Home | History | Annotate | Line # | Download | only in pci
if_bnx.c revision 1.72
      1 /*	$NetBSD: if_bnx.c,v 1.72 2019/03/28 02:50:27 msaitoh Exp $	*/
      2 /*	$OpenBSD: if_bnx.c,v 1.100 2013/01/13 05:45:10 brad Exp $ */
      3 
      4 /*-
      5  * Copyright (c) 2006-2010 Broadcom Corporation
      6  *	David Christensen <davidch (at) broadcom.com>.  All rights reserved.
      7  *
      8  * Redistribution and use in source and binary forms, with or without
      9  * modification, are permitted provided that the following conditions
     10  * are met:
     11  *
     12  * 1. Redistributions of source code must retain the above copyright
     13  *    notice, this list of conditions and the following disclaimer.
     14  * 2. Redistributions in binary form must reproduce the above copyright
     15  *    notice, this list of conditions and the following disclaimer in the
     16  *    documentation and/or other materials provided with the distribution.
     17  * 3. Neither the name of Broadcom Corporation nor the name of its contributors
     18  *    may be used to endorse or promote products derived from this software
     19  *    without specific prior written consent.
     20  *
     21  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS'
     22  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     23  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     24  * ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS
     25  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     26  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     27  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
     28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
     29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
     30  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
     31  * THE POSSIBILITY OF SUCH DAMAGE.
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 #if 0
     36 __FBSDID("$FreeBSD: src/sys/dev/bce/if_bce.c,v 1.3 2006/04/13 14:12:26 ru Exp $");
     37 #endif
     38 __KERNEL_RCSID(0, "$NetBSD: if_bnx.c,v 1.72 2019/03/28 02:50:27 msaitoh Exp $");
     39 
     40 /*
     41  * The following controllers are supported by this driver:
     42  *   BCM5706C A2, A3
     43  *   BCM5706S A2, A3
     44  *   BCM5708C B1, B2
     45  *   BCM5708S B1, B2
     46  *   BCM5709C A1, C0
     47  *   BCM5709S A1, C0
     48  *   BCM5716  C0
     49  *
     50  * The following controllers are not supported by this driver:
     51  *   BCM5706C A0, A1
     52  *   BCM5706S A0, A1
     53  *   BCM5708C A0, B0
     54  *   BCM5708S A0, B0
     55  *   BCM5709C A0  B0, B1, B2 (pre-production)
     56  *   BCM5709S A0, B0, B1, B2 (pre-production)
     57  */
     58 
     59 #include <sys/callout.h>
     60 #include <sys/mutex.h>
     61 
     62 #include <dev/pci/if_bnxreg.h>
     63 #include <dev/pci/if_bnxvar.h>
     64 
     65 #include <dev/microcode/bnx/bnxfw.h>
     66 
     67 /****************************************************************************/
     68 /* BNX Driver Version                                                       */
     69 /****************************************************************************/
     70 #define BNX_DRIVER_VERSION	"v0.9.6"
     71 
     72 /****************************************************************************/
     73 /* BNX Debug Options                                                        */
     74 /****************************************************************************/
     75 #ifdef BNX_DEBUG
     76 	uint32_t bnx_debug = /*BNX_WARN*/ BNX_VERBOSE_SEND;
     77 
     78 	/*          0 = Never              */
     79 	/*          1 = 1 in 2,147,483,648 */
     80 	/*        256 = 1 in     8,388,608 */
     81 	/*       2048 = 1 in     1,048,576 */
     82 	/*      65536 = 1 in        32,768 */
     83 	/*    1048576 = 1 in         2,048 */
     84 	/*  268435456 =	1 in             8 */
     85 	/*  536870912 = 1 in             4 */
     86 	/* 1073741824 = 1 in             2 */
     87 
     88 	/* Controls how often the l2_fhdr frame error check will fail. */
     89 	int bnx_debug_l2fhdr_status_check = 0;
     90 
     91 	/* Controls how often the unexpected attention check will fail. */
     92 	int bnx_debug_unexpected_attention = 0;
     93 
     94 	/* Controls how often to simulate an mbuf allocation failure. */
     95 	int bnx_debug_mbuf_allocation_failure = 0;
     96 
     97 	/* Controls how often to simulate a DMA mapping failure. */
     98 	int bnx_debug_dma_map_addr_failure = 0;
     99 
    100 	/* Controls how often to simulate a bootcode failure. */
    101 	int bnx_debug_bootcode_running_failure = 0;
    102 #endif
    103 
    104 /****************************************************************************/
    105 /* PCI Device ID Table                                                      */
    106 /*                                                                          */
    107 /* Used by bnx_probe() to identify the devices supported by this driver.    */
    108 /****************************************************************************/
    109 static const struct bnx_product {
    110 	pci_vendor_id_t		bp_vendor;
    111 	pci_product_id_t	bp_product;
    112 	pci_vendor_id_t		bp_subvendor;
    113 	pci_product_id_t	bp_subproduct;
    114 	const char		*bp_name;
    115 } bnx_devices[] = {
    116 #ifdef PCI_SUBPRODUCT_HP_NC370T
    117 	{
    118 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    119 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370T,
    120 	  "HP NC370T Multifunction Gigabit Server Adapter"
    121 	},
    122 #endif
    123 #ifdef PCI_SUBPRODUCT_HP_NC370i
    124 	{
    125 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    126 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370i,
    127 	  "HP NC370i Multifunction Gigabit Server Adapter"
    128 	},
    129 #endif
    130 	{
    131 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706,
    132 	  0, 0,
    133 	  "Broadcom NetXtreme II BCM5706 1000Base-T"
    134 	},
    135 #ifdef PCI_SUBPRODUCT_HP_NC370F
    136 	{
    137 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    138 	  PCI_VENDOR_HP, PCI_SUBPRODUCT_HP_NC370F,
    139 	  "HP NC370F Multifunction Gigabit Server Adapter"
    140 	},
    141 #endif
    142 	{
    143 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5706S,
    144 	  0, 0,
    145 	  "Broadcom NetXtreme II BCM5706 1000Base-SX"
    146 	},
    147 	{
    148 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708,
    149 	  0, 0,
    150 	  "Broadcom NetXtreme II BCM5708 1000Base-T"
    151 	},
    152 	{
    153 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5708S,
    154 	  0, 0,
    155 	  "Broadcom NetXtreme II BCM5708 1000Base-SX"
    156 	},
    157 	{
    158 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709,
    159 	  0, 0,
    160 	  "Broadcom NetXtreme II BCM5709 1000Base-T"
    161 	},
    162 	{
    163 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5709S,
    164 	  0, 0,
    165 	  "Broadcom NetXtreme II BCM5709 1000Base-SX"
    166 	},
    167 	{
    168 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716,
    169 	  0, 0,
    170 	  "Broadcom NetXtreme II BCM5716 1000Base-T"
    171 	},
    172 	{
    173 	  PCI_VENDOR_BROADCOM, PCI_PRODUCT_BROADCOM_BCM5716S,
    174 	  0, 0,
    175 	  "Broadcom NetXtreme II BCM5716 1000Base-SX"
    176 	},
    177 };
    178 
    179 /****************************************************************************/
    180 /* Supported Flash NVRAM device data.                                       */
    181 /****************************************************************************/
    182 static struct flash_spec flash_table[] =
    183 {
    184 #define BUFFERED_FLAGS		(BNX_NV_BUFFERED | BNX_NV_TRANSLATE)
    185 #define NONBUFFERED_FLAGS	(BNX_NV_WREN)
    186 	/* Slow EEPROM */
    187 	{0x00000000, 0x40830380, 0x009f0081, 0xa184a053, 0xaf000400,
    188 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    189 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    190 	 "EEPROM - slow"},
    191 	/* Expansion entry 0001 */
    192 	{0x08000002, 0x4b808201, 0x00050081, 0x03840253, 0xaf020406,
    193 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    194 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    195 	 "Entry 0001"},
    196 	/* Saifun SA25F010 (non-buffered flash) */
    197 	/* strap, cfg1, & write1 need updates */
    198 	{0x04000001, 0x47808201, 0x00050081, 0x03840253, 0xaf020406,
    199 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    200 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*2,
    201 	 "Non-buffered flash (128kB)"},
    202 	/* Saifun SA25F020 (non-buffered flash) */
    203 	/* strap, cfg1, & write1 need updates */
    204 	{0x0c000003, 0x4f808201, 0x00050081, 0x03840253, 0xaf020406,
    205 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    206 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE*4,
    207 	 "Non-buffered flash (256kB)"},
    208 	/* Expansion entry 0100 */
    209 	{0x11000000, 0x53808201, 0x00050081, 0x03840253, 0xaf020406,
    210 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    211 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    212 	 "Entry 0100"},
    213 	/* Entry 0101: ST M45PE10 (non-buffered flash, TetonII B0) */
    214 	{0x19000002, 0x5b808201, 0x000500db, 0x03840253, 0xaf020406,
    215 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    216 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*2,
    217 	 "Entry 0101: ST M45PE10 (128kB non-bufferred)"},
    218 	/* Entry 0110: ST M45PE20 (non-buffered flash)*/
    219 	{0x15000001, 0x57808201, 0x000500db, 0x03840253, 0xaf020406,
    220 	 NONBUFFERED_FLAGS, ST_MICRO_FLASH_PAGE_BITS, ST_MICRO_FLASH_PAGE_SIZE,
    221 	 ST_MICRO_FLASH_BYTE_ADDR_MASK, ST_MICRO_FLASH_BASE_TOTAL_SIZE*4,
    222 	 "Entry 0110: ST M45PE20 (256kB non-bufferred)"},
    223 	/* Saifun SA25F005 (non-buffered flash) */
    224 	/* strap, cfg1, & write1 need updates */
    225 	{0x1d000003, 0x5f808201, 0x00050081, 0x03840253, 0xaf020406,
    226 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    227 	 SAIFUN_FLASH_BYTE_ADDR_MASK, SAIFUN_FLASH_BASE_TOTAL_SIZE,
    228 	 "Non-buffered flash (64kB)"},
    229 	/* Fast EEPROM */
    230 	{0x22000000, 0x62808380, 0x009f0081, 0xa184a053, 0xaf000400,
    231 	 BUFFERED_FLAGS, SEEPROM_PAGE_BITS, SEEPROM_PAGE_SIZE,
    232 	 SEEPROM_BYTE_ADDR_MASK, SEEPROM_TOTAL_SIZE,
    233 	 "EEPROM - fast"},
    234 	/* Expansion entry 1001 */
    235 	{0x2a000002, 0x6b808201, 0x00050081, 0x03840253, 0xaf020406,
    236 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    237 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    238 	 "Entry 1001"},
    239 	/* Expansion entry 1010 */
    240 	{0x26000001, 0x67808201, 0x00050081, 0x03840253, 0xaf020406,
    241 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    242 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    243 	 "Entry 1010"},
    244 	/* ATMEL AT45DB011B (buffered flash) */
    245 	{0x2e000003, 0x6e808273, 0x00570081, 0x68848353, 0xaf000400,
    246 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    247 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE,
    248 	 "Buffered flash (128kB)"},
    249 	/* Expansion entry 1100 */
    250 	{0x33000000, 0x73808201, 0x00050081, 0x03840253, 0xaf020406,
    251 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    252 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    253 	 "Entry 1100"},
    254 	/* Expansion entry 1101 */
    255 	{0x3b000002, 0x7b808201, 0x00050081, 0x03840253, 0xaf020406,
    256 	 NONBUFFERED_FLAGS, SAIFUN_FLASH_PAGE_BITS, SAIFUN_FLASH_PAGE_SIZE,
    257 	 SAIFUN_FLASH_BYTE_ADDR_MASK, 0,
    258 	 "Entry 1101"},
    259 	/* Ateml Expansion entry 1110 */
    260 	{0x37000001, 0x76808273, 0x00570081, 0x68848353, 0xaf000400,
    261 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    262 	 BUFFERED_FLASH_BYTE_ADDR_MASK, 0,
    263 	 "Entry 1110 (Atmel)"},
    264 	/* ATMEL AT45DB021B (buffered flash) */
    265 	{0x3f000003, 0x7e808273, 0x00570081, 0x68848353, 0xaf000400,
    266 	 BUFFERED_FLAGS, BUFFERED_FLASH_PAGE_BITS, BUFFERED_FLASH_PAGE_SIZE,
    267 	 BUFFERED_FLASH_BYTE_ADDR_MASK, BUFFERED_FLASH_TOTAL_SIZE*2,
    268 	 "Buffered flash (256kB)"},
    269 };
    270 
    271 /*
    272  * The BCM5709 controllers transparently handle the
    273  * differences between Atmel 264 byte pages and all
    274  * flash devices which use 256 byte pages, so no
    275  * logical-to-physical mapping is required in the
    276  * driver.
    277  */
    278 static struct flash_spec flash_5709 = {
    279 	.flags		= BNX_NV_BUFFERED,
    280 	.page_bits	= BCM5709_FLASH_PAGE_BITS,
    281 	.page_size	= BCM5709_FLASH_PAGE_SIZE,
    282 	.addr_mask	= BCM5709_FLASH_BYTE_ADDR_MASK,
    283 	.total_size	= BUFFERED_FLASH_TOTAL_SIZE * 2,
    284 	.name		= "5709 buffered flash (256kB)",
    285 };
    286 
    287 /****************************************************************************/
    288 /* OpenBSD device entry points.                                             */
    289 /****************************************************************************/
    290 static int	bnx_probe(device_t, cfdata_t, void *);
    291 void	bnx_attach(device_t, device_t, void *);
    292 int	bnx_detach(device_t, int);
    293 
    294 /****************************************************************************/
    295 /* BNX Debug Data Structure Dump Routines                                   */
    296 /****************************************************************************/
    297 #ifdef BNX_DEBUG
    298 void	bnx_dump_mbuf(struct bnx_softc *, struct mbuf *);
    299 void	bnx_dump_tx_mbuf_chain(struct bnx_softc *, int, int);
    300 void	bnx_dump_rx_mbuf_chain(struct bnx_softc *, int, int);
    301 void	bnx_dump_txbd(struct bnx_softc *, int, struct tx_bd *);
    302 void	bnx_dump_rxbd(struct bnx_softc *, int, struct rx_bd *);
    303 void	bnx_dump_l2fhdr(struct bnx_softc *, int, struct l2_fhdr *);
    304 void	bnx_dump_tx_chain(struct bnx_softc *, int, int);
    305 void	bnx_dump_rx_chain(struct bnx_softc *, int, int);
    306 void	bnx_dump_status_block(struct bnx_softc *);
    307 void	bnx_dump_stats_block(struct bnx_softc *);
    308 void	bnx_dump_driver_state(struct bnx_softc *);
    309 void	bnx_dump_hw_state(struct bnx_softc *);
    310 void	bnx_breakpoint(struct bnx_softc *);
    311 #endif
    312 
    313 /****************************************************************************/
    314 /* BNX Register/Memory Access Routines                                      */
    315 /****************************************************************************/
    316 uint32_t	bnx_reg_rd_ind(struct bnx_softc *, uint32_t);
    317 void	bnx_reg_wr_ind(struct bnx_softc *, uint32_t, uint32_t);
    318 void	bnx_ctx_wr(struct bnx_softc *, uint32_t, uint32_t, uint32_t);
    319 int	bnx_miibus_read_reg(device_t, int, int, uint16_t *);
    320 int	bnx_miibus_write_reg(device_t, int, int, uint16_t);
    321 void	bnx_miibus_statchg(struct ifnet *);
    322 
    323 /****************************************************************************/
    324 /* BNX NVRAM Access Routines                                                */
    325 /****************************************************************************/
    326 int	bnx_acquire_nvram_lock(struct bnx_softc *);
    327 int	bnx_release_nvram_lock(struct bnx_softc *);
    328 void	bnx_enable_nvram_access(struct bnx_softc *);
    329 void	bnx_disable_nvram_access(struct bnx_softc *);
    330 int	bnx_nvram_read_dword(struct bnx_softc *, uint32_t, uint8_t *,
    331 	    uint32_t);
    332 int	bnx_init_nvram(struct bnx_softc *);
    333 int	bnx_nvram_read(struct bnx_softc *, uint32_t, uint8_t *, int);
    334 int	bnx_nvram_test(struct bnx_softc *);
    335 #ifdef BNX_NVRAM_WRITE_SUPPORT
    336 int	bnx_enable_nvram_write(struct bnx_softc *);
    337 void	bnx_disable_nvram_write(struct bnx_softc *);
    338 int	bnx_nvram_erase_page(struct bnx_softc *, uint32_t);
    339 int	bnx_nvram_write_dword(struct bnx_softc *, uint32_t, uint8_t *,
    340 	    uint32_t);
    341 int	bnx_nvram_write(struct bnx_softc *, uint32_t, uint8_t *, int);
    342 #endif
    343 
    344 /****************************************************************************/
    345 /*                                                                          */
    346 /****************************************************************************/
    347 void	bnx_get_media(struct bnx_softc *);
    348 void	bnx_init_media(struct bnx_softc *);
    349 int	bnx_dma_alloc(struct bnx_softc *);
    350 void	bnx_dma_free(struct bnx_softc *);
    351 void	bnx_release_resources(struct bnx_softc *);
    352 
    353 /****************************************************************************/
    354 /* BNX Firmware Synchronization and Load                                    */
    355 /****************************************************************************/
    356 int	bnx_fw_sync(struct bnx_softc *, uint32_t);
    357 void	bnx_load_rv2p_fw(struct bnx_softc *, uint32_t *, uint32_t, uint32_t);
    358 void	bnx_load_cpu_fw(struct bnx_softc *, struct cpu_reg *,
    359 	    struct fw_info *);
    360 void	bnx_init_cpus(struct bnx_softc *);
    361 
    362 static void bnx_print_adapter_info(struct bnx_softc *);
    363 static void bnx_probe_pci_caps(struct bnx_softc *);
    364 void	bnx_stop(struct ifnet *, int);
    365 int	bnx_reset(struct bnx_softc *, uint32_t);
    366 int	bnx_chipinit(struct bnx_softc *);
    367 int	bnx_blockinit(struct bnx_softc *);
    368 static int	bnx_add_buf(struct bnx_softc *, struct mbuf *, uint16_t *,
    369 	    uint16_t *, uint32_t *);
    370 int	bnx_get_buf(struct bnx_softc *, uint16_t *, uint16_t *, uint32_t *);
    371 
    372 int	bnx_init_tx_chain(struct bnx_softc *);
    373 void	bnx_init_tx_context(struct bnx_softc *);
    374 int	bnx_init_rx_chain(struct bnx_softc *);
    375 void	bnx_init_rx_context(struct bnx_softc *);
    376 void	bnx_free_rx_chain(struct bnx_softc *);
    377 void	bnx_free_tx_chain(struct bnx_softc *);
    378 
    379 int	bnx_tx_encap(struct bnx_softc *, struct mbuf *);
    380 void	bnx_start(struct ifnet *);
    381 int	bnx_ioctl(struct ifnet *, u_long, void *);
    382 void	bnx_watchdog(struct ifnet *);
    383 void	bnx_ifmedia_sts(struct ifnet *, struct ifmediareq *);
    384 int	bnx_init(struct ifnet *);
    385 
    386 void	bnx_init_context(struct bnx_softc *);
    387 void	bnx_get_mac_addr(struct bnx_softc *);
    388 void	bnx_set_mac_addr(struct bnx_softc *);
    389 void	bnx_phy_intr(struct bnx_softc *);
    390 void	bnx_rx_intr(struct bnx_softc *);
    391 void	bnx_tx_intr(struct bnx_softc *);
    392 void	bnx_disable_intr(struct bnx_softc *);
    393 void	bnx_enable_intr(struct bnx_softc *);
    394 
    395 int	bnx_intr(void *);
    396 void	bnx_iff(struct bnx_softc *);
    397 void	bnx_stats_update(struct bnx_softc *);
    398 void	bnx_tick(void *);
    399 
    400 struct pool *bnx_tx_pool = NULL;
    401 void	bnx_alloc_pkts(struct work *, void *);
    402 
    403 /****************************************************************************/
    404 /* OpenBSD device dispatch table.                                           */
    405 /****************************************************************************/
    406 CFATTACH_DECL3_NEW(bnx, sizeof(struct bnx_softc),
    407     bnx_probe, bnx_attach, bnx_detach, NULL, NULL, NULL, DVF_DETACH_SHUTDOWN);
    408 
    409 /****************************************************************************/
    410 /* Device probe function.                                                   */
    411 /*                                                                          */
    412 /* Compares the device to the driver's list of supported devices and        */
    413 /* reports back to the OS whether this is the right driver for the device.  */
    414 /*                                                                          */
    415 /* Returns:                                                                 */
    416 /*   BUS_PROBE_DEFAULT on success, positive value on failure.               */
    417 /****************************************************************************/
    418 static const struct bnx_product *
    419 bnx_lookup(const struct pci_attach_args *pa)
    420 {
    421 	int i;
    422 	pcireg_t subid;
    423 
    424 	for (i = 0; i < __arraycount(bnx_devices); i++) {
    425 		if (PCI_VENDOR(pa->pa_id) != bnx_devices[i].bp_vendor ||
    426 		    PCI_PRODUCT(pa->pa_id) != bnx_devices[i].bp_product)
    427 			continue;
    428 		if (!bnx_devices[i].bp_subvendor)
    429 			return &bnx_devices[i];
    430 		subid = pci_conf_read(pa->pa_pc, pa->pa_tag, PCI_SUBSYS_ID_REG);
    431 		if (PCI_VENDOR(subid) == bnx_devices[i].bp_subvendor &&
    432 		    PCI_PRODUCT(subid) == bnx_devices[i].bp_subproduct)
    433 			return &bnx_devices[i];
    434 	}
    435 
    436 	return NULL;
    437 }
    438 static int
    439 bnx_probe(device_t parent, cfdata_t match, void *aux)
    440 {
    441 	struct pci_attach_args *pa = (struct pci_attach_args *)aux;
    442 
    443 	if (bnx_lookup(pa) != NULL)
    444 		return 1;
    445 
    446 	return 0;
    447 }
    448 
    449 /****************************************************************************/
    450 /* PCI Capabilities Probe Function.                                         */
    451 /*                                                                          */
    452 /* Walks the PCI capabiites list for the device to find what features are   */
    453 /* supported.                                                               */
    454 /*                                                                          */
    455 /* Returns:                                                                 */
    456 /*   None.                                                                  */
    457 /****************************************************************************/
    458 static void
    459 bnx_print_adapter_info(struct bnx_softc *sc)
    460 {
    461 
    462 	aprint_normal_dev(sc->bnx_dev, "ASIC BCM%x %c%d %s(0x%08x)\n",
    463 	    BNXNUM(sc), 'A' + BNXREV(sc), BNXMETAL(sc),
    464 	    (BNX_CHIP_BOND_ID(sc) == BNX_CHIP_BOND_ID_SERDES_BIT)
    465 	    ? "Serdes " : "", sc->bnx_chipid);
    466 
    467 	/* Bus info. */
    468 	if (sc->bnx_flags & BNX_PCIE_FLAG) {
    469 		aprint_normal_dev(sc->bnx_dev, "PCIe x%d ",
    470 		    sc->link_width);
    471 		switch (sc->link_speed) {
    472 		case 1: aprint_normal("2.5Gbps\n"); break;
    473 		case 2:	aprint_normal("5Gbps\n"); break;
    474 		default: aprint_normal("Unknown link speed\n");
    475 		}
    476 	} else {
    477 		aprint_normal_dev(sc->bnx_dev, "PCI%s %dbit %dMHz\n",
    478 		    ((sc->bnx_flags & BNX_PCIX_FLAG) ? "-X" : ""),
    479 		    (sc->bnx_flags & BNX_PCI_32BIT_FLAG) ? 32 : 64,
    480 		    sc->bus_speed_mhz);
    481 	}
    482 
    483 	aprint_normal_dev(sc->bnx_dev,
    484 	    "Coal (RX:%d,%d,%d,%d; TX:%d,%d,%d,%d)\n",
    485 	    sc->bnx_rx_quick_cons_trip_int,
    486 	    sc->bnx_rx_quick_cons_trip,
    487 	    sc->bnx_rx_ticks_int,
    488 	    sc->bnx_rx_ticks,
    489 	    sc->bnx_tx_quick_cons_trip_int,
    490 	    sc->bnx_tx_quick_cons_trip,
    491 	    sc->bnx_tx_ticks_int,
    492 	    sc->bnx_tx_ticks);
    493 }
    494 
    495 
    496 /****************************************************************************/
    497 /* PCI Capabilities Probe Function.                                         */
    498 /*                                                                          */
    499 /* Walks the PCI capabiites list for the device to find what features are   */
    500 /* supported.                                                               */
    501 /*                                                                          */
    502 /* Returns:                                                                 */
    503 /*   None.                                                                  */
    504 /****************************************************************************/
    505 static void
    506 bnx_probe_pci_caps(struct bnx_softc *sc)
    507 {
    508 	struct pci_attach_args *pa = &(sc->bnx_pa);
    509 	pcireg_t reg;
    510 
    511 	/* Check if PCI-X capability is enabled. */
    512 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIX, &reg,
    513 		NULL) != 0) {
    514 		sc->bnx_cap_flags |= BNX_PCIX_CAPABLE_FLAG;
    515 	}
    516 
    517 	/* Check if PCIe capability is enabled. */
    518 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_PCIEXPRESS, &reg,
    519 		NULL) != 0) {
    520 		pcireg_t link_status = pci_conf_read(pa->pa_pc, pa->pa_tag,
    521 		    reg + PCIE_LCSR);
    522 		DBPRINT(sc, BNX_INFO_LOAD, "PCIe link_status = "
    523 		    "0x%08X\n",	link_status);
    524 		sc->link_speed = (link_status & PCIE_LCSR_LINKSPEED) >> 16;
    525 		sc->link_width = (link_status & PCIE_LCSR_NLW) >> 20;
    526 		sc->bnx_cap_flags |= BNX_PCIE_CAPABLE_FLAG;
    527 		sc->bnx_flags |= BNX_PCIE_FLAG;
    528 	}
    529 
    530 	/* Check if MSI capability is enabled. */
    531 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSI, &reg,
    532 		NULL) != 0)
    533 		sc->bnx_cap_flags |= BNX_MSI_CAPABLE_FLAG;
    534 
    535 	/* Check if MSI-X capability is enabled. */
    536 	if (pci_get_capability(pa->pa_pc, pa->pa_tag, PCI_CAP_MSIX, &reg,
    537 		NULL) != 0)
    538 		sc->bnx_cap_flags |= BNX_MSIX_CAPABLE_FLAG;
    539 }
    540 
    541 
    542 /****************************************************************************/
    543 /* Device attach function.                                                  */
    544 /*                                                                          */
    545 /* Allocates device resources, performs secondary chip identification,      */
    546 /* resets and initializes the hardware, and initializes driver instance     */
    547 /* variables.                                                               */
    548 /*                                                                          */
    549 /* Returns:                                                                 */
    550 /*   0 on success, positive value on failure.                               */
    551 /****************************************************************************/
    552 void
    553 bnx_attach(device_t parent, device_t self, void *aux)
    554 {
    555 	const struct bnx_product *bp;
    556 	struct bnx_softc	*sc = device_private(self);
    557 	prop_dictionary_t	dict;
    558 	struct pci_attach_args	*pa = aux;
    559 	pci_chipset_tag_t	pc = pa->pa_pc;
    560 	pci_intr_handle_t	ih;
    561 	const char 		*intrstr = NULL;
    562 	uint32_t		command;
    563 	struct ifnet		*ifp;
    564 	uint32_t		val;
    565 	int			mii_flags = MIIF_FORCEANEG;
    566 	pcireg_t		memtype;
    567 	char intrbuf[PCI_INTRSTR_LEN];
    568 
    569 	if (bnx_tx_pool == NULL) {
    570 		bnx_tx_pool = malloc(sizeof(*bnx_tx_pool), M_DEVBUF, M_NOWAIT);
    571 		if (bnx_tx_pool != NULL) {
    572 			pool_init(bnx_tx_pool, sizeof(struct bnx_pkt),
    573 			    0, 0, 0, "bnxpkts", NULL, IPL_NET);
    574 		} else {
    575 			aprint_error(": can't alloc bnx_tx_pool\n");
    576 			return;
    577 		}
    578 	}
    579 
    580 	bp = bnx_lookup(pa);
    581 	if (bp == NULL)
    582 		panic("unknown device");
    583 
    584 	sc->bnx_dev = self;
    585 
    586 	aprint_naive("\n");
    587 	aprint_normal(": %s\n", bp->bp_name);
    588 
    589 	sc->bnx_pa = *pa;
    590 
    591 	/*
    592 	 * Map control/status registers.
    593 	*/
    594 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    595 	command |= PCI_COMMAND_MEM_ENABLE | PCI_COMMAND_MASTER_ENABLE;
    596 	pci_conf_write(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG, command);
    597 	command = pci_conf_read(pc, pa->pa_tag, PCI_COMMAND_STATUS_REG);
    598 
    599 	if (!(command & PCI_COMMAND_MEM_ENABLE)) {
    600 		aprint_error_dev(sc->bnx_dev,
    601 		    "failed to enable memory mapping!\n");
    602 		return;
    603 	}
    604 
    605 	memtype = pci_mapreg_type(pa->pa_pc, pa->pa_tag, BNX_PCI_BAR0);
    606 	if (pci_mapreg_map(pa, BNX_PCI_BAR0, memtype, 0, &sc->bnx_btag,
    607 	    &sc->bnx_bhandle, NULL, &sc->bnx_size)) {
    608 		aprint_error_dev(sc->bnx_dev, "can't find mem space\n");
    609 		return;
    610 	}
    611 
    612 	if (pci_intr_map(pa, &ih)) {
    613 		aprint_error_dev(sc->bnx_dev, "couldn't map interrupt\n");
    614 		goto bnx_attach_fail;
    615 	}
    616 
    617 	intrstr = pci_intr_string(pc, ih, intrbuf, sizeof(intrbuf));
    618 
    619 	/*
    620 	 * Configure byte swap and enable indirect register access.
    621 	 * Rely on CPU to do target byte swapping on big endian systems.
    622 	 * Access to registers outside of PCI configurtion space are not
    623 	 * valid until this is done.
    624 	 */
    625 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
    626 	    BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
    627 	    BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP);
    628 
    629 	/* Save ASIC revsion info. */
    630 	sc->bnx_chipid =  REG_RD(sc, BNX_MISC_ID);
    631 
    632 	/*
    633 	 * Find the base address for shared memory access.
    634 	 * Newer versions of bootcode use a signature and offset
    635 	 * while older versions use a fixed address.
    636 	 */
    637 	val = REG_RD_IND(sc, BNX_SHM_HDR_SIGNATURE);
    638 	if ((val & BNX_SHM_HDR_SIGNATURE_SIG_MASK) == BNX_SHM_HDR_SIGNATURE_SIG)
    639 		sc->bnx_shmem_base = REG_RD_IND(sc, BNX_SHM_HDR_ADDR_0 +
    640 		    (sc->bnx_pa.pa_function << 2));
    641 	else
    642 		sc->bnx_shmem_base = HOST_VIEW_SHMEM_BASE;
    643 
    644 	DBPRINT(sc, BNX_INFO, "bnx_shmem_base = 0x%08X\n", sc->bnx_shmem_base);
    645 
    646 	/* Set initial device and PHY flags */
    647 	sc->bnx_flags = 0;
    648 	sc->bnx_phy_flags = 0;
    649 
    650 	bnx_probe_pci_caps(sc);
    651 
    652 	/* Get PCI bus information (speed and type). */
    653 	val = REG_RD(sc, BNX_PCICFG_MISC_STATUS);
    654 	if (val & BNX_PCICFG_MISC_STATUS_PCIX_DET) {
    655 		uint32_t clkreg;
    656 
    657 		sc->bnx_flags |= BNX_PCIX_FLAG;
    658 
    659 		clkreg = REG_RD(sc, BNX_PCICFG_PCI_CLOCK_CONTROL_BITS);
    660 
    661 		clkreg &= BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET;
    662 		switch (clkreg) {
    663 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_133MHZ:
    664 			sc->bus_speed_mhz = 133;
    665 			break;
    666 
    667 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_95MHZ:
    668 			sc->bus_speed_mhz = 100;
    669 			break;
    670 
    671 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_66MHZ:
    672 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_80MHZ:
    673 			sc->bus_speed_mhz = 66;
    674 			break;
    675 
    676 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_48MHZ:
    677 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_55MHZ:
    678 			sc->bus_speed_mhz = 50;
    679 			break;
    680 
    681 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_LOW:
    682 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_32MHZ:
    683 		case BNX_PCICFG_PCI_CLOCK_CONTROL_BITS_PCI_CLK_SPD_DET_38MHZ:
    684 			sc->bus_speed_mhz = 33;
    685 			break;
    686 		}
    687 	} else if (val & BNX_PCICFG_MISC_STATUS_M66EN)
    688 			sc->bus_speed_mhz = 66;
    689 		else
    690 			sc->bus_speed_mhz = 33;
    691 
    692 	if (val & BNX_PCICFG_MISC_STATUS_32BIT_DET)
    693 		sc->bnx_flags |= BNX_PCI_32BIT_FLAG;
    694 
    695 	/* Reset the controller. */
    696 	if (bnx_reset(sc, BNX_DRV_MSG_CODE_RESET))
    697 		goto bnx_attach_fail;
    698 
    699 	/* Initialize the controller. */
    700 	if (bnx_chipinit(sc)) {
    701 		aprint_error_dev(sc->bnx_dev,
    702 		    "Controller initialization failed!\n");
    703 		goto bnx_attach_fail;
    704 	}
    705 
    706 	/* Perform NVRAM test. */
    707 	if (bnx_nvram_test(sc)) {
    708 		aprint_error_dev(sc->bnx_dev, "NVRAM test failed!\n");
    709 		goto bnx_attach_fail;
    710 	}
    711 
    712 	/* Fetch the permanent Ethernet MAC address. */
    713 	bnx_get_mac_addr(sc);
    714 	aprint_normal_dev(sc->bnx_dev, "Ethernet address %s\n",
    715 	    ether_sprintf(sc->eaddr));
    716 
    717 	/*
    718 	 * Trip points control how many BDs
    719 	 * should be ready before generating an
    720 	 * interrupt while ticks control how long
    721 	 * a BD can sit in the chain before
    722 	 * generating an interrupt.  Set the default
    723 	 * values for the RX and TX rings.
