if_bnx.c revision 1.72 1 /* $NetBSD: if_bnx.c,v 1.72 2019/03/28 02:50:27 msaitoh Exp $ */
2 /* $OpenBSD: if_bnx.c,v 1.100 2013/01/13 05:45:10 brad Exp $ */
3
4 /*-
5 * Copyright (c) 2006-2010 Broadcom Corporation
6 * David Christensen <davidch (at) broadcom.com>. All rights reserved.
7 *
8 * Redistribution and use in source and binary forms, with or without
9 * modification, are permitted provided that the following conditions
10 * are met:
11 *
12 * 1. Redistributions of source code must retain the above copyright
13 * notice, this list of conditions and the following disclaimer.
14 * 2. Redistributions in binary form must reproduce the above copyright
15 * notice, this list of conditions and the following disclaimer in the
16 * documentation and/or other materials provided with the distribution.
17 * 3. Neither the name of Broadcom Corporation nor the name of its contributors
18 * may be used to endorse or promote products derived from this software
19 * without specific prior written consent.
20 *
21 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
22 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
23 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
24 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
25 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
26 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
27 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
30 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
31 * THE POSSIBILITY OF SUCH DAMAGE.
32 */
33
34 #include <sys/cdefs.h>
35 #if 0
36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
37 #endif
38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.72 2019/03/28 02:50:27 msaitoh Exp $");
39
40 /*
41 * The following controllers are supported by this driver:
42 * BCM5706C A2, A3
43 * BCM5706S A2, A3
44 * BCM5708C B1, B2
45 * BCM5708S B1, B2
46 * BCM5709C A1, C0
47 * BCM5709S A1, C0
48 * BCM5716 C0
49 *
50 * The following controllers are not supported by this driver:
51 * BCM5706C A0, A1
52 * BCM5706S A0, A1
53 * BCM5708C A0, B0
54 * BCM5708S A0, B0
55 * BCM5709C A0 B0, B1, B2 (pre-production)
56 * BCM5709S A0, B0, B1, B2 (pre-production)
57 */
58
59 #include <sys/callout.h>
60 #include <sys/mutex.h>
61
62 #include <dev/pci/if_bnxreg.h>
63 #include <dev/pci/if_bnxvar.h>
64
65 #include <dev/microcode/bnx/bnxfw.h>
66
67 /****************************************************************************/
68 /* BNX Driver Version */
69 /****************************************************************************/
70 #define BNX_DRIVER_VERSION "v0.9.6"
71
72 /****************************************************************************/
73 /* BNX Debug Options */
74 /****************************************************************************/
75 #ifdef BNX_DEBUG
76 uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
77
78 /* 0 = Never */
79 /* 1 = 1 in 2,147,483,648 */
80 /* 256 = 1 in 8,388,608 */
81 /* 2048 = 1 in 1,048,576 */
82 /* 65536 = 1 in 32,768 */
83 /* 1048576 = 1 in 2,048 */
84 /* 268435456 = 1 in 8 */
85 /* 536870912 = 1 in 4 */
86 /* 1073741824 = 1 in 2 */
87
88 /* Controls how often the l2_fhdr frame error check will fail. */
89 int bnx_debug_l2fhdr_status_check = 0;
90
91 /* Controls how often the unexpected attention check will fail. */
92 int bnx_debug_unexpected_attention = 0;
93
94 /* Controls how often to simulate an mbuf allocation failure. */
95 int bnx_debug_mbuf_allocation_failure = 0;
96
97 /* Controls how often to simulate a DMA mapping failure. */
98 int bnx_debug_dma_map_addr_failure = 0;
99
100 /* Controls how often to simulate a bootcode failure. */
101 int bnx_debug_bootcode_running_failure = 0;
102 #endif
103
104 /****************************************************************************/
105 /* PCI Device ID Table */
106 /* */
107 /* Used by bnx_probe() to identify the devices supported by this driver. */
108 /****************************************************************************/
109 static const struct bnx_product {
110 pci_vendor_id_t bp_vendor;
111 pci_product_id_t bp_product;
112 pci_vendor_id_t bp_subvendor;
113 pci_product_id_t bp_subproduct;
114 const char *bp_name;
115 } bnx_devices[] = {
116 #ifdef PCI_SUBPRODUCT_HP_NC370T
117 {
118 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
119 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
120 "HP NC370T Multifunction Gigabit Server Adapter"
121 },
122 #endif
123 #ifdef PCI_SUBPRODUCT_HP_NC370i
124 {
125 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
126 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
127 "HP NC370i Multifunction Gigabit Server Adapter"
128 },
129 #endif
130 {
131 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
132 0, 0,
133 "Broadcom NetXtreme II BCM5706 1000Base-T"
134 },
135 #ifdef PCI_SUBPRODUCT_HP_NC370F
136 {
137 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
138 PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
139 "HP NC370F Multifunction Gigabit Server Adapter"
140 },
141 #endif
142 {
143 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
144 0, 0,
145 "Broadcom NetXtreme II BCM5706 1000Base-SX"
146 },
147 {
148 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
149 0, 0,
150 "Broadcom NetXtreme II BCM5708 1000Base-T"
151 },
152 {
153 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
154 0, 0,
155 "Broadcom NetXtreme II BCM5708 1000Base-SX"
156 },
157 {
158 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
159 0, 0,
160 "Broadcom NetXtreme II BCM5709 1000Base-T"
161 },
162 {
163 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
164 0, 0,
165 "Broadcom NetXtreme II BCM5709 1000Base-SX"
166 },
167 {
168 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
169 0, 0,
170 "Broadcom NetXtreme II BCM5716 1000Base-T"
171 },
172 {
173 PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
174 0, 0,
175 "Broadcom NetXtreme II BCM5716 1000Base-SX"
176 },
177 };
178
179 /****************************************************************************/
180 /* Supported Flash NVRAM device data. */
181 /****************************************************************************/
182 static struct flash_spec flash_table[] =
183 {
184 #define BUFFERED_FLAGS (BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
185 #define NONBUFFERED_FLAGS (BNX_NV_WREN)
186 /* Slow EEPROM */
187 {0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
188 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
189 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
190 "EEPROM - slow"},
191 /* Expansion entry 0001 */
192 {0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
193 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
194 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
195 "Entry 0001"},
196 /* Saifun SA25F010 (non-buffered flash) */
197 /* strap, cfg1, & write1 need updates */
198 {0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
199 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
200 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
201 "Non-buffered flash (128kB)"},
202 /* Saifun SA25F020 (non-buffered flash) */
203 /* strap, cfg1, & write1 need updates */
204 {0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
205 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
206 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
207 "Non-buffered flash (256kB)"},
208 /* Expansion entry 0100 */
209 {0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
210 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
211 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
212 "Entry 0100"},
213 /* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
214 {0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
215 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
216 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
217 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
218 /* Entry 0110: ST M45PE20 (non-buffered flash)*/
219 {0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
220 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
221 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
222 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
223 /* Saifun SA25F005 (non-buffered flash) */
224 /* strap, cfg1, & write1 need updates */
225 {0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
226 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
227 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
228 "Non-buffered flash (64kB)"},
229 /* Fast EEPROM */
230 {0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
231 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
232 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
233 "EEPROM - fast"},
234 /* Expansion entry 1001 */
235 {0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
236 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
237 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
238 "Entry 1001"},
239 /* Expansion entry 1010 */
240 {0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
241 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
242 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
243 "Entry 1010"},
244 /* ATMEL AT45DB011B (buffered flash) */
245 {0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
246 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
247 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
248 "Buffered flash (128kB)"},
249 /* Expansion entry 1100 */
250 {0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
251 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
252 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
253 "Entry 1100"},
254 /* Expansion entry 1101 */
255 {0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
256 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
257 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
258 "Entry 1101"},
259 /* Ateml Expansion entry 1110 */
260 {0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
261 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
262 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
263 "Entry 1110 (Atmel)"},
264 /* ATMEL AT45DB021B (buffered flash) */
265 {0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
266 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
267 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
268 "Buffered flash (256kB)"},
269 };
270
271 /*
272 * The BCM5709 controllers transparently handle the
273 * differences between Atmel 264 byte pages and all
274 * flash devices which use 256 byte pages, so no
275 * logical-to-physical mapping is required in the
276 * driver.
277 */
278 static struct flash_spec flash_5709 = {
279 .flags = BNX_NV_BUFFERED,
280 .page_bits = BCM5709_FLASH_PAGE_BITS,
281 .page_size = BCM5709_FLASH_PAGE_SIZE,
282 .addr_mask = BCM5709_FLASH_BYTE_ADDR_MASK,
283 .total_size = BUFFERED_FLASH_TOTAL_SIZE * 2,
284 .name = "5709 buffered flash (256kB)",
285 };
286
287 /****************************************************************************/
288 /* OpenBSD device entry points. */
289 /****************************************************************************/
290 static int bnx_probe(device_t, cfdata_t, void *);
291 void bnx_attach(device_t, device_t, void *);
292 int bnx_detach(device_t, int);
293
294 /****************************************************************************/
295 /* BNX Debug Data Structure Dump Routines */
296 /****************************************************************************/
297 #ifdef BNX_DEBUG
298 void bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
299 void bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
300 void bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
301 void bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
302 void bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
303 void bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
304 void bnx_dump_tx_chain(struct bnx_softc *, int, int);
305 void bnx_dump_rx_chain(struct bnx_softc *, int, int);
306 void bnx_dump_status_block(struct bnx_softc *);
307 void bnx_dump_stats_block(struct bnx_softc *);
308 void bnx_dump_driver_state(struct bnx_softc *);
309 void bnx_dump_hw_state(struct bnx_softc *);
310 void bnx_breakpoint(struct bnx_softc *);
311 #endif
312
313 /****************************************************************************/
314 /* BNX Register/Memory Access Routines */
315 /****************************************************************************/
316 uint32_t bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
317 void bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
318 void bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
319 int bnx_miibus_read_reg(device_t, int, int, uint16_t *);
320 int bnx_miibus_write_reg(device_t, int, int, uint16_t);
321 void bnx_miibus_statchg(struct ifnet *);
322
323 /****************************************************************************/
324 /* BNX NVRAM Access Routines */
325 /****************************************************************************/
326 int bnx_acquire_nvram_lock(struct bnx_softc *);
327 int bnx_release_nvram_lock(struct bnx_softc *);
328 void bnx_enable_nvram_access(struct bnx_softc *);
329 void bnx_disable_nvram_access(struct bnx_softc *);
330 int bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
331 uint32_t);
332 int bnx_init_nvram(struct bnx_softc *);
333 int bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
334 int bnx_nvram_test(struct bnx_softc *);
335 #ifdef BNX_NVRAM_WRITE_SUPPORT
336 int bnx_enable_nvram_write(struct bnx_softc *);
337 void bnx_disable_nvram_write(struct bnx_softc *);
338 int bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
339 int bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
340 uint32_t);
341 int bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
342 #endif
343
344 /****************************************************************************/
345 /* */
346 /****************************************************************************/
347 void bnx_get_media(struct bnx_softc *);
348 void bnx_init_media(struct bnx_softc *);
349 int bnx_dma_alloc(struct bnx_softc *);
350 void bnx_dma_free(struct bnx_softc *);
351 void bnx_release_resources(struct bnx_softc *);
352
353 /****************************************************************************/
354 /* BNX Firmware Synchronization and Load */
355 /****************************************************************************/
356 int bnx_fw_sync(struct bnx_softc *, uint32_t);
357 void bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
358 void bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
359 struct fw_info *);
360 void bnx_init_cpus(struct bnx_softc *);
361
362 static void bnx_print_adapter_info(struct bnx_softc *);
363 static void bnx_probe_pci_caps(struct bnx_softc *);
364 void bnx_stop(struct ifnet *, int);
365 int bnx_reset(struct bnx_softc *, uint32_t);
366 int bnx_chipinit(struct bnx_softc *);
367 int bnx_blockinit(struct bnx_softc *);
368 static int bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
369 uint16_t *, uint32_t *);
370 int bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
371
372 int bnx_init_tx_chain(struct bnx_softc *);
373 void bnx_init_tx_context(struct bnx_softc *);
374 int bnx_init_rx_chain(struct bnx_softc *);
375 void bnx_init_rx_context(struct bnx_softc *);
376 void bnx_free_rx_chain(struct bnx_softc *);
377 void bnx_free_tx_chain(struct bnx_softc *);
378
379 int bnx_tx_encap(struct bnx_softc *, struct mbuf *);
380 void bnx_start(struct ifnet *);
381 int bnx_ioctl(struct ifnet *, u_long, void *);
382 void bnx_watchdog(struct ifnet *);
383 void bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
384 int bnx_init(struct ifnet *);
385
386 void bnx_init_context(struct bnx_softc *);
387 void bnx_get_mac_addr(struct bnx_softc *);
388 void bnx_set_mac_addr(struct bnx_softc *);
389 void bnx_phy_intr(struct bnx_softc *);
390 void bnx_rx_intr(struct bnx_softc *);
391 void bnx_tx_intr(struct bnx_softc *);
392 void bnx_disable_intr(struct bnx_softc *);
393 void bnx_enable_intr(struct bnx_softc *);
394
395 int bnx_intr(void *);
396 void bnx_iff(struct bnx_softc *);
397 void bnx_stats_update(struct bnx_softc *);
398 void bnx_tick(void *);
399
400 struct pool *bnx_tx_pool = NULL;
401 void bnx_alloc_pkts(struct work *, void *);
402
403 /****************************************************************************/
404 /* OpenBSD device dispatch table. */
405 /****************************************************************************/
406 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
407 bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
408
409 /****************************************************************************/
410 /* Device probe function. */
411 /* */
412 /* Compares the device to the driver's list of supported devices and */
413 /* reports back to the OS whether this is the right driver for the device. */
414 /* */
415 /* Returns: */
416 /* BUS_PROBE_DEFAULT on success, positive value on failure. */
417 /****************************************************************************/
418 static const struct bnx_product *
419 bnx_lookup(const struct pci_attach_args *pa)
420 {
421 int i;
422 pcireg_t subid;
423
424 for (i = 0; i < __arraycount(bnx_devices); i++) {
425 if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
426 PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
427 continue;
428 if (!bnx_devices[i].bp_subvendor)
429 return &bnx_devices[i];
430 subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
431 if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
432 PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
433 return &bnx_devices[i];
434 }
435
436 return NULL;
437 }
438 static int
439 bnx_probe(device_t parent, cfdata_t match, void *aux)
440 {
441 struct pci_attach_args *pa = (struct pci_attach_args *)aux;
442
443 if (bnx_lookup(pa) != NULL)
444 return 1;
445
446 return 0;
447 }
448
449 /****************************************************************************/
450 /* PCI Capabilities Probe Function. */
451 /* */
452 /* Walks the PCI capabiites list for the device to find what features are */
453 /* supported. */
454 /* */
455 /* Returns: */
456 /* None. */
457 /****************************************************************************/
458 static void
459 bnx_print_adapter_info(struct bnx_softc *sc)
460 {
461
462 aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
463 BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
464 (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
465 ? "Serdes " : "", sc->bnx_chipid);
466
467 /* Bus info. */
468 if (sc->bnx_flags & BNX_PCIE_FLAG) {
469 aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
470 sc->link_width);
471 switch (sc->link_speed) {
472 case 1: aprint_normal("2.5Gbps\n"); break;
473 case 2: aprint_normal("5Gbps\n"); break;
474 default: aprint_normal("Unknown link speed\n");
475 }
476 } else {
477 aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
478 ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
479 (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
480 sc->bus_speed_mhz);
481 }
482
483 aprint_normal_dev(sc->bnx_dev,
484 "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
485 sc->bnx_rx_quick_cons_trip_int,
486 sc->bnx_rx_quick_cons_trip,
487 sc->bnx_rx_ticks_int,
488 sc->bnx_rx_ticks,
489 sc->bnx_tx_quick_cons_trip_int,
490 sc->bnx_tx_quick_cons_trip,
491 sc->bnx_tx_ticks_int,
492 sc->bnx_tx_ticks);
493 }
494
495
496 /****************************************************************************/
497 /* PCI Capabilities Probe Function. */
498 /* */
499 /* Walks the PCI capabiites list for the device to find what features are */
500 /* supported. */
501 /* */
502 /* Returns: */
503 /* None. */
504 /****************************************************************************/
505 static void
506 bnx_probe_pci_caps(struct bnx_softc *sc)
507 {
508 struct pci_attach_args *pa = &(sc->bnx_pa);
509 pcireg_t reg;
510
511 /* Check if PCI-X capability is enabled. */
512 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, ®,
513 NULL) != 0) {
514 sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
515 }
516
517 /* Check if PCIe capability is enabled. */
518 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, ®,
519 NULL) != 0) {
520 pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
521 reg + PCIE_LCSR);
522 DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
523 "0x%08X\n", link_status);
524 sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
525 sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
526 sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
527 sc->bnx_flags |= BNX_PCIE_FLAG;
528 }
529
530 /* Check if MSI capability is enabled. */
531 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, ®,
532 NULL) != 0)
533 sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
534
535 /* Check if MSI-X capability is enabled. */
536 if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, ®,
537 NULL) != 0)
538 sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
539 }
540
541
542 /****************************************************************************/
543 /* Device attach function. */
544 /* */
545 /* Allocates device resources, performs secondary chip identification, */
546 /* resets and initializes the hardware, and initializes driver instance */
547 /* variables. */
548 /* */
549 /* Returns: */
550 /* 0 on success, positive value on failure. */
551 /****************************************************************************/
552 void
553 bnx_attach(device_t parent, device_t self, void *aux)
554 {
555 const struct bnx_product *bp;
556 struct bnx_softc *sc = device_private(self);
557 prop_dictionary_t dict;
558 struct pci_attach_args *pa = aux;
559 pci_chipset_tag_t pc = pa->pa_pc;
560 pci_intr_handle_t ih;
561 const char *intrstr = NULL;
562 uint32_t command;
563 struct ifnet *ifp;
564 uint32_t val;
565 int mii_flags = MIIF_FORCEANEG;
566 pcireg_t memtype;
567 char intrbuf[PCI_INTRSTR_LEN];
568
569 if (bnx_tx_pool == NULL) {
570 bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
571 if (bnx_tx_pool != NULL) {
572 pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
573 0, 0, 0, "bnxpkts", NULL, IPL_NET);
574 } else {
575 aprint_error(": can't alloc bnx_tx_pool\n");
576 return;
577 }
578 }
579
580 bp = bnx_lookup(pa);
581 if (bp == NULL)
582 panic("unknown device");
583
584 sc->bnx_dev = self;
585
586 aprint_naive("\n");
587 aprint_normal(": %s\n", bp->bp_name);
588
589 sc->bnx_pa = *pa;
590
591 /*
592 * Map control/status registers.
593 */
594 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
595 command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
596 pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
597 command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
598
599 if (!(command & PCI_COMMAND_MEM_ENABLE)) {
600 aprint_error_dev(sc->bnx_dev,
601 "failed to enable memory mapping!\n");
602 return;
603 }
604
605 memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
606 if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
607 &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
608 aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
609 return;
610 }
611
612 if (pci_intr_map(pa, &ih)) {
613 aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
614 goto bnx_attach_fail;
615 }
616
617 intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
618
619 /*
620 * Configure byte swap and enable indirect register access.
621 * Rely on CPU to do target byte swapping on big endian systems.
622 * Access to registers outside of PCI configurtion space are not
623 * valid until this is done.
624 */
625 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
626 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
627 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
628
629 /* Save ASIC revsion info. */
630 sc->bnx_chipid = REG_RD(sc, BNX_MISC_ID);
631
632 /*
633 * Find the base address for shared memory access.
634 * Newer versions of bootcode use a signature and offset
635 * while older versions use a fixed address.
636 */
637 val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
638 if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
639 sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
640 (sc->bnx_pa.pa_function << 2));
641 else
642 sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
643
644 DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
645
646 /* Set initial device and PHY flags */
647 sc->bnx_flags = 0;
648 sc->bnx_phy_flags = 0;
649
650 bnx_probe_pci_caps(sc);
651
652 /* Get PCI bus information (speed and type). */
653 val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
654 if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
655 uint32_t clkreg;
656
657 sc->bnx_flags |= BNX_PCIX_FLAG;
658
659 clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
660
661 clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
662 switch (clkreg) {
663 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
664 sc->bus_speed_mhz = 133;
665 break;
666
667 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
668 sc->bus_speed_mhz = 100;
669 break;
670
671 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
672 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
673 sc->bus_speed_mhz = 66;
674 break;
675
676 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
677 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
678 sc->bus_speed_mhz = 50;
679 break;
680
681 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
682 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
683 case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
684 sc->bus_speed_mhz = 33;
685 break;
686 }
687 } else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
688 sc->bus_speed_mhz = 66;
689 else
690 sc->bus_speed_mhz = 33;
691
692 if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
693 sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
694
695 /* Reset the controller. */
696 if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
697 goto bnx_attach_fail;
698
699 /* Initialize the controller. */
700 if (bnx_chipinit(sc)) {
701 aprint_error_dev(sc->bnx_dev,
702 "Controller initialization failed!\n");
703 goto bnx_attach_fail;
704 }
705
706 /* Perform NVRAM test. */
707 if (bnx_nvram_test(sc)) {
708 aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
709 goto bnx_attach_fail;
710 }
711
712 /* Fetch the permanent Ethernet MAC address. */
713 bnx_get_mac_addr(sc);
714 aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
715 ether_sprintf(sc->eaddr));
716
717 /*
718 * Trip points control how many BDs
719 * should be ready before generating an
720 * interrupt while ticks control how long
721 * a BD can sit in the chain before
722 * generating an interrupt. Set the default
723 * values for the RX and TX rings.
