265 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    266 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    267 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    268 	 "Buffered flash (256kB)"},
    269 };
    270 
    271 /*
    272  * The BCM5709 controllers transparently handle the
    273  * differences between Atmel 264 byte pages and all
    274  * flash devices which use 256 byte pages, so no
    275  * logical-to-physical mapping is required in the
    276  * driver.
    277  */
    278 static struct flash_spec flash_5709 = {
    279 	.flags		= BNX_NV_BUFFERED,
    280 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    281 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    282 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    283 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    284 	.name		= "5709 buffered flash (256kB)",
    285 };
    286 
    287 /****************************************************************************/
    288 /* OpenBSD device entry points.                                             */
    289 /****************************************************************************/
    290 static int	bnx_probe(device_t, cfdata_t, void *);
    291 void	bnx_attach(device_t, device_t, void *);
    292 int	bnx_detach(device_t, int);
    293 
    294 /****************************************************************************/
    295 /* BNX Debug Data Structure Dump Routines                                   */
    296 /****************************************************************************/
    297 #ifdef BNX_DEBUG
    298 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    299 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    300 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    301 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    302 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    303 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    304 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    305 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    306 void	bnx_dump_status_block(struct bnx_softc *);
    307 void	bnx_dump_stats_block(struct bnx_softc *);
    308 void	bnx_dump_driver_state(struct bnx_softc *);
    309 void	bnx_dump_hw_state(struct bnx_softc *);
    310 void	bnx_breakpoint(struct bnx_softc *);
    311 #endif
    312 
    313 /****************************************************************************/
    314 /* BNX Register/Memory Access Routines                                      */
    315 /****************************************************************************/
    316 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
    317 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
    318 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
    319 int	bnx_miibus_read_reg(device_t, int, int, uint16_t *);
    320 int	bnx_miibus_write_reg(device_t, int, int, uint16_t);
    321 void	bnx_miibus_statchg(struct ifnet *);
    322 
    323 /****************************************************************************/
    324 /* BNX NVRAM Access Routines                                                */
    325 /****************************************************************************/
    326 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    327 int	bnx_release_nvram_lock(struct bnx_softc *);
    328 void	bnx_enable_nvram_access(struct bnx_softc *);
    329 void	bnx_disable_nvram_access(struct bnx_softc *);
    330 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
    331 	    uint32_t);
    332 int	bnx_init_nvram(struct bnx_softc *);
    333 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
    334 int	bnx_nvram_test(struct bnx_softc *);
    335 #ifdef BNX_NVRAM_WRITE_SUPPORT
    336 int	bnx_enable_nvram_write(struct bnx_softc *);
    337 void	bnx_disable_nvram_write(struct bnx_softc *);
    338 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
    339 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
    340 	    uint32_t);
    341 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
    342 #endif
    343 
    344 /****************************************************************************/
    345 /*                                                                          */
    346 /****************************************************************************/
    347 void	bnx_get_media(struct bnx_softc *);
    348 void	bnx_init_media(struct bnx_softc *);
    349 int	bnx_dma_alloc(struct bnx_softc *);
    350 void	bnx_dma_free(struct bnx_softc *);
    351 void	bnx_release_resources(struct bnx_softc *);
    352 
    353 /****************************************************************************/
    354 /* BNX Firmware Synchronization and Load                                    */
    355 /****************************************************************************/
    356 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
    357 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
    358 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    359 	    struct fw_info *);
    360 void	bnx_init_cpus(struct bnx_softc *);
    361 
    362 static void bnx_print_adapter_info(struct bnx_softc *);
    363 static void bnx_probe_pci_caps(struct bnx_softc *);
    364 void	bnx_stop(struct ifnet *, int);
    365 int	bnx_reset(struct bnx_softc *, uint32_t);
    366 int	bnx_chipinit(struct bnx_softc *);
    367 int	bnx_blockinit(struct bnx_softc *);
    368 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
    369 	    uint16_t *, uint32_t *);
    370 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
    371 
    372 int	bnx_init_tx_chain(struct bnx_softc *);
    373 void	bnx_init_tx_context(struct bnx_softc *);
    374 int	bnx_init_rx_chain(struct bnx_softc *);
    375 void	bnx_init_rx_context(struct bnx_softc *);
    376 void	bnx_free_rx_chain(struct bnx_softc *);
    377 void	bnx_free_tx_chain(struct bnx_softc *);
    378 
    379 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    380 void	bnx_start(struct ifnet *);
    381 int	bnx_ioctl(struct ifnet *, u_long, void *);
    382 void	bnx_watchdog(struct ifnet *);
    383 int	bnx_init(struct ifnet *);
    384 
    385 void	bnx_init_context(struct bnx_softc *);
    386 void	bnx_get_mac_addr(struct bnx_softc *);
    387 void	bnx_set_mac_addr(struct bnx_softc *);
    388 void	bnx_phy_intr(struct bnx_softc *);
    389 void	bnx_rx_intr(struct bnx_softc *);
    390 void	bnx_tx_intr(struct bnx_softc *);
    391 void	bnx_disable_intr(struct bnx_softc *);
    392 void	bnx_enable_intr(struct bnx_softc *);
    393 
    394 int	bnx_intr(void *);
    395 void	bnx_iff(struct bnx_softc *);
    396 void	bnx_stats_update(struct bnx_softc *);
    397 void	bnx_tick(void *);
    398 
    399 struct pool *bnx_tx_pool = NULL;
    400 void	bnx_alloc_pkts(struct work *, void *);
    401 
    402 /****************************************************************************/
    403 /* OpenBSD device dispatch table.                                           */
    404 /****************************************************************************/
    405 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    406     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    407 
    408 /****************************************************************************/
    409 /* Device probe function.                                                   */
    410 /*                                                                          */
    411 /* Compares the device to the driver's list of supported devices and        */
    412 /* reports back to the OS whether this is the right driver for the device.  */
    413 /*                                                                          */
    414 /* Returns:                                                                 */
    415 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    416 /****************************************************************************/
    417 static const struct bnx_product *
    418 bnx_lookup(const struct pci_attach_args *pa)
    419 {
    420 	int i;
    421 	pcireg_t subid;
    422 
    423 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    424 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    425 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    426 			continue;
    427 		if (!bnx_devices[i].bp_subvendor)
    428 			return &bnx_devices[i];
    429 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    430 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    431 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    432 			return &bnx_devices[i];
    433 	}
    434 
    435 	return NULL;
    436 }
    437 static int
    438 bnx_probe(device_t parent, cfdata_t match, void *aux)
    439 {
    440 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    441 
    442 	if (bnx_lookup(pa) != NULL)
    443 		return 1;
    444 
    445 	return 0;
    446 }
    447 
    448 /****************************************************************************/
    449 /* PCI Capabilities Probe Function.                                         */
    450 /*                                                                          */
    451 /* Walks the PCI capabiites list for the device to find what features are   */
    452 /* supported.                                                               */
    453 /*                                                                          */
    454 /* Returns:                                                                 */
    455 /*   None.                                                                  */
    456 /****************************************************************************/
    457 static void
    458 bnx_print_adapter_info(struct bnx_softc *sc)
    459 {
    460 
    461 	aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
    462 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
    463 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
    464 	    ? "Serdes " : "", sc->bnx_chipid);
    465 
    466 	/* Bus info. */
    467 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
    468 		aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
    469 		    sc->link_width);
    470 		switch (sc->link_speed) {
    471 		case 1: aprint_normal("2.5Gbps\n"); break;
    472 		case 2:	aprint_normal("5Gbps\n"); break;
    473 		default: aprint_normal("Unknown link speed\n");
    474 		}
    475 	} else {
    476 		aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
    477 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
    478 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
    479 		    sc->bus_speed_mhz);
    480 	}
    481 
    482 	aprint_normal_dev(sc->bnx_dev,
    483 	    "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
    484 	    sc->bnx_rx_quick_cons_trip_int,
    485 	    sc->bnx_rx_quick_cons_trip,
    486 	    sc->bnx_rx_ticks_int,
    487 	    sc->bnx_rx_ticks,
    488 	    sc->bnx_tx_quick_cons_trip_int,
    489 	    sc->bnx_tx_quick_cons_trip,
    490 	    sc->bnx_tx_ticks_int,
    491 	    sc->bnx_tx_ticks);
    492 }
    493 
    494 
    495 /****************************************************************************/
    496 /* PCI Capabilities Probe Function.                                         */
    497 /*                                                                          */
    498 /* Walks the PCI capabiites list for the device to find what features are   */
    499 /* supported.                                                               */
    500 /*                                                                          */
    501 /* Returns:                                                                 */
    502 /*   None.                                                                  */
    503 /****************************************************************************/
    504 static void
    505 bnx_probe_pci_caps(struct bnx_softc *sc)
    506 {
    507 	struct pci_attach_args *pa = &(sc->bnx_pa);
    508 	pcireg_t reg;
    509 
    510 	/* Check if PCI-X capability is enabled. */
    511 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
    512 		NULL) != 0) {
    513 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
    514 	}
    515 
    516 	/* Check if PCIe capability is enabled. */
    517 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
    518 		NULL) != 0) {
    519 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
    520 		    reg + PCIE_LCSR);
    521 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
    522 		    "0x%08X\n",	link_status);
    523 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
    524 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
    525 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
    526 		sc->bnx_flags |= BNX_PCIE_FLAG;
    527 	}
    528 
    529 	/* Check if MSI capability is enabled. */
    530 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
    531 		NULL) != 0)
    532 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
    533 
    534 	/* Check if MSI-X capability is enabled. */
    535 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
    536 		NULL) != 0)
    537 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
    538 }
    539 
    540 
    541 /****************************************************************************/
    542 /* Device attach function.                                                  */
    543 /*                                                                          */
    544 /* Allocates device resources, performs secondary chip identification,      */
    545 /* resets and initializes the hardware, and initializes driver instance     */
    546 /* variables.                                                               */
    547 /*                                                                          */
    548 /* Returns:                                                                 */
    549 /*   0 on success, positive value on failure.                               */
    550 /****************************************************************************/
    551 void
    552 bnx_attach(device_t parent, device_t self, void *aux)
    553 {
    554 	const struct bnx_product *bp;
    555 	struct bnx_softc	*sc = device_private(self);
    556 	prop_dictionary_t	dict;
    557 	struct pci_attach_args	*pa = aux;
    558 	pci_chipset_tag_t	pc = pa->pa_pc;
    559 	pci_intr_handle_t	ih;
    560 	const char 		*intrstr = NULL;
    561 	uint32_t		command;
    562 	struct ifnet		*ifp;
    563 	uint32_t		val;
    564 	int			mii_flags = MIIF_FORCEANEG;
    565 	pcireg_t		memtype;
    566 	char intrbuf[PCI_INTRSTR_LEN];
    567 
    568 	if (bnx_tx_pool == NULL) {
    569 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    570 		if (bnx_tx_pool != NULL) {
    571 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    572 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    573 		} else {
    574 			aprint_error(": can't alloc bnx_tx_pool\n");
    575 			return;
    576 		}
    577 	}
    578 
    579 	bp = bnx_lookup(pa);
    580 	if (bp == NULL)
    581 		panic("unknown device");
    582 
    583 	sc->bnx_dev = self;
    584 
    585 	aprint_naive("\n");
    586 	aprint_normal(": %s\n", bp->bp_name);
    587 
    588 	sc->bnx_pa = *pa;
    589 
    590 	/*
    591 	 * Map control/status registers.
    592 	*/
    593 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    594 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    595 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    596 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    597 
    598 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    599 		aprint_error_dev(sc->bnx_dev,
    600 		    "failed to enable memory mapping!\n");
    601 		return;
    602 	}
    603 
    604 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    605 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    606 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    607 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    608 		return;
    609 	}
    610 
    611 	if (pci_intr_map(pa, &ih)) {
    612 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    613 		goto bnx_attach_fail;
    614 	}
    615 
    616 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    617 
    618 	/*
    619 	 * Configure byte swap and enable indirect register access.
    620 	 * Rely on CPU to do target byte swapping on big endian systems.
    621 	 * Access to registers outside of PCI configurtion space are not
    622 	 * valid until this is done.
    623 	 */
    624 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    625 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    626 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    627 
    628 	/* Save ASIC revsion info. */
    629 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    630 
    631 	/*
    632 	 * Find the base address for shared memory access.
    633 	 * Newer versions of bootcode use a signature and offset
    634 	 * while older versions use a fixed address.
    635 	 */
    636 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    637 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    638 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    639 		    (sc->bnx_pa.pa_function << 2));
    640 	else
    641 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    642 
    643 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    644 
    645 	/* Set initial device and PHY flags */
    646 	sc->bnx_flags = 0;
    647 	sc->bnx_phy_flags = 0;
    648 
    649 	bnx_probe_pci_caps(sc);
    650 
    651 	/* Get PCI bus information (speed and type). */
    652 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    653 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    654 		uint32_t clkreg;
    655 
    656 		sc->bnx_flags |= BNX_PCIX_FLAG;
    657 
    658 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    659 
    660 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    661 		switch (clkreg) {
    662 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    663 			sc->bus_speed_mhz = 133;
    664 			break;
    665 
    666 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    667 			sc->bus_speed_mhz = 100;
    668 			break;
    669 
    670 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    671 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    672 			sc->bus_speed_mhz = 66;
    673 			break;
    674 
    675 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    676 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    677 			sc->bus_speed_mhz = 50;
    678 			break;
    679 
    680 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    681 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    682 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    683 			sc->bus_speed_mhz = 33;
    684 			break;
    685 		}
    686 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    687 			sc->bus_speed_mhz = 66;
    688 		else
    689 			sc->bus_speed_mhz = 33;
    690 
    691 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    692 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    693 
    694 	/* Reset the controller. */
    695 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    696 		goto bnx_attach_fail;
    697 
    698 	/* Initialize the controller. */
    699 	if (bnx_chipinit(sc)) {
    700 		aprint_error_dev(sc->bnx_dev,
    701 		    "Controller initialization failed!\n");
    702 		goto bnx_attach_fail;
    703 	}
    704 
    705 	/* Perform NVRAM test. */
    706 	if (bnx_nvram_test(sc)) {
    707 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    708 		goto bnx_attach_fail;
    709 	}
    710 
    711 	/* Fetch the permanent Ethernet MAC address. */
    712 	bnx_get_mac_addr(sc);
    713 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    714 	    ether_sprintf(sc->eaddr));
    715 
    716 	/*
    717 	 * Trip points control how many BDs
    718 	 * should be ready before generating an
    719 	 * interrupt while ticks control how long
    720 	 * a BD can sit in the chain before
    721 	 * generating an interrupt.  Set the default
    722 	 * values for the RX and TX rings.
    723 	 */
    724 
    725 #ifdef BNX_DEBUG
    726 	/* Force more frequent interrupts. */
    727 	sc->bnx_tx_quick_cons_trip_int = 1;
    728 	sc->bnx_tx_quick_cons_trip     = 1;
    729 	sc->bnx_tx_ticks_int           = 0;
    730 	sc->bnx_tx_ticks               = 0;
    731 
    732 	sc->bnx_rx_quick_cons_trip_int = 1;
    733 	sc->bnx_rx_quick_cons_trip     = 1;
    734 	sc->bnx_rx_ticks_int           = 0;
    735 	sc->bnx_rx_ticks               = 0;
    736 #else
    737 	sc->bnx_tx_quick_cons_trip_int = 20;
    738 	sc->bnx_tx_quick_cons_trip     = 20;
    739 	sc->bnx_tx_ticks_int           = 80;
    740 	sc->bnx_tx_ticks               = 80;
    741 
    742 	sc->bnx_rx_quick_cons_trip_int = 6;
    743 	sc->bnx_rx_quick_cons_trip     = 6;
    744 	sc->bnx_rx_ticks_int           = 18;
    745 	sc->bnx_rx_ticks               = 18;
    746 #endif
    747 
    748 	/* Update statistics once every second. */
    749 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    750 
    751 	/* Find the media type for the adapter. */
    752 	bnx_get_media(sc);
    753 
    754 	/*
    755 	 * Store config data needed by the PHY driver for
    756 	 * backplane applications
    757 	 */
    758 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    759 	    BNX_SHARED_HW_CFG_CONFIG);
    760 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    761 	    BNX_PORT_HW_CFG_CONFIG);
    762 
    763 	/* Allocate DMA memory resources. */
    764 	sc->bnx_dmatag = pa->pa_dmat;
    765 	if (bnx_dma_alloc(sc)) {
    766 		aprint_error_dev(sc->bnx_dev,
    767 		    "DMA resource allocation failed!\n");
    768 		goto bnx_attach_fail;
    769 	}
    770 
    771 	/* Initialize the ifnet interface. */
    772 	ifp = &sc->bnx_ec.ec_if;
    773 	ifp->if_softc = sc;
    774 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    775 	ifp->if_ioctl = bnx_ioctl;
    776 	ifp->if_stop = bnx_stop;
    777 	ifp->if_start = bnx_start;
    778 	ifp->if_init = bnx_init;
    779 	ifp->if_timer = 0;
    780 	ifp->if_watchdog = bnx_watchdog;
    781 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    782 	IFQ_SET_READY(&ifp->if_snd);
    783 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    784 
    785 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    786 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    787 
    788 	ifp->if_capabilities |=
    789 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    790 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    791 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    792 
    793 	/* Hookup IRQ last. */
    794 	sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
    795 	    sc, device_xname(self));
    796 	if (sc->bnx_intrhand == NULL) {
    797 		aprint_error_dev(self, "couldn't establish interrupt");
    798 		if (intrstr != NULL)
    799 			aprint_error(" at %s", intrstr);
    800 		aprint_error("\n");
    801 		goto bnx_attach_fail;
    802 	}
    803 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    804 
    805 	/* create workqueue to handle packet allocations */
    806 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    807 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    808 		aprint_error_dev(self, "failed to create workqueue\n");
    809 		goto bnx_attach_fail;
    810 	}
    811 
    812 	sc->bnx_mii.mii_ifp = ifp;
    813 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    814 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    815 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    816 
    817 	/* Handle any special PHY initialization for SerDes PHYs. */
    818 	bnx_init_media(sc);
    819 
    820 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    821 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    822 	    ether_mediastatus);
    823 
    824 	/* set phyflags and chipid before mii_attach() */
    825 	dict = device_properties(self);
    826 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    827 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    828 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
    829 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
    830 
    831 	/* Print some useful adapter info */
    832 	bnx_print_adapter_info(sc);
    833 
    834 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    835 		mii_flags |= MIIF_HAVEFIBER;
    836 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    837 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    838 
    839 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    840 		aprint_error_dev(self, "no PHY found!\n");
    841 		ifmedia_add(&sc->bnx_mii.mii_media,
    842 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    843 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
    844 	} else
    845 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
    846 
    847 	/* Attach to the Ethernet interface list. */
    848 	if_attach(ifp);
    849 	if_deferred_start_init(ifp, NULL);
    850 	ether_ifattach(ifp,sc->eaddr);
    851 
    852 	callout_init(&sc->bnx_timeout, 0);
    853 
    854 	if (pmf_device_register(self, NULL, NULL))
    855 		pmf_class_network_register(self, ifp);
    856 	else
    857 		aprint_error_dev(self, "couldn't establish power handler\n");
    858 
    859 	/* Print some important debugging info. */
    860 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    861 
    862 	goto bnx_attach_exit;
    863 
    864 bnx_attach_fail:
    865 	bnx_release_resources(sc);
    866 
    867 bnx_attach_exit:
    868 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    869 }
    870 
    871 /****************************************************************************/
    872 /* Device detach function.                                                  */
    873 /*                                                                          */
    874 /* Stops the controller, resets the controller, and releases resources.     */
    875 /*                                                                          */
    876 /* Returns:                                                                 */
    877 /*   0 on success, positive value on failure.                               */
    878 /****************************************************************************/
    879 int
    880 bnx_detach(device_t dev, int flags)
    881 {
    882 	int s;
    883 	struct bnx_softc *sc;
    884 	struct ifnet *ifp;
    885 
    886 	sc = device_private(dev);
    887 	ifp = &sc->bnx_ec.ec_if;
    888 
    889 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    890 
    891 	/* Stop and reset the controller. */
    892 	s = splnet();
    893 	bnx_stop(ifp, 1);
    894 	splx(s);
    895 
    896 	pmf_device_deregister(dev);
    897 	callout_destroy(&sc->bnx_timeout);
    898 	ether_ifdetach(ifp);
    899 	workqueue_destroy(sc->bnx_wq);
    900 
    901 	/* Delete all remaining media. */
    902 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    903 
    904 	if_detach(ifp);
    905 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    906 
    907 	/* Release all remaining resources. */
    908 	bnx_release_resources(sc);
    909 
    910 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    911 
    912 	return 0;
    913 }
    914 
    915 /****************************************************************************/
    916 /* Indirect register read.                                                  */
    917 /*                                                                          */
    918 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    919 /* configuration space.  Using this mechanism avoids issues with posted     */
    920 /* reads but is much slower than memory-mapped I/O.                         */
    921 /*                                                                          */
    922 /* Returns:                                                                 */
    923 /*   The value of the register.                                             */
    924 /****************************************************************************/
    925 uint32_t
    926 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
    927 {
    928 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    929 
    930 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    931 	    offset);
    932 #ifdef BNX_DEBUG
    933 	{
    934 		uint32_t val;
    935 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    936 		    BNX_PCICFG_REG_WINDOW);
    937 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    938 		    "val = 0x%08X\n", __func__, offset, val);
    939 		return val;
    940 	}
    941 #else
    942 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    943 #endif
    944 }
    945 
    946 /****************************************************************************/
    947 /* Indirect register write.                                                 */
    948 /*                                                                          */
    949 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    950 /* configuration space.  Using this mechanism avoids issues with posted     */
    951 /* writes but is muchh slower than memory-mapped I/O.                       */
    952 /*                                                                          */
    953 /* Returns:                                                                 */
    954 /*   Nothing.                                                               */
    955 /****************************************************************************/
    956 void
    957 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
    958 {
    959 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    960 
    961 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    962 		__func__, offset, val);
    963 
    964 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    965 	    offset);
    966 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    967 }
    968 
    969 /****************************************************************************/
    970 /* Context memory write.                                                    */
    971 /*                                                                          */
    972 /* The NetXtreme II controller uses context memory to track connection      */
    973 /* information for L2 and higher network protocols.                         */
    974 /*                                                                          */
    975 /* Returns:                                                                 */
    976 /*   Nothing.                                                               */
    977 /****************************************************************************/
    978 void
    979 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
    980     uint32_t ctx_val)
    981 {
    982 	uint32_t idx, offset = ctx_offset + cid_addr;
    983 	uint32_t val, retry_cnt = 5;
    984 
    985 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
    986 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
    987 		REG_WR(sc, BNX_CTX_CTX_CTRL,
    988 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
    989 
    990 		for (idx = 0; idx < retry_cnt; idx++) {
    991 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
    992 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
    993 				break;
    994 			DELAY(5);
    995 		}
    996 
    997 #if 0
    998 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
    999 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
   1000 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
   1001 				__FILE__, __LINE__, cid_addr, ctx_offset);
   1002 #endif
   1003 
   1004 	} else {
   1005 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
   1006 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
   1007 	}
   1008 }
   1009 
   1010 /****************************************************************************/
   1011 /* PHY register read.                                                       */
   1012 /*                                                                          */
   1013 /* Implements register reads on the MII bus.                                */
   1014 /*                                                                          */
   1015 /* Returns:                                                                 */
   1016 /*   The value of the register.                                             */
   1017 /****************************************************************************/
   1018 int
   1019 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
   1020 {
   1021 	struct bnx_softc	*sc = device_private(dev);
   1022 	uint32_t		data;
   1023 	int			i, rv = 0;
   1024 
   1025 	/* Make sure we are accessing the correct PHY address. */
   1026 	if (phy != sc->bnx_phy_addr) {
   1027 		DBPRINT(sc, BNX_VERBOSE,
   1028 		    "Invalid PHY address %d for PHY read!\n", phy);
   1029 		return -1;
   1030 	}
   1031 
   1032 	/*
   1033 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1034 	 * with special mappings to work with IEEE
   1035 	 * Clause 22 register accesses.