    724 	 */
    725 
    726 #ifdef BNX_DEBUG
    727 	/* Force more frequent interrupts. */
    728 	sc->bnx_tx_quick_cons_trip_int = 1;
    729 	sc->bnx_tx_quick_cons_trip     = 1;
    730 	sc->bnx_tx_ticks_int           = 0;
    731 	sc->bnx_tx_ticks               = 0;
    732 
    733 	sc->bnx_rx_quick_cons_trip_int = 1;
    734 	sc->bnx_rx_quick_cons_trip     = 1;
    735 	sc->bnx_rx_ticks_int           = 0;
    736 	sc->bnx_rx_ticks               = 0;
    737 #else
    738 	sc->bnx_tx_quick_cons_trip_int = 20;
    739 	sc->bnx_tx_quick_cons_trip     = 20;
    740 	sc->bnx_tx_ticks_int           = 80;
    741 	sc->bnx_tx_ticks               = 80;
    742 
    743 	sc->bnx_rx_quick_cons_trip_int = 6;
    744 	sc->bnx_rx_quick_cons_trip     = 6;
    745 	sc->bnx_rx_ticks_int           = 18;
    746 	sc->bnx_rx_ticks               = 18;
    747 #endif
    748 
    749 	/* Update statistics once every second. */
    750 	sc->bnx_stats_ticks = 1000000 & 0xffff00;
    751 
    752 	/* Find the media type for the adapter. */
    753 	bnx_get_media(sc);
    754 
    755 	/*
    756 	 * Store config data needed by the PHY driver for
    757 	 * backplane applications
    758 	 */
    759 	sc->bnx_shared_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    760 	    BNX_SHARED_HW_CFG_CONFIG);
    761 	sc->bnx_port_hw_cfg = REG_RD_IND(sc, sc->bnx_shmem_base +
    762 	    BNX_PORT_HW_CFG_CONFIG);
    763 
    764 	/* Allocate DMA memory resources. */
    765 	sc->bnx_dmatag = pa->pa_dmat;
    766 	if (bnx_dma_alloc(sc)) {
    767 		aprint_error_dev(sc->bnx_dev,
    768 		    "DMA resource allocation failed!\n");
    769 		goto bnx_attach_fail;
    770 	}
    771 
    772 	/* Initialize the ifnet interface. */
    773 	ifp = &sc->bnx_ec.ec_if;
    774 	ifp->if_softc = sc;
    775 	ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST;
    776 	ifp->if_ioctl = bnx_ioctl;
    777 	ifp->if_stop = bnx_stop;
    778 	ifp->if_start = bnx_start;
    779 	ifp->if_init = bnx_init;
    780 	ifp->if_timer = 0;
    781 	ifp->if_watchdog = bnx_watchdog;
    782 	IFQ_SET_MAXLEN(&ifp->if_snd, USABLE_TX_BD - 1);
    783 	IFQ_SET_READY(&ifp->if_snd);
    784 	memcpy(ifp->if_xname, device_xname(self), IFNAMSIZ);
    785 
    786 	sc->bnx_ec.ec_capabilities |= ETHERCAP_JUMBO_MTU |
    787 	    ETHERCAP_VLAN_MTU | ETHERCAP_VLAN_HWTAGGING;
    788 
    789 	ifp->if_capabilities |=
    790 	    IFCAP_CSUM_IPv4_Tx | IFCAP_CSUM_IPv4_Rx |
    791 	    IFCAP_CSUM_TCPv4_Tx | IFCAP_CSUM_TCPv4_Rx |
    792 	    IFCAP_CSUM_UDPv4_Tx | IFCAP_CSUM_UDPv4_Rx;
    793 
    794 	/* Hookup IRQ last. */
    795 	sc->bnx_intrhand = pci_intr_establish_xname(pc, ih, IPL_NET, bnx_intr,
    796 	    sc, device_xname(self));
    797 	if (sc->bnx_intrhand == NULL) {
    798 		aprint_error_dev(self, "couldn't establish interrupt");
    799 		if (intrstr != NULL)
    800 			aprint_error(" at %s", intrstr);
    801 		aprint_error("\n");
    802 		goto bnx_attach_fail;
    803 	}
    804 	aprint_normal_dev(sc->bnx_dev, "interrupting at %s\n", intrstr);
    805 
    806 	/* create workqueue to handle packet allocations */
    807 	if (workqueue_create(&sc->bnx_wq, device_xname(self),
    808 	    bnx_alloc_pkts, sc, PRI_NONE, IPL_NET, 0) != 0) {
    809 		aprint_error_dev(self, "failed to create workqueue\n");
    810 		goto bnx_attach_fail;
    811 	}
    812 
    813 	sc->bnx_mii.mii_ifp = ifp;
    814 	sc->bnx_mii.mii_readreg = bnx_miibus_read_reg;
    815 	sc->bnx_mii.mii_writereg = bnx_miibus_write_reg;
    816 	sc->bnx_mii.mii_statchg = bnx_miibus_statchg;
    817 
    818 	/* Handle any special PHY initialization for SerDes PHYs. */
    819 	bnx_init_media(sc);
    820 
    821 	sc->bnx_ec.ec_mii = &sc->bnx_mii;
    822 	ifmedia_init(&sc->bnx_mii.mii_media, 0, ether_mediachange,
    823 	    bnx_ifmedia_sts);
    824 
    825 	/* set phyflags and chipid before mii_attach() */
    826 	dict = device_properties(self);
    827 	prop_dictionary_set_uint32(dict, "phyflags", sc->bnx_phy_flags);
    828 	prop_dictionary_set_uint32(dict, "chipid", sc->bnx_chipid);
    829 	prop_dictionary_set_uint32(dict, "shared_hwcfg",sc->bnx_shared_hw_cfg);
    830 	prop_dictionary_set_uint32(dict, "port_hwcfg", sc->bnx_port_hw_cfg);
    831 
    832 	/* Print some useful adapter info */
    833 	bnx_print_adapter_info(sc);
    834 
    835 	mii_flags |= MIIF_DOPAUSE;
    836 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG)
    837 		mii_flags |= MIIF_HAVEFIBER;
    838 	mii_attach(self, &sc->bnx_mii, 0xffffffff,
    839 	    MII_PHY_ANY, MII_OFFSET_ANY, mii_flags);
    840 
    841 	if (LIST_EMPTY(&sc->bnx_mii.mii_phys)) {
    842 		aprint_error_dev(self, "no PHY found!\n");
    843 		ifmedia_add(&sc->bnx_mii.mii_media,
    844 		    IFM_ETHER|IFM_MANUAL, 0, NULL);
    845 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_MANUAL);
    846 	} else
    847 		ifmedia_set(&sc->bnx_mii.mii_media, IFM_ETHER | IFM_AUTO);
    848 
    849 	/* Attach to the Ethernet interface list. */
    850 	if_attach(ifp);
    851 	if_deferred_start_init(ifp, NULL);
    852 	ether_ifattach(ifp,sc->eaddr);
    853 
    854 	callout_init(&sc->bnx_timeout, 0);
    855 
    856 	if (pmf_device_register(self, NULL, NULL))
    857 		pmf_class_network_register(self, ifp);
    858 	else
    859 		aprint_error_dev(self, "couldn't establish power handler\n");
    860 
    861 	/* Print some important debugging info. */
    862 	DBRUN(BNX_INFO, bnx_dump_driver_state(sc));
    863 
    864 	goto bnx_attach_exit;
    865 
    866 bnx_attach_fail:
    867 	bnx_release_resources(sc);
    868 
    869 bnx_attach_exit:
    870 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    871 }
    872 
    873 /****************************************************************************/
    874 /* Device detach function.                                                  */
    875 /*                                                                          */
    876 /* Stops the controller, resets the controller, and releases resources.     */
    877 /*                                                                          */
    878 /* Returns:                                                                 */
    879 /*   0 on success, positive value on failure.                               */
    880 /****************************************************************************/
    881 int
    882 bnx_detach(device_t dev, int flags)
    883 {
    884 	int s;
    885 	struct bnx_softc *sc;
    886 	struct ifnet *ifp;
    887 
    888 	sc = device_private(dev);
    889 	ifp = &sc->bnx_ec.ec_if;
    890 
    891 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
    892 
    893 	/* Stop and reset the controller. */
    894 	s = splnet();
    895 	bnx_stop(ifp, 1);
    896 	splx(s);
    897 
    898 	pmf_device_deregister(dev);
    899 	callout_destroy(&sc->bnx_timeout);
    900 	ether_ifdetach(ifp);
    901 	workqueue_destroy(sc->bnx_wq);
    902 
    903 	/* Delete all remaining media. */
    904 	ifmedia_delete_instance(&sc->bnx_mii.mii_media, IFM_INST_ANY);
    905 
    906 	if_detach(ifp);
    907 	mii_detach(&sc->bnx_mii, MII_PHY_ANY, MII_OFFSET_ANY);
    908 
    909 	/* Release all remaining resources. */
    910 	bnx_release_resources(sc);
    911 
    912 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
    913 
    914 	return 0;
    915 }
    916 
    917 /****************************************************************************/
    918 /* Indirect register read.                                                  */
    919 /*                                                                          */
    920 /* Reads NetXtreme II registers using an index/data register pair in PCI    */
    921 /* configuration space.  Using this mechanism avoids issues with posted     */
    922 /* reads but is much slower than memory-mapped I/O.                         */
    923 /*                                                                          */
    924 /* Returns:                                                                 */
    925 /*   The value of the register.                                             */
    926 /****************************************************************************/
    927 uint32_t
    928 bnx_reg_rd_ind(struct bnx_softc *sc, uint32_t offset)
    929 {
    930 	struct pci_attach_args	*pa = &(sc->bnx_pa);
    931 
    932 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    933 	    offset);
    934 #ifdef BNX_DEBUG
    935 	{
    936 		uint32_t val;
    937 		val = pci_conf_read(pa->pa_pc, pa->pa_tag,
    938 		    BNX_PCICFG_REG_WINDOW);
    939 		DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, "
    940 		    "val = 0x%08X\n", __func__, offset, val);
    941 		return val;
    942 	}
    943 #else
    944 	return pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW);
    945 #endif
    946 }
    947 
    948 /****************************************************************************/
    949 /* Indirect register write.                                                 */
    950 /*                                                                          */
    951 /* Writes NetXtreme II registers using an index/data register pair in PCI   */
    952 /* configuration space.  Using this mechanism avoids issues with posted     */
    953 /* writes but is muchh slower than memory-mapped I/O.                       */
    954 /*                                                                          */
    955 /* Returns:                                                                 */
    956 /*   Nothing.                                                               */
    957 /****************************************************************************/
    958 void
    959 bnx_reg_wr_ind(struct bnx_softc *sc, uint32_t offset, uint32_t val)
    960 {
    961 	struct pci_attach_args  *pa = &(sc->bnx_pa);
    962 
    963 	DBPRINT(sc, BNX_EXCESSIVE, "%s(); offset = 0x%08X, val = 0x%08X\n",
    964 		__func__, offset, val);
    965 
    966 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW_ADDRESS,
    967 	    offset);
    968 	pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_REG_WINDOW, val);
    969 }
    970 
    971 /****************************************************************************/
    972 /* Context memory write.                                                    */
    973 /*                                                                          */
    974 /* The NetXtreme II controller uses context memory to track connection      */
    975 /* information for L2 and higher network protocols.                         */
    976 /*                                                                          */
    977 /* Returns:                                                                 */
    978 /*   Nothing.                                                               */
    979 /****************************************************************************/
    980 void
    981 bnx_ctx_wr(struct bnx_softc *sc, uint32_t cid_addr, uint32_t ctx_offset,
    982     uint32_t ctx_val)
    983 {
    984 	uint32_t idx, offset = ctx_offset + cid_addr;
    985 	uint32_t val, retry_cnt = 5;
    986 
    987 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
    988 		REG_WR(sc, BNX_CTX_CTX_DATA, ctx_val);
    989 		REG_WR(sc, BNX_CTX_CTX_CTRL,
    990 		    (offset | BNX_CTX_CTX_CTRL_WRITE_REQ));
    991 
    992 		for (idx = 0; idx < retry_cnt; idx++) {
    993 			val = REG_RD(sc, BNX_CTX_CTX_CTRL);
    994 			if ((val & BNX_CTX_CTX_CTRL_WRITE_REQ) == 0)
    995 				break;
    996 			DELAY(5);
    997 		}
    998 
    999 #if 0
   1000 		if (val & BNX_CTX_CTX_CTRL_WRITE_REQ)
   1001 			BNX_PRINTF("%s(%d); Unable to write CTX memory: "
   1002 				"cid_addr = 0x%08X, offset = 0x%08X!\n",
   1003 				__FILE__, __LINE__, cid_addr, ctx_offset);
   1004 #endif
   1005 
   1006 	} else {
   1007 		REG_WR(sc, BNX_CTX_DATA_ADR, offset);
   1008 		REG_WR(sc, BNX_CTX_DATA, ctx_val);
   1009 	}
   1010 }
   1011 
   1012 /****************************************************************************/
   1013 /* PHY register read.                                                       */
   1014 /*                                                                          */
   1015 /* Implements register reads on the MII bus.                                */
   1016 /*                                                                          */
   1017 /* Returns:                                                                 */
   1018 /*   The value of the register.                                             */
   1019 /****************************************************************************/
   1020 int
   1021 bnx_miibus_read_reg(device_t dev, int phy, int reg, uint16_t *val)
   1022 {
   1023 	struct bnx_softc	*sc = device_private(dev);
   1024 	uint32_t		data;
   1025 	int			i, rv = 0;
   1026 
   1027 	/* Make sure we are accessing the correct PHY address. */
   1028 	if (phy != sc->bnx_phy_addr) {
   1029 		DBPRINT(sc, BNX_VERBOSE,
   1030 		    "Invalid PHY address %d for PHY read!\n", phy);
   1031 		return -1;
   1032 	}
   1033 
   1034 	/*
   1035 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1036 	 * with special mappings to work with IEEE
   1037 	 * Clause 22 register accesses.
   1038 	 */
   1039 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1040 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1041 			reg += 0x10;
   1042 	}
   1043 
   1044 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1045 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1046 		data &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1047 
   1048 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1049 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1050 
   1051 		DELAY(40);
   1052 	}
   1053 
   1054 	data = BNX_MIPHY(phy) | BNX_MIREG(reg) |
   1055 	    BNX_EMAC_MDIO_COMM_COMMAND_READ | BNX_EMAC_MDIO_COMM_DISEXT |
   1056 	    BNX_EMAC_MDIO_COMM_START_BUSY;
   1057 	REG_WR(sc, BNX_EMAC_MDIO_COMM, data);
   1058 
   1059 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1060 		DELAY(10);
   1061 
   1062 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1063 		if (!(data & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1064 			DELAY(5);
   1065 
   1066 			data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1067 			data &= BNX_EMAC_MDIO_COMM_DATA;
   1068 
   1069 			break;
   1070 		}
   1071 	}
   1072 
   1073 	if (data & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1074 		BNX_PRINTF(sc, "%s(%d): Error: PHY read timeout! phy = %d, "
   1075 		    "reg = 0x%04X\n", __FILE__, __LINE__, phy, reg);
   1076 		rv = ETIMEDOUT;
   1077 	} else {
   1078 		data = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1079 		*val = data & 0xffff;
   1080 
   1081 		DBPRINT(sc, BNX_EXCESSIVE,
   1082 		    "%s(): phy = %d, reg = 0x%04X, val = 0x%04hX\n", __func__,
   1083 		    phy, (uint16_t) reg & 0xffff, *val);
   1084 	}
   1085 
   1086 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1087 		data = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1088 		data |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1089 
   1090 		REG_WR(sc, BNX_EMAC_MDIO_MODE, data);
   1091 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1092 
   1093 		DELAY(40);
   1094 	}
   1095 
   1096 	return rv;
   1097 }
   1098 
   1099 /****************************************************************************/
   1100 /* PHY register write.                                                      */
   1101 /*                                                                          */
   1102 /* Implements register writes on the MII bus.                               */
   1103 /*                                                                          */
   1104 /* Returns:                                                                 */
   1105 /*   The value of the register.                                             */
   1106 /****************************************************************************/
   1107 int
   1108 bnx_miibus_write_reg(device_t dev, int phy, int reg, uint16_t val)
   1109 {
   1110 	struct bnx_softc	*sc = device_private(dev);
   1111 	uint32_t		val1;
   1112 	int			i, rv = 0;
   1113 
   1114 	/* Make sure we are accessing the correct PHY address. */
   1115 	if (phy != sc->bnx_phy_addr) {
   1116 		DBPRINT(sc, BNX_WARN,
   1117 		    "Invalid PHY address %d for PHY write!\n", phy);
   1118 		return -1;
   1119 	}
   1120 
   1121 	DBPRINT(sc, BNX_EXCESSIVE, "%s(): phy = %d, reg = 0x%04X, "
   1122 	    "val = 0x%04hX\n", __func__,
   1123 	    phy, (uint16_t) reg & 0xffff, val);
   1124 
   1125 	/*
   1126 	 * The BCM5709S PHY is an IEEE Clause 45 PHY
   1127 	 * with special mappings to work with IEEE
   1128 	 * Clause 22 register accesses.
   1129 	 */
   1130 	if ((sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) != 0) {
   1131 		if (reg >= MII_BMCR && reg <= MII_ANLPRNP)
   1132 			reg += 0x10;
   1133 	}
   1134 
   1135 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1136 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1137 		val1 &= ~BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1138 
   1139 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1140 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1141 
   1142 		DELAY(40);
   1143 	}
   1144 
   1145 	val1 = BNX_MIPHY(phy) | BNX_MIREG(reg) | val |
   1146 	    BNX_EMAC_MDIO_COMM_COMMAND_WRITE |
   1147 	    BNX_EMAC_MDIO_COMM_START_BUSY | BNX_EMAC_MDIO_COMM_DISEXT;
   1148 	REG_WR(sc, BNX_EMAC_MDIO_COMM, val1);
   1149 
   1150 	for (i = 0; i < BNX_PHY_TIMEOUT; i++) {
   1151 		DELAY(10);
   1152 
   1153 		val1 = REG_RD(sc, BNX_EMAC_MDIO_COMM);
   1154 		if (!(val1 & BNX_EMAC_MDIO_COMM_START_BUSY)) {
   1155 			DELAY(5);
   1156 			break;
   1157 		}
   1158 	}
   1159 
   1160 	if (val1 & BNX_EMAC_MDIO_COMM_START_BUSY) {
   1161 		BNX_PRINTF(sc, "%s(%d): PHY write timeout!\n", __FILE__,
   1162 		    __LINE__);
   1163 		rv = ETIMEDOUT;
   1164 	}
   1165 
   1166 	if (sc->bnx_phy_flags & BNX_PHY_INT_MODE_AUTO_POLLING_FLAG) {
   1167 		val1 = REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1168 		val1 |= BNX_EMAC_MDIO_MODE_AUTO_POLL;
   1169 
   1170 		REG_WR(sc, BNX_EMAC_MDIO_MODE, val1);
   1171 		REG_RD(sc, BNX_EMAC_MDIO_MODE);
   1172 
   1173 		DELAY(40);
   1174 	}
   1175 
   1176 	return rv;
   1177 }
   1178 
   1179 /****************************************************************************/
   1180 /* MII bus status change.                                                   */
   1181 /*                                                                          */
   1182 /* Called by the MII bus driver when the PHY establishes link to set the    */
   1183 /* MAC interface registers.                                                 */
   1184 /*                                                                          */
   1185 /* Returns:                                                                 */
   1186 /*   Nothing.                                                               */
   1187 /****************************************************************************/
   1188 void
   1189 bnx_miibus_statchg(struct ifnet *ifp)
   1190 {
   1191 	struct bnx_softc	*sc = ifp->if_softc;
   1192 	struct mii_data		*mii = &sc->bnx_mii;
   1193 	uint32_t		rx_mode = sc->rx_mode;
   1194 	int			val;
   1195 
   1196 	val = REG_RD(sc, BNX_EMAC_MODE);
   1197 	val &= ~(BNX_EMAC_MODE_PORT | BNX_EMAC_MODE_HALF_DUPLEX |
   1198 	    BNX_EMAC_MODE_MAC_LOOP | BNX_EMAC_MODE_FORCE_LINK |
   1199 	    BNX_EMAC_MODE_25G);
   1200 
   1201 	/*
   1202 	 * Get flow control negotiation result.
   1203 	 */
   1204 	if (IFM_SUBTYPE(mii->mii_media.ifm_cur->ifm_media) == IFM_AUTO &&
   1205 	    (mii->mii_media_active & IFM_ETH_FMASK) != sc->bnx_flowflags) {
   1206 		sc->bnx_flowflags = mii->mii_media_active & IFM_ETH_FMASK;
   1207 		mii->mii_media_active &= ~IFM_ETH_FMASK;
   1208 	}
   1209 
   1210 	/* Set MII or GMII interface based on the speed
   1211 	 * negotiated by the PHY.
   1212 	 */
   1213 	switch (IFM_SUBTYPE(mii->mii_media_active)) {
   1214 	case IFM_10_T:
   1215 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   1216 			DBPRINT(sc, BNX_INFO, "Enabling 10Mb interface.\n");
   1217 			val |= BNX_EMAC_MODE_PORT_MII_10;
   1218 			break;
   1219 		}
   1220 		/* FALLTHROUGH */
   1221 	case IFM_100_TX:
   1222 		DBPRINT(sc, BNX_INFO, "Enabling MII interface.\n");
   1223 		val |= BNX_EMAC_MODE_PORT_MII;
   1224 		break;
   1225 	case IFM_2500_SX:
   1226 		DBPRINT(sc, BNX_INFO, "Enabling 2.5G MAC mode.\n");
   1227 		val |= BNX_EMAC_MODE_25G;
   1228 		/* FALLTHROUGH */
   1229 	case IFM_1000_T:
   1230 	case IFM_1000_SX:
   1231 		DBPRINT(sc, BNX_INFO, "Enabling GMII interface.\n");
   1232 		val |= BNX_EMAC_MODE_PORT_GMII;
   1233 		break;
   1234 	default:
   1235 		val |= BNX_EMAC_MODE_PORT_GMII;
   1236 		break;
   1237 	}
   1238 
   1239 	/* Set half or full duplex based on the duplicity
   1240 	 * negotiated by the PHY.
   1241 	 */
   1242 	if ((mii->mii_media_active & IFM_GMASK) == IFM_HDX) {
   1243 		DBPRINT(sc, BNX_INFO, "Setting Half-Duplex interface.\n");
   1244 		val |= BNX_EMAC_MODE_HALF_DUPLEX;
   1245 	} else {
   1246 		DBPRINT(sc, BNX_INFO, "Setting Full-Duplex interface.\n");
   1247 	}
   1248 
   1249 	REG_WR(sc, BNX_EMAC_MODE, val);
   1250 
   1251 	/*
   1252 	 * 802.3x flow control
   1253 	 */
   1254 	if (sc->bnx_flowflags & IFM_ETH_RXPAUSE) {
   1255 		DBPRINT(sc, BNX_INFO, "Enabling RX mode flow control.\n");
   1256 		rx_mode |= BNX_EMAC_RX_MODE_FLOW_EN;
   1257 	} else {
   1258 		DBPRINT(sc, BNX_INFO, "Disabling RX mode flow control.\n");
   1259 		rx_mode &= ~BNX_EMAC_RX_MODE_FLOW_EN;
   1260 	}
   1261 
   1262 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE) {
   1263 		DBPRINT(sc, BNX_INFO, "Enabling TX mode flow control.\n");
   1264 		BNX_SETBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
   1265 	} else {
   1266 		DBPRINT(sc, BNX_INFO, "Disabling TX mode flow control.\n");
   1267 		BNX_CLRBIT(sc, BNX_EMAC_TX_MODE, BNX_EMAC_TX_MODE_FLOW_EN);
   1268 	}
   1269 
   1270 	/* Only make changes if the recive mode has actually changed. */
   1271 	if (rx_mode != sc->rx_mode) {
   1272 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   1273 		    rx_mode);
   1274 
   1275 		sc->rx_mode = rx_mode;
   1276 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   1277 
   1278 		bnx_init_rx_context(sc);
   1279 	}
   1280 }
   1281 
   1282 /****************************************************************************/
   1283 /* Acquire NVRAM lock.                                                      */
   1284 /*                                                                          */
   1285 /* Before the NVRAM can be accessed the caller must acquire an NVRAM lock.  */
   1286 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1287 /* for use by the driver.                                                   */
   1288 /*                                                                          */
   1289 /* Returns:                                                                 */
   1290 /*   0 on success, positive value on failure.                               */
   1291 /****************************************************************************/
   1292 int
   1293 bnx_acquire_nvram_lock(struct bnx_softc *sc)
   1294 {
   1295 	uint32_t		val;
   1296 	int			j;
   1297 
   1298 	DBPRINT(sc, BNX_VERBOSE, "Acquiring NVRAM lock.\n");
   1299 
   1300 	/* Request access to the flash interface. */
   1301 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_SET2);
   1302 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1303 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1304 		if (val & BNX_NVM_SW_ARB_ARB_ARB2)
   1305 			break;
   1306 
   1307 		DELAY(5);
   1308 	}
   1309 
   1310 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1311 		DBPRINT(sc, BNX_WARN, "Timeout acquiring NVRAM lock!\n");
   1312 		return EBUSY;
   1313 	}
   1314 
   1315 	return 0;
   1316 }
   1317 
   1318 /****************************************************************************/
   1319 /* Release NVRAM lock.                                                      */
   1320 /*                                                                          */
   1321 /* When the caller is finished accessing NVRAM the lock must be released.   */
   1322 /* Locks 0 and 2 are reserved, lock 1 is used by firmware and lock 2 is     */
   1323 /* for use by the driver.                                                   */
   1324 /*                                                                          */
   1325 /* Returns:                                                                 */
   1326 /*   0 on success, positive value on failure.                               */
   1327 /****************************************************************************/
   1328 int
   1329 bnx_release_nvram_lock(struct bnx_softc *sc)
   1330 {
   1331 	int			j;
   1332 	uint32_t		val;
   1333 
   1334 	DBPRINT(sc, BNX_VERBOSE, "Releasing NVRAM lock.\n");
   1335 
   1336 	/* Relinquish nvram interface. */
   1337 	REG_WR(sc, BNX_NVM_SW_ARB, BNX_NVM_SW_ARB_ARB_REQ_CLR2);
   1338 
   1339 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1340 		val = REG_RD(sc, BNX_NVM_SW_ARB);
   1341 		if (!(val & BNX_NVM_SW_ARB_ARB_ARB2))
   1342 			break;
   1343 
   1344 		DELAY(5);
   1345 	}
   1346 
   1347 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1348 		DBPRINT(sc, BNX_WARN, "Timeout reeasing NVRAM lock!\n");
   1349 		return EBUSY;
   1350 	}
   1351 
   1352 	return 0;
   1353 }
   1354 
   1355 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1356 /****************************************************************************/
   1357 /* Enable NVRAM write access.                                               */
   1358 /*                                                                          */
   1359 /* Before writing to NVRAM the caller must enable NVRAM writes.             */
   1360 /*                                                                          */
   1361 /* Returns:                                                                 */
   1362 /*   0 on success, positive value on failure.                               */
   1363 /****************************************************************************/
   1364 int
   1365 bnx_enable_nvram_write(struct bnx_softc *sc)
   1366 {
   1367 	uint32_t		val;
   1368 
   1369 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM write.\n");
   1370 
   1371 	val = REG_RD(sc, BNX_MISC_CFG);
   1372 	REG_WR(sc, BNX_MISC_CFG, val | BNX_MISC_CFG_NVM_WR_EN_PCI);
   1373 
   1374 	if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1375 		int j;
   1376 
   1377 		REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1378 		REG_WR(sc, BNX_NVM_COMMAND,
   1379 		    BNX_NVM_COMMAND_WREN | BNX_NVM_COMMAND_DOIT);
   1380 
   1381 		for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1382 			DELAY(5);
   1383 
   1384 			val = REG_RD(sc, BNX_NVM_COMMAND);
   1385 			if (val & BNX_NVM_COMMAND_DONE)
   1386 				break;
   1387 		}
   1388 
   1389 		if (j >= NVRAM_TIMEOUT_COUNT) {
   1390 			DBPRINT(sc, BNX_WARN, "Timeout writing NVRAM!\n");
   1391 			return EBUSY;
   1392 		}
   1393 	}
   1394 
   1395 	return 0;
   1396 }
   1397 
   1398 /****************************************************************************/
   1399 /* Disable NVRAM write access.                                              */
   1400 /*                                                                          */
   1401 /* When the caller is finished writing to NVRAM write access must be        */
   1402 /* disabled.                                                                */
   1403 /*                                                                          */
   1404 /* Returns:                                                                 */
   1405 /*   Nothing.                                                               */
   1406 /****************************************************************************/
   1407 void
   1408 bnx_disable_nvram_write(struct bnx_softc *sc)
   1409 {
   1410 	uint32_t		val;
   1411 
   1412 	DBPRINT(sc, BNX_VERBOSE,  "Disabling NVRAM write.\n");
   1413 
   1414 	val = REG_RD(sc, BNX_MISC_CFG);
   1415 	REG_WR(sc, BNX_MISC_CFG, val & ~BNX_MISC_CFG_NVM_WR_EN);
   1416 }
   1417 #endif
   1418 
   1419 /****************************************************************************/
   1420 /* Enable NVRAM access.                                                     */
   1421 /*                                                                          */
   1422 /* Before accessing NVRAM for read or write operations the caller must      */
   1423 /* enabled NVRAM access.                                                    */
   1424 /*                                                                          */
   1425 /* Returns:                                                                 */
   1426 /*   Nothing.                                                               */
   1427 /****************************************************************************/
   1428 void
   1429 bnx_enable_nvram_access(struct bnx_softc *sc)
   1430 {
   1431 	uint32_t		val;
   1432 
   1433 	DBPRINT(sc, BNX_VERBOSE, "Enabling NVRAM access.\n");
   1434 
   1435 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1436 	/* Enable both bits, even on read. */
   1437 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1438 	    val | BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN);
   1439 }
   1440 
   1441 /****************************************************************************/
   1442 /* Disable NVRAM access.                                                    */
   1443 /*                                                                          */
   1444 /* When the caller is finished accessing NVRAM access must be disabled.     */
   1445 /*                                                                          */
   1446 /* Returns:                                                                 */
   1447 /*   Nothing.                                                               */
   1448 /****************************************************************************/
   1449 void
   1450 bnx_disable_nvram_access(struct bnx_softc *sc)
   1451 {
   1452 	uint32_t		val;
   1453 
   1454 	DBPRINT(sc, BNX_VERBOSE, "Disabling NVRAM access.\n");
   1455 
   1456 	val = REG_RD(sc, BNX_NVM_ACCESS_ENABLE);
   1457 
   1458 	/* Disable both bits, even after read. */
   1459 	REG_WR(sc, BNX_NVM_ACCESS_ENABLE,
   1460 	    val & ~(BNX_NVM_ACCESS_ENABLE_EN | BNX_NVM_ACCESS_ENABLE_WR_EN));
   1461 }
   1462 
   1463 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1464 /****************************************************************************/
   1465 /* Erase NVRAM page before writing.                                         */
   1466 /*                                                                          */
   1467 /* Non-buffered flash parts require that a page be erased before it is      */
   1468 /* written.                                                                 */
   1469 /*                                                                          */
   1470 /* Returns:                                                                 */
   1471 /*   0 on success, positive value on failure.                               */
   1472 /****************************************************************************/
   1473 int
   1474 bnx_nvram_erase_page(struct bnx_softc *sc, uint32_t offset)
   1475 {
   1476 	uint32_t		cmd;
   1477 	int			j;
   1478 
   1479 	/* Buffered flash doesn't require an erase. */
   1480 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED))
   1481 		return 0;
   1482 
   1483 	DBPRINT(sc, BNX_VERBOSE, "Erasing NVRAM page.\n");
   1484 
   1485 	/* Build an erase command. */
   1486 	cmd = BNX_NVM_COMMAND_ERASE | BNX_NVM_COMMAND_WR |
   1487 	    BNX_NVM_COMMAND_DOIT;
   1488 
   1489 	/*
   1490 	 * Clear the DONE bit separately, set the NVRAM address to erase,
   1491 	 * and issue the erase command.
   1492 	 */
   1493 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1494 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1495 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1496 
   1497 	/* Wait for completion. */
   1498 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1499 		uint32_t val;
   1500 
   1501 		DELAY(5);
   1502 
   1503 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1504 		if (val & BNX_NVM_COMMAND_DONE)
   1505 			break;
   1506 	}
   1507 
   1508 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1509 		DBPRINT(sc, BNX_WARN, "Timeout erasing NVRAM.\n");
   1510 		return EBUSY;
   1511 	}
   1512 
   1513 	return 0;
   1514 }
   1515 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1516 
   1517 /****************************************************************************/
   1518 /* Read a dword (32 bits) from NVRAM.                                       */
   1519 /*                                                                          */
   1520 /* Read a 32 bit word from NVRAM.  The caller is assumed to have already    */
   1521 /* obtained the NVRAM lock and enabled the controller for NVRAM access.     */
   1522 /*                                                                          */
   1523 /* Returns:                                                                 */
   1524 /*   0 on success and the 32 bit value read, positive value on failure.     */
   1525 /****************************************************************************/
   1526 int
   1527 bnx_nvram_read_dword(struct bnx_softc *sc, uint32_t offset,
   1528     uint8_t *ret_val, uint32_t cmd_flags)
   1529 {
   1530 	uint32_t		cmd;
   1531 	int			i, rc = 0;
   1532 
   1533 	/* Build the command word. */
   1534 	cmd = BNX_NVM_COMMAND_DOIT | cmd_flags;
   1535 
   1536 	/* Calculate the offset for buffered flash if translation is used. */
   1537 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1538 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1539 		    sc->bnx_flash_info->page_bits) +
   1540 		    (offset % sc->bnx_flash_info->page_size);
   1541 	}
   1542 
   1543 	/*
   1544 	 * Clear the DONE bit separately, set the address to read,
   1545 	 * and issue the read.
   1546 	 */
   1547 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1548 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1549 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1550 
   1551 	/* Wait for completion. */
   1552 	for (i = 0; i < NVRAM_TIMEOUT_COUNT; i++) {
   1553 		uint32_t val;
   1554 
   1555 		DELAY(5);
   1556 
   1557 		val = REG_RD(sc, BNX_NVM_COMMAND);
   1558 		if (val & BNX_NVM_COMMAND_DONE) {
   1559 			val = REG_RD(sc, BNX_NVM_READ);
   1560 
   1561 			val = bnx_be32toh(val);
   1562 			memcpy(ret_val, &val, 4);
   1563 			break;
   1564 		}
   1565 	}
   1566 
   1567 	/* Check for errors. */
   1568 	if (i >= NVRAM_TIMEOUT_COUNT) {
   1569 		BNX_PRINTF(sc, "%s(%d): Timeout error reading NVRAM at "
   1570 		    "offset 0x%08X!\n", __FILE__, __LINE__, offset);
   1571 		rc = EBUSY;
   1572 	}
   1573 
   1574 	return rc;
   1575 }
   1576 
   1577 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1578 /****************************************************************************/
   1579 /* Write a dword (32 bits) to NVRAM.                                        */
   1580 /*                                                                          */
   1581 /* Write a 32 bit word to NVRAM.  The caller is assumed to have already     */
   1582 /* obtained the NVRAM lock, enabled the controller for NVRAM access, and    */
   1583 /* enabled NVRAM write access.                                              */
   1584 /*                                                                          */
   1585 /* Returns:                                                                 */
   1586 /*   0 on success, positive value on failure.                               */
   1587 /****************************************************************************/
   1588 int
   1589 bnx_nvram_write_dword(struct bnx_softc *sc, uint32_t offset, uint8_t *val,
   1590     uint32_t cmd_flags)
   1591 {
   1592 	uint32_t		cmd, val32;
   1593 	int			j;
   1594 
   1595 	/* Build the command word. */
   1596 	cmd = BNX_NVM_COMMAND_DOIT | BNX_NVM_COMMAND_WR | cmd_flags;
   1597 
   1598 	/* Calculate the offset for buffered flash if translation is used. */
   1599 	if (ISSET(sc->bnx_flash_info->flags, BNX_NV_TRANSLATE)) {
   1600 		offset = ((offset / sc->bnx_flash_info->page_size) <<
   1601 		    sc->bnx_flash_info->page_bits) +
   1602 		    (offset % sc->bnx_flash_info->page_size);
   1603 	}
   1604 
   1605 	/*
   1606 	 * Clear the DONE bit separately, convert NVRAM data to big-endian,
   1607 	 * set the NVRAM address to write, and issue the write command
   1608 	 */
   1609 	REG_WR(sc, BNX_NVM_COMMAND, BNX_NVM_COMMAND_DONE);
   1610 	memcpy(&val32, val, 4);
   1611 	val32 = htobe32(val32);
   1612 	REG_WR(sc, BNX_NVM_WRITE, val32);
   1613 	REG_WR(sc, BNX_NVM_ADDR, offset & BNX_NVM_ADDR_NVM_ADDR_VALUE);
   1614 	REG_WR(sc, BNX_NVM_COMMAND, cmd);
   1615 
   1616 	/* Wait for completion. */
   1617 	for (j = 0; j < NVRAM_TIMEOUT_COUNT; j++) {
   1618 		DELAY(5);
   1619 
   1620 		if (REG_RD(sc, BNX_NVM_COMMAND) & BNX_NVM_COMMAND_DONE)
   1621 			break;
   1622 	}
   1623 	if (j >= NVRAM_TIMEOUT_COUNT) {
   1624 		BNX_PRINTF(sc, "%s(%d): Timeout error writing NVRAM at "
   1625 		    "offset 0x%08X\n", __FILE__, __LINE__, offset);
   1626 		return EBUSY;
   1627 	}
   1628 
   1629 	return 0;
   1630 }
   1631 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   1632 
   1633 /****************************************************************************/
   1634 /* Initialize NVRAM access.                                                 */
   1635 /*                                                                          */
   1636 /* Identify the NVRAM device in use and prepare the NVRAM interface to      */
   1637 /* access that device.                                                      */
   1638 /*                                                                          */
   1639 /* Returns:                                                                 */
   1640 /*   0 on success, positive value on failure.                               */
   1641 /****************************************************************************/
   1642 int
   1643 bnx_init_nvram(struct bnx_softc *sc)
   1644 {
   1645 	uint32_t		val;
   1646 	int			j, entry_count, rc = 0;
   1647 	struct flash_spec	*flash;
   1648 
   1649 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   1650 
   1651 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   1652 		sc->bnx_flash_info = &flash_5709;
   1653 		goto bnx_init_nvram_get_flash_size;
   1654 	}
   1655 
   1656 	/* Determine the selected interface. */
   1657 	val = REG_RD(sc, BNX_NVM_CFG1);
   1658 
   1659 	entry_count = sizeof(flash_table) / sizeof(struct flash_spec);
   1660 
   1661 	/*
   1662 	 * Flash reconfiguration is required to support additional
   1663 	 * NVRAM devices not directly supported in hardware.
   1664 	 * Check if the flash interface was reconfigured
   1665 	 * by the bootcode.