724 */
725
726 #ifdef BNX_DEBUG
727 /* Force more frequent interrupts. */
728 sc->bnx_tx_quick_cons_trip_int = 1;
729 sc->bnx_tx_quick_cons_trip = 1;
730 sc->bnx_tx_ticks_int = 0;
731 sc->bnx_tx_ticks = 0;
732
733 sc->bnx_rx_quick_cons_trip_int = 1;
734 sc->bnx_rx_quick_cons_trip = 1;
735 sc->bnx_rx_ticks_int = 0;
736 sc->bnx_rx_ticks = 0;
737 #else
738 sc->bnx_tx_quick_cons_trip_int = 20;
739 sc->bnx_tx_quick_cons_trip = 20;
740 sc->bnx_tx_ticks_int = 80;
741 sc->bnx_tx_ticks = 80;
742
743 sc->bnx_rx_quick_cons_trip_int = 6;
744 sc->bnx_rx_quick_cons_trip = 6;
745 sc->bnx_rx_ticks_int = 18;
746 sc->bnx_rx_ticks = 18;
747 #endif
748
749 /* Update statistics once every second. */
750 sc->bnx_stats_ticks = 1000000 & 0xffff00;
751
752 /* Find the media type for the adapter. */
753 bnx_get_media(sc);
754
755 /*
756 * Store config data needed by the PHY driver for
757 * backplane applications
758 */
759 sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
760 BNX_SHARED_HW_CFG_CONFIG);
761 sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
762 BNX_PORT_HW_CFG_CONFIG);
763
764 /* Allocate DMA memory resources. */
765 sc->bnx_dmatag = pa->pa_dmat;
766 if (bnx_dma_alloc(sc)) {
767 aprint_error_dev(sc->bnx_dev,
768 "DMA resource allocation failed!\n");
769 goto bnx_attach_fail;
770 }
771
772 /* Initialize the ifnet interface. */
773 ifp = &sc->bnx_ec.ec_if;
774 ifp->if_softc = sc;
775 ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
776 ifp->if_ioctl = bnx_ioctl;
777 ifp->if_stop = bnx_stop;
778 ifp->if_start = bnx_start;
779 ifp->if_init = bnx_init;
780 ifp->if_timer = 0;
781 ifp->if_watchdog = bnx_watchdog;
782 IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
783 IFQ_SET_READY(&ifp->if_snd);
784 memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
785
786 sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
787 ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
788
789 ifp->if_capabilities |=
790 IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
791 IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
792 IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
793
794 /* Hookup IRQ last. */
795 sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
796 sc, device_xname(self));
797 if (sc->bnx_intrhand == NULL) {
798 aprint_error_dev(self, "couldn't establish interrupt");
799 if (intrstr != NULL)
800 aprint_error(" at %s", intrstr);
801 aprint_error("\n");
802 goto bnx_attach_fail;
803 }
804 aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
805
806 /* create workqueue to handle packet allocations */
807 if (workqueue_create(&sc->bnx_wq, device_xname(self),
808 bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
809 aprint_error_dev(self, "failed to create workqueue\n");
810 goto bnx_attach_fail;
811 }
812
813 sc->bnx_mii.mii_ifp = ifp;
814 sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
815 sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
816 sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
817
818 /* Handle any special PHY initialization for SerDes PHYs. */
819 bnx_init_media(sc);
820
821 sc->bnx_ec.ec_mii = &sc->bnx_mii;
822 ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
823 bnx_ifmedia_sts);
824
825 /* set phyflags and chipid before mii_attach() */
826 dict = device_properties(self);
827 prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
828 prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
829 prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
830 prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
831
832 /* Print some useful adapter info */
833 bnx_print_adapter_info(sc);
834
835 mii_flags |= MIIF_DOPAUSE;
836 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
837 mii_flags |= MIIF_HAVEFIBER;
838 mii_attach(self, &sc->bnx_mii, 0xffffffff,
839 MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
840
841 if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
842 aprint_error_dev(self, "no PHY found!\n");
843 ifmedia_add(&sc->bnx_mii.mii_media,
844 IFM_ETHER|IFM_MANUAL, 0, NULL);
845 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
846 } else
847 ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
848
849 /* Attach to the Ethernet interface list. */
850 if_attach(ifp);
851 if_deferred_start_init(ifp, NULL);
852 ether_ifattach(ifp,sc->eaddr);
853
854 callout_init(&sc->bnx_timeout, 0);
855
856 if (pmf_device_register(self, NULL, NULL))
857 pmf_class_network_register(self, ifp);
858 else
859 aprint_error_dev(self, "couldn't establish power handler\n");
860
861 /* Print some important debugging info. */
862 DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
863
864 goto bnx_attach_exit;
865
866 bnx_attach_fail:
867 bnx_release_resources(sc);
868
869 bnx_attach_exit:
870 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
871 }
872
873 /****************************************************************************/
874 /* Device detach function. */
875 /* */
876 /* Stops the controller, resets the controller, and releases resources. */
877 /* */
878 /* Returns: */
879 /* 0 on success, positive value on failure. */
880 /****************************************************************************/
881 int
882 bnx_detach(device_t dev, int flags)
883 {
884 int s;
885 struct bnx_softc *sc;
886 struct ifnet *ifp;
887
888 sc = device_private(dev);
889 ifp = &sc->bnx_ec.ec_if;
890
891 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
892
893 /* Stop and reset the controller. */
894 s = splnet();
895 bnx_stop(ifp, 1);
896 splx(s);
897
898 pmf_device_deregister(dev);
899 callout_destroy(&sc->bnx_timeout);
900 ether_ifdetach(ifp);
901 workqueue_destroy(sc->bnx_wq);
902
903 /* Delete all remaining media. */
904 ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
905
906 if_detach(ifp);
907 mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
908
909 /* Release all remaining resources. */
910 bnx_release_resources(sc);
911
912 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
913
914 return 0;
915 }
916
917 /****************************************************************************/
918 /* Indirect register read. */
919 /* */
920 /* Reads NetXtreme II registers using an index/data register pair in PCI */
921 /* configuration space. Using this mechanism avoids issues with posted */
922 /* reads but is much slower than memory-mapped I/O. */
923 /* */
924 /* Returns: */
925 /* The value of the register. */
926 /****************************************************************************/
927 uint32_t
928 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
929 {
930 struct pci_attach_args *pa = &(sc->bnx_pa);
931
932 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
933 offset);
934 #ifdef BNX_DEBUG
935 {
936 uint32_t val;
937 val = pci_conf_read(pa->pa_pc, pa->pa_tag,
938 BNX_PCICFG_REG_WINDOW);
939 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
940 "val = 0x%08X\n", __func__, offset, val);
941 return val;
942 }
943 #else
944 return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
945 #endif
946 }
947
948 /****************************************************************************/
949 /* Indirect register write. */
950 /* */
951 /* Writes NetXtreme II registers using an index/data register pair in PCI */
952 /* configuration space. Using this mechanism avoids issues with posted */
953 /* writes but is muchh slower than memory-mapped I/O. */
954 /* */
955 /* Returns: */
956 /* Nothing. */
957 /****************************************************************************/
958 void
959 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
960 {
961 struct pci_attach_args *pa = &(sc->bnx_pa);
962
963 DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
964 __func__, offset, val);
965
966 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
967 offset);
968 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
969 }
970
971 /****************************************************************************/
972 /* Context memory write. */
973 /* */
974 /* The NetXtreme II controller uses context memory to track connection */
975 /* information for L2 and higher network protocols. */
976 /* */
977 /* Returns: */
978 /* Nothing. */
979 /****************************************************************************/
980 void
981 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
982 uint32_t ctx_val)
983 {
984 uint32_t idx, offset = ctx_offset + cid_addr;
985 uint32_t val, retry_cnt = 5;
986
987 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
988 REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
989 REG_WR(sc, BNX_CTX_CTX_CTRL,
990 (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
991
992 for (idx = 0; idx < retry_cnt; idx++) {
993 val = REG_RD(sc, BNX_CTX_CTX_CTRL);
994 if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
995 break;
996 DELAY(5);
997 }
998
999 #if 0
1000 if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
1001 BNX_PRINTF("%s(%d); Unable to write CTX memory: "
1002 "cid_addr = 0x%08X, offset = 0x%08X!\n",
1003 __FILE__, __LINE__, cid_addr, ctx_offset);
1004 #endif
1005
1006 } else {
1007 REG_WR(sc, BNX_CTX_DATA_ADR, offset);
1008 REG_WR(sc, BNX_CTX_DATA, ctx_val);
1009 }
1010 }
1011
1012 /****************************************************************************/
1013 /* PHY register read. */
1014 /* */
1015 /* Implements register reads on the MII bus. */
1016 /* */
1017 /* Returns: */
1018 /* The value of the register. */
1019 /****************************************************************************/
1020 int
1021 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
1022 {
1023 struct bnx_softc *sc = device_private(dev);
1024 uint32_t data;
1025 int i, rv = 0;
1026
1027 /* Make sure we are accessing the correct PHY address. */
1028 if (phy != sc->bnx_phy_addr) {
1029 DBPRINT(sc, BNX_VERBOSE,
1030 "Invalid PHY address %d for PHY read!\n", phy);
1031 return -1;
1032 }
1033
1034 /*
1035 * The BCM5709S PHY is an IEEE Clause 45 PHY
1036 * with special mappings to work with IEEE
1037 * Clause 22 register accesses.
1038 */
1039 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1040 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1041 reg += 0x10;
1042 }
1043
1044 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1045 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1046 data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1047
1048 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1049 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1050
1051 DELAY(40);
1052 }
1053
1054 data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
1055 BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
1056 BNX_EMAC_MDIO_COMM_START_BUSY;
1057 REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
1058
1059 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1060 DELAY(10);
1061
1062 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1063 if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1064 DELAY(5);
1065
1066 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1067 data &= BNX_EMAC_MDIO_COMM_DATA;
1068
1069 break;
1070 }
1071 }
1072
1073 if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
1074 BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
1075 "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
1076 rv = ETIMEDOUT;
1077 } else {
1078 data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1079 *val = data & 0xffff;
1080
1081 DBPRINT(sc, BNX_EXCESSIVE,
1082 "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
1083 phy, (uint16_t) reg & 0xffff, *val);
1084 }
1085
1086 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1087 data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1088 data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1089
1090 REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
1091 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1092
1093 DELAY(40);
1094 }
1095
1096 return rv;
1097 }
1098
1099 /****************************************************************************/
1100 /* PHY register write. */
1101 /* */
1102 /* Implements register writes on the MII bus. */
1103 /* */
1104 /* Returns: */
1105 /* The value of the register. */
1106 /****************************************************************************/
1107 int
1108 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
1109 {
1110 struct bnx_softc *sc = device_private(dev);
1111 uint32_t val1;
1112 int i, rv = 0;
1113
1114 /* Make sure we are accessing the correct PHY address. */
1115 if (phy != sc->bnx_phy_addr) {
1116 DBPRINT(sc, BNX_WARN,
1117 "Invalid PHY address %d for PHY write!\n", phy);
1118 return -1;
1119 }
1120
1121 DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
1122 "val = 0x%04hX\n", __func__,
1123 phy, (uint16_t) reg & 0xffff, val);
1124
1125 /*
1126 * The BCM5709S PHY is an IEEE Clause 45 PHY
1127 * with special mappings to work with IEEE
1128 * Clause 22 register accesses.
1129 */
1130 if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
1131 if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
1132 reg += 0x10;
1133 }
1134
1135 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1136 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1137 val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
1138
1139 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1140 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1141
1142 DELAY(40);
1143 }
1144
1145 val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
1146 BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
1147 BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
1148 REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
1149
1150 for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
1151 DELAY(10);
1152
1153 val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
1154 if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
1155 DELAY(5);
1156 break;
1157 }
1158 }
1159
1160 if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
1161 BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
1162 __LINE__);
1163 rv = ETIMEDOUT;
1164 }
1165
1166 if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
1167 val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
1168 val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
1169
1170 REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
1171 REG_RD(sc, BNX_EMAC_MDIO_MODE);
1172
1173 DELAY(40);
1174 }
1175
1176 return rv;
1177 }
1178
1179 /****************************************************************************/
1180 /* MII bus status change. */
1181 /* */
1182 /* Called by the MII bus driver when the PHY establishes link to set the */
1183 /* MAC interface registers. */
1184 /* */
1185 /* Returns: */
1186 /* Nothing. */
1187 /****************************************************************************/
1188 void
1189 bnx_miibus_statchg(struct ifnet *ifp)
1190 {
1191 struct bnx_softc *sc = ifp->if_softc;
1192 struct mii_data *mii = &sc->bnx_mii;
1193 uint32_t rx_mode = sc->rx_mode;
1194 int val;
1195
1196 val = REG_RD(sc, BNX_EMAC_MODE);
1197 val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
1198 BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
1199 BNX_EMAC_MODE_25G);
1200
1201 /*
1202 * Get flow control negotiation result.
1203 */
1204 if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
1205 (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
1206 sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
1207 mii->mii_media_active &= ~IFM_ETH_FMASK;
1208 }
1209
1210 /* Set MII or GMII interface based on the speed
1211 * negotiated by the PHY.
1212 */
1213 switch (IFM_SUBTYPE(mii->mii_media_active)) {
1214 case IFM_10_T:
1215 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
1216 DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
1217 val |= BNX_EMAC_MODE_PORT_MII_10;
1218 break;
1219 }
1220 /* FALLTHROUGH */
1221 case IFM_100_TX:
1222 DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
1223 val |= BNX_EMAC_MODE_PORT_MII;
1224 break;
1225 case IFM_2500_SX:
1226 DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
1227 val |= BNX_EMAC_MODE_25G;
1228 /* FALLTHROUGH */
1229 case IFM_1000_T:
1230 case IFM_1000_SX:
1231 DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
1232 val |= BNX_EMAC_MODE_PORT_GMII;
1233 break;
1234 default:
1235 val |= BNX_EMAC_MODE_PORT_GMII;
1236 break;
1237 }
1238
1239 /* Set half or full duplex based on the duplicity
1240 * negotiated by the PHY.
1241 */
1242 if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
1243 DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
1244 val |= BNX_EMAC_MODE_HALF_DUPLEX;
1245 } else {
1246 DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
1247 }
1248
1249 REG_WR(sc, BNX_EMAC_MODE, val);
1250
1251 /*
1252 * 802.3x flow control
1253 */
1254 if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
1255 DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
1256 rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
1257 } else {
1258 DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
1259 rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
1260 }
1261
1262 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
1263 DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
1264 BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1265 } else {
1266 DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
1267 BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
1268 }
1269
1270 /* Only make changes if the recive mode has actually changed. */
1271 if (rx_mode != sc->rx_mode) {
1272 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
1273 rx_mode);
1274
1275 sc->rx_mode = rx_mode;
1276 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
1277
1278 bnx_init_rx_context(sc);
1279 }
1280 }
1281
1282 /****************************************************************************/
1283 /* Acquire NVRAM lock. */
1284 /* */
1285 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock. */
1286 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1287 /* for use by the driver. */
1288 /* */
1289 /* Returns: */
1290 /* 0 on success, positive value on failure. */
1291 /****************************************************************************/
1292 int
1293 bnx_acquire_nvram_lock(struct bnx_softc *sc)
1294 {
1295 uint32_t val;
1296 int j;
1297
1298 DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
1299
1300 /* Request access to the flash interface. */
1301 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
1302 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1303 val = REG_RD(sc, BNX_NVM_SW_ARB);
1304 if (val & BNX_NVM_SW_ARB_ARB_ARB2)
1305 break;
1306
1307 DELAY(5);
1308 }
1309
1310 if (j >= NVRAM_TIMEOUT_COUNT) {
1311 DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
1312 return EBUSY;
1313 }
1314
1315 return 0;
1316 }
1317
1318 /****************************************************************************/
1319 /* Release NVRAM lock. */
1320 /* */
1321 /* When the caller is finished accessing NVRAM the lock must be released. */
1322 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is */
1323 /* for use by the driver. */
1324 /* */
1325 /* Returns: */
1326 /* 0 on success, positive value on failure. */
1327 /****************************************************************************/
1328 int
1329 bnx_release_nvram_lock(struct bnx_softc *sc)
1330 {
1331 int j;
1332 uint32_t val;
1333
1334 DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
1335
1336 /* Relinquish nvram interface. */
1337 REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
1338
1339 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1340 val = REG_RD(sc, BNX_NVM_SW_ARB);
1341 if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
1342 break;
1343
1344 DELAY(5);
1345 }
1346
1347 if (j >= NVRAM_TIMEOUT_COUNT) {
1348 DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
1349 return EBUSY;
1350 }
1351
1352 return 0;
1353 }
1354
1355 #ifdef BNX_NVRAM_WRITE_SUPPORT
1356 /****************************************************************************/
1357 /* Enable NVRAM write access. */
1358 /* */
1359 /* Before writing to NVRAM the caller must enable NVRAM writes. */
1360 /* */
1361 /* Returns: */
1362 /* 0 on success, positive value on failure. */
1363 /****************************************************************************/
1364 int
1365 bnx_enable_nvram_write(struct bnx_softc *sc)
1366 {
1367 uint32_t val;
1368
1369 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
1370
1371 val = REG_RD(sc, BNX_MISC_CFG);
1372 REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
1373
1374 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1375 int j;
1376
1377 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1378 REG_WR(sc, BNX_NVM_COMMAND,
1379 BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
1380
1381 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1382 DELAY(5);
1383
1384 val = REG_RD(sc, BNX_NVM_COMMAND);
1385 if (val & BNX_NVM_COMMAND_DONE)
1386 break;
1387 }
1388
1389 if (j >= NVRAM_TIMEOUT_COUNT) {
1390 DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
1391 return EBUSY;
1392 }
1393 }
1394
1395 return 0;
1396 }
1397
1398 /****************************************************************************/
1399 /* Disable NVRAM write access. */
1400 /* */
1401 /* When the caller is finished writing to NVRAM write access must be */
1402 /* disabled. */
1403 /* */
1404 /* Returns: */
1405 /* Nothing. */
1406 /****************************************************************************/
1407 void
1408 bnx_disable_nvram_write(struct bnx_softc *sc)
1409 {
1410 uint32_t val;
1411
1412 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM write.\n");
1413
1414 val = REG_RD(sc, BNX_MISC_CFG);
1415 REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
1416 }
1417 #endif
1418
1419 /****************************************************************************/
1420 /* Enable NVRAM access. */
1421 /* */
1422 /* Before accessing NVRAM for read or write operations the caller must */
1423 /* enabled NVRAM access. */
1424 /* */
1425 /* Returns: */
1426 /* Nothing. */
1427 /****************************************************************************/
1428 void
1429 bnx_enable_nvram_access(struct bnx_softc *sc)
1430 {
1431 uint32_t val;
1432
1433 DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
1434
1435 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1436 /* Enable both bits, even on read. */
1437 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1438 val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
1439 }
1440
1441 /****************************************************************************/
1442 /* Disable NVRAM access. */
1443 /* */
1444 /* When the caller is finished accessing NVRAM access must be disabled. */
1445 /* */
1446 /* Returns: */
1447 /* Nothing. */
1448 /****************************************************************************/
1449 void
1450 bnx_disable_nvram_access(struct bnx_softc *sc)
1451 {
1452 uint32_t val;
1453
1454 DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
1455
1456 val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
1457
1458 /* Disable both bits, even after read. */
1459 REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
1460 val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
1461 }
1462
1463 #ifdef BNX_NVRAM_WRITE_SUPPORT
1464 /****************************************************************************/
1465 /* Erase NVRAM page before writing. */
1466 /* */
1467 /* Non-buffered flash parts require that a page be erased before it is */
1468 /* written. */
1469 /* */
1470 /* Returns: */
1471 /* 0 on success, positive value on failure. */
1472 /****************************************************************************/
1473 int
1474 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
1475 {
1476 uint32_t cmd;
1477 int j;
1478
1479 /* Buffered flash doesn't require an erase. */
1480 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
1481 return 0;
1482
1483 DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
1484
1485 /* Build an erase command. */
1486 cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
1487 BNX_NVM_COMMAND_DOIT;
1488
1489 /*
1490 * Clear the DONE bit separately, set the NVRAM address to erase,
1491 * and issue the erase command.
1492 */
1493 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1494 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1495 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1496
1497 /* Wait for completion. */
1498 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1499 uint32_t val;
1500
1501 DELAY(5);
1502
1503 val = REG_RD(sc, BNX_NVM_COMMAND);
1504 if (val & BNX_NVM_COMMAND_DONE)
1505 break;
1506 }
1507
1508 if (j >= NVRAM_TIMEOUT_COUNT) {
1509 DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
1510 return EBUSY;
1511 }
1512
1513 return 0;
1514 }
1515 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1516
1517 /****************************************************************************/
1518 /* Read a dword (32 bits) from NVRAM. */
1519 /* */
1520 /* Read a 32 bit word from NVRAM. The caller is assumed to have already */
1521 /* obtained the NVRAM lock and enabled the controller for NVRAM access. */
1522 /* */
1523 /* Returns: */
1524 /* 0 on success and the 32 bit value read, positive value on failure. */
1525 /****************************************************************************/
1526 int
1527 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
1528 uint8_t *ret_val, uint32_t cmd_flags)
1529 {
1530 uint32_t cmd;
1531 int i, rc = 0;
1532
1533 /* Build the command word. */
1534 cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
1535
1536 /* Calculate the offset for buffered flash if translation is used. */
1537 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1538 offset = ((offset / sc->bnx_flash_info->page_size) <<
1539 sc->bnx_flash_info->page_bits) +
1540 (offset % sc->bnx_flash_info->page_size);
1541 }
1542
1543 /*
1544 * Clear the DONE bit separately, set the address to read,
1545 * and issue the read.
1546 */
1547 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1548 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1549 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1550
1551 /* Wait for completion. */
1552 for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
1553 uint32_t val;
1554
1555 DELAY(5);
1556
1557 val = REG_RD(sc, BNX_NVM_COMMAND);
1558 if (val & BNX_NVM_COMMAND_DONE) {
1559 val = REG_RD(sc, BNX_NVM_READ);
1560
1561 val = bnx_be32toh(val);
1562 memcpy(ret_val, &val, 4);
1563 break;
1564 }
1565 }
1566
1567 /* Check for errors. */
1568 if (i >= NVRAM_TIMEOUT_COUNT) {
1569 BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
1570 "offset 0x%08X!\n", __FILE__, __LINE__, offset);
1571 rc = EBUSY;
1572 }
1573
1574 return rc;
1575 }
1576
1577 #ifdef BNX_NVRAM_WRITE_SUPPORT
1578 /****************************************************************************/
1579 /* Write a dword (32 bits) to NVRAM. */
1580 /* */
1581 /* Write a 32 bit word to NVRAM. The caller is assumed to have already */
1582 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and */
1583 /* enabled NVRAM write access. */
1584 /* */
1585 /* Returns: */
1586 /* 0 on success, positive value on failure. */
1587 /****************************************************************************/
1588 int
1589 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
1590 uint32_t cmd_flags)
1591 {
1592 uint32_t cmd, val32;
1593 int j;
1594
1595 /* Build the command word. */
1596 cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
1597
1598 /* Calculate the offset for buffered flash if translation is used. */
1599 if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
1600 offset = ((offset / sc->bnx_flash_info->page_size) <<
1601 sc->bnx_flash_info->page_bits) +
1602 (offset % sc->bnx_flash_info->page_size);
1603 }
1604
1605 /*
1606 * Clear the DONE bit separately, convert NVRAM data to big-endian,
1607 * set the NVRAM address to write, and issue the write command
1608 */
1609 REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
1610 memcpy(&val32, val, 4);
1611 val32 = htobe32(val32);
1612 REG_WR(sc, BNX_NVM_WRITE, val32);
1613 REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
1614 REG_WR(sc, BNX_NVM_COMMAND, cmd);
1615
1616 /* Wait for completion. */
1617 for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
1618 DELAY(5);
1619
1620 if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
1621 break;
1622 }
1623 if (j >= NVRAM_TIMEOUT_COUNT) {
1624 BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
1625 "offset 0x%08X\n", __FILE__, __LINE__, offset);
1626 return EBUSY;
1627 }
1628
1629 return 0;
1630 }
1631 #endif /* BNX_NVRAM_WRITE_SUPPORT */
1632
1633 /****************************************************************************/
1634 /* Initialize NVRAM access. */
1635 /* */
1636 /* Identify the NVRAM device in use and prepare the NVRAM interface to */
1637 /* access that device. */
1638 /* */
1639 /* Returns: */
1640 /* 0 on success, positive value on failure. */
1641 /****************************************************************************/
1642 int
1643 bnx_init_nvram(struct bnx_softc *sc)
1644 {
1645 uint32_t val;
1646 int j, entry_count, rc = 0;
1647 struct flash_spec *flash;
1648
1649 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
1650
1651 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
1652 sc->bnx_flash_info = &flash_5709;
1653 goto bnx_init_nvram_get_flash_size;
1654 }
1655
1656 /* Determine the selected interface. */
1657 val = REG_RD(sc, BNX_NVM_CFG1);
1658
1659 entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
1660
1661 /*
1662 * Flash reconfiguration is required to support additional
1663 * NVRAM devices not directly supported in hardware.
1664 * Check if the flash interface was reconfigured
1665 * by the bootcode.