   1036 	 */
   1037 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1038 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1039 			reg += 0x10;
   1040 	}
   1041 
   1042 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1043 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1044 		data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1045 
   1046 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1047 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1048 
   1049 		DELAY(40);
   1050 	}
   1051 
   1052 	data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
   1053 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
   1054 	    BNX_EMAC_MDIO_COMM_START_BUSY;
   1055 	REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
   1056 
   1057 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1058 		DELAY(10);
   1059 
   1060 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1061 		if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1062 			DELAY(5);
   1063 
   1064 			data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1065 			data &= BNX_EMAC_MDIO_COMM_DATA;
   1066 
   1067 			break;
   1068 		}
   1069 	}
   1070 
   1071 	if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1072 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
   1073 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
   1074 		rv = ETIMEDOUT;
   1075 	} else {
   1076 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1077 		*val = data & 0xffff;
   1078 
   1079 		DBPRINT(sc, BNX_EXCESSIVE,
   1080 		    "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
   1081 		    phy, (uint16_t) reg & 0xffff, *val);
   1082 	}
   1083 
   1084 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1085 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1086 		data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1087 
   1088 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1089 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1090 
   1091 		DELAY(40);
   1092 	}
   1093 
   1094 	return rv;
   1095 }
   1096 
   1097 /****************************************************************************/
   1098 /* PHY register write.                                                      */
   1099 /*                                                                          */
   1100 /* Implements register writes on the MII bus.                               */
   1101 /*                                                                          */
   1102 /* Returns:                                                                 */
   1103 /*   The value of the register.                                             */
   1104 /****************************************************************************/
   1105 int
   1106 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
   1107 {
   1108 	struct bnx_softc	*sc = device_private(dev);
   1109 	uint32_t		val1;
   1110 	int			i, rv = 0;
   1111 
   1112 	/* Make sure we are accessing the correct PHY address. */
   1113 	if (phy != sc->bnx_phy_addr) {
   1114 		DBPRINT(sc, BNX_WARN,
   1115 		    "Invalid PHY address %d for PHY write!\n", phy);
   1116 		return -1;
   1117 	}
   1118 
   1119 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1120 	    "val = 0x%04hX\n", __func__,
   1121 	    phy, (uint16_t) reg & 0xffff, val);
   1122 
   1123 	/*
   1124 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1125 	 * with special mappings to work with IEEE
   1126 	 * Clause 22 register accesses.
   1127 	 */
   1128 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1129 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1130 			reg += 0x10;
   1131 	}
   1132 
   1133 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1134 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1135 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1136 
   1137 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1138 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1139 
   1140 		DELAY(40);
   1141 	}
   1142 
   1143 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1144 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1145 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1146 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1147 
   1148 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1149 		DELAY(10);
   1150 
   1151 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1152 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1153 			DELAY(5);
   1154 			break;
   1155 		}
   1156 	}
   1157 
   1158 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1159 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1160 		    __LINE__);
   1161 		rv = ETIMEDOUT;
   1162 	}
   1163 
   1164 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1165 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1166 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1167 
   1168 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1169 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1170 
   1171 		DELAY(40);
   1172 	}
   1173 
   1174 	return rv;
   1175 }
   1176 
   1177 /****************************************************************************/
   1178 /* MII bus status change.                                                   */
   1179 /*                                                                          */
   1180 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1181 /* MAC interface registers.                                                 */
   1182 /*                                                                          */
   1183 /* Returns:                                                                 */
   1184 /*   Nothing.                                                               */
   1185 /****************************************************************************/
   1186 void
   1187 bnx_miibus_statchg(struct ifnet *ifp)
   1188 {
   1189 	struct bnx_softc	*sc = ifp->if_softc;
   1190 	struct mii_data		*mii = &sc->bnx_mii;
   1191 	int			val;
   1192 
   1193 	val = REG_RD(sc, BNX_EMAC_MODE);
   1194 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1195 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1196 	    BNX_EMAC_MODE_25G);
   1197 
   1198 	/* Set MII or GMII interface based on the speed
   1199 	 * negotiated by the PHY.
   1200 	 */
   1201 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1202 	case IFM_10_T:
   1203 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1204 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1205 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1206 			break;
   1207 		}
   1208 		/* FALLTHROUGH */
   1209 	case IFM_100_TX:
   1210 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1211 		val |= BNX_EMAC_MODE_PORT_MII;
   1212 		break;
   1213 	case IFM_2500_SX:
   1214 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1215 		val |= BNX_EMAC_MODE_25G;
   1216 		/* FALLTHROUGH */
   1217 	case IFM_1000_T:
   1218 	case IFM_1000_SX:
   1219 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1220 		val |= BNX_EMAC_MODE_PORT_GMII;
   1221 		break;
   1222 	default:
   1223 		val |= BNX_EMAC_MODE_PORT_GMII;
   1224 		break;
   1225 	}
   1226 
   1227 	/* Set half or full duplex based on the duplicity
   1228 	 * negotiated by the PHY.
   1229 	 */
   1230 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1231 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1232 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1233 	} else {
   1234 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1235 	}
   1236 
   1237 	REG_WR(sc, BNX_EMAC_MODE, val);
   1238 }
   1239 
   1240 /****************************************************************************/
   1241 /* Acquire NVRAM lock.                                                      */
   1242 /*                                                                          */
   1243 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1244 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1245 /* for use by the driver.                                                   */
   1246 /*                                                                          */
   1247 /* Returns:                                                                 */
   1248 /*   0 on success, positive value on failure.                               */
   1249 /****************************************************************************/
   1250 int
   1251 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1252 {
   1253 	uint32_t		val;
   1254 	int			j;
   1255 
   1256 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1257 
   1258 	/* Request access to the flash interface. */
   1259 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1260 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1261 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1262 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1263 			break;
   1264 
   1265 		DELAY(5);
   1266 	}
   1267 
   1268 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1269 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1270 		return EBUSY;
   1271 	}
   1272 
   1273 	return 0;
   1274 }
   1275 
   1276 /****************************************************************************/
   1277 /* Release NVRAM lock.                                                      */
   1278 /*                                                                          */
   1279 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1280 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1281 /* for use by the driver.                                                   */
   1282 /*                                                                          */
   1283 /* Returns:                                                                 */
   1284 /*   0 on success, positive value on failure.                               */
   1285 /****************************************************************************/
   1286 int
   1287 bnx_release_nvram_lock(struct bnx_softc *sc)
   1288 {
   1289 	int			j;
   1290 	uint32_t		val;
   1291 
   1292 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1293 
   1294 	/* Relinquish nvram interface. */
   1295 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1296 
   1297 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1298 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1299 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1300 			break;
   1301 
   1302 		DELAY(5);
   1303 	}
   1304 
   1305 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1306 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1307 		return EBUSY;
   1308 	}
   1309 
   1310 	return 0;
   1311 }
   1312 
   1313 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1314 /****************************************************************************/
   1315 /* Enable NVRAM write access.                                               */
   1316 /*                                                                          */
   1317 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1318 /*                                                                          */
   1319 /* Returns:                                                                 */
   1320 /*   0 on success, positive value on failure.                               */
   1321 /****************************************************************************/
   1322 int
   1323 bnx_enable_nvram_write(struct bnx_softc *sc)
   1324 {
   1325 	uint32_t		val;
   1326 
   1327 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1328 
   1329 	val = REG_RD(sc, BNX_MISC_CFG);
   1330 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1331 
   1332 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1333 		int j;
   1334 
   1335 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1336 		REG_WR(sc, BNX_NVM_COMMAND,
   1337 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1338 
   1339 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1340 			DELAY(5);
   1341 
   1342 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1343 			if (val & BNX_NVM_COMMAND_DONE)
   1344 				break;
   1345 		}
   1346 
   1347 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1348 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1349 			return EBUSY;
   1350 		}
   1351 	}
   1352 
   1353 	return 0;
   1354 }
   1355 
   1356 /****************************************************************************/
   1357 /* Disable NVRAM write access.                                              */
   1358 /*                                                                          */
   1359 /* When the caller is finished writing to NVRAM write access must be        */
   1360 /* disabled.                                                                */
   1361 /*                                                                          */
   1362 /* Returns:                                                                 */
   1363 /*   Nothing.                                                               */
   1364 /****************************************************************************/
   1365 void
   1366 bnx_disable_nvram_write(struct bnx_softc *sc)
   1367 {
   1368 	uint32_t		val;
   1369 
   1370 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1371 
   1372 	val = REG_RD(sc, BNX_MISC_CFG);
   1373 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1374 }
   1375 #endif
   1376 
   1377 /****************************************************************************/
   1378 /* Enable NVRAM access.                                                     */
   1379 /*                                                                          */
   1380 /* Before accessing NVRAM for read or write operations the caller must      */
   1381 /* enabled NVRAM access.                                                    */
   1382 /*                                                                          */
   1383 /* Returns:                                                                 */
   1384 /*   Nothing.                                                               */
   1385 /****************************************************************************/
   1386 void
   1387 bnx_enable_nvram_access(struct bnx_softc *sc)
   1388 {
   1389 	uint32_t		val;
   1390 
   1391 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1392 
   1393 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1394 	/* Enable both bits, even on read. */
   1395 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1396 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1397 }
   1398 
   1399 /****************************************************************************/
   1400 /* Disable NVRAM access.                                                    */
   1401 /*                                                                          */
   1402 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1403 /*                                                                          */
   1404 /* Returns:                                                                 */
   1405 /*   Nothing.                                                               */
   1406 /****************************************************************************/
   1407 void
   1408 bnx_disable_nvram_access(struct bnx_softc *sc)
   1409 {
   1410 	uint32_t		val;
   1411 
   1412 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1413 
   1414 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1415 
   1416 	/* Disable both bits, even after read. */
   1417 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1418 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1419 }
   1420 
   1421 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1422 /****************************************************************************/
   1423 /* Erase NVRAM page before writing.                                         */
   1424 /*                                                                          */
   1425 /* Non-buffered flash parts require that a page be erased before it is      */
   1426 /* written.                                                                 */
   1427 /*                                                                          */
   1428 /* Returns:                                                                 */
   1429 /*   0 on success, positive value on failure.                               */
   1430 /****************************************************************************/
   1431 int
   1432 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
   1433 {
   1434 	uint32_t		cmd;
   1435 	int			j;
   1436 
   1437 	/* Buffered flash doesn't require an erase. */
   1438 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1439 		return 0;
   1440 
   1441 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1442 
   1443 	/* Build an erase command. */
   1444 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1445 	    BNX_NVM_COMMAND_DOIT;
   1446 
   1447 	/*
   1448 	 * Clear the DONE bit separately, set the NVRAM address to erase,
   1449 	 * and issue the erase command.
   1450 	 */
   1451 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1452 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1453 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1454 
   1455 	/* Wait for completion. */
   1456 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1457 		uint32_t val;
   1458 
   1459 		DELAY(5);
   1460 
   1461 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1462 		if (val & BNX_NVM_COMMAND_DONE)
   1463 			break;
   1464 	}
   1465 
   1466 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1467 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1468 		return EBUSY;
   1469 	}
   1470 
   1471 	return 0;
   1472 }
   1473 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1474 
   1475 /****************************************************************************/
   1476 /* Read a dword (32 bits) from NVRAM.                                       */
   1477 /*                                                                          */
   1478 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1479 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1480 /*                                                                          */
   1481 /* Returns:                                                                 */
   1482 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1483 /****************************************************************************/
   1484 int
   1485 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
   1486     uint8_t *ret_val, uint32_t cmd_flags)
   1487 {
   1488 	uint32_t		cmd;
   1489 	int			i, rc = 0;
   1490 
   1491 	/* Build the command word. */
   1492 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1493 
   1494 	/* Calculate the offset for buffered flash if translation is used. */
   1495 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1496 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1497 		    sc->bnx_flash_info->page_bits) +
   1498 		    (offset % sc->bnx_flash_info->page_size);
   1499 	}
   1500 
   1501 	/*
   1502 	 * Clear the DONE bit separately, set the address to read,
   1503 	 * and issue the read.
   1504 	 */
   1505 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1506 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1507 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1508 
   1509 	/* Wait for completion. */
   1510 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1511 		uint32_t val;
   1512 
   1513 		DELAY(5);
   1514 
   1515 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1516 		if (val & BNX_NVM_COMMAND_DONE) {
   1517 			val = REG_RD(sc, BNX_NVM_READ);
   1518 
   1519 			val = bnx_be32toh(val);
   1520 			memcpy(ret_val, &val, 4);
   1521 			break;
   1522 		}
   1523 	}
   1524 
   1525 	/* Check for errors. */
   1526 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1527 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1528 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1529 		rc = EBUSY;
   1530 	}
   1531 
   1532 	return rc;
   1533 }
   1534 
   1535 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1536 /****************************************************************************/
   1537 /* Write a dword (32 bits) to NVRAM.                                        */
   1538 /*                                                                          */
   1539 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1540 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1541 /* enabled NVRAM write access.                                              */
   1542 /*                                                                          */
   1543 /* Returns:                                                                 */
   1544 /*   0 on success, positive value on failure.                               */
   1545 /****************************************************************************/
   1546 int
   1547 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
   1548     uint32_t cmd_flags)
   1549 {
   1550 	uint32_t		cmd, val32;
   1551 	int			j;
   1552 
   1553 	/* Build the command word. */
   1554 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1555 
   1556 	/* Calculate the offset for buffered flash if translation is used. */
   1557 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1558 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1559 		    sc->bnx_flash_info->page_bits) +
   1560 		    (offset % sc->bnx_flash_info->page_size);
   1561 	}
   1562 
   1563 	/*
   1564 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1565 	 * set the NVRAM address to write, and issue the write command
   1566 	 */
   1567 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1568 	memcpy(&val32, val, 4);
   1569 	val32 = htobe32(val32);
   1570 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1571 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1572 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1573 
   1574 	/* Wait for completion. */
   1575 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1576 		DELAY(5);
   1577 
   1578 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1579 			break;
   1580 	}
   1581 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1582 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1583 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1584 		return EBUSY;
   1585 	}
   1586 
   1587 	return 0;
   1588 }
   1589 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1590 
   1591 /****************************************************************************/
   1592 /* Initialize NVRAM access.                                                 */
   1593 /*                                                                          */
   1594 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1595 /* access that device.                                                      */
   1596 /*                                                                          */
   1597 /* Returns:                                                                 */
   1598 /*   0 on success, positive value on failure.                               */
   1599 /****************************************************************************/
   1600 int
   1601 bnx_init_nvram(struct bnx_softc *sc)
   1602 {
   1603 	uint32_t		val;
   1604 	int			j, entry_count, rc = 0;
   1605 	struct flash_spec	*flash;
   1606 
   1607 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1608 
   1609 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1610 		sc->bnx_flash_info = &flash_5709;
   1611 		goto bnx_init_nvram_get_flash_size;
   1612 	}
   1613 
   1614 	/* Determine the selected interface. */
   1615 	val = REG_RD(sc, BNX_NVM_CFG1);
   1616 
   1617 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1618 
   1619 	/*
   1620 	 * Flash reconfiguration is required to support additional
   1621 	 * NVRAM devices not directly supported in hardware.
   1622 	 * Check if the flash interface was reconfigured
   1623 	 * by the bootcode.
   1624 	 */
   1625 
   1626 	if (val & 0x40000000) {
   1627 		/* Flash interface reconfigured by bootcode. */
   1628 
   1629 		DBPRINT(sc,BNX_INFO_LOAD,
   1630 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1631 
   1632 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1633 		     j++, flash++) {
   1634 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1635 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1636 				sc->bnx_flash_info = flash;
   1637 				break;
   1638 			}
   1639 		}
   1640 	} else {
   1641 		/* Flash interface not yet reconfigured. */
   1642 		uint32_t mask;
   1643 
   1644 		DBPRINT(sc,BNX_INFO_LOAD,
   1645 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1646 
   1647 		if (val & (1 << 23))
   1648 			mask = FLASH_BACKUP_STRAP_MASK;
   1649 		else
   1650 			mask = FLASH_STRAP_MASK;
   1651 
   1652 		/* Look for the matching NVRAM device configuration data. */
   1653 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1654 		    j++, flash++) {
   1655 			/* Check if the dev matches any of the known devices. */
   1656 			if ((val & mask) == (flash->strapping & mask)) {
   1657 				/* Found a device match. */
   1658 				sc->bnx_flash_info = flash;
   1659 
   1660 				/* Request access to the flash interface. */
   1661 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1662 					return rc;
   1663 
   1664 				/* Reconfigure the flash interface. */
   1665 				bnx_enable_nvram_access(sc);
   1666 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1667 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1668 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1669 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1670 				bnx_disable_nvram_access(sc);
   1671 				bnx_release_nvram_lock(sc);
   1672 
   1673 				break;
   1674 			}
   1675 		}
   1676 	}
   1677 
   1678 	/* Check if a matching device was found. */
   1679 	if (j == entry_count) {
   1680 		sc->bnx_flash_info = NULL;
   1681 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1682 			__FILE__, __LINE__);
   1683 		rc = ENODEV;
   1684 	}
   1685 
   1686 bnx_init_nvram_get_flash_size:
   1687 	/* Write the flash config data to the shared memory interface. */
   1688 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1689 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1690 	if (val)
   1691 		sc->bnx_flash_size = val;
   1692 	else
   1693 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1694 
   1695 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1696 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1697 
   1698 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1699 
   1700 	return rc;
   1701 }
   1702 
   1703 /****************************************************************************/
   1704 /* Read an arbitrary range of data from NVRAM.                              */
   1705 /*                                                                          */
   1706 /* Prepares the NVRAM interface for access and reads the requested data     */
   1707 /* into the supplied buffer.                                                */
   1708 /*                                                                          */
   1709 /* Returns:                                                                 */
   1710 /*   0 on success and the data read, positive value on failure.             */
   1711 /****************************************************************************/
   1712 int
   1713 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
   1714     int buf_size)
   1715 {
   1716 	int			rc = 0;
   1717 	uint32_t		cmd_flags, offset32, len32, extra;
   1718 
   1719 	if (buf_size == 0)
   1720 		return 0;
   1721 
   1722 	/* Request access to the flash interface. */
   1723 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1724 		return rc;
   1725 
   1726 	/* Enable access to flash interface */
   1727 	bnx_enable_nvram_access(sc);
   1728 
   1729 	len32 = buf_size;
   1730 	offset32 = offset;
   1731 	extra = 0;
   1732 
   1733 	cmd_flags = 0;
   1734 
   1735 	if (offset32 & 3) {
   1736 		uint8_t buf[4];
   1737 		uint32_t pre_len;
   1738 
   1739 		offset32 &= ~3;
   1740 		pre_len = 4 - (offset & 3);
   1741 
   1742 		if (pre_len >= len32) {
   1743 			pre_len = len32;
   1744 			cmd_flags =
   1745 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1746 		} else
   1747 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1748 
   1749 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1750 
   1751 		if (rc)
   1752 			return rc;
   1753 
   1754 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1755 
   1756 		offset32 += 4;
   1757 		ret_buf += pre_len;
   1758 		len32 -= pre_len;
   1759 	}
   1760 
   1761 	if (len32 & 3) {
   1762 		extra = 4 - (len32 & 3);
   1763 		len32 = (len32 + 4) & ~3;
   1764 	}
   1765 
   1766 	if (len32 == 4) {
   1767 		uint8_t buf[4];
   1768 
   1769 		if (cmd_flags)
   1770 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1771 		else
   1772 			cmd_flags =
   1773 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1774 
   1775 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1776 
   1777 		memcpy(ret_buf, buf, 4 - extra);
   1778 	} else if (len32 > 0) {
   1779 		uint8_t buf[4];
   1780 
   1781 		/* Read the first word. */
   1782 		if (cmd_flags)
   1783 			cmd_flags = 0;
   1784 		else
   1785 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1786 
   1787 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1788 
   1789 		/* Advance to the next dword. */
   1790 		offset32 += 4;
   1791 		ret_buf += 4;
   1792 		len32 -= 4;
   1793 
   1794 		while (len32 > 4 && rc == 0) {
   1795 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1796 
   1797 			/* Advance to the next dword. */
   1798 			offset32 += 4;
   1799 			ret_buf += 4;
   1800 			len32 -= 4;
   1801 		}
   1802 
   1803 		if (rc)
   1804 			return rc;
   1805 
   1806 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1807 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1808 
   1809 		memcpy(ret_buf, buf, 4 - extra);
   1810 	}
   1811 
   1812 	/* Disable access to flash interface and release the lock. */
   1813 	bnx_disable_nvram_access(sc);
   1814 	bnx_release_nvram_lock(sc);
   1815 
   1816 	return rc;
   1817 }
   1818 
   1819 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1820 /****************************************************************************/
   1821 /* Write an arbitrary range of data from NVRAM.                             */
   1822 /*                                                                          */
   1823 /* Prepares the NVRAM interface for write access and writes the requested   */
   1824 /* data from the supplied buffer.  The caller is responsible for            */
   1825 /* calculating any appropriate CRCs.                                        */
   1826 /*                                                                          */
   1827 /* Returns:                                                                 */
   1828 /*   0 on success, positive value on failure.                               */
   1829 /****************************************************************************/
   1830 int
   1831 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
   1832     int buf_size)
   1833 {
   1834 	uint32_t		written, offset32, len32;
   1835 	uint8_t		*buf, start[4], end[4];
   1836 	int			rc = 0;
   1837 	int			align_start, align_end;
   1838 
   1839 	buf = data_buf;
   1840 	offset32 = offset;
   1841 	len32 = buf_size;
   1842 	align_start = align_end = 0;
   1843 
   1844 	if ((align_start = (offset32 & 3))) {
   1845 		offset32 &= ~3;
   1846 		len32 += align_start;
   1847 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1848 			return rc;
   1849 	}
   1850 
   1851 	if (len32 & 3) {
   1852 		if ((len32 > 4) || !align_start) {
   1853 			align_end = 4 - (len32 & 3);
   1854 			len32 += align_end;
   1855 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1856 			    end, 4)))
   1857 				return rc;
   1858 		}
   1859 	}
   1860 
   1861 	if (align_start || align_end) {
   1862 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1863 		if (buf == 0)
   1864 			return ENOMEM;
   1865 
   1866 		if (align_start)
   1867 			memcpy(buf, start, 4);
   1868 
   1869 		if (align_end)
   1870 			memcpy(buf + len32 - 4, end, 4);
   1871 
   1872 		memcpy(buf + align_start, data_buf, buf_size);
   1873 	}
   1874 
   1875 	written = 0;
   1876 	while ((written < len32) && (rc == 0)) {
   1877 		uint32_t page_start, page_end, data_start, data_end;
   1878 		uint32_t addr, cmd_flags;
   1879 		int i;
   1880 		uint8_t flash_buffer[264];
   1881 
   1882 	    /* Find the page_start addr */
   1883 		page_start = offset32 + written;
   1884 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1885 		/* Find the page_end addr */
   1886 		page_end = page_start + sc->bnx_flash_info->page_size;
   1887 		/* Find the data_start addr */
   1888 		data_start = (written == 0) ? offset32 : page_start;
   1889 		/* Find the data_end addr */
   1890 		data_end = (page_end > offset32 + len32) ?