   1666 	 */
   1667 
   1668 	if (val & 0x40000000) {
   1669 		/* Flash interface reconfigured by bootcode. */
   1670 
   1671 		DBPRINT(sc,BNX_INFO_LOAD,
   1672 			"bnx_init_nvram(): Flash WAS reconfigured.\n");
   1673 
   1674 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1675 		     j++, flash++) {
   1676 			if ((val & FLASH_BACKUP_STRAP_MASK) ==
   1677 			    (flash->config1 & FLASH_BACKUP_STRAP_MASK)) {
   1678 				sc->bnx_flash_info = flash;
   1679 				break;
   1680 			}
   1681 		}
   1682 	} else {
   1683 		/* Flash interface not yet reconfigured. */
   1684 		uint32_t mask;
   1685 
   1686 		DBPRINT(sc,BNX_INFO_LOAD,
   1687 			"bnx_init_nvram(): Flash was NOT reconfigured.\n");
   1688 
   1689 		if (val & (1 << 23))
   1690 			mask = FLASH_BACKUP_STRAP_MASK;
   1691 		else
   1692 			mask = FLASH_STRAP_MASK;
   1693 
   1694 		/* Look for the matching NVRAM device configuration data. */
   1695 		for (j = 0, flash = &flash_table[0]; j < entry_count;
   1696 		    j++, flash++) {
   1697 			/* Check if the dev matches any of the known devices. */
   1698 			if ((val & mask) == (flash->strapping & mask)) {
   1699 				/* Found a device match. */
   1700 				sc->bnx_flash_info = flash;
   1701 
   1702 				/* Request access to the flash interface. */
   1703 				if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1704 					return rc;
   1705 
   1706 				/* Reconfigure the flash interface. */
   1707 				bnx_enable_nvram_access(sc);
   1708 				REG_WR(sc, BNX_NVM_CFG1, flash->config1);
   1709 				REG_WR(sc, BNX_NVM_CFG2, flash->config2);
   1710 				REG_WR(sc, BNX_NVM_CFG3, flash->config3);
   1711 				REG_WR(sc, BNX_NVM_WRITE1, flash->write1);
   1712 				bnx_disable_nvram_access(sc);
   1713 				bnx_release_nvram_lock(sc);
   1714 
   1715 				break;
   1716 			}
   1717 		}
   1718 	}
   1719 
   1720 	/* Check if a matching device was found. */
   1721 	if (j == entry_count) {
   1722 		sc->bnx_flash_info = NULL;
   1723 		BNX_PRINTF(sc, "%s(%d): Unknown Flash NVRAM found!\n",
   1724 			__FILE__, __LINE__);
   1725 		rc = ENODEV;
   1726 	}
   1727 
   1728 bnx_init_nvram_get_flash_size:
   1729 	/* Write the flash config data to the shared memory interface. */
   1730 	val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_SHARED_HW_CFG_CONFIG2);
   1731 	val &= BNX_SHARED_HW_CFG2_NVM_SIZE_MASK;
   1732 	if (val)
   1733 		sc->bnx_flash_size = val;
   1734 	else
   1735 		sc->bnx_flash_size = sc->bnx_flash_info->total_size;
   1736 
   1737 	DBPRINT(sc, BNX_INFO_LOAD, "bnx_init_nvram() flash->total_size = "
   1738 	    "0x%08X\n", sc->bnx_flash_info->total_size);
   1739 
   1740 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   1741 
   1742 	return rc;
   1743 }
   1744 
   1745 /****************************************************************************/
   1746 /* Read an arbitrary range of data from NVRAM.                              */
   1747 /*                                                                          */
   1748 /* Prepares the NVRAM interface for access and reads the requested data     */
   1749 /* into the supplied buffer.                                                */
   1750 /*                                                                          */
   1751 /* Returns:                                                                 */
   1752 /*   0 on success and the data read, positive value on failure.             */
   1753 /****************************************************************************/
   1754 int
   1755 bnx_nvram_read(struct bnx_softc *sc, uint32_t offset, uint8_t *ret_buf,
   1756     int buf_size)
   1757 {
   1758 	int			rc = 0;
   1759 	uint32_t		cmd_flags, offset32, len32, extra;
   1760 
   1761 	if (buf_size == 0)
   1762 		return 0;
   1763 
   1764 	/* Request access to the flash interface. */
   1765 	if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1766 		return rc;
   1767 
   1768 	/* Enable access to flash interface */
   1769 	bnx_enable_nvram_access(sc);
   1770 
   1771 	len32 = buf_size;
   1772 	offset32 = offset;
   1773 	extra = 0;
   1774 
   1775 	cmd_flags = 0;
   1776 
   1777 	if (offset32 & 3) {
   1778 		uint8_t buf[4];
   1779 		uint32_t pre_len;
   1780 
   1781 		offset32 &= ~3;
   1782 		pre_len = 4 - (offset & 3);
   1783 
   1784 		if (pre_len >= len32) {
   1785 			pre_len = len32;
   1786 			cmd_flags =
   1787 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1788 		} else
   1789 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1790 
   1791 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1792 
   1793 		if (rc)
   1794 			return rc;
   1795 
   1796 		memcpy(ret_buf, buf + (offset & 3), pre_len);
   1797 
   1798 		offset32 += 4;
   1799 		ret_buf += pre_len;
   1800 		len32 -= pre_len;
   1801 	}
   1802 
   1803 	if (len32 & 3) {
   1804 		extra = 4 - (len32 & 3);
   1805 		len32 = (len32 + 4) & ~3;
   1806 	}
   1807 
   1808 	if (len32 == 4) {
   1809 		uint8_t buf[4];
   1810 
   1811 		if (cmd_flags)
   1812 			cmd_flags = BNX_NVM_COMMAND_LAST;
   1813 		else
   1814 			cmd_flags =
   1815 			    BNX_NVM_COMMAND_FIRST | BNX_NVM_COMMAND_LAST;
   1816 
   1817 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1818 
   1819 		memcpy(ret_buf, buf, 4 - extra);
   1820 	} else if (len32 > 0) {
   1821 		uint8_t buf[4];
   1822 
   1823 		/* Read the first word. */
   1824 		if (cmd_flags)
   1825 			cmd_flags = 0;
   1826 		else
   1827 			cmd_flags = BNX_NVM_COMMAND_FIRST;
   1828 
   1829 		rc = bnx_nvram_read_dword(sc, offset32, ret_buf, cmd_flags);
   1830 
   1831 		/* Advance to the next dword. */
   1832 		offset32 += 4;
   1833 		ret_buf += 4;
   1834 		len32 -= 4;
   1835 
   1836 		while (len32 > 4 && rc == 0) {
   1837 			rc = bnx_nvram_read_dword(sc, offset32, ret_buf, 0);
   1838 
   1839 			/* Advance to the next dword. */
   1840 			offset32 += 4;
   1841 			ret_buf += 4;
   1842 			len32 -= 4;
   1843 		}
   1844 
   1845 		if (rc)
   1846 			return rc;
   1847 
   1848 		cmd_flags = BNX_NVM_COMMAND_LAST;
   1849 		rc = bnx_nvram_read_dword(sc, offset32, buf, cmd_flags);
   1850 
   1851 		memcpy(ret_buf, buf, 4 - extra);
   1852 	}
   1853 
   1854 	/* Disable access to flash interface and release the lock. */
   1855 	bnx_disable_nvram_access(sc);
   1856 	bnx_release_nvram_lock(sc);
   1857 
   1858 	return rc;
   1859 }
   1860 
   1861 #ifdef BNX_NVRAM_WRITE_SUPPORT
   1862 /****************************************************************************/
   1863 /* Write an arbitrary range of data from NVRAM.                             */
   1864 /*                                                                          */
   1865 /* Prepares the NVRAM interface for write access and writes the requested   */
   1866 /* data from the supplied buffer.  The caller is responsible for            */
   1867 /* calculating any appropriate CRCs.                                        */
   1868 /*                                                                          */
   1869 /* Returns:                                                                 */
   1870 /*   0 on success, positive value on failure.                               */
   1871 /****************************************************************************/
   1872 int
   1873 bnx_nvram_write(struct bnx_softc *sc, uint32_t offset, uint8_t *data_buf,
   1874     int buf_size)
   1875 {
   1876 	uint32_t		written, offset32, len32;
   1877 	uint8_t		*buf, start[4], end[4];
   1878 	int			rc = 0;
   1879 	int			align_start, align_end;
   1880 
   1881 	buf = data_buf;
   1882 	offset32 = offset;
   1883 	len32 = buf_size;
   1884 	align_start = align_end = 0;
   1885 
   1886 	if ((align_start = (offset32 & 3))) {
   1887 		offset32 &= ~3;
   1888 		len32 += align_start;
   1889 		if ((rc = bnx_nvram_read(sc, offset32, start, 4)))
   1890 			return rc;
   1891 	}
   1892 
   1893 	if (len32 & 3) {
   1894 		if ((len32 > 4) || !align_start) {
   1895 			align_end = 4 - (len32 & 3);
   1896 			len32 += align_end;
   1897 			if ((rc = bnx_nvram_read(sc, offset32 + len32 - 4,
   1898 			    end, 4)))
   1899 				return rc;
   1900 		}
   1901 	}
   1902 
   1903 	if (align_start || align_end) {
   1904 		buf = malloc(len32, M_DEVBUF, M_NOWAIT);
   1905 		if (buf == 0)
   1906 			return ENOMEM;
   1907 
   1908 		if (align_start)
   1909 			memcpy(buf, start, 4);
   1910 
   1911 		if (align_end)
   1912 			memcpy(buf + len32 - 4, end, 4);
   1913 
   1914 		memcpy(buf + align_start, data_buf, buf_size);
   1915 	}
   1916 
   1917 	written = 0;
   1918 	while ((written < len32) && (rc == 0)) {
   1919 		uint32_t page_start, page_end, data_start, data_end;
   1920 		uint32_t addr, cmd_flags;
   1921 		int i;
   1922 		uint8_t flash_buffer[264];
   1923 
   1924 	    /* Find the page_start addr */
   1925 		page_start = offset32 + written;
   1926 		page_start -= (page_start % sc->bnx_flash_info->page_size);
   1927 		/* Find the page_end addr */
   1928 		page_end = page_start + sc->bnx_flash_info->page_size;
   1929 		/* Find the data_start addr */
   1930 		data_start = (written == 0) ? offset32 : page_start;
   1931 		/* Find the data_end addr */
   1932 		data_end = (page_end > offset32 + len32) ?
   1933 		    (offset32 + len32) : page_end;
   1934 
   1935 		/* Request access to the flash interface. */
   1936 		if ((rc = bnx_acquire_nvram_lock(sc)) != 0)
   1937 			goto nvram_write_end;
   1938 
   1939 		/* Enable access to flash interface */
   1940 		bnx_enable_nvram_access(sc);
   1941 
   1942 		cmd_flags = BNX_NVM_COMMAND_FIRST;
   1943 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1944 			int j;
   1945 
   1946 			/* Read the whole page into the buffer
   1947 			 * (non-buffer flash only) */
   1948 			for (j = 0; j < sc->bnx_flash_info->page_size; j += 4) {
   1949 				if (j == (sc->bnx_flash_info->page_size - 4))
   1950 					cmd_flags |= BNX_NVM_COMMAND_LAST;
   1951 
   1952 				rc = bnx_nvram_read_dword(sc,
   1953 					page_start + j,
   1954 					&flash_buffer[j],
   1955 					cmd_flags);
   1956 
   1957 				if (rc)
   1958 					goto nvram_write_end;
   1959 
   1960 				cmd_flags = 0;
   1961 			}
   1962 		}
   1963 
   1964 		/* Enable writes to flash interface (unlock write-protect) */
   1965 		if ((rc = bnx_enable_nvram_write(sc)) != 0)
   1966 			goto nvram_write_end;
   1967 
   1968 		/* Erase the page */
   1969 		if ((rc = bnx_nvram_erase_page(sc, page_start)) != 0)
   1970 			goto nvram_write_end;
   1971 
   1972 		/* Re-enable the write again for the actual write */
   1973 		bnx_enable_nvram_write(sc);
   1974 
   1975 		/* Loop to write back the buffer data from page_start to
   1976 		 * data_start */
   1977 		i = 0;
   1978 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   1979 			for (addr = page_start; addr < data_start;
   1980 				addr += 4, i += 4) {
   1981 
   1982 				rc = bnx_nvram_write_dword(sc, addr,
   1983 				    &flash_buffer[i], cmd_flags);
   1984 
   1985 				if (rc != 0)
   1986 					goto nvram_write_end;
   1987 
   1988 				cmd_flags = 0;
   1989 			}
   1990 		}
   1991 
   1992 		/* Loop to write the new data from data_start to data_end */
   1993 		for (addr = data_start; addr < data_end; addr += 4, i++) {
   1994 			if ((addr == page_end - 4) ||
   1995 			    (ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)
   1996 			    && (addr == data_end - 4))) {
   1997 
   1998 				cmd_flags |= BNX_NVM_COMMAND_LAST;
   1999 			}
   2000 
   2001 			rc = bnx_nvram_write_dword(sc, addr, buf, cmd_flags);
   2002 
   2003 			if (rc != 0)
   2004 				goto nvram_write_end;
   2005 
   2006 			cmd_flags = 0;
   2007 			buf += 4;
   2008 		}
   2009 
   2010 		/* Loop to write back the buffer data from data_end
   2011 		 * to page_end */
   2012 		if (!ISSET(sc->bnx_flash_info->flags, BNX_NV_BUFFERED)) {
   2013 			for (addr = data_end; addr < page_end;
   2014 			    addr += 4, i += 4) {
   2015 
   2016 				if (addr == page_end-4)
   2017 					cmd_flags = BNX_NVM_COMMAND_LAST;
   2018 
   2019 				rc = bnx_nvram_write_dword(sc, addr,
   2020 				    &flash_buffer[i], cmd_flags);
   2021 
   2022 				if (rc != 0)
   2023 					goto nvram_write_end;
   2024 
   2025 				cmd_flags = 0;
   2026 			}
   2027 		}
   2028 
   2029 		/* Disable writes to flash interface (lock write-protect) */
   2030 		bnx_disable_nvram_write(sc);
   2031 
   2032 		/* Disable access to flash interface */
   2033 		bnx_disable_nvram_access(sc);
   2034 		bnx_release_nvram_lock(sc);
   2035 
   2036 		/* Increment written */
   2037 		written += data_end - data_start;
   2038 	}
   2039 
   2040 nvram_write_end:
   2041 	if (align_start || align_end)
   2042 		free(buf, M_DEVBUF);
   2043 
   2044 	return rc;
   2045 }
   2046 #endif /* BNX_NVRAM_WRITE_SUPPORT */
   2047 
   2048 /****************************************************************************/
   2049 /* Verifies that NVRAM is accessible and contains valid data.               */
   2050 /*                                                                          */
   2051 /* Reads the configuration data from NVRAM and verifies that the CRC is     */
   2052 /* correct.                                                                 */
   2053 /*                                                                          */
   2054 /* Returns:                                                                 */
   2055 /*   0 on success, positive value on failure.                               */
   2056 /****************************************************************************/
   2057 int
   2058 bnx_nvram_test(struct bnx_softc *sc)
   2059 {
   2060 	uint32_t		buf[BNX_NVRAM_SIZE / 4];
   2061 	uint8_t		*data = (uint8_t *) buf;
   2062 	int			rc = 0;
   2063 	uint32_t		magic, csum;
   2064 
   2065 	/*
   2066 	 * Check that the device NVRAM is valid by reading
   2067 	 * the magic value at offset 0.
   2068 	 */
   2069 	if ((rc = bnx_nvram_read(sc, 0, data, 4)) != 0)
   2070 		goto bnx_nvram_test_done;
   2071 
   2072 	magic = bnx_be32toh(buf[0]);
   2073 	if (magic != BNX_NVRAM_MAGIC) {
   2074 		rc = ENODEV;
   2075 		BNX_PRINTF(sc, "%s(%d): Invalid NVRAM magic value! "
   2076 		    "Expected: 0x%08X, Found: 0x%08X\n",
   2077 		    __FILE__, __LINE__, BNX_NVRAM_MAGIC, magic);
   2078 		goto bnx_nvram_test_done;
   2079 	}
   2080 
   2081 	/*
   2082 	 * Verify that the device NVRAM includes valid
   2083 	 * configuration data.
   2084 	 */
   2085 	if ((rc = bnx_nvram_read(sc, 0x100, data, BNX_NVRAM_SIZE)) != 0)
   2086 		goto bnx_nvram_test_done;
   2087 
   2088 	csum = ether_crc32_le(data, 0x100);
   2089 	if (csum != BNX_CRC32_RESIDUAL) {
   2090 		rc = ENODEV;
   2091 		BNX_PRINTF(sc, "%s(%d): Invalid Manufacturing Information "
   2092 		    "NVRAM CRC! Expected: 0x%08X, Found: 0x%08X\n",
   2093 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2094 		goto bnx_nvram_test_done;
   2095 	}
   2096 
   2097 	csum = ether_crc32_le(data + 0x100, 0x100);
   2098 	if (csum != BNX_CRC32_RESIDUAL) {
   2099 		BNX_PRINTF(sc, "%s(%d): Invalid Feature Configuration "
   2100 		    "Information NVRAM CRC! Expected: 0x%08X, Found: 08%08X\n",
   2101 		    __FILE__, __LINE__, BNX_CRC32_RESIDUAL, csum);
   2102 		rc = ENODEV;
   2103 	}
   2104 
   2105 bnx_nvram_test_done:
   2106 	return rc;
   2107 }
   2108 
   2109 /****************************************************************************/
   2110 /* Identifies the current media type of the controller and sets the PHY     */
   2111 /* address.                                                                 */
   2112 /*                                                                          */
   2113 /* Returns:                                                                 */
   2114 /*   Nothing.                                                               */
   2115 /****************************************************************************/
   2116 void
   2117 bnx_get_media(struct bnx_softc *sc)
   2118 {
   2119 	sc->bnx_phy_addr = 1;
   2120 
   2121 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2122 		uint32_t val = REG_RD(sc, BNX_MISC_DUAL_MEDIA_CTRL);
   2123 		uint32_t bond_id = val & BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID;
   2124 		uint32_t strap;
   2125 
   2126 		/*
   2127 		 * The BCM5709S is software configurable
   2128 		 * for Copper or SerDes operation.
   2129 		 */
   2130 		if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_C) {
   2131 			DBPRINT(sc, BNX_INFO_LOAD,
   2132 			    "5709 bonded for copper.\n");
   2133 			goto bnx_get_media_exit;
   2134 		} else if (bond_id == BNX_MISC_DUAL_MEDIA_CTRL_BOND_ID_S) {
   2135 			DBPRINT(sc, BNX_INFO_LOAD,
   2136 			    "5709 bonded for dual media.\n");
   2137 			sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2138 			goto bnx_get_media_exit;
   2139 		}
   2140 
   2141 		if (val & BNX_MISC_DUAL_MEDIA_CTRL_STRAP_OVERRIDE)
   2142 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL) >> 21;
   2143 		else {
   2144 			strap = (val & BNX_MISC_DUAL_MEDIA_CTRL_PHY_CTRL_STRAP)
   2145 			    >> 8;
   2146 		}
   2147 
   2148 		if (sc->bnx_pa.pa_function == 0) {
   2149 			switch (strap) {
   2150 			case 0x4:
   2151 			case 0x5:
   2152 			case 0x6:
   2153 				DBPRINT(sc, BNX_INFO_LOAD,
   2154 					"BCM5709 s/w configured for SerDes.\n");
   2155 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2156 				break;
   2157 			default:
   2158 				DBPRINT(sc, BNX_INFO_LOAD,
   2159 					"BCM5709 s/w configured for Copper.\n");
   2160 			}
   2161 		} else {
   2162 			switch (strap) {
   2163 			case 0x1:
   2164 			case 0x2:
   2165 			case 0x4:
   2166 				DBPRINT(sc, BNX_INFO_LOAD,
   2167 					"BCM5709 s/w configured for SerDes.\n");
   2168 				sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2169 				break;
   2170 			default:
   2171 				DBPRINT(sc, BNX_INFO_LOAD,
   2172 					"BCM5709 s/w configured for Copper.\n");
   2173 			}
   2174 		}
   2175 
   2176 	} else if (BNX_CHIP_BOND_ID(sc) & BNX_CHIP_BOND_ID_SERDES_BIT)
   2177 		sc->bnx_phy_flags |= BNX_PHY_SERDES_FLAG;
   2178 
   2179 	if (sc->bnx_phy_flags & BNX_PHY_SERDES_FLAG) {
   2180 		uint32_t val;
   2181 
   2182 		sc->bnx_flags |= BNX_NO_WOL_FLAG;
   2183 
   2184 		if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709)
   2185 			sc->bnx_phy_flags |= BNX_PHY_IEEE_CLAUSE_45_FLAG;
   2186 
   2187 		/*
   2188 		 * The BCM5708S, BCM5709S, and BCM5716S controllers use a
   2189 		 * separate PHY for SerDes.
   2190 		 */
   2191 		if (BNX_CHIP_NUM(sc) != BNX_CHIP_NUM_5706) {
   2192 			sc->bnx_phy_addr = 2;
   2193 			val = REG_RD_IND(sc, sc->bnx_shmem_base +
   2194 				 BNX_SHARED_HW_CFG_CONFIG);
   2195 			if (val & BNX_SHARED_HW_CFG_PHY_2_5G) {
   2196 				sc->bnx_phy_flags |= BNX_PHY_2_5G_CAPABLE_FLAG;
   2197 				DBPRINT(sc, BNX_INFO_LOAD,
   2198 				    "Found 2.5Gb capable adapter\n");
   2199 			}
   2200 		}
   2201 	} else if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) ||
   2202 		   (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5708))
   2203 		sc->bnx_phy_flags |= BNX_PHY_CRC_FIX_FLAG;
   2204 
   2205 bnx_get_media_exit:
   2206 	DBPRINT(sc, (BNX_INFO_LOAD),
   2207 		"Using PHY address %d.\n", sc->bnx_phy_addr);
   2208 }
   2209 
   2210 /****************************************************************************/
   2211 /* Performs PHY initialization required before MII drivers access the       */
   2212 /* device.                                                                  */
   2213 /*                                                                          */
   2214 /* Returns:                                                                 */
   2215 /*   Nothing.                                                               */
   2216 /****************************************************************************/
   2217 void
   2218 bnx_init_media(struct bnx_softc *sc)
   2219 {
   2220 	if (sc->bnx_phy_flags & BNX_PHY_IEEE_CLAUSE_45_FLAG) {
   2221 		/*
   2222 		 * Configure the BCM5709S / BCM5716S PHYs to use traditional
   2223 		 * IEEE Clause 22 method. Otherwise we have no way to attach
   2224 		 * the PHY to the mii(4) layer. PHY specific configuration
   2225 		 * is done by the mii(4) layer.
   2226 		 */
   2227 
   2228 		/* Select auto-negotiation MMD of the PHY. */
   2229 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2230 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_ADDR_EXT);
   2231 
   2232 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2233 		    BRGPHY_ADDR_EXT, BRGPHY_ADDR_EXT_AN_MMD);
   2234 
   2235 		bnx_miibus_write_reg(sc->bnx_dev, sc->bnx_phy_addr,
   2236 		    BRGPHY_BLOCK_ADDR, BRGPHY_BLOCK_ADDR_COMBO_IEEE0);
   2237 	}
   2238 }
   2239 
   2240 /****************************************************************************/
   2241 /* Free any DMA memory owned by the driver.                                 */
   2242 /*                                                                          */
   2243 /* Scans through each data structre that requires DMA memory and frees      */
   2244 /* the memory if allocated.                                                 */
   2245 /*                                                                          */
   2246 /* Returns:                                                                 */
   2247 /*   Nothing.                                                               */
   2248 /****************************************************************************/
   2249 void
   2250 bnx_dma_free(struct bnx_softc *sc)
   2251 {
   2252 	int			i;
   2253 
   2254 	DBPRINT(sc,BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2255 
   2256 	/* Destroy the status block. */
   2257 	if (sc->status_block != NULL && sc->status_map != NULL) {
   2258 		bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   2259 		    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   2260 		bus_dmamap_unload(sc->bnx_dmatag, sc->status_map);
   2261 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->status_block,
   2262 		    BNX_STATUS_BLK_SZ);
   2263 		bus_dmamem_free(sc->bnx_dmatag, &sc->status_seg,
   2264 		    sc->status_rseg);
   2265 		bus_dmamap_destroy(sc->bnx_dmatag, sc->status_map);
   2266 		sc->status_block = NULL;
   2267 		sc->status_map = NULL;
   2268 	}
   2269 
   2270 	/* Destroy the statistics block. */
   2271 	if (sc->stats_block != NULL && sc->stats_map != NULL) {
   2272 		bus_dmamap_unload(sc->bnx_dmatag, sc->stats_map);
   2273 		bus_dmamem_unmap(sc->bnx_dmatag, (void *)sc->stats_block,
   2274 		    BNX_STATS_BLK_SZ);
   2275 		bus_dmamem_free(sc->bnx_dmatag, &sc->stats_seg,
   2276 		    sc->stats_rseg);
   2277 		bus_dmamap_destroy(sc->bnx_dmatag, sc->stats_map);
   2278 		sc->stats_block = NULL;
   2279 		sc->stats_map = NULL;
   2280 	}
   2281 
   2282 	/* Free, unmap and destroy all context memory pages. */
   2283 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2284 		for (i = 0; i < sc->ctx_pages; i++) {
   2285 			if (sc->ctx_block[i] != NULL) {
   2286 				bus_dmamap_unload(sc->bnx_dmatag,
   2287 				    sc->ctx_map[i]);
   2288 				bus_dmamem_unmap(sc->bnx_dmatag,
   2289 				    (void *)sc->ctx_block[i],
   2290 				    BCM_PAGE_SIZE);
   2291 				bus_dmamem_free(sc->bnx_dmatag,
   2292 				    &sc->ctx_segs[i], sc->ctx_rsegs[i]);
   2293 				bus_dmamap_destroy(sc->bnx_dmatag,
   2294 				    sc->ctx_map[i]);
   2295 				sc->ctx_block[i] = NULL;
   2296 			}
   2297 		}
   2298 	}
   2299 
   2300 	/* Free, unmap and destroy all TX buffer descriptor chain pages. */
   2301 	for (i = 0; i < TX_PAGES; i++ ) {
   2302 		if (sc->tx_bd_chain[i] != NULL &&
   2303 		    sc->tx_bd_chain_map[i] != NULL) {
   2304 			bus_dmamap_unload(sc->bnx_dmatag,
   2305 			    sc->tx_bd_chain_map[i]);
   2306 			bus_dmamem_unmap(sc->bnx_dmatag,
   2307 			    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ);
   2308 			bus_dmamem_free(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2309 			    sc->tx_bd_chain_rseg[i]);
   2310 			bus_dmamap_destroy(sc->bnx_dmatag,
   2311 			    sc->tx_bd_chain_map[i]);
   2312 			sc->tx_bd_chain[i] = NULL;
   2313 			sc->tx_bd_chain_map[i] = NULL;
   2314 		}
   2315 	}
   2316 
   2317 	/* Destroy the TX dmamaps. */
   2318 	/* This isn't necessary since we dont allocate them up front */
   2319 
   2320 	/* Free, unmap and destroy all RX buffer descriptor chain pages. */
   2321 	for (i = 0; i < RX_PAGES; i++ ) {
   2322 		if (sc->rx_bd_chain[i] != NULL &&
   2323 		    sc->rx_bd_chain_map[i] != NULL) {
   2324 			bus_dmamap_unload(sc->bnx_dmatag,
   2325 			    sc->rx_bd_chain_map[i]);
   2326 			bus_dmamem_unmap(sc->bnx_dmatag,
   2327 			    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ);
   2328 			bus_dmamem_free(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2329 			    sc->rx_bd_chain_rseg[i]);
   2330 
   2331 			bus_dmamap_destroy(sc->bnx_dmatag,
   2332 			    sc->rx_bd_chain_map[i]);
   2333 			sc->rx_bd_chain[i] = NULL;
   2334 			sc->rx_bd_chain_map[i] = NULL;
   2335 		}
   2336 	}
   2337 
   2338 	/* Unload and destroy the RX mbuf maps. */
   2339 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2340 		if (sc->rx_mbuf_map[i] != NULL) {
   2341 			bus_dmamap_unload(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2342 			bus_dmamap_destroy(sc->bnx_dmatag, sc->rx_mbuf_map[i]);
   2343 		}
   2344 	}
   2345 
   2346 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2347 }
   2348 
   2349 /****************************************************************************/
   2350 /* Allocate any DMA memory needed by the driver.                            */
   2351 /*                                                                          */
   2352 /* Allocates DMA memory needed for the various global structures needed by  */
   2353 /* hardware.                                                                */
   2354 /*                                                                          */
   2355 /* Returns:                                                                 */
   2356 /*   0 for success, positive value for failure.                             */
   2357 /****************************************************************************/
   2358 int
   2359 bnx_dma_alloc(struct bnx_softc *sc)
   2360 {
   2361 	int			i, rc = 0;
   2362 
   2363 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2364 
   2365 	/*
   2366 	 * Allocate DMA memory for the status block, map the memory into DMA
   2367 	 * space, and fetch the physical address of the block.
   2368 	 */
   2369 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATUS_BLK_SZ, 1,
   2370 	    BNX_STATUS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->status_map)) {
   2371 		aprint_error_dev(sc->bnx_dev,
   2372 		    "Could not create status block DMA map!\n");
   2373 		rc = ENOMEM;
   2374 		goto bnx_dma_alloc_exit;
   2375 	}
   2376 
   2377 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATUS_BLK_SZ,
   2378 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->status_seg, 1,
   2379 	    &sc->status_rseg, BUS_DMA_NOWAIT)) {
   2380 		aprint_error_dev(sc->bnx_dev,
   2381 		    "Could not allocate status block DMA memory!\n");
   2382 		rc = ENOMEM;
   2383 		goto bnx_dma_alloc_exit;
   2384 	}
   2385 
   2386 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->status_seg, sc->status_rseg,
   2387 	    BNX_STATUS_BLK_SZ, (void **)&sc->status_block, BUS_DMA_NOWAIT)) {
   2388 		aprint_error_dev(sc->bnx_dev,
   2389 		    "Could not map status block DMA memory!\n");
   2390 		rc = ENOMEM;
   2391 		goto bnx_dma_alloc_exit;
   2392 	}
   2393 
   2394 	if (bus_dmamap_load(sc->bnx_dmatag, sc->status_map,
   2395 	    sc->status_block, BNX_STATUS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2396 		aprint_error_dev(sc->bnx_dev,
   2397 		    "Could not load status block DMA memory!\n");
   2398 		rc = ENOMEM;
   2399 		goto bnx_dma_alloc_exit;
   2400 	}
   2401 
   2402 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   2403 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   2404 
   2405 	sc->status_block_paddr = sc->status_map->dm_segs[0].ds_addr;
   2406 	memset(sc->status_block, 0, BNX_STATUS_BLK_SZ);
   2407 
   2408 	/* DRC - Fix for 64 bit addresses. */
   2409 	DBPRINT(sc, BNX_INFO, "status_block_paddr = 0x%08X\n",
   2410 		(uint32_t) sc->status_block_paddr);
   2411 
   2412 	/* BCM5709 uses host memory as cache for context memory. */
   2413 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   2414 		sc->ctx_pages = 0x2000 / BCM_PAGE_SIZE;
   2415 		if (sc->ctx_pages == 0)
   2416 			sc->ctx_pages = 1;
   2417 		if (sc->ctx_pages > 4) /* XXX */
   2418 			sc->ctx_pages = 4;
   2419 
   2420 		DBRUNIF((sc->ctx_pages > 512),
   2421 			BNX_PRINTF(sc, "%s(%d): Too many CTX pages! %d > 512\n",
   2422 				__FILE__, __LINE__, sc->ctx_pages));
   2423 
   2424 
   2425 		for (i = 0; i < sc->ctx_pages; i++) {
   2426 			if (bus_dmamap_create(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2427 			    1, BCM_PAGE_SIZE, BNX_DMA_BOUNDARY,
   2428 			    BUS_DMA_NOWAIT | BUS_DMA_ALLOCNOW,
   2429 			    &sc->ctx_map[i]) != 0) {
   2430 				rc = ENOMEM;
   2431 				goto bnx_dma_alloc_exit;
   2432 			}
   2433 
   2434 			if (bus_dmamem_alloc(sc->bnx_dmatag, BCM_PAGE_SIZE,
   2435 			    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->ctx_segs[i],
   2436 			    1, &sc->ctx_rsegs[i], BUS_DMA_NOWAIT) != 0) {
   2437 				rc = ENOMEM;
   2438 				goto bnx_dma_alloc_exit;
   2439 			}
   2440 
   2441 			if (bus_dmamem_map(sc->bnx_dmatag, &sc->ctx_segs[i],
   2442 			    sc->ctx_rsegs[i], BCM_PAGE_SIZE,
   2443 			    &sc->ctx_block[i], BUS_DMA_NOWAIT) != 0) {
   2444 				rc = ENOMEM;
   2445 				goto bnx_dma_alloc_exit;
   2446 			}
   2447 
   2448 			if (bus_dmamap_load(sc->bnx_dmatag, sc->ctx_map[i],
   2449 			    sc->ctx_block[i], BCM_PAGE_SIZE, NULL,
   2450 			    BUS_DMA_NOWAIT) != 0) {
   2451 				rc = ENOMEM;
   2452 				goto bnx_dma_alloc_exit;
   2453 			}
   2454 
   2455 			bzero(sc->ctx_block[i], BCM_PAGE_SIZE);
   2456 		}
   2457 	}
   2458 
   2459 	/*
   2460 	 * Allocate DMA memory for the statistics block, map the memory into
   2461 	 * DMA space, and fetch the physical address of the block.
   2462 	 */
   2463 	if (bus_dmamap_create(sc->bnx_dmatag, BNX_STATS_BLK_SZ, 1,
   2464 	    BNX_STATS_BLK_SZ, 0, BUS_DMA_NOWAIT, &sc->stats_map)) {
   2465 		aprint_error_dev(sc->bnx_dev,
   2466 		    "Could not create stats block DMA map!\n");
   2467 		rc = ENOMEM;
   2468 		goto bnx_dma_alloc_exit;
   2469 	}
   2470 
   2471 	if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_STATS_BLK_SZ,
   2472 	    BNX_DMA_ALIGN, BNX_DMA_BOUNDARY, &sc->stats_seg, 1,
   2473 	    &sc->stats_rseg, BUS_DMA_NOWAIT)) {
   2474 		aprint_error_dev(sc->bnx_dev,
   2475 		    "Could not allocate stats block DMA memory!\n");
   2476 		rc = ENOMEM;
   2477 		goto bnx_dma_alloc_exit;
   2478 	}
   2479 
   2480 	if (bus_dmamem_map(sc->bnx_dmatag, &sc->stats_seg, sc->stats_rseg,
   2481 	    BNX_STATS_BLK_SZ, (void **)&sc->stats_block, BUS_DMA_NOWAIT)) {
   2482 		aprint_error_dev(sc->bnx_dev,
   2483 		    "Could not map stats block DMA memory!\n");
   2484 		rc = ENOMEM;
   2485 		goto bnx_dma_alloc_exit;
   2486 	}
   2487 
   2488 	if (bus_dmamap_load(sc->bnx_dmatag, sc->stats_map,
   2489 	    sc->stats_block, BNX_STATS_BLK_SZ, NULL, BUS_DMA_NOWAIT)) {
   2490 		aprint_error_dev(sc->bnx_dev,
   2491 		    "Could not load status block DMA memory!\n");
   2492 		rc = ENOMEM;
   2493 		goto bnx_dma_alloc_exit;
   2494 	}
   2495 
   2496 	sc->stats_block_paddr = sc->stats_map->dm_segs[0].ds_addr;
   2497 	memset(sc->stats_block, 0, BNX_STATS_BLK_SZ);
   2498 
   2499 	/* DRC - Fix for 64 bit address. */
   2500 	DBPRINT(sc,BNX_INFO, "stats_block_paddr = 0x%08X\n",
   2501 	    (uint32_t) sc->stats_block_paddr);
   2502 
   2503 	/*
   2504 	 * Allocate DMA memory for the TX buffer descriptor chain,
   2505 	 * and fetch the physical address of the block.
   2506 	 */
   2507 	for (i = 0; i < TX_PAGES; i++) {
   2508 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ, 1,
   2509 		    BNX_TX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2510 		    &sc->tx_bd_chain_map[i])) {
   2511 			aprint_error_dev(sc->bnx_dev,
   2512 			    "Could not create Tx desc %d DMA map!\n", i);
   2513 			rc = ENOMEM;
   2514 			goto bnx_dma_alloc_exit;
   2515 		}
   2516 
   2517 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_TX_CHAIN_PAGE_SZ,
   2518 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->tx_bd_chain_seg[i], 1,
   2519 		    &sc->tx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2520 			aprint_error_dev(sc->bnx_dev,
   2521 			    "Could not allocate TX desc %d DMA memory!\n",
   2522 			    i);
   2523 			rc = ENOMEM;
   2524 			goto bnx_dma_alloc_exit;
   2525 		}
   2526 
   2527 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->tx_bd_chain_seg[i],
   2528 		    sc->tx_bd_chain_rseg[i], BNX_TX_CHAIN_PAGE_SZ,
   2529 		    (void **)&sc->tx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2530 			aprint_error_dev(sc->bnx_dev,
   2531 			    "Could not map TX desc %d DMA memory!\n", i);
   2532 			rc = ENOMEM;
   2533 			goto bnx_dma_alloc_exit;
   2534 		}
   2535 
   2536 		if (bus_dmamap_load(sc->bnx_dmatag, sc->tx_bd_chain_map[i],
   2537 		    (void *)sc->tx_bd_chain[i], BNX_TX_CHAIN_PAGE_SZ, NULL,
   2538 		    BUS_DMA_NOWAIT)) {
   2539 			aprint_error_dev(sc->bnx_dev,
   2540 			    "Could not load TX desc %d DMA memory!\n", i);
   2541 			rc = ENOMEM;
   2542 			goto bnx_dma_alloc_exit;
   2543 		}
   2544 
   2545 		sc->tx_bd_chain_paddr[i] =
   2546 		    sc->tx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2547 
   2548 		/* DRC - Fix for 64 bit systems. */
   2549 		DBPRINT(sc, BNX_INFO, "tx_bd_chain_paddr[%d] = 0x%08X\n",
   2550 		    i, (uint32_t) sc->tx_bd_chain_paddr[i]);
   2551 	}
   2552 
   2553 	/*
   2554 	 * Create lists to hold TX mbufs.
   2555 	 */
   2556 	TAILQ_INIT(&sc->tx_free_pkts);
   2557 	TAILQ_INIT(&sc->tx_used_pkts);
   2558 	sc->tx_pkt_count = 0;
   2559 	mutex_init(&sc->tx_pkt_mtx, MUTEX_DEFAULT, IPL_NET);
   2560 
   2561 	/*
   2562 	 * Allocate DMA memory for the Rx buffer descriptor chain,
   2563 	 * and fetch the physical address of the block.
   2564 	 */
   2565 	for (i = 0; i < RX_PAGES; i++) {
   2566 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ, 1,
   2567 		    BNX_RX_CHAIN_PAGE_SZ, 0, BUS_DMA_NOWAIT,
   2568 		    &sc->rx_bd_chain_map[i])) {
   2569 			aprint_error_dev(sc->bnx_dev,
   2570 			    "Could not create Rx desc %d DMA map!\n", i);
   2571 			rc = ENOMEM;
   2572 			goto bnx_dma_alloc_exit;
   2573 		}
   2574 
   2575 		if (bus_dmamem_alloc(sc->bnx_dmatag, BNX_RX_CHAIN_PAGE_SZ,
   2576 		    BCM_PAGE_SIZE, BNX_DMA_BOUNDARY, &sc->rx_bd_chain_seg[i], 1,
   2577 		    &sc->rx_bd_chain_rseg[i], BUS_DMA_NOWAIT)) {
   2578 			aprint_error_dev(sc->bnx_dev,
   2579 			    "Could not allocate Rx desc %d DMA memory!\n", i);
   2580 			rc = ENOMEM;
   2581 			goto bnx_dma_alloc_exit;
   2582 		}
   2583 
   2584 		if (bus_dmamem_map(sc->bnx_dmatag, &sc->rx_bd_chain_seg[i],
   2585 		    sc->rx_bd_chain_rseg[i], BNX_RX_CHAIN_PAGE_SZ,
   2586 		    (void **)&sc->rx_bd_chain[i], BUS_DMA_NOWAIT)) {
   2587 			aprint_error_dev(sc->bnx_dev,
   2588 			    "Could not map Rx desc %d DMA memory!\n", i);
   2589 			rc = ENOMEM;
   2590 			goto bnx_dma_alloc_exit;
   2591 		}
   2592 
   2593 		if (bus_dmamap_load(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2594 		    (void *)sc->rx_bd_chain[i], BNX_RX_CHAIN_PAGE_SZ, NULL,
   2595 		    BUS_DMA_NOWAIT)) {
   2596 			aprint_error_dev(sc->bnx_dev,
   2597 			    "Could not load Rx desc %d DMA memory!\n", i);
   2598 			rc = ENOMEM;
   2599 			goto bnx_dma_alloc_exit;
   2600 		}
   2601 
   2602 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   2603 		sc->rx_bd_chain_paddr[i] =
   2604 		    sc->rx_bd_chain_map[i]->dm_segs[0].ds_addr;
   2605 
   2606 		/* DRC - Fix for 64 bit systems. */
   2607 		DBPRINT(sc, BNX_INFO, "rx_bd_chain_paddr[%d] = 0x%08X\n",
   2608 		    i, (uint32_t) sc->rx_bd_chain_paddr[i]);
   2609 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   2610 		    0, BNX_RX_CHAIN_PAGE_SZ,
   2611 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   2612 	}
   2613 
   2614 	/*
   2615 	 * Create DMA maps for the Rx buffer mbufs.