1666 */
1667
1668 if (val & 0x40000000) {
1669 /* Flash interface reconfigured by bootcode. */
1670
1671 DBPRINT(sc,BNX_INFO_LOAD,
1672 "bnx_init_nvram(): Flash WAS reconfigured.\n");
1673
1674 for (j = 0, flash = &flash_table[0]; j < entry_count;
1675 j++, flash++) {
1676 if ((val & FLASH_BACKUP_STRAP_MASK) ==
1677 (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
1678 sc->bnx_flash_info = flash;
1679 break;
1680 }
1681 }
1682 } else {
1683 /* Flash interface not yet reconfigured. */
1684 uint32_t mask;
1685
1686 DBPRINT(sc,BNX_INFO_LOAD,
1687 "bnx_init_nvram(): Flash was NOT reconfigured.\n");
1688
1689 if (val & (1 << 23))
1690 mask = FLASH_BACKUP_STRAP_MASK;
1691 else
1692 mask = FLASH_STRAP_MASK;
1693
1694 /* Look for the matching NVRAM device configuration data. */
1695 for (j = 0, flash = &flash_table[0]; j < entry_count;
1696 j++, flash++) {
1697 /* Check if the dev matches any of the known devices. */
1698 if ((val & mask) == (flash->strapping & mask)) {
1699 /* Found a device match. */
1700 sc->bnx_flash_info = flash;
1701
1702 /* Request access to the flash interface. */
1703 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1704 return rc;
1705
1706 /* Reconfigure the flash interface. */
1707 bnx_enable_nvram_access(sc);
1708 REG_WR(sc, BNX_NVM_CFG1, flash->config1);
1709 REG_WR(sc, BNX_NVM_CFG2, flash->config2);
1710 REG_WR(sc, BNX_NVM_CFG3, flash->config3);
1711 REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
1712 bnx_disable_nvram_access(sc);
1713 bnx_release_nvram_lock(sc);
1714
1715 break;
1716 }
1717 }
1718 }
1719
1720 /* Check if a matching device was found. */
1721 if (j == entry_count) {
1722 sc->bnx_flash_info = NULL;
1723 BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
1724 __FILE__, __LINE__);
1725 rc = ENODEV;
1726 }
1727
1728 bnx_init_nvram_get_flash_size:
1729 /* Write the flash config data to the shared memory interface. */
1730 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
1731 val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
1732 if (val)
1733 sc->bnx_flash_size = val;
1734 else
1735 sc->bnx_flash_size = sc->bnx_flash_info->total_size;
1736
1737 DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
1738 "0x%08X\n", sc->bnx_flash_info->total_size);
1739
1740 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
1741
1742 return rc;
1743 }
1744
1745 /****************************************************************************/
1746 /* Read an arbitrary range of data from NVRAM. */
1747 /* */
1748 /* Prepares the NVRAM interface for access and reads the requested data */
1749 /* into the supplied buffer. */
1750 /* */
1751 /* Returns: */
1752 /* 0 on success and the data read, positive value on failure. */
1753 /****************************************************************************/
1754 int
1755 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
1756 int buf_size)
1757 {
1758 int rc = 0;
1759 uint32_t cmd_flags, offset32, len32, extra;
1760
1761 if (buf_size == 0)
1762 return 0;
1763
1764 /* Request access to the flash interface. */
1765 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1766 return rc;
1767
1768 /* Enable access to flash interface */
1769 bnx_enable_nvram_access(sc);
1770
1771 len32 = buf_size;
1772 offset32 = offset;
1773 extra = 0;
1774
1775 cmd_flags = 0;
1776
1777 if (offset32 & 3) {
1778 uint8_t buf[4];
1779 uint32_t pre_len;
1780
1781 offset32 &= ~3;
1782 pre_len = 4 - (offset & 3);
1783
1784 if (pre_len >= len32) {
1785 pre_len = len32;
1786 cmd_flags =
1787 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1788 } else
1789 cmd_flags = BNX_NVM_COMMAND_FIRST;
1790
1791 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1792
1793 if (rc)
1794 return rc;
1795
1796 memcpy(ret_buf, buf + (offset & 3), pre_len);
1797
1798 offset32 += 4;
1799 ret_buf += pre_len;
1800 len32 -= pre_len;
1801 }
1802
1803 if (len32 & 3) {
1804 extra = 4 - (len32 & 3);
1805 len32 = (len32 + 4) & ~3;
1806 }
1807
1808 if (len32 == 4) {
1809 uint8_t buf[4];
1810
1811 if (cmd_flags)
1812 cmd_flags = BNX_NVM_COMMAND_LAST;
1813 else
1814 cmd_flags =
1815 BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
1816
1817 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1818
1819 memcpy(ret_buf, buf, 4 - extra);
1820 } else if (len32 > 0) {
1821 uint8_t buf[4];
1822
1823 /* Read the first word. */
1824 if (cmd_flags)
1825 cmd_flags = 0;
1826 else
1827 cmd_flags = BNX_NVM_COMMAND_FIRST;
1828
1829 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
1830
1831 /* Advance to the next dword. */
1832 offset32 += 4;
1833 ret_buf += 4;
1834 len32 -= 4;
1835
1836 while (len32 > 4 && rc == 0) {
1837 rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
1838
1839 /* Advance to the next dword. */
1840 offset32 += 4;
1841 ret_buf += 4;
1842 len32 -= 4;
1843 }
1844
1845 if (rc)
1846 return rc;
1847
1848 cmd_flags = BNX_NVM_COMMAND_LAST;
1849 rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
1850
1851 memcpy(ret_buf, buf, 4 - extra);
1852 }
1853
1854 /* Disable access to flash interface and release the lock. */
1855 bnx_disable_nvram_access(sc);
1856 bnx_release_nvram_lock(sc);
1857
1858 return rc;
1859 }
1860
1861 #ifdef BNX_NVRAM_WRITE_SUPPORT
1862 /****************************************************************************/
1863 /* Write an arbitrary range of data from NVRAM. */
1864 /* */
1865 /* Prepares the NVRAM interface for write access and writes the requested */
1866 /* data from the supplied buffer. The caller is responsible for */
1867 /* calculating any appropriate CRCs. */
1868 /* */
1869 /* Returns: */
1870 /* 0 on success, positive value on failure. */
1871 /****************************************************************************/
1872 int
1873 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
1874 int buf_size)
1875 {
1876 uint32_t written, offset32, len32;
1877 uint8_t *buf, start[4], end[4];
1878 int rc = 0;
1879 int align_start, align_end;
1880
1881 buf = data_buf;
1882 offset32 = offset;
1883 len32 = buf_size;
1884 align_start = align_end = 0;
1885
1886 if ((align_start = (offset32 & 3))) {
1887 offset32 &= ~3;
1888 len32 += align_start;
1889 if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
1890 return rc;
1891 }
1892
1893 if (len32 & 3) {
1894 if ((len32 > 4) || !align_start) {
1895 align_end = 4 - (len32 & 3);
1896 len32 += align_end;
1897 if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
1898 end, 4)))
1899 return rc;
1900 }
1901 }
1902
1903 if (align_start || align_end) {
1904 buf = malloc(len32, M_DEVBUF, M_NOWAIT);
1905 if (buf == 0)
1906 return ENOMEM;
1907
1908 if (align_start)
1909 memcpy(buf, start, 4);
1910
1911 if (align_end)
1912 memcpy(buf + len32 - 4, end, 4);
1913
1914 memcpy(buf + align_start, data_buf, buf_size);
1915 }
1916
1917 written = 0;
1918 while ((written < len32) && (rc == 0)) {
1919 uint32_t page_start, page_end, data_start, data_end;
1920 uint32_t addr, cmd_flags;
1921 int i;
1922 uint8_t flash_buffer[264];
1923
1924 /* Find the page_start addr */
1925 page_start = offset32 + written;
1926 page_start -= (page_start % sc->bnx_flash_info->page_size);
1927 /* Find the page_end addr */
1928 page_end = page_start + sc->bnx_flash_info->page_size;
1929 /* Find the data_start addr */
1930 data_start = (written == 0) ? offset32 : page_start;
1931 /* Find the data_end addr */
1932 data_end = (page_end > offset32 + len32) ?
1933 (offset32 + len32) : page_end;
1934
1935 /* Request access to the flash interface. */
1936 if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
1937 goto nvram_write_end;
1938
1939 /* Enable access to flash interface */
1940 bnx_enable_nvram_access(sc);
1941
1942 cmd_flags = BNX_NVM_COMMAND_FIRST;
1943 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1944 int j;
1945
1946 /* Read the whole page into the buffer
1947 * (non-buffer flash only) */
1948 for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
1949 if (j == (sc->bnx_flash_info->page_size - 4))
1950 cmd_flags |= BNX_NVM_COMMAND_LAST;
1951
1952 rc = bnx_nvram_read_dword(sc,
1953 page_start + j,
1954 &flash_buffer[j],
1955 cmd_flags);
1956
1957 if (rc)
1958 goto nvram_write_end;
1959
1960 cmd_flags = 0;
1961 }
1962 }
1963
1964 /* Enable writes to flash interface (unlock write-protect) */
1965 if ((rc = bnx_enable_nvram_write(sc)) != 0)
1966 goto nvram_write_end;
1967
1968 /* Erase the page */
1969 if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
1970 goto nvram_write_end;
1971
1972 /* Re-enable the write again for the actual write */
1973 bnx_enable_nvram_write(sc);
1974
1975 /* Loop to write back the buffer data from page_start to
1976 * data_start */
1977 i = 0;
1978 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
1979 for (addr = page_start; addr < data_start;
1980 addr += 4, i += 4) {
1981
1982 rc = bnx_nvram_write_dword(sc, addr,
1983 &flash_buffer[i], cmd_flags);
1984
1985 if (rc != 0)
1986 goto nvram_write_end;
1987
1988 cmd_flags = 0;
1989 }
1990 }
1991
1992 /* Loop to write the new data from data_start to data_end */
1993 for (addr = data_start; addr < data_end; addr += 4, i++) {
1994 if ((addr == page_end - 4) ||
1995 (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
1996 && (addr == data_end - 4))) {
1997
1998 cmd_flags |= BNX_NVM_COMMAND_LAST;
1999 }
2000
2001 rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
2002
2003 if (rc != 0)
2004 goto nvram_write_end;
2005
2006 cmd_flags = 0;
2007 buf += 4;
2008 }
2009
2010 /* Loop to write back the buffer data from data_end
2011 * to page_end */
2012 if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
2013 for (addr = data_end; addr < page_end;
2014 addr += 4, i += 4) {
2015
2016 if (addr == page_end-4)
2017 cmd_flags = BNX_NVM_COMMAND_LAST;
2018
2019 rc = bnx_nvram_write_dword(sc, addr,
2020 &flash_buffer[i], cmd_flags);
2021
2022 if (rc != 0)
2023 goto nvram_write_end;
2024
2025 cmd_flags = 0;
2026 }
2027 }
2028
2029 /* Disable writes to flash interface (lock write-protect) */
2030 bnx_disable_nvram_write(sc);
2031
2032 /* Disable access to flash interface */
2033 bnx_disable_nvram_access(sc);
2034 bnx_release_nvram_lock(sc);
2035
2036 /* Increment written */
2037 written += data_end - data_start;
2038 }
2039
2040 nvram_write_end:
2041 if (align_start || align_end)
2042 free(buf, M_DEVBUF);
2043
2044 return rc;
2045 }
2046 #endif /* BNX_NVRAM_WRITE_SUPPORT */
2047
2048 /****************************************************************************/
2049 /* Verifies that NVRAM is accessible and contains valid data. */
2050 /* */
2051 /* Reads the configuration data from NVRAM and verifies that the CRC is */
2052 /* correct. */
2053 /* */
2054 /* Returns: */
2055 /* 0 on success, positive value on failure. */
2056 /****************************************************************************/
2057 int
2058 bnx_nvram_test(struct bnx_softc *sc)
2059 {
2060 uint32_t buf[BNX_NVRAM_SIZE / 4];
2061 uint8_t *data = (uint8_t *) buf;
2062 int rc = 0;
2063 uint32_t magic, csum;
2064
2065 /*
2066 * Check that the device NVRAM is valid by reading
2067 * the magic value at offset 0.
2068 */
2069 if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
2070 goto bnx_nvram_test_done;
2071
2072 magic = bnx_be32toh(buf[0]);
2073 if (magic != BNX_NVRAM_MAGIC) {
2074 rc = ENODEV;
2075 BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
2076 "Expected: 0x%08X, Found: 0x%08X\n",
2077 __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
2078 goto bnx_nvram_test_done;
2079 }
2080
2081 /*
2082 * Verify that the device NVRAM includes valid
2083 * configuration data.
2084 */
2085 if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
2086 goto bnx_nvram_test_done;
2087
2088 csum = ether_crc32_le(data, 0x100);
2089 if (csum != BNX_CRC32_RESIDUAL) {
2090 rc = ENODEV;
2091 BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
2092 "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
2093 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2094 goto bnx_nvram_test_done;
2095 }
2096
2097 csum = ether_crc32_le(data + 0x100, 0x100);
2098 if (csum != BNX_CRC32_RESIDUAL) {
2099 BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
2100 "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
2101 __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
2102 rc = ENODEV;
2103 }
2104
2105 bnx_nvram_test_done:
2106 return rc;
2107 }
2108
2109 /****************************************************************************/
2110 /* Identifies the current media type of the controller and sets the PHY */
2111 /* address. */
2112 /* */
2113 /* Returns: */
2114 /* Nothing. */
2115 /****************************************************************************/
2116 void
2117 bnx_get_media(struct bnx_softc *sc)
2118 {
2119 sc->bnx_phy_addr = 1;
2120
2121 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2122 uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
2123 uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
2124 uint32_t strap;
2125
2126 /*
2127 * The BCM5709S is software configurable
2128 * for Copper or SerDes operation.
2129 */
2130 if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
2131 DBPRINT(sc, BNX_INFO_LOAD,
2132 "5709 bonded for copper.\n");
2133 goto bnx_get_media_exit;
2134 } else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
2135 DBPRINT(sc, BNX_INFO_LOAD,
2136 "5709 bonded for dual media.\n");
2137 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2138 goto bnx_get_media_exit;
2139 }
2140
2141 if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
2142 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
2143 else {
2144 strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
2145 >> 8;
2146 }
2147
2148 if (sc->bnx_pa.pa_function == 0) {
2149 switch (strap) {
2150 case 0x4:
2151 case 0x5:
2152 case 0x6:
2153 DBPRINT(sc, BNX_INFO_LOAD,
2154 "BCM5709 s/w configured for SerDes.\n");
2155 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2156 break;
2157 default:
2158 DBPRINT(sc, BNX_INFO_LOAD,
2159 "BCM5709 s/w configured for Copper.\n");
2160 }
2161 } else {
2162 switch (strap) {
2163 case 0x1:
2164 case 0x2:
2165 case 0x4:
2166 DBPRINT(sc, BNX_INFO_LOAD,
2167 "BCM5709 s/w configured for SerDes.\n");
2168 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2169 break;
2170 default:
2171 DBPRINT(sc, BNX_INFO_LOAD,
2172 "BCM5709 s/w configured for Copper.\n");
2173 }
2174 }
2175
2176 } else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
2177 sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
2178
2179 if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
2180 uint32_t val;
2181
2182 sc->bnx_flags |= BNX_NO_WOL_FLAG;
2183
2184 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
2185 sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
2186
2187 /*
2188 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
2189 * separate PHY for SerDes.
2190 */
2191 if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
2192 sc->bnx_phy_addr = 2;
2193 val = REG_RD_IND(sc, sc->bnx_shmem_base +
2194 BNX_SHARED_HW_CFG_CONFIG);
2195 if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
2196 sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
2197 DBPRINT(sc, BNX_INFO_LOAD,
2198 "Found 2.5Gb capable adapter\n");
2199 }
2200 }
2201 } else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
2202 (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
2203 sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
2204
2205 bnx_get_media_exit:
2206 DBPRINT(sc, (BNX_INFO_LOAD),
2207 "Using PHY address %d.\n", sc->bnx_phy_addr);
2208 }
2209
2210 /****************************************************************************/
2211 /* Performs PHY initialization required before MII drivers access the */
2212 /* device. */
2213 /* */
2214 /* Returns: */
2215 /* Nothing. */
2216 /****************************************************************************/
2217 void
2218 bnx_init_media(struct bnx_softc *sc)
2219 {
2220 if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
2221 /*
2222 * Configure the BCM5709S / BCM5716S PHYs to use traditional
2223 * IEEE Clause 22 method. Otherwise we have no way to attach
2224 * the PHY to the mii(4) layer. PHY specific configuration
2225 * is done by the mii(4) layer.
2226 */
2227
2228 /* Select auto-negotiation MMD of the PHY. */
2229 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2230 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
2231
2232 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2233 BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
2234
2235 bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
2236 BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
2237 }
2238 }
2239
2240 /****************************************************************************/
2241 /* Free any DMA memory owned by the driver. */
2242 /* */
2243 /* Scans through each data structre that requires DMA memory and frees */
2244 /* the memory if allocated. */
2245 /* */
2246 /* Returns: */
2247 /* Nothing. */
2248 /****************************************************************************/
2249 void
2250 bnx_dma_free(struct bnx_softc *sc)
2251 {
2252 int i;
2253
2254 DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2255
2256 /* Destroy the status block. */
2257 if (sc->status_block != NULL && sc->status_map != NULL) {
2258 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2259 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
2260 bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
2261 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
2262 BNX_STATUS_BLK_SZ);
2263 bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
2264 sc->status_rseg);
2265 bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
2266 sc->status_block = NULL;
2267 sc->status_map = NULL;
2268 }
2269
2270 /* Destroy the statistics block. */
2271 if (sc->stats_block != NULL && sc->stats_map != NULL) {
2272 bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
2273 bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
2274 BNX_STATS_BLK_SZ);
2275 bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
2276 sc->stats_rseg);
2277 bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
2278 sc->stats_block = NULL;
2279 sc->stats_map = NULL;
2280 }
2281
2282 /* Free, unmap and destroy all context memory pages. */
2283 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2284 for (i = 0; i < sc->ctx_pages; i++) {
2285 if (sc->ctx_block[i] != NULL) {
2286 bus_dmamap_unload(sc->bnx_dmatag,
2287 sc->ctx_map[i]);
2288 bus_dmamem_unmap(sc->bnx_dmatag,
2289 (void *)sc->ctx_block[i],
2290 BCM_PAGE_SIZE);
2291 bus_dmamem_free(sc->bnx_dmatag,
2292 &sc->ctx_segs[i], sc->ctx_rsegs[i]);
2293 bus_dmamap_destroy(sc->bnx_dmatag,
2294 sc->ctx_map[i]);
2295 sc->ctx_block[i] = NULL;
2296 }
2297 }
2298 }
2299
2300 /* Free, unmap and destroy all TX buffer descriptor chain pages. */
2301 for (i = 0; i < TX_PAGES; i++ ) {
2302 if (sc->tx_bd_chain[i] != NULL &&
2303 sc->tx_bd_chain_map[i] != NULL) {
2304 bus_dmamap_unload(sc->bnx_dmatag,
2305 sc->tx_bd_chain_map[i]);
2306 bus_dmamem_unmap(sc->bnx_dmatag,
2307 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
2308 bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2309 sc->tx_bd_chain_rseg[i]);
2310 bus_dmamap_destroy(sc->bnx_dmatag,
2311 sc->tx_bd_chain_map[i]);
2312 sc->tx_bd_chain[i] = NULL;
2313 sc->tx_bd_chain_map[i] = NULL;
2314 }
2315 }
2316
2317 /* Destroy the TX dmamaps. */
2318 /* This isn't necessary since we dont allocate them up front */
2319
2320 /* Free, unmap and destroy all RX buffer descriptor chain pages. */
2321 for (i = 0; i < RX_PAGES; i++ ) {
2322 if (sc->rx_bd_chain[i] != NULL &&
2323 sc->rx_bd_chain_map[i] != NULL) {
2324 bus_dmamap_unload(sc->bnx_dmatag,
2325 sc->rx_bd_chain_map[i]);
2326 bus_dmamem_unmap(sc->bnx_dmatag,
2327 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
2328 bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2329 sc->rx_bd_chain_rseg[i]);
2330
2331 bus_dmamap_destroy(sc->bnx_dmatag,
2332 sc->rx_bd_chain_map[i]);
2333 sc->rx_bd_chain[i] = NULL;
2334 sc->rx_bd_chain_map[i] = NULL;
2335 }
2336 }
2337
2338 /* Unload and destroy the RX mbuf maps. */
2339 for (i = 0; i < TOTAL_RX_BD; i++) {
2340 if (sc->rx_mbuf_map[i] != NULL) {
2341 bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2342 bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
2343 }
2344 }
2345
2346 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2347 }
2348
2349 /****************************************************************************/
2350 /* Allocate any DMA memory needed by the driver. */
2351 /* */
2352 /* Allocates DMA memory needed for the various global structures needed by */
2353 /* hardware. */
2354 /* */
2355 /* Returns: */
2356 /* 0 for success, positive value for failure. */
2357 /****************************************************************************/
2358 int
2359 bnx_dma_alloc(struct bnx_softc *sc)
2360 {
2361 int i, rc = 0;
2362
2363 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2364
2365 /*
2366 * Allocate DMA memory for the status block, map the memory into DMA
2367 * space, and fetch the physical address of the block.
2368 */
2369 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
2370 BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
2371 aprint_error_dev(sc->bnx_dev,
2372 "Could not create status block DMA map!\n");
2373 rc = ENOMEM;
2374 goto bnx_dma_alloc_exit;
2375 }
2376
2377 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
2378 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
2379 &sc->status_rseg, BUS_DMA_NOWAIT)) {
2380 aprint_error_dev(sc->bnx_dev,
2381 "Could not allocate status block DMA memory!\n");
2382 rc = ENOMEM;
2383 goto bnx_dma_alloc_exit;
2384 }
2385
2386 if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
2387 BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
2388 aprint_error_dev(sc->bnx_dev,
2389 "Could not map status block DMA memory!\n");
2390 rc = ENOMEM;
2391 goto bnx_dma_alloc_exit;
2392 }
2393
2394 if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
2395 sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2396 aprint_error_dev(sc->bnx_dev,
2397 "Could not load status block DMA memory!\n");
2398 rc = ENOMEM;
2399 goto bnx_dma_alloc_exit;
2400 }
2401
2402 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
2403 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
2404
2405 sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
2406 memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
2407
2408 /* DRC - Fix for 64 bit addresses. */
2409 DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
2410 (uint32_t) sc->status_block_paddr);
2411
2412 /* BCM5709 uses host memory as cache for context memory. */
2413 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
2414 sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
2415 if (sc->ctx_pages == 0)
2416 sc->ctx_pages = 1;
2417 if (sc->ctx_pages > 4) /* XXX */
2418 sc->ctx_pages = 4;
2419
2420 DBRUNIF((sc->ctx_pages > 512),
2421 BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
2422 __FILE__, __LINE__, sc->ctx_pages));
2423
2424
2425 for (i = 0; i < sc->ctx_pages; i++) {
2426 if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
2427 1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
2428 BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
2429 &sc->ctx_map[i]) != 0) {
2430 rc = ENOMEM;
2431 goto bnx_dma_alloc_exit;
2432 }
2433
2434 if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
2435 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
2436 1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
2437 rc = ENOMEM;
2438 goto bnx_dma_alloc_exit;
2439 }
2440
2441 if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
2442 sc->ctx_rsegs[i], BCM_PAGE_SIZE,
2443 &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
2444 rc = ENOMEM;
2445 goto bnx_dma_alloc_exit;
2446 }
2447
2448 if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
2449 sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
2450 BUS_DMA_NOWAIT) != 0) {
2451 rc = ENOMEM;
2452 goto bnx_dma_alloc_exit;
2453 }
2454
2455 bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
2456 }
2457 }
2458
2459 /*
2460 * Allocate DMA memory for the statistics block, map the memory into
2461 * DMA space, and fetch the physical address of the block.
2462 */
2463 if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
2464 BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
2465 aprint_error_dev(sc->bnx_dev,
2466 "Could not create stats block DMA map!\n");
2467 rc = ENOMEM;
2468 goto bnx_dma_alloc_exit;
2469 }
2470
2471 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
2472 BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
2473 &sc->stats_rseg, BUS_DMA_NOWAIT)) {
2474 aprint_error_dev(sc->bnx_dev,
2475 "Could not allocate stats block DMA memory!\n");
2476 rc = ENOMEM;
2477 goto bnx_dma_alloc_exit;
2478 }
2479
2480 if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
2481 BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
2482 aprint_error_dev(sc->bnx_dev,
2483 "Could not map stats block DMA memory!\n");
2484 rc = ENOMEM;
2485 goto bnx_dma_alloc_exit;
2486 }
2487
2488 if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
2489 sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
2490 aprint_error_dev(sc->bnx_dev,
2491 "Could not load status block DMA memory!\n");
2492 rc = ENOMEM;
2493 goto bnx_dma_alloc_exit;
2494 }
2495
2496 sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
2497 memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
2498
2499 /* DRC - Fix for 64 bit address. */
2500 DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
2501 (uint32_t) sc->stats_block_paddr);
2502
2503 /*
2504 * Allocate DMA memory for the TX buffer descriptor chain,
2505 * and fetch the physical address of the block.
2506 */
2507 for (i = 0; i < TX_PAGES; i++) {
2508 if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
2509 BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2510 &sc->tx_bd_chain_map[i])) {
2511 aprint_error_dev(sc->bnx_dev,
2512 "Could not create Tx desc %d DMA map!\n", i);
2513 rc = ENOMEM;
2514 goto bnx_dma_alloc_exit;
2515 }
2516
2517 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
2518 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
2519 &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2520 aprint_error_dev(sc->bnx_dev,
2521 "Could not allocate TX desc %d DMA memory!\n",
2522 i);
2523 rc = ENOMEM;
2524 goto bnx_dma_alloc_exit;
2525 }
2526
2527 if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
2528 sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
2529 (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
2530 aprint_error_dev(sc->bnx_dev,
2531 "Could not map TX desc %d DMA memory!\n", i);
2532 rc = ENOMEM;
2533 goto bnx_dma_alloc_exit;
2534 }
2535
2536 if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
2537 (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
2538 BUS_DMA_NOWAIT)) {
2539 aprint_error_dev(sc->bnx_dev,
2540 "Could not load TX desc %d DMA memory!\n", i);
2541 rc = ENOMEM;
2542 goto bnx_dma_alloc_exit;
2543 }
2544
2545 sc->tx_bd_chain_paddr[i] =
2546 sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
2547
2548 /* DRC - Fix for 64 bit systems. */
2549 DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
2550 i, (uint32_t) sc->tx_bd_chain_paddr[i]);
2551 }
2552
2553 /*
2554 * Create lists to hold TX mbufs.
2555 */
2556 TAILQ_INIT(&sc->tx_free_pkts);
2557 TAILQ_INIT(&sc->tx_used_pkts);
2558 sc->tx_pkt_count = 0;
2559 mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
2560
2561 /*
2562 * Allocate DMA memory for the Rx buffer descriptor chain,
2563 * and fetch the physical address of the block.