   1891 		    (offset32 + len32) : page_end;
   1892 
   1893 		/* Request access to the flash interface. */
   1894 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1895 			goto nvram_write_end;
   1896 
   1897 		/* Enable access to flash interface */
   1898 		bnx_enable_nvram_access(sc);
   1899 
   1900 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1901 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1902 			int j;
   1903 
   1904 			/* Read the whole page into the buffer
   1905 			 * (non-buffer flash only) */
   1906 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1907 				if (j == (sc->bnx_flash_info->page_size - 4))
   1908 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1909 
   1910 				rc = bnx_nvram_read_dword(sc,
   1911 					page_start + j,
   1912 					&flash_buffer[j],
   1913 					cmd_flags);
   1914 
   1915 				if (rc)
   1916 					goto nvram_write_end;
   1917 
   1918 				cmd_flags = 0;
   1919 			}
   1920 		}
   1921 
   1922 		/* Enable writes to flash interface (unlock write-protect) */
   1923 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1924 			goto nvram_write_end;
   1925 
   1926 		/* Erase the page */
   1927 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1928 			goto nvram_write_end;
   1929 
   1930 		/* Re-enable the write again for the actual write */
   1931 		bnx_enable_nvram_write(sc);
   1932 
   1933 		/* Loop to write back the buffer data from page_start to
   1934 		 * data_start */
   1935 		i = 0;
   1936 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1937 			for (addr = page_start; addr < data_start;
   1938 				addr += 4, i += 4) {
   1939 
   1940 				rc = bnx_nvram_write_dword(sc, addr,
   1941 				    &flash_buffer[i], cmd_flags);
   1942 
   1943 				if (rc != 0)
   1944 					goto nvram_write_end;
   1945 
   1946 				cmd_flags = 0;
   1947 			}
   1948 		}
   1949 
   1950 		/* Loop to write the new data from data_start to data_end */
   1951 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1952 			if ((addr == page_end - 4) ||
   1953 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   1954 			    && (addr == data_end - 4))) {
   1955 
   1956 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1957 			}
   1958 
   1959 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   1960 
   1961 			if (rc != 0)
   1962 				goto nvram_write_end;
   1963 
   1964 			cmd_flags = 0;
   1965 			buf += 4;
   1966 		}
   1967 
   1968 		/* Loop to write back the buffer data from data_end
   1969 		 * to page_end */
   1970 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1971 			for (addr = data_end; addr < page_end;
   1972 			    addr += 4, i += 4) {
   1973 
   1974 				if (addr == page_end-4)
   1975 					cmd_flags = BNX_NVM_COMMAND_LAST;
   1976 
   1977 				rc = bnx_nvram_write_dword(sc, addr,
   1978 				    &flash_buffer[i], cmd_flags);
   1979 
   1980 				if (rc != 0)
   1981 					goto nvram_write_end;
   1982 
   1983 				cmd_flags = 0;
   1984 			}
   1985 		}
   1986 
   1987 		/* Disable writes to flash interface (lock write-protect) */
   1988 		bnx_disable_nvram_write(sc);
   1989 
   1990 		/* Disable access to flash interface */
   1991 		bnx_disable_nvram_access(sc);
   1992 		bnx_release_nvram_lock(sc);
   1993 
   1994 		/* Increment written */
   1995 		written += data_end - data_start;
   1996 	}
   1997 
   1998 nvram_write_end:
   1999 	if (align_start || align_end)
   2000 		free(buf, M_DEVBUF);
   2001 
   2002 	return rc;
   2003 }
   2004 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   2005 
   2006 /****************************************************************************/
   2007 /* Verifies that NVRAM is accessible and contains valid data.               */
   2008 /*                                                                          */
   2009 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   2010 /* correct.                                                                 */
   2011 /*                                                                          */
   2012 /* Returns:                                                                 */
   2013 /*   0 on success, positive value on failure.                               */
   2014 /****************************************************************************/
   2015 int
   2016 bnx_nvram_test(struct bnx_softc *sc)
   2017 {
   2018 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
   2019 	uint8_t		*data = (uint8_t *) buf;
   2020 	int			rc = 0;
   2021 	uint32_t		magic, csum;
   2022 
   2023 	/*
   2024 	 * Check that the device NVRAM is valid by reading
   2025 	 * the magic value at offset 0.
   2026 	 */
   2027 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   2028 		goto bnx_nvram_test_done;
   2029 
   2030 	magic = bnx_be32toh(buf[0]);
   2031 	if (magic != BNX_NVRAM_MAGIC) {
   2032 		rc = ENODEV;
   2033 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   2034 		    "Expected: 0x%08X, Found: 0x%08X\n",
   2035 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   2036 		goto bnx_nvram_test_done;
   2037 	}
   2038 
   2039 	/*
   2040 	 * Verify that the device NVRAM includes valid
   2041 	 * configuration data.
   2042 	 */
   2043 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   2044 		goto bnx_nvram_test_done;
   2045 
   2046 	csum = ether_crc32_le(data, 0x100);
   2047 	if (csum != BNX_CRC32_RESIDUAL) {
   2048 		rc = ENODEV;
   2049 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   2050 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   2051 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2052 		goto bnx_nvram_test_done;
   2053 	}
   2054 
   2055 	csum = ether_crc32_le(data + 0x100, 0x100);
   2056 	if (csum != BNX_CRC32_RESIDUAL) {
   2057 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   2058 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   2059 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2060 		rc = ENODEV;
   2061 	}
   2062 
   2063 bnx_nvram_test_done:
   2064 	return rc;
   2065 }
   2066 
   2067 /****************************************************************************/
   2068 /* Identifies the current media type of the controller and sets the PHY     */
   2069 /* address.                                                                 */
   2070 /*                                                                          */
   2071 /* Returns:                                                                 */
   2072 /*   Nothing.                                                               */
   2073 /****************************************************************************/
   2074 void
   2075 bnx_get_media(struct bnx_softc *sc)
   2076 {
   2077 	sc->bnx_phy_addr = 1;
   2078 
   2079 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2080 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   2081 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   2082 		uint32_t strap;
   2083 
   2084 		/*
   2085 		 * The BCM5709S is software configurable
   2086 		 * for Copper or SerDes operation.
   2087 		 */
   2088 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   2089 			DBPRINT(sc, BNX_INFO_LOAD,
   2090 			    "5709 bonded for copper.\n");
   2091 			goto bnx_get_media_exit;
   2092 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   2093 			DBPRINT(sc, BNX_INFO_LOAD,
   2094 			    "5709 bonded for dual media.\n");
   2095 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2096 			goto bnx_get_media_exit;
   2097 		}
   2098 
   2099 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2100 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2101 		else {
   2102 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2103 			    >> 8;
   2104 		}
   2105 
   2106 		if (sc->bnx_pa.pa_function == 0) {
   2107 			switch (strap) {
   2108 			case 0x4:
   2109 			case 0x5:
   2110 			case 0x6:
   2111 				DBPRINT(sc, BNX_INFO_LOAD,
   2112 					"BCM5709 s/w configured for SerDes.\n");
   2113 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2114 				break;
   2115 			default:
   2116 				DBPRINT(sc, BNX_INFO_LOAD,
   2117 					"BCM5709 s/w configured for Copper.\n");
   2118 			}
   2119 		} else {
   2120 			switch (strap) {
   2121 			case 0x1:
   2122 			case 0x2:
   2123 			case 0x4:
   2124 				DBPRINT(sc, BNX_INFO_LOAD,
   2125 					"BCM5709 s/w configured for SerDes.\n");
   2126 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2127 				break;
   2128 			default:
   2129 				DBPRINT(sc, BNX_INFO_LOAD,
   2130 					"BCM5709 s/w configured for Copper.\n");
   2131 			}
   2132 		}
   2133 
   2134 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2135 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2136 
   2137 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2138 		uint32_t val;
   2139 
   2140 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2141 
   2142 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2143 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2144 
   2145 		/*
   2146 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2147 		 * separate PHY for SerDes.
   2148 		 */
   2149 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2150 			sc->bnx_phy_addr = 2;
   2151 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2152 				 BNX_SHARED_HW_CFG_CONFIG);
   2153 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2154 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2155 				DBPRINT(sc, BNX_INFO_LOAD,
   2156 				    "Found 2.5Gb capable adapter\n");
   2157 			}
   2158 		}
   2159 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2160 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2161 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2162 
   2163 bnx_get_media_exit:
   2164 	DBPRINT(sc, (BNX_INFO_LOAD),
   2165 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2166 }
   2167 
   2168 /****************************************************************************/
   2169 /* Performs PHY initialization required before MII drivers access the       */
   2170 /* device.                                                                  */
   2171 /*                                                                          */
   2172 /* Returns:                                                                 */
   2173 /*   Nothing.                                                               */
   2174 /****************************************************************************/
   2175 void
   2176 bnx_init_media(struct bnx_softc *sc)
   2177 {
   2178 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2179 		/*
   2180 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2181 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2182 		 * the PHY to the mii(4) layer. PHY specific configuration
   2183 		 * is done by the mii(4) layer.
   2184 		 */
   2185 
   2186 		/* Select auto-negotiation MMD of the PHY. */
   2187 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2188 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2189 
   2190 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2191 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2192 
   2193 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2194 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2195 	}
   2196 }
   2197 
   2198 /****************************************************************************/
   2199 /* Free any DMA memory owned by the driver.                                 */
   2200 /*                                                                          */
   2201 /* Scans through each data structre that requires DMA memory and frees      */
   2202 /* the memory if allocated.                                                 */
   2203 /*                                                                          */
   2204 /* Returns:                                                                 */
   2205 /*   Nothing.                                                               */
   2206 /****************************************************************************/
   2207 void
   2208 bnx_dma_free(struct bnx_softc *sc)
   2209 {
   2210 	int			i;
   2211 
   2212 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2213 
   2214 	/* Destroy the status block. */
   2215 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2216 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2217 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2218 		    BNX_STATUS_BLK_SZ);
   2219 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2220 		    sc->status_rseg);
   2221 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2222 		sc->status_block = NULL;
   2223 		sc->status_map = NULL;
   2224 	}
   2225 
   2226 	/* Destroy the statistics block. */
   2227 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2228 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2229 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2230 		    BNX_STATS_BLK_SZ);
   2231 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2232 		    sc->stats_rseg);
   2233 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2234 		sc->stats_block = NULL;
   2235 		sc->stats_map = NULL;
   2236 	}
   2237 
   2238 	/* Free, unmap and destroy all context memory pages. */
   2239 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2240 		for (i = 0; i < sc->ctx_pages; i++) {
   2241 			if (sc->ctx_block[i] != NULL) {
   2242 				bus_dmamap_unload(sc->bnx_dmatag,
   2243 				    sc->ctx_map[i]);
   2244 				bus_dmamem_unmap(sc->bnx_dmatag,
   2245 				    (void *)sc->ctx_block[i],
   2246 				    BCM_PAGE_SIZE);
   2247 				bus_dmamem_free(sc->bnx_dmatag,
   2248 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2249 				bus_dmamap_destroy(sc->bnx_dmatag,
   2250 				    sc->ctx_map[i]);
   2251 				sc->ctx_block[i] = NULL;
   2252 			}
   2253 		}
   2254 	}
   2255 
   2256 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2257 	for (i = 0; i < TX_PAGES; i++ ) {
   2258 		if (sc->tx_bd_chain[i] != NULL &&
   2259 		    sc->tx_bd_chain_map[i] != NULL) {
   2260 			bus_dmamap_unload(sc->bnx_dmatag,
   2261 			    sc->tx_bd_chain_map[i]);
   2262 			bus_dmamem_unmap(sc->bnx_dmatag,
   2263 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2264 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2265 			    sc->tx_bd_chain_rseg[i]);
   2266 			bus_dmamap_destroy(sc->bnx_dmatag,
   2267 			    sc->tx_bd_chain_map[i]);
   2268 			sc->tx_bd_chain[i] = NULL;
   2269 			sc->tx_bd_chain_map[i] = NULL;
   2270 		}
   2271 	}
   2272 
   2273 	/* Destroy the TX dmamaps. */
   2274 	/* This isn't necessary since we dont allocate them up front */
   2275 
   2276 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2277 	for (i = 0; i < RX_PAGES; i++ ) {
   2278 		if (sc->rx_bd_chain[i] != NULL &&
   2279 		    sc->rx_bd_chain_map[i] != NULL) {
   2280 			bus_dmamap_unload(sc->bnx_dmatag,
   2281 			    sc->rx_bd_chain_map[i]);
   2282 			bus_dmamem_unmap(sc->bnx_dmatag,
   2283 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2284 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2285 			    sc->rx_bd_chain_rseg[i]);
   2286 
   2287 			bus_dmamap_destroy(sc->bnx_dmatag,
   2288 			    sc->rx_bd_chain_map[i]);
   2289 			sc->rx_bd_chain[i] = NULL;
   2290 			sc->rx_bd_chain_map[i] = NULL;
   2291 		}
   2292 	}
   2293 
   2294 	/* Unload and destroy the RX mbuf maps. */
   2295 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2296 		if (sc->rx_mbuf_map[i] != NULL) {
   2297 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2298 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2299 		}
   2300 	}
   2301 
   2302 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2303 }
   2304 
   2305 /****************************************************************************/
   2306 /* Allocate any DMA memory needed by the driver.                            */
   2307 /*                                                                          */
   2308 /* Allocates DMA memory needed for the various global structures needed by  */
   2309 /* hardware.                                                                */
   2310 /*                                                                          */
   2311 /* Returns:                                                                 */
   2312 /*   0 for success, positive value for failure.                             */
   2313 /****************************************************************************/
   2314 int
   2315 bnx_dma_alloc(struct bnx_softc *sc)
   2316 {
   2317 	int			i, rc = 0;
   2318 
   2319 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2320 
   2321 	/*
   2322 	 * Allocate DMA memory for the status block, map the memory into DMA
   2323 	 * space, and fetch the physical address of the block.
   2324 	 */
   2325 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2326 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2327 		aprint_error_dev(sc->bnx_dev,
   2328 		    "Could not create status block DMA map!\n");
   2329 		rc = ENOMEM;
   2330 		goto bnx_dma_alloc_exit;
   2331 	}
   2332 
   2333 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2334 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2335 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2336 		aprint_error_dev(sc->bnx_dev,
   2337 		    "Could not allocate status block DMA memory!\n");
   2338 		rc = ENOMEM;
   2339 		goto bnx_dma_alloc_exit;
   2340 	}
   2341 
   2342 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2343 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2344 		aprint_error_dev(sc->bnx_dev,
   2345 		    "Could not map status block DMA memory!\n");
   2346 		rc = ENOMEM;
   2347 		goto bnx_dma_alloc_exit;
   2348 	}
   2349 
   2350 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2351 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2352 		aprint_error_dev(sc->bnx_dev,
   2353 		    "Could not load status block DMA memory!\n");
   2354 		rc = ENOMEM;
   2355 		goto bnx_dma_alloc_exit;
   2356 	}
   2357 
   2358 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2359 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2360 
   2361 	/* DRC - Fix for 64 bit addresses. */
   2362 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2363 		(uint32_t) sc->status_block_paddr);
   2364 
   2365 	/* BCM5709 uses host memory as cache for context memory. */
   2366 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2367 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2368 		if (sc->ctx_pages == 0)
   2369 			sc->ctx_pages = 1;
   2370 		if (sc->ctx_pages > 4) /* XXX */
   2371 			sc->ctx_pages = 4;
   2372 
   2373 		DBRUNIF((sc->ctx_pages > 512),
   2374 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2375 				__FILE__, __LINE__, sc->ctx_pages));
   2376 
   2377 
   2378 		for (i = 0; i < sc->ctx_pages; i++) {
   2379 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2380 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2381 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2382 			    &sc->ctx_map[i]) != 0) {
   2383 				rc = ENOMEM;
   2384 				goto bnx_dma_alloc_exit;
   2385 			}
   2386 
   2387 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2388 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2389 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2390 				rc = ENOMEM;
   2391 				goto bnx_dma_alloc_exit;
   2392 			}
   2393 
   2394 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2395 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2396 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2397 				rc = ENOMEM;
   2398 				goto bnx_dma_alloc_exit;
   2399 			}
   2400 
   2401 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2402 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2403 			    BUS_DMA_NOWAIT) != 0) {
   2404 				rc = ENOMEM;
   2405 				goto bnx_dma_alloc_exit;
   2406 			}
   2407 
   2408 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2409 		}
   2410 	}
   2411 
   2412 	/*
   2413 	 * Allocate DMA memory for the statistics block, map the memory into
   2414 	 * DMA space, and fetch the physical address of the block.
   2415 	 */
   2416 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2417 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2418 		aprint_error_dev(sc->bnx_dev,
   2419 		    "Could not create stats block DMA map!\n");
   2420 		rc = ENOMEM;
   2421 		goto bnx_dma_alloc_exit;
   2422 	}
   2423 
   2424 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2425 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2426 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2427 		aprint_error_dev(sc->bnx_dev,
   2428 		    "Could not allocate stats block DMA memory!\n");
   2429 		rc = ENOMEM;
   2430 		goto bnx_dma_alloc_exit;
   2431 	}
   2432 
   2433 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2434 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2435 		aprint_error_dev(sc->bnx_dev,
   2436 		    "Could not map stats block DMA memory!\n");
   2437 		rc = ENOMEM;
   2438 		goto bnx_dma_alloc_exit;
   2439 	}
   2440 
   2441 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2442 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2443 		aprint_error_dev(sc->bnx_dev,
   2444 		    "Could not load status block DMA memory!\n");
   2445 		rc = ENOMEM;
   2446 		goto bnx_dma_alloc_exit;
   2447 	}
   2448 
   2449 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2450 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2451 
   2452 	/* DRC - Fix for 64 bit address. */
   2453 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2454 	    (uint32_t) sc->stats_block_paddr);
   2455 
   2456 	/*
   2457 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2458 	 * and fetch the physical address of the block.
   2459 	 */
   2460 	for (i = 0; i < TX_PAGES; i++) {
   2461 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2462 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2463 		    &sc->tx_bd_chain_map[i])) {
   2464 			aprint_error_dev(sc->bnx_dev,
   2465 			    "Could not create Tx desc %d DMA map!\n", i);
   2466 			rc = ENOMEM;
   2467 			goto bnx_dma_alloc_exit;
   2468 		}
   2469 
   2470 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2471 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2472 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2473 			aprint_error_dev(sc->bnx_dev,
   2474 			    "Could not allocate TX desc %d DMA memory!\n",
   2475 			    i);
   2476 			rc = ENOMEM;
   2477 			goto bnx_dma_alloc_exit;
   2478 		}
   2479 
   2480 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2481 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2482 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2483 			aprint_error_dev(sc->bnx_dev,
   2484 			    "Could not map TX desc %d DMA memory!\n", i);
   2485 			rc = ENOMEM;
   2486 			goto bnx_dma_alloc_exit;
   2487 		}
   2488 
   2489 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2490 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2491 		    BUS_DMA_NOWAIT)) {
   2492 			aprint_error_dev(sc->bnx_dev,
   2493 			    "Could not load TX desc %d DMA memory!\n", i);
   2494 			rc = ENOMEM;
   2495 			goto bnx_dma_alloc_exit;
   2496 		}
   2497 
   2498 		sc->tx_bd_chain_paddr[i] =
   2499 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2500 
   2501 		/* DRC - Fix for 64 bit systems. */
   2502 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2503 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
   2504 	}
   2505 
   2506 	/*
   2507 	 * Create lists to hold TX mbufs.
   2508 	 */
   2509 	TAILQ_INIT(&sc->tx_free_pkts);
   2510 	TAILQ_INIT(&sc->tx_used_pkts);
   2511 	sc->tx_pkt_count = 0;
   2512 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2513 
   2514 	/*
   2515 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2516 	 * and fetch the physical address of the block.
   2517 	 */
   2518 	for (i = 0; i < RX_PAGES; i++) {
   2519 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2520 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2521 		    &sc->rx_bd_chain_map[i])) {
   2522 			aprint_error_dev(sc->bnx_dev,
   2523 			    "Could not create Rx desc %d DMA map!\n", i);
   2524 			rc = ENOMEM;
   2525 			goto bnx_dma_alloc_exit;
   2526 		}
   2527 
   2528 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2529 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2530 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2531 			aprint_error_dev(sc->bnx_dev,
   2532 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2533 			rc = ENOMEM;
   2534 			goto bnx_dma_alloc_exit;
   2535 		}
   2536 
   2537 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2538 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2539 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2540 			aprint_error_dev(sc->bnx_dev,
   2541 			    "Could not map Rx desc %d DMA memory!\n", i);
   2542 			rc = ENOMEM;
   2543 			goto bnx_dma_alloc_exit;
   2544 		}
   2545 
   2546 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2547 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2548 		    BUS_DMA_NOWAIT)) {
   2549 			aprint_error_dev(sc->bnx_dev,
   2550 			    "Could not load Rx desc %d DMA memory!\n", i);
   2551 			rc = ENOMEM;
   2552 			goto bnx_dma_alloc_exit;
   2553 		}
   2554 
   2555 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2556 		sc->rx_bd_chain_paddr[i] =
   2557 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2558 
   2559 		/* DRC - Fix for 64 bit systems. */
   2560 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2561 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
   2562 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2563 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2564 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2565 	}
   2566 
   2567 	/*
   2568 	 * Create DMA maps for the Rx buffer mbufs.