   2616 	 */
   2617 	for (i = 0; i < TOTAL_RX_BD; i++) {
   2618 		if (bus_dmamap_create(sc->bnx_dmatag, BNX_MAX_JUMBO_MRU,
   2619 		    BNX_MAX_SEGMENTS, BNX_MAX_JUMBO_MRU, 0, BUS_DMA_NOWAIT,
   2620 		    &sc->rx_mbuf_map[i])) {
   2621 			aprint_error_dev(sc->bnx_dev,
   2622 			    "Could not create Rx mbuf %d DMA map!\n", i);
   2623 			rc = ENOMEM;
   2624 			goto bnx_dma_alloc_exit;
   2625 		}
   2626 	}
   2627 
   2628  bnx_dma_alloc_exit:
   2629 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2630 
   2631 	return rc;
   2632 }
   2633 
   2634 /****************************************************************************/
   2635 /* Release all resources used by the driver.                                */
   2636 /*                                                                          */
   2637 /* Releases all resources acquired by the driver including interrupts,      */
   2638 /* interrupt handler, interfaces, mutexes, and DMA memory.                  */
   2639 /*                                                                          */
   2640 /* Returns:                                                                 */
   2641 /*   Nothing.                                                               */
   2642 /****************************************************************************/
   2643 void
   2644 bnx_release_resources(struct bnx_softc *sc)
   2645 {
   2646 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   2647 
   2648 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   2649 
   2650 	bnx_dma_free(sc);
   2651 
   2652 	if (sc->bnx_intrhand != NULL)
   2653 		pci_intr_disestablish(pa->pa_pc, sc->bnx_intrhand);
   2654 
   2655 	if (sc->bnx_size)
   2656 		bus_space_unmap(sc->bnx_btag, sc->bnx_bhandle, sc->bnx_size);
   2657 
   2658 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   2659 }
   2660 
   2661 /****************************************************************************/
   2662 /* Firmware synchronization.                                                */
   2663 /*                                                                          */
   2664 /* Before performing certain events such as a chip reset, synchronize with  */
   2665 /* the firmware first.                                                      */
   2666 /*                                                                          */
   2667 /* Returns:                                                                 */
   2668 /*   0 for success, positive value for failure.                             */
   2669 /****************************************************************************/
   2670 int
   2671 bnx_fw_sync(struct bnx_softc *sc, uint32_t msg_data)
   2672 {
   2673 	int			i, rc = 0;
   2674 	uint32_t		val;
   2675 
   2676 	/* Don't waste any time if we've timed out before. */
   2677 	if (sc->bnx_fw_timed_out) {
   2678 		rc = EBUSY;
   2679 		goto bnx_fw_sync_exit;
   2680 	}
   2681 
   2682 	/* Increment the message sequence number. */
   2683 	sc->bnx_fw_wr_seq++;
   2684 	msg_data |= sc->bnx_fw_wr_seq;
   2685 
   2686  	DBPRINT(sc, BNX_VERBOSE, "bnx_fw_sync(): msg_data = 0x%08X\n",
   2687 	    msg_data);
   2688 
   2689 	/* Send the message to the bootcode driver mailbox. */
   2690 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2691 
   2692 	/* Wait for the bootcode to acknowledge the message. */
   2693 	for (i = 0; i < FW_ACK_TIME_OUT_MS; i++) {
   2694 		/* Check for a response in the bootcode firmware mailbox. */
   2695 		val = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_FW_MB);
   2696 		if ((val & BNX_FW_MSG_ACK) == (msg_data & BNX_DRV_MSG_SEQ))
   2697 			break;
   2698 		DELAY(1000);
   2699 	}
   2700 
   2701 	/* If we've timed out, tell the bootcode that we've stopped waiting. */
   2702 	if (((val & BNX_FW_MSG_ACK) != (msg_data & BNX_DRV_MSG_SEQ)) &&
   2703 		((msg_data & BNX_DRV_MSG_DATA) != BNX_DRV_MSG_DATA_WAIT0)) {
   2704 		BNX_PRINTF(sc, "%s(%d): Firmware synchronization timeout! "
   2705 		    "msg_data = 0x%08X\n", __FILE__, __LINE__, msg_data);
   2706 
   2707 		msg_data &= ~BNX_DRV_MSG_CODE;
   2708 		msg_data |= BNX_DRV_MSG_CODE_FW_TIMEOUT;
   2709 
   2710 		REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_MB, msg_data);
   2711 
   2712 		sc->bnx_fw_timed_out = 1;
   2713 		rc = EBUSY;
   2714 	}
   2715 
   2716 bnx_fw_sync_exit:
   2717 	return rc;
   2718 }
   2719 
   2720 /****************************************************************************/
   2721 /* Load Receive Virtual 2 Physical (RV2P) processor firmware.               */
   2722 /*                                                                          */
   2723 /* Returns:                                                                 */
   2724 /*   Nothing.                                                               */
   2725 /****************************************************************************/
   2726 void
   2727 bnx_load_rv2p_fw(struct bnx_softc *sc, uint32_t *rv2p_code,
   2728     uint32_t rv2p_code_len, uint32_t rv2p_proc)
   2729 {
   2730 	int			i;
   2731 	uint32_t		val;
   2732 
   2733 	/* Set the page size used by RV2P. */
   2734 	if (rv2p_proc == RV2P_PROC2) {
   2735 		BNX_RV2P_PROC2_CHG_MAX_BD_PAGE(rv2p_code,
   2736 		    USABLE_RX_BD_PER_PAGE);
   2737 	}
   2738 
   2739 	for (i = 0; i < rv2p_code_len; i += 8) {
   2740 		REG_WR(sc, BNX_RV2P_INSTR_HIGH, *rv2p_code);
   2741 		rv2p_code++;
   2742 		REG_WR(sc, BNX_RV2P_INSTR_LOW, *rv2p_code);
   2743 		rv2p_code++;
   2744 
   2745 		if (rv2p_proc == RV2P_PROC1) {
   2746 			val = (i / 8) | BNX_RV2P_PROC1_ADDR_CMD_RDWR;
   2747 			REG_WR(sc, BNX_RV2P_PROC1_ADDR_CMD, val);
   2748 		} else {
   2749 			val = (i / 8) | BNX_RV2P_PROC2_ADDR_CMD_RDWR;
   2750 			REG_WR(sc, BNX_RV2P_PROC2_ADDR_CMD, val);
   2751 		}
   2752 	}
   2753 
   2754 	/* Reset the processor, un-stall is done later. */
   2755 	if (rv2p_proc == RV2P_PROC1)
   2756 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC1_RESET);
   2757 	else
   2758 		REG_WR(sc, BNX_RV2P_COMMAND, BNX_RV2P_COMMAND_PROC2_RESET);
   2759 }
   2760 
   2761 /****************************************************************************/
   2762 /* Load RISC processor firmware.                                            */
   2763 /*                                                                          */
   2764 /* Loads firmware from the file if_bnxfw.h into the scratchpad memory       */
   2765 /* associated with a particular processor.                                  */
   2766 /*                                                                          */
   2767 /* Returns:                                                                 */
   2768 /*   Nothing.                                                               */
   2769 /****************************************************************************/
   2770 void
   2771 bnx_load_cpu_fw(struct bnx_softc *sc, struct cpu_reg *cpu_reg,
   2772     struct fw_info *fw)
   2773 {
   2774 	uint32_t		offset;
   2775 	uint32_t		val;
   2776 
   2777 	/* Halt the CPU. */
   2778 	val = REG_RD_IND(sc, cpu_reg->mode);
   2779 	val |= cpu_reg->mode_value_halt;
   2780 	REG_WR_IND(sc, cpu_reg->mode, val);
   2781 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2782 
   2783 	/* Load the Text area. */
   2784 	offset = cpu_reg->spad_base + (fw->text_addr - cpu_reg->mips_view_base);
   2785 	if (fw->text) {
   2786 		int j;
   2787 
   2788 		for (j = 0; j < (fw->text_len / 4); j++, offset += 4)
   2789 			REG_WR_IND(sc, offset, fw->text[j]);
   2790 	}
   2791 
   2792 	/* Load the Data area. */
   2793 	offset = cpu_reg->spad_base + (fw->data_addr - cpu_reg->mips_view_base);
   2794 	if (fw->data) {
   2795 		int j;
   2796 
   2797 		for (j = 0; j < (fw->data_len / 4); j++, offset += 4)
   2798 			REG_WR_IND(sc, offset, fw->data[j]);
   2799 	}
   2800 
   2801 	/* Load the SBSS area. */
   2802 	offset = cpu_reg->spad_base + (fw->sbss_addr - cpu_reg->mips_view_base);
   2803 	if (fw->sbss) {
   2804 		int j;
   2805 
   2806 		for (j = 0; j < (fw->sbss_len / 4); j++, offset += 4)
   2807 			REG_WR_IND(sc, offset, fw->sbss[j]);
   2808 	}
   2809 
   2810 	/* Load the BSS area. */
   2811 	offset = cpu_reg->spad_base + (fw->bss_addr - cpu_reg->mips_view_base);
   2812 	if (fw->bss) {
   2813 		int j;
   2814 
   2815 		for (j = 0; j < (fw->bss_len/4); j++, offset += 4)
   2816 			REG_WR_IND(sc, offset, fw->bss[j]);
   2817 	}
   2818 
   2819 	/* Load the Read-Only area. */
   2820 	offset = cpu_reg->spad_base +
   2821 	    (fw->rodata_addr - cpu_reg->mips_view_base);
   2822 	if (fw->rodata) {
   2823 		int j;
   2824 
   2825 		for (j = 0; j < (fw->rodata_len / 4); j++, offset += 4)
   2826 			REG_WR_IND(sc, offset, fw->rodata[j]);
   2827 	}
   2828 
   2829 	/* Clear the pre-fetch instruction. */
   2830 	REG_WR_IND(sc, cpu_reg->inst, 0);
   2831 	REG_WR_IND(sc, cpu_reg->pc, fw->start_addr);
   2832 
   2833 	/* Start the CPU. */
   2834 	val = REG_RD_IND(sc, cpu_reg->mode);
   2835 	val &= ~cpu_reg->mode_value_halt;
   2836 	REG_WR_IND(sc, cpu_reg->state, cpu_reg->state_value_clear);
   2837 	REG_WR_IND(sc, cpu_reg->mode, val);
   2838 }
   2839 
   2840 /****************************************************************************/
   2841 /* Initialize the RV2P, RX, TX, TPAT, and COM CPUs.                         */
   2842 /*                                                                          */
   2843 /* Loads the firmware for each CPU and starts the CPU.                      */
   2844 /*                                                                          */
   2845 /* Returns:                                                                 */
   2846 /*   Nothing.                                                               */
   2847 /****************************************************************************/
   2848 void
   2849 bnx_init_cpus(struct bnx_softc *sc)
   2850 {
   2851 	struct cpu_reg cpu_reg;
   2852 	struct fw_info fw;
   2853 
   2854 	switch(BNX_CHIP_NUM(sc)) {
   2855 	case BNX_CHIP_NUM_5709:
   2856 		/* Initialize the RV2P processor. */
   2857 		if (BNX_CHIP_REV(sc) == BNX_CHIP_REV_Ax) {
   2858 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc1,
   2859 			    sizeof(bnx_xi90_rv2p_proc1), RV2P_PROC1);
   2860 			bnx_load_rv2p_fw(sc, bnx_xi90_rv2p_proc2,
   2861 			    sizeof(bnx_xi90_rv2p_proc2), RV2P_PROC2);
   2862 		} else {
   2863 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc1,
   2864 			    sizeof(bnx_xi_rv2p_proc1), RV2P_PROC1);
   2865 			bnx_load_rv2p_fw(sc, bnx_xi_rv2p_proc2,
   2866 			    sizeof(bnx_xi_rv2p_proc2), RV2P_PROC2);
   2867 		}
   2868 
   2869 		/* Initialize the RX Processor. */
   2870 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   2871 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   2872 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   2873 		cpu_reg.state = BNX_RXP_CPU_STATE;
   2874 		cpu_reg.state_value_clear = 0xffffff;
   2875 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   2876 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   2877 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   2878 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   2879 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   2880 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   2881 		cpu_reg.mips_view_base = 0x8000000;
   2882 
   2883 		fw.ver_major = bnx_RXP_b09FwReleaseMajor;
   2884 		fw.ver_minor = bnx_RXP_b09FwReleaseMinor;
   2885 		fw.ver_fix = bnx_RXP_b09FwReleaseFix;
   2886 		fw.start_addr = bnx_RXP_b09FwStartAddr;
   2887 
   2888 		fw.text_addr = bnx_RXP_b09FwTextAddr;
   2889 		fw.text_len = bnx_RXP_b09FwTextLen;
   2890 		fw.text_index = 0;
   2891 		fw.text = bnx_RXP_b09FwText;
   2892 
   2893 		fw.data_addr = bnx_RXP_b09FwDataAddr;
   2894 		fw.data_len = bnx_RXP_b09FwDataLen;
   2895 		fw.data_index = 0;
   2896 		fw.data = bnx_RXP_b09FwData;
   2897 
   2898 		fw.sbss_addr = bnx_RXP_b09FwSbssAddr;
   2899 		fw.sbss_len = bnx_RXP_b09FwSbssLen;
   2900 		fw.sbss_index = 0;
   2901 		fw.sbss = bnx_RXP_b09FwSbss;
   2902 
   2903 		fw.bss_addr = bnx_RXP_b09FwBssAddr;
   2904 		fw.bss_len = bnx_RXP_b09FwBssLen;
   2905 		fw.bss_index = 0;
   2906 		fw.bss = bnx_RXP_b09FwBss;
   2907 
   2908 		fw.rodata_addr = bnx_RXP_b09FwRodataAddr;
   2909 		fw.rodata_len = bnx_RXP_b09FwRodataLen;
   2910 		fw.rodata_index = 0;
   2911 		fw.rodata = bnx_RXP_b09FwRodata;
   2912 
   2913 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   2914 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2915 
   2916 		/* Initialize the TX Processor. */
   2917 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   2918 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   2919 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   2920 		cpu_reg.state = BNX_TXP_CPU_STATE;
   2921 		cpu_reg.state_value_clear = 0xffffff;
   2922 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   2923 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   2924 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   2925 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   2926 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   2927 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   2928 		cpu_reg.mips_view_base = 0x8000000;
   2929 
   2930 		fw.ver_major = bnx_TXP_b09FwReleaseMajor;
   2931 		fw.ver_minor = bnx_TXP_b09FwReleaseMinor;
   2932 		fw.ver_fix = bnx_TXP_b09FwReleaseFix;
   2933 		fw.start_addr = bnx_TXP_b09FwStartAddr;
   2934 
   2935 		fw.text_addr = bnx_TXP_b09FwTextAddr;
   2936 		fw.text_len = bnx_TXP_b09FwTextLen;
   2937 		fw.text_index = 0;
   2938 		fw.text = bnx_TXP_b09FwText;
   2939 
   2940 		fw.data_addr = bnx_TXP_b09FwDataAddr;
   2941 		fw.data_len = bnx_TXP_b09FwDataLen;
   2942 		fw.data_index = 0;
   2943 		fw.data = bnx_TXP_b09FwData;
   2944 
   2945 		fw.sbss_addr = bnx_TXP_b09FwSbssAddr;
   2946 		fw.sbss_len = bnx_TXP_b09FwSbssLen;
   2947 		fw.sbss_index = 0;
   2948 		fw.sbss = bnx_TXP_b09FwSbss;
   2949 
   2950 		fw.bss_addr = bnx_TXP_b09FwBssAddr;
   2951 		fw.bss_len = bnx_TXP_b09FwBssLen;
   2952 		fw.bss_index = 0;
   2953 		fw.bss = bnx_TXP_b09FwBss;
   2954 
   2955 		fw.rodata_addr = bnx_TXP_b09FwRodataAddr;
   2956 		fw.rodata_len = bnx_TXP_b09FwRodataLen;
   2957 		fw.rodata_index = 0;
   2958 		fw.rodata = bnx_TXP_b09FwRodata;
   2959 
   2960 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   2961 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   2962 
   2963 		/* Initialize the TX Patch-up Processor. */
   2964 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   2965 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   2966 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   2967 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   2968 		cpu_reg.state_value_clear = 0xffffff;
   2969 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   2970 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   2971 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   2972 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   2973 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   2974 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   2975 		cpu_reg.mips_view_base = 0x8000000;
   2976 
   2977 		fw.ver_major = bnx_TPAT_b09FwReleaseMajor;
   2978 		fw.ver_minor = bnx_TPAT_b09FwReleaseMinor;
   2979 		fw.ver_fix = bnx_TPAT_b09FwReleaseFix;
   2980 		fw.start_addr = bnx_TPAT_b09FwStartAddr;
   2981 
   2982 		fw.text_addr = bnx_TPAT_b09FwTextAddr;
   2983 		fw.text_len = bnx_TPAT_b09FwTextLen;
   2984 		fw.text_index = 0;
   2985 		fw.text = bnx_TPAT_b09FwText;
   2986 
   2987 		fw.data_addr = bnx_TPAT_b09FwDataAddr;
   2988 		fw.data_len = bnx_TPAT_b09FwDataLen;
   2989 		fw.data_index = 0;
   2990 		fw.data = bnx_TPAT_b09FwData;
   2991 
   2992 		fw.sbss_addr = bnx_TPAT_b09FwSbssAddr;
   2993 		fw.sbss_len = bnx_TPAT_b09FwSbssLen;
   2994 		fw.sbss_index = 0;
   2995 		fw.sbss = bnx_TPAT_b09FwSbss;
   2996 
   2997 		fw.bss_addr = bnx_TPAT_b09FwBssAddr;
   2998 		fw.bss_len = bnx_TPAT_b09FwBssLen;
   2999 		fw.bss_index = 0;
   3000 		fw.bss = bnx_TPAT_b09FwBss;
   3001 
   3002 		fw.rodata_addr = bnx_TPAT_b09FwRodataAddr;
   3003 		fw.rodata_len = bnx_TPAT_b09FwRodataLen;
   3004 		fw.rodata_index = 0;
   3005 		fw.rodata = bnx_TPAT_b09FwRodata;
   3006 
   3007 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3008 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3009 
   3010 		/* Initialize the Completion Processor. */
   3011 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3012 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3013 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3014 		cpu_reg.state = BNX_COM_CPU_STATE;
   3015 		cpu_reg.state_value_clear = 0xffffff;
   3016 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3017 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3018 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3019 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3020 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3021 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3022 		cpu_reg.mips_view_base = 0x8000000;
   3023 
   3024 		fw.ver_major = bnx_COM_b09FwReleaseMajor;
   3025 		fw.ver_minor = bnx_COM_b09FwReleaseMinor;
   3026 		fw.ver_fix = bnx_COM_b09FwReleaseFix;
   3027 		fw.start_addr = bnx_COM_b09FwStartAddr;
   3028 
   3029 		fw.text_addr = bnx_COM_b09FwTextAddr;
   3030 		fw.text_len = bnx_COM_b09FwTextLen;
   3031 		fw.text_index = 0;
   3032 		fw.text = bnx_COM_b09FwText;
   3033 
   3034 		fw.data_addr = bnx_COM_b09FwDataAddr;
   3035 		fw.data_len = bnx_COM_b09FwDataLen;
   3036 		fw.data_index = 0;
   3037 		fw.data = bnx_COM_b09FwData;
   3038 
   3039 		fw.sbss_addr = bnx_COM_b09FwSbssAddr;
   3040 		fw.sbss_len = bnx_COM_b09FwSbssLen;
   3041 		fw.sbss_index = 0;
   3042 		fw.sbss = bnx_COM_b09FwSbss;
   3043 
   3044 		fw.bss_addr = bnx_COM_b09FwBssAddr;
   3045 		fw.bss_len = bnx_COM_b09FwBssLen;
   3046 		fw.bss_index = 0;
   3047 		fw.bss = bnx_COM_b09FwBss;
   3048 
   3049 		fw.rodata_addr = bnx_COM_b09FwRodataAddr;
   3050 		fw.rodata_len = bnx_COM_b09FwRodataLen;
   3051 		fw.rodata_index = 0;
   3052 		fw.rodata = bnx_COM_b09FwRodata;
   3053 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3054 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3055 		break;
   3056 	default:
   3057 		/* Initialize the RV2P processor. */
   3058 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc1, sizeof(bnx_rv2p_proc1),
   3059 		    RV2P_PROC1);
   3060 		bnx_load_rv2p_fw(sc, bnx_rv2p_proc2, sizeof(bnx_rv2p_proc2),
   3061 		    RV2P_PROC2);
   3062 
   3063 		/* Initialize the RX Processor. */
   3064 		cpu_reg.mode = BNX_RXP_CPU_MODE;
   3065 		cpu_reg.mode_value_halt = BNX_RXP_CPU_MODE_SOFT_HALT;
   3066 		cpu_reg.mode_value_sstep = BNX_RXP_CPU_MODE_STEP_ENA;
   3067 		cpu_reg.state = BNX_RXP_CPU_STATE;
   3068 		cpu_reg.state_value_clear = 0xffffff;
   3069 		cpu_reg.gpr0 = BNX_RXP_CPU_REG_FILE;
   3070 		cpu_reg.evmask = BNX_RXP_CPU_EVENT_MASK;
   3071 		cpu_reg.pc = BNX_RXP_CPU_PROGRAM_COUNTER;
   3072 		cpu_reg.inst = BNX_RXP_CPU_INSTRUCTION;
   3073 		cpu_reg.bp = BNX_RXP_CPU_HW_BREAKPOINT;
   3074 		cpu_reg.spad_base = BNX_RXP_SCRATCH;
   3075 		cpu_reg.mips_view_base = 0x8000000;
   3076 
   3077 		fw.ver_major = bnx_RXP_b06FwReleaseMajor;
   3078 		fw.ver_minor = bnx_RXP_b06FwReleaseMinor;
   3079 		fw.ver_fix = bnx_RXP_b06FwReleaseFix;
   3080 		fw.start_addr = bnx_RXP_b06FwStartAddr;
   3081 
   3082 		fw.text_addr = bnx_RXP_b06FwTextAddr;
   3083 		fw.text_len = bnx_RXP_b06FwTextLen;
   3084 		fw.text_index = 0;
   3085 		fw.text = bnx_RXP_b06FwText;
   3086 
   3087 		fw.data_addr = bnx_RXP_b06FwDataAddr;
   3088 		fw.data_len = bnx_RXP_b06FwDataLen;
   3089 		fw.data_index = 0;
   3090 		fw.data = bnx_RXP_b06FwData;
   3091 
   3092 		fw.sbss_addr = bnx_RXP_b06FwSbssAddr;
   3093 		fw.sbss_len = bnx_RXP_b06FwSbssLen;
   3094 		fw.sbss_index = 0;
   3095 		fw.sbss = bnx_RXP_b06FwSbss;
   3096 
   3097 		fw.bss_addr = bnx_RXP_b06FwBssAddr;
   3098 		fw.bss_len = bnx_RXP_b06FwBssLen;
   3099 		fw.bss_index = 0;
   3100 		fw.bss = bnx_RXP_b06FwBss;
   3101 
   3102 		fw.rodata_addr = bnx_RXP_b06FwRodataAddr;
   3103 		fw.rodata_len = bnx_RXP_b06FwRodataLen;
   3104 		fw.rodata_index = 0;
   3105 		fw.rodata = bnx_RXP_b06FwRodata;
   3106 
   3107 		DBPRINT(sc, BNX_INFO_RESET, "Loading RX firmware.\n");
   3108 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3109 
   3110 		/* Initialize the TX Processor. */
   3111 		cpu_reg.mode = BNX_TXP_CPU_MODE;
   3112 		cpu_reg.mode_value_halt = BNX_TXP_CPU_MODE_SOFT_HALT;
   3113 		cpu_reg.mode_value_sstep = BNX_TXP_CPU_MODE_STEP_ENA;
   3114 		cpu_reg.state = BNX_TXP_CPU_STATE;
   3115 		cpu_reg.state_value_clear = 0xffffff;
   3116 		cpu_reg.gpr0 = BNX_TXP_CPU_REG_FILE;
   3117 		cpu_reg.evmask = BNX_TXP_CPU_EVENT_MASK;
   3118 		cpu_reg.pc = BNX_TXP_CPU_PROGRAM_COUNTER;
   3119 		cpu_reg.inst = BNX_TXP_CPU_INSTRUCTION;
   3120 		cpu_reg.bp = BNX_TXP_CPU_HW_BREAKPOINT;
   3121 		cpu_reg.spad_base = BNX_TXP_SCRATCH;
   3122 		cpu_reg.mips_view_base = 0x8000000;
   3123 
   3124 		fw.ver_major = bnx_TXP_b06FwReleaseMajor;
   3125 		fw.ver_minor = bnx_TXP_b06FwReleaseMinor;
   3126 		fw.ver_fix = bnx_TXP_b06FwReleaseFix;
   3127 		fw.start_addr = bnx_TXP_b06FwStartAddr;
   3128 
   3129 		fw.text_addr = bnx_TXP_b06FwTextAddr;
   3130 		fw.text_len = bnx_TXP_b06FwTextLen;
   3131 		fw.text_index = 0;
   3132 		fw.text = bnx_TXP_b06FwText;
   3133 
   3134 		fw.data_addr = bnx_TXP_b06FwDataAddr;
   3135 		fw.data_len = bnx_TXP_b06FwDataLen;
   3136 		fw.data_index = 0;
   3137 		fw.data = bnx_TXP_b06FwData;
   3138 
   3139 		fw.sbss_addr = bnx_TXP_b06FwSbssAddr;
   3140 		fw.sbss_len = bnx_TXP_b06FwSbssLen;
   3141 		fw.sbss_index = 0;
   3142 		fw.sbss = bnx_TXP_b06FwSbss;
   3143 
   3144 		fw.bss_addr = bnx_TXP_b06FwBssAddr;
   3145 		fw.bss_len = bnx_TXP_b06FwBssLen;
   3146 		fw.bss_index = 0;
   3147 		fw.bss = bnx_TXP_b06FwBss;
   3148 
   3149 		fw.rodata_addr = bnx_TXP_b06FwRodataAddr;
   3150 		fw.rodata_len = bnx_TXP_b06FwRodataLen;
   3151 		fw.rodata_index = 0;
   3152 		fw.rodata = bnx_TXP_b06FwRodata;
   3153 
   3154 		DBPRINT(sc, BNX_INFO_RESET, "Loading TX firmware.\n");
   3155 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3156 
   3157 		/* Initialize the TX Patch-up Processor. */
   3158 		cpu_reg.mode = BNX_TPAT_CPU_MODE;
   3159 		cpu_reg.mode_value_halt = BNX_TPAT_CPU_MODE_SOFT_HALT;
   3160 		cpu_reg.mode_value_sstep = BNX_TPAT_CPU_MODE_STEP_ENA;
   3161 		cpu_reg.state = BNX_TPAT_CPU_STATE;
   3162 		cpu_reg.state_value_clear = 0xffffff;
   3163 		cpu_reg.gpr0 = BNX_TPAT_CPU_REG_FILE;
   3164 		cpu_reg.evmask = BNX_TPAT_CPU_EVENT_MASK;
   3165 		cpu_reg.pc = BNX_TPAT_CPU_PROGRAM_COUNTER;
   3166 		cpu_reg.inst = BNX_TPAT_CPU_INSTRUCTION;
   3167 		cpu_reg.bp = BNX_TPAT_CPU_HW_BREAKPOINT;
   3168 		cpu_reg.spad_base = BNX_TPAT_SCRATCH;
   3169 		cpu_reg.mips_view_base = 0x8000000;
   3170 
   3171 		fw.ver_major = bnx_TPAT_b06FwReleaseMajor;
   3172 		fw.ver_minor = bnx_TPAT_b06FwReleaseMinor;
   3173 		fw.ver_fix = bnx_TPAT_b06FwReleaseFix;
   3174 		fw.start_addr = bnx_TPAT_b06FwStartAddr;
   3175 
   3176 		fw.text_addr = bnx_TPAT_b06FwTextAddr;
   3177 		fw.text_len = bnx_TPAT_b06FwTextLen;
   3178 		fw.text_index = 0;
   3179 		fw.text = bnx_TPAT_b06FwText;
   3180 
   3181 		fw.data_addr = bnx_TPAT_b06FwDataAddr;
   3182 		fw.data_len = bnx_TPAT_b06FwDataLen;
   3183 		fw.data_index = 0;
   3184 		fw.data = bnx_TPAT_b06FwData;
   3185 
   3186 		fw.sbss_addr = bnx_TPAT_b06FwSbssAddr;
   3187 		fw.sbss_len = bnx_TPAT_b06FwSbssLen;
   3188 		fw.sbss_index = 0;
   3189 		fw.sbss = bnx_TPAT_b06FwSbss;
   3190 
   3191 		fw.bss_addr = bnx_TPAT_b06FwBssAddr;
   3192 		fw.bss_len = bnx_TPAT_b06FwBssLen;
   3193 		fw.bss_index = 0;
   3194 		fw.bss = bnx_TPAT_b06FwBss;
   3195 
   3196 		fw.rodata_addr = bnx_TPAT_b06FwRodataAddr;
   3197 		fw.rodata_len = bnx_TPAT_b06FwRodataLen;
   3198 		fw.rodata_index = 0;
   3199 		fw.rodata = bnx_TPAT_b06FwRodata;
   3200 
   3201 		DBPRINT(sc, BNX_INFO_RESET, "Loading TPAT firmware.\n");
   3202 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3203 
   3204 		/* Initialize the Completion Processor. */
   3205 		cpu_reg.mode = BNX_COM_CPU_MODE;
   3206 		cpu_reg.mode_value_halt = BNX_COM_CPU_MODE_SOFT_HALT;
   3207 		cpu_reg.mode_value_sstep = BNX_COM_CPU_MODE_STEP_ENA;
   3208 		cpu_reg.state = BNX_COM_CPU_STATE;
   3209 		cpu_reg.state_value_clear = 0xffffff;
   3210 		cpu_reg.gpr0 = BNX_COM_CPU_REG_FILE;
   3211 		cpu_reg.evmask = BNX_COM_CPU_EVENT_MASK;
   3212 		cpu_reg.pc = BNX_COM_CPU_PROGRAM_COUNTER;
   3213 		cpu_reg.inst = BNX_COM_CPU_INSTRUCTION;
   3214 		cpu_reg.bp = BNX_COM_CPU_HW_BREAKPOINT;
   3215 		cpu_reg.spad_base = BNX_COM_SCRATCH;
   3216 		cpu_reg.mips_view_base = 0x8000000;
   3217 
   3218 		fw.ver_major = bnx_COM_b06FwReleaseMajor;
   3219 		fw.ver_minor = bnx_COM_b06FwReleaseMinor;
   3220 		fw.ver_fix = bnx_COM_b06FwReleaseFix;
   3221 		fw.start_addr = bnx_COM_b06FwStartAddr;
   3222 
   3223 		fw.text_addr = bnx_COM_b06FwTextAddr;
   3224 		fw.text_len = bnx_COM_b06FwTextLen;
   3225 		fw.text_index = 0;
   3226 		fw.text = bnx_COM_b06FwText;
   3227 
   3228 		fw.data_addr = bnx_COM_b06FwDataAddr;
   3229 		fw.data_len = bnx_COM_b06FwDataLen;
   3230 		fw.data_index = 0;
   3231 		fw.data = bnx_COM_b06FwData;
   3232 
   3233 		fw.sbss_addr = bnx_COM_b06FwSbssAddr;
   3234 		fw.sbss_len = bnx_COM_b06FwSbssLen;
   3235 		fw.sbss_index = 0;
   3236 		fw.sbss = bnx_COM_b06FwSbss;
   3237 
   3238 		fw.bss_addr = bnx_COM_b06FwBssAddr;
   3239 		fw.bss_len = bnx_COM_b06FwBssLen;
   3240 		fw.bss_index = 0;
   3241 		fw.bss = bnx_COM_b06FwBss;
   3242 
   3243 		fw.rodata_addr = bnx_COM_b06FwRodataAddr;
   3244 		fw.rodata_len = bnx_COM_b06FwRodataLen;
   3245 		fw.rodata_index = 0;
   3246 		fw.rodata = bnx_COM_b06FwRodata;
   3247 		DBPRINT(sc, BNX_INFO_RESET, "Loading COM firmware.\n");
   3248 		bnx_load_cpu_fw(sc, &cpu_reg, &fw);
   3249 		break;
   3250 	}
   3251 }
   3252 
   3253 /****************************************************************************/
   3254 /* Initialize context memory.                                               */
   3255 /*                                                                          */
   3256 /* Clears the memory associated with each Context ID (CID).                 */
   3257 /*                                                                          */
   3258 /* Returns:                                                                 */
   3259 /*   Nothing.                                                               */
   3260 /****************************************************************************/
   3261 void
   3262 bnx_init_context(struct bnx_softc *sc)
   3263 {
   3264 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3265 		/* DRC: Replace this constant value with a #define. */
   3266 		int i, retry_cnt = 10;
   3267 		uint32_t val;
   3268 
   3269 		/*
   3270 		 * BCM5709 context memory may be cached
   3271 		 * in host memory so prepare the host memory
   3272 		 * for access.
   3273 		 */
   3274 		val = BNX_CTX_COMMAND_ENABLED | BNX_CTX_COMMAND_MEM_INIT
   3275 		    | (1 << 12);
   3276 		val |= (BCM_PAGE_BITS - 8) << 16;
   3277 		REG_WR(sc, BNX_CTX_COMMAND, val);
   3278 
   3279 		/* Wait for mem init command to complete. */
   3280 		for (i = 0; i < retry_cnt; i++) {
   3281 			val = REG_RD(sc, BNX_CTX_COMMAND);
   3282 			if (!(val & BNX_CTX_COMMAND_MEM_INIT))
   3283 				break;
   3284 			DELAY(2);
   3285 		}
   3286 
   3287 		/* ToDo: Consider returning an error here. */
   3288 
   3289 		for (i = 0; i < sc->ctx_pages; i++) {
   3290 			int j;
   3291 
   3292 			/* Set the physaddr of the context memory cache. */
   3293 			val = (uint32_t)(sc->ctx_segs[i].ds_addr);
   3294 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA0, val |
   3295 				BNX_CTX_HOST_PAGE_TBL_DATA0_VALID);
   3296 			val = (uint32_t)
   3297 			    ((uint64_t)sc->ctx_segs[i].ds_addr >> 32);
   3298 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_DATA1, val);
   3299 			REG_WR(sc, BNX_CTX_HOST_PAGE_TBL_CTRL, i |
   3300 				BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ);
   3301 
   3302 			/* Verify that the context memory write was successful. */
   3303 			for (j = 0; j < retry_cnt; j++) {
   3304 				val = REG_RD(sc, BNX_CTX_HOST_PAGE_TBL_CTRL);
   3305 				if ((val & BNX_CTX_HOST_PAGE_TBL_CTRL_WRITE_REQ) == 0)
   3306 					break;
   3307 				DELAY(5);
   3308 			}
   3309 
   3310 			/* ToDo: Consider returning an error here. */
   3311 		}
   3312 	} else {
   3313 		uint32_t vcid_addr, offset;
   3314 
   3315 		/*
   3316 		 * For the 5706/5708, context memory is local to the
   3317 		 * controller, so initialize the controller context memory.
   3318 		 */
   3319 
   3320 		vcid_addr = GET_CID_ADDR(96);
   3321 		while (vcid_addr) {
   3322 
   3323 			vcid_addr -= BNX_PHY_CTX_SIZE;
   3324 
   3325 			REG_WR(sc, BNX_CTX_VIRT_ADDR, 0);
   3326 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3327 
   3328 			for (offset = 0; offset < BNX_PHY_CTX_SIZE;
   3329 			     offset += 4)
   3330 				CTX_WR(sc, 0x00, offset, 0);
   3331 
   3332 			REG_WR(sc, BNX_CTX_VIRT_ADDR, vcid_addr);
   3333 			REG_WR(sc, BNX_CTX_PAGE_TBL, vcid_addr);
   3334 		}
   3335 	}
   3336 }
   3337 
   3338 /****************************************************************************/
   3339 /* Fetch the permanent MAC address of the controller.                       */
   3340 /*                                                                          */
   3341 /* Returns:                                                                 */
   3342 /*   Nothing.                                                               */
   3343 /****************************************************************************/
   3344 void
   3345 bnx_get_mac_addr(struct bnx_softc *sc)
   3346 {
   3347 	uint32_t		mac_lo = 0, mac_hi = 0;
   3348 
   3349 	/*
   3350 	 * The NetXtreme II bootcode populates various NIC
   3351 	 * power-on and runtime configuration items in a
   3352 	 * shared memory area.  The factory configured MAC
   3353 	 * address is available from both NVRAM and the
   3354 	 * shared memory area so we'll read the value from
   3355 	 * shared memory for speed.