2564 */
2565 for (i = 0; i < RX_PAGES; i++) {
2566 if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
2567 BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
2568 &sc->rx_bd_chain_map[i])) {
2569 aprint_error_dev(sc->bnx_dev,
2570 "Could not create Rx desc %d DMA map!\n", i);
2571 rc = ENOMEM;
2572 goto bnx_dma_alloc_exit;
2573 }
2574
2575 if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
2576 BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
2577 &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
2578 aprint_error_dev(sc->bnx_dev,
2579 "Could not allocate Rx desc %d DMA memory!\n", i);
2580 rc = ENOMEM;
2581 goto bnx_dma_alloc_exit;
2582 }
2583
2584 if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
2585 sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
2586 (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
2587 aprint_error_dev(sc->bnx_dev,
2588 "Could not map Rx desc %d DMA memory!\n", i);
2589 rc = ENOMEM;
2590 goto bnx_dma_alloc_exit;
2591 }
2592
2593 if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2594 (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
2595 BUS_DMA_NOWAIT)) {
2596 aprint_error_dev(sc->bnx_dev,
2597 "Could not load Rx desc %d DMA memory!\n", i);
2598 rc = ENOMEM;
2599 goto bnx_dma_alloc_exit;
2600 }
2601
2602 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
2603 sc->rx_bd_chain_paddr[i] =
2604 sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
2605
2606 /* DRC - Fix for 64 bit systems. */
2607 DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
2608 i, (uint32_t) sc->rx_bd_chain_paddr[i]);
2609 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
2610 0, BNX_RX_CHAIN_PAGE_SZ,
2611 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
2612 }
2613
2614 /*
2615 * Create DMA maps for the Rx buffer mbufs.
2616 */
2617 for (i = 0; i < TOTAL_RX_BD; i++) {
2618 if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
2619 BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
2620 &sc->rx_mbuf_map[i])) {
2621 aprint_error_dev(sc->bnx_dev,
2622 "Could not create Rx mbuf %d DMA map!\n", i);
2623 rc = ENOMEM;
2624 goto bnx_dma_alloc_exit;
2625 }
2626 }
2627
2628 bnx_dma_alloc_exit:
2629 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2630
2631 return rc;
2632 }
2633
2634 /****************************************************************************/
2635 /* Release all resources used by the driver. */
2636 /* */
2637 /* Releases all resources acquired by the driver including interrupts, */
2638 /* interrupt handler, interfaces, mutexes, and DMA memory. */
2639 /* */
2640 /* Returns: */
2641 /* Nothing. */
2642 /****************************************************************************/
2643 void
2644 bnx_release_resources(struct bnx_softc *sc)
2645 {
2646 struct pci_attach_args *pa = &(sc->bnx_pa);
2647
2648 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
2649
2650 bnx_dma_free(sc);
2651
2652 if (sc->bnx_intrhand != NULL)
2653 pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
2654
2655 if (sc->bnx_size)
2656 bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
2657
2658 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
2659 }
2660
2661 /****************************************************************************/
2662 /* Firmware synchronization. */
2663 /* */
2664 /* Before performing certain events such as a chip reset, synchronize with */
2665 /* the firmware first. */
2666 /* */
2667 /* Returns: */
2668 /* 0 for success, positive value for failure. */
2669 /****************************************************************************/
2670 int
2671 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
2672 {
2673 int i, rc = 0;
2674 uint32_t val;
2675
2676 /* Don't waste any time if we've timed out before. */
2677 if (sc->bnx_fw_timed_out) {
2678 rc = EBUSY;
2679 goto bnx_fw_sync_exit;
2680 }
2681
2682 /* Increment the message sequence number. */
2683 sc->bnx_fw_wr_seq++;
2684 msg_data |= sc->bnx_fw_wr_seq;
2685
2686 DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
2687 msg_data);
2688
2689 /* Send the message to the bootcode driver mailbox. */
2690 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2691
2692 /* Wait for the bootcode to acknowledge the message. */
2693 for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
2694 /* Check for a response in the bootcode firmware mailbox. */
2695 val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
2696 if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
2697 break;
2698 DELAY(1000);
2699 }
2700
2701 /* If we've timed out, tell the bootcode that we've stopped waiting. */
2702 if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
2703 ((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
2704 BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
2705 "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
2706
2707 msg_data &= ~BNX_DRV_MSG_CODE;
2708 msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
2709
2710 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
2711
2712 sc->bnx_fw_timed_out = 1;
2713 rc = EBUSY;
2714 }
2715
2716 bnx_fw_sync_exit:
2717 return rc;
2718 }
2719
2720 /****************************************************************************/
2721 /* Load Receive Virtual 2 Physical (RV2P) processor firmware. */
2722 /* */
2723 /* Returns: */
2724 /* Nothing. */
2725 /****************************************************************************/
2726 void
2727 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
2728 uint32_t rv2p_code_len, uint32_t rv2p_proc)
2729 {
2730 int i;
2731 uint32_t val;
2732
2733 /* Set the page size used by RV2P. */
2734 if (rv2p_proc == RV2P_PROC2) {
2735 BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
2736 USABLE_RX_BD_PER_PAGE);
2737 }
2738
2739 for (i = 0; i < rv2p_code_len; i += 8) {
2740 REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
2741 rv2p_code++;
2742 REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
2743 rv2p_code++;
2744
2745 if (rv2p_proc == RV2P_PROC1) {
2746 val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
2747 REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
2748 } else {
2749 val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
2750 REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
2751 }
2752 }
2753
2754 /* Reset the processor, un-stall is done later. */
2755 if (rv2p_proc == RV2P_PROC1)
2756 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
2757 else
2758 REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
2759 }
2760
2761 /****************************************************************************/
2762 /* Load RISC processor firmware. */
2763 /* */
2764 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory */
2765 /* associated with a particular processor. */
2766 /* */
2767 /* Returns: */
2768 /* Nothing. */
2769 /****************************************************************************/
2770 void
2771 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
2772 struct fw_info *fw)
2773 {
2774 uint32_t offset;
2775 uint32_t val;
2776
2777 /* Halt the CPU. */
2778 val = REG_RD_IND(sc, cpu_reg->mode);
2779 val |= cpu_reg->mode_value_halt;
2780 REG_WR_IND(sc, cpu_reg->mode, val);
2781 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2782
2783 /* Load the Text area. */
2784 offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
2785 if (fw->text) {
2786 int j;
2787
2788 for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
2789 REG_WR_IND(sc, offset, fw->text[j]);
2790 }
2791
2792 /* Load the Data area. */
2793 offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
2794 if (fw->data) {
2795 int j;
2796
2797 for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
2798 REG_WR_IND(sc, offset, fw->data[j]);
2799 }
2800
2801 /* Load the SBSS area. */
2802 offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
2803 if (fw->sbss) {
2804 int j;
2805
2806 for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
2807 REG_WR_IND(sc, offset, fw->sbss[j]);
2808 }
2809
2810 /* Load the BSS area. */
2811 offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
2812 if (fw->bss) {
2813 int j;
2814
2815 for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
2816 REG_WR_IND(sc, offset, fw->bss[j]);
2817 }
2818
2819 /* Load the Read-Only area. */
2820 offset = cpu_reg->spad_base +
2821 (fw->rodata_addr - cpu_reg->mips_view_base);
2822 if (fw->rodata) {
2823 int j;
2824
2825 for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
2826 REG_WR_IND(sc, offset, fw->rodata[j]);
2827 }
2828
2829 /* Clear the pre-fetch instruction. */
2830 REG_WR_IND(sc, cpu_reg->inst, 0);
2831 REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
2832
2833 /* Start the CPU. */
2834 val = REG_RD_IND(sc, cpu_reg->mode);
2835 val &= ~cpu_reg->mode_value_halt;
2836 REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
2837 REG_WR_IND(sc, cpu_reg->mode, val);
2838 }
2839
2840 /****************************************************************************/
2841 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs. */
2842 /* */
2843 /* Loads the firmware for each CPU and starts the CPU. */
2844 /* */
2845 /* Returns: */
2846 /* Nothing. */
2847 /****************************************************************************/
2848 void
2849 bnx_init_cpus(struct bnx_softc *sc)
2850 {
2851 struct cpu_reg cpu_reg;
2852 struct fw_info fw;
2853
2854 switch(BNX_CHIP_NUM(sc)) {
2855 case BNX_CHIP_NUM_5709:
2856 /* Initialize the RV2P processor. */
2857 if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
2858 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
2859 sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
2860 bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
2861 sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
2862 } else {
2863 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
2864 sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
2865 bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
2866 sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
2867 }
2868
2869 /* Initialize the RX Processor. */
2870 cpu_reg.mode = BNX_RXP_CPU_MODE;
2871 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
2872 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
2873 cpu_reg.state = BNX_RXP_CPU_STATE;
2874 cpu_reg.state_value_clear = 0xffffff;
2875 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
2876 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
2877 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
2878 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
2879 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
2880 cpu_reg.spad_base = BNX_RXP_SCRATCH;
2881 cpu_reg.mips_view_base = 0x8000000;
2882
2883 fw.ver_major = bnx_RXP_b09FwReleaseMajor;
2884 fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
2885 fw.ver_fix = bnx_RXP_b09FwReleaseFix;
2886 fw.start_addr = bnx_RXP_b09FwStartAddr;
2887
2888 fw.text_addr = bnx_RXP_b09FwTextAddr;
2889 fw.text_len = bnx_RXP_b09FwTextLen;
2890 fw.text_index = 0;
2891 fw.text = bnx_RXP_b09FwText;
2892
2893 fw.data_addr = bnx_RXP_b09FwDataAddr;
2894 fw.data_len = bnx_RXP_b09FwDataLen;
2895 fw.data_index = 0;
2896 fw.data = bnx_RXP_b09FwData;
2897
2898 fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
2899 fw.sbss_len = bnx_RXP_b09FwSbssLen;
2900 fw.sbss_index = 0;
2901 fw.sbss = bnx_RXP_b09FwSbss;
2902
2903 fw.bss_addr = bnx_RXP_b09FwBssAddr;
2904 fw.bss_len = bnx_RXP_b09FwBssLen;
2905 fw.bss_index = 0;
2906 fw.bss = bnx_RXP_b09FwBss;
2907
2908 fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
2909 fw.rodata_len = bnx_RXP_b09FwRodataLen;
2910 fw.rodata_index = 0;
2911 fw.rodata = bnx_RXP_b09FwRodata;
2912
2913 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
2914 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2915
2916 /* Initialize the TX Processor. */
2917 cpu_reg.mode = BNX_TXP_CPU_MODE;
2918 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
2919 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
2920 cpu_reg.state = BNX_TXP_CPU_STATE;
2921 cpu_reg.state_value_clear = 0xffffff;
2922 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
2923 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
2924 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
2925 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
2926 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
2927 cpu_reg.spad_base = BNX_TXP_SCRATCH;
2928 cpu_reg.mips_view_base = 0x8000000;
2929
2930 fw.ver_major = bnx_TXP_b09FwReleaseMajor;
2931 fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
2932 fw.ver_fix = bnx_TXP_b09FwReleaseFix;
2933 fw.start_addr = bnx_TXP_b09FwStartAddr;
2934
2935 fw.text_addr = bnx_TXP_b09FwTextAddr;
2936 fw.text_len = bnx_TXP_b09FwTextLen;
2937 fw.text_index = 0;
2938 fw.text = bnx_TXP_b09FwText;
2939
2940 fw.data_addr = bnx_TXP_b09FwDataAddr;
2941 fw.data_len = bnx_TXP_b09FwDataLen;
2942 fw.data_index = 0;
2943 fw.data = bnx_TXP_b09FwData;
2944
2945 fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
2946 fw.sbss_len = bnx_TXP_b09FwSbssLen;
2947 fw.sbss_index = 0;
2948 fw.sbss = bnx_TXP_b09FwSbss;
2949
2950 fw.bss_addr = bnx_TXP_b09FwBssAddr;
2951 fw.bss_len = bnx_TXP_b09FwBssLen;
2952 fw.bss_index = 0;
2953 fw.bss = bnx_TXP_b09FwBss;
2954
2955 fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
2956 fw.rodata_len = bnx_TXP_b09FwRodataLen;
2957 fw.rodata_index = 0;
2958 fw.rodata = bnx_TXP_b09FwRodata;
2959
2960 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
2961 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
2962
2963 /* Initialize the TX Patch-up Processor. */
2964 cpu_reg.mode = BNX_TPAT_CPU_MODE;
2965 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
2966 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
2967 cpu_reg.state = BNX_TPAT_CPU_STATE;
2968 cpu_reg.state_value_clear = 0xffffff;
2969 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
2970 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
2971 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
2972 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
2973 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
2974 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
2975 cpu_reg.mips_view_base = 0x8000000;
2976
2977 fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
2978 fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
2979 fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
2980 fw.start_addr = bnx_TPAT_b09FwStartAddr;
2981
2982 fw.text_addr = bnx_TPAT_b09FwTextAddr;
2983 fw.text_len = bnx_TPAT_b09FwTextLen;
2984 fw.text_index = 0;
2985 fw.text = bnx_TPAT_b09FwText;
2986
2987 fw.data_addr = bnx_TPAT_b09FwDataAddr;
2988 fw.data_len = bnx_TPAT_b09FwDataLen;
2989 fw.data_index = 0;
2990 fw.data = bnx_TPAT_b09FwData;
2991
2992 fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
2993 fw.sbss_len = bnx_TPAT_b09FwSbssLen;
2994 fw.sbss_index = 0;
2995 fw.sbss = bnx_TPAT_b09FwSbss;
2996
2997 fw.bss_addr = bnx_TPAT_b09FwBssAddr;
2998 fw.bss_len = bnx_TPAT_b09FwBssLen;
2999 fw.bss_index = 0;
3000 fw.bss = bnx_TPAT_b09FwBss;
3001
3002 fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
3003 fw.rodata_len = bnx_TPAT_b09FwRodataLen;
3004 fw.rodata_index = 0;
3005 fw.rodata = bnx_TPAT_b09FwRodata;
3006
3007 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3008 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3009
3010 /* Initialize the Completion Processor. */
3011 cpu_reg.mode = BNX_COM_CPU_MODE;
3012 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3013 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3014 cpu_reg.state = BNX_COM_CPU_STATE;
3015 cpu_reg.state_value_clear = 0xffffff;
3016 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3017 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3018 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3019 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3020 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3021 cpu_reg.spad_base = BNX_COM_SCRATCH;
3022 cpu_reg.mips_view_base = 0x8000000;
3023
3024 fw.ver_major = bnx_COM_b09FwReleaseMajor;
3025 fw.ver_minor = bnx_COM_b09FwReleaseMinor;
3026 fw.ver_fix = bnx_COM_b09FwReleaseFix;
3027 fw.start_addr = bnx_COM_b09FwStartAddr;
3028
3029 fw.text_addr = bnx_COM_b09FwTextAddr;
3030 fw.text_len = bnx_COM_b09FwTextLen;
3031 fw.text_index = 0;
3032 fw.text = bnx_COM_b09FwText;
3033
3034 fw.data_addr = bnx_COM_b09FwDataAddr;
3035 fw.data_len = bnx_COM_b09FwDataLen;
3036 fw.data_index = 0;
3037 fw.data = bnx_COM_b09FwData;
3038
3039 fw.sbss_addr = bnx_COM_b09FwSbssAddr;
3040 fw.sbss_len = bnx_COM_b09FwSbssLen;
3041 fw.sbss_index = 0;
3042 fw.sbss = bnx_COM_b09FwSbss;
3043
3044 fw.bss_addr = bnx_COM_b09FwBssAddr;
3045 fw.bss_len = bnx_COM_b09FwBssLen;
3046 fw.bss_index = 0;
3047 fw.bss = bnx_COM_b09FwBss;
3048
3049 fw.rodata_addr = bnx_COM_b09FwRodataAddr;
3050 fw.rodata_len = bnx_COM_b09FwRodataLen;
3051 fw.rodata_index = 0;
3052 fw.rodata = bnx_COM_b09FwRodata;
3053 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3054 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3055 break;
3056 default:
3057 /* Initialize the RV2P processor. */
3058 bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
3059 RV2P_PROC1);
3060 bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
3061 RV2P_PROC2);
3062
3063 /* Initialize the RX Processor. */
3064 cpu_reg.mode = BNX_RXP_CPU_MODE;
3065 cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
3066 cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
3067 cpu_reg.state = BNX_RXP_CPU_STATE;
3068 cpu_reg.state_value_clear = 0xffffff;
3069 cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
3070 cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
3071 cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
3072 cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
3073 cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
3074 cpu_reg.spad_base = BNX_RXP_SCRATCH;
3075 cpu_reg.mips_view_base = 0x8000000;
3076
3077 fw.ver_major = bnx_RXP_b06FwReleaseMajor;
3078 fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
3079 fw.ver_fix = bnx_RXP_b06FwReleaseFix;
3080 fw.start_addr = bnx_RXP_b06FwStartAddr;
3081
3082 fw.text_addr = bnx_RXP_b06FwTextAddr;
3083 fw.text_len = bnx_RXP_b06FwTextLen;
3084 fw.text_index = 0;
3085 fw.text = bnx_RXP_b06FwText;
3086
3087 fw.data_addr = bnx_RXP_b06FwDataAddr;
3088 fw.data_len = bnx_RXP_b06FwDataLen;
3089 fw.data_index = 0;
3090 fw.data = bnx_RXP_b06FwData;
3091
3092 fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
3093 fw.sbss_len = bnx_RXP_b06FwSbssLen;
3094 fw.sbss_index = 0;
3095 fw.sbss = bnx_RXP_b06FwSbss;
3096
3097 fw.bss_addr = bnx_RXP_b06FwBssAddr;
3098 fw.bss_len = bnx_RXP_b06FwBssLen;
3099 fw.bss_index = 0;
3100 fw.bss = bnx_RXP_b06FwBss;
3101
3102 fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
3103 fw.rodata_len = bnx_RXP_b06FwRodataLen;
3104 fw.rodata_index = 0;
3105 fw.rodata = bnx_RXP_b06FwRodata;
3106
3107 DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
3108 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3109
3110 /* Initialize the TX Processor. */
3111 cpu_reg.mode = BNX_TXP_CPU_MODE;
3112 cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
3113 cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
3114 cpu_reg.state = BNX_TXP_CPU_STATE;
3115 cpu_reg.state_value_clear = 0xffffff;
3116 cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
3117 cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
3118 cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
3119 cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
3120 cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
3121 cpu_reg.spad_base = BNX_TXP_SCRATCH;
3122 cpu_reg.mips_view_base = 0x8000000;
3123
3124 fw.ver_major = bnx_TXP_b06FwReleaseMajor;
3125 fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
3126 fw.ver_fix = bnx_TXP_b06FwReleaseFix;
3127 fw.start_addr = bnx_TXP_b06FwStartAddr;
3128
3129 fw.text_addr = bnx_TXP_b06FwTextAddr;
3130 fw.text_len = bnx_TXP_b06FwTextLen;
3131 fw.text_index = 0;
3132 fw.text = bnx_TXP_b06FwText;
3133
3134 fw.data_addr = bnx_TXP_b06FwDataAddr;
3135 fw.data_len = bnx_TXP_b06FwDataLen;
3136 fw.data_index = 0;
3137 fw.data = bnx_TXP_b06FwData;
3138
3139 fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
3140 fw.sbss_len = bnx_TXP_b06FwSbssLen;
3141 fw.sbss_index = 0;
3142 fw.sbss = bnx_TXP_b06FwSbss;
3143
3144 fw.bss_addr = bnx_TXP_b06FwBssAddr;
3145 fw.bss_len = bnx_TXP_b06FwBssLen;
3146 fw.bss_index = 0;
3147 fw.bss = bnx_TXP_b06FwBss;
3148
3149 fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
3150 fw.rodata_len = bnx_TXP_b06FwRodataLen;
3151 fw.rodata_index = 0;
3152 fw.rodata = bnx_TXP_b06FwRodata;
3153
3154 DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
3155 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3156
3157 /* Initialize the TX Patch-up Processor. */
3158 cpu_reg.mode = BNX_TPAT_CPU_MODE;
3159 cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
3160 cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
3161 cpu_reg.state = BNX_TPAT_CPU_STATE;
3162 cpu_reg.state_value_clear = 0xffffff;
3163 cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
3164 cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
3165 cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
3166 cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
3167 cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
3168 cpu_reg.spad_base = BNX_TPAT_SCRATCH;
3169 cpu_reg.mips_view_base = 0x8000000;
3170
3171 fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
3172 fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
3173 fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
3174 fw.start_addr = bnx_TPAT_b06FwStartAddr;
3175
3176 fw.text_addr = bnx_TPAT_b06FwTextAddr;
3177 fw.text_len = bnx_TPAT_b06FwTextLen;
3178 fw.text_index = 0;
3179 fw.text = bnx_TPAT_b06FwText;
3180
3181 fw.data_addr = bnx_TPAT_b06FwDataAddr;
3182 fw.data_len = bnx_TPAT_b06FwDataLen;
3183 fw.data_index = 0;
3184 fw.data = bnx_TPAT_b06FwData;
3185
3186 fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
3187 fw.sbss_len = bnx_TPAT_b06FwSbssLen;
3188 fw.sbss_index = 0;
3189 fw.sbss = bnx_TPAT_b06FwSbss;
3190
3191 fw.bss_addr = bnx_TPAT_b06FwBssAddr;
3192 fw.bss_len = bnx_TPAT_b06FwBssLen;
3193 fw.bss_index = 0;
3194 fw.bss = bnx_TPAT_b06FwBss;
3195
3196 fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
3197 fw.rodata_len = bnx_TPAT_b06FwRodataLen;
3198 fw.rodata_index = 0;
3199 fw.rodata = bnx_TPAT_b06FwRodata;
3200
3201 DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
3202 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3203
3204 /* Initialize the Completion Processor. */
3205 cpu_reg.mode = BNX_COM_CPU_MODE;
3206 cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
3207 cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
3208 cpu_reg.state = BNX_COM_CPU_STATE;
3209 cpu_reg.state_value_clear = 0xffffff;
3210 cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
3211 cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
3212 cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
3213 cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
3214 cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
3215 cpu_reg.spad_base = BNX_COM_SCRATCH;
3216 cpu_reg.mips_view_base = 0x8000000;
3217
3218 fw.ver_major = bnx_COM_b06FwReleaseMajor;
3219 fw.ver_minor = bnx_COM_b06FwReleaseMinor;
3220 fw.ver_fix = bnx_COM_b06FwReleaseFix;
3221 fw.start_addr = bnx_COM_b06FwStartAddr;
3222
3223 fw.text_addr = bnx_COM_b06FwTextAddr;
3224 fw.text_len = bnx_COM_b06FwTextLen;
3225 fw.text_index = 0;
3226 fw.text = bnx_COM_b06FwText;
3227
3228 fw.data_addr = bnx_COM_b06FwDataAddr;
3229 fw.data_len = bnx_COM_b06FwDataLen;
3230 fw.data_index = 0;
3231 fw.data = bnx_COM_b06FwData;
3232
3233 fw.sbss_addr = bnx_COM_b06FwSbssAddr;
3234 fw.sbss_len = bnx_COM_b06FwSbssLen;
3235 fw.sbss_index = 0;
3236 fw.sbss = bnx_COM_b06FwSbss;
3237
3238 fw.bss_addr = bnx_COM_b06FwBssAddr;
3239 fw.bss_len = bnx_COM_b06FwBssLen;
3240 fw.bss_index = 0;
3241 fw.bss = bnx_COM_b06FwBss;
3242
3243 fw.rodata_addr = bnx_COM_b06FwRodataAddr;
3244 fw.rodata_len = bnx_COM_b06FwRodataLen;
3245 fw.rodata_index = 0;
3246 fw.rodata = bnx_COM_b06FwRodata;
3247 DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
3248 bnx_load_cpu_fw(sc, &cpu_reg, &fw);
3249 break;
3250 }
3251 }
3252
3253 /****************************************************************************/
3254 /* Initialize context memory. */
3255 /* */
3256 /* Clears the memory associated with each Context ID (CID). */
3257 /* */
3258 /* Returns: */
3259 /* Nothing. */
3260 /****************************************************************************/
3261 void
3262 bnx_init_context(struct bnx_softc *sc)
3263 {
3264 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3265 /* DRC: Replace this constant value with a #define. */
3266 int i, retry_cnt = 10;
3267 uint32_t val;
3268
3269 /*
3270 * BCM5709 context memory may be cached
3271 * in host memory so prepare the host memory
3272 * for access.
3273 */
3274 val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
3275 | (1 << 12);
3276 val |= (BCM_PAGE_BITS - 8) << 16;
3277 REG_WR(sc, BNX_CTX_COMMAND, val);
3278
3279 /* Wait for mem init command to complete. */
3280 for (i = 0; i < retry_cnt; i++) {
3281 val = REG_RD(sc, BNX_CTX_COMMAND);
3282 if (!(val & BNX_CTX_COMMAND_MEM_INIT))
3283 break;
3284 DELAY(2);
3285 }
3286
3287 /* ToDo: Consider returning an error here. */
3288
3289 for (i = 0; i < sc->ctx_pages; i++) {
3290 int j;
3291
3292 /* Set the physaddr of the context memory cache. */
3293 val = (uint32_t)(sc->ctx_segs[i].ds_addr);
3294 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
3295 BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
3296 val = (uint32_t)
3297 ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
3298 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
3299 REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
3300 BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
3301
3302 /* Verify that the context memory write was successful. */
3303 for (j = 0; j < retry_cnt; j++) {
3304 val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
3305 if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
3306 break;
3307 DELAY(5);
3308 }
3309
3310 /* ToDo: Consider returning an error here. */
3311 }
3312 } else {
3313 uint32_t vcid_addr, offset;
3314
3315 /*
3316 * For the 5706/5708, context memory is local to the
3317 * controller, so initialize the controller context memory.