   2569 	 */
   2570 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2571 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2572 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2573 		    &sc->rx_mbuf_map[i])) {
   2574 			aprint_error_dev(sc->bnx_dev,
   2575 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2576 			rc = ENOMEM;
   2577 			goto bnx_dma_alloc_exit;
   2578 		}
   2579 	}
   2580 
   2581  bnx_dma_alloc_exit:
   2582 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2583 
   2584 	return rc;
   2585 }
   2586 
   2587 /****************************************************************************/
   2588 /* Release all resources used by the driver.                                */
   2589 /*                                                                          */
   2590 /* Releases all resources acquired by the driver including interrupts,      */
   2591 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2592 /*                                                                          */
   2593 /* Returns:                                                                 */
   2594 /*   Nothing.                                                               */
   2595 /****************************************************************************/
   2596 void
   2597 bnx_release_resources(struct bnx_softc *sc)
   2598 {
   2599 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2600 
   2601 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2602 
   2603 	bnx_dma_free(sc);
   2604 
   2605 	if (sc->bnx_intrhand != NULL)
   2606 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2607 
   2608 	if (sc->bnx_size)
   2609 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2610 
   2611 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2612 }
   2613 
   2614 /****************************************************************************/
   2615 /* Firmware synchronization.                                                */
   2616 /*                                                                          */
   2617 /* Before performing certain events such as a chip reset, synchronize with  */
   2618 /* the firmware first.                                                      */
   2619 /*                                                                          */
   2620 /* Returns:                                                                 */
   2621 /*   0 for success, positive value for failure.                             */
   2622 /****************************************************************************/
   2623 int
   2624 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
   2625 {
   2626 	int			i, rc = 0;
   2627 	uint32_t		val;
   2628 
   2629 	/* Don't waste any time if we've timed out before. */
   2630 	if (sc->bnx_fw_timed_out) {
   2631 		rc = EBUSY;
   2632 		goto bnx_fw_sync_exit;
   2633 	}
   2634 
   2635 	/* Increment the message sequence number. */
   2636 	sc->bnx_fw_wr_seq++;
   2637 	msg_data |= sc->bnx_fw_wr_seq;
   2638 
   2639  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2640 	    msg_data);
   2641 
   2642 	/* Send the message to the bootcode driver mailbox. */
   2643 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2644 
   2645 	/* Wait for the bootcode to acknowledge the message. */
   2646 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2647 		/* Check for a response in the bootcode firmware mailbox. */
   2648 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2649 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2650 			break;
   2651 		DELAY(1000);
   2652 	}
   2653 
   2654 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2655 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2656 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2657 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2658 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2659 
   2660 		msg_data &= ~BNX_DRV_MSG_CODE;
   2661 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2662 
   2663 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2664 
   2665 		sc->bnx_fw_timed_out = 1;
   2666 		rc = EBUSY;
   2667 	}
   2668 
   2669 bnx_fw_sync_exit:
   2670 	return rc;
   2671 }
   2672 
   2673 /****************************************************************************/
   2674 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2675 /*                                                                          */
   2676 /* Returns:                                                                 */
   2677 /*   Nothing.                                                               */
   2678 /****************************************************************************/
   2679 void
   2680 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
   2681     uint32_t rv2p_code_len, uint32_t rv2p_proc)
   2682 {
   2683 	int			i;
   2684 	uint32_t		val;
   2685 
   2686 	/* Set the page size used by RV2P. */
   2687 	if (rv2p_proc == RV2P_PROC2) {
   2688 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2689 		    USABLE_RX_BD_PER_PAGE);
   2690 	}
   2691 
   2692 	for (i = 0; i < rv2p_code_len; i += 8) {
   2693 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2694 		rv2p_code++;
   2695 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2696 		rv2p_code++;
   2697 
   2698 		if (rv2p_proc == RV2P_PROC1) {
   2699 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2700 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2701 		} else {
   2702 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2703 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2704 		}
   2705 	}
   2706 
   2707 	/* Reset the processor, un-stall is done later. */
   2708 	if (rv2p_proc == RV2P_PROC1)
   2709 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2710 	else
   2711 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2712 }
   2713 
   2714 /****************************************************************************/
   2715 /* Load RISC processor firmware.                                            */
   2716 /*                                                                          */
   2717 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2718 /* associated with a particular processor.                                  */
   2719 /*                                                                          */
   2720 /* Returns:                                                                 */
   2721 /*   Nothing.                                                               */
   2722 /****************************************************************************/
   2723 void
   2724 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2725     struct fw_info *fw)
   2726 {
   2727 	uint32_t		offset;
   2728 	uint32_t		val;
   2729 
   2730 	/* Halt the CPU. */
   2731 	val = REG_RD_IND(sc, cpu_reg->mode);
   2732 	val |= cpu_reg->mode_value_halt;
   2733 	REG_WR_IND(sc, cpu_reg->mode, val);
   2734 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2735 
   2736 	/* Load the Text area. */
   2737 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2738 	if (fw->text) {
   2739 		int j;
   2740 
   2741 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2742 			REG_WR_IND(sc, offset, fw->text[j]);
   2743 	}
   2744 
   2745 	/* Load the Data area. */
   2746 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2747 	if (fw->data) {
   2748 		int j;
   2749 
   2750 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2751 			REG_WR_IND(sc, offset, fw->data[j]);
   2752 	}
   2753 
   2754 	/* Load the SBSS area. */
   2755 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2756 	if (fw->sbss) {
   2757 		int j;
   2758 
   2759 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2760 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2761 	}
   2762 
   2763 	/* Load the BSS area. */
   2764 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2765 	if (fw->bss) {
   2766 		int j;
   2767 
   2768 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2769 			REG_WR_IND(sc, offset, fw->bss[j]);
   2770 	}
   2771 
   2772 	/* Load the Read-Only area. */
   2773 	offset = cpu_reg->spad_base +
   2774 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2775 	if (fw->rodata) {
   2776 		int j;
   2777 
   2778 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2779 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2780 	}
   2781 
   2782 	/* Clear the pre-fetch instruction. */
   2783 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2784 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2785 
   2786 	/* Start the CPU. */
   2787 	val = REG_RD_IND(sc, cpu_reg->mode);
   2788 	val &= ~cpu_reg->mode_value_halt;
   2789 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2790 	REG_WR_IND(sc, cpu_reg->mode, val);
   2791 }
   2792 
   2793 /****************************************************************************/
   2794 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2795 /*                                                                          */
   2796 /* Loads the firmware for each CPU and starts the CPU.                      */
   2797 /*                                                                          */
   2798 /* Returns:                                                                 */
   2799 /*   Nothing.                                                               */
   2800 /****************************************************************************/
   2801 void
   2802 bnx_init_cpus(struct bnx_softc *sc)
   2803 {
   2804 	struct cpu_reg cpu_reg;
   2805 	struct fw_info fw;
   2806 
   2807 	switch(BNX_CHIP_NUM(sc)) {
   2808 	case BNX_CHIP_NUM_5709:
   2809 		/* Initialize the RV2P processor. */
   2810 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2811 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2812 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2813 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2814 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2815 		} else {
   2816 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2817 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2818 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2819 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2820 		}
   2821 
   2822 		/* Initialize the RX Processor. */
   2823 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2824 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2825 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2826 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2827 		cpu_reg.state_value_clear = 0xffffff;
   2828 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2829 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2830 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2831 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2832 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2833 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2834 		cpu_reg.mips_view_base = 0x8000000;
   2835 
   2836 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2837 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2838 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2839 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2840 
   2841 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2842 		fw.text_len = bnx_RXP_b09FwTextLen;
   2843 		fw.text_index = 0;
   2844 		fw.text = bnx_RXP_b09FwText;
   2845 
   2846 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2847 		fw.data_len = bnx_RXP_b09FwDataLen;
   2848 		fw.data_index = 0;
   2849 		fw.data = bnx_RXP_b09FwData;
   2850 
   2851 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2852 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2853 		fw.sbss_index = 0;
   2854 		fw.sbss = bnx_RXP_b09FwSbss;
   2855 
   2856 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2857 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2858 		fw.bss_index = 0;
   2859 		fw.bss = bnx_RXP_b09FwBss;
   2860 
   2861 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2862 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2863 		fw.rodata_index = 0;
   2864 		fw.rodata = bnx_RXP_b09FwRodata;
   2865 
   2866 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2867 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2868 
   2869 		/* Initialize the TX Processor. */
   2870 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2871 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2872 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2873 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2874 		cpu_reg.state_value_clear = 0xffffff;
   2875 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2876 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2877 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2878 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2879 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2880 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2881 		cpu_reg.mips_view_base = 0x8000000;
   2882 
   2883 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2884 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2885 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2886 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2887 
   2888 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2889 		fw.text_len = bnx_TXP_b09FwTextLen;
   2890 		fw.text_index = 0;
   2891 		fw.text = bnx_TXP_b09FwText;
   2892 
   2893 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   2894 		fw.data_len = bnx_TXP_b09FwDataLen;
   2895 		fw.data_index = 0;
   2896 		fw.data = bnx_TXP_b09FwData;
   2897 
   2898 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   2899 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   2900 		fw.sbss_index = 0;
   2901 		fw.sbss = bnx_TXP_b09FwSbss;
   2902 
   2903 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   2904 		fw.bss_len = bnx_TXP_b09FwBssLen;
   2905 		fw.bss_index = 0;
   2906 		fw.bss = bnx_TXP_b09FwBss;
   2907 
   2908 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   2909 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   2910 		fw.rodata_index = 0;
   2911 		fw.rodata = bnx_TXP_b09FwRodata;
   2912 
   2913 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2914 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2915 
   2916 		/* Initialize the TX Patch-up Processor. */
   2917 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2918 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2919 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2920 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2921 		cpu_reg.state_value_clear = 0xffffff;
   2922 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2923 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2924 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2925 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2926 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2927 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2928 		cpu_reg.mips_view_base = 0x8000000;
   2929 
   2930 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   2931 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   2932 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   2933 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   2934 
   2935 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   2936 		fw.text_len = bnx_TPAT_b09FwTextLen;
   2937 		fw.text_index = 0;
   2938 		fw.text = bnx_TPAT_b09FwText;
   2939 
   2940 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   2941 		fw.data_len = bnx_TPAT_b09FwDataLen;
   2942 		fw.data_index = 0;
   2943 		fw.data = bnx_TPAT_b09FwData;
   2944 
   2945 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   2946 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   2947 		fw.sbss_index = 0;
   2948 		fw.sbss = bnx_TPAT_b09FwSbss;
   2949 
   2950 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   2951 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   2952 		fw.bss_index = 0;
   2953 		fw.bss = bnx_TPAT_b09FwBss;
   2954 
   2955 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   2956 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   2957 		fw.rodata_index = 0;
   2958 		fw.rodata = bnx_TPAT_b09FwRodata;
   2959 
   2960 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   2961 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2962 
   2963 		/* Initialize the Completion Processor. */
   2964 		cpu_reg.mode = BNX_COM_CPU_MODE;
   2965 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   2966 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   2967 		cpu_reg.state = BNX_COM_CPU_STATE;
   2968 		cpu_reg.state_value_clear = 0xffffff;
   2969 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   2970 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   2971 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   2972 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   2973 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   2974 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   2975 		cpu_reg.mips_view_base = 0x8000000;
   2976 
   2977 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   2978 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   2979 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   2980 		fw.start_addr = bnx_COM_b09FwStartAddr;
   2981 
   2982 		fw.text_addr = bnx_COM_b09FwTextAddr;
   2983 		fw.text_len = bnx_COM_b09FwTextLen;
   2984 		fw.text_index = 0;
   2985 		fw.text = bnx_COM_b09FwText;
   2986 
   2987 		fw.data_addr = bnx_COM_b09FwDataAddr;
   2988 		fw.data_len = bnx_COM_b09FwDataLen;
   2989 		fw.data_index = 0;
   2990 		fw.data = bnx_COM_b09FwData;
   2991 
   2992 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   2993 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   2994 		fw.sbss_index = 0;
   2995 		fw.sbss = bnx_COM_b09FwSbss;
   2996 
   2997 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   2998 		fw.bss_len = bnx_COM_b09FwBssLen;
   2999 		fw.bss_index = 0;
   3000 		fw.bss = bnx_COM_b09FwBss;
   3001 
   3002 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   3003 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   3004 		fw.rodata_index = 0;
   3005 		fw.rodata = bnx_COM_b09FwRodata;
   3006 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3007 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3008 		break;
   3009 	default:
   3010 		/* Initialize the RV2P processor. */
   3011 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   3012 		    RV2P_PROC1);
   3013 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   3014 		    RV2P_PROC2);
   3015 
   3016 		/* Initialize the RX Processor. */
   3017 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   3018 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   3019 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   3020 		cpu_reg.state = BNX_RXP_CPU_STATE;
   3021 		cpu_reg.state_value_clear = 0xffffff;
   3022 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   3023 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   3024 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   3025 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   3026 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   3027 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   3028 		cpu_reg.mips_view_base = 0x8000000;
   3029 
   3030 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   3031 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   3032 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   3033 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   3034 
   3035 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   3036 		fw.text_len = bnx_RXP_b06FwTextLen;
   3037 		fw.text_index = 0;
   3038 		fw.text = bnx_RXP_b06FwText;
   3039 
   3040 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   3041 		fw.data_len = bnx_RXP_b06FwDataLen;
   3042 		fw.data_index = 0;
   3043 		fw.data = bnx_RXP_b06FwData;
   3044 
   3045 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   3046 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   3047 		fw.sbss_index = 0;
   3048 		fw.sbss = bnx_RXP_b06FwSbss;
   3049 
   3050 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   3051 		fw.bss_len = bnx_RXP_b06FwBssLen;
   3052 		fw.bss_index = 0;
   3053 		fw.bss = bnx_RXP_b06FwBss;
   3054 
   3055 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   3056 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   3057 		fw.rodata_index = 0;
   3058 		fw.rodata = bnx_RXP_b06FwRodata;
   3059 
   3060 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   3061 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3062 
   3063 		/* Initialize the TX Processor. */
   3064 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   3065 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   3066 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   3067 		cpu_reg.state = BNX_TXP_CPU_STATE;
   3068 		cpu_reg.state_value_clear = 0xffffff;
   3069 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   3070 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   3071 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   3072 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   3073 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   3074 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   3075 		cpu_reg.mips_view_base = 0x8000000;
   3076 
   3077 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   3078 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   3079 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   3080 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   3081 
   3082 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   3083 		fw.text_len = bnx_TXP_b06FwTextLen;
   3084 		fw.text_index = 0;
   3085 		fw.text = bnx_TXP_b06FwText;
   3086 
   3087 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   3088 		fw.data_len = bnx_TXP_b06FwDataLen;
   3089 		fw.data_index = 0;
   3090 		fw.data = bnx_TXP_b06FwData;
   3091 
   3092 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   3093 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   3094 		fw.sbss_index = 0;
   3095 		fw.sbss = bnx_TXP_b06FwSbss;
   3096 
   3097 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3098 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3099 		fw.bss_index = 0;
   3100 		fw.bss = bnx_TXP_b06FwBss;
   3101 
   3102 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3103 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3104 		fw.rodata_index = 0;
   3105 		fw.rodata = bnx_TXP_b06FwRodata;
   3106 
   3107 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3108 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3109 
   3110 		/* Initialize the TX Patch-up Processor. */
   3111 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3112 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3113 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3114 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3115 		cpu_reg.state_value_clear = 0xffffff;
   3116 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3117 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3118 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3119 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3120 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3121 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3122 		cpu_reg.mips_view_base = 0x8000000;
   3123 
   3124 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3125 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3126 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3127 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3128 
   3129 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3130 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3131 		fw.text_index = 0;
   3132 		fw.text = bnx_TPAT_b06FwText;
   3133 
   3134 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3135 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3136 		fw.data_index = 0;
   3137 		fw.data = bnx_TPAT_b06FwData;
   3138 
   3139 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3140 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3141 		fw.sbss_index = 0;
   3142 		fw.sbss = bnx_TPAT_b06FwSbss;
   3143 
   3144 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3145 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3146 		fw.bss_index = 0;
   3147 		fw.bss = bnx_TPAT_b06FwBss;
   3148 
   3149 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3150 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3151 		fw.rodata_index = 0;
   3152 		fw.rodata = bnx_TPAT_b06FwRodata;
   3153 
   3154 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3155 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3156 
   3157 		/* Initialize the Completion Processor. */
   3158 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3159 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3160 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3161 		cpu_reg.state = BNX_COM_CPU_STATE;
   3162 		cpu_reg.state_value_clear = 0xffffff;
   3163 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3164 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3165 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3166 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3167 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3168 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3169 		cpu_reg.mips_view_base = 0x8000000;
   3170 
   3171 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3172 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3173 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3174 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3175 
   3176 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3177 		fw.text_len = bnx_COM_b06FwTextLen;
   3178 		fw.text_index = 0;
   3179 		fw.text = bnx_COM_b06FwText;
   3180 
   3181 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3182 		fw.data_len = bnx_COM_b06FwDataLen;
   3183 		fw.data_index = 0;
   3184 		fw.data = bnx_COM_b06FwData;
   3185 
   3186 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3187 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3188 		fw.sbss_index = 0;
   3189 		fw.sbss = bnx_COM_b06FwSbss;
   3190 
   3191 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3192 		fw.bss_len = bnx_COM_b06FwBssLen;
   3193 		fw.bss_index = 0;
   3194 		fw.bss = bnx_COM_b06FwBss;
   3195 
   3196 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3197 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3198 		fw.rodata_index = 0;
   3199 		fw.rodata = bnx_COM_b06FwRodata;
   3200 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3201 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3202 		break;
   3203 	}
   3204 }
   3205 
   3206 /****************************************************************************/
   3207 /* Initialize context memory.                                               */
   3208 /*                                                                          */
   3209 /* Clears the memory associated with each Context ID (CID).                 */
   3210 /*                                                                          */
   3211 /* Returns:                                                                 */
   3212 /*   Nothing.                                                               */
   3213 /****************************************************************************/
   3214 void
   3215 bnx_init_context(struct bnx_softc *sc)
   3216 {
   3217 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3218 		/* DRC: Replace this constant value with a #define. */
   3219 		int i, retry_cnt = 10;
   3220 		uint32_t val;
   3221 
   3222 		/*
   3223 		 * BCM5709 context memory may be cached
   3224 		 * in host memory so prepare the host memory
   3225 		 * for access.
   3226 		 */
   3227 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3228 		    | (1 << 12);
   3229 		val |= (BCM_PAGE_BITS - 8) << 16;
   3230 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3231 
   3232 		/* Wait for mem init command to complete. */
   3233 		for (i = 0; i < retry_cnt; i++) {
   3234 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3235 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3236 				break;
   3237 			DELAY(2);
   3238 		}
   3239 
   3240 		/* ToDo: Consider returning an error here. */
   3241 
   3242 		for (i = 0; i < sc->ctx_pages; i++) {
   3243 			int j;
   3244 
   3245 			/* Set the physaddr of the context memory cache. */
   3246 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
   3247 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3248 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3249 			val = (uint32_t)
   3250 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
   3251 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3252 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3253 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3254 
   3255 			/* Verify that the context memory write was successful. */
   3256 			for (j = 0; j < retry_cnt; j++) {
   3257 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3258 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3259 					break;
   3260 				DELAY(5);
   3261 			}
   3262 
   3263 			/* ToDo: Consider returning an error here. */
   3264 		}
   3265 	} else {
   3266 		uint32_t vcid_addr, offset;
   3267 
   3268 		/*
   3269 		 * For the 5706/5708, context memory is local to the
   3270 		 * controller, so initialize the controller context memory.
   3271 		 */
   3272 
   3273 		vcid_addr = GET_CID_ADDR(96);
   3274 		while (vcid_addr) {
   3275 
   3276 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3277 
   3278 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3279 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3280 
   3281 			for (offset = 0; offset < BNX_PHY_CTX_SIZE;
   3282 			     offset += 4)
   3283 				CTX_WR(sc, 0x00, offset, 0);
   3284 
   3285 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3286 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3287 		}
   3288 	}
   3289 }
   3290 
   3291 /****************************************************************************/
   3292 /* Fetch the permanent MAC address of the controller.                       */
   3293 /*                                                                          */
   3294 /* Returns:                                                                 */
   3295 /*   Nothing.                                                               */
   3296 /****************************************************************************/
   3297 void
   3298 bnx_get_mac_addr(struct bnx_softc *sc)
   3299 {
   3300 	uint32_t		mac_lo = 0, mac_hi = 0;
   3301 
   3302 	/*
   3303 	 * The NetXtreme II bootcode populates various NIC
   3304 	 * power-on and runtime configuration items in a
   3305 	 * shared memory area.  The factory configured MAC
   3306 	 * address is available from both NVRAM and the
   3307 	 * shared memory area so we'll read the value from
   3308 	 * shared memory for speed.