   3356 	 */
   3357 
   3358 	mac_hi = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_UPPER);
   3359 	mac_lo = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_HW_CFG_MAC_LOWER);
   3360 
   3361 	if ((mac_lo == 0) && (mac_hi == 0)) {
   3362 		BNX_PRINTF(sc, "%s(%d): Invalid Ethernet address!\n",
   3363 		    __FILE__, __LINE__);
   3364 	} else {
   3365 		sc->eaddr[0] = (u_char)(mac_hi >> 8);
   3366 		sc->eaddr[1] = (u_char)(mac_hi >> 0);
   3367 		sc->eaddr[2] = (u_char)(mac_lo >> 24);
   3368 		sc->eaddr[3] = (u_char)(mac_lo >> 16);
   3369 		sc->eaddr[4] = (u_char)(mac_lo >> 8);
   3370 		sc->eaddr[5] = (u_char)(mac_lo >> 0);
   3371 	}
   3372 
   3373 	DBPRINT(sc, BNX_INFO, "Permanent Ethernet address = "
   3374 	    "%s\n", ether_sprintf(sc->eaddr));
   3375 }
   3376 
   3377 /****************************************************************************/
   3378 /* Program the MAC address.                                                 */
   3379 /*                                                                          */
   3380 /* Returns:                                                                 */
   3381 /*   Nothing.                                                               */
   3382 /****************************************************************************/
   3383 void
   3384 bnx_set_mac_addr(struct bnx_softc *sc)
   3385 {
   3386 	uint32_t		val;
   3387 	const uint8_t		*mac_addr = CLLADDR(sc->bnx_ec.ec_if.if_sadl);
   3388 
   3389 	DBPRINT(sc, BNX_INFO, "Setting Ethernet address = "
   3390 	    "%s\n", ether_sprintf(sc->eaddr));
   3391 
   3392 	val = (mac_addr[0] << 8) | mac_addr[1];
   3393 
   3394 	REG_WR(sc, BNX_EMAC_MAC_MATCH0, val);
   3395 
   3396 	val = (mac_addr[2] << 24) | (mac_addr[3] << 16) |
   3397 		(mac_addr[4] << 8) | mac_addr[5];
   3398 
   3399 	REG_WR(sc, BNX_EMAC_MAC_MATCH1, val);
   3400 }
   3401 
   3402 /****************************************************************************/
   3403 /* Stop the controller.                                                     */
   3404 /*                                                                          */
   3405 /* Returns:                                                                 */
   3406 /*   Nothing.                                                               */
   3407 /****************************************************************************/
   3408 void
   3409 bnx_stop(struct ifnet *ifp, int disable)
   3410 {
   3411 	struct bnx_softc *sc = ifp->if_softc;
   3412 
   3413 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3414 
   3415 	if (disable) {
   3416 		sc->bnx_detaching = 1;
   3417 		callout_halt(&sc->bnx_timeout, NULL);
   3418 	} else
   3419 		callout_stop(&sc->bnx_timeout);
   3420 
   3421 	mii_down(&sc->bnx_mii);
   3422 
   3423 	ifp->if_flags &= ~(IFF_RUNNING | IFF_OACTIVE);
   3424 
   3425 	/* Disable the transmit/receive blocks. */
   3426 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS, 0x5ffffff);
   3427 	REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3428 	DELAY(20);
   3429 
   3430 	bnx_disable_intr(sc);
   3431 
   3432 	/* Tell firmware that the driver is going away. */
   3433 	if (disable)
   3434 		bnx_reset(sc, BNX_DRV_MSG_CODE_RESET);
   3435 	else
   3436 		bnx_reset(sc, BNX_DRV_MSG_CODE_SUSPEND_NO_WOL);
   3437 
   3438 	/* Free RX buffers. */
   3439 	bnx_free_rx_chain(sc);
   3440 
   3441 	/* Free TX buffers. */
   3442 	bnx_free_tx_chain(sc);
   3443 
   3444 	ifp->if_timer = 0;
   3445 
   3446 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3447 
   3448 }
   3449 
   3450 int
   3451 bnx_reset(struct bnx_softc *sc, uint32_t reset_code)
   3452 {
   3453 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3454 	uint32_t		val;
   3455 	int			i, rc = 0;
   3456 
   3457 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3458 
   3459 	/* Wait for pending PCI transactions to complete. */
   3460 	REG_WR(sc, BNX_MISC_ENABLE_CLR_BITS,
   3461 	    BNX_MISC_ENABLE_CLR_BITS_TX_DMA_ENABLE |
   3462 	    BNX_MISC_ENABLE_CLR_BITS_DMA_ENGINE_ENABLE |
   3463 	    BNX_MISC_ENABLE_CLR_BITS_RX_DMA_ENABLE |
   3464 	    BNX_MISC_ENABLE_CLR_BITS_HOST_COALESCE_ENABLE);
   3465 	val = REG_RD(sc, BNX_MISC_ENABLE_CLR_BITS);
   3466 	DELAY(5);
   3467 
   3468 	/* Disable DMA */
   3469 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3470 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3471 		val &= ~BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3472 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3473 	}
   3474 
   3475 	/* Assume bootcode is running. */
   3476 	sc->bnx_fw_timed_out = 0;
   3477 
   3478 	/* Give the firmware a chance to prepare for the reset. */
   3479 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT0 | reset_code);
   3480 	if (rc)
   3481 		goto bnx_reset_exit;
   3482 
   3483 	/* Set a firmware reminder that this is a soft reset. */
   3484 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_RESET_SIGNATURE,
   3485 	    BNX_DRV_RESET_SIGNATURE_MAGIC);
   3486 
   3487 	/* Dummy read to force the chip to complete all current transactions. */
   3488 	val = REG_RD(sc, BNX_MISC_ID);
   3489 
   3490 	/* Chip reset. */
   3491 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3492 		REG_WR(sc, BNX_MISC_COMMAND, BNX_MISC_COMMAND_SW_RESET);
   3493 		REG_RD(sc, BNX_MISC_COMMAND);
   3494 		DELAY(5);
   3495 
   3496 		val = BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3497 		      BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3498 
   3499 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCICFG_MISC_CONFIG,
   3500 		    val);
   3501 	} else {
   3502 		val = BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3503 			BNX_PCICFG_MISC_CONFIG_REG_WINDOW_ENA |
   3504 			BNX_PCICFG_MISC_CONFIG_TARGET_MB_WORD_SWAP;
   3505 		REG_WR(sc, BNX_PCICFG_MISC_CONFIG, val);
   3506 
   3507 		/* Allow up to 30us for reset to complete. */
   3508 		for (i = 0; i < 10; i++) {
   3509 			val = REG_RD(sc, BNX_PCICFG_MISC_CONFIG);
   3510 			if ((val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3511 				BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) == 0) {
   3512 				break;
   3513 			}
   3514 			DELAY(10);
   3515 		}
   3516 
   3517 		/* Check that reset completed successfully. */
   3518 		if (val & (BNX_PCICFG_MISC_CONFIG_CORE_RST_REQ |
   3519 		    BNX_PCICFG_MISC_CONFIG_CORE_RST_BSY)) {
   3520 			BNX_PRINTF(sc, "%s(%d): Reset failed!\n",
   3521 			    __FILE__, __LINE__);
   3522 			rc = EBUSY;
   3523 			goto bnx_reset_exit;
   3524 		}
   3525 	}
   3526 
   3527 	/* Make sure byte swapping is properly configured. */
   3528 	val = REG_RD(sc, BNX_PCI_SWAP_DIAG0);
   3529 	if (val != 0x01020304) {
   3530 		BNX_PRINTF(sc, "%s(%d): Byte swap is incorrect!\n",
   3531 		    __FILE__, __LINE__);
   3532 		rc = ENODEV;
   3533 		goto bnx_reset_exit;
   3534 	}
   3535 
   3536 	/* Just completed a reset, assume that firmware is running again. */
   3537 	sc->bnx_fw_timed_out = 0;
   3538 
   3539 	/* Wait for the firmware to finish its initialization. */
   3540 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT1 | reset_code);
   3541 	if (rc)
   3542 		BNX_PRINTF(sc, "%s(%d): Firmware did not complete "
   3543 		    "initialization!\n", __FILE__, __LINE__);
   3544 
   3545 bnx_reset_exit:
   3546 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3547 
   3548 	return rc;
   3549 }
   3550 
   3551 int
   3552 bnx_chipinit(struct bnx_softc *sc)
   3553 {
   3554 	struct pci_attach_args	*pa = &(sc->bnx_pa);
   3555 	uint32_t		val;
   3556 	int			rc = 0;
   3557 
   3558 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3559 
   3560 	/* Make sure the interrupt is not active. */
   3561 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   3562 
   3563 	/* Initialize DMA byte/word swapping, configure the number of DMA  */
   3564 	/* channels and PCI clock compensation delay.                      */
   3565 	val = BNX_DMA_CONFIG_DATA_BYTE_SWAP |
   3566 	    BNX_DMA_CONFIG_DATA_WORD_SWAP |
   3567 #if BYTE_ORDER == BIG_ENDIAN
   3568 	    BNX_DMA_CONFIG_CNTL_BYTE_SWAP |
   3569 #endif
   3570 	    BNX_DMA_CONFIG_CNTL_WORD_SWAP |
   3571 	    DMA_READ_CHANS << 12 |
   3572 	    DMA_WRITE_CHANS << 16;
   3573 
   3574 	val |= (0x2 << 20) | BNX_DMA_CONFIG_CNTL_PCI_COMP_DLY;
   3575 
   3576 	if ((sc->bnx_flags & BNX_PCIX_FLAG) && (sc->bus_speed_mhz == 133))
   3577 		val |= BNX_DMA_CONFIG_PCI_FAST_CLK_CMP;
   3578 
   3579 	/*
   3580 	 * This setting resolves a problem observed on certain Intel PCI
   3581 	 * chipsets that cannot handle multiple outstanding DMA operations.
   3582 	 * See errata E9_5706A1_65.
   3583 	 */
   3584 	if ((BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   3585 	    (BNX_CHIP_ID(sc) != BNX_CHIP_ID_5706_A0) &&
   3586 	    !(sc->bnx_flags & BNX_PCIX_FLAG))
   3587 		val |= BNX_DMA_CONFIG_CNTL_PING_PONG_DMA;
   3588 
   3589 	REG_WR(sc, BNX_DMA_CONFIG, val);
   3590 
   3591 	/* Clear the PCI-X relaxed ordering bit. See errata E3_5708CA0_570. */
   3592 	if (sc->bnx_flags & BNX_PCIX_FLAG) {
   3593 		val = pci_conf_read(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD);
   3594 		pci_conf_write(pa->pa_pc, pa->pa_tag, BNX_PCI_PCIX_CMD,
   3595 		    val & ~0x20000);
   3596 	}
   3597 
   3598 	/* Enable the RX_V2P and Context state machines before access. */
   3599 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3600 	    BNX_MISC_ENABLE_SET_BITS_HOST_COALESCE_ENABLE |
   3601 	    BNX_MISC_ENABLE_STATUS_BITS_RX_V2P_ENABLE |
   3602 	    BNX_MISC_ENABLE_STATUS_BITS_CONTEXT_ENABLE);
   3603 
   3604 	/* Initialize context mapping and zero out the quick contexts. */
   3605 	bnx_init_context(sc);
   3606 
   3607 	/* Initialize the on-boards CPUs */
   3608 	bnx_init_cpus(sc);
   3609 
   3610 	/* Prepare NVRAM for access. */
   3611 	if (bnx_init_nvram(sc)) {
   3612 		rc = ENODEV;
   3613 		goto bnx_chipinit_exit;
   3614 	}
   3615 
   3616 	/* Set the kernel bypass block size */
   3617 	val = REG_RD(sc, BNX_MQ_CONFIG);
   3618 	val &= ~BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE;
   3619 	val |= BNX_MQ_CONFIG_KNL_BYP_BLK_SIZE_256;
   3620 
   3621 	/* Enable bins used on the 5709. */
   3622 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3623 		val |= BNX_MQ_CONFIG_BIN_MQ_MODE;
   3624 		if (BNX_CHIP_ID(sc) == BNX_CHIP_ID_5709_A1)
   3625 			val |= BNX_MQ_CONFIG_HALT_DIS;
   3626 	}
   3627 
   3628 	REG_WR(sc, BNX_MQ_CONFIG, val);
   3629 
   3630 	val = 0x10000 + (MAX_CID_CNT * BNX_MB_KERNEL_CTX_SIZE);
   3631 	REG_WR(sc, BNX_MQ_KNL_BYP_WIND_START, val);
   3632 	REG_WR(sc, BNX_MQ_KNL_WIND_END, val);
   3633 
   3634 	val = (BCM_PAGE_BITS - 8) << 24;
   3635 	REG_WR(sc, BNX_RV2P_CONFIG, val);
   3636 
   3637 	/* Configure page size. */
   3638 	val = REG_RD(sc, BNX_TBDR_CONFIG);
   3639 	val &= ~BNX_TBDR_CONFIG_PAGE_SIZE;
   3640 	val |= (BCM_PAGE_BITS - 8) << 24 | 0x40;
   3641 	REG_WR(sc, BNX_TBDR_CONFIG, val);
   3642 
   3643 #if 0
   3644 	/* Set the perfect match control register to default. */
   3645 	REG_WR_IND(sc, BNX_RXP_PM_CTRL, 0);
   3646 #endif
   3647 
   3648 bnx_chipinit_exit:
   3649 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3650 
   3651 	return rc;
   3652 }
   3653 
   3654 /****************************************************************************/
   3655 /* Initialize the controller in preparation to send/receive traffic.        */
   3656 /*                                                                          */
   3657 /* Returns:                                                                 */
   3658 /*   0 for success, positive value for failure.                             */
   3659 /****************************************************************************/
   3660 int
   3661 bnx_blockinit(struct bnx_softc *sc)
   3662 {
   3663 	uint32_t		reg, val;
   3664 	int 			rc = 0;
   3665 
   3666 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   3667 
   3668 	/* Load the hardware default MAC address. */
   3669 	bnx_set_mac_addr(sc);
   3670 
   3671 	/* Set the Ethernet backoff seed value */
   3672 	val = sc->eaddr[0] + (sc->eaddr[1] << 8) + (sc->eaddr[2] << 16) +
   3673 	    (sc->eaddr[3]) + (sc->eaddr[4] << 8) + (sc->eaddr[5] << 16);
   3674 	REG_WR(sc, BNX_EMAC_BACKOFF_SEED, val);
   3675 
   3676 	sc->last_status_idx = 0;
   3677 	sc->rx_mode = BNX_EMAC_RX_MODE_SORT_MODE;
   3678 
   3679 	/* Set up link change interrupt generation. */
   3680 	REG_WR(sc, BNX_EMAC_ATTENTION_ENA, BNX_EMAC_ATTENTION_ENA_LINK);
   3681 	REG_WR(sc, BNX_HC_ATTN_BITS_ENABLE, STATUS_ATTN_BITS_LINK_STATE);
   3682 
   3683 	/* Program the physical address of the status block. */
   3684 	REG_WR(sc, BNX_HC_STATUS_ADDR_L, (uint32_t)(sc->status_block_paddr));
   3685 	REG_WR(sc, BNX_HC_STATUS_ADDR_H,
   3686 	    (uint32_t)((uint64_t)sc->status_block_paddr >> 32));
   3687 
   3688 	/* Program the physical address of the statistics block. */
   3689 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_L,
   3690 	    (uint32_t)(sc->stats_block_paddr));
   3691 	REG_WR(sc, BNX_HC_STATISTICS_ADDR_H,
   3692 	    (uint32_t)((uint64_t)sc->stats_block_paddr >> 32));
   3693 
   3694 	/* Program various host coalescing parameters. */
   3695 	REG_WR(sc, BNX_HC_TX_QUICK_CONS_TRIP, (sc->bnx_tx_quick_cons_trip_int
   3696 	    << 16) | sc->bnx_tx_quick_cons_trip);
   3697 	REG_WR(sc, BNX_HC_RX_QUICK_CONS_TRIP, (sc->bnx_rx_quick_cons_trip_int
   3698 	    << 16) | sc->bnx_rx_quick_cons_trip);
   3699 	REG_WR(sc, BNX_HC_COMP_PROD_TRIP, (sc->bnx_comp_prod_trip_int << 16) |
   3700 	    sc->bnx_comp_prod_trip);
   3701 	REG_WR(sc, BNX_HC_TX_TICKS, (sc->bnx_tx_ticks_int << 16) |
   3702 	    sc->bnx_tx_ticks);
   3703 	REG_WR(sc, BNX_HC_RX_TICKS, (sc->bnx_rx_ticks_int << 16) |
   3704 	    sc->bnx_rx_ticks);
   3705 	REG_WR(sc, BNX_HC_COM_TICKS, (sc->bnx_com_ticks_int << 16) |
   3706 	    sc->bnx_com_ticks);
   3707 	REG_WR(sc, BNX_HC_CMD_TICKS, (sc->bnx_cmd_ticks_int << 16) |
   3708 	    sc->bnx_cmd_ticks);
   3709 	REG_WR(sc, BNX_HC_STATS_TICKS, (sc->bnx_stats_ticks & 0xffff00));
   3710 	REG_WR(sc, BNX_HC_STAT_COLLECT_TICKS, 0xbb8);  /* 3ms */
   3711 	REG_WR(sc, BNX_HC_CONFIG,
   3712 	    (BNX_HC_CONFIG_RX_TMR_MODE | BNX_HC_CONFIG_TX_TMR_MODE |
   3713 	    BNX_HC_CONFIG_COLLECT_STATS));
   3714 
   3715 	/* Clear the internal statistics counters. */
   3716 	REG_WR(sc, BNX_HC_COMMAND, BNX_HC_COMMAND_CLR_STAT_NOW);
   3717 
   3718 	/* Verify that bootcode is running. */
   3719 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_DEV_INFO_SIGNATURE);
   3720 
   3721 	DBRUNIF(DB_RANDOMTRUE(bnx_debug_bootcode_running_failure),
   3722 	    BNX_PRINTF(sc, "%s(%d): Simulating bootcode failure.\n",
   3723 	    __FILE__, __LINE__); reg = 0);
   3724 
   3725 	if ((reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK) !=
   3726 	    BNX_DEV_INFO_SIGNATURE_MAGIC) {
   3727 		BNX_PRINTF(sc, "%s(%d): Bootcode not running! Found: 0x%08X, "
   3728 		    "Expected: 08%08X\n", __FILE__, __LINE__,
   3729 		    (reg & BNX_DEV_INFO_SIGNATURE_MAGIC_MASK),
   3730 		    BNX_DEV_INFO_SIGNATURE_MAGIC);
   3731 		rc = ENODEV;
   3732 		goto bnx_blockinit_exit;
   3733 	}
   3734 
   3735 	/* Check if any management firmware is running. */
   3736 	reg = REG_RD_IND(sc, sc->bnx_shmem_base + BNX_PORT_FEATURE);
   3737 	if (reg & (BNX_PORT_FEATURE_ASF_ENABLED |
   3738 	    BNX_PORT_FEATURE_IMD_ENABLED)) {
   3739 		DBPRINT(sc, BNX_INFO, "Management F/W Enabled.\n");
   3740 		sc->bnx_flags |= BNX_MFW_ENABLE_FLAG;
   3741 	}
   3742 
   3743 	sc->bnx_fw_ver = REG_RD_IND(sc, sc->bnx_shmem_base +
   3744 	    BNX_DEV_INFO_BC_REV);
   3745 
   3746 	DBPRINT(sc, BNX_INFO, "bootcode rev = 0x%08X\n", sc->bnx_fw_ver);
   3747 
   3748 	/* Enable DMA */
   3749 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3750 		val = REG_RD(sc, BNX_MISC_NEW_CORE_CTL);
   3751 		val |= BNX_MISC_NEW_CORE_CTL_DMA_ENABLE;
   3752 		REG_WR(sc, BNX_MISC_NEW_CORE_CTL, val);
   3753 	}
   3754 
   3755 	/* Allow bootcode to apply any additional fixes before enabling MAC. */
   3756 	rc = bnx_fw_sync(sc, BNX_DRV_MSG_DATA_WAIT2 | BNX_DRV_MSG_CODE_RESET);
   3757 
   3758 	/* Enable link state change interrupt generation. */
   3759 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   3760 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS,
   3761 		    BNX_MISC_ENABLE_DEFAULT_XI);
   3762 	} else
   3763 		REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, BNX_MISC_ENABLE_DEFAULT);
   3764 
   3765 	/* Enable all remaining blocks in the MAC. */
   3766 	REG_WR(sc, BNX_MISC_ENABLE_SET_BITS, 0x5ffffff);
   3767 	REG_RD(sc, BNX_MISC_ENABLE_SET_BITS);
   3768 	DELAY(20);
   3769 
   3770 bnx_blockinit_exit:
   3771 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   3772 
   3773 	return rc;
   3774 }
   3775 
   3776 static int
   3777 bnx_add_buf(struct bnx_softc *sc, struct mbuf *m_new, uint16_t *prod,
   3778     uint16_t *chain_prod, uint32_t *prod_bseq)
   3779 {
   3780 	bus_dmamap_t		map;
   3781 	struct rx_bd		*rxbd;
   3782 	uint32_t		addr;
   3783 	int i;
   3784 #ifdef BNX_DEBUG
   3785 	uint16_t debug_chain_prod =	*chain_prod;
   3786 #endif
   3787 	uint16_t first_chain_prod;
   3788 
   3789 	m_new->m_len = m_new->m_pkthdr.len = sc->mbuf_alloc_size;
   3790 
   3791 	/* Map the mbuf cluster into device memory. */
   3792 	map = sc->rx_mbuf_map[*chain_prod];
   3793 	first_chain_prod = *chain_prod;
   3794 	if (bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m_new, BUS_DMA_NOWAIT)) {
   3795 		BNX_PRINTF(sc, "%s(%d): Error mapping mbuf into RX chain!\n",
   3796 		    __FILE__, __LINE__);
   3797 
   3798 		m_freem(m_new);
   3799 
   3800 		DBRUNIF(1, sc->rx_mbuf_alloc--);
   3801 
   3802 		return ENOBUFS;
   3803 	}
   3804 	/* Make sure there is room in the receive chain. */
   3805 	if (map->dm_nsegs > sc->free_rx_bd) {
   3806 		bus_dmamap_unload(sc->bnx_dmatag, map);
   3807 		m_freem(m_new);
   3808 		return EFBIG;
   3809 	}
   3810 #ifdef BNX_DEBUG
   3811 	/* Track the distribution of buffer segments. */
   3812 	sc->rx_mbuf_segs[map->dm_nsegs]++;
   3813 #endif
   3814 
   3815 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   3816 	    BUS_DMASYNC_PREREAD);
   3817 
   3818 	/* Update some debug statistics counters */
   3819 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   3820 	    sc->rx_low_watermark = sc->free_rx_bd);
   3821 	DBRUNIF((sc->free_rx_bd == sc->max_rx_bd), sc->rx_empty_count++);
   3822 
   3823 	/*
   3824 	 * Setup the rx_bd for the first segment
   3825 	 */
   3826 	rxbd = &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3827 
   3828 	addr = (uint32_t)map->dm_segs[0].ds_addr;
   3829 	rxbd->rx_bd_haddr_lo = addr;
   3830 	addr = (uint32_t)((uint64_t)map->dm_segs[0].ds_addr >> 32);
   3831 	rxbd->rx_bd_haddr_hi = addr;
   3832 	rxbd->rx_bd_len = map->dm_segs[0].ds_len;
   3833 	rxbd->rx_bd_flags = RX_BD_FLAGS_START;
   3834 	*prod_bseq += map->dm_segs[0].ds_len;
   3835 	bus_dmamap_sync(sc->bnx_dmatag,
   3836 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3837 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod), sizeof(struct rx_bd),
   3838 	    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3839 
   3840 	for (i = 1; i < map->dm_nsegs; i++) {
   3841 		*prod = NEXT_RX_BD(*prod);
   3842 		*chain_prod = RX_CHAIN_IDX(*prod);
   3843 
   3844 		rxbd =
   3845 		    &sc->rx_bd_chain[RX_PAGE(*chain_prod)][RX_IDX(*chain_prod)];
   3846 
   3847 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   3848 		rxbd->rx_bd_haddr_lo = addr;
   3849 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   3850 		rxbd->rx_bd_haddr_hi = addr;
   3851 		rxbd->rx_bd_len = map->dm_segs[i].ds_len;
   3852 		rxbd->rx_bd_flags = 0;
   3853 		*prod_bseq += map->dm_segs[i].ds_len;
   3854 		bus_dmamap_sync(sc->bnx_dmatag,
   3855 		    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3856 		    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3857 		    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3858 	}
   3859 
   3860 	rxbd->rx_bd_flags |= RX_BD_FLAGS_END;
   3861 	bus_dmamap_sync(sc->bnx_dmatag,
   3862 	    sc->rx_bd_chain_map[RX_PAGE(*chain_prod)],
   3863 	    sizeof(struct rx_bd) * RX_IDX(*chain_prod),
   3864 	    sizeof(struct rx_bd), BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   3865 
   3866 	/*
   3867 	 * Save the mbuf, adjust the map pointer (swap map for first and
   3868 	 * last rx_bd entry so that rx_mbuf_ptr and rx_mbuf_map matches)
   3869 	 * and update our counter.
   3870 	 */
   3871 	sc->rx_mbuf_ptr[*chain_prod] = m_new;
   3872 	sc->rx_mbuf_map[first_chain_prod] = sc->rx_mbuf_map[*chain_prod];
   3873 	sc->rx_mbuf_map[*chain_prod] = map;
   3874 	sc->free_rx_bd -= map->dm_nsegs;
   3875 
   3876 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_mbuf_chain(sc, debug_chain_prod,
   3877 	    map->dm_nsegs));
   3878 	*prod = NEXT_RX_BD(*prod);
   3879 	*chain_prod = RX_CHAIN_IDX(*prod);
   3880 
   3881 	return 0;
   3882 }
   3883 
   3884 /****************************************************************************/
   3885 /* Encapsulate an mbuf cluster into the rx_bd chain.                        */
   3886 /*                                                                          */
   3887 /* The NetXtreme II can support Jumbo frames by using multiple rx_bd's.     */
   3888 /* This routine will map an mbuf cluster into 1 or more rx_bd's as          */
   3889 /* necessary.                                                               */
   3890 /*                                                                          */
   3891 /* Returns:                                                                 */
   3892 /*   0 for success, positive value for failure.                             */
   3893 /****************************************************************************/
   3894 int
   3895 bnx_get_buf(struct bnx_softc *sc, uint16_t *prod,
   3896     uint16_t *chain_prod, uint32_t *prod_bseq)
   3897 {
   3898 	struct mbuf 		*m_new = NULL;
   3899 	int			rc = 0;
   3900 	uint16_t min_free_bd;
   3901 
   3902 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Entering %s()\n",
   3903 	    __func__);
   3904 
   3905 	/* Make sure the inputs are valid. */
   3906 	DBRUNIF((*chain_prod > MAX_RX_BD),
   3907 	    aprint_error_dev(sc->bnx_dev,
   3908 	        "RX producer out of range: 0x%04X > 0x%04X\n",
   3909 		*chain_prod, (uint16_t)MAX_RX_BD));
   3910 
   3911 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(enter): prod = 0x%04X, chain_prod = "
   3912 	    "0x%04X, prod_bseq = 0x%08X\n", __func__, *prod, *chain_prod,
   3913 	    *prod_bseq);
   3914 
   3915 	/* try to get in as many mbufs as possible */
   3916 	if (sc->mbuf_alloc_size == MCLBYTES)
   3917 		min_free_bd = (MCLBYTES + PAGE_SIZE - 1) / PAGE_SIZE;
   3918 	else
   3919 		min_free_bd = (BNX_MAX_JUMBO_MRU + PAGE_SIZE - 1) / PAGE_SIZE;
   3920 	while (sc->free_rx_bd >= min_free_bd) {
   3921 		/* Simulate an mbuf allocation failure. */
   3922 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3923 		    aprint_error_dev(sc->bnx_dev,
   3924 		    "Simulating mbuf allocation failure.\n");
   3925 			sc->mbuf_sim_alloc_failed++;
   3926 			rc = ENOBUFS;
   3927 			goto bnx_get_buf_exit);
   3928 
   3929 		/* This is a new mbuf allocation. */
   3930 		MGETHDR(m_new, M_DONTWAIT, MT_DATA);
   3931 		if (m_new == NULL) {
   3932 			DBPRINT(sc, BNX_WARN,
   3933 			    "%s(%d): RX mbuf header allocation failed!\n",
   3934 			    __FILE__, __LINE__);
   3935 
   3936 			sc->mbuf_alloc_failed++;
   3937 
   3938 			rc = ENOBUFS;
   3939 			goto bnx_get_buf_exit;
   3940 		}
   3941 
   3942 		DBRUNIF(1, sc->rx_mbuf_alloc++);
   3943 
   3944 		/* Simulate an mbuf cluster allocation failure. */
   3945 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_mbuf_allocation_failure),
   3946 			m_freem(m_new);
   3947 			sc->rx_mbuf_alloc--;
   3948 			sc->mbuf_alloc_failed++;
   3949 			sc->mbuf_sim_alloc_failed++;
   3950 			rc = ENOBUFS;
   3951 			goto bnx_get_buf_exit);
   3952 
   3953 		if (sc->mbuf_alloc_size == MCLBYTES)
   3954 			MCLGET(m_new, M_DONTWAIT);
   3955 		else
   3956 			MEXTMALLOC(m_new, sc->mbuf_alloc_size,
   3957 			    M_DONTWAIT);
   3958 		if (!(m_new->m_flags & M_EXT)) {
   3959 			DBPRINT(sc, BNX_WARN,
   3960 			    "%s(%d): RX mbuf chain allocation failed!\n",
   3961 			    __FILE__, __LINE__);
   3962 
   3963 			m_freem(m_new);
   3964 
   3965 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   3966 			sc->mbuf_alloc_failed++;
   3967 
   3968 			rc = ENOBUFS;
   3969 			goto bnx_get_buf_exit;
   3970 		}
   3971 
   3972 		rc = bnx_add_buf(sc, m_new, prod, chain_prod, prod_bseq);
   3973 		if (rc != 0)
   3974 			goto bnx_get_buf_exit;
   3975 	}
   3976 
   3977 bnx_get_buf_exit:
   3978 	DBPRINT(sc, BNX_VERBOSE_RECV, "%s(exit): prod = 0x%04X, chain_prod "
   3979 	    "= 0x%04X, prod_bseq = 0x%08X\n", __func__, *prod,
   3980 	    *chain_prod, *prod_bseq);
   3981 
   3982 	DBPRINT(sc, (BNX_VERBOSE_RESET | BNX_VERBOSE_RECV), "Exiting %s()\n",
   3983 	    __func__);
   3984 
   3985 	return rc;
   3986 }
   3987 
   3988 void
   3989 bnx_alloc_pkts(struct work * unused, void * arg)
   3990 {
   3991 	struct bnx_softc *sc = arg;
   3992 	struct ifnet *ifp = &sc->bnx_ec.ec_if;
   3993 	struct bnx_pkt *pkt;
   3994 	int i, s;
   3995 
   3996 	for (i = 0; i < 4; i++) { /* magic! */
   3997 		pkt = pool_get(bnx_tx_pool, PR_WAITOK);
   3998 		if (pkt == NULL)
   3999 			break;
   4000 
   4001 		if (bus_dmamap_create(sc->bnx_dmatag,
   4002 		    MCLBYTES * BNX_MAX_SEGMENTS, USABLE_TX_BD,
   4003 		    MCLBYTES, 0, BUS_DMA_WAITOK | BUS_DMA_ALLOCNOW,
   4004 		    &pkt->pkt_dmamap) != 0)
   4005 			goto put;
   4006 
   4007 		if (!ISSET(ifp->if_flags, IFF_UP))
   4008 			goto stopping;
   4009 
   4010 		mutex_enter(&sc->tx_pkt_mtx);
   4011 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4012 		sc->tx_pkt_count++;
   4013 		mutex_exit(&sc->tx_pkt_mtx);
   4014 	}
   4015 
   4016 	mutex_enter(&sc->tx_pkt_mtx);
   4017 	CLR(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   4018 	mutex_exit(&sc->tx_pkt_mtx);
   4019 
   4020 	/* fire-up TX now that allocations have been done */
   4021 	s = splnet();
   4022 	if (!IFQ_IS_EMPTY(&ifp->if_snd))
   4023 		bnx_start(ifp);
   4024 	splx(s);
   4025 
   4026 	return;
   4027 
   4028 stopping:
   4029 	bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4030 put:
   4031 	pool_put(bnx_tx_pool, pkt);
   4032 	return;
   4033 }
   4034 
   4035 /****************************************************************************/
   4036 /* Initialize the TX context memory.                                        */
   4037 /*                                                                          */
   4038 /* Returns:                                                                 */
   4039 /*   Nothing                                                                */
   4040 /****************************************************************************/
   4041 void
   4042 bnx_init_tx_context(struct bnx_softc *sc)
   4043 {
   4044 	uint32_t val;
   4045 
   4046 	/* Initialize the context ID for an L2 TX chain. */
   4047 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4048 		/* Set the CID type to support an L2 connection. */
   4049 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4050 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE_XI, val);
   4051 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4052 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE_XI, val);
   4053 
   4054 		/* Point the hardware to the first page in the chain. */
   4055 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4056 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4057 		    BNX_L2CTX_TBDR_BHADDR_HI_XI, val);
   4058 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4059 		CTX_WR(sc, GET_CID_ADDR(TX_CID),
   4060 		    BNX_L2CTX_TBDR_BHADDR_LO_XI, val);
   4061 	} else {
   4062 		/* Set the CID type to support an L2 connection. */
   4063 		val = BNX_L2CTX_TYPE_TYPE_L2 | BNX_L2CTX_TYPE_SIZE_L2;
   4064 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TYPE, val);
   4065 		val = BNX_L2CTX_CMD_TYPE_TYPE_L2 | (8 << 16);
   4066 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_CMD_TYPE, val);
   4067 
   4068 		/* Point the hardware to the first page in the chain. */
   4069 		val = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[0] >> 32);
   4070 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_HI, val);
   4071 		val = (uint32_t)(sc->tx_bd_chain_paddr[0]);
   4072 		CTX_WR(sc, GET_CID_ADDR(TX_CID), BNX_L2CTX_TBDR_BHADDR_LO, val);
   4073 	}
   4074 }
   4075 
   4076 
   4077 /****************************************************************************/
   4078 /* Allocate memory and initialize the TX data structures.                   */
   4079 /*                                                                          */
   4080 /* Returns:                                                                 */
   4081 /*   0 for success, positive value for failure.                             */
   4082 /****************************************************************************/
   4083 int
   4084 bnx_init_tx_chain(struct bnx_softc *sc)
   4085 {
   4086 	struct tx_bd		*txbd;
   4087 	uint32_t		addr;
   4088 	int			i, rc = 0;
   4089 
   4090 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4091 
   4092 	/* Force an allocation of some dmamaps for tx up front */
   4093 	bnx_alloc_pkts(NULL, sc);
   4094 
   4095 	/* Set the initial TX producer/consumer indices. */
   4096 	sc->tx_prod = 0;
   4097 	sc->tx_cons = 0;
   4098 	sc->tx_prod_bseq = 0;
   4099 	sc->used_tx_bd = 0;
   4100 	sc->max_tx_bd = USABLE_TX_BD;
   4101 	DBRUNIF(1, sc->tx_hi_watermark = USABLE_TX_BD);
   4102 	DBRUNIF(1, sc->tx_full_count = 0);
   4103 
   4104 	/*
   4105 	 * The NetXtreme II supports a linked-list structure called
   4106 	 * a Buffer Descriptor Chain (or BD chain).  A BD chain
   4107 	 * consists of a series of 1 or more chain pages, each of which
   4108 	 * consists of a fixed number of BD entries.
   4109 	 * The last BD entry on each page is a pointer to the next page
   4110 	 * in the chain, and the last pointer in the BD chain
   4111 	 * points back to the beginning of the chain.
   4112 	 */
   4113 
   4114 	/* Set the TX next pointer chain entries. */
   4115 	for (i = 0; i < TX_PAGES; i++) {
   4116 		int j;
   4117 
   4118 		txbd = &sc->tx_bd_chain[i][USABLE_TX_BD_PER_PAGE];
   4119 
   4120 		/* Check if we've reached the last page. */
   4121 		if (i == (TX_PAGES - 1))
   4122 			j = 0;
   4123 		else
   4124 			j = i + 1;
   4125 
   4126 		addr = (uint32_t)sc->tx_bd_chain_paddr[j];
   4127 		txbd->tx_bd_haddr_lo = addr;
   4128 		addr = (uint32_t)((uint64_t)sc->tx_bd_chain_paddr[j] >> 32);
   4129 		txbd->tx_bd_haddr_hi = addr;
   4130 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4131 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4132 	}
   4133 
   4134 	/*
   4135 	 * Initialize the context ID for an L2 TX chain.