3318 */
3319
3320 vcid_addr = GET_CID_ADDR(96);
3321 while (vcid_addr) {
3322
3323 vcid_addr -= BNX_PHY_CTX_SIZE;
3324
3325 REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
3326 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3327
3328 for (offset = 0; offset < BNX_PHY_CTX_SIZE;
3329 offset += 4)
3330 CTX_WR(sc, 0x00, offset, 0);
3331
3332 REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
3333 REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
3334 }
3335 }
3336 }
3337
3338 /****************************************************************************/
3339 /* Fetch the permanent MAC address of the controller. */
3340 /* */
3341 /* Returns: */
3342 /* Nothing. */
3343 /****************************************************************************/
3344 void
3345 bnx_get_mac_addr(struct bnx_softc *sc)
3346 {
3347 uint32_t mac_lo = 0, mac_hi = 0;
3348
3349 /*
3350 * The NetXtreme II bootcode populates various NIC
3351 * power-on and runtime configuration items in a
3352 * shared memory area. The factory configured MAC
3353 * address is available from both NVRAM and the
3354 * shared memory area so we'll read the value from
3355 * shared memory for speed.
3356 */
3357
3358 mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
3359 mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
3360
3361 if ((mac_lo == 0) && (mac_hi == 0)) {
3362 BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
3363 __FILE__, __LINE__);
3364 } else {
3365 sc->eaddr[0] = (u_char)(mac_hi >> 8);
3366 sc->eaddr[1] = (u_char)(mac_hi >> 0);
3367 sc->eaddr[2] = (u_char)(mac_lo >> 24);
3368 sc->eaddr[3] = (u_char)(mac_lo >> 16);
3369 sc->eaddr[4] = (u_char)(mac_lo >> 8);
3370 sc->eaddr[5] = (u_char)(mac_lo >> 0);
3371 }
3372
3373 DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
3374 "%s\n", ether_sprintf(sc->eaddr));
3375 }
3376
3377 /****************************************************************************/
3378 /* Program the MAC address. */
3379 /* */
3380 /* Returns: */
3381 /* Nothing. */
3382 /****************************************************************************/
3383 void
3384 bnx_set_mac_addr(struct bnx_softc *sc)
3385 {
3386 uint32_t val;
3387 const uint8_t *mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
3388
3389 DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
3390 "%s\n", ether_sprintf(sc->eaddr));
3391
3392 val = (mac_addr[0] << 8) | mac_addr[1];
3393
3394 REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
3395
3396 val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
3397 (mac_addr[4] << 8) | mac_addr[5];
3398
3399 REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
3400 }
3401
3402 /****************************************************************************/
3403 /* Stop the controller. */
3404 /* */
3405 /* Returns: */
3406 /* Nothing. */
3407 /****************************************************************************/
3408 void
3409 bnx_stop(struct ifnet *ifp, int disable)
3410 {
3411 struct bnx_softc *sc = ifp->if_softc;
3412
3413 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3414
3415 if (disable) {
3416 sc->bnx_detaching = 1;
3417 callout_halt(&sc->bnx_timeout, NULL);
3418 } else
3419 callout_stop(&sc->bnx_timeout);
3420
3421 mii_down(&sc->bnx_mii);
3422
3423 ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
3424
3425 /* Disable the transmit/receive blocks. */
3426 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
3427 REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3428 DELAY(20);
3429
3430 bnx_disable_intr(sc);
3431
3432 /* Tell firmware that the driver is going away. */
3433 if (disable)
3434 bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
3435 else
3436 bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
3437
3438 /* Free RX buffers. */
3439 bnx_free_rx_chain(sc);
3440
3441 /* Free TX buffers. */
3442 bnx_free_tx_chain(sc);
3443
3444 ifp->if_timer = 0;
3445
3446 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3447
3448 }
3449
3450 int
3451 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
3452 {
3453 struct pci_attach_args *pa = &(sc->bnx_pa);
3454 uint32_t val;
3455 int i, rc = 0;
3456
3457 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3458
3459 /* Wait for pending PCI transactions to complete. */
3460 REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
3461 BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
3462 BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
3463 BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
3464 BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
3465 val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
3466 DELAY(5);
3467
3468 /* Disable DMA */
3469 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3470 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3471 val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3472 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3473 }
3474
3475 /* Assume bootcode is running. */
3476 sc->bnx_fw_timed_out = 0;
3477
3478 /* Give the firmware a chance to prepare for the reset. */
3479 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
3480 if (rc)
3481 goto bnx_reset_exit;
3482
3483 /* Set a firmware reminder that this is a soft reset. */
3484 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
3485 BNX_DRV_RESET_SIGNATURE_MAGIC);
3486
3487 /* Dummy read to force the chip to complete all current transactions. */
3488 val = REG_RD(sc, BNX_MISC_ID);
3489
3490 /* Chip reset. */
3491 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3492 REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
3493 REG_RD(sc, BNX_MISC_COMMAND);
3494 DELAY(5);
3495
3496 val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3497 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3498
3499 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
3500 val);
3501 } else {
3502 val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3503 BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
3504 BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
3505 REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
3506
3507 /* Allow up to 30us for reset to complete. */
3508 for (i = 0; i < 10; i++) {
3509 val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
3510 if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3511 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
3512 break;
3513 }
3514 DELAY(10);
3515 }
3516
3517 /* Check that reset completed successfully. */
3518 if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
3519 BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
3520 BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
3521 __FILE__, __LINE__);
3522 rc = EBUSY;
3523 goto bnx_reset_exit;
3524 }
3525 }
3526
3527 /* Make sure byte swapping is properly configured. */
3528 val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
3529 if (val != 0x01020304) {
3530 BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
3531 __FILE__, __LINE__);
3532 rc = ENODEV;
3533 goto bnx_reset_exit;
3534 }
3535
3536 /* Just completed a reset, assume that firmware is running again. */
3537 sc->bnx_fw_timed_out = 0;
3538
3539 /* Wait for the firmware to finish its initialization. */
3540 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
3541 if (rc)
3542 BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
3543 "initialization!\n", __FILE__, __LINE__);
3544
3545 bnx_reset_exit:
3546 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3547
3548 return rc;
3549 }
3550
3551 int
3552 bnx_chipinit(struct bnx_softc *sc)
3553 {
3554 struct pci_attach_args *pa = &(sc->bnx_pa);
3555 uint32_t val;
3556 int rc = 0;
3557
3558 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3559
3560 /* Make sure the interrupt is not active. */
3561 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
3562
3563 /* Initialize DMA byte/word swapping, configure the number of DMA */
3564 /* channels and PCI clock compensation delay. */
3565 val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
3566 BNX_DMA_CONFIG_DATA_WORD_SWAP |
3567 #if BYTE_ORDER == BIG_ENDIAN
3568 BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
3569 #endif
3570 BNX_DMA_CONFIG_CNTL_WORD_SWAP |
3571 DMA_READ_CHANS << 12 |
3572 DMA_WRITE_CHANS << 16;
3573
3574 val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
3575
3576 if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
3577 val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
3578
3579 /*
3580 * This setting resolves a problem observed on certain Intel PCI
3581 * chipsets that cannot handle multiple outstanding DMA operations.
3582 * See errata E9_5706A1_65.
3583 */
3584 if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
3585 (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
3586 !(sc->bnx_flags & BNX_PCIX_FLAG))
3587 val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
3588
3589 REG_WR(sc, BNX_DMA_CONFIG, val);
3590
3591 /* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
3592 if (sc->bnx_flags & BNX_PCIX_FLAG) {
3593 val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
3594 pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
3595 val & ~0x20000);
3596 }
3597
3598 /* Enable the RX_V2P and Context state machines before access. */
3599 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3600 BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
3601 BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
3602 BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
3603
3604 /* Initialize context mapping and zero out the quick contexts. */
3605 bnx_init_context(sc);
3606
3607 /* Initialize the on-boards CPUs */
3608 bnx_init_cpus(sc);
3609
3610 /* Prepare NVRAM for access. */
3611 if (bnx_init_nvram(sc)) {
3612 rc = ENODEV;
3613 goto bnx_chipinit_exit;
3614 }
3615
3616 /* Set the kernel bypass block size */
3617 val = REG_RD(sc, BNX_MQ_CONFIG);
3618 val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
3619 val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
3620
3621 /* Enable bins used on the 5709. */
3622 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3623 val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
3624 if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
3625 val |= BNX_MQ_CONFIG_HALT_DIS;
3626 }
3627
3628 REG_WR(sc, BNX_MQ_CONFIG, val);
3629
3630 val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
3631 REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
3632 REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
3633
3634 val = (BCM_PAGE_BITS - 8) << 24;
3635 REG_WR(sc, BNX_RV2P_CONFIG, val);
3636
3637 /* Configure page size. */
3638 val = REG_RD(sc, BNX_TBDR_CONFIG);
3639 val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
3640 val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
3641 REG_WR(sc, BNX_TBDR_CONFIG, val);
3642
3643 #if 0
3644 /* Set the perfect match control register to default. */
3645 REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
3646 #endif
3647
3648 bnx_chipinit_exit:
3649 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3650
3651 return rc;
3652 }
3653
3654 /****************************************************************************/
3655 /* Initialize the controller in preparation to send/receive traffic. */
3656 /* */
3657 /* Returns: */
3658 /* 0 for success, positive value for failure. */
3659 /****************************************************************************/
3660 int
3661 bnx_blockinit(struct bnx_softc *sc)
3662 {
3663 uint32_t reg, val;
3664 int rc = 0;
3665
3666 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
3667
3668 /* Load the hardware default MAC address. */
3669 bnx_set_mac_addr(sc);
3670
3671 /* Set the Ethernet backoff seed value */
3672 val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
3673 (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
3674 REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
3675
3676 sc->last_status_idx = 0;
3677 sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
3678
3679 /* Set up link change interrupt generation. */
3680 REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
3681 REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
3682
3683 /* Program the physical address of the status block. */
3684 REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
3685 REG_WR(sc, BNX_HC_STATUS_ADDR_H,
3686 (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
3687
3688 /* Program the physical address of the statistics block. */
3689 REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
3690 (uint32_t)(sc->stats_block_paddr));
3691 REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
3692 (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
3693
3694 /* Program various host coalescing parameters. */
3695 REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
3696 << 16) | sc->bnx_tx_quick_cons_trip);
3697 REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
3698 << 16) | sc->bnx_rx_quick_cons_trip);
3699 REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
3700 sc->bnx_comp_prod_trip);
3701 REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
3702 sc->bnx_tx_ticks);
3703 REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
3704 sc->bnx_rx_ticks);
3705 REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
3706 sc->bnx_com_ticks);
3707 REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
3708 sc->bnx_cmd_ticks);
3709 REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
3710 REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8); /* 3ms */
3711 REG_WR(sc, BNX_HC_CONFIG,
3712 (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
3713 BNX_HC_CONFIG_COLLECT_STATS));
3714
3715 /* Clear the internal statistics counters. */
3716 REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
3717
3718 /* Verify that bootcode is running. */
3719 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
3720
3721 DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
3722 BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
3723 __FILE__, __LINE__); reg = 0);
3724
3725 if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
3726 BNX_DEV_INFO_SIGNATURE_MAGIC) {
3727 BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
3728 "Expected: 08%08X\n", __FILE__, __LINE__,
3729 (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
3730 BNX_DEV_INFO_SIGNATURE_MAGIC);
3731 rc = ENODEV;
3732 goto bnx_blockinit_exit;
3733 }
3734
3735 /* Check if any management firmware is running. */
3736 reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
3737 if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
3738 BNX_PORT_FEATURE_IMD_ENABLED)) {
3739 DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
3740 sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
3741 }
3742
3743 sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
3744 BNX_DEV_INFO_BC_REV);
3745
3746 DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
3747
3748 /* Enable DMA */
3749 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3750 val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
3751 val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
3752 REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
3753 }
3754
3755 /* Allow bootcode to apply any additional fixes before enabling MAC. */
3756 rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
3757
3758 /* Enable link state change interrupt generation. */
3759 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
3760 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
3761 BNX_MISC_ENABLE_DEFAULT_XI);
3762 } else
3763 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
3764
3765 /* Enable all remaining blocks in the MAC. */
3766 REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
3767 REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
3768 DELAY(20);
3769
3770 bnx_blockinit_exit:
3771 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
3772
3773 return rc;
3774 }
3775
3776 static int
3777 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
3778 uint16_t *chain_prod, uint32_t *prod_bseq)
3779 {
3780 bus_dmamap_t map;
3781 struct rx_bd *rxbd;
3782 uint32_t addr;
3783 int i;
3784 #ifdef BNX_DEBUG
3785 uint16_t debug_chain_prod = *chain_prod;
3786 #endif
3787 uint16_t first_chain_prod;
3788
3789 m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
3790
3791 /* Map the mbuf cluster into device memory. */
3792 map = sc->rx_mbuf_map[*chain_prod];
3793 first_chain_prod = *chain_prod;
3794 if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
3795 BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
3796 __FILE__, __LINE__);
3797
3798 m_freem(m_new);
3799
3800 DBRUNIF(1, sc->rx_mbuf_alloc--);
3801
3802 return ENOBUFS;
3803 }
3804 /* Make sure there is room in the receive chain. */
3805 if (map->dm_nsegs > sc->free_rx_bd) {
3806 bus_dmamap_unload(sc->bnx_dmatag, map);
3807 m_freem(m_new);
3808 return EFBIG;
3809 }
3810 #ifdef BNX_DEBUG
3811 /* Track the distribution of buffer segments. */
3812 sc->rx_mbuf_segs[map->dm_nsegs]++;
3813 #endif
3814
3815 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
3816 BUS_DMASYNC_PREREAD);
3817
3818 /* Update some debug statistics counters */
3819 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
3820 sc->rx_low_watermark = sc->free_rx_bd);
3821 DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
3822
3823 /*
3824 * Setup the rx_bd for the first segment
3825 */
3826 rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3827
3828 addr = (uint32_t)map->dm_segs[0].ds_addr;
3829 rxbd->rx_bd_haddr_lo = addr;
3830 addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
3831 rxbd->rx_bd_haddr_hi = addr;
3832 rxbd->rx_bd_len = map->dm_segs[0].ds_len;
3833 rxbd->rx_bd_flags = RX_BD_FLAGS_START;
3834 *prod_bseq += map->dm_segs[0].ds_len;
3835 bus_dmamap_sync(sc->bnx_dmatag,
3836 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3837 sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
3838 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3839
3840 for (i = 1; i < map->dm_nsegs; i++) {
3841 *prod = NEXT_RX_BD(*prod);
3842 *chain_prod = RX_CHAIN_IDX(*prod);
3843
3844 rxbd =
3845 &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
3846
3847 addr = (uint32_t)map->dm_segs[i].ds_addr;
3848 rxbd->rx_bd_haddr_lo = addr;
3849 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
3850 rxbd->rx_bd_haddr_hi = addr;
3851 rxbd->rx_bd_len = map->dm_segs[i].ds_len;
3852 rxbd->rx_bd_flags = 0;
3853 *prod_bseq += map->dm_segs[i].ds_len;
3854 bus_dmamap_sync(sc->bnx_dmatag,
3855 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3856 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3857 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3858 }
3859
3860 rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
3861 bus_dmamap_sync(sc->bnx_dmatag,
3862 sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
3863 sizeof(struct rx_bd) * RX_IDX(*chain_prod),
3864 sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
3865
3866 /*
3867 * Save the mbuf, adjust the map pointer (swap map for first and
3868 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
3869 * and update our counter.
3870 */
3871 sc->rx_mbuf_ptr[*chain_prod] = m_new;
3872 sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
3873 sc->rx_mbuf_map[*chain_prod] = map;
3874 sc->free_rx_bd -= map->dm_nsegs;
3875
3876 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
3877 map->dm_nsegs));
3878 *prod = NEXT_RX_BD(*prod);
3879 *chain_prod = RX_CHAIN_IDX(*prod);
3880
3881 return 0;
3882 }
3883
3884 /****************************************************************************/
3885 /* Encapsulate an mbuf cluster into the rx_bd chain. */
3886 /* */
3887 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's. */
3888 /* This routine will map an mbuf cluster into 1 or more rx_bd's as */
3889 /* necessary. */
3890 /* */
3891 /* Returns: */
3892 /* 0 for success, positive value for failure. */
3893 /****************************************************************************/
3894 int
3895 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
3896 uint16_t *chain_prod, uint32_t *prod_bseq)
3897 {
3898 struct mbuf *m_new = NULL;
3899 int rc = 0;
3900 uint16_t min_free_bd;
3901
3902 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
3903 __func__);
3904
3905 /* Make sure the inputs are valid. */
3906 DBRUNIF((*chain_prod > MAX_RX_BD),
3907 aprint_error_dev(sc->bnx_dev,
3908 "RX producer out of range: 0x%04X > 0x%04X\n",
3909 *chain_prod, (uint16_t)MAX_RX_BD));
3910
3911 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
3912 "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
3913 *prod_bseq);
3914
3915 /* try to get in as many mbufs as possible */
3916 if (sc->mbuf_alloc_size == MCLBYTES)
3917 min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
3918 else
3919 min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
3920 while (sc->free_rx_bd >= min_free_bd) {
3921 /* Simulate an mbuf allocation failure. */
3922 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3923 aprint_error_dev(sc->bnx_dev,
3924 "Simulating mbuf allocation failure.\n");
3925 sc->mbuf_sim_alloc_failed++;
3926 rc = ENOBUFS;
3927 goto bnx_get_buf_exit);
3928
3929 /* This is a new mbuf allocation. */
3930 MGETHDR(m_new, M_DONTWAIT, MT_DATA);
3931 if (m_new == NULL) {
3932 DBPRINT(sc, BNX_WARN,
3933 "%s(%d): RX mbuf header allocation failed!\n",
3934 __FILE__, __LINE__);
3935
3936 sc->mbuf_alloc_failed++;
3937
3938 rc = ENOBUFS;
3939 goto bnx_get_buf_exit;
3940 }
3941
3942 DBRUNIF(1, sc->rx_mbuf_alloc++);
3943
3944 /* Simulate an mbuf cluster allocation failure. */
3945 DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
3946 m_freem(m_new);
3947 sc->rx_mbuf_alloc--;
3948 sc->mbuf_alloc_failed++;
3949 sc->mbuf_sim_alloc_failed++;
3950 rc = ENOBUFS;
3951 goto bnx_get_buf_exit);
3952
3953 if (sc->mbuf_alloc_size == MCLBYTES)
3954 MCLGET(m_new, M_DONTWAIT);
3955 else
3956 MEXTMALLOC(m_new, sc->mbuf_alloc_size,
3957 M_DONTWAIT);
3958 if (!(m_new->m_flags & M_EXT)) {
3959 DBPRINT(sc, BNX_WARN,
3960 "%s(%d): RX mbuf chain allocation failed!\n",
3961 __FILE__, __LINE__);
3962
3963 m_freem(m_new);
3964
3965 DBRUNIF(1, sc->rx_mbuf_alloc--);
3966 sc->mbuf_alloc_failed++;
3967
3968 rc = ENOBUFS;
3969 goto bnx_get_buf_exit;
3970 }
3971
3972 rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
3973 if (rc != 0)
3974 goto bnx_get_buf_exit;
3975 }
3976
3977 bnx_get_buf_exit:
3978 DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
3979 "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
3980 *chain_prod, *prod_bseq);
3981
3982 DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
3983 __func__);
3984
3985 return rc;
3986 }
3987
3988 void
3989 bnx_alloc_pkts(struct work * unused, void * arg)
3990 {
3991 struct bnx_softc *sc = arg;
3992 struct ifnet *ifp = &sc->bnx_ec.ec_if;
3993 struct bnx_pkt *pkt;
3994 int i, s;
3995
3996 for (i = 0; i < 4; i++) { /* magic! */
3997 pkt = pool_get(bnx_tx_pool, PR_WAITOK);
3998 if (pkt == NULL)
3999 break;
4000
4001 if (bus_dmamap_create(sc->bnx_dmatag,
4002 MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
4003 MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
4004 &pkt->pkt_dmamap) != 0)
4005 goto put;
4006
4007 if (!ISSET(ifp->if_flags, IFF_UP))
4008 goto stopping;
4009
4010 mutex_enter(&sc->tx_pkt_mtx);
4011 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4012 sc->tx_pkt_count++;
4013 mutex_exit(&sc->tx_pkt_mtx);
4014 }
4015
4016 mutex_enter(&sc->tx_pkt_mtx);
4017 CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
4018 mutex_exit(&sc->tx_pkt_mtx);
4019
4020 /* fire-up TX now that allocations have been done */
4021 s = splnet();
4022 if (!IFQ_IS_EMPTY(&ifp->if_snd))
4023 bnx_start(ifp);
4024 splx(s);
4025
4026 return;
4027
4028 stopping:
4029 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4030 put:
4031 pool_put(bnx_tx_pool, pkt);
4032 return;
4033 }
4034
4035 /****************************************************************************/
4036 /* Initialize the TX context memory. */
4037 /* */
4038 /* Returns: */
4039 /* Nothing */
4040 /****************************************************************************/
4041 void
4042 bnx_init_tx_context(struct bnx_softc *sc)
4043 {
4044 uint32_t val;
4045
4046 /* Initialize the context ID for an L2 TX chain. */
4047 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4048 /* Set the CID type to support an L2 connection. */
4049 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4050 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
4051 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4052 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
4053
4054 /* Point the hardware to the first page in the chain. */
4055 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4056 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4057 BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
4058 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4059 CTX_WR(sc, GET_CID_ADDR(TX_CID),
4060 BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
4061 } else {
4062 /* Set the CID type to support an L2 connection. */
4063 val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
4064 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
4065 val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
4066 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
4067
4068 /* Point the hardware to the first page in the chain. */
4069 val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
4070 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
4071 val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
4072 CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
4073 }
4074 }
4075
4076
4077 /****************************************************************************/
4078 /* Allocate memory and initialize the TX data structures. */
4079 /* */
4080 /* Returns: */
4081 /* 0 for success, positive value for failure. */
4082 /****************************************************************************/
4083 int
4084 bnx_init_tx_chain(struct bnx_softc *sc)
4085 {
4086 struct tx_bd *txbd;
4087 uint32_t addr;
4088 int i, rc = 0;
4089
4090 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4091
4092 /* Force an allocation of some dmamaps for tx up front */
4093 bnx_alloc_pkts(NULL, sc);
4094
4095 /* Set the initial TX producer/consumer indices. */
4096 sc->tx_prod = 0;
4097 sc->tx_cons = 0;
4098 sc->tx_prod_bseq = 0;
4099 sc->used_tx_bd = 0;
4100 sc->max_tx_bd = USABLE_TX_BD;
4101 DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
4102 DBRUNIF(1, sc->tx_full_count = 0);
4103
4104 /*
4105 * The NetXtreme II supports a linked-list structure called
4106 * a Buffer Descriptor Chain (or BD chain). A BD chain
4107 * consists of a series of 1 or more chain pages, each of which
4108 * consists of a fixed number of BD entries.
4109 * The last BD entry on each page is a pointer to the next page
4110 * in the chain, and the last pointer in the BD chain
4111 * points back to the beginning of the chain.
4112 */
4113
4114 /* Set the TX next pointer chain entries. */
4115 for (i = 0; i < TX_PAGES; i++) {
4116 int j;
4117
4118 txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
4119
4120 /* Check if we've reached the last page. */
4121 if (i == (TX_PAGES - 1))
4122 j = 0;
4123 else
4124 j = i + 1;
4125
4126 addr = (uint32_t)sc->tx_bd_chain_paddr[j];
4127 txbd->tx_bd_haddr_lo = addr;
4128 addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
4129 txbd->tx_bd_haddr_hi = addr;
4130 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4131 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4132 }
4133
4134 /*
4135 * Initialize the context ID for an L2 TX chain.