   3309 	 */
   3310 
   3311 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3312 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3313 
   3314 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3315 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3316 		    __FILE__, __LINE__);
   3317 	} else {
   3318 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3319 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3320 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3321 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3322 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3323 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3324 	}
   3325 
   3326 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3327 	    "%s\n", ether_sprintf(sc->eaddr));
   3328 }
   3329 
   3330 /****************************************************************************/
   3331 /* Program the MAC address.                                                 */
   3332 /*                                                                          */
   3333 /* Returns:                                                                 */
   3334 /*   Nothing.                                                               */
   3335 /****************************************************************************/
   3336 void
   3337 bnx_set_mac_addr(struct bnx_softc *sc)
   3338 {
   3339 	uint32_t		val;
   3340 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3341 
   3342 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3343 	    "%s\n", ether_sprintf(sc->eaddr));
   3344 
   3345 	val = (mac_addr[0] << 8) | mac_addr[1];
   3346 
   3347 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3348 
   3349 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3350 		(mac_addr[4] << 8) | mac_addr[5];
   3351 
   3352 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3353 }
   3354 
   3355 /****************************************************************************/
   3356 /* Stop the controller.                                                     */
   3357 /*                                                                          */
   3358 /* Returns:                                                                 */
   3359 /*   Nothing.                                                               */
   3360 /****************************************************************************/
   3361 void
   3362 bnx_stop(struct ifnet *ifp, int disable)
   3363 {
   3364 	struct bnx_softc *sc = ifp->if_softc;
   3365 
   3366 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3367 
   3368 	if (disable) {
   3369 		sc->bnx_detaching = 1;
   3370 		callout_halt(&sc->bnx_timeout, NULL);
   3371 	} else
   3372 		callout_stop(&sc->bnx_timeout);
   3373 
   3374 	mii_down(&sc->bnx_mii);
   3375 
   3376 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3377 
   3378 	/* Disable the transmit/receive blocks. */
   3379 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3380 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3381 	DELAY(20);
   3382 
   3383 	bnx_disable_intr(sc);
   3384 
   3385 	/* Tell firmware that the driver is going away. */
   3386 	if (disable)
   3387 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3388 	else
   3389 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3390 
   3391 	/* Free RX buffers. */
   3392 	bnx_free_rx_chain(sc);
   3393 
   3394 	/* Free TX buffers. */
   3395 	bnx_free_tx_chain(sc);
   3396 
   3397 	ifp->if_timer = 0;
   3398 
   3399 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3400 
   3401 }
   3402 
   3403 int
   3404 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
   3405 {
   3406 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3407 	uint32_t		val;
   3408 	int			i, rc = 0;
   3409 
   3410 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3411 
   3412 	/* Wait for pending PCI transactions to complete. */
   3413 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3414 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3415 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3416 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3417 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3418 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3419 	DELAY(5);
   3420 
   3421 	/* Disable DMA */
   3422 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3423 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3424 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3425 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3426 	}
   3427 
   3428 	/* Assume bootcode is running. */
   3429 	sc->bnx_fw_timed_out = 0;
   3430 
   3431 	/* Give the firmware a chance to prepare for the reset. */
   3432 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3433 	if (rc)
   3434 		goto bnx_reset_exit;
   3435 
   3436 	/* Set a firmware reminder that this is a soft reset. */
   3437 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3438 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3439 
   3440 	/* Dummy read to force the chip to complete all current transactions. */
   3441 	val = REG_RD(sc, BNX_MISC_ID);
   3442 
   3443 	/* Chip reset. */
   3444 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3445 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3446 		REG_RD(sc, BNX_MISC_COMMAND);
   3447 		DELAY(5);
   3448 
   3449 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3450 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3451 
   3452 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3453 		    val);
   3454 	} else {
   3455 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3456 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3457 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3458 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3459 
   3460 		/* Allow up to 30us for reset to complete. */
   3461 		for (i = 0; i < 10; i++) {
   3462 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3463 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3464 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3465 				break;
   3466 			}
   3467 			DELAY(10);
   3468 		}
   3469 
   3470 		/* Check that reset completed successfully. */
   3471 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3472 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3473 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3474 			    __FILE__, __LINE__);
   3475 			rc = EBUSY;
   3476 			goto bnx_reset_exit;
   3477 		}
   3478 	}
   3479 
   3480 	/* Make sure byte swapping is properly configured. */
   3481 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3482 	if (val != 0x01020304) {
   3483 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3484 		    __FILE__, __LINE__);
   3485 		rc = ENODEV;
   3486 		goto bnx_reset_exit;
   3487 	}
   3488 
   3489 	/* Just completed a reset, assume that firmware is running again. */
   3490 	sc->bnx_fw_timed_out = 0;
   3491 
   3492 	/* Wait for the firmware to finish its initialization. */
   3493 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3494 	if (rc)
   3495 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3496 		    "initialization!\n", __FILE__, __LINE__);
   3497 
   3498 bnx_reset_exit:
   3499 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3500 
   3501 	return rc;
   3502 }
   3503 
   3504 int
   3505 bnx_chipinit(struct bnx_softc *sc)
   3506 {
   3507 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3508 	uint32_t		val;
   3509 	int			rc = 0;
   3510 
   3511 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3512 
   3513 	/* Make sure the interrupt is not active. */
   3514 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3515 
   3516 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3517 	/* channels and PCI clock compensation delay.                      */
   3518 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3519 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3520 #if BYTE_ORDER == BIG_ENDIAN
   3521 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3522 #endif
   3523 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3524 	    DMA_READ_CHANS << 12 |
   3525 	    DMA_WRITE_CHANS << 16;
   3526 
   3527 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3528 
   3529 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3530 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3531 
   3532 	/*
   3533 	 * This setting resolves a problem observed on certain Intel PCI
   3534 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3535 	 * See errata E9_5706A1_65.
   3536 	 */
   3537 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3538 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3539 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3540 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3541 
   3542 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3543 
   3544 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3545 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3546 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3547 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3548 		    val & ~0x20000);
   3549 	}
   3550 
   3551 	/* Enable the RX_V2P and Context state machines before access. */
   3552 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3553 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3554 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3555 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3556 
   3557 	/* Initialize context mapping and zero out the quick contexts. */
   3558 	bnx_init_context(sc);
   3559 
   3560 	/* Initialize the on-boards CPUs */
   3561 	bnx_init_cpus(sc);
   3562 
   3563 	/* Prepare NVRAM for access. */
   3564 	if (bnx_init_nvram(sc)) {
   3565 		rc = ENODEV;
   3566 		goto bnx_chipinit_exit;
   3567 	}
   3568 
   3569 	/* Set the kernel bypass block size */
   3570 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3571 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3572 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3573 
   3574 	/* Enable bins used on the 5709. */
   3575 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3576 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3577 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3578 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3579 	}
   3580 
   3581 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3582 
   3583 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3584 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3585 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3586 
   3587 	val = (BCM_PAGE_BITS - 8) << 24;
   3588 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3589 
   3590 	/* Configure page size. */
   3591 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3592 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3593 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3594 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3595 
   3596 #if 0
   3597 	/* Set the perfect match control register to default. */
   3598 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3599 #endif
   3600 
   3601 bnx_chipinit_exit:
   3602 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3603 
   3604 	return rc;
   3605 }
   3606 
   3607 /****************************************************************************/
   3608 /* Initialize the controller in preparation to send/receive traffic.        */
   3609 /*                                                                          */
   3610 /* Returns:                                                                 */
   3611 /*   0 for success, positive value for failure.                             */
   3612 /****************************************************************************/
   3613 int
   3614 bnx_blockinit(struct bnx_softc *sc)
   3615 {
   3616 	uint32_t		reg, val;
   3617 	int 			rc = 0;
   3618 
   3619 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3620 
   3621 	/* Load the hardware default MAC address. */
   3622 	bnx_set_mac_addr(sc);
   3623 
   3624 	/* Set the Ethernet backoff seed value */
   3625 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3626 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3627 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3628 
   3629 	sc->last_status_idx = 0;
   3630 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3631 
   3632 	/* Set up link change interrupt generation. */
   3633 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3634 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3635 
   3636 	/* Program the physical address of the status block. */
   3637 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
   3638 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3639 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
   3640 
   3641 	/* Program the physical address of the statistics block. */
   3642 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3643 	    (uint32_t)(sc->stats_block_paddr));
   3644 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3645 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
   3646 
   3647 	/* Program various host coalescing parameters. */
   3648 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3649 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3650 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3651 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3652 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3653 	    sc->bnx_comp_prod_trip);
   3654 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3655 	    sc->bnx_tx_ticks);
   3656 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3657 	    sc->bnx_rx_ticks);
   3658 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3659 	    sc->bnx_com_ticks);
   3660 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3661 	    sc->bnx_cmd_ticks);
   3662 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3663 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3664 	REG_WR(sc, BNX_HC_CONFIG,
   3665 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3666 	    BNX_HC_CONFIG_COLLECT_STATS));
   3667 
   3668 	/* Clear the internal statistics counters. */
   3669 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3670 
   3671 	/* Verify that bootcode is running. */
   3672 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3673 
   3674 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3675 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3676 	    __FILE__, __LINE__); reg = 0);
   3677 
   3678 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3679 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3680 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3681 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3682 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3683 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3684 		rc = ENODEV;
   3685 		goto bnx_blockinit_exit;
   3686 	}
   3687 
   3688 	/* Check if any management firmware is running. */
   3689 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3690 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3691 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3692 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3693 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3694 	}
   3695 
   3696 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3697 	    BNX_DEV_INFO_BC_REV);
   3698 
   3699 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3700 
   3701 	/* Enable DMA */
   3702 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3703 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3704 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3705 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3706 	}
   3707 
   3708 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3709 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3710 
   3711 	/* Enable link state change interrupt generation. */
   3712 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3713 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3714 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3715 	} else
   3716 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3717 
   3718 	/* Enable all remaining blocks in the MAC. */
   3719 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3720 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3721 	DELAY(20);
   3722 
   3723 bnx_blockinit_exit:
   3724 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3725 
   3726 	return rc;
   3727 }
   3728 
   3729 static int
   3730 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
   3731     uint16_t *chain_prod, uint32_t *prod_bseq)
   3732 {
   3733 	bus_dmamap_t		map;
   3734 	struct rx_bd		*rxbd;
   3735 	uint32_t		addr;
   3736 	int i;
   3737 #ifdef BNX_DEBUG
   3738 	uint16_t debug_chain_prod =	*chain_prod;
   3739 #endif
   3740 	uint16_t first_chain_prod;
   3741 
   3742 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3743 
   3744 	/* Map the mbuf cluster into device memory. */
   3745 	map = sc->rx_mbuf_map[*chain_prod];
   3746 	first_chain_prod = *chain_prod;
   3747 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3748 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3749 		    __FILE__, __LINE__);
   3750 
   3751 		m_freem(m_new);
   3752 
   3753 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3754 
   3755 		return ENOBUFS;
   3756 	}
   3757 	/* Make sure there is room in the receive chain. */
   3758 	if (map->dm_nsegs > sc->free_rx_bd) {
   3759 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3760 		m_freem(m_new);
   3761 		return EFBIG;
   3762 	}
   3763 #ifdef BNX_DEBUG
   3764 	/* Track the distribution of buffer segments. */
   3765 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3766 #endif
   3767 
   3768 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3769 	    BUS_DMASYNC_PREREAD);
   3770 
   3771 	/* Update some debug statistics counters */
   3772 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3773 	    sc->rx_low_watermark = sc->free_rx_bd);
   3774 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3775 
   3776 	/*
   3777 	 * Setup the rx_bd for the first segment
   3778 	 */
   3779 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3780 
   3781 	addr = (uint32_t)map->dm_segs[0].ds_addr;
   3782 	rxbd->rx_bd_haddr_lo = addr;
   3783 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
   3784 	rxbd->rx_bd_haddr_hi = addr;
   3785 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3786 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3787 	*prod_bseq += map->dm_segs[0].ds_len;
   3788 	bus_dmamap_sync(sc->bnx_dmatag,
   3789 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3790 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3791 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3792 
   3793 	for (i = 1; i < map->dm_nsegs; i++) {
   3794 		*prod = NEXT_RX_BD(*prod);
   3795 		*chain_prod = RX_CHAIN_IDX(*prod);
   3796 
   3797 		rxbd =
   3798 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3799 
   3800 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   3801 		rxbd->rx_bd_haddr_lo = addr;
   3802 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   3803 		rxbd->rx_bd_haddr_hi = addr;
   3804 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3805 		rxbd->rx_bd_flags = 0;
   3806 		*prod_bseq += map->dm_segs[i].ds_len;
   3807 		bus_dmamap_sync(sc->bnx_dmatag,
   3808 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3809 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3810 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3811 	}
   3812 
   3813 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3814 	bus_dmamap_sync(sc->bnx_dmatag,
   3815 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3816 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3817 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3818 
   3819 	/*
   3820 	 * Save the mbuf, adjust the map pointer (swap map for first and
   3821 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
   3822 	 * and update our counter.
   3823 	 */
   3824 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3825 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3826 	sc->rx_mbuf_map[*chain_prod] = map;
   3827 	sc->free_rx_bd -= map->dm_nsegs;
   3828 
   3829 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3830 	    map->dm_nsegs));
   3831 	*prod = NEXT_RX_BD(*prod);
   3832 	*chain_prod = RX_CHAIN_IDX(*prod);
   3833 
   3834 	return 0;
   3835 }
   3836 
   3837 /****************************************************************************/
   3838 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3839 /*                                                                          */
   3840 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3841 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3842 /* necessary.                                                               */
   3843 /*                                                                          */
   3844 /* Returns:                                                                 */
   3845 /*   0 for success, positive value for failure.                             */
   3846 /****************************************************************************/
   3847 int
   3848 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
   3849     uint16_t *chain_prod, uint32_t *prod_bseq)
   3850 {
   3851 	struct mbuf 		*m_new = NULL;
   3852 	int			rc = 0;
   3853 	uint16_t min_free_bd;
   3854 
   3855 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3856 	    __func__);
   3857 
   3858 	/* Make sure the inputs are valid. */
   3859 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3860 	    aprint_error_dev(sc->bnx_dev,
   3861 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3862 		*chain_prod, (uint16_t)MAX_RX_BD));
   3863 
   3864 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3865 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3866 	    *prod_bseq);
   3867 
   3868 	/* try to get in as many mbufs as possible */
   3869 	if (sc->mbuf_alloc_size == MCLBYTES)
   3870 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3871 	else
   3872 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3873 	while (sc->free_rx_bd >= min_free_bd) {
   3874 		/* Simulate an mbuf allocation failure. */
   3875 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3876 		    aprint_error_dev(sc->bnx_dev,
   3877 		    "Simulating mbuf allocation failure.\n");
   3878 			sc->mbuf_sim_alloc_failed++;
   3879 			rc = ENOBUFS;
   3880 			goto bnx_get_buf_exit);
   3881 
   3882 		/* This is a new mbuf allocation. */
   3883 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3884 		if (m_new == NULL) {
   3885 			DBPRINT(sc, BNX_WARN,
   3886 			    "%s(%d): RX mbuf header allocation failed!\n",
   3887 			    __FILE__, __LINE__);
   3888 
   3889 			sc->mbuf_alloc_failed++;
   3890 
   3891 			rc = ENOBUFS;
   3892 			goto bnx_get_buf_exit;
   3893 		}
   3894 
   3895 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3896 
   3897 		/* Simulate an mbuf cluster allocation failure. */
   3898 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3899 			m_freem(m_new);
   3900 			sc->rx_mbuf_alloc--;
   3901 			sc->mbuf_alloc_failed++;
   3902 			sc->mbuf_sim_alloc_failed++;
   3903 			rc = ENOBUFS;
   3904 			goto bnx_get_buf_exit);
   3905 
   3906 		if (sc->mbuf_alloc_size == MCLBYTES)
   3907 			MCLGET(m_new, M_DONTWAIT);
   3908 		else
   3909 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3910 			    M_DONTWAIT);
   3911 		if (!(m_new->m_flags & M_EXT)) {
   3912 			DBPRINT(sc, BNX_WARN,
   3913 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3914 			    __FILE__, __LINE__);
   3915 
   3916 			m_freem(m_new);
   3917 
   3918 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3919 			sc->mbuf_alloc_failed++;
   3920 
   3921 			rc = ENOBUFS;
   3922 			goto bnx_get_buf_exit;
   3923 		}
   3924 
   3925 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3926 		if (rc != 0)
   3927 			goto bnx_get_buf_exit;
   3928 	}
   3929 
   3930 bnx_get_buf_exit:
   3931 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3932 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3933 	    *chain_prod, *prod_bseq);
   3934 
   3935 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3936 	    __func__);
   3937 
   3938 	return rc;
   3939 }
   3940 
   3941 void
   3942 bnx_alloc_pkts(struct work * unused, void * arg)
   3943 {
   3944 	struct bnx_softc *sc = arg;
   3945 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   3946 	struct bnx_pkt *pkt;
   3947 	int i, s;
   3948 
   3949 	for (i = 0; i < 4; i++) { /* magic! */
   3950 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   3951 		if (pkt == NULL)
   3952 			break;
   3953 
   3954 		if (bus_dmamap_create(sc->bnx_dmatag,
   3955 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   3956 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   3957 		    &pkt->pkt_dmamap) != 0)
   3958 			goto put;
   3959 
   3960 		if (!ISSET(ifp->if_flags, IFF_UP))
   3961 			goto stopping;
   3962 
   3963 		mutex_enter(&sc->tx_pkt_mtx);
   3964 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   3965 		sc->tx_pkt_count++;
   3966 		mutex_exit(&sc->tx_pkt_mtx);
   3967 	}
   3968 
   3969 	mutex_enter(&sc->tx_pkt_mtx);
   3970 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   3971 	mutex_exit(&sc->tx_pkt_mtx);
   3972 
   3973 	/* fire-up TX now that allocations have been done */
   3974 	s = splnet();
   3975 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   3976 		bnx_start(ifp);
   3977 	splx(s);
   3978 
   3979 	return;
   3980 
   3981 stopping:
   3982 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   3983 put:
   3984 	pool_put(bnx_tx_pool, pkt);
   3985 	return;
   3986 }
   3987 
   3988 /****************************************************************************/
   3989 /* Initialize the TX context memory.                                        */
   3990 /*                                                                          */
   3991 /* Returns:                                                                 */
   3992 /*   Nothing                                                                */
   3993 /****************************************************************************/
   3994 void
   3995 bnx_init_tx_context(struct bnx_softc *sc)
   3996 {
   3997 	uint32_t val;
   3998 
   3999 	/* Initialize the context ID for an L2 TX chain. */
   4000 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4001 		/* Set the CID type to support an L2 connection. */
   4002 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4003 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   4004 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4005 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   4006 
   4007 		/* Point the hardware to the first page in the chain. */
   4008 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4009 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4010 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   4011 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4012 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4013 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   4014 	} else {
   4015 		/* Set the CID type to support an L2 connection. */
   4016 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4017 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   4018 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4019 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   4020 
   4021 		/* Point the hardware to the first page in the chain. */
   4022 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4023 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   4024 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4025 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   4026 	}
   4027 }
   4028 
   4029 
   4030 /****************************************************************************/
   4031 /* Allocate memory and initialize the TX data structures.                   */
   4032 /*                                                                          */
   4033 /* Returns:                                                                 */
   4034 /*   0 for success, positive value for failure.                             */
   4035 /****************************************************************************/
   4036 int
   4037 bnx_init_tx_chain(struct bnx_softc *sc)
   4038 {
   4039 	struct tx_bd		*txbd;
   4040 	uint32_t		addr;
   4041 	int			i, rc = 0;
   4042 
   4043 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4044 
   4045 	/* Force an allocation of some dmamaps for tx up front */
   4046 	bnx_alloc_pkts(NULL, sc);
   4047 
   4048 	/* Set the initial TX producer/consumer indices. */
   4049 	sc->tx_prod = 0;
   4050 	sc->tx_cons = 0;
   4051 	sc->tx_prod_bseq = 0;
   4052 	sc->used_tx_bd = 0;
   4053 	sc->max_tx_bd = USABLE_TX_BD;
   4054 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   4055 	DBRUNIF(1, sc->tx_full_count = 0);
   4056 
   4057 	/*
   4058 	 * The NetXtreme II supports a linked-list structure called
   4059 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   4060 	 * consists of a series of 1 or more chain pages, each of which
   4061 	 * consists of a fixed number of BD entries.
   4062 	 * The last BD entry on each page is a pointer to the next page
   4063 	 * in the chain, and the last pointer in the BD chain
   4064 	 * points back to the beginning of the chain.
   4065 	 */
   4066 
   4067 	/* Set the TX next pointer chain entries. */
   4068 	for (i = 0; i < TX_PAGES; i++) {
   4069 		int j;
   4070 
   4071 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   4072 
   4073 		/* Check if we've reached the last page. */
   4074 		if (i == (TX_PAGES - 1))
   4075 			j = 0;
   4076 		else
   4077 			j = i + 1;
   4078 
   4079 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
   4080 		txbd->tx_bd_haddr_lo = addr;
   4081 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
   4082 		txbd->tx_bd_haddr_hi = addr;
   4083 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4084 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4085 	}
   4086 
   4087 	/*
   4088 	 * Initialize the context ID for an L2 TX chain.