   4136 	 */
   4137 	bnx_init_tx_context(sc);
   4138 
   4139 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4140 
   4141 	return rc;
   4142 }
   4143 
   4144 /****************************************************************************/
   4145 /* Free memory and clear the TX data structures.                            */
   4146 /*                                                                          */
   4147 /* Returns:                                                                 */
   4148 /*   Nothing.                                                               */
   4149 /****************************************************************************/
   4150 void
   4151 bnx_free_tx_chain(struct bnx_softc *sc)
   4152 {
   4153 	struct bnx_pkt		*pkt;
   4154 	int			i;
   4155 
   4156 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4157 
   4158 	/* Unmap, unload, and free any mbufs still in the TX mbuf chain. */
   4159 	mutex_enter(&sc->tx_pkt_mtx);
   4160 	while ((pkt = TAILQ_FIRST(&sc->tx_used_pkts)) != NULL) {
   4161 		TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4162 		mutex_exit(&sc->tx_pkt_mtx);
   4163 
   4164 		bus_dmamap_sync(sc->bnx_dmatag, pkt->pkt_dmamap, 0,
   4165 		    pkt->pkt_dmamap->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4166 		bus_dmamap_unload(sc->bnx_dmatag, pkt->pkt_dmamap);
   4167 
   4168 		m_freem(pkt->pkt_mbuf);
   4169 		DBRUNIF(1, sc->tx_mbuf_alloc--);
   4170 
   4171 		mutex_enter(&sc->tx_pkt_mtx);
   4172 		TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4173 	}
   4174 
   4175 	/* Destroy all the dmamaps we allocated for TX */
   4176 	while ((pkt = TAILQ_FIRST(&sc->tx_free_pkts)) != NULL) {
   4177 		TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   4178 		sc->tx_pkt_count--;
   4179 		mutex_exit(&sc->tx_pkt_mtx);
   4180 
   4181 		bus_dmamap_destroy(sc->bnx_dmatag, pkt->pkt_dmamap);
   4182 		pool_put(bnx_tx_pool, pkt);
   4183 
   4184 		mutex_enter(&sc->tx_pkt_mtx);
   4185 	}
   4186 	mutex_exit(&sc->tx_pkt_mtx);
   4187 
   4188 
   4189 
   4190 	/* Clear each TX chain page. */
   4191 	for (i = 0; i < TX_PAGES; i++) {
   4192 		memset(sc->tx_bd_chain[i], 0, BNX_TX_CHAIN_PAGE_SZ);
   4193 		bus_dmamap_sync(sc->bnx_dmatag, sc->tx_bd_chain_map[i], 0,
   4194 		    BNX_TX_CHAIN_PAGE_SZ, BUS_DMASYNC_PREWRITE);
   4195 	}
   4196 
   4197 	sc->used_tx_bd = 0;
   4198 
   4199 	/* Check if we lost any mbufs in the process. */
   4200 	DBRUNIF((sc->tx_mbuf_alloc),
   4201 	    aprint_error_dev(sc->bnx_dev,
   4202 	        "Memory leak! Lost %d mbufs from tx chain!\n",
   4203 		sc->tx_mbuf_alloc));
   4204 
   4205 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4206 }
   4207 
   4208 /****************************************************************************/
   4209 /* Initialize the RX context memory.                                        */
   4210 /*                                                                          */
   4211 /* Returns:                                                                 */
   4212 /*   Nothing                                                                */
   4213 /****************************************************************************/
   4214 void
   4215 bnx_init_rx_context(struct bnx_softc *sc)
   4216 {
   4217 	uint32_t val;
   4218 
   4219 	/* Initialize the context ID for an L2 RX chain. */
   4220 	val = BNX_L2CTX_CTX_TYPE_CTX_BD_CHN_TYPE_VALUE |
   4221 		BNX_L2CTX_CTX_TYPE_SIZE_L2 | (0x02 << 8);
   4222 
   4223 	if (sc->bnx_flowflags & IFM_ETH_TXPAUSE)
   4224 		val |= 0x000000ff;
   4225 
   4226  	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_CTX_TYPE, val);
   4227 
   4228 	/* Setup the MQ BIN mapping for l2_ctx_host_bseq. */
   4229 	if (BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5709) {
   4230 		val = REG_RD(sc, BNX_MQ_MAP_L2_5);
   4231 		REG_WR(sc, BNX_MQ_MAP_L2_5, val | BNX_MQ_MAP_L2_5_ARM);
   4232 	}
   4233 
   4234 	/* Point the hardware to the first page in the chain. */
   4235 	val = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[0] >> 32);
   4236 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_HI, val);
   4237 	val = (uint32_t)(sc->rx_bd_chain_paddr[0]);
   4238 	CTX_WR(sc, GET_CID_ADDR(RX_CID), BNX_L2CTX_NX_BDHADDR_LO, val);
   4239 }
   4240 
   4241 /****************************************************************************/
   4242 /* Allocate memory and initialize the RX data structures.                   */
   4243 /*                                                                          */
   4244 /* Returns:                                                                 */
   4245 /*   0 for success, positive value for failure.                             */
   4246 /****************************************************************************/
   4247 int
   4248 bnx_init_rx_chain(struct bnx_softc *sc)
   4249 {
   4250 	struct rx_bd		*rxbd;
   4251 	int			i, rc = 0;
   4252 	uint16_t		prod, chain_prod;
   4253 	uint32_t		prod_bseq, addr;
   4254 
   4255 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4256 
   4257 	/* Initialize the RX producer and consumer indices. */
   4258 	sc->rx_prod = 0;
   4259 	sc->rx_cons = 0;
   4260 	sc->rx_prod_bseq = 0;
   4261 	sc->free_rx_bd = USABLE_RX_BD;
   4262 	sc->max_rx_bd = USABLE_RX_BD;
   4263 	DBRUNIF(1, sc->rx_low_watermark = USABLE_RX_BD);
   4264 	DBRUNIF(1, sc->rx_empty_count = 0);
   4265 
   4266 	/* Initialize the RX next pointer chain entries. */
   4267 	for (i = 0; i < RX_PAGES; i++) {
   4268 		int j;
   4269 
   4270 		rxbd = &sc->rx_bd_chain[i][USABLE_RX_BD_PER_PAGE];
   4271 
   4272 		/* Check if we've reached the last page. */
   4273 		if (i == (RX_PAGES - 1))
   4274 			j = 0;
   4275 		else
   4276 			j = i + 1;
   4277 
   4278 		/* Setup the chain page pointers. */
   4279 		addr = (uint32_t)((uint64_t)sc->rx_bd_chain_paddr[j] >> 32);
   4280 		rxbd->rx_bd_haddr_hi = addr;
   4281 		addr = (uint32_t)sc->rx_bd_chain_paddr[j];
   4282 		rxbd->rx_bd_haddr_lo = addr;
   4283 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i],
   4284 		    0, BNX_RX_CHAIN_PAGE_SZ,
   4285 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4286 	}
   4287 
   4288 	/* Allocate mbuf clusters for the rx_bd chain. */
   4289 	prod = prod_bseq = 0;
   4290 	chain_prod = RX_CHAIN_IDX(prod);
   4291 	if (bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq)) {
   4292 		BNX_PRINTF(sc,
   4293 		    "Error filling RX chain: rx_bd[0x%04X]!\n", chain_prod);
   4294 	}
   4295 
   4296 	/* Save the RX chain producer index. */
   4297 	sc->rx_prod = prod;
   4298 	sc->rx_prod_bseq = prod_bseq;
   4299 
   4300 	for (i = 0; i < RX_PAGES; i++)
   4301 		bus_dmamap_sync(sc->bnx_dmatag, sc->rx_bd_chain_map[i], 0,
   4302 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4303 		    BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE);
   4304 
   4305 	/* Tell the chip about the waiting rx_bd's. */
   4306 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4307 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4308 
   4309 	bnx_init_rx_context(sc);
   4310 
   4311 	DBRUN(BNX_VERBOSE_RECV, bnx_dump_rx_chain(sc, 0, TOTAL_RX_BD));
   4312 
   4313 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4314 
   4315 	return rc;
   4316 }
   4317 
   4318 /****************************************************************************/
   4319 /* Free memory and clear the RX data structures.                            */
   4320 /*                                                                          */
   4321 /* Returns:                                                                 */
   4322 /*   Nothing.                                                               */
   4323 /****************************************************************************/
   4324 void
   4325 bnx_free_rx_chain(struct bnx_softc *sc)
   4326 {
   4327 	int			i;
   4328 
   4329 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4330 
   4331 	/* Free any mbufs still in the RX mbuf chain. */
   4332 	for (i = 0; i < TOTAL_RX_BD; i++) {
   4333 		if (sc->rx_mbuf_ptr[i] != NULL) {
   4334 			if (sc->rx_mbuf_map[i] != NULL) {
   4335 				bus_dmamap_sync(sc->bnx_dmatag,
   4336 				    sc->rx_mbuf_map[i],	0,
   4337 				    sc->rx_mbuf_map[i]->dm_mapsize,
   4338 				    BUS_DMASYNC_POSTREAD);
   4339 				bus_dmamap_unload(sc->bnx_dmatag,
   4340 				    sc->rx_mbuf_map[i]);
   4341 			}
   4342 			m_freem(sc->rx_mbuf_ptr[i]);
   4343 			sc->rx_mbuf_ptr[i] = NULL;
   4344 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4345 		}
   4346 	}
   4347 
   4348 	/* Clear each RX chain page. */
   4349 	for (i = 0; i < RX_PAGES; i++)
   4350 		memset(sc->rx_bd_chain[i], 0, BNX_RX_CHAIN_PAGE_SZ);
   4351 
   4352 	sc->free_rx_bd = sc->max_rx_bd;
   4353 
   4354 	/* Check if we lost any mbufs in the process. */
   4355 	DBRUNIF((sc->rx_mbuf_alloc),
   4356 	    aprint_error_dev(sc->bnx_dev,
   4357 	        "Memory leak! Lost %d mbufs from rx chain!\n",
   4358 		sc->rx_mbuf_alloc));
   4359 
   4360 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4361 }
   4362 
   4363 /****************************************************************************/
   4364 /* Reports current media status.                                            */
   4365 /*                                                                          */
   4366 /* Returns:                                                                 */
   4367 /*   Nothing.                                                               */
   4368 /****************************************************************************/
   4369 void
   4370 bnx_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr)
   4371 {
   4372 	struct bnx_softc	*sc;
   4373 	struct mii_data		*mii;
   4374 	int			s;
   4375 
   4376 	sc = ifp->if_softc;
   4377 
   4378 	s = splnet();
   4379 
   4380 	mii = &sc->bnx_mii;
   4381 
   4382 	mii_pollstat(mii);
   4383 	ifmr->ifm_status = mii->mii_media_status;
   4384 	ifmr->ifm_active = (mii->mii_media_active & ~IFM_ETH_FMASK) |
   4385 	    sc->bnx_flowflags;
   4386 
   4387 	splx(s);
   4388 }
   4389 
   4390 /****************************************************************************/
   4391 /* Handles PHY generated interrupt events.                                  */
   4392 /*                                                                          */
   4393 /* Returns:                                                                 */
   4394 /*   Nothing.                                                               */
   4395 /****************************************************************************/
   4396 void
   4397 bnx_phy_intr(struct bnx_softc *sc)
   4398 {
   4399 	uint32_t		new_link_state, old_link_state;
   4400 
   4401 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4402 	    BUS_DMASYNC_POSTREAD);
   4403 	new_link_state = sc->status_block->status_attn_bits &
   4404 	    STATUS_ATTN_BITS_LINK_STATE;
   4405 	old_link_state = sc->status_block->status_attn_bits_ack &
   4406 	    STATUS_ATTN_BITS_LINK_STATE;
   4407 
   4408 	/* Handle any changes if the link state has changed. */
   4409 	if (new_link_state != old_link_state) {
   4410 		DBRUN(BNX_VERBOSE_INTR, bnx_dump_status_block(sc));
   4411 
   4412 		callout_stop(&sc->bnx_timeout);
   4413 		bnx_tick(sc);
   4414 
   4415 		/* Update the status_attn_bits_ack field in the status block. */
   4416 		if (new_link_state) {
   4417 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_SET_CMD,
   4418 			    STATUS_ATTN_BITS_LINK_STATE);
   4419 			DBPRINT(sc, BNX_INFO, "Link is now UP.\n");
   4420 		} else {
   4421 			REG_WR(sc, BNX_PCICFG_STATUS_BIT_CLEAR_CMD,
   4422 			    STATUS_ATTN_BITS_LINK_STATE);
   4423 			DBPRINT(sc, BNX_INFO, "Link is now DOWN.\n");
   4424 		}
   4425 	}
   4426 
   4427 	/* Acknowledge the link change interrupt. */
   4428 	REG_WR(sc, BNX_EMAC_STATUS, BNX_EMAC_STATUS_LINK_CHANGE);
   4429 }
   4430 
   4431 /****************************************************************************/
   4432 /* Handles received frame interrupt events.                                 */
   4433 /*                                                                          */
   4434 /* Returns:                                                                 */
   4435 /*   Nothing.                                                               */
   4436 /****************************************************************************/
   4437 void
   4438 bnx_rx_intr(struct bnx_softc *sc)
   4439 {
   4440 	struct status_block	*sblk = sc->status_block;
   4441 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4442 	uint16_t		hw_cons, sw_cons, sw_chain_cons;
   4443 	uint16_t		sw_prod, sw_chain_prod;
   4444 	uint32_t		sw_prod_bseq;
   4445 	struct l2_fhdr		*l2fhdr;
   4446 	int			i;
   4447 
   4448 	DBRUNIF(1, sc->rx_interrupts++);
   4449 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4450 	    BUS_DMASYNC_POSTREAD);
   4451 
   4452 	/* Prepare the RX chain pages to be accessed by the host CPU. */
   4453 	for (i = 0; i < RX_PAGES; i++)
   4454 		bus_dmamap_sync(sc->bnx_dmatag,
   4455 		    sc->rx_bd_chain_map[i], 0,
   4456 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4457 		    BUS_DMASYNC_POSTWRITE);
   4458 
   4459 	/* Get the hardware's view of the RX consumer index. */
   4460 	hw_cons = sc->hw_rx_cons = sblk->status_rx_quick_consumer_index0;
   4461 	if ((hw_cons & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   4462 		hw_cons++;
   4463 
   4464 	/* Get working copies of the driver's view of the RX indices. */
   4465 	sw_cons = sc->rx_cons;
   4466 	sw_prod = sc->rx_prod;
   4467 	sw_prod_bseq = sc->rx_prod_bseq;
   4468 
   4469 	DBPRINT(sc, BNX_INFO_RECV, "%s(enter): sw_prod = 0x%04X, "
   4470 	    "sw_cons = 0x%04X, sw_prod_bseq = 0x%08X\n",
   4471 	    __func__, sw_prod, sw_cons, sw_prod_bseq);
   4472 
   4473 	/* Prevent speculative reads from getting ahead of the status block. */
   4474 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4475 	    BUS_SPACE_BARRIER_READ);
   4476 
   4477 	/* Update some debug statistics counters */
   4478 	DBRUNIF((sc->free_rx_bd < sc->rx_low_watermark),
   4479 	    sc->rx_low_watermark = sc->free_rx_bd);
   4480 	DBRUNIF((sc->free_rx_bd == USABLE_RX_BD), sc->rx_empty_count++);
   4481 
   4482 	/*
   4483 	 * Scan through the receive chain as long
   4484 	 * as there is work to do.
   4485 	 */
   4486 	while (sw_cons != hw_cons) {
   4487 		struct mbuf *m;
   4488 		struct rx_bd *rxbd __diagused;
   4489 		unsigned int len;
   4490 		uint32_t status;
   4491 
   4492 		/* Convert the producer/consumer indices to an actual
   4493 		 * rx_bd index.
   4494 		 */
   4495 		sw_chain_cons = RX_CHAIN_IDX(sw_cons);
   4496 		sw_chain_prod = RX_CHAIN_IDX(sw_prod);
   4497 
   4498 		/* Get the used rx_bd. */
   4499 		rxbd = &sc->rx_bd_chain[RX_PAGE(sw_chain_cons)][RX_IDX(sw_chain_cons)];
   4500 		sc->free_rx_bd++;
   4501 
   4502 		DBRUN(BNX_VERBOSE_RECV, aprint_error("%s(): ", __func__);
   4503 		bnx_dump_rxbd(sc, sw_chain_cons, rxbd));
   4504 
   4505 		/* The mbuf is stored with the last rx_bd entry of a packet. */
   4506 		if (sc->rx_mbuf_ptr[sw_chain_cons] != NULL) {
   4507 #ifdef DIAGNOSTIC
   4508 			/* Validate that this is the last rx_bd. */
   4509 			if ((rxbd->rx_bd_flags & RX_BD_FLAGS_END) == 0) {
   4510 			    printf("%s: Unexpected mbuf found in "
   4511 			        "rx_bd[0x%04X]!\n", device_xname(sc->bnx_dev),
   4512 			        sw_chain_cons);
   4513 			}
   4514 #endif
   4515 
   4516 			/* DRC - ToDo: If the received packet is small, say
   4517 			 *             less than 128 bytes, allocate a new mbuf
   4518 			 *             here, copy the data to that mbuf, and
   4519 			 *             recycle the mapped jumbo frame.
   4520 			 */
   4521 
   4522 			/* Unmap the mbuf from DMA space. */
   4523 #ifdef DIAGNOSTIC
   4524 			if (sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize == 0) {
   4525 				printf("invalid map sw_cons 0x%x "
   4526 				"sw_prod 0x%x "
   4527 				"sw_chain_cons 0x%x "
   4528 				"sw_chain_prod 0x%x "
   4529 				"hw_cons 0x%x "
   4530 				"TOTAL_RX_BD_PER_PAGE 0x%x "
   4531 				"TOTAL_RX_BD 0x%x\n",
   4532 				sw_cons, sw_prod, sw_chain_cons, sw_chain_prod,
   4533 				hw_cons,
   4534 				(int)TOTAL_RX_BD_PER_PAGE, (int)TOTAL_RX_BD);
   4535 			}
   4536 #endif
   4537 			bus_dmamap_sync(sc->bnx_dmatag,
   4538 			    sc->rx_mbuf_map[sw_chain_cons], 0,
   4539 			    sc->rx_mbuf_map[sw_chain_cons]->dm_mapsize,
   4540 			    BUS_DMASYNC_POSTREAD);
   4541 			bus_dmamap_unload(sc->bnx_dmatag,
   4542 			    sc->rx_mbuf_map[sw_chain_cons]);
   4543 
   4544 			/* Remove the mbuf from the driver's chain. */
   4545 			m = sc->rx_mbuf_ptr[sw_chain_cons];
   4546 			sc->rx_mbuf_ptr[sw_chain_cons] = NULL;
   4547 
   4548 			/*
   4549 			 * Frames received on the NetXteme II are prepended
   4550 			 * with the l2_fhdr structure which provides status
   4551 			 * information about the received frame (including
   4552 			 * VLAN tags and checksum info) and are also
   4553 			 * automatically adjusted to align the IP header
   4554 			 * (i.e. two null bytes are inserted before the
   4555 			 * Ethernet header).
   4556 			 */
   4557 			l2fhdr = mtod(m, struct l2_fhdr *);
   4558 
   4559 			len    = l2fhdr->l2_fhdr_pkt_len;
   4560 			status = l2fhdr->l2_fhdr_status;
   4561 
   4562 			DBRUNIF(DB_RANDOMTRUE(bnx_debug_l2fhdr_status_check),
   4563 			    aprint_error("Simulating l2_fhdr status error.\n");
   4564 			    status = status | L2_FHDR_ERRORS_PHY_DECODE);
   4565 
   4566 			/* Watch for unusual sized frames. */
   4567 			DBRUNIF(((len < BNX_MIN_MTU) ||
   4568 			    (len > BNX_MAX_JUMBO_ETHER_MTU_VLAN)),
   4569 			    aprint_error_dev(sc->bnx_dev,
   4570 			        "Unusual frame size found. "
   4571 				"Min(%d), Actual(%d), Max(%d)\n",
   4572 				(int)BNX_MIN_MTU, len,
   4573 				(int)BNX_MAX_JUMBO_ETHER_MTU_VLAN);
   4574 
   4575 			bnx_dump_mbuf(sc, m);
   4576 			bnx_breakpoint(sc));
   4577 
   4578 			len -= ETHER_CRC_LEN;
   4579 
   4580 			/* Check the received frame for errors. */
   4581 			if ((status &  (L2_FHDR_ERRORS_BAD_CRC |
   4582 			    L2_FHDR_ERRORS_PHY_DECODE |
   4583 			    L2_FHDR_ERRORS_ALIGNMENT |
   4584 			    L2_FHDR_ERRORS_TOO_SHORT |
   4585 			    L2_FHDR_ERRORS_GIANT_FRAME)) ||
   4586 			    len < (BNX_MIN_MTU - ETHER_CRC_LEN) ||
   4587 			    len >
   4588 			    (BNX_MAX_JUMBO_ETHER_MTU_VLAN - ETHER_CRC_LEN)) {
   4589 				ifp->if_ierrors++;
   4590 				DBRUNIF(1, sc->l2fhdr_status_errors++);
   4591 
   4592 				/* Reuse the mbuf for a new frame. */
   4593 				if (bnx_add_buf(sc, m, &sw_prod,
   4594 				    &sw_chain_prod, &sw_prod_bseq)) {
   4595 					DBRUNIF(1, bnx_breakpoint(sc));
   4596 					panic("%s: Can't reuse RX mbuf!\n",
   4597 					    device_xname(sc->bnx_dev));
   4598 				}
   4599 				continue;
   4600 			}
   4601 
   4602 			/*
   4603 			 * Get a new mbuf for the rx_bd.   If no new
   4604 			 * mbufs are available then reuse the current mbuf,
   4605 			 * log an ierror on the interface, and generate
   4606 			 * an error in the system log.
   4607 			 */
   4608 			if (bnx_get_buf(sc, &sw_prod, &sw_chain_prod,
   4609 			    &sw_prod_bseq)) {
   4610 				DBRUN(BNX_WARN, aprint_debug_dev(sc->bnx_dev,
   4611 				    "Failed to allocate "
   4612 				    "new mbuf, incoming frame dropped!\n"));
   4613 
   4614 				ifp->if_ierrors++;
   4615 
   4616 				/* Try and reuse the exisitng mbuf. */
   4617 				if (bnx_add_buf(sc, m, &sw_prod,
   4618 				    &sw_chain_prod, &sw_prod_bseq)) {
   4619 					DBRUNIF(1, bnx_breakpoint(sc));
   4620 					panic("%s: Double mbuf allocation "
   4621 					    "failure!",
   4622 					    device_xname(sc->bnx_dev));
   4623 				}
   4624 				continue;
   4625 			}
   4626 
   4627 			/* Skip over the l2_fhdr when passing the data up
   4628 			 * the stack.
   4629 			 */
   4630 			m_adj(m, sizeof(struct l2_fhdr) + ETHER_ALIGN);
   4631 
   4632 			/* Adjust the pckt length to match the received data. */
   4633 			m->m_pkthdr.len = m->m_len = len;
   4634 
   4635 			/* Send the packet to the appropriate interface. */
   4636 			m_set_rcvif(m, ifp);
   4637 
   4638 			DBRUN(BNX_VERBOSE_RECV,
   4639 			    struct ether_header *eh;
   4640 			    eh = mtod(m, struct ether_header *);
   4641 			    aprint_error("%s: to: %s, from: %s, type: 0x%04X\n",
   4642 			    __func__, ether_sprintf(eh->ether_dhost),
   4643 			    ether_sprintf(eh->ether_shost),
   4644 			    htons(eh->ether_type)));
   4645 
   4646 			/* Validate the checksum. */
   4647 
   4648 			/* Check for an IP datagram. */
   4649 			if (status & L2_FHDR_STATUS_IP_DATAGRAM) {
   4650 				/* Check if the IP checksum is valid. */
   4651 				if ((l2fhdr->l2_fhdr_ip_xsum ^ 0xffff) == 0)
   4652 					m->m_pkthdr.csum_flags |= M_CSUM_IPv4;
   4653 #ifdef BNX_DEBUG
   4654 				else
   4655 					DBPRINT(sc, BNX_WARN_SEND,
   4656 					    "%s(): Invalid IP checksum "
   4657 					        "= 0x%04X!\n",
   4658 						__func__,
   4659 						l2fhdr->l2_fhdr_ip_xsum
   4660 						);
   4661 #endif
   4662 			}
   4663 
   4664 			/* Check for a valid TCP/UDP frame. */
   4665 			if (status & (L2_FHDR_STATUS_TCP_SEGMENT |
   4666 			    L2_FHDR_STATUS_UDP_DATAGRAM)) {
   4667 				/* Check for a good TCP/UDP checksum. */
   4668 				if ((status &
   4669 				    (L2_FHDR_ERRORS_TCP_XSUM |
   4670 				    L2_FHDR_ERRORS_UDP_XSUM)) == 0) {
   4671 					m->m_pkthdr.csum_flags |=
   4672 					    M_CSUM_TCPv4 |
   4673 					    M_CSUM_UDPv4;
   4674 				} else {
   4675 					DBPRINT(sc, BNX_WARN_SEND,
   4676 					    "%s(): Invalid TCP/UDP "
   4677 					    "checksum = 0x%04X!\n",
   4678 					    __func__,
   4679 					    l2fhdr->l2_fhdr_tcp_udp_xsum);
   4680 				}
   4681 			}
   4682 
   4683 			/*
   4684 			 * If we received a packet with a vlan tag,
   4685 			 * attach that information to the packet.
   4686 			 */
   4687 			if ((status & L2_FHDR_STATUS_L2_VLAN_TAG) &&
   4688 			    !(sc->rx_mode & BNX_EMAC_RX_MODE_KEEP_VLAN_TAG)) {
   4689 				vlan_set_tag(m, l2fhdr->l2_fhdr_vlan_tag);
   4690 			}
   4691 
   4692 			/* Pass the mbuf off to the upper layers. */
   4693 
   4694 			DBPRINT(sc, BNX_VERBOSE_RECV,
   4695 			    "%s(): Passing received frame up.\n", __func__);
   4696 			if_percpuq_enqueue(ifp->if_percpuq, m);
   4697 			DBRUNIF(1, sc->rx_mbuf_alloc--);
   4698 
   4699 		}
   4700 
   4701 		sw_cons = NEXT_RX_BD(sw_cons);
   4702 
   4703 		/* Refresh hw_cons to see if there's new work */
   4704 		if (sw_cons == hw_cons) {
   4705 			hw_cons = sc->hw_rx_cons =
   4706 			    sblk->status_rx_quick_consumer_index0;
   4707 			if ((hw_cons & USABLE_RX_BD_PER_PAGE) ==
   4708 			    USABLE_RX_BD_PER_PAGE)
   4709 				hw_cons++;
   4710 		}
   4711 
   4712 		/* Prevent speculative reads from getting ahead of
   4713 		 * the status block.
   4714 		 */
   4715 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4716 		    BUS_SPACE_BARRIER_READ);
   4717 	}
   4718 
   4719 	for (i = 0; i < RX_PAGES; i++)
   4720 		bus_dmamap_sync(sc->bnx_dmatag,
   4721 		    sc->rx_bd_chain_map[i], 0,
   4722 		    sc->rx_bd_chain_map[i]->dm_mapsize,
   4723 		    BUS_DMASYNC_PREWRITE);
   4724 
   4725 	sc->rx_cons = sw_cons;
   4726 	sc->rx_prod = sw_prod;
   4727 	sc->rx_prod_bseq = sw_prod_bseq;
   4728 
   4729 	REG_WR16(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BDIDX, sc->rx_prod);
   4730 	REG_WR(sc, MB_RX_CID_ADDR + BNX_L2CTX_HOST_BSEQ, sc->rx_prod_bseq);
   4731 
   4732 	DBPRINT(sc, BNX_INFO_RECV, "%s(exit): rx_prod = 0x%04X, "
   4733 	    "rx_cons = 0x%04X, rx_prod_bseq = 0x%08X\n",
   4734 	    __func__, sc->rx_prod, sc->rx_cons, sc->rx_prod_bseq);
   4735 }
   4736 
   4737 /****************************************************************************/
   4738 /* Handles transmit completion interrupt events.                            */
   4739 /*                                                                          */
   4740 /* Returns:                                                                 */
   4741 /*   Nothing.                                                               */
   4742 /****************************************************************************/
   4743 void
   4744 bnx_tx_intr(struct bnx_softc *sc)
   4745 {
   4746 	struct status_block	*sblk = sc->status_block;
   4747 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   4748 	struct bnx_pkt		*pkt;
   4749 	bus_dmamap_t		map;
   4750 	uint16_t		hw_tx_cons, sw_tx_cons, sw_tx_chain_cons;
   4751 
   4752 	DBRUNIF(1, sc->tx_interrupts++);
   4753 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   4754 	    BUS_DMASYNC_POSTREAD);
   4755 
   4756 	/* Get the hardware's view of the TX consumer index. */
   4757 	hw_tx_cons = sc->hw_tx_cons = sblk->status_tx_quick_consumer_index0;
   4758 
   4759 	/* Skip to the next entry if this is a chain page pointer. */
   4760 	if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   4761 		hw_tx_cons++;
   4762 
   4763 	sw_tx_cons = sc->tx_cons;
   4764 
   4765 	/* Prevent speculative reads from getting ahead of the status block. */
   4766 	bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4767 	    BUS_SPACE_BARRIER_READ);
   4768 
   4769 	/* Cycle through any completed TX chain page entries. */
   4770 	while (sw_tx_cons != hw_tx_cons) {
   4771 #ifdef BNX_DEBUG
   4772 		struct tx_bd *txbd = NULL;
   4773 #endif
   4774 		sw_tx_chain_cons = TX_CHAIN_IDX(sw_tx_cons);
   4775 
   4776 		DBPRINT(sc, BNX_INFO_SEND, "%s(): hw_tx_cons = 0x%04X, "
   4777 		    "sw_tx_cons = 0x%04X, sw_tx_chain_cons = 0x%04X\n",
   4778 		    __func__, hw_tx_cons, sw_tx_cons, sw_tx_chain_cons);
   4779 
   4780 		DBRUNIF((sw_tx_chain_cons > MAX_TX_BD),
   4781 		    aprint_error_dev(sc->bnx_dev,
   4782 		        "TX chain consumer out of range! 0x%04X > 0x%04X\n",
   4783 			sw_tx_chain_cons, (int)MAX_TX_BD); bnx_breakpoint(sc));
   4784 
   4785 		DBRUNIF(1, txbd = &sc->tx_bd_chain
   4786 		    [TX_PAGE(sw_tx_chain_cons)][TX_IDX(sw_tx_chain_cons)]);
   4787 
   4788 		DBRUNIF((txbd == NULL),
   4789 		    aprint_error_dev(sc->bnx_dev,
   4790 		        "Unexpected NULL tx_bd[0x%04X]!\n", sw_tx_chain_cons);
   4791 		    bnx_breakpoint(sc));
   4792 
   4793 		DBRUN(BNX_INFO_SEND, aprint_debug("%s: ", __func__);
   4794 		    bnx_dump_txbd(sc, sw_tx_chain_cons, txbd));
   4795 
   4796 
   4797 		mutex_enter(&sc->tx_pkt_mtx);
   4798 		pkt = TAILQ_FIRST(&sc->tx_used_pkts);
   4799 		if (pkt != NULL && pkt->pkt_end_desc == sw_tx_chain_cons) {
   4800 			TAILQ_REMOVE(&sc->tx_used_pkts, pkt, pkt_entry);
   4801 			mutex_exit(&sc->tx_pkt_mtx);
   4802 			/*
   4803 			 * Free the associated mbuf. Remember
   4804 			 * that only the last tx_bd of a packet
   4805 			 * has an mbuf pointer and DMA map.
   4806 			 */
   4807 			map = pkt->pkt_dmamap;
   4808 			bus_dmamap_sync(sc->bnx_dmatag, map, 0,
   4809 			    map->dm_mapsize, BUS_DMASYNC_POSTWRITE);
   4810 			bus_dmamap_unload(sc->bnx_dmatag, map);
   4811 
   4812 			m_freem(pkt->pkt_mbuf);
   4813 			DBRUNIF(1, sc->tx_mbuf_alloc--);
   4814 
   4815 			ifp->if_opackets++;
   4816 
   4817 			mutex_enter(&sc->tx_pkt_mtx);
   4818 			TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   4819 		}
   4820 		mutex_exit(&sc->tx_pkt_mtx);
   4821 
   4822 		sc->used_tx_bd--;
   4823 		DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   4824 			__FILE__, __LINE__, sc->used_tx_bd);
   4825 
   4826 		sw_tx_cons = NEXT_TX_BD(sw_tx_cons);
   4827 
   4828 		/* Refresh hw_cons to see if there's new work. */
   4829 		hw_tx_cons = sc->hw_tx_cons =
   4830 		    sblk->status_tx_quick_consumer_index0;
   4831 		if ((hw_tx_cons & USABLE_TX_BD_PER_PAGE) ==
   4832 		    USABLE_TX_BD_PER_PAGE)
   4833 			hw_tx_cons++;
   4834 
   4835 		/* Prevent speculative reads from getting ahead of
   4836 		 * the status block.
   4837 		 */
   4838 		bus_space_barrier(sc->bnx_btag, sc->bnx_bhandle, 0, 0,
   4839 		    BUS_SPACE_BARRIER_READ);
   4840 	}
   4841 
   4842 	/* Clear the TX timeout timer. */
   4843 	ifp->if_timer = 0;
   4844 
   4845 	/* Clear the tx hardware queue full flag. */
   4846 	if (sc->used_tx_bd < sc->max_tx_bd) {
   4847 		DBRUNIF((ifp->if_flags & IFF_OACTIVE),
   4848 		    aprint_debug_dev(sc->bnx_dev,
   4849 		        "Open TX chain! %d/%d (used/total)\n",
   4850 			sc->used_tx_bd, sc->max_tx_bd));
   4851 		ifp->if_flags &= ~IFF_OACTIVE;
   4852 	}
   4853 
   4854 	sc->tx_cons = sw_tx_cons;
   4855 }
   4856 
   4857 /****************************************************************************/
   4858 /* Disables interrupt generation.                                           */
   4859 /*                                                                          */
   4860 /* Returns:                                                                 */
   4861 /*   Nothing.                                                               */
   4862 /****************************************************************************/
   4863 void
   4864 bnx_disable_intr(struct bnx_softc *sc)
   4865 {
   4866 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_MASK_INT);
   4867 	REG_RD(sc, BNX_PCICFG_INT_ACK_CMD);
   4868 }
   4869 
   4870 /****************************************************************************/
   4871 /* Enables interrupt generation.                                            */
   4872 /*                                                                          */
   4873 /* Returns:                                                                 */
   4874 /*   Nothing.                                                               */
   4875 /****************************************************************************/
   4876 void
   4877 bnx_enable_intr(struct bnx_softc *sc)
   4878 {
   4879 	uint32_t		val;
   4880 
   4881 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4882 	    BNX_PCICFG_INT_ACK_CMD_MASK_INT | sc->last_status_idx);
   4883 
   4884 	REG_WR(sc, BNX_PCICFG_INT_ACK_CMD, BNX_PCICFG_INT_ACK_CMD_INDEX_VALID |
   4885 	    sc->last_status_idx);
   4886 
   4887 	val = REG_RD(sc, BNX_HC_COMMAND);
   4888 	REG_WR(sc, BNX_HC_COMMAND, val | BNX_HC_COMMAND_COAL_NOW);
   4889 }
   4890 
   4891 /****************************************************************************/
   4892 /* Handles controller initialization.                                       */
   4893 /*                                                                          */
   4894 /****************************************************************************/
   4895 int
   4896 bnx_init(struct ifnet *ifp)
   4897 {
   4898 	struct bnx_softc	*sc = ifp->if_softc;
   4899 	uint32_t		ether_mtu;
   4900 	int			s, error = 0;
   4901 
   4902 	DBPRINT(sc, BNX_VERBOSE_RESET, "Entering %s()\n", __func__);
   4903 
   4904 	s = splnet();
   4905 
   4906 	bnx_stop(ifp, 0);
   4907 
   4908 	if ((error = bnx_reset(sc, BNX_DRV_MSG_CODE_RESET)) != 0) {
   4909 		aprint_error_dev(sc->bnx_dev,
   4910 		    "Controller reset failed!\n");
   4911 		goto bnx_init_exit;
   4912 	}
   4913 
   4914 	if ((error = bnx_chipinit(sc)) != 0) {
   4915 		aprint_error_dev(sc->bnx_dev,
   4916 		    "Controller initialization failed!\n");
   4917 		goto bnx_init_exit;
   4918 	}
   4919 
   4920 	if ((error = bnx_blockinit(sc)) != 0) {
   4921 		aprint_error_dev(sc->bnx_dev,
   4922 		    "Block initialization failed!\n");
   4923 		goto bnx_init_exit;
   4924 	}
   4925 
   4926 	/* Calculate and program the Ethernet MRU size. */
   4927 	if (ifp->if_mtu <= ETHERMTU) {
   4928 		ether_mtu = BNX_MAX_STD_ETHER_MTU_VLAN;
   4929 		sc->mbuf_alloc_size = MCLBYTES;
   4930 	} else {
   4931 		ether_mtu = BNX_MAX_JUMBO_ETHER_MTU_VLAN;
   4932 		sc->mbuf_alloc_size = BNX_MAX_JUMBO_MRU;
   4933 	}
   4934 
   4935 
   4936 	DBPRINT(sc, BNX_INFO, "%s(): setting MRU = %d\n", __func__, ether_mtu);
   4937 
   4938 	/*
   4939 	 * Program the MRU and enable Jumbo frame
   4940 	 * support.
   4941 	 */
   4942 	REG_WR(sc, BNX_EMAC_RX_MTU_SIZE, ether_mtu |
   4943 		BNX_EMAC_RX_MTU_SIZE_JUMBO_ENA);
   4944 
   4945 	/* Calculate the RX Ethernet frame size for rx_bd's. */
   4946 	sc->max_frame_size = sizeof(struct l2_fhdr) + 2 + ether_mtu + 8;
   4947 
   4948 	DBPRINT(sc, BNX_INFO, "%s(): mclbytes = %d, mbuf_alloc_size = %d, "
   4949 	    "max_frame_size = %d\n", __func__, (int)MCLBYTES,
   4950 	    sc->mbuf_alloc_size, sc->max_frame_size);
   4951 
   4952 	/* Program appropriate promiscuous/multicast filtering. */
   4953 	bnx_iff(sc);
   4954 
   4955 	/* Init RX buffer descriptor chain. */
   4956 	bnx_init_rx_chain(sc);
   4957 
   4958 	/* Init TX buffer descriptor chain. */
   4959 	bnx_init_tx_chain(sc);
   4960 
   4961 	/* Enable host interrupts. */
   4962 	bnx_enable_intr(sc);
   4963 
   4964 	if ((error = ether_mediachange(ifp)) != 0)
   4965 		goto bnx_init_exit;
   4966 
   4967 	SET(ifp->if_flags, IFF_RUNNING);
   4968 	CLR(ifp->if_flags, IFF_OACTIVE);
   4969 
   4970 	callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   4971 
   4972 bnx_init_exit:
   4973 	DBPRINT(sc, BNX_VERBOSE_RESET, "Exiting %s()\n", __func__);
   4974 
   4975 	splx(s);
   4976 
   4977 	return error;
   4978 }
   4979 
   4980 /****************************************************************************/
   4981 /* Encapsultes an mbuf cluster into the tx_bd chain structure and makes the */
   4982 /* memory visible to the controller.                                        */
   4983 /*                                                                          */
   4984 /* Returns:                                                                 */
   4985 /*   0 for success, positive value for failure.                             */
   4986 /****************************************************************************/
   4987 int
   4988 bnx_tx_encap(struct bnx_softc *sc, struct mbuf *m)
   4989 {
   4990 	struct bnx_pkt		*pkt;
   4991 	bus_dmamap_t		map;
   4992 	struct tx_bd		*txbd = NULL;
   4993 	uint16_t		vlan_tag = 0, flags = 0;
   4994 	uint16_t		chain_prod, prod;
   4995 #ifdef BNX_DEBUG
   4996 	uint16_t		debug_prod;
   4997 #endif
   4998 	uint32_t		addr, prod_bseq;
   4999 	int			i, error;
   5000 	static struct work	bnx_wk; /* Dummy work. Statically allocated. */
   5001 
   5002 	mutex_enter(&sc->tx_pkt_mtx);
   5003 	pkt = TAILQ_FIRST(&sc->tx_free_pkts);
   5004 	if (pkt == NULL) {
   5005 		if (!ISSET(sc->bnx_ec.ec_if.if_flags, IFF_UP)) {
   5006 			mutex_exit(&sc->tx_pkt_mtx);
   5007 			return ENETDOWN;
   5008 		}
   5009 
   5010 		if (sc->tx_pkt_count <= TOTAL_TX_BD &&
   5011 		    !ISSET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG)) {
   5012 			workqueue_enqueue(sc->bnx_wq, &bnx_wk, NULL);
   5013 			SET(sc->bnx_flags, BNX_ALLOC_PKTS_FLAG);
   5014 		}
   5015 
   5016 		mutex_exit(&sc->tx_pkt_mtx);
   5017 		return ENOMEM;
   5018 	}
   5019 	TAILQ_REMOVE(&sc->tx_free_pkts, pkt, pkt_entry);
   5020 	mutex_exit(&sc->tx_pkt_mtx);
   5021 
   5022 	/* Transfer any checksum offload flags to the bd. */
   5023 	if (m->m_pkthdr.csum_flags) {
   5024 		if (m->m_pkthdr.csum_flags & M_CSUM_IPv4)
   5025 			flags |= TX_BD_FLAGS_IP_CKSUM;
   5026 		if (m->m_pkthdr.csum_flags &
   5027 		    (M_CSUM_TCPv4 | M_CSUM_UDPv4))
   5028 			flags |= TX_BD_FLAGS_TCP_UDP_CKSUM;
   5029 	}
   5030 
   5031 	/* Transfer any VLAN tags to the bd. */
   5032 	if (vlan_has_tag(m)) {
   5033 		flags |= TX_BD_FLAGS_VLAN_TAG;
   5034 		vlan_tag = vlan_get_tag(m);
   5035 	}
   5036 
   5037 	/* Map the mbuf into DMAable memory. */
   5038 	prod = sc->tx_prod;
   5039 	chain_prod = TX_CHAIN_IDX(prod);
   5040 	map = pkt->pkt_dmamap;
   5041 
   5042 	/* Map the mbuf into our DMA address space. */
   5043 	error = bus_dmamap_load_mbuf(sc->bnx_dmatag, map, m, BUS_DMA_NOWAIT);
   5044 	if (error != 0) {
   5045 		aprint_error_dev(sc->bnx_dev,
   5046 		    "Error mapping mbuf into TX chain!\n");
   5047 		sc->tx_dma_map_failures++;
   5048 		goto maperr;
   5049 	}
   5050 	bus_dmamap_sync(sc->bnx_dmatag, map, 0, map->dm_mapsize,
   5051 	    BUS_DMASYNC_PREWRITE);
   5052 	/* Make sure there's room in the chain */
   5053 	if (map->dm_nsegs > (sc->max_tx_bd - sc->used_tx_bd))
   5054 		goto nospace;
   5055 
   5056 	/* prod points to an empty tx_bd at this point. */
   5057 	prod_bseq = sc->tx_prod_bseq;
   5058 #ifdef BNX_DEBUG
   5059 	debug_prod = chain_prod;
   5060 #endif
   5061 	DBPRINT(sc, BNX_INFO_SEND,
   5062 		"%s(): Start: prod = 0x%04X, chain_prod = %04X, "
   5063 		"prod_bseq = 0x%08X\n",
   5064 		__func__, prod, chain_prod, prod_bseq);
   5065 
   5066 	/*
   5067 	 * Cycle through each mbuf segment that makes up
   5068 	 * the outgoing frame, gathering the mapping info
   5069 	 * for that segment and creating a tx_bd for the
   5070 	 * mbuf.