4136 */
4137 bnx_init_tx_context(sc);
4138
4139 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4140
4141 return rc;
4142 }
4143
4144 /****************************************************************************/
4145 /* Free memory and clear the TX data structures. */
4146 /* */
4147 /* Returns: */
4148 /* Nothing. */
4149 /****************************************************************************/
4150 void
4151 bnx_free_tx_chain(struct bnx_softc *sc)
4152 {
4153 struct bnx_pkt *pkt;
4154 int i;
4155
4156 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4157
4158 /* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
4159 mutex_enter(&sc->tx_pkt_mtx);
4160 while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
4161 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4162 mutex_exit(&sc->tx_pkt_mtx);
4163
4164 bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
4165 pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4166 bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
4167
4168 m_freem(pkt->pkt_mbuf);
4169 DBRUNIF(1, sc->tx_mbuf_alloc--);
4170
4171 mutex_enter(&sc->tx_pkt_mtx);
4172 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4173 }
4174
4175 /* Destroy all the dmamaps we allocated for TX */
4176 while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
4177 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
4178 sc->tx_pkt_count--;
4179 mutex_exit(&sc->tx_pkt_mtx);
4180
4181 bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
4182 pool_put(bnx_tx_pool, pkt);
4183
4184 mutex_enter(&sc->tx_pkt_mtx);
4185 }
4186 mutex_exit(&sc->tx_pkt_mtx);
4187
4188
4189
4190 /* Clear each TX chain page. */
4191 for (i = 0; i < TX_PAGES; i++) {
4192 memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
4193 bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
4194 BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
4195 }
4196
4197 sc->used_tx_bd = 0;
4198
4199 /* Check if we lost any mbufs in the process. */
4200 DBRUNIF((sc->tx_mbuf_alloc),
4201 aprint_error_dev(sc->bnx_dev,
4202 "Memory leak! Lost %d mbufs from tx chain!\n",
4203 sc->tx_mbuf_alloc));
4204
4205 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4206 }
4207
4208 /****************************************************************************/
4209 /* Initialize the RX context memory. */
4210 /* */
4211 /* Returns: */
4212 /* Nothing */
4213 /****************************************************************************/
4214 void
4215 bnx_init_rx_context(struct bnx_softc *sc)
4216 {
4217 uint32_t val;
4218
4219 /* Initialize the context ID for an L2 RX chain. */
4220 val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
4221 BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
4222
4223 if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
4224 val |= 0x000000ff;
4225
4226 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
4227
4228 /* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
4229 if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
4230 val = REG_RD(sc, BNX_MQ_MAP_L2_5);
4231 REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
4232 }
4233
4234 /* Point the hardware to the first page in the chain. */
4235 val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
4236 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
4237 val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
4238 CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
4239 }
4240
4241 /****************************************************************************/
4242 /* Allocate memory and initialize the RX data structures. */
4243 /* */
4244 /* Returns: */
4245 /* 0 for success, positive value for failure. */
4246 /****************************************************************************/
4247 int
4248 bnx_init_rx_chain(struct bnx_softc *sc)
4249 {
4250 struct rx_bd *rxbd;
4251 int i, rc = 0;
4252 uint16_t prod, chain_prod;
4253 uint32_t prod_bseq, addr;
4254
4255 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4256
4257 /* Initialize the RX producer and consumer indices. */
4258 sc->rx_prod = 0;
4259 sc->rx_cons = 0;
4260 sc->rx_prod_bseq = 0;
4261 sc->free_rx_bd = USABLE_RX_BD;
4262 sc->max_rx_bd = USABLE_RX_BD;
4263 DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
4264 DBRUNIF(1, sc->rx_empty_count = 0);
4265
4266 /* Initialize the RX next pointer chain entries. */
4267 for (i = 0; i < RX_PAGES; i++) {
4268 int j;
4269
4270 rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
4271
4272 /* Check if we've reached the last page. */
4273 if (i == (RX_PAGES - 1))
4274 j = 0;
4275 else
4276 j = i + 1;
4277
4278 /* Setup the chain page pointers. */
4279 addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
4280 rxbd->rx_bd_haddr_hi = addr;
4281 addr = (uint32_t)sc->rx_bd_chain_paddr[j];
4282 rxbd->rx_bd_haddr_lo = addr;
4283 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
4284 0, BNX_RX_CHAIN_PAGE_SZ,
4285 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4286 }
4287
4288 /* Allocate mbuf clusters for the rx_bd chain. */
4289 prod = prod_bseq = 0;
4290 chain_prod = RX_CHAIN_IDX(prod);
4291 if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
4292 BNX_PRINTF(sc,
4293 "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
4294 }
4295
4296 /* Save the RX chain producer index. */
4297 sc->rx_prod = prod;
4298 sc->rx_prod_bseq = prod_bseq;
4299
4300 for (i = 0; i < RX_PAGES; i++)
4301 bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
4302 sc->rx_bd_chain_map[i]->dm_mapsize,
4303 BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
4304
4305 /* Tell the chip about the waiting rx_bd's. */
4306 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4307 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4308
4309 bnx_init_rx_context(sc);
4310
4311 DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
4312
4313 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4314
4315 return rc;
4316 }
4317
4318 /****************************************************************************/
4319 /* Free memory and clear the RX data structures. */
4320 /* */
4321 /* Returns: */
4322 /* Nothing. */
4323 /****************************************************************************/
4324 void
4325 bnx_free_rx_chain(struct bnx_softc *sc)
4326 {
4327 int i;
4328
4329 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4330
4331 /* Free any mbufs still in the RX mbuf chain. */
4332 for (i = 0; i < TOTAL_RX_BD; i++) {
4333 if (sc->rx_mbuf_ptr[i] != NULL) {
4334 if (sc->rx_mbuf_map[i] != NULL) {
4335 bus_dmamap_sync(sc->bnx_dmatag,
4336 sc->rx_mbuf_map[i], 0,
4337 sc->rx_mbuf_map[i]->dm_mapsize,
4338 BUS_DMASYNC_POSTREAD);
4339 bus_dmamap_unload(sc->bnx_dmatag,
4340 sc->rx_mbuf_map[i]);
4341 }
4342 m_freem(sc->rx_mbuf_ptr[i]);
4343 sc->rx_mbuf_ptr[i] = NULL;
4344 DBRUNIF(1, sc->rx_mbuf_alloc--);
4345 }
4346 }
4347
4348 /* Clear each RX chain page. */
4349 for (i = 0; i < RX_PAGES; i++)
4350 memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
4351
4352 sc->free_rx_bd = sc->max_rx_bd;
4353
4354 /* Check if we lost any mbufs in the process. */
4355 DBRUNIF((sc->rx_mbuf_alloc),
4356 aprint_error_dev(sc->bnx_dev,
4357 "Memory leak! Lost %d mbufs from rx chain!\n",
4358 sc->rx_mbuf_alloc));
4359
4360 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4361 }
4362
4363 /****************************************************************************/
4364 /* Reports current media status. */
4365 /* */
4366 /* Returns: */
4367 /* Nothing. */
4368 /****************************************************************************/
4369 void
4370 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
4371 {
4372 struct bnx_softc *sc;
4373 struct mii_data *mii;
4374 int s;
4375
4376 sc = ifp->if_softc;
4377
4378 s = splnet();
4379
4380 mii = &sc->bnx_mii;
4381
4382 mii_pollstat(mii);
4383 ifmr->ifm_status = mii->mii_media_status;
4384 ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
4385 sc->bnx_flowflags;
4386
4387 splx(s);
4388 }
4389
4390 /****************************************************************************/
4391 /* Handles PHY generated interrupt events. */
4392 /* */
4393 /* Returns: */
4394 /* Nothing. */
4395 /****************************************************************************/
4396 void
4397 bnx_phy_intr(struct bnx_softc *sc)
4398 {
4399 uint32_t new_link_state, old_link_state;
4400
4401 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4402 BUS_DMASYNC_POSTREAD);
4403 new_link_state = sc->status_block->status_attn_bits &
4404 STATUS_ATTN_BITS_LINK_STATE;
4405 old_link_state = sc->status_block->status_attn_bits_ack &
4406 STATUS_ATTN_BITS_LINK_STATE;
4407
4408 /* Handle any changes if the link state has changed. */
4409 if (new_link_state != old_link_state) {
4410 DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
4411
4412 callout_stop(&sc->bnx_timeout);
4413 bnx_tick(sc);
4414
4415 /* Update the status_attn_bits_ack field in the status block. */
4416 if (new_link_state) {
4417 REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
4418 STATUS_ATTN_BITS_LINK_STATE);
4419 DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
4420 } else {
4421 REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
4422 STATUS_ATTN_BITS_LINK_STATE);
4423 DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
4424 }
4425 }
4426
4427 /* Acknowledge the link change interrupt. */
4428 REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
4429 }
4430
4431 /****************************************************************************/
4432 /* Handles received frame interrupt events. */
4433 /* */
4434 /* Returns: */
4435 /* Nothing. */
4436 /****************************************************************************/
4437 void
4438 bnx_rx_intr(struct bnx_softc *sc)
4439 {
4440 struct status_block *sblk = sc->status_block;
4441 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4442 uint16_t hw_cons, sw_cons, sw_chain_cons;
4443 uint16_t sw_prod, sw_chain_prod;
4444 uint32_t sw_prod_bseq;
4445 struct l2_fhdr *l2fhdr;
4446 int i;
4447
4448 DBRUNIF(1, sc->rx_interrupts++);
4449 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4450 BUS_DMASYNC_POSTREAD);
4451
4452 /* Prepare the RX chain pages to be accessed by the host CPU. */
4453 for (i = 0; i < RX_PAGES; i++)
4454 bus_dmamap_sync(sc->bnx_dmatag,
4455 sc->rx_bd_chain_map[i], 0,
4456 sc->rx_bd_chain_map[i]->dm_mapsize,
4457 BUS_DMASYNC_POSTWRITE);
4458
4459 /* Get the hardware's view of the RX consumer index. */
4460 hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
4461 if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
4462 hw_cons++;
4463
4464 /* Get working copies of the driver's view of the RX indices. */
4465 sw_cons = sc->rx_cons;
4466 sw_prod = sc->rx_prod;
4467 sw_prod_bseq = sc->rx_prod_bseq;
4468
4469 DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
4470 "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
4471 __func__, sw_prod, sw_cons, sw_prod_bseq);
4472
4473 /* Prevent speculative reads from getting ahead of the status block. */
4474 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4475 BUS_SPACE_BARRIER_READ);
4476
4477 /* Update some debug statistics counters */
4478 DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
4479 sc->rx_low_watermark = sc->free_rx_bd);
4480 DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
4481
4482 /*
4483 * Scan through the receive chain as long
4484 * as there is work to do.
4485 */
4486 while (sw_cons != hw_cons) {
4487 struct mbuf *m;
4488 struct rx_bd *rxbd __diagused;
4489 unsigned int len;
4490 uint32_t status;
4491
4492 /* Convert the producer/consumer indices to an actual
4493 * rx_bd index.
4494 */
4495 sw_chain_cons = RX_CHAIN_IDX(sw_cons);
4496 sw_chain_prod = RX_CHAIN_IDX(sw_prod);
4497
4498 /* Get the used rx_bd. */
4499 rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
4500 sc->free_rx_bd++;
4501
4502 DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
4503 bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
4504
4505 /* The mbuf is stored with the last rx_bd entry of a packet. */
4506 if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
4507 #ifdef DIAGNOSTIC
4508 /* Validate that this is the last rx_bd. */
4509 if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
4510 printf("%s: Unexpected mbuf found in "
4511 "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
4512 sw_chain_cons);
4513 }
4514 #endif
4515
4516 /* DRC - ToDo: If the received packet is small, say
4517 * less than 128 bytes, allocate a new mbuf
4518 * here, copy the data to that mbuf, and
4519 * recycle the mapped jumbo frame.
4520 */
4521
4522 /* Unmap the mbuf from DMA space. */
4523 #ifdef DIAGNOSTIC
4524 if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
4525 printf("invalid map sw_cons 0x%x "
4526 "sw_prod 0x%x "
4527 "sw_chain_cons 0x%x "
4528 "sw_chain_prod 0x%x "
4529 "hw_cons 0x%x "
4530 "TOTAL_RX_BD_PER_PAGE 0x%x "
4531 "TOTAL_RX_BD 0x%x\n",
4532 sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
4533 hw_cons,
4534 (int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
4535 }
4536 #endif
4537 bus_dmamap_sync(sc->bnx_dmatag,
4538 sc->rx_mbuf_map[sw_chain_cons], 0,
4539 sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
4540 BUS_DMASYNC_POSTREAD);
4541 bus_dmamap_unload(sc->bnx_dmatag,
4542 sc->rx_mbuf_map[sw_chain_cons]);
4543
4544 /* Remove the mbuf from the driver's chain. */
4545 m = sc->rx_mbuf_ptr[sw_chain_cons];
4546 sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
4547
4548 /*
4549 * Frames received on the NetXteme II are prepended
4550 * with the l2_fhdr structure which provides status
4551 * information about the received frame (including
4552 * VLAN tags and checksum info) and are also
4553 * automatically adjusted to align the IP header
4554 * (i.e. two null bytes are inserted before the
4555 * Ethernet header).
4556 */
4557 l2fhdr = mtod(m, struct l2_fhdr *);
4558
4559 len = l2fhdr->l2_fhdr_pkt_len;
4560 status = l2fhdr->l2_fhdr_status;
4561
4562 DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
4563 aprint_error("Simulating l2_fhdr status error.\n");
4564 status = status | L2_FHDR_ERRORS_PHY_DECODE);
4565
4566 /* Watch for unusual sized frames. */
4567 DBRUNIF(((len < BNX_MIN_MTU) ||
4568 (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
4569 aprint_error_dev(sc->bnx_dev,
4570 "Unusual frame size found. "
4571 "Min(%d), Actual(%d), Max(%d)\n",
4572 (int)BNX_MIN_MTU, len,
4573 (int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
4574
4575 bnx_dump_mbuf(sc, m);
4576 bnx_breakpoint(sc));
4577
4578 len -= ETHER_CRC_LEN;
4579
4580 /* Check the received frame for errors. */
4581 if ((status & (L2_FHDR_ERRORS_BAD_CRC |
4582 L2_FHDR_ERRORS_PHY_DECODE |
4583 L2_FHDR_ERRORS_ALIGNMENT |
4584 L2_FHDR_ERRORS_TOO_SHORT |
4585 L2_FHDR_ERRORS_GIANT_FRAME)) ||
4586 len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
4587 len >
4588 (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
4589 ifp->if_ierrors++;
4590 DBRUNIF(1, sc->l2fhdr_status_errors++);
4591
4592 /* Reuse the mbuf for a new frame. */
4593 if (bnx_add_buf(sc, m, &sw_prod,
4594 &sw_chain_prod, &sw_prod_bseq)) {
4595 DBRUNIF(1, bnx_breakpoint(sc));
4596 panic("%s: Can't reuse RX mbuf!\n",
4597 device_xname(sc->bnx_dev));
4598 }
4599 continue;
4600 }
4601
4602 /*
4603 * Get a new mbuf for the rx_bd. If no new
4604 * mbufs are available then reuse the current mbuf,
4605 * log an ierror on the interface, and generate
4606 * an error in the system log.
4607 */
4608 if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
4609 &sw_prod_bseq)) {
4610 DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
4611 "Failed to allocate "
4612 "new mbuf, incoming frame dropped!\n"));
4613
4614 ifp->if_ierrors++;
4615
4616 /* Try and reuse the exisitng mbuf. */
4617 if (bnx_add_buf(sc, m, &sw_prod,
4618 &sw_chain_prod, &sw_prod_bseq)) {
4619 DBRUNIF(1, bnx_breakpoint(sc));
4620 panic("%s: Double mbuf allocation "
4621 "failure!",
4622 device_xname(sc->bnx_dev));
4623 }
4624 continue;
4625 }
4626
4627 /* Skip over the l2_fhdr when passing the data up
4628 * the stack.
4629 */
4630 m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
4631
4632 /* Adjust the pckt length to match the received data. */
4633 m->m_pkthdr.len = m->m_len = len;
4634
4635 /* Send the packet to the appropriate interface. */
4636 m_set_rcvif(m, ifp);
4637
4638 DBRUN(BNX_VERBOSE_RECV,
4639 struct ether_header *eh;
4640 eh = mtod(m, struct ether_header *);
4641 aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
4642 __func__, ether_sprintf(eh->ether_dhost),
4643 ether_sprintf(eh->ether_shost),
4644 htons(eh->ether_type)));
4645
4646 /* Validate the checksum. */
4647
4648 /* Check for an IP datagram. */
4649 if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
4650 /* Check if the IP checksum is valid. */
4651 if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
4652 m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
4653 #ifdef BNX_DEBUG
4654 else
4655 DBPRINT(sc, BNX_WARN_SEND,
4656 "%s(): Invalid IP checksum "
4657 "= 0x%04X!\n",
4658 __func__,
4659 l2fhdr->l2_fhdr_ip_xsum
4660 );
4661 #endif
4662 }
4663
4664 /* Check for a valid TCP/UDP frame. */
4665 if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
4666 L2_FHDR_STATUS_UDP_DATAGRAM)) {
4667 /* Check for a good TCP/UDP checksum. */
4668 if ((status &
4669 (L2_FHDR_ERRORS_TCP_XSUM |
4670 L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
4671 m->m_pkthdr.csum_flags |=
4672 M_CSUM_TCPv4 |
4673 M_CSUM_UDPv4;
4674 } else {
4675 DBPRINT(sc, BNX_WARN_SEND,
4676 "%s(): Invalid TCP/UDP "
4677 "checksum = 0x%04X!\n",
4678 __func__,
4679 l2fhdr->l2_fhdr_tcp_udp_xsum);
4680 }
4681 }
4682
4683 /*
4684 * If we received a packet with a vlan tag,
4685 * attach that information to the packet.
4686 */
4687 if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
4688 !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
4689 vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
4690 }
4691
4692 /* Pass the mbuf off to the upper layers. */
4693
4694 DBPRINT(sc, BNX_VERBOSE_RECV,
4695 "%s(): Passing received frame up.\n", __func__);
4696 if_percpuq_enqueue(ifp->if_percpuq, m);
4697 DBRUNIF(1, sc->rx_mbuf_alloc--);
4698
4699 }
4700
4701 sw_cons = NEXT_RX_BD(sw_cons);
4702
4703 /* Refresh hw_cons to see if there's new work */
4704 if (sw_cons == hw_cons) {
4705 hw_cons = sc->hw_rx_cons =
4706 sblk->status_rx_quick_consumer_index0;
4707 if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
4708 USABLE_RX_BD_PER_PAGE)
4709 hw_cons++;
4710 }
4711
4712 /* Prevent speculative reads from getting ahead of
4713 * the status block.
4714 */
4715 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4716 BUS_SPACE_BARRIER_READ);
4717 }
4718
4719 for (i = 0; i < RX_PAGES; i++)
4720 bus_dmamap_sync(sc->bnx_dmatag,
4721 sc->rx_bd_chain_map[i], 0,
4722 sc->rx_bd_chain_map[i]->dm_mapsize,
4723 BUS_DMASYNC_PREWRITE);
4724
4725 sc->rx_cons = sw_cons;
4726 sc->rx_prod = sw_prod;
4727 sc->rx_prod_bseq = sw_prod_bseq;
4728
4729 REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
4730 REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
4731
4732 DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
4733 "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
4734 __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
4735 }
4736
4737 /****************************************************************************/
4738 /* Handles transmit completion interrupt events. */
4739 /* */
4740 /* Returns: */
4741 /* Nothing. */
4742 /****************************************************************************/
4743 void
4744 bnx_tx_intr(struct bnx_softc *sc)
4745 {
4746 struct status_block *sblk = sc->status_block;
4747 struct ifnet *ifp = &sc->bnx_ec.ec_if;
4748 struct bnx_pkt *pkt;
4749 bus_dmamap_t map;
4750 uint16_t hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
4751
4752 DBRUNIF(1, sc->tx_interrupts++);
4753 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
4754 BUS_DMASYNC_POSTREAD);
4755
4756 /* Get the hardware's view of the TX consumer index. */
4757 hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
4758
4759 /* Skip to the next entry if this is a chain page pointer. */
4760 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
4761 hw_tx_cons++;
4762
4763 sw_tx_cons = sc->tx_cons;
4764
4765 /* Prevent speculative reads from getting ahead of the status block. */
4766 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4767 BUS_SPACE_BARRIER_READ);
4768
4769 /* Cycle through any completed TX chain page entries. */
4770 while (sw_tx_cons != hw_tx_cons) {
4771 #ifdef BNX_DEBUG
4772 struct tx_bd *txbd = NULL;
4773 #endif
4774 sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
4775
4776 DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
4777 "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
4778 __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
4779
4780 DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
4781 aprint_error_dev(sc->bnx_dev,
4782 "TX chain consumer out of range! 0x%04X > 0x%04X\n",
4783 sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
4784
4785 DBRUNIF(1, txbd = &sc->tx_bd_chain
4786 [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
4787
4788 DBRUNIF((txbd == NULL),
4789 aprint_error_dev(sc->bnx_dev,
4790 "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
4791 bnx_breakpoint(sc));
4792
4793 DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
4794 bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
4795
4796
4797 mutex_enter(&sc->tx_pkt_mtx);
4798 pkt = TAILQ_FIRST(&sc->tx_used_pkts);
4799 if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
4800 TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
4801 mutex_exit(&sc->tx_pkt_mtx);
4802 /*
4803 * Free the associated mbuf. Remember
4804 * that only the last tx_bd of a packet
4805 * has an mbuf pointer and DMA map.
4806 */
4807 map = pkt->pkt_dmamap;
4808 bus_dmamap_sync(sc->bnx_dmatag, map, 0,
4809 map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
4810 bus_dmamap_unload(sc->bnx_dmatag, map);
4811
4812 m_freem(pkt->pkt_mbuf);
4813 DBRUNIF(1, sc->tx_mbuf_alloc--);
4814
4815 ifp->if_opackets++;
4816
4817 mutex_enter(&sc->tx_pkt_mtx);
4818 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
4819 }
4820 mutex_exit(&sc->tx_pkt_mtx);
4821
4822 sc->used_tx_bd--;
4823 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
4824 __FILE__, __LINE__, sc->used_tx_bd);
4825
4826 sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
4827
4828 /* Refresh hw_cons to see if there's new work. */
4829 hw_tx_cons = sc->hw_tx_cons =
4830 sblk->status_tx_quick_consumer_index0;
4831 if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
4832 USABLE_TX_BD_PER_PAGE)
4833 hw_tx_cons++;
4834
4835 /* Prevent speculative reads from getting ahead of
4836 * the status block.
4837 */
4838 bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
4839 BUS_SPACE_BARRIER_READ);
4840 }
4841
4842 /* Clear the TX timeout timer. */
4843 ifp->if_timer = 0;
4844
4845 /* Clear the tx hardware queue full flag. */
4846 if (sc->used_tx_bd < sc->max_tx_bd) {
4847 DBRUNIF((ifp->if_flags & IFF_OACTIVE),
4848 aprint_debug_dev(sc->bnx_dev,
4849 "Open TX chain! %d/%d (used/total)\n",
4850 sc->used_tx_bd, sc->max_tx_bd));
4851 ifp->if_flags &= ~IFF_OACTIVE;
4852 }
4853
4854 sc->tx_cons = sw_tx_cons;
4855 }
4856
4857 /****************************************************************************/
4858 /* Disables interrupt generation. */
4859 /* */
4860 /* Returns: */
4861 /* Nothing. */
4862 /****************************************************************************/
4863 void
4864 bnx_disable_intr(struct bnx_softc *sc)
4865 {
4866 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
4867 REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
4868 }
4869
4870 /****************************************************************************/
4871 /* Enables interrupt generation. */
4872 /* */
4873 /* Returns: */
4874 /* Nothing. */
4875 /****************************************************************************/
4876 void
4877 bnx_enable_intr(struct bnx_softc *sc)
4878 {
4879 uint32_t val;
4880
4881 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4882 BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
4883
4884 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
4885 sc->last_status_idx);
4886
4887 val = REG_RD(sc, BNX_HC_COMMAND);
4888 REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
4889 }
4890
4891 /****************************************************************************/
4892 /* Handles controller initialization. */
4893 /* */
4894 /****************************************************************************/
4895 int
4896 bnx_init(struct ifnet *ifp)
4897 {
4898 struct bnx_softc *sc = ifp->if_softc;
4899 uint32_t ether_mtu;
4900 int s, error = 0;
4901
4902 DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
4903
4904 s = splnet();
4905
4906 bnx_stop(ifp, 0);
4907
4908 if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
4909 aprint_error_dev(sc->bnx_dev,
4910 "Controller reset failed!\n");
4911 goto bnx_init_exit;
4912 }
4913
4914 if ((error = bnx_chipinit(sc)) != 0) {
4915 aprint_error_dev(sc->bnx_dev,
4916 "Controller initialization failed!\n");
4917 goto bnx_init_exit;
4918 }
4919
4920 if ((error = bnx_blockinit(sc)) != 0) {
4921 aprint_error_dev(sc->bnx_dev,
4922 "Block initialization failed!\n");
4923 goto bnx_init_exit;
4924 }
4925
4926 /* Calculate and program the Ethernet MRU size. */
4927 if (ifp->if_mtu <= ETHERMTU) {
4928 ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
4929 sc->mbuf_alloc_size = MCLBYTES;
4930 } else {
4931 ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
4932 sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
4933 }
4934
4935
4936 DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
4937
4938 /*
4939 * Program the MRU and enable Jumbo frame
4940 * support.