   4089 	 */
   4090 	bnx_init_tx_context(sc);
   4091 
   4092 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4093 
   4094 	return rc;
   4095 }
   4096 
   4097 /****************************************************************************/
   4098 /* Free memory and clear the TX data structures.                            */
   4099 /*                                                                          */
   4100 /* Returns:                                                                 */
   4101 /*   Nothing.                                                               */
   4102 /****************************************************************************/
   4103 void
   4104 bnx_free_tx_chain(struct bnx_softc *sc)
   4105 {
   4106 	struct bnx_pkt		*pkt;
   4107 	int			i;
   4108 
   4109 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4110 
   4111 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4112 	mutex_enter(&sc->tx_pkt_mtx);
   4113 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4114 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4115 		mutex_exit(&sc->tx_pkt_mtx);
   4116 
   4117 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4118 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4119 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4120 
   4121 		m_freem(pkt->pkt_mbuf);
   4122 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4123 
   4124 		mutex_enter(&sc->tx_pkt_mtx);
   4125 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4126 	}
   4127 
   4128 	/* Destroy all the dmamaps we allocated for TX */
   4129 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   4130 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4131 		sc->tx_pkt_count--;
   4132 		mutex_exit(&sc->tx_pkt_mtx);
   4133 
   4134 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4135 		pool_put(bnx_tx_pool, pkt);
   4136 
   4137 		mutex_enter(&sc->tx_pkt_mtx);
   4138 	}
   4139 	mutex_exit(&sc->tx_pkt_mtx);
   4140 
   4141 
   4142 
   4143 	/* Clear each TX chain page. */
   4144 	for (i = 0; i < TX_PAGES; i++) {
   4145 		memset((char *)sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4146 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4147 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4148 	}
   4149 
   4150 	sc->used_tx_bd = 0;
   4151 
   4152 	/* Check if we lost any mbufs in the process. */
   4153 	DBRUNIF((sc->tx_mbuf_alloc),
   4154 	    aprint_error_dev(sc->bnx_dev,
   4155 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   4156 		sc->tx_mbuf_alloc));
   4157 
   4158 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4159 }
   4160 
   4161 /****************************************************************************/
   4162 /* Initialize the RX context memory.                                        */
   4163 /*                                                                          */
   4164 /* Returns:                                                                 */
   4165 /*   Nothing                                                                */
   4166 /****************************************************************************/
   4167 void
   4168 bnx_init_rx_context(struct bnx_softc *sc)
   4169 {
   4170 	uint32_t val;
   4171 
   4172 	/* Initialize the context ID for an L2 RX chain. */
   4173 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4174 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4175 
   4176 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4177 		uint32_t lo_water, hi_water;
   4178 
   4179 		lo_water = BNX_L2CTX_RX_LO_WATER_MARK_DEFAULT;
   4180 		hi_water = USABLE_RX_BD / 4;
   4181 
   4182 		lo_water /= BNX_L2CTX_RX_LO_WATER_MARK_SCALE;
   4183 		hi_water /= BNX_L2CTX_RX_HI_WATER_MARK_SCALE;
   4184 
   4185 		if (hi_water > 0xf)
   4186 			hi_water = 0xf;
   4187 		else if (hi_water == 0)
   4188 			lo_water = 0;
   4189 		val |= lo_water |
   4190 		    (hi_water << BNX_L2CTX_RX_HI_WATER_MARK_SHIFT);
   4191 	}
   4192 
   4193  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4194 
   4195 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4196 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4197 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4198 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4199 	}
   4200 
   4201 	/* Point the hardware to the first page in the chain. */
   4202 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4203 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4204 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
   4205 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4206 }
   4207 
   4208 /****************************************************************************/
   4209 /* Allocate memory and initialize the RX data structures.                   */
   4210 /*                                                                          */
   4211 /* Returns:                                                                 */
   4212 /*   0 for success, positive value for failure.                             */
   4213 /****************************************************************************/
   4214 int
   4215 bnx_init_rx_chain(struct bnx_softc *sc)
   4216 {
   4217 	struct rx_bd		*rxbd;
   4218 	int			i, rc = 0;
   4219 	uint16_t		prod, chain_prod;
   4220 	uint32_t		prod_bseq, addr;
   4221 
   4222 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4223 
   4224 	/* Initialize the RX producer and consumer indices. */
   4225 	sc->rx_prod = 0;
   4226 	sc->rx_cons = 0;
   4227 	sc->rx_prod_bseq = 0;
   4228 	sc->free_rx_bd = USABLE_RX_BD;
   4229 	sc->max_rx_bd = USABLE_RX_BD;
   4230 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4231 	DBRUNIF(1, sc->rx_empty_count = 0);
   4232 
   4233 	/* Initialize the RX next pointer chain entries. */
   4234 	for (i = 0; i < RX_PAGES; i++) {
   4235 		int j;
   4236 
   4237 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4238 
   4239 		/* Check if we've reached the last page. */
   4240 		if (i == (RX_PAGES - 1))
   4241 			j = 0;
   4242 		else
   4243 			j = i + 1;
   4244 
   4245 		/* Setup the chain page pointers. */
   4246 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4247 		rxbd->rx_bd_haddr_hi = addr;
   4248 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
   4249 		rxbd->rx_bd_haddr_lo = addr;
   4250 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4251 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4252 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4253 	}
   4254 
   4255 	/* Allocate mbuf clusters for the rx_bd chain. */
   4256 	prod = prod_bseq = 0;
   4257 	chain_prod = RX_CHAIN_IDX(prod);
   4258 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4259 		BNX_PRINTF(sc,
   4260 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4261 	}
   4262 
   4263 	/* Save the RX chain producer index. */
   4264 	sc->rx_prod = prod;
   4265 	sc->rx_prod_bseq = prod_bseq;
   4266 
   4267 	for (i = 0; i < RX_PAGES; i++)
   4268 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4269 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4270 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4271 
   4272 	/* Tell the chip about the waiting rx_bd's. */
   4273 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4274 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4275 
   4276 	bnx_init_rx_context(sc);
   4277 
   4278 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4279 
   4280 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4281 
   4282 	return rc;
   4283 }
   4284 
   4285 /****************************************************************************/
   4286 /* Free memory and clear the RX data structures.                            */
   4287 /*                                                                          */
   4288 /* Returns:                                                                 */
   4289 /*   Nothing.                                                               */
   4290 /****************************************************************************/
   4291 void
   4292 bnx_free_rx_chain(struct bnx_softc *sc)
   4293 {
   4294 	int			i;
   4295 
   4296 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4297 
   4298 	/* Free any mbufs still in the RX mbuf chain. */
   4299 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4300 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4301 			if (sc->rx_mbuf_map[i] != NULL) {
   4302 				bus_dmamap_sync(sc->bnx_dmatag,
   4303 				    sc->rx_mbuf_map[i],	0,
   4304 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4305 				    BUS_DMASYNC_POSTREAD);
   4306 				bus_dmamap_unload(sc->bnx_dmatag,
   4307 				    sc->rx_mbuf_map[i]);
   4308 			}
   4309 			m_freem(sc->rx_mbuf_ptr[i]);
   4310 			sc->rx_mbuf_ptr[i] = NULL;
   4311 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4312 		}
   4313 	}
   4314 
   4315 	/* Clear each RX chain page. */
   4316 	for (i = 0; i < RX_PAGES; i++)
   4317 		memset((char *)sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4318 
   4319 	sc->free_rx_bd = sc->max_rx_bd;
   4320 
   4321 	/* Check if we lost any mbufs in the process. */
   4322 	DBRUNIF((sc->rx_mbuf_alloc),
   4323 	    aprint_error_dev(sc->bnx_dev,
   4324 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   4325 		sc->rx_mbuf_alloc));
   4326 
   4327 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4328 }
   4329 
   4330 /****************************************************************************/
   4331 /* Handles PHY generated interrupt events.                                  */
   4332 /*                                                                          */
   4333 /* Returns:                                                                 */
   4334 /*   Nothing.                                                               */
   4335 /****************************************************************************/
   4336 void
   4337 bnx_phy_intr(struct bnx_softc *sc)
   4338 {
   4339 	uint32_t		new_link_state, old_link_state;
   4340 
   4341 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4342 	    BUS_DMASYNC_POSTREAD);
   4343 	new_link_state = sc->status_block->status_attn_bits &
   4344 	    STATUS_ATTN_BITS_LINK_STATE;
   4345 	old_link_state = sc->status_block->status_attn_bits_ack &
   4346 	    STATUS_ATTN_BITS_LINK_STATE;
   4347 
   4348 	/* Handle any changes if the link state has changed. */
   4349 	if (new_link_state != old_link_state) {
   4350 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4351 
   4352 		callout_stop(&sc->bnx_timeout);
   4353 		bnx_tick(sc);
   4354 
   4355 		/* Update the status_attn_bits_ack field in the status block. */
   4356 		if (new_link_state) {
   4357 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4358 			    STATUS_ATTN_BITS_LINK_STATE);
   4359 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4360 		} else {
   4361 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4362 			    STATUS_ATTN_BITS_LINK_STATE);
   4363 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4364 		}
   4365 	}
   4366 
   4367 	/* Acknowledge the link change interrupt. */
   4368 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4369 }
   4370 
   4371 /****************************************************************************/
   4372 /* Handles received frame interrupt events.                                 */
   4373 /*                                                                          */
   4374 /* Returns:                                                                 */
   4375 /*   Nothing.                                                               */
   4376 /****************************************************************************/
   4377 void
   4378 bnx_rx_intr(struct bnx_softc *sc)
   4379 {
   4380 	struct status_block	*sblk = sc->status_block;
   4381 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4382 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
   4383 	uint16_t		sw_prod, sw_chain_prod;
   4384 	uint32_t		sw_prod_bseq;
   4385 	struct l2_fhdr		*l2fhdr;
   4386 	int			i;
   4387 
   4388 	DBRUNIF(1, sc->rx_interrupts++);
   4389 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4390 	    BUS_DMASYNC_POSTREAD);
   4391 
   4392 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4393 	for (i = 0; i < RX_PAGES; i++)
   4394 		bus_dmamap_sync(sc->bnx_dmatag,
   4395 		    sc->rx_bd_chain_map[i], 0,
   4396 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4397 		    BUS_DMASYNC_POSTWRITE);
   4398 
   4399 	/* Get the hardware's view of the RX consumer index. */
   4400 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4401 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4402 		hw_cons++;
   4403 
   4404 	/* Get working copies of the driver's view of the RX indices. */
   4405 	sw_cons = sc->rx_cons;
   4406 	sw_prod = sc->rx_prod;
   4407 	sw_prod_bseq = sc->rx_prod_bseq;
   4408 
   4409 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4410 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4411 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4412 
   4413 	/* Prevent speculative reads from getting ahead of the status block. */
   4414 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4415 	    BUS_SPACE_BARRIER_READ);
   4416 
   4417 	/* Update some debug statistics counters */
   4418 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4419 	    sc->rx_low_watermark = sc->free_rx_bd);
   4420 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4421 
   4422 	/*
   4423 	 * Scan through the receive chain as long
   4424 	 * as there is work to do.
   4425 	 */
   4426 	while (sw_cons != hw_cons) {
   4427 		struct mbuf *m;
   4428 		struct rx_bd *rxbd __diagused;
   4429 		unsigned int len;
   4430 		uint32_t status;
   4431 
   4432 		/* Convert the producer/consumer indices to an actual
   4433 		 * rx_bd index.
   4434 		 */
   4435 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4436 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4437 
   4438 		/* Get the used rx_bd. */
   4439 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4440 		sc->free_rx_bd++;
   4441 
   4442 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4443 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4444 
   4445 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4446 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4447 #ifdef DIAGNOSTIC
   4448 			/* Validate that this is the last rx_bd. */
   4449 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4450 			    printf("%s: Unexpected mbuf found in "
   4451 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4452 			        sw_chain_cons);
   4453 			}
   4454 #endif
   4455 
   4456 			/* DRC - ToDo: If the received packet is small, say
   4457 			 *             less than 128 bytes, allocate a new mbuf
   4458 			 *             here, copy the data to that mbuf, and
   4459 			 *             recycle the mapped jumbo frame.
   4460 			 */
   4461 
   4462 			/* Unmap the mbuf from DMA space. */
   4463 #ifdef DIAGNOSTIC
   4464 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4465 				printf("invalid map sw_cons 0x%x "
   4466 				"sw_prod 0x%x "
   4467 				"sw_chain_cons 0x%x "
   4468 				"sw_chain_prod 0x%x "
   4469 				"hw_cons 0x%x "
   4470 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4471 				"TOTAL_RX_BD 0x%x\n",
   4472 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4473 				hw_cons,
   4474 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4475 			}
   4476 #endif
   4477 			bus_dmamap_sync(sc->bnx_dmatag,
   4478 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4479 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4480 			    BUS_DMASYNC_POSTREAD);
   4481 			bus_dmamap_unload(sc->bnx_dmatag,
   4482 			    sc->rx_mbuf_map[sw_chain_cons]);
   4483 
   4484 			/* Remove the mbuf from the driver's chain. */
   4485 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4486 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4487 
   4488 			/*
   4489 			 * Frames received on the NetXteme II are prepended
   4490 			 * with the l2_fhdr structure which provides status
   4491 			 * information about the received frame (including
   4492 			 * VLAN tags and checksum info) and are also
   4493 			 * automatically adjusted to align the IP header
   4494 			 * (i.e. two null bytes are inserted before the
   4495 			 * Ethernet header).
   4496 			 */
   4497 			l2fhdr = mtod(m, struct l2_fhdr *);
   4498 
   4499 			len    = l2fhdr->l2_fhdr_pkt_len;
   4500 			status = l2fhdr->l2_fhdr_status;
   4501 
   4502 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4503 			    aprint_error("Simulating l2_fhdr status error.\n");
   4504 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4505 
   4506 			/* Watch for unusual sized frames. */
   4507 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4508 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4509 			    aprint_error_dev(sc->bnx_dev,
   4510 			        "Unusual frame size found. "
   4511 				"Min(%d), Actual(%d), Max(%d)\n",
   4512 				(int)BNX_MIN_MTU, len,
   4513 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4514 
   4515 			bnx_dump_mbuf(sc, m);
   4516 			bnx_breakpoint(sc));
   4517 
   4518 			len -= ETHER_CRC_LEN;
   4519 
   4520 			/* Check the received frame for errors. */
   4521 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4522 			    L2_FHDR_ERRORS_PHY_DECODE |
   4523 			    L2_FHDR_ERRORS_ALIGNMENT |
   4524 			    L2_FHDR_ERRORS_TOO_SHORT |
   4525 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4526 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4527 			    len >
   4528 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4529 				ifp->if_ierrors++;
   4530 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4531 
   4532 				/* Reuse the mbuf for a new frame. */
   4533 				if (bnx_add_buf(sc, m, &sw_prod,
   4534 				    &sw_chain_prod, &sw_prod_bseq)) {
   4535 					DBRUNIF(1, bnx_breakpoint(sc));
   4536 					panic("%s: Can't reuse RX mbuf!\n",
   4537 					    device_xname(sc->bnx_dev));
   4538 				}
   4539 				continue;
   4540 			}
   4541 
   4542 			/*
   4543 			 * Get a new mbuf for the rx_bd.   If no new
   4544 			 * mbufs are available then reuse the current mbuf,
   4545 			 * log an ierror on the interface, and generate
   4546 			 * an error in the system log.
   4547 			 */
   4548 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4549 			    &sw_prod_bseq)) {
   4550 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4551 				    "Failed to allocate "
   4552 				    "new mbuf, incoming frame dropped!\n"));
   4553 
   4554 				ifp->if_ierrors++;
   4555 
   4556 				/* Try and reuse the exisitng mbuf. */
   4557 				if (bnx_add_buf(sc, m, &sw_prod,
   4558 				    &sw_chain_prod, &sw_prod_bseq)) {
   4559 					DBRUNIF(1, bnx_breakpoint(sc));
   4560 					panic("%s: Double mbuf allocation "
   4561 					    "failure!",
   4562 					    device_xname(sc->bnx_dev));
   4563 				}
   4564 				continue;
   4565 			}
   4566 
   4567 			/* Skip over the l2_fhdr when passing the data up
   4568 			 * the stack.
   4569 			 */
   4570 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4571 
   4572 			/* Adjust the pckt length to match the received data. */
   4573 			m->m_pkthdr.len = m->m_len = len;
   4574 
   4575 			/* Send the packet to the appropriate interface. */
   4576 			m_set_rcvif(m, ifp);
   4577 
   4578 			DBRUN(BNX_VERBOSE_RECV,
   4579 			    struct ether_header *eh;
   4580 			    eh = mtod(m, struct ether_header *);
   4581 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4582 			    __func__, ether_sprintf(eh->ether_dhost),
   4583 			    ether_sprintf(eh->ether_shost),
   4584 			    htons(eh->ether_type)));
   4585 
   4586 			/* Validate the checksum. */
   4587 
   4588 			/* Check for an IP datagram. */
   4589 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4590 				/* Check if the IP checksum is valid. */
   4591 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
   4592 					m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   4593 #ifdef BNX_DEBUG
   4594 				else
   4595 					DBPRINT(sc, BNX_WARN_SEND,
   4596 					    "%s(): Invalid IP checksum "
   4597 					        "= 0x%04X!\n",
   4598 						__func__,
   4599 						l2fhdr->l2_fhdr_ip_xsum
   4600 						);
   4601 #endif
   4602 			}
   4603 
   4604 			/* Check for a valid TCP/UDP frame. */
   4605 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4606 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4607 				/* Check for a good TCP/UDP checksum. */
   4608 				if ((status &
   4609 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4610 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4611 					m->m_pkthdr.csum_flags |=
   4612 					    M_CSUM_TCPv4 |
   4613 					    M_CSUM_UDPv4;
   4614 				} else {
   4615 					DBPRINT(sc, BNX_WARN_SEND,
   4616 					    "%s(): Invalid TCP/UDP "
   4617 					    "checksum = 0x%04X!\n",
   4618 					    __func__,
   4619 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4620 				}
   4621 			}
   4622 
   4623 			/*
   4624 			 * If we received a packet with a vlan tag,
   4625 			 * attach that information to the packet.
   4626 			 */
   4627 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4628 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4629 				vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
   4630 			}
   4631 
   4632 			/* Pass the mbuf off to the upper layers. */
   4633 
   4634 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4635 			    "%s(): Passing received frame up.\n", __func__);
   4636 			if_percpuq_enqueue(ifp->if_percpuq, m);
   4637 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4638 
   4639 		}
   4640 
   4641 		sw_cons = NEXT_RX_BD(sw_cons);
   4642 
   4643 		/* Refresh hw_cons to see if there's new work */
   4644 		if (sw_cons == hw_cons) {
   4645 			hw_cons = sc->hw_rx_cons =
   4646 			    sblk->status_rx_quick_consumer_index0;
   4647 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4648 			    USABLE_RX_BD_PER_PAGE)
   4649 				hw_cons++;
   4650 		}
   4651 
   4652 		/* Prevent speculative reads from getting ahead of
   4653 		 * the status block.
   4654 		 */
   4655 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4656 		    BUS_SPACE_BARRIER_READ);
   4657 	}
   4658 
   4659 	for (i = 0; i < RX_PAGES; i++)
   4660 		bus_dmamap_sync(sc->bnx_dmatag,
   4661 		    sc->rx_bd_chain_map[i], 0,
   4662 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4663 		    BUS_DMASYNC_PREWRITE);
   4664 
   4665 	sc->rx_cons = sw_cons;
   4666 	sc->rx_prod = sw_prod;
   4667 	sc->rx_prod_bseq = sw_prod_bseq;
   4668 
   4669 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4670 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4671 
   4672 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4673 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4674 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4675 }
   4676 
   4677 /****************************************************************************/
   4678 /* Handles transmit completion interrupt events.                            */
   4679 /*                                                                          */
   4680 /* Returns:                                                                 */
   4681 /*   Nothing.                                                               */
   4682 /****************************************************************************/
   4683 void
   4684 bnx_tx_intr(struct bnx_softc *sc)
   4685 {
   4686 	struct status_block	*sblk = sc->status_block;
   4687 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4688 	struct bnx_pkt		*pkt;
   4689 	bus_dmamap_t		map;
   4690 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4691 
   4692 	DBRUNIF(1, sc->tx_interrupts++);
   4693 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4694 	    BUS_DMASYNC_POSTREAD);
   4695 
   4696 	/* Get the hardware's view of the TX consumer index. */
   4697 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4698 
   4699 	/* Skip to the next entry if this is a chain page pointer. */
   4700 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4701 		hw_tx_cons++;
   4702 
   4703 	sw_tx_cons = sc->tx_cons;
   4704 
   4705 	/* Prevent speculative reads from getting ahead of the status block. */
   4706 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4707 	    BUS_SPACE_BARRIER_READ);
   4708 
   4709 	/* Cycle through any completed TX chain page entries. */
   4710 	while (sw_tx_cons != hw_tx_cons) {
   4711 #ifdef BNX_DEBUG
   4712 		struct tx_bd *txbd = NULL;
   4713 #endif
   4714 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4715 
   4716 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4717 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4718 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4719 
   4720 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4721 		    aprint_error_dev(sc->bnx_dev,
   4722 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4723 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4724 
   4725 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4726 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4727 
   4728 		DBRUNIF((txbd == NULL),
   4729 		    aprint_error_dev(sc->bnx_dev,
   4730 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4731 		    bnx_breakpoint(sc));
   4732 
   4733 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4734 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4735 
   4736 
   4737 		mutex_enter(&sc->tx_pkt_mtx);
   4738 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4739 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4740 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4741 			mutex_exit(&sc->tx_pkt_mtx);
   4742 			/*
   4743 			 * Free the associated mbuf. Remember
   4744 			 * that only the last tx_bd of a packet
   4745 			 * has an mbuf pointer and DMA map.
   4746 			 */
   4747 			map = pkt->pkt_dmamap;
   4748 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4749 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4750 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4751 
   4752 			m_freem(pkt->pkt_mbuf);
   4753 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4754 
   4755 			ifp->if_opackets++;
   4756 
   4757 			mutex_enter(&sc->tx_pkt_mtx);
   4758 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4759 		}
   4760 		mutex_exit(&sc->tx_pkt_mtx);
   4761 
   4762 		sc->used_tx_bd--;
   4763 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4764 			__FILE__, __LINE__, sc->used_tx_bd);
   4765 
   4766 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4767 
   4768 		/* Refresh hw_cons to see if there's new work. */
   4769 		hw_tx_cons = sc->hw_tx_cons =
   4770 		    sblk->status_tx_quick_consumer_index0;
   4771 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4772 		    USABLE_TX_BD_PER_PAGE)
   4773 			hw_tx_cons++;
   4774 
   4775 		/* Prevent speculative reads from getting ahead of
   4776 		 * the status block.
   4777 		 */
   4778 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4779 		    BUS_SPACE_BARRIER_READ);
   4780 	}
   4781 
   4782 	/* Clear the TX timeout timer. */
   4783 	ifp->if_timer = 0;
   4784 
   4785 	/* Clear the tx hardware queue full flag. */
   4786 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4787 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4788 		    aprint_debug_dev(sc->bnx_dev,
   4789 		        "Open TX chain! %d/%d (used/total)\n",
   4790 			sc->used_tx_bd, sc->max_tx_bd));
   4791 		ifp->if_flags &= ~IFF_OACTIVE;
   4792 	}
   4793 
   4794 	sc->tx_cons = sw_tx_cons;
   4795 }
   4796 
   4797 /****************************************************************************/
   4798 /* Disables interrupt generation.                                           */
   4799 /*                                                                          */
   4800 /* Returns:                                                                 */
   4801 /*   Nothing.                                                               */
   4802 /****************************************************************************/
   4803 void
   4804 bnx_disable_intr(struct bnx_softc *sc)
   4805 {
   4806 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4807 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4808 }
   4809 
   4810 /****************************************************************************/
   4811 /* Enables interrupt generation.                                            */
   4812 /*                                                                          */
   4813 /* Returns:                                                                 */
   4814 /*   Nothing.                                                               */
   4815 /****************************************************************************/
   4816 void
   4817 bnx_enable_intr(struct bnx_softc *sc)
   4818 {
   4819 	uint32_t		val;
   4820 
   4821 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4822 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4823 
   4824 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4825 	    sc->last_status_idx);
   4826 
   4827 	val = REG_RD(sc, BNX_HC_COMMAND);
   4828 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4829 }
   4830 
   4831 /****************************************************************************/
   4832 /* Handles controller initialization.                                       */
   4833 /*                                                                          */
   4834 /****************************************************************************/
   4835 int
   4836 bnx_init(struct ifnet *ifp)
   4837 {
   4838 	struct bnx_softc	*sc = ifp->if_softc;
   4839 	uint32_t		ether_mtu;
   4840 	int			s, error = 0;
   4841 
   4842 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4843 
   4844 	s = splnet();
   4845 
   4846 	bnx_stop(ifp, 0);
   4847 
   4848 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4849 		aprint_error_dev(sc->bnx_dev,
   4850 		    "Controller reset failed!\n");
   4851 		goto bnx_init_exit;
   4852 	}
   4853 
   4854 	if ((error = bnx_chipinit(sc)) != 0) {
   4855 		aprint_error_dev(sc->bnx_dev,
   4856 		    "Controller initialization failed!\n");
   4857 		goto bnx_init_exit;
   4858 	}
   4859 
   4860 	if ((error = bnx_blockinit(sc)) != 0) {
   4861 		aprint_error_dev(sc->bnx_dev,
   4862 		    "Block initialization failed!\n");
   4863 		goto bnx_init_exit;
   4864 	}
   4865 
   4866 	/* Calculate and program the Ethernet MRU size. */
   4867 	if (ifp->if_mtu <= ETHERMTU) {
   4868 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4869 		sc->mbuf_alloc_size = MCLBYTES;
   4870 	} else {
   4871 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4872 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   4873 	}
   4874 
   4875 
   4876 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
   4877 
   4878 	/*
   4879 	 * Program the MRU and enable Jumbo frame
   4880 	 * support.