   5071 	 */
   5072 	for (i = 0; i < map->dm_nsegs ; i++) {
   5073 		chain_prod = TX_CHAIN_IDX(prod);
   5074 		txbd = &sc->tx_bd_chain[TX_PAGE(chain_prod)][TX_IDX(chain_prod)];
   5075 
   5076 		addr = (uint32_t)map->dm_segs[i].ds_addr;
   5077 		txbd->tx_bd_haddr_lo = addr;
   5078 		addr = (uint32_t)((uint64_t)map->dm_segs[i].ds_addr >> 32);
   5079 		txbd->tx_bd_haddr_hi = addr;
   5080 		txbd->tx_bd_mss_nbytes = map->dm_segs[i].ds_len;
   5081 		txbd->tx_bd_vlan_tag = vlan_tag;
   5082 		txbd->tx_bd_flags = flags;
   5083 		prod_bseq += map->dm_segs[i].ds_len;
   5084 		if (i == 0)
   5085 			txbd->tx_bd_flags |= TX_BD_FLAGS_START;
   5086 		prod = NEXT_TX_BD(prod);
   5087 	}
   5088 	/* Set the END flag on the last TX buffer descriptor. */
   5089 	txbd->tx_bd_flags |= TX_BD_FLAGS_END;
   5090 
   5091 	DBRUN(BNX_INFO_SEND, bnx_dump_tx_chain(sc, debug_prod, map->dm_nsegs));
   5092 
   5093 	DBPRINT(sc, BNX_INFO_SEND,
   5094 		"%s(): End: prod = 0x%04X, chain_prod = %04X, "
   5095 		"prod_bseq = 0x%08X\n",
   5096 		__func__, prod, chain_prod, prod_bseq);
   5097 
   5098 	pkt->pkt_mbuf = m;
   5099 	pkt->pkt_end_desc = chain_prod;
   5100 
   5101 	mutex_enter(&sc->tx_pkt_mtx);
   5102 	TAILQ_INSERT_TAIL(&sc->tx_used_pkts, pkt, pkt_entry);
   5103 	mutex_exit(&sc->tx_pkt_mtx);
   5104 
   5105 	sc->used_tx_bd += map->dm_nsegs;
   5106 	DBPRINT(sc, BNX_INFO_SEND, "%s(%d) used_tx_bd %d\n",
   5107 		__FILE__, __LINE__, sc->used_tx_bd);
   5108 
   5109 	/* Update some debug statistics counters */
   5110 	DBRUNIF((sc->used_tx_bd > sc->tx_hi_watermark),
   5111 	    sc->tx_hi_watermark = sc->used_tx_bd);
   5112 	DBRUNIF(sc->used_tx_bd == sc->max_tx_bd, sc->tx_full_count++);
   5113 	DBRUNIF(1, sc->tx_mbuf_alloc++);
   5114 
   5115 	DBRUN(BNX_VERBOSE_SEND, bnx_dump_tx_mbuf_chain(sc, chain_prod,
   5116 	    map->dm_nsegs));
   5117 
   5118 	/* prod points to the next free tx_bd at this point. */
   5119 	sc->tx_prod = prod;
   5120 	sc->tx_prod_bseq = prod_bseq;
   5121 
   5122 	return 0;
   5123 
   5124 
   5125 nospace:
   5126 	bus_dmamap_unload(sc->bnx_dmatag, map);
   5127 maperr:
   5128 	mutex_enter(&sc->tx_pkt_mtx);
   5129 	TAILQ_INSERT_TAIL(&sc->tx_free_pkts, pkt, pkt_entry);
   5130 	mutex_exit(&sc->tx_pkt_mtx);
   5131 
   5132 	return ENOMEM;
   5133 }
   5134 
   5135 /****************************************************************************/
   5136 /* Main transmit routine.                                                   */
   5137 /*                                                                          */
   5138 /* Returns:                                                                 */
   5139 /*   Nothing.                                                               */
   5140 /****************************************************************************/
   5141 void
   5142 bnx_start(struct ifnet *ifp)
   5143 {
   5144 	struct bnx_softc	*sc = ifp->if_softc;
   5145 	struct mbuf		*m_head = NULL;
   5146 	int			count = 0;
   5147 #ifdef BNX_DEBUG
   5148 	uint16_t		tx_chain_prod;
   5149 #endif
   5150 
   5151 	/* If there's no link or the transmit queue is empty then just exit. */
   5152 	if ((ifp->if_flags & (IFF_OACTIVE|IFF_RUNNING)) != IFF_RUNNING) {
   5153 		DBPRINT(sc, BNX_INFO_SEND,
   5154 		    "%s(): output active or device not running.\n", __func__);
   5155 		goto bnx_start_exit;
   5156 	}
   5157 
   5158 	/* prod points to the next free tx_bd. */
   5159 #ifdef BNX_DEBUG
   5160 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5161 #endif
   5162 
   5163 	DBPRINT(sc, BNX_INFO_SEND, "%s(): Start: tx_prod = 0x%04X, "
   5164 	    "tx_chain_prod = %04X, tx_prod_bseq = 0x%08X, "
   5165 	    "used_tx %d max_tx %d\n",
   5166 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq,
   5167 	    sc->used_tx_bd, sc->max_tx_bd);
   5168 
   5169 	/*
   5170 	 * Keep adding entries while there is space in the ring.
   5171 	 */
   5172 	while (sc->used_tx_bd < sc->max_tx_bd) {
   5173 		/* Check for any frames to send. */
   5174 		IFQ_POLL(&ifp->if_snd, m_head);
   5175 		if (m_head == NULL)
   5176 			break;
   5177 
   5178 		/*
   5179 		 * Pack the data into the transmit ring. If we
   5180 		 * don't have room, set the OACTIVE flag to wait
   5181 		 * for the NIC to drain the chain.
   5182 		 */
   5183 		if (bnx_tx_encap(sc, m_head)) {
   5184 			ifp->if_flags |= IFF_OACTIVE;
   5185 			DBPRINT(sc, BNX_INFO_SEND, "TX chain is closed for "
   5186 			    "business! Total tx_bd used = %d\n",
   5187 			    sc->used_tx_bd);
   5188 			break;
   5189 		}
   5190 
   5191 		IFQ_DEQUEUE(&ifp->if_snd, m_head);
   5192 		count++;
   5193 
   5194 		/* Send a copy of the frame to any BPF listeners. */
   5195 		bpf_mtap(ifp, m_head, BPF_D_OUT);
   5196 	}
   5197 
   5198 	if (count == 0) {
   5199 		/* no packets were dequeued */
   5200 		DBPRINT(sc, BNX_VERBOSE_SEND,
   5201 		    "%s(): No packets were dequeued\n", __func__);
   5202 		goto bnx_start_exit;
   5203 	}
   5204 
   5205 	/* Update the driver's counters. */
   5206 #ifdef BNX_DEBUG
   5207 	tx_chain_prod = TX_CHAIN_IDX(sc->tx_prod);
   5208 #endif
   5209 
   5210 	DBPRINT(sc, BNX_INFO_SEND, "%s(): End: tx_prod = 0x%04X, "
   5211 	    "tx_chain_prod = 0x%04X, tx_prod_bseq = 0x%08X\n",
   5212 	    __func__, sc->tx_prod, tx_chain_prod, sc->tx_prod_bseq);
   5213 
   5214 	/* Start the transmit. */
   5215 	REG_WR16(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BIDX, sc->tx_prod);
   5216 	REG_WR(sc, MB_TX_CID_ADDR + BNX_L2CTX_TX_HOST_BSEQ, sc->tx_prod_bseq);
   5217 
   5218 	/* Set the tx timeout. */
   5219 	ifp->if_timer = BNX_TX_TIMEOUT;
   5220 
   5221 bnx_start_exit:
   5222 	return;
   5223 }
   5224 
   5225 /****************************************************************************/
   5226 /* Handles any IOCTL calls from the operating system.                       */
   5227 /*                                                                          */
   5228 /* Returns:                                                                 */
   5229 /*   0 for success, positive value for failure.                             */
   5230 /****************************************************************************/
   5231 int
   5232 bnx_ioctl(struct ifnet *ifp, u_long command, void *data)
   5233 {
   5234 	struct bnx_softc	*sc = ifp->if_softc;
   5235 	struct ifreq		*ifr = (struct ifreq *) data;
   5236 	struct mii_data		*mii = &sc->bnx_mii;
   5237 	int			s, error = 0;
   5238 
   5239 	s = splnet();
   5240 
   5241 	switch (command) {
   5242 	case SIOCSIFFLAGS:
   5243 		if ((error = ifioctl_common(ifp, command, data)) != 0)
   5244 			break;
   5245 		/* XXX set an ifflags callback and let ether_ioctl
   5246 		 * handle all of this.
   5247 		 */
   5248 		if (ISSET(ifp->if_flags, IFF_UP)) {
   5249 			if (ifp->if_flags & IFF_RUNNING)
   5250 				error = ENETRESET;
   5251 			else
   5252 				bnx_init(ifp);
   5253 		} else if (ifp->if_flags & IFF_RUNNING)
   5254 			bnx_stop(ifp, 1);
   5255 		break;
   5256 
   5257 	case SIOCSIFMEDIA:
   5258 		/* Flow control requires full-duplex mode. */
   5259 		if (IFM_SUBTYPE(ifr->ifr_media) == IFM_AUTO ||
   5260 		    (ifr->ifr_media & IFM_FDX) == 0)
   5261 			ifr->ifr_media &= ~IFM_ETH_FMASK;
   5262 
   5263 		if (IFM_SUBTYPE(ifr->ifr_media) != IFM_AUTO) {
   5264 			if ((ifr->ifr_media & IFM_ETH_FMASK) == IFM_FLOW) {
   5265 				/* We can do both TXPAUSE and RXPAUSE. */
   5266 				ifr->ifr_media |=
   5267 				    IFM_ETH_TXPAUSE | IFM_ETH_RXPAUSE;
   5268 			}
   5269 			sc->bnx_flowflags = ifr->ifr_media & IFM_ETH_FMASK;
   5270 		}
   5271 		/* FALLTHROUGH */
   5272 	case SIOCGIFMEDIA:
   5273 		DBPRINT(sc, BNX_VERBOSE, "bnx_phy_flags = 0x%08X\n",
   5274 		    sc->bnx_phy_flags);
   5275 
   5276 		error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command);
   5277 		break;
   5278 
   5279 	default:
   5280 		error = ether_ioctl(ifp, command, data);
   5281 	}
   5282 
   5283 	if (error == ENETRESET) {
   5284 		if (ifp->if_flags & IFF_RUNNING)
   5285 			bnx_iff(sc);
   5286 		error = 0;
   5287 	}
   5288 
   5289 	splx(s);
   5290 	return error;
   5291 }
   5292 
   5293 /****************************************************************************/
   5294 /* Transmit timeout handler.                                                */
   5295 /*                                                                          */
   5296 /* Returns:                                                                 */
   5297 /*   Nothing.                                                               */
   5298 /****************************************************************************/
   5299 void
   5300 bnx_watchdog(struct ifnet *ifp)
   5301 {
   5302 	struct bnx_softc	*sc = ifp->if_softc;
   5303 
   5304 	DBRUN(BNX_WARN_SEND, bnx_dump_driver_state(sc);
   5305 	    bnx_dump_status_block(sc));
   5306 	/*
   5307 	 * If we are in this routine because of pause frames, then
   5308 	 * don't reset the hardware.
   5309 	 */
   5310 	if (REG_RD(sc, BNX_EMAC_TX_STATUS) & BNX_EMAC_TX_STATUS_XOFFED)
   5311 		return;
   5312 
   5313 	aprint_error_dev(sc->bnx_dev, "Watchdog timeout -- resetting!\n");
   5314 
   5315 	/* DBRUN(BNX_FATAL, bnx_breakpoint(sc)); */
   5316 
   5317 	bnx_init(ifp);
   5318 
   5319 	ifp->if_oerrors++;
   5320 }
   5321 
   5322 /*
   5323  * Interrupt handler.
   5324  */
   5325 /****************************************************************************/
   5326 /* Main interrupt entry point.  Verifies that the controller generated the  */
   5327 /* interrupt and then calls a separate routine for handle the various       */
   5328 /* interrupt causes (PHY, TX, RX).                                          */
   5329 /*                                                                          */
   5330 /* Returns:                                                                 */
   5331 /*   0 for success, positive value for failure.                             */
   5332 /****************************************************************************/
   5333 int
   5334 bnx_intr(void *xsc)
   5335 {
   5336 	struct bnx_softc	*sc = xsc;
   5337 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5338 	uint32_t		status_attn_bits;
   5339 	uint16_t		status_idx;
   5340 	const struct status_block *sblk;
   5341 	int			rv = 0;
   5342 
   5343 	if (!device_is_active(sc->bnx_dev) ||
   5344 	    (ifp->if_flags & IFF_RUNNING) == 0)
   5345 		return 0;
   5346 
   5347 	DBRUNIF(1, sc->interrupts_generated++);
   5348 
   5349 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5350 	    sc->status_map->dm_mapsize, BUS_DMASYNC_POSTREAD);
   5351 
   5352 	sblk = sc->status_block;
   5353 	/*
   5354 	 * If the hardware status block index
   5355 	 * matches the last value read by the
   5356 	 * driver and we haven't asserted our
   5357 	 * interrupt then there's nothing to do.
   5358 	 */
   5359 	status_idx = sblk->status_idx;
   5360 	if ((status_idx != sc->last_status_idx) ||
   5361 	    !ISSET(REG_RD(sc, BNX_PCICFG_MISC_STATUS),
   5362 	    BNX_PCICFG_MISC_STATUS_INTA_VALUE)) {
   5363 		rv = 1;
   5364 
   5365 		/* Ack the interrupt */
   5366 		REG_WR(sc, BNX_PCICFG_INT_ACK_CMD,
   5367 		    BNX_PCICFG_INT_ACK_CMD_INDEX_VALID | status_idx);
   5368 
   5369 		status_attn_bits = sblk->status_attn_bits;
   5370 
   5371 		DBRUNIF(DB_RANDOMTRUE(bnx_debug_unexpected_attention),
   5372 		    aprint_debug("Simulating unexpected status attention bit set.");
   5373 		    status_attn_bits = status_attn_bits |
   5374 		    STATUS_ATTN_BITS_PARITY_ERROR);
   5375 
   5376 		/* Was it a link change interrupt? */
   5377 		if ((status_attn_bits & STATUS_ATTN_BITS_LINK_STATE) !=
   5378 		    (sblk->status_attn_bits_ack &
   5379 		    STATUS_ATTN_BITS_LINK_STATE))
   5380 			bnx_phy_intr(sc);
   5381 
   5382 		/* If any other attention is asserted then the chip is toast. */
   5383 		if (((status_attn_bits & ~STATUS_ATTN_BITS_LINK_STATE) !=
   5384 		    (sblk->status_attn_bits_ack &
   5385 		    ~STATUS_ATTN_BITS_LINK_STATE))) {
   5386 			DBRUN(1, sc->unexpected_attentions++);
   5387 
   5388 			BNX_PRINTF(sc, "Fatal attention detected: 0x%08X\n",
   5389 			    sblk->status_attn_bits);
   5390 
   5391 			DBRUN(BNX_FATAL,
   5392 			    if (bnx_debug_unexpected_attention == 0)
   5393 				    bnx_breakpoint(sc));
   5394 
   5395 			bnx_init(ifp);
   5396 			goto out;
   5397 		}
   5398 
   5399 		/* Check for any completed RX frames. */
   5400 		if (sblk->status_rx_quick_consumer_index0 != sc->hw_rx_cons)
   5401 			bnx_rx_intr(sc);
   5402 
   5403 		/* Check for any completed TX frames. */
   5404 		if (sblk->status_tx_quick_consumer_index0 != sc->hw_tx_cons)
   5405 			bnx_tx_intr(sc);
   5406 
   5407 		/*
   5408 		 * Save the status block index value for use during the
   5409 		 * next interrupt.
   5410 		 */
   5411 		sc->last_status_idx = status_idx;
   5412 
   5413 		/* Start moving packets again */
   5414 		if (ifp->if_flags & IFF_RUNNING)
   5415 			if_schedule_deferred_start(ifp);
   5416 	}
   5417 
   5418 out:
   5419 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0,
   5420 	    sc->status_map->dm_mapsize, BUS_DMASYNC_PREREAD);
   5421 
   5422 	return rv;
   5423 }
   5424 
   5425 /****************************************************************************/
   5426 /* Programs the various packet receive modes (broadcast and multicast).     */
   5427 /*                                                                          */
   5428 /* Returns:                                                                 */
   5429 /*   Nothing.                                                               */
   5430 /****************************************************************************/
   5431 void
   5432 bnx_iff(struct bnx_softc *sc)
   5433 {
   5434 	struct ethercom		*ec = &sc->bnx_ec;
   5435 	struct ifnet		*ifp = &ec->ec_if;
   5436 	struct ether_multi	*enm;
   5437 	struct ether_multistep	step;
   5438 	uint32_t		hashes[NUM_MC_HASH_REGISTERS] = { 0, 0, 0, 0, 0, 0, 0, 0 };
   5439 	uint32_t		rx_mode, sort_mode;
   5440 	int			h, i;
   5441 
   5442 	/* Initialize receive mode default settings. */
   5443 	rx_mode = sc->rx_mode & ~(BNX_EMAC_RX_MODE_PROMISCUOUS |
   5444 	    BNX_EMAC_RX_MODE_KEEP_VLAN_TAG);
   5445 	sort_mode = 1 | BNX_RPM_SORT_USER0_BC_EN;
   5446 	ifp->if_flags &= ~IFF_ALLMULTI;
   5447 
   5448 	/*
   5449 	 * ASF/IPMI/UMP firmware requires that VLAN tag stripping
   5450 	 * be enbled.
   5451 	 */
   5452 	if (!(sc->bnx_flags & BNX_MFW_ENABLE_FLAG))
   5453 		rx_mode |= BNX_EMAC_RX_MODE_KEEP_VLAN_TAG;
   5454 
   5455 	/*
   5456 	 * Check for promiscuous, all multicast, or selected
   5457 	 * multicast address filtering.
   5458 	 */
   5459 	if (ifp->if_flags & IFF_PROMISC) {
   5460 		DBPRINT(sc, BNX_INFO, "Enabling promiscuous mode.\n");
   5461 
   5462 		ifp->if_flags |= IFF_ALLMULTI;
   5463 		/* Enable promiscuous mode. */
   5464 		rx_mode |= BNX_EMAC_RX_MODE_PROMISCUOUS;
   5465 		sort_mode |= BNX_RPM_SORT_USER0_PROM_EN;
   5466 	} else if (ifp->if_flags & IFF_ALLMULTI) {
   5467 allmulti:
   5468 		DBPRINT(sc, BNX_INFO, "Enabling all multicast mode.\n");
   5469 
   5470 		ifp->if_flags |= IFF_ALLMULTI;
   5471 		/* Enable all multicast addresses. */
   5472 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5473 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5474 			    0xffffffff);
   5475 		sort_mode |= BNX_RPM_SORT_USER0_MC_EN;
   5476 	} else {
   5477 		/* Accept one or more multicast(s). */
   5478 		DBPRINT(sc, BNX_INFO, "Enabling selective multicast mode.\n");
   5479 
   5480 		ETHER_FIRST_MULTI(step, ec, enm);
   5481 		while (enm != NULL) {
   5482 			if (memcmp(enm->enm_addrlo, enm->enm_addrhi,
   5483 			    ETHER_ADDR_LEN)) {
   5484 				goto allmulti;
   5485 			}
   5486 			h = ether_crc32_le(enm->enm_addrlo, ETHER_ADDR_LEN) &
   5487 			    0xFF;
   5488 			hashes[(h & 0xE0) >> 5] |= 1 << (h & 0x1F);
   5489 			ETHER_NEXT_MULTI(step, enm);
   5490 		}
   5491 
   5492 		for (i = 0; i < NUM_MC_HASH_REGISTERS; i++)
   5493 			REG_WR(sc, BNX_EMAC_MULTICAST_HASH0 + (i * 4),
   5494 			    hashes[i]);
   5495 
   5496 		sort_mode |= BNX_RPM_SORT_USER0_MC_HSH_EN;
   5497 	}
   5498 
   5499 	/* Only make changes if the recive mode has actually changed. */
   5500 	if (rx_mode != sc->rx_mode) {
   5501 		DBPRINT(sc, BNX_VERBOSE, "Enabling new receive mode: 0x%08X\n",
   5502 		    rx_mode);
   5503 
   5504 		sc->rx_mode = rx_mode;
   5505 		REG_WR(sc, BNX_EMAC_RX_MODE, rx_mode);
   5506 	}
   5507 
   5508 	/* Disable and clear the exisitng sort before enabling a new sort. */
   5509 	REG_WR(sc, BNX_RPM_SORT_USER0, 0x0);
   5510 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode);
   5511 	REG_WR(sc, BNX_RPM_SORT_USER0, sort_mode | BNX_RPM_SORT_USER0_ENA);
   5512 }
   5513 
   5514 /****************************************************************************/
   5515 /* Called periodically to updates statistics from the controllers           */
   5516 /* statistics block.                                                        */
   5517 /*                                                                          */
   5518 /* Returns:                                                                 */
   5519 /*   Nothing.                                                               */
   5520 /****************************************************************************/
   5521 void
   5522 bnx_stats_update(struct bnx_softc *sc)
   5523 {
   5524 	struct ifnet		*ifp = &sc->bnx_ec.ec_if;
   5525 	struct statistics_block	*stats;
   5526 
   5527 	DBPRINT(sc, BNX_EXCESSIVE, "Entering %s()\n", __func__);
   5528 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   5529 	    BUS_DMASYNC_POSTREAD);
   5530 
   5531 	stats = (struct statistics_block *)sc->stats_block;
   5532 
   5533 	/*
   5534 	 * Update the interface statistics from the
   5535 	 * hardware statistics.
   5536 	 */
   5537 	ifp->if_collisions = (u_long)stats->stat_EtherStatsCollisions;
   5538 
   5539 	ifp->if_ierrors = (u_long)stats->stat_EtherStatsUndersizePkts +
   5540 	    (u_long)stats->stat_EtherStatsOverrsizePkts +
   5541 	    (u_long)stats->stat_IfInMBUFDiscards +
   5542 	    (u_long)stats->stat_Dot3StatsAlignmentErrors +
   5543 	    (u_long)stats->stat_Dot3StatsFCSErrors;
   5544 
   5545 	ifp->if_oerrors = (u_long)
   5546 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors +
   5547 	    (u_long)stats->stat_Dot3StatsExcessiveCollisions +
   5548 	    (u_long)stats->stat_Dot3StatsLateCollisions;
   5549 
   5550 	/*
   5551 	 * Certain controllers don't report
   5552 	 * carrier sense errors correctly.
   5553 	 * See errata E11_5708CA0_1165.
   5554 	 */
   5555 	if (!(BNX_CHIP_NUM(sc) == BNX_CHIP_NUM_5706) &&
   5556 	    !(BNX_CHIP_ID(sc) == BNX_CHIP_ID_5708_A0))
   5557 		ifp->if_oerrors += (u_long) stats->stat_Dot3StatsCarrierSenseErrors;
   5558 
   5559 	/*
   5560 	 * Update the sysctl statistics from the
   5561 	 * hardware statistics.
   5562 	 */
   5563 	sc->stat_IfHCInOctets = ((uint64_t)stats->stat_IfHCInOctets_hi << 32) +
   5564 	    (uint64_t) stats->stat_IfHCInOctets_lo;
   5565 
   5566 	sc->stat_IfHCInBadOctets =
   5567 	    ((uint64_t) stats->stat_IfHCInBadOctets_hi << 32) +
   5568 	    (uint64_t) stats->stat_IfHCInBadOctets_lo;
   5569 
   5570 	sc->stat_IfHCOutOctets =
   5571 	    ((uint64_t) stats->stat_IfHCOutOctets_hi << 32) +
   5572 	    (uint64_t) stats->stat_IfHCOutOctets_lo;
   5573 
   5574 	sc->stat_IfHCOutBadOctets =
   5575 	    ((uint64_t) stats->stat_IfHCOutBadOctets_hi << 32) +
   5576 	    (uint64_t) stats->stat_IfHCOutBadOctets_lo;
   5577 
   5578 	sc->stat_IfHCInUcastPkts =
   5579 	    ((uint64_t) stats->stat_IfHCInUcastPkts_hi << 32) +
   5580 	    (uint64_t) stats->stat_IfHCInUcastPkts_lo;
   5581 
   5582 	sc->stat_IfHCInMulticastPkts =
   5583 	    ((uint64_t) stats->stat_IfHCInMulticastPkts_hi << 32) +
   5584 	    (uint64_t) stats->stat_IfHCInMulticastPkts_lo;
   5585 
   5586 	sc->stat_IfHCInBroadcastPkts =
   5587 	    ((uint64_t) stats->stat_IfHCInBroadcastPkts_hi << 32) +
   5588 	    (uint64_t) stats->stat_IfHCInBroadcastPkts_lo;
   5589 
   5590 	sc->stat_IfHCOutUcastPkts =
   5591 	   ((uint64_t) stats->stat_IfHCOutUcastPkts_hi << 32) +
   5592 	    (uint64_t) stats->stat_IfHCOutUcastPkts_lo;
   5593 
   5594 	sc->stat_IfHCOutMulticastPkts =
   5595 	    ((uint64_t) stats->stat_IfHCOutMulticastPkts_hi << 32) +
   5596 	    (uint64_t) stats->stat_IfHCOutMulticastPkts_lo;
   5597 
   5598 	sc->stat_IfHCOutBroadcastPkts =
   5599 	    ((uint64_t) stats->stat_IfHCOutBroadcastPkts_hi << 32) +
   5600 	    (uint64_t) stats->stat_IfHCOutBroadcastPkts_lo;
   5601 
   5602 	sc->stat_emac_tx_stat_dot3statsinternalmactransmiterrors =
   5603 	    stats->stat_emac_tx_stat_dot3statsinternalmactransmiterrors;
   5604 
   5605 	sc->stat_Dot3StatsCarrierSenseErrors =
   5606 	    stats->stat_Dot3StatsCarrierSenseErrors;
   5607 
   5608 	sc->stat_Dot3StatsFCSErrors = stats->stat_Dot3StatsFCSErrors;
   5609 
   5610 	sc->stat_Dot3StatsAlignmentErrors =
   5611 	    stats->stat_Dot3StatsAlignmentErrors;
   5612 
   5613 	sc->stat_Dot3StatsSingleCollisionFrames =
   5614 	    stats->stat_Dot3StatsSingleCollisionFrames;
   5615 
   5616 	sc->stat_Dot3StatsMultipleCollisionFrames =
   5617 	    stats->stat_Dot3StatsMultipleCollisionFrames;
   5618 
   5619 	sc->stat_Dot3StatsDeferredTransmissions =
   5620 	    stats->stat_Dot3StatsDeferredTransmissions;
   5621 
   5622 	sc->stat_Dot3StatsExcessiveCollisions =
   5623 	    stats->stat_Dot3StatsExcessiveCollisions;
   5624 
   5625 	sc->stat_Dot3StatsLateCollisions = stats->stat_Dot3StatsLateCollisions;
   5626 
   5627 	sc->stat_EtherStatsCollisions = stats->stat_EtherStatsCollisions;
   5628 
   5629 	sc->stat_EtherStatsFragments = stats->stat_EtherStatsFragments;
   5630 
   5631 	sc->stat_EtherStatsJabbers = stats->stat_EtherStatsJabbers;
   5632 
   5633 	sc->stat_EtherStatsUndersizePkts = stats->stat_EtherStatsUndersizePkts;
   5634 
   5635 	sc->stat_EtherStatsOverrsizePkts = stats->stat_EtherStatsOverrsizePkts;
   5636 
   5637 	sc->stat_EtherStatsPktsRx64Octets =
   5638 	    stats->stat_EtherStatsPktsRx64Octets;
   5639 
   5640 	sc->stat_EtherStatsPktsRx65Octetsto127Octets =
   5641 	    stats->stat_EtherStatsPktsRx65Octetsto127Octets;
   5642 
   5643 	sc->stat_EtherStatsPktsRx128Octetsto255Octets =
   5644 	    stats->stat_EtherStatsPktsRx128Octetsto255Octets;
   5645 
   5646 	sc->stat_EtherStatsPktsRx256Octetsto511Octets =
   5647 	    stats->stat_EtherStatsPktsRx256Octetsto511Octets;
   5648 
   5649 	sc->stat_EtherStatsPktsRx512Octetsto1023Octets =
   5650 	    stats->stat_EtherStatsPktsRx512Octetsto1023Octets;
   5651 
   5652 	sc->stat_EtherStatsPktsRx1024Octetsto1522Octets =
   5653 	    stats->stat_EtherStatsPktsRx1024Octetsto1522Octets;
   5654 
   5655 	sc->stat_EtherStatsPktsRx1523Octetsto9022Octets =
   5656 	    stats->stat_EtherStatsPktsRx1523Octetsto9022Octets;
   5657 
   5658 	sc->stat_EtherStatsPktsTx64Octets =
   5659 	    stats->stat_EtherStatsPktsTx64Octets;
   5660 
   5661 	sc->stat_EtherStatsPktsTx65Octetsto127Octets =
   5662 	    stats->stat_EtherStatsPktsTx65Octetsto127Octets;
   5663 
   5664 	sc->stat_EtherStatsPktsTx128Octetsto255Octets =
   5665 	    stats->stat_EtherStatsPktsTx128Octetsto255Octets;
   5666 
   5667 	sc->stat_EtherStatsPktsTx256Octetsto511Octets =
   5668 	    stats->stat_EtherStatsPktsTx256Octetsto511Octets;
   5669 
   5670 	sc->stat_EtherStatsPktsTx512Octetsto1023Octets =
   5671 	    stats->stat_EtherStatsPktsTx512Octetsto1023Octets;
   5672 
   5673 	sc->stat_EtherStatsPktsTx1024Octetsto1522Octets =
   5674 	    stats->stat_EtherStatsPktsTx1024Octetsto1522Octets;
   5675 
   5676 	sc->stat_EtherStatsPktsTx1523Octetsto9022Octets =
   5677 	    stats->stat_EtherStatsPktsTx1523Octetsto9022Octets;
   5678 
   5679 	sc->stat_XonPauseFramesReceived = stats->stat_XonPauseFramesReceived;
   5680 
   5681 	sc->stat_XoffPauseFramesReceived = stats->stat_XoffPauseFramesReceived;
   5682 
   5683 	sc->stat_OutXonSent = stats->stat_OutXonSent;
   5684 
   5685 	sc->stat_OutXoffSent = stats->stat_OutXoffSent;
   5686 
   5687 	sc->stat_FlowControlDone = stats->stat_FlowControlDone;
   5688 
   5689 	sc->stat_MacControlFramesReceived =
   5690 	    stats->stat_MacControlFramesReceived;
   5691 
   5692 	sc->stat_XoffStateEntered = stats->stat_XoffStateEntered;
   5693 
   5694 	sc->stat_IfInFramesL2FilterDiscards =
   5695 	    stats->stat_IfInFramesL2FilterDiscards;
   5696 
   5697 	sc->stat_IfInRuleCheckerDiscards = stats->stat_IfInRuleCheckerDiscards;
   5698 
   5699 	sc->stat_IfInFTQDiscards = stats->stat_IfInFTQDiscards;
   5700 
   5701 	sc->stat_IfInMBUFDiscards = stats->stat_IfInMBUFDiscards;
   5702 
   5703 	sc->stat_IfInRuleCheckerP4Hit = stats->stat_IfInRuleCheckerP4Hit;
   5704 
   5705 	sc->stat_CatchupInRuleCheckerDiscards =
   5706 	    stats->stat_CatchupInRuleCheckerDiscards;
   5707 
   5708 	sc->stat_CatchupInFTQDiscards = stats->stat_CatchupInFTQDiscards;
   5709 
   5710 	sc->stat_CatchupInMBUFDiscards = stats->stat_CatchupInMBUFDiscards;
   5711 
   5712 	sc->stat_CatchupInRuleCheckerP4Hit =
   5713 	    stats->stat_CatchupInRuleCheckerP4Hit;
   5714 
   5715 	DBPRINT(sc, BNX_EXCESSIVE, "Exiting %s()\n", __func__);
   5716 }
   5717 
   5718 void
   5719 bnx_tick(void *xsc)
   5720 {
   5721 	struct bnx_softc	*sc = xsc;
   5722 	struct mii_data		*mii;
   5723 	uint32_t		msg;
   5724 	uint16_t		prod, chain_prod;
   5725 	uint32_t		prod_bseq;
   5726 	int s = splnet();
   5727 
   5728 	/* Tell the firmware that the driver is still running. */
   5729 #ifdef BNX_DEBUG
   5730 	msg = (uint32_t)BNX_DRV_MSG_DATA_PULSE_CODE_ALWAYS_ALIVE;
   5731 #else
   5732 	msg = (uint32_t)++sc->bnx_fw_drv_pulse_wr_seq;
   5733 #endif
   5734 	REG_WR_IND(sc, sc->bnx_shmem_base + BNX_DRV_PULSE_MB, msg);
   5735 
   5736 	/* Update the statistics from the hardware statistics block. */
   5737 	bnx_stats_update(sc);
   5738 
   5739 	mii = &sc->bnx_mii;
   5740 	mii_tick(mii);
   5741 
   5742 	/* try to get more RX buffers, just in case */
   5743 	prod = sc->rx_prod;
   5744 	prod_bseq = sc->rx_prod_bseq;
   5745 	chain_prod = RX_CHAIN_IDX(prod);
   5746 	bnx_get_buf(sc, &prod, &chain_prod, &prod_bseq);
   5747 	sc->rx_prod = prod;
   5748 	sc->rx_prod_bseq = prod_bseq;
   5749 
   5750 	/* Schedule the next tick. */
   5751 	if (!sc->bnx_detaching)
   5752 		callout_reset(&sc->bnx_timeout, hz, bnx_tick, sc);
   5753 
   5754 	splx(s);
   5755 	return;
   5756 }
   5757 
   5758 /****************************************************************************/
   5759 /* BNX Debug Routines                                                       */
   5760 /****************************************************************************/
   5761 #ifdef BNX_DEBUG
   5762 
   5763 /****************************************************************************/
   5764 /* Prints out information about an mbuf.                                    */
   5765 /*                                                                          */
   5766 /* Returns:                                                                 */
   5767 /*   Nothing.                                                               */
   5768 /****************************************************************************/
   5769 void
   5770 bnx_dump_mbuf(struct bnx_softc *sc, struct mbuf *m)
   5771 {
   5772 	struct mbuf		*mp = m;
   5773 
   5774 	if (m == NULL) {
   5775 		/* Index out of range. */
   5776 		aprint_error("mbuf ptr is null!\n");
   5777 		return;
   5778 	}
   5779 
   5780 	while (mp) {
   5781 		aprint_debug("mbuf: vaddr = %p, m_len = %d, m_flags = ",
   5782 		    mp, mp->m_len);
   5783 
   5784 		if (mp->m_flags & M_EXT)
   5785 			aprint_debug("M_EXT ");
   5786 		if (mp->m_flags & M_PKTHDR)
   5787 			aprint_debug("M_PKTHDR ");
   5788 		aprint_debug("\n");
   5789 
   5790 		if (mp->m_flags & M_EXT)
   5791 			aprint_debug("- m_ext: vaddr = %p, "
   5792 			    "ext_size = 0x%04zX\n", mp, mp->m_ext.ext_size);
   5793 
   5794 		mp = mp->m_next;
   5795 	}
   5796 }
   5797 
   5798 /****************************************************************************/
   5799 /* Prints out the mbufs in the TX mbuf chain.                               */
   5800 /*                                                                          */
   5801 /* Returns:                                                                 */
   5802 /*   Nothing.                                                               */
   5803 /****************************************************************************/
   5804 void
   5805 bnx_dump_tx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5806 {
   5807 #if 0
   5808 	struct mbuf		*m;
   5809 	int			i;
   5810 
   5811 	aprint_debug_dev(sc->bnx_dev,
   5812 	    "----------------------------"
   5813 	    "  tx mbuf data  "
   5814 	    "----------------------------\n");
   5815 
   5816 	for (i = 0; i < count; i++) {
   5817 	 	m = sc->tx_mbuf_ptr[chain_prod];
   5818 		BNX_PRINTF(sc, "txmbuf[%d]\n", chain_prod);
   5819 		bnx_dump_mbuf(sc, m);
   5820 		chain_prod = TX_CHAIN_IDX(NEXT_TX_BD(chain_prod));
   5821 	}
   5822 
   5823 	aprint_debug_dev(sc->bnx_dev,
   5824 	    "--------------------------------------------"
   5825 	    "----------------------------\n");
   5826 #endif
   5827 }
   5828 
   5829 /*
   5830  * This routine prints the RX mbuf chain.