4941 */
4942 REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
4943 BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
4944
4945 /* Calculate the RX Ethernet frame size for rx_bd's. */
4946 sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
4947
4948 DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
4949 "max_frame_size = %d\n", __func__, (int)MCLBYTES,
4950 sc->mbuf_alloc_size, sc->max_frame_size);
4951
4952 /* Program appropriate promiscuous/multicast filtering. */
4953 bnx_iff(sc);
4954
4955 /* Init RX buffer descriptor chain. */
4956 bnx_init_rx_chain(sc);
4957
4958 /* Init TX buffer descriptor chain. */
4959 bnx_init_tx_chain(sc);
4960
4961 /* Enable host interrupts. */
4962 bnx_enable_intr(sc);
4963
4964 if ((error = ether_mediachange(ifp)) != 0)
4965 goto bnx_init_exit;
4966
4967 SET(ifp->if_flags, IFF_RUNNING);
4968 CLR(ifp->if_flags, IFF_OACTIVE);
4969
4970 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
4971
4972 bnx_init_exit:
4973 DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
4974
4975 splx(s);
4976
4977 return error;
4978 }
4979
4980 /****************************************************************************/
4981 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
4982 /* memory visible to the controller. */
4983 /* */
4984 /* Returns: */
4985 /* 0 for success, positive value for failure. */
4986 /****************************************************************************/
4987 int
4988 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
4989 {
4990 struct bnx_pkt *pkt;
4991 bus_dmamap_t map;
4992 struct tx_bd *txbd = NULL;
4993 uint16_t vlan_tag = 0, flags = 0;
4994 uint16_t chain_prod, prod;
4995 #ifdef BNX_DEBUG
4996 uint16_t debug_prod;
4997 #endif
4998 uint32_t addr, prod_bseq;
4999 int i, error;
5000 static struct work bnx_wk; /* Dummy work. Statically allocated. */
5001
5002 mutex_enter(&sc->tx_pkt_mtx);
5003 pkt = TAILQ_FIRST(&sc->tx_free_pkts);
5004 if (pkt == NULL) {
5005 if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
5006 mutex_exit(&sc->tx_pkt_mtx);
5007 return ENETDOWN;
5008 }
5009
5010 if (sc->tx_pkt_count <= TOTAL_TX_BD &&
5011 !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
5012 workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
5013 SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
5014 }
5015
5016 mutex_exit(&sc->tx_pkt_mtx);
5017 return ENOMEM;
5018 }
5019 TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
5020 mutex_exit(&sc->tx_pkt_mtx);
5021
5022 /* Transfer any checksum offload flags to the bd. */
5023 if (m->m_pkthdr.csum_flags) {
5024 if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
5025 flags |= TX_BD_FLAGS_IP_CKSUM;
5026 if (m->m_pkthdr.csum_flags &
5027 (M_CSUM_TCPv4 | M_CSUM_UDPv4))
5028 flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
5029 }
5030
5031 /* Transfer any VLAN tags to the bd. */
5032 if (vlan_has_tag(m)) {
5033 flags |= TX_BD_FLAGS_VLAN_TAG;
5034 vlan_tag = vlan_get_tag(m);
5035 }
5036
5037 /* Map the mbuf into DMAable memory. */
5038 prod = sc->tx_prod;
5039 chain_prod = TX_CHAIN_IDX(prod);
5040 map = pkt->pkt_dmamap;
5041
5042 /* Map the mbuf into our DMA address space. */
5043 error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
5044 if (error != 0) {
5045 aprint_error_dev(sc->bnx_dev,
5046 "Error mapping mbuf into TX chain!\n");
5047 sc->tx_dma_map_failures++;
5048 goto maperr;
5049 }
5050 bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
5051 BUS_DMASYNC_PREWRITE);
5052 /* Make sure there's room in the chain */
5053 if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
5054 goto nospace;
5055
5056 /* prod points to an empty tx_bd at this point. */
5057 prod_bseq = sc->tx_prod_bseq;
5058 #ifdef BNX_DEBUG
5059 debug_prod = chain_prod;
5060 #endif
5061 DBPRINT(sc, BNX_INFO_SEND,
5062 "%s(): Start: prod = 0x%04X, chain_prod = %04X, "
5063 "prod_bseq = 0x%08X\n",
5064 __func__, prod, chain_prod, prod_bseq);
5065
5066 /*
5067 * Cycle through each mbuf segment that makes up
5068 * the outgoing frame, gathering the mapping info
5069 * for that segment and creating a tx_bd for the
5070 * mbuf.
5071 */
5072 for (i = 0; i < map->dm_nsegs ; i++) {
5073 chain_prod = TX_CHAIN_IDX(prod);
5074 txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
5075
5076 addr = (uint32_t)map->dm_segs[i].ds_addr;
5077 txbd->tx_bd_haddr_lo = addr;
5078 addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
5079 txbd->tx_bd_haddr_hi = addr;
5080 txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
5081 txbd->tx_bd_vlan_tag = vlan_tag;
5082 txbd->tx_bd_flags = flags;
5083 prod_bseq += map->dm_segs[i].ds_len;
5084 if (i == 0)
5085 txbd->tx_bd_flags |= TX_BD_FLAGS_START;
5086 prod = NEXT_TX_BD(prod);
5087 }
5088 /* Set the END flag on the last TX buffer descriptor. */
5089 txbd->tx_bd_flags |= TX_BD_FLAGS_END;
5090
5091 DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
5092
5093 DBPRINT(sc, BNX_INFO_SEND,
5094 "%s(): End: prod = 0x%04X, chain_prod = %04X, "
5095 "prod_bseq = 0x%08X\n",
5096 __func__, prod, chain_prod, prod_bseq);
5097
5098 pkt->pkt_mbuf = m;
5099 pkt->pkt_end_desc = chain_prod;
5100
5101 mutex_enter(&sc->tx_pkt_mtx);
5102 TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
5103 mutex_exit(&sc->tx_pkt_mtx);
5104
5105 sc->used_tx_bd += map->dm_nsegs;
5106 DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
5107 __FILE__, __LINE__, sc->used_tx_bd);
5108
5109 /* Update some debug statistics counters */
5110 DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
5111 sc->tx_hi_watermark = sc->used_tx_bd);
5112 DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
5113 DBRUNIF(1, sc->tx_mbuf_alloc++);
5114
5115 DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
5116 map->dm_nsegs));
5117
5118 /* prod points to the next free tx_bd at this point. */
5119 sc->tx_prod = prod;
5120 sc->tx_prod_bseq = prod_bseq;
5121
5122 return 0;
5123
5124
5125 nospace:
5126 bus_dmamap_unload(sc->bnx_dmatag, map);
5127 maperr:
5128 mutex_enter(&sc->tx_pkt_mtx);
5129 TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
5130 mutex_exit(&sc->tx_pkt_mtx);
5131
5132 return ENOMEM;
5133 }
5134
5135 /****************************************************************************/
5136 /* Main transmit routine. */
5137 /* */
5138 /* Returns: */
5139 /* Nothing. */
5140 /****************************************************************************/
5141 void
5142 bnx_start(struct ifnet *ifp)
5143 {
5144 struct bnx_softc *sc = ifp->if_softc;
5145 struct mbuf *m_head = NULL;
5146 int count = 0;
5147 #ifdef BNX_DEBUG
5148 uint16_t tx_chain_prod;
5149 #endif
5150
5151 /* If there's no link or the transmit queue is empty then just exit. */
5152 if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
5153 DBPRINT(sc, BNX_INFO_SEND,
5154 "%s(): output active or device not running.\n", __func__);
5155 goto bnx_start_exit;
5156 }
5157
5158 /* prod points to the next free tx_bd. */
5159 #ifdef BNX_DEBUG
5160 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5161 #endif
5162
5163 DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
5164 "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
5165 "used_tx %d max_tx %d\n",
5166 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
5167 sc->used_tx_bd, sc->max_tx_bd);
5168
5169 /*
5170 * Keep adding entries while there is space in the ring.
5171 */
5172 while (sc->used_tx_bd < sc->max_tx_bd) {
5173 /* Check for any frames to send. */
5174 IFQ_POLL(&ifp->if_snd, m_head);
5175 if (m_head == NULL)
5176 break;
5177
5178 /*
5179 * Pack the data into the transmit ring. If we
5180 * don't have room, set the OACTIVE flag to wait
5181 * for the NIC to drain the chain.
5182 */
5183 if (bnx_tx_encap(sc, m_head)) {
5184 ifp->if_flags |= IFF_OACTIVE;
5185 DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
5186 "business! Total tx_bd used = %d\n",
5187 sc->used_tx_bd);
5188 break;
5189 }
5190
5191 IFQ_DEQUEUE(&ifp->if_snd, m_head);
5192 count++;
5193
5194 /* Send a copy of the frame to any BPF listeners. */
5195 bpf_mtap(ifp, m_head, BPF_D_OUT);
5196 }
5197
5198 if (count == 0) {
5199 /* no packets were dequeued */
5200 DBPRINT(sc, BNX_VERBOSE_SEND,
5201 "%s(): No packets were dequeued\n", __func__);
5202 goto bnx_start_exit;
5203 }
5204
5205 /* Update the driver's counters. */
5206 #ifdef BNX_DEBUG
5207 tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
5208 #endif
5209
5210 DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
5211 "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
5212 __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
5213
5214 /* Start the transmit. */
5215 REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
5216 REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
5217
5218 /* Set the tx timeout. */
5219 ifp->if_timer = BNX_TX_TIMEOUT;
5220
5221 bnx_start_exit:
5222 return;
5223 }
5224
5225 /****************************************************************************/
5226 /* Handles any IOCTL calls from the operating system. */
5227 /* */
5228 /* Returns: */
5229 /* 0 for success, positive value for failure. */
5230 /****************************************************************************/
5231 int
5232 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
5233 {
5234 struct bnx_softc *sc = ifp->if_softc;
5235 struct ifreq *ifr = (struct ifreq *) data;
5236 struct mii_data *mii = &sc->bnx_mii;
5237 int s, error = 0;
5238
5239 s = splnet();
5240
5241 switch (command) {
5242 case SIOCSIFFLAGS:
5243 if ((error = ifioctl_common(ifp, command, data)) != 0)
5244 break;
5245 /* XXX set an ifflags callback and let ether_ioctl
5246 * handle all of this.
5247 */
5248 if (ISSET(ifp->if_flags, IFF_UP)) {
5249 if (ifp->if_flags & IFF_RUNNING)
5250 error = ENETRESET;
5251 else
5252 bnx_init(ifp);
5253 } else if (ifp->if_flags & IFF_RUNNING)
5254 bnx_stop(ifp, 1);
5255 break;
5256
5257 case SIOCSIFMEDIA:
5258 /* Flow control requires full-duplex mode. */
5259 if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
5260 (ifr->ifr_media & IFM_FDX) == 0)
5261 ifr->ifr_media &= ~IFM_ETH_FMASK;
5262
5263 if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
5264 if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
5265 /* We can do both TXPAUSE and RXPAUSE. */
5266 ifr->ifr_media |=
5267 IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
5268 }
5269 sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
5270 }
5271 /* FALLTHROUGH */
5272 case SIOCGIFMEDIA:
5273 DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
5274 sc->bnx_phy_flags);
5275
5276 error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
5277 break;
5278
5279 default:
5280 error = ether_ioctl(ifp, command, data);
5281 }
5282
5283 if (error == ENETRESET) {
5284 if (ifp->if_flags & IFF_RUNNING)
5285 bnx_iff(sc);
5286 error = 0;
5287 }
5288
5289 splx(s);
5290 return error;
5291 }
5292
5293 /****************************************************************************/
5294 /* Transmit timeout handler. */
5295 /* */
5296 /* Returns: */
5297 /* Nothing. */
5298 /****************************************************************************/
5299 void
5300 bnx_watchdog(struct ifnet *ifp)
5301 {
5302 struct bnx_softc *sc = ifp->if_softc;
5303
5304 DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
5305 bnx_dump_status_block(sc));
5306 /*
5307 * If we are in this routine because of pause frames, then
5308 * don't reset the hardware.
5309 */
5310 if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
5311 return;
5312
5313 aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
5314
5315 /* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
5316
5317 bnx_init(ifp);
5318
5319 ifp->if_oerrors++;
5320 }
5321
5322 /*
5323 * Interrupt handler.
5324 */
5325 /****************************************************************************/
5326 /* Main interrupt entry point. Verifies that the controller generated the */
5327 /* interrupt and then calls a separate routine for handle the various */
5328 /* interrupt causes (PHY, TX, RX). */
5329 /* */
5330 /* Returns: */
5331 /* 0 for success, positive value for failure. */
5332 /****************************************************************************/
5333 int
5334 bnx_intr(void *xsc)
5335 {
5336 struct bnx_softc *sc = xsc;
5337 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5338 uint32_t status_attn_bits;
5339 uint16_t status_idx;
5340 const struct status_block *sblk;
5341 int rv = 0;
5342
5343 if (!device_is_active(sc->bnx_dev) ||
5344 (ifp->if_flags & IFF_RUNNING) == 0)
5345 return 0;
5346
5347 DBRUNIF(1, sc->interrupts_generated++);
5348
5349 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5350 sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
5351
5352 sblk = sc->status_block;
5353 /*
5354 * If the hardware status block index
5355 * matches the last value read by the
5356 * driver and we haven't asserted our
5357 * interrupt then there's nothing to do.
5358 */
5359 status_idx = sblk->status_idx;
5360 if ((status_idx != sc->last_status_idx) ||
5361 !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
5362 BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
5363 rv = 1;
5364
5365 /* Ack the interrupt */
5366 REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
5367 BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
5368
5369 status_attn_bits = sblk->status_attn_bits;
5370
5371 DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
5372 aprint_debug("Simulating unexpected status attention bit set.");
5373 status_attn_bits = status_attn_bits |
5374 STATUS_ATTN_BITS_PARITY_ERROR);
5375
5376 /* Was it a link change interrupt? */
5377 if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
5378 (sblk->status_attn_bits_ack &
5379 STATUS_ATTN_BITS_LINK_STATE))
5380 bnx_phy_intr(sc);
5381
5382 /* If any other attention is asserted then the chip is toast. */
5383 if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
5384 (sblk->status_attn_bits_ack &
5385 ~STATUS_ATTN_BITS_LINK_STATE))) {
5386 DBRUN(1, sc->unexpected_attentions++);
5387
5388 BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
5389 sblk->status_attn_bits);
5390
5391 DBRUN(BNX_FATAL,
5392 if (bnx_debug_unexpected_attention == 0)
5393 bnx_breakpoint(sc));
5394
5395 bnx_init(ifp);
5396 goto out;
5397 }
5398
5399 /* Check for any completed RX frames. */
5400 if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
5401 bnx_rx_intr(sc);
5402
5403 /* Check for any completed TX frames. */
5404 if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
5405 bnx_tx_intr(sc);
5406
5407 /*
5408 * Save the status block index value for use during the
5409 * next interrupt.
5410 */
5411 sc->last_status_idx = status_idx;
5412
5413 /* Start moving packets again */
5414 if (ifp->if_flags & IFF_RUNNING)
5415 if_schedule_deferred_start(ifp);
5416 }
5417
5418 out:
5419 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
5420 sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
5421
5422 return rv;
5423 }
5424
5425 /****************************************************************************/
5426 /* Programs the various packet receive modes (broadcast and multicast). */
5427 /* */
5428 /* Returns: */
5429 /* Nothing. */
5430 /****************************************************************************/
5431 void
5432 bnx_iff(struct bnx_softc *sc)
5433 {
5434 struct ethercom *ec = &sc->bnx_ec;
5435 struct ifnet *ifp = &ec->ec_if;
5436 struct ether_multi *enm;
5437 struct ether_multistep step;
5438 uint32_t hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
5439 uint32_t rx_mode, sort_mode;
5440 int h, i;
5441
5442 /* Initialize receive mode default settings. */
5443 rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
5444 BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
5445 sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
5446 ifp->if_flags &= ~IFF_ALLMULTI;
5447
5448 /*
5449 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
5450 * be enbled.
5451 */
5452 if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
5453 rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
5454
5455 /*
5456 * Check for promiscuous, all multicast, or selected
5457 * multicast address filtering.
5458 */
5459 if (ifp->if_flags & IFF_PROMISC) {
5460 DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
5461
5462 ifp->if_flags |= IFF_ALLMULTI;
5463 /* Enable promiscuous mode. */
5464 rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
5465 sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
5466 } else if (ifp->if_flags & IFF_ALLMULTI) {
5467 allmulti:
5468 DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
5469
5470 ifp->if_flags |= IFF_ALLMULTI;
5471 /* Enable all multicast addresses. */
5472 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5473 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5474 0xffffffff);
5475 sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
5476 } else {
5477 /* Accept one or more multicast(s). */
5478 DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
5479
5480 ETHER_FIRST_MULTI(step, ec, enm);
5481 while (enm != NULL) {
5482 if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
5483 ETHER_ADDR_LEN)) {
5484 goto allmulti;
5485 }
5486 h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
5487 0xFF;
5488 hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
5489 ETHER_NEXT_MULTI(step, enm);
5490 }
5491
5492 for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
5493 REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
5494 hashes[i]);
5495
5496 sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
5497 }
5498
5499 /* Only make changes if the recive mode has actually changed. */
5500 if (rx_mode != sc->rx_mode) {
5501 DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
5502 rx_mode);
5503
5504 sc->rx_mode = rx_mode;
5505 REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
5506 }
5507
5508 /* Disable and clear the exisitng sort before enabling a new sort. */
5509 REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
5510 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
5511 REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
5512 }
5513
5514 /****************************************************************************/
5515 /* Called periodically to updates statistics from the controllers */
5516 /* statistics block. */
5517 /* */
5518 /* Returns: */
5519 /* Nothing. */
5520 /****************************************************************************/
5521 void
5522 bnx_stats_update(struct bnx_softc *sc)
5523 {
5524 struct ifnet *ifp = &sc->bnx_ec.ec_if;
5525 struct statistics_block *stats;
5526
5527 DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
5528 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
5529 BUS_DMASYNC_POSTREAD);
5530
5531 stats = (struct statistics_block *)sc->stats_block;
5532
5533 /*
5534 * Update the interface statistics from the
5535 * hardware statistics.
5536 */
5537 ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
5538
5539 ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
5540 (u_long)stats->stat_EtherStatsOverrsizePkts +
5541 (u_long)stats->stat_IfInMBUFDiscards +
5542 (u_long)stats->stat_Dot3StatsAlignmentErrors +
5543 (u_long)stats->stat_Dot3StatsFCSErrors;
5544
5545 ifp->if_oerrors = (u_long)
5546 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
5547 (u_long)stats->stat_Dot3StatsExcessiveCollisions +
5548 (u_long)stats->stat_Dot3StatsLateCollisions;
5549
5550 /*
5551 * Certain controllers don't report
5552 * carrier sense errors correctly.
5553 * See errata E11_5708CA0_1165.
5554 */
5555 if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
5556 !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
5557 ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
5558
5559 /*
5560 * Update the sysctl statistics from the
5561 * hardware statistics.
5562 */
5563 sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
5564 (uint64_t) stats->stat_IfHCInOctets_lo;
5565
5566 sc->stat_IfHCInBadOctets =
5567 ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
5568 (uint64_t) stats->stat_IfHCInBadOctets_lo;
5569
5570 sc->stat_IfHCOutOctets =
5571 ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
5572 (uint64_t) stats->stat_IfHCOutOctets_lo;
5573
5574 sc->stat_IfHCOutBadOctets =
5575 ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
5576 (uint64_t) stats->stat_IfHCOutBadOctets_lo;
5577
5578 sc->stat_IfHCInUcastPkts =
5579 ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
5580 (uint64_t) stats->stat_IfHCInUcastPkts_lo;
5581
5582 sc->stat_IfHCInMulticastPkts =
5583 ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
5584 (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
5585
5586 sc->stat_IfHCInBroadcastPkts =
5587 ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
5588 (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
5589
5590 sc->stat_IfHCOutUcastPkts =
5591 ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
5592 (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
5593
5594 sc->stat_IfHCOutMulticastPkts =
5595 ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
5596 (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
5597
5598 sc->stat_IfHCOutBroadcastPkts =
5599 ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
5600 (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
5601
5602 sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
5603 stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
5604
5605 sc->stat_Dot3StatsCarrierSenseErrors =
5606 stats->stat_Dot3StatsCarrierSenseErrors;
5607
5608 sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
5609
5610 sc->stat_Dot3StatsAlignmentErrors =
5611 stats->stat_Dot3StatsAlignmentErrors;
5612
5613 sc->stat_Dot3StatsSingleCollisionFrames =
5614 stats->stat_Dot3StatsSingleCollisionFrames;
5615
5616 sc->stat_Dot3StatsMultipleCollisionFrames =
5617 stats->stat_Dot3StatsMultipleCollisionFrames;
5618
5619 sc->stat_Dot3StatsDeferredTransmissions =
5620 stats->stat_Dot3StatsDeferredTransmissions;
5621
5622 sc->stat_Dot3StatsExcessiveCollisions =
5623 stats->stat_Dot3StatsExcessiveCollisions;
5624
5625 sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
5626
5627 sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
5628
5629 sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
5630
5631 sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
5632
5633 sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
5634
5635 sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
5636
5637 sc->stat_EtherStatsPktsRx64Octets =
5638 stats->stat_EtherStatsPktsRx64Octets;
5639
5640 sc->stat_EtherStatsPktsRx65Octetsto127Octets =
5641 stats->stat_EtherStatsPktsRx65Octetsto127Octets;
5642
5643 sc->stat_EtherStatsPktsRx128Octetsto255Octets =
5644 stats->stat_EtherStatsPktsRx128Octetsto255Octets;
5645
5646 sc->stat_EtherStatsPktsRx256Octetsto511Octets =
5647 stats->stat_EtherStatsPktsRx256Octetsto511Octets;
5648
5649 sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
5650 stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
5651
5652 sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
5653 stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
5654
5655 sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
5656 stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
5657
5658 sc->stat_EtherStatsPktsTx64Octets =
5659 stats->stat_EtherStatsPktsTx64Octets;
5660
5661 sc->stat_EtherStatsPktsTx65Octetsto127Octets =
5662 stats->stat_EtherStatsPktsTx65Octetsto127Octets;
5663
5664 sc->stat_EtherStatsPktsTx128Octetsto255Octets =
5665 stats->stat_EtherStatsPktsTx128Octetsto255Octets;
5666
5667 sc->stat_EtherStatsPktsTx256Octetsto511Octets =
5668 stats->stat_EtherStatsPktsTx256Octetsto511Octets;
5669
5670 sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
5671 stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
5672
5673 sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
5674 stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
5675
5676 sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
5677 stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
5678
5679 sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
5680
5681 sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
5682
5683 sc->stat_OutXonSent = stats->stat_OutXonSent;
5684
5685 sc->stat_OutXoffSent = stats->stat_OutXoffSent;
5686
5687 sc->stat_FlowControlDone = stats->stat_FlowControlDone;
5688
5689 sc->stat_MacControlFramesReceived =
5690 stats->stat_MacControlFramesReceived;
5691
5692 sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
5693
5694 sc->stat_IfInFramesL2FilterDiscards =
5695 stats->stat_IfInFramesL2FilterDiscards;
5696
5697 sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
5698
5699 sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
5700
5701 sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
5702
5703 sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
5704
5705 sc->stat_CatchupInRuleCheckerDiscards =
5706 stats->stat_CatchupInRuleCheckerDiscards;
5707
5708 sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
5709
5710 sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
5711
5712 sc->stat_CatchupInRuleCheckerP4Hit =
5713 stats->stat_CatchupInRuleCheckerP4Hit;
5714
5715 DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
5716 }
5717
5718 void
5719 bnx_tick(void *xsc)
5720 {
5721 struct bnx_softc *sc = xsc;
5722 struct mii_data *mii;
5723 uint32_t msg;
5724 uint16_t prod, chain_prod;
5725 uint32_t prod_bseq;
5726 int s = splnet();
5727
5728 /* Tell the firmware that the driver is still running. */
5729 #ifdef BNX_DEBUG
5730 msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
5731 #else
5732 msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
5733 #endif
5734 REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
5735
5736 /* Update the statistics from the hardware statistics block. */
5737 bnx_stats_update(sc);
5738
5739 mii = &sc->bnx_mii;
5740 mii_tick(mii);
5741
5742 /* try to get more RX buffers, just in case */
5743 prod = sc->rx_prod;
5744 prod_bseq = sc->rx_prod_bseq;
5745 chain_prod = RX_CHAIN_IDX(prod);
5746 bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
5747 sc->rx_prod = prod;
5748 sc->rx_prod_bseq = prod_bseq;
5749
5750 /* Schedule the next tick. */
5751 if (!sc->bnx_detaching)
5752 callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
5753
5754 splx(s);
5755 return;
5756 }
5757
5758 /****************************************************************************/
5759 /* BNX Debug Routines */
5760 /****************************************************************************/
5761 #ifdef BNX_DEBUG
5762
5763 /****************************************************************************/
5764 /* Prints out information about an mbuf. */
5765 /* */
5766 /* Returns: */
5767 /* Nothing. */
5768 /****************************************************************************/
5769 void
5770 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
5771 {
5772 struct mbuf *mp = m;
5773
5774 if (m == NULL) {
5775 /* Index out of range. */
5776 aprint_error("mbuf ptr is null!\n");
5777 return;
5778 }
5779
5780 while (mp) {
5781 aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
5782 mp, mp->m_len);
5783
5784 if (mp->m_flags & M_EXT)
5785 aprint_debug("M_EXT ");
5786 if (mp->m_flags & M_PKTHDR)
5787 aprint_debug("M_PKTHDR ");
5788 aprint_debug("\n");
5789
5790 if (mp->m_flags & M_EXT)
5791 aprint_debug("- m_ext: vaddr = %p, "
5792 "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
5793
5794 mp = mp->m_next;
5795 }
5796 }
5797
5798 /****************************************************************************/
5799 /* Prints out the mbufs in the TX mbuf chain. */
5800 /* */
5801 /* Returns: */
5802 /* Nothing. */
5803 /****************************************************************************/
5804 void
5805 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5806 {
5807 #if 0
5808 struct mbuf *m;
5809 int i;
5810
5811 aprint_debug_dev(sc->bnx_dev,
5812 "----------------------------"
5813 " tx mbuf data "
5814 "----------------------------\n");
5815
5816 for (i = 0; i < count; i++) {
5817 m = sc->tx_mbuf_ptr[chain_prod];
5818 BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
5819 bnx_dump_mbuf(sc, m);
5820 chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
5821 }
5822
5823 aprint_debug_dev(sc->bnx_dev,
5824 "--------------------------------------------"
5825 "----------------------------\n");
5826 #endif
5827 }
5828
5829 /*
5830 * This routine prints the RX mbuf chain.