   4881 	 */
   4882 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4883 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4884 
   4885 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4886 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4887 
   4888 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4889 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4890 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4891 
   4892 	/* Program appropriate promiscuous/multicast filtering. */
   4893 	bnx_iff(sc);
   4894 
   4895 	/* Init RX buffer descriptor chain. */
   4896 	bnx_init_rx_chain(sc);
   4897 
   4898 	/* Init TX buffer descriptor chain. */
   4899 	bnx_init_tx_chain(sc);
   4900 
   4901 	/* Enable host interrupts. */
   4902 	bnx_enable_intr(sc);
   4903 
   4904 	if ((error = ether_mediachange(ifp)) != 0)
   4905 		goto bnx_init_exit;
   4906 
   4907 	SET(ifp->if_flags, IFF_RUNNING);
   4908 	CLR(ifp->if_flags, IFF_OACTIVE);
   4909 
   4910 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4911 
   4912 bnx_init_exit:
   4913 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4914 
   4915 	splx(s);
   4916 
   4917 	return error;
   4918 }
   4919 
   4920 /****************************************************************************/
   4921 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4922 /* memory visible to the controller.                                        */
   4923 /*                                                                          */
   4924 /* Returns:                                                                 */
   4925 /*   0 for success, positive value for failure.                             */
   4926 /****************************************************************************/
   4927 int
   4928 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   4929 {
   4930 	struct bnx_pkt		*pkt;
   4931 	bus_dmamap_t		map;
   4932 	struct tx_bd		*txbd = NULL;
   4933 	uint16_t		vlan_tag = 0, flags = 0;
   4934 	uint16_t		chain_prod, prod;
   4935 #ifdef BNX_DEBUG
   4936 	uint16_t		debug_prod;
   4937 #endif
   4938 	uint32_t		addr, prod_bseq;
   4939 	int			i, error;
   4940 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
   4941 
   4942 	mutex_enter(&sc->tx_pkt_mtx);
   4943 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   4944 	if (pkt == NULL) {
   4945 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   4946 			mutex_exit(&sc->tx_pkt_mtx);
   4947 			return ENETDOWN;
   4948 		}
   4949 
   4950 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   4951 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   4952 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
   4953 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4954 		}
   4955 
   4956 		mutex_exit(&sc->tx_pkt_mtx);
   4957 		return ENOMEM;
   4958 	}
   4959 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4960 	mutex_exit(&sc->tx_pkt_mtx);
   4961 
   4962 	/* Transfer any checksum offload flags to the bd. */
   4963 	if (m->m_pkthdr.csum_flags) {
   4964 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   4965 			flags |= TX_BD_FLAGS_IP_CKSUM;
   4966 		if (m->m_pkthdr.csum_flags &
   4967 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   4968 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   4969 	}
   4970 
   4971 	/* Transfer any VLAN tags to the bd. */
   4972 	if (vlan_has_tag(m)) {
   4973 		flags |= TX_BD_FLAGS_VLAN_TAG;
   4974 		vlan_tag = vlan_get_tag(m);
   4975 	}
   4976 
   4977 	/* Map the mbuf into DMAable memory. */
   4978 	prod = sc->tx_prod;
   4979 	chain_prod = TX_CHAIN_IDX(prod);
   4980 	map = pkt->pkt_dmamap;
   4981 
   4982 	/* Map the mbuf into our DMA address space. */
   4983 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   4984 	if (error != 0) {
   4985 		aprint_error_dev(sc->bnx_dev,
   4986 		    "Error mapping mbuf into TX chain!\n");
   4987 		sc->tx_dma_map_failures++;
   4988 		goto maperr;
   4989 	}
   4990 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   4991 	    BUS_DMASYNC_PREWRITE);
   4992 	/* Make sure there's room in the chain */
   4993 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   4994 		goto nospace;
   4995 
   4996 	/* prod points to an empty tx_bd at this point. */
   4997 	prod_bseq = sc->tx_prod_bseq;
   4998 #ifdef BNX_DEBUG
   4999 	debug_prod = chain_prod;
   5000 #endif
   5001 	DBPRINT(sc, BNX_INFO_SEND,
   5002 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   5003 		"prod_bseq = 0x%08X\n",
   5004 		__func__, prod, chain_prod, prod_bseq);
   5005 
   5006 	/*
   5007 	 * Cycle through each mbuf segment that makes up
   5008 	 * the outgoing frame, gathering the mapping info
   5009 	 * for that segment and creating a tx_bd for the
   5010 	 * mbuf.
   5011 	 */
   5012 	for (i = 0; i < map->dm_nsegs ; i++) {
   5013 		chain_prod = TX_CHAIN_IDX(prod);
   5014 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   5015 
   5016 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   5017 		txbd->tx_bd_haddr_lo = addr;
   5018 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   5019 		txbd->tx_bd_haddr_hi = addr;
   5020 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   5021 		txbd->tx_bd_vlan_tag = vlan_tag;
   5022 		txbd->tx_bd_flags = flags;
   5023 		prod_bseq += map->dm_segs[i].ds_len;
   5024 		if (i == 0)
   5025 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   5026 		prod = NEXT_TX_BD(prod);
   5027 	}
   5028 	/* Set the END flag on the last TX buffer descriptor. */
   5029 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   5030 
   5031 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   5032 
   5033 	DBPRINT(sc, BNX_INFO_SEND,
   5034 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   5035 		"prod_bseq = 0x%08X\n",
   5036 		__func__, prod, chain_prod, prod_bseq);
   5037 
   5038 	pkt->pkt_mbuf = m;
   5039 	pkt->pkt_end_desc = chain_prod;
   5040 
   5041 	mutex_enter(&sc->tx_pkt_mtx);
   5042 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   5043 	mutex_exit(&sc->tx_pkt_mtx);
   5044 
   5045 	sc->used_tx_bd += map->dm_nsegs;
   5046 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   5047 		__FILE__, __LINE__, sc->used_tx_bd);
   5048 
   5049 	/* Update some debug statistics counters */
   5050 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   5051 	    sc->tx_hi_watermark = sc->used_tx_bd);
   5052 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   5053 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   5054 
   5055 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   5056 	    map->dm_nsegs));
   5057 
   5058 	/* prod points to the next free tx_bd at this point. */
   5059 	sc->tx_prod = prod;
   5060 	sc->tx_prod_bseq = prod_bseq;
   5061 
   5062 	return 0;
   5063 
   5064 
   5065 nospace:
   5066 	bus_dmamap_unload(sc->bnx_dmatag, map);
   5067 maperr:
   5068 	mutex_enter(&sc->tx_pkt_mtx);
   5069 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   5070 	mutex_exit(&sc->tx_pkt_mtx);
   5071 
   5072 	return ENOMEM;
   5073 }
   5074 
   5075 /****************************************************************************/
   5076 /* Main transmit routine.                                                   */
   5077 /*                                                                          */
   5078 /* Returns:                                                                 */
   5079 /*   Nothing.                                                               */
   5080 /****************************************************************************/
   5081 void
   5082 bnx_start(struct ifnet *ifp)
   5083 {
   5084 	struct bnx_softc	*sc = ifp->if_softc;
   5085 	struct mbuf		*m_head = NULL;
   5086 	int			count = 0;
   5087 #ifdef BNX_DEBUG
   5088 	uint16_t		tx_chain_prod;
   5089 #endif
   5090 
   5091 	/* If there's no link or the transmit queue is empty then just exit. */
   5092 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   5093 		DBPRINT(sc, BNX_INFO_SEND,
   5094 		    "%s(): output active or device not running.\n", __func__);
   5095 		goto bnx_start_exit;
   5096 	}
   5097 
   5098 	/* prod points to the next free tx_bd. */
   5099 #ifdef BNX_DEBUG
   5100 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5101 #endif
   5102 
   5103 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5104 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5105 	    "used_tx %d max_tx %d\n",
   5106 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5107 	    sc->used_tx_bd, sc->max_tx_bd);
   5108 
   5109 	/*
   5110 	 * Keep adding entries while there is space in the ring.
   5111 	 */
   5112 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5113 		/* Check for any frames to send. */
   5114 		IFQ_POLL(&ifp->if_snd, m_head);
   5115 		if (m_head == NULL)
   5116 			break;
   5117 
   5118 		/*
   5119 		 * Pack the data into the transmit ring. If we
   5120 		 * don't have room, set the OACTIVE flag to wait
   5121 		 * for the NIC to drain the chain.
   5122 		 */
   5123 		if (bnx_tx_encap(sc, m_head)) {
   5124 			ifp->if_flags |= IFF_OACTIVE;
   5125 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5126 			    "business! Total tx_bd used = %d\n",
   5127 			    sc->used_tx_bd);
   5128 			break;
   5129 		}
   5130 
   5131 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5132 		count++;
   5133 
   5134 		/* Send a copy of the frame to any BPF listeners. */
   5135 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5136 	}
   5137 
   5138 	if (count == 0) {
   5139 		/* no packets were dequeued */
   5140 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5141 		    "%s(): No packets were dequeued\n", __func__);
   5142 		goto bnx_start_exit;
   5143 	}
   5144 
   5145 	/* Update the driver's counters. */
   5146 #ifdef BNX_DEBUG
   5147 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5148 #endif
   5149 
   5150 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
   5151 	    "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
   5152 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   5153 
   5154 	/* Start the transmit. */
   5155 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5156 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5157 
   5158 	/* Set the tx timeout. */
   5159 	ifp->if_timer = BNX_TX_TIMEOUT;
   5160 
   5161 bnx_start_exit:
   5162 	return;
   5163 }
   5164 
   5165 /****************************************************************************/
   5166 /* Handles any IOCTL calls from the operating system.                       */
   5167 /*                                                                          */
   5168 /* Returns:                                                                 */
   5169 /*   0 for success, positive value for failure.                             */
   5170 /****************************************************************************/
   5171 int
   5172 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5173 {
   5174 	struct bnx_softc	*sc = ifp->if_softc;
   5175 	struct ifreq		*ifr = (struct ifreq *) data;
   5176 	struct mii_data		*mii = &sc->bnx_mii;
   5177 	int			s, error = 0;
   5178 
   5179 	s = splnet();
   5180 
   5181 	switch (command) {
   5182 	case SIOCSIFFLAGS:
   5183 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5184 			break;
   5185 		/* XXX set an ifflags callback and let ether_ioctl
   5186 		 * handle all of this.
   5187 		 */
   5188 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5189 			if (ifp->if_flags & IFF_RUNNING)
   5190 				error = ENETRESET;
   5191 			else
   5192 				bnx_init(ifp);
   5193 		} else if (ifp->if_flags & IFF_RUNNING)
   5194 			bnx_stop(ifp, 1);
   5195 		break;
   5196 
   5197 	case SIOCSIFMEDIA:
   5198 	case SIOCGIFMEDIA:
   5199 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5200 		    sc->bnx_phy_flags);
   5201 
   5202 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5203 		break;
   5204 
   5205 	default:
   5206 		error = ether_ioctl(ifp, command, data);
   5207 	}
   5208 
   5209 	if (error == ENETRESET) {
   5210 		if (ifp->if_flags & IFF_RUNNING)
   5211 			bnx_iff(sc);
   5212 		error = 0;
   5213 	}
   5214 
   5215 	splx(s);
   5216 	return error;
   5217 }
   5218 
   5219 /****************************************************************************/
   5220 /* Transmit timeout handler.                                                */
   5221 /*                                                                          */
   5222 /* Returns:                                                                 */
   5223 /*   Nothing.                                                               */
   5224 /****************************************************************************/
   5225 void
   5226 bnx_watchdog(struct ifnet *ifp)
   5227 {
   5228 	struct bnx_softc	*sc = ifp->if_softc;
   5229 
   5230 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5231 	    bnx_dump_status_block(sc));
   5232 	/*
   5233 	 * If we are in this routine because of pause frames, then
   5234 	 * don't reset the hardware.
   5235 	 */
   5236 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5237 		return;
   5238 
   5239 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5240 
   5241 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5242 
   5243 	bnx_init(ifp);
   5244 
   5245 	ifp->if_oerrors++;
   5246 }
   5247 
   5248 /*
   5249  * Interrupt handler.
   5250  */
   5251 /****************************************************************************/
   5252 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5253 /* interrupt and then calls a separate routine for handle the various       */
   5254 /* interrupt causes (PHY, TX, RX).                                          */
   5255 /*                                                                          */
   5256 /* Returns:                                                                 */
   5257 /*   0 for success, positive value for failure.                             */
   5258 /****************************************************************************/
   5259 int
   5260 bnx_intr(void *xsc)
   5261 {
   5262 	struct bnx_softc	*sc;
   5263 	struct ifnet		*ifp;
   5264 	uint32_t		status_attn_bits;
   5265 	const struct status_block *sblk;
   5266 
   5267 	sc = xsc;
   5268 
   5269 	ifp = &sc->bnx_ec.ec_if;
   5270 
   5271 	if (!device_is_active(sc->bnx_dev) ||
   5272 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5273 		return 0;
   5274 
   5275 	DBRUNIF(1, sc->interrupts_generated++);
   5276 
   5277 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5278 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   5279 
   5280 	/*
   5281 	 * If the hardware status block index
   5282 	 * matches the last value read by the
   5283 	 * driver and we haven't asserted our
   5284 	 * interrupt then there's nothing to do.
   5285 	 */
   5286 	if ((sc->status_block->status_idx == sc->last_status_idx) &&
   5287 	    (REG_RD(sc, BNX_PCICFG_MISC_STATUS) &
   5288 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE))
   5289 		return 0;
   5290 
   5291 	/* Ack the interrupt and stop others from occurring. */
   5292 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5293 	    BNX_PCICFG_INT_ACK_CMD_USE_INT_HC_PARAM |
   5294 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5295 
   5296 	/* Keep processing data as long as there is work to do. */
   5297 	for (;;) {
   5298 		sblk = sc->status_block;
   5299 		status_attn_bits = sblk->status_attn_bits;
   5300 
   5301 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5302 		    aprint_debug("Simulating unexpected status attention bit set.");
   5303 		    status_attn_bits = status_attn_bits |
   5304 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5305 
   5306 		/* Was it a link change interrupt? */
   5307 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5308 		    (sblk->status_attn_bits_ack &
   5309 		    STATUS_ATTN_BITS_LINK_STATE))
   5310 			bnx_phy_intr(sc);
   5311 
   5312 		/* If any other attention is asserted then the chip is toast. */
   5313 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5314 		    (sblk->status_attn_bits_ack &
   5315 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5316 			DBRUN(1, sc->unexpected_attentions++);
   5317 
   5318 			BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
   5319 			    sblk->status_attn_bits);
   5320 
   5321 			DBRUN(BNX_FATAL,
   5322 			    if (bnx_debug_unexpected_attention == 0)
   5323 			    bnx_breakpoint(sc));
   5324 
   5325 			bnx_init(ifp);
   5326 			return 1;
   5327 		}
   5328 
   5329 		/* Check for any completed RX frames. */
   5330 		if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
   5331 			bnx_rx_intr(sc);
   5332 
   5333 		/* Check for any completed TX frames. */
   5334 		if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
   5335 			bnx_tx_intr(sc);
   5336 
   5337 		/*
   5338 		 * Save the status block index value for use during the
   5339 		 * next interrupt.
   5340 		 */
   5341 		sc->last_status_idx = sblk->status_idx;
   5342 
   5343 		/* Prevent speculative reads from getting ahead of the
   5344 		 * status block.
   5345 		 */
   5346 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   5347 		    BUS_SPACE_BARRIER_READ);
   5348 
   5349 		/* If there's no work left then exit the isr. */
   5350 		if ((sblk->status_rx_quick_consumer_index0 ==
   5351 			sc->hw_rx_cons) &&
   5352 		    (sblk->status_tx_quick_consumer_index0 == sc->hw_tx_cons))
   5353 			break;
   5354 	}
   5355 
   5356 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5357 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREWRITE);
   5358 
   5359 	/* Re-enable interrupts. */
   5360 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5361 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx |
   5362 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   5363 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5364 	    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | sc->last_status_idx);
   5365 
   5366 	/* Handle any frames that arrived while handling the interrupt. */
   5367 	if_schedule_deferred_start(ifp);
   5368 
   5369 	return 1;
   5370 }
   5371 
   5372 /****************************************************************************/
   5373 /* Programs the various packet receive modes (broadcast and multicast).     */
   5374 /*                                                                          */
   5375 /* Returns:                                                                 */
   5376 /*   Nothing.                                                               */
   5377 /****************************************************************************/
   5378 void
   5379 bnx_iff(struct bnx_softc *sc)
   5380 {
   5381 	struct ethercom		*ec = &sc->bnx_ec;
   5382 	struct ifnet		*ifp = &ec->ec_if;
   5383 	struct ether_multi	*enm;
   5384 	struct ether_multistep	step;
   5385 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5386 	uint32_t		rx_mode, sort_mode;
   5387 	int			h, i;
   5388 
   5389 	/* Initialize receive mode default settings. */
   5390 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5391 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5392 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5393 	ifp->if_flags &= ~IFF_ALLMULTI;
   5394 
   5395 	/*
   5396 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5397 	 * be enbled.
   5398 	 */
   5399 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5400 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5401 
   5402 	/*
   5403 	 * Check for promiscuous, all multicast, or selected
   5404 	 * multicast address filtering.
   5405 	 */
   5406 	if (ifp->if_flags & IFF_PROMISC) {
   5407 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5408 
   5409 		ifp->if_flags |= IFF_ALLMULTI;
   5410 		/* Enable promiscuous mode. */
   5411 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5412 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5413 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5414 allmulti:
   5415 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5416 
   5417 		ifp->if_flags |= IFF_ALLMULTI;
   5418 		/* Enable all multicast addresses. */
   5419 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5420 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5421 			    0xffffffff);
   5422 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5423 	} else {
   5424 		/* Accept one or more multicast(s). */
   5425 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5426 
   5427 		ETHER_FIRST_MULTI(step, ec, enm);
   5428 		while (enm != NULL) {
   5429 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5430 			    ETHER_ADDR_LEN)) {
   5431 				goto allmulti;
   5432 			}
   5433 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5434 			    0xFF;
   5435 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5436 			ETHER_NEXT_MULTI(step, enm);
   5437 		}
   5438 
   5439 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5440 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5441 			    hashes[i]);
   5442 
   5443 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5444 	}
   5445 
   5446 	/* Only make changes if the recive mode has actually changed. */
   5447 	if (rx_mode != sc->rx_mode) {
   5448 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5449 		    rx_mode);
   5450 
   5451 		sc->rx_mode = rx_mode;
   5452 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5453 	}
   5454 
   5455 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5456 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5457 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5458 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5459 }
   5460 
   5461 /****************************************************************************/
   5462 /* Called periodically to updates statistics from the controllers           */
   5463 /* statistics block.                                                        */
   5464 /*                                                                          */
   5465 /* Returns:                                                                 */
   5466 /*   Nothing.                                                               */
   5467 /****************************************************************************/
   5468 void
   5469 bnx_stats_update(struct bnx_softc *sc)
   5470 {
   5471 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5472 	struct statistics_block	*stats;
   5473 
   5474 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5475 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5476 	    BUS_DMASYNC_POSTREAD);
   5477 
   5478 	stats = (struct statistics_block *)sc->stats_block;
   5479 
   5480 	/*
   5481 	 * Update the interface statistics from the
   5482 	 * hardware statistics.
   5483 	 */
   5484 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5485 
   5486 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5487 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5488 	    (u_long)stats->stat_IfInMBUFDiscards +
   5489 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5490 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5491 
   5492 	ifp->if_oerrors = (u_long)
   5493 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5494 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5495 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5496 
   5497 	/*
   5498 	 * Certain controllers don't report
   5499 	 * carrier sense errors correctly.
   5500 	 * See errata E11_5708CA0_1165.
   5501 	 */
   5502 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5503 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5504 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5505 
   5506 	/*
   5507 	 * Update the sysctl statistics from the
   5508 	 * hardware statistics.
   5509 	 */
   5510 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
   5511 	    (uint64_t) stats->stat_IfHCInOctets_lo;
   5512 
   5513 	sc->stat_IfHCInBadOctets =
   5514 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5515 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
   5516 
   5517 	sc->stat_IfHCOutOctets =
   5518 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5519 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
   5520 
   5521 	sc->stat_IfHCOutBadOctets =
   5522 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5523 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
   5524 
   5525 	sc->stat_IfHCInUcastPkts =
   5526 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5527 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
   5528 
   5529 	sc->stat_IfHCInMulticastPkts =
   5530 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5531 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
   5532 
   5533 	sc->stat_IfHCInBroadcastPkts =
   5534 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5535 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5536 
   5537 	sc->stat_IfHCOutUcastPkts =
   5538 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5539 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
   5540 
   5541 	sc->stat_IfHCOutMulticastPkts =
   5542 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5543 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5544 
   5545 	sc->stat_IfHCOutBroadcastPkts =
   5546 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5547 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5548 
   5549 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5550 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5551 
   5552 	sc->stat_Dot3StatsCarrierSenseErrors =
   5553 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5554 
   5555 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5556 
   5557 	sc->stat_Dot3StatsAlignmentErrors =
   5558 	    stats->stat_Dot3StatsAlignmentErrors;
   5559 
   5560 	sc->stat_Dot3StatsSingleCollisionFrames =
   5561 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5562 
   5563 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5564 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5565 
   5566 	sc->stat_Dot3StatsDeferredTransmissions =
   5567 	    stats->stat_Dot3StatsDeferredTransmissions;
   5568 
   5569 	sc->stat_Dot3StatsExcessiveCollisions =
   5570 	    stats->stat_Dot3StatsExcessiveCollisions;
   5571 
   5572 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5573 
   5574 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5575 
   5576 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5577 
   5578 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5579 
   5580 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5581 
   5582 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5583 
   5584 	sc->stat_EtherStatsPktsRx64Octets =
   5585 	    stats->stat_EtherStatsPktsRx64Octets;
   5586 
   5587 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5588 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5589 
   5590 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5591 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5592 
   5593 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5594 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5595 
   5596 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5597 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5598 
   5599 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5600 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5601 
   5602 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5603 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5604 
   5605 	sc->stat_EtherStatsPktsTx64Octets =
   5606 	    stats->stat_EtherStatsPktsTx64Octets;
   5607 
   5608 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5609 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5610 
   5611 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5612 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5613 
   5614 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5615 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5616 
   5617 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5618 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5619 
   5620 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5621 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5622 
   5623 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5624 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5625 
   5626 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5627 
   5628 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5629 
   5630 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5631 
   5632 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5633 
   5634 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5635 
   5636 	sc->stat_MacControlFramesReceived =
   5637 	    stats->stat_MacControlFramesReceived;
   5638 
   5639 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5640 
   5641 	sc->stat_IfInFramesL2FilterDiscards =
   5642 	    stats->stat_IfInFramesL2FilterDiscards;
   5643 
   5644 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5645 
   5646 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5647 
   5648 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5649 
   5650 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5651 
   5652 	sc->stat_CatchupInRuleCheckerDiscards =
   5653 	    stats->stat_CatchupInRuleCheckerDiscards;
   5654 
   5655 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5656 
   5657 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5658 
   5659 	sc->stat_CatchupInRuleCheckerP4Hit =
   5660 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5661 
   5662 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5663 }
   5664 
   5665 void
   5666 bnx_tick(void *xsc)
   5667 {
   5668 	struct bnx_softc	*sc = xsc;
   5669 	struct mii_data		*mii;
   5670 	uint32_t		msg;
   5671 	uint16_t		prod, chain_prod;
   5672 	uint32_t		prod_bseq;
   5673 	int s = splnet();
   5674 
   5675 	/* Tell the firmware that the driver is still running. */
   5676 #ifdef BNX_DEBUG
   5677 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5678 #else
   5679 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5680 #endif
   5681 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5682 
   5683 	/* Update the statistics from the hardware statistics block. */
   5684 	bnx_stats_update(sc);
   5685 
   5686 	mii = &sc->bnx_mii;
   5687 	mii_tick(mii);
   5688 
   5689 	/* try to get more RX buffers, just in case */
   5690 	prod = sc->rx_prod;
   5691 	prod_bseq = sc->rx_prod_bseq;
   5692 	chain_prod = RX_CHAIN_IDX(prod);
   5693 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5694 	sc->rx_prod = prod;
   5695 	sc->rx_prod_bseq = prod_bseq;
   5696 
   5697 	/* Schedule the next tick. */
   5698 	if (!sc->bnx_detaching)
   5699 		callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5700 
   5701 	splx(s);
   5702 	return;
   5703 }
   5704 
   5705 /****************************************************************************/
   5706 /* BNX Debug Routines                                                       */
   5707 /****************************************************************************/
   5708 #ifdef BNX_DEBUG
   5709 
   5710 /****************************************************************************/
   5711 /* Prints out information about an mbuf.                                    */
   5712 /*                                                                          */
   5713 /* Returns:                                                                 */
   5714 /*   Nothing.                                                               */
   5715 /****************************************************************************/
   5716 void
   5717 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5718 {
   5719 	struct mbuf		*mp = m;
   5720 
   5721 	if (m == NULL) {
   5722 		/* Index out of range. */
   5723 		aprint_error("mbuf ptr is null!\n");
   5724 		return;
   5725 	}
   5726 
   5727 	while (mp) {
   5728 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5729 		    mp, mp->m_len);
   5730 
   5731 		if (mp->m_flags & M_EXT)
   5732 			aprint_debug("M_EXT ");
   5733 		if (mp->m_flags & M_PKTHDR)
   5734 			aprint_debug("M_PKTHDR ");
   5735 		aprint_debug("\n");
   5736 
   5737 		if (mp->m_flags & M_EXT)
   5738 			aprint_debug("- m_ext: vaddr = %p, "
   5739 			    "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
   5740 
   5741 		mp = mp->m_next;
   5742 	}
   5743 }
   5744 
   5745 /****************************************************************************/
   5746 /* Prints out the mbufs in the TX mbuf chain.                               */
   5747 /*                                                                          */
   5748 /* Returns:                                                                 */
   5749 /*   Nothing.                                                               */
   5750 /****************************************************************************/
   5751 void
   5752 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5753 {
   5754 #if 0
   5755 	struct mbuf		*m;
   5756 	int			i;
   5757 
   5758 	aprint_debug_dev(sc->bnx_dev,
   5759 	    "----------------------------"
   5760 	    "  tx mbuf data  "
   5761 	    "----------------------------\n");
   5762 
   5763 	for (i = 0; i < count; i++) {
   5764 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5765 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5766 		bnx_dump_mbuf(sc, m);
   5767 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5768 	}
   5769 
   5770 	aprint_debug_dev(sc->bnx_dev,
   5771 	    "--------------------------------------------"
   5772 	    "----------------------------\n");
   5773 #endif
   5774 }
   5775 
   5776 /*
   5777  * This routine prints the RX mbuf chain.