   5831  */
   5832 void
   5833 bnx_dump_rx_mbuf_chain(struct bnx_softc *sc, int chain_prod, int count)
   5834 {
   5835 	struct mbuf		*m;
   5836 	int			i;
   5837 
   5838 	aprint_debug_dev(sc->bnx_dev,
   5839 	    "----------------------------"
   5840 	    "  rx mbuf data  "
   5841 	    "----------------------------\n");
   5842 
   5843 	for (i = 0; i < count; i++) {
   5844 	 	m = sc->rx_mbuf_ptr[chain_prod];
   5845 		BNX_PRINTF(sc, "rxmbuf[0x%04X]\n", chain_prod);
   5846 		bnx_dump_mbuf(sc, m);
   5847 		chain_prod = RX_CHAIN_IDX(NEXT_RX_BD(chain_prod));
   5848 	}
   5849 
   5850 
   5851 	aprint_debug_dev(sc->bnx_dev,
   5852 	    "--------------------------------------------"
   5853 	    "----------------------------\n");
   5854 }
   5855 
   5856 void
   5857 bnx_dump_txbd(struct bnx_softc *sc, int idx, struct tx_bd *txbd)
   5858 {
   5859 	if (idx > MAX_TX_BD)
   5860 		/* Index out of range. */
   5861 		BNX_PRINTF(sc, "tx_bd[0x%04X]: Invalid tx_bd index!\n", idx);
   5862 	else if ((idx & USABLE_TX_BD_PER_PAGE) == USABLE_TX_BD_PER_PAGE)
   5863 		/* TX Chain page pointer. */
   5864 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, chain "
   5865 		    "page pointer\n", idx, txbd->tx_bd_haddr_hi,
   5866 		    txbd->tx_bd_haddr_lo);
   5867 	else
   5868 		/* Normal tx_bd entry. */
   5869 		BNX_PRINTF(sc, "tx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5870 		    "0x%08X, vlan tag = 0x%4X, flags = 0x%08X\n", idx,
   5871 		    txbd->tx_bd_haddr_hi, txbd->tx_bd_haddr_lo,
   5872 		    txbd->tx_bd_mss_nbytes, txbd->tx_bd_vlan_tag,
   5873 		    txbd->tx_bd_flags);
   5874 }
   5875 
   5876 void
   5877 bnx_dump_rxbd(struct bnx_softc *sc, int idx, struct rx_bd *rxbd)
   5878 {
   5879 	if (idx > MAX_RX_BD)
   5880 		/* Index out of range. */
   5881 		BNX_PRINTF(sc, "rx_bd[0x%04X]: Invalid rx_bd index!\n", idx);
   5882 	else if ((idx & USABLE_RX_BD_PER_PAGE) == USABLE_RX_BD_PER_PAGE)
   5883 		/* TX Chain page pointer. */
   5884 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, chain page "
   5885 		    "pointer\n", idx, rxbd->rx_bd_haddr_hi,
   5886 		    rxbd->rx_bd_haddr_lo);
   5887 	else
   5888 		/* Normal tx_bd entry. */
   5889 		BNX_PRINTF(sc, "rx_bd[0x%04X]: haddr = 0x%08X:%08X, nbytes = "
   5890 		    "0x%08X, flags = 0x%08X\n", idx,
   5891 			rxbd->rx_bd_haddr_hi, rxbd->rx_bd_haddr_lo,
   5892 			rxbd->rx_bd_len, rxbd->rx_bd_flags);
   5893 }
   5894 
   5895 void
   5896 bnx_dump_l2fhdr(struct bnx_softc *sc, int idx, struct l2_fhdr *l2fhdr)
   5897 {
   5898 	BNX_PRINTF(sc, "l2_fhdr[0x%04X]: status = 0x%08X, "
   5899 	    "pkt_len = 0x%04X, vlan = 0x%04x, ip_xsum = 0x%04X, "
   5900 	    "tcp_udp_xsum = 0x%04X\n", idx,
   5901 	    l2fhdr->l2_fhdr_status, l2fhdr->l2_fhdr_pkt_len,
   5902 	    l2fhdr->l2_fhdr_vlan_tag, l2fhdr->l2_fhdr_ip_xsum,
   5903 	    l2fhdr->l2_fhdr_tcp_udp_xsum);
   5904 }
   5905 
   5906 /*
   5907  * This routine prints the TX chain.
   5908  */
   5909 void
   5910 bnx_dump_tx_chain(struct bnx_softc *sc, int tx_prod, int count)
   5911 {
   5912 	struct tx_bd		*txbd;
   5913 	int			i;
   5914 
   5915 	/* First some info about the tx_bd chain structure. */
   5916 	aprint_debug_dev(sc->bnx_dev,
   5917 	    "----------------------------"
   5918 	    "  tx_bd  chain  "
   5919 	    "----------------------------\n");
   5920 
   5921 	BNX_PRINTF(sc,
   5922 	    "page size      = 0x%08X, tx chain pages        = 0x%08X\n",
   5923 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t) TX_PAGES);
   5924 
   5925 	BNX_PRINTF(sc,
   5926 	    "tx_bd per page = 0x%08X, usable tx_bd per page = 0x%08X\n",
   5927 	    (uint32_t)TOTAL_TX_BD_PER_PAGE, (uint32_t)USABLE_TX_BD_PER_PAGE);
   5928 
   5929 	BNX_PRINTF(sc, "total tx_bd    = 0x%08X\n", TOTAL_TX_BD);
   5930 
   5931 	aprint_error_dev(sc->bnx_dev, ""
   5932 	    "-----------------------------"
   5933 	    "   tx_bd data   "
   5934 	    "-----------------------------\n");
   5935 
   5936 	/* Now print out the tx_bd's themselves. */
   5937 	for (i = 0; i < count; i++) {
   5938 	 	txbd = &sc->tx_bd_chain[TX_PAGE(tx_prod)][TX_IDX(tx_prod)];
   5939 		bnx_dump_txbd(sc, tx_prod, txbd);
   5940 		tx_prod = TX_CHAIN_IDX(NEXT_TX_BD(tx_prod));
   5941 	}
   5942 
   5943 	aprint_debug_dev(sc->bnx_dev,
   5944 	    "-----------------------------"
   5945 	    "--------------"
   5946 	    "-----------------------------\n");
   5947 }
   5948 
   5949 /*
   5950  * This routine prints the RX chain.
   5951  */
   5952 void
   5953 bnx_dump_rx_chain(struct bnx_softc *sc, int rx_prod, int count)
   5954 {
   5955 	struct rx_bd		*rxbd;
   5956 	int			i;
   5957 
   5958 	/* First some info about the tx_bd chain structure. */
   5959 	aprint_debug_dev(sc->bnx_dev,
   5960 	    "----------------------------"
   5961 	    "  rx_bd  chain  "
   5962 	    "----------------------------\n");
   5963 
   5964 	aprint_debug_dev(sc->bnx_dev, "----- RX_BD Chain -----\n");
   5965 
   5966 	BNX_PRINTF(sc,
   5967 	    "page size      = 0x%08X, rx chain pages        = 0x%08X\n",
   5968 	    (uint32_t)BCM_PAGE_SIZE, (uint32_t)RX_PAGES);
   5969 
   5970 	BNX_PRINTF(sc,
   5971 	    "rx_bd per page = 0x%08X, usable rx_bd per page = 0x%08X\n",
   5972 	    (uint32_t)TOTAL_RX_BD_PER_PAGE, (uint32_t)USABLE_RX_BD_PER_PAGE);
   5973 
   5974 	BNX_PRINTF(sc, "total rx_bd    = 0x%08X\n", TOTAL_RX_BD);
   5975 
   5976 	aprint_error_dev(sc->bnx_dev,
   5977 	    "----------------------------"
   5978 	    "   rx_bd data   "
   5979 	    "----------------------------\n");
   5980 
   5981 	/* Now print out the rx_bd's themselves. */
   5982 	for (i = 0; i < count; i++) {
   5983 		rxbd = &sc->rx_bd_chain[RX_PAGE(rx_prod)][RX_IDX(rx_prod)];
   5984 		bnx_dump_rxbd(sc, rx_prod, rxbd);
   5985 		rx_prod = RX_CHAIN_IDX(NEXT_RX_BD(rx_prod));
   5986 	}
   5987 
   5988 	aprint_debug_dev(sc->bnx_dev,
   5989 	    "----------------------------"
   5990 	    "--------------"
   5991 	    "----------------------------\n");
   5992 }
   5993 
   5994 /*
   5995  * This routine prints the status block.
   5996  */
   5997 void
   5998 bnx_dump_status_block(struct bnx_softc *sc)
   5999 {
   6000 	struct status_block	*sblk;
   6001 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6002 	    BUS_DMASYNC_POSTREAD);
   6003 
   6004 	sblk = sc->status_block;
   6005 
   6006    	aprint_debug_dev(sc->bnx_dev, "----------------------------- "
   6007 	    "Status Block -----------------------------\n");
   6008 
   6009 	BNX_PRINTF(sc,
   6010 	    "attn_bits  = 0x%08X, attn_bits_ack = 0x%08X, index = 0x%04X\n",
   6011 	    sblk->status_attn_bits, sblk->status_attn_bits_ack,
   6012 	    sblk->status_idx);
   6013 
   6014 	BNX_PRINTF(sc, "rx_cons0   = 0x%08X, tx_cons0      = 0x%08X\n",
   6015 	    sblk->status_rx_quick_consumer_index0,
   6016 	    sblk->status_tx_quick_consumer_index0);
   6017 
   6018 	BNX_PRINTF(sc, "status_idx = 0x%04X\n", sblk->status_idx);
   6019 
   6020 	/* Theses indices are not used for normal L2 drivers. */
   6021 	if (sblk->status_rx_quick_consumer_index1 ||
   6022 		sblk->status_tx_quick_consumer_index1)
   6023 		BNX_PRINTF(sc, "rx_cons1  = 0x%08X, tx_cons1      = 0x%08X\n",
   6024 		    sblk->status_rx_quick_consumer_index1,
   6025 		    sblk->status_tx_quick_consumer_index1);
   6026 
   6027 	if (sblk->status_rx_quick_consumer_index2 ||
   6028 		sblk->status_tx_quick_consumer_index2)
   6029 		BNX_PRINTF(sc, "rx_cons2  = 0x%08X, tx_cons2      = 0x%08X\n",
   6030 		    sblk->status_rx_quick_consumer_index2,
   6031 		    sblk->status_tx_quick_consumer_index2);
   6032 
   6033 	if (sblk->status_rx_quick_consumer_index3 ||
   6034 		sblk->status_tx_quick_consumer_index3)
   6035 		BNX_PRINTF(sc, "rx_cons3  = 0x%08X, tx_cons3      = 0x%08X\n",
   6036 		    sblk->status_rx_quick_consumer_index3,
   6037 		    sblk->status_tx_quick_consumer_index3);
   6038 
   6039 	if (sblk->status_rx_quick_consumer_index4 ||
   6040 		sblk->status_rx_quick_consumer_index5)
   6041 		BNX_PRINTF(sc, "rx_cons4  = 0x%08X, rx_cons5      = 0x%08X\n",
   6042 		    sblk->status_rx_quick_consumer_index4,
   6043 		    sblk->status_rx_quick_consumer_index5);
   6044 
   6045 	if (sblk->status_rx_quick_consumer_index6 ||
   6046 		sblk->status_rx_quick_consumer_index7)
   6047 		BNX_PRINTF(sc, "rx_cons6  = 0x%08X, rx_cons7      = 0x%08X\n",
   6048 		    sblk->status_rx_quick_consumer_index6,
   6049 		    sblk->status_rx_quick_consumer_index7);
   6050 
   6051 	if (sblk->status_rx_quick_consumer_index8 ||
   6052 		sblk->status_rx_quick_consumer_index9)
   6053 		BNX_PRINTF(sc, "rx_cons8  = 0x%08X, rx_cons9      = 0x%08X\n",
   6054 		    sblk->status_rx_quick_consumer_index8,
   6055 		    sblk->status_rx_quick_consumer_index9);
   6056 
   6057 	if (sblk->status_rx_quick_consumer_index10 ||
   6058 		sblk->status_rx_quick_consumer_index11)
   6059 		BNX_PRINTF(sc, "rx_cons10 = 0x%08X, rx_cons11     = 0x%08X\n",
   6060 		    sblk->status_rx_quick_consumer_index10,
   6061 		    sblk->status_rx_quick_consumer_index11);
   6062 
   6063 	if (sblk->status_rx_quick_consumer_index12 ||
   6064 		sblk->status_rx_quick_consumer_index13)
   6065 		BNX_PRINTF(sc, "rx_cons12 = 0x%08X, rx_cons13     = 0x%08X\n",
   6066 		    sblk->status_rx_quick_consumer_index12,
   6067 		    sblk->status_rx_quick_consumer_index13);
   6068 
   6069 	if (sblk->status_rx_quick_consumer_index14 ||
   6070 		sblk->status_rx_quick_consumer_index15)
   6071 		BNX_PRINTF(sc, "rx_cons14 = 0x%08X, rx_cons15     = 0x%08X\n",
   6072 		    sblk->status_rx_quick_consumer_index14,
   6073 		    sblk->status_rx_quick_consumer_index15);
   6074 
   6075 	if (sblk->status_completion_producer_index ||
   6076 		sblk->status_cmd_consumer_index)
   6077 		BNX_PRINTF(sc, "com_prod  = 0x%08X, cmd_cons      = 0x%08X\n",
   6078 		    sblk->status_completion_producer_index,
   6079 		    sblk->status_cmd_consumer_index);
   6080 
   6081 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6082 	    "-----------------------------\n");
   6083 }
   6084 
   6085 /*
   6086  * This routine prints the statistics block.
   6087  */
   6088 void
   6089 bnx_dump_stats_block(struct bnx_softc *sc)
   6090 {
   6091 	struct statistics_block	*sblk;
   6092 	bus_dmamap_sync(sc->bnx_dmatag, sc->status_map, 0, BNX_STATUS_BLK_SZ,
   6093 	    BUS_DMASYNC_POSTREAD);
   6094 
   6095 	sblk = sc->stats_block;
   6096 
   6097 	aprint_debug_dev(sc->bnx_dev, ""
   6098 	    "-----------------------------"
   6099 	    " Stats  Block "
   6100 	    "-----------------------------\n");
   6101 
   6102 	BNX_PRINTF(sc, "IfHcInOctets         = 0x%08X:%08X, "
   6103 	    "IfHcInBadOctets      = 0x%08X:%08X\n",
   6104 	    sblk->stat_IfHCInOctets_hi, sblk->stat_IfHCInOctets_lo,
   6105 	    sblk->stat_IfHCInBadOctets_hi, sblk->stat_IfHCInBadOctets_lo);
   6106 
   6107 	BNX_PRINTF(sc, "IfHcOutOctets        = 0x%08X:%08X, "
   6108 	    "IfHcOutBadOctets     = 0x%08X:%08X\n",
   6109 	    sblk->stat_IfHCOutOctets_hi, sblk->stat_IfHCOutOctets_lo,
   6110 	    sblk->stat_IfHCOutBadOctets_hi, sblk->stat_IfHCOutBadOctets_lo);
   6111 
   6112 	BNX_PRINTF(sc, "IfHcInUcastPkts      = 0x%08X:%08X, "
   6113 	    "IfHcInMulticastPkts  = 0x%08X:%08X\n",
   6114 	    sblk->stat_IfHCInUcastPkts_hi, sblk->stat_IfHCInUcastPkts_lo,
   6115 	    sblk->stat_IfHCInMulticastPkts_hi,
   6116 	    sblk->stat_IfHCInMulticastPkts_lo);
   6117 
   6118 	BNX_PRINTF(sc, "IfHcInBroadcastPkts  = 0x%08X:%08X, "
   6119 	    "IfHcOutUcastPkts     = 0x%08X:%08X\n",
   6120 	    sblk->stat_IfHCInBroadcastPkts_hi,
   6121 	    sblk->stat_IfHCInBroadcastPkts_lo,
   6122 	    sblk->stat_IfHCOutUcastPkts_hi,
   6123 	    sblk->stat_IfHCOutUcastPkts_lo);
   6124 
   6125 	BNX_PRINTF(sc, "IfHcOutMulticastPkts = 0x%08X:%08X, "
   6126 	    "IfHcOutBroadcastPkts = 0x%08X:%08X\n",
   6127 	    sblk->stat_IfHCOutMulticastPkts_hi,
   6128 	    sblk->stat_IfHCOutMulticastPkts_lo,
   6129 	    sblk->stat_IfHCOutBroadcastPkts_hi,
   6130 	    sblk->stat_IfHCOutBroadcastPkts_lo);
   6131 
   6132 	if (sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors)
   6133 		BNX_PRINTF(sc, "0x%08X : "
   6134 		    "emac_tx_stat_dot3statsinternalmactransmiterrors\n",
   6135 		    sblk->stat_emac_tx_stat_dot3statsinternalmactransmiterrors);
   6136 
   6137 	if (sblk->stat_Dot3StatsCarrierSenseErrors)
   6138 		BNX_PRINTF(sc, "0x%08X : Dot3StatsCarrierSenseErrors\n",
   6139 		    sblk->stat_Dot3StatsCarrierSenseErrors);
   6140 
   6141 	if (sblk->stat_Dot3StatsFCSErrors)
   6142 		BNX_PRINTF(sc, "0x%08X : Dot3StatsFCSErrors\n",
   6143 		    sblk->stat_Dot3StatsFCSErrors);
   6144 
   6145 	if (sblk->stat_Dot3StatsAlignmentErrors)
   6146 		BNX_PRINTF(sc, "0x%08X : Dot3StatsAlignmentErrors\n",
   6147 		    sblk->stat_Dot3StatsAlignmentErrors);
   6148 
   6149 	if (sblk->stat_Dot3StatsSingleCollisionFrames)
   6150 		BNX_PRINTF(sc, "0x%08X : Dot3StatsSingleCollisionFrames\n",
   6151 		    sblk->stat_Dot3StatsSingleCollisionFrames);
   6152 
   6153 	if (sblk->stat_Dot3StatsMultipleCollisionFrames)
   6154 		BNX_PRINTF(sc, "0x%08X : Dot3StatsMultipleCollisionFrames\n",
   6155 		    sblk->stat_Dot3StatsMultipleCollisionFrames);
   6156 
   6157 	if (sblk->stat_Dot3StatsDeferredTransmissions)
   6158 		BNX_PRINTF(sc, "0x%08X : Dot3StatsDeferredTransmissions\n",
   6159 		    sblk->stat_Dot3StatsDeferredTransmissions);
   6160 
   6161 	if (sblk->stat_Dot3StatsExcessiveCollisions)
   6162 		BNX_PRINTF(sc, "0x%08X : Dot3StatsExcessiveCollisions\n",
   6163 		    sblk->stat_Dot3StatsExcessiveCollisions);
   6164 
   6165 	if (sblk->stat_Dot3StatsLateCollisions)
   6166 		BNX_PRINTF(sc, "0x%08X : Dot3StatsLateCollisions\n",
   6167 		    sblk->stat_Dot3StatsLateCollisions);
   6168 
   6169 	if (sblk->stat_EtherStatsCollisions)
   6170 		BNX_PRINTF(sc, "0x%08X : EtherStatsCollisions\n",
   6171 		    sblk->stat_EtherStatsCollisions);
   6172 
   6173 	if (sblk->stat_EtherStatsFragments)
   6174 		BNX_PRINTF(sc, "0x%08X : EtherStatsFragments\n",
   6175 		    sblk->stat_EtherStatsFragments);
   6176 
   6177 	if (sblk->stat_EtherStatsJabbers)
   6178 		BNX_PRINTF(sc, "0x%08X : EtherStatsJabbers\n",
   6179 		    sblk->stat_EtherStatsJabbers);
   6180 
   6181 	if (sblk->stat_EtherStatsUndersizePkts)
   6182 		BNX_PRINTF(sc, "0x%08X : EtherStatsUndersizePkts\n",
   6183 		    sblk->stat_EtherStatsUndersizePkts);
   6184 
   6185 	if (sblk->stat_EtherStatsOverrsizePkts)
   6186 		BNX_PRINTF(sc, "0x%08X : EtherStatsOverrsizePkts\n",
   6187 		    sblk->stat_EtherStatsOverrsizePkts);
   6188 
   6189 	if (sblk->stat_EtherStatsPktsRx64Octets)
   6190 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx64Octets\n",
   6191 		    sblk->stat_EtherStatsPktsRx64Octets);
   6192 
   6193 	if (sblk->stat_EtherStatsPktsRx65Octetsto127Octets)
   6194 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsRx65Octetsto127Octets\n",
   6195 		    sblk->stat_EtherStatsPktsRx65Octetsto127Octets);
   6196 
   6197 	if (sblk->stat_EtherStatsPktsRx128Octetsto255Octets)
   6198 		BNX_PRINTF(sc, "0x%08X : "
   6199 		    "EtherStatsPktsRx128Octetsto255Octets\n",
   6200 		    sblk->stat_EtherStatsPktsRx128Octetsto255Octets);
   6201 
   6202 	if (sblk->stat_EtherStatsPktsRx256Octetsto511Octets)
   6203 		BNX_PRINTF(sc, "0x%08X : "
   6204 		    "EtherStatsPktsRx256Octetsto511Octets\n",
   6205 		    sblk->stat_EtherStatsPktsRx256Octetsto511Octets);
   6206 
   6207 	if (sblk->stat_EtherStatsPktsRx512Octetsto1023Octets)
   6208 		BNX_PRINTF(sc, "0x%08X : "
   6209 		    "EtherStatsPktsRx512Octetsto1023Octets\n",
   6210 		    sblk->stat_EtherStatsPktsRx512Octetsto1023Octets);
   6211 
   6212 	if (sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets)
   6213 		BNX_PRINTF(sc, "0x%08X : "
   6214 		    "EtherStatsPktsRx1024Octetsto1522Octets\n",
   6215 		sblk->stat_EtherStatsPktsRx1024Octetsto1522Octets);
   6216 
   6217 	if (sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets)
   6218 		BNX_PRINTF(sc, "0x%08X : "
   6219 		    "EtherStatsPktsRx1523Octetsto9022Octets\n",
   6220 		    sblk->stat_EtherStatsPktsRx1523Octetsto9022Octets);
   6221 
   6222 	if (sblk->stat_EtherStatsPktsTx64Octets)
   6223 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx64Octets\n",
   6224 		    sblk->stat_EtherStatsPktsTx64Octets);
   6225 
   6226 	if (sblk->stat_EtherStatsPktsTx65Octetsto127Octets)
   6227 		BNX_PRINTF(sc, "0x%08X : EtherStatsPktsTx65Octetsto127Octets\n",
   6228 		    sblk->stat_EtherStatsPktsTx65Octetsto127Octets);
   6229 
   6230 	if (sblk->stat_EtherStatsPktsTx128Octetsto255Octets)
   6231 		BNX_PRINTF(sc, "0x%08X : "
   6232 		    "EtherStatsPktsTx128Octetsto255Octets\n",
   6233 		    sblk->stat_EtherStatsPktsTx128Octetsto255Octets);
   6234 
   6235 	if (sblk->stat_EtherStatsPktsTx256Octetsto511Octets)
   6236 		BNX_PRINTF(sc, "0x%08X : "
   6237 		    "EtherStatsPktsTx256Octetsto511Octets\n",
   6238 		    sblk->stat_EtherStatsPktsTx256Octetsto511Octets);
   6239 
   6240 	if (sblk->stat_EtherStatsPktsTx512Octetsto1023Octets)
   6241 		BNX_PRINTF(sc, "0x%08X : "
   6242 		    "EtherStatsPktsTx512Octetsto1023Octets\n",
   6243 		    sblk->stat_EtherStatsPktsTx512Octetsto1023Octets);
   6244 
   6245 	if (sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets)
   6246 		BNX_PRINTF(sc, "0x%08X : "
   6247 		    "EtherStatsPktsTx1024Octetsto1522Octets\n",
   6248 		    sblk->stat_EtherStatsPktsTx1024Octetsto1522Octets);
   6249 
   6250 	if (sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets)
   6251 		BNX_PRINTF(sc, "0x%08X : "
   6252 		    "EtherStatsPktsTx1523Octetsto9022Octets\n",
   6253 		    sblk->stat_EtherStatsPktsTx1523Octetsto9022Octets);
   6254 
   6255 	if (sblk->stat_XonPauseFramesReceived)
   6256 		BNX_PRINTF(sc, "0x%08X : XonPauseFramesReceived\n",
   6257 		    sblk->stat_XonPauseFramesReceived);
   6258 
   6259 	if (sblk->stat_XoffPauseFramesReceived)
   6260 		BNX_PRINTF(sc, "0x%08X : XoffPauseFramesReceived\n",
   6261 		    sblk->stat_XoffPauseFramesReceived);
   6262 
   6263 	if (sblk->stat_OutXonSent)
   6264 		BNX_PRINTF(sc, "0x%08X : OutXonSent\n",
   6265 		    sblk->stat_OutXonSent);
   6266 
   6267 	if (sblk->stat_OutXoffSent)
   6268 		BNX_PRINTF(sc, "0x%08X : OutXoffSent\n",
   6269 		    sblk->stat_OutXoffSent);
   6270 
   6271 	if (sblk->stat_FlowControlDone)
   6272 		BNX_PRINTF(sc, "0x%08X : FlowControlDone\n",
   6273 		    sblk->stat_FlowControlDone);
   6274 
   6275 	if (sblk->stat_MacControlFramesReceived)
   6276 		BNX_PRINTF(sc, "0x%08X : MacControlFramesReceived\n",
   6277 		    sblk->stat_MacControlFramesReceived);
   6278 
   6279 	if (sblk->stat_XoffStateEntered)
   6280 		BNX_PRINTF(sc, "0x%08X : XoffStateEntered\n",
   6281 		    sblk->stat_XoffStateEntered);
   6282 
   6283 	if (sblk->stat_IfInFramesL2FilterDiscards)
   6284 		BNX_PRINTF(sc, "0x%08X : IfInFramesL2FilterDiscards\n",
   6285 		    sblk->stat_IfInFramesL2FilterDiscards);
   6286 
   6287 	if (sblk->stat_IfInRuleCheckerDiscards)
   6288 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerDiscards\n",
   6289 		    sblk->stat_IfInRuleCheckerDiscards);
   6290 
   6291 	if (sblk->stat_IfInFTQDiscards)
   6292 		BNX_PRINTF(sc, "0x%08X : IfInFTQDiscards\n",
   6293 		    sblk->stat_IfInFTQDiscards);
   6294 
   6295 	if (sblk->stat_IfInMBUFDiscards)
   6296 		BNX_PRINTF(sc, "0x%08X : IfInMBUFDiscards\n",
   6297 		    sblk->stat_IfInMBUFDiscards);
   6298 
   6299 	if (sblk->stat_IfInRuleCheckerP4Hit)
   6300 		BNX_PRINTF(sc, "0x%08X : IfInRuleCheckerP4Hit\n",
   6301 		    sblk->stat_IfInRuleCheckerP4Hit);
   6302 
   6303 	if (sblk->stat_CatchupInRuleCheckerDiscards)
   6304 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerDiscards\n",
   6305 		    sblk->stat_CatchupInRuleCheckerDiscards);
   6306 
   6307 	if (sblk->stat_CatchupInFTQDiscards)
   6308 		BNX_PRINTF(sc, "0x%08X : CatchupInFTQDiscards\n",
   6309 		    sblk->stat_CatchupInFTQDiscards);
   6310 
   6311 	if (sblk->stat_CatchupInMBUFDiscards)
   6312 		BNX_PRINTF(sc, "0x%08X : CatchupInMBUFDiscards\n",
   6313 		    sblk->stat_CatchupInMBUFDiscards);
   6314 
   6315 	if (sblk->stat_CatchupInRuleCheckerP4Hit)
   6316 		BNX_PRINTF(sc, "0x%08X : CatchupInRuleCheckerP4Hit\n",
   6317 		    sblk->stat_CatchupInRuleCheckerP4Hit);
   6318 
   6319 	aprint_debug_dev(sc->bnx_dev,
   6320 	    "-----------------------------"
   6321 	    "--------------"
   6322 	    "-----------------------------\n");
   6323 }
   6324 
   6325 void
   6326 bnx_dump_driver_state(struct bnx_softc *sc)
   6327 {
   6328 	aprint_debug_dev(sc->bnx_dev,
   6329 	    "-----------------------------"
   6330 	    " Driver State "
   6331 	    "-----------------------------\n");
   6332 
   6333 	BNX_PRINTF(sc, "%p - (sc) driver softc structure virtual "
   6334 	    "address\n", sc);
   6335 
   6336 	BNX_PRINTF(sc, "%p - (sc->status_block) status block virtual address\n",
   6337 	    sc->status_block);
   6338 
   6339 	BNX_PRINTF(sc, "%p - (sc->stats_block) statistics block virtual "
   6340 	    "address\n", sc->stats_block);
   6341 
   6342 	BNX_PRINTF(sc, "%p - (sc->tx_bd_chain) tx_bd chain virtual "
   6343 	    "adddress\n", sc->tx_bd_chain);
   6344 
   6345 #if 0
   6346 	BNX_PRINTF(sc, "%p - (sc->rx_bd_chain) rx_bd chain virtual address\n",
   6347 	    sc->rx_bd_chain);
   6348 
   6349 	BNX_PRINTF(sc, "%p - (sc->tx_mbuf_ptr) tx mbuf chain virtual address\n",
   6350 	    sc->tx_mbuf_ptr);
   6351 #endif
   6352 
   6353 	BNX_PRINTF(sc, "%p - (sc->rx_mbuf_ptr) rx mbuf chain virtual address\n",
   6354 	    sc->rx_mbuf_ptr);
   6355 
   6356 	BNX_PRINTF(sc,
   6357 	    "         0x%08X - (sc->interrupts_generated) h/w intrs\n",
   6358 	    sc->interrupts_generated);
   6359 
   6360 	BNX_PRINTF(sc,
   6361 	    "         0x%08X - (sc->rx_interrupts) rx interrupts handled\n",
   6362 	    sc->rx_interrupts);
   6363 
   6364 	BNX_PRINTF(sc,
   6365 	    "         0x%08X - (sc->tx_interrupts) tx interrupts handled\n",
   6366 	    sc->tx_interrupts);
   6367 
   6368 	BNX_PRINTF(sc,
   6369 	    "         0x%08X - (sc->last_status_idx) status block index\n",
   6370 	    sc->last_status_idx);
   6371 
   6372 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_prod) tx producer index\n",
   6373 	    sc->tx_prod);
   6374 
   6375 	BNX_PRINTF(sc, "         0x%08X - (sc->tx_cons) tx consumer index\n",
   6376 	    sc->tx_cons);
   6377 
   6378 	BNX_PRINTF(sc,
   6379 	    "         0x%08X - (sc->tx_prod_bseq) tx producer bseq index\n",
   6380 	    sc->tx_prod_bseq);
   6381 	BNX_PRINTF(sc,
   6382 	    "	 0x%08X - (sc->tx_mbuf_alloc) tx mbufs allocated\n",
   6383 	    sc->tx_mbuf_alloc);
   6384 
   6385 	BNX_PRINTF(sc,
   6386 	    "	 0x%08X - (sc->used_tx_bd) used tx_bd's\n",
   6387 	    sc->used_tx_bd);
   6388 
   6389 	BNX_PRINTF(sc,
   6390 	    "	 0x%08X/%08X - (sc->tx_hi_watermark) tx hi watermark\n",
   6391 	    sc->tx_hi_watermark, sc->max_tx_bd);
   6392 
   6393 
   6394 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_prod) rx producer index\n",
   6395 	    sc->rx_prod);
   6396 
   6397 	BNX_PRINTF(sc, "         0x%08X - (sc->rx_cons) rx consumer index\n",
   6398 	    sc->rx_cons);
   6399 
   6400 	BNX_PRINTF(sc,
   6401 	    "         0x%08X - (sc->rx_prod_bseq) rx producer bseq index\n",
   6402 	    sc->rx_prod_bseq);
   6403 
   6404 	BNX_PRINTF(sc,
   6405 	    "         0x%08X - (sc->rx_mbuf_alloc) rx mbufs allocated\n",
   6406 	    sc->rx_mbuf_alloc);
   6407 
   6408 	BNX_PRINTF(sc, "         0x%08X - (sc->free_rx_bd) free rx_bd's\n",
   6409 	    sc->free_rx_bd);
   6410 
   6411 	BNX_PRINTF(sc,
   6412 	    "0x%08X/%08X - (sc->rx_low_watermark) rx low watermark\n",
   6413 	    sc->rx_low_watermark, sc->max_rx_bd);
   6414 
   6415 	BNX_PRINTF(sc,
   6416 	    "         0x%08X - (sc->mbuf_alloc_failed) "
   6417 	    "mbuf alloc failures\n",
   6418 	    sc->mbuf_alloc_failed);
   6419 
   6420 	BNX_PRINTF(sc,
   6421 	    "         0x%0X - (sc->mbuf_sim_allocated_failed) "
   6422 	    "simulated mbuf alloc failures\n",
   6423 	    sc->mbuf_sim_alloc_failed);
   6424 
   6425 	aprint_debug_dev(sc->bnx_dev, "-------------------------------------------"
   6426 	    "-----------------------------\n");
   6427 }
   6428 
   6429 void
   6430 bnx_dump_hw_state(struct bnx_softc *sc)
   6431 {
   6432 	uint32_t		val1;
   6433 	int			i;
   6434 
   6435 	aprint_debug_dev(sc->bnx_dev,
   6436 	    "----------------------------"
   6437 	    " Hardware State "
   6438 	    "----------------------------\n");
   6439 
   6440 	BNX_PRINTF(sc, "0x%08X : bootcode version\n", sc->bnx_fw_ver);
   6441 
   6442 	val1 = REG_RD(sc, BNX_MISC_ENABLE_STATUS_BITS);
   6443 	BNX_PRINTF(sc, "0x%08X : (0x%04X) misc_enable_status_bits\n",
   6444 	    val1, BNX_MISC_ENABLE_STATUS_BITS);
   6445 
   6446 	val1 = REG_RD(sc, BNX_DMA_STATUS);
   6447 	BNX_PRINTF(sc, "0x%08X : (0x%04X) dma_status\n", val1, BNX_DMA_STATUS);
   6448 
   6449 	val1 = REG_RD(sc, BNX_CTX_STATUS);
   6450 	BNX_PRINTF(sc, "0x%08X : (0x%04X) ctx_status\n", val1, BNX_CTX_STATUS);
   6451 
   6452 	val1 = REG_RD(sc, BNX_EMAC_STATUS);
   6453 	BNX_PRINTF(sc, "0x%08X : (0x%04X) emac_status\n", val1,
   6454 	    BNX_EMAC_STATUS);
   6455 
   6456 	val1 = REG_RD(sc, BNX_RPM_STATUS);
   6457 	BNX_PRINTF(sc, "0x%08X : (0x%04X) rpm_status\n", val1, BNX_RPM_STATUS);
   6458 
   6459 	val1 = REG_RD(sc, BNX_TBDR_STATUS);
   6460 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tbdr_status\n", val1,
   6461 	    BNX_TBDR_STATUS);
   6462 
   6463 	val1 = REG_RD(sc, BNX_TDMA_STATUS);
   6464 	BNX_PRINTF(sc, "0x%08X : (0x%04X) tdma_status\n", val1,
   6465 	    BNX_TDMA_STATUS);
   6466 
   6467 	val1 = REG_RD(sc, BNX_HC_STATUS);
   6468 	BNX_PRINTF(sc, "0x%08X : (0x%04X) hc_status\n", val1, BNX_HC_STATUS);
   6469 
   6470 	aprint_debug_dev(sc->bnx_dev,
   6471 	    "----------------------------"
   6472 	    "----------------"
   6473 	    "----------------------------\n");
   6474 
   6475 	aprint_debug_dev(sc->bnx_dev,
   6476 	    "----------------------------"
   6477 	    " Register  Dump "
   6478 	    "----------------------------\n");
   6479 
   6480 	for (i = 0x400; i < 0x8000; i += 0x10)
   6481 		BNX_PRINTF(sc, "0x%04X: 0x%08X 0x%08X 0x%08X 0x%08X\n",
   6482 		    i, REG_RD(sc, i), REG_RD(sc, i + 0x4),
   6483 		    REG_RD(sc, i + 0x8), REG_RD(sc, i + 0xC));
   6484 
   6485 	aprint_debug_dev(sc->bnx_dev,
   6486 	    "----------------------------"
   6487 	    "----------------"
   6488 	    "----------------------------\n");
   6489 }
   6490 
   6491 void
   6492 bnx_breakpoint(struct bnx_softc *sc)
   6493 {
   6494 	/* Unreachable code to shut the compiler up about unused functions. */
   6495 	if (0) {
   6496    		bnx_dump_txbd(sc, 0, NULL);
   6497 		bnx_dump_rxbd(sc, 0, NULL);
   6498 		bnx_dump_tx_mbuf_chain(sc, 0, USABLE_TX_BD);
   6499 		bnx_dump_rx_mbuf_chain(sc, 0, sc->max_rx_bd);
   6500 		bnx_dump_l2fhdr(sc, 0, NULL);
   6501 		bnx_dump_tx_chain(sc, 0, USABLE_TX_BD);
   6502 		bnx_dump_rx_chain(sc, 0, sc->max_rx_bd);
   6503 		bnx_dump_status_block(sc);
   6504 		bnx_dump_stats_block(sc);
   6505 		bnx_dump_driver_state(sc);
   6506 		bnx_dump_hw_state(sc);
   6507 	}
   6508 
   6509 	bnx_dump_driver_state(sc);
   6510 	/* Print the important status block fields. */
   6511 	bnx_dump_status_block(sc);
   6512 
   6513 #if 0
   6514 	/* Call the debugger. */
   6515 	breakpoint();
   6516 #endif
   6517 
   6518 	return;
   6519 }
   6520 #endif
   6521