5831 */
5832 void
5833 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
5834 {
5835 struct mbuf *m;
5836 int i;
5837
5838 aprint_debug_dev(sc->bnx_dev,
5839 "----------------------------"
5840 " rx mbuf data "
5841 "----------------------------\n");
5842
5843 for (i = 0; i < count; i++) {
5844 m = sc->rx_mbuf_ptr[chain_prod];
5845 BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
5846 bnx_dump_mbuf(sc, m);
5847 chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
5848 }
5849
5850
5851 aprint_debug_dev(sc->bnx_dev,
5852 "--------------------------------------------"
5853 "----------------------------\n");
5854 }
5855
5856 void
5857 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
5858 {
5859 if (idx > MAX_TX_BD)
5860 /* Index out of range. */
5861 BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
5862 else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
5863 /* TX Chain page pointer. */
5864 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
5865 "page pointer\n", idx, txbd->tx_bd_haddr_hi,
5866 txbd->tx_bd_haddr_lo);
5867 else
5868 /* Normal tx_bd entry. */
5869 BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5870 "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
5871 txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
5872 txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
5873 txbd->tx_bd_flags);
5874 }
5875
5876 void
5877 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
5878 {
5879 if (idx > MAX_RX_BD)
5880 /* Index out of range. */
5881 BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
5882 else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
5883 /* TX Chain page pointer. */
5884 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
5885 "pointer\n", idx, rxbd->rx_bd_haddr_hi,
5886 rxbd->rx_bd_haddr_lo);
5887 else
5888 /* Normal tx_bd entry. */
5889 BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
5890 "0x%08X, flags = 0x%08X\n", idx,
5891 rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
5892 rxbd->rx_bd_len, rxbd->rx_bd_flags);
5893 }
5894
5895 void
5896 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
5897 {
5898 BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
5899 "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
5900 "tcp_udp_xsum = 0x%04X\n", idx,
5901 l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
5902 l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
5903 l2fhdr->l2_fhdr_tcp_udp_xsum);
5904 }
5905
5906 /*
5907 * This routine prints the TX chain.
5908 */
5909 void
5910 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
5911 {
5912 struct tx_bd *txbd;
5913 int i;
5914
5915 /* First some info about the tx_bd chain structure. */
5916 aprint_debug_dev(sc->bnx_dev,
5917 "----------------------------"
5918 " tx_bd chain "
5919 "----------------------------\n");
5920
5921 BNX_PRINTF(sc,
5922 "page size = 0x%08X, tx chain pages = 0x%08X\n",
5923 (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
5924
5925 BNX_PRINTF(sc,
5926 "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
5927 (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
5928
5929 BNX_PRINTF(sc, "total tx_bd = 0x%08X\n", TOTAL_TX_BD);
5930
5931 aprint_error_dev(sc->bnx_dev, ""
5932 "-----------------------------"
5933 " tx_bd data "
5934 "-----------------------------\n");
5935
5936 /* Now print out the tx_bd's themselves. */
5937 for (i = 0; i < count; i++) {
5938 txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
5939 bnx_dump_txbd(sc, tx_prod, txbd);
5940 tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
5941 }
5942
5943 aprint_debug_dev(sc->bnx_dev,
5944 "-----------------------------"
5945 "--------------"
5946 "-----------------------------\n");
5947 }
5948
5949 /*
5950 * This routine prints the RX chain.
5951 */
5952 void
5953 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
5954 {
5955 struct rx_bd *rxbd;
5956 int i;
5957
5958 /* First some info about the tx_bd chain structure. */
5959 aprint_debug_dev(sc->bnx_dev,
5960 "----------------------------"
5961 " rx_bd chain "
5962 "----------------------------\n");
5963
5964 aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
5965
5966 BNX_PRINTF(sc,
5967 "page size = 0x%08X, rx chain pages = 0x%08X\n",
5968 (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
5969
5970 BNX_PRINTF(sc,
5971 "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
5972 (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
5973
5974 BNX_PRINTF(sc, "total rx_bd = 0x%08X\n", TOTAL_RX_BD);
5975
5976 aprint_error_dev(sc->bnx_dev,
5977 "----------------------------"
5978 " rx_bd data "
5979 "----------------------------\n");
5980
5981 /* Now print out the rx_bd's themselves. */
5982 for (i = 0; i < count; i++) {
5983 rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
5984 bnx_dump_rxbd(sc, rx_prod, rxbd);
5985 rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
5986 }
5987
5988 aprint_debug_dev(sc->bnx_dev,
5989 "----------------------------"
5990 "--------------"
5991 "----------------------------\n");
5992 }
5993
5994 /*
5995 * This routine prints the status block.
5996 */
5997 void
5998 bnx_dump_status_block(struct bnx_softc *sc)
5999 {
6000 struct status_block *sblk;
6001 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6002 BUS_DMASYNC_POSTREAD);
6003
6004 sblk = sc->status_block;
6005
6006 aprint_debug_dev(sc->bnx_dev, "----------------------------- "
6007 "Status Block -----------------------------\n");
6008
6009 BNX_PRINTF(sc,
6010 "attn_bits = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
6011 sblk->status_attn_bits, sblk->status_attn_bits_ack,
6012 sblk->status_idx);
6013
6014 BNX_PRINTF(sc, "rx_cons0 = 0x%08X, tx_cons0 = 0x%08X\n",
6015 sblk->status_rx_quick_consumer_index0,
6016 sblk->status_tx_quick_consumer_index0);
6017
6018 BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
6019
6020 /* Theses indices are not used for normal L2 drivers. */
6021 if (sblk->status_rx_quick_consumer_index1 ||
6022 sblk->status_tx_quick_consumer_index1)
6023 BNX_PRINTF(sc, "rx_cons1 = 0x%08X, tx_cons1 = 0x%08X\n",
6024 sblk->status_rx_quick_consumer_index1,
6025 sblk->status_tx_quick_consumer_index1);
6026
6027 if (sblk->status_rx_quick_consumer_index2 ||
6028 sblk->status_tx_quick_consumer_index2)
6029 BNX_PRINTF(sc, "rx_cons2 = 0x%08X, tx_cons2 = 0x%08X\n",
6030 sblk->status_rx_quick_consumer_index2,
6031 sblk->status_tx_quick_consumer_index2);
6032
6033 if (sblk->status_rx_quick_consumer_index3 ||
6034 sblk->status_tx_quick_consumer_index3)
6035 BNX_PRINTF(sc, "rx_cons3 = 0x%08X, tx_cons3 = 0x%08X\n",
6036 sblk->status_rx_quick_consumer_index3,
6037 sblk->status_tx_quick_consumer_index3);
6038
6039 if (sblk->status_rx_quick_consumer_index4 ||
6040 sblk->status_rx_quick_consumer_index5)
6041 BNX_PRINTF(sc, "rx_cons4 = 0x%08X, rx_cons5 = 0x%08X\n",
6042 sblk->status_rx_quick_consumer_index4,
6043 sblk->status_rx_quick_consumer_index5);
6044
6045 if (sblk->status_rx_quick_consumer_index6 ||
6046 sblk->status_rx_quick_consumer_index7)
6047 BNX_PRINTF(sc, "rx_cons6 = 0x%08X, rx_cons7 = 0x%08X\n",
6048 sblk->status_rx_quick_consumer_index6,
6049 sblk->status_rx_quick_consumer_index7);
6050
6051 if (sblk->status_rx_quick_consumer_index8 ||
6052 sblk->status_rx_quick_consumer_index9)
6053 BNX_PRINTF(sc, "rx_cons8 = 0x%08X, rx_cons9 = 0x%08X\n",
6054 sblk->status_rx_quick_consumer_index8,
6055 sblk->status_rx_quick_consumer_index9);
6056
6057 if (sblk->status_rx_quick_consumer_index10 ||
6058 sblk->status_rx_quick_consumer_index11)
6059 BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11 = 0x%08X\n",
6060 sblk->status_rx_quick_consumer_index10,
6061 sblk->status_rx_quick_consumer_index11);
6062
6063 if (sblk->status_rx_quick_consumer_index12 ||
6064 sblk->status_rx_quick_consumer_index13)
6065 BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13 = 0x%08X\n",
6066 sblk->status_rx_quick_consumer_index12,
6067 sblk->status_rx_quick_consumer_index13);
6068
6069 if (sblk->status_rx_quick_consumer_index14 ||
6070 sblk->status_rx_quick_consumer_index15)
6071 BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15 = 0x%08X\n",
6072 sblk->status_rx_quick_consumer_index14,
6073 sblk->status_rx_quick_consumer_index15);
6074
6075 if (sblk->status_completion_producer_index ||
6076 sblk->status_cmd_consumer_index)
6077 BNX_PRINTF(sc, "com_prod = 0x%08X, cmd_cons = 0x%08X\n",
6078 sblk->status_completion_producer_index,
6079 sblk->status_cmd_consumer_index);
6080
6081 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6082 "-----------------------------\n");
6083 }
6084
6085 /*
6086 * This routine prints the statistics block.
6087 */
6088 void
6089 bnx_dump_stats_block(struct bnx_softc *sc)
6090 {
6091 struct statistics_block *sblk;
6092 bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
6093 BUS_DMASYNC_POSTREAD);
6094
6095 sblk = sc->stats_block;
6096
6097 aprint_debug_dev(sc->bnx_dev, ""
6098 "-----------------------------"
6099 " Stats Block "
6100 "-----------------------------\n");
6101
6102 BNX_PRINTF(sc, "IfHcInOctets = 0x%08X:%08X, "
6103 "IfHcInBadOctets = 0x%08X:%08X\n",
6104 sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
6105 sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
6106
6107 BNX_PRINTF(sc, "IfHcOutOctets = 0x%08X:%08X, "
6108 "IfHcOutBadOctets = 0x%08X:%08X\n",
6109 sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
6110 sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
6111
6112 BNX_PRINTF(sc, "IfHcInUcastPkts = 0x%08X:%08X, "
6113 "IfHcInMulticastPkts = 0x%08X:%08X\n",
6114 sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
6115 sblk->stat_IfHCInMulticastPkts_hi,
6116 sblk->stat_IfHCInMulticastPkts_lo);
6117
6118 BNX_PRINTF(sc, "IfHcInBroadcastPkts = 0x%08X:%08X, "
6119 "IfHcOutUcastPkts = 0x%08X:%08X\n",
6120 sblk->stat_IfHCInBroadcastPkts_hi,
6121 sblk->stat_IfHCInBroadcastPkts_lo,
6122 sblk->stat_IfHCOutUcastPkts_hi,
6123 sblk->stat_IfHCOutUcastPkts_lo);
6124
6125 BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
6126 "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
6127 sblk->stat_IfHCOutMulticastPkts_hi,
6128 sblk->stat_IfHCOutMulticastPkts_lo,
6129 sblk->stat_IfHCOutBroadcastPkts_hi,
6130 sblk->stat_IfHCOutBroadcastPkts_lo);
6131
6132 if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
6133 BNX_PRINTF(sc, "0x%08X : "
6134 "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
6135 sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
6136
6137 if (sblk->stat_Dot3StatsCarrierSenseErrors)
6138 BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
6139 sblk->stat_Dot3StatsCarrierSenseErrors);
6140
6141 if (sblk->stat_Dot3StatsFCSErrors)
6142 BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
6143 sblk->stat_Dot3StatsFCSErrors);
6144
6145 if (sblk->stat_Dot3StatsAlignmentErrors)
6146 BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
6147 sblk->stat_Dot3StatsAlignmentErrors);
6148
6149 if (sblk->stat_Dot3StatsSingleCollisionFrames)
6150 BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
6151 sblk->stat_Dot3StatsSingleCollisionFrames);
6152
6153 if (sblk->stat_Dot3StatsMultipleCollisionFrames)
6154 BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
6155 sblk->stat_Dot3StatsMultipleCollisionFrames);
6156
6157 if (sblk->stat_Dot3StatsDeferredTransmissions)
6158 BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
6159 sblk->stat_Dot3StatsDeferredTransmissions);
6160
6161 if (sblk->stat_Dot3StatsExcessiveCollisions)
6162 BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
6163 sblk->stat_Dot3StatsExcessiveCollisions);
6164
6165 if (sblk->stat_Dot3StatsLateCollisions)
6166 BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
6167 sblk->stat_Dot3StatsLateCollisions);
6168
6169 if (sblk->stat_EtherStatsCollisions)
6170 BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
6171 sblk->stat_EtherStatsCollisions);
6172
6173 if (sblk->stat_EtherStatsFragments)
6174 BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
6175 sblk->stat_EtherStatsFragments);
6176
6177 if (sblk->stat_EtherStatsJabbers)
6178 BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
6179 sblk->stat_EtherStatsJabbers);
6180
6181 if (sblk->stat_EtherStatsUndersizePkts)
6182 BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
6183 sblk->stat_EtherStatsUndersizePkts);
6184
6185 if (sblk->stat_EtherStatsOverrsizePkts)
6186 BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
6187 sblk->stat_EtherStatsOverrsizePkts);
6188
6189 if (sblk->stat_EtherStatsPktsRx64Octets)
6190 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
6191 sblk->stat_EtherStatsPktsRx64Octets);
6192
6193 if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
6194 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
6195 sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
6196
6197 if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
6198 BNX_PRINTF(sc, "0x%08X : "
6199 "EtherStatsPktsRx128Octetsto255Octets\n",
6200 sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
6201
6202 if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
6203 BNX_PRINTF(sc, "0x%08X : "
6204 "EtherStatsPktsRx256Octetsto511Octets\n",
6205 sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
6206
6207 if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
6208 BNX_PRINTF(sc, "0x%08X : "
6209 "EtherStatsPktsRx512Octetsto1023Octets\n",
6210 sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
6211
6212 if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
6213 BNX_PRINTF(sc, "0x%08X : "
6214 "EtherStatsPktsRx1024Octetsto1522Octets\n",
6215 sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
6216
6217 if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
6218 BNX_PRINTF(sc, "0x%08X : "
6219 "EtherStatsPktsRx1523Octetsto9022Octets\n",
6220 sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
6221
6222 if (sblk->stat_EtherStatsPktsTx64Octets)
6223 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
6224 sblk->stat_EtherStatsPktsTx64Octets);
6225
6226 if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
6227 BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
6228 sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
6229
6230 if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
6231 BNX_PRINTF(sc, "0x%08X : "
6232 "EtherStatsPktsTx128Octetsto255Octets\n",
6233 sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
6234
6235 if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
6236 BNX_PRINTF(sc, "0x%08X : "
6237 "EtherStatsPktsTx256Octetsto511Octets\n",
6238 sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
6239
6240 if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
6241 BNX_PRINTF(sc, "0x%08X : "
6242 "EtherStatsPktsTx512Octetsto1023Octets\n",
6243 sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
6244
6245 if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
6246 BNX_PRINTF(sc, "0x%08X : "
6247 "EtherStatsPktsTx1024Octetsto1522Octets\n",
6248 sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
6249
6250 if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
6251 BNX_PRINTF(sc, "0x%08X : "
6252 "EtherStatsPktsTx1523Octetsto9022Octets\n",
6253 sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
6254
6255 if (sblk->stat_XonPauseFramesReceived)
6256 BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
6257 sblk->stat_XonPauseFramesReceived);
6258
6259 if (sblk->stat_XoffPauseFramesReceived)
6260 BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
6261 sblk->stat_XoffPauseFramesReceived);
6262
6263 if (sblk->stat_OutXonSent)
6264 BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
6265 sblk->stat_OutXonSent);
6266
6267 if (sblk->stat_OutXoffSent)
6268 BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
6269 sblk->stat_OutXoffSent);
6270
6271 if (sblk->stat_FlowControlDone)
6272 BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
6273 sblk->stat_FlowControlDone);
6274
6275 if (sblk->stat_MacControlFramesReceived)
6276 BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
6277 sblk->stat_MacControlFramesReceived);
6278
6279 if (sblk->stat_XoffStateEntered)
6280 BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
6281 sblk->stat_XoffStateEntered);
6282
6283 if (sblk->stat_IfInFramesL2FilterDiscards)
6284 BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
6285 sblk->stat_IfInFramesL2FilterDiscards);
6286
6287 if (sblk->stat_IfInRuleCheckerDiscards)
6288 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
6289 sblk->stat_IfInRuleCheckerDiscards);
6290
6291 if (sblk->stat_IfInFTQDiscards)
6292 BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
6293 sblk->stat_IfInFTQDiscards);
6294
6295 if (sblk->stat_IfInMBUFDiscards)
6296 BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
6297 sblk->stat_IfInMBUFDiscards);
6298
6299 if (sblk->stat_IfInRuleCheckerP4Hit)
6300 BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
6301 sblk->stat_IfInRuleCheckerP4Hit);
6302
6303 if (sblk->stat_CatchupInRuleCheckerDiscards)
6304 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
6305 sblk->stat_CatchupInRuleCheckerDiscards);
6306
6307 if (sblk->stat_CatchupInFTQDiscards)
6308 BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
6309 sblk->stat_CatchupInFTQDiscards);
6310
6311 if (sblk->stat_CatchupInMBUFDiscards)
6312 BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
6313 sblk->stat_CatchupInMBUFDiscards);
6314
6315 if (sblk->stat_CatchupInRuleCheckerP4Hit)
6316 BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
6317 sblk->stat_CatchupInRuleCheckerP4Hit);
6318
6319 aprint_debug_dev(sc->bnx_dev,
6320 "-----------------------------"
6321 "--------------"
6322 "-----------------------------\n");
6323 }
6324
6325 void
6326 bnx_dump_driver_state(struct bnx_softc *sc)
6327 {
6328 aprint_debug_dev(sc->bnx_dev,
6329 "-----------------------------"
6330 " Driver State "
6331 "-----------------------------\n");
6332
6333 BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
6334 "address\n", sc);
6335
6336 BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
6337 sc->status_block);
6338
6339 BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
6340 "address\n", sc->stats_block);
6341
6342 BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
6343 "adddress\n", sc->tx_bd_chain);
6344
6345 #if 0
6346 BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
6347 sc->rx_bd_chain);
6348
6349 BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
6350 sc->tx_mbuf_ptr);
6351 #endif
6352
6353 BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
6354 sc->rx_mbuf_ptr);
6355
6356 BNX_PRINTF(sc,
6357 " 0x%08X - (sc->interrupts_generated) h/w intrs\n",
6358 sc->interrupts_generated);
6359
6360 BNX_PRINTF(sc,
6361 " 0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
6362 sc->rx_interrupts);
6363
6364 BNX_PRINTF(sc,
6365 " 0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
6366 sc->tx_interrupts);
6367
6368 BNX_PRINTF(sc,
6369 " 0x%08X - (sc->last_status_idx) status block index\n",
6370 sc->last_status_idx);
6371
6372 BNX_PRINTF(sc, " 0x%08X - (sc->tx_prod) tx producer index\n",
6373 sc->tx_prod);
6374
6375 BNX_PRINTF(sc, " 0x%08X - (sc->tx_cons) tx consumer index\n",
6376 sc->tx_cons);
6377
6378 BNX_PRINTF(sc,
6379 " 0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
6380 sc->tx_prod_bseq);
6381 BNX_PRINTF(sc,
6382 " 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
6383 sc->tx_mbuf_alloc);
6384
6385 BNX_PRINTF(sc,
6386 " 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
6387 sc->used_tx_bd);
6388
6389 BNX_PRINTF(sc,
6390 " 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
6391 sc->tx_hi_watermark, sc->max_tx_bd);
6392
6393
6394 BNX_PRINTF(sc, " 0x%08X - (sc->rx_prod) rx producer index\n",
6395 sc->rx_prod);
6396
6397 BNX_PRINTF(sc, " 0x%08X - (sc->rx_cons) rx consumer index\n",
6398 sc->rx_cons);
6399
6400 BNX_PRINTF(sc,
6401 " 0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
6402 sc->rx_prod_bseq);
6403
6404 BNX_PRINTF(sc,
6405 " 0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
6406 sc->rx_mbuf_alloc);
6407
6408 BNX_PRINTF(sc, " 0x%08X - (sc->free_rx_bd) free rx_bd's\n",
6409 sc->free_rx_bd);
6410
6411 BNX_PRINTF(sc,
6412 "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
6413 sc->rx_low_watermark, sc->max_rx_bd);
6414
6415 BNX_PRINTF(sc,
6416 " 0x%08X - (sc->mbuf_alloc_failed) "
6417 "mbuf alloc failures\n",
6418 sc->mbuf_alloc_failed);
6419
6420 BNX_PRINTF(sc,
6421 " 0x%0X - (sc->mbuf_sim_allocated_failed) "
6422 "simulated mbuf alloc failures\n",
6423 sc->mbuf_sim_alloc_failed);
6424
6425 aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
6426 "-----------------------------\n");
6427 }
6428
6429 void
6430 bnx_dump_hw_state(struct bnx_softc *sc)
6431 {
6432 uint32_t val1;
6433 int i;
6434
6435 aprint_debug_dev(sc->bnx_dev,
6436 "----------------------------"
6437 " Hardware State "
6438 "----------------------------\n");
6439
6440 BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
6441
6442 val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
6443 BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
6444 val1, BNX_MISC_ENABLE_STATUS_BITS);
6445
6446 val1 = REG_RD(sc, BNX_DMA_STATUS);
6447 BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
6448
6449 val1 = REG_RD(sc, BNX_CTX_STATUS);
6450 BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
6451
6452 val1 = REG_RD(sc, BNX_EMAC_STATUS);
6453 BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
6454 BNX_EMAC_STATUS);
6455
6456 val1 = REG_RD(sc, BNX_RPM_STATUS);
6457 BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
6458
6459 val1 = REG_RD(sc, BNX_TBDR_STATUS);
6460 BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
6461 BNX_TBDR_STATUS);
6462
6463 val1 = REG_RD(sc, BNX_TDMA_STATUS);
6464 BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
6465 BNX_TDMA_STATUS);
6466
6467 val1 = REG_RD(sc, BNX_HC_STATUS);
6468 BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
6469
6470 aprint_debug_dev(sc->bnx_dev,
6471 "----------------------------"
6472 "----------------"
6473 "----------------------------\n");
6474
6475 aprint_debug_dev(sc->bnx_dev,
6476 "----------------------------"
6477 " Register Dump "
6478 "----------------------------\n");
6479
6480 for (i = 0x400; i < 0x8000; i += 0x10)
6481 BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
6482 i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
6483 REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
6484
6485 aprint_debug_dev(sc->bnx_dev,
6486 "----------------------------"
6487 "----------------"
6488 "----------------------------\n");
6489 }
6490
6491 void
6492 bnx_breakpoint(struct bnx_softc *sc)
6493 {
6494 /* Unreachable code to shut the compiler up about unused functions. */
6495 if (0) {
6496 bnx_dump_txbd(sc, 0, NULL);
6497 bnx_dump_rxbd(sc, 0, NULL);
6498 bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
6499 bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
6500 bnx_dump_l2fhdr(sc, 0, NULL);
6501 bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
6502 bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
6503 bnx_dump_status_block(sc);
6504 bnx_dump_stats_block(sc);
6505 bnx_dump_driver_state(sc);
6506 bnx_dump_hw_state(sc);
6507 }
6508
6509 bnx_dump_driver_state(sc);
6510 /* Print the important status block fields. */
6511 bnx_dump_status_block(sc);
6512
6513 #if 0
6514 /* Call the debugger. */
6515 breakpoint();
6516 #endif
6517
6518 return;
6519 }
6520 #endif
6521