   5778  */
   5779 void
   5780 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5781 {
   5782 	struct mbuf		*m;
   5783 	int			i;
   5784 
   5785 	aprint_debug_dev(sc->bnx_dev,
   5786 	    "----------------------------"
   5787 	    "  rx mbuf data  "
   5788 	    "----------------------------\n");
   5789 
   5790 	for (i = 0; i < count; i++) {
   5791 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5792 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5793 		bnx_dump_mbuf(sc, m);
   5794 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5795 	}
   5796 
   5797 
   5798 	aprint_debug_dev(sc->bnx_dev,
   5799 	    "--------------------------------------------"
   5800 	    "----------------------------\n");
   5801 }
   5802 
   5803 void
   5804 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5805 {
   5806 	if (idx > MAX_TX_BD)
   5807 		/* Index out of range. */
   5808 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5809 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5810 		/* TX Chain page pointer. */
   5811 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5812 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5813 		    txbd->tx_bd_haddr_lo);
   5814 	else
   5815 		/* Normal tx_bd entry. */
   5816 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5817 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5818 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5819 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5820 		    txbd->tx_bd_flags);
   5821 }
   5822 
   5823 void
   5824 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5825 {
   5826 	if (idx > MAX_RX_BD)
   5827 		/* Index out of range. */
   5828 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5829 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5830 		/* TX Chain page pointer. */
   5831 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5832 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5833 		    rxbd->rx_bd_haddr_lo);
   5834 	else
   5835 		/* Normal tx_bd entry. */
   5836 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5837 		    "0x%08X, flags = 0x%08X\n", idx,
   5838 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5839 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5840 }
   5841 
   5842 void
   5843 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5844 {
   5845 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5846 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5847 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5848 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5849 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5850 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5851 }
   5852 
   5853 /*
   5854  * This routine prints the TX chain.
   5855  */
   5856 void
   5857 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5858 {
   5859 	struct tx_bd		*txbd;
   5860 	int			i;
   5861 
   5862 	/* First some info about the tx_bd chain structure. */
   5863 	aprint_debug_dev(sc->bnx_dev,
   5864 	    "----------------------------"
   5865 	    "  tx_bd  chain  "
   5866 	    "----------------------------\n");
   5867 
   5868 	BNX_PRINTF(sc,
   5869 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5870 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
   5871 
   5872 	BNX_PRINTF(sc,
   5873 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5874 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
   5875 
   5876 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
   5877 
   5878 	aprint_error_dev(sc->bnx_dev, ""
   5879 	    "-----------------------------"
   5880 	    "   tx_bd data   "
   5881 	    "-----------------------------\n");
   5882 
   5883 	/* Now print out the tx_bd's themselves. */
   5884 	for (i = 0; i < count; i++) {
   5885 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5886 		bnx_dump_txbd(sc, tx_prod, txbd);
   5887 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5888 	}
   5889 
   5890 	aprint_debug_dev(sc->bnx_dev,
   5891 	    "-----------------------------"
   5892 	    "--------------"
   5893 	    "-----------------------------\n");
   5894 }
   5895 
   5896 /*
   5897  * This routine prints the RX chain.
   5898  */
   5899 void
   5900 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5901 {
   5902 	struct rx_bd		*rxbd;
   5903 	int			i;
   5904 
   5905 	/* First some info about the tx_bd chain structure. */
   5906 	aprint_debug_dev(sc->bnx_dev,
   5907 	    "----------------------------"
   5908 	    "  rx_bd  chain  "
   5909 	    "----------------------------\n");
   5910 
   5911 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   5912 
   5913 	BNX_PRINTF(sc,
   5914 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5915 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
   5916 
   5917 	BNX_PRINTF(sc,
   5918 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5919 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
   5920 
   5921 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
   5922 
   5923 	aprint_error_dev(sc->bnx_dev,
   5924 	    "----------------------------"
   5925 	    "   rx_bd data   "
   5926 	    "----------------------------\n");
   5927 
   5928 	/* Now print out the rx_bd's themselves. */
   5929 	for (i = 0; i < count; i++) {
   5930 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5931 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5932 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5933 	}
   5934 
   5935 	aprint_debug_dev(sc->bnx_dev,
   5936 	    "----------------------------"
   5937 	    "--------------"
   5938 	    "----------------------------\n");
   5939 }
   5940 
   5941 /*
   5942  * This routine prints the status block.
   5943  */
   5944 void
   5945 bnx_dump_status_block(struct bnx_softc *sc)
   5946 {
   5947 	struct status_block	*sblk;
   5948 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5949 	    BUS_DMASYNC_POSTREAD);
   5950 
   5951 	sblk = sc->status_block;
   5952 
   5953    	aprint_debug_dev(sc->bnx_dev, "----------------------------- "
   5954 	    "Status Block -----------------------------\n");
   5955 
   5956 	BNX_PRINTF(sc,
   5957 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   5958 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   5959 	    sblk->status_idx);
   5960 
   5961 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   5962 	    sblk->status_rx_quick_consumer_index0,
   5963 	    sblk->status_tx_quick_consumer_index0);
   5964 
   5965 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   5966 
   5967 	/* Theses indices are not used for normal L2 drivers. */
   5968 	if (sblk->status_rx_quick_consumer_index1 ||
   5969 		sblk->status_tx_quick_consumer_index1)
   5970 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   5971 		    sblk->status_rx_quick_consumer_index1,
   5972 		    sblk->status_tx_quick_consumer_index1);
   5973 
   5974 	if (sblk->status_rx_quick_consumer_index2 ||
   5975 		sblk->status_tx_quick_consumer_index2)
   5976 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   5977 		    sblk->status_rx_quick_consumer_index2,
   5978 		    sblk->status_tx_quick_consumer_index2);
   5979 
   5980 	if (sblk->status_rx_quick_consumer_index3 ||
   5981 		sblk->status_tx_quick_consumer_index3)
   5982 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   5983 		    sblk->status_rx_quick_consumer_index3,
   5984 		    sblk->status_tx_quick_consumer_index3);
   5985 
   5986 	if (sblk->status_rx_quick_consumer_index4 ||
   5987 		sblk->status_rx_quick_consumer_index5)
   5988 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   5989 		    sblk->status_rx_quick_consumer_index4,
   5990 		    sblk->status_rx_quick_consumer_index5);
   5991 
   5992 	if (sblk->status_rx_quick_consumer_index6 ||
   5993 		sblk->status_rx_quick_consumer_index7)
   5994 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   5995 		    sblk->status_rx_quick_consumer_index6,
   5996 		    sblk->status_rx_quick_consumer_index7);
   5997 
   5998 	if (sblk->status_rx_quick_consumer_index8 ||
   5999 		sblk->status_rx_quick_consumer_index9)
   6000 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   6001 		    sblk->status_rx_quick_consumer_index8,
   6002 		    sblk->status_rx_quick_consumer_index9);
   6003 
   6004 	if (sblk->status_rx_quick_consumer_index10 ||
   6005 		sblk->status_rx_quick_consumer_index11)
   6006 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   6007 		    sblk->status_rx_quick_consumer_index10,
   6008 		    sblk->status_rx_quick_consumer_index11);
   6009 
   6010 	if (sblk->status_rx_quick_consumer_index12 ||
   6011 		sblk->status_rx_quick_consumer_index13)
   6012 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   6013 		    sblk->status_rx_quick_consumer_index12,
   6014 		    sblk->status_rx_quick_consumer_index13);
   6015 
   6016 	if (sblk->status_rx_quick_consumer_index14 ||
   6017 		sblk->status_rx_quick_consumer_index15)
   6018 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   6019 		    sblk->status_rx_quick_consumer_index14,
   6020 		    sblk->status_rx_quick_consumer_index15);
   6021 
   6022 	if (sblk->status_completion_producer_index ||
   6023 		sblk->status_cmd_consumer_index)
   6024 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   6025 		    sblk->status_completion_producer_index,
   6026 		    sblk->status_cmd_consumer_index);
   6027 
   6028 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6029 	    "-----------------------------\n");
   6030 }
   6031 
   6032 /*
   6033  * This routine prints the statistics block.
   6034  */
   6035 void
   6036 bnx_dump_stats_block(struct bnx_softc *sc)
   6037 {
   6038 	struct statistics_block	*sblk;
   6039 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6040 	    BUS_DMASYNC_POSTREAD);
   6041 
   6042 	sblk = sc->stats_block;
   6043 
   6044 	aprint_debug_dev(sc->bnx_dev, ""
   6045 	    "-----------------------------"
   6046 	    " Stats  Block "
   6047 	    "-----------------------------\n");
   6048 
   6049 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   6050 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   6051 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   6052 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   6053 
   6054 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   6055 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   6056 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   6057 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   6058 
   6059 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   6060 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   6061 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   6062 	    sblk->stat_IfHCInMulticastPkts_hi,
   6063 	    sblk->stat_IfHCInMulticastPkts_lo);
   6064 
   6065 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   6066 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   6067 	    sblk->stat_IfHCInBroadcastPkts_hi,
   6068 	    sblk->stat_IfHCInBroadcastPkts_lo,
   6069 	    sblk->stat_IfHCOutUcastPkts_hi,
   6070 	    sblk->stat_IfHCOutUcastPkts_lo);
   6071 
   6072 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   6073 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   6074 	    sblk->stat_IfHCOutMulticastPkts_hi,
   6075 	    sblk->stat_IfHCOutMulticastPkts_lo,
   6076 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   6077 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   6078 
   6079 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   6080 		BNX_PRINTF(sc, "0x%08X : "
   6081 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6082 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6083 
   6084 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6085 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6086 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6087 
   6088 	if (sblk->stat_Dot3StatsFCSErrors)
   6089 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6090 		    sblk->stat_Dot3StatsFCSErrors);
   6091 
   6092 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6093 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6094 		    sblk->stat_Dot3StatsAlignmentErrors);
   6095 
   6096 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6097 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6098 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6099 
   6100 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6101 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6102 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6103 
   6104 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6105 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6106 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6107 
   6108 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6109 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6110 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6111 
   6112 	if (sblk->stat_Dot3StatsLateCollisions)
   6113 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6114 		    sblk->stat_Dot3StatsLateCollisions);
   6115 
   6116 	if (sblk->stat_EtherStatsCollisions)
   6117 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6118 		    sblk->stat_EtherStatsCollisions);
   6119 
   6120 	if (sblk->stat_EtherStatsFragments)
   6121 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6122 		    sblk->stat_EtherStatsFragments);
   6123 
   6124 	if (sblk->stat_EtherStatsJabbers)
   6125 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6126 		    sblk->stat_EtherStatsJabbers);
   6127 
   6128 	if (sblk->stat_EtherStatsUndersizePkts)
   6129 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6130 		    sblk->stat_EtherStatsUndersizePkts);
   6131 
   6132 	if (sblk->stat_EtherStatsOverrsizePkts)
   6133 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6134 		    sblk->stat_EtherStatsOverrsizePkts);
   6135 
   6136 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6137 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6138 		    sblk->stat_EtherStatsPktsRx64Octets);
   6139 
   6140 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6141 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6142 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6143 
   6144 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6145 		BNX_PRINTF(sc, "0x%08X : "
   6146 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6147 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6148 
   6149 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6150 		BNX_PRINTF(sc, "0x%08X : "
   6151 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6152 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6153 
   6154 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6155 		BNX_PRINTF(sc, "0x%08X : "
   6156 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6157 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6158 
   6159 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6160 		BNX_PRINTF(sc, "0x%08X : "
   6161 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6162 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6163 
   6164 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6165 		BNX_PRINTF(sc, "0x%08X : "
   6166 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6167 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6168 
   6169 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6170 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6171 		    sblk->stat_EtherStatsPktsTx64Octets);
   6172 
   6173 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6174 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6175 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6176 
   6177 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6178 		BNX_PRINTF(sc, "0x%08X : "
   6179 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6180 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6181 
   6182 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6183 		BNX_PRINTF(sc, "0x%08X : "
   6184 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6185 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6186 
   6187 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6188 		BNX_PRINTF(sc, "0x%08X : "
   6189 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6190 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6191 
   6192 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6193 		BNX_PRINTF(sc, "0x%08X : "
   6194 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6195 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6196 
   6197 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6198 		BNX_PRINTF(sc, "0x%08X : "
   6199 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6200 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6201 
   6202 	if (sblk->stat_XonPauseFramesReceived)
   6203 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6204 		    sblk->stat_XonPauseFramesReceived);
   6205 
   6206 	if (sblk->stat_XoffPauseFramesReceived)
   6207 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6208 		    sblk->stat_XoffPauseFramesReceived);
   6209 
   6210 	if (sblk->stat_OutXonSent)
   6211 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6212 		    sblk->stat_OutXonSent);
   6213 
   6214 	if (sblk->stat_OutXoffSent)
   6215 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6216 		    sblk->stat_OutXoffSent);
   6217 
   6218 	if (sblk->stat_FlowControlDone)
   6219 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6220 		    sblk->stat_FlowControlDone);
   6221 
   6222 	if (sblk->stat_MacControlFramesReceived)
   6223 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6224 		    sblk->stat_MacControlFramesReceived);
   6225 
   6226 	if (sblk->stat_XoffStateEntered)
   6227 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6228 		    sblk->stat_XoffStateEntered);
   6229 
   6230 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6231 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6232 		    sblk->stat_IfInFramesL2FilterDiscards);
   6233 
   6234 	if (sblk->stat_IfInRuleCheckerDiscards)
   6235 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6236 		    sblk->stat_IfInRuleCheckerDiscards);
   6237 
   6238 	if (sblk->stat_IfInFTQDiscards)
   6239 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6240 		    sblk->stat_IfInFTQDiscards);
   6241 
   6242 	if (sblk->stat_IfInMBUFDiscards)
   6243 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6244 		    sblk->stat_IfInMBUFDiscards);
   6245 
   6246 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6247 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6248 		    sblk->stat_IfInRuleCheckerP4Hit);
   6249 
   6250 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6251 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6252 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6253 
   6254 	if (sblk->stat_CatchupInFTQDiscards)
   6255 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6256 		    sblk->stat_CatchupInFTQDiscards);
   6257 
   6258 	if (sblk->stat_CatchupInMBUFDiscards)
   6259 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6260 		    sblk->stat_CatchupInMBUFDiscards);
   6261 
   6262 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6263 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6264 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6265 
   6266 	aprint_debug_dev(sc->bnx_dev,
   6267 	    "-----------------------------"
   6268 	    "--------------"
   6269 	    "-----------------------------\n");
   6270 }
   6271 
   6272 void
   6273 bnx_dump_driver_state(struct bnx_softc *sc)
   6274 {
   6275 	aprint_debug_dev(sc->bnx_dev,
   6276 	    "-----------------------------"
   6277 	    " Driver State "
   6278 	    "-----------------------------\n");
   6279 
   6280 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6281 	    "address\n", sc);
   6282 
   6283 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6284 	    sc->status_block);
   6285 
   6286 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6287 	    "address\n", sc->stats_block);
   6288 
   6289 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6290 	    "adddress\n", sc->tx_bd_chain);
   6291 
   6292 #if 0
   6293 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6294 	    sc->rx_bd_chain);
   6295 
   6296 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6297 	    sc->tx_mbuf_ptr);
   6298 #endif
   6299 
   6300 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6301 	    sc->rx_mbuf_ptr);
   6302 
   6303 	BNX_PRINTF(sc,
   6304 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6305 	    sc->interrupts_generated);
   6306 
   6307 	BNX_PRINTF(sc,
   6308 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6309 	    sc->rx_interrupts);
   6310 
   6311 	BNX_PRINTF(sc,
   6312 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6313 	    sc->tx_interrupts);
   6314 
   6315 	BNX_PRINTF(sc,
   6316 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6317 	    sc->last_status_idx);
   6318 
   6319 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6320 	    sc->tx_prod);
   6321 
   6322 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6323 	    sc->tx_cons);
   6324 
   6325 	BNX_PRINTF(sc,
   6326 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6327 	    sc->tx_prod_bseq);
   6328 	BNX_PRINTF(sc,
   6329 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6330 	    sc->tx_mbuf_alloc);
   6331 
   6332 	BNX_PRINTF(sc,
   6333 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6334 	    sc->used_tx_bd);
   6335 
   6336 	BNX_PRINTF(sc,
   6337 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6338 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6339 
   6340 
   6341 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6342 	    sc->rx_prod);
   6343 
   6344 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6345 	    sc->rx_cons);
   6346 
   6347 	BNX_PRINTF(sc,
   6348 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6349 	    sc->rx_prod_bseq);
   6350 
   6351 	BNX_PRINTF(sc,
   6352 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6353 	    sc->rx_mbuf_alloc);
   6354 
   6355 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6356 	    sc->free_rx_bd);
   6357 
   6358 	BNX_PRINTF(sc,
   6359 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6360 	    sc->rx_low_watermark, sc->max_rx_bd);
   6361 
   6362 	BNX_PRINTF(sc,
   6363 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6364 	    "mbuf alloc failures\n",
   6365 	    sc->mbuf_alloc_failed);
   6366 
   6367 	BNX_PRINTF(sc,
   6368 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6369 	    "simulated mbuf alloc failures\n",
   6370 	    sc->mbuf_sim_alloc_failed);
   6371 
   6372 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6373 	    "-----------------------------\n");
   6374 }
   6375 
   6376 void
   6377 bnx_dump_hw_state(struct bnx_softc *sc)
   6378 {
   6379 	uint32_t		val1;
   6380 	int			i;
   6381 
   6382 	aprint_debug_dev(sc->bnx_dev,
   6383 	    "----------------------------"
   6384 	    " Hardware State "
   6385 	    "----------------------------\n");
   6386 
   6387 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   6388 
   6389 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6390 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6391 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6392 
   6393 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6394 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6395 
   6396 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6397 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6398 
   6399 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6400 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6401 	    BNX_EMAC_STATUS);
   6402 
   6403 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6404 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6405 
   6406 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6407 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6408 	    BNX_TBDR_STATUS);
   6409 
   6410 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6411 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6412 	    BNX_TDMA_STATUS);
   6413 
   6414 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6415 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6416 
   6417 	aprint_debug_dev(sc->bnx_dev,
   6418 	    "----------------------------"
   6419 	    "----------------"
   6420 	    "----------------------------\n");
   6421 
   6422 	aprint_debug_dev(sc->bnx_dev,
   6423 	    "----------------------------"
   6424 	    " Register  Dump "
   6425 	    "----------------------------\n");
   6426 
   6427 	for (i = 0x400; i < 0x8000; i += 0x10)
   6428 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6429 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6430 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6431 
   6432 	aprint_debug_dev(sc->bnx_dev,
   6433 	    "----------------------------"
   6434 	    "----------------"
   6435 	    "----------------------------\n");
   6436 }
   6437 
   6438 void
   6439 bnx_breakpoint(struct bnx_softc *sc)
   6440 {
   6441 	/* Unreachable code to shut the compiler up about unused functions. */
   6442 	if (0) {
   6443    		bnx_dump_txbd(sc, 0, NULL);
   6444 		bnx_dump_rxbd(sc, 0, NULL);
   6445 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6446 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6447 		bnx_dump_l2fhdr(sc, 0, NULL);
   6448 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6449 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6450 		bnx_dump_status_block(sc);
   6451 		bnx_dump_stats_block(sc);
   6452 		bnx_dump_driver_state(sc);
   6453 		bnx_dump_hw_state(sc);
   6454 	}
   6455 
   6456 	bnx_dump_driver_state(sc);
   6457 	/* Print the important status block fields. */
   6458 	bnx_dump_status_block(sc);
   6459 
   6460 #if 0
   6461 	/* Call the debugger. */
   6462 	breakpoint();
   6463 #endif
   6464 
   6465 	return;
   6466 }
   6467 #endif
   